Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158/*
159 * Update the permissions flags (kdb_cmd_enabled) to match the
160 * current lockdown state.
161 *
162 * Within this function the calls to security_locked_down() are "lazy". We
163 * avoid calling them if the current value of kdb_cmd_enabled already excludes
164 * flags that might be subject to lockdown. Additionally we deliberately check
165 * the lockdown flags independently (even though read lockdown implies write
166 * lockdown) since that results in both simpler code and clearer messages to
167 * the user on first-time debugger entry.
168 *
169 * The permission masks during a read+write lockdown permits the following
170 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
171 *
172 * The INSPECT commands are not blocked during lockdown because they are
173 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
174 * forcing them to have no arguments) and lsmod. These commands do expose
175 * some kernel state but do not allow the developer seated at the console to
176 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
177 * given these are allowed for root during lockdown already.
178 */
179static void kdb_check_for_lockdown(void)
180{
181 const int write_flags = KDB_ENABLE_MEM_WRITE |
182 KDB_ENABLE_REG_WRITE |
183 KDB_ENABLE_FLOW_CTRL;
184 const int read_flags = KDB_ENABLE_MEM_READ |
185 KDB_ENABLE_REG_READ;
186
187 bool need_to_lockdown_write = false;
188 bool need_to_lockdown_read = false;
189
190 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
191 need_to_lockdown_write =
192 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
193
194 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
195 need_to_lockdown_read =
196 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
197
198 /* De-compose KDB_ENABLE_ALL if required */
199 if (need_to_lockdown_write || need_to_lockdown_read)
200 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
201 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
202
203 if (need_to_lockdown_write)
204 kdb_cmd_enabled &= ~write_flags;
205
206 if (need_to_lockdown_read)
207 kdb_cmd_enabled &= ~read_flags;
208}
209
210/*
211 * Check whether the flags of the current command, the permissions of the kdb
212 * console and the lockdown state allow a command to be run.
213 */
214static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
215 bool no_args)
216{
217 /* permissions comes from userspace so needs massaging slightly */
218 permissions &= KDB_ENABLE_MASK;
219 permissions |= KDB_ENABLE_ALWAYS_SAFE;
220
221 /* some commands change group when launched with no arguments */
222 if (no_args)
223 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
224
225 flags |= KDB_ENABLE_ALL;
226
227 return permissions & flags;
228}
229
230/*
231 * kdbgetenv - This function will return the character string value of
232 * an environment variable.
233 * Parameters:
234 * match A character string representing an environment variable.
235 * Returns:
236 * NULL No environment variable matches 'match'
237 * char* Pointer to string value of environment variable.
238 */
239char *kdbgetenv(const char *match)
240{
241 char **ep = __env;
242 int matchlen = strlen(match);
243 int i;
244
245 for (i = 0; i < __nenv; i++) {
246 char *e = *ep++;
247
248 if (!e)
249 continue;
250
251 if ((strncmp(match, e, matchlen) == 0)
252 && ((e[matchlen] == '\0')
253 || (e[matchlen] == '='))) {
254 char *cp = strchr(e, '=');
255 return cp ? ++cp : "";
256 }
257 }
258 return NULL;
259}
260
261/*
262 * kdballocenv - This function is used to allocate bytes for
263 * environment entries.
264 * Parameters:
265 * bytes The number of bytes to allocate in the static buffer.
266 * Returns:
267 * A pointer to the allocated space in the buffer on success.
268 * NULL if bytes > size available in the envbuffer.
269 * Remarks:
270 * We use a static environment buffer (envbuffer) to hold the values
271 * of dynamically generated environment variables (see kdb_set). Buffer
272 * space once allocated is never free'd, so over time, the amount of space
273 * (currently 512 bytes) will be exhausted if env variables are changed
274 * frequently.
275 */
276static char *kdballocenv(size_t bytes)
277{
278#define KDB_ENVBUFSIZE 512
279 static char envbuffer[KDB_ENVBUFSIZE];
280 static int envbufsize;
281 char *ep = NULL;
282
283 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
284 ep = &envbuffer[envbufsize];
285 envbufsize += bytes;
286 }
287 return ep;
288}
289
290/*
291 * kdbgetulenv - This function will return the value of an unsigned
292 * long-valued environment variable.
293 * Parameters:
294 * match A character string representing a numeric value
295 * Outputs:
296 * *value the unsigned long representation of the env variable 'match'
297 * Returns:
298 * Zero on success, a kdb diagnostic on failure.
299 */
300static int kdbgetulenv(const char *match, unsigned long *value)
301{
302 char *ep;
303
304 ep = kdbgetenv(match);
305 if (!ep)
306 return KDB_NOTENV;
307 if (strlen(ep) == 0)
308 return KDB_NOENVVALUE;
309 if (kstrtoul(ep, 0, value))
310 return KDB_BADINT;
311
312 return 0;
313}
314
315/*
316 * kdbgetintenv - This function will return the value of an
317 * integer-valued environment variable.
318 * Parameters:
319 * match A character string representing an integer-valued env variable
320 * Outputs:
321 * *value the integer representation of the environment variable 'match'
322 * Returns:
323 * Zero on success, a kdb diagnostic on failure.
324 */
325int kdbgetintenv(const char *match, int *value)
326{
327 unsigned long val;
328 int diag;
329
330 diag = kdbgetulenv(match, &val);
331 if (!diag)
332 *value = (int) val;
333 return diag;
334}
335
336/*
337 * kdb_setenv() - Alter an existing environment variable or create a new one.
338 * @var: Name of the variable
339 * @val: Value of the variable
340 *
341 * Return: Zero on success, a kdb diagnostic on failure.
342 */
343static int kdb_setenv(const char *var, const char *val)
344{
345 int i;
346 char *ep;
347 size_t varlen, vallen;
348
349 varlen = strlen(var);
350 vallen = strlen(val);
351 ep = kdballocenv(varlen + vallen + 2);
352 if (ep == (char *)0)
353 return KDB_ENVBUFFULL;
354
355 sprintf(ep, "%s=%s", var, val);
356
357 for (i = 0; i < __nenv; i++) {
358 if (__env[i]
359 && ((strncmp(__env[i], var, varlen) == 0)
360 && ((__env[i][varlen] == '\0')
361 || (__env[i][varlen] == '=')))) {
362 __env[i] = ep;
363 return 0;
364 }
365 }
366
367 /*
368 * Wasn't existing variable. Fit into slot.
369 */
370 for (i = 0; i < __nenv-1; i++) {
371 if (__env[i] == (char *)0) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 return KDB_ENVFULL;
378}
379
380/*
381 * kdb_printenv() - Display the current environment variables.
382 */
383static void kdb_printenv(void)
384{
385 int i;
386
387 for (i = 0; i < __nenv; i++) {
388 if (__env[i])
389 kdb_printf("%s\n", __env[i]);
390 }
391}
392
393/*
394 * kdbgetularg - This function will convert a numeric string into an
395 * unsigned long value.
396 * Parameters:
397 * arg A character string representing a numeric value
398 * Outputs:
399 * *value the unsigned long representation of arg.
400 * Returns:
401 * Zero on success, a kdb diagnostic on failure.
402 */
403int kdbgetularg(const char *arg, unsigned long *value)
404{
405 if (kstrtoul(arg, 0, value))
406 return KDB_BADINT;
407 return 0;
408}
409
410int kdbgetu64arg(const char *arg, u64 *value)
411{
412 if (kstrtou64(arg, 0, value))
413 return KDB_BADINT;
414 return 0;
415}
416
417/*
418 * kdb_set - This function implements the 'set' command. Alter an
419 * existing environment variable or create a new one.
420 */
421int kdb_set(int argc, const char **argv)
422{
423 /*
424 * we can be invoked two ways:
425 * set var=value argv[1]="var", argv[2]="value"
426 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
427 * - if the latter, shift 'em down.
428 */
429 if (argc == 3) {
430 argv[2] = argv[3];
431 argc--;
432 }
433
434 if (argc != 2)
435 return KDB_ARGCOUNT;
436
437 /*
438 * Censor sensitive variables
439 */
440 if (strcmp(argv[1], "PROMPT") == 0 &&
441 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
442 return KDB_NOPERM;
443
444 /*
445 * Check for internal variables
446 */
447 if (strcmp(argv[1], "KDBDEBUG") == 0) {
448 unsigned int debugflags;
449 int ret;
450
451 ret = kstrtouint(argv[2], 0, &debugflags);
452 if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) {
453 kdb_printf("kdb: illegal debug flags '%s'\n",
454 argv[2]);
455 return 0;
456 }
457 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
458 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
459
460 return 0;
461 }
462
463 /*
464 * Tokenizer squashed the '=' sign. argv[1] is variable
465 * name, argv[2] = value.
466 */
467 return kdb_setenv(argv[1], argv[2]);
468}
469
470static int kdb_check_regs(void)
471{
472 if (!kdb_current_regs) {
473 kdb_printf("No current kdb registers."
474 " You may need to select another task\n");
475 return KDB_BADREG;
476 }
477 return 0;
478}
479
480/*
481 * kdbgetaddrarg - This function is responsible for parsing an
482 * address-expression and returning the value of the expression,
483 * symbol name, and offset to the caller.
484 *
485 * The argument may consist of a numeric value (decimal or
486 * hexadecimal), a symbol name, a register name (preceded by the
487 * percent sign), an environment variable with a numeric value
488 * (preceded by a dollar sign) or a simple arithmetic expression
489 * consisting of a symbol name, +/-, and a numeric constant value
490 * (offset).
491 * Parameters:
492 * argc - count of arguments in argv
493 * argv - argument vector
494 * *nextarg - index to next unparsed argument in argv[]
495 * regs - Register state at time of KDB entry
496 * Outputs:
497 * *value - receives the value of the address-expression
498 * *offset - receives the offset specified, if any
499 * *name - receives the symbol name, if any
500 * *nextarg - index to next unparsed argument in argv[]
501 * Returns:
502 * zero is returned on success, a kdb diagnostic code is
503 * returned on error.
504 */
505int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
506 unsigned long *value, long *offset,
507 char **name)
508{
509 unsigned long addr;
510 unsigned long off = 0;
511 int positive;
512 int diag;
513 int found = 0;
514 char *symname;
515 char symbol = '\0';
516 char *cp;
517 kdb_symtab_t symtab;
518
519 /*
520 * If the enable flags prohibit both arbitrary memory access
521 * and flow control then there are no reasonable grounds to
522 * provide symbol lookup.
523 */
524 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
525 kdb_cmd_enabled, false))
526 return KDB_NOPERM;
527
528 /*
529 * Process arguments which follow the following syntax:
530 *
531 * symbol | numeric-address [+/- numeric-offset]
532 * %register
533 * $environment-variable
534 */
535
536 if (*nextarg > argc)
537 return KDB_ARGCOUNT;
538
539 symname = (char *)argv[*nextarg];
540
541 /*
542 * If there is no whitespace between the symbol
543 * or address and the '+' or '-' symbols, we
544 * remember the character and replace it with a
545 * null so the symbol/value can be properly parsed
546 */
547 cp = strpbrk(symname, "+-");
548 if (cp != NULL) {
549 symbol = *cp;
550 *cp++ = '\0';
551 }
552
553 if (symname[0] == '$') {
554 diag = kdbgetulenv(&symname[1], &addr);
555 if (diag)
556 return diag;
557 } else if (symname[0] == '%') {
558 diag = kdb_check_regs();
559 if (diag)
560 return diag;
561 /* Implement register values with % at a later time as it is
562 * arch optional.
563 */
564 return KDB_NOTIMP;
565 } else {
566 found = kdbgetsymval(symname, &symtab);
567 if (found) {
568 addr = symtab.sym_start;
569 } else {
570 diag = kdbgetularg(argv[*nextarg], &addr);
571 if (diag)
572 return diag;
573 }
574 }
575
576 if (!found)
577 found = kdbnearsym(addr, &symtab);
578
579 (*nextarg)++;
580
581 if (name)
582 *name = symname;
583 if (value)
584 *value = addr;
585 if (offset && name && *name)
586 *offset = addr - symtab.sym_start;
587
588 if ((*nextarg > argc)
589 && (symbol == '\0'))
590 return 0;
591
592 /*
593 * check for +/- and offset
594 */
595
596 if (symbol == '\0') {
597 if ((argv[*nextarg][0] != '+')
598 && (argv[*nextarg][0] != '-')) {
599 /*
600 * Not our argument. Return.
601 */
602 return 0;
603 } else {
604 positive = (argv[*nextarg][0] == '+');
605 (*nextarg)++;
606 }
607 } else
608 positive = (symbol == '+');
609
610 /*
611 * Now there must be an offset!
612 */
613 if ((*nextarg > argc)
614 && (symbol == '\0')) {
615 return KDB_INVADDRFMT;
616 }
617
618 if (!symbol) {
619 cp = (char *)argv[*nextarg];
620 (*nextarg)++;
621 }
622
623 diag = kdbgetularg(cp, &off);
624 if (diag)
625 return diag;
626
627 if (!positive)
628 off = -off;
629
630 if (offset)
631 *offset += off;
632
633 if (value)
634 *value += off;
635
636 return 0;
637}
638
639static void kdb_cmderror(int diag)
640{
641 int i;
642
643 if (diag >= 0) {
644 kdb_printf("no error detected (diagnostic is %d)\n", diag);
645 return;
646 }
647
648 for (i = 0; i < __nkdb_err; i++) {
649 if (kdbmsgs[i].km_diag == diag) {
650 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
651 return;
652 }
653 }
654
655 kdb_printf("Unknown diag %d\n", -diag);
656}
657
658/*
659 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
660 * command which defines one command as a set of other commands,
661 * terminated by endefcmd. kdb_defcmd processes the initial
662 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
663 * the following commands until 'endefcmd'.
664 * Inputs:
665 * argc argument count
666 * argv argument vector
667 * Returns:
668 * zero for success, a kdb diagnostic if error
669 */
670struct kdb_macro {
671 kdbtab_t cmd; /* Macro command */
672 struct list_head statements; /* Associated statement list */
673};
674
675struct kdb_macro_statement {
676 char *statement; /* Statement text */
677 struct list_head list_node; /* Statement list node */
678};
679
680static struct kdb_macro *kdb_macro;
681static bool defcmd_in_progress;
682
683/* Forward references */
684static int kdb_exec_defcmd(int argc, const char **argv);
685
686static int kdb_defcmd2(const char *cmdstr, const char *argv0)
687{
688 struct kdb_macro_statement *kms;
689
690 if (!kdb_macro)
691 return KDB_NOTIMP;
692
693 if (strcmp(argv0, "endefcmd") == 0) {
694 defcmd_in_progress = false;
695 if (!list_empty(&kdb_macro->statements))
696 kdb_register(&kdb_macro->cmd);
697 return 0;
698 }
699
700 kms = kmalloc(sizeof(*kms), GFP_KDB);
701 if (!kms) {
702 kdb_printf("Could not allocate new kdb macro command: %s\n",
703 cmdstr);
704 return KDB_NOTIMP;
705 }
706
707 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
708 list_add_tail(&kms->list_node, &kdb_macro->statements);
709
710 return 0;
711}
712
713static int kdb_defcmd(int argc, const char **argv)
714{
715 kdbtab_t *mp;
716
717 if (defcmd_in_progress) {
718 kdb_printf("kdb: nested defcmd detected, assuming missing "
719 "endefcmd\n");
720 kdb_defcmd2("endefcmd", "endefcmd");
721 }
722 if (argc == 0) {
723 kdbtab_t *kp;
724 struct kdb_macro *kmp;
725 struct kdb_macro_statement *kms;
726
727 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
728 if (kp->func == kdb_exec_defcmd) {
729 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
730 kp->name, kp->usage, kp->help);
731 kmp = container_of(kp, struct kdb_macro, cmd);
732 list_for_each_entry(kms, &kmp->statements,
733 list_node)
734 kdb_printf("%s", kms->statement);
735 kdb_printf("endefcmd\n");
736 }
737 }
738 return 0;
739 }
740 if (argc != 3)
741 return KDB_ARGCOUNT;
742 if (in_dbg_master()) {
743 kdb_printf("Command only available during kdb_init()\n");
744 return KDB_NOTIMP;
745 }
746 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
747 if (!kdb_macro)
748 goto fail_defcmd;
749
750 mp = &kdb_macro->cmd;
751 mp->func = kdb_exec_defcmd;
752 mp->minlen = 0;
753 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
754 mp->name = kdb_strdup(argv[1], GFP_KDB);
755 if (!mp->name)
756 goto fail_name;
757 mp->usage = kdb_strdup(argv[2], GFP_KDB);
758 if (!mp->usage)
759 goto fail_usage;
760 mp->help = kdb_strdup(argv[3], GFP_KDB);
761 if (!mp->help)
762 goto fail_help;
763 if (mp->usage[0] == '"') {
764 strcpy(mp->usage, argv[2]+1);
765 mp->usage[strlen(mp->usage)-1] = '\0';
766 }
767 if (mp->help[0] == '"') {
768 strcpy(mp->help, argv[3]+1);
769 mp->help[strlen(mp->help)-1] = '\0';
770 }
771
772 INIT_LIST_HEAD(&kdb_macro->statements);
773 defcmd_in_progress = true;
774 return 0;
775fail_help:
776 kfree(mp->usage);
777fail_usage:
778 kfree(mp->name);
779fail_name:
780 kfree(kdb_macro);
781fail_defcmd:
782 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
783 return KDB_NOTIMP;
784}
785
786/*
787 * kdb_exec_defcmd - Execute the set of commands associated with this
788 * defcmd name.
789 * Inputs:
790 * argc argument count
791 * argv argument vector
792 * Returns:
793 * zero for success, a kdb diagnostic if error
794 */
795static int kdb_exec_defcmd(int argc, const char **argv)
796{
797 int ret;
798 kdbtab_t *kp;
799 struct kdb_macro *kmp;
800 struct kdb_macro_statement *kms;
801
802 if (argc != 0)
803 return KDB_ARGCOUNT;
804
805 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
806 if (strcmp(kp->name, argv[0]) == 0)
807 break;
808 }
809 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
810 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
811 argv[0]);
812 return KDB_NOTIMP;
813 }
814 kmp = container_of(kp, struct kdb_macro, cmd);
815 list_for_each_entry(kms, &kmp->statements, list_node) {
816 /*
817 * Recursive use of kdb_parse, do not use argv after this point.
818 */
819 argv = NULL;
820 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
821 ret = kdb_parse(kms->statement);
822 if (ret)
823 return ret;
824 }
825 return 0;
826}
827
828/* Command history */
829#define KDB_CMD_HISTORY_COUNT 32
830#define CMD_BUFLEN 200 /* kdb_printf: max printline
831 * size == 256 */
832static unsigned int cmd_head, cmd_tail;
833static unsigned int cmdptr;
834static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
835static char cmd_cur[CMD_BUFLEN];
836
837/*
838 * The "str" argument may point to something like | grep xyz
839 */
840static void parse_grep(const char *str)
841{
842 int len;
843 char *cp = (char *)str, *cp2;
844
845 /* sanity check: we should have been called with the \ first */
846 if (*cp != '|')
847 return;
848 cp++;
849 while (isspace(*cp))
850 cp++;
851 if (!str_has_prefix(cp, "grep ")) {
852 kdb_printf("invalid 'pipe', see grephelp\n");
853 return;
854 }
855 cp += 5;
856 while (isspace(*cp))
857 cp++;
858 cp2 = strchr(cp, '\n');
859 if (cp2)
860 *cp2 = '\0'; /* remove the trailing newline */
861 len = strlen(cp);
862 if (len == 0) {
863 kdb_printf("invalid 'pipe', see grephelp\n");
864 return;
865 }
866 /* now cp points to a nonzero length search string */
867 if (*cp == '"') {
868 /* allow it be "x y z" by removing the "'s - there must
869 be two of them */
870 cp++;
871 cp2 = strchr(cp, '"');
872 if (!cp2) {
873 kdb_printf("invalid quoted string, see grephelp\n");
874 return;
875 }
876 *cp2 = '\0'; /* end the string where the 2nd " was */
877 }
878 kdb_grep_leading = 0;
879 if (*cp == '^') {
880 kdb_grep_leading = 1;
881 cp++;
882 }
883 len = strlen(cp);
884 kdb_grep_trailing = 0;
885 if (*(cp+len-1) == '$') {
886 kdb_grep_trailing = 1;
887 *(cp+len-1) = '\0';
888 }
889 len = strlen(cp);
890 if (!len)
891 return;
892 if (len >= KDB_GREP_STRLEN) {
893 kdb_printf("search string too long\n");
894 return;
895 }
896 strcpy(kdb_grep_string, cp);
897 kdb_grepping_flag++;
898 return;
899}
900
901/*
902 * kdb_parse - Parse the command line, search the command table for a
903 * matching command and invoke the command function. This
904 * function may be called recursively, if it is, the second call
905 * will overwrite argv and cbuf. It is the caller's
906 * responsibility to save their argv if they recursively call
907 * kdb_parse().
908 * Parameters:
909 * cmdstr The input command line to be parsed.
910 * regs The registers at the time kdb was entered.
911 * Returns:
912 * Zero for success, a kdb diagnostic if failure.
913 * Remarks:
914 * Limited to 20 tokens.
915 *
916 * Real rudimentary tokenization. Basically only whitespace
917 * is considered a token delimiter (but special consideration
918 * is taken of the '=' sign as used by the 'set' command).
919 *
920 * The algorithm used to tokenize the input string relies on
921 * there being at least one whitespace (or otherwise useless)
922 * character between tokens as the character immediately following
923 * the token is altered in-place to a null-byte to terminate the
924 * token string.
925 */
926
927#define MAXARGC 20
928
929int kdb_parse(const char *cmdstr)
930{
931 static char *argv[MAXARGC];
932 static int argc;
933 static char cbuf[CMD_BUFLEN+2];
934 char *cp;
935 char *cpp, quoted;
936 kdbtab_t *tp;
937 int escaped, ignore_errors = 0, check_grep = 0;
938
939 /*
940 * First tokenize the command string.
941 */
942 cp = (char *)cmdstr;
943
944 if (KDB_FLAG(CMD_INTERRUPT)) {
945 /* Previous command was interrupted, newline must not
946 * repeat the command */
947 KDB_FLAG_CLEAR(CMD_INTERRUPT);
948 KDB_STATE_SET(PAGER);
949 argc = 0; /* no repeat */
950 }
951
952 if (*cp != '\n' && *cp != '\0') {
953 argc = 0;
954 cpp = cbuf;
955 while (*cp) {
956 /* skip whitespace */
957 while (isspace(*cp))
958 cp++;
959 if ((*cp == '\0') || (*cp == '\n') ||
960 (*cp == '#' && !defcmd_in_progress))
961 break;
962 /* special case: check for | grep pattern */
963 if (*cp == '|') {
964 check_grep++;
965 break;
966 }
967 if (cpp >= cbuf + CMD_BUFLEN) {
968 kdb_printf("kdb_parse: command buffer "
969 "overflow, command ignored\n%s\n",
970 cmdstr);
971 return KDB_NOTFOUND;
972 }
973 if (argc >= MAXARGC - 1) {
974 kdb_printf("kdb_parse: too many arguments, "
975 "command ignored\n%s\n", cmdstr);
976 return KDB_NOTFOUND;
977 }
978 argv[argc++] = cpp;
979 escaped = 0;
980 quoted = '\0';
981 /* Copy to next unquoted and unescaped
982 * whitespace or '=' */
983 while (*cp && *cp != '\n' &&
984 (escaped || quoted || !isspace(*cp))) {
985 if (cpp >= cbuf + CMD_BUFLEN)
986 break;
987 if (escaped) {
988 escaped = 0;
989 *cpp++ = *cp++;
990 continue;
991 }
992 if (*cp == '\\') {
993 escaped = 1;
994 ++cp;
995 continue;
996 }
997 if (*cp == quoted)
998 quoted = '\0';
999 else if (*cp == '\'' || *cp == '"')
1000 quoted = *cp;
1001 *cpp = *cp++;
1002 if (*cpp == '=' && !quoted)
1003 break;
1004 ++cpp;
1005 }
1006 *cpp++ = '\0'; /* Squash a ws or '=' character */
1007 }
1008 }
1009 if (!argc)
1010 return 0;
1011 if (check_grep)
1012 parse_grep(cp);
1013 if (defcmd_in_progress) {
1014 int result = kdb_defcmd2(cmdstr, argv[0]);
1015 if (!defcmd_in_progress) {
1016 argc = 0; /* avoid repeat on endefcmd */
1017 *(argv[0]) = '\0';
1018 }
1019 return result;
1020 }
1021 if (argv[0][0] == '-' && argv[0][1] &&
1022 (argv[0][1] < '0' || argv[0][1] > '9')) {
1023 ignore_errors = 1;
1024 ++argv[0];
1025 }
1026
1027 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1028 /*
1029 * If this command is allowed to be abbreviated,
1030 * check to see if this is it.
1031 */
1032 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1033 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1034 break;
1035
1036 if (strcmp(argv[0], tp->name) == 0)
1037 break;
1038 }
1039
1040 /*
1041 * If we don't find a command by this name, see if the first
1042 * few characters of this match any of the known commands.
1043 * e.g., md1c20 should match md.
1044 */
1045 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1046 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1047 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1048 break;
1049 }
1050 }
1051
1052 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1053 int result;
1054
1055 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1056 return KDB_NOPERM;
1057
1058 KDB_STATE_SET(CMD);
1059 result = (*tp->func)(argc-1, (const char **)argv);
1060 if (result && ignore_errors && result > KDB_CMD_GO)
1061 result = 0;
1062 KDB_STATE_CLEAR(CMD);
1063
1064 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1065 return result;
1066
1067 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068 if (argv[argc])
1069 *(argv[argc]) = '\0';
1070 return result;
1071 }
1072
1073 /*
1074 * If the input with which we were presented does not
1075 * map to an existing command, attempt to parse it as an
1076 * address argument and display the result. Useful for
1077 * obtaining the address of a variable, or the nearest symbol
1078 * to an address contained in a register.
1079 */
1080 {
1081 unsigned long value;
1082 char *name = NULL;
1083 long offset;
1084 int nextarg = 0;
1085
1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087 &value, &offset, &name)) {
1088 return KDB_NOTFOUND;
1089 }
1090
1091 kdb_printf("%s = ", argv[0]);
1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093 kdb_printf("\n");
1094 return 0;
1095 }
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P 16
1102#define CTRL_N 14
1103
1104 /* initial situation */
1105 if (cmd_head == cmd_tail)
1106 return 0;
1107 switch (*cmd) {
1108 case CTRL_P:
1109 if (cmdptr != cmd_tail)
1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111 KDB_CMD_HISTORY_COUNT;
1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 return 1;
1114 case CTRL_N:
1115 if (cmdptr != cmd_head)
1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command. Reboot
1125 * the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129 emergency_restart();
1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 while (1)
1132 cpu_relax();
1133 /* NOTREACHED */
1134 return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139 int old_lvl = console_loglevel;
1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 kdb_trap_printk++;
1142 show_regs(regs);
1143 kdb_trap_printk--;
1144 kdb_printf("\n");
1145 console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150 kdb_current_task = p;
1151
1152 if (kdb_task_has_cpu(p)) {
1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 return;
1155 }
1156 kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161 size_t len = strlen(buf);
1162
1163 if (len == 0)
1164 return;
1165 if (*(buf + len - 1) == '\n')
1166 *(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb. This routine is invoked on a
1171 * specific processor, it is not global. The main kdb() routine
1172 * ensures that only one processor at a time is in this routine.
1173 * This code is called with the real reason code on the first
1174 * entry to a kdb session, thereafter it is called with reason
1175 * SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 * reason The reason KDB was invoked
1178 * error The hardware-defined error code
1179 * regs The exception frame at time of fault/breakpoint.
1180 * db_result Result code from the break or debug point.
1181 * Returns:
1182 * 0 KDB was invoked for an event which it wasn't responsible
1183 * 1 KDB handled the event for which it was invoked.
1184 * KDB_CMD_GO User typed 'go'.
1185 * KDB_CMD_CPU User switched to another cpu.
1186 * KDB_CMD_SS Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 kdb_dbtrap_t db_result)
1190{
1191 char *cmdbuf;
1192 int diag;
1193 struct task_struct *kdb_current =
1194 curr_task(raw_smp_processor_id());
1195
1196 KDB_DEBUG_STATE("kdb_local 1", reason);
1197
1198 kdb_check_for_lockdown();
1199
1200 kdb_go_count = 0;
1201 if (reason == KDB_REASON_DEBUG) {
1202 /* special case below */
1203 } else {
1204 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1205 kdb_current, kdb_current ? kdb_current->pid : 0);
1206#if defined(CONFIG_SMP)
1207 kdb_printf("on processor %d ", raw_smp_processor_id());
1208#endif
1209 }
1210
1211 switch (reason) {
1212 case KDB_REASON_DEBUG:
1213 {
1214 /*
1215 * If re-entering kdb after a single step
1216 * command, don't print the message.
1217 */
1218 switch (db_result) {
1219 case KDB_DB_BPT:
1220 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1221 kdb_current, kdb_current->pid);
1222#if defined(CONFIG_SMP)
1223 kdb_printf("on processor %d ", raw_smp_processor_id());
1224#endif
1225 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1226 instruction_pointer(regs));
1227 break;
1228 case KDB_DB_SS:
1229 break;
1230 case KDB_DB_SSBPT:
1231 KDB_DEBUG_STATE("kdb_local 4", reason);
1232 return 1; /* kdba_db_trap did the work */
1233 default:
1234 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1235 db_result);
1236 break;
1237 }
1238
1239 }
1240 break;
1241 case KDB_REASON_ENTER:
1242 if (KDB_STATE(KEYBOARD))
1243 kdb_printf("due to Keyboard Entry\n");
1244 else
1245 kdb_printf("due to KDB_ENTER()\n");
1246 break;
1247 case KDB_REASON_KEYBOARD:
1248 KDB_STATE_SET(KEYBOARD);
1249 kdb_printf("due to Keyboard Entry\n");
1250 break;
1251 case KDB_REASON_ENTER_SLAVE:
1252 /* drop through, slaves only get released via cpu switch */
1253 case KDB_REASON_SWITCH:
1254 kdb_printf("due to cpu switch\n");
1255 break;
1256 case KDB_REASON_OOPS:
1257 kdb_printf("Oops: %s\n", kdb_diemsg);
1258 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 kdb_dumpregs(regs);
1261 break;
1262 case KDB_REASON_SYSTEM_NMI:
1263 kdb_printf("due to System NonMaskable Interrupt\n");
1264 break;
1265 case KDB_REASON_NMI:
1266 kdb_printf("due to NonMaskable Interrupt @ "
1267 kdb_machreg_fmt "\n",
1268 instruction_pointer(regs));
1269 break;
1270 case KDB_REASON_SSTEP:
1271 case KDB_REASON_BREAK:
1272 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1273 reason == KDB_REASON_BREAK ?
1274 "Breakpoint" : "SS trap", instruction_pointer(regs));
1275 /*
1276 * Determine if this breakpoint is one that we
1277 * are interested in.
1278 */
1279 if (db_result != KDB_DB_BPT) {
1280 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1281 db_result);
1282 KDB_DEBUG_STATE("kdb_local 6", reason);
1283 return 0; /* Not for us, dismiss it */
1284 }
1285 break;
1286 case KDB_REASON_RECURSE:
1287 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1288 instruction_pointer(regs));
1289 break;
1290 default:
1291 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1292 KDB_DEBUG_STATE("kdb_local 8", reason);
1293 return 0; /* Not for us, dismiss it */
1294 }
1295
1296 while (1) {
1297 /*
1298 * Initialize pager context.
1299 */
1300 kdb_nextline = 1;
1301 KDB_STATE_CLEAR(SUPPRESS);
1302 kdb_grepping_flag = 0;
1303 /* ensure the old search does not leak into '/' commands */
1304 kdb_grep_string[0] = '\0';
1305
1306 cmdbuf = cmd_cur;
1307 *cmdbuf = '\0';
1308 *(cmd_hist[cmd_head]) = '\0';
1309
1310do_full_getstr:
1311 /* PROMPT can only be set if we have MEM_READ permission. */
1312 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1313 raw_smp_processor_id());
1314
1315 /*
1316 * Fetch command from keyboard
1317 */
1318 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1319 if (*cmdbuf != '\n') {
1320 if (*cmdbuf < 32) {
1321 if (cmdptr == cmd_head) {
1322 strscpy(cmd_hist[cmd_head], cmd_cur,
1323 CMD_BUFLEN);
1324 *(cmd_hist[cmd_head] +
1325 strlen(cmd_hist[cmd_head])-1) = '\0';
1326 }
1327 if (!handle_ctrl_cmd(cmdbuf))
1328 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1329 cmdbuf = cmd_cur;
1330 goto do_full_getstr;
1331 } else {
1332 strscpy(cmd_hist[cmd_head], cmd_cur,
1333 CMD_BUFLEN);
1334 }
1335
1336 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1337 if (cmd_head == cmd_tail)
1338 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1339 }
1340
1341 cmdptr = cmd_head;
1342 diag = kdb_parse(cmdbuf);
1343 if (diag == KDB_NOTFOUND) {
1344 drop_newline(cmdbuf);
1345 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1346 diag = 0;
1347 }
1348 if (diag == KDB_CMD_GO
1349 || diag == KDB_CMD_CPU
1350 || diag == KDB_CMD_SS
1351 || diag == KDB_CMD_KGDB)
1352 break;
1353
1354 if (diag)
1355 kdb_cmderror(diag);
1356 }
1357 KDB_DEBUG_STATE("kdb_local 9", diag);
1358 return diag;
1359}
1360
1361
1362/*
1363 * kdb_print_state - Print the state data for the current processor
1364 * for debugging.
1365 * Inputs:
1366 * text Identifies the debug point
1367 * value Any integer value to be printed, e.g. reason code.
1368 */
1369void kdb_print_state(const char *text, int value)
1370{
1371 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1372 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1373 kdb_state);
1374}
1375
1376/*
1377 * kdb_main_loop - After initial setup and assignment of the
1378 * controlling cpu, all cpus are in this loop. One cpu is in
1379 * control and will issue the kdb prompt, the others will spin
1380 * until 'go' or cpu switch.
1381 *
1382 * To get a consistent view of the kernel stacks for all
1383 * processes, this routine is invoked from the main kdb code via
1384 * an architecture specific routine. kdba_main_loop is
1385 * responsible for making the kernel stacks consistent for all
1386 * processes, there should be no difference between a blocked
1387 * process and a running process as far as kdb is concerned.
1388 * Inputs:
1389 * reason The reason KDB was invoked
1390 * error The hardware-defined error code
1391 * reason2 kdb's current reason code.
1392 * Initially error but can change
1393 * according to kdb state.
1394 * db_result Result code from break or debug point.
1395 * regs The exception frame at time of fault/breakpoint.
1396 * should always be valid.
1397 * Returns:
1398 * 0 KDB was invoked for an event which it wasn't responsible
1399 * 1 KDB handled the event for which it was invoked.
1400 */
1401int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1402 kdb_dbtrap_t db_result, struct pt_regs *regs)
1403{
1404 int result = 1;
1405 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1406 while (1) {
1407 /*
1408 * All processors except the one that is in control
1409 * will spin here.
1410 */
1411 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1412 while (KDB_STATE(HOLD_CPU)) {
1413 /* state KDB is turned off by kdb_cpu to see if the
1414 * other cpus are still live, each cpu in this loop
1415 * turns it back on.
1416 */
1417 if (!KDB_STATE(KDB))
1418 KDB_STATE_SET(KDB);
1419 }
1420
1421 KDB_STATE_CLEAR(SUPPRESS);
1422 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1423 if (KDB_STATE(LEAVING))
1424 break; /* Another cpu said 'go' */
1425 /* Still using kdb, this processor is in control */
1426 result = kdb_local(reason2, error, regs, db_result);
1427 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1428
1429 if (result == KDB_CMD_CPU)
1430 break;
1431
1432 if (result == KDB_CMD_SS) {
1433 KDB_STATE_SET(DOING_SS);
1434 break;
1435 }
1436
1437 if (result == KDB_CMD_KGDB) {
1438 if (!KDB_STATE(DOING_KGDB))
1439 kdb_printf("Entering please attach debugger "
1440 "or use $D#44+ or $3#33\n");
1441 break;
1442 }
1443 if (result && result != 1 && result != KDB_CMD_GO)
1444 kdb_printf("\nUnexpected kdb_local return code %d\n",
1445 result);
1446 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1447 break;
1448 }
1449 if (KDB_STATE(DOING_SS))
1450 KDB_STATE_CLEAR(SSBPT);
1451
1452 /* Clean up any keyboard devices before leaving */
1453 kdb_kbd_cleanup_state();
1454
1455 return result;
1456}
1457
1458/*
1459 * kdb_mdr - This function implements the guts of the 'mdr', memory
1460 * read command.
1461 * mdr <addr arg>,<byte count>
1462 * Inputs:
1463 * addr Start address
1464 * count Number of bytes
1465 * Returns:
1466 * Always 0. Any errors are detected and printed by kdb_getarea.
1467 */
1468static int kdb_mdr(unsigned long addr, unsigned int count)
1469{
1470 unsigned char c;
1471 while (count--) {
1472 if (kdb_getarea(c, addr))
1473 return 0;
1474 kdb_printf("%02x", c);
1475 addr++;
1476 }
1477 kdb_printf("\n");
1478 return 0;
1479}
1480
1481/*
1482 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1483 * 'md8' 'mdr' and 'mds' commands.
1484 *
1485 * md|mds [<addr arg> [<line count> [<radix>]]]
1486 * mdWcN [<addr arg> [<line count> [<radix>]]]
1487 * where W = is the width (1, 2, 4 or 8) and N is the count.
1488 * for eg., md1c20 reads 20 bytes, 1 at a time.
1489 * mdr <addr arg>,<byte count>
1490 */
1491static void kdb_md_line(const char *fmtstr, unsigned long addr,
1492 int symbolic, int nosect, int bytesperword,
1493 int num, int repeat, int phys)
1494{
1495 /* print just one line of data */
1496 kdb_symtab_t symtab;
1497 char cbuf[32];
1498 char *c = cbuf;
1499 int i;
1500 int j;
1501 unsigned long word;
1502
1503 memset(cbuf, '\0', sizeof(cbuf));
1504 if (phys)
1505 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1506 else
1507 kdb_printf(kdb_machreg_fmt0 " ", addr);
1508
1509 for (i = 0; i < num && repeat--; i++) {
1510 if (phys) {
1511 if (kdb_getphysword(&word, addr, bytesperword))
1512 break;
1513 } else if (kdb_getword(&word, addr, bytesperword))
1514 break;
1515 kdb_printf(fmtstr, word);
1516 if (symbolic)
1517 kdbnearsym(word, &symtab);
1518 else
1519 memset(&symtab, 0, sizeof(symtab));
1520 if (symtab.sym_name) {
1521 kdb_symbol_print(word, &symtab, 0);
1522 if (!nosect) {
1523 kdb_printf("\n");
1524 kdb_printf(" %s %s "
1525 kdb_machreg_fmt " "
1526 kdb_machreg_fmt " "
1527 kdb_machreg_fmt, symtab.mod_name,
1528 symtab.sec_name, symtab.sec_start,
1529 symtab.sym_start, symtab.sym_end);
1530 }
1531 addr += bytesperword;
1532 } else {
1533 union {
1534 u64 word;
1535 unsigned char c[8];
1536 } wc;
1537 unsigned char *cp;
1538#ifdef __BIG_ENDIAN
1539 cp = wc.c + 8 - bytesperword;
1540#else
1541 cp = wc.c;
1542#endif
1543 wc.word = word;
1544#define printable_char(c) \
1545 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1546 for (j = 0; j < bytesperword; j++)
1547 *c++ = printable_char(*cp++);
1548 addr += bytesperword;
1549#undef printable_char
1550 }
1551 }
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553 " ", cbuf);
1554}
1555
1556static int kdb_md(int argc, const char **argv)
1557{
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561 int nosect = 0;
1562 char fmtchar, fmtstr[64];
1563 unsigned long addr;
1564 unsigned long word;
1565 long offset = 0;
1566 int symbolic = 0;
1567 int valid = 0;
1568 int phys = 0;
1569 int raw = 0;
1570
1571 kdbgetintenv("MDCOUNT", &mdcount);
1572 kdbgetintenv("RADIX", &radix);
1573 kdbgetintenv("BYTESPERWORD", &bytesperword);
1574
1575 /* Assume 'md <addr>' and start with environment values */
1576 repeat = mdcount * 16 / bytesperword;
1577
1578 if (strcmp(argv[0], "mdr") == 0) {
1579 if (argc == 2 || (argc == 0 && last_addr != 0))
1580 valid = raw = 1;
1581 else
1582 return KDB_ARGCOUNT;
1583 } else if (isdigit(argv[0][2])) {
1584 bytesperword = (int)(argv[0][2] - '0');
1585 if (bytesperword == 0) {
1586 bytesperword = last_bytesperword;
1587 if (bytesperword == 0)
1588 bytesperword = 4;
1589 }
1590 last_bytesperword = bytesperword;
1591 repeat = mdcount * 16 / bytesperword;
1592 if (!argv[0][3])
1593 valid = 1;
1594 else if (argv[0][3] == 'c' && argv[0][4]) {
1595 if (kstrtouint(argv[0] + 4, 10, &repeat))
1596 return KDB_BADINT;
1597 mdcount = ((repeat * bytesperword) + 15) / 16;
1598 valid = 1;
1599 }
1600 last_repeat = repeat;
1601 } else if (strcmp(argv[0], "md") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mds") == 0)
1604 valid = 1;
1605 else if (strcmp(argv[0], "mdp") == 0) {
1606 phys = valid = 1;
1607 }
1608 if (!valid)
1609 return KDB_NOTFOUND;
1610
1611 if (argc == 0) {
1612 if (last_addr == 0)
1613 return KDB_ARGCOUNT;
1614 addr = last_addr;
1615 radix = last_radix;
1616 bytesperword = last_bytesperword;
1617 repeat = last_repeat;
1618 if (raw)
1619 mdcount = repeat;
1620 else
1621 mdcount = ((repeat * bytesperword) + 15) / 16;
1622 }
1623
1624 if (argc) {
1625 unsigned long val;
1626 int diag, nextarg = 1;
1627 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1628 &offset, NULL);
1629 if (diag)
1630 return diag;
1631 if (argc > nextarg+2)
1632 return KDB_ARGCOUNT;
1633
1634 if (argc >= nextarg) {
1635 diag = kdbgetularg(argv[nextarg], &val);
1636 if (!diag) {
1637 mdcount = (int) val;
1638 if (raw)
1639 repeat = mdcount;
1640 else
1641 repeat = mdcount * 16 / bytesperword;
1642 }
1643 }
1644 if (argc >= nextarg+1) {
1645 diag = kdbgetularg(argv[nextarg+1], &val);
1646 if (!diag)
1647 radix = (int) val;
1648 }
1649 }
1650
1651 if (strcmp(argv[0], "mdr") == 0) {
1652 int ret;
1653 last_addr = addr;
1654 ret = kdb_mdr(addr, mdcount);
1655 last_addr += mdcount;
1656 last_repeat = mdcount;
1657 last_bytesperword = bytesperword; // to make REPEAT happy
1658 return ret;
1659 }
1660
1661 switch (radix) {
1662 case 10:
1663 fmtchar = 'd';
1664 break;
1665 case 16:
1666 fmtchar = 'x';
1667 break;
1668 case 8:
1669 fmtchar = 'o';
1670 break;
1671 default:
1672 return KDB_BADRADIX;
1673 }
1674
1675 last_radix = radix;
1676
1677 if (bytesperword > KDB_WORD_SIZE)
1678 return KDB_BADWIDTH;
1679
1680 switch (bytesperword) {
1681 case 8:
1682 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1683 break;
1684 case 4:
1685 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1686 break;
1687 case 2:
1688 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1689 break;
1690 case 1:
1691 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1692 break;
1693 default:
1694 return KDB_BADWIDTH;
1695 }
1696
1697 last_repeat = repeat;
1698 last_bytesperword = bytesperword;
1699
1700 if (strcmp(argv[0], "mds") == 0) {
1701 symbolic = 1;
1702 /* Do not save these changes as last_*, they are temporary mds
1703 * overrides.
1704 */
1705 bytesperword = KDB_WORD_SIZE;
1706 repeat = mdcount;
1707 kdbgetintenv("NOSECT", &nosect);
1708 }
1709
1710 /* Round address down modulo BYTESPERWORD */
1711
1712 addr &= ~(bytesperword-1);
1713
1714 while (repeat > 0) {
1715 unsigned long a;
1716 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1717
1718 if (KDB_FLAG(CMD_INTERRUPT))
1719 return 0;
1720 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1721 if (phys) {
1722 if (kdb_getphysword(&word, a, bytesperword)
1723 || word)
1724 break;
1725 } else if (kdb_getword(&word, a, bytesperword) || word)
1726 break;
1727 }
1728 n = min(num, repeat);
1729 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1730 num, repeat, phys);
1731 addr += bytesperword * n;
1732 repeat -= n;
1733 z = (z + num - 1) / num;
1734 if (z > 2) {
1735 int s = num * (z-2);
1736 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1737 " zero suppressed\n",
1738 addr, addr + bytesperword * s - 1);
1739 addr += bytesperword * s;
1740 repeat -= s;
1741 }
1742 }
1743 last_addr = addr;
1744
1745 return 0;
1746}
1747
1748/*
1749 * kdb_mm - This function implements the 'mm' command.
1750 * mm address-expression new-value
1751 * Remarks:
1752 * mm works on machine words, mmW works on bytes.
1753 */
1754static int kdb_mm(int argc, const char **argv)
1755{
1756 int diag;
1757 unsigned long addr;
1758 long offset = 0;
1759 unsigned long contents;
1760 int nextarg;
1761 int width;
1762
1763 if (argv[0][2] && !isdigit(argv[0][2]))
1764 return KDB_NOTFOUND;
1765
1766 if (argc < 2)
1767 return KDB_ARGCOUNT;
1768
1769 nextarg = 1;
1770 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1771 if (diag)
1772 return diag;
1773
1774 if (nextarg > argc)
1775 return KDB_ARGCOUNT;
1776 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1777 if (diag)
1778 return diag;
1779
1780 if (nextarg != argc + 1)
1781 return KDB_ARGCOUNT;
1782
1783 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1784 diag = kdb_putword(addr, contents, width);
1785 if (diag)
1786 return diag;
1787
1788 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1789
1790 return 0;
1791}
1792
1793/*
1794 * kdb_go - This function implements the 'go' command.
1795 * go [address-expression]
1796 */
1797static int kdb_go(int argc, const char **argv)
1798{
1799 unsigned long addr;
1800 int diag;
1801 int nextarg;
1802 long offset;
1803
1804 if (raw_smp_processor_id() != kdb_initial_cpu) {
1805 kdb_printf("go must execute on the entry cpu, "
1806 "please use \"cpu %d\" and then execute go\n",
1807 kdb_initial_cpu);
1808 return KDB_BADCPUNUM;
1809 }
1810 if (argc == 1) {
1811 nextarg = 1;
1812 diag = kdbgetaddrarg(argc, argv, &nextarg,
1813 &addr, &offset, NULL);
1814 if (diag)
1815 return diag;
1816 } else if (argc) {
1817 return KDB_ARGCOUNT;
1818 }
1819
1820 diag = KDB_CMD_GO;
1821 if (KDB_FLAG(CATASTROPHIC)) {
1822 kdb_printf("Catastrophic error detected\n");
1823 kdb_printf("kdb_continue_catastrophic=%d, ",
1824 kdb_continue_catastrophic);
1825 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1826 kdb_printf("type go a second time if you really want "
1827 "to continue\n");
1828 return 0;
1829 }
1830 if (kdb_continue_catastrophic == 2) {
1831 kdb_printf("forcing reboot\n");
1832 kdb_reboot(0, NULL);
1833 }
1834 kdb_printf("attempting to continue\n");
1835 }
1836 return diag;
1837}
1838
1839/*
1840 * kdb_rd - This function implements the 'rd' command.
1841 */
1842static int kdb_rd(int argc, const char **argv)
1843{
1844 int len = kdb_check_regs();
1845#if DBG_MAX_REG_NUM > 0
1846 int i;
1847 char *rname;
1848 int rsize;
1849 u64 reg64;
1850 u32 reg32;
1851 u16 reg16;
1852 u8 reg8;
1853
1854 if (len)
1855 return len;
1856
1857 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1858 rsize = dbg_reg_def[i].size * 2;
1859 if (rsize > 16)
1860 rsize = 2;
1861 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1862 len = 0;
1863 kdb_printf("\n");
1864 }
1865 if (len)
1866 len += kdb_printf(" ");
1867 switch(dbg_reg_def[i].size * 8) {
1868 case 8:
1869 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %02x", rname, reg8);
1873 break;
1874 case 16:
1875 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1876 if (!rname)
1877 break;
1878 len += kdb_printf("%s: %04x", rname, reg16);
1879 break;
1880 case 32:
1881 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1882 if (!rname)
1883 break;
1884 len += kdb_printf("%s: %08x", rname, reg32);
1885 break;
1886 case 64:
1887 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1888 if (!rname)
1889 break;
1890 len += kdb_printf("%s: %016llx", rname, reg64);
1891 break;
1892 default:
1893 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1894 }
1895 }
1896 kdb_printf("\n");
1897#else
1898 if (len)
1899 return len;
1900
1901 kdb_dumpregs(kdb_current_regs);
1902#endif
1903 return 0;
1904}
1905
1906/*
1907 * kdb_rm - This function implements the 'rm' (register modify) command.
1908 * rm register-name new-contents
1909 * Remarks:
1910 * Allows register modification with the same restrictions as gdb
1911 */
1912static int kdb_rm(int argc, const char **argv)
1913{
1914#if DBG_MAX_REG_NUM > 0
1915 int diag;
1916 const char *rname;
1917 int i;
1918 u64 reg64;
1919 u32 reg32;
1920 u16 reg16;
1921 u8 reg8;
1922
1923 if (argc != 2)
1924 return KDB_ARGCOUNT;
1925 /*
1926 * Allow presence or absence of leading '%' symbol.
1927 */
1928 rname = argv[1];
1929 if (*rname == '%')
1930 rname++;
1931
1932 diag = kdbgetu64arg(argv[2], ®64);
1933 if (diag)
1934 return diag;
1935
1936 diag = kdb_check_regs();
1937 if (diag)
1938 return diag;
1939
1940 diag = KDB_BADREG;
1941 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1942 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1943 diag = 0;
1944 break;
1945 }
1946 }
1947 if (!diag) {
1948 switch(dbg_reg_def[i].size * 8) {
1949 case 8:
1950 reg8 = reg64;
1951 dbg_set_reg(i, ®8, kdb_current_regs);
1952 break;
1953 case 16:
1954 reg16 = reg64;
1955 dbg_set_reg(i, ®16, kdb_current_regs);
1956 break;
1957 case 32:
1958 reg32 = reg64;
1959 dbg_set_reg(i, ®32, kdb_current_regs);
1960 break;
1961 case 64:
1962 dbg_set_reg(i, ®64, kdb_current_regs);
1963 break;
1964 }
1965 }
1966 return diag;
1967#else
1968 kdb_printf("ERROR: Register set currently not implemented\n");
1969 return 0;
1970#endif
1971}
1972
1973#if defined(CONFIG_MAGIC_SYSRQ)
1974/*
1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1976 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1977 * sr <magic-sysrq-code>
1978 */
1979static int kdb_sr(int argc, const char **argv)
1980{
1981 bool check_mask =
1982 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1983
1984 if (argc != 1)
1985 return KDB_ARGCOUNT;
1986
1987 kdb_trap_printk++;
1988 __handle_sysrq(*argv[1], check_mask);
1989 kdb_trap_printk--;
1990
1991 return 0;
1992}
1993#endif /* CONFIG_MAGIC_SYSRQ */
1994
1995/*
1996 * kdb_ef - This function implements the 'regs' (display exception
1997 * frame) command. This command takes an address and expects to
1998 * find an exception frame at that address, formats and prints
1999 * it.
2000 * regs address-expression
2001 * Remarks:
2002 * Not done yet.
2003 */
2004static int kdb_ef(int argc, const char **argv)
2005{
2006 int diag;
2007 unsigned long addr;
2008 long offset;
2009 int nextarg;
2010
2011 if (argc != 1)
2012 return KDB_ARGCOUNT;
2013
2014 nextarg = 1;
2015 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2016 if (diag)
2017 return diag;
2018 show_regs((struct pt_regs *)addr);
2019 return 0;
2020}
2021
2022/*
2023 * kdb_env - This function implements the 'env' command. Display the
2024 * current environment variables.
2025 */
2026
2027static int kdb_env(int argc, const char **argv)
2028{
2029 kdb_printenv();
2030
2031 if (KDB_DEBUG(MASK))
2032 kdb_printf("KDBDEBUG=0x%x\n",
2033 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2034
2035 return 0;
2036}
2037
2038#ifdef CONFIG_PRINTK
2039/*
2040 * kdb_dmesg - This function implements the 'dmesg' command to display
2041 * the contents of the syslog buffer.
2042 * dmesg [lines] [adjust]
2043 */
2044static int kdb_dmesg(int argc, const char **argv)
2045{
2046 int diag;
2047 int logging;
2048 int lines = 0;
2049 int adjust = 0;
2050 int n = 0;
2051 int skip = 0;
2052 struct kmsg_dump_iter iter;
2053 size_t len;
2054 char buf[201];
2055
2056 if (argc > 2)
2057 return KDB_ARGCOUNT;
2058 if (argc) {
2059 if (kstrtoint(argv[1], 0, &lines))
2060 lines = 0;
2061 if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0))
2062 adjust = 0;
2063 }
2064
2065 /* disable LOGGING if set */
2066 diag = kdbgetintenv("LOGGING", &logging);
2067 if (!diag && logging) {
2068 const char *setargs[] = { "set", "LOGGING", "0" };
2069 kdb_set(2, setargs);
2070 }
2071
2072 kmsg_dump_rewind(&iter);
2073 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2074 n++;
2075
2076 if (lines < 0) {
2077 if (adjust >= n)
2078 kdb_printf("buffer only contains %d lines, nothing "
2079 "printed\n", n);
2080 else if (adjust - lines >= n)
2081 kdb_printf("buffer only contains %d lines, last %d "
2082 "lines printed\n", n, n - adjust);
2083 skip = adjust;
2084 lines = abs(lines);
2085 } else if (lines > 0) {
2086 skip = n - lines - adjust;
2087 lines = abs(lines);
2088 if (adjust >= n) {
2089 kdb_printf("buffer only contains %d lines, "
2090 "nothing printed\n", n);
2091 skip = n;
2092 } else if (skip < 0) {
2093 lines += skip;
2094 skip = 0;
2095 kdb_printf("buffer only contains %d lines, first "
2096 "%d lines printed\n", n, lines);
2097 }
2098 } else {
2099 lines = n;
2100 }
2101
2102 if (skip >= n || skip < 0)
2103 return 0;
2104
2105 kmsg_dump_rewind(&iter);
2106 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2107 if (skip) {
2108 skip--;
2109 continue;
2110 }
2111 if (!lines--)
2112 break;
2113 if (KDB_FLAG(CMD_INTERRUPT))
2114 return 0;
2115
2116 kdb_printf("%.*s\n", (int)len - 1, buf);
2117 }
2118
2119 return 0;
2120}
2121#endif /* CONFIG_PRINTK */
2122
2123/* Make sure we balance enable/disable calls, must disable first. */
2124static atomic_t kdb_nmi_disabled;
2125
2126static int kdb_disable_nmi(int argc, const char *argv[])
2127{
2128 if (atomic_read(&kdb_nmi_disabled))
2129 return 0;
2130 atomic_set(&kdb_nmi_disabled, 1);
2131 arch_kgdb_ops.enable_nmi(0);
2132 return 0;
2133}
2134
2135static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2136{
2137 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2138 return -EINVAL;
2139 arch_kgdb_ops.enable_nmi(1);
2140 return 0;
2141}
2142
2143static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2144 .set = kdb_param_enable_nmi,
2145};
2146module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2147
2148/*
2149 * kdb_cpu - This function implements the 'cpu' command.
2150 * cpu [<cpunum>]
2151 * Returns:
2152 * KDB_CMD_CPU for success, a kdb diagnostic if error
2153 */
2154static void kdb_cpu_status(void)
2155{
2156 int i, start_cpu, first_print = 1;
2157 char state, prev_state = '?';
2158
2159 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2160 kdb_printf("Available cpus: ");
2161 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2162 if (!cpu_online(i)) {
2163 state = 'F'; /* cpu is offline */
2164 } else if (!kgdb_info[i].enter_kgdb) {
2165 state = 'D'; /* cpu is online but unresponsive */
2166 } else {
2167 state = ' '; /* cpu is responding to kdb */
2168 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2169 state = '-'; /* idle task */
2170 }
2171 if (state != prev_state) {
2172 if (prev_state != '?') {
2173 if (!first_print)
2174 kdb_printf(", ");
2175 first_print = 0;
2176 kdb_printf("%d", start_cpu);
2177 if (start_cpu < i-1)
2178 kdb_printf("-%d", i-1);
2179 if (prev_state != ' ')
2180 kdb_printf("(%c)", prev_state);
2181 }
2182 prev_state = state;
2183 start_cpu = i;
2184 }
2185 }
2186 /* print the trailing cpus, ignoring them if they are all offline */
2187 if (prev_state != 'F') {
2188 if (!first_print)
2189 kdb_printf(", ");
2190 kdb_printf("%d", start_cpu);
2191 if (start_cpu < i-1)
2192 kdb_printf("-%d", i-1);
2193 if (prev_state != ' ')
2194 kdb_printf("(%c)", prev_state);
2195 }
2196 kdb_printf("\n");
2197}
2198
2199static int kdb_cpu(int argc, const char **argv)
2200{
2201 unsigned long cpunum;
2202 int diag;
2203
2204 if (argc == 0) {
2205 kdb_cpu_status();
2206 return 0;
2207 }
2208
2209 if (argc != 1)
2210 return KDB_ARGCOUNT;
2211
2212 diag = kdbgetularg(argv[1], &cpunum);
2213 if (diag)
2214 return diag;
2215
2216 /*
2217 * Validate cpunum
2218 */
2219 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2220 return KDB_BADCPUNUM;
2221
2222 dbg_switch_cpu = cpunum;
2223
2224 /*
2225 * Switch to other cpu
2226 */
2227 return KDB_CMD_CPU;
2228}
2229
2230/* The user may not realize that ps/bta with no parameters does not print idle
2231 * or sleeping system daemon processes, so tell them how many were suppressed.
2232 */
2233void kdb_ps_suppressed(void)
2234{
2235 int idle = 0, daemon = 0;
2236 unsigned long cpu;
2237 const struct task_struct *p, *g;
2238 for_each_online_cpu(cpu) {
2239 p = curr_task(cpu);
2240 if (kdb_task_state(p, "-"))
2241 ++idle;
2242 }
2243 for_each_process_thread(g, p) {
2244 if (kdb_task_state(p, "ims"))
2245 ++daemon;
2246 }
2247 if (idle || daemon) {
2248 if (idle)
2249 kdb_printf("%d idle process%s (state -)%s\n",
2250 idle, idle == 1 ? "" : "es",
2251 daemon ? " and " : "");
2252 if (daemon)
2253 kdb_printf("%d sleeping system daemon (state [ims]) "
2254 "process%s", daemon,
2255 daemon == 1 ? "" : "es");
2256 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2257 }
2258}
2259
2260void kdb_ps1(const struct task_struct *p)
2261{
2262 int cpu;
2263 unsigned long tmp;
2264
2265 if (!p ||
2266 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%px)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288/*
2289 * kdb_ps - This function implements the 'ps' command which shows a
2290 * list of the active processes.
2291 *
2292 * ps [<state_chars>] Show processes, optionally selecting only those whose
2293 * state character is found in <state_chars>.
2294 */
2295static int kdb_ps(int argc, const char **argv)
2296{
2297 struct task_struct *g, *p;
2298 const char *mask;
2299 unsigned long cpu;
2300
2301 if (argc == 0)
2302 kdb_ps_suppressed();
2303 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2304 (int)(2*sizeof(void *))+2, "Task Addr",
2305 (int)(2*sizeof(void *))+2, "Thread");
2306 mask = argc ? argv[1] : kdbgetenv("PS");
2307 /* Run the active tasks first */
2308 for_each_online_cpu(cpu) {
2309 if (KDB_FLAG(CMD_INTERRUPT))
2310 return 0;
2311 p = curr_task(cpu);
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 }
2315 kdb_printf("\n");
2316 /* Now the real tasks */
2317 for_each_process_thread(g, p) {
2318 if (KDB_FLAG(CMD_INTERRUPT))
2319 return 0;
2320 if (kdb_task_state(p, mask))
2321 kdb_ps1(p);
2322 }
2323
2324 return 0;
2325}
2326
2327/*
2328 * kdb_pid - This function implements the 'pid' command which switches
2329 * the currently active process.
2330 * pid [<pid> | R]
2331 */
2332static int kdb_pid(int argc, const char **argv)
2333{
2334 struct task_struct *p;
2335 unsigned long val;
2336 int diag;
2337
2338 if (argc > 1)
2339 return KDB_ARGCOUNT;
2340
2341 if (argc) {
2342 if (strcmp(argv[1], "R") == 0) {
2343 p = KDB_TSK(kdb_initial_cpu);
2344 } else {
2345 diag = kdbgetularg(argv[1], &val);
2346 if (diag)
2347 return KDB_BADINT;
2348
2349 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2350 if (!p) {
2351 kdb_printf("No task with pid=%d\n", (pid_t)val);
2352 return 0;
2353 }
2354 }
2355 kdb_set_current_task(p);
2356 }
2357 kdb_printf("KDB current process is %s(pid=%d)\n",
2358 kdb_current_task->comm,
2359 kdb_current_task->pid);
2360
2361 return 0;
2362}
2363
2364static int kdb_kgdb(int argc, const char **argv)
2365{
2366 return KDB_CMD_KGDB;
2367}
2368
2369/*
2370 * kdb_help - This function implements the 'help' and '?' commands.
2371 */
2372static int kdb_help(int argc, const char **argv)
2373{
2374 kdbtab_t *kt;
2375
2376 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2377 kdb_printf("-----------------------------"
2378 "-----------------------------\n");
2379 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2380 char *space = "";
2381 if (KDB_FLAG(CMD_INTERRUPT))
2382 return 0;
2383 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2384 continue;
2385 if (strlen(kt->usage) > 20)
2386 space = "\n ";
2387 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2388 kt->usage, space, kt->help);
2389 }
2390 return 0;
2391}
2392
2393/*
2394 * kdb_kill - This function implements the 'kill' commands.
2395 */
2396static int kdb_kill(int argc, const char **argv)
2397{
2398 long sig, pid;
2399 struct task_struct *p;
2400
2401 if (argc != 2)
2402 return KDB_ARGCOUNT;
2403
2404 if (kstrtol(argv[1], 0, &sig))
2405 return KDB_BADINT;
2406 if ((sig >= 0) || !valid_signal(-sig)) {
2407 kdb_printf("Invalid signal parameter.<-signal>\n");
2408 return 0;
2409 }
2410 sig = -sig;
2411
2412 if (kstrtol(argv[2], 0, &pid))
2413 return KDB_BADINT;
2414 if (pid <= 0) {
2415 kdb_printf("Process ID must be large than 0.\n");
2416 return 0;
2417 }
2418
2419 /* Find the process. */
2420 p = find_task_by_pid_ns(pid, &init_pid_ns);
2421 if (!p) {
2422 kdb_printf("The specified process isn't found.\n");
2423 return 0;
2424 }
2425 p = p->group_leader;
2426 kdb_send_sig(p, sig);
2427 return 0;
2428}
2429
2430/*
2431 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2432 * I cannot call that code directly from kdb, it has an unconditional
2433 * cli()/sti() and calls routines that take locks which can stop the debugger.
2434 */
2435static void kdb_sysinfo(struct sysinfo *val)
2436{
2437 u64 uptime = ktime_get_mono_fast_ns();
2438
2439 memset(val, 0, sizeof(*val));
2440 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2441 val->loads[0] = avenrun[0];
2442 val->loads[1] = avenrun[1];
2443 val->loads[2] = avenrun[2];
2444 val->procs = nr_threads-1;
2445 si_meminfo(val);
2446
2447 return;
2448}
2449
2450/*
2451 * kdb_summary - This function implements the 'summary' command.
2452 */
2453static int kdb_summary(int argc, const char **argv)
2454{
2455 time64_t now;
2456 struct sysinfo val;
2457
2458 if (argc)
2459 return KDB_ARGCOUNT;
2460
2461 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2462 kdb_printf("release %s\n", init_uts_ns.name.release);
2463 kdb_printf("version %s\n", init_uts_ns.name.version);
2464 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2465 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2466 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2467
2468 now = __ktime_get_real_seconds();
2469 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2470 kdb_sysinfo(&val);
2471 kdb_printf("uptime ");
2472 if (val.uptime > (24*60*60)) {
2473 int days = val.uptime / (24*60*60);
2474 val.uptime %= (24*60*60);
2475 kdb_printf("%d day%s ", days, str_plural(days));
2476 }
2477 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2478
2479 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2480 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2481 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2482 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2483
2484 /* Display in kilobytes */
2485#define K(x) ((x) << (PAGE_SHIFT - 10))
2486 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2487 "Buffers: %8lu kB\n",
2488 K(val.totalram), K(val.freeram), K(val.bufferram));
2489 return 0;
2490}
2491
2492/*
2493 * kdb_per_cpu - This function implements the 'per_cpu' command.
2494 */
2495static int kdb_per_cpu(int argc, const char **argv)
2496{
2497 char fmtstr[64];
2498 int cpu, diag, nextarg = 1;
2499 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2500
2501 if (argc < 1 || argc > 3)
2502 return KDB_ARGCOUNT;
2503
2504 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2505 if (diag)
2506 return diag;
2507
2508 if (argc >= 2) {
2509 diag = kdbgetularg(argv[2], &bytesperword);
2510 if (diag)
2511 return diag;
2512 }
2513 if (!bytesperword)
2514 bytesperword = KDB_WORD_SIZE;
2515 else if (bytesperword > KDB_WORD_SIZE)
2516 return KDB_BADWIDTH;
2517 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2518 if (argc >= 3) {
2519 diag = kdbgetularg(argv[3], &whichcpu);
2520 if (diag)
2521 return diag;
2522 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2523 kdb_printf("cpu %ld is not online\n", whichcpu);
2524 return KDB_BADCPUNUM;
2525 }
2526 }
2527
2528 /* Most architectures use __per_cpu_offset[cpu], some use
2529 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2530 */
2531#ifdef __per_cpu_offset
2532#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2533#else
2534#ifdef CONFIG_SMP
2535#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2536#else
2537#define KDB_PCU(cpu) 0
2538#endif
2539#endif
2540 for_each_online_cpu(cpu) {
2541 if (KDB_FLAG(CMD_INTERRUPT))
2542 return 0;
2543
2544 if (whichcpu != ~0UL && whichcpu != cpu)
2545 continue;
2546 addr = symaddr + KDB_PCU(cpu);
2547 diag = kdb_getword(&val, addr, bytesperword);
2548 if (diag) {
2549 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2550 "read, diag=%d\n", cpu, addr, diag);
2551 continue;
2552 }
2553 kdb_printf("%5d ", cpu);
2554 kdb_md_line(fmtstr, addr,
2555 bytesperword == KDB_WORD_SIZE,
2556 1, bytesperword, 1, 1, 0);
2557 }
2558#undef KDB_PCU
2559 return 0;
2560}
2561
2562/*
2563 * display help for the use of cmd | grep pattern
2564 */
2565static int kdb_grep_help(int argc, const char **argv)
2566{
2567 kdb_printf("Usage of cmd args | grep pattern:\n");
2568 kdb_printf(" Any command's output may be filtered through an ");
2569 kdb_printf("emulated 'pipe'.\n");
2570 kdb_printf(" 'grep' is just a key word.\n");
2571 kdb_printf(" The pattern may include a very limited set of "
2572 "metacharacters:\n");
2573 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2574 kdb_printf(" And if there are spaces in the pattern, you may "
2575 "quote it:\n");
2576 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2577 " or \"^pat tern$\"\n");
2578 return 0;
2579}
2580
2581/**
2582 * kdb_register() - This function is used to register a kernel debugger
2583 * command.
2584 * @cmd: pointer to kdb command
2585 *
2586 * Note that it's the job of the caller to keep the memory for the cmd
2587 * allocated until unregister is called.
2588 */
2589int kdb_register(kdbtab_t *cmd)
2590{
2591 kdbtab_t *kp;
2592
2593 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2594 if (strcmp(kp->name, cmd->name) == 0) {
2595 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2596 cmd->name, cmd->func, cmd->help);
2597 return 1;
2598 }
2599 }
2600
2601 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2602 return 0;
2603}
2604EXPORT_SYMBOL_GPL(kdb_register);
2605
2606/**
2607 * kdb_register_table() - This function is used to register a kdb command
2608 * table.
2609 * @kp: pointer to kdb command table
2610 * @len: length of kdb command table
2611 */
2612void kdb_register_table(kdbtab_t *kp, size_t len)
2613{
2614 while (len--) {
2615 list_add_tail(&kp->list_node, &kdb_cmds_head);
2616 kp++;
2617 }
2618}
2619
2620/**
2621 * kdb_unregister() - This function is used to unregister a kernel debugger
2622 * command. It is generally called when a module which
2623 * implements kdb command is unloaded.
2624 * @cmd: pointer to kdb command
2625 */
2626void kdb_unregister(kdbtab_t *cmd)
2627{
2628 list_del(&cmd->list_node);
2629}
2630EXPORT_SYMBOL_GPL(kdb_unregister);
2631
2632static kdbtab_t maintab[] = {
2633 { .name = "md",
2634 .func = kdb_md,
2635 .usage = "<vaddr>",
2636 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2637 .minlen = 1,
2638 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2639 },
2640 { .name = "mdr",
2641 .func = kdb_md,
2642 .usage = "<vaddr> <bytes>",
2643 .help = "Display Raw Memory",
2644 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2645 },
2646 { .name = "mdp",
2647 .func = kdb_md,
2648 .usage = "<paddr> <bytes>",
2649 .help = "Display Physical Memory",
2650 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2651 },
2652 { .name = "mds",
2653 .func = kdb_md,
2654 .usage = "<vaddr>",
2655 .help = "Display Memory Symbolically",
2656 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2657 },
2658 { .name = "mm",
2659 .func = kdb_mm,
2660 .usage = "<vaddr> <contents>",
2661 .help = "Modify Memory Contents",
2662 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2663 },
2664 { .name = "go",
2665 .func = kdb_go,
2666 .usage = "[<vaddr>]",
2667 .help = "Continue Execution",
2668 .minlen = 1,
2669 .flags = KDB_ENABLE_REG_WRITE |
2670 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2671 },
2672 { .name = "rd",
2673 .func = kdb_rd,
2674 .usage = "",
2675 .help = "Display Registers",
2676 .flags = KDB_ENABLE_REG_READ,
2677 },
2678 { .name = "rm",
2679 .func = kdb_rm,
2680 .usage = "<reg> <contents>",
2681 .help = "Modify Registers",
2682 .flags = KDB_ENABLE_REG_WRITE,
2683 },
2684 { .name = "ef",
2685 .func = kdb_ef,
2686 .usage = "<vaddr>",
2687 .help = "Display exception frame",
2688 .flags = KDB_ENABLE_MEM_READ,
2689 },
2690 { .name = "bt",
2691 .func = kdb_bt,
2692 .usage = "[<vaddr>]",
2693 .help = "Stack traceback",
2694 .minlen = 1,
2695 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2696 },
2697 { .name = "btp",
2698 .func = kdb_bt,
2699 .usage = "<pid>",
2700 .help = "Display stack for process <pid>",
2701 .flags = KDB_ENABLE_INSPECT,
2702 },
2703 { .name = "bta",
2704 .func = kdb_bt,
2705 .usage = "[<state_chars>|A]",
2706 .help = "Backtrace all processes whose state matches",
2707 .flags = KDB_ENABLE_INSPECT,
2708 },
2709 { .name = "btc",
2710 .func = kdb_bt,
2711 .usage = "",
2712 .help = "Backtrace current process on each cpu",
2713 .flags = KDB_ENABLE_INSPECT,
2714 },
2715 { .name = "btt",
2716 .func = kdb_bt,
2717 .usage = "<vaddr>",
2718 .help = "Backtrace process given its struct task address",
2719 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2720 },
2721 { .name = "env",
2722 .func = kdb_env,
2723 .usage = "",
2724 .help = "Show environment variables",
2725 .flags = KDB_ENABLE_ALWAYS_SAFE,
2726 },
2727 { .name = "set",
2728 .func = kdb_set,
2729 .usage = "",
2730 .help = "Set environment variables",
2731 .flags = KDB_ENABLE_ALWAYS_SAFE,
2732 },
2733 { .name = "help",
2734 .func = kdb_help,
2735 .usage = "",
2736 .help = "Display Help Message",
2737 .minlen = 1,
2738 .flags = KDB_ENABLE_ALWAYS_SAFE,
2739 },
2740 { .name = "?",
2741 .func = kdb_help,
2742 .usage = "",
2743 .help = "Display Help Message",
2744 .flags = KDB_ENABLE_ALWAYS_SAFE,
2745 },
2746 { .name = "cpu",
2747 .func = kdb_cpu,
2748 .usage = "<cpunum>",
2749 .help = "Switch to new cpu",
2750 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2751 },
2752 { .name = "kgdb",
2753 .func = kdb_kgdb,
2754 .usage = "",
2755 .help = "Enter kgdb mode",
2756 .flags = 0,
2757 },
2758 { .name = "ps",
2759 .func = kdb_ps,
2760 .usage = "[<state_chars>|A]",
2761 .help = "Display active task list",
2762 .flags = KDB_ENABLE_INSPECT,
2763 },
2764 { .name = "pid",
2765 .func = kdb_pid,
2766 .usage = "<pidnum>",
2767 .help = "Switch to another task",
2768 .flags = KDB_ENABLE_INSPECT,
2769 },
2770 { .name = "reboot",
2771 .func = kdb_reboot,
2772 .usage = "",
2773 .help = "Reboot the machine immediately",
2774 .flags = KDB_ENABLE_REBOOT,
2775 },
2776#if defined(CONFIG_MODULES)
2777 { .name = "lsmod",
2778 .func = kdb_lsmod,
2779 .usage = "",
2780 .help = "List loaded kernel modules",
2781 .flags = KDB_ENABLE_INSPECT,
2782 },
2783#endif
2784#if defined(CONFIG_MAGIC_SYSRQ)
2785 { .name = "sr",
2786 .func = kdb_sr,
2787 .usage = "<key>",
2788 .help = "Magic SysRq key",
2789 .flags = KDB_ENABLE_ALWAYS_SAFE,
2790 },
2791#endif
2792#if defined(CONFIG_PRINTK)
2793 { .name = "dmesg",
2794 .func = kdb_dmesg,
2795 .usage = "[lines]",
2796 .help = "Display syslog buffer",
2797 .flags = KDB_ENABLE_ALWAYS_SAFE,
2798 },
2799#endif
2800 { .name = "defcmd",
2801 .func = kdb_defcmd,
2802 .usage = "name \"usage\" \"help\"",
2803 .help = "Define a set of commands, down to endefcmd",
2804 /*
2805 * Macros are always safe because when executed each
2806 * internal command re-enters kdb_parse() and is safety
2807 * checked individually.
2808 */
2809 .flags = KDB_ENABLE_ALWAYS_SAFE,
2810 },
2811 { .name = "kill",
2812 .func = kdb_kill,
2813 .usage = "<-signal> <pid>",
2814 .help = "Send a signal to a process",
2815 .flags = KDB_ENABLE_SIGNAL,
2816 },
2817 { .name = "summary",
2818 .func = kdb_summary,
2819 .usage = "",
2820 .help = "Summarize the system",
2821 .minlen = 4,
2822 .flags = KDB_ENABLE_ALWAYS_SAFE,
2823 },
2824 { .name = "per_cpu",
2825 .func = kdb_per_cpu,
2826 .usage = "<sym> [<bytes>] [<cpu>]",
2827 .help = "Display per_cpu variables",
2828 .minlen = 3,
2829 .flags = KDB_ENABLE_MEM_READ,
2830 },
2831 { .name = "grephelp",
2832 .func = kdb_grep_help,
2833 .usage = "",
2834 .help = "Display help on | grep",
2835 .flags = KDB_ENABLE_ALWAYS_SAFE,
2836 },
2837};
2838
2839static kdbtab_t nmicmd = {
2840 .name = "disable_nmi",
2841 .func = kdb_disable_nmi,
2842 .usage = "",
2843 .help = "Disable NMI entry to KDB",
2844 .flags = KDB_ENABLE_ALWAYS_SAFE,
2845};
2846
2847/* Initialize the kdb command table. */
2848static void __init kdb_inittab(void)
2849{
2850 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2851 if (arch_kgdb_ops.enable_nmi)
2852 kdb_register_table(&nmicmd, 1);
2853}
2854
2855/* Execute any commands defined in kdb_cmds. */
2856static void __init kdb_cmd_init(void)
2857{
2858 int i, diag;
2859 for (i = 0; kdb_cmds[i]; ++i) {
2860 diag = kdb_parse(kdb_cmds[i]);
2861 if (diag)
2862 kdb_printf("kdb command %s failed, kdb diag %d\n",
2863 kdb_cmds[i], diag);
2864 }
2865 if (defcmd_in_progress) {
2866 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2867 kdb_parse("endefcmd");
2868 }
2869}
2870
2871/* Initialize kdb_printf, breakpoint tables and kdb state */
2872void __init kdb_init(int lvl)
2873{
2874 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2875 int i;
2876
2877 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2878 return;
2879 for (i = kdb_init_lvl; i < lvl; i++) {
2880 switch (i) {
2881 case KDB_NOT_INITIALIZED:
2882 kdb_inittab(); /* Initialize Command Table */
2883 kdb_initbptab(); /* Initialize Breakpoints */
2884 break;
2885 case KDB_INIT_EARLY:
2886 kdb_cmd_init(); /* Build kdb_cmds tables */
2887 break;
2888 }
2889 }
2890 kdb_init_lvl = lvl;
2891}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
25#include <linux/atomic.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
53char kdb_grep_string[KDB_GREP_STRLEN];
54int kdb_grepping_flag;
55EXPORT_SYMBOL(kdb_grepping_flag);
56int kdb_grep_leading;
57int kdb_grep_trailing;
58
59/*
60 * Kernel debugger state flags
61 */
62int kdb_flags;
63
64/*
65 * kdb_lock protects updates to kdb_initial_cpu. Used to
66 * single thread processors through the kernel debugger.
67 */
68int kdb_initial_cpu = -1; /* cpu number that owns kdb */
69int kdb_nextline = 1;
70int kdb_state; /* General KDB state */
71
72struct task_struct *kdb_current_task;
73EXPORT_SYMBOL(kdb_current_task);
74struct pt_regs *kdb_current_regs;
75
76const char *kdb_diemsg;
77static int kdb_go_count;
78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
79static unsigned int kdb_continue_catastrophic =
80 CONFIG_KDB_CONTINUE_CATASTROPHIC;
81#else
82static unsigned int kdb_continue_catastrophic;
83#endif
84
85/* kdb_commands describes the available commands. */
86static kdbtab_t *kdb_commands;
87#define KDB_BASE_CMD_MAX 50
88static int kdb_max_commands = KDB_BASE_CMD_MAX;
89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
90#define for_each_kdbcmd(cmd, num) \
91 for ((cmd) = kdb_base_commands, (num) = 0; \
92 num < kdb_max_commands; \
93 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
94
95typedef struct _kdbmsg {
96 int km_diag; /* kdb diagnostic */
97 char *km_msg; /* Corresponding message text */
98} kdbmsg_t;
99
100#define KDBMSG(msgnum, text) \
101 { KDB_##msgnum, text }
102
103static kdbmsg_t kdbmsgs[] = {
104 KDBMSG(NOTFOUND, "Command Not Found"),
105 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
106 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
107 "8 is only allowed on 64 bit systems"),
108 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
109 KDBMSG(NOTENV, "Cannot find environment variable"),
110 KDBMSG(NOENVVALUE, "Environment variable should have value"),
111 KDBMSG(NOTIMP, "Command not implemented"),
112 KDBMSG(ENVFULL, "Environment full"),
113 KDBMSG(ENVBUFFULL, "Environment buffer full"),
114 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
115#ifdef CONFIG_CPU_XSCALE
116 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
117#else
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
119#endif
120 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
121 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
122 KDBMSG(BADMODE, "Invalid IDMODE"),
123 KDBMSG(BADINT, "Illegal numeric value"),
124 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
125 KDBMSG(BADREG, "Invalid register name"),
126 KDBMSG(BADCPUNUM, "Invalid cpu number"),
127 KDBMSG(BADLENGTH, "Invalid length field"),
128 KDBMSG(NOBP, "No Breakpoint exists"),
129 KDBMSG(BADADDR, "Invalid address"),
130 KDBMSG(NOPERM, "Permission denied"),
131};
132#undef KDBMSG
133
134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
135
136
137/*
138 * Initial environment. This is all kept static and local to
139 * this file. We don't want to rely on the memory allocation
140 * mechanisms in the kernel, so we use a very limited allocate-only
141 * heap for new and altered environment variables. The entire
142 * environment is limited to a fixed number of entries (add more
143 * to __env[] if required) and a fixed amount of heap (add more to
144 * KDB_ENVBUFSIZE if required).
145 */
146
147static char *__env[] = {
148#if defined(CONFIG_SMP)
149 "PROMPT=[%d]kdb> ",
150#else
151 "PROMPT=kdb> ",
152#endif
153 "MOREPROMPT=more> ",
154 "RADIX=16",
155 "MDCOUNT=8", /* lines of md output */
156 KDB_PLATFORM_ENV,
157 "DTABCOUNT=30",
158 "NOSECT=1",
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183};
184
185static const int __nenv = ARRAY_SIZE(__env);
186
187struct task_struct *kdb_curr_task(int cpu)
188{
189 struct task_struct *p = curr_task(cpu);
190#ifdef _TIF_MCA_INIT
191 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
192 p = krp->p;
193#endif
194 return p;
195}
196
197/*
198 * Check whether the flags of the current command and the permissions
199 * of the kdb console has allow a command to be run.
200 */
201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
202 bool no_args)
203{
204 /* permissions comes from userspace so needs massaging slightly */
205 permissions &= KDB_ENABLE_MASK;
206 permissions |= KDB_ENABLE_ALWAYS_SAFE;
207
208 /* some commands change group when launched with no arguments */
209 if (no_args)
210 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
211
212 flags |= KDB_ENABLE_ALL;
213
214 return permissions & flags;
215}
216
217/*
218 * kdbgetenv - This function will return the character string value of
219 * an environment variable.
220 * Parameters:
221 * match A character string representing an environment variable.
222 * Returns:
223 * NULL No environment variable matches 'match'
224 * char* Pointer to string value of environment variable.
225 */
226char *kdbgetenv(const char *match)
227{
228 char **ep = __env;
229 int matchlen = strlen(match);
230 int i;
231
232 for (i = 0; i < __nenv; i++) {
233 char *e = *ep++;
234
235 if (!e)
236 continue;
237
238 if ((strncmp(match, e, matchlen) == 0)
239 && ((e[matchlen] == '\0')
240 || (e[matchlen] == '='))) {
241 char *cp = strchr(e, '=');
242 return cp ? ++cp : "";
243 }
244 }
245 return NULL;
246}
247
248/*
249 * kdballocenv - This function is used to allocate bytes for
250 * environment entries.
251 * Parameters:
252 * match A character string representing a numeric value
253 * Outputs:
254 * *value the unsigned long representation of the env variable 'match'
255 * Returns:
256 * Zero on success, a kdb diagnostic on failure.
257 * Remarks:
258 * We use a static environment buffer (envbuffer) to hold the values
259 * of dynamically generated environment variables (see kdb_set). Buffer
260 * space once allocated is never free'd, so over time, the amount of space
261 * (currently 512 bytes) will be exhausted if env variables are changed
262 * frequently.
263 */
264static char *kdballocenv(size_t bytes)
265{
266#define KDB_ENVBUFSIZE 512
267 static char envbuffer[KDB_ENVBUFSIZE];
268 static int envbufsize;
269 char *ep = NULL;
270
271 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
272 ep = &envbuffer[envbufsize];
273 envbufsize += bytes;
274 }
275 return ep;
276}
277
278/*
279 * kdbgetulenv - This function will return the value of an unsigned
280 * long-valued environment variable.
281 * Parameters:
282 * match A character string representing a numeric value
283 * Outputs:
284 * *value the unsigned long represntation of the env variable 'match'
285 * Returns:
286 * Zero on success, a kdb diagnostic on failure.
287 */
288static int kdbgetulenv(const char *match, unsigned long *value)
289{
290 char *ep;
291
292 ep = kdbgetenv(match);
293 if (!ep)
294 return KDB_NOTENV;
295 if (strlen(ep) == 0)
296 return KDB_NOENVVALUE;
297
298 *value = simple_strtoul(ep, NULL, 0);
299
300 return 0;
301}
302
303/*
304 * kdbgetintenv - This function will return the value of an
305 * integer-valued environment variable.
306 * Parameters:
307 * match A character string representing an integer-valued env variable
308 * Outputs:
309 * *value the integer representation of the environment variable 'match'
310 * Returns:
311 * Zero on success, a kdb diagnostic on failure.
312 */
313int kdbgetintenv(const char *match, int *value)
314{
315 unsigned long val;
316 int diag;
317
318 diag = kdbgetulenv(match, &val);
319 if (!diag)
320 *value = (int) val;
321 return diag;
322}
323
324/*
325 * kdbgetularg - This function will convert a numeric string into an
326 * unsigned long value.
327 * Parameters:
328 * arg A character string representing a numeric value
329 * Outputs:
330 * *value the unsigned long represntation of arg.
331 * Returns:
332 * Zero on success, a kdb diagnostic on failure.
333 */
334int kdbgetularg(const char *arg, unsigned long *value)
335{
336 char *endp;
337 unsigned long val;
338
339 val = simple_strtoul(arg, &endp, 0);
340
341 if (endp == arg) {
342 /*
343 * Also try base 16, for us folks too lazy to type the
344 * leading 0x...
345 */
346 val = simple_strtoul(arg, &endp, 16);
347 if (endp == arg)
348 return KDB_BADINT;
349 }
350
351 *value = val;
352
353 return 0;
354}
355
356int kdbgetu64arg(const char *arg, u64 *value)
357{
358 char *endp;
359 u64 val;
360
361 val = simple_strtoull(arg, &endp, 0);
362
363 if (endp == arg) {
364
365 val = simple_strtoull(arg, &endp, 16);
366 if (endp == arg)
367 return KDB_BADINT;
368 }
369
370 *value = val;
371
372 return 0;
373}
374
375/*
376 * kdb_set - This function implements the 'set' command. Alter an
377 * existing environment variable or create a new one.
378 */
379int kdb_set(int argc, const char **argv)
380{
381 int i;
382 char *ep;
383 size_t varlen, vallen;
384
385 /*
386 * we can be invoked two ways:
387 * set var=value argv[1]="var", argv[2]="value"
388 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
389 * - if the latter, shift 'em down.
390 */
391 if (argc == 3) {
392 argv[2] = argv[3];
393 argc--;
394 }
395
396 if (argc != 2)
397 return KDB_ARGCOUNT;
398
399 /*
400 * Check for internal variables
401 */
402 if (strcmp(argv[1], "KDBDEBUG") == 0) {
403 unsigned int debugflags;
404 char *cp;
405
406 debugflags = simple_strtoul(argv[2], &cp, 0);
407 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
408 kdb_printf("kdb: illegal debug flags '%s'\n",
409 argv[2]);
410 return 0;
411 }
412 kdb_flags = (kdb_flags &
413 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
414 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
415
416 return 0;
417 }
418
419 /*
420 * Tokenizer squashed the '=' sign. argv[1] is variable
421 * name, argv[2] = value.
422 */
423 varlen = strlen(argv[1]);
424 vallen = strlen(argv[2]);
425 ep = kdballocenv(varlen + vallen + 2);
426 if (ep == (char *)0)
427 return KDB_ENVBUFFULL;
428
429 sprintf(ep, "%s=%s", argv[1], argv[2]);
430
431 ep[varlen+vallen+1] = '\0';
432
433 for (i = 0; i < __nenv; i++) {
434 if (__env[i]
435 && ((strncmp(__env[i], argv[1], varlen) == 0)
436 && ((__env[i][varlen] == '\0')
437 || (__env[i][varlen] == '=')))) {
438 __env[i] = ep;
439 return 0;
440 }
441 }
442
443 /*
444 * Wasn't existing variable. Fit into slot.
445 */
446 for (i = 0; i < __nenv-1; i++) {
447 if (__env[i] == (char *)0) {
448 __env[i] = ep;
449 return 0;
450 }
451 }
452
453 return KDB_ENVFULL;
454}
455
456static int kdb_check_regs(void)
457{
458 if (!kdb_current_regs) {
459 kdb_printf("No current kdb registers."
460 " You may need to select another task\n");
461 return KDB_BADREG;
462 }
463 return 0;
464}
465
466/*
467 * kdbgetaddrarg - This function is responsible for parsing an
468 * address-expression and returning the value of the expression,
469 * symbol name, and offset to the caller.
470 *
471 * The argument may consist of a numeric value (decimal or
472 * hexidecimal), a symbol name, a register name (preceded by the
473 * percent sign), an environment variable with a numeric value
474 * (preceded by a dollar sign) or a simple arithmetic expression
475 * consisting of a symbol name, +/-, and a numeric constant value
476 * (offset).
477 * Parameters:
478 * argc - count of arguments in argv
479 * argv - argument vector
480 * *nextarg - index to next unparsed argument in argv[]
481 * regs - Register state at time of KDB entry
482 * Outputs:
483 * *value - receives the value of the address-expression
484 * *offset - receives the offset specified, if any
485 * *name - receives the symbol name, if any
486 * *nextarg - index to next unparsed argument in argv[]
487 * Returns:
488 * zero is returned on success, a kdb diagnostic code is
489 * returned on error.
490 */
491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
492 unsigned long *value, long *offset,
493 char **name)
494{
495 unsigned long addr;
496 unsigned long off = 0;
497 int positive;
498 int diag;
499 int found = 0;
500 char *symname;
501 char symbol = '\0';
502 char *cp;
503 kdb_symtab_t symtab;
504
505 /*
506 * If the enable flags prohibit both arbitrary memory access
507 * and flow control then there are no reasonable grounds to
508 * provide symbol lookup.
509 */
510 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
511 kdb_cmd_enabled, false))
512 return KDB_NOPERM;
513
514 /*
515 * Process arguments which follow the following syntax:
516 *
517 * symbol | numeric-address [+/- numeric-offset]
518 * %register
519 * $environment-variable
520 */
521
522 if (*nextarg > argc)
523 return KDB_ARGCOUNT;
524
525 symname = (char *)argv[*nextarg];
526
527 /*
528 * If there is no whitespace between the symbol
529 * or address and the '+' or '-' symbols, we
530 * remember the character and replace it with a
531 * null so the symbol/value can be properly parsed
532 */
533 cp = strpbrk(symname, "+-");
534 if (cp != NULL) {
535 symbol = *cp;
536 *cp++ = '\0';
537 }
538
539 if (symname[0] == '$') {
540 diag = kdbgetulenv(&symname[1], &addr);
541 if (diag)
542 return diag;
543 } else if (symname[0] == '%') {
544 diag = kdb_check_regs();
545 if (diag)
546 return diag;
547 /* Implement register values with % at a later time as it is
548 * arch optional.
549 */
550 return KDB_NOTIMP;
551 } else {
552 found = kdbgetsymval(symname, &symtab);
553 if (found) {
554 addr = symtab.sym_start;
555 } else {
556 diag = kdbgetularg(argv[*nextarg], &addr);
557 if (diag)
558 return diag;
559 }
560 }
561
562 if (!found)
563 found = kdbnearsym(addr, &symtab);
564
565 (*nextarg)++;
566
567 if (name)
568 *name = symname;
569 if (value)
570 *value = addr;
571 if (offset && name && *name)
572 *offset = addr - symtab.sym_start;
573
574 if ((*nextarg > argc)
575 && (symbol == '\0'))
576 return 0;
577
578 /*
579 * check for +/- and offset
580 */
581
582 if (symbol == '\0') {
583 if ((argv[*nextarg][0] != '+')
584 && (argv[*nextarg][0] != '-')) {
585 /*
586 * Not our argument. Return.
587 */
588 return 0;
589 } else {
590 positive = (argv[*nextarg][0] == '+');
591 (*nextarg)++;
592 }
593 } else
594 positive = (symbol == '+');
595
596 /*
597 * Now there must be an offset!
598 */
599 if ((*nextarg > argc)
600 && (symbol == '\0')) {
601 return KDB_INVADDRFMT;
602 }
603
604 if (!symbol) {
605 cp = (char *)argv[*nextarg];
606 (*nextarg)++;
607 }
608
609 diag = kdbgetularg(cp, &off);
610 if (diag)
611 return diag;
612
613 if (!positive)
614 off = -off;
615
616 if (offset)
617 *offset += off;
618
619 if (value)
620 *value += off;
621
622 return 0;
623}
624
625static void kdb_cmderror(int diag)
626{
627 int i;
628
629 if (diag >= 0) {
630 kdb_printf("no error detected (diagnostic is %d)\n", diag);
631 return;
632 }
633
634 for (i = 0; i < __nkdb_err; i++) {
635 if (kdbmsgs[i].km_diag == diag) {
636 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
637 return;
638 }
639 }
640
641 kdb_printf("Unknown diag %d\n", -diag);
642}
643
644/*
645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
646 * command which defines one command as a set of other commands,
647 * terminated by endefcmd. kdb_defcmd processes the initial
648 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
649 * the following commands until 'endefcmd'.
650 * Inputs:
651 * argc argument count
652 * argv argument vector
653 * Returns:
654 * zero for success, a kdb diagnostic if error
655 */
656struct defcmd_set {
657 int count;
658 int usable;
659 char *name;
660 char *usage;
661 char *help;
662 char **command;
663};
664static struct defcmd_set *defcmd_set;
665static int defcmd_set_count;
666static int defcmd_in_progress;
667
668/* Forward references */
669static int kdb_exec_defcmd(int argc, const char **argv);
670
671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
672{
673 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
674 char **save_command = s->command;
675 if (strcmp(argv0, "endefcmd") == 0) {
676 defcmd_in_progress = 0;
677 if (!s->count)
678 s->usable = 0;
679 if (s->usable)
680 /* macros are always safe because when executed each
681 * internal command re-enters kdb_parse() and is
682 * safety checked individually.
683 */
684 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
685 s->help, 0,
686 KDB_ENABLE_ALWAYS_SAFE);
687 return 0;
688 }
689 if (!s->usable)
690 return KDB_NOTIMP;
691 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
692 if (!s->command) {
693 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
694 cmdstr);
695 s->usable = 0;
696 return KDB_NOTIMP;
697 }
698 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
699 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
700 kfree(save_command);
701 return 0;
702}
703
704static int kdb_defcmd(int argc, const char **argv)
705{
706 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
707 if (defcmd_in_progress) {
708 kdb_printf("kdb: nested defcmd detected, assuming missing "
709 "endefcmd\n");
710 kdb_defcmd2("endefcmd", "endefcmd");
711 }
712 if (argc == 0) {
713 int i;
714 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
715 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
716 s->usage, s->help);
717 for (i = 0; i < s->count; ++i)
718 kdb_printf("%s", s->command[i]);
719 kdb_printf("endefcmd\n");
720 }
721 return 0;
722 }
723 if (argc != 3)
724 return KDB_ARGCOUNT;
725 if (in_dbg_master()) {
726 kdb_printf("Command only available during kdb_init()\n");
727 return KDB_NOTIMP;
728 }
729 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
730 GFP_KDB);
731 if (!defcmd_set)
732 goto fail_defcmd;
733 memcpy(defcmd_set, save_defcmd_set,
734 defcmd_set_count * sizeof(*defcmd_set));
735 s = defcmd_set + defcmd_set_count;
736 memset(s, 0, sizeof(*s));
737 s->usable = 1;
738 s->name = kdb_strdup(argv[1], GFP_KDB);
739 if (!s->name)
740 goto fail_name;
741 s->usage = kdb_strdup(argv[2], GFP_KDB);
742 if (!s->usage)
743 goto fail_usage;
744 s->help = kdb_strdup(argv[3], GFP_KDB);
745 if (!s->help)
746 goto fail_help;
747 if (s->usage[0] == '"') {
748 strcpy(s->usage, argv[2]+1);
749 s->usage[strlen(s->usage)-1] = '\0';
750 }
751 if (s->help[0] == '"') {
752 strcpy(s->help, argv[3]+1);
753 s->help[strlen(s->help)-1] = '\0';
754 }
755 ++defcmd_set_count;
756 defcmd_in_progress = 1;
757 kfree(save_defcmd_set);
758 return 0;
759fail_help:
760 kfree(s->usage);
761fail_usage:
762 kfree(s->name);
763fail_name:
764 kfree(defcmd_set);
765fail_defcmd:
766 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
767 defcmd_set = save_defcmd_set;
768 return KDB_NOTIMP;
769}
770
771/*
772 * kdb_exec_defcmd - Execute the set of commands associated with this
773 * defcmd name.
774 * Inputs:
775 * argc argument count
776 * argv argument vector
777 * Returns:
778 * zero for success, a kdb diagnostic if error
779 */
780static int kdb_exec_defcmd(int argc, const char **argv)
781{
782 int i, ret;
783 struct defcmd_set *s;
784 if (argc != 0)
785 return KDB_ARGCOUNT;
786 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
787 if (strcmp(s->name, argv[0]) == 0)
788 break;
789 }
790 if (i == defcmd_set_count) {
791 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
792 argv[0]);
793 return KDB_NOTIMP;
794 }
795 for (i = 0; i < s->count; ++i) {
796 /* Recursive use of kdb_parse, do not use argv after
797 * this point */
798 argv = NULL;
799 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
800 ret = kdb_parse(s->command[i]);
801 if (ret)
802 return ret;
803 }
804 return 0;
805}
806
807/* Command history */
808#define KDB_CMD_HISTORY_COUNT 32
809#define CMD_BUFLEN 200 /* kdb_printf: max printline
810 * size == 256 */
811static unsigned int cmd_head, cmd_tail;
812static unsigned int cmdptr;
813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
814static char cmd_cur[CMD_BUFLEN];
815
816/*
817 * The "str" argument may point to something like | grep xyz
818 */
819static void parse_grep(const char *str)
820{
821 int len;
822 char *cp = (char *)str, *cp2;
823
824 /* sanity check: we should have been called with the \ first */
825 if (*cp != '|')
826 return;
827 cp++;
828 while (isspace(*cp))
829 cp++;
830 if (strncmp(cp, "grep ", 5)) {
831 kdb_printf("invalid 'pipe', see grephelp\n");
832 return;
833 }
834 cp += 5;
835 while (isspace(*cp))
836 cp++;
837 cp2 = strchr(cp, '\n');
838 if (cp2)
839 *cp2 = '\0'; /* remove the trailing newline */
840 len = strlen(cp);
841 if (len == 0) {
842 kdb_printf("invalid 'pipe', see grephelp\n");
843 return;
844 }
845 /* now cp points to a nonzero length search string */
846 if (*cp == '"') {
847 /* allow it be "x y z" by removing the "'s - there must
848 be two of them */
849 cp++;
850 cp2 = strchr(cp, '"');
851 if (!cp2) {
852 kdb_printf("invalid quoted string, see grephelp\n");
853 return;
854 }
855 *cp2 = '\0'; /* end the string where the 2nd " was */
856 }
857 kdb_grep_leading = 0;
858 if (*cp == '^') {
859 kdb_grep_leading = 1;
860 cp++;
861 }
862 len = strlen(cp);
863 kdb_grep_trailing = 0;
864 if (*(cp+len-1) == '$') {
865 kdb_grep_trailing = 1;
866 *(cp+len-1) = '\0';
867 }
868 len = strlen(cp);
869 if (!len)
870 return;
871 if (len >= KDB_GREP_STRLEN) {
872 kdb_printf("search string too long\n");
873 return;
874 }
875 strcpy(kdb_grep_string, cp);
876 kdb_grepping_flag++;
877 return;
878}
879
880/*
881 * kdb_parse - Parse the command line, search the command table for a
882 * matching command and invoke the command function. This
883 * function may be called recursively, if it is, the second call
884 * will overwrite argv and cbuf. It is the caller's
885 * responsibility to save their argv if they recursively call
886 * kdb_parse().
887 * Parameters:
888 * cmdstr The input command line to be parsed.
889 * regs The registers at the time kdb was entered.
890 * Returns:
891 * Zero for success, a kdb diagnostic if failure.
892 * Remarks:
893 * Limited to 20 tokens.
894 *
895 * Real rudimentary tokenization. Basically only whitespace
896 * is considered a token delimeter (but special consideration
897 * is taken of the '=' sign as used by the 'set' command).
898 *
899 * The algorithm used to tokenize the input string relies on
900 * there being at least one whitespace (or otherwise useless)
901 * character between tokens as the character immediately following
902 * the token is altered in-place to a null-byte to terminate the
903 * token string.
904 */
905
906#define MAXARGC 20
907
908int kdb_parse(const char *cmdstr)
909{
910 static char *argv[MAXARGC];
911 static int argc;
912 static char cbuf[CMD_BUFLEN+2];
913 char *cp;
914 char *cpp, quoted;
915 kdbtab_t *tp;
916 int i, escaped, ignore_errors = 0, check_grep = 0;
917
918 /*
919 * First tokenize the command string.
920 */
921 cp = (char *)cmdstr;
922
923 if (KDB_FLAG(CMD_INTERRUPT)) {
924 /* Previous command was interrupted, newline must not
925 * repeat the command */
926 KDB_FLAG_CLEAR(CMD_INTERRUPT);
927 KDB_STATE_SET(PAGER);
928 argc = 0; /* no repeat */
929 }
930
931 if (*cp != '\n' && *cp != '\0') {
932 argc = 0;
933 cpp = cbuf;
934 while (*cp) {
935 /* skip whitespace */
936 while (isspace(*cp))
937 cp++;
938 if ((*cp == '\0') || (*cp == '\n') ||
939 (*cp == '#' && !defcmd_in_progress))
940 break;
941 /* special case: check for | grep pattern */
942 if (*cp == '|') {
943 check_grep++;
944 break;
945 }
946 if (cpp >= cbuf + CMD_BUFLEN) {
947 kdb_printf("kdb_parse: command buffer "
948 "overflow, command ignored\n%s\n",
949 cmdstr);
950 return KDB_NOTFOUND;
951 }
952 if (argc >= MAXARGC - 1) {
953 kdb_printf("kdb_parse: too many arguments, "
954 "command ignored\n%s\n", cmdstr);
955 return KDB_NOTFOUND;
956 }
957 argv[argc++] = cpp;
958 escaped = 0;
959 quoted = '\0';
960 /* Copy to next unquoted and unescaped
961 * whitespace or '=' */
962 while (*cp && *cp != '\n' &&
963 (escaped || quoted || !isspace(*cp))) {
964 if (cpp >= cbuf + CMD_BUFLEN)
965 break;
966 if (escaped) {
967 escaped = 0;
968 *cpp++ = *cp++;
969 continue;
970 }
971 if (*cp == '\\') {
972 escaped = 1;
973 ++cp;
974 continue;
975 }
976 if (*cp == quoted)
977 quoted = '\0';
978 else if (*cp == '\'' || *cp == '"')
979 quoted = *cp;
980 *cpp = *cp++;
981 if (*cpp == '=' && !quoted)
982 break;
983 ++cpp;
984 }
985 *cpp++ = '\0'; /* Squash a ws or '=' character */
986 }
987 }
988 if (!argc)
989 return 0;
990 if (check_grep)
991 parse_grep(cp);
992 if (defcmd_in_progress) {
993 int result = kdb_defcmd2(cmdstr, argv[0]);
994 if (!defcmd_in_progress) {
995 argc = 0; /* avoid repeat on endefcmd */
996 *(argv[0]) = '\0';
997 }
998 return result;
999 }
1000 if (argv[0][0] == '-' && argv[0][1] &&
1001 (argv[0][1] < '0' || argv[0][1] > '9')) {
1002 ignore_errors = 1;
1003 ++argv[0];
1004 }
1005
1006 for_each_kdbcmd(tp, i) {
1007 if (tp->cmd_name) {
1008 /*
1009 * If this command is allowed to be abbreviated,
1010 * check to see if this is it.
1011 */
1012
1013 if (tp->cmd_minlen
1014 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015 if (strncmp(argv[0],
1016 tp->cmd_name,
1017 tp->cmd_minlen) == 0) {
1018 break;
1019 }
1020 }
1021
1022 if (strcmp(argv[0], tp->cmd_name) == 0)
1023 break;
1024 }
1025 }
1026
1027 /*
1028 * If we don't find a command by this name, see if the first
1029 * few characters of this match any of the known commands.
1030 * e.g., md1c20 should match md.
1031 */
1032 if (i == kdb_max_commands) {
1033 for_each_kdbcmd(tp, i) {
1034 if (tp->cmd_name) {
1035 if (strncmp(argv[0],
1036 tp->cmd_name,
1037 strlen(tp->cmd_name)) == 0) {
1038 break;
1039 }
1040 }
1041 }
1042 }
1043
1044 if (i < kdb_max_commands) {
1045 int result;
1046
1047 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048 return KDB_NOPERM;
1049
1050 KDB_STATE_SET(CMD);
1051 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052 if (result && ignore_errors && result > KDB_CMD_GO)
1053 result = 0;
1054 KDB_STATE_CLEAR(CMD);
1055
1056 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057 return result;
1058
1059 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060 if (argv[argc])
1061 *(argv[argc]) = '\0';
1062 return result;
1063 }
1064
1065 /*
1066 * If the input with which we were presented does not
1067 * map to an existing command, attempt to parse it as an
1068 * address argument and display the result. Useful for
1069 * obtaining the address of a variable, or the nearest symbol
1070 * to an address contained in a register.
1071 */
1072 {
1073 unsigned long value;
1074 char *name = NULL;
1075 long offset;
1076 int nextarg = 0;
1077
1078 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079 &value, &offset, &name)) {
1080 return KDB_NOTFOUND;
1081 }
1082
1083 kdb_printf("%s = ", argv[0]);
1084 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085 kdb_printf("\n");
1086 return 0;
1087 }
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P 16
1094#define CTRL_N 14
1095
1096 /* initial situation */
1097 if (cmd_head == cmd_tail)
1098 return 0;
1099 switch (*cmd) {
1100 case CTRL_P:
1101 if (cmdptr != cmd_tail)
1102 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1104 return 1;
1105 case CTRL_N:
1106 if (cmdptr != cmd_head)
1107 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109 return 1;
1110 }
1111 return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command. Reboot
1116 * the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120 emergency_restart();
1121 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122 while (1)
1123 cpu_relax();
1124 /* NOTREACHED */
1125 return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130 int old_lvl = console_loglevel;
1131 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132 kdb_trap_printk++;
1133 show_regs(regs);
1134 kdb_trap_printk--;
1135 kdb_printf("\n");
1136 console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141 kdb_current_task = p;
1142
1143 if (kdb_task_has_cpu(p)) {
1144 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145 return;
1146 }
1147 kdb_current_regs = NULL;
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb. This routine is invoked on a
1152 * specific processor, it is not global. The main kdb() routine
1153 * ensures that only one processor at a time is in this routine.
1154 * This code is called with the real reason code on the first
1155 * entry to a kdb session, thereafter it is called with reason
1156 * SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 * reason The reason KDB was invoked
1159 * error The hardware-defined error code
1160 * regs The exception frame at time of fault/breakpoint.
1161 * db_result Result code from the break or debug point.
1162 * Returns:
1163 * 0 KDB was invoked for an event which it wasn't responsible
1164 * 1 KDB handled the event for which it was invoked.
1165 * KDB_CMD_GO User typed 'go'.
1166 * KDB_CMD_CPU User switched to another cpu.
1167 * KDB_CMD_SS Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170 kdb_dbtrap_t db_result)
1171{
1172 char *cmdbuf;
1173 int diag;
1174 struct task_struct *kdb_current =
1175 kdb_curr_task(raw_smp_processor_id());
1176
1177 KDB_DEBUG_STATE("kdb_local 1", reason);
1178 kdb_go_count = 0;
1179 if (reason == KDB_REASON_DEBUG) {
1180 /* special case below */
1181 } else {
1182 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183 kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185 kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187 }
1188
1189 switch (reason) {
1190 case KDB_REASON_DEBUG:
1191 {
1192 /*
1193 * If re-entering kdb after a single step
1194 * command, don't print the message.
1195 */
1196 switch (db_result) {
1197 case KDB_DB_BPT:
1198 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199 kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201 kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204 instruction_pointer(regs));
1205 break;
1206 case KDB_DB_SS:
1207 break;
1208 case KDB_DB_SSBPT:
1209 KDB_DEBUG_STATE("kdb_local 4", reason);
1210 return 1; /* kdba_db_trap did the work */
1211 default:
1212 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213 db_result);
1214 break;
1215 }
1216
1217 }
1218 break;
1219 case KDB_REASON_ENTER:
1220 if (KDB_STATE(KEYBOARD))
1221 kdb_printf("due to Keyboard Entry\n");
1222 else
1223 kdb_printf("due to KDB_ENTER()\n");
1224 break;
1225 case KDB_REASON_KEYBOARD:
1226 KDB_STATE_SET(KEYBOARD);
1227 kdb_printf("due to Keyboard Entry\n");
1228 break;
1229 case KDB_REASON_ENTER_SLAVE:
1230 /* drop through, slaves only get released via cpu switch */
1231 case KDB_REASON_SWITCH:
1232 kdb_printf("due to cpu switch\n");
1233 break;
1234 case KDB_REASON_OOPS:
1235 kdb_printf("Oops: %s\n", kdb_diemsg);
1236 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237 instruction_pointer(regs));
1238 kdb_dumpregs(regs);
1239 break;
1240 case KDB_REASON_SYSTEM_NMI:
1241 kdb_printf("due to System NonMaskable Interrupt\n");
1242 break;
1243 case KDB_REASON_NMI:
1244 kdb_printf("due to NonMaskable Interrupt @ "
1245 kdb_machreg_fmt "\n",
1246 instruction_pointer(regs));
1247 break;
1248 case KDB_REASON_SSTEP:
1249 case KDB_REASON_BREAK:
1250 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251 reason == KDB_REASON_BREAK ?
1252 "Breakpoint" : "SS trap", instruction_pointer(regs));
1253 /*
1254 * Determine if this breakpoint is one that we
1255 * are interested in.
1256 */
1257 if (db_result != KDB_DB_BPT) {
1258 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259 db_result);
1260 KDB_DEBUG_STATE("kdb_local 6", reason);
1261 return 0; /* Not for us, dismiss it */
1262 }
1263 break;
1264 case KDB_REASON_RECURSE:
1265 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266 instruction_pointer(regs));
1267 break;
1268 default:
1269 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270 KDB_DEBUG_STATE("kdb_local 8", reason);
1271 return 0; /* Not for us, dismiss it */
1272 }
1273
1274 while (1) {
1275 /*
1276 * Initialize pager context.
1277 */
1278 kdb_nextline = 1;
1279 KDB_STATE_CLEAR(SUPPRESS);
1280 kdb_grepping_flag = 0;
1281 /* ensure the old search does not leak into '/' commands */
1282 kdb_grep_string[0] = '\0';
1283
1284 cmdbuf = cmd_cur;
1285 *cmdbuf = '\0';
1286 *(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291 raw_smp_processor_id());
1292#else
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295 if (defcmd_in_progress)
1296 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298 /*
1299 * Fetch command from keyboard
1300 */
1301 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302 if (*cmdbuf != '\n') {
1303 if (*cmdbuf < 32) {
1304 if (cmdptr == cmd_head) {
1305 strncpy(cmd_hist[cmd_head], cmd_cur,
1306 CMD_BUFLEN);
1307 *(cmd_hist[cmd_head] +
1308 strlen(cmd_hist[cmd_head])-1) = '\0';
1309 }
1310 if (!handle_ctrl_cmd(cmdbuf))
1311 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312 cmdbuf = cmd_cur;
1313 goto do_full_getstr;
1314 } else {
1315 strncpy(cmd_hist[cmd_head], cmd_cur,
1316 CMD_BUFLEN);
1317 }
1318
1319 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320 if (cmd_head == cmd_tail)
1321 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322 }
1323
1324 cmdptr = cmd_head;
1325 diag = kdb_parse(cmdbuf);
1326 if (diag == KDB_NOTFOUND) {
1327 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328 diag = 0;
1329 }
1330 if (diag == KDB_CMD_GO
1331 || diag == KDB_CMD_CPU
1332 || diag == KDB_CMD_SS
1333 || diag == KDB_CMD_KGDB)
1334 break;
1335
1336 if (diag)
1337 kdb_cmderror(diag);
1338 }
1339 KDB_DEBUG_STATE("kdb_local 9", diag);
1340 return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 * for debugging.
1347 * Inputs:
1348 * text Identifies the debug point
1349 * value Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355 kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 * controlling cpu, all cpus are in this loop. One cpu is in
1361 * control and will issue the kdb prompt, the others will spin
1362 * until 'go' or cpu switch.
1363 *
1364 * To get a consistent view of the kernel stacks for all
1365 * processes, this routine is invoked from the main kdb code via
1366 * an architecture specific routine. kdba_main_loop is
1367 * responsible for making the kernel stacks consistent for all
1368 * processes, there should be no difference between a blocked
1369 * process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 * reason The reason KDB was invoked
1372 * error The hardware-defined error code
1373 * reason2 kdb's current reason code.
1374 * Initially error but can change
1375 * according to kdb state.
1376 * db_result Result code from break or debug point.
1377 * regs The exception frame at time of fault/breakpoint.
1378 * should always be valid.
1379 * Returns:
1380 * 0 KDB was invoked for an event which it wasn't responsible
1381 * 1 KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384 kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386 int result = 1;
1387 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1388 while (1) {
1389 /*
1390 * All processors except the one that is in control
1391 * will spin here.
1392 */
1393 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394 while (KDB_STATE(HOLD_CPU)) {
1395 /* state KDB is turned off by kdb_cpu to see if the
1396 * other cpus are still live, each cpu in this loop
1397 * turns it back on.
1398 */
1399 if (!KDB_STATE(KDB))
1400 KDB_STATE_SET(KDB);
1401 }
1402
1403 KDB_STATE_CLEAR(SUPPRESS);
1404 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405 if (KDB_STATE(LEAVING))
1406 break; /* Another cpu said 'go' */
1407 /* Still using kdb, this processor is in control */
1408 result = kdb_local(reason2, error, regs, db_result);
1409 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411 if (result == KDB_CMD_CPU)
1412 break;
1413
1414 if (result == KDB_CMD_SS) {
1415 KDB_STATE_SET(DOING_SS);
1416 break;
1417 }
1418
1419 if (result == KDB_CMD_KGDB) {
1420 if (!KDB_STATE(DOING_KGDB))
1421 kdb_printf("Entering please attach debugger "
1422 "or use $D#44+ or $3#33\n");
1423 break;
1424 }
1425 if (result && result != 1 && result != KDB_CMD_GO)
1426 kdb_printf("\nUnexpected kdb_local return code %d\n",
1427 result);
1428 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429 break;
1430 }
1431 if (KDB_STATE(DOING_SS))
1432 KDB_STATE_CLEAR(SSBPT);
1433
1434 /* Clean up any keyboard devices before leaving */
1435 kdb_kbd_cleanup_state();
1436
1437 return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 * mdr <addr arg>,<byte count>
1444 * Inputs:
1445 * addr Start address
1446 * count Number of bytes
1447 * Returns:
1448 * Always 0. Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452 unsigned char c;
1453 while (count--) {
1454 if (kdb_getarea(c, addr))
1455 return 0;
1456 kdb_printf("%02x", c);
1457 addr++;
1458 }
1459 kdb_printf("\n");
1460 return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 * 'md8' 'mdr' and 'mds' commands.
1466 *
1467 * md|mds [<addr arg> [<line count> [<radix>]]]
1468 * mdWcN [<addr arg> [<line count> [<radix>]]]
1469 * where W = is the width (1, 2, 4 or 8) and N is the count.
1470 * for eg., md1c20 reads 20 bytes, 1 at a time.
1471 * mdr <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474 int symbolic, int nosect, int bytesperword,
1475 int num, int repeat, int phys)
1476{
1477 /* print just one line of data */
1478 kdb_symtab_t symtab;
1479 char cbuf[32];
1480 char *c = cbuf;
1481 int i;
1482 unsigned long word;
1483
1484 memset(cbuf, '\0', sizeof(cbuf));
1485 if (phys)
1486 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487 else
1488 kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490 for (i = 0; i < num && repeat--; i++) {
1491 if (phys) {
1492 if (kdb_getphysword(&word, addr, bytesperword))
1493 break;
1494 } else if (kdb_getword(&word, addr, bytesperword))
1495 break;
1496 kdb_printf(fmtstr, word);
1497 if (symbolic)
1498 kdbnearsym(word, &symtab);
1499 else
1500 memset(&symtab, 0, sizeof(symtab));
1501 if (symtab.sym_name) {
1502 kdb_symbol_print(word, &symtab, 0);
1503 if (!nosect) {
1504 kdb_printf("\n");
1505 kdb_printf(" %s %s "
1506 kdb_machreg_fmt " "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt, symtab.mod_name,
1509 symtab.sec_name, symtab.sec_start,
1510 symtab.sym_start, symtab.sym_end);
1511 }
1512 addr += bytesperword;
1513 } else {
1514 union {
1515 u64 word;
1516 unsigned char c[8];
1517 } wc;
1518 unsigned char *cp;
1519#ifdef __BIG_ENDIAN
1520 cp = wc.c + 8 - bytesperword;
1521#else
1522 cp = wc.c;
1523#endif
1524 wc.word = word;
1525#define printable_char(c) \
1526 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527 switch (bytesperword) {
1528 case 8:
1529 *c++ = printable_char(*cp++);
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 addr += 4;
1534 case 4:
1535 *c++ = printable_char(*cp++);
1536 *c++ = printable_char(*cp++);
1537 addr += 2;
1538 case 2:
1539 *c++ = printable_char(*cp++);
1540 addr++;
1541 case 1:
1542 *c++ = printable_char(*cp++);
1543 addr++;
1544 break;
1545 }
1546#undef printable_char
1547 }
1548 }
1549 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550 " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555 static unsigned long last_addr;
1556 static int last_radix, last_bytesperword, last_repeat;
1557 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558 int nosect = 0;
1559 char fmtchar, fmtstr[64];
1560 unsigned long addr;
1561 unsigned long word;
1562 long offset = 0;
1563 int symbolic = 0;
1564 int valid = 0;
1565 int phys = 0;
1566
1567 kdbgetintenv("MDCOUNT", &mdcount);
1568 kdbgetintenv("RADIX", &radix);
1569 kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571 /* Assume 'md <addr>' and start with environment values */
1572 repeat = mdcount * 16 / bytesperword;
1573
1574 if (strcmp(argv[0], "mdr") == 0) {
1575 if (argc != 2)
1576 return KDB_ARGCOUNT;
1577 valid = 1;
1578 } else if (isdigit(argv[0][2])) {
1579 bytesperword = (int)(argv[0][2] - '0');
1580 if (bytesperword == 0) {
1581 bytesperword = last_bytesperword;
1582 if (bytesperword == 0)
1583 bytesperword = 4;
1584 }
1585 last_bytesperword = bytesperword;
1586 repeat = mdcount * 16 / bytesperword;
1587 if (!argv[0][3])
1588 valid = 1;
1589 else if (argv[0][3] == 'c' && argv[0][4]) {
1590 char *p;
1591 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592 mdcount = ((repeat * bytesperword) + 15) / 16;
1593 valid = !*p;
1594 }
1595 last_repeat = repeat;
1596 } else if (strcmp(argv[0], "md") == 0)
1597 valid = 1;
1598 else if (strcmp(argv[0], "mds") == 0)
1599 valid = 1;
1600 else if (strcmp(argv[0], "mdp") == 0) {
1601 phys = valid = 1;
1602 }
1603 if (!valid)
1604 return KDB_NOTFOUND;
1605
1606 if (argc == 0) {
1607 if (last_addr == 0)
1608 return KDB_ARGCOUNT;
1609 addr = last_addr;
1610 radix = last_radix;
1611 bytesperword = last_bytesperword;
1612 repeat = last_repeat;
1613 mdcount = ((repeat * bytesperword) + 15) / 16;
1614 }
1615
1616 if (argc) {
1617 unsigned long val;
1618 int diag, nextarg = 1;
1619 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620 &offset, NULL);
1621 if (diag)
1622 return diag;
1623 if (argc > nextarg+2)
1624 return KDB_ARGCOUNT;
1625
1626 if (argc >= nextarg) {
1627 diag = kdbgetularg(argv[nextarg], &val);
1628 if (!diag) {
1629 mdcount = (int) val;
1630 repeat = mdcount * 16 / bytesperword;
1631 }
1632 }
1633 if (argc >= nextarg+1) {
1634 diag = kdbgetularg(argv[nextarg+1], &val);
1635 if (!diag)
1636 radix = (int) val;
1637 }
1638 }
1639
1640 if (strcmp(argv[0], "mdr") == 0)
1641 return kdb_mdr(addr, mdcount);
1642
1643 switch (radix) {
1644 case 10:
1645 fmtchar = 'd';
1646 break;
1647 case 16:
1648 fmtchar = 'x';
1649 break;
1650 case 8:
1651 fmtchar = 'o';
1652 break;
1653 default:
1654 return KDB_BADRADIX;
1655 }
1656
1657 last_radix = radix;
1658
1659 if (bytesperword > KDB_WORD_SIZE)
1660 return KDB_BADWIDTH;
1661
1662 switch (bytesperword) {
1663 case 8:
1664 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665 break;
1666 case 4:
1667 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668 break;
1669 case 2:
1670 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671 break;
1672 case 1:
1673 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674 break;
1675 default:
1676 return KDB_BADWIDTH;
1677 }
1678
1679 last_repeat = repeat;
1680 last_bytesperword = bytesperword;
1681
1682 if (strcmp(argv[0], "mds") == 0) {
1683 symbolic = 1;
1684 /* Do not save these changes as last_*, they are temporary mds
1685 * overrides.
1686 */
1687 bytesperword = KDB_WORD_SIZE;
1688 repeat = mdcount;
1689 kdbgetintenv("NOSECT", &nosect);
1690 }
1691
1692 /* Round address down modulo BYTESPERWORD */
1693
1694 addr &= ~(bytesperword-1);
1695
1696 while (repeat > 0) {
1697 unsigned long a;
1698 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700 if (KDB_FLAG(CMD_INTERRUPT))
1701 return 0;
1702 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703 if (phys) {
1704 if (kdb_getphysword(&word, a, bytesperword)
1705 || word)
1706 break;
1707 } else if (kdb_getword(&word, a, bytesperword) || word)
1708 break;
1709 }
1710 n = min(num, repeat);
1711 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712 num, repeat, phys);
1713 addr += bytesperword * n;
1714 repeat -= n;
1715 z = (z + num - 1) / num;
1716 if (z > 2) {
1717 int s = num * (z-2);
1718 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719 " zero suppressed\n",
1720 addr, addr + bytesperword * s - 1);
1721 addr += bytesperword * s;
1722 repeat -= s;
1723 }
1724 }
1725 last_addr = addr;
1726
1727 return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 * mm address-expression new-value
1733 * Remarks:
1734 * mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738 int diag;
1739 unsigned long addr;
1740 long offset = 0;
1741 unsigned long contents;
1742 int nextarg;
1743 int width;
1744
1745 if (argv[0][2] && !isdigit(argv[0][2]))
1746 return KDB_NOTFOUND;
1747
1748 if (argc < 2)
1749 return KDB_ARGCOUNT;
1750
1751 nextarg = 1;
1752 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753 if (diag)
1754 return diag;
1755
1756 if (nextarg > argc)
1757 return KDB_ARGCOUNT;
1758 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759 if (diag)
1760 return diag;
1761
1762 if (nextarg != argc + 1)
1763 return KDB_ARGCOUNT;
1764
1765 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766 diag = kdb_putword(addr, contents, width);
1767 if (diag)
1768 return diag;
1769
1770 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772 return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 * go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781 unsigned long addr;
1782 int diag;
1783 int nextarg;
1784 long offset;
1785
1786 if (raw_smp_processor_id() != kdb_initial_cpu) {
1787 kdb_printf("go must execute on the entry cpu, "
1788 "please use \"cpu %d\" and then execute go\n",
1789 kdb_initial_cpu);
1790 return KDB_BADCPUNUM;
1791 }
1792 if (argc == 1) {
1793 nextarg = 1;
1794 diag = kdbgetaddrarg(argc, argv, &nextarg,
1795 &addr, &offset, NULL);
1796 if (diag)
1797 return diag;
1798 } else if (argc) {
1799 return KDB_ARGCOUNT;
1800 }
1801
1802 diag = KDB_CMD_GO;
1803 if (KDB_FLAG(CATASTROPHIC)) {
1804 kdb_printf("Catastrophic error detected\n");
1805 kdb_printf("kdb_continue_catastrophic=%d, ",
1806 kdb_continue_catastrophic);
1807 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808 kdb_printf("type go a second time if you really want "
1809 "to continue\n");
1810 return 0;
1811 }
1812 if (kdb_continue_catastrophic == 2) {
1813 kdb_printf("forcing reboot\n");
1814 kdb_reboot(0, NULL);
1815 }
1816 kdb_printf("attempting to continue\n");
1817 }
1818 return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826 int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828 int i;
1829 char *rname;
1830 int rsize;
1831 u64 reg64;
1832 u32 reg32;
1833 u16 reg16;
1834 u8 reg8;
1835
1836 if (len)
1837 return len;
1838
1839 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840 rsize = dbg_reg_def[i].size * 2;
1841 if (rsize > 16)
1842 rsize = 2;
1843 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844 len = 0;
1845 kdb_printf("\n");
1846 }
1847 if (len)
1848 len += kdb_printf(" ");
1849 switch(dbg_reg_def[i].size * 8) {
1850 case 8:
1851 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1852 if (!rname)
1853 break;
1854 len += kdb_printf("%s: %02x", rname, reg8);
1855 break;
1856 case 16:
1857 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1858 if (!rname)
1859 break;
1860 len += kdb_printf("%s: %04x", rname, reg16);
1861 break;
1862 case 32:
1863 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1864 if (!rname)
1865 break;
1866 len += kdb_printf("%s: %08x", rname, reg32);
1867 break;
1868 case 64:
1869 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %016llx", rname, reg64);
1873 break;
1874 default:
1875 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876 }
1877 }
1878 kdb_printf("\n");
1879#else
1880 if (len)
1881 return len;
1882
1883 kdb_dumpregs(kdb_current_regs);
1884#endif
1885 return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify) command.
1890 * rm register-name new-contents
1891 * Remarks:
1892 * Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897 int diag;
1898 const char *rname;
1899 int i;
1900 u64 reg64;
1901 u32 reg32;
1902 u16 reg16;
1903 u8 reg8;
1904
1905 if (argc != 2)
1906 return KDB_ARGCOUNT;
1907 /*
1908 * Allow presence or absence of leading '%' symbol.
1909 */
1910 rname = argv[1];
1911 if (*rname == '%')
1912 rname++;
1913
1914 diag = kdbgetu64arg(argv[2], ®64);
1915 if (diag)
1916 return diag;
1917
1918 diag = kdb_check_regs();
1919 if (diag)
1920 return diag;
1921
1922 diag = KDB_BADREG;
1923 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925 diag = 0;
1926 break;
1927 }
1928 }
1929 if (!diag) {
1930 switch(dbg_reg_def[i].size * 8) {
1931 case 8:
1932 reg8 = reg64;
1933 dbg_set_reg(i, ®8, kdb_current_regs);
1934 break;
1935 case 16:
1936 reg16 = reg64;
1937 dbg_set_reg(i, ®16, kdb_current_regs);
1938 break;
1939 case 32:
1940 reg32 = reg64;
1941 dbg_set_reg(i, ®32, kdb_current_regs);
1942 break;
1943 case 64:
1944 dbg_set_reg(i, ®64, kdb_current_regs);
1945 break;
1946 }
1947 }
1948 return diag;
1949#else
1950 kdb_printf("ERROR: Register set currently not implemented\n");
1951 return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 * sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963 bool check_mask =
1964 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966 if (argc != 1)
1967 return KDB_ARGCOUNT;
1968
1969 kdb_trap_printk++;
1970 __handle_sysrq(*argv[1], check_mask);
1971 kdb_trap_printk--;
1972
1973 return 0;
1974}
1975#endif /* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 * frame) command. This command takes an address and expects to
1980 * find an exception frame at that address, formats and prints
1981 * it.
1982 * regs address-expression
1983 * Remarks:
1984 * Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988 int diag;
1989 unsigned long addr;
1990 long offset;
1991 int nextarg;
1992
1993 if (argc != 1)
1994 return KDB_ARGCOUNT;
1995
1996 nextarg = 1;
1997 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998 if (diag)
1999 return diag;
2000 show_regs((struct pt_regs *)addr);
2001 return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2007 * currently loaded kernel modules.
2008 * Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012 struct module *mod;
2013
2014 if (argc != 0)
2015 return KDB_ARGCOUNT;
2016
2017 kdb_printf("Module Size modstruct Used by\n");
2018 list_for_each_entry(mod, kdb_modules, list) {
2019 if (mod->state == MODULE_STATE_UNFORMED)
2020 continue;
2021
2022 kdb_printf("%-20s%8u 0x%p ", mod->name,
2023 mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025 kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027 if (mod->state == MODULE_STATE_GOING)
2028 kdb_printf(" (Unloading)");
2029 else if (mod->state == MODULE_STATE_COMING)
2030 kdb_printf(" (Loading)");
2031 else
2032 kdb_printf(" (Live)");
2033 kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036 {
2037 struct module_use *use;
2038 kdb_printf(" [ ");
2039 list_for_each_entry(use, &mod->source_list,
2040 source_list)
2041 kdb_printf("%s ", use->target->name);
2042 kdb_printf("]\n");
2043 }
2044#endif
2045 }
2046
2047 return 0;
2048}
2049
2050#endif /* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command. Display the
2054 * current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059 int i;
2060
2061 for (i = 0; i < __nenv; i++) {
2062 if (__env[i])
2063 kdb_printf("%s\n", __env[i]);
2064 }
2065
2066 if (KDB_DEBUG(MASK))
2067 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2068
2069 return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 * the contents of the syslog buffer.
2076 * dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080 int diag;
2081 int logging;
2082 int lines = 0;
2083 int adjust = 0;
2084 int n = 0;
2085 int skip = 0;
2086 struct kmsg_dumper dumper = { .active = 1 };
2087 size_t len;
2088 char buf[201];
2089
2090 if (argc > 2)
2091 return KDB_ARGCOUNT;
2092 if (argc) {
2093 char *cp;
2094 lines = simple_strtol(argv[1], &cp, 0);
2095 if (*cp)
2096 lines = 0;
2097 if (argc > 1) {
2098 adjust = simple_strtoul(argv[2], &cp, 0);
2099 if (*cp || adjust < 0)
2100 adjust = 0;
2101 }
2102 }
2103
2104 /* disable LOGGING if set */
2105 diag = kdbgetintenv("LOGGING", &logging);
2106 if (!diag && logging) {
2107 const char *setargs[] = { "set", "LOGGING", "0" };
2108 kdb_set(2, setargs);
2109 }
2110
2111 kmsg_dump_rewind_nolock(&dumper);
2112 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113 n++;
2114
2115 if (lines < 0) {
2116 if (adjust >= n)
2117 kdb_printf("buffer only contains %d lines, nothing "
2118 "printed\n", n);
2119 else if (adjust - lines >= n)
2120 kdb_printf("buffer only contains %d lines, last %d "
2121 "lines printed\n", n, n - adjust);
2122 skip = adjust;
2123 lines = abs(lines);
2124 } else if (lines > 0) {
2125 skip = n - lines - adjust;
2126 lines = abs(lines);
2127 if (adjust >= n) {
2128 kdb_printf("buffer only contains %d lines, "
2129 "nothing printed\n", n);
2130 skip = n;
2131 } else if (skip < 0) {
2132 lines += skip;
2133 skip = 0;
2134 kdb_printf("buffer only contains %d lines, first "
2135 "%d lines printed\n", n, lines);
2136 }
2137 } else {
2138 lines = n;
2139 }
2140
2141 if (skip >= n || skip < 0)
2142 return 0;
2143
2144 kmsg_dump_rewind_nolock(&dumper);
2145 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146 if (skip) {
2147 skip--;
2148 continue;
2149 }
2150 if (!lines--)
2151 break;
2152 if (KDB_FLAG(CMD_INTERRUPT))
2153 return 0;
2154
2155 kdb_printf("%.*s\n", (int)len - 1, buf);
2156 }
2157
2158 return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167 if (atomic_read(&kdb_nmi_disabled))
2168 return 0;
2169 atomic_set(&kdb_nmi_disabled, 1);
2170 arch_kgdb_ops.enable_nmi(0);
2171 return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177 return -EINVAL;
2178 arch_kgdb_ops.enable_nmi(1);
2179 return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183 .set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 * cpu [<cpunum>]
2190 * Returns:
2191 * KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195 int i, start_cpu, first_print = 1;
2196 char state, prev_state = '?';
2197
2198 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199 kdb_printf("Available cpus: ");
2200 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201 if (!cpu_online(i)) {
2202 state = 'F'; /* cpu is offline */
2203 } else if (!kgdb_info[i].enter_kgdb) {
2204 state = 'D'; /* cpu is online but unresponsive */
2205 } else {
2206 state = ' '; /* cpu is responding to kdb */
2207 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208 state = 'I'; /* idle task */
2209 }
2210 if (state != prev_state) {
2211 if (prev_state != '?') {
2212 if (!first_print)
2213 kdb_printf(", ");
2214 first_print = 0;
2215 kdb_printf("%d", start_cpu);
2216 if (start_cpu < i-1)
2217 kdb_printf("-%d", i-1);
2218 if (prev_state != ' ')
2219 kdb_printf("(%c)", prev_state);
2220 }
2221 prev_state = state;
2222 start_cpu = i;
2223 }
2224 }
2225 /* print the trailing cpus, ignoring them if they are all offline */
2226 if (prev_state != 'F') {
2227 if (!first_print)
2228 kdb_printf(", ");
2229 kdb_printf("%d", start_cpu);
2230 if (start_cpu < i-1)
2231 kdb_printf("-%d", i-1);
2232 if (prev_state != ' ')
2233 kdb_printf("(%c)", prev_state);
2234 }
2235 kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240 unsigned long cpunum;
2241 int diag;
2242
2243 if (argc == 0) {
2244 kdb_cpu_status();
2245 return 0;
2246 }
2247
2248 if (argc != 1)
2249 return KDB_ARGCOUNT;
2250
2251 diag = kdbgetularg(argv[1], &cpunum);
2252 if (diag)
2253 return diag;
2254
2255 /*
2256 * Validate cpunum
2257 */
2258 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259 return KDB_BADCPUNUM;
2260
2261 dbg_switch_cpu = cpunum;
2262
2263 /*
2264 * Switch to other cpu
2265 */
2266 return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274 int idle = 0, daemon = 0;
2275 unsigned long mask_I = kdb_task_state_string("I"),
2276 mask_M = kdb_task_state_string("M");
2277 unsigned long cpu;
2278 const struct task_struct *p, *g;
2279 for_each_online_cpu(cpu) {
2280 p = kdb_curr_task(cpu);
2281 if (kdb_task_state(p, mask_I))
2282 ++idle;
2283 }
2284 kdb_do_each_thread(g, p) {
2285 if (kdb_task_state(p, mask_M))
2286 ++daemon;
2287 } kdb_while_each_thread(g, p);
2288 if (idle || daemon) {
2289 if (idle)
2290 kdb_printf("%d idle process%s (state I)%s\n",
2291 idle, idle == 1 ? "" : "es",
2292 daemon ? " and " : "");
2293 if (daemon)
2294 kdb_printf("%d sleeping system daemon (state M) "
2295 "process%s", daemon,
2296 daemon == 1 ? "" : "es");
2297 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298 }
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 * list of the active processes.
2304 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308 int cpu;
2309 unsigned long tmp;
2310
2311 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2312 return;
2313
2314 cpu = kdb_process_cpu(p);
2315 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2316 (void *)p, p->pid, p->parent->pid,
2317 kdb_task_has_cpu(p), kdb_process_cpu(p),
2318 kdb_task_state_char(p),
2319 (void *)(&p->thread),
2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321 p->comm);
2322 if (kdb_task_has_cpu(p)) {
2323 if (!KDB_TSK(cpu)) {
2324 kdb_printf(" Error: no saved data for this cpu\n");
2325 } else {
2326 if (KDB_TSK(cpu) != p)
2327 kdb_printf(" Error: does not match running "
2328 "process table (0x%p)\n", KDB_TSK(cpu));
2329 }
2330 }
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335 struct task_struct *g, *p;
2336 unsigned long mask, cpu;
2337
2338 if (argc == 0)
2339 kdb_ps_suppressed();
2340 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2341 (int)(2*sizeof(void *))+2, "Task Addr",
2342 (int)(2*sizeof(void *))+2, "Thread");
2343 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344 /* Run the active tasks first */
2345 for_each_online_cpu(cpu) {
2346 if (KDB_FLAG(CMD_INTERRUPT))
2347 return 0;
2348 p = kdb_curr_task(cpu);
2349 if (kdb_task_state(p, mask))
2350 kdb_ps1(p);
2351 }
2352 kdb_printf("\n");
2353 /* Now the real tasks */
2354 kdb_do_each_thread(g, p) {
2355 if (KDB_FLAG(CMD_INTERRUPT))
2356 return 0;
2357 if (kdb_task_state(p, mask))
2358 kdb_ps1(p);
2359 } kdb_while_each_thread(g, p);
2360
2361 return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 * the currently active process.
2367 * pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371 struct task_struct *p;
2372 unsigned long val;
2373 int diag;
2374
2375 if (argc > 1)
2376 return KDB_ARGCOUNT;
2377
2378 if (argc) {
2379 if (strcmp(argv[1], "R") == 0) {
2380 p = KDB_TSK(kdb_initial_cpu);
2381 } else {
2382 diag = kdbgetularg(argv[1], &val);
2383 if (diag)
2384 return KDB_BADINT;
2385
2386 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2387 if (!p) {
2388 kdb_printf("No task with pid=%d\n", (pid_t)val);
2389 return 0;
2390 }
2391 }
2392 kdb_set_current_task(p);
2393 }
2394 kdb_printf("KDB current process is %s(pid=%d)\n",
2395 kdb_current_task->comm,
2396 kdb_current_task->pid);
2397
2398 return 0;
2399}
2400
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403 return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411 kdbtab_t *kt;
2412 int i;
2413
2414 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415 kdb_printf("-----------------------------"
2416 "-----------------------------\n");
2417 for_each_kdbcmd(kt, i) {
2418 char *space = "";
2419 if (KDB_FLAG(CMD_INTERRUPT))
2420 return 0;
2421 if (!kt->cmd_name)
2422 continue;
2423 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424 continue;
2425 if (strlen(kt->cmd_usage) > 20)
2426 space = "\n ";
2427 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428 kt->cmd_usage, space, kt->cmd_help);
2429 }
2430 return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438 long sig, pid;
2439 char *endp;
2440 struct task_struct *p;
2441 struct siginfo info;
2442
2443 if (argc != 2)
2444 return KDB_ARGCOUNT;
2445
2446 sig = simple_strtol(argv[1], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (sig >= 0) {
2450 kdb_printf("Invalid signal parameter.<-signal>\n");
2451 return 0;
2452 }
2453 sig = -sig;
2454
2455 pid = simple_strtol(argv[2], &endp, 0);
2456 if (*endp)
2457 return KDB_BADINT;
2458 if (pid <= 0) {
2459 kdb_printf("Process ID must be large than 0.\n");
2460 return 0;
2461 }
2462
2463 /* Find the process. */
2464 p = find_task_by_pid_ns(pid, &init_pid_ns);
2465 if (!p) {
2466 kdb_printf("The specified process isn't found.\n");
2467 return 0;
2468 }
2469 p = p->group_leader;
2470 info.si_signo = sig;
2471 info.si_errno = 0;
2472 info.si_code = SI_USER;
2473 info.si_pid = pid; /* same capabilities as process being signalled */
2474 info.si_uid = 0; /* kdb has root authority */
2475 kdb_send_sig_info(p, &info);
2476 return 0;
2477}
2478
2479struct kdb_tm {
2480 int tm_sec; /* seconds */
2481 int tm_min; /* minutes */
2482 int tm_hour; /* hours */
2483 int tm_mday; /* day of the month */
2484 int tm_mon; /* month */
2485 int tm_year; /* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490 /* This will work from 1970-2099, 2100 is not a leap year */
2491 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492 31, 30, 31, 30, 31 };
2493 memset(tm, 0, sizeof(*tm));
2494 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2495 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2497 tm->tm_min = tm->tm_sec / 60 % 60;
2498 tm->tm_hour = tm->tm_sec / 60 / 60;
2499 tm->tm_sec = tm->tm_sec % 60;
2500 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501 tm->tm_mday %= (4*365+1);
2502 mon_day[1] = 29;
2503 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504 tm->tm_mday -= mon_day[tm->tm_mon];
2505 if (++tm->tm_mon == 12) {
2506 tm->tm_mon = 0;
2507 ++tm->tm_year;
2508 mon_day[1] = 28;
2509 }
2510 }
2511 ++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521 struct timespec uptime;
2522 ktime_get_ts(&uptime);
2523 memset(val, 0, sizeof(*val));
2524 val->uptime = uptime.tv_sec;
2525 val->loads[0] = avenrun[0];
2526 val->loads[1] = avenrun[1];
2527 val->loads[2] = avenrun[2];
2528 val->procs = nr_threads-1;
2529 si_meminfo(val);
2530
2531 return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539 struct timespec now;
2540 struct kdb_tm tm;
2541 struct sysinfo val;
2542
2543 if (argc)
2544 return KDB_ARGCOUNT;
2545
2546 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2547 kdb_printf("release %s\n", init_uts_ns.name.release);
2548 kdb_printf("version %s\n", init_uts_ns.name.version);
2549 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2550 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2551 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2553
2554 now = __current_kernel_time();
2555 kdb_gmtime(&now, &tm);
2556 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2557 "tz_minuteswest %d\n",
2558 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559 tm.tm_hour, tm.tm_min, tm.tm_sec,
2560 sys_tz.tz_minuteswest);
2561
2562 kdb_sysinfo(&val);
2563 kdb_printf("uptime ");
2564 if (val.uptime > (24*60*60)) {
2565 int days = val.uptime / (24*60*60);
2566 val.uptime %= (24*60*60);
2567 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568 }
2569 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581 /* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2584 "Buffers: %8lu kB\n",
2585 K(val.totalram), K(val.freeram), K(val.bufferram));
2586 return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594 char fmtstr[64];
2595 int cpu, diag, nextarg = 1;
2596 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598 if (argc < 1 || argc > 3)
2599 return KDB_ARGCOUNT;
2600
2601 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602 if (diag)
2603 return diag;
2604
2605 if (argc >= 2) {
2606 diag = kdbgetularg(argv[2], &bytesperword);
2607 if (diag)
2608 return diag;
2609 }
2610 if (!bytesperword)
2611 bytesperword = KDB_WORD_SIZE;
2612 else if (bytesperword > KDB_WORD_SIZE)
2613 return KDB_BADWIDTH;
2614 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615 if (argc >= 3) {
2616 diag = kdbgetularg(argv[3], &whichcpu);
2617 if (diag)
2618 return diag;
2619 if (!cpu_online(whichcpu)) {
2620 kdb_printf("cpu %ld is not online\n", whichcpu);
2621 return KDB_BADCPUNUM;
2622 }
2623 }
2624
2625 /* Most architectures use __per_cpu_offset[cpu], some use
2626 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627 */
2628#ifdef __per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637 for_each_online_cpu(cpu) {
2638 if (KDB_FLAG(CMD_INTERRUPT))
2639 return 0;
2640
2641 if (whichcpu != ~0UL && whichcpu != cpu)
2642 continue;
2643 addr = symaddr + KDB_PCU(cpu);
2644 diag = kdb_getword(&val, addr, bytesperword);
2645 if (diag) {
2646 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647 "read, diag=%d\n", cpu, addr, diag);
2648 continue;
2649 }
2650 kdb_printf("%5d ", cpu);
2651 kdb_md_line(fmtstr, addr,
2652 bytesperword == KDB_WORD_SIZE,
2653 1, bytesperword, 1, 1, 0);
2654 }
2655#undef KDB_PCU
2656 return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664 kdb_printf("Usage of cmd args | grep pattern:\n");
2665 kdb_printf(" Any command's output may be filtered through an ");
2666 kdb_printf("emulated 'pipe'.\n");
2667 kdb_printf(" 'grep' is just a key word.\n");
2668 kdb_printf(" The pattern may include a very limited set of "
2669 "metacharacters:\n");
2670 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2671 kdb_printf(" And if there are spaces in the pattern, you may "
2672 "quote it:\n");
2673 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674 " or \"^pat tern$\"\n");
2675 return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * debugger command.
2681 * Inputs:
2682 * cmd Command name
2683 * func Function to execute the command
2684 * usage A simple usage string showing arguments
2685 * help A simple help string describing command
2686 * repeat Does the command auto repeat on enter?
2687 * Returns:
2688 * zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50 /* arbitrary */
2691int kdb_register_flags(char *cmd,
2692 kdb_func_t func,
2693 char *usage,
2694 char *help,
2695 short minlen,
2696 kdb_cmdflags_t flags)
2697{
2698 int i;
2699 kdbtab_t *kp;
2700
2701 /*
2702 * Brute force method to determine duplicates
2703 */
2704 for_each_kdbcmd(kp, i) {
2705 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706 kdb_printf("Duplicate kdb command registered: "
2707 "%s, func %p help %s\n", cmd, func, help);
2708 return 1;
2709 }
2710 }
2711
2712 /*
2713 * Insert command into first available location in table
2714 */
2715 for_each_kdbcmd(kp, i) {
2716 if (kp->cmd_name == NULL)
2717 break;
2718 }
2719
2720 if (i >= kdb_max_commands) {
2721 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723 if (!new) {
2724 kdb_printf("Could not allocate new kdb_command "
2725 "table\n");
2726 return 1;
2727 }
2728 if (kdb_commands) {
2729 memcpy(new, kdb_commands,
2730 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731 kfree(kdb_commands);
2732 }
2733 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734 kdb_command_extend * sizeof(*new));
2735 kdb_commands = new;
2736 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737 kdb_max_commands += kdb_command_extend;
2738 }
2739
2740 kp->cmd_name = cmd;
2741 kp->cmd_func = func;
2742 kp->cmd_usage = usage;
2743 kp->cmd_help = help;
2744 kp->cmd_minlen = minlen;
2745 kp->cmd_flags = flags;
2746
2747 return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 * not need to specify a repeat state. Equivalent to
2755 * kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 * cmd Command name
2758 * func Function to execute the command
2759 * usage A simple usage string showing arguments
2760 * help A simple help string describing command
2761 * Returns:
2762 * zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765 kdb_func_t func,
2766 char *usage,
2767 char *help,
2768 short minlen)
2769{
2770 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 * debugger command. It is generally called when a module which
2777 * implements kdb commands is unloaded.
2778 * Inputs:
2779 * cmd Command name
2780 * Returns:
2781 * zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785 int i;
2786 kdbtab_t *kp;
2787
2788 /*
2789 * find the command.
2790 */
2791 for_each_kdbcmd(kp, i) {
2792 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793 kp->cmd_name = NULL;
2794 return 0;
2795 }
2796 }
2797
2798 /* Couldn't find it. */
2799 return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806 int i;
2807 kdbtab_t *kp;
2808
2809 for_each_kdbcmd(kp, i)
2810 kp->cmd_name = NULL;
2811
2812 kdb_register_flags("md", kdb_md, "<vaddr>",
2813 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816 "Display Raw Memory", 0,
2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819 "Display Physical Memory", 0,
2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821 kdb_register_flags("mds", kdb_md, "<vaddr>",
2822 "Display Memory Symbolically", 0,
2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825 "Modify Memory Contents", 0,
2826 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828 "Continue Execution", 1,
2829 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830 kdb_register_flags("rd", kdb_rd, "",
2831 "Display Registers", 0,
2832 KDB_ENABLE_REG_READ);
2833 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834 "Modify Registers", 0,
2835 KDB_ENABLE_REG_WRITE);
2836 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837 "Display exception frame", 0,
2838 KDB_ENABLE_MEM_READ);
2839 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840 "Stack traceback", 1,
2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842 kdb_register_flags("btp", kdb_bt, "<pid>",
2843 "Display stack for process <pid>", 0,
2844 KDB_ENABLE_INSPECT);
2845 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846 "Backtrace all processes matching state flag", 0,
2847 KDB_ENABLE_INSPECT);
2848 kdb_register_flags("btc", kdb_bt, "",
2849 "Backtrace current process on each cpu", 0,
2850 KDB_ENABLE_INSPECT);
2851 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852 "Backtrace process given its struct task address", 0,
2853 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854 kdb_register_flags("env", kdb_env, "",
2855 "Show environment variables", 0,
2856 KDB_ENABLE_ALWAYS_SAFE);
2857 kdb_register_flags("set", kdb_set, "",
2858 "Set environment variables", 0,
2859 KDB_ENABLE_ALWAYS_SAFE);
2860 kdb_register_flags("help", kdb_help, "",
2861 "Display Help Message", 1,
2862 KDB_ENABLE_ALWAYS_SAFE);
2863 kdb_register_flags("?", kdb_help, "",
2864 "Display Help Message", 0,
2865 KDB_ENABLE_ALWAYS_SAFE);
2866 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867 "Switch to new cpu", 0,
2868 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869 kdb_register_flags("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, 0);
2871 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0,
2873 KDB_ENABLE_INSPECT);
2874 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875 "Switch to another task", 0,
2876 KDB_ENABLE_INSPECT);
2877 kdb_register_flags("reboot", kdb_reboot, "",
2878 "Reboot the machine immediately", 0,
2879 KDB_ENABLE_REBOOT);
2880#if defined(CONFIG_MODULES)
2881 kdb_register_flags("lsmod", kdb_lsmod, "",
2882 "List loaded kernel modules", 0,
2883 KDB_ENABLE_INSPECT);
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886 kdb_register_flags("sr", kdb_sr, "<key>",
2887 "Magic SysRq key", 0,
2888 KDB_ENABLE_ALWAYS_SAFE);
2889#endif
2890#if defined(CONFIG_PRINTK)
2891 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892 "Display syslog buffer", 0,
2893 KDB_ENABLE_ALWAYS_SAFE);
2894#endif
2895 if (arch_kgdb_ops.enable_nmi) {
2896 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897 "Disable NMI entry to KDB", 0,
2898 KDB_ENABLE_ALWAYS_SAFE);
2899 }
2900 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901 "Define a set of commands, down to endefcmd", 0,
2902 KDB_ENABLE_ALWAYS_SAFE);
2903 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904 "Send a signal to a process", 0,
2905 KDB_ENABLE_SIGNAL);
2906 kdb_register_flags("summary", kdb_summary, "",
2907 "Summarize the system", 4,
2908 KDB_ENABLE_ALWAYS_SAFE);
2909 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910 "Display per_cpu variables", 3,
2911 KDB_ENABLE_MEM_READ);
2912 kdb_register_flags("grephelp", kdb_grep_help, "",
2913 "Display help on | grep", 0,
2914 KDB_ENABLE_ALWAYS_SAFE);
2915}
2916
2917/* Execute any commands defined in kdb_cmds. */
2918static void __init kdb_cmd_init(void)
2919{
2920 int i, diag;
2921 for (i = 0; kdb_cmds[i]; ++i) {
2922 diag = kdb_parse(kdb_cmds[i]);
2923 if (diag)
2924 kdb_printf("kdb command %s failed, kdb diag %d\n",
2925 kdb_cmds[i], diag);
2926 }
2927 if (defcmd_in_progress) {
2928 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929 kdb_parse("endefcmd");
2930 }
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937 int i;
2938
2939 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940 return;
2941 for (i = kdb_init_lvl; i < lvl; i++) {
2942 switch (i) {
2943 case KDB_NOT_INITIALIZED:
2944 kdb_inittab(); /* Initialize Command Table */
2945 kdb_initbptab(); /* Initialize Breakpoints */
2946 break;
2947 case KDB_INIT_EARLY:
2948 kdb_cmd_init(); /* Build kdb_cmds tables */
2949 break;
2950 }
2951 }
2952 kdb_init_lvl = lvl;
2953}