Linux Audio

Check our new training course

Loading...
v6.13.7
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
 
  29#include <linux/moduleparam.h>
  30#include <linux/mm.h>
  31#include <linux/init.h>
  32#include <linux/kallsyms.h>
  33#include <linux/kgdb.h>
  34#include <linux/kdb.h>
  35#include <linux/notifier.h>
  36#include <linux/interrupt.h>
  37#include <linux/delay.h>
  38#include <linux/nmi.h>
  39#include <linux/time.h>
  40#include <linux/ptrace.h>
  41#include <linux/sysctl.h>
  42#include <linux/cpu.h>
  43#include <linux/kdebug.h>
  44#include <linux/proc_fs.h>
  45#include <linux/uaccess.h>
  46#include <linux/slab.h>
  47#include <linux/security.h>
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_cmds_head describes the available commands. */
  88static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  89
  90typedef struct _kdbmsg {
  91	int	km_diag;	/* kdb diagnostic */
  92	char	*km_msg;	/* Corresponding message text */
  93} kdbmsg_t;
  94
  95#define KDBMSG(msgnum, text) \
  96	{ KDB_##msgnum, text }
  97
  98static kdbmsg_t kdbmsgs[] = {
  99	KDBMSG(NOTFOUND, "Command Not Found"),
 100	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 101	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 102	       "8 is only allowed on 64 bit systems"),
 103	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 104	KDBMSG(NOTENV, "Cannot find environment variable"),
 105	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 106	KDBMSG(NOTIMP, "Command not implemented"),
 107	KDBMSG(ENVFULL, "Environment full"),
 108	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 109	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 110#ifdef CONFIG_CPU_XSCALE
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 112#else
 113	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 114#endif
 115	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 116	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 117	KDBMSG(BADMODE, "Invalid IDMODE"),
 118	KDBMSG(BADINT, "Illegal numeric value"),
 119	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 120	KDBMSG(BADREG, "Invalid register name"),
 121	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 122	KDBMSG(BADLENGTH, "Invalid length field"),
 123	KDBMSG(NOBP, "No Breakpoint exists"),
 124	KDBMSG(BADADDR, "Invalid address"),
 125	KDBMSG(NOPERM, "Permission denied"),
 126};
 127#undef KDBMSG
 128
 129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 130
 131
 132/*
 133 * Initial environment.   This is all kept static and local to
 134 * this file.   We don't want to rely on the memory allocation
 135 * mechanisms in the kernel, so we use a very limited allocate-only
 136 * heap for new and altered environment variables.  The entire
 137 * environment is limited to a fixed number of entries (add more
 138 * to __env[] if required) and a fixed amount of heap (add more to
 139 * KDB_ENVBUFSIZE if required).
 140 */
 141
 142static char *__env[31] = {
 143#if defined(CONFIG_SMP)
 144	"PROMPT=[%d]kdb> ",
 145#else
 146	"PROMPT=kdb> ",
 147#endif
 148	"MOREPROMPT=more> ",
 149	"RADIX=16",
 150	"MDCOUNT=8",		/* lines of md output */
 151	KDB_PLATFORM_ENV,
 152	"DTABCOUNT=30",
 153	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 154};
 155
 156static const int __nenv = ARRAY_SIZE(__env);
 157
 158/*
 159 * Update the permissions flags (kdb_cmd_enabled) to match the
 160 * current lockdown state.
 161 *
 162 * Within this function the calls to security_locked_down() are "lazy". We
 163 * avoid calling them if the current value of kdb_cmd_enabled already excludes
 164 * flags that might be subject to lockdown. Additionally we deliberately check
 165 * the lockdown flags independently (even though read lockdown implies write
 166 * lockdown) since that results in both simpler code and clearer messages to
 167 * the user on first-time debugger entry.
 168 *
 169 * The permission masks during a read+write lockdown permits the following
 170 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
 171 *
 172 * The INSPECT commands are not blocked during lockdown because they are
 173 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
 174 * forcing them to have no arguments) and lsmod. These commands do expose
 175 * some kernel state but do not allow the developer seated at the console to
 176 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
 177 * given these are allowed for root during lockdown already.
 178 */
 179static void kdb_check_for_lockdown(void)
 180{
 181	const int write_flags = KDB_ENABLE_MEM_WRITE |
 182				KDB_ENABLE_REG_WRITE |
 183				KDB_ENABLE_FLOW_CTRL;
 184	const int read_flags = KDB_ENABLE_MEM_READ |
 185			       KDB_ENABLE_REG_READ;
 186
 187	bool need_to_lockdown_write = false;
 188	bool need_to_lockdown_read = false;
 189
 190	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
 191		need_to_lockdown_write =
 192			security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
 193
 194	if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
 195		need_to_lockdown_read =
 196			security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
 197
 198	/* De-compose KDB_ENABLE_ALL if required */
 199	if (need_to_lockdown_write || need_to_lockdown_read)
 200		if (kdb_cmd_enabled & KDB_ENABLE_ALL)
 201			kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
 202
 203	if (need_to_lockdown_write)
 204		kdb_cmd_enabled &= ~write_flags;
 205
 206	if (need_to_lockdown_read)
 207		kdb_cmd_enabled &= ~read_flags;
 208}
 209
 210/*
 211 * Check whether the flags of the current command, the permissions of the kdb
 212 * console and the lockdown state allow a command to be run.
 213 */
 214static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 215				   bool no_args)
 216{
 217	/* permissions comes from userspace so needs massaging slightly */
 218	permissions &= KDB_ENABLE_MASK;
 219	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 220
 221	/* some commands change group when launched with no arguments */
 222	if (no_args)
 223		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 224
 225	flags |= KDB_ENABLE_ALL;
 226
 227	return permissions & flags;
 228}
 229
 230/*
 231 * kdbgetenv - This function will return the character string value of
 232 *	an environment variable.
 233 * Parameters:
 234 *	match	A character string representing an environment variable.
 235 * Returns:
 236 *	NULL	No environment variable matches 'match'
 237 *	char*	Pointer to string value of environment variable.
 238 */
 239char *kdbgetenv(const char *match)
 240{
 241	char **ep = __env;
 242	int matchlen = strlen(match);
 243	int i;
 244
 245	for (i = 0; i < __nenv; i++) {
 246		char *e = *ep++;
 247
 248		if (!e)
 249			continue;
 250
 251		if ((strncmp(match, e, matchlen) == 0)
 252		 && ((e[matchlen] == '\0')
 253		   || (e[matchlen] == '='))) {
 254			char *cp = strchr(e, '=');
 255			return cp ? ++cp : "";
 256		}
 257	}
 258	return NULL;
 259}
 260
 261/*
 262 * kdballocenv - This function is used to allocate bytes for
 263 *	environment entries.
 264 * Parameters:
 265 *	bytes	The number of bytes to allocate in the static buffer.
 
 
 266 * Returns:
 267 *	A pointer to the allocated space in the buffer on success.
 268 *	NULL if bytes > size available in the envbuffer.
 269 * Remarks:
 270 *	We use a static environment buffer (envbuffer) to hold the values
 271 *	of dynamically generated environment variables (see kdb_set).  Buffer
 272 *	space once allocated is never free'd, so over time, the amount of space
 273 *	(currently 512 bytes) will be exhausted if env variables are changed
 274 *	frequently.
 275 */
 276static char *kdballocenv(size_t bytes)
 277{
 278#define	KDB_ENVBUFSIZE	512
 279	static char envbuffer[KDB_ENVBUFSIZE];
 280	static int envbufsize;
 281	char *ep = NULL;
 282
 283	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 284		ep = &envbuffer[envbufsize];
 285		envbufsize += bytes;
 286	}
 287	return ep;
 288}
 289
 290/*
 291 * kdbgetulenv - This function will return the value of an unsigned
 292 *	long-valued environment variable.
 293 * Parameters:
 294 *	match	A character string representing a numeric value
 295 * Outputs:
 296 *	*value  the unsigned long representation of the env variable 'match'
 297 * Returns:
 298 *	Zero on success, a kdb diagnostic on failure.
 299 */
 300static int kdbgetulenv(const char *match, unsigned long *value)
 301{
 302	char *ep;
 303
 304	ep = kdbgetenv(match);
 305	if (!ep)
 306		return KDB_NOTENV;
 307	if (strlen(ep) == 0)
 308		return KDB_NOENVVALUE;
 309	if (kstrtoul(ep, 0, value))
 310		return KDB_BADINT;
 311
 312	return 0;
 313}
 314
 315/*
 316 * kdbgetintenv - This function will return the value of an
 317 *	integer-valued environment variable.
 318 * Parameters:
 319 *	match	A character string representing an integer-valued env variable
 320 * Outputs:
 321 *	*value  the integer representation of the environment variable 'match'
 322 * Returns:
 323 *	Zero on success, a kdb diagnostic on failure.
 324 */
 325int kdbgetintenv(const char *match, int *value)
 326{
 327	unsigned long val;
 328	int diag;
 329
 330	diag = kdbgetulenv(match, &val);
 331	if (!diag)
 332		*value = (int) val;
 333	return diag;
 334}
 335
 336/*
 337 * kdb_setenv() - Alter an existing environment variable or create a new one.
 338 * @var: Name of the variable
 339 * @val: Value of the variable
 340 *
 341 * Return: Zero on success, a kdb diagnostic on failure.
 342 */
 343static int kdb_setenv(const char *var, const char *val)
 344{
 345	int i;
 346	char *ep;
 347	size_t varlen, vallen;
 348
 349	varlen = strlen(var);
 350	vallen = strlen(val);
 351	ep = kdballocenv(varlen + vallen + 2);
 352	if (ep == (char *)0)
 353		return KDB_ENVBUFFULL;
 354
 355	sprintf(ep, "%s=%s", var, val);
 356
 357	for (i = 0; i < __nenv; i++) {
 358		if (__env[i]
 359		 && ((strncmp(__env[i], var, varlen) == 0)
 360		   && ((__env[i][varlen] == '\0')
 361		    || (__env[i][varlen] == '=')))) {
 362			__env[i] = ep;
 363			return 0;
 364		}
 365	}
 366
 367	/*
 368	 * Wasn't existing variable.  Fit into slot.
 369	 */
 370	for (i = 0; i < __nenv-1; i++) {
 371		if (__env[i] == (char *)0) {
 372			__env[i] = ep;
 373			return 0;
 374		}
 375	}
 376
 377	return KDB_ENVFULL;
 378}
 379
 380/*
 381 * kdb_printenv() - Display the current environment variables.
 382 */
 383static void kdb_printenv(void)
 384{
 385	int i;
 386
 387	for (i = 0; i < __nenv; i++) {
 388		if (__env[i])
 389			kdb_printf("%s\n", __env[i]);
 390	}
 391}
 392
 393/*
 394 * kdbgetularg - This function will convert a numeric string into an
 395 *	unsigned long value.
 396 * Parameters:
 397 *	arg	A character string representing a numeric value
 398 * Outputs:
 399 *	*value  the unsigned long representation of arg.
 400 * Returns:
 401 *	Zero on success, a kdb diagnostic on failure.
 402 */
 403int kdbgetularg(const char *arg, unsigned long *value)
 404{
 405	if (kstrtoul(arg, 0, value))
 406		return KDB_BADINT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 407	return 0;
 408}
 409
 410int kdbgetu64arg(const char *arg, u64 *value)
 411{
 412	if (kstrtou64(arg, 0, value))
 413		return KDB_BADINT;
 
 
 
 
 
 
 
 
 
 
 
 
 414	return 0;
 415}
 416
 417/*
 418 * kdb_set - This function implements the 'set' command.  Alter an
 419 *	existing environment variable or create a new one.
 420 */
 421int kdb_set(int argc, const char **argv)
 422{
 
 
 
 
 423	/*
 424	 * we can be invoked two ways:
 425	 *   set var=value    argv[1]="var", argv[2]="value"
 426	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 427	 * - if the latter, shift 'em down.
 428	 */
 429	if (argc == 3) {
 430		argv[2] = argv[3];
 431		argc--;
 432	}
 433
 434	if (argc != 2)
 435		return KDB_ARGCOUNT;
 436
 437	/*
 438	 * Censor sensitive variables
 439	 */
 440	if (strcmp(argv[1], "PROMPT") == 0 &&
 441	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 442		return KDB_NOPERM;
 443
 444	/*
 445	 * Check for internal variables
 446	 */
 447	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 448		unsigned int debugflags;
 449		int ret;
 450
 451		ret = kstrtouint(argv[2], 0, &debugflags);
 452		if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 453			kdb_printf("kdb: illegal debug flags '%s'\n",
 454				    argv[2]);
 455			return 0;
 456		}
 457		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 458			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 459
 460		return 0;
 461	}
 462
 463	/*
 464	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 465	 * name, argv[2] = value.
 466	 */
 467	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 468}
 469
 470static int kdb_check_regs(void)
 471{
 472	if (!kdb_current_regs) {
 473		kdb_printf("No current kdb registers."
 474			   "  You may need to select another task\n");
 475		return KDB_BADREG;
 476	}
 477	return 0;
 478}
 479
 480/*
 481 * kdbgetaddrarg - This function is responsible for parsing an
 482 *	address-expression and returning the value of the expression,
 483 *	symbol name, and offset to the caller.
 484 *
 485 *	The argument may consist of a numeric value (decimal or
 486 *	hexadecimal), a symbol name, a register name (preceded by the
 487 *	percent sign), an environment variable with a numeric value
 488 *	(preceded by a dollar sign) or a simple arithmetic expression
 489 *	consisting of a symbol name, +/-, and a numeric constant value
 490 *	(offset).
 491 * Parameters:
 492 *	argc	- count of arguments in argv
 493 *	argv	- argument vector
 494 *	*nextarg - index to next unparsed argument in argv[]
 495 *	regs	- Register state at time of KDB entry
 496 * Outputs:
 497 *	*value	- receives the value of the address-expression
 498 *	*offset - receives the offset specified, if any
 499 *	*name   - receives the symbol name, if any
 500 *	*nextarg - index to next unparsed argument in argv[]
 501 * Returns:
 502 *	zero is returned on success, a kdb diagnostic code is
 503 *      returned on error.
 504 */
 505int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 506		  unsigned long *value,  long *offset,
 507		  char **name)
 508{
 509	unsigned long addr;
 510	unsigned long off = 0;
 511	int positive;
 512	int diag;
 513	int found = 0;
 514	char *symname;
 515	char symbol = '\0';
 516	char *cp;
 517	kdb_symtab_t symtab;
 518
 519	/*
 520	 * If the enable flags prohibit both arbitrary memory access
 521	 * and flow control then there are no reasonable grounds to
 522	 * provide symbol lookup.
 523	 */
 524	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 525			     kdb_cmd_enabled, false))
 526		return KDB_NOPERM;
 527
 528	/*
 529	 * Process arguments which follow the following syntax:
 530	 *
 531	 *  symbol | numeric-address [+/- numeric-offset]
 532	 *  %register
 533	 *  $environment-variable
 534	 */
 535
 536	if (*nextarg > argc)
 537		return KDB_ARGCOUNT;
 538
 539	symname = (char *)argv[*nextarg];
 540
 541	/*
 542	 * If there is no whitespace between the symbol
 543	 * or address and the '+' or '-' symbols, we
 544	 * remember the character and replace it with a
 545	 * null so the symbol/value can be properly parsed
 546	 */
 547	cp = strpbrk(symname, "+-");
 548	if (cp != NULL) {
 549		symbol = *cp;
 550		*cp++ = '\0';
 551	}
 552
 553	if (symname[0] == '$') {
 554		diag = kdbgetulenv(&symname[1], &addr);
 555		if (diag)
 556			return diag;
 557	} else if (symname[0] == '%') {
 558		diag = kdb_check_regs();
 559		if (diag)
 560			return diag;
 561		/* Implement register values with % at a later time as it is
 562		 * arch optional.
 563		 */
 564		return KDB_NOTIMP;
 565	} else {
 566		found = kdbgetsymval(symname, &symtab);
 567		if (found) {
 568			addr = symtab.sym_start;
 569		} else {
 570			diag = kdbgetularg(argv[*nextarg], &addr);
 571			if (diag)
 572				return diag;
 573		}
 574	}
 575
 576	if (!found)
 577		found = kdbnearsym(addr, &symtab);
 578
 579	(*nextarg)++;
 580
 581	if (name)
 582		*name = symname;
 583	if (value)
 584		*value = addr;
 585	if (offset && name && *name)
 586		*offset = addr - symtab.sym_start;
 587
 588	if ((*nextarg > argc)
 589	 && (symbol == '\0'))
 590		return 0;
 591
 592	/*
 593	 * check for +/- and offset
 594	 */
 595
 596	if (symbol == '\0') {
 597		if ((argv[*nextarg][0] != '+')
 598		 && (argv[*nextarg][0] != '-')) {
 599			/*
 600			 * Not our argument.  Return.
 601			 */
 602			return 0;
 603		} else {
 604			positive = (argv[*nextarg][0] == '+');
 605			(*nextarg)++;
 606		}
 607	} else
 608		positive = (symbol == '+');
 609
 610	/*
 611	 * Now there must be an offset!
 612	 */
 613	if ((*nextarg > argc)
 614	 && (symbol == '\0')) {
 615		return KDB_INVADDRFMT;
 616	}
 617
 618	if (!symbol) {
 619		cp = (char *)argv[*nextarg];
 620		(*nextarg)++;
 621	}
 622
 623	diag = kdbgetularg(cp, &off);
 624	if (diag)
 625		return diag;
 626
 627	if (!positive)
 628		off = -off;
 629
 630	if (offset)
 631		*offset += off;
 632
 633	if (value)
 634		*value += off;
 635
 636	return 0;
 637}
 638
 639static void kdb_cmderror(int diag)
 640{
 641	int i;
 642
 643	if (diag >= 0) {
 644		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 645		return;
 646	}
 647
 648	for (i = 0; i < __nkdb_err; i++) {
 649		if (kdbmsgs[i].km_diag == diag) {
 650			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 651			return;
 652		}
 653	}
 654
 655	kdb_printf("Unknown diag %d\n", -diag);
 656}
 657
 658/*
 659 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 660 *	command which defines one command as a set of other commands,
 661 *	terminated by endefcmd.  kdb_defcmd processes the initial
 662 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 663 *	the following commands until 'endefcmd'.
 664 * Inputs:
 665 *	argc	argument count
 666 *	argv	argument vector
 667 * Returns:
 668 *	zero for success, a kdb diagnostic if error
 669 */
 670struct kdb_macro {
 671	kdbtab_t cmd;			/* Macro command */
 672	struct list_head statements;	/* Associated statement list */
 673};
 674
 675struct kdb_macro_statement {
 676	char *statement;		/* Statement text */
 677	struct list_head list_node;	/* Statement list node */
 678};
 679
 680static struct kdb_macro *kdb_macro;
 681static bool defcmd_in_progress;
 682
 683/* Forward references */
 684static int kdb_exec_defcmd(int argc, const char **argv);
 685
 686static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 687{
 688	struct kdb_macro_statement *kms;
 689
 690	if (!kdb_macro)
 691		return KDB_NOTIMP;
 692
 693	if (strcmp(argv0, "endefcmd") == 0) {
 694		defcmd_in_progress = false;
 695		if (!list_empty(&kdb_macro->statements))
 696			kdb_register(&kdb_macro->cmd);
 
 
 
 
 
 
 
 
 697		return 0;
 698	}
 699
 700	kms = kmalloc(sizeof(*kms), GFP_KDB);
 701	if (!kms) {
 702		kdb_printf("Could not allocate new kdb macro command: %s\n",
 
 703			   cmdstr);
 
 704		return KDB_NOTIMP;
 705	}
 706
 707	kms->statement = kdb_strdup(cmdstr, GFP_KDB);
 708	list_add_tail(&kms->list_node, &kdb_macro->statements);
 709
 710	return 0;
 711}
 712
 713static int kdb_defcmd(int argc, const char **argv)
 714{
 715	kdbtab_t *mp;
 716
 717	if (defcmd_in_progress) {
 718		kdb_printf("kdb: nested defcmd detected, assuming missing "
 719			   "endefcmd\n");
 720		kdb_defcmd2("endefcmd", "endefcmd");
 721	}
 722	if (argc == 0) {
 723		kdbtab_t *kp;
 724		struct kdb_macro *kmp;
 725		struct kdb_macro_statement *kms;
 726
 727		list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 728			if (kp->func == kdb_exec_defcmd) {
 729				kdb_printf("defcmd %s \"%s\" \"%s\"\n",
 730					   kp->name, kp->usage, kp->help);
 731				kmp = container_of(kp, struct kdb_macro, cmd);
 732				list_for_each_entry(kms, &kmp->statements,
 733						    list_node)
 734					kdb_printf("%s", kms->statement);
 735				kdb_printf("endefcmd\n");
 736			}
 737		}
 738		return 0;
 739	}
 740	if (argc != 3)
 741		return KDB_ARGCOUNT;
 742	if (in_dbg_master()) {
 743		kdb_printf("Command only available during kdb_init()\n");
 744		return KDB_NOTIMP;
 745	}
 746	kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
 747	if (!kdb_macro)
 
 748		goto fail_defcmd;
 749
 750	mp = &kdb_macro->cmd;
 751	mp->func = kdb_exec_defcmd;
 752	mp->minlen = 0;
 753	mp->flags = KDB_ENABLE_ALWAYS_SAFE;
 754	mp->name = kdb_strdup(argv[1], GFP_KDB);
 755	if (!mp->name)
 756		goto fail_name;
 757	mp->usage = kdb_strdup(argv[2], GFP_KDB);
 758	if (!mp->usage)
 759		goto fail_usage;
 760	mp->help = kdb_strdup(argv[3], GFP_KDB);
 761	if (!mp->help)
 762		goto fail_help;
 763	if (mp->usage[0] == '"') {
 764		strcpy(mp->usage, argv[2]+1);
 765		mp->usage[strlen(mp->usage)-1] = '\0';
 
 
 
 
 766	}
 767	if (mp->help[0] == '"') {
 768		strcpy(mp->help, argv[3]+1);
 769		mp->help[strlen(mp->help)-1] = '\0';
 770	}
 771
 772	INIT_LIST_HEAD(&kdb_macro->statements);
 773	defcmd_in_progress = true;
 
 774	return 0;
 775fail_help:
 776	kfree(mp->usage);
 777fail_usage:
 778	kfree(mp->name);
 779fail_name:
 780	kfree(kdb_macro);
 781fail_defcmd:
 782	kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
 
 783	return KDB_NOTIMP;
 784}
 785
 786/*
 787 * kdb_exec_defcmd - Execute the set of commands associated with this
 788 *	defcmd name.
 789 * Inputs:
 790 *	argc	argument count
 791 *	argv	argument vector
 792 * Returns:
 793 *	zero for success, a kdb diagnostic if error
 794 */
 795static int kdb_exec_defcmd(int argc, const char **argv)
 796{
 797	int ret;
 798	kdbtab_t *kp;
 799	struct kdb_macro *kmp;
 800	struct kdb_macro_statement *kms;
 801
 802	if (argc != 0)
 803		return KDB_ARGCOUNT;
 804
 805	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
 806		if (strcmp(kp->name, argv[0]) == 0)
 807			break;
 808	}
 809	if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
 810		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 811			   argv[0]);
 812		return KDB_NOTIMP;
 813	}
 814	kmp = container_of(kp, struct kdb_macro, cmd);
 815	list_for_each_entry(kms, &kmp->statements, list_node) {
 816		/*
 817		 * Recursive use of kdb_parse, do not use argv after this point.
 818		 */
 819		argv = NULL;
 820		kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
 821		ret = kdb_parse(kms->statement);
 822		if (ret)
 823			return ret;
 824	}
 825	return 0;
 826}
 827
 828/* Command history */
 829#define KDB_CMD_HISTORY_COUNT	32
 830#define CMD_BUFLEN		200	/* kdb_printf: max printline
 831					 * size == 256 */
 832static unsigned int cmd_head, cmd_tail;
 833static unsigned int cmdptr;
 834static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 835static char cmd_cur[CMD_BUFLEN];
 836
 837/*
 838 * The "str" argument may point to something like  | grep xyz
 839 */
 840static void parse_grep(const char *str)
 841{
 842	int	len;
 843	char	*cp = (char *)str, *cp2;
 844
 845	/* sanity check: we should have been called with the \ first */
 846	if (*cp != '|')
 847		return;
 848	cp++;
 849	while (isspace(*cp))
 850		cp++;
 851	if (!str_has_prefix(cp, "grep ")) {
 852		kdb_printf("invalid 'pipe', see grephelp\n");
 853		return;
 854	}
 855	cp += 5;
 856	while (isspace(*cp))
 857		cp++;
 858	cp2 = strchr(cp, '\n');
 859	if (cp2)
 860		*cp2 = '\0'; /* remove the trailing newline */
 861	len = strlen(cp);
 862	if (len == 0) {
 863		kdb_printf("invalid 'pipe', see grephelp\n");
 864		return;
 865	}
 866	/* now cp points to a nonzero length search string */
 867	if (*cp == '"') {
 868		/* allow it be "x y z" by removing the "'s - there must
 869		   be two of them */
 870		cp++;
 871		cp2 = strchr(cp, '"');
 872		if (!cp2) {
 873			kdb_printf("invalid quoted string, see grephelp\n");
 874			return;
 875		}
 876		*cp2 = '\0'; /* end the string where the 2nd " was */
 877	}
 878	kdb_grep_leading = 0;
 879	if (*cp == '^') {
 880		kdb_grep_leading = 1;
 881		cp++;
 882	}
 883	len = strlen(cp);
 884	kdb_grep_trailing = 0;
 885	if (*(cp+len-1) == '$') {
 886		kdb_grep_trailing = 1;
 887		*(cp+len-1) = '\0';
 888	}
 889	len = strlen(cp);
 890	if (!len)
 891		return;
 892	if (len >= KDB_GREP_STRLEN) {
 893		kdb_printf("search string too long\n");
 894		return;
 895	}
 896	strcpy(kdb_grep_string, cp);
 897	kdb_grepping_flag++;
 898	return;
 899}
 900
 901/*
 902 * kdb_parse - Parse the command line, search the command table for a
 903 *	matching command and invoke the command function.  This
 904 *	function may be called recursively, if it is, the second call
 905 *	will overwrite argv and cbuf.  It is the caller's
 906 *	responsibility to save their argv if they recursively call
 907 *	kdb_parse().
 908 * Parameters:
 909 *      cmdstr	The input command line to be parsed.
 910 *	regs	The registers at the time kdb was entered.
 911 * Returns:
 912 *	Zero for success, a kdb diagnostic if failure.
 913 * Remarks:
 914 *	Limited to 20 tokens.
 915 *
 916 *	Real rudimentary tokenization. Basically only whitespace
 917 *	is considered a token delimiter (but special consideration
 918 *	is taken of the '=' sign as used by the 'set' command).
 919 *
 920 *	The algorithm used to tokenize the input string relies on
 921 *	there being at least one whitespace (or otherwise useless)
 922 *	character between tokens as the character immediately following
 923 *	the token is altered in-place to a null-byte to terminate the
 924 *	token string.
 925 */
 926
 927#define MAXARGC	20
 928
 929int kdb_parse(const char *cmdstr)
 930{
 931	static char *argv[MAXARGC];
 932	static int argc;
 933	static char cbuf[CMD_BUFLEN+2];
 934	char *cp;
 935	char *cpp, quoted;
 936	kdbtab_t *tp;
 937	int escaped, ignore_errors = 0, check_grep = 0;
 938
 939	/*
 940	 * First tokenize the command string.
 941	 */
 942	cp = (char *)cmdstr;
 943
 944	if (KDB_FLAG(CMD_INTERRUPT)) {
 945		/* Previous command was interrupted, newline must not
 946		 * repeat the command */
 947		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 948		KDB_STATE_SET(PAGER);
 949		argc = 0;	/* no repeat */
 950	}
 951
 952	if (*cp != '\n' && *cp != '\0') {
 953		argc = 0;
 954		cpp = cbuf;
 955		while (*cp) {
 956			/* skip whitespace */
 957			while (isspace(*cp))
 958				cp++;
 959			if ((*cp == '\0') || (*cp == '\n') ||
 960			    (*cp == '#' && !defcmd_in_progress))
 961				break;
 962			/* special case: check for | grep pattern */
 963			if (*cp == '|') {
 964				check_grep++;
 965				break;
 966			}
 967			if (cpp >= cbuf + CMD_BUFLEN) {
 968				kdb_printf("kdb_parse: command buffer "
 969					   "overflow, command ignored\n%s\n",
 970					   cmdstr);
 971				return KDB_NOTFOUND;
 972			}
 973			if (argc >= MAXARGC - 1) {
 974				kdb_printf("kdb_parse: too many arguments, "
 975					   "command ignored\n%s\n", cmdstr);
 976				return KDB_NOTFOUND;
 977			}
 978			argv[argc++] = cpp;
 979			escaped = 0;
 980			quoted = '\0';
 981			/* Copy to next unquoted and unescaped
 982			 * whitespace or '=' */
 983			while (*cp && *cp != '\n' &&
 984			       (escaped || quoted || !isspace(*cp))) {
 985				if (cpp >= cbuf + CMD_BUFLEN)
 986					break;
 987				if (escaped) {
 988					escaped = 0;
 989					*cpp++ = *cp++;
 990					continue;
 991				}
 992				if (*cp == '\\') {
 993					escaped = 1;
 994					++cp;
 995					continue;
 996				}
 997				if (*cp == quoted)
 998					quoted = '\0';
 999				else if (*cp == '\'' || *cp == '"')
1000					quoted = *cp;
1001				*cpp = *cp++;
1002				if (*cpp == '=' && !quoted)
1003					break;
1004				++cpp;
1005			}
1006			*cpp++ = '\0';	/* Squash a ws or '=' character */
1007		}
1008	}
1009	if (!argc)
1010		return 0;
1011	if (check_grep)
1012		parse_grep(cp);
1013	if (defcmd_in_progress) {
1014		int result = kdb_defcmd2(cmdstr, argv[0]);
1015		if (!defcmd_in_progress) {
1016			argc = 0;	/* avoid repeat on endefcmd */
1017			*(argv[0]) = '\0';
1018		}
1019		return result;
1020	}
1021	if (argv[0][0] == '-' && argv[0][1] &&
1022	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1023		ignore_errors = 1;
1024		++argv[0];
1025	}
1026
1027	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1028		/*
1029		 * If this command is allowed to be abbreviated,
1030		 * check to see if this is it.
1031		 */
1032		if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1033		    (strncmp(argv[0], tp->name, tp->minlen) == 0))
1034			break;
1035
1036		if (strcmp(argv[0], tp->name) == 0)
1037			break;
 
 
 
 
 
 
 
 
 
 
1038	}
1039
1040	/*
1041	 * If we don't find a command by this name, see if the first
1042	 * few characters of this match any of the known commands.
1043	 * e.g., md1c20 should match md.
1044	 */
1045	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1046		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1047			if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1048				break;
 
 
 
 
 
1049		}
1050	}
1051
1052	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1053		int result;
1054
1055		if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1056			return KDB_NOPERM;
1057
1058		KDB_STATE_SET(CMD);
1059		result = (*tp->func)(argc-1, (const char **)argv);
1060		if (result && ignore_errors && result > KDB_CMD_GO)
1061			result = 0;
1062		KDB_STATE_CLEAR(CMD);
1063
1064		if (tp->flags & KDB_REPEAT_WITH_ARGS)
1065			return result;
1066
1067		argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068		if (argv[argc])
1069			*(argv[argc]) = '\0';
1070		return result;
1071	}
1072
1073	/*
1074	 * If the input with which we were presented does not
1075	 * map to an existing command, attempt to parse it as an
1076	 * address argument and display the result.   Useful for
1077	 * obtaining the address of a variable, or the nearest symbol
1078	 * to an address contained in a register.
1079	 */
1080	{
1081		unsigned long value;
1082		char *name = NULL;
1083		long offset;
1084		int nextarg = 0;
1085
1086		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087				  &value, &offset, &name)) {
1088			return KDB_NOTFOUND;
1089		}
1090
1091		kdb_printf("%s = ", argv[0]);
1092		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093		kdb_printf("\n");
1094		return 0;
1095	}
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P	16
1102#define CTRL_N	14
1103
1104	/* initial situation */
1105	if (cmd_head == cmd_tail)
1106		return 0;
1107	switch (*cmd) {
1108	case CTRL_P:
1109		if (cmdptr != cmd_tail)
1110			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111				 KDB_CMD_HISTORY_COUNT;
1112		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113		return 1;
1114	case CTRL_N:
1115		if (cmdptr != cmd_head)
1116			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118		return 1;
1119	}
1120	return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1125 *	the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129	emergency_restart();
1130	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131	while (1)
1132		cpu_relax();
1133	/* NOTREACHED */
1134	return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139	int old_lvl = console_loglevel;
1140	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141	kdb_trap_printk++;
1142	show_regs(regs);
1143	kdb_trap_printk--;
1144	kdb_printf("\n");
1145	console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150	kdb_current_task = p;
1151
1152	if (kdb_task_has_cpu(p)) {
1153		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154		return;
1155	}
1156	kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161	size_t len = strlen(buf);
1162
1163	if (len == 0)
1164		return;
1165	if (*(buf + len - 1) == '\n')
1166		*(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb.  This routine is invoked on a
1171 *	specific processor, it is not global.  The main kdb() routine
1172 *	ensures that only one processor at a time is in this routine.
1173 *	This code is called with the real reason code on the first
1174 *	entry to a kdb session, thereafter it is called with reason
1175 *	SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 *	reason		The reason KDB was invoked
1178 *	error		The hardware-defined error code
1179 *	regs		The exception frame at time of fault/breakpoint.
1180 *	db_result	Result code from the break or debug point.
1181 * Returns:
1182 *	0	KDB was invoked for an event which it wasn't responsible
1183 *	1	KDB handled the event for which it was invoked.
1184 *	KDB_CMD_GO	User typed 'go'.
1185 *	KDB_CMD_CPU	User switched to another cpu.
1186 *	KDB_CMD_SS	Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189		     kdb_dbtrap_t db_result)
1190{
1191	char *cmdbuf;
1192	int diag;
1193	struct task_struct *kdb_current =
1194		curr_task(raw_smp_processor_id());
1195
1196	KDB_DEBUG_STATE("kdb_local 1", reason);
1197
1198	kdb_check_for_lockdown();
1199
1200	kdb_go_count = 0;
1201	if (reason == KDB_REASON_DEBUG) {
1202		/* special case below */
1203	} else {
1204		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1205			   kdb_current, kdb_current ? kdb_current->pid : 0);
1206#if defined(CONFIG_SMP)
1207		kdb_printf("on processor %d ", raw_smp_processor_id());
1208#endif
1209	}
1210
1211	switch (reason) {
1212	case KDB_REASON_DEBUG:
1213	{
1214		/*
1215		 * If re-entering kdb after a single step
1216		 * command, don't print the message.
1217		 */
1218		switch (db_result) {
1219		case KDB_DB_BPT:
1220			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1221				   kdb_current, kdb_current->pid);
1222#if defined(CONFIG_SMP)
1223			kdb_printf("on processor %d ", raw_smp_processor_id());
1224#endif
1225			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1226				   instruction_pointer(regs));
1227			break;
1228		case KDB_DB_SS:
1229			break;
1230		case KDB_DB_SSBPT:
1231			KDB_DEBUG_STATE("kdb_local 4", reason);
1232			return 1;	/* kdba_db_trap did the work */
1233		default:
1234			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1235				   db_result);
1236			break;
1237		}
1238
1239	}
1240		break;
1241	case KDB_REASON_ENTER:
1242		if (KDB_STATE(KEYBOARD))
1243			kdb_printf("due to Keyboard Entry\n");
1244		else
1245			kdb_printf("due to KDB_ENTER()\n");
1246		break;
1247	case KDB_REASON_KEYBOARD:
1248		KDB_STATE_SET(KEYBOARD);
1249		kdb_printf("due to Keyboard Entry\n");
1250		break;
1251	case KDB_REASON_ENTER_SLAVE:
1252		/* drop through, slaves only get released via cpu switch */
1253	case KDB_REASON_SWITCH:
1254		kdb_printf("due to cpu switch\n");
1255		break;
1256	case KDB_REASON_OOPS:
1257		kdb_printf("Oops: %s\n", kdb_diemsg);
1258		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1259			   instruction_pointer(regs));
1260		kdb_dumpregs(regs);
1261		break;
1262	case KDB_REASON_SYSTEM_NMI:
1263		kdb_printf("due to System NonMaskable Interrupt\n");
1264		break;
1265	case KDB_REASON_NMI:
1266		kdb_printf("due to NonMaskable Interrupt @ "
1267			   kdb_machreg_fmt "\n",
1268			   instruction_pointer(regs));
1269		break;
1270	case KDB_REASON_SSTEP:
1271	case KDB_REASON_BREAK:
1272		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1273			   reason == KDB_REASON_BREAK ?
1274			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1275		/*
1276		 * Determine if this breakpoint is one that we
1277		 * are interested in.
1278		 */
1279		if (db_result != KDB_DB_BPT) {
1280			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1281				   db_result);
1282			KDB_DEBUG_STATE("kdb_local 6", reason);
1283			return 0;	/* Not for us, dismiss it */
1284		}
1285		break;
1286	case KDB_REASON_RECURSE:
1287		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1288			   instruction_pointer(regs));
1289		break;
1290	default:
1291		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1292		KDB_DEBUG_STATE("kdb_local 8", reason);
1293		return 0;	/* Not for us, dismiss it */
1294	}
1295
1296	while (1) {
1297		/*
1298		 * Initialize pager context.
1299		 */
1300		kdb_nextline = 1;
1301		KDB_STATE_CLEAR(SUPPRESS);
1302		kdb_grepping_flag = 0;
1303		/* ensure the old search does not leak into '/' commands */
1304		kdb_grep_string[0] = '\0';
1305
1306		cmdbuf = cmd_cur;
1307		*cmdbuf = '\0';
1308		*(cmd_hist[cmd_head]) = '\0';
1309
1310do_full_getstr:
1311		/* PROMPT can only be set if we have MEM_READ permission. */
1312		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1313			 raw_smp_processor_id());
 
 
1314
1315		/*
1316		 * Fetch command from keyboard
1317		 */
1318		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1319		if (*cmdbuf != '\n') {
1320			if (*cmdbuf < 32) {
1321				if (cmdptr == cmd_head) {
1322					strscpy(cmd_hist[cmd_head], cmd_cur,
1323						CMD_BUFLEN);
1324					*(cmd_hist[cmd_head] +
1325					  strlen(cmd_hist[cmd_head])-1) = '\0';
1326				}
1327				if (!handle_ctrl_cmd(cmdbuf))
1328					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1329				cmdbuf = cmd_cur;
1330				goto do_full_getstr;
1331			} else {
1332				strscpy(cmd_hist[cmd_head], cmd_cur,
1333					CMD_BUFLEN);
1334			}
1335
1336			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1337			if (cmd_head == cmd_tail)
1338				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1339		}
1340
1341		cmdptr = cmd_head;
1342		diag = kdb_parse(cmdbuf);
1343		if (diag == KDB_NOTFOUND) {
1344			drop_newline(cmdbuf);
1345			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1346			diag = 0;
1347		}
1348		if (diag == KDB_CMD_GO
1349		 || diag == KDB_CMD_CPU
1350		 || diag == KDB_CMD_SS
1351		 || diag == KDB_CMD_KGDB)
1352			break;
1353
1354		if (diag)
1355			kdb_cmderror(diag);
1356	}
1357	KDB_DEBUG_STATE("kdb_local 9", diag);
1358	return diag;
1359}
1360
1361
1362/*
1363 * kdb_print_state - Print the state data for the current processor
1364 *	for debugging.
1365 * Inputs:
1366 *	text		Identifies the debug point
1367 *	value		Any integer value to be printed, e.g. reason code.
1368 */
1369void kdb_print_state(const char *text, int value)
1370{
1371	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1372		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1373		   kdb_state);
1374}
1375
1376/*
1377 * kdb_main_loop - After initial setup and assignment of the
1378 *	controlling cpu, all cpus are in this loop.  One cpu is in
1379 *	control and will issue the kdb prompt, the others will spin
1380 *	until 'go' or cpu switch.
1381 *
1382 *	To get a consistent view of the kernel stacks for all
1383 *	processes, this routine is invoked from the main kdb code via
1384 *	an architecture specific routine.  kdba_main_loop is
1385 *	responsible for making the kernel stacks consistent for all
1386 *	processes, there should be no difference between a blocked
1387 *	process and a running process as far as kdb is concerned.
1388 * Inputs:
1389 *	reason		The reason KDB was invoked
1390 *	error		The hardware-defined error code
1391 *	reason2		kdb's current reason code.
1392 *			Initially error but can change
1393 *			according to kdb state.
1394 *	db_result	Result code from break or debug point.
1395 *	regs		The exception frame at time of fault/breakpoint.
1396 *			should always be valid.
1397 * Returns:
1398 *	0	KDB was invoked for an event which it wasn't responsible
1399 *	1	KDB handled the event for which it was invoked.
1400 */
1401int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1402	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1403{
1404	int result = 1;
1405	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1406	while (1) {
1407		/*
1408		 * All processors except the one that is in control
1409		 * will spin here.
1410		 */
1411		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1412		while (KDB_STATE(HOLD_CPU)) {
1413			/* state KDB is turned off by kdb_cpu to see if the
1414			 * other cpus are still live, each cpu in this loop
1415			 * turns it back on.
1416			 */
1417			if (!KDB_STATE(KDB))
1418				KDB_STATE_SET(KDB);
1419		}
1420
1421		KDB_STATE_CLEAR(SUPPRESS);
1422		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1423		if (KDB_STATE(LEAVING))
1424			break;	/* Another cpu said 'go' */
1425		/* Still using kdb, this processor is in control */
1426		result = kdb_local(reason2, error, regs, db_result);
1427		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1428
1429		if (result == KDB_CMD_CPU)
1430			break;
1431
1432		if (result == KDB_CMD_SS) {
1433			KDB_STATE_SET(DOING_SS);
1434			break;
1435		}
1436
1437		if (result == KDB_CMD_KGDB) {
1438			if (!KDB_STATE(DOING_KGDB))
1439				kdb_printf("Entering please attach debugger "
1440					   "or use $D#44+ or $3#33\n");
1441			break;
1442		}
1443		if (result && result != 1 && result != KDB_CMD_GO)
1444			kdb_printf("\nUnexpected kdb_local return code %d\n",
1445				   result);
1446		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1447		break;
1448	}
1449	if (KDB_STATE(DOING_SS))
1450		KDB_STATE_CLEAR(SSBPT);
1451
1452	/* Clean up any keyboard devices before leaving */
1453	kdb_kbd_cleanup_state();
1454
1455	return result;
1456}
1457
1458/*
1459 * kdb_mdr - This function implements the guts of the 'mdr', memory
1460 * read command.
1461 *	mdr  <addr arg>,<byte count>
1462 * Inputs:
1463 *	addr	Start address
1464 *	count	Number of bytes
1465 * Returns:
1466 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1467 */
1468static int kdb_mdr(unsigned long addr, unsigned int count)
1469{
1470	unsigned char c;
1471	while (count--) {
1472		if (kdb_getarea(c, addr))
1473			return 0;
1474		kdb_printf("%02x", c);
1475		addr++;
1476	}
1477	kdb_printf("\n");
1478	return 0;
1479}
1480
1481/*
1482 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1483 *	'md8' 'mdr' and 'mds' commands.
1484 *
1485 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1486 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1487 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1488 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1489 *	mdr  <addr arg>,<byte count>
1490 */
1491static void kdb_md_line(const char *fmtstr, unsigned long addr,
1492			int symbolic, int nosect, int bytesperword,
1493			int num, int repeat, int phys)
1494{
1495	/* print just one line of data */
1496	kdb_symtab_t symtab;
1497	char cbuf[32];
1498	char *c = cbuf;
1499	int i;
1500	int j;
1501	unsigned long word;
1502
1503	memset(cbuf, '\0', sizeof(cbuf));
1504	if (phys)
1505		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1506	else
1507		kdb_printf(kdb_machreg_fmt0 " ", addr);
1508
1509	for (i = 0; i < num && repeat--; i++) {
1510		if (phys) {
1511			if (kdb_getphysword(&word, addr, bytesperword))
1512				break;
1513		} else if (kdb_getword(&word, addr, bytesperword))
1514			break;
1515		kdb_printf(fmtstr, word);
1516		if (symbolic)
1517			kdbnearsym(word, &symtab);
1518		else
1519			memset(&symtab, 0, sizeof(symtab));
1520		if (symtab.sym_name) {
1521			kdb_symbol_print(word, &symtab, 0);
1522			if (!nosect) {
1523				kdb_printf("\n");
1524				kdb_printf("                       %s %s "
1525					   kdb_machreg_fmt " "
1526					   kdb_machreg_fmt " "
1527					   kdb_machreg_fmt, symtab.mod_name,
1528					   symtab.sec_name, symtab.sec_start,
1529					   symtab.sym_start, symtab.sym_end);
1530			}
1531			addr += bytesperword;
1532		} else {
1533			union {
1534				u64 word;
1535				unsigned char c[8];
1536			} wc;
1537			unsigned char *cp;
1538#ifdef	__BIG_ENDIAN
1539			cp = wc.c + 8 - bytesperword;
1540#else
1541			cp = wc.c;
1542#endif
1543			wc.word = word;
1544#define printable_char(c) \
1545	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1546			for (j = 0; j < bytesperword; j++)
1547				*c++ = printable_char(*cp++);
1548			addr += bytesperword;
1549#undef printable_char
1550		}
1551	}
1552	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553		   " ", cbuf);
1554}
1555
1556static int kdb_md(int argc, const char **argv)
1557{
1558	static unsigned long last_addr;
1559	static int last_radix, last_bytesperword, last_repeat;
1560	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561	int nosect = 0;
1562	char fmtchar, fmtstr[64];
1563	unsigned long addr;
1564	unsigned long word;
1565	long offset = 0;
1566	int symbolic = 0;
1567	int valid = 0;
1568	int phys = 0;
1569	int raw = 0;
1570
1571	kdbgetintenv("MDCOUNT", &mdcount);
1572	kdbgetintenv("RADIX", &radix);
1573	kdbgetintenv("BYTESPERWORD", &bytesperword);
1574
1575	/* Assume 'md <addr>' and start with environment values */
1576	repeat = mdcount * 16 / bytesperword;
1577
1578	if (strcmp(argv[0], "mdr") == 0) {
1579		if (argc == 2 || (argc == 0 && last_addr != 0))
1580			valid = raw = 1;
1581		else
1582			return KDB_ARGCOUNT;
1583	} else if (isdigit(argv[0][2])) {
1584		bytesperword = (int)(argv[0][2] - '0');
1585		if (bytesperword == 0) {
1586			bytesperword = last_bytesperword;
1587			if (bytesperword == 0)
1588				bytesperword = 4;
1589		}
1590		last_bytesperword = bytesperword;
1591		repeat = mdcount * 16 / bytesperword;
1592		if (!argv[0][3])
1593			valid = 1;
1594		else if (argv[0][3] == 'c' && argv[0][4]) {
1595			if (kstrtouint(argv[0] + 4, 10, &repeat))
1596				return KDB_BADINT;
1597			mdcount = ((repeat * bytesperword) + 15) / 16;
1598			valid = 1;
1599		}
1600		last_repeat = repeat;
1601	} else if (strcmp(argv[0], "md") == 0)
1602		valid = 1;
1603	else if (strcmp(argv[0], "mds") == 0)
1604		valid = 1;
1605	else if (strcmp(argv[0], "mdp") == 0) {
1606		phys = valid = 1;
1607	}
1608	if (!valid)
1609		return KDB_NOTFOUND;
1610
1611	if (argc == 0) {
1612		if (last_addr == 0)
1613			return KDB_ARGCOUNT;
1614		addr = last_addr;
1615		radix = last_radix;
1616		bytesperword = last_bytesperword;
1617		repeat = last_repeat;
1618		if (raw)
1619			mdcount = repeat;
1620		else
1621			mdcount = ((repeat * bytesperword) + 15) / 16;
1622	}
1623
1624	if (argc) {
1625		unsigned long val;
1626		int diag, nextarg = 1;
1627		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1628				     &offset, NULL);
1629		if (diag)
1630			return diag;
1631		if (argc > nextarg+2)
1632			return KDB_ARGCOUNT;
1633
1634		if (argc >= nextarg) {
1635			diag = kdbgetularg(argv[nextarg], &val);
1636			if (!diag) {
1637				mdcount = (int) val;
1638				if (raw)
1639					repeat = mdcount;
1640				else
1641					repeat = mdcount * 16 / bytesperword;
1642			}
1643		}
1644		if (argc >= nextarg+1) {
1645			diag = kdbgetularg(argv[nextarg+1], &val);
1646			if (!diag)
1647				radix = (int) val;
1648		}
1649	}
1650
1651	if (strcmp(argv[0], "mdr") == 0) {
1652		int ret;
1653		last_addr = addr;
1654		ret = kdb_mdr(addr, mdcount);
1655		last_addr += mdcount;
1656		last_repeat = mdcount;
1657		last_bytesperword = bytesperword; // to make REPEAT happy
1658		return ret;
1659	}
1660
1661	switch (radix) {
1662	case 10:
1663		fmtchar = 'd';
1664		break;
1665	case 16:
1666		fmtchar = 'x';
1667		break;
1668	case 8:
1669		fmtchar = 'o';
1670		break;
1671	default:
1672		return KDB_BADRADIX;
1673	}
1674
1675	last_radix = radix;
1676
1677	if (bytesperword > KDB_WORD_SIZE)
1678		return KDB_BADWIDTH;
1679
1680	switch (bytesperword) {
1681	case 8:
1682		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1683		break;
1684	case 4:
1685		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1686		break;
1687	case 2:
1688		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1689		break;
1690	case 1:
1691		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1692		break;
1693	default:
1694		return KDB_BADWIDTH;
1695	}
1696
1697	last_repeat = repeat;
1698	last_bytesperword = bytesperword;
1699
1700	if (strcmp(argv[0], "mds") == 0) {
1701		symbolic = 1;
1702		/* Do not save these changes as last_*, they are temporary mds
1703		 * overrides.
1704		 */
1705		bytesperword = KDB_WORD_SIZE;
1706		repeat = mdcount;
1707		kdbgetintenv("NOSECT", &nosect);
1708	}
1709
1710	/* Round address down modulo BYTESPERWORD */
1711
1712	addr &= ~(bytesperword-1);
1713
1714	while (repeat > 0) {
1715		unsigned long a;
1716		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1717
1718		if (KDB_FLAG(CMD_INTERRUPT))
1719			return 0;
1720		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1721			if (phys) {
1722				if (kdb_getphysword(&word, a, bytesperword)
1723						|| word)
1724					break;
1725			} else if (kdb_getword(&word, a, bytesperword) || word)
1726				break;
1727		}
1728		n = min(num, repeat);
1729		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1730			    num, repeat, phys);
1731		addr += bytesperword * n;
1732		repeat -= n;
1733		z = (z + num - 1) / num;
1734		if (z > 2) {
1735			int s = num * (z-2);
1736			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1737				   " zero suppressed\n",
1738				addr, addr + bytesperword * s - 1);
1739			addr += bytesperword * s;
1740			repeat -= s;
1741		}
1742	}
1743	last_addr = addr;
1744
1745	return 0;
1746}
1747
1748/*
1749 * kdb_mm - This function implements the 'mm' command.
1750 *	mm address-expression new-value
1751 * Remarks:
1752 *	mm works on machine words, mmW works on bytes.
1753 */
1754static int kdb_mm(int argc, const char **argv)
1755{
1756	int diag;
1757	unsigned long addr;
1758	long offset = 0;
1759	unsigned long contents;
1760	int nextarg;
1761	int width;
1762
1763	if (argv[0][2] && !isdigit(argv[0][2]))
1764		return KDB_NOTFOUND;
1765
1766	if (argc < 2)
1767		return KDB_ARGCOUNT;
1768
1769	nextarg = 1;
1770	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1771	if (diag)
1772		return diag;
1773
1774	if (nextarg > argc)
1775		return KDB_ARGCOUNT;
1776	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1777	if (diag)
1778		return diag;
1779
1780	if (nextarg != argc + 1)
1781		return KDB_ARGCOUNT;
1782
1783	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1784	diag = kdb_putword(addr, contents, width);
1785	if (diag)
1786		return diag;
1787
1788	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1789
1790	return 0;
1791}
1792
1793/*
1794 * kdb_go - This function implements the 'go' command.
1795 *	go [address-expression]
1796 */
1797static int kdb_go(int argc, const char **argv)
1798{
1799	unsigned long addr;
1800	int diag;
1801	int nextarg;
1802	long offset;
1803
1804	if (raw_smp_processor_id() != kdb_initial_cpu) {
1805		kdb_printf("go must execute on the entry cpu, "
1806			   "please use \"cpu %d\" and then execute go\n",
1807			   kdb_initial_cpu);
1808		return KDB_BADCPUNUM;
1809	}
1810	if (argc == 1) {
1811		nextarg = 1;
1812		diag = kdbgetaddrarg(argc, argv, &nextarg,
1813				     &addr, &offset, NULL);
1814		if (diag)
1815			return diag;
1816	} else if (argc) {
1817		return KDB_ARGCOUNT;
1818	}
1819
1820	diag = KDB_CMD_GO;
1821	if (KDB_FLAG(CATASTROPHIC)) {
1822		kdb_printf("Catastrophic error detected\n");
1823		kdb_printf("kdb_continue_catastrophic=%d, ",
1824			kdb_continue_catastrophic);
1825		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1826			kdb_printf("type go a second time if you really want "
1827				   "to continue\n");
1828			return 0;
1829		}
1830		if (kdb_continue_catastrophic == 2) {
1831			kdb_printf("forcing reboot\n");
1832			kdb_reboot(0, NULL);
1833		}
1834		kdb_printf("attempting to continue\n");
1835	}
1836	return diag;
1837}
1838
1839/*
1840 * kdb_rd - This function implements the 'rd' command.
1841 */
1842static int kdb_rd(int argc, const char **argv)
1843{
1844	int len = kdb_check_regs();
1845#if DBG_MAX_REG_NUM > 0
1846	int i;
1847	char *rname;
1848	int rsize;
1849	u64 reg64;
1850	u32 reg32;
1851	u16 reg16;
1852	u8 reg8;
1853
1854	if (len)
1855		return len;
1856
1857	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1858		rsize = dbg_reg_def[i].size * 2;
1859		if (rsize > 16)
1860			rsize = 2;
1861		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1862			len = 0;
1863			kdb_printf("\n");
1864		}
1865		if (len)
1866			len += kdb_printf("  ");
1867		switch(dbg_reg_def[i].size * 8) {
1868		case 8:
1869			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1870			if (!rname)
1871				break;
1872			len += kdb_printf("%s: %02x", rname, reg8);
1873			break;
1874		case 16:
1875			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1876			if (!rname)
1877				break;
1878			len += kdb_printf("%s: %04x", rname, reg16);
1879			break;
1880		case 32:
1881			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1882			if (!rname)
1883				break;
1884			len += kdb_printf("%s: %08x", rname, reg32);
1885			break;
1886		case 64:
1887			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1888			if (!rname)
1889				break;
1890			len += kdb_printf("%s: %016llx", rname, reg64);
1891			break;
1892		default:
1893			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1894		}
1895	}
1896	kdb_printf("\n");
1897#else
1898	if (len)
1899		return len;
1900
1901	kdb_dumpregs(kdb_current_regs);
1902#endif
1903	return 0;
1904}
1905
1906/*
1907 * kdb_rm - This function implements the 'rm' (register modify)  command.
1908 *	rm register-name new-contents
1909 * Remarks:
1910 *	Allows register modification with the same restrictions as gdb
1911 */
1912static int kdb_rm(int argc, const char **argv)
1913{
1914#if DBG_MAX_REG_NUM > 0
1915	int diag;
1916	const char *rname;
1917	int i;
1918	u64 reg64;
1919	u32 reg32;
1920	u16 reg16;
1921	u8 reg8;
1922
1923	if (argc != 2)
1924		return KDB_ARGCOUNT;
1925	/*
1926	 * Allow presence or absence of leading '%' symbol.
1927	 */
1928	rname = argv[1];
1929	if (*rname == '%')
1930		rname++;
1931
1932	diag = kdbgetu64arg(argv[2], &reg64);
1933	if (diag)
1934		return diag;
1935
1936	diag = kdb_check_regs();
1937	if (diag)
1938		return diag;
1939
1940	diag = KDB_BADREG;
1941	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1942		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1943			diag = 0;
1944			break;
1945		}
1946	}
1947	if (!diag) {
1948		switch(dbg_reg_def[i].size * 8) {
1949		case 8:
1950			reg8 = reg64;
1951			dbg_set_reg(i, &reg8, kdb_current_regs);
1952			break;
1953		case 16:
1954			reg16 = reg64;
1955			dbg_set_reg(i, &reg16, kdb_current_regs);
1956			break;
1957		case 32:
1958			reg32 = reg64;
1959			dbg_set_reg(i, &reg32, kdb_current_regs);
1960			break;
1961		case 64:
1962			dbg_set_reg(i, &reg64, kdb_current_regs);
1963			break;
1964		}
1965	}
1966	return diag;
1967#else
1968	kdb_printf("ERROR: Register set currently not implemented\n");
1969    return 0;
1970#endif
1971}
1972
1973#if defined(CONFIG_MAGIC_SYSRQ)
1974/*
1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1976 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1977 *		sr <magic-sysrq-code>
1978 */
1979static int kdb_sr(int argc, const char **argv)
1980{
1981	bool check_mask =
1982	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1983
1984	if (argc != 1)
1985		return KDB_ARGCOUNT;
1986
1987	kdb_trap_printk++;
1988	__handle_sysrq(*argv[1], check_mask);
1989	kdb_trap_printk--;
1990
1991	return 0;
1992}
1993#endif	/* CONFIG_MAGIC_SYSRQ */
1994
1995/*
1996 * kdb_ef - This function implements the 'regs' (display exception
1997 *	frame) command.  This command takes an address and expects to
1998 *	find an exception frame at that address, formats and prints
1999 *	it.
2000 *		regs address-expression
2001 * Remarks:
2002 *	Not done yet.
2003 */
2004static int kdb_ef(int argc, const char **argv)
2005{
2006	int diag;
2007	unsigned long addr;
2008	long offset;
2009	int nextarg;
2010
2011	if (argc != 1)
2012		return KDB_ARGCOUNT;
2013
2014	nextarg = 1;
2015	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2016	if (diag)
2017		return diag;
2018	show_regs((struct pt_regs *)addr);
2019	return 0;
2020}
2021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2022/*
2023 * kdb_env - This function implements the 'env' command.  Display the
2024 *	current environment variables.
2025 */
2026
2027static int kdb_env(int argc, const char **argv)
2028{
2029	kdb_printenv();
 
 
 
 
 
2030
2031	if (KDB_DEBUG(MASK))
2032		kdb_printf("KDBDEBUG=0x%x\n",
2033			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2034
2035	return 0;
2036}
2037
2038#ifdef CONFIG_PRINTK
2039/*
2040 * kdb_dmesg - This function implements the 'dmesg' command to display
2041 *	the contents of the syslog buffer.
2042 *		dmesg [lines] [adjust]
2043 */
2044static int kdb_dmesg(int argc, const char **argv)
2045{
2046	int diag;
2047	int logging;
2048	int lines = 0;
2049	int adjust = 0;
2050	int n = 0;
2051	int skip = 0;
2052	struct kmsg_dump_iter iter;
2053	size_t len;
2054	char buf[201];
2055
2056	if (argc > 2)
2057		return KDB_ARGCOUNT;
2058	if (argc) {
2059		if (kstrtoint(argv[1], 0, &lines))
 
 
2060			lines = 0;
2061		if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0))
2062			adjust = 0;
 
 
 
2063	}
2064
2065	/* disable LOGGING if set */
2066	diag = kdbgetintenv("LOGGING", &logging);
2067	if (!diag && logging) {
2068		const char *setargs[] = { "set", "LOGGING", "0" };
2069		kdb_set(2, setargs);
2070	}
2071
2072	kmsg_dump_rewind(&iter);
2073	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2074		n++;
2075
2076	if (lines < 0) {
2077		if (adjust >= n)
2078			kdb_printf("buffer only contains %d lines, nothing "
2079				   "printed\n", n);
2080		else if (adjust - lines >= n)
2081			kdb_printf("buffer only contains %d lines, last %d "
2082				   "lines printed\n", n, n - adjust);
2083		skip = adjust;
2084		lines = abs(lines);
2085	} else if (lines > 0) {
2086		skip = n - lines - adjust;
2087		lines = abs(lines);
2088		if (adjust >= n) {
2089			kdb_printf("buffer only contains %d lines, "
2090				   "nothing printed\n", n);
2091			skip = n;
2092		} else if (skip < 0) {
2093			lines += skip;
2094			skip = 0;
2095			kdb_printf("buffer only contains %d lines, first "
2096				   "%d lines printed\n", n, lines);
2097		}
2098	} else {
2099		lines = n;
2100	}
2101
2102	if (skip >= n || skip < 0)
2103		return 0;
2104
2105	kmsg_dump_rewind(&iter);
2106	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2107		if (skip) {
2108			skip--;
2109			continue;
2110		}
2111		if (!lines--)
2112			break;
2113		if (KDB_FLAG(CMD_INTERRUPT))
2114			return 0;
2115
2116		kdb_printf("%.*s\n", (int)len - 1, buf);
2117	}
2118
2119	return 0;
2120}
2121#endif /* CONFIG_PRINTK */
2122
2123/* Make sure we balance enable/disable calls, must disable first. */
2124static atomic_t kdb_nmi_disabled;
2125
2126static int kdb_disable_nmi(int argc, const char *argv[])
2127{
2128	if (atomic_read(&kdb_nmi_disabled))
2129		return 0;
2130	atomic_set(&kdb_nmi_disabled, 1);
2131	arch_kgdb_ops.enable_nmi(0);
2132	return 0;
2133}
2134
2135static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2136{
2137	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2138		return -EINVAL;
2139	arch_kgdb_ops.enable_nmi(1);
2140	return 0;
2141}
2142
2143static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2144	.set = kdb_param_enable_nmi,
2145};
2146module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2147
2148/*
2149 * kdb_cpu - This function implements the 'cpu' command.
2150 *	cpu	[<cpunum>]
2151 * Returns:
2152 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2153 */
2154static void kdb_cpu_status(void)
2155{
2156	int i, start_cpu, first_print = 1;
2157	char state, prev_state = '?';
2158
2159	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2160	kdb_printf("Available cpus: ");
2161	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2162		if (!cpu_online(i)) {
2163			state = 'F';	/* cpu is offline */
2164		} else if (!kgdb_info[i].enter_kgdb) {
2165			state = 'D';	/* cpu is online but unresponsive */
2166		} else {
2167			state = ' ';	/* cpu is responding to kdb */
2168			if (kdb_task_state_char(KDB_TSK(i)) == '-')
2169				state = '-';	/* idle task */
2170		}
2171		if (state != prev_state) {
2172			if (prev_state != '?') {
2173				if (!first_print)
2174					kdb_printf(", ");
2175				first_print = 0;
2176				kdb_printf("%d", start_cpu);
2177				if (start_cpu < i-1)
2178					kdb_printf("-%d", i-1);
2179				if (prev_state != ' ')
2180					kdb_printf("(%c)", prev_state);
2181			}
2182			prev_state = state;
2183			start_cpu = i;
2184		}
2185	}
2186	/* print the trailing cpus, ignoring them if they are all offline */
2187	if (prev_state != 'F') {
2188		if (!first_print)
2189			kdb_printf(", ");
2190		kdb_printf("%d", start_cpu);
2191		if (start_cpu < i-1)
2192			kdb_printf("-%d", i-1);
2193		if (prev_state != ' ')
2194			kdb_printf("(%c)", prev_state);
2195	}
2196	kdb_printf("\n");
2197}
2198
2199static int kdb_cpu(int argc, const char **argv)
2200{
2201	unsigned long cpunum;
2202	int diag;
2203
2204	if (argc == 0) {
2205		kdb_cpu_status();
2206		return 0;
2207	}
2208
2209	if (argc != 1)
2210		return KDB_ARGCOUNT;
2211
2212	diag = kdbgetularg(argv[1], &cpunum);
2213	if (diag)
2214		return diag;
2215
2216	/*
2217	 * Validate cpunum
2218	 */
2219	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2220		return KDB_BADCPUNUM;
2221
2222	dbg_switch_cpu = cpunum;
2223
2224	/*
2225	 * Switch to other cpu
2226	 */
2227	return KDB_CMD_CPU;
2228}
2229
2230/* The user may not realize that ps/bta with no parameters does not print idle
2231 * or sleeping system daemon processes, so tell them how many were suppressed.
2232 */
2233void kdb_ps_suppressed(void)
2234{
2235	int idle = 0, daemon = 0;
 
 
2236	unsigned long cpu;
2237	const struct task_struct *p, *g;
2238	for_each_online_cpu(cpu) {
2239		p = curr_task(cpu);
2240		if (kdb_task_state(p, "-"))
2241			++idle;
2242	}
2243	for_each_process_thread(g, p) {
2244		if (kdb_task_state(p, "ims"))
2245			++daemon;
2246	}
2247	if (idle || daemon) {
2248		if (idle)
2249			kdb_printf("%d idle process%s (state -)%s\n",
2250				   idle, idle == 1 ? "" : "es",
2251				   daemon ? " and " : "");
2252		if (daemon)
2253			kdb_printf("%d sleeping system daemon (state [ims]) "
2254				   "process%s", daemon,
2255				   daemon == 1 ? "" : "es");
2256		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2257	}
2258}
2259
 
 
 
 
 
2260void kdb_ps1(const struct task_struct *p)
2261{
2262	int cpu;
2263	unsigned long tmp;
2264
2265	if (!p ||
2266	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2267		return;
2268
2269	cpu = kdb_process_cpu(p);
2270	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2271		   (void *)p, p->pid, p->parent->pid,
2272		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2273		   kdb_task_state_char(p),
2274		   (void *)(&p->thread),
2275		   p == curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276		   p->comm);
2277	if (kdb_task_has_cpu(p)) {
2278		if (!KDB_TSK(cpu)) {
2279			kdb_printf("  Error: no saved data for this cpu\n");
2280		} else {
2281			if (KDB_TSK(cpu) != p)
2282				kdb_printf("  Error: does not match running "
2283				   "process table (0x%px)\n", KDB_TSK(cpu));
2284		}
2285	}
2286}
2287
2288/*
2289 * kdb_ps - This function implements the 'ps' command which shows a
2290 *	    list of the active processes.
2291 *
2292 * ps [<state_chars>]   Show processes, optionally selecting only those whose
2293 *                      state character is found in <state_chars>.
2294 */
2295static int kdb_ps(int argc, const char **argv)
2296{
2297	struct task_struct *g, *p;
2298	const char *mask;
2299	unsigned long cpu;
2300
2301	if (argc == 0)
2302		kdb_ps_suppressed();
2303	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2304		(int)(2*sizeof(void *))+2, "Task Addr",
2305		(int)(2*sizeof(void *))+2, "Thread");
2306	mask = argc ? argv[1] : kdbgetenv("PS");
2307	/* Run the active tasks first */
2308	for_each_online_cpu(cpu) {
2309		if (KDB_FLAG(CMD_INTERRUPT))
2310			return 0;
2311		p = curr_task(cpu);
2312		if (kdb_task_state(p, mask))
2313			kdb_ps1(p);
2314	}
2315	kdb_printf("\n");
2316	/* Now the real tasks */
2317	for_each_process_thread(g, p) {
2318		if (KDB_FLAG(CMD_INTERRUPT))
2319			return 0;
2320		if (kdb_task_state(p, mask))
2321			kdb_ps1(p);
2322	}
2323
2324	return 0;
2325}
2326
2327/*
2328 * kdb_pid - This function implements the 'pid' command which switches
2329 *	the currently active process.
2330 *		pid [<pid> | R]
2331 */
2332static int kdb_pid(int argc, const char **argv)
2333{
2334	struct task_struct *p;
2335	unsigned long val;
2336	int diag;
2337
2338	if (argc > 1)
2339		return KDB_ARGCOUNT;
2340
2341	if (argc) {
2342		if (strcmp(argv[1], "R") == 0) {
2343			p = KDB_TSK(kdb_initial_cpu);
2344		} else {
2345			diag = kdbgetularg(argv[1], &val);
2346			if (diag)
2347				return KDB_BADINT;
2348
2349			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2350			if (!p) {
2351				kdb_printf("No task with pid=%d\n", (pid_t)val);
2352				return 0;
2353			}
2354		}
2355		kdb_set_current_task(p);
2356	}
2357	kdb_printf("KDB current process is %s(pid=%d)\n",
2358		   kdb_current_task->comm,
2359		   kdb_current_task->pid);
2360
2361	return 0;
2362}
2363
2364static int kdb_kgdb(int argc, const char **argv)
2365{
2366	return KDB_CMD_KGDB;
2367}
2368
2369/*
2370 * kdb_help - This function implements the 'help' and '?' commands.
2371 */
2372static int kdb_help(int argc, const char **argv)
2373{
2374	kdbtab_t *kt;
 
2375
2376	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2377	kdb_printf("-----------------------------"
2378		   "-----------------------------\n");
2379	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2380		char *space = "";
2381		if (KDB_FLAG(CMD_INTERRUPT))
2382			return 0;
2383		if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2384			continue;
2385		if (strlen(kt->usage) > 20)
 
 
2386			space = "\n                                    ";
2387		kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2388			   kt->usage, space, kt->help);
2389	}
2390	return 0;
2391}
2392
2393/*
2394 * kdb_kill - This function implements the 'kill' commands.
2395 */
2396static int kdb_kill(int argc, const char **argv)
2397{
2398	long sig, pid;
 
2399	struct task_struct *p;
2400
2401	if (argc != 2)
2402		return KDB_ARGCOUNT;
2403
2404	if (kstrtol(argv[1], 0, &sig))
 
2405		return KDB_BADINT;
2406	if ((sig >= 0) || !valid_signal(-sig)) {
2407		kdb_printf("Invalid signal parameter.<-signal>\n");
2408		return 0;
2409	}
2410	sig = -sig;
2411
2412	if (kstrtol(argv[2], 0, &pid))
 
2413		return KDB_BADINT;
2414	if (pid <= 0) {
2415		kdb_printf("Process ID must be large than 0.\n");
2416		return 0;
2417	}
2418
2419	/* Find the process. */
2420	p = find_task_by_pid_ns(pid, &init_pid_ns);
2421	if (!p) {
2422		kdb_printf("The specified process isn't found.\n");
2423		return 0;
2424	}
2425	p = p->group_leader;
2426	kdb_send_sig(p, sig);
2427	return 0;
2428}
2429
2430/*
2431 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2432 * I cannot call that code directly from kdb, it has an unconditional
2433 * cli()/sti() and calls routines that take locks which can stop the debugger.
2434 */
2435static void kdb_sysinfo(struct sysinfo *val)
2436{
2437	u64 uptime = ktime_get_mono_fast_ns();
2438
2439	memset(val, 0, sizeof(*val));
2440	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2441	val->loads[0] = avenrun[0];
2442	val->loads[1] = avenrun[1];
2443	val->loads[2] = avenrun[2];
2444	val->procs = nr_threads-1;
2445	si_meminfo(val);
2446
2447	return;
2448}
2449
2450/*
2451 * kdb_summary - This function implements the 'summary' command.
2452 */
2453static int kdb_summary(int argc, const char **argv)
2454{
2455	time64_t now;
 
2456	struct sysinfo val;
2457
2458	if (argc)
2459		return KDB_ARGCOUNT;
2460
2461	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2462	kdb_printf("release    %s\n", init_uts_ns.name.release);
2463	kdb_printf("version    %s\n", init_uts_ns.name.version);
2464	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2465	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2466	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2467
2468	now = __ktime_get_real_seconds();
2469	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
 
 
 
 
 
 
2470	kdb_sysinfo(&val);
2471	kdb_printf("uptime     ");
2472	if (val.uptime > (24*60*60)) {
2473		int days = val.uptime / (24*60*60);
2474		val.uptime %= (24*60*60);
2475		kdb_printf("%d day%s ", days, str_plural(days));
2476	}
2477	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2478
2479	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2480		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2481		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2482		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2483
2484	/* Display in kilobytes */
2485#define K(x) ((x) << (PAGE_SHIFT - 10))
2486	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2487		   "Buffers:        %8lu kB\n",
2488		   K(val.totalram), K(val.freeram), K(val.bufferram));
2489	return 0;
2490}
2491
2492/*
2493 * kdb_per_cpu - This function implements the 'per_cpu' command.
2494 */
2495static int kdb_per_cpu(int argc, const char **argv)
2496{
2497	char fmtstr[64];
2498	int cpu, diag, nextarg = 1;
2499	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2500
2501	if (argc < 1 || argc > 3)
2502		return KDB_ARGCOUNT;
2503
2504	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2505	if (diag)
2506		return diag;
2507
2508	if (argc >= 2) {
2509		diag = kdbgetularg(argv[2], &bytesperword);
2510		if (diag)
2511			return diag;
2512	}
2513	if (!bytesperword)
2514		bytesperword = KDB_WORD_SIZE;
2515	else if (bytesperword > KDB_WORD_SIZE)
2516		return KDB_BADWIDTH;
2517	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2518	if (argc >= 3) {
2519		diag = kdbgetularg(argv[3], &whichcpu);
2520		if (diag)
2521			return diag;
2522		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2523			kdb_printf("cpu %ld is not online\n", whichcpu);
2524			return KDB_BADCPUNUM;
2525		}
2526	}
2527
2528	/* Most architectures use __per_cpu_offset[cpu], some use
2529	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2530	 */
2531#ifdef	__per_cpu_offset
2532#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2533#else
2534#ifdef	CONFIG_SMP
2535#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2536#else
2537#define KDB_PCU(cpu) 0
2538#endif
2539#endif
2540	for_each_online_cpu(cpu) {
2541		if (KDB_FLAG(CMD_INTERRUPT))
2542			return 0;
2543
2544		if (whichcpu != ~0UL && whichcpu != cpu)
2545			continue;
2546		addr = symaddr + KDB_PCU(cpu);
2547		diag = kdb_getword(&val, addr, bytesperword);
2548		if (diag) {
2549			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2550				   "read, diag=%d\n", cpu, addr, diag);
2551			continue;
2552		}
2553		kdb_printf("%5d ", cpu);
2554		kdb_md_line(fmtstr, addr,
2555			bytesperword == KDB_WORD_SIZE,
2556			1, bytesperword, 1, 1, 0);
2557	}
2558#undef KDB_PCU
2559	return 0;
2560}
2561
2562/*
2563 * display help for the use of cmd | grep pattern
2564 */
2565static int kdb_grep_help(int argc, const char **argv)
2566{
2567	kdb_printf("Usage of  cmd args | grep pattern:\n");
2568	kdb_printf("  Any command's output may be filtered through an ");
2569	kdb_printf("emulated 'pipe'.\n");
2570	kdb_printf("  'grep' is just a key word.\n");
2571	kdb_printf("  The pattern may include a very limited set of "
2572		   "metacharacters:\n");
2573	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2574	kdb_printf("  And if there are spaces in the pattern, you may "
2575		   "quote it:\n");
2576	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2577		   " or \"^pat tern$\"\n");
2578	return 0;
2579}
2580
2581/**
2582 * kdb_register() - This function is used to register a kernel debugger
2583 *                  command.
2584 * @cmd: pointer to kdb command
2585 *
2586 * Note that it's the job of the caller to keep the memory for the cmd
2587 * allocated until unregister is called.
 
 
 
 
2588 */
2589int kdb_register(kdbtab_t *cmd)
 
 
 
 
 
 
2590{
 
2591	kdbtab_t *kp;
2592
2593	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2594		if (strcmp(kp->name, cmd->name) == 0) {
2595			kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2596				   cmd->name, cmd->func, cmd->help);
 
 
 
2597			return 1;
2598		}
2599	}
2600
2601	list_add_tail(&cmd->list_node, &kdb_cmds_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2602	return 0;
2603}
2604EXPORT_SYMBOL_GPL(kdb_register);
 
2605
2606/**
2607 * kdb_register_table() - This function is used to register a kdb command
2608 *                        table.
2609 * @kp: pointer to kdb command table
2610 * @len: length of kdb command table
 
 
 
 
 
 
2611 */
2612void kdb_register_table(kdbtab_t *kp, size_t len)
 
 
 
 
2613{
2614	while (len--) {
2615		list_add_tail(&kp->list_node, &kdb_cmds_head);
2616		kp++;
2617	}
2618}
 
2619
2620/**
2621 * kdb_unregister() - This function is used to unregister a kernel debugger
2622 *                    command. It is generally called when a module which
2623 *                    implements kdb command is unloaded.
2624 * @cmd: pointer to kdb command
 
 
 
2625 */
2626void kdb_unregister(kdbtab_t *cmd)
2627{
2628	list_del(&cmd->list_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2629}
2630EXPORT_SYMBOL_GPL(kdb_unregister);
2631
2632static kdbtab_t maintab[] = {
2633	{	.name = "md",
2634		.func = kdb_md,
2635		.usage = "<vaddr>",
2636		.help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2637		.minlen = 1,
2638		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2639	},
2640	{	.name = "mdr",
2641		.func = kdb_md,
2642		.usage = "<vaddr> <bytes>",
2643		.help = "Display Raw Memory",
2644		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2645	},
2646	{	.name = "mdp",
2647		.func = kdb_md,
2648		.usage = "<paddr> <bytes>",
2649		.help = "Display Physical Memory",
2650		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2651	},
2652	{	.name = "mds",
2653		.func = kdb_md,
2654		.usage = "<vaddr>",
2655		.help = "Display Memory Symbolically",
2656		.flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2657	},
2658	{	.name = "mm",
2659		.func = kdb_mm,
2660		.usage = "<vaddr> <contents>",
2661		.help = "Modify Memory Contents",
2662		.flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2663	},
2664	{	.name = "go",
2665		.func = kdb_go,
2666		.usage = "[<vaddr>]",
2667		.help = "Continue Execution",
2668		.minlen = 1,
2669		.flags = KDB_ENABLE_REG_WRITE |
2670			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2671	},
2672	{	.name = "rd",
2673		.func = kdb_rd,
2674		.usage = "",
2675		.help = "Display Registers",
2676		.flags = KDB_ENABLE_REG_READ,
2677	},
2678	{	.name = "rm",
2679		.func = kdb_rm,
2680		.usage = "<reg> <contents>",
2681		.help = "Modify Registers",
2682		.flags = KDB_ENABLE_REG_WRITE,
2683	},
2684	{	.name = "ef",
2685		.func = kdb_ef,
2686		.usage = "<vaddr>",
2687		.help = "Display exception frame",
2688		.flags = KDB_ENABLE_MEM_READ,
2689	},
2690	{	.name = "bt",
2691		.func = kdb_bt,
2692		.usage = "[<vaddr>]",
2693		.help = "Stack traceback",
2694		.minlen = 1,
2695		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2696	},
2697	{	.name = "btp",
2698		.func = kdb_bt,
2699		.usage = "<pid>",
2700		.help = "Display stack for process <pid>",
2701		.flags = KDB_ENABLE_INSPECT,
2702	},
2703	{	.name = "bta",
2704		.func = kdb_bt,
2705		.usage = "[<state_chars>|A]",
2706		.help = "Backtrace all processes whose state matches",
2707		.flags = KDB_ENABLE_INSPECT,
2708	},
2709	{	.name = "btc",
2710		.func = kdb_bt,
2711		.usage = "",
2712		.help = "Backtrace current process on each cpu",
2713		.flags = KDB_ENABLE_INSPECT,
2714	},
2715	{	.name = "btt",
2716		.func = kdb_bt,
2717		.usage = "<vaddr>",
2718		.help = "Backtrace process given its struct task address",
2719		.flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2720	},
2721	{	.name = "env",
2722		.func = kdb_env,
2723		.usage = "",
2724		.help = "Show environment variables",
2725		.flags = KDB_ENABLE_ALWAYS_SAFE,
2726	},
2727	{	.name = "set",
2728		.func = kdb_set,
2729		.usage = "",
2730		.help = "Set environment variables",
2731		.flags = KDB_ENABLE_ALWAYS_SAFE,
2732	},
2733	{	.name = "help",
2734		.func = kdb_help,
2735		.usage = "",
2736		.help = "Display Help Message",
2737		.minlen = 1,
2738		.flags = KDB_ENABLE_ALWAYS_SAFE,
2739	},
2740	{	.name = "?",
2741		.func = kdb_help,
2742		.usage = "",
2743		.help = "Display Help Message",
2744		.flags = KDB_ENABLE_ALWAYS_SAFE,
2745	},
2746	{	.name = "cpu",
2747		.func = kdb_cpu,
2748		.usage = "<cpunum>",
2749		.help = "Switch to new cpu",
2750		.flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2751	},
2752	{	.name = "kgdb",
2753		.func = kdb_kgdb,
2754		.usage = "",
2755		.help = "Enter kgdb mode",
2756		.flags = 0,
2757	},
2758	{	.name = "ps",
2759		.func = kdb_ps,
2760		.usage = "[<state_chars>|A]",
2761		.help = "Display active task list",
2762		.flags = KDB_ENABLE_INSPECT,
2763	},
2764	{	.name = "pid",
2765		.func = kdb_pid,
2766		.usage = "<pidnum>",
2767		.help = "Switch to another task",
2768		.flags = KDB_ENABLE_INSPECT,
2769	},
2770	{	.name = "reboot",
2771		.func = kdb_reboot,
2772		.usage = "",
2773		.help = "Reboot the machine immediately",
2774		.flags = KDB_ENABLE_REBOOT,
2775	},
2776#if defined(CONFIG_MODULES)
2777	{	.name = "lsmod",
2778		.func = kdb_lsmod,
2779		.usage = "",
2780		.help = "List loaded kernel modules",
2781		.flags = KDB_ENABLE_INSPECT,
2782	},
2783#endif
2784#if defined(CONFIG_MAGIC_SYSRQ)
2785	{	.name = "sr",
2786		.func = kdb_sr,
2787		.usage = "<key>",
2788		.help = "Magic SysRq key",
2789		.flags = KDB_ENABLE_ALWAYS_SAFE,
2790	},
2791#endif
2792#if defined(CONFIG_PRINTK)
2793	{	.name = "dmesg",
2794		.func = kdb_dmesg,
2795		.usage = "[lines]",
2796		.help = "Display syslog buffer",
2797		.flags = KDB_ENABLE_ALWAYS_SAFE,
2798	},
2799#endif
2800	{	.name = "defcmd",
2801		.func = kdb_defcmd,
2802		.usage = "name \"usage\" \"help\"",
2803		.help = "Define a set of commands, down to endefcmd",
2804		/*
2805		 * Macros are always safe because when executed each
2806		 * internal command re-enters kdb_parse() and is safety
2807		 * checked individually.
2808		 */
2809		.flags = KDB_ENABLE_ALWAYS_SAFE,
2810	},
2811	{	.name = "kill",
2812		.func = kdb_kill,
2813		.usage = "<-signal> <pid>",
2814		.help = "Send a signal to a process",
2815		.flags = KDB_ENABLE_SIGNAL,
2816	},
2817	{	.name = "summary",
2818		.func = kdb_summary,
2819		.usage = "",
2820		.help = "Summarize the system",
2821		.minlen = 4,
2822		.flags = KDB_ENABLE_ALWAYS_SAFE,
2823	},
2824	{	.name = "per_cpu",
2825		.func = kdb_per_cpu,
2826		.usage = "<sym> [<bytes>] [<cpu>]",
2827		.help = "Display per_cpu variables",
2828		.minlen = 3,
2829		.flags = KDB_ENABLE_MEM_READ,
2830	},
2831	{	.name = "grephelp",
2832		.func = kdb_grep_help,
2833		.usage = "",
2834		.help = "Display help on | grep",
2835		.flags = KDB_ENABLE_ALWAYS_SAFE,
2836	},
2837};
2838
2839static kdbtab_t nmicmd = {
2840	.name = "disable_nmi",
2841	.func = kdb_disable_nmi,
2842	.usage = "",
2843	.help = "Disable NMI entry to KDB",
2844	.flags = KDB_ENABLE_ALWAYS_SAFE,
2845};
2846
2847/* Initialize the kdb command table. */
2848static void __init kdb_inittab(void)
2849{
2850	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2851	if (arch_kgdb_ops.enable_nmi)
2852		kdb_register_table(&nmicmd, 1);
2853}
2854
2855/* Execute any commands defined in kdb_cmds.  */
2856static void __init kdb_cmd_init(void)
2857{
2858	int i, diag;
2859	for (i = 0; kdb_cmds[i]; ++i) {
2860		diag = kdb_parse(kdb_cmds[i]);
2861		if (diag)
2862			kdb_printf("kdb command %s failed, kdb diag %d\n",
2863				kdb_cmds[i], diag);
2864	}
2865	if (defcmd_in_progress) {
2866		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2867		kdb_parse("endefcmd");
2868	}
2869}
2870
2871/* Initialize kdb_printf, breakpoint tables and kdb state */
2872void __init kdb_init(int lvl)
2873{
2874	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2875	int i;
2876
2877	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2878		return;
2879	for (i = kdb_init_lvl; i < lvl; i++) {
2880		switch (i) {
2881		case KDB_NOT_INITIALIZED:
2882			kdb_inittab();		/* Initialize Command Table */
2883			kdb_initbptab();	/* Initialize Breakpoints */
2884			break;
2885		case KDB_INIT_EARLY:
2886			kdb_cmd_init();		/* Build kdb_cmds tables */
2887			break;
2888		}
2889	}
2890	kdb_init_lvl = lvl;
2891}
v5.9
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/notifier.h>
  37#include <linux/interrupt.h>
  38#include <linux/delay.h>
  39#include <linux/nmi.h>
  40#include <linux/time.h>
  41#include <linux/ptrace.h>
  42#include <linux/sysctl.h>
  43#include <linux/cpu.h>
  44#include <linux/kdebug.h>
  45#include <linux/proc_fs.h>
  46#include <linux/uaccess.h>
  47#include <linux/slab.h>
 
  48#include "kdb_private.h"
  49
  50#undef	MODULE_PARAM_PREFIX
  51#define	MODULE_PARAM_PREFIX "kdb."
  52
  53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  55
  56char kdb_grep_string[KDB_GREP_STRLEN];
  57int kdb_grepping_flag;
  58EXPORT_SYMBOL(kdb_grepping_flag);
  59int kdb_grep_leading;
  60int kdb_grep_trailing;
  61
  62/*
  63 * Kernel debugger state flags
  64 */
  65unsigned int kdb_flags;
  66
  67/*
  68 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  69 * single thread processors through the kernel debugger.
  70 */
  71int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  72int kdb_nextline = 1;
  73int kdb_state;			/* General KDB state */
  74
  75struct task_struct *kdb_current_task;
  76struct pt_regs *kdb_current_regs;
  77
  78const char *kdb_diemsg;
  79static int kdb_go_count;
  80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  81static unsigned int kdb_continue_catastrophic =
  82	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  83#else
  84static unsigned int kdb_continue_catastrophic;
  85#endif
  86
  87/* kdb_commands describes the available commands. */
  88static kdbtab_t *kdb_commands;
  89#define KDB_BASE_CMD_MAX 50
  90static int kdb_max_commands = KDB_BASE_CMD_MAX;
  91static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  92#define for_each_kdbcmd(cmd, num)					\
  93	for ((cmd) = kdb_base_commands, (num) = 0;			\
  94	     num < kdb_max_commands;					\
  95	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  96
  97typedef struct _kdbmsg {
  98	int	km_diag;	/* kdb diagnostic */
  99	char	*km_msg;	/* Corresponding message text */
 100} kdbmsg_t;
 101
 102#define KDBMSG(msgnum, text) \
 103	{ KDB_##msgnum, text }
 104
 105static kdbmsg_t kdbmsgs[] = {
 106	KDBMSG(NOTFOUND, "Command Not Found"),
 107	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 108	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 109	       "8 is only allowed on 64 bit systems"),
 110	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 111	KDBMSG(NOTENV, "Cannot find environment variable"),
 112	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 113	KDBMSG(NOTIMP, "Command not implemented"),
 114	KDBMSG(ENVFULL, "Environment full"),
 115	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 116	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 117#ifdef CONFIG_CPU_XSCALE
 118	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 119#else
 120	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 121#endif
 122	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 123	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 124	KDBMSG(BADMODE, "Invalid IDMODE"),
 125	KDBMSG(BADINT, "Illegal numeric value"),
 126	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 127	KDBMSG(BADREG, "Invalid register name"),
 128	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 129	KDBMSG(BADLENGTH, "Invalid length field"),
 130	KDBMSG(NOBP, "No Breakpoint exists"),
 131	KDBMSG(BADADDR, "Invalid address"),
 132	KDBMSG(NOPERM, "Permission denied"),
 133};
 134#undef KDBMSG
 135
 136static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 137
 138
 139/*
 140 * Initial environment.   This is all kept static and local to
 141 * this file.   We don't want to rely on the memory allocation
 142 * mechanisms in the kernel, so we use a very limited allocate-only
 143 * heap for new and altered environment variables.  The entire
 144 * environment is limited to a fixed number of entries (add more
 145 * to __env[] if required) and a fixed amount of heap (add more to
 146 * KDB_ENVBUFSIZE if required).
 147 */
 148
 149static char *__env[] = {
 150#if defined(CONFIG_SMP)
 151 "PROMPT=[%d]kdb> ",
 152#else
 153 "PROMPT=kdb> ",
 154#endif
 155 "MOREPROMPT=more> ",
 156 "RADIX=16",
 157 "MDCOUNT=8",			/* lines of md output */
 158 KDB_PLATFORM_ENV,
 159 "DTABCOUNT=30",
 160 "NOSECT=1",
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183 (char *)0,
 184 (char *)0,
 185};
 186
 187static const int __nenv = ARRAY_SIZE(__env);
 188
 189struct task_struct *kdb_curr_task(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190{
 191	struct task_struct *p = curr_task(cpu);
 192#ifdef	_TIF_MCA_INIT
 193	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 194		p = krp->p;
 195#endif
 196	return p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 197}
 198
 199/*
 200 * Check whether the flags of the current command and the permissions
 201 * of the kdb console has allow a command to be run.
 202 */
 203static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 204				   bool no_args)
 205{
 206	/* permissions comes from userspace so needs massaging slightly */
 207	permissions &= KDB_ENABLE_MASK;
 208	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 209
 210	/* some commands change group when launched with no arguments */
 211	if (no_args)
 212		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 213
 214	flags |= KDB_ENABLE_ALL;
 215
 216	return permissions & flags;
 217}
 218
 219/*
 220 * kdbgetenv - This function will return the character string value of
 221 *	an environment variable.
 222 * Parameters:
 223 *	match	A character string representing an environment variable.
 224 * Returns:
 225 *	NULL	No environment variable matches 'match'
 226 *	char*	Pointer to string value of environment variable.
 227 */
 228char *kdbgetenv(const char *match)
 229{
 230	char **ep = __env;
 231	int matchlen = strlen(match);
 232	int i;
 233
 234	for (i = 0; i < __nenv; i++) {
 235		char *e = *ep++;
 236
 237		if (!e)
 238			continue;
 239
 240		if ((strncmp(match, e, matchlen) == 0)
 241		 && ((e[matchlen] == '\0')
 242		   || (e[matchlen] == '='))) {
 243			char *cp = strchr(e, '=');
 244			return cp ? ++cp : "";
 245		}
 246	}
 247	return NULL;
 248}
 249
 250/*
 251 * kdballocenv - This function is used to allocate bytes for
 252 *	environment entries.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long representation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 
 259 * Remarks:
 260 *	We use a static environment buffer (envbuffer) to hold the values
 261 *	of dynamically generated environment variables (see kdb_set).  Buffer
 262 *	space once allocated is never free'd, so over time, the amount of space
 263 *	(currently 512 bytes) will be exhausted if env variables are changed
 264 *	frequently.
 265 */
 266static char *kdballocenv(size_t bytes)
 267{
 268#define	KDB_ENVBUFSIZE	512
 269	static char envbuffer[KDB_ENVBUFSIZE];
 270	static int envbufsize;
 271	char *ep = NULL;
 272
 273	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 274		ep = &envbuffer[envbufsize];
 275		envbufsize += bytes;
 276	}
 277	return ep;
 278}
 279
 280/*
 281 * kdbgetulenv - This function will return the value of an unsigned
 282 *	long-valued environment variable.
 283 * Parameters:
 284 *	match	A character string representing a numeric value
 285 * Outputs:
 286 *	*value  the unsigned long represntation of the env variable 'match'
 287 * Returns:
 288 *	Zero on success, a kdb diagnostic on failure.
 289 */
 290static int kdbgetulenv(const char *match, unsigned long *value)
 291{
 292	char *ep;
 293
 294	ep = kdbgetenv(match);
 295	if (!ep)
 296		return KDB_NOTENV;
 297	if (strlen(ep) == 0)
 298		return KDB_NOENVVALUE;
 299
 300	*value = simple_strtoul(ep, NULL, 0);
 301
 302	return 0;
 303}
 304
 305/*
 306 * kdbgetintenv - This function will return the value of an
 307 *	integer-valued environment variable.
 308 * Parameters:
 309 *	match	A character string representing an integer-valued env variable
 310 * Outputs:
 311 *	*value  the integer representation of the environment variable 'match'
 312 * Returns:
 313 *	Zero on success, a kdb diagnostic on failure.
 314 */
 315int kdbgetintenv(const char *match, int *value)
 316{
 317	unsigned long val;
 318	int diag;
 319
 320	diag = kdbgetulenv(match, &val);
 321	if (!diag)
 322		*value = (int) val;
 323	return diag;
 324}
 325
 326/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327 * kdbgetularg - This function will convert a numeric string into an
 328 *	unsigned long value.
 329 * Parameters:
 330 *	arg	A character string representing a numeric value
 331 * Outputs:
 332 *	*value  the unsigned long represntation of arg.
 333 * Returns:
 334 *	Zero on success, a kdb diagnostic on failure.
 335 */
 336int kdbgetularg(const char *arg, unsigned long *value)
 337{
 338	char *endp;
 339	unsigned long val;
 340
 341	val = simple_strtoul(arg, &endp, 0);
 342
 343	if (endp == arg) {
 344		/*
 345		 * Also try base 16, for us folks too lazy to type the
 346		 * leading 0x...
 347		 */
 348		val = simple_strtoul(arg, &endp, 16);
 349		if (endp == arg)
 350			return KDB_BADINT;
 351	}
 352
 353	*value = val;
 354
 355	return 0;
 356}
 357
 358int kdbgetu64arg(const char *arg, u64 *value)
 359{
 360	char *endp;
 361	u64 val;
 362
 363	val = simple_strtoull(arg, &endp, 0);
 364
 365	if (endp == arg) {
 366
 367		val = simple_strtoull(arg, &endp, 16);
 368		if (endp == arg)
 369			return KDB_BADINT;
 370	}
 371
 372	*value = val;
 373
 374	return 0;
 375}
 376
 377/*
 378 * kdb_set - This function implements the 'set' command.  Alter an
 379 *	existing environment variable or create a new one.
 380 */
 381int kdb_set(int argc, const char **argv)
 382{
 383	int i;
 384	char *ep;
 385	size_t varlen, vallen;
 386
 387	/*
 388	 * we can be invoked two ways:
 389	 *   set var=value    argv[1]="var", argv[2]="value"
 390	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 391	 * - if the latter, shift 'em down.
 392	 */
 393	if (argc == 3) {
 394		argv[2] = argv[3];
 395		argc--;
 396	}
 397
 398	if (argc != 2)
 399		return KDB_ARGCOUNT;
 400
 401	/*
 402	 * Censor sensitive variables
 403	 */
 404	if (strcmp(argv[1], "PROMPT") == 0 &&
 405	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 406		return KDB_NOPERM;
 407
 408	/*
 409	 * Check for internal variables
 410	 */
 411	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 412		unsigned int debugflags;
 413		char *cp;
 414
 415		debugflags = simple_strtoul(argv[2], &cp, 0);
 416		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 417			kdb_printf("kdb: illegal debug flags '%s'\n",
 418				    argv[2]);
 419			return 0;
 420		}
 421		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 422			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 423
 424		return 0;
 425	}
 426
 427	/*
 428	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 429	 * name, argv[2] = value.
 430	 */
 431	varlen = strlen(argv[1]);
 432	vallen = strlen(argv[2]);
 433	ep = kdballocenv(varlen + vallen + 2);
 434	if (ep == (char *)0)
 435		return KDB_ENVBUFFULL;
 436
 437	sprintf(ep, "%s=%s", argv[1], argv[2]);
 438
 439	ep[varlen+vallen+1] = '\0';
 440
 441	for (i = 0; i < __nenv; i++) {
 442		if (__env[i]
 443		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 444		   && ((__env[i][varlen] == '\0')
 445		    || (__env[i][varlen] == '=')))) {
 446			__env[i] = ep;
 447			return 0;
 448		}
 449	}
 450
 451	/*
 452	 * Wasn't existing variable.  Fit into slot.
 453	 */
 454	for (i = 0; i < __nenv-1; i++) {
 455		if (__env[i] == (char *)0) {
 456			__env[i] = ep;
 457			return 0;
 458		}
 459	}
 460
 461	return KDB_ENVFULL;
 462}
 463
 464static int kdb_check_regs(void)
 465{
 466	if (!kdb_current_regs) {
 467		kdb_printf("No current kdb registers."
 468			   "  You may need to select another task\n");
 469		return KDB_BADREG;
 470	}
 471	return 0;
 472}
 473
 474/*
 475 * kdbgetaddrarg - This function is responsible for parsing an
 476 *	address-expression and returning the value of the expression,
 477 *	symbol name, and offset to the caller.
 478 *
 479 *	The argument may consist of a numeric value (decimal or
 480 *	hexidecimal), a symbol name, a register name (preceded by the
 481 *	percent sign), an environment variable with a numeric value
 482 *	(preceded by a dollar sign) or a simple arithmetic expression
 483 *	consisting of a symbol name, +/-, and a numeric constant value
 484 *	(offset).
 485 * Parameters:
 486 *	argc	- count of arguments in argv
 487 *	argv	- argument vector
 488 *	*nextarg - index to next unparsed argument in argv[]
 489 *	regs	- Register state at time of KDB entry
 490 * Outputs:
 491 *	*value	- receives the value of the address-expression
 492 *	*offset - receives the offset specified, if any
 493 *	*name   - receives the symbol name, if any
 494 *	*nextarg - index to next unparsed argument in argv[]
 495 * Returns:
 496 *	zero is returned on success, a kdb diagnostic code is
 497 *      returned on error.
 498 */
 499int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 500		  unsigned long *value,  long *offset,
 501		  char **name)
 502{
 503	unsigned long addr;
 504	unsigned long off = 0;
 505	int positive;
 506	int diag;
 507	int found = 0;
 508	char *symname;
 509	char symbol = '\0';
 510	char *cp;
 511	kdb_symtab_t symtab;
 512
 513	/*
 514	 * If the enable flags prohibit both arbitrary memory access
 515	 * and flow control then there are no reasonable grounds to
 516	 * provide symbol lookup.
 517	 */
 518	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 519			     kdb_cmd_enabled, false))
 520		return KDB_NOPERM;
 521
 522	/*
 523	 * Process arguments which follow the following syntax:
 524	 *
 525	 *  symbol | numeric-address [+/- numeric-offset]
 526	 *  %register
 527	 *  $environment-variable
 528	 */
 529
 530	if (*nextarg > argc)
 531		return KDB_ARGCOUNT;
 532
 533	symname = (char *)argv[*nextarg];
 534
 535	/*
 536	 * If there is no whitespace between the symbol
 537	 * or address and the '+' or '-' symbols, we
 538	 * remember the character and replace it with a
 539	 * null so the symbol/value can be properly parsed
 540	 */
 541	cp = strpbrk(symname, "+-");
 542	if (cp != NULL) {
 543		symbol = *cp;
 544		*cp++ = '\0';
 545	}
 546
 547	if (symname[0] == '$') {
 548		diag = kdbgetulenv(&symname[1], &addr);
 549		if (diag)
 550			return diag;
 551	} else if (symname[0] == '%') {
 552		diag = kdb_check_regs();
 553		if (diag)
 554			return diag;
 555		/* Implement register values with % at a later time as it is
 556		 * arch optional.
 557		 */
 558		return KDB_NOTIMP;
 559	} else {
 560		found = kdbgetsymval(symname, &symtab);
 561		if (found) {
 562			addr = symtab.sym_start;
 563		} else {
 564			diag = kdbgetularg(argv[*nextarg], &addr);
 565			if (diag)
 566				return diag;
 567		}
 568	}
 569
 570	if (!found)
 571		found = kdbnearsym(addr, &symtab);
 572
 573	(*nextarg)++;
 574
 575	if (name)
 576		*name = symname;
 577	if (value)
 578		*value = addr;
 579	if (offset && name && *name)
 580		*offset = addr - symtab.sym_start;
 581
 582	if ((*nextarg > argc)
 583	 && (symbol == '\0'))
 584		return 0;
 585
 586	/*
 587	 * check for +/- and offset
 588	 */
 589
 590	if (symbol == '\0') {
 591		if ((argv[*nextarg][0] != '+')
 592		 && (argv[*nextarg][0] != '-')) {
 593			/*
 594			 * Not our argument.  Return.
 595			 */
 596			return 0;
 597		} else {
 598			positive = (argv[*nextarg][0] == '+');
 599			(*nextarg)++;
 600		}
 601	} else
 602		positive = (symbol == '+');
 603
 604	/*
 605	 * Now there must be an offset!
 606	 */
 607	if ((*nextarg > argc)
 608	 && (symbol == '\0')) {
 609		return KDB_INVADDRFMT;
 610	}
 611
 612	if (!symbol) {
 613		cp = (char *)argv[*nextarg];
 614		(*nextarg)++;
 615	}
 616
 617	diag = kdbgetularg(cp, &off);
 618	if (diag)
 619		return diag;
 620
 621	if (!positive)
 622		off = -off;
 623
 624	if (offset)
 625		*offset += off;
 626
 627	if (value)
 628		*value += off;
 629
 630	return 0;
 631}
 632
 633static void kdb_cmderror(int diag)
 634{
 635	int i;
 636
 637	if (diag >= 0) {
 638		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 639		return;
 640	}
 641
 642	for (i = 0; i < __nkdb_err; i++) {
 643		if (kdbmsgs[i].km_diag == diag) {
 644			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 645			return;
 646		}
 647	}
 648
 649	kdb_printf("Unknown diag %d\n", -diag);
 650}
 651
 652/*
 653 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 654 *	command which defines one command as a set of other commands,
 655 *	terminated by endefcmd.  kdb_defcmd processes the initial
 656 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 657 *	the following commands until 'endefcmd'.
 658 * Inputs:
 659 *	argc	argument count
 660 *	argv	argument vector
 661 * Returns:
 662 *	zero for success, a kdb diagnostic if error
 663 */
 664struct defcmd_set {
 665	int count;
 666	bool usable;
 667	char *name;
 668	char *usage;
 669	char *help;
 670	char **command;
 
 671};
 672static struct defcmd_set *defcmd_set;
 673static int defcmd_set_count;
 674static bool defcmd_in_progress;
 675
 676/* Forward references */
 677static int kdb_exec_defcmd(int argc, const char **argv);
 678
 679static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 680{
 681	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 682	char **save_command = s->command;
 
 
 
 683	if (strcmp(argv0, "endefcmd") == 0) {
 684		defcmd_in_progress = false;
 685		if (!s->count)
 686			s->usable = false;
 687		if (s->usable)
 688			/* macros are always safe because when executed each
 689			 * internal command re-enters kdb_parse() and is
 690			 * safety checked individually.
 691			 */
 692			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 693					   s->help, 0,
 694					   KDB_ENABLE_ALWAYS_SAFE);
 695		return 0;
 696	}
 697	if (!s->usable)
 698		return KDB_NOTIMP;
 699	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 700	if (!s->command) {
 701		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 702			   cmdstr);
 703		s->usable = false;
 704		return KDB_NOTIMP;
 705	}
 706	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 707	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 708	kfree(save_command);
 
 709	return 0;
 710}
 711
 712static int kdb_defcmd(int argc, const char **argv)
 713{
 714	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 
 715	if (defcmd_in_progress) {
 716		kdb_printf("kdb: nested defcmd detected, assuming missing "
 717			   "endefcmd\n");
 718		kdb_defcmd2("endefcmd", "endefcmd");
 719	}
 720	if (argc == 0) {
 721		int i;
 722		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 723			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 724				   s->usage, s->help);
 725			for (i = 0; i < s->count; ++i)
 726				kdb_printf("%s", s->command[i]);
 727			kdb_printf("endefcmd\n");
 
 
 
 
 
 
 
 728		}
 729		return 0;
 730	}
 731	if (argc != 3)
 732		return KDB_ARGCOUNT;
 733	if (in_dbg_master()) {
 734		kdb_printf("Command only available during kdb_init()\n");
 735		return KDB_NOTIMP;
 736	}
 737	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 738				   GFP_KDB);
 739	if (!defcmd_set)
 740		goto fail_defcmd;
 741	memcpy(defcmd_set, save_defcmd_set,
 742	       defcmd_set_count * sizeof(*defcmd_set));
 743	s = defcmd_set + defcmd_set_count;
 744	memset(s, 0, sizeof(*s));
 745	s->usable = true;
 746	s->name = kdb_strdup(argv[1], GFP_KDB);
 747	if (!s->name)
 748		goto fail_name;
 749	s->usage = kdb_strdup(argv[2], GFP_KDB);
 750	if (!s->usage)
 751		goto fail_usage;
 752	s->help = kdb_strdup(argv[3], GFP_KDB);
 753	if (!s->help)
 754		goto fail_help;
 755	if (s->usage[0] == '"') {
 756		strcpy(s->usage, argv[2]+1);
 757		s->usage[strlen(s->usage)-1] = '\0';
 758	}
 759	if (s->help[0] == '"') {
 760		strcpy(s->help, argv[3]+1);
 761		s->help[strlen(s->help)-1] = '\0';
 762	}
 763	++defcmd_set_count;
 
 
 
 
 
 764	defcmd_in_progress = true;
 765	kfree(save_defcmd_set);
 766	return 0;
 767fail_help:
 768	kfree(s->usage);
 769fail_usage:
 770	kfree(s->name);
 771fail_name:
 772	kfree(defcmd_set);
 773fail_defcmd:
 774	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 775	defcmd_set = save_defcmd_set;
 776	return KDB_NOTIMP;
 777}
 778
 779/*
 780 * kdb_exec_defcmd - Execute the set of commands associated with this
 781 *	defcmd name.
 782 * Inputs:
 783 *	argc	argument count
 784 *	argv	argument vector
 785 * Returns:
 786 *	zero for success, a kdb diagnostic if error
 787 */
 788static int kdb_exec_defcmd(int argc, const char **argv)
 789{
 790	int i, ret;
 791	struct defcmd_set *s;
 
 
 
 792	if (argc != 0)
 793		return KDB_ARGCOUNT;
 794	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 795		if (strcmp(s->name, argv[0]) == 0)
 
 796			break;
 797	}
 798	if (i == defcmd_set_count) {
 799		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 800			   argv[0]);
 801		return KDB_NOTIMP;
 802	}
 803	for (i = 0; i < s->count; ++i) {
 804		/* Recursive use of kdb_parse, do not use argv after
 805		 * this point */
 
 
 806		argv = NULL;
 807		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 808		ret = kdb_parse(s->command[i]);
 809		if (ret)
 810			return ret;
 811	}
 812	return 0;
 813}
 814
 815/* Command history */
 816#define KDB_CMD_HISTORY_COUNT	32
 817#define CMD_BUFLEN		200	/* kdb_printf: max printline
 818					 * size == 256 */
 819static unsigned int cmd_head, cmd_tail;
 820static unsigned int cmdptr;
 821static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 822static char cmd_cur[CMD_BUFLEN];
 823
 824/*
 825 * The "str" argument may point to something like  | grep xyz
 826 */
 827static void parse_grep(const char *str)
 828{
 829	int	len;
 830	char	*cp = (char *)str, *cp2;
 831
 832	/* sanity check: we should have been called with the \ first */
 833	if (*cp != '|')
 834		return;
 835	cp++;
 836	while (isspace(*cp))
 837		cp++;
 838	if (!str_has_prefix(cp, "grep ")) {
 839		kdb_printf("invalid 'pipe', see grephelp\n");
 840		return;
 841	}
 842	cp += 5;
 843	while (isspace(*cp))
 844		cp++;
 845	cp2 = strchr(cp, '\n');
 846	if (cp2)
 847		*cp2 = '\0'; /* remove the trailing newline */
 848	len = strlen(cp);
 849	if (len == 0) {
 850		kdb_printf("invalid 'pipe', see grephelp\n");
 851		return;
 852	}
 853	/* now cp points to a nonzero length search string */
 854	if (*cp == '"') {
 855		/* allow it be "x y z" by removing the "'s - there must
 856		   be two of them */
 857		cp++;
 858		cp2 = strchr(cp, '"');
 859		if (!cp2) {
 860			kdb_printf("invalid quoted string, see grephelp\n");
 861			return;
 862		}
 863		*cp2 = '\0'; /* end the string where the 2nd " was */
 864	}
 865	kdb_grep_leading = 0;
 866	if (*cp == '^') {
 867		kdb_grep_leading = 1;
 868		cp++;
 869	}
 870	len = strlen(cp);
 871	kdb_grep_trailing = 0;
 872	if (*(cp+len-1) == '$') {
 873		kdb_grep_trailing = 1;
 874		*(cp+len-1) = '\0';
 875	}
 876	len = strlen(cp);
 877	if (!len)
 878		return;
 879	if (len >= KDB_GREP_STRLEN) {
 880		kdb_printf("search string too long\n");
 881		return;
 882	}
 883	strcpy(kdb_grep_string, cp);
 884	kdb_grepping_flag++;
 885	return;
 886}
 887
 888/*
 889 * kdb_parse - Parse the command line, search the command table for a
 890 *	matching command and invoke the command function.  This
 891 *	function may be called recursively, if it is, the second call
 892 *	will overwrite argv and cbuf.  It is the caller's
 893 *	responsibility to save their argv if they recursively call
 894 *	kdb_parse().
 895 * Parameters:
 896 *      cmdstr	The input command line to be parsed.
 897 *	regs	The registers at the time kdb was entered.
 898 * Returns:
 899 *	Zero for success, a kdb diagnostic if failure.
 900 * Remarks:
 901 *	Limited to 20 tokens.
 902 *
 903 *	Real rudimentary tokenization. Basically only whitespace
 904 *	is considered a token delimeter (but special consideration
 905 *	is taken of the '=' sign as used by the 'set' command).
 906 *
 907 *	The algorithm used to tokenize the input string relies on
 908 *	there being at least one whitespace (or otherwise useless)
 909 *	character between tokens as the character immediately following
 910 *	the token is altered in-place to a null-byte to terminate the
 911 *	token string.
 912 */
 913
 914#define MAXARGC	20
 915
 916int kdb_parse(const char *cmdstr)
 917{
 918	static char *argv[MAXARGC];
 919	static int argc;
 920	static char cbuf[CMD_BUFLEN+2];
 921	char *cp;
 922	char *cpp, quoted;
 923	kdbtab_t *tp;
 924	int i, escaped, ignore_errors = 0, check_grep = 0;
 925
 926	/*
 927	 * First tokenize the command string.
 928	 */
 929	cp = (char *)cmdstr;
 930
 931	if (KDB_FLAG(CMD_INTERRUPT)) {
 932		/* Previous command was interrupted, newline must not
 933		 * repeat the command */
 934		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 935		KDB_STATE_SET(PAGER);
 936		argc = 0;	/* no repeat */
 937	}
 938
 939	if (*cp != '\n' && *cp != '\0') {
 940		argc = 0;
 941		cpp = cbuf;
 942		while (*cp) {
 943			/* skip whitespace */
 944			while (isspace(*cp))
 945				cp++;
 946			if ((*cp == '\0') || (*cp == '\n') ||
 947			    (*cp == '#' && !defcmd_in_progress))
 948				break;
 949			/* special case: check for | grep pattern */
 950			if (*cp == '|') {
 951				check_grep++;
 952				break;
 953			}
 954			if (cpp >= cbuf + CMD_BUFLEN) {
 955				kdb_printf("kdb_parse: command buffer "
 956					   "overflow, command ignored\n%s\n",
 957					   cmdstr);
 958				return KDB_NOTFOUND;
 959			}
 960			if (argc >= MAXARGC - 1) {
 961				kdb_printf("kdb_parse: too many arguments, "
 962					   "command ignored\n%s\n", cmdstr);
 963				return KDB_NOTFOUND;
 964			}
 965			argv[argc++] = cpp;
 966			escaped = 0;
 967			quoted = '\0';
 968			/* Copy to next unquoted and unescaped
 969			 * whitespace or '=' */
 970			while (*cp && *cp != '\n' &&
 971			       (escaped || quoted || !isspace(*cp))) {
 972				if (cpp >= cbuf + CMD_BUFLEN)
 973					break;
 974				if (escaped) {
 975					escaped = 0;
 976					*cpp++ = *cp++;
 977					continue;
 978				}
 979				if (*cp == '\\') {
 980					escaped = 1;
 981					++cp;
 982					continue;
 983				}
 984				if (*cp == quoted)
 985					quoted = '\0';
 986				else if (*cp == '\'' || *cp == '"')
 987					quoted = *cp;
 988				*cpp = *cp++;
 989				if (*cpp == '=' && !quoted)
 990					break;
 991				++cpp;
 992			}
 993			*cpp++ = '\0';	/* Squash a ws or '=' character */
 994		}
 995	}
 996	if (!argc)
 997		return 0;
 998	if (check_grep)
 999		parse_grep(cp);
1000	if (defcmd_in_progress) {
1001		int result = kdb_defcmd2(cmdstr, argv[0]);
1002		if (!defcmd_in_progress) {
1003			argc = 0;	/* avoid repeat on endefcmd */
1004			*(argv[0]) = '\0';
1005		}
1006		return result;
1007	}
1008	if (argv[0][0] == '-' && argv[0][1] &&
1009	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1010		ignore_errors = 1;
1011		++argv[0];
1012	}
1013
1014	for_each_kdbcmd(tp, i) {
1015		if (tp->cmd_name) {
1016			/*
1017			 * If this command is allowed to be abbreviated,
1018			 * check to see if this is it.
1019			 */
 
 
1020
1021			if (tp->cmd_minlen
1022			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1023				if (strncmp(argv[0],
1024					    tp->cmd_name,
1025					    tp->cmd_minlen) == 0) {
1026					break;
1027				}
1028			}
1029
1030			if (strcmp(argv[0], tp->cmd_name) == 0)
1031				break;
1032		}
1033	}
1034
1035	/*
1036	 * If we don't find a command by this name, see if the first
1037	 * few characters of this match any of the known commands.
1038	 * e.g., md1c20 should match md.
1039	 */
1040	if (i == kdb_max_commands) {
1041		for_each_kdbcmd(tp, i) {
1042			if (tp->cmd_name) {
1043				if (strncmp(argv[0],
1044					    tp->cmd_name,
1045					    strlen(tp->cmd_name)) == 0) {
1046					break;
1047				}
1048			}
1049		}
1050	}
1051
1052	if (i < kdb_max_commands) {
1053		int result;
1054
1055		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1056			return KDB_NOPERM;
1057
1058		KDB_STATE_SET(CMD);
1059		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1060		if (result && ignore_errors && result > KDB_CMD_GO)
1061			result = 0;
1062		KDB_STATE_CLEAR(CMD);
1063
1064		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1065			return result;
1066
1067		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068		if (argv[argc])
1069			*(argv[argc]) = '\0';
1070		return result;
1071	}
1072
1073	/*
1074	 * If the input with which we were presented does not
1075	 * map to an existing command, attempt to parse it as an
1076	 * address argument and display the result.   Useful for
1077	 * obtaining the address of a variable, or the nearest symbol
1078	 * to an address contained in a register.
1079	 */
1080	{
1081		unsigned long value;
1082		char *name = NULL;
1083		long offset;
1084		int nextarg = 0;
1085
1086		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087				  &value, &offset, &name)) {
1088			return KDB_NOTFOUND;
1089		}
1090
1091		kdb_printf("%s = ", argv[0]);
1092		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093		kdb_printf("\n");
1094		return 0;
1095	}
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P	16
1102#define CTRL_N	14
1103
1104	/* initial situation */
1105	if (cmd_head == cmd_tail)
1106		return 0;
1107	switch (*cmd) {
1108	case CTRL_P:
1109		if (cmdptr != cmd_tail)
1110			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111				 KDB_CMD_HISTORY_COUNT;
1112		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113		return 1;
1114	case CTRL_N:
1115		if (cmdptr != cmd_head)
1116			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118		return 1;
1119	}
1120	return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1125 *	the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129	emergency_restart();
1130	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131	while (1)
1132		cpu_relax();
1133	/* NOTREACHED */
1134	return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139	int old_lvl = console_loglevel;
1140	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141	kdb_trap_printk++;
1142	show_regs(regs);
1143	kdb_trap_printk--;
1144	kdb_printf("\n");
1145	console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150	kdb_current_task = p;
1151
1152	if (kdb_task_has_cpu(p)) {
1153		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154		return;
1155	}
1156	kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161	size_t len = strlen(buf);
1162
1163	if (len == 0)
1164		return;
1165	if (*(buf + len - 1) == '\n')
1166		*(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb.  This routine is invoked on a
1171 *	specific processor, it is not global.  The main kdb() routine
1172 *	ensures that only one processor at a time is in this routine.
1173 *	This code is called with the real reason code on the first
1174 *	entry to a kdb session, thereafter it is called with reason
1175 *	SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 *	reason		The reason KDB was invoked
1178 *	error		The hardware-defined error code
1179 *	regs		The exception frame at time of fault/breakpoint.
1180 *	db_result	Result code from the break or debug point.
1181 * Returns:
1182 *	0	KDB was invoked for an event which it wasn't responsible
1183 *	1	KDB handled the event for which it was invoked.
1184 *	KDB_CMD_GO	User typed 'go'.
1185 *	KDB_CMD_CPU	User switched to another cpu.
1186 *	KDB_CMD_SS	Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189		     kdb_dbtrap_t db_result)
1190{
1191	char *cmdbuf;
1192	int diag;
1193	struct task_struct *kdb_current =
1194		kdb_curr_task(raw_smp_processor_id());
1195
1196	KDB_DEBUG_STATE("kdb_local 1", reason);
 
 
 
1197	kdb_go_count = 0;
1198	if (reason == KDB_REASON_DEBUG) {
1199		/* special case below */
1200	} else {
1201		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1202			   kdb_current, kdb_current ? kdb_current->pid : 0);
1203#if defined(CONFIG_SMP)
1204		kdb_printf("on processor %d ", raw_smp_processor_id());
1205#endif
1206	}
1207
1208	switch (reason) {
1209	case KDB_REASON_DEBUG:
1210	{
1211		/*
1212		 * If re-entering kdb after a single step
1213		 * command, don't print the message.
1214		 */
1215		switch (db_result) {
1216		case KDB_DB_BPT:
1217			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1218				   kdb_current, kdb_current->pid);
1219#if defined(CONFIG_SMP)
1220			kdb_printf("on processor %d ", raw_smp_processor_id());
1221#endif
1222			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1223				   instruction_pointer(regs));
1224			break;
1225		case KDB_DB_SS:
1226			break;
1227		case KDB_DB_SSBPT:
1228			KDB_DEBUG_STATE("kdb_local 4", reason);
1229			return 1;	/* kdba_db_trap did the work */
1230		default:
1231			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1232				   db_result);
1233			break;
1234		}
1235
1236	}
1237		break;
1238	case KDB_REASON_ENTER:
1239		if (KDB_STATE(KEYBOARD))
1240			kdb_printf("due to Keyboard Entry\n");
1241		else
1242			kdb_printf("due to KDB_ENTER()\n");
1243		break;
1244	case KDB_REASON_KEYBOARD:
1245		KDB_STATE_SET(KEYBOARD);
1246		kdb_printf("due to Keyboard Entry\n");
1247		break;
1248	case KDB_REASON_ENTER_SLAVE:
1249		/* drop through, slaves only get released via cpu switch */
1250	case KDB_REASON_SWITCH:
1251		kdb_printf("due to cpu switch\n");
1252		break;
1253	case KDB_REASON_OOPS:
1254		kdb_printf("Oops: %s\n", kdb_diemsg);
1255		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1256			   instruction_pointer(regs));
1257		kdb_dumpregs(regs);
1258		break;
1259	case KDB_REASON_SYSTEM_NMI:
1260		kdb_printf("due to System NonMaskable Interrupt\n");
1261		break;
1262	case KDB_REASON_NMI:
1263		kdb_printf("due to NonMaskable Interrupt @ "
1264			   kdb_machreg_fmt "\n",
1265			   instruction_pointer(regs));
1266		break;
1267	case KDB_REASON_SSTEP:
1268	case KDB_REASON_BREAK:
1269		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1270			   reason == KDB_REASON_BREAK ?
1271			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1272		/*
1273		 * Determine if this breakpoint is one that we
1274		 * are interested in.
1275		 */
1276		if (db_result != KDB_DB_BPT) {
1277			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1278				   db_result);
1279			KDB_DEBUG_STATE("kdb_local 6", reason);
1280			return 0;	/* Not for us, dismiss it */
1281		}
1282		break;
1283	case KDB_REASON_RECURSE:
1284		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1285			   instruction_pointer(regs));
1286		break;
1287	default:
1288		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1289		KDB_DEBUG_STATE("kdb_local 8", reason);
1290		return 0;	/* Not for us, dismiss it */
1291	}
1292
1293	while (1) {
1294		/*
1295		 * Initialize pager context.
1296		 */
1297		kdb_nextline = 1;
1298		KDB_STATE_CLEAR(SUPPRESS);
1299		kdb_grepping_flag = 0;
1300		/* ensure the old search does not leak into '/' commands */
1301		kdb_grep_string[0] = '\0';
1302
1303		cmdbuf = cmd_cur;
1304		*cmdbuf = '\0';
1305		*(cmd_hist[cmd_head]) = '\0';
1306
1307do_full_getstr:
1308		/* PROMPT can only be set if we have MEM_READ permission. */
1309		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1310			 raw_smp_processor_id());
1311		if (defcmd_in_progress)
1312			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1313
1314		/*
1315		 * Fetch command from keyboard
1316		 */
1317		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1318		if (*cmdbuf != '\n') {
1319			if (*cmdbuf < 32) {
1320				if (cmdptr == cmd_head) {
1321					strscpy(cmd_hist[cmd_head], cmd_cur,
1322						CMD_BUFLEN);
1323					*(cmd_hist[cmd_head] +
1324					  strlen(cmd_hist[cmd_head])-1) = '\0';
1325				}
1326				if (!handle_ctrl_cmd(cmdbuf))
1327					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1328				cmdbuf = cmd_cur;
1329				goto do_full_getstr;
1330			} else {
1331				strscpy(cmd_hist[cmd_head], cmd_cur,
1332					CMD_BUFLEN);
1333			}
1334
1335			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1336			if (cmd_head == cmd_tail)
1337				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1338		}
1339
1340		cmdptr = cmd_head;
1341		diag = kdb_parse(cmdbuf);
1342		if (diag == KDB_NOTFOUND) {
1343			drop_newline(cmdbuf);
1344			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1345			diag = 0;
1346		}
1347		if (diag == KDB_CMD_GO
1348		 || diag == KDB_CMD_CPU
1349		 || diag == KDB_CMD_SS
1350		 || diag == KDB_CMD_KGDB)
1351			break;
1352
1353		if (diag)
1354			kdb_cmderror(diag);
1355	}
1356	KDB_DEBUG_STATE("kdb_local 9", diag);
1357	return diag;
1358}
1359
1360
1361/*
1362 * kdb_print_state - Print the state data for the current processor
1363 *	for debugging.
1364 * Inputs:
1365 *	text		Identifies the debug point
1366 *	value		Any integer value to be printed, e.g. reason code.
1367 */
1368void kdb_print_state(const char *text, int value)
1369{
1370	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1371		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1372		   kdb_state);
1373}
1374
1375/*
1376 * kdb_main_loop - After initial setup and assignment of the
1377 *	controlling cpu, all cpus are in this loop.  One cpu is in
1378 *	control and will issue the kdb prompt, the others will spin
1379 *	until 'go' or cpu switch.
1380 *
1381 *	To get a consistent view of the kernel stacks for all
1382 *	processes, this routine is invoked from the main kdb code via
1383 *	an architecture specific routine.  kdba_main_loop is
1384 *	responsible for making the kernel stacks consistent for all
1385 *	processes, there should be no difference between a blocked
1386 *	process and a running process as far as kdb is concerned.
1387 * Inputs:
1388 *	reason		The reason KDB was invoked
1389 *	error		The hardware-defined error code
1390 *	reason2		kdb's current reason code.
1391 *			Initially error but can change
1392 *			according to kdb state.
1393 *	db_result	Result code from break or debug point.
1394 *	regs		The exception frame at time of fault/breakpoint.
1395 *			should always be valid.
1396 * Returns:
1397 *	0	KDB was invoked for an event which it wasn't responsible
1398 *	1	KDB handled the event for which it was invoked.
1399 */
1400int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1401	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1402{
1403	int result = 1;
1404	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1405	while (1) {
1406		/*
1407		 * All processors except the one that is in control
1408		 * will spin here.
1409		 */
1410		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1411		while (KDB_STATE(HOLD_CPU)) {
1412			/* state KDB is turned off by kdb_cpu to see if the
1413			 * other cpus are still live, each cpu in this loop
1414			 * turns it back on.
1415			 */
1416			if (!KDB_STATE(KDB))
1417				KDB_STATE_SET(KDB);
1418		}
1419
1420		KDB_STATE_CLEAR(SUPPRESS);
1421		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1422		if (KDB_STATE(LEAVING))
1423			break;	/* Another cpu said 'go' */
1424		/* Still using kdb, this processor is in control */
1425		result = kdb_local(reason2, error, regs, db_result);
1426		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1427
1428		if (result == KDB_CMD_CPU)
1429			break;
1430
1431		if (result == KDB_CMD_SS) {
1432			KDB_STATE_SET(DOING_SS);
1433			break;
1434		}
1435
1436		if (result == KDB_CMD_KGDB) {
1437			if (!KDB_STATE(DOING_KGDB))
1438				kdb_printf("Entering please attach debugger "
1439					   "or use $D#44+ or $3#33\n");
1440			break;
1441		}
1442		if (result && result != 1 && result != KDB_CMD_GO)
1443			kdb_printf("\nUnexpected kdb_local return code %d\n",
1444				   result);
1445		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1446		break;
1447	}
1448	if (KDB_STATE(DOING_SS))
1449		KDB_STATE_CLEAR(SSBPT);
1450
1451	/* Clean up any keyboard devices before leaving */
1452	kdb_kbd_cleanup_state();
1453
1454	return result;
1455}
1456
1457/*
1458 * kdb_mdr - This function implements the guts of the 'mdr', memory
1459 * read command.
1460 *	mdr  <addr arg>,<byte count>
1461 * Inputs:
1462 *	addr	Start address
1463 *	count	Number of bytes
1464 * Returns:
1465 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1466 */
1467static int kdb_mdr(unsigned long addr, unsigned int count)
1468{
1469	unsigned char c;
1470	while (count--) {
1471		if (kdb_getarea(c, addr))
1472			return 0;
1473		kdb_printf("%02x", c);
1474		addr++;
1475	}
1476	kdb_printf("\n");
1477	return 0;
1478}
1479
1480/*
1481 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1482 *	'md8' 'mdr' and 'mds' commands.
1483 *
1484 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1485 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1486 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1487 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1488 *	mdr  <addr arg>,<byte count>
1489 */
1490static void kdb_md_line(const char *fmtstr, unsigned long addr,
1491			int symbolic, int nosect, int bytesperword,
1492			int num, int repeat, int phys)
1493{
1494	/* print just one line of data */
1495	kdb_symtab_t symtab;
1496	char cbuf[32];
1497	char *c = cbuf;
1498	int i;
1499	int j;
1500	unsigned long word;
1501
1502	memset(cbuf, '\0', sizeof(cbuf));
1503	if (phys)
1504		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1505	else
1506		kdb_printf(kdb_machreg_fmt0 " ", addr);
1507
1508	for (i = 0; i < num && repeat--; i++) {
1509		if (phys) {
1510			if (kdb_getphysword(&word, addr, bytesperword))
1511				break;
1512		} else if (kdb_getword(&word, addr, bytesperword))
1513			break;
1514		kdb_printf(fmtstr, word);
1515		if (symbolic)
1516			kdbnearsym(word, &symtab);
1517		else
1518			memset(&symtab, 0, sizeof(symtab));
1519		if (symtab.sym_name) {
1520			kdb_symbol_print(word, &symtab, 0);
1521			if (!nosect) {
1522				kdb_printf("\n");
1523				kdb_printf("                       %s %s "
1524					   kdb_machreg_fmt " "
1525					   kdb_machreg_fmt " "
1526					   kdb_machreg_fmt, symtab.mod_name,
1527					   symtab.sec_name, symtab.sec_start,
1528					   symtab.sym_start, symtab.sym_end);
1529			}
1530			addr += bytesperword;
1531		} else {
1532			union {
1533				u64 word;
1534				unsigned char c[8];
1535			} wc;
1536			unsigned char *cp;
1537#ifdef	__BIG_ENDIAN
1538			cp = wc.c + 8 - bytesperword;
1539#else
1540			cp = wc.c;
1541#endif
1542			wc.word = word;
1543#define printable_char(c) \
1544	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1545			for (j = 0; j < bytesperword; j++)
1546				*c++ = printable_char(*cp++);
1547			addr += bytesperword;
1548#undef printable_char
1549		}
1550	}
1551	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1552		   " ", cbuf);
1553}
1554
1555static int kdb_md(int argc, const char **argv)
1556{
1557	static unsigned long last_addr;
1558	static int last_radix, last_bytesperword, last_repeat;
1559	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1560	int nosect = 0;
1561	char fmtchar, fmtstr[64];
1562	unsigned long addr;
1563	unsigned long word;
1564	long offset = 0;
1565	int symbolic = 0;
1566	int valid = 0;
1567	int phys = 0;
1568	int raw = 0;
1569
1570	kdbgetintenv("MDCOUNT", &mdcount);
1571	kdbgetintenv("RADIX", &radix);
1572	kdbgetintenv("BYTESPERWORD", &bytesperword);
1573
1574	/* Assume 'md <addr>' and start with environment values */
1575	repeat = mdcount * 16 / bytesperword;
1576
1577	if (strcmp(argv[0], "mdr") == 0) {
1578		if (argc == 2 || (argc == 0 && last_addr != 0))
1579			valid = raw = 1;
1580		else
1581			return KDB_ARGCOUNT;
1582	} else if (isdigit(argv[0][2])) {
1583		bytesperword = (int)(argv[0][2] - '0');
1584		if (bytesperword == 0) {
1585			bytesperword = last_bytesperword;
1586			if (bytesperword == 0)
1587				bytesperword = 4;
1588		}
1589		last_bytesperword = bytesperword;
1590		repeat = mdcount * 16 / bytesperword;
1591		if (!argv[0][3])
1592			valid = 1;
1593		else if (argv[0][3] == 'c' && argv[0][4]) {
1594			char *p;
1595			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1596			mdcount = ((repeat * bytesperword) + 15) / 16;
1597			valid = !*p;
1598		}
1599		last_repeat = repeat;
1600	} else if (strcmp(argv[0], "md") == 0)
1601		valid = 1;
1602	else if (strcmp(argv[0], "mds") == 0)
1603		valid = 1;
1604	else if (strcmp(argv[0], "mdp") == 0) {
1605		phys = valid = 1;
1606	}
1607	if (!valid)
1608		return KDB_NOTFOUND;
1609
1610	if (argc == 0) {
1611		if (last_addr == 0)
1612			return KDB_ARGCOUNT;
1613		addr = last_addr;
1614		radix = last_radix;
1615		bytesperword = last_bytesperword;
1616		repeat = last_repeat;
1617		if (raw)
1618			mdcount = repeat;
1619		else
1620			mdcount = ((repeat * bytesperword) + 15) / 16;
1621	}
1622
1623	if (argc) {
1624		unsigned long val;
1625		int diag, nextarg = 1;
1626		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1627				     &offset, NULL);
1628		if (diag)
1629			return diag;
1630		if (argc > nextarg+2)
1631			return KDB_ARGCOUNT;
1632
1633		if (argc >= nextarg) {
1634			diag = kdbgetularg(argv[nextarg], &val);
1635			if (!diag) {
1636				mdcount = (int) val;
1637				if (raw)
1638					repeat = mdcount;
1639				else
1640					repeat = mdcount * 16 / bytesperword;
1641			}
1642		}
1643		if (argc >= nextarg+1) {
1644			diag = kdbgetularg(argv[nextarg+1], &val);
1645			if (!diag)
1646				radix = (int) val;
1647		}
1648	}
1649
1650	if (strcmp(argv[0], "mdr") == 0) {
1651		int ret;
1652		last_addr = addr;
1653		ret = kdb_mdr(addr, mdcount);
1654		last_addr += mdcount;
1655		last_repeat = mdcount;
1656		last_bytesperword = bytesperword; // to make REPEAT happy
1657		return ret;
1658	}
1659
1660	switch (radix) {
1661	case 10:
1662		fmtchar = 'd';
1663		break;
1664	case 16:
1665		fmtchar = 'x';
1666		break;
1667	case 8:
1668		fmtchar = 'o';
1669		break;
1670	default:
1671		return KDB_BADRADIX;
1672	}
1673
1674	last_radix = radix;
1675
1676	if (bytesperword > KDB_WORD_SIZE)
1677		return KDB_BADWIDTH;
1678
1679	switch (bytesperword) {
1680	case 8:
1681		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1682		break;
1683	case 4:
1684		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1685		break;
1686	case 2:
1687		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1688		break;
1689	case 1:
1690		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1691		break;
1692	default:
1693		return KDB_BADWIDTH;
1694	}
1695
1696	last_repeat = repeat;
1697	last_bytesperword = bytesperword;
1698
1699	if (strcmp(argv[0], "mds") == 0) {
1700		symbolic = 1;
1701		/* Do not save these changes as last_*, they are temporary mds
1702		 * overrides.
1703		 */
1704		bytesperword = KDB_WORD_SIZE;
1705		repeat = mdcount;
1706		kdbgetintenv("NOSECT", &nosect);
1707	}
1708
1709	/* Round address down modulo BYTESPERWORD */
1710
1711	addr &= ~(bytesperword-1);
1712
1713	while (repeat > 0) {
1714		unsigned long a;
1715		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1716
1717		if (KDB_FLAG(CMD_INTERRUPT))
1718			return 0;
1719		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1720			if (phys) {
1721				if (kdb_getphysword(&word, a, bytesperword)
1722						|| word)
1723					break;
1724			} else if (kdb_getword(&word, a, bytesperword) || word)
1725				break;
1726		}
1727		n = min(num, repeat);
1728		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1729			    num, repeat, phys);
1730		addr += bytesperword * n;
1731		repeat -= n;
1732		z = (z + num - 1) / num;
1733		if (z > 2) {
1734			int s = num * (z-2);
1735			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1736				   " zero suppressed\n",
1737				addr, addr + bytesperword * s - 1);
1738			addr += bytesperword * s;
1739			repeat -= s;
1740		}
1741	}
1742	last_addr = addr;
1743
1744	return 0;
1745}
1746
1747/*
1748 * kdb_mm - This function implements the 'mm' command.
1749 *	mm address-expression new-value
1750 * Remarks:
1751 *	mm works on machine words, mmW works on bytes.
1752 */
1753static int kdb_mm(int argc, const char **argv)
1754{
1755	int diag;
1756	unsigned long addr;
1757	long offset = 0;
1758	unsigned long contents;
1759	int nextarg;
1760	int width;
1761
1762	if (argv[0][2] && !isdigit(argv[0][2]))
1763		return KDB_NOTFOUND;
1764
1765	if (argc < 2)
1766		return KDB_ARGCOUNT;
1767
1768	nextarg = 1;
1769	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1770	if (diag)
1771		return diag;
1772
1773	if (nextarg > argc)
1774		return KDB_ARGCOUNT;
1775	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1776	if (diag)
1777		return diag;
1778
1779	if (nextarg != argc + 1)
1780		return KDB_ARGCOUNT;
1781
1782	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1783	diag = kdb_putword(addr, contents, width);
1784	if (diag)
1785		return diag;
1786
1787	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1788
1789	return 0;
1790}
1791
1792/*
1793 * kdb_go - This function implements the 'go' command.
1794 *	go [address-expression]
1795 */
1796static int kdb_go(int argc, const char **argv)
1797{
1798	unsigned long addr;
1799	int diag;
1800	int nextarg;
1801	long offset;
1802
1803	if (raw_smp_processor_id() != kdb_initial_cpu) {
1804		kdb_printf("go must execute on the entry cpu, "
1805			   "please use \"cpu %d\" and then execute go\n",
1806			   kdb_initial_cpu);
1807		return KDB_BADCPUNUM;
1808	}
1809	if (argc == 1) {
1810		nextarg = 1;
1811		diag = kdbgetaddrarg(argc, argv, &nextarg,
1812				     &addr, &offset, NULL);
1813		if (diag)
1814			return diag;
1815	} else if (argc) {
1816		return KDB_ARGCOUNT;
1817	}
1818
1819	diag = KDB_CMD_GO;
1820	if (KDB_FLAG(CATASTROPHIC)) {
1821		kdb_printf("Catastrophic error detected\n");
1822		kdb_printf("kdb_continue_catastrophic=%d, ",
1823			kdb_continue_catastrophic);
1824		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1825			kdb_printf("type go a second time if you really want "
1826				   "to continue\n");
1827			return 0;
1828		}
1829		if (kdb_continue_catastrophic == 2) {
1830			kdb_printf("forcing reboot\n");
1831			kdb_reboot(0, NULL);
1832		}
1833		kdb_printf("attempting to continue\n");
1834	}
1835	return diag;
1836}
1837
1838/*
1839 * kdb_rd - This function implements the 'rd' command.
1840 */
1841static int kdb_rd(int argc, const char **argv)
1842{
1843	int len = kdb_check_regs();
1844#if DBG_MAX_REG_NUM > 0
1845	int i;
1846	char *rname;
1847	int rsize;
1848	u64 reg64;
1849	u32 reg32;
1850	u16 reg16;
1851	u8 reg8;
1852
1853	if (len)
1854		return len;
1855
1856	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1857		rsize = dbg_reg_def[i].size * 2;
1858		if (rsize > 16)
1859			rsize = 2;
1860		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1861			len = 0;
1862			kdb_printf("\n");
1863		}
1864		if (len)
1865			len += kdb_printf("  ");
1866		switch(dbg_reg_def[i].size * 8) {
1867		case 8:
1868			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1869			if (!rname)
1870				break;
1871			len += kdb_printf("%s: %02x", rname, reg8);
1872			break;
1873		case 16:
1874			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1875			if (!rname)
1876				break;
1877			len += kdb_printf("%s: %04x", rname, reg16);
1878			break;
1879		case 32:
1880			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1881			if (!rname)
1882				break;
1883			len += kdb_printf("%s: %08x", rname, reg32);
1884			break;
1885		case 64:
1886			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1887			if (!rname)
1888				break;
1889			len += kdb_printf("%s: %016llx", rname, reg64);
1890			break;
1891		default:
1892			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1893		}
1894	}
1895	kdb_printf("\n");
1896#else
1897	if (len)
1898		return len;
1899
1900	kdb_dumpregs(kdb_current_regs);
1901#endif
1902	return 0;
1903}
1904
1905/*
1906 * kdb_rm - This function implements the 'rm' (register modify)  command.
1907 *	rm register-name new-contents
1908 * Remarks:
1909 *	Allows register modification with the same restrictions as gdb
1910 */
1911static int kdb_rm(int argc, const char **argv)
1912{
1913#if DBG_MAX_REG_NUM > 0
1914	int diag;
1915	const char *rname;
1916	int i;
1917	u64 reg64;
1918	u32 reg32;
1919	u16 reg16;
1920	u8 reg8;
1921
1922	if (argc != 2)
1923		return KDB_ARGCOUNT;
1924	/*
1925	 * Allow presence or absence of leading '%' symbol.
1926	 */
1927	rname = argv[1];
1928	if (*rname == '%')
1929		rname++;
1930
1931	diag = kdbgetu64arg(argv[2], &reg64);
1932	if (diag)
1933		return diag;
1934
1935	diag = kdb_check_regs();
1936	if (diag)
1937		return diag;
1938
1939	diag = KDB_BADREG;
1940	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1941		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1942			diag = 0;
1943			break;
1944		}
1945	}
1946	if (!diag) {
1947		switch(dbg_reg_def[i].size * 8) {
1948		case 8:
1949			reg8 = reg64;
1950			dbg_set_reg(i, &reg8, kdb_current_regs);
1951			break;
1952		case 16:
1953			reg16 = reg64;
1954			dbg_set_reg(i, &reg16, kdb_current_regs);
1955			break;
1956		case 32:
1957			reg32 = reg64;
1958			dbg_set_reg(i, &reg32, kdb_current_regs);
1959			break;
1960		case 64:
1961			dbg_set_reg(i, &reg64, kdb_current_regs);
1962			break;
1963		}
1964	}
1965	return diag;
1966#else
1967	kdb_printf("ERROR: Register set currently not implemented\n");
1968    return 0;
1969#endif
1970}
1971
1972#if defined(CONFIG_MAGIC_SYSRQ)
1973/*
1974 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1975 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1976 *		sr <magic-sysrq-code>
1977 */
1978static int kdb_sr(int argc, const char **argv)
1979{
1980	bool check_mask =
1981	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1982
1983	if (argc != 1)
1984		return KDB_ARGCOUNT;
1985
1986	kdb_trap_printk++;
1987	__handle_sysrq(*argv[1], check_mask);
1988	kdb_trap_printk--;
1989
1990	return 0;
1991}
1992#endif	/* CONFIG_MAGIC_SYSRQ */
1993
1994/*
1995 * kdb_ef - This function implements the 'regs' (display exception
1996 *	frame) command.  This command takes an address and expects to
1997 *	find an exception frame at that address, formats and prints
1998 *	it.
1999 *		regs address-expression
2000 * Remarks:
2001 *	Not done yet.
2002 */
2003static int kdb_ef(int argc, const char **argv)
2004{
2005	int diag;
2006	unsigned long addr;
2007	long offset;
2008	int nextarg;
2009
2010	if (argc != 1)
2011		return KDB_ARGCOUNT;
2012
2013	nextarg = 1;
2014	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2015	if (diag)
2016		return diag;
2017	show_regs((struct pt_regs *)addr);
2018	return 0;
2019}
2020
2021#if defined(CONFIG_MODULES)
2022/*
2023 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2024 *	currently loaded kernel modules.
2025 *	Mostly taken from userland lsmod.
2026 */
2027static int kdb_lsmod(int argc, const char **argv)
2028{
2029	struct module *mod;
2030
2031	if (argc != 0)
2032		return KDB_ARGCOUNT;
2033
2034	kdb_printf("Module                  Size  modstruct     Used by\n");
2035	list_for_each_entry(mod, kdb_modules, list) {
2036		if (mod->state == MODULE_STATE_UNFORMED)
2037			continue;
2038
2039		kdb_printf("%-20s%8u  0x%px ", mod->name,
2040			   mod->core_layout.size, (void *)mod);
2041#ifdef CONFIG_MODULE_UNLOAD
2042		kdb_printf("%4d ", module_refcount(mod));
2043#endif
2044		if (mod->state == MODULE_STATE_GOING)
2045			kdb_printf(" (Unloading)");
2046		else if (mod->state == MODULE_STATE_COMING)
2047			kdb_printf(" (Loading)");
2048		else
2049			kdb_printf(" (Live)");
2050		kdb_printf(" 0x%px", mod->core_layout.base);
2051
2052#ifdef CONFIG_MODULE_UNLOAD
2053		{
2054			struct module_use *use;
2055			kdb_printf(" [ ");
2056			list_for_each_entry(use, &mod->source_list,
2057					    source_list)
2058				kdb_printf("%s ", use->target->name);
2059			kdb_printf("]\n");
2060		}
2061#endif
2062	}
2063
2064	return 0;
2065}
2066
2067#endif	/* CONFIG_MODULES */
2068
2069/*
2070 * kdb_env - This function implements the 'env' command.  Display the
2071 *	current environment variables.
2072 */
2073
2074static int kdb_env(int argc, const char **argv)
2075{
2076	int i;
2077
2078	for (i = 0; i < __nenv; i++) {
2079		if (__env[i])
2080			kdb_printf("%s\n", __env[i]);
2081	}
2082
2083	if (KDB_DEBUG(MASK))
2084		kdb_printf("KDBDEBUG=0x%x\n",
2085			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2086
2087	return 0;
2088}
2089
2090#ifdef CONFIG_PRINTK
2091/*
2092 * kdb_dmesg - This function implements the 'dmesg' command to display
2093 *	the contents of the syslog buffer.
2094 *		dmesg [lines] [adjust]
2095 */
2096static int kdb_dmesg(int argc, const char **argv)
2097{
2098	int diag;
2099	int logging;
2100	int lines = 0;
2101	int adjust = 0;
2102	int n = 0;
2103	int skip = 0;
2104	struct kmsg_dumper dumper = { .active = 1 };
2105	size_t len;
2106	char buf[201];
2107
2108	if (argc > 2)
2109		return KDB_ARGCOUNT;
2110	if (argc) {
2111		char *cp;
2112		lines = simple_strtol(argv[1], &cp, 0);
2113		if (*cp)
2114			lines = 0;
2115		if (argc > 1) {
2116			adjust = simple_strtoul(argv[2], &cp, 0);
2117			if (*cp || adjust < 0)
2118				adjust = 0;
2119		}
2120	}
2121
2122	/* disable LOGGING if set */
2123	diag = kdbgetintenv("LOGGING", &logging);
2124	if (!diag && logging) {
2125		const char *setargs[] = { "set", "LOGGING", "0" };
2126		kdb_set(2, setargs);
2127	}
2128
2129	kmsg_dump_rewind_nolock(&dumper);
2130	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2131		n++;
2132
2133	if (lines < 0) {
2134		if (adjust >= n)
2135			kdb_printf("buffer only contains %d lines, nothing "
2136				   "printed\n", n);
2137		else if (adjust - lines >= n)
2138			kdb_printf("buffer only contains %d lines, last %d "
2139				   "lines printed\n", n, n - adjust);
2140		skip = adjust;
2141		lines = abs(lines);
2142	} else if (lines > 0) {
2143		skip = n - lines - adjust;
2144		lines = abs(lines);
2145		if (adjust >= n) {
2146			kdb_printf("buffer only contains %d lines, "
2147				   "nothing printed\n", n);
2148			skip = n;
2149		} else if (skip < 0) {
2150			lines += skip;
2151			skip = 0;
2152			kdb_printf("buffer only contains %d lines, first "
2153				   "%d lines printed\n", n, lines);
2154		}
2155	} else {
2156		lines = n;
2157	}
2158
2159	if (skip >= n || skip < 0)
2160		return 0;
2161
2162	kmsg_dump_rewind_nolock(&dumper);
2163	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2164		if (skip) {
2165			skip--;
2166			continue;
2167		}
2168		if (!lines--)
2169			break;
2170		if (KDB_FLAG(CMD_INTERRUPT))
2171			return 0;
2172
2173		kdb_printf("%.*s\n", (int)len - 1, buf);
2174	}
2175
2176	return 0;
2177}
2178#endif /* CONFIG_PRINTK */
2179
2180/* Make sure we balance enable/disable calls, must disable first. */
2181static atomic_t kdb_nmi_disabled;
2182
2183static int kdb_disable_nmi(int argc, const char *argv[])
2184{
2185	if (atomic_read(&kdb_nmi_disabled))
2186		return 0;
2187	atomic_set(&kdb_nmi_disabled, 1);
2188	arch_kgdb_ops.enable_nmi(0);
2189	return 0;
2190}
2191
2192static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2193{
2194	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2195		return -EINVAL;
2196	arch_kgdb_ops.enable_nmi(1);
2197	return 0;
2198}
2199
2200static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2201	.set = kdb_param_enable_nmi,
2202};
2203module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2204
2205/*
2206 * kdb_cpu - This function implements the 'cpu' command.
2207 *	cpu	[<cpunum>]
2208 * Returns:
2209 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2210 */
2211static void kdb_cpu_status(void)
2212{
2213	int i, start_cpu, first_print = 1;
2214	char state, prev_state = '?';
2215
2216	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2217	kdb_printf("Available cpus: ");
2218	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2219		if (!cpu_online(i)) {
2220			state = 'F';	/* cpu is offline */
2221		} else if (!kgdb_info[i].enter_kgdb) {
2222			state = 'D';	/* cpu is online but unresponsive */
2223		} else {
2224			state = ' ';	/* cpu is responding to kdb */
2225			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2226				state = 'I';	/* idle task */
2227		}
2228		if (state != prev_state) {
2229			if (prev_state != '?') {
2230				if (!first_print)
2231					kdb_printf(", ");
2232				first_print = 0;
2233				kdb_printf("%d", start_cpu);
2234				if (start_cpu < i-1)
2235					kdb_printf("-%d", i-1);
2236				if (prev_state != ' ')
2237					kdb_printf("(%c)", prev_state);
2238			}
2239			prev_state = state;
2240			start_cpu = i;
2241		}
2242	}
2243	/* print the trailing cpus, ignoring them if they are all offline */
2244	if (prev_state != 'F') {
2245		if (!first_print)
2246			kdb_printf(", ");
2247		kdb_printf("%d", start_cpu);
2248		if (start_cpu < i-1)
2249			kdb_printf("-%d", i-1);
2250		if (prev_state != ' ')
2251			kdb_printf("(%c)", prev_state);
2252	}
2253	kdb_printf("\n");
2254}
2255
2256static int kdb_cpu(int argc, const char **argv)
2257{
2258	unsigned long cpunum;
2259	int diag;
2260
2261	if (argc == 0) {
2262		kdb_cpu_status();
2263		return 0;
2264	}
2265
2266	if (argc != 1)
2267		return KDB_ARGCOUNT;
2268
2269	diag = kdbgetularg(argv[1], &cpunum);
2270	if (diag)
2271		return diag;
2272
2273	/*
2274	 * Validate cpunum
2275	 */
2276	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2277		return KDB_BADCPUNUM;
2278
2279	dbg_switch_cpu = cpunum;
2280
2281	/*
2282	 * Switch to other cpu
2283	 */
2284	return KDB_CMD_CPU;
2285}
2286
2287/* The user may not realize that ps/bta with no parameters does not print idle
2288 * or sleeping system daemon processes, so tell them how many were suppressed.
2289 */
2290void kdb_ps_suppressed(void)
2291{
2292	int idle = 0, daemon = 0;
2293	unsigned long mask_I = kdb_task_state_string("I"),
2294		      mask_M = kdb_task_state_string("M");
2295	unsigned long cpu;
2296	const struct task_struct *p, *g;
2297	for_each_online_cpu(cpu) {
2298		p = kdb_curr_task(cpu);
2299		if (kdb_task_state(p, mask_I))
2300			++idle;
2301	}
2302	kdb_do_each_thread(g, p) {
2303		if (kdb_task_state(p, mask_M))
2304			++daemon;
2305	} kdb_while_each_thread(g, p);
2306	if (idle || daemon) {
2307		if (idle)
2308			kdb_printf("%d idle process%s (state I)%s\n",
2309				   idle, idle == 1 ? "" : "es",
2310				   daemon ? " and " : "");
2311		if (daemon)
2312			kdb_printf("%d sleeping system daemon (state M) "
2313				   "process%s", daemon,
2314				   daemon == 1 ? "" : "es");
2315		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2316	}
2317}
2318
2319/*
2320 * kdb_ps - This function implements the 'ps' command which shows a
2321 *	list of the active processes.
2322 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2323 */
2324void kdb_ps1(const struct task_struct *p)
2325{
2326	int cpu;
2327	unsigned long tmp;
2328
2329	if (!p ||
2330	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2331		return;
2332
2333	cpu = kdb_process_cpu(p);
2334	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2335		   (void *)p, p->pid, p->parent->pid,
2336		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2337		   kdb_task_state_char(p),
2338		   (void *)(&p->thread),
2339		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2340		   p->comm);
2341	if (kdb_task_has_cpu(p)) {
2342		if (!KDB_TSK(cpu)) {
2343			kdb_printf("  Error: no saved data for this cpu\n");
2344		} else {
2345			if (KDB_TSK(cpu) != p)
2346				kdb_printf("  Error: does not match running "
2347				   "process table (0x%px)\n", KDB_TSK(cpu));
2348		}
2349	}
2350}
2351
 
 
 
 
 
 
 
2352static int kdb_ps(int argc, const char **argv)
2353{
2354	struct task_struct *g, *p;
2355	unsigned long mask, cpu;
 
2356
2357	if (argc == 0)
2358		kdb_ps_suppressed();
2359	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2360		(int)(2*sizeof(void *))+2, "Task Addr",
2361		(int)(2*sizeof(void *))+2, "Thread");
2362	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2363	/* Run the active tasks first */
2364	for_each_online_cpu(cpu) {
2365		if (KDB_FLAG(CMD_INTERRUPT))
2366			return 0;
2367		p = kdb_curr_task(cpu);
2368		if (kdb_task_state(p, mask))
2369			kdb_ps1(p);
2370	}
2371	kdb_printf("\n");
2372	/* Now the real tasks */
2373	kdb_do_each_thread(g, p) {
2374		if (KDB_FLAG(CMD_INTERRUPT))
2375			return 0;
2376		if (kdb_task_state(p, mask))
2377			kdb_ps1(p);
2378	} kdb_while_each_thread(g, p);
2379
2380	return 0;
2381}
2382
2383/*
2384 * kdb_pid - This function implements the 'pid' command which switches
2385 *	the currently active process.
2386 *		pid [<pid> | R]
2387 */
2388static int kdb_pid(int argc, const char **argv)
2389{
2390	struct task_struct *p;
2391	unsigned long val;
2392	int diag;
2393
2394	if (argc > 1)
2395		return KDB_ARGCOUNT;
2396
2397	if (argc) {
2398		if (strcmp(argv[1], "R") == 0) {
2399			p = KDB_TSK(kdb_initial_cpu);
2400		} else {
2401			diag = kdbgetularg(argv[1], &val);
2402			if (diag)
2403				return KDB_BADINT;
2404
2405			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2406			if (!p) {
2407				kdb_printf("No task with pid=%d\n", (pid_t)val);
2408				return 0;
2409			}
2410		}
2411		kdb_set_current_task(p);
2412	}
2413	kdb_printf("KDB current process is %s(pid=%d)\n",
2414		   kdb_current_task->comm,
2415		   kdb_current_task->pid);
2416
2417	return 0;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422	return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430	kdbtab_t *kt;
2431	int i;
2432
2433	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434	kdb_printf("-----------------------------"
2435		   "-----------------------------\n");
2436	for_each_kdbcmd(kt, i) {
2437		char *space = "";
2438		if (KDB_FLAG(CMD_INTERRUPT))
2439			return 0;
2440		if (!kt->cmd_name)
2441			continue;
2442		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2443			continue;
2444		if (strlen(kt->cmd_usage) > 20)
2445			space = "\n                                    ";
2446		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2447			   kt->cmd_usage, space, kt->cmd_help);
2448	}
2449	return 0;
2450}
2451
2452/*
2453 * kdb_kill - This function implements the 'kill' commands.
2454 */
2455static int kdb_kill(int argc, const char **argv)
2456{
2457	long sig, pid;
2458	char *endp;
2459	struct task_struct *p;
2460
2461	if (argc != 2)
2462		return KDB_ARGCOUNT;
2463
2464	sig = simple_strtol(argv[1], &endp, 0);
2465	if (*endp)
2466		return KDB_BADINT;
2467	if ((sig >= 0) || !valid_signal(-sig)) {
2468		kdb_printf("Invalid signal parameter.<-signal>\n");
2469		return 0;
2470	}
2471	sig = -sig;
2472
2473	pid = simple_strtol(argv[2], &endp, 0);
2474	if (*endp)
2475		return KDB_BADINT;
2476	if (pid <= 0) {
2477		kdb_printf("Process ID must be large than 0.\n");
2478		return 0;
2479	}
2480
2481	/* Find the process. */
2482	p = find_task_by_pid_ns(pid, &init_pid_ns);
2483	if (!p) {
2484		kdb_printf("The specified process isn't found.\n");
2485		return 0;
2486	}
2487	p = p->group_leader;
2488	kdb_send_sig(p, sig);
2489	return 0;
2490}
2491
2492/*
2493 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2494 * I cannot call that code directly from kdb, it has an unconditional
2495 * cli()/sti() and calls routines that take locks which can stop the debugger.
2496 */
2497static void kdb_sysinfo(struct sysinfo *val)
2498{
2499	u64 uptime = ktime_get_mono_fast_ns();
2500
2501	memset(val, 0, sizeof(*val));
2502	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2503	val->loads[0] = avenrun[0];
2504	val->loads[1] = avenrun[1];
2505	val->loads[2] = avenrun[2];
2506	val->procs = nr_threads-1;
2507	si_meminfo(val);
2508
2509	return;
2510}
2511
2512/*
2513 * kdb_summary - This function implements the 'summary' command.
2514 */
2515static int kdb_summary(int argc, const char **argv)
2516{
2517	time64_t now;
2518	struct tm tm;
2519	struct sysinfo val;
2520
2521	if (argc)
2522		return KDB_ARGCOUNT;
2523
2524	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2525	kdb_printf("release    %s\n", init_uts_ns.name.release);
2526	kdb_printf("version    %s\n", init_uts_ns.name.version);
2527	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2528	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2529	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2530
2531	now = __ktime_get_real_seconds();
2532	time64_to_tm(now, 0, &tm);
2533	kdb_printf("date       %04ld-%02d-%02d %02d:%02d:%02d "
2534		   "tz_minuteswest %d\n",
2535		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2536		tm.tm_hour, tm.tm_min, tm.tm_sec,
2537		sys_tz.tz_minuteswest);
2538
2539	kdb_sysinfo(&val);
2540	kdb_printf("uptime     ");
2541	if (val.uptime > (24*60*60)) {
2542		int days = val.uptime / (24*60*60);
2543		val.uptime %= (24*60*60);
2544		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2545	}
2546	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2547
2548	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2549		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2550		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2551		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2552
2553	/* Display in kilobytes */
2554#define K(x) ((x) << (PAGE_SHIFT - 10))
2555	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2556		   "Buffers:        %8lu kB\n",
2557		   K(val.totalram), K(val.freeram), K(val.bufferram));
2558	return 0;
2559}
2560
2561/*
2562 * kdb_per_cpu - This function implements the 'per_cpu' command.
2563 */
2564static int kdb_per_cpu(int argc, const char **argv)
2565{
2566	char fmtstr[64];
2567	int cpu, diag, nextarg = 1;
2568	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2569
2570	if (argc < 1 || argc > 3)
2571		return KDB_ARGCOUNT;
2572
2573	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2574	if (diag)
2575		return diag;
2576
2577	if (argc >= 2) {
2578		diag = kdbgetularg(argv[2], &bytesperword);
2579		if (diag)
2580			return diag;
2581	}
2582	if (!bytesperword)
2583		bytesperword = KDB_WORD_SIZE;
2584	else if (bytesperword > KDB_WORD_SIZE)
2585		return KDB_BADWIDTH;
2586	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2587	if (argc >= 3) {
2588		diag = kdbgetularg(argv[3], &whichcpu);
2589		if (diag)
2590			return diag;
2591		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2592			kdb_printf("cpu %ld is not online\n", whichcpu);
2593			return KDB_BADCPUNUM;
2594		}
2595	}
2596
2597	/* Most architectures use __per_cpu_offset[cpu], some use
2598	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2599	 */
2600#ifdef	__per_cpu_offset
2601#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2602#else
2603#ifdef	CONFIG_SMP
2604#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2605#else
2606#define KDB_PCU(cpu) 0
2607#endif
2608#endif
2609	for_each_online_cpu(cpu) {
2610		if (KDB_FLAG(CMD_INTERRUPT))
2611			return 0;
2612
2613		if (whichcpu != ~0UL && whichcpu != cpu)
2614			continue;
2615		addr = symaddr + KDB_PCU(cpu);
2616		diag = kdb_getword(&val, addr, bytesperword);
2617		if (diag) {
2618			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2619				   "read, diag=%d\n", cpu, addr, diag);
2620			continue;
2621		}
2622		kdb_printf("%5d ", cpu);
2623		kdb_md_line(fmtstr, addr,
2624			bytesperword == KDB_WORD_SIZE,
2625			1, bytesperword, 1, 1, 0);
2626	}
2627#undef KDB_PCU
2628	return 0;
2629}
2630
2631/*
2632 * display help for the use of cmd | grep pattern
2633 */
2634static int kdb_grep_help(int argc, const char **argv)
2635{
2636	kdb_printf("Usage of  cmd args | grep pattern:\n");
2637	kdb_printf("  Any command's output may be filtered through an ");
2638	kdb_printf("emulated 'pipe'.\n");
2639	kdb_printf("  'grep' is just a key word.\n");
2640	kdb_printf("  The pattern may include a very limited set of "
2641		   "metacharacters:\n");
2642	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2643	kdb_printf("  And if there are spaces in the pattern, you may "
2644		   "quote it:\n");
2645	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2646		   " or \"^pat tern$\"\n");
2647	return 0;
2648}
2649
2650/*
2651 * kdb_register_flags - This function is used to register a kernel
2652 * 	debugger command.
2653 * Inputs:
2654 *	cmd	Command name
2655 *	func	Function to execute the command
2656 *	usage	A simple usage string showing arguments
2657 *	help	A simple help string describing command
2658 *	repeat	Does the command auto repeat on enter?
2659 * Returns:
2660 *	zero for success, one if a duplicate command.
2661 */
2662#define kdb_command_extend 50	/* arbitrary */
2663int kdb_register_flags(char *cmd,
2664		       kdb_func_t func,
2665		       char *usage,
2666		       char *help,
2667		       short minlen,
2668		       kdb_cmdflags_t flags)
2669{
2670	int i;
2671	kdbtab_t *kp;
2672
2673	/*
2674	 *  Brute force method to determine duplicates
2675	 */
2676	for_each_kdbcmd(kp, i) {
2677		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2678			kdb_printf("Duplicate kdb command registered: "
2679				"%s, func %px help %s\n", cmd, func, help);
2680			return 1;
2681		}
2682	}
2683
2684	/*
2685	 * Insert command into first available location in table
2686	 */
2687	for_each_kdbcmd(kp, i) {
2688		if (kp->cmd_name == NULL)
2689			break;
2690	}
2691
2692	if (i >= kdb_max_commands) {
2693		kdbtab_t *new = kmalloc_array(kdb_max_commands -
2694						KDB_BASE_CMD_MAX +
2695						kdb_command_extend,
2696					      sizeof(*new),
2697					      GFP_KDB);
2698		if (!new) {
2699			kdb_printf("Could not allocate new kdb_command "
2700				   "table\n");
2701			return 1;
2702		}
2703		if (kdb_commands) {
2704			memcpy(new, kdb_commands,
2705			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2706			kfree(kdb_commands);
2707		}
2708		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2709		       kdb_command_extend * sizeof(*new));
2710		kdb_commands = new;
2711		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2712		kdb_max_commands += kdb_command_extend;
2713	}
2714
2715	kp->cmd_name   = cmd;
2716	kp->cmd_func   = func;
2717	kp->cmd_usage  = usage;
2718	kp->cmd_help   = help;
2719	kp->cmd_minlen = minlen;
2720	kp->cmd_flags  = flags;
2721
2722	return 0;
2723}
2724EXPORT_SYMBOL_GPL(kdb_register_flags);
2725
2726
2727/*
2728 * kdb_register - Compatibility register function for commands that do
2729 *	not need to specify a repeat state.  Equivalent to
2730 *	kdb_register_flags with flags set to 0.
2731 * Inputs:
2732 *	cmd	Command name
2733 *	func	Function to execute the command
2734 *	usage	A simple usage string showing arguments
2735 *	help	A simple help string describing command
2736 * Returns:
2737 *	zero for success, one if a duplicate command.
2738 */
2739int kdb_register(char *cmd,
2740	     kdb_func_t func,
2741	     char *usage,
2742	     char *help,
2743	     short minlen)
2744{
2745	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
 
 
2746}
2747EXPORT_SYMBOL_GPL(kdb_register);
2748
2749/*
2750 * kdb_unregister - This function is used to unregister a kernel
2751 *	debugger command.  It is generally called when a module which
2752 *	implements kdb commands is unloaded.
2753 * Inputs:
2754 *	cmd	Command name
2755 * Returns:
2756 *	zero for success, one command not registered.
2757 */
2758int kdb_unregister(char *cmd)
2759{
2760	int i;
2761	kdbtab_t *kp;
2762
2763	/*
2764	 *  find the command.
2765	 */
2766	for_each_kdbcmd(kp, i) {
2767		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2768			kp->cmd_name = NULL;
2769			return 0;
2770		}
2771	}
2772
2773	/* Couldn't find it.  */
2774	return 1;
2775}
2776EXPORT_SYMBOL_GPL(kdb_unregister);
2777
2778/* Initialize the kdb command table. */
2779static void __init kdb_inittab(void)
2780{
2781	int i;
2782	kdbtab_t *kp;
2783
2784	for_each_kdbcmd(kp, i)
2785		kp->cmd_name = NULL;
2786
2787	kdb_register_flags("md", kdb_md, "<vaddr>",
2788	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2789	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2790	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2791	  "Display Raw Memory", 0,
2792	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2793	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2794	  "Display Physical Memory", 0,
2795	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2796	kdb_register_flags("mds", kdb_md, "<vaddr>",
2797	  "Display Memory Symbolically", 0,
2798	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2799	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2800	  "Modify Memory Contents", 0,
2801	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2802	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2803	  "Continue Execution", 1,
2804	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2805	kdb_register_flags("rd", kdb_rd, "",
2806	  "Display Registers", 0,
2807	  KDB_ENABLE_REG_READ);
2808	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2809	  "Modify Registers", 0,
2810	  KDB_ENABLE_REG_WRITE);
2811	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2812	  "Display exception frame", 0,
2813	  KDB_ENABLE_MEM_READ);
2814	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2815	  "Stack traceback", 1,
2816	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2817	kdb_register_flags("btp", kdb_bt, "<pid>",
2818	  "Display stack for process <pid>", 0,
2819	  KDB_ENABLE_INSPECT);
2820	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2821	  "Backtrace all processes matching state flag", 0,
2822	  KDB_ENABLE_INSPECT);
2823	kdb_register_flags("btc", kdb_bt, "",
2824	  "Backtrace current process on each cpu", 0,
2825	  KDB_ENABLE_INSPECT);
2826	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2827	  "Backtrace process given its struct task address", 0,
2828	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2829	kdb_register_flags("env", kdb_env, "",
2830	  "Show environment variables", 0,
2831	  KDB_ENABLE_ALWAYS_SAFE);
2832	kdb_register_flags("set", kdb_set, "",
2833	  "Set environment variables", 0,
2834	  KDB_ENABLE_ALWAYS_SAFE);
2835	kdb_register_flags("help", kdb_help, "",
2836	  "Display Help Message", 1,
2837	  KDB_ENABLE_ALWAYS_SAFE);
2838	kdb_register_flags("?", kdb_help, "",
2839	  "Display Help Message", 0,
2840	  KDB_ENABLE_ALWAYS_SAFE);
2841	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2842	  "Switch to new cpu", 0,
2843	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2844	kdb_register_flags("kgdb", kdb_kgdb, "",
2845	  "Enter kgdb mode", 0, 0);
2846	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2847	  "Display active task list", 0,
2848	  KDB_ENABLE_INSPECT);
2849	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2850	  "Switch to another task", 0,
2851	  KDB_ENABLE_INSPECT);
2852	kdb_register_flags("reboot", kdb_reboot, "",
2853	  "Reboot the machine immediately", 0,
2854	  KDB_ENABLE_REBOOT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855#if defined(CONFIG_MODULES)
2856	kdb_register_flags("lsmod", kdb_lsmod, "",
2857	  "List loaded kernel modules", 0,
2858	  KDB_ENABLE_INSPECT);
 
 
 
2859#endif
2860#if defined(CONFIG_MAGIC_SYSRQ)
2861	kdb_register_flags("sr", kdb_sr, "<key>",
2862	  "Magic SysRq key", 0,
2863	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2864#endif
2865#if defined(CONFIG_PRINTK)
2866	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2867	  "Display syslog buffer", 0,
2868	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2869#endif
2870	if (arch_kgdb_ops.enable_nmi) {
2871		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2872		  "Disable NMI entry to KDB", 0,
2873		  KDB_ENABLE_ALWAYS_SAFE);
2874	}
2875	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2876	  "Define a set of commands, down to endefcmd", 0,
2877	  KDB_ENABLE_ALWAYS_SAFE);
2878	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2879	  "Send a signal to a process", 0,
2880	  KDB_ENABLE_SIGNAL);
2881	kdb_register_flags("summary", kdb_summary, "",
2882	  "Summarize the system", 4,
2883	  KDB_ENABLE_ALWAYS_SAFE);
2884	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2885	  "Display per_cpu variables", 3,
2886	  KDB_ENABLE_MEM_READ);
2887	kdb_register_flags("grephelp", kdb_grep_help, "",
2888	  "Display help on | grep", 0,
2889	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2890}
2891
2892/* Execute any commands defined in kdb_cmds.  */
2893static void __init kdb_cmd_init(void)
2894{
2895	int i, diag;
2896	for (i = 0; kdb_cmds[i]; ++i) {
2897		diag = kdb_parse(kdb_cmds[i]);
2898		if (diag)
2899			kdb_printf("kdb command %s failed, kdb diag %d\n",
2900				kdb_cmds[i], diag);
2901	}
2902	if (defcmd_in_progress) {
2903		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2904		kdb_parse("endefcmd");
2905	}
2906}
2907
2908/* Initialize kdb_printf, breakpoint tables and kdb state */
2909void __init kdb_init(int lvl)
2910{
2911	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2912	int i;
2913
2914	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2915		return;
2916	for (i = kdb_init_lvl; i < lvl; i++) {
2917		switch (i) {
2918		case KDB_NOT_INITIALIZED:
2919			kdb_inittab();		/* Initialize Command Table */
2920			kdb_initbptab();	/* Initialize Breakpoints */
2921			break;
2922		case KDB_INIT_EARLY:
2923			kdb_cmd_init();		/* Build kdb_cmds tables */
2924			break;
2925		}
2926	}
2927	kdb_init_lvl = lvl;
2928}