Linux Audio

Check our new training course

Linux BSP upgrade and security maintenance

Need help to get security updates for your Linux BSP?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   4 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   5 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
   6 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
   7 *
   8 * This file is released under the GPL.
   9 */
  10
  11#include <linux/completion.h>
  12#include <linux/err.h>
  13#include <linux/module.h>
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/key.h>
  17#include <linux/bio.h>
  18#include <linux/blkdev.h>
  19#include <linux/blk-integrity.h>
  20#include <linux/mempool.h>
  21#include <linux/slab.h>
  22#include <linux/crypto.h>
  23#include <linux/workqueue.h>
  24#include <linux/kthread.h>
  25#include <linux/backing-dev.h>
  26#include <linux/atomic.h>
  27#include <linux/scatterlist.h>
  28#include <linux/rbtree.h>
  29#include <linux/ctype.h>
  30#include <asm/page.h>
  31#include <linux/unaligned.h>
  32#include <crypto/hash.h>
  33#include <crypto/md5.h>
 
  34#include <crypto/skcipher.h>
  35#include <crypto/aead.h>
  36#include <crypto/authenc.h>
  37#include <crypto/utils.h>
  38#include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
  39#include <linux/key-type.h>
  40#include <keys/user-type.h>
  41#include <keys/encrypted-type.h>
  42#include <keys/trusted-type.h>
  43
  44#include <linux/device-mapper.h>
  45
  46#include "dm-audit.h"
  47
  48#define DM_MSG_PREFIX "crypt"
  49
  50static DEFINE_IDA(workqueue_ida);
  51
  52/*
  53 * context holding the current state of a multi-part conversion
  54 */
  55struct convert_context {
  56	struct completion restart;
  57	struct bio *bio_in;
  58	struct bvec_iter iter_in;
  59	struct bio *bio_out;
 
  60	struct bvec_iter iter_out;
 
  61	atomic_t cc_pending;
  62	unsigned int tag_offset;
  63	u64 cc_sector;
  64	union {
  65		struct skcipher_request *req;
  66		struct aead_request *req_aead;
  67	} r;
  68	bool aead_recheck;
  69	bool aead_failed;
  70
  71};
  72
  73/*
  74 * per bio private data
  75 */
  76struct dm_crypt_io {
  77	struct crypt_config *cc;
  78	struct bio *base_bio;
  79	u8 *integrity_metadata;
  80	bool integrity_metadata_from_pool:1;
  81
  82	struct work_struct work;
  83
  84	struct convert_context ctx;
  85
  86	atomic_t io_pending;
  87	blk_status_t error;
  88	sector_t sector;
  89
  90	struct bvec_iter saved_bi_iter;
  91
  92	struct rb_node rb_node;
  93} CRYPTO_MINALIGN_ATTR;
  94
  95struct dm_crypt_request {
  96	struct convert_context *ctx;
  97	struct scatterlist sg_in[4];
  98	struct scatterlist sg_out[4];
  99	u64 iv_sector;
 100};
 101
 102struct crypt_config;
 103
 104struct crypt_iv_operations {
 105	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
 106		   const char *opts);
 107	void (*dtr)(struct crypt_config *cc);
 108	int (*init)(struct crypt_config *cc);
 109	int (*wipe)(struct crypt_config *cc);
 110	int (*generator)(struct crypt_config *cc, u8 *iv,
 111			 struct dm_crypt_request *dmreq);
 112	int (*post)(struct crypt_config *cc, u8 *iv,
 113		    struct dm_crypt_request *dmreq);
 114};
 115
 
 
 
 
 
 116struct iv_benbi_private {
 117	int shift;
 118};
 119
 120#define LMK_SEED_SIZE 64 /* hash + 0 */
 121struct iv_lmk_private {
 122	struct crypto_shash *hash_tfm;
 123	u8 *seed;
 124};
 125
 126#define TCW_WHITENING_SIZE 16
 127struct iv_tcw_private {
 128	struct crypto_shash *crc32_tfm;
 129	u8 *iv_seed;
 130	u8 *whitening;
 131};
 132
 133#define ELEPHANT_MAX_KEY_SIZE 32
 134struct iv_elephant_private {
 135	struct crypto_skcipher *tfm;
 136};
 137
 138/*
 139 * Crypt: maps a linear range of a block device
 140 * and encrypts / decrypts at the same time.
 141 */
 142enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 143	     DM_CRYPT_SAME_CPU, DM_CRYPT_HIGH_PRIORITY,
 144	     DM_CRYPT_NO_OFFLOAD, DM_CRYPT_NO_READ_WORKQUEUE,
 145	     DM_CRYPT_NO_WRITE_WORKQUEUE, DM_CRYPT_WRITE_INLINE };
 146
 147enum cipher_flags {
 148	CRYPT_MODE_INTEGRITY_AEAD,	/* Use authenticated mode for cipher */
 149	CRYPT_IV_LARGE_SECTORS,		/* Calculate IV from sector_size, not 512B sectors */
 150	CRYPT_ENCRYPT_PREPROCESS,	/* Must preprocess data for encryption (elephant) */
 151	CRYPT_KEY_MAC_SIZE_SET,		/* The integrity_key_size option was used */
 152};
 153
 154/*
 155 * The fields in here must be read only after initialization.
 156 */
 157struct crypt_config {
 158	struct dm_dev *dev;
 159	sector_t start;
 160
 161	struct percpu_counter n_allocated_pages;
 
 
 
 
 
 
 
 162
 163	struct workqueue_struct *io_queue;
 164	struct workqueue_struct *crypt_queue;
 165
 166	spinlock_t write_thread_lock;
 167	struct task_struct *write_thread;
 
 168	struct rb_root write_tree;
 169
 
 170	char *cipher_string;
 171	char *cipher_auth;
 172	char *key_string;
 173
 174	const struct crypt_iv_operations *iv_gen_ops;
 175	union {
 
 176		struct iv_benbi_private benbi;
 177		struct iv_lmk_private lmk;
 178		struct iv_tcw_private tcw;
 179		struct iv_elephant_private elephant;
 180	} iv_gen_private;
 181	u64 iv_offset;
 182	unsigned int iv_size;
 183	unsigned short sector_size;
 184	unsigned char sector_shift;
 185
 186	union {
 187		struct crypto_skcipher **tfms;
 188		struct crypto_aead **tfms_aead;
 189	} cipher_tfm;
 190	unsigned int tfms_count;
 191	int workqueue_id;
 192	unsigned long cipher_flags;
 193
 194	/*
 195	 * Layout of each crypto request:
 196	 *
 197	 *   struct skcipher_request
 198	 *      context
 199	 *      padding
 200	 *   struct dm_crypt_request
 201	 *      padding
 202	 *   IV
 203	 *
 204	 * The padding is added so that dm_crypt_request and the IV are
 205	 * correctly aligned.
 206	 */
 207	unsigned int dmreq_start;
 208
 209	unsigned int per_bio_data_size;
 210
 211	unsigned long flags;
 212	unsigned int key_size;
 213	unsigned int key_parts;      /* independent parts in key buffer */
 214	unsigned int key_extra_size; /* additional keys length */
 215	unsigned int key_mac_size;   /* MAC key size for authenc(...) */
 216
 217	unsigned int integrity_tag_size;
 218	unsigned int integrity_iv_size;
 219	unsigned int used_tag_size;
 220	unsigned int tuple_size;
 221
 222	/*
 223	 * pool for per bio private data, crypto requests,
 224	 * encryption requeusts/buffer pages and integrity tags
 225	 */
 226	unsigned int tag_pool_max_sectors;
 227	mempool_t tag_pool;
 228	mempool_t req_pool;
 229	mempool_t page_pool;
 230
 231	struct bio_set bs;
 232	struct mutex bio_alloc_lock;
 233
 234	u8 *authenc_key; /* space for keys in authenc() format (if used) */
 235	u8 key[] __counted_by(key_size);
 236};
 237
 238#define MIN_IOS		64
 239#define MAX_TAG_SIZE	480
 240#define POOL_ENTRY_SIZE	512
 241
 242static DEFINE_SPINLOCK(dm_crypt_clients_lock);
 243static unsigned int dm_crypt_clients_n;
 244static volatile unsigned long dm_crypt_pages_per_client;
 245#define DM_CRYPT_MEMORY_PERCENT			2
 246#define DM_CRYPT_MIN_PAGES_PER_CLIENT		(BIO_MAX_VECS * 16)
 247#define DM_CRYPT_DEFAULT_MAX_READ_SIZE		131072
 248#define DM_CRYPT_DEFAULT_MAX_WRITE_SIZE		131072
 249
 250static unsigned int max_read_size = 0;
 251module_param(max_read_size, uint, 0644);
 252MODULE_PARM_DESC(max_read_size, "Maximum size of a read request");
 253static unsigned int max_write_size = 0;
 254module_param(max_write_size, uint, 0644);
 255MODULE_PARM_DESC(max_write_size, "Maximum size of a write request");
 256static unsigned get_max_request_size(struct crypt_config *cc, bool wrt)
 257{
 258	unsigned val, sector_align;
 259	val = !wrt ? READ_ONCE(max_read_size) : READ_ONCE(max_write_size);
 260	if (likely(!val))
 261		val = !wrt ? DM_CRYPT_DEFAULT_MAX_READ_SIZE : DM_CRYPT_DEFAULT_MAX_WRITE_SIZE;
 262	if (wrt || cc->used_tag_size) {
 263		if (unlikely(val > BIO_MAX_VECS << PAGE_SHIFT))
 264			val = BIO_MAX_VECS << PAGE_SHIFT;
 265	}
 266	sector_align = max(bdev_logical_block_size(cc->dev->bdev), (unsigned)cc->sector_size);
 267	val = round_down(val, sector_align);
 268	if (unlikely(!val))
 269		val = sector_align;
 270	return val >> SECTOR_SHIFT;
 271}
 272
 273static void crypt_endio(struct bio *clone);
 274static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 275static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
 276					     struct scatterlist *sg);
 277
 278static bool crypt_integrity_aead(struct crypt_config *cc);
 279
 280/*
 281 * Use this to access cipher attributes that are independent of the key.
 282 */
 283static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 284{
 285	return cc->cipher_tfm.tfms[0];
 286}
 287
 288static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
 289{
 290	return cc->cipher_tfm.tfms_aead[0];
 291}
 292
 293/*
 294 * Different IV generation algorithms:
 295 *
 296 * plain: the initial vector is the 32-bit little-endian version of the sector
 297 *        number, padded with zeros if necessary.
 298 *
 299 * plain64: the initial vector is the 64-bit little-endian version of the sector
 300 *        number, padded with zeros if necessary.
 301 *
 302 * plain64be: the initial vector is the 64-bit big-endian version of the sector
 303 *        number, padded with zeros if necessary.
 304 *
 305 * essiv: "encrypted sector|salt initial vector", the sector number is
 306 *        encrypted with the bulk cipher using a salt as key. The salt
 307 *        should be derived from the bulk cipher's key via hashing.
 308 *
 309 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 310 *        (needed for LRW-32-AES and possible other narrow block modes)
 311 *
 312 * null: the initial vector is always zero.  Provides compatibility with
 313 *       obsolete loop_fish2 devices.  Do not use for new devices.
 314 *
 315 * lmk:  Compatible implementation of the block chaining mode used
 316 *       by the Loop-AES block device encryption system
 317 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 318 *       It operates on full 512 byte sectors and uses CBC
 319 *       with an IV derived from the sector number, the data and
 320 *       optionally extra IV seed.
 321 *       This means that after decryption the first block
 322 *       of sector must be tweaked according to decrypted data.
 323 *       Loop-AES can use three encryption schemes:
 324 *         version 1: is plain aes-cbc mode
 325 *         version 2: uses 64 multikey scheme with lmk IV generator
 326 *         version 3: the same as version 2 with additional IV seed
 327 *                   (it uses 65 keys, last key is used as IV seed)
 328 *
 329 * tcw:  Compatible implementation of the block chaining mode used
 330 *       by the TrueCrypt device encryption system (prior to version 4.1).
 331 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 332 *       It operates on full 512 byte sectors and uses CBC
 333 *       with an IV derived from initial key and the sector number.
 334 *       In addition, whitening value is applied on every sector, whitening
 335 *       is calculated from initial key, sector number and mixed using CRC32.
 336 *       Note that this encryption scheme is vulnerable to watermarking attacks
 337 *       and should be used for old compatible containers access only.
 338 *
 339 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
 340 *        The IV is encrypted little-endian byte-offset (with the same key
 341 *        and cipher as the volume).
 342 *
 343 * elephant: The extended version of eboiv with additional Elephant diffuser
 344 *           used with Bitlocker CBC mode.
 345 *           This mode was used in older Windows systems
 346 *           https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
 347 */
 348
 349static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 350			      struct dm_crypt_request *dmreq)
 351{
 352	memset(iv, 0, cc->iv_size);
 353	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 354
 355	return 0;
 356}
 357
 358static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 359				struct dm_crypt_request *dmreq)
 360{
 361	memset(iv, 0, cc->iv_size);
 362	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 363
 364	return 0;
 365}
 366
 367static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
 368				  struct dm_crypt_request *dmreq)
 369{
 370	memset(iv, 0, cc->iv_size);
 371	/* iv_size is at least of size u64; usually it is 16 bytes */
 372	*(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 373
 374	return 0;
 
 
 
 
 
 
 375}
 376
 377static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 378			      struct dm_crypt_request *dmreq)
 379{
 380	/*
 381	 * ESSIV encryption of the IV is now handled by the crypto API,
 382	 * so just pass the plain sector number here.
 383	 */
 384	memset(iv, 0, cc->iv_size);
 385	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 
 386
 387	return 0;
 388}
 389
 390static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 391			      const char *opts)
 392{
 393	unsigned int bs;
 394	int log;
 395
 396	if (crypt_integrity_aead(cc))
 397		bs = crypto_aead_blocksize(any_tfm_aead(cc));
 398	else
 399		bs = crypto_skcipher_blocksize(any_tfm(cc));
 400	log = ilog2(bs);
 401
 402	/*
 403	 * We need to calculate how far we must shift the sector count
 404	 * to get the cipher block count, we use this shift in _gen.
 405	 */
 406	if (1 << log != bs) {
 407		ti->error = "cypher blocksize is not a power of 2";
 408		return -EINVAL;
 409	}
 410
 411	if (log > 9) {
 412		ti->error = "cypher blocksize is > 512";
 413		return -EINVAL;
 414	}
 415
 416	cc->iv_gen_private.benbi.shift = 9 - log;
 417
 418	return 0;
 419}
 420
 421static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 422{
 423}
 424
 425static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 426			      struct dm_crypt_request *dmreq)
 427{
 428	__be64 val;
 429
 430	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 431
 432	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 433	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 434
 435	return 0;
 436}
 437
 438static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 439			     struct dm_crypt_request *dmreq)
 440{
 441	memset(iv, 0, cc->iv_size);
 442
 443	return 0;
 444}
 445
 446static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 447{
 448	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 449
 450	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 451		crypto_free_shash(lmk->hash_tfm);
 452	lmk->hash_tfm = NULL;
 453
 454	kfree_sensitive(lmk->seed);
 455	lmk->seed = NULL;
 456}
 457
 458static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 459			    const char *opts)
 460{
 461	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 462
 463	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 464		ti->error = "Unsupported sector size for LMK";
 465		return -EINVAL;
 466	}
 467
 468	lmk->hash_tfm = crypto_alloc_shash("md5", 0,
 469					   CRYPTO_ALG_ALLOCATES_MEMORY);
 470	if (IS_ERR(lmk->hash_tfm)) {
 471		ti->error = "Error initializing LMK hash";
 472		return PTR_ERR(lmk->hash_tfm);
 473	}
 474
 475	/* No seed in LMK version 2 */
 476	if (cc->key_parts == cc->tfms_count) {
 477		lmk->seed = NULL;
 478		return 0;
 479	}
 480
 481	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 482	if (!lmk->seed) {
 483		crypt_iv_lmk_dtr(cc);
 484		ti->error = "Error kmallocing seed storage in LMK";
 485		return -ENOMEM;
 486	}
 487
 488	return 0;
 489}
 490
 491static int crypt_iv_lmk_init(struct crypt_config *cc)
 492{
 493	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 494	int subkey_size = cc->key_size / cc->key_parts;
 495
 496	/* LMK seed is on the position of LMK_KEYS + 1 key */
 497	if (lmk->seed)
 498		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 499		       crypto_shash_digestsize(lmk->hash_tfm));
 500
 501	return 0;
 502}
 503
 504static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 505{
 506	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 507
 508	if (lmk->seed)
 509		memset(lmk->seed, 0, LMK_SEED_SIZE);
 510
 511	return 0;
 512}
 513
 514static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 515			    struct dm_crypt_request *dmreq,
 516			    u8 *data)
 517{
 518	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 519	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 520	struct md5_state md5state;
 521	__le32 buf[4];
 522	int i, r;
 523
 524	desc->tfm = lmk->hash_tfm;
 
 525
 526	r = crypto_shash_init(desc);
 527	if (r)
 528		return r;
 529
 530	if (lmk->seed) {
 531		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 532		if (r)
 533			return r;
 534	}
 535
 536	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 537	r = crypto_shash_update(desc, data + 16, 16 * 31);
 538	if (r)
 539		return r;
 540
 541	/* Sector is cropped to 56 bits here */
 542	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 543	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 544	buf[2] = cpu_to_le32(4024);
 545	buf[3] = 0;
 546	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 547	if (r)
 548		return r;
 549
 550	/* No MD5 padding here */
 551	r = crypto_shash_export(desc, &md5state);
 552	if (r)
 553		return r;
 554
 555	for (i = 0; i < MD5_HASH_WORDS; i++)
 556		__cpu_to_le32s(&md5state.hash[i]);
 557	memcpy(iv, &md5state.hash, cc->iv_size);
 558
 559	return 0;
 560}
 561
 562static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 563			    struct dm_crypt_request *dmreq)
 564{
 565	struct scatterlist *sg;
 566	u8 *src;
 567	int r = 0;
 568
 569	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 570		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 571		src = kmap_local_page(sg_page(sg));
 572		r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
 573		kunmap_local(src);
 574	} else
 575		memset(iv, 0, cc->iv_size);
 576
 577	return r;
 578}
 579
 580static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 581			     struct dm_crypt_request *dmreq)
 582{
 583	struct scatterlist *sg;
 584	u8 *dst;
 585	int r;
 586
 587	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 588		return 0;
 589
 590	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 591	dst = kmap_local_page(sg_page(sg));
 592	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
 593
 594	/* Tweak the first block of plaintext sector */
 595	if (!r)
 596		crypto_xor(dst + sg->offset, iv, cc->iv_size);
 597
 598	kunmap_local(dst);
 599	return r;
 600}
 601
 602static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 603{
 604	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 605
 606	kfree_sensitive(tcw->iv_seed);
 607	tcw->iv_seed = NULL;
 608	kfree_sensitive(tcw->whitening);
 609	tcw->whitening = NULL;
 610
 611	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 612		crypto_free_shash(tcw->crc32_tfm);
 613	tcw->crc32_tfm = NULL;
 614}
 615
 616static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 617			    const char *opts)
 618{
 619	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 620
 621	if (cc->sector_size != (1 << SECTOR_SHIFT)) {
 622		ti->error = "Unsupported sector size for TCW";
 623		return -EINVAL;
 624	}
 625
 626	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 627		ti->error = "Wrong key size for TCW";
 628		return -EINVAL;
 629	}
 630
 631	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
 632					    CRYPTO_ALG_ALLOCATES_MEMORY);
 633	if (IS_ERR(tcw->crc32_tfm)) {
 634		ti->error = "Error initializing CRC32 in TCW";
 635		return PTR_ERR(tcw->crc32_tfm);
 636	}
 637
 638	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 639	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 640	if (!tcw->iv_seed || !tcw->whitening) {
 641		crypt_iv_tcw_dtr(cc);
 642		ti->error = "Error allocating seed storage in TCW";
 643		return -ENOMEM;
 644	}
 645
 646	return 0;
 647}
 648
 649static int crypt_iv_tcw_init(struct crypt_config *cc)
 650{
 651	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 652	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 653
 654	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 655	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 656	       TCW_WHITENING_SIZE);
 657
 658	return 0;
 659}
 660
 661static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 662{
 663	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 664
 665	memset(tcw->iv_seed, 0, cc->iv_size);
 666	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 667
 668	return 0;
 669}
 670
 671static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 672				  struct dm_crypt_request *dmreq,
 673				  u8 *data)
 674{
 675	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 676	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 677	u8 buf[TCW_WHITENING_SIZE];
 678	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 679	int i, r;
 680
 681	/* xor whitening with sector number */
 682	crypto_xor_cpy(buf, tcw->whitening, (u8 *)&sector, 8);
 683	crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)&sector, 8);
 
 684
 685	/* calculate crc32 for every 32bit part and xor it */
 686	desc->tfm = tcw->crc32_tfm;
 
 687	for (i = 0; i < 4; i++) {
 688		r = crypto_shash_digest(desc, &buf[i * 4], 4, &buf[i * 4]);
 
 
 
 
 
 
 689		if (r)
 690			goto out;
 691	}
 692	crypto_xor(&buf[0], &buf[12], 4);
 693	crypto_xor(&buf[4], &buf[8], 4);
 694
 695	/* apply whitening (8 bytes) to whole sector */
 696	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 697		crypto_xor(data + i * 8, buf, 8);
 698out:
 699	memzero_explicit(buf, sizeof(buf));
 700	return r;
 701}
 702
 703static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 704			    struct dm_crypt_request *dmreq)
 705{
 706	struct scatterlist *sg;
 707	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 708	__le64 sector = cpu_to_le64(dmreq->iv_sector);
 709	u8 *src;
 710	int r = 0;
 711
 712	/* Remove whitening from ciphertext */
 713	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 714		sg = crypt_get_sg_data(cc, dmreq->sg_in);
 715		src = kmap_local_page(sg_page(sg));
 716		r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
 717		kunmap_local(src);
 718	}
 719
 720	/* Calculate IV */
 721	crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)&sector, 8);
 
 722	if (cc->iv_size > 8)
 723		crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)&sector,
 724			       cc->iv_size - 8);
 725
 726	return r;
 727}
 728
 729static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 730			     struct dm_crypt_request *dmreq)
 731{
 732	struct scatterlist *sg;
 733	u8 *dst;
 734	int r;
 735
 736	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 737		return 0;
 738
 739	/* Apply whitening on ciphertext */
 740	sg = crypt_get_sg_data(cc, dmreq->sg_out);
 741	dst = kmap_local_page(sg_page(sg));
 742	r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
 743	kunmap_local(dst);
 744
 745	return r;
 746}
 747
 748static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
 749				struct dm_crypt_request *dmreq)
 750{
 751	/* Used only for writes, there must be an additional space to store IV */
 752	get_random_bytes(iv, cc->iv_size);
 753	return 0;
 754}
 755
 756static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 757			    const char *opts)
 758{
 759	if (crypt_integrity_aead(cc)) {
 760		ti->error = "AEAD transforms not supported for EBOIV";
 761		return -EINVAL;
 762	}
 763
 764	if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
 765		ti->error = "Block size of EBOIV cipher does not match IV size of block cipher";
 766		return -EINVAL;
 767	}
 768
 769	return 0;
 770}
 771
 772static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
 773			    struct dm_crypt_request *dmreq)
 774{
 775	struct crypto_skcipher *tfm = any_tfm(cc);
 776	struct skcipher_request *req;
 777	struct scatterlist src, dst;
 778	DECLARE_CRYPTO_WAIT(wait);
 779	unsigned int reqsize;
 780	int err;
 781	u8 *buf;
 782
 783	reqsize = sizeof(*req) + crypto_skcipher_reqsize(tfm);
 784	reqsize = ALIGN(reqsize, __alignof__(__le64));
 785
 786	req = kmalloc(reqsize + cc->iv_size, GFP_NOIO);
 787	if (!req)
 788		return -ENOMEM;
 789
 790	skcipher_request_set_tfm(req, tfm);
 791
 792	buf = (u8 *)req + reqsize;
 793	memset(buf, 0, cc->iv_size);
 794	*(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 795
 796	sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
 797	sg_init_one(&dst, iv, cc->iv_size);
 798	skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
 799	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
 800	err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
 801	kfree_sensitive(req);
 802
 803	return err;
 804}
 805
 806static void crypt_iv_elephant_dtr(struct crypt_config *cc)
 807{
 808	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 809
 810	crypto_free_skcipher(elephant->tfm);
 811	elephant->tfm = NULL;
 812}
 813
 814static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
 815			    const char *opts)
 816{
 817	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 818	int r;
 819
 820	elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
 821					      CRYPTO_ALG_ALLOCATES_MEMORY);
 822	if (IS_ERR(elephant->tfm)) {
 823		r = PTR_ERR(elephant->tfm);
 824		elephant->tfm = NULL;
 825		return r;
 826	}
 827
 828	r = crypt_iv_eboiv_ctr(cc, ti, NULL);
 829	if (r)
 830		crypt_iv_elephant_dtr(cc);
 831	return r;
 832}
 833
 834static void diffuser_disk_to_cpu(u32 *d, size_t n)
 835{
 836#ifndef __LITTLE_ENDIAN
 837	int i;
 838
 839	for (i = 0; i < n; i++)
 840		d[i] = le32_to_cpu((__le32)d[i]);
 841#endif
 842}
 843
 844static void diffuser_cpu_to_disk(__le32 *d, size_t n)
 845{
 846#ifndef __LITTLE_ENDIAN
 847	int i;
 848
 849	for (i = 0; i < n; i++)
 850		d[i] = cpu_to_le32((u32)d[i]);
 851#endif
 852}
 853
 854static void diffuser_a_decrypt(u32 *d, size_t n)
 855{
 856	int i, i1, i2, i3;
 857
 858	for (i = 0; i < 5; i++) {
 859		i1 = 0;
 860		i2 = n - 2;
 861		i3 = n - 5;
 862
 863		while (i1 < (n - 1)) {
 864			d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 865			i1++; i2++; i3++;
 866
 867			if (i3 >= n)
 868				i3 -= n;
 869
 870			d[i1] += d[i2] ^ d[i3];
 871			i1++; i2++; i3++;
 872
 873			if (i2 >= n)
 874				i2 -= n;
 875
 876			d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 877			i1++; i2++; i3++;
 878
 879			d[i1] += d[i2] ^ d[i3];
 880			i1++; i2++; i3++;
 881		}
 882	}
 883}
 884
 885static void diffuser_a_encrypt(u32 *d, size_t n)
 886{
 887	int i, i1, i2, i3;
 888
 889	for (i = 0; i < 5; i++) {
 890		i1 = n - 1;
 891		i2 = n - 2 - 1;
 892		i3 = n - 5 - 1;
 893
 894		while (i1 > 0) {
 895			d[i1] -= d[i2] ^ d[i3];
 896			i1--; i2--; i3--;
 897
 898			d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
 899			i1--; i2--; i3--;
 900
 901			if (i2 < 0)
 902				i2 += n;
 903
 904			d[i1] -= d[i2] ^ d[i3];
 905			i1--; i2--; i3--;
 906
 907			if (i3 < 0)
 908				i3 += n;
 909
 910			d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
 911			i1--; i2--; i3--;
 912		}
 913	}
 914}
 915
 916static void diffuser_b_decrypt(u32 *d, size_t n)
 917{
 918	int i, i1, i2, i3;
 919
 920	for (i = 0; i < 3; i++) {
 921		i1 = 0;
 922		i2 = 2;
 923		i3 = 5;
 924
 925		while (i1 < (n - 1)) {
 926			d[i1] += d[i2] ^ d[i3];
 927			i1++; i2++; i3++;
 928
 929			d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 930			i1++; i2++; i3++;
 931
 932			if (i2 >= n)
 933				i2 -= n;
 934
 935			d[i1] += d[i2] ^ d[i3];
 936			i1++; i2++; i3++;
 937
 938			if (i3 >= n)
 939				i3 -= n;
 940
 941			d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 942			i1++; i2++; i3++;
 943		}
 944	}
 945}
 946
 947static void diffuser_b_encrypt(u32 *d, size_t n)
 948{
 949	int i, i1, i2, i3;
 950
 951	for (i = 0; i < 3; i++) {
 952		i1 = n - 1;
 953		i2 = 2 - 1;
 954		i3 = 5 - 1;
 955
 956		while (i1 > 0) {
 957			d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
 958			i1--; i2--; i3--;
 959
 960			if (i3 < 0)
 961				i3 += n;
 962
 963			d[i1] -= d[i2] ^ d[i3];
 964			i1--; i2--; i3--;
 965
 966			if (i2 < 0)
 967				i2 += n;
 968
 969			d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
 970			i1--; i2--; i3--;
 971
 972			d[i1] -= d[i2] ^ d[i3];
 973			i1--; i2--; i3--;
 974		}
 975	}
 976}
 977
 978static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 979{
 980	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
 981	u8 *es, *ks, *data, *data2, *data_offset;
 982	struct skcipher_request *req;
 983	struct scatterlist *sg, *sg2, src, dst;
 984	DECLARE_CRYPTO_WAIT(wait);
 985	int i, r;
 986
 987	req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
 988	es = kzalloc(16, GFP_NOIO); /* Key for AES */
 989	ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
 990
 991	if (!req || !es || !ks) {
 992		r = -ENOMEM;
 993		goto out;
 994	}
 995
 996	*(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
 997
 998	/* E(Ks, e(s)) */
 999	sg_init_one(&src, es, 16);
1000	sg_init_one(&dst, ks, 16);
1001	skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
1002	skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
1003	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1004	if (r)
1005		goto out;
1006
1007	/* E(Ks, e'(s)) */
1008	es[15] = 0x80;
1009	sg_init_one(&dst, &ks[16], 16);
1010	r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
1011	if (r)
1012		goto out;
1013
1014	sg = crypt_get_sg_data(cc, dmreq->sg_out);
1015	data = kmap_local_page(sg_page(sg));
1016	data_offset = data + sg->offset;
1017
1018	/* Cannot modify original bio, copy to sg_out and apply Elephant to it */
1019	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1020		sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
1021		data2 = kmap_local_page(sg_page(sg2));
1022		memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
1023		kunmap_local(data2);
1024	}
1025
1026	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
1027		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1028		diffuser_b_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1029		diffuser_a_decrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1030		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1031	}
1032
1033	for (i = 0; i < (cc->sector_size / 32); i++)
1034		crypto_xor(data_offset + i * 32, ks, 32);
1035
1036	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1037		diffuser_disk_to_cpu((u32 *)data_offset, cc->sector_size / sizeof(u32));
1038		diffuser_a_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1039		diffuser_b_encrypt((u32 *)data_offset, cc->sector_size / sizeof(u32));
1040		diffuser_cpu_to_disk((__le32 *)data_offset, cc->sector_size / sizeof(u32));
1041	}
1042
1043	kunmap_local(data);
1044out:
1045	kfree_sensitive(ks);
1046	kfree_sensitive(es);
1047	skcipher_request_free(req);
1048	return r;
1049}
1050
1051static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1052			    struct dm_crypt_request *dmreq)
1053{
1054	int r;
1055
1056	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1057		r = crypt_iv_elephant(cc, dmreq);
1058		if (r)
1059			return r;
1060	}
1061
1062	return crypt_iv_eboiv_gen(cc, iv, dmreq);
1063}
1064
1065static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1066				  struct dm_crypt_request *dmreq)
1067{
1068	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1069		return crypt_iv_elephant(cc, dmreq);
1070
1071	return 0;
1072}
1073
1074static int crypt_iv_elephant_init(struct crypt_config *cc)
1075{
1076	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1077	int key_offset = cc->key_size - cc->key_extra_size;
1078
1079	return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1080}
1081
1082static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1083{
1084	struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1085	u8 key[ELEPHANT_MAX_KEY_SIZE];
1086
1087	memset(key, 0, cc->key_extra_size);
1088	return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1089}
1090
1091static const struct crypt_iv_operations crypt_iv_plain_ops = {
1092	.generator = crypt_iv_plain_gen
1093};
1094
1095static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1096	.generator = crypt_iv_plain64_gen
1097};
1098
1099static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1100	.generator = crypt_iv_plain64be_gen
1101};
1102
1103static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1104	.generator = crypt_iv_essiv_gen
1105};
1106
1107static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1108	.ctr	   = crypt_iv_benbi_ctr,
1109	.dtr	   = crypt_iv_benbi_dtr,
1110	.generator = crypt_iv_benbi_gen
1111};
1112
1113static const struct crypt_iv_operations crypt_iv_null_ops = {
1114	.generator = crypt_iv_null_gen
1115};
1116
1117static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1118	.ctr	   = crypt_iv_lmk_ctr,
1119	.dtr	   = crypt_iv_lmk_dtr,
1120	.init	   = crypt_iv_lmk_init,
1121	.wipe	   = crypt_iv_lmk_wipe,
1122	.generator = crypt_iv_lmk_gen,
1123	.post	   = crypt_iv_lmk_post
1124};
1125
1126static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1127	.ctr	   = crypt_iv_tcw_ctr,
1128	.dtr	   = crypt_iv_tcw_dtr,
1129	.init	   = crypt_iv_tcw_init,
1130	.wipe	   = crypt_iv_tcw_wipe,
1131	.generator = crypt_iv_tcw_gen,
1132	.post	   = crypt_iv_tcw_post
1133};
1134
1135static const struct crypt_iv_operations crypt_iv_random_ops = {
1136	.generator = crypt_iv_random_gen
1137};
1138
1139static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1140	.ctr	   = crypt_iv_eboiv_ctr,
1141	.generator = crypt_iv_eboiv_gen
1142};
1143
1144static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1145	.ctr	   = crypt_iv_elephant_ctr,
1146	.dtr	   = crypt_iv_elephant_dtr,
1147	.init	   = crypt_iv_elephant_init,
1148	.wipe	   = crypt_iv_elephant_wipe,
1149	.generator = crypt_iv_elephant_gen,
1150	.post	   = crypt_iv_elephant_post
1151};
1152
1153/*
1154 * Integrity extensions
1155 */
1156static bool crypt_integrity_aead(struct crypt_config *cc)
1157{
1158	return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1159}
1160
1161static bool crypt_integrity_hmac(struct crypt_config *cc)
1162{
1163	return crypt_integrity_aead(cc) && cc->key_mac_size;
1164}
1165
1166/* Get sg containing data */
1167static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1168					     struct scatterlist *sg)
1169{
1170	if (unlikely(crypt_integrity_aead(cc)))
1171		return &sg[2];
1172
1173	return sg;
1174}
1175
1176static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1177{
1178	struct bio_integrity_payload *bip;
1179	unsigned int tag_len;
1180	int ret;
1181
1182	if (!bio_sectors(bio) || !io->cc->tuple_size)
1183		return 0;
1184
1185	bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1186	if (IS_ERR(bip))
1187		return PTR_ERR(bip);
1188
1189	tag_len = io->cc->tuple_size * (bio_sectors(bio) >> io->cc->sector_shift);
1190
1191	bip->bip_iter.bi_sector = io->cc->start + io->sector;
1192
1193	ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1194				     tag_len, offset_in_page(io->integrity_metadata));
1195	if (unlikely(ret != tag_len))
1196		return -ENOMEM;
1197
1198	return 0;
1199}
1200
1201static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1202{
1203#ifdef CONFIG_BLK_DEV_INTEGRITY
1204	struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1205	struct mapped_device *md = dm_table_get_md(ti->table);
1206
1207	/* We require an underlying device with non-PI metadata */
1208	if (!bi || bi->csum_type != BLK_INTEGRITY_CSUM_NONE) {
1209		ti->error = "Integrity profile not supported.";
1210		return -EINVAL;
1211	}
1212
1213	if (bi->tuple_size < cc->used_tag_size) {
1214		ti->error = "Integrity profile tag size mismatch.";
1215		return -EINVAL;
1216	}
1217	cc->tuple_size = bi->tuple_size;
1218	if (1 << bi->interval_exp != cc->sector_size) {
1219		ti->error = "Integrity profile sector size mismatch.";
1220		return -EINVAL;
1221	}
1222
1223	if (crypt_integrity_aead(cc)) {
1224		cc->integrity_tag_size = cc->used_tag_size - cc->integrity_iv_size;
1225		DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1226		       cc->integrity_tag_size, cc->integrity_iv_size);
1227
1228		if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1229			ti->error = "Integrity AEAD auth tag size is not supported.";
1230			return -EINVAL;
1231		}
1232	} else if (cc->integrity_iv_size)
1233		DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1234		       cc->integrity_iv_size);
1235
1236	if ((cc->integrity_tag_size + cc->integrity_iv_size) > cc->tuple_size) {
1237		ti->error = "Not enough space for integrity tag in the profile.";
1238		return -EINVAL;
1239	}
1240
1241	return 0;
1242#else
1243	ti->error = "Integrity profile not supported.";
1244	return -EINVAL;
1245#endif
1246}
1247
1248static void crypt_convert_init(struct crypt_config *cc,
1249			       struct convert_context *ctx,
1250			       struct bio *bio_out, struct bio *bio_in,
1251			       sector_t sector)
1252{
1253	ctx->bio_in = bio_in;
1254	ctx->bio_out = bio_out;
1255	if (bio_in)
1256		ctx->iter_in = bio_in->bi_iter;
1257	if (bio_out)
1258		ctx->iter_out = bio_out->bi_iter;
1259	ctx->cc_sector = sector + cc->iv_offset;
1260	ctx->tag_offset = 0;
1261	init_completion(&ctx->restart);
1262}
1263
1264static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1265					     void *req)
1266{
1267	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1268}
1269
1270static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
 
1271{
1272	return (void *)((char *)dmreq - cc->dmreq_start);
1273}
1274
1275static u8 *iv_of_dmreq(struct crypt_config *cc,
1276		       struct dm_crypt_request *dmreq)
1277{
1278	if (crypt_integrity_aead(cc))
1279		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1280			crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1281	else
1282		return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1283			crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1284}
1285
1286static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1287		       struct dm_crypt_request *dmreq)
1288{
1289	return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1290}
1291
1292static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1293		       struct dm_crypt_request *dmreq)
1294{
1295	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1296
1297	return (__le64 *) ptr;
1298}
1299
1300static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1301		       struct dm_crypt_request *dmreq)
1302{
1303	u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1304		  cc->iv_size + sizeof(uint64_t);
1305
1306	return (unsigned int *)ptr;
1307}
1308
1309static void *tag_from_dmreq(struct crypt_config *cc,
1310				struct dm_crypt_request *dmreq)
1311{
1312	struct convert_context *ctx = dmreq->ctx;
1313	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1314
1315	return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1316		cc->tuple_size];
1317}
1318
1319static void *iv_tag_from_dmreq(struct crypt_config *cc,
1320			       struct dm_crypt_request *dmreq)
1321{
1322	return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1323}
1324
1325static int crypt_convert_block_aead(struct crypt_config *cc,
1326				     struct convert_context *ctx,
1327				     struct aead_request *req,
1328				     unsigned int tag_offset)
1329{
1330	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1331	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1332	struct dm_crypt_request *dmreq;
1333	u8 *iv, *org_iv, *tag_iv, *tag;
1334	__le64 *sector;
1335	int r = 0;
1336
1337	BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1338
1339	/* Reject unexpected unaligned bio. */
1340	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1341		return -EIO;
1342
1343	dmreq = dmreq_of_req(cc, req);
1344	dmreq->iv_sector = ctx->cc_sector;
1345	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1346		dmreq->iv_sector >>= cc->sector_shift;
1347	dmreq->ctx = ctx;
1348
1349	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1350
1351	sector = org_sector_of_dmreq(cc, dmreq);
1352	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1353
1354	iv = iv_of_dmreq(cc, dmreq);
1355	org_iv = org_iv_of_dmreq(cc, dmreq);
1356	tag = tag_from_dmreq(cc, dmreq);
1357	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1358
1359	/* AEAD request:
1360	 *  |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1361	 *  | (authenticated) | (auth+encryption) |              |
1362	 *  | sector_LE |  IV |  sector in/out    |  tag in/out  |
1363	 */
1364	sg_init_table(dmreq->sg_in, 4);
1365	sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1366	sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1367	sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1368	sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1369
1370	sg_init_table(dmreq->sg_out, 4);
1371	sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1372	sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1373	sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1374	sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1375
1376	if (cc->iv_gen_ops) {
1377		/* For READs use IV stored in integrity metadata */
1378		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1379			memcpy(org_iv, tag_iv, cc->iv_size);
1380		} else {
1381			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1382			if (r < 0)
1383				return r;
1384			/* Store generated IV in integrity metadata */
1385			if (cc->integrity_iv_size)
1386				memcpy(tag_iv, org_iv, cc->iv_size);
1387		}
1388		/* Working copy of IV, to be modified in crypto API */
1389		memcpy(iv, org_iv, cc->iv_size);
1390	}
1391
1392	aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1393	if (bio_data_dir(ctx->bio_in) == WRITE) {
1394		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1395				       cc->sector_size, iv);
1396		r = crypto_aead_encrypt(req);
1397		if (cc->integrity_tag_size + cc->integrity_iv_size != cc->tuple_size)
1398			memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1399			       cc->tuple_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1400	} else {
1401		aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1402				       cc->sector_size + cc->integrity_tag_size, iv);
1403		r = crypto_aead_decrypt(req);
1404	}
1405
1406	if (r == -EBADMSG) {
1407		sector_t s = le64_to_cpu(*sector);
1408
1409		ctx->aead_failed = true;
1410		if (ctx->aead_recheck) {
1411			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
1412				    ctx->bio_in->bi_bdev, s);
1413			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
1414					 ctx->bio_in, s, 0);
1415		}
1416	}
1417
1418	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1419		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1420
1421	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1422	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1423
1424	return r;
1425}
1426
1427static int crypt_convert_block_skcipher(struct crypt_config *cc,
1428					struct convert_context *ctx,
1429					struct skcipher_request *req,
1430					unsigned int tag_offset)
1431{
1432	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1433	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1434	struct scatterlist *sg_in, *sg_out;
1435	struct dm_crypt_request *dmreq;
1436	u8 *iv, *org_iv, *tag_iv;
1437	__le64 *sector;
1438	int r = 0;
1439
1440	/* Reject unexpected unaligned bio. */
1441	if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1442		return -EIO;
1443
1444	dmreq = dmreq_of_req(cc, req);
1445	dmreq->iv_sector = ctx->cc_sector;
1446	if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1447		dmreq->iv_sector >>= cc->sector_shift;
1448	dmreq->ctx = ctx;
 
 
 
 
 
 
 
1449
1450	*org_tag_of_dmreq(cc, dmreq) = tag_offset;
1451
1452	iv = iv_of_dmreq(cc, dmreq);
1453	org_iv = org_iv_of_dmreq(cc, dmreq);
1454	tag_iv = iv_tag_from_dmreq(cc, dmreq);
1455
1456	sector = org_sector_of_dmreq(cc, dmreq);
1457	*sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1458
1459	/* For skcipher we use only the first sg item */
1460	sg_in  = &dmreq->sg_in[0];
1461	sg_out = &dmreq->sg_out[0];
1462
1463	sg_init_table(sg_in, 1);
1464	sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1465
1466	sg_init_table(sg_out, 1);
1467	sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1468
1469	if (cc->iv_gen_ops) {
1470		/* For READs use IV stored in integrity metadata */
1471		if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1472			memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1473		} else {
1474			r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1475			if (r < 0)
1476				return r;
1477			/* Data can be already preprocessed in generator */
1478			if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1479				sg_in = sg_out;
1480			/* Store generated IV in integrity metadata */
1481			if (cc->integrity_iv_size)
1482				memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1483		}
1484		/* Working copy of IV, to be modified in crypto API */
1485		memcpy(iv, org_iv, cc->iv_size);
1486	}
1487
1488	skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
 
1489
1490	if (bio_data_dir(ctx->bio_in) == WRITE)
1491		r = crypto_skcipher_encrypt(req);
1492	else
1493		r = crypto_skcipher_decrypt(req);
1494
1495	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1496		r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1497
1498	bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1499	bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1500
1501	return r;
1502}
1503
1504static void kcryptd_async_done(void *async_req, int error);
 
1505
1506static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1507				     struct convert_context *ctx)
1508{
1509	unsigned int key_index = ctx->cc_sector & (cc->tfms_count - 1);
1510
1511	if (!ctx->r.req) {
1512		ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1513		if (!ctx->r.req)
1514			return -ENOMEM;
1515	}
1516
1517	skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1518
1519	/*
1520	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1521	 * requests if driver request queue is full.
1522	 */
1523	skcipher_request_set_callback(ctx->r.req,
1524	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1525	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1526
1527	return 0;
1528}
1529
1530static int crypt_alloc_req_aead(struct crypt_config *cc,
1531				 struct convert_context *ctx)
1532{
1533	if (!ctx->r.req_aead) {
1534		ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1535		if (!ctx->r.req_aead)
1536			return -ENOMEM;
1537	}
1538
1539	aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1540
1541	/*
1542	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1543	 * requests if driver request queue is full.
1544	 */
1545	aead_request_set_callback(ctx->r.req_aead,
1546	    CRYPTO_TFM_REQ_MAY_BACKLOG,
1547	    kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1548
1549	return 0;
1550}
1551
1552static int crypt_alloc_req(struct crypt_config *cc,
1553			    struct convert_context *ctx)
1554{
1555	if (crypt_integrity_aead(cc))
1556		return crypt_alloc_req_aead(cc, ctx);
1557	else
1558		return crypt_alloc_req_skcipher(cc, ctx);
1559}
1560
1561static void crypt_free_req_skcipher(struct crypt_config *cc,
1562				    struct skcipher_request *req, struct bio *base_bio)
1563{
1564	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1565
1566	if ((struct skcipher_request *)(io + 1) != req)
1567		mempool_free(req, &cc->req_pool);
1568}
1569
1570static void crypt_free_req_aead(struct crypt_config *cc,
1571				struct aead_request *req, struct bio *base_bio)
1572{
1573	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1574
1575	if ((struct aead_request *)(io + 1) != req)
1576		mempool_free(req, &cc->req_pool);
1577}
1578
1579static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1580{
1581	if (crypt_integrity_aead(cc))
1582		crypt_free_req_aead(cc, req, base_bio);
1583	else
1584		crypt_free_req_skcipher(cc, req, base_bio);
1585}
1586
1587/*
1588 * Encrypt / decrypt data from one bio to another one (can be the same one)
1589 */
1590static blk_status_t crypt_convert(struct crypt_config *cc,
1591			 struct convert_context *ctx, bool atomic, bool reset_pending)
1592{
1593	unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1594	int r;
1595
1596	/*
1597	 * if reset_pending is set we are dealing with the bio for the first time,
1598	 * else we're continuing to work on the previous bio, so don't mess with
1599	 * the cc_pending counter
1600	 */
1601	if (reset_pending)
1602		atomic_set(&ctx->cc_pending, 1);
1603
1604	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1605
1606		r = crypt_alloc_req(cc, ctx);
1607		if (r) {
1608			complete(&ctx->restart);
1609			return BLK_STS_DEV_RESOURCE;
1610		}
1611
1612		atomic_inc(&ctx->cc_pending);
1613
1614		if (crypt_integrity_aead(cc))
1615			r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, ctx->tag_offset);
1616		else
1617			r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, ctx->tag_offset);
1618
1619		switch (r) {
1620		/*
1621		 * The request was queued by a crypto driver
1622		 * but the driver request queue is full, let's wait.
1623		 */
1624		case -EBUSY:
1625			if (in_interrupt()) {
1626				if (try_wait_for_completion(&ctx->restart)) {
1627					/*
1628					 * we don't have to block to wait for completion,
1629					 * so proceed
1630					 */
1631				} else {
1632					/*
1633					 * we can't wait for completion without blocking
1634					 * exit and continue processing in a workqueue
1635					 */
1636					ctx->r.req = NULL;
1637					ctx->tag_offset++;
1638					ctx->cc_sector += sector_step;
1639					return BLK_STS_DEV_RESOURCE;
1640				}
1641			} else {
1642				wait_for_completion(&ctx->restart);
1643			}
1644			reinit_completion(&ctx->restart);
1645			fallthrough;
1646		/*
1647		 * The request is queued and processed asynchronously,
1648		 * completion function kcryptd_async_done() will be called.
1649		 */
1650		case -EINPROGRESS:
1651			ctx->r.req = NULL;
1652			ctx->tag_offset++;
1653			ctx->cc_sector += sector_step;
1654			continue;
1655		/*
1656		 * The request was already processed (synchronously).
1657		 */
1658		case 0:
1659			atomic_dec(&ctx->cc_pending);
1660			ctx->cc_sector += sector_step;
1661			ctx->tag_offset++;
1662			if (!atomic)
1663				cond_resched();
1664			continue;
1665		/*
1666		 * There was a data integrity error.
1667		 */
1668		case -EBADMSG:
1669			atomic_dec(&ctx->cc_pending);
1670			return BLK_STS_PROTECTION;
1671		/*
1672		 * There was an error while processing the request.
1673		 */
1674		default:
1675			atomic_dec(&ctx->cc_pending);
1676			return BLK_STS_IOERR;
1677		}
1678	}
1679
1680	return 0;
1681}
1682
1683static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1684
1685/*
1686 * Generate a new unfragmented bio with the given size
1687 * This should never violate the device limitations (but if it did then block
1688 * core should split the bio as needed).
1689 *
1690 * This function may be called concurrently. If we allocate from the mempool
1691 * concurrently, there is a possibility of deadlock. For example, if we have
1692 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1693 * the mempool concurrently, it may deadlock in a situation where both processes
1694 * have allocated 128 pages and the mempool is exhausted.
1695 *
1696 * In order to avoid this scenario we allocate the pages under a mutex.
1697 *
1698 * In order to not degrade performance with excessive locking, we try
1699 * non-blocking allocations without a mutex first but on failure we fallback
1700 * to blocking allocations with a mutex.
1701 *
1702 * In order to reduce allocation overhead, we try to allocate compound pages in
1703 * the first pass. If they are not available, we fall back to the mempool.
1704 */
1705static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned int size)
1706{
1707	struct crypt_config *cc = io->cc;
1708	struct bio *clone;
1709	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1710	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1711	unsigned int remaining_size;
1712	unsigned int order = MAX_PAGE_ORDER;
 
1713
1714retry:
1715	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1716		mutex_lock(&cc->bio_alloc_lock);
1717
1718	clone = bio_alloc_bioset(cc->dev->bdev, nr_iovecs, io->base_bio->bi_opf,
1719				 GFP_NOIO, &cc->bs);
1720	clone->bi_private = io;
1721	clone->bi_end_io = crypt_endio;
1722	clone->bi_ioprio = io->base_bio->bi_ioprio;
1723
1724	remaining_size = size;
1725
1726	while (remaining_size) {
1727		struct page *pages;
1728		unsigned size_to_add;
1729		unsigned remaining_order = __fls((remaining_size + PAGE_SIZE - 1) >> PAGE_SHIFT);
1730		order = min(order, remaining_order);
1731
1732		while (order > 0) {
1733			if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) +
1734					(1 << order) > dm_crypt_pages_per_client))
1735				goto decrease_order;
1736			pages = alloc_pages(gfp_mask
1737				| __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN | __GFP_COMP,
1738				order);
1739			if (likely(pages != NULL)) {
1740				percpu_counter_add(&cc->n_allocated_pages, 1 << order);
1741				goto have_pages;
1742			}
1743decrease_order:
1744			order--;
1745		}
1746
1747		pages = mempool_alloc(&cc->page_pool, gfp_mask);
1748		if (!pages) {
 
1749			crypt_free_buffer_pages(cc, clone);
1750			bio_put(clone);
1751			gfp_mask |= __GFP_DIRECT_RECLAIM;
1752			order = 0;
1753			goto retry;
1754		}
1755
1756have_pages:
1757		size_to_add = min((unsigned)PAGE_SIZE << order, remaining_size);
1758		__bio_add_page(clone, pages, size_to_add, 0);
1759		remaining_size -= size_to_add;
1760	}
1761
1762	/* Allocate space for integrity tags */
1763	if (dm_crypt_integrity_io_alloc(io, clone)) {
1764		crypt_free_buffer_pages(cc, clone);
1765		bio_put(clone);
1766		clone = NULL;
 
 
 
1767	}
1768
 
1769	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1770		mutex_unlock(&cc->bio_alloc_lock);
1771
1772	return clone;
1773}
1774
1775static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1776{
1777	struct folio_iter fi;
 
1778
1779	if (clone->bi_vcnt > 0) { /* bio_for_each_folio_all crashes with an empty bio */
1780		bio_for_each_folio_all(fi, clone) {
1781			if (folio_test_large(fi.folio)) {
1782				percpu_counter_sub(&cc->n_allocated_pages,
1783						1 << folio_order(fi.folio));
1784				folio_put(fi.folio);
1785			} else {
1786				mempool_free(&fi.folio->page, &cc->page_pool);
1787			}
1788		}
1789	}
1790}
1791
1792static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1793			  struct bio *bio, sector_t sector)
1794{
1795	io->cc = cc;
1796	io->base_bio = bio;
1797	io->sector = sector;
1798	io->error = 0;
1799	io->ctx.aead_recheck = false;
1800	io->ctx.aead_failed = false;
1801	io->ctx.r.req = NULL;
1802	io->integrity_metadata = NULL;
1803	io->integrity_metadata_from_pool = false;
1804	atomic_set(&io->io_pending, 0);
1805}
1806
1807static void crypt_inc_pending(struct dm_crypt_io *io)
1808{
1809	atomic_inc(&io->io_pending);
1810}
1811
1812static void kcryptd_queue_read(struct dm_crypt_io *io);
1813
1814/*
1815 * One of the bios was finished. Check for completion of
1816 * the whole request and correctly clean up the buffer.
1817 */
1818static void crypt_dec_pending(struct dm_crypt_io *io)
1819{
1820	struct crypt_config *cc = io->cc;
1821	struct bio *base_bio = io->base_bio;
1822	blk_status_t error = io->error;
1823
1824	if (!atomic_dec_and_test(&io->io_pending))
1825		return;
1826
1827	if (likely(!io->ctx.aead_recheck) && unlikely(io->ctx.aead_failed) &&
1828	    cc->used_tag_size && bio_data_dir(base_bio) == READ) {
1829		io->ctx.aead_recheck = true;
1830		io->ctx.aead_failed = false;
1831		io->error = 0;
1832		kcryptd_queue_read(io);
1833		return;
1834	}
1835
1836	if (io->ctx.r.req)
1837		crypt_free_req(cc, io->ctx.r.req, base_bio);
1838
1839	if (unlikely(io->integrity_metadata_from_pool))
1840		mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1841	else
1842		kfree(io->integrity_metadata);
1843
1844	base_bio->bi_status = error;
1845
 
1846	bio_endio(base_bio);
1847}
1848
1849/*
1850 * kcryptd/kcryptd_io:
1851 *
1852 * Needed because it would be very unwise to do decryption in an
1853 * interrupt context.
1854 *
1855 * kcryptd performs the actual encryption or decryption.
1856 *
1857 * kcryptd_io performs the IO submission.
1858 *
1859 * They must be separated as otherwise the final stages could be
1860 * starved by new requests which can block in the first stages due
1861 * to memory allocation.
1862 *
1863 * The work is done per CPU global for all dm-crypt instances.
1864 * They should not depend on each other and do not block.
1865 */
1866static void crypt_endio(struct bio *clone)
1867{
1868	struct dm_crypt_io *io = clone->bi_private;
1869	struct crypt_config *cc = io->cc;
1870	unsigned int rw = bio_data_dir(clone);
1871	blk_status_t error = clone->bi_status;
1872
1873	if (io->ctx.aead_recheck && !error) {
1874		kcryptd_queue_crypt(io);
1875		return;
1876	}
1877
1878	/*
1879	 * free the processed pages
1880	 */
1881	if (rw == WRITE || io->ctx.aead_recheck)
1882		crypt_free_buffer_pages(cc, clone);
1883
 
1884	bio_put(clone);
1885
1886	if (rw == READ && !error) {
1887		kcryptd_queue_crypt(io);
1888		return;
1889	}
1890
1891	if (unlikely(error))
1892		io->error = error;
1893
1894	crypt_dec_pending(io);
1895}
1896
1897#define CRYPT_MAP_READ_GFP GFP_NOWAIT
 
 
 
 
 
 
 
 
1898
1899static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1900{
1901	struct crypt_config *cc = io->cc;
1902	struct bio *clone;
1903
1904	if (io->ctx.aead_recheck) {
1905		if (!(gfp & __GFP_DIRECT_RECLAIM))
1906			return 1;
1907		crypt_inc_pending(io);
1908		clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1909		if (unlikely(!clone)) {
1910			crypt_dec_pending(io);
1911			return 1;
1912		}
1913		clone->bi_iter.bi_sector = cc->start + io->sector;
1914		crypt_convert_init(cc, &io->ctx, clone, clone, io->sector);
1915		io->saved_bi_iter = clone->bi_iter;
1916		dm_submit_bio_remap(io->base_bio, clone);
1917		return 0;
1918	}
1919
1920	/*
1921	 * We need the original biovec array in order to decrypt the whole bio
1922	 * data *afterwards* -- thanks to immutable biovecs we don't need to
1923	 * worry about the block layer modifying the biovec array; so leverage
1924	 * bio_alloc_clone().
1925	 */
1926	clone = bio_alloc_clone(cc->dev->bdev, io->base_bio, gfp, &cc->bs);
1927	if (!clone)
1928		return 1;
1929	clone->bi_private = io;
1930	clone->bi_end_io = crypt_endio;
1931
1932	crypt_inc_pending(io);
1933
 
1934	clone->bi_iter.bi_sector = cc->start + io->sector;
1935
1936	if (dm_crypt_integrity_io_alloc(io, clone)) {
1937		crypt_dec_pending(io);
1938		bio_put(clone);
1939		return 1;
1940	}
1941
1942	dm_submit_bio_remap(io->base_bio, clone);
1943	return 0;
1944}
1945
1946static void kcryptd_io_read_work(struct work_struct *work)
1947{
1948	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1949
1950	crypt_inc_pending(io);
1951	if (kcryptd_io_read(io, GFP_NOIO))
1952		io->error = BLK_STS_RESOURCE;
1953	crypt_dec_pending(io);
1954}
1955
1956static void kcryptd_queue_read(struct dm_crypt_io *io)
1957{
1958	struct crypt_config *cc = io->cc;
1959
1960	INIT_WORK(&io->work, kcryptd_io_read_work);
1961	queue_work(cc->io_queue, &io->work);
1962}
1963
1964static void kcryptd_io_write(struct dm_crypt_io *io)
1965{
1966	struct bio *clone = io->ctx.bio_out;
1967
1968	dm_submit_bio_remap(io->base_bio, clone);
1969}
1970
1971#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1972
1973static int dmcrypt_write(void *data)
1974{
1975	struct crypt_config *cc = data;
1976	struct dm_crypt_io *io;
1977
1978	while (1) {
1979		struct rb_root write_tree;
1980		struct blk_plug plug;
1981
1982		spin_lock_irq(&cc->write_thread_lock);
 
 
1983continue_locked:
1984
1985		if (!RB_EMPTY_ROOT(&cc->write_tree))
1986			goto pop_from_list;
1987
1988		set_current_state(TASK_INTERRUPTIBLE);
1989
1990		spin_unlock_irq(&cc->write_thread_lock);
1991
1992		if (unlikely(kthread_should_stop())) {
1993			set_current_state(TASK_RUNNING);
1994			break;
1995		}
1996
 
 
 
 
 
1997		schedule();
1998
1999		spin_lock_irq(&cc->write_thread_lock);
 
2000		goto continue_locked;
2001
2002pop_from_list:
2003		write_tree = cc->write_tree;
2004		cc->write_tree = RB_ROOT;
2005		spin_unlock_irq(&cc->write_thread_lock);
2006
2007		BUG_ON(rb_parent(write_tree.rb_node));
2008
2009		/*
2010		 * Note: we cannot walk the tree here with rb_next because
2011		 * the structures may be freed when kcryptd_io_write is called.
2012		 */
2013		blk_start_plug(&plug);
2014		do {
2015			io = crypt_io_from_node(rb_first(&write_tree));
2016			rb_erase(&io->rb_node, &write_tree);
2017			kcryptd_io_write(io);
2018			cond_resched();
2019		} while (!RB_EMPTY_ROOT(&write_tree));
2020		blk_finish_plug(&plug);
2021	}
2022	return 0;
2023}
2024
2025static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
2026{
2027	struct bio *clone = io->ctx.bio_out;
2028	struct crypt_config *cc = io->cc;
2029	unsigned long flags;
2030	sector_t sector;
2031	struct rb_node **rbp, *parent;
2032
2033	if (unlikely(io->error)) {
2034		crypt_free_buffer_pages(cc, clone);
2035		bio_put(clone);
2036		crypt_dec_pending(io);
2037		return;
2038	}
2039
2040	/* crypt_convert should have filled the clone bio */
2041	BUG_ON(io->ctx.iter_out.bi_size);
2042
2043	clone->bi_iter.bi_sector = cc->start + io->sector;
2044
2045	if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
2046	    test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
2047		dm_submit_bio_remap(io->base_bio, clone);
2048		return;
2049	}
2050
2051	spin_lock_irqsave(&cc->write_thread_lock, flags);
2052	if (RB_EMPTY_ROOT(&cc->write_tree))
2053		wake_up_process(cc->write_thread);
2054	rbp = &cc->write_tree.rb_node;
2055	parent = NULL;
2056	sector = io->sector;
2057	while (*rbp) {
2058		parent = *rbp;
2059		if (sector < crypt_io_from_node(parent)->sector)
2060			rbp = &(*rbp)->rb_left;
2061		else
2062			rbp = &(*rbp)->rb_right;
2063	}
2064	rb_link_node(&io->rb_node, parent, rbp);
2065	rb_insert_color(&io->rb_node, &cc->write_tree);
2066	spin_unlock_irqrestore(&cc->write_thread_lock, flags);
2067}
2068
2069static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
2070				       struct convert_context *ctx)
2071
2072{
2073	if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
2074		return false;
2075
2076	/*
2077	 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
2078	 * constraints so they do not need to be issued inline by
2079	 * kcryptd_crypt_write_convert().
2080	 */
2081	switch (bio_op(ctx->bio_in)) {
2082	case REQ_OP_WRITE:
2083	case REQ_OP_WRITE_ZEROES:
2084		return true;
2085	default:
2086		return false;
2087	}
2088}
2089
2090static void kcryptd_crypt_write_continue(struct work_struct *work)
2091{
2092	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2093	struct crypt_config *cc = io->cc;
2094	struct convert_context *ctx = &io->ctx;
2095	int crypt_finished;
2096	blk_status_t r;
2097
2098	wait_for_completion(&ctx->restart);
2099	reinit_completion(&ctx->restart);
2100
2101	r = crypt_convert(cc, &io->ctx, true, false);
2102	if (r)
2103		io->error = r;
2104	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2105	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2106		/* Wait for completion signaled by kcryptd_async_done() */
2107		wait_for_completion(&ctx->restart);
2108		crypt_finished = 1;
2109	}
2110
2111	/* Encryption was already finished, submit io now */
2112	if (crypt_finished)
2113		kcryptd_crypt_write_io_submit(io, 0);
2114
2115	crypt_dec_pending(io);
2116}
2117
2118static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2119{
2120	struct crypt_config *cc = io->cc;
2121	struct convert_context *ctx = &io->ctx;
2122	struct bio *clone;
2123	int crypt_finished;
2124	blk_status_t r;
 
2125
2126	/*
2127	 * Prevent io from disappearing until this function completes.
2128	 */
2129	crypt_inc_pending(io);
2130	crypt_convert_init(cc, ctx, NULL, io->base_bio, io->sector);
2131
2132	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2133	if (unlikely(!clone)) {
2134		io->error = BLK_STS_IOERR;
2135		goto dec;
2136	}
2137
2138	io->ctx.bio_out = clone;
2139	io->ctx.iter_out = clone->bi_iter;
2140
2141	if (crypt_integrity_aead(cc)) {
2142		bio_copy_data(clone, io->base_bio);
2143		io->ctx.bio_in = clone;
2144		io->ctx.iter_in = clone->bi_iter;
2145	}
2146
2147	crypt_inc_pending(io);
2148	r = crypt_convert(cc, ctx,
2149			  test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2150	/*
2151	 * Crypto API backlogged the request, because its queue was full
2152	 * and we're in softirq context, so continue from a workqueue
2153	 * (TODO: is it actually possible to be in softirq in the write path?)
2154	 */
2155	if (r == BLK_STS_DEV_RESOURCE) {
2156		INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2157		queue_work(cc->crypt_queue, &io->work);
2158		return;
2159	}
2160	if (r)
2161		io->error = r;
2162	crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2163	if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2164		/* Wait for completion signaled by kcryptd_async_done() */
2165		wait_for_completion(&ctx->restart);
2166		crypt_finished = 1;
2167	}
2168
2169	/* Encryption was already finished, submit io now */
2170	if (crypt_finished)
2171		kcryptd_crypt_write_io_submit(io, 0);
 
 
2172
2173dec:
2174	crypt_dec_pending(io);
2175}
2176
2177static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2178{
2179	if (io->ctx.aead_recheck) {
2180		if (!io->error) {
2181			io->ctx.bio_in->bi_iter = io->saved_bi_iter;
2182			bio_copy_data(io->base_bio, io->ctx.bio_in);
2183		}
2184		crypt_free_buffer_pages(io->cc, io->ctx.bio_in);
2185		bio_put(io->ctx.bio_in);
2186	}
2187	crypt_dec_pending(io);
2188}
2189
2190static void kcryptd_crypt_read_continue(struct work_struct *work)
2191{
2192	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2193	struct crypt_config *cc = io->cc;
2194	blk_status_t r;
2195
2196	wait_for_completion(&io->ctx.restart);
2197	reinit_completion(&io->ctx.restart);
2198
2199	r = crypt_convert(cc, &io->ctx, true, false);
2200	if (r)
2201		io->error = r;
2202
2203	if (atomic_dec_and_test(&io->ctx.cc_pending))
2204		kcryptd_crypt_read_done(io);
2205
2206	crypt_dec_pending(io);
2207}
2208
2209static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2210{
2211	struct crypt_config *cc = io->cc;
2212	blk_status_t r;
2213
2214	crypt_inc_pending(io);
2215
2216	if (io->ctx.aead_recheck) {
2217		io->ctx.cc_sector = io->sector + cc->iv_offset;
2218		r = crypt_convert(cc, &io->ctx,
2219				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2220	} else {
2221		crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2222				   io->sector);
2223
2224		r = crypt_convert(cc, &io->ctx,
2225				  test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2226	}
2227	/*
2228	 * Crypto API backlogged the request, because its queue was full
2229	 * and we're in softirq context, so continue from a workqueue
2230	 */
2231	if (r == BLK_STS_DEV_RESOURCE) {
2232		INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2233		queue_work(cc->crypt_queue, &io->work);
2234		return;
2235	}
2236	if (r)
2237		io->error = r;
2238
2239	if (atomic_dec_and_test(&io->ctx.cc_pending))
2240		kcryptd_crypt_read_done(io);
2241
2242	crypt_dec_pending(io);
2243}
2244
2245static void kcryptd_async_done(void *data, int error)
 
2246{
2247	struct dm_crypt_request *dmreq = data;
2248	struct convert_context *ctx = dmreq->ctx;
2249	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2250	struct crypt_config *cc = io->cc;
2251
2252	/*
2253	 * A request from crypto driver backlog is going to be processed now,
2254	 * finish the completion and continue in crypt_convert().
2255	 * (Callback will be called for the second time for this request.)
2256	 */
2257	if (error == -EINPROGRESS) {
2258		complete(&ctx->restart);
2259		return;
2260	}
2261
2262	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2263		error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2264
2265	if (error == -EBADMSG) {
2266		sector_t s = le64_to_cpu(*org_sector_of_dmreq(cc, dmreq));
2267
2268		ctx->aead_failed = true;
2269		if (ctx->aead_recheck) {
2270			DMERR_LIMIT("%pg: INTEGRITY AEAD ERROR, sector %llu",
2271				    ctx->bio_in->bi_bdev, s);
2272			dm_audit_log_bio(DM_MSG_PREFIX, "integrity-aead",
2273					 ctx->bio_in, s, 0);
2274		}
2275		io->error = BLK_STS_PROTECTION;
2276	} else if (error < 0)
2277		io->error = BLK_STS_IOERR;
2278
2279	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2280
2281	if (!atomic_dec_and_test(&ctx->cc_pending))
2282		return;
2283
2284	/*
2285	 * The request is fully completed: for inline writes, let
2286	 * kcryptd_crypt_write_convert() do the IO submission.
2287	 */
2288	if (bio_data_dir(io->base_bio) == READ) {
2289		kcryptd_crypt_read_done(io);
2290		return;
2291	}
2292
2293	if (kcryptd_crypt_write_inline(cc, ctx)) {
2294		complete(&ctx->restart);
2295		return;
2296	}
2297
2298	kcryptd_crypt_write_io_submit(io, 1);
2299}
2300
2301static void kcryptd_crypt(struct work_struct *work)
2302{
2303	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2304
2305	if (bio_data_dir(io->base_bio) == READ)
2306		kcryptd_crypt_read_convert(io);
2307	else
2308		kcryptd_crypt_write_convert(io);
2309}
2310
2311static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2312{
2313	struct crypt_config *cc = io->cc;
2314
2315	if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2316	    (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2317		/*
2318		 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2319		 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2320		 * it is being executed with irqs disabled.
2321		 */
2322		if (in_hardirq() || irqs_disabled()) {
2323			INIT_WORK(&io->work, kcryptd_crypt);
2324			queue_work(system_bh_wq, &io->work);
2325			return;
2326		} else {
2327			kcryptd_crypt(&io->work);
2328			return;
2329		}
2330	}
2331
2332	INIT_WORK(&io->work, kcryptd_crypt);
2333	queue_work(cc->crypt_queue, &io->work);
2334}
2335
2336static void crypt_free_tfms_aead(struct crypt_config *cc)
 
 
 
2337{
2338	if (!cc->cipher_tfm.tfms_aead)
2339		return;
 
 
2340
2341	if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2342		crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2343		cc->cipher_tfm.tfms_aead[0] = NULL;
 
 
 
2344	}
2345
2346	kfree(cc->cipher_tfm.tfms_aead);
2347	cc->cipher_tfm.tfms_aead = NULL;
 
 
2348}
2349
2350static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2351{
2352	unsigned int i;
2353
2354	if (!cc->cipher_tfm.tfms)
2355		return;
2356
2357	for (i = 0; i < cc->tfms_count; i++)
2358		if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2359			crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2360			cc->cipher_tfm.tfms[i] = NULL;
2361		}
2362
2363	kfree(cc->cipher_tfm.tfms);
2364	cc->cipher_tfm.tfms = NULL;
2365}
2366
2367static void crypt_free_tfms(struct crypt_config *cc)
2368{
2369	if (crypt_integrity_aead(cc))
2370		crypt_free_tfms_aead(cc);
2371	else
2372		crypt_free_tfms_skcipher(cc);
2373}
2374
2375static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2376{
2377	unsigned int i;
2378	int err;
2379
2380	cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2381				      sizeof(struct crypto_skcipher *),
2382				      GFP_KERNEL);
2383	if (!cc->cipher_tfm.tfms)
2384		return -ENOMEM;
2385
2386	for (i = 0; i < cc->tfms_count; i++) {
2387		cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2388						CRYPTO_ALG_ALLOCATES_MEMORY);
2389		if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2390			err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2391			crypt_free_tfms(cc);
2392			return err;
2393		}
2394	}
2395
2396	/*
2397	 * dm-crypt performance can vary greatly depending on which crypto
2398	 * algorithm implementation is used.  Help people debug performance
2399	 * problems by logging the ->cra_driver_name.
2400	 */
2401	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2402	       crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2403	return 0;
2404}
2405
2406static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2407{
2408	int err;
2409
2410	cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2411	if (!cc->cipher_tfm.tfms)
2412		return -ENOMEM;
2413
2414	cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2415						CRYPTO_ALG_ALLOCATES_MEMORY);
2416	if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2417		err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2418		crypt_free_tfms(cc);
2419		return err;
2420	}
2421
2422	DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2423	       crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2424	return 0;
2425}
2426
2427static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2428{
2429	if (crypt_integrity_aead(cc))
2430		return crypt_alloc_tfms_aead(cc, ciphermode);
2431	else
2432		return crypt_alloc_tfms_skcipher(cc, ciphermode);
2433}
2434
2435static unsigned int crypt_subkey_size(struct crypt_config *cc)
2436{
2437	return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2438}
2439
2440static unsigned int crypt_authenckey_size(struct crypt_config *cc)
2441{
2442	return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2443}
2444
2445/*
2446 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2447 * the key must be for some reason in special format.
2448 * This funcion converts cc->key to this special format.
2449 */
2450static void crypt_copy_authenckey(char *p, const void *key,
2451				  unsigned int enckeylen, unsigned int authkeylen)
2452{
2453	struct crypto_authenc_key_param *param;
2454	struct rtattr *rta;
2455
2456	rta = (struct rtattr *)p;
2457	param = RTA_DATA(rta);
2458	param->enckeylen = cpu_to_be32(enckeylen);
2459	rta->rta_len = RTA_LENGTH(sizeof(*param));
2460	rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2461	p += RTA_SPACE(sizeof(*param));
2462	memcpy(p, key + enckeylen, authkeylen);
2463	p += authkeylen;
2464	memcpy(p, key, enckeylen);
2465}
2466
2467static int crypt_setkey(struct crypt_config *cc)
2468{
2469	unsigned int subkey_size;
2470	int err = 0, i, r;
2471
2472	/* Ignore extra keys (which are used for IV etc) */
2473	subkey_size = crypt_subkey_size(cc);
2474
2475	if (crypt_integrity_hmac(cc)) {
2476		if (subkey_size < cc->key_mac_size)
2477			return -EINVAL;
2478
2479		crypt_copy_authenckey(cc->authenc_key, cc->key,
2480				      subkey_size - cc->key_mac_size,
2481				      cc->key_mac_size);
2482	}
2483
2484	for (i = 0; i < cc->tfms_count; i++) {
2485		if (crypt_integrity_hmac(cc))
2486			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2487				cc->authenc_key, crypt_authenckey_size(cc));
2488		else if (crypt_integrity_aead(cc))
2489			r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2490					       cc->key + (i * subkey_size),
2491					       subkey_size);
2492		else
2493			r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2494						   cc->key + (i * subkey_size),
2495						   subkey_size);
2496		if (r)
2497			err = r;
2498	}
2499
2500	if (crypt_integrity_hmac(cc))
2501		memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2502
2503	return err;
2504}
2505
2506#ifdef CONFIG_KEYS
2507
2508static bool contains_whitespace(const char *str)
2509{
2510	while (*str)
2511		if (isspace(*str++))
2512			return true;
2513	return false;
2514}
2515
2516static int set_key_user(struct crypt_config *cc, struct key *key)
2517{
2518	const struct user_key_payload *ukp;
2519
2520	ukp = user_key_payload_locked(key);
2521	if (!ukp)
2522		return -EKEYREVOKED;
2523
2524	if (cc->key_size != ukp->datalen)
2525		return -EINVAL;
2526
2527	memcpy(cc->key, ukp->data, cc->key_size);
2528
2529	return 0;
2530}
2531
2532static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2533{
2534	const struct encrypted_key_payload *ekp;
2535
2536	ekp = key->payload.data[0];
2537	if (!ekp)
2538		return -EKEYREVOKED;
2539
2540	if (cc->key_size != ekp->decrypted_datalen)
2541		return -EINVAL;
2542
2543	memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2544
2545	return 0;
2546}
2547
2548static int set_key_trusted(struct crypt_config *cc, struct key *key)
2549{
2550	const struct trusted_key_payload *tkp;
2551
2552	tkp = key->payload.data[0];
2553	if (!tkp)
2554		return -EKEYREVOKED;
2555
2556	if (cc->key_size != tkp->key_len)
2557		return -EINVAL;
2558
2559	memcpy(cc->key, tkp->key, cc->key_size);
2560
2561	return 0;
2562}
2563
2564static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2565{
2566	char *new_key_string, *key_desc;
2567	int ret;
2568	struct key_type *type;
2569	struct key *key;
2570	int (*set_key)(struct crypt_config *cc, struct key *key);
2571
2572	/*
2573	 * Reject key_string with whitespace. dm core currently lacks code for
2574	 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2575	 */
2576	if (contains_whitespace(key_string)) {
2577		DMERR("whitespace chars not allowed in key string");
2578		return -EINVAL;
2579	}
2580
2581	/* look for next ':' separating key_type from key_description */
2582	key_desc = strchr(key_string, ':');
2583	if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2584		return -EINVAL;
2585
2586	if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2587		type = &key_type_logon;
2588		set_key = set_key_user;
2589	} else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2590		type = &key_type_user;
2591		set_key = set_key_user;
2592	} else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2593		   !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2594		type = &key_type_encrypted;
2595		set_key = set_key_encrypted;
2596	} else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2597		   !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2598		type = &key_type_trusted;
2599		set_key = set_key_trusted;
2600	} else {
2601		return -EINVAL;
2602	}
2603
2604	new_key_string = kstrdup(key_string, GFP_KERNEL);
2605	if (!new_key_string)
2606		return -ENOMEM;
2607
2608	key = request_key(type, key_desc + 1, NULL);
2609	if (IS_ERR(key)) {
2610		ret = PTR_ERR(key);
2611		goto free_new_key_string;
2612	}
2613
2614	down_read(&key->sem);
2615	ret = set_key(cc, key);
2616	up_read(&key->sem);
2617	key_put(key);
2618	if (ret < 0)
2619		goto free_new_key_string;
2620
2621	/* clear the flag since following operations may invalidate previously valid key */
2622	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2623
2624	ret = crypt_setkey(cc);
2625	if (ret)
2626		goto free_new_key_string;
2627
2628	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2629	kfree_sensitive(cc->key_string);
2630	cc->key_string = new_key_string;
2631	return 0;
2632
2633free_new_key_string:
2634	kfree_sensitive(new_key_string);
2635	return ret;
2636}
2637
2638static int get_key_size(char **key_string)
2639{
2640	char *colon, dummy;
2641	int ret;
2642
2643	if (*key_string[0] != ':')
2644		return strlen(*key_string) >> 1;
2645
2646	/* look for next ':' in key string */
2647	colon = strpbrk(*key_string + 1, ":");
2648	if (!colon)
2649		return -EINVAL;
2650
2651	if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2652		return -EINVAL;
2653
2654	*key_string = colon;
2655
2656	/* remaining key string should be :<logon|user>:<key_desc> */
2657
2658	return ret;
2659}
2660
2661#else
2662
2663static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2664{
2665	return -EINVAL;
2666}
2667
2668static int get_key_size(char **key_string)
2669{
2670	return (*key_string[0] == ':') ? -EINVAL : (int)(strlen(*key_string) >> 1);
2671}
2672
2673#endif /* CONFIG_KEYS */
2674
2675static int crypt_set_key(struct crypt_config *cc, char *key)
2676{
2677	int r = -EINVAL;
2678	int key_string_len = strlen(key);
2679
 
 
 
 
2680	/* Hyphen (which gives a key_size of zero) means there is no key. */
2681	if (!cc->key_size && strcmp(key, "-"))
2682		goto out;
2683
2684	/* ':' means the key is in kernel keyring, short-circuit normal key processing */
2685	if (key[0] == ':') {
2686		r = crypt_set_keyring_key(cc, key + 1);
2687		goto out;
2688	}
2689
2690	/* clear the flag since following operations may invalidate previously valid key */
2691	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2692
2693	/* wipe references to any kernel keyring key */
2694	kfree_sensitive(cc->key_string);
2695	cc->key_string = NULL;
2696
2697	/* Decode key from its hex representation. */
2698	if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2699		goto out;
2700
2701	r = crypt_setkey(cc);
2702	if (!r)
2703		set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2704
2705out:
2706	/* Hex key string not needed after here, so wipe it. */
2707	memset(key, '0', key_string_len);
2708
2709	return r;
2710}
2711
2712static int crypt_wipe_key(struct crypt_config *cc)
2713{
2714	int r;
2715
2716	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2717	get_random_bytes(&cc->key, cc->key_size);
2718
2719	/* Wipe IV private keys */
2720	if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2721		r = cc->iv_gen_ops->wipe(cc);
2722		if (r)
2723			return r;
2724	}
2725
2726	kfree_sensitive(cc->key_string);
2727	cc->key_string = NULL;
2728	r = crypt_setkey(cc);
2729	memset(&cc->key, 0, cc->key_size * sizeof(u8));
2730
2731	return r;
2732}
2733
2734static void crypt_calculate_pages_per_client(void)
2735{
2736	unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2737
2738	if (!dm_crypt_clients_n)
2739		return;
2740
2741	pages /= dm_crypt_clients_n;
2742	if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2743		pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2744	dm_crypt_pages_per_client = pages;
2745}
2746
2747static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2748{
2749	struct crypt_config *cc = pool_data;
2750	struct page *page;
2751
2752	/*
2753	 * Note, percpu_counter_read_positive() may over (and under) estimate
2754	 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2755	 * but avoids potential spinlock contention of an exact result.
2756	 */
2757	if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2758	    likely(gfp_mask & __GFP_NORETRY))
2759		return NULL;
2760
2761	page = alloc_page(gfp_mask);
2762	if (likely(page != NULL))
2763		percpu_counter_add(&cc->n_allocated_pages, 1);
2764
2765	return page;
2766}
2767
2768static void crypt_page_free(void *page, void *pool_data)
2769{
2770	struct crypt_config *cc = pool_data;
2771
2772	__free_page(page);
2773	percpu_counter_sub(&cc->n_allocated_pages, 1);
2774}
2775
2776static void crypt_dtr(struct dm_target *ti)
2777{
2778	struct crypt_config *cc = ti->private;
2779
2780	ti->private = NULL;
2781
2782	if (!cc)
2783		return;
2784
2785	if (cc->write_thread)
 
 
 
 
2786		kthread_stop(cc->write_thread);
 
2787
2788	if (cc->io_queue)
2789		destroy_workqueue(cc->io_queue);
2790	if (cc->crypt_queue)
2791		destroy_workqueue(cc->crypt_queue);
2792
2793	if (cc->workqueue_id)
2794		ida_free(&workqueue_ida, cc->workqueue_id);
2795
2796	crypt_free_tfms(cc);
2797
2798	bioset_exit(&cc->bs);
 
2799
2800	mempool_exit(&cc->page_pool);
2801	mempool_exit(&cc->req_pool);
2802	mempool_exit(&cc->tag_pool);
2803
2804	WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2805	percpu_counter_destroy(&cc->n_allocated_pages);
2806
2807	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2808		cc->iv_gen_ops->dtr(cc);
2809
2810	if (cc->dev)
2811		dm_put_device(ti, cc->dev);
2812
2813	kfree_sensitive(cc->cipher_string);
2814	kfree_sensitive(cc->key_string);
2815	kfree_sensitive(cc->cipher_auth);
2816	kfree_sensitive(cc->authenc_key);
2817
2818	mutex_destroy(&cc->bio_alloc_lock);
2819
2820	/* Must zero key material before freeing */
2821	kfree_sensitive(cc);
2822
2823	spin_lock(&dm_crypt_clients_lock);
2824	WARN_ON(!dm_crypt_clients_n);
2825	dm_crypt_clients_n--;
2826	crypt_calculate_pages_per_client();
2827	spin_unlock(&dm_crypt_clients_lock);
2828
2829	dm_audit_log_dtr(DM_MSG_PREFIX, ti, 1);
2830}
2831
2832static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2833{
2834	struct crypt_config *cc = ti->private;
2835
2836	if (crypt_integrity_aead(cc))
2837		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2838	else
2839		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2840
2841	if (cc->iv_size)
2842		/* at least a 64 bit sector number should fit in our buffer */
2843		cc->iv_size = max(cc->iv_size,
2844				  (unsigned int)(sizeof(u64) / sizeof(u8)));
2845	else if (ivmode) {
2846		DMWARN("Selected cipher does not support IVs");
2847		ivmode = NULL;
2848	}
2849
2850	/* Choose ivmode, see comments at iv code. */
2851	if (ivmode == NULL)
2852		cc->iv_gen_ops = NULL;
2853	else if (strcmp(ivmode, "plain") == 0)
2854		cc->iv_gen_ops = &crypt_iv_plain_ops;
2855	else if (strcmp(ivmode, "plain64") == 0)
2856		cc->iv_gen_ops = &crypt_iv_plain64_ops;
2857	else if (strcmp(ivmode, "plain64be") == 0)
2858		cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2859	else if (strcmp(ivmode, "essiv") == 0)
2860		cc->iv_gen_ops = &crypt_iv_essiv_ops;
2861	else if (strcmp(ivmode, "benbi") == 0)
2862		cc->iv_gen_ops = &crypt_iv_benbi_ops;
2863	else if (strcmp(ivmode, "null") == 0)
2864		cc->iv_gen_ops = &crypt_iv_null_ops;
2865	else if (strcmp(ivmode, "eboiv") == 0)
2866		cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2867	else if (strcmp(ivmode, "elephant") == 0) {
2868		cc->iv_gen_ops = &crypt_iv_elephant_ops;
2869		cc->key_parts = 2;
2870		cc->key_extra_size = cc->key_size / 2;
2871		if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2872			return -EINVAL;
2873		set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2874	} else if (strcmp(ivmode, "lmk") == 0) {
2875		cc->iv_gen_ops = &crypt_iv_lmk_ops;
2876		/*
2877		 * Version 2 and 3 is recognised according
2878		 * to length of provided multi-key string.
2879		 * If present (version 3), last key is used as IV seed.
2880		 * All keys (including IV seed) are always the same size.
2881		 */
2882		if (cc->key_size % cc->key_parts) {
2883			cc->key_parts++;
2884			cc->key_extra_size = cc->key_size / cc->key_parts;
2885		}
2886	} else if (strcmp(ivmode, "tcw") == 0) {
2887		cc->iv_gen_ops = &crypt_iv_tcw_ops;
2888		cc->key_parts += 2; /* IV + whitening */
2889		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2890	} else if (strcmp(ivmode, "random") == 0) {
2891		cc->iv_gen_ops = &crypt_iv_random_ops;
2892		/* Need storage space in integrity fields. */
2893		cc->integrity_iv_size = cc->iv_size;
2894	} else {
2895		ti->error = "Invalid IV mode";
2896		return -EINVAL;
2897	}
2898
2899	return 0;
2900}
2901
2902/*
2903 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2904 * The HMAC is needed to calculate tag size (HMAC digest size).
2905 * This should be probably done by crypto-api calls (once available...)
2906 */
2907static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2908{
2909	char *start, *end, *mac_alg = NULL;
2910	struct crypto_ahash *mac;
2911
2912	if (!strstarts(cipher_api, "authenc("))
2913		return 0;
2914
2915	start = strchr(cipher_api, '(');
2916	end = strchr(cipher_api, ',');
2917	if (!start || !end || ++start > end)
2918		return -EINVAL;
2919
2920	mac_alg = kmemdup_nul(start, end - start, GFP_KERNEL);
2921	if (!mac_alg)
2922		return -ENOMEM;
2923
2924	mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2925	kfree(mac_alg);
2926
2927	if (IS_ERR(mac))
2928		return PTR_ERR(mac);
2929
2930	if (!test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
2931		cc->key_mac_size = crypto_ahash_digestsize(mac);
2932	crypto_free_ahash(mac);
2933
2934	cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2935	if (!cc->authenc_key)
2936		return -ENOMEM;
2937
2938	return 0;
2939}
2940
2941static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2942				char **ivmode, char **ivopts)
2943{
2944	struct crypt_config *cc = ti->private;
2945	char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2946	int ret = -EINVAL;
2947
2948	cc->tfms_count = 1;
2949
2950	/*
2951	 * New format (capi: prefix)
2952	 * capi:cipher_api_spec-iv:ivopts
2953	 */
2954	tmp = &cipher_in[strlen("capi:")];
2955
2956	/* Separate IV options if present, it can contain another '-' in hash name */
2957	*ivopts = strrchr(tmp, ':');
2958	if (*ivopts) {
2959		**ivopts = '\0';
2960		(*ivopts)++;
2961	}
2962	/* Parse IV mode */
2963	*ivmode = strrchr(tmp, '-');
2964	if (*ivmode) {
2965		**ivmode = '\0';
2966		(*ivmode)++;
2967	}
2968	/* The rest is crypto API spec */
2969	cipher_api = tmp;
2970
2971	/* Alloc AEAD, can be used only in new format. */
2972	if (crypt_integrity_aead(cc)) {
2973		ret = crypt_ctr_auth_cipher(cc, cipher_api);
2974		if (ret < 0) {
2975			ti->error = "Invalid AEAD cipher spec";
2976			return ret;
2977		}
2978	}
2979
2980	if (*ivmode && !strcmp(*ivmode, "lmk"))
2981		cc->tfms_count = 64;
2982
2983	if (*ivmode && !strcmp(*ivmode, "essiv")) {
2984		if (!*ivopts) {
2985			ti->error = "Digest algorithm missing for ESSIV mode";
2986			return -EINVAL;
2987		}
2988		ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2989			       cipher_api, *ivopts);
2990		if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2991			ti->error = "Cannot allocate cipher string";
2992			return -ENOMEM;
2993		}
2994		cipher_api = buf;
2995	}
2996
2997	cc->key_parts = cc->tfms_count;
2998
2999	/* Allocate cipher */
3000	ret = crypt_alloc_tfms(cc, cipher_api);
3001	if (ret < 0) {
3002		ti->error = "Error allocating crypto tfm";
3003		return ret;
3004	}
3005
3006	if (crypt_integrity_aead(cc))
3007		cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
3008	else
3009		cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
3010
3011	return 0;
3012}
3013
3014static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
3015				char **ivmode, char **ivopts)
3016{
3017	struct crypt_config *cc = ti->private;
3018	char *tmp, *cipher, *chainmode, *keycount;
3019	char *cipher_api = NULL;
3020	int ret = -EINVAL;
3021	char dummy;
3022
3023	if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
 
3024		ti->error = "Bad cipher specification";
3025		return -EINVAL;
3026	}
3027
 
 
 
 
3028	/*
3029	 * Legacy dm-crypt cipher specification
3030	 * cipher[:keycount]-mode-iv:ivopts
3031	 */
3032	tmp = cipher_in;
3033	keycount = strsep(&tmp, "-");
3034	cipher = strsep(&keycount, ":");
3035
3036	if (!keycount)
3037		cc->tfms_count = 1;
3038	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
3039		 !is_power_of_2(cc->tfms_count)) {
3040		ti->error = "Bad cipher key count specification";
3041		return -EINVAL;
3042	}
3043	cc->key_parts = cc->tfms_count;
 
 
 
 
 
3044
3045	chainmode = strsep(&tmp, "-");
3046	*ivmode = strsep(&tmp, ":");
3047	*ivopts = tmp;
 
 
 
3048
3049	/*
3050	 * For compatibility with the original dm-crypt mapping format, if
3051	 * only the cipher name is supplied, use cbc-plain.
3052	 */
3053	if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
3054		chainmode = "cbc";
3055		*ivmode = "plain";
3056	}
3057
3058	if (strcmp(chainmode, "ecb") && !*ivmode) {
3059		ti->error = "IV mechanism required";
3060		return -EINVAL;
3061	}
3062
3063	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
3064	if (!cipher_api)
3065		goto bad_mem;
3066
3067	if (*ivmode && !strcmp(*ivmode, "essiv")) {
3068		if (!*ivopts) {
3069			ti->error = "Digest algorithm missing for ESSIV mode";
3070			kfree(cipher_api);
3071			return -EINVAL;
3072		}
3073		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3074			       "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
3075	} else {
3076		ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
3077			       "%s(%s)", chainmode, cipher);
3078	}
3079	if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
3080		kfree(cipher_api);
3081		goto bad_mem;
3082	}
3083
3084	/* Allocate cipher */
3085	ret = crypt_alloc_tfms(cc, cipher_api);
3086	if (ret < 0) {
3087		ti->error = "Error allocating crypto tfm";
3088		kfree(cipher_api);
3089		return ret;
3090	}
3091	kfree(cipher_api);
3092
3093	return 0;
3094bad_mem:
3095	ti->error = "Cannot allocate cipher strings";
3096	return -ENOMEM;
3097}
3098
3099static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3100{
3101	struct crypt_config *cc = ti->private;
3102	char *ivmode = NULL, *ivopts = NULL;
3103	int ret;
3104
3105	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3106	if (!cc->cipher_string) {
3107		ti->error = "Cannot allocate cipher strings";
3108		return -ENOMEM;
3109	}
3110
3111	if (strstarts(cipher_in, "capi:"))
3112		ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3113	else
3114		ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3115	if (ret)
3116		return ret;
3117
3118	/* Initialize IV */
3119	ret = crypt_ctr_ivmode(ti, ivmode);
3120	if (ret < 0)
3121		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3122
3123	/* Initialize and set key */
3124	ret = crypt_set_key(cc, key);
3125	if (ret < 0) {
3126		ti->error = "Error decoding and setting key";
3127		return ret;
3128	}
3129
3130	/* Allocate IV */
3131	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3132		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3133		if (ret < 0) {
3134			ti->error = "Error creating IV";
3135			return ret;
3136		}
3137	}
3138
3139	/* Initialize IV (set keys for ESSIV etc) */
3140	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3141		ret = cc->iv_gen_ops->init(cc);
3142		if (ret < 0) {
3143			ti->error = "Error initialising IV";
3144			return ret;
3145		}
3146	}
3147
3148	/* wipe the kernel key payload copy */
3149	if (cc->key_string)
3150		memset(cc->key, 0, cc->key_size * sizeof(u8));
3151
3152	return ret;
3153}
3154
3155static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3156{
3157	struct crypt_config *cc = ti->private;
3158	struct dm_arg_set as;
3159	static const struct dm_arg _args[] = {
3160		{0, 9, "Invalid number of feature args"},
3161	};
3162	unsigned int opt_params, val;
3163	const char *opt_string, *sval;
3164	char dummy;
3165	int ret;
3166
3167	/* Optional parameters */
3168	as.argc = argc;
3169	as.argv = argv;
3170
3171	ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3172	if (ret)
3173		return ret;
3174
3175	while (opt_params--) {
3176		opt_string = dm_shift_arg(&as);
3177		if (!opt_string) {
3178			ti->error = "Not enough feature arguments";
3179			return -EINVAL;
3180		}
3181
3182		if (!strcasecmp(opt_string, "allow_discards"))
3183			ti->num_discard_bios = 1;
3184
3185		else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3186			set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3187		else if (!strcasecmp(opt_string, "high_priority"))
3188			set_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3189
3190		else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3191			set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3192		else if (!strcasecmp(opt_string, "no_read_workqueue"))
3193			set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3194		else if (!strcasecmp(opt_string, "no_write_workqueue"))
3195			set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3196		else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3197			if (val == 0 || val > MAX_TAG_SIZE) {
3198				ti->error = "Invalid integrity arguments";
3199				return -EINVAL;
3200			}
3201			cc->used_tag_size = val;
3202			sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3203			if (!strcasecmp(sval, "aead")) {
3204				set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3205			} else if (strcasecmp(sval, "none")) {
3206				ti->error = "Unknown integrity profile";
3207				return -EINVAL;
3208			}
3209
3210			cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3211			if (!cc->cipher_auth)
3212				return -ENOMEM;
3213		} else if (sscanf(opt_string, "integrity_key_size:%u%c", &val, &dummy) == 1) {
3214			if (!val) {
3215				ti->error = "Invalid integrity_key_size argument";
3216				return -EINVAL;
3217			}
3218			cc->key_mac_size = val;
3219			set_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3220		} else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3221			if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3222			    cc->sector_size > 4096 ||
3223			    (cc->sector_size & (cc->sector_size - 1))) {
3224				ti->error = "Invalid feature value for sector_size";
3225				return -EINVAL;
3226			}
3227			if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3228				ti->error = "Device size is not multiple of sector_size feature";
3229				return -EINVAL;
3230			}
3231			cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3232		} else if (!strcasecmp(opt_string, "iv_large_sectors"))
3233			set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3234		else {
3235			ti->error = "Invalid feature arguments";
3236			return -EINVAL;
3237		}
3238	}
3239
3240	return 0;
 
 
3241}
3242
3243#ifdef CONFIG_BLK_DEV_ZONED
3244static int crypt_report_zones(struct dm_target *ti,
3245		struct dm_report_zones_args *args, unsigned int nr_zones)
3246{
3247	struct crypt_config *cc = ti->private;
3248
3249	return dm_report_zones(cc->dev->bdev, cc->start,
3250			cc->start + dm_target_offset(ti, args->next_sector),
3251			args, nr_zones);
3252}
3253#else
3254#define crypt_report_zones NULL
3255#endif
3256
3257/*
3258 * Construct an encryption mapping:
3259 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3260 */
3261static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3262{
3263	struct crypt_config *cc;
3264	const char *devname = dm_table_device_name(ti->table);
3265	int key_size, wq_id;
3266	unsigned int align_mask;
3267	unsigned int common_wq_flags;
3268	unsigned long long tmpll;
3269	int ret;
3270	size_t iv_size_padding, additional_req_size;
 
 
3271	char dummy;
3272
 
 
 
 
3273	if (argc < 5) {
3274		ti->error = "Not enough arguments";
3275		return -EINVAL;
3276	}
3277
3278	key_size = get_key_size(&argv[1]);
3279	if (key_size < 0) {
3280		ti->error = "Cannot parse key size";
3281		return -EINVAL;
3282	}
3283
3284	cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3285	if (!cc) {
3286		ti->error = "Cannot allocate encryption context";
3287		return -ENOMEM;
3288	}
3289	cc->key_size = key_size;
3290	cc->sector_size = (1 << SECTOR_SHIFT);
3291	cc->sector_shift = 0;
3292
3293	ti->private = cc;
3294
3295	spin_lock(&dm_crypt_clients_lock);
3296	dm_crypt_clients_n++;
3297	crypt_calculate_pages_per_client();
3298	spin_unlock(&dm_crypt_clients_lock);
3299
3300	ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3301	if (ret < 0)
3302		goto bad;
3303
3304	/* Optional parameters need to be read before cipher constructor */
3305	if (argc > 5) {
3306		ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3307		if (ret)
3308			goto bad;
3309	}
3310
3311	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3312	if (ret < 0)
3313		goto bad;
3314
3315	if (crypt_integrity_aead(cc)) {
3316		cc->dmreq_start = sizeof(struct aead_request);
3317		cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3318		align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3319	} else {
3320		cc->dmreq_start = sizeof(struct skcipher_request);
3321		cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3322		align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3323	}
3324	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3325
3326	if (align_mask < CRYPTO_MINALIGN) {
3327		/* Allocate the padding exactly */
3328		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3329				& align_mask;
3330	} else {
3331		/*
3332		 * If the cipher requires greater alignment than kmalloc
3333		 * alignment, we don't know the exact position of the
3334		 * initialization vector. We must assume worst case.
3335		 */
3336		iv_size_padding = align_mask;
3337	}
3338
3339	/*  ...| IV + padding | original IV | original sec. number | bio tag offset | */
3340	additional_req_size = sizeof(struct dm_crypt_request) +
3341		iv_size_padding + cc->iv_size +
3342		cc->iv_size +
3343		sizeof(uint64_t) +
3344		sizeof(unsigned int);
3345
3346	ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3347	if (ret) {
3348		ti->error = "Cannot allocate crypt request mempool";
3349		goto bad;
3350	}
3351
3352	cc->per_bio_data_size = ti->per_io_data_size =
3353		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3354		      ARCH_DMA_MINALIGN);
 
3355
3356	ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3357	if (ret) {
3358		ti->error = "Cannot allocate page mempool";
3359		goto bad;
3360	}
3361
3362	ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3363	if (ret) {
3364		ti->error = "Cannot allocate crypt bioset";
3365		goto bad;
3366	}
3367
3368	mutex_init(&cc->bio_alloc_lock);
3369
3370	ret = -EINVAL;
3371	if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3372	    (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3373		ti->error = "Invalid iv_offset sector";
3374		goto bad;
3375	}
3376	cc->iv_offset = tmpll;
3377
3378	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3379	if (ret) {
3380		ti->error = "Device lookup failed";
3381		goto bad;
3382	}
3383
3384	ret = -EINVAL;
3385	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3386		ti->error = "Invalid device sector";
3387		goto bad;
3388	}
3389	cc->start = tmpll;
3390
3391	if (bdev_is_zoned(cc->dev->bdev)) {
3392		/*
3393		 * For zoned block devices, we need to preserve the issuer write
3394		 * ordering. To do so, disable write workqueues and force inline
3395		 * encryption completion.
3396		 */
3397		set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3398		set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3399
3400		/*
3401		 * All zone append writes to a zone of a zoned block device will
3402		 * have the same BIO sector, the start of the zone. When the
3403		 * cypher IV mode uses sector values, all data targeting a
3404		 * zone will be encrypted using the first sector numbers of the
3405		 * zone. This will not result in write errors but will
3406		 * cause most reads to fail as reads will use the sector values
3407		 * for the actual data locations, resulting in IV mismatch.
3408		 * To avoid this problem, ask DM core to emulate zone append
3409		 * operations with regular writes.
3410		 */
3411		DMDEBUG("Zone append operations will be emulated");
3412		ti->emulate_zone_append = true;
3413	}
3414
3415	if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3416		ret = crypt_integrity_ctr(cc, ti);
3417		if (ret)
3418			goto bad;
3419
3420		cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->tuple_size;
3421		if (!cc->tag_pool_max_sectors)
3422			cc->tag_pool_max_sectors = 1;
3423
3424		ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3425			cc->tag_pool_max_sectors * cc->tuple_size);
3426		if (ret) {
3427			ti->error = "Cannot allocate integrity tags mempool";
3428			goto bad;
3429		}
3430
3431		cc->tag_pool_max_sectors <<= cc->sector_shift;
3432	}
3433
3434	wq_id = ida_alloc_min(&workqueue_ida, 1, GFP_KERNEL);
3435	if (wq_id < 0) {
3436		ti->error = "Couldn't get workqueue id";
3437		ret = wq_id;
3438		goto bad;
 
 
 
 
 
 
3439	}
3440	cc->workqueue_id = wq_id;
3441
3442	ret = -ENOMEM;
3443	common_wq_flags = WQ_MEM_RECLAIM | WQ_SYSFS;
3444	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3445		common_wq_flags |= WQ_HIGHPRI;
3446
3447	cc->io_queue = alloc_workqueue("kcryptd_io-%s-%d", common_wq_flags, 1, devname, wq_id);
3448	if (!cc->io_queue) {
3449		ti->error = "Couldn't create kcryptd io queue";
3450		goto bad;
3451	}
3452
3453	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags)) {
3454		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3455						  common_wq_flags | WQ_CPU_INTENSIVE,
3456						  1, devname, wq_id);
3457	} else {
3458		/*
3459		 * While crypt_queue is certainly CPU intensive, the use of
3460		 * WQ_CPU_INTENSIVE is meaningless with WQ_UNBOUND.
3461		 */
3462		cc->crypt_queue = alloc_workqueue("kcryptd-%s-%d",
3463						  common_wq_flags | WQ_UNBOUND,
3464						  num_online_cpus(), devname, wq_id);
3465	}
3466	if (!cc->crypt_queue) {
3467		ti->error = "Couldn't create kcryptd queue";
3468		goto bad;
3469	}
3470
3471	spin_lock_init(&cc->write_thread_lock);
3472	cc->write_tree = RB_ROOT;
3473
3474	cc->write_thread = kthread_run(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3475	if (IS_ERR(cc->write_thread)) {
3476		ret = PTR_ERR(cc->write_thread);
3477		cc->write_thread = NULL;
3478		ti->error = "Couldn't spawn write thread";
3479		goto bad;
3480	}
3481	if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3482		set_user_nice(cc->write_thread, MIN_NICE);
3483
3484	ti->num_flush_bios = 1;
3485	ti->limit_swap_bios = true;
3486	ti->accounts_remapped_io = true;
3487
3488	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 1);
3489	return 0;
3490
3491bad:
3492	dm_audit_log_ctr(DM_MSG_PREFIX, ti, 0);
3493	crypt_dtr(ti);
3494	return ret;
3495}
3496
3497static int crypt_map(struct dm_target *ti, struct bio *bio)
3498{
3499	struct dm_crypt_io *io;
3500	struct crypt_config *cc = ti->private;
3501	unsigned max_sectors;
3502
3503	/*
3504	 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3505	 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3506	 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3507	 */
3508	if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3509	    bio_op(bio) == REQ_OP_DISCARD)) {
3510		bio_set_dev(bio, cc->dev->bdev);
3511		if (bio_sectors(bio))
3512			bio->bi_iter.bi_sector = cc->start +
3513				dm_target_offset(ti, bio->bi_iter.bi_sector);
3514		return DM_MAPIO_REMAPPED;
3515	}
3516
3517	/*
3518	 * Check if bio is too large, split as needed.
3519	 */
3520	max_sectors = get_max_request_size(cc, bio_data_dir(bio) == WRITE);
3521	if (unlikely(bio_sectors(bio) > max_sectors))
3522		dm_accept_partial_bio(bio, max_sectors);
3523
3524	/*
3525	 * Ensure that bio is a multiple of internal sector encryption size
3526	 * and is aligned to this size as defined in IO hints.
3527	 */
3528	if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3529		return DM_MAPIO_KILL;
3530
3531	if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3532		return DM_MAPIO_KILL;
3533
3534	io = dm_per_bio_data(bio, cc->per_bio_data_size);
3535	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3536
3537	if (cc->tuple_size) {
3538		unsigned int tag_len = cc->tuple_size * (bio_sectors(bio) >> cc->sector_shift);
3539
3540		if (unlikely(tag_len > KMALLOC_MAX_SIZE))
3541			io->integrity_metadata = NULL;
3542		else
3543			io->integrity_metadata = kmalloc(tag_len, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3544
3545		if (unlikely(!io->integrity_metadata)) {
3546			if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3547				dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3548			io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3549			io->integrity_metadata_from_pool = true;
3550		}
3551	}
3552
3553	if (crypt_integrity_aead(cc))
3554		io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3555	else
3556		io->ctx.r.req = (struct skcipher_request *)(io + 1);
3557
3558	if (bio_data_dir(io->base_bio) == READ) {
3559		if (kcryptd_io_read(io, CRYPT_MAP_READ_GFP))
3560			kcryptd_queue_read(io);
3561	} else
3562		kcryptd_queue_crypt(io);
3563
3564	return DM_MAPIO_SUBMITTED;
3565}
3566
3567static char hex2asc(unsigned char c)
3568{
3569	return c + '0' + ((unsigned int)(9 - c) >> 4 & 0x27);
3570}
3571
3572static void crypt_status(struct dm_target *ti, status_type_t type,
3573			 unsigned int status_flags, char *result, unsigned int maxlen)
3574{
3575	struct crypt_config *cc = ti->private;
3576	unsigned int i, sz = 0;
3577	int num_feature_args = 0;
3578
3579	switch (type) {
3580	case STATUSTYPE_INFO:
3581		result[0] = '\0';
3582		break;
3583
3584	case STATUSTYPE_TABLE:
3585		DMEMIT("%s ", cc->cipher_string);
3586
3587		if (cc->key_size > 0) {
3588			if (cc->key_string)
3589				DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3590			else {
3591				for (i = 0; i < cc->key_size; i++) {
3592					DMEMIT("%c%c", hex2asc(cc->key[i] >> 4),
3593					       hex2asc(cc->key[i] & 0xf));
3594				}
3595			}
3596		} else
3597			DMEMIT("-");
3598
3599		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3600				cc->dev->name, (unsigned long long)cc->start);
3601
3602		num_feature_args += !!ti->num_discard_bios;
3603		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3604		num_feature_args += test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags);
3605		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3606		num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3607		num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3608		num_feature_args += !!cc->used_tag_size;
3609		num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3610		num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3611		num_feature_args += test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags);
3612		if (num_feature_args) {
3613			DMEMIT(" %d", num_feature_args);
3614			if (ti->num_discard_bios)
3615				DMEMIT(" allow_discards");
3616			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3617				DMEMIT(" same_cpu_crypt");
3618			if (test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags))
3619				DMEMIT(" high_priority");
3620			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3621				DMEMIT(" submit_from_crypt_cpus");
3622			if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3623				DMEMIT(" no_read_workqueue");
3624			if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3625				DMEMIT(" no_write_workqueue");
3626			if (cc->used_tag_size)
3627				DMEMIT(" integrity:%u:%s", cc->used_tag_size, cc->cipher_auth);
3628			if (cc->sector_size != (1 << SECTOR_SHIFT))
3629				DMEMIT(" sector_size:%d", cc->sector_size);
3630			if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3631				DMEMIT(" iv_large_sectors");
3632			if (test_bit(CRYPT_KEY_MAC_SIZE_SET, &cc->cipher_flags))
3633				DMEMIT(" integrity_key_size:%u", cc->key_mac_size);
3634		}
3635		break;
3636
3637	case STATUSTYPE_IMA:
3638		DMEMIT_TARGET_NAME_VERSION(ti->type);
3639		DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3640		DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3641		DMEMIT(",high_priority=%c", test_bit(DM_CRYPT_HIGH_PRIORITY, &cc->flags) ? 'y' : 'n');
3642		DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3643		       'y' : 'n');
3644		DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3645		       'y' : 'n');
3646		DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3647		       'y' : 'n');
3648		DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3649		       'y' : 'n');
3650
3651		if (cc->used_tag_size)
3652			DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3653			       cc->used_tag_size, cc->cipher_auth);
3654		if (cc->sector_size != (1 << SECTOR_SHIFT))
3655			DMEMIT(",sector_size=%d", cc->sector_size);
3656		if (cc->cipher_string)
3657			DMEMIT(",cipher_string=%s", cc->cipher_string);
3658
3659		DMEMIT(",key_size=%u", cc->key_size);
3660		DMEMIT(",key_parts=%u", cc->key_parts);
3661		DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3662		DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3663		DMEMIT(";");
3664		break;
3665	}
3666}
3667
3668static void crypt_postsuspend(struct dm_target *ti)
3669{
3670	struct crypt_config *cc = ti->private;
3671
3672	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3673}
3674
3675static int crypt_preresume(struct dm_target *ti)
3676{
3677	struct crypt_config *cc = ti->private;
3678
3679	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3680		DMERR("aborting resume - crypt key is not set.");
3681		return -EAGAIN;
3682	}
3683
3684	return 0;
3685}
3686
3687static void crypt_resume(struct dm_target *ti)
3688{
3689	struct crypt_config *cc = ti->private;
3690
3691	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3692}
3693
3694/* Message interface
3695 *	key set <key>
3696 *	key wipe
3697 */
3698static int crypt_message(struct dm_target *ti, unsigned int argc, char **argv,
3699			 char *result, unsigned int maxlen)
3700{
3701	struct crypt_config *cc = ti->private;
3702	int key_size, ret = -EINVAL;
3703
3704	if (argc < 2)
3705		goto error;
3706
3707	if (!strcasecmp(argv[0], "key")) {
3708		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3709			DMWARN("not suspended during key manipulation.");
3710			return -EINVAL;
3711		}
3712		if (argc == 3 && !strcasecmp(argv[1], "set")) {
3713			/* The key size may not be changed. */
3714			key_size = get_key_size(&argv[2]);
3715			if (key_size < 0 || cc->key_size != key_size) {
3716				memset(argv[2], '0', strlen(argv[2]));
3717				return -EINVAL;
3718			}
3719
3720			ret = crypt_set_key(cc, argv[2]);
3721			if (ret)
3722				return ret;
3723			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3724				ret = cc->iv_gen_ops->init(cc);
3725			/* wipe the kernel key payload copy */
3726			if (cc->key_string)
3727				memset(cc->key, 0, cc->key_size * sizeof(u8));
3728			return ret;
3729		}
3730		if (argc == 2 && !strcasecmp(argv[1], "wipe"))
 
 
 
 
 
3731			return crypt_wipe_key(cc);
 
3732	}
3733
3734error:
3735	DMWARN("unrecognised message received.");
3736	return -EINVAL;
3737}
3738
3739static int crypt_iterate_devices(struct dm_target *ti,
3740				 iterate_devices_callout_fn fn, void *data)
3741{
3742	struct crypt_config *cc = ti->private;
3743
3744	return fn(ti, cc->dev, cc->start, ti->len, data);
3745}
3746
3747static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3748{
3749	struct crypt_config *cc = ti->private;
3750
3751	limits->logical_block_size =
3752		max_t(unsigned int, limits->logical_block_size, cc->sector_size);
3753	limits->physical_block_size =
3754		max_t(unsigned int, limits->physical_block_size, cc->sector_size);
3755	limits->io_min = max_t(unsigned int, limits->io_min, cc->sector_size);
3756	limits->dma_alignment = limits->logical_block_size - 1;
3757}
3758
3759static struct target_type crypt_target = {
3760	.name   = "crypt",
3761	.version = {1, 28, 0},
3762	.module = THIS_MODULE,
3763	.ctr    = crypt_ctr,
3764	.dtr    = crypt_dtr,
3765	.features = DM_TARGET_ZONED_HM,
3766	.report_zones = crypt_report_zones,
3767	.map    = crypt_map,
3768	.status = crypt_status,
3769	.postsuspend = crypt_postsuspend,
3770	.preresume = crypt_preresume,
3771	.resume = crypt_resume,
3772	.message = crypt_message,
3773	.iterate_devices = crypt_iterate_devices,
3774	.io_hints = crypt_io_hints,
3775};
3776module_dm(crypt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3777
3778MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3779MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3780MODULE_LICENSE("GPL");
v4.6
 
   1/*
   2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
   3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
   4 * Copyright (C) 2006-2015 Red Hat, Inc. All rights reserved.
   5 * Copyright (C) 2013 Milan Broz <gmazyland@gmail.com>
   6 *
   7 * This file is released under the GPL.
   8 */
   9
  10#include <linux/completion.h>
  11#include <linux/err.h>
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/kernel.h>
 
  15#include <linux/bio.h>
  16#include <linux/blkdev.h>
 
  17#include <linux/mempool.h>
  18#include <linux/slab.h>
  19#include <linux/crypto.h>
  20#include <linux/workqueue.h>
  21#include <linux/kthread.h>
  22#include <linux/backing-dev.h>
  23#include <linux/atomic.h>
  24#include <linux/scatterlist.h>
  25#include <linux/rbtree.h>
 
  26#include <asm/page.h>
  27#include <asm/unaligned.h>
  28#include <crypto/hash.h>
  29#include <crypto/md5.h>
  30#include <crypto/algapi.h>
  31#include <crypto/skcipher.h>
 
 
 
 
 
 
 
 
  32
  33#include <linux/device-mapper.h>
  34
 
 
  35#define DM_MSG_PREFIX "crypt"
  36
 
 
  37/*
  38 * context holding the current state of a multi-part conversion
  39 */
  40struct convert_context {
  41	struct completion restart;
  42	struct bio *bio_in;
 
  43	struct bio *bio_out;
  44	struct bvec_iter iter_in;
  45	struct bvec_iter iter_out;
  46	sector_t cc_sector;
  47	atomic_t cc_pending;
  48	struct skcipher_request *req;
 
 
 
 
 
 
 
 
  49};
  50
  51/*
  52 * per bio private data
  53 */
  54struct dm_crypt_io {
  55	struct crypt_config *cc;
  56	struct bio *base_bio;
 
 
 
  57	struct work_struct work;
  58
  59	struct convert_context ctx;
  60
  61	atomic_t io_pending;
  62	int error;
  63	sector_t sector;
  64
 
 
  65	struct rb_node rb_node;
  66} CRYPTO_MINALIGN_ATTR;
  67
  68struct dm_crypt_request {
  69	struct convert_context *ctx;
  70	struct scatterlist sg_in;
  71	struct scatterlist sg_out;
  72	sector_t iv_sector;
  73};
  74
  75struct crypt_config;
  76
  77struct crypt_iv_operations {
  78	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
  79		   const char *opts);
  80	void (*dtr)(struct crypt_config *cc);
  81	int (*init)(struct crypt_config *cc);
  82	int (*wipe)(struct crypt_config *cc);
  83	int (*generator)(struct crypt_config *cc, u8 *iv,
  84			 struct dm_crypt_request *dmreq);
  85	int (*post)(struct crypt_config *cc, u8 *iv,
  86		    struct dm_crypt_request *dmreq);
  87};
  88
  89struct iv_essiv_private {
  90	struct crypto_ahash *hash_tfm;
  91	u8 *salt;
  92};
  93
  94struct iv_benbi_private {
  95	int shift;
  96};
  97
  98#define LMK_SEED_SIZE 64 /* hash + 0 */
  99struct iv_lmk_private {
 100	struct crypto_shash *hash_tfm;
 101	u8 *seed;
 102};
 103
 104#define TCW_WHITENING_SIZE 16
 105struct iv_tcw_private {
 106	struct crypto_shash *crc32_tfm;
 107	u8 *iv_seed;
 108	u8 *whitening;
 109};
 110
 
 
 
 
 
 111/*
 112 * Crypt: maps a linear range of a block device
 113 * and encrypts / decrypts at the same time.
 114 */
 115enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
 116	     DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
 117	     DM_CRYPT_EXIT_THREAD};
 
 
 
 
 
 
 
 
 118
 119/*
 120 * The fields in here must be read only after initialization.
 121 */
 122struct crypt_config {
 123	struct dm_dev *dev;
 124	sector_t start;
 125
 126	/*
 127	 * pool for per bio private data, crypto requests and
 128	 * encryption requeusts/buffer pages
 129	 */
 130	mempool_t *req_pool;
 131	mempool_t *page_pool;
 132	struct bio_set *bs;
 133	struct mutex bio_alloc_lock;
 134
 135	struct workqueue_struct *io_queue;
 136	struct workqueue_struct *crypt_queue;
 137
 
 138	struct task_struct *write_thread;
 139	wait_queue_head_t write_thread_wait;
 140	struct rb_root write_tree;
 141
 142	char *cipher;
 143	char *cipher_string;
 
 
 144
 145	struct crypt_iv_operations *iv_gen_ops;
 146	union {
 147		struct iv_essiv_private essiv;
 148		struct iv_benbi_private benbi;
 149		struct iv_lmk_private lmk;
 150		struct iv_tcw_private tcw;
 
 151	} iv_gen_private;
 152	sector_t iv_offset;
 153	unsigned int iv_size;
 
 
 154
 155	/* ESSIV: struct crypto_cipher *essiv_tfm */
 156	void *iv_private;
 157	struct crypto_skcipher **tfms;
 158	unsigned tfms_count;
 
 
 
 159
 160	/*
 161	 * Layout of each crypto request:
 162	 *
 163	 *   struct skcipher_request
 164	 *      context
 165	 *      padding
 166	 *   struct dm_crypt_request
 167	 *      padding
 168	 *   IV
 169	 *
 170	 * The padding is added so that dm_crypt_request and the IV are
 171	 * correctly aligned.
 172	 */
 173	unsigned int dmreq_start;
 174
 175	unsigned int per_bio_data_size;
 176
 177	unsigned long flags;
 178	unsigned int key_size;
 179	unsigned int key_parts;      /* independent parts in key buffer */
 180	unsigned int key_extra_size; /* additional keys length */
 181	u8 key[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182};
 183
 184#define MIN_IOS        16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 185
 186static void clone_init(struct dm_crypt_io *, struct bio *);
 187static void kcryptd_queue_crypt(struct dm_crypt_io *io);
 188static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
 
 
 
 189
 190/*
 191 * Use this to access cipher attributes that are the same for each CPU.
 192 */
 193static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
 194{
 195	return cc->tfms[0];
 
 
 
 
 
 196}
 197
 198/*
 199 * Different IV generation algorithms:
 200 *
 201 * plain: the initial vector is the 32-bit little-endian version of the sector
 202 *        number, padded with zeros if necessary.
 203 *
 204 * plain64: the initial vector is the 64-bit little-endian version of the sector
 205 *        number, padded with zeros if necessary.
 206 *
 
 
 
 207 * essiv: "encrypted sector|salt initial vector", the sector number is
 208 *        encrypted with the bulk cipher using a salt as key. The salt
 209 *        should be derived from the bulk cipher's key via hashing.
 210 *
 211 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
 212 *        (needed for LRW-32-AES and possible other narrow block modes)
 213 *
 214 * null: the initial vector is always zero.  Provides compatibility with
 215 *       obsolete loop_fish2 devices.  Do not use for new devices.
 216 *
 217 * lmk:  Compatible implementation of the block chaining mode used
 218 *       by the Loop-AES block device encryption system
 219 *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
 220 *       It operates on full 512 byte sectors and uses CBC
 221 *       with an IV derived from the sector number, the data and
 222 *       optionally extra IV seed.
 223 *       This means that after decryption the first block
 224 *       of sector must be tweaked according to decrypted data.
 225 *       Loop-AES can use three encryption schemes:
 226 *         version 1: is plain aes-cbc mode
 227 *         version 2: uses 64 multikey scheme with lmk IV generator
 228 *         version 3: the same as version 2 with additional IV seed
 229 *                   (it uses 65 keys, last key is used as IV seed)
 230 *
 231 * tcw:  Compatible implementation of the block chaining mode used
 232 *       by the TrueCrypt device encryption system (prior to version 4.1).
 233 *       For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
 234 *       It operates on full 512 byte sectors and uses CBC
 235 *       with an IV derived from initial key and the sector number.
 236 *       In addition, whitening value is applied on every sector, whitening
 237 *       is calculated from initial key, sector number and mixed using CRC32.
 238 *       Note that this encryption scheme is vulnerable to watermarking attacks
 239 *       and should be used for old compatible containers access only.
 240 *
 241 * plumb: unimplemented, see:
 242 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
 
 
 
 
 
 
 243 */
 244
 245static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
 246			      struct dm_crypt_request *dmreq)
 247{
 248	memset(iv, 0, cc->iv_size);
 249	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
 250
 251	return 0;
 252}
 253
 254static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
 255				struct dm_crypt_request *dmreq)
 256{
 257	memset(iv, 0, cc->iv_size);
 258	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 259
 260	return 0;
 261}
 262
 263/* Initialise ESSIV - compute salt but no local memory allocations */
 264static int crypt_iv_essiv_init(struct crypt_config *cc)
 265{
 266	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 267	AHASH_REQUEST_ON_STACK(req, essiv->hash_tfm);
 268	struct scatterlist sg;
 269	struct crypto_cipher *essiv_tfm;
 270	int err;
 271
 272	sg_init_one(&sg, cc->key, cc->key_size);
 273	ahash_request_set_tfm(req, essiv->hash_tfm);
 274	ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP, NULL, NULL);
 275	ahash_request_set_crypt(req, &sg, essiv->salt, cc->key_size);
 276
 277	err = crypto_ahash_digest(req);
 278	ahash_request_zero(req);
 279	if (err)
 280		return err;
 281
 282	essiv_tfm = cc->iv_private;
 283
 284	err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
 285			    crypto_ahash_digestsize(essiv->hash_tfm));
 286	if (err)
 287		return err;
 288
 289	return 0;
 290}
 291
 292/* Wipe salt and reset key derived from volume key */
 293static int crypt_iv_essiv_wipe(struct crypt_config *cc)
 294{
 295	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 296	unsigned salt_size = crypto_ahash_digestsize(essiv->hash_tfm);
 297	struct crypto_cipher *essiv_tfm;
 298	int r, err = 0;
 299
 300	memset(essiv->salt, 0, salt_size);
 301
 302	essiv_tfm = cc->iv_private;
 303	r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
 304	if (r)
 305		err = r;
 306
 307	return err;
 308}
 309
 310/* Set up per cpu cipher state */
 311static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
 312					     struct dm_target *ti,
 313					     u8 *salt, unsigned saltsize)
 314{
 315	struct crypto_cipher *essiv_tfm;
 316	int err;
 317
 318	/* Setup the essiv_tfm with the given salt */
 319	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
 320	if (IS_ERR(essiv_tfm)) {
 321		ti->error = "Error allocating crypto tfm for ESSIV";
 322		return essiv_tfm;
 323	}
 324
 325	if (crypto_cipher_blocksize(essiv_tfm) !=
 326	    crypto_skcipher_ivsize(any_tfm(cc))) {
 327		ti->error = "Block size of ESSIV cipher does "
 328			    "not match IV size of block cipher";
 329		crypto_free_cipher(essiv_tfm);
 330		return ERR_PTR(-EINVAL);
 331	}
 332
 333	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
 334	if (err) {
 335		ti->error = "Failed to set key for ESSIV cipher";
 336		crypto_free_cipher(essiv_tfm);
 337		return ERR_PTR(err);
 338	}
 339
 340	return essiv_tfm;
 341}
 342
 343static void crypt_iv_essiv_dtr(struct crypt_config *cc)
 344{
 345	struct crypto_cipher *essiv_tfm;
 346	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
 347
 348	crypto_free_ahash(essiv->hash_tfm);
 349	essiv->hash_tfm = NULL;
 350
 351	kzfree(essiv->salt);
 352	essiv->salt = NULL;
 353
 354	essiv_tfm = cc->iv_private;
 355
 356	if (essiv_tfm)
 357		crypto_free_cipher(essiv_tfm);
 358
 359	cc->iv_private = NULL;
 360}
 361
 362static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
 363			      const char *opts)
 364{
 365	struct crypto_cipher *essiv_tfm = NULL;
 366	struct crypto_ahash *hash_tfm = NULL;
 367	u8 *salt = NULL;
 368	int err;
 369
 370	if (!opts) {
 371		ti->error = "Digest algorithm missing for ESSIV mode";
 372		return -EINVAL;
 373	}
 374
 375	/* Allocate hash algorithm */
 376	hash_tfm = crypto_alloc_ahash(opts, 0, CRYPTO_ALG_ASYNC);
 377	if (IS_ERR(hash_tfm)) {
 378		ti->error = "Error initializing ESSIV hash";
 379		err = PTR_ERR(hash_tfm);
 380		goto bad;
 381	}
 382
 383	salt = kzalloc(crypto_ahash_digestsize(hash_tfm), GFP_KERNEL);
 384	if (!salt) {
 385		ti->error = "Error kmallocing salt storage in ESSIV";
 386		err = -ENOMEM;
 387		goto bad;
 388	}
 389
 390	cc->iv_gen_private.essiv.salt = salt;
 391	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
 392
 393	essiv_tfm = setup_essiv_cpu(cc, ti, salt,
 394				crypto_ahash_digestsize(hash_tfm));
 395	if (IS_ERR(essiv_tfm)) {
 396		crypt_iv_essiv_dtr(cc);
 397		return PTR_ERR(essiv_tfm);
 398	}
 399	cc->iv_private = essiv_tfm;
 400
 401	return 0;
 402
 403bad:
 404	if (hash_tfm && !IS_ERR(hash_tfm))
 405		crypto_free_ahash(hash_tfm);
 406	kfree(salt);
 407	return err;
 408}
 409
 410static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
 411			      struct dm_crypt_request *dmreq)
 412{
 413	struct crypto_cipher *essiv_tfm = cc->iv_private;
 414
 
 
 415	memset(iv, 0, cc->iv_size);
 416	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
 417	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
 418
 419	return 0;
 420}
 421
 422static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
 423			      const char *opts)
 424{
 425	unsigned bs = crypto_skcipher_blocksize(any_tfm(cc));
 426	int log = ilog2(bs);
 427
 428	/* we need to calculate how far we must shift the sector count
 429	 * to get the cipher block count, we use this shift in _gen */
 
 
 
 430
 
 
 
 
 431	if (1 << log != bs) {
 432		ti->error = "cypher blocksize is not a power of 2";
 433		return -EINVAL;
 434	}
 435
 436	if (log > 9) {
 437		ti->error = "cypher blocksize is > 512";
 438		return -EINVAL;
 439	}
 440
 441	cc->iv_gen_private.benbi.shift = 9 - log;
 442
 443	return 0;
 444}
 445
 446static void crypt_iv_benbi_dtr(struct crypt_config *cc)
 447{
 448}
 449
 450static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
 451			      struct dm_crypt_request *dmreq)
 452{
 453	__be64 val;
 454
 455	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
 456
 457	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
 458	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
 459
 460	return 0;
 461}
 462
 463static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
 464			     struct dm_crypt_request *dmreq)
 465{
 466	memset(iv, 0, cc->iv_size);
 467
 468	return 0;
 469}
 470
 471static void crypt_iv_lmk_dtr(struct crypt_config *cc)
 472{
 473	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 474
 475	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
 476		crypto_free_shash(lmk->hash_tfm);
 477	lmk->hash_tfm = NULL;
 478
 479	kzfree(lmk->seed);
 480	lmk->seed = NULL;
 481}
 482
 483static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
 484			    const char *opts)
 485{
 486	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 487
 488	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
 
 
 
 
 
 
 489	if (IS_ERR(lmk->hash_tfm)) {
 490		ti->error = "Error initializing LMK hash";
 491		return PTR_ERR(lmk->hash_tfm);
 492	}
 493
 494	/* No seed in LMK version 2 */
 495	if (cc->key_parts == cc->tfms_count) {
 496		lmk->seed = NULL;
 497		return 0;
 498	}
 499
 500	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
 501	if (!lmk->seed) {
 502		crypt_iv_lmk_dtr(cc);
 503		ti->error = "Error kmallocing seed storage in LMK";
 504		return -ENOMEM;
 505	}
 506
 507	return 0;
 508}
 509
 510static int crypt_iv_lmk_init(struct crypt_config *cc)
 511{
 512	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 513	int subkey_size = cc->key_size / cc->key_parts;
 514
 515	/* LMK seed is on the position of LMK_KEYS + 1 key */
 516	if (lmk->seed)
 517		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
 518		       crypto_shash_digestsize(lmk->hash_tfm));
 519
 520	return 0;
 521}
 522
 523static int crypt_iv_lmk_wipe(struct crypt_config *cc)
 524{
 525	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 526
 527	if (lmk->seed)
 528		memset(lmk->seed, 0, LMK_SEED_SIZE);
 529
 530	return 0;
 531}
 532
 533static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
 534			    struct dm_crypt_request *dmreq,
 535			    u8 *data)
 536{
 537	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
 538	SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
 539	struct md5_state md5state;
 540	__le32 buf[4];
 541	int i, r;
 542
 543	desc->tfm = lmk->hash_tfm;
 544	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 545
 546	r = crypto_shash_init(desc);
 547	if (r)
 548		return r;
 549
 550	if (lmk->seed) {
 551		r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
 552		if (r)
 553			return r;
 554	}
 555
 556	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
 557	r = crypto_shash_update(desc, data + 16, 16 * 31);
 558	if (r)
 559		return r;
 560
 561	/* Sector is cropped to 56 bits here */
 562	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
 563	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
 564	buf[2] = cpu_to_le32(4024);
 565	buf[3] = 0;
 566	r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
 567	if (r)
 568		return r;
 569
 570	/* No MD5 padding here */
 571	r = crypto_shash_export(desc, &md5state);
 572	if (r)
 573		return r;
 574
 575	for (i = 0; i < MD5_HASH_WORDS; i++)
 576		__cpu_to_le32s(&md5state.hash[i]);
 577	memcpy(iv, &md5state.hash, cc->iv_size);
 578
 579	return 0;
 580}
 581
 582static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
 583			    struct dm_crypt_request *dmreq)
 584{
 
 585	u8 *src;
 586	int r = 0;
 587
 588	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
 589		src = kmap_atomic(sg_page(&dmreq->sg_in));
 590		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
 591		kunmap_atomic(src);
 
 592	} else
 593		memset(iv, 0, cc->iv_size);
 594
 595	return r;
 596}
 597
 598static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
 599			     struct dm_crypt_request *dmreq)
 600{
 
 601	u8 *dst;
 602	int r;
 603
 604	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
 605		return 0;
 606
 607	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 608	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
 
 609
 610	/* Tweak the first block of plaintext sector */
 611	if (!r)
 612		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
 613
 614	kunmap_atomic(dst);
 615	return r;
 616}
 617
 618static void crypt_iv_tcw_dtr(struct crypt_config *cc)
 619{
 620	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 621
 622	kzfree(tcw->iv_seed);
 623	tcw->iv_seed = NULL;
 624	kzfree(tcw->whitening);
 625	tcw->whitening = NULL;
 626
 627	if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
 628		crypto_free_shash(tcw->crc32_tfm);
 629	tcw->crc32_tfm = NULL;
 630}
 631
 632static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
 633			    const char *opts)
 634{
 635	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 636
 
 
 
 
 
 637	if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
 638		ti->error = "Wrong key size for TCW";
 639		return -EINVAL;
 640	}
 641
 642	tcw->crc32_tfm = crypto_alloc_shash("crc32", 0, 0);
 
 643	if (IS_ERR(tcw->crc32_tfm)) {
 644		ti->error = "Error initializing CRC32 in TCW";
 645		return PTR_ERR(tcw->crc32_tfm);
 646	}
 647
 648	tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
 649	tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
 650	if (!tcw->iv_seed || !tcw->whitening) {
 651		crypt_iv_tcw_dtr(cc);
 652		ti->error = "Error allocating seed storage in TCW";
 653		return -ENOMEM;
 654	}
 655
 656	return 0;
 657}
 658
 659static int crypt_iv_tcw_init(struct crypt_config *cc)
 660{
 661	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 662	int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
 663
 664	memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
 665	memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
 666	       TCW_WHITENING_SIZE);
 667
 668	return 0;
 669}
 670
 671static int crypt_iv_tcw_wipe(struct crypt_config *cc)
 672{
 673	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 674
 675	memset(tcw->iv_seed, 0, cc->iv_size);
 676	memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
 677
 678	return 0;
 679}
 680
 681static int crypt_iv_tcw_whitening(struct crypt_config *cc,
 682				  struct dm_crypt_request *dmreq,
 683				  u8 *data)
 684{
 685	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 686	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 687	u8 buf[TCW_WHITENING_SIZE];
 688	SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
 689	int i, r;
 690
 691	/* xor whitening with sector number */
 692	memcpy(buf, tcw->whitening, TCW_WHITENING_SIZE);
 693	crypto_xor(buf, (u8 *)&sector, 8);
 694	crypto_xor(&buf[8], (u8 *)&sector, 8);
 695
 696	/* calculate crc32 for every 32bit part and xor it */
 697	desc->tfm = tcw->crc32_tfm;
 698	desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
 699	for (i = 0; i < 4; i++) {
 700		r = crypto_shash_init(desc);
 701		if (r)
 702			goto out;
 703		r = crypto_shash_update(desc, &buf[i * 4], 4);
 704		if (r)
 705			goto out;
 706		r = crypto_shash_final(desc, &buf[i * 4]);
 707		if (r)
 708			goto out;
 709	}
 710	crypto_xor(&buf[0], &buf[12], 4);
 711	crypto_xor(&buf[4], &buf[8], 4);
 712
 713	/* apply whitening (8 bytes) to whole sector */
 714	for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
 715		crypto_xor(data + i * 8, buf, 8);
 716out:
 717	memzero_explicit(buf, sizeof(buf));
 718	return r;
 719}
 720
 721static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
 722			    struct dm_crypt_request *dmreq)
 723{
 
 724	struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
 725	u64 sector = cpu_to_le64((u64)dmreq->iv_sector);
 726	u8 *src;
 727	int r = 0;
 728
 729	/* Remove whitening from ciphertext */
 730	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
 731		src = kmap_atomic(sg_page(&dmreq->sg_in));
 732		r = crypt_iv_tcw_whitening(cc, dmreq, src + dmreq->sg_in.offset);
 733		kunmap_atomic(src);
 
 734	}
 735
 736	/* Calculate IV */
 737	memcpy(iv, tcw->iv_seed, cc->iv_size);
 738	crypto_xor(iv, (u8 *)&sector, 8);
 739	if (cc->iv_size > 8)
 740		crypto_xor(&iv[8], (u8 *)&sector, cc->iv_size - 8);
 
 741
 742	return r;
 743}
 744
 745static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
 746			     struct dm_crypt_request *dmreq)
 747{
 
 748	u8 *dst;
 749	int r;
 750
 751	if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
 752		return 0;
 753
 754	/* Apply whitening on ciphertext */
 755	dst = kmap_atomic(sg_page(&dmreq->sg_out));
 756	r = crypt_iv_tcw_whitening(cc, dmreq, dst + dmreq->sg_out.offset);
 757	kunmap_atomic(dst);
 
 758
 759	return r;
 760}
 761
 762static struct crypt_iv_operations crypt_iv_plain_ops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 763	.generator = crypt_iv_plain_gen
 764};
 765
 766static struct crypt_iv_operations crypt_iv_plain64_ops = {
 767	.generator = crypt_iv_plain64_gen
 768};
 769
 770static struct crypt_iv_operations crypt_iv_essiv_ops = {
 771	.ctr       = crypt_iv_essiv_ctr,
 772	.dtr       = crypt_iv_essiv_dtr,
 773	.init      = crypt_iv_essiv_init,
 774	.wipe      = crypt_iv_essiv_wipe,
 775	.generator = crypt_iv_essiv_gen
 776};
 777
 778static struct crypt_iv_operations crypt_iv_benbi_ops = {
 779	.ctr	   = crypt_iv_benbi_ctr,
 780	.dtr	   = crypt_iv_benbi_dtr,
 781	.generator = crypt_iv_benbi_gen
 782};
 783
 784static struct crypt_iv_operations crypt_iv_null_ops = {
 785	.generator = crypt_iv_null_gen
 786};
 787
 788static struct crypt_iv_operations crypt_iv_lmk_ops = {
 789	.ctr	   = crypt_iv_lmk_ctr,
 790	.dtr	   = crypt_iv_lmk_dtr,
 791	.init	   = crypt_iv_lmk_init,
 792	.wipe	   = crypt_iv_lmk_wipe,
 793	.generator = crypt_iv_lmk_gen,
 794	.post	   = crypt_iv_lmk_post
 795};
 796
 797static struct crypt_iv_operations crypt_iv_tcw_ops = {
 798	.ctr	   = crypt_iv_tcw_ctr,
 799	.dtr	   = crypt_iv_tcw_dtr,
 800	.init	   = crypt_iv_tcw_init,
 801	.wipe	   = crypt_iv_tcw_wipe,
 802	.generator = crypt_iv_tcw_gen,
 803	.post	   = crypt_iv_tcw_post
 804};
 805
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806static void crypt_convert_init(struct crypt_config *cc,
 807			       struct convert_context *ctx,
 808			       struct bio *bio_out, struct bio *bio_in,
 809			       sector_t sector)
 810{
 811	ctx->bio_in = bio_in;
 812	ctx->bio_out = bio_out;
 813	if (bio_in)
 814		ctx->iter_in = bio_in->bi_iter;
 815	if (bio_out)
 816		ctx->iter_out = bio_out->bi_iter;
 817	ctx->cc_sector = sector + cc->iv_offset;
 
 818	init_completion(&ctx->restart);
 819}
 820
 821static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
 822					     struct skcipher_request *req)
 823{
 824	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
 825}
 826
 827static struct skcipher_request *req_of_dmreq(struct crypt_config *cc,
 828					       struct dm_crypt_request *dmreq)
 829{
 830	return (struct skcipher_request *)((char *)dmreq - cc->dmreq_start);
 831}
 832
 833static u8 *iv_of_dmreq(struct crypt_config *cc,
 834		       struct dm_crypt_request *dmreq)
 835{
 836	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
 837		crypto_skcipher_alignmask(any_tfm(cc)) + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 838}
 839
 840static int crypt_convert_block(struct crypt_config *cc,
 841			       struct convert_context *ctx,
 842			       struct skcipher_request *req)
 
 843{
 844	struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
 845	struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
 846	struct dm_crypt_request *dmreq;
 847	u8 *iv;
 848	int r;
 
 
 
 
 
 
 
 849
 850	dmreq = dmreq_of_req(cc, req);
 
 
 
 
 
 
 
 
 
 
 851	iv = iv_of_dmreq(cc, dmreq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 852
 
 
 
 
 
 853	dmreq->iv_sector = ctx->cc_sector;
 
 
 854	dmreq->ctx = ctx;
 855	sg_init_table(&dmreq->sg_in, 1);
 856	sg_set_page(&dmreq->sg_in, bv_in.bv_page, 1 << SECTOR_SHIFT,
 857		    bv_in.bv_offset);
 858
 859	sg_init_table(&dmreq->sg_out, 1);
 860	sg_set_page(&dmreq->sg_out, bv_out.bv_page, 1 << SECTOR_SHIFT,
 861		    bv_out.bv_offset);
 862
 863	bio_advance_iter(ctx->bio_in, &ctx->iter_in, 1 << SECTOR_SHIFT);
 864	bio_advance_iter(ctx->bio_out, &ctx->iter_out, 1 << SECTOR_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865
 866	if (cc->iv_gen_ops) {
 867		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
 868		if (r < 0)
 869			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 870	}
 871
 872	skcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
 873				   1 << SECTOR_SHIFT, iv);
 874
 875	if (bio_data_dir(ctx->bio_in) == WRITE)
 876		r = crypto_skcipher_encrypt(req);
 877	else
 878		r = crypto_skcipher_decrypt(req);
 879
 880	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
 881		r = cc->iv_gen_ops->post(cc, iv, dmreq);
 
 
 
 882
 883	return r;
 884}
 885
 886static void kcryptd_async_done(struct crypto_async_request *async_req,
 887			       int error);
 888
 889static void crypt_alloc_req(struct crypt_config *cc,
 890			    struct convert_context *ctx)
 891{
 892	unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
 893
 894	if (!ctx->req)
 895		ctx->req = mempool_alloc(cc->req_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896
 897	skcipher_request_set_tfm(ctx->req, cc->tfms[key_index]);
 898
 899	/*
 900	 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
 901	 * requests if driver request queue is full.
 902	 */
 903	skcipher_request_set_callback(ctx->req,
 904	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
 905	    kcryptd_async_done, dmreq_of_req(cc, ctx->req));
 
 
 
 
 
 
 
 
 
 
 
 906}
 907
 908static void crypt_free_req(struct crypt_config *cc,
 909			   struct skcipher_request *req, struct bio *base_bio)
 910{
 911	struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
 912
 913	if ((struct skcipher_request *)(io + 1) != req)
 914		mempool_free(req, cc->req_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915}
 916
 917/*
 918 * Encrypt / decrypt data from one bio to another one (can be the same one)
 919 */
 920static int crypt_convert(struct crypt_config *cc,
 921			 struct convert_context *ctx)
 922{
 
 923	int r;
 924
 925	atomic_set(&ctx->cc_pending, 1);
 
 
 
 
 
 
 926
 927	while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
 928
 929		crypt_alloc_req(cc, ctx);
 
 
 
 
 930
 931		atomic_inc(&ctx->cc_pending);
 932
 933		r = crypt_convert_block(cc, ctx, ctx->req);
 
 
 
 934
 935		switch (r) {
 936		/*
 937		 * The request was queued by a crypto driver
 938		 * but the driver request queue is full, let's wait.
 939		 */
 940		case -EBUSY:
 941			wait_for_completion(&ctx->restart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 942			reinit_completion(&ctx->restart);
 943			/* fall through */
 944		/*
 945		 * The request is queued and processed asynchronously,
 946		 * completion function kcryptd_async_done() will be called.
 947		 */
 948		case -EINPROGRESS:
 949			ctx->req = NULL;
 950			ctx->cc_sector++;
 
 951			continue;
 952		/*
 953		 * The request was already processed (synchronously).
 954		 */
 955		case 0:
 956			atomic_dec(&ctx->cc_pending);
 957			ctx->cc_sector++;
 958			cond_resched();
 
 
 959			continue;
 960
 961		/* There was an error while processing the request. */
 
 
 
 
 
 
 
 962		default:
 963			atomic_dec(&ctx->cc_pending);
 964			return r;
 965		}
 966	}
 967
 968	return 0;
 969}
 970
 971static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
 972
 973/*
 974 * Generate a new unfragmented bio with the given size
 975 * This should never violate the device limitations (but only because
 976 * max_segment_size is being constrained to PAGE_SIZE).
 977 *
 978 * This function may be called concurrently. If we allocate from the mempool
 979 * concurrently, there is a possibility of deadlock. For example, if we have
 980 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
 981 * the mempool concurrently, it may deadlock in a situation where both processes
 982 * have allocated 128 pages and the mempool is exhausted.
 983 *
 984 * In order to avoid this scenario we allocate the pages under a mutex.
 985 *
 986 * In order to not degrade performance with excessive locking, we try
 987 * non-blocking allocations without a mutex first but on failure we fallback
 988 * to blocking allocations with a mutex.
 
 
 
 989 */
 990static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
 991{
 992	struct crypt_config *cc = io->cc;
 993	struct bio *clone;
 994	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
 995	gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
 996	unsigned i, len, remaining_size;
 997	struct page *page;
 998	struct bio_vec *bvec;
 999
1000retry:
1001	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1002		mutex_lock(&cc->bio_alloc_lock);
1003
1004	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
1005	if (!clone)
1006		goto return_clone;
 
 
1007
1008	clone_init(io, clone);
1009
1010	remaining_size = size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011
1012	for (i = 0; i < nr_iovecs; i++) {
1013		page = mempool_alloc(cc->page_pool, gfp_mask);
1014		if (!page) {
1015			crypt_free_buffer_pages(cc, clone);
1016			bio_put(clone);
1017			gfp_mask |= __GFP_DIRECT_RECLAIM;
 
1018			goto retry;
1019		}
1020
1021		len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
 
 
 
 
1022
1023		bvec = &clone->bi_io_vec[clone->bi_vcnt++];
1024		bvec->bv_page = page;
1025		bvec->bv_len = len;
1026		bvec->bv_offset = 0;
1027
1028		clone->bi_iter.bi_size += len;
1029
1030		remaining_size -= len;
1031	}
1032
1033return_clone:
1034	if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1035		mutex_unlock(&cc->bio_alloc_lock);
1036
1037	return clone;
1038}
1039
1040static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1041{
1042	unsigned int i;
1043	struct bio_vec *bv;
1044
1045	bio_for_each_segment_all(bv, clone, i) {
1046		BUG_ON(!bv->bv_page);
1047		mempool_free(bv->bv_page, cc->page_pool);
1048		bv->bv_page = NULL;
 
 
 
 
 
 
1049	}
1050}
1051
1052static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1053			  struct bio *bio, sector_t sector)
1054{
1055	io->cc = cc;
1056	io->base_bio = bio;
1057	io->sector = sector;
1058	io->error = 0;
1059	io->ctx.req = NULL;
 
 
 
 
1060	atomic_set(&io->io_pending, 0);
1061}
1062
1063static void crypt_inc_pending(struct dm_crypt_io *io)
1064{
1065	atomic_inc(&io->io_pending);
1066}
1067
 
 
1068/*
1069 * One of the bios was finished. Check for completion of
1070 * the whole request and correctly clean up the buffer.
1071 */
1072static void crypt_dec_pending(struct dm_crypt_io *io)
1073{
1074	struct crypt_config *cc = io->cc;
1075	struct bio *base_bio = io->base_bio;
1076	int error = io->error;
1077
1078	if (!atomic_dec_and_test(&io->io_pending))
1079		return;
1080
1081	if (io->ctx.req)
1082		crypt_free_req(cc, io->ctx.req, base_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1083
1084	base_bio->bi_error = error;
1085	bio_endio(base_bio);
1086}
1087
1088/*
1089 * kcryptd/kcryptd_io:
1090 *
1091 * Needed because it would be very unwise to do decryption in an
1092 * interrupt context.
1093 *
1094 * kcryptd performs the actual encryption or decryption.
1095 *
1096 * kcryptd_io performs the IO submission.
1097 *
1098 * They must be separated as otherwise the final stages could be
1099 * starved by new requests which can block in the first stages due
1100 * to memory allocation.
1101 *
1102 * The work is done per CPU global for all dm-crypt instances.
1103 * They should not depend on each other and do not block.
1104 */
1105static void crypt_endio(struct bio *clone)
1106{
1107	struct dm_crypt_io *io = clone->bi_private;
1108	struct crypt_config *cc = io->cc;
1109	unsigned rw = bio_data_dir(clone);
1110	int error;
 
 
 
 
 
1111
1112	/*
1113	 * free the processed pages
1114	 */
1115	if (rw == WRITE)
1116		crypt_free_buffer_pages(cc, clone);
1117
1118	error = clone->bi_error;
1119	bio_put(clone);
1120
1121	if (rw == READ && !error) {
1122		kcryptd_queue_crypt(io);
1123		return;
1124	}
1125
1126	if (unlikely(error))
1127		io->error = error;
1128
1129	crypt_dec_pending(io);
1130}
1131
1132static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1133{
1134	struct crypt_config *cc = io->cc;
1135
1136	clone->bi_private = io;
1137	clone->bi_end_io  = crypt_endio;
1138	clone->bi_bdev    = cc->dev->bdev;
1139	clone->bi_rw      = io->base_bio->bi_rw;
1140}
1141
1142static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1143{
1144	struct crypt_config *cc = io->cc;
1145	struct bio *clone;
1146
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	/*
1148	 * We need the original biovec array in order to decrypt
1149	 * the whole bio data *afterwards* -- thanks to immutable
1150	 * biovecs we don't need to worry about the block layer
1151	 * modifying the biovec array; so leverage bio_clone_fast().
1152	 */
1153	clone = bio_clone_fast(io->base_bio, gfp, cc->bs);
1154	if (!clone)
1155		return 1;
 
 
1156
1157	crypt_inc_pending(io);
1158
1159	clone_init(io, clone);
1160	clone->bi_iter.bi_sector = cc->start + io->sector;
1161
1162	generic_make_request(clone);
 
 
 
 
 
 
1163	return 0;
1164}
1165
1166static void kcryptd_io_read_work(struct work_struct *work)
1167{
1168	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1169
1170	crypt_inc_pending(io);
1171	if (kcryptd_io_read(io, GFP_NOIO))
1172		io->error = -ENOMEM;
1173	crypt_dec_pending(io);
1174}
1175
1176static void kcryptd_queue_read(struct dm_crypt_io *io)
1177{
1178	struct crypt_config *cc = io->cc;
1179
1180	INIT_WORK(&io->work, kcryptd_io_read_work);
1181	queue_work(cc->io_queue, &io->work);
1182}
1183
1184static void kcryptd_io_write(struct dm_crypt_io *io)
1185{
1186	struct bio *clone = io->ctx.bio_out;
1187
1188	generic_make_request(clone);
1189}
1190
1191#define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1192
1193static int dmcrypt_write(void *data)
1194{
1195	struct crypt_config *cc = data;
1196	struct dm_crypt_io *io;
1197
1198	while (1) {
1199		struct rb_root write_tree;
1200		struct blk_plug plug;
1201
1202		DECLARE_WAITQUEUE(wait, current);
1203
1204		spin_lock_irq(&cc->write_thread_wait.lock);
1205continue_locked:
1206
1207		if (!RB_EMPTY_ROOT(&cc->write_tree))
1208			goto pop_from_list;
1209
1210		if (unlikely(test_bit(DM_CRYPT_EXIT_THREAD, &cc->flags))) {
1211			spin_unlock_irq(&cc->write_thread_wait.lock);
 
 
 
 
1212			break;
1213		}
1214
1215		__set_current_state(TASK_INTERRUPTIBLE);
1216		__add_wait_queue(&cc->write_thread_wait, &wait);
1217
1218		spin_unlock_irq(&cc->write_thread_wait.lock);
1219
1220		schedule();
1221
1222		spin_lock_irq(&cc->write_thread_wait.lock);
1223		__remove_wait_queue(&cc->write_thread_wait, &wait);
1224		goto continue_locked;
1225
1226pop_from_list:
1227		write_tree = cc->write_tree;
1228		cc->write_tree = RB_ROOT;
1229		spin_unlock_irq(&cc->write_thread_wait.lock);
1230
1231		BUG_ON(rb_parent(write_tree.rb_node));
1232
1233		/*
1234		 * Note: we cannot walk the tree here with rb_next because
1235		 * the structures may be freed when kcryptd_io_write is called.
1236		 */
1237		blk_start_plug(&plug);
1238		do {
1239			io = crypt_io_from_node(rb_first(&write_tree));
1240			rb_erase(&io->rb_node, &write_tree);
1241			kcryptd_io_write(io);
 
1242		} while (!RB_EMPTY_ROOT(&write_tree));
1243		blk_finish_plug(&plug);
1244	}
1245	return 0;
1246}
1247
1248static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1249{
1250	struct bio *clone = io->ctx.bio_out;
1251	struct crypt_config *cc = io->cc;
1252	unsigned long flags;
1253	sector_t sector;
1254	struct rb_node **rbp, *parent;
1255
1256	if (unlikely(io->error < 0)) {
1257		crypt_free_buffer_pages(cc, clone);
1258		bio_put(clone);
1259		crypt_dec_pending(io);
1260		return;
1261	}
1262
1263	/* crypt_convert should have filled the clone bio */
1264	BUG_ON(io->ctx.iter_out.bi_size);
1265
1266	clone->bi_iter.bi_sector = cc->start + io->sector;
1267
1268	if (likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) {
1269		generic_make_request(clone);
 
1270		return;
1271	}
1272
1273	spin_lock_irqsave(&cc->write_thread_wait.lock, flags);
 
 
1274	rbp = &cc->write_tree.rb_node;
1275	parent = NULL;
1276	sector = io->sector;
1277	while (*rbp) {
1278		parent = *rbp;
1279		if (sector < crypt_io_from_node(parent)->sector)
1280			rbp = &(*rbp)->rb_left;
1281		else
1282			rbp = &(*rbp)->rb_right;
1283	}
1284	rb_link_node(&io->rb_node, parent, rbp);
1285	rb_insert_color(&io->rb_node, &cc->write_tree);
 
 
 
 
 
1286
1287	wake_up_locked(&cc->write_thread_wait);
1288	spin_unlock_irqrestore(&cc->write_thread_wait.lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289}
1290
1291static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
1292{
1293	struct crypt_config *cc = io->cc;
 
1294	struct bio *clone;
1295	int crypt_finished;
1296	sector_t sector = io->sector;
1297	int r;
1298
1299	/*
1300	 * Prevent io from disappearing until this function completes.
1301	 */
1302	crypt_inc_pending(io);
1303	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
1304
1305	clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
1306	if (unlikely(!clone)) {
1307		io->error = -EIO;
1308		goto dec;
1309	}
1310
1311	io->ctx.bio_out = clone;
1312	io->ctx.iter_out = clone->bi_iter;
1313
1314	sector += bio_sectors(clone);
 
 
 
 
1315
1316	crypt_inc_pending(io);
1317	r = crypt_convert(cc, &io->ctx);
 
 
 
 
 
 
 
 
 
 
 
1318	if (r)
1319		io->error = -EIO;
1320	crypt_finished = atomic_dec_and_test(&io->ctx.cc_pending);
 
 
 
 
 
1321
1322	/* Encryption was already finished, submit io now */
1323	if (crypt_finished) {
1324		kcryptd_crypt_write_io_submit(io, 0);
1325		io->sector = sector;
1326	}
1327
1328dec:
1329	crypt_dec_pending(io);
1330}
1331
1332static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
1333{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334	crypt_dec_pending(io);
1335}
1336
1337static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
1338{
1339	struct crypt_config *cc = io->cc;
1340	int r = 0;
1341
1342	crypt_inc_pending(io);
1343
1344	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
1345			   io->sector);
 
 
 
 
 
1346
1347	r = crypt_convert(cc, &io->ctx);
1348	if (r < 0)
1349		io->error = -EIO;
 
 
 
 
 
 
 
 
 
 
 
1350
1351	if (atomic_dec_and_test(&io->ctx.cc_pending))
1352		kcryptd_crypt_read_done(io);
1353
1354	crypt_dec_pending(io);
1355}
1356
1357static void kcryptd_async_done(struct crypto_async_request *async_req,
1358			       int error)
1359{
1360	struct dm_crypt_request *dmreq = async_req->data;
1361	struct convert_context *ctx = dmreq->ctx;
1362	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1363	struct crypt_config *cc = io->cc;
1364
1365	/*
1366	 * A request from crypto driver backlog is going to be processed now,
1367	 * finish the completion and continue in crypt_convert().
1368	 * (Callback will be called for the second time for this request.)
1369	 */
1370	if (error == -EINPROGRESS) {
1371		complete(&ctx->restart);
1372		return;
1373	}
1374
1375	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
1376		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
1377
1378	if (error < 0)
1379		io->error = -EIO;
 
 
 
 
 
 
 
 
 
 
 
1380
1381	crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
1382
1383	if (!atomic_dec_and_test(&ctx->cc_pending))
1384		return;
1385
1386	if (bio_data_dir(io->base_bio) == READ)
 
 
 
 
1387		kcryptd_crypt_read_done(io);
1388	else
1389		kcryptd_crypt_write_io_submit(io, 1);
 
 
 
 
 
 
 
1390}
1391
1392static void kcryptd_crypt(struct work_struct *work)
1393{
1394	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1395
1396	if (bio_data_dir(io->base_bio) == READ)
1397		kcryptd_crypt_read_convert(io);
1398	else
1399		kcryptd_crypt_write_convert(io);
1400}
1401
1402static void kcryptd_queue_crypt(struct dm_crypt_io *io)
1403{
1404	struct crypt_config *cc = io->cc;
1405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1406	INIT_WORK(&io->work, kcryptd_crypt);
1407	queue_work(cc->crypt_queue, &io->work);
1408}
1409
1410/*
1411 * Decode key from its hex representation
1412 */
1413static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
1414{
1415	char buffer[3];
1416	unsigned int i;
1417
1418	buffer[2] = '\0';
1419
1420	for (i = 0; i < size; i++) {
1421		buffer[0] = *hex++;
1422		buffer[1] = *hex++;
1423
1424		if (kstrtou8(buffer, 16, &key[i]))
1425			return -EINVAL;
1426	}
1427
1428	if (*hex != '\0')
1429		return -EINVAL;
1430
1431	return 0;
1432}
1433
1434static void crypt_free_tfms(struct crypt_config *cc)
1435{
1436	unsigned i;
1437
1438	if (!cc->tfms)
1439		return;
1440
1441	for (i = 0; i < cc->tfms_count; i++)
1442		if (cc->tfms[i] && !IS_ERR(cc->tfms[i])) {
1443			crypto_free_skcipher(cc->tfms[i]);
1444			cc->tfms[i] = NULL;
1445		}
1446
1447	kfree(cc->tfms);
1448	cc->tfms = NULL;
 
 
 
 
 
 
 
 
1449}
1450
1451static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
1452{
1453	unsigned i;
1454	int err;
1455
1456	cc->tfms = kmalloc(cc->tfms_count * sizeof(struct crypto_skcipher *),
1457			   GFP_KERNEL);
1458	if (!cc->tfms)
 
1459		return -ENOMEM;
1460
1461	for (i = 0; i < cc->tfms_count; i++) {
1462		cc->tfms[i] = crypto_alloc_skcipher(ciphermode, 0, 0);
1463		if (IS_ERR(cc->tfms[i])) {
1464			err = PTR_ERR(cc->tfms[i]);
 
1465			crypt_free_tfms(cc);
1466			return err;
1467		}
1468	}
1469
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1470	return 0;
1471}
1472
1473static int crypt_setkey_allcpus(struct crypt_config *cc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1474{
1475	unsigned subkey_size;
1476	int err = 0, i, r;
1477
1478	/* Ignore extra keys (which are used for IV etc) */
1479	subkey_size = (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
 
 
 
 
 
 
 
 
 
1480
1481	for (i = 0; i < cc->tfms_count; i++) {
1482		r = crypto_skcipher_setkey(cc->tfms[i],
1483					   cc->key + (i * subkey_size),
1484					   subkey_size);
 
 
 
 
 
 
 
 
1485		if (r)
1486			err = r;
1487	}
1488
 
 
 
1489	return err;
1490}
1491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1492static int crypt_set_key(struct crypt_config *cc, char *key)
1493{
1494	int r = -EINVAL;
1495	int key_string_len = strlen(key);
1496
1497	/* The key size may not be changed. */
1498	if (cc->key_size != (key_string_len >> 1))
1499		goto out;
1500
1501	/* Hyphen (which gives a key_size of zero) means there is no key. */
1502	if (!cc->key_size && strcmp(key, "-"))
1503		goto out;
1504
1505	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
 
 
1506		goto out;
 
 
 
 
 
 
 
 
1507
1508	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
1509
1510	r = crypt_setkey_allcpus(cc);
 
 
1511
1512out:
1513	/* Hex key string not needed after here, so wipe it. */
1514	memset(key, '0', key_string_len);
1515
1516	return r;
1517}
1518
1519static int crypt_wipe_key(struct crypt_config *cc)
1520{
 
 
1521	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
 
 
 
 
 
 
 
 
 
 
 
 
1522	memset(&cc->key, 0, cc->key_size * sizeof(u8));
1523
1524	return crypt_setkey_allcpus(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1525}
1526
1527static void crypt_dtr(struct dm_target *ti)
1528{
1529	struct crypt_config *cc = ti->private;
1530
1531	ti->private = NULL;
1532
1533	if (!cc)
1534		return;
1535
1536	if (cc->write_thread) {
1537		spin_lock_irq(&cc->write_thread_wait.lock);
1538		set_bit(DM_CRYPT_EXIT_THREAD, &cc->flags);
1539		wake_up_locked(&cc->write_thread_wait);
1540		spin_unlock_irq(&cc->write_thread_wait.lock);
1541		kthread_stop(cc->write_thread);
1542	}
1543
1544	if (cc->io_queue)
1545		destroy_workqueue(cc->io_queue);
1546	if (cc->crypt_queue)
1547		destroy_workqueue(cc->crypt_queue);
1548
 
 
 
1549	crypt_free_tfms(cc);
1550
1551	if (cc->bs)
1552		bioset_free(cc->bs);
1553
1554	mempool_destroy(cc->page_pool);
1555	mempool_destroy(cc->req_pool);
 
 
 
 
1556
1557	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
1558		cc->iv_gen_ops->dtr(cc);
1559
1560	if (cc->dev)
1561		dm_put_device(ti, cc->dev);
1562
1563	kzfree(cc->cipher);
1564	kzfree(cc->cipher_string);
 
 
 
 
1565
1566	/* Must zero key material before freeing */
1567	kzfree(cc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1568}
1569
1570static int crypt_ctr_cipher(struct dm_target *ti,
1571			    char *cipher_in, char *key)
1572{
1573	struct crypt_config *cc = ti->private;
1574	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
1575	char *cipher_api = NULL;
1576	int ret = -EINVAL;
1577	char dummy;
1578
1579	/* Convert to crypto api definition? */
1580	if (strchr(cipher_in, '(')) {
1581		ti->error = "Bad cipher specification";
1582		return -EINVAL;
1583	}
1584
1585	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
1586	if (!cc->cipher_string)
1587		goto bad_mem;
1588
1589	/*
1590	 * Legacy dm-crypt cipher specification
1591	 * cipher[:keycount]-mode-iv:ivopts
1592	 */
1593	tmp = cipher_in;
1594	keycount = strsep(&tmp, "-");
1595	cipher = strsep(&keycount, ":");
1596
1597	if (!keycount)
1598		cc->tfms_count = 1;
1599	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
1600		 !is_power_of_2(cc->tfms_count)) {
1601		ti->error = "Bad cipher key count specification";
1602		return -EINVAL;
1603	}
1604	cc->key_parts = cc->tfms_count;
1605	cc->key_extra_size = 0;
1606
1607	cc->cipher = kstrdup(cipher, GFP_KERNEL);
1608	if (!cc->cipher)
1609		goto bad_mem;
1610
1611	chainmode = strsep(&tmp, "-");
1612	ivopts = strsep(&tmp, "-");
1613	ivmode = strsep(&ivopts, ":");
1614
1615	if (tmp)
1616		DMWARN("Ignoring unexpected additional cipher options");
1617
1618	/*
1619	 * For compatibility with the original dm-crypt mapping format, if
1620	 * only the cipher name is supplied, use cbc-plain.
1621	 */
1622	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
1623		chainmode = "cbc";
1624		ivmode = "plain";
1625	}
1626
1627	if (strcmp(chainmode, "ecb") && !ivmode) {
1628		ti->error = "IV mechanism required";
1629		return -EINVAL;
1630	}
1631
1632	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
1633	if (!cipher_api)
1634		goto bad_mem;
1635
1636	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
1637		       "%s(%s)", chainmode, cipher);
1638	if (ret < 0) {
 
 
 
 
 
 
 
 
 
 
1639		kfree(cipher_api);
1640		goto bad_mem;
1641	}
1642
1643	/* Allocate cipher */
1644	ret = crypt_alloc_tfms(cc, cipher_api);
1645	if (ret < 0) {
1646		ti->error = "Error allocating crypto tfm";
1647		goto bad;
 
1648	}
 
 
 
 
 
 
 
1649
1650	/* Initialize IV */
1651	cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
1652	if (cc->iv_size)
1653		/* at least a 64 bit sector number should fit in our buffer */
1654		cc->iv_size = max(cc->iv_size,
1655				  (unsigned int)(sizeof(u64) / sizeof(u8)));
1656	else if (ivmode) {
1657		DMWARN("Selected cipher does not support IVs");
1658		ivmode = NULL;
 
1659	}
1660
1661	/* Choose ivmode, see comments at iv code. */
1662	if (ivmode == NULL)
1663		cc->iv_gen_ops = NULL;
1664	else if (strcmp(ivmode, "plain") == 0)
1665		cc->iv_gen_ops = &crypt_iv_plain_ops;
1666	else if (strcmp(ivmode, "plain64") == 0)
1667		cc->iv_gen_ops = &crypt_iv_plain64_ops;
1668	else if (strcmp(ivmode, "essiv") == 0)
1669		cc->iv_gen_ops = &crypt_iv_essiv_ops;
1670	else if (strcmp(ivmode, "benbi") == 0)
1671		cc->iv_gen_ops = &crypt_iv_benbi_ops;
1672	else if (strcmp(ivmode, "null") == 0)
1673		cc->iv_gen_ops = &crypt_iv_null_ops;
1674	else if (strcmp(ivmode, "lmk") == 0) {
1675		cc->iv_gen_ops = &crypt_iv_lmk_ops;
1676		/*
1677		 * Version 2 and 3 is recognised according
1678		 * to length of provided multi-key string.
1679		 * If present (version 3), last key is used as IV seed.
1680		 * All keys (including IV seed) are always the same size.
1681		 */
1682		if (cc->key_size % cc->key_parts) {
1683			cc->key_parts++;
1684			cc->key_extra_size = cc->key_size / cc->key_parts;
1685		}
1686	} else if (strcmp(ivmode, "tcw") == 0) {
1687		cc->iv_gen_ops = &crypt_iv_tcw_ops;
1688		cc->key_parts += 2; /* IV + whitening */
1689		cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
1690	} else {
1691		ret = -EINVAL;
1692		ti->error = "Invalid IV mode";
1693		goto bad;
1694	}
1695
1696	/* Initialize and set key */
1697	ret = crypt_set_key(cc, key);
1698	if (ret < 0) {
1699		ti->error = "Error decoding and setting key";
1700		goto bad;
1701	}
1702
1703	/* Allocate IV */
1704	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
1705		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
1706		if (ret < 0) {
1707			ti->error = "Error creating IV";
1708			goto bad;
1709		}
1710	}
1711
1712	/* Initialize IV (set keys for ESSIV etc) */
1713	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
1714		ret = cc->iv_gen_ops->init(cc);
1715		if (ret < 0) {
1716			ti->error = "Error initialising IV";
1717			goto bad;
1718		}
1719	}
1720
1721	ret = 0;
1722bad:
1723	kfree(cipher_api);
 
1724	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725
1726bad_mem:
1727	ti->error = "Cannot allocate cipher strings";
1728	return -ENOMEM;
1729}
1730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731/*
1732 * Construct an encryption mapping:
1733 * <cipher> <key> <iv_offset> <dev_path> <start>
1734 */
1735static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
1736{
1737	struct crypt_config *cc;
1738	unsigned int key_size, opt_params;
 
 
 
1739	unsigned long long tmpll;
1740	int ret;
1741	size_t iv_size_padding;
1742	struct dm_arg_set as;
1743	const char *opt_string;
1744	char dummy;
1745
1746	static struct dm_arg _args[] = {
1747		{0, 3, "Invalid number of feature args"},
1748	};
1749
1750	if (argc < 5) {
1751		ti->error = "Not enough arguments";
1752		return -EINVAL;
1753	}
1754
1755	key_size = strlen(argv[1]) >> 1;
 
 
 
 
1756
1757	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
1758	if (!cc) {
1759		ti->error = "Cannot allocate encryption context";
1760		return -ENOMEM;
1761	}
1762	cc->key_size = key_size;
 
 
1763
1764	ti->private = cc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
1766	if (ret < 0)
1767		goto bad;
1768
1769	cc->dmreq_start = sizeof(struct skcipher_request);
1770	cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
 
 
 
 
 
 
 
1771	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
1772
1773	if (crypto_skcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
1774		/* Allocate the padding exactly */
1775		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
1776				& crypto_skcipher_alignmask(any_tfm(cc));
1777	} else {
1778		/*
1779		 * If the cipher requires greater alignment than kmalloc
1780		 * alignment, we don't know the exact position of the
1781		 * initialization vector. We must assume worst case.
1782		 */
1783		iv_size_padding = crypto_skcipher_alignmask(any_tfm(cc));
1784	}
1785
1786	ret = -ENOMEM;
1787	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
1788			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
1789	if (!cc->req_pool) {
 
 
 
 
 
1790		ti->error = "Cannot allocate crypt request mempool";
1791		goto bad;
1792	}
1793
1794	cc->per_bio_data_size = ti->per_io_data_size =
1795		ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start +
1796		      sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size,
1797		      ARCH_KMALLOC_MINALIGN);
1798
1799	cc->page_pool = mempool_create_page_pool(BIO_MAX_PAGES, 0);
1800	if (!cc->page_pool) {
1801		ti->error = "Cannot allocate page mempool";
1802		goto bad;
1803	}
1804
1805	cc->bs = bioset_create(MIN_IOS, 0);
1806	if (!cc->bs) {
1807		ti->error = "Cannot allocate crypt bioset";
1808		goto bad;
1809	}
1810
1811	mutex_init(&cc->bio_alloc_lock);
1812
1813	ret = -EINVAL;
1814	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
 
1815		ti->error = "Invalid iv_offset sector";
1816		goto bad;
1817	}
1818	cc->iv_offset = tmpll;
1819
1820	ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
1821	if (ret) {
1822		ti->error = "Device lookup failed";
1823		goto bad;
1824	}
1825
1826	ret = -EINVAL;
1827	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
1828		ti->error = "Invalid device sector";
1829		goto bad;
1830	}
1831	cc->start = tmpll;
1832
1833	argv += 5;
1834	argc -= 5;
 
 
 
 
 
 
1835
1836	/* Optional parameters */
1837	if (argc) {
1838		as.argc = argc;
1839		as.argv = argv;
 
 
 
 
 
 
 
 
 
 
1840
1841		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
 
1842		if (ret)
1843			goto bad;
1844
1845		ret = -EINVAL;
1846		while (opt_params--) {
1847			opt_string = dm_shift_arg(&as);
1848			if (!opt_string) {
1849				ti->error = "Not enough feature arguments";
1850				goto bad;
1851			}
 
 
 
1852
1853			if (!strcasecmp(opt_string, "allow_discards"))
1854				ti->num_discard_bios = 1;
1855
1856			else if (!strcasecmp(opt_string, "same_cpu_crypt"))
1857				set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
1858
1859			else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
1860				set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
1861
1862			else {
1863				ti->error = "Invalid feature arguments";
1864				goto bad;
1865			}
1866		}
1867	}
 
1868
1869	ret = -ENOMEM;
1870	cc->io_queue = alloc_workqueue("kcryptd_io", WQ_MEM_RECLAIM, 1);
 
 
 
 
1871	if (!cc->io_queue) {
1872		ti->error = "Couldn't create kcryptd io queue";
1873		goto bad;
1874	}
1875
1876	if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1877		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 1);
1878	else
1879		cc->crypt_queue = alloc_workqueue("kcryptd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
1880						  num_online_cpus());
 
 
 
 
 
 
 
 
1881	if (!cc->crypt_queue) {
1882		ti->error = "Couldn't create kcryptd queue";
1883		goto bad;
1884	}
1885
1886	init_waitqueue_head(&cc->write_thread_wait);
1887	cc->write_tree = RB_ROOT;
1888
1889	cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write");
1890	if (IS_ERR(cc->write_thread)) {
1891		ret = PTR_ERR(cc->write_thread);
1892		cc->write_thread = NULL;
1893		ti->error = "Couldn't spawn write thread";
1894		goto bad;
1895	}
1896	wake_up_process(cc->write_thread);
 
1897
1898	ti->num_flush_bios = 1;
1899	ti->discard_zeroes_data_unsupported = true;
 
1900
 
1901	return 0;
1902
1903bad:
 
1904	crypt_dtr(ti);
1905	return ret;
1906}
1907
1908static int crypt_map(struct dm_target *ti, struct bio *bio)
1909{
1910	struct dm_crypt_io *io;
1911	struct crypt_config *cc = ti->private;
 
1912
1913	/*
1914	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
1915	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
1916	 * - for REQ_DISCARD caller must use flush if IO ordering matters
1917	 */
1918	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
1919		bio->bi_bdev = cc->dev->bdev;
 
1920		if (bio_sectors(bio))
1921			bio->bi_iter.bi_sector = cc->start +
1922				dm_target_offset(ti, bio->bi_iter.bi_sector);
1923		return DM_MAPIO_REMAPPED;
1924	}
1925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926	io = dm_per_bio_data(bio, cc->per_bio_data_size);
1927	crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
1928	io->ctx.req = (struct skcipher_request *)(io + 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1929
1930	if (bio_data_dir(io->base_bio) == READ) {
1931		if (kcryptd_io_read(io, GFP_NOWAIT))
1932			kcryptd_queue_read(io);
1933	} else
1934		kcryptd_queue_crypt(io);
1935
1936	return DM_MAPIO_SUBMITTED;
1937}
1938
 
 
 
 
 
1939static void crypt_status(struct dm_target *ti, status_type_t type,
1940			 unsigned status_flags, char *result, unsigned maxlen)
1941{
1942	struct crypt_config *cc = ti->private;
1943	unsigned i, sz = 0;
1944	int num_feature_args = 0;
1945
1946	switch (type) {
1947	case STATUSTYPE_INFO:
1948		result[0] = '\0';
1949		break;
1950
1951	case STATUSTYPE_TABLE:
1952		DMEMIT("%s ", cc->cipher_string);
1953
1954		if (cc->key_size > 0)
1955			for (i = 0; i < cc->key_size; i++)
1956				DMEMIT("%02x", cc->key[i]);
1957		else
 
 
 
 
 
 
1958			DMEMIT("-");
1959
1960		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
1961				cc->dev->name, (unsigned long long)cc->start);
1962
1963		num_feature_args += !!ti->num_discard_bios;
1964		num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
 
1965		num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
 
 
 
 
 
 
1966		if (num_feature_args) {
1967			DMEMIT(" %d", num_feature_args);
1968			if (ti->num_discard_bios)
1969				DMEMIT(" allow_discards");
1970			if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
1971				DMEMIT(" same_cpu_crypt");
 
 
1972			if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
1973				DMEMIT(" submit_from_crypt_cpus");
 
 
 
 
 
 
 
 
 
 
 
 
1974		}
 
1975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976		break;
1977	}
1978}
1979
1980static void crypt_postsuspend(struct dm_target *ti)
1981{
1982	struct crypt_config *cc = ti->private;
1983
1984	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
1985}
1986
1987static int crypt_preresume(struct dm_target *ti)
1988{
1989	struct crypt_config *cc = ti->private;
1990
1991	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
1992		DMERR("aborting resume - crypt key is not set.");
1993		return -EAGAIN;
1994	}
1995
1996	return 0;
1997}
1998
1999static void crypt_resume(struct dm_target *ti)
2000{
2001	struct crypt_config *cc = ti->private;
2002
2003	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
2004}
2005
2006/* Message interface
2007 *	key set <key>
2008 *	key wipe
2009 */
2010static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
 
2011{
2012	struct crypt_config *cc = ti->private;
2013	int ret = -EINVAL;
2014
2015	if (argc < 2)
2016		goto error;
2017
2018	if (!strcasecmp(argv[0], "key")) {
2019		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
2020			DMWARN("not suspended during key manipulation.");
2021			return -EINVAL;
2022		}
2023		if (argc == 3 && !strcasecmp(argv[1], "set")) {
 
 
 
 
 
 
 
2024			ret = crypt_set_key(cc, argv[2]);
2025			if (ret)
2026				return ret;
2027			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
2028				ret = cc->iv_gen_ops->init(cc);
 
 
 
2029			return ret;
2030		}
2031		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
2032			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2033				ret = cc->iv_gen_ops->wipe(cc);
2034				if (ret)
2035					return ret;
2036			}
2037			return crypt_wipe_key(cc);
2038		}
2039	}
2040
2041error:
2042	DMWARN("unrecognised message received.");
2043	return -EINVAL;
2044}
2045
2046static int crypt_iterate_devices(struct dm_target *ti,
2047				 iterate_devices_callout_fn fn, void *data)
2048{
2049	struct crypt_config *cc = ti->private;
2050
2051	return fn(ti, cc->dev, cc->start, ti->len, data);
2052}
2053
2054static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
2055{
2056	/*
2057	 * Unfortunate constraint that is required to avoid the potential
2058	 * for exceeding underlying device's max_segments limits -- due to
2059	 * crypt_alloc_buffer() possibly allocating pages for the encryption
2060	 * bio that are not as physically contiguous as the original bio.
2061	 */
2062	limits->max_segment_size = PAGE_SIZE;
 
2063}
2064
2065static struct target_type crypt_target = {
2066	.name   = "crypt",
2067	.version = {1, 14, 1},
2068	.module = THIS_MODULE,
2069	.ctr    = crypt_ctr,
2070	.dtr    = crypt_dtr,
 
 
2071	.map    = crypt_map,
2072	.status = crypt_status,
2073	.postsuspend = crypt_postsuspend,
2074	.preresume = crypt_preresume,
2075	.resume = crypt_resume,
2076	.message = crypt_message,
2077	.iterate_devices = crypt_iterate_devices,
2078	.io_hints = crypt_io_hints,
2079};
2080
2081static int __init dm_crypt_init(void)
2082{
2083	int r;
2084
2085	r = dm_register_target(&crypt_target);
2086	if (r < 0)
2087		DMERR("register failed %d", r);
2088
2089	return r;
2090}
2091
2092static void __exit dm_crypt_exit(void)
2093{
2094	dm_unregister_target(&crypt_target);
2095}
2096
2097module_init(dm_crypt_init);
2098module_exit(dm_crypt_exit);
2099
2100MODULE_AUTHOR("Jana Saout <jana@saout.de>");
2101MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
2102MODULE_LICENSE("GPL");