Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/moduleparam.h>
30#include <linux/mm.h>
31#include <linux/init.h>
32#include <linux/kallsyms.h>
33#include <linux/kgdb.h>
34#include <linux/kdb.h>
35#include <linux/notifier.h>
36#include <linux/interrupt.h>
37#include <linux/delay.h>
38#include <linux/nmi.h>
39#include <linux/time.h>
40#include <linux/ptrace.h>
41#include <linux/sysctl.h>
42#include <linux/cpu.h>
43#include <linux/kdebug.h>
44#include <linux/proc_fs.h>
45#include <linux/uaccess.h>
46#include <linux/slab.h>
47#include <linux/security.h>
48#include "kdb_private.h"
49
50#undef MODULE_PARAM_PREFIX
51#define MODULE_PARAM_PREFIX "kdb."
52
53static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
54module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
55
56char kdb_grep_string[KDB_GREP_STRLEN];
57int kdb_grepping_flag;
58EXPORT_SYMBOL(kdb_grepping_flag);
59int kdb_grep_leading;
60int kdb_grep_trailing;
61
62/*
63 * Kernel debugger state flags
64 */
65unsigned int kdb_flags;
66
67/*
68 * kdb_lock protects updates to kdb_initial_cpu. Used to
69 * single thread processors through the kernel debugger.
70 */
71int kdb_initial_cpu = -1; /* cpu number that owns kdb */
72int kdb_nextline = 1;
73int kdb_state; /* General KDB state */
74
75struct task_struct *kdb_current_task;
76struct pt_regs *kdb_current_regs;
77
78const char *kdb_diemsg;
79static int kdb_go_count;
80#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
81static unsigned int kdb_continue_catastrophic =
82 CONFIG_KDB_CONTINUE_CATASTROPHIC;
83#else
84static unsigned int kdb_continue_catastrophic;
85#endif
86
87/* kdb_cmds_head describes the available commands. */
88static LIST_HEAD(kdb_cmds_head);
89
90typedef struct _kdbmsg {
91 int km_diag; /* kdb diagnostic */
92 char *km_msg; /* Corresponding message text */
93} kdbmsg_t;
94
95#define KDBMSG(msgnum, text) \
96 { KDB_##msgnum, text }
97
98static kdbmsg_t kdbmsgs[] = {
99 KDBMSG(NOTFOUND, "Command Not Found"),
100 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
101 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
102 "8 is only allowed on 64 bit systems"),
103 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
104 KDBMSG(NOTENV, "Cannot find environment variable"),
105 KDBMSG(NOENVVALUE, "Environment variable should have value"),
106 KDBMSG(NOTIMP, "Command not implemented"),
107 KDBMSG(ENVFULL, "Environment full"),
108 KDBMSG(ENVBUFFULL, "Environment buffer full"),
109 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
110#ifdef CONFIG_CPU_XSCALE
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
112#else
113 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
114#endif
115 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
116 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
117 KDBMSG(BADMODE, "Invalid IDMODE"),
118 KDBMSG(BADINT, "Illegal numeric value"),
119 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
120 KDBMSG(BADREG, "Invalid register name"),
121 KDBMSG(BADCPUNUM, "Invalid cpu number"),
122 KDBMSG(BADLENGTH, "Invalid length field"),
123 KDBMSG(NOBP, "No Breakpoint exists"),
124 KDBMSG(BADADDR, "Invalid address"),
125 KDBMSG(NOPERM, "Permission denied"),
126};
127#undef KDBMSG
128
129static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
130
131
132/*
133 * Initial environment. This is all kept static and local to
134 * this file. We don't want to rely on the memory allocation
135 * mechanisms in the kernel, so we use a very limited allocate-only
136 * heap for new and altered environment variables. The entire
137 * environment is limited to a fixed number of entries (add more
138 * to __env[] if required) and a fixed amount of heap (add more to
139 * KDB_ENVBUFSIZE if required).
140 */
141
142static char *__env[31] = {
143#if defined(CONFIG_SMP)
144 "PROMPT=[%d]kdb> ",
145#else
146 "PROMPT=kdb> ",
147#endif
148 "MOREPROMPT=more> ",
149 "RADIX=16",
150 "MDCOUNT=8", /* lines of md output */
151 KDB_PLATFORM_ENV,
152 "DTABCOUNT=30",
153 "NOSECT=1",
154};
155
156static const int __nenv = ARRAY_SIZE(__env);
157
158/*
159 * Update the permissions flags (kdb_cmd_enabled) to match the
160 * current lockdown state.
161 *
162 * Within this function the calls to security_locked_down() are "lazy". We
163 * avoid calling them if the current value of kdb_cmd_enabled already excludes
164 * flags that might be subject to lockdown. Additionally we deliberately check
165 * the lockdown flags independently (even though read lockdown implies write
166 * lockdown) since that results in both simpler code and clearer messages to
167 * the user on first-time debugger entry.
168 *
169 * The permission masks during a read+write lockdown permits the following
170 * flags: INSPECT, SIGNAL, REBOOT (and ALWAYS_SAFE).
171 *
172 * The INSPECT commands are not blocked during lockdown because they are
173 * not arbitrary memory reads. INSPECT covers the backtrace family (sometimes
174 * forcing them to have no arguments) and lsmod. These commands do expose
175 * some kernel state but do not allow the developer seated at the console to
176 * choose what state is reported. SIGNAL and REBOOT should not be controversial,
177 * given these are allowed for root during lockdown already.
178 */
179static void kdb_check_for_lockdown(void)
180{
181 const int write_flags = KDB_ENABLE_MEM_WRITE |
182 KDB_ENABLE_REG_WRITE |
183 KDB_ENABLE_FLOW_CTRL;
184 const int read_flags = KDB_ENABLE_MEM_READ |
185 KDB_ENABLE_REG_READ;
186
187 bool need_to_lockdown_write = false;
188 bool need_to_lockdown_read = false;
189
190 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | write_flags))
191 need_to_lockdown_write =
192 security_locked_down(LOCKDOWN_DBG_WRITE_KERNEL);
193
194 if (kdb_cmd_enabled & (KDB_ENABLE_ALL | read_flags))
195 need_to_lockdown_read =
196 security_locked_down(LOCKDOWN_DBG_READ_KERNEL);
197
198 /* De-compose KDB_ENABLE_ALL if required */
199 if (need_to_lockdown_write || need_to_lockdown_read)
200 if (kdb_cmd_enabled & KDB_ENABLE_ALL)
201 kdb_cmd_enabled = KDB_ENABLE_MASK & ~KDB_ENABLE_ALL;
202
203 if (need_to_lockdown_write)
204 kdb_cmd_enabled &= ~write_flags;
205
206 if (need_to_lockdown_read)
207 kdb_cmd_enabled &= ~read_flags;
208}
209
210/*
211 * Check whether the flags of the current command, the permissions of the kdb
212 * console and the lockdown state allow a command to be run.
213 */
214static bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
215 bool no_args)
216{
217 /* permissions comes from userspace so needs massaging slightly */
218 permissions &= KDB_ENABLE_MASK;
219 permissions |= KDB_ENABLE_ALWAYS_SAFE;
220
221 /* some commands change group when launched with no arguments */
222 if (no_args)
223 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
224
225 flags |= KDB_ENABLE_ALL;
226
227 return permissions & flags;
228}
229
230/*
231 * kdbgetenv - This function will return the character string value of
232 * an environment variable.
233 * Parameters:
234 * match A character string representing an environment variable.
235 * Returns:
236 * NULL No environment variable matches 'match'
237 * char* Pointer to string value of environment variable.
238 */
239char *kdbgetenv(const char *match)
240{
241 char **ep = __env;
242 int matchlen = strlen(match);
243 int i;
244
245 for (i = 0; i < __nenv; i++) {
246 char *e = *ep++;
247
248 if (!e)
249 continue;
250
251 if ((strncmp(match, e, matchlen) == 0)
252 && ((e[matchlen] == '\0')
253 || (e[matchlen] == '='))) {
254 char *cp = strchr(e, '=');
255 return cp ? ++cp : "";
256 }
257 }
258 return NULL;
259}
260
261/*
262 * kdballocenv - This function is used to allocate bytes for
263 * environment entries.
264 * Parameters:
265 * bytes The number of bytes to allocate in the static buffer.
266 * Returns:
267 * A pointer to the allocated space in the buffer on success.
268 * NULL if bytes > size available in the envbuffer.
269 * Remarks:
270 * We use a static environment buffer (envbuffer) to hold the values
271 * of dynamically generated environment variables (see kdb_set). Buffer
272 * space once allocated is never free'd, so over time, the amount of space
273 * (currently 512 bytes) will be exhausted if env variables are changed
274 * frequently.
275 */
276static char *kdballocenv(size_t bytes)
277{
278#define KDB_ENVBUFSIZE 512
279 static char envbuffer[KDB_ENVBUFSIZE];
280 static int envbufsize;
281 char *ep = NULL;
282
283 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
284 ep = &envbuffer[envbufsize];
285 envbufsize += bytes;
286 }
287 return ep;
288}
289
290/*
291 * kdbgetulenv - This function will return the value of an unsigned
292 * long-valued environment variable.
293 * Parameters:
294 * match A character string representing a numeric value
295 * Outputs:
296 * *value the unsigned long representation of the env variable 'match'
297 * Returns:
298 * Zero on success, a kdb diagnostic on failure.
299 */
300static int kdbgetulenv(const char *match, unsigned long *value)
301{
302 char *ep;
303
304 ep = kdbgetenv(match);
305 if (!ep)
306 return KDB_NOTENV;
307 if (strlen(ep) == 0)
308 return KDB_NOENVVALUE;
309 if (kstrtoul(ep, 0, value))
310 return KDB_BADINT;
311
312 return 0;
313}
314
315/*
316 * kdbgetintenv - This function will return the value of an
317 * integer-valued environment variable.
318 * Parameters:
319 * match A character string representing an integer-valued env variable
320 * Outputs:
321 * *value the integer representation of the environment variable 'match'
322 * Returns:
323 * Zero on success, a kdb diagnostic on failure.
324 */
325int kdbgetintenv(const char *match, int *value)
326{
327 unsigned long val;
328 int diag;
329
330 diag = kdbgetulenv(match, &val);
331 if (!diag)
332 *value = (int) val;
333 return diag;
334}
335
336/*
337 * kdb_setenv() - Alter an existing environment variable or create a new one.
338 * @var: Name of the variable
339 * @val: Value of the variable
340 *
341 * Return: Zero on success, a kdb diagnostic on failure.
342 */
343static int kdb_setenv(const char *var, const char *val)
344{
345 int i;
346 char *ep;
347 size_t varlen, vallen;
348
349 varlen = strlen(var);
350 vallen = strlen(val);
351 ep = kdballocenv(varlen + vallen + 2);
352 if (ep == (char *)0)
353 return KDB_ENVBUFFULL;
354
355 sprintf(ep, "%s=%s", var, val);
356
357 for (i = 0; i < __nenv; i++) {
358 if (__env[i]
359 && ((strncmp(__env[i], var, varlen) == 0)
360 && ((__env[i][varlen] == '\0')
361 || (__env[i][varlen] == '=')))) {
362 __env[i] = ep;
363 return 0;
364 }
365 }
366
367 /*
368 * Wasn't existing variable. Fit into slot.
369 */
370 for (i = 0; i < __nenv-1; i++) {
371 if (__env[i] == (char *)0) {
372 __env[i] = ep;
373 return 0;
374 }
375 }
376
377 return KDB_ENVFULL;
378}
379
380/*
381 * kdb_printenv() - Display the current environment variables.
382 */
383static void kdb_printenv(void)
384{
385 int i;
386
387 for (i = 0; i < __nenv; i++) {
388 if (__env[i])
389 kdb_printf("%s\n", __env[i]);
390 }
391}
392
393/*
394 * kdbgetularg - This function will convert a numeric string into an
395 * unsigned long value.
396 * Parameters:
397 * arg A character string representing a numeric value
398 * Outputs:
399 * *value the unsigned long representation of arg.
400 * Returns:
401 * Zero on success, a kdb diagnostic on failure.
402 */
403int kdbgetularg(const char *arg, unsigned long *value)
404{
405 if (kstrtoul(arg, 0, value))
406 return KDB_BADINT;
407 return 0;
408}
409
410int kdbgetu64arg(const char *arg, u64 *value)
411{
412 if (kstrtou64(arg, 0, value))
413 return KDB_BADINT;
414 return 0;
415}
416
417/*
418 * kdb_set - This function implements the 'set' command. Alter an
419 * existing environment variable or create a new one.
420 */
421int kdb_set(int argc, const char **argv)
422{
423 /*
424 * we can be invoked two ways:
425 * set var=value argv[1]="var", argv[2]="value"
426 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
427 * - if the latter, shift 'em down.
428 */
429 if (argc == 3) {
430 argv[2] = argv[3];
431 argc--;
432 }
433
434 if (argc != 2)
435 return KDB_ARGCOUNT;
436
437 /*
438 * Censor sensitive variables
439 */
440 if (strcmp(argv[1], "PROMPT") == 0 &&
441 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
442 return KDB_NOPERM;
443
444 /*
445 * Check for internal variables
446 */
447 if (strcmp(argv[1], "KDBDEBUG") == 0) {
448 unsigned int debugflags;
449 int ret;
450
451 ret = kstrtouint(argv[2], 0, &debugflags);
452 if (ret || debugflags & ~KDB_DEBUG_FLAG_MASK) {
453 kdb_printf("kdb: illegal debug flags '%s'\n",
454 argv[2]);
455 return 0;
456 }
457 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
458 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
459
460 return 0;
461 }
462
463 /*
464 * Tokenizer squashed the '=' sign. argv[1] is variable
465 * name, argv[2] = value.
466 */
467 return kdb_setenv(argv[1], argv[2]);
468}
469
470static int kdb_check_regs(void)
471{
472 if (!kdb_current_regs) {
473 kdb_printf("No current kdb registers."
474 " You may need to select another task\n");
475 return KDB_BADREG;
476 }
477 return 0;
478}
479
480/*
481 * kdbgetaddrarg - This function is responsible for parsing an
482 * address-expression and returning the value of the expression,
483 * symbol name, and offset to the caller.
484 *
485 * The argument may consist of a numeric value (decimal or
486 * hexadecimal), a symbol name, a register name (preceded by the
487 * percent sign), an environment variable with a numeric value
488 * (preceded by a dollar sign) or a simple arithmetic expression
489 * consisting of a symbol name, +/-, and a numeric constant value
490 * (offset).
491 * Parameters:
492 * argc - count of arguments in argv
493 * argv - argument vector
494 * *nextarg - index to next unparsed argument in argv[]
495 * regs - Register state at time of KDB entry
496 * Outputs:
497 * *value - receives the value of the address-expression
498 * *offset - receives the offset specified, if any
499 * *name - receives the symbol name, if any
500 * *nextarg - index to next unparsed argument in argv[]
501 * Returns:
502 * zero is returned on success, a kdb diagnostic code is
503 * returned on error.
504 */
505int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
506 unsigned long *value, long *offset,
507 char **name)
508{
509 unsigned long addr;
510 unsigned long off = 0;
511 int positive;
512 int diag;
513 int found = 0;
514 char *symname;
515 char symbol = '\0';
516 char *cp;
517 kdb_symtab_t symtab;
518
519 /*
520 * If the enable flags prohibit both arbitrary memory access
521 * and flow control then there are no reasonable grounds to
522 * provide symbol lookup.
523 */
524 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
525 kdb_cmd_enabled, false))
526 return KDB_NOPERM;
527
528 /*
529 * Process arguments which follow the following syntax:
530 *
531 * symbol | numeric-address [+/- numeric-offset]
532 * %register
533 * $environment-variable
534 */
535
536 if (*nextarg > argc)
537 return KDB_ARGCOUNT;
538
539 symname = (char *)argv[*nextarg];
540
541 /*
542 * If there is no whitespace between the symbol
543 * or address and the '+' or '-' symbols, we
544 * remember the character and replace it with a
545 * null so the symbol/value can be properly parsed
546 */
547 cp = strpbrk(symname, "+-");
548 if (cp != NULL) {
549 symbol = *cp;
550 *cp++ = '\0';
551 }
552
553 if (symname[0] == '$') {
554 diag = kdbgetulenv(&symname[1], &addr);
555 if (diag)
556 return diag;
557 } else if (symname[0] == '%') {
558 diag = kdb_check_regs();
559 if (diag)
560 return diag;
561 /* Implement register values with % at a later time as it is
562 * arch optional.
563 */
564 return KDB_NOTIMP;
565 } else {
566 found = kdbgetsymval(symname, &symtab);
567 if (found) {
568 addr = symtab.sym_start;
569 } else {
570 diag = kdbgetularg(argv[*nextarg], &addr);
571 if (diag)
572 return diag;
573 }
574 }
575
576 if (!found)
577 found = kdbnearsym(addr, &symtab);
578
579 (*nextarg)++;
580
581 if (name)
582 *name = symname;
583 if (value)
584 *value = addr;
585 if (offset && name && *name)
586 *offset = addr - symtab.sym_start;
587
588 if ((*nextarg > argc)
589 && (symbol == '\0'))
590 return 0;
591
592 /*
593 * check for +/- and offset
594 */
595
596 if (symbol == '\0') {
597 if ((argv[*nextarg][0] != '+')
598 && (argv[*nextarg][0] != '-')) {
599 /*
600 * Not our argument. Return.
601 */
602 return 0;
603 } else {
604 positive = (argv[*nextarg][0] == '+');
605 (*nextarg)++;
606 }
607 } else
608 positive = (symbol == '+');
609
610 /*
611 * Now there must be an offset!
612 */
613 if ((*nextarg > argc)
614 && (symbol == '\0')) {
615 return KDB_INVADDRFMT;
616 }
617
618 if (!symbol) {
619 cp = (char *)argv[*nextarg];
620 (*nextarg)++;
621 }
622
623 diag = kdbgetularg(cp, &off);
624 if (diag)
625 return diag;
626
627 if (!positive)
628 off = -off;
629
630 if (offset)
631 *offset += off;
632
633 if (value)
634 *value += off;
635
636 return 0;
637}
638
639static void kdb_cmderror(int diag)
640{
641 int i;
642
643 if (diag >= 0) {
644 kdb_printf("no error detected (diagnostic is %d)\n", diag);
645 return;
646 }
647
648 for (i = 0; i < __nkdb_err; i++) {
649 if (kdbmsgs[i].km_diag == diag) {
650 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
651 return;
652 }
653 }
654
655 kdb_printf("Unknown diag %d\n", -diag);
656}
657
658/*
659 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
660 * command which defines one command as a set of other commands,
661 * terminated by endefcmd. kdb_defcmd processes the initial
662 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
663 * the following commands until 'endefcmd'.
664 * Inputs:
665 * argc argument count
666 * argv argument vector
667 * Returns:
668 * zero for success, a kdb diagnostic if error
669 */
670struct kdb_macro {
671 kdbtab_t cmd; /* Macro command */
672 struct list_head statements; /* Associated statement list */
673};
674
675struct kdb_macro_statement {
676 char *statement; /* Statement text */
677 struct list_head list_node; /* Statement list node */
678};
679
680static struct kdb_macro *kdb_macro;
681static bool defcmd_in_progress;
682
683/* Forward references */
684static int kdb_exec_defcmd(int argc, const char **argv);
685
686static int kdb_defcmd2(const char *cmdstr, const char *argv0)
687{
688 struct kdb_macro_statement *kms;
689
690 if (!kdb_macro)
691 return KDB_NOTIMP;
692
693 if (strcmp(argv0, "endefcmd") == 0) {
694 defcmd_in_progress = false;
695 if (!list_empty(&kdb_macro->statements))
696 kdb_register(&kdb_macro->cmd);
697 return 0;
698 }
699
700 kms = kmalloc(sizeof(*kms), GFP_KDB);
701 if (!kms) {
702 kdb_printf("Could not allocate new kdb macro command: %s\n",
703 cmdstr);
704 return KDB_NOTIMP;
705 }
706
707 kms->statement = kdb_strdup(cmdstr, GFP_KDB);
708 list_add_tail(&kms->list_node, &kdb_macro->statements);
709
710 return 0;
711}
712
713static int kdb_defcmd(int argc, const char **argv)
714{
715 kdbtab_t *mp;
716
717 if (defcmd_in_progress) {
718 kdb_printf("kdb: nested defcmd detected, assuming missing "
719 "endefcmd\n");
720 kdb_defcmd2("endefcmd", "endefcmd");
721 }
722 if (argc == 0) {
723 kdbtab_t *kp;
724 struct kdb_macro *kmp;
725 struct kdb_macro_statement *kms;
726
727 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
728 if (kp->func == kdb_exec_defcmd) {
729 kdb_printf("defcmd %s \"%s\" \"%s\"\n",
730 kp->name, kp->usage, kp->help);
731 kmp = container_of(kp, struct kdb_macro, cmd);
732 list_for_each_entry(kms, &kmp->statements,
733 list_node)
734 kdb_printf("%s", kms->statement);
735 kdb_printf("endefcmd\n");
736 }
737 }
738 return 0;
739 }
740 if (argc != 3)
741 return KDB_ARGCOUNT;
742 if (in_dbg_master()) {
743 kdb_printf("Command only available during kdb_init()\n");
744 return KDB_NOTIMP;
745 }
746 kdb_macro = kzalloc(sizeof(*kdb_macro), GFP_KDB);
747 if (!kdb_macro)
748 goto fail_defcmd;
749
750 mp = &kdb_macro->cmd;
751 mp->func = kdb_exec_defcmd;
752 mp->minlen = 0;
753 mp->flags = KDB_ENABLE_ALWAYS_SAFE;
754 mp->name = kdb_strdup(argv[1], GFP_KDB);
755 if (!mp->name)
756 goto fail_name;
757 mp->usage = kdb_strdup(argv[2], GFP_KDB);
758 if (!mp->usage)
759 goto fail_usage;
760 mp->help = kdb_strdup(argv[3], GFP_KDB);
761 if (!mp->help)
762 goto fail_help;
763 if (mp->usage[0] == '"') {
764 strcpy(mp->usage, argv[2]+1);
765 mp->usage[strlen(mp->usage)-1] = '\0';
766 }
767 if (mp->help[0] == '"') {
768 strcpy(mp->help, argv[3]+1);
769 mp->help[strlen(mp->help)-1] = '\0';
770 }
771
772 INIT_LIST_HEAD(&kdb_macro->statements);
773 defcmd_in_progress = true;
774 return 0;
775fail_help:
776 kfree(mp->usage);
777fail_usage:
778 kfree(mp->name);
779fail_name:
780 kfree(kdb_macro);
781fail_defcmd:
782 kdb_printf("Could not allocate new kdb_macro entry for %s\n", argv[1]);
783 return KDB_NOTIMP;
784}
785
786/*
787 * kdb_exec_defcmd - Execute the set of commands associated with this
788 * defcmd name.
789 * Inputs:
790 * argc argument count
791 * argv argument vector
792 * Returns:
793 * zero for success, a kdb diagnostic if error
794 */
795static int kdb_exec_defcmd(int argc, const char **argv)
796{
797 int ret;
798 kdbtab_t *kp;
799 struct kdb_macro *kmp;
800 struct kdb_macro_statement *kms;
801
802 if (argc != 0)
803 return KDB_ARGCOUNT;
804
805 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
806 if (strcmp(kp->name, argv[0]) == 0)
807 break;
808 }
809 if (list_entry_is_head(kp, &kdb_cmds_head, list_node)) {
810 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
811 argv[0]);
812 return KDB_NOTIMP;
813 }
814 kmp = container_of(kp, struct kdb_macro, cmd);
815 list_for_each_entry(kms, &kmp->statements, list_node) {
816 /*
817 * Recursive use of kdb_parse, do not use argv after this point.
818 */
819 argv = NULL;
820 kdb_printf("[%s]kdb> %s\n", kmp->cmd.name, kms->statement);
821 ret = kdb_parse(kms->statement);
822 if (ret)
823 return ret;
824 }
825 return 0;
826}
827
828/* Command history */
829#define KDB_CMD_HISTORY_COUNT 32
830#define CMD_BUFLEN 200 /* kdb_printf: max printline
831 * size == 256 */
832static unsigned int cmd_head, cmd_tail;
833static unsigned int cmdptr;
834static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
835static char cmd_cur[CMD_BUFLEN];
836
837/*
838 * The "str" argument may point to something like | grep xyz
839 */
840static void parse_grep(const char *str)
841{
842 int len;
843 char *cp = (char *)str, *cp2;
844
845 /* sanity check: we should have been called with the \ first */
846 if (*cp != '|')
847 return;
848 cp++;
849 while (isspace(*cp))
850 cp++;
851 if (!str_has_prefix(cp, "grep ")) {
852 kdb_printf("invalid 'pipe', see grephelp\n");
853 return;
854 }
855 cp += 5;
856 while (isspace(*cp))
857 cp++;
858 cp2 = strchr(cp, '\n');
859 if (cp2)
860 *cp2 = '\0'; /* remove the trailing newline */
861 len = strlen(cp);
862 if (len == 0) {
863 kdb_printf("invalid 'pipe', see grephelp\n");
864 return;
865 }
866 /* now cp points to a nonzero length search string */
867 if (*cp == '"') {
868 /* allow it be "x y z" by removing the "'s - there must
869 be two of them */
870 cp++;
871 cp2 = strchr(cp, '"');
872 if (!cp2) {
873 kdb_printf("invalid quoted string, see grephelp\n");
874 return;
875 }
876 *cp2 = '\0'; /* end the string where the 2nd " was */
877 }
878 kdb_grep_leading = 0;
879 if (*cp == '^') {
880 kdb_grep_leading = 1;
881 cp++;
882 }
883 len = strlen(cp);
884 kdb_grep_trailing = 0;
885 if (*(cp+len-1) == '$') {
886 kdb_grep_trailing = 1;
887 *(cp+len-1) = '\0';
888 }
889 len = strlen(cp);
890 if (!len)
891 return;
892 if (len >= KDB_GREP_STRLEN) {
893 kdb_printf("search string too long\n");
894 return;
895 }
896 strcpy(kdb_grep_string, cp);
897 kdb_grepping_flag++;
898 return;
899}
900
901/*
902 * kdb_parse - Parse the command line, search the command table for a
903 * matching command and invoke the command function. This
904 * function may be called recursively, if it is, the second call
905 * will overwrite argv and cbuf. It is the caller's
906 * responsibility to save their argv if they recursively call
907 * kdb_parse().
908 * Parameters:
909 * cmdstr The input command line to be parsed.
910 * regs The registers at the time kdb was entered.
911 * Returns:
912 * Zero for success, a kdb diagnostic if failure.
913 * Remarks:
914 * Limited to 20 tokens.
915 *
916 * Real rudimentary tokenization. Basically only whitespace
917 * is considered a token delimiter (but special consideration
918 * is taken of the '=' sign as used by the 'set' command).
919 *
920 * The algorithm used to tokenize the input string relies on
921 * there being at least one whitespace (or otherwise useless)
922 * character between tokens as the character immediately following
923 * the token is altered in-place to a null-byte to terminate the
924 * token string.
925 */
926
927#define MAXARGC 20
928
929int kdb_parse(const char *cmdstr)
930{
931 static char *argv[MAXARGC];
932 static int argc;
933 static char cbuf[CMD_BUFLEN+2];
934 char *cp;
935 char *cpp, quoted;
936 kdbtab_t *tp;
937 int escaped, ignore_errors = 0, check_grep = 0;
938
939 /*
940 * First tokenize the command string.
941 */
942 cp = (char *)cmdstr;
943
944 if (KDB_FLAG(CMD_INTERRUPT)) {
945 /* Previous command was interrupted, newline must not
946 * repeat the command */
947 KDB_FLAG_CLEAR(CMD_INTERRUPT);
948 KDB_STATE_SET(PAGER);
949 argc = 0; /* no repeat */
950 }
951
952 if (*cp != '\n' && *cp != '\0') {
953 argc = 0;
954 cpp = cbuf;
955 while (*cp) {
956 /* skip whitespace */
957 while (isspace(*cp))
958 cp++;
959 if ((*cp == '\0') || (*cp == '\n') ||
960 (*cp == '#' && !defcmd_in_progress))
961 break;
962 /* special case: check for | grep pattern */
963 if (*cp == '|') {
964 check_grep++;
965 break;
966 }
967 if (cpp >= cbuf + CMD_BUFLEN) {
968 kdb_printf("kdb_parse: command buffer "
969 "overflow, command ignored\n%s\n",
970 cmdstr);
971 return KDB_NOTFOUND;
972 }
973 if (argc >= MAXARGC - 1) {
974 kdb_printf("kdb_parse: too many arguments, "
975 "command ignored\n%s\n", cmdstr);
976 return KDB_NOTFOUND;
977 }
978 argv[argc++] = cpp;
979 escaped = 0;
980 quoted = '\0';
981 /* Copy to next unquoted and unescaped
982 * whitespace or '=' */
983 while (*cp && *cp != '\n' &&
984 (escaped || quoted || !isspace(*cp))) {
985 if (cpp >= cbuf + CMD_BUFLEN)
986 break;
987 if (escaped) {
988 escaped = 0;
989 *cpp++ = *cp++;
990 continue;
991 }
992 if (*cp == '\\') {
993 escaped = 1;
994 ++cp;
995 continue;
996 }
997 if (*cp == quoted)
998 quoted = '\0';
999 else if (*cp == '\'' || *cp == '"')
1000 quoted = *cp;
1001 *cpp = *cp++;
1002 if (*cpp == '=' && !quoted)
1003 break;
1004 ++cpp;
1005 }
1006 *cpp++ = '\0'; /* Squash a ws or '=' character */
1007 }
1008 }
1009 if (!argc)
1010 return 0;
1011 if (check_grep)
1012 parse_grep(cp);
1013 if (defcmd_in_progress) {
1014 int result = kdb_defcmd2(cmdstr, argv[0]);
1015 if (!defcmd_in_progress) {
1016 argc = 0; /* avoid repeat on endefcmd */
1017 *(argv[0]) = '\0';
1018 }
1019 return result;
1020 }
1021 if (argv[0][0] == '-' && argv[0][1] &&
1022 (argv[0][1] < '0' || argv[0][1] > '9')) {
1023 ignore_errors = 1;
1024 ++argv[0];
1025 }
1026
1027 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1028 /*
1029 * If this command is allowed to be abbreviated,
1030 * check to see if this is it.
1031 */
1032 if (tp->minlen && (strlen(argv[0]) <= tp->minlen) &&
1033 (strncmp(argv[0], tp->name, tp->minlen) == 0))
1034 break;
1035
1036 if (strcmp(argv[0], tp->name) == 0)
1037 break;
1038 }
1039
1040 /*
1041 * If we don't find a command by this name, see if the first
1042 * few characters of this match any of the known commands.
1043 * e.g., md1c20 should match md.
1044 */
1045 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1046 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1047 if (strncmp(argv[0], tp->name, strlen(tp->name)) == 0)
1048 break;
1049 }
1050 }
1051
1052 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1053 int result;
1054
1055 if (!kdb_check_flags(tp->flags, kdb_cmd_enabled, argc <= 1))
1056 return KDB_NOPERM;
1057
1058 KDB_STATE_SET(CMD);
1059 result = (*tp->func)(argc-1, (const char **)argv);
1060 if (result && ignore_errors && result > KDB_CMD_GO)
1061 result = 0;
1062 KDB_STATE_CLEAR(CMD);
1063
1064 if (tp->flags & KDB_REPEAT_WITH_ARGS)
1065 return result;
1066
1067 argc = tp->flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1068 if (argv[argc])
1069 *(argv[argc]) = '\0';
1070 return result;
1071 }
1072
1073 /*
1074 * If the input with which we were presented does not
1075 * map to an existing command, attempt to parse it as an
1076 * address argument and display the result. Useful for
1077 * obtaining the address of a variable, or the nearest symbol
1078 * to an address contained in a register.
1079 */
1080 {
1081 unsigned long value;
1082 char *name = NULL;
1083 long offset;
1084 int nextarg = 0;
1085
1086 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1087 &value, &offset, &name)) {
1088 return KDB_NOTFOUND;
1089 }
1090
1091 kdb_printf("%s = ", argv[0]);
1092 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1093 kdb_printf("\n");
1094 return 0;
1095 }
1096}
1097
1098
1099static int handle_ctrl_cmd(char *cmd)
1100{
1101#define CTRL_P 16
1102#define CTRL_N 14
1103
1104 /* initial situation */
1105 if (cmd_head == cmd_tail)
1106 return 0;
1107 switch (*cmd) {
1108 case CTRL_P:
1109 if (cmdptr != cmd_tail)
1110 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1111 KDB_CMD_HISTORY_COUNT;
1112 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1113 return 1;
1114 case CTRL_N:
1115 if (cmdptr != cmd_head)
1116 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1117 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1118 return 1;
1119 }
1120 return 0;
1121}
1122
1123/*
1124 * kdb_reboot - This function implements the 'reboot' command. Reboot
1125 * the system immediately, or loop for ever on failure.
1126 */
1127static int kdb_reboot(int argc, const char **argv)
1128{
1129 emergency_restart();
1130 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1131 while (1)
1132 cpu_relax();
1133 /* NOTREACHED */
1134 return 0;
1135}
1136
1137static void kdb_dumpregs(struct pt_regs *regs)
1138{
1139 int old_lvl = console_loglevel;
1140 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1141 kdb_trap_printk++;
1142 show_regs(regs);
1143 kdb_trap_printk--;
1144 kdb_printf("\n");
1145 console_loglevel = old_lvl;
1146}
1147
1148static void kdb_set_current_task(struct task_struct *p)
1149{
1150 kdb_current_task = p;
1151
1152 if (kdb_task_has_cpu(p)) {
1153 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1154 return;
1155 }
1156 kdb_current_regs = NULL;
1157}
1158
1159static void drop_newline(char *buf)
1160{
1161 size_t len = strlen(buf);
1162
1163 if (len == 0)
1164 return;
1165 if (*(buf + len - 1) == '\n')
1166 *(buf + len - 1) = '\0';
1167}
1168
1169/*
1170 * kdb_local - The main code for kdb. This routine is invoked on a
1171 * specific processor, it is not global. The main kdb() routine
1172 * ensures that only one processor at a time is in this routine.
1173 * This code is called with the real reason code on the first
1174 * entry to a kdb session, thereafter it is called with reason
1175 * SWITCH, even if the user goes back to the original cpu.
1176 * Inputs:
1177 * reason The reason KDB was invoked
1178 * error The hardware-defined error code
1179 * regs The exception frame at time of fault/breakpoint.
1180 * db_result Result code from the break or debug point.
1181 * Returns:
1182 * 0 KDB was invoked for an event which it wasn't responsible
1183 * 1 KDB handled the event for which it was invoked.
1184 * KDB_CMD_GO User typed 'go'.
1185 * KDB_CMD_CPU User switched to another cpu.
1186 * KDB_CMD_SS Single step.
1187 */
1188static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1189 kdb_dbtrap_t db_result)
1190{
1191 char *cmdbuf;
1192 int diag;
1193 struct task_struct *kdb_current =
1194 curr_task(raw_smp_processor_id());
1195
1196 KDB_DEBUG_STATE("kdb_local 1", reason);
1197
1198 kdb_check_for_lockdown();
1199
1200 kdb_go_count = 0;
1201 if (reason == KDB_REASON_DEBUG) {
1202 /* special case below */
1203 } else {
1204 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1205 kdb_current, kdb_current ? kdb_current->pid : 0);
1206#if defined(CONFIG_SMP)
1207 kdb_printf("on processor %d ", raw_smp_processor_id());
1208#endif
1209 }
1210
1211 switch (reason) {
1212 case KDB_REASON_DEBUG:
1213 {
1214 /*
1215 * If re-entering kdb after a single step
1216 * command, don't print the message.
1217 */
1218 switch (db_result) {
1219 case KDB_DB_BPT:
1220 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1221 kdb_current, kdb_current->pid);
1222#if defined(CONFIG_SMP)
1223 kdb_printf("on processor %d ", raw_smp_processor_id());
1224#endif
1225 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1226 instruction_pointer(regs));
1227 break;
1228 case KDB_DB_SS:
1229 break;
1230 case KDB_DB_SSBPT:
1231 KDB_DEBUG_STATE("kdb_local 4", reason);
1232 return 1; /* kdba_db_trap did the work */
1233 default:
1234 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1235 db_result);
1236 break;
1237 }
1238
1239 }
1240 break;
1241 case KDB_REASON_ENTER:
1242 if (KDB_STATE(KEYBOARD))
1243 kdb_printf("due to Keyboard Entry\n");
1244 else
1245 kdb_printf("due to KDB_ENTER()\n");
1246 break;
1247 case KDB_REASON_KEYBOARD:
1248 KDB_STATE_SET(KEYBOARD);
1249 kdb_printf("due to Keyboard Entry\n");
1250 break;
1251 case KDB_REASON_ENTER_SLAVE:
1252 /* drop through, slaves only get released via cpu switch */
1253 case KDB_REASON_SWITCH:
1254 kdb_printf("due to cpu switch\n");
1255 break;
1256 case KDB_REASON_OOPS:
1257 kdb_printf("Oops: %s\n", kdb_diemsg);
1258 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1259 instruction_pointer(regs));
1260 kdb_dumpregs(regs);
1261 break;
1262 case KDB_REASON_SYSTEM_NMI:
1263 kdb_printf("due to System NonMaskable Interrupt\n");
1264 break;
1265 case KDB_REASON_NMI:
1266 kdb_printf("due to NonMaskable Interrupt @ "
1267 kdb_machreg_fmt "\n",
1268 instruction_pointer(regs));
1269 break;
1270 case KDB_REASON_SSTEP:
1271 case KDB_REASON_BREAK:
1272 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1273 reason == KDB_REASON_BREAK ?
1274 "Breakpoint" : "SS trap", instruction_pointer(regs));
1275 /*
1276 * Determine if this breakpoint is one that we
1277 * are interested in.
1278 */
1279 if (db_result != KDB_DB_BPT) {
1280 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1281 db_result);
1282 KDB_DEBUG_STATE("kdb_local 6", reason);
1283 return 0; /* Not for us, dismiss it */
1284 }
1285 break;
1286 case KDB_REASON_RECURSE:
1287 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1288 instruction_pointer(regs));
1289 break;
1290 default:
1291 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1292 KDB_DEBUG_STATE("kdb_local 8", reason);
1293 return 0; /* Not for us, dismiss it */
1294 }
1295
1296 while (1) {
1297 /*
1298 * Initialize pager context.
1299 */
1300 kdb_nextline = 1;
1301 KDB_STATE_CLEAR(SUPPRESS);
1302 kdb_grepping_flag = 0;
1303 /* ensure the old search does not leak into '/' commands */
1304 kdb_grep_string[0] = '\0';
1305
1306 cmdbuf = cmd_cur;
1307 *cmdbuf = '\0';
1308 *(cmd_hist[cmd_head]) = '\0';
1309
1310do_full_getstr:
1311 /* PROMPT can only be set if we have MEM_READ permission. */
1312 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1313 raw_smp_processor_id());
1314
1315 /*
1316 * Fetch command from keyboard
1317 */
1318 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1319 if (*cmdbuf != '\n') {
1320 if (*cmdbuf < 32) {
1321 if (cmdptr == cmd_head) {
1322 strscpy(cmd_hist[cmd_head], cmd_cur,
1323 CMD_BUFLEN);
1324 *(cmd_hist[cmd_head] +
1325 strlen(cmd_hist[cmd_head])-1) = '\0';
1326 }
1327 if (!handle_ctrl_cmd(cmdbuf))
1328 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1329 cmdbuf = cmd_cur;
1330 goto do_full_getstr;
1331 } else {
1332 strscpy(cmd_hist[cmd_head], cmd_cur,
1333 CMD_BUFLEN);
1334 }
1335
1336 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1337 if (cmd_head == cmd_tail)
1338 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1339 }
1340
1341 cmdptr = cmd_head;
1342 diag = kdb_parse(cmdbuf);
1343 if (diag == KDB_NOTFOUND) {
1344 drop_newline(cmdbuf);
1345 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1346 diag = 0;
1347 }
1348 if (diag == KDB_CMD_GO
1349 || diag == KDB_CMD_CPU
1350 || diag == KDB_CMD_SS
1351 || diag == KDB_CMD_KGDB)
1352 break;
1353
1354 if (diag)
1355 kdb_cmderror(diag);
1356 }
1357 KDB_DEBUG_STATE("kdb_local 9", diag);
1358 return diag;
1359}
1360
1361
1362/*
1363 * kdb_print_state - Print the state data for the current processor
1364 * for debugging.
1365 * Inputs:
1366 * text Identifies the debug point
1367 * value Any integer value to be printed, e.g. reason code.
1368 */
1369void kdb_print_state(const char *text, int value)
1370{
1371 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1372 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1373 kdb_state);
1374}
1375
1376/*
1377 * kdb_main_loop - After initial setup and assignment of the
1378 * controlling cpu, all cpus are in this loop. One cpu is in
1379 * control and will issue the kdb prompt, the others will spin
1380 * until 'go' or cpu switch.
1381 *
1382 * To get a consistent view of the kernel stacks for all
1383 * processes, this routine is invoked from the main kdb code via
1384 * an architecture specific routine. kdba_main_loop is
1385 * responsible for making the kernel stacks consistent for all
1386 * processes, there should be no difference between a blocked
1387 * process and a running process as far as kdb is concerned.
1388 * Inputs:
1389 * reason The reason KDB was invoked
1390 * error The hardware-defined error code
1391 * reason2 kdb's current reason code.
1392 * Initially error but can change
1393 * according to kdb state.
1394 * db_result Result code from break or debug point.
1395 * regs The exception frame at time of fault/breakpoint.
1396 * should always be valid.
1397 * Returns:
1398 * 0 KDB was invoked for an event which it wasn't responsible
1399 * 1 KDB handled the event for which it was invoked.
1400 */
1401int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1402 kdb_dbtrap_t db_result, struct pt_regs *regs)
1403{
1404 int result = 1;
1405 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1406 while (1) {
1407 /*
1408 * All processors except the one that is in control
1409 * will spin here.
1410 */
1411 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1412 while (KDB_STATE(HOLD_CPU)) {
1413 /* state KDB is turned off by kdb_cpu to see if the
1414 * other cpus are still live, each cpu in this loop
1415 * turns it back on.
1416 */
1417 if (!KDB_STATE(KDB))
1418 KDB_STATE_SET(KDB);
1419 }
1420
1421 KDB_STATE_CLEAR(SUPPRESS);
1422 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1423 if (KDB_STATE(LEAVING))
1424 break; /* Another cpu said 'go' */
1425 /* Still using kdb, this processor is in control */
1426 result = kdb_local(reason2, error, regs, db_result);
1427 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1428
1429 if (result == KDB_CMD_CPU)
1430 break;
1431
1432 if (result == KDB_CMD_SS) {
1433 KDB_STATE_SET(DOING_SS);
1434 break;
1435 }
1436
1437 if (result == KDB_CMD_KGDB) {
1438 if (!KDB_STATE(DOING_KGDB))
1439 kdb_printf("Entering please attach debugger "
1440 "or use $D#44+ or $3#33\n");
1441 break;
1442 }
1443 if (result && result != 1 && result != KDB_CMD_GO)
1444 kdb_printf("\nUnexpected kdb_local return code %d\n",
1445 result);
1446 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1447 break;
1448 }
1449 if (KDB_STATE(DOING_SS))
1450 KDB_STATE_CLEAR(SSBPT);
1451
1452 /* Clean up any keyboard devices before leaving */
1453 kdb_kbd_cleanup_state();
1454
1455 return result;
1456}
1457
1458/*
1459 * kdb_mdr - This function implements the guts of the 'mdr', memory
1460 * read command.
1461 * mdr <addr arg>,<byte count>
1462 * Inputs:
1463 * addr Start address
1464 * count Number of bytes
1465 * Returns:
1466 * Always 0. Any errors are detected and printed by kdb_getarea.
1467 */
1468static int kdb_mdr(unsigned long addr, unsigned int count)
1469{
1470 unsigned char c;
1471 while (count--) {
1472 if (kdb_getarea(c, addr))
1473 return 0;
1474 kdb_printf("%02x", c);
1475 addr++;
1476 }
1477 kdb_printf("\n");
1478 return 0;
1479}
1480
1481/*
1482 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1483 * 'md8' 'mdr' and 'mds' commands.
1484 *
1485 * md|mds [<addr arg> [<line count> [<radix>]]]
1486 * mdWcN [<addr arg> [<line count> [<radix>]]]
1487 * where W = is the width (1, 2, 4 or 8) and N is the count.
1488 * for eg., md1c20 reads 20 bytes, 1 at a time.
1489 * mdr <addr arg>,<byte count>
1490 */
1491static void kdb_md_line(const char *fmtstr, unsigned long addr,
1492 int symbolic, int nosect, int bytesperword,
1493 int num, int repeat, int phys)
1494{
1495 /* print just one line of data */
1496 kdb_symtab_t symtab;
1497 char cbuf[32];
1498 char *c = cbuf;
1499 int i;
1500 int j;
1501 unsigned long word;
1502
1503 memset(cbuf, '\0', sizeof(cbuf));
1504 if (phys)
1505 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1506 else
1507 kdb_printf(kdb_machreg_fmt0 " ", addr);
1508
1509 for (i = 0; i < num && repeat--; i++) {
1510 if (phys) {
1511 if (kdb_getphysword(&word, addr, bytesperword))
1512 break;
1513 } else if (kdb_getword(&word, addr, bytesperword))
1514 break;
1515 kdb_printf(fmtstr, word);
1516 if (symbolic)
1517 kdbnearsym(word, &symtab);
1518 else
1519 memset(&symtab, 0, sizeof(symtab));
1520 if (symtab.sym_name) {
1521 kdb_symbol_print(word, &symtab, 0);
1522 if (!nosect) {
1523 kdb_printf("\n");
1524 kdb_printf(" %s %s "
1525 kdb_machreg_fmt " "
1526 kdb_machreg_fmt " "
1527 kdb_machreg_fmt, symtab.mod_name,
1528 symtab.sec_name, symtab.sec_start,
1529 symtab.sym_start, symtab.sym_end);
1530 }
1531 addr += bytesperword;
1532 } else {
1533 union {
1534 u64 word;
1535 unsigned char c[8];
1536 } wc;
1537 unsigned char *cp;
1538#ifdef __BIG_ENDIAN
1539 cp = wc.c + 8 - bytesperword;
1540#else
1541 cp = wc.c;
1542#endif
1543 wc.word = word;
1544#define printable_char(c) \
1545 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1546 for (j = 0; j < bytesperword; j++)
1547 *c++ = printable_char(*cp++);
1548 addr += bytesperword;
1549#undef printable_char
1550 }
1551 }
1552 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1553 " ", cbuf);
1554}
1555
1556static int kdb_md(int argc, const char **argv)
1557{
1558 static unsigned long last_addr;
1559 static int last_radix, last_bytesperword, last_repeat;
1560 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1561 int nosect = 0;
1562 char fmtchar, fmtstr[64];
1563 unsigned long addr;
1564 unsigned long word;
1565 long offset = 0;
1566 int symbolic = 0;
1567 int valid = 0;
1568 int phys = 0;
1569 int raw = 0;
1570
1571 kdbgetintenv("MDCOUNT", &mdcount);
1572 kdbgetintenv("RADIX", &radix);
1573 kdbgetintenv("BYTESPERWORD", &bytesperword);
1574
1575 /* Assume 'md <addr>' and start with environment values */
1576 repeat = mdcount * 16 / bytesperword;
1577
1578 if (strcmp(argv[0], "mdr") == 0) {
1579 if (argc == 2 || (argc == 0 && last_addr != 0))
1580 valid = raw = 1;
1581 else
1582 return KDB_ARGCOUNT;
1583 } else if (isdigit(argv[0][2])) {
1584 bytesperword = (int)(argv[0][2] - '0');
1585 if (bytesperword == 0) {
1586 bytesperword = last_bytesperword;
1587 if (bytesperword == 0)
1588 bytesperword = 4;
1589 }
1590 last_bytesperword = bytesperword;
1591 repeat = mdcount * 16 / bytesperword;
1592 if (!argv[0][3])
1593 valid = 1;
1594 else if (argv[0][3] == 'c' && argv[0][4]) {
1595 if (kstrtouint(argv[0] + 4, 10, &repeat))
1596 return KDB_BADINT;
1597 mdcount = ((repeat * bytesperword) + 15) / 16;
1598 valid = 1;
1599 }
1600 last_repeat = repeat;
1601 } else if (strcmp(argv[0], "md") == 0)
1602 valid = 1;
1603 else if (strcmp(argv[0], "mds") == 0)
1604 valid = 1;
1605 else if (strcmp(argv[0], "mdp") == 0) {
1606 phys = valid = 1;
1607 }
1608 if (!valid)
1609 return KDB_NOTFOUND;
1610
1611 if (argc == 0) {
1612 if (last_addr == 0)
1613 return KDB_ARGCOUNT;
1614 addr = last_addr;
1615 radix = last_radix;
1616 bytesperword = last_bytesperword;
1617 repeat = last_repeat;
1618 if (raw)
1619 mdcount = repeat;
1620 else
1621 mdcount = ((repeat * bytesperword) + 15) / 16;
1622 }
1623
1624 if (argc) {
1625 unsigned long val;
1626 int diag, nextarg = 1;
1627 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1628 &offset, NULL);
1629 if (diag)
1630 return diag;
1631 if (argc > nextarg+2)
1632 return KDB_ARGCOUNT;
1633
1634 if (argc >= nextarg) {
1635 diag = kdbgetularg(argv[nextarg], &val);
1636 if (!diag) {
1637 mdcount = (int) val;
1638 if (raw)
1639 repeat = mdcount;
1640 else
1641 repeat = mdcount * 16 / bytesperword;
1642 }
1643 }
1644 if (argc >= nextarg+1) {
1645 diag = kdbgetularg(argv[nextarg+1], &val);
1646 if (!diag)
1647 radix = (int) val;
1648 }
1649 }
1650
1651 if (strcmp(argv[0], "mdr") == 0) {
1652 int ret;
1653 last_addr = addr;
1654 ret = kdb_mdr(addr, mdcount);
1655 last_addr += mdcount;
1656 last_repeat = mdcount;
1657 last_bytesperword = bytesperword; // to make REPEAT happy
1658 return ret;
1659 }
1660
1661 switch (radix) {
1662 case 10:
1663 fmtchar = 'd';
1664 break;
1665 case 16:
1666 fmtchar = 'x';
1667 break;
1668 case 8:
1669 fmtchar = 'o';
1670 break;
1671 default:
1672 return KDB_BADRADIX;
1673 }
1674
1675 last_radix = radix;
1676
1677 if (bytesperword > KDB_WORD_SIZE)
1678 return KDB_BADWIDTH;
1679
1680 switch (bytesperword) {
1681 case 8:
1682 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1683 break;
1684 case 4:
1685 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1686 break;
1687 case 2:
1688 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1689 break;
1690 case 1:
1691 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1692 break;
1693 default:
1694 return KDB_BADWIDTH;
1695 }
1696
1697 last_repeat = repeat;
1698 last_bytesperword = bytesperword;
1699
1700 if (strcmp(argv[0], "mds") == 0) {
1701 symbolic = 1;
1702 /* Do not save these changes as last_*, they are temporary mds
1703 * overrides.
1704 */
1705 bytesperword = KDB_WORD_SIZE;
1706 repeat = mdcount;
1707 kdbgetintenv("NOSECT", &nosect);
1708 }
1709
1710 /* Round address down modulo BYTESPERWORD */
1711
1712 addr &= ~(bytesperword-1);
1713
1714 while (repeat > 0) {
1715 unsigned long a;
1716 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1717
1718 if (KDB_FLAG(CMD_INTERRUPT))
1719 return 0;
1720 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1721 if (phys) {
1722 if (kdb_getphysword(&word, a, bytesperword)
1723 || word)
1724 break;
1725 } else if (kdb_getword(&word, a, bytesperword) || word)
1726 break;
1727 }
1728 n = min(num, repeat);
1729 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1730 num, repeat, phys);
1731 addr += bytesperword * n;
1732 repeat -= n;
1733 z = (z + num - 1) / num;
1734 if (z > 2) {
1735 int s = num * (z-2);
1736 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1737 " zero suppressed\n",
1738 addr, addr + bytesperword * s - 1);
1739 addr += bytesperword * s;
1740 repeat -= s;
1741 }
1742 }
1743 last_addr = addr;
1744
1745 return 0;
1746}
1747
1748/*
1749 * kdb_mm - This function implements the 'mm' command.
1750 * mm address-expression new-value
1751 * Remarks:
1752 * mm works on machine words, mmW works on bytes.
1753 */
1754static int kdb_mm(int argc, const char **argv)
1755{
1756 int diag;
1757 unsigned long addr;
1758 long offset = 0;
1759 unsigned long contents;
1760 int nextarg;
1761 int width;
1762
1763 if (argv[0][2] && !isdigit(argv[0][2]))
1764 return KDB_NOTFOUND;
1765
1766 if (argc < 2)
1767 return KDB_ARGCOUNT;
1768
1769 nextarg = 1;
1770 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1771 if (diag)
1772 return diag;
1773
1774 if (nextarg > argc)
1775 return KDB_ARGCOUNT;
1776 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1777 if (diag)
1778 return diag;
1779
1780 if (nextarg != argc + 1)
1781 return KDB_ARGCOUNT;
1782
1783 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1784 diag = kdb_putword(addr, contents, width);
1785 if (diag)
1786 return diag;
1787
1788 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1789
1790 return 0;
1791}
1792
1793/*
1794 * kdb_go - This function implements the 'go' command.
1795 * go [address-expression]
1796 */
1797static int kdb_go(int argc, const char **argv)
1798{
1799 unsigned long addr;
1800 int diag;
1801 int nextarg;
1802 long offset;
1803
1804 if (raw_smp_processor_id() != kdb_initial_cpu) {
1805 kdb_printf("go must execute on the entry cpu, "
1806 "please use \"cpu %d\" and then execute go\n",
1807 kdb_initial_cpu);
1808 return KDB_BADCPUNUM;
1809 }
1810 if (argc == 1) {
1811 nextarg = 1;
1812 diag = kdbgetaddrarg(argc, argv, &nextarg,
1813 &addr, &offset, NULL);
1814 if (diag)
1815 return diag;
1816 } else if (argc) {
1817 return KDB_ARGCOUNT;
1818 }
1819
1820 diag = KDB_CMD_GO;
1821 if (KDB_FLAG(CATASTROPHIC)) {
1822 kdb_printf("Catastrophic error detected\n");
1823 kdb_printf("kdb_continue_catastrophic=%d, ",
1824 kdb_continue_catastrophic);
1825 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1826 kdb_printf("type go a second time if you really want "
1827 "to continue\n");
1828 return 0;
1829 }
1830 if (kdb_continue_catastrophic == 2) {
1831 kdb_printf("forcing reboot\n");
1832 kdb_reboot(0, NULL);
1833 }
1834 kdb_printf("attempting to continue\n");
1835 }
1836 return diag;
1837}
1838
1839/*
1840 * kdb_rd - This function implements the 'rd' command.
1841 */
1842static int kdb_rd(int argc, const char **argv)
1843{
1844 int len = kdb_check_regs();
1845#if DBG_MAX_REG_NUM > 0
1846 int i;
1847 char *rname;
1848 int rsize;
1849 u64 reg64;
1850 u32 reg32;
1851 u16 reg16;
1852 u8 reg8;
1853
1854 if (len)
1855 return len;
1856
1857 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1858 rsize = dbg_reg_def[i].size * 2;
1859 if (rsize > 16)
1860 rsize = 2;
1861 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1862 len = 0;
1863 kdb_printf("\n");
1864 }
1865 if (len)
1866 len += kdb_printf(" ");
1867 switch(dbg_reg_def[i].size * 8) {
1868 case 8:
1869 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %02x", rname, reg8);
1873 break;
1874 case 16:
1875 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1876 if (!rname)
1877 break;
1878 len += kdb_printf("%s: %04x", rname, reg16);
1879 break;
1880 case 32:
1881 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1882 if (!rname)
1883 break;
1884 len += kdb_printf("%s: %08x", rname, reg32);
1885 break;
1886 case 64:
1887 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1888 if (!rname)
1889 break;
1890 len += kdb_printf("%s: %016llx", rname, reg64);
1891 break;
1892 default:
1893 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1894 }
1895 }
1896 kdb_printf("\n");
1897#else
1898 if (len)
1899 return len;
1900
1901 kdb_dumpregs(kdb_current_regs);
1902#endif
1903 return 0;
1904}
1905
1906/*
1907 * kdb_rm - This function implements the 'rm' (register modify) command.
1908 * rm register-name new-contents
1909 * Remarks:
1910 * Allows register modification with the same restrictions as gdb
1911 */
1912static int kdb_rm(int argc, const char **argv)
1913{
1914#if DBG_MAX_REG_NUM > 0
1915 int diag;
1916 const char *rname;
1917 int i;
1918 u64 reg64;
1919 u32 reg32;
1920 u16 reg16;
1921 u8 reg8;
1922
1923 if (argc != 2)
1924 return KDB_ARGCOUNT;
1925 /*
1926 * Allow presence or absence of leading '%' symbol.
1927 */
1928 rname = argv[1];
1929 if (*rname == '%')
1930 rname++;
1931
1932 diag = kdbgetu64arg(argv[2], ®64);
1933 if (diag)
1934 return diag;
1935
1936 diag = kdb_check_regs();
1937 if (diag)
1938 return diag;
1939
1940 diag = KDB_BADREG;
1941 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1942 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1943 diag = 0;
1944 break;
1945 }
1946 }
1947 if (!diag) {
1948 switch(dbg_reg_def[i].size * 8) {
1949 case 8:
1950 reg8 = reg64;
1951 dbg_set_reg(i, ®8, kdb_current_regs);
1952 break;
1953 case 16:
1954 reg16 = reg64;
1955 dbg_set_reg(i, ®16, kdb_current_regs);
1956 break;
1957 case 32:
1958 reg32 = reg64;
1959 dbg_set_reg(i, ®32, kdb_current_regs);
1960 break;
1961 case 64:
1962 dbg_set_reg(i, ®64, kdb_current_regs);
1963 break;
1964 }
1965 }
1966 return diag;
1967#else
1968 kdb_printf("ERROR: Register set currently not implemented\n");
1969 return 0;
1970#endif
1971}
1972
1973#if defined(CONFIG_MAGIC_SYSRQ)
1974/*
1975 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1976 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1977 * sr <magic-sysrq-code>
1978 */
1979static int kdb_sr(int argc, const char **argv)
1980{
1981 bool check_mask =
1982 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1983
1984 if (argc != 1)
1985 return KDB_ARGCOUNT;
1986
1987 kdb_trap_printk++;
1988 __handle_sysrq(*argv[1], check_mask);
1989 kdb_trap_printk--;
1990
1991 return 0;
1992}
1993#endif /* CONFIG_MAGIC_SYSRQ */
1994
1995/*
1996 * kdb_ef - This function implements the 'regs' (display exception
1997 * frame) command. This command takes an address and expects to
1998 * find an exception frame at that address, formats and prints
1999 * it.
2000 * regs address-expression
2001 * Remarks:
2002 * Not done yet.
2003 */
2004static int kdb_ef(int argc, const char **argv)
2005{
2006 int diag;
2007 unsigned long addr;
2008 long offset;
2009 int nextarg;
2010
2011 if (argc != 1)
2012 return KDB_ARGCOUNT;
2013
2014 nextarg = 1;
2015 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2016 if (diag)
2017 return diag;
2018 show_regs((struct pt_regs *)addr);
2019 return 0;
2020}
2021
2022/*
2023 * kdb_env - This function implements the 'env' command. Display the
2024 * current environment variables.
2025 */
2026
2027static int kdb_env(int argc, const char **argv)
2028{
2029 kdb_printenv();
2030
2031 if (KDB_DEBUG(MASK))
2032 kdb_printf("KDBDEBUG=0x%x\n",
2033 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2034
2035 return 0;
2036}
2037
2038#ifdef CONFIG_PRINTK
2039/*
2040 * kdb_dmesg - This function implements the 'dmesg' command to display
2041 * the contents of the syslog buffer.
2042 * dmesg [lines] [adjust]
2043 */
2044static int kdb_dmesg(int argc, const char **argv)
2045{
2046 int diag;
2047 int logging;
2048 int lines = 0;
2049 int adjust = 0;
2050 int n = 0;
2051 int skip = 0;
2052 struct kmsg_dump_iter iter;
2053 size_t len;
2054 char buf[201];
2055
2056 if (argc > 2)
2057 return KDB_ARGCOUNT;
2058 if (argc) {
2059 if (kstrtoint(argv[1], 0, &lines))
2060 lines = 0;
2061 if (argc > 1 && (kstrtoint(argv[2], 0, &adjust) || adjust < 0))
2062 adjust = 0;
2063 }
2064
2065 /* disable LOGGING if set */
2066 diag = kdbgetintenv("LOGGING", &logging);
2067 if (!diag && logging) {
2068 const char *setargs[] = { "set", "LOGGING", "0" };
2069 kdb_set(2, setargs);
2070 }
2071
2072 kmsg_dump_rewind(&iter);
2073 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2074 n++;
2075
2076 if (lines < 0) {
2077 if (adjust >= n)
2078 kdb_printf("buffer only contains %d lines, nothing "
2079 "printed\n", n);
2080 else if (adjust - lines >= n)
2081 kdb_printf("buffer only contains %d lines, last %d "
2082 "lines printed\n", n, n - adjust);
2083 skip = adjust;
2084 lines = abs(lines);
2085 } else if (lines > 0) {
2086 skip = n - lines - adjust;
2087 lines = abs(lines);
2088 if (adjust >= n) {
2089 kdb_printf("buffer only contains %d lines, "
2090 "nothing printed\n", n);
2091 skip = n;
2092 } else if (skip < 0) {
2093 lines += skip;
2094 skip = 0;
2095 kdb_printf("buffer only contains %d lines, first "
2096 "%d lines printed\n", n, lines);
2097 }
2098 } else {
2099 lines = n;
2100 }
2101
2102 if (skip >= n || skip < 0)
2103 return 0;
2104
2105 kmsg_dump_rewind(&iter);
2106 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2107 if (skip) {
2108 skip--;
2109 continue;
2110 }
2111 if (!lines--)
2112 break;
2113 if (KDB_FLAG(CMD_INTERRUPT))
2114 return 0;
2115
2116 kdb_printf("%.*s\n", (int)len - 1, buf);
2117 }
2118
2119 return 0;
2120}
2121#endif /* CONFIG_PRINTK */
2122
2123/* Make sure we balance enable/disable calls, must disable first. */
2124static atomic_t kdb_nmi_disabled;
2125
2126static int kdb_disable_nmi(int argc, const char *argv[])
2127{
2128 if (atomic_read(&kdb_nmi_disabled))
2129 return 0;
2130 atomic_set(&kdb_nmi_disabled, 1);
2131 arch_kgdb_ops.enable_nmi(0);
2132 return 0;
2133}
2134
2135static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2136{
2137 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2138 return -EINVAL;
2139 arch_kgdb_ops.enable_nmi(1);
2140 return 0;
2141}
2142
2143static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2144 .set = kdb_param_enable_nmi,
2145};
2146module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2147
2148/*
2149 * kdb_cpu - This function implements the 'cpu' command.
2150 * cpu [<cpunum>]
2151 * Returns:
2152 * KDB_CMD_CPU for success, a kdb diagnostic if error
2153 */
2154static void kdb_cpu_status(void)
2155{
2156 int i, start_cpu, first_print = 1;
2157 char state, prev_state = '?';
2158
2159 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2160 kdb_printf("Available cpus: ");
2161 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2162 if (!cpu_online(i)) {
2163 state = 'F'; /* cpu is offline */
2164 } else if (!kgdb_info[i].enter_kgdb) {
2165 state = 'D'; /* cpu is online but unresponsive */
2166 } else {
2167 state = ' '; /* cpu is responding to kdb */
2168 if (kdb_task_state_char(KDB_TSK(i)) == '-')
2169 state = '-'; /* idle task */
2170 }
2171 if (state != prev_state) {
2172 if (prev_state != '?') {
2173 if (!first_print)
2174 kdb_printf(", ");
2175 first_print = 0;
2176 kdb_printf("%d", start_cpu);
2177 if (start_cpu < i-1)
2178 kdb_printf("-%d", i-1);
2179 if (prev_state != ' ')
2180 kdb_printf("(%c)", prev_state);
2181 }
2182 prev_state = state;
2183 start_cpu = i;
2184 }
2185 }
2186 /* print the trailing cpus, ignoring them if they are all offline */
2187 if (prev_state != 'F') {
2188 if (!first_print)
2189 kdb_printf(", ");
2190 kdb_printf("%d", start_cpu);
2191 if (start_cpu < i-1)
2192 kdb_printf("-%d", i-1);
2193 if (prev_state != ' ')
2194 kdb_printf("(%c)", prev_state);
2195 }
2196 kdb_printf("\n");
2197}
2198
2199static int kdb_cpu(int argc, const char **argv)
2200{
2201 unsigned long cpunum;
2202 int diag;
2203
2204 if (argc == 0) {
2205 kdb_cpu_status();
2206 return 0;
2207 }
2208
2209 if (argc != 1)
2210 return KDB_ARGCOUNT;
2211
2212 diag = kdbgetularg(argv[1], &cpunum);
2213 if (diag)
2214 return diag;
2215
2216 /*
2217 * Validate cpunum
2218 */
2219 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2220 return KDB_BADCPUNUM;
2221
2222 dbg_switch_cpu = cpunum;
2223
2224 /*
2225 * Switch to other cpu
2226 */
2227 return KDB_CMD_CPU;
2228}
2229
2230/* The user may not realize that ps/bta with no parameters does not print idle
2231 * or sleeping system daemon processes, so tell them how many were suppressed.
2232 */
2233void kdb_ps_suppressed(void)
2234{
2235 int idle = 0, daemon = 0;
2236 unsigned long cpu;
2237 const struct task_struct *p, *g;
2238 for_each_online_cpu(cpu) {
2239 p = curr_task(cpu);
2240 if (kdb_task_state(p, "-"))
2241 ++idle;
2242 }
2243 for_each_process_thread(g, p) {
2244 if (kdb_task_state(p, "ims"))
2245 ++daemon;
2246 }
2247 if (idle || daemon) {
2248 if (idle)
2249 kdb_printf("%d idle process%s (state -)%s\n",
2250 idle, idle == 1 ? "" : "es",
2251 daemon ? " and " : "");
2252 if (daemon)
2253 kdb_printf("%d sleeping system daemon (state [ims]) "
2254 "process%s", daemon,
2255 daemon == 1 ? "" : "es");
2256 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2257 }
2258}
2259
2260void kdb_ps1(const struct task_struct *p)
2261{
2262 int cpu;
2263 unsigned long tmp;
2264
2265 if (!p ||
2266 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2267 return;
2268
2269 cpu = kdb_process_cpu(p);
2270 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2271 (void *)p, p->pid, p->parent->pid,
2272 kdb_task_has_cpu(p), kdb_process_cpu(p),
2273 kdb_task_state_char(p),
2274 (void *)(&p->thread),
2275 p == curr_task(raw_smp_processor_id()) ? '*' : ' ',
2276 p->comm);
2277 if (kdb_task_has_cpu(p)) {
2278 if (!KDB_TSK(cpu)) {
2279 kdb_printf(" Error: no saved data for this cpu\n");
2280 } else {
2281 if (KDB_TSK(cpu) != p)
2282 kdb_printf(" Error: does not match running "
2283 "process table (0x%px)\n", KDB_TSK(cpu));
2284 }
2285 }
2286}
2287
2288/*
2289 * kdb_ps - This function implements the 'ps' command which shows a
2290 * list of the active processes.
2291 *
2292 * ps [<state_chars>] Show processes, optionally selecting only those whose
2293 * state character is found in <state_chars>.
2294 */
2295static int kdb_ps(int argc, const char **argv)
2296{
2297 struct task_struct *g, *p;
2298 const char *mask;
2299 unsigned long cpu;
2300
2301 if (argc == 0)
2302 kdb_ps_suppressed();
2303 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2304 (int)(2*sizeof(void *))+2, "Task Addr",
2305 (int)(2*sizeof(void *))+2, "Thread");
2306 mask = argc ? argv[1] : kdbgetenv("PS");
2307 /* Run the active tasks first */
2308 for_each_online_cpu(cpu) {
2309 if (KDB_FLAG(CMD_INTERRUPT))
2310 return 0;
2311 p = curr_task(cpu);
2312 if (kdb_task_state(p, mask))
2313 kdb_ps1(p);
2314 }
2315 kdb_printf("\n");
2316 /* Now the real tasks */
2317 for_each_process_thread(g, p) {
2318 if (KDB_FLAG(CMD_INTERRUPT))
2319 return 0;
2320 if (kdb_task_state(p, mask))
2321 kdb_ps1(p);
2322 }
2323
2324 return 0;
2325}
2326
2327/*
2328 * kdb_pid - This function implements the 'pid' command which switches
2329 * the currently active process.
2330 * pid [<pid> | R]
2331 */
2332static int kdb_pid(int argc, const char **argv)
2333{
2334 struct task_struct *p;
2335 unsigned long val;
2336 int diag;
2337
2338 if (argc > 1)
2339 return KDB_ARGCOUNT;
2340
2341 if (argc) {
2342 if (strcmp(argv[1], "R") == 0) {
2343 p = KDB_TSK(kdb_initial_cpu);
2344 } else {
2345 diag = kdbgetularg(argv[1], &val);
2346 if (diag)
2347 return KDB_BADINT;
2348
2349 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2350 if (!p) {
2351 kdb_printf("No task with pid=%d\n", (pid_t)val);
2352 return 0;
2353 }
2354 }
2355 kdb_set_current_task(p);
2356 }
2357 kdb_printf("KDB current process is %s(pid=%d)\n",
2358 kdb_current_task->comm,
2359 kdb_current_task->pid);
2360
2361 return 0;
2362}
2363
2364static int kdb_kgdb(int argc, const char **argv)
2365{
2366 return KDB_CMD_KGDB;
2367}
2368
2369/*
2370 * kdb_help - This function implements the 'help' and '?' commands.
2371 */
2372static int kdb_help(int argc, const char **argv)
2373{
2374 kdbtab_t *kt;
2375
2376 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2377 kdb_printf("-----------------------------"
2378 "-----------------------------\n");
2379 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2380 char *space = "";
2381 if (KDB_FLAG(CMD_INTERRUPT))
2382 return 0;
2383 if (!kdb_check_flags(kt->flags, kdb_cmd_enabled, true))
2384 continue;
2385 if (strlen(kt->usage) > 20)
2386 space = "\n ";
2387 kdb_printf("%-15.15s %-20s%s%s\n", kt->name,
2388 kt->usage, space, kt->help);
2389 }
2390 return 0;
2391}
2392
2393/*
2394 * kdb_kill - This function implements the 'kill' commands.
2395 */
2396static int kdb_kill(int argc, const char **argv)
2397{
2398 long sig, pid;
2399 struct task_struct *p;
2400
2401 if (argc != 2)
2402 return KDB_ARGCOUNT;
2403
2404 if (kstrtol(argv[1], 0, &sig))
2405 return KDB_BADINT;
2406 if ((sig >= 0) || !valid_signal(-sig)) {
2407 kdb_printf("Invalid signal parameter.<-signal>\n");
2408 return 0;
2409 }
2410 sig = -sig;
2411
2412 if (kstrtol(argv[2], 0, &pid))
2413 return KDB_BADINT;
2414 if (pid <= 0) {
2415 kdb_printf("Process ID must be large than 0.\n");
2416 return 0;
2417 }
2418
2419 /* Find the process. */
2420 p = find_task_by_pid_ns(pid, &init_pid_ns);
2421 if (!p) {
2422 kdb_printf("The specified process isn't found.\n");
2423 return 0;
2424 }
2425 p = p->group_leader;
2426 kdb_send_sig(p, sig);
2427 return 0;
2428}
2429
2430/*
2431 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2432 * I cannot call that code directly from kdb, it has an unconditional
2433 * cli()/sti() and calls routines that take locks which can stop the debugger.
2434 */
2435static void kdb_sysinfo(struct sysinfo *val)
2436{
2437 u64 uptime = ktime_get_mono_fast_ns();
2438
2439 memset(val, 0, sizeof(*val));
2440 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2441 val->loads[0] = avenrun[0];
2442 val->loads[1] = avenrun[1];
2443 val->loads[2] = avenrun[2];
2444 val->procs = nr_threads-1;
2445 si_meminfo(val);
2446
2447 return;
2448}
2449
2450/*
2451 * kdb_summary - This function implements the 'summary' command.
2452 */
2453static int kdb_summary(int argc, const char **argv)
2454{
2455 time64_t now;
2456 struct sysinfo val;
2457
2458 if (argc)
2459 return KDB_ARGCOUNT;
2460
2461 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2462 kdb_printf("release %s\n", init_uts_ns.name.release);
2463 kdb_printf("version %s\n", init_uts_ns.name.version);
2464 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2465 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2466 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2467
2468 now = __ktime_get_real_seconds();
2469 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2470 kdb_sysinfo(&val);
2471 kdb_printf("uptime ");
2472 if (val.uptime > (24*60*60)) {
2473 int days = val.uptime / (24*60*60);
2474 val.uptime %= (24*60*60);
2475 kdb_printf("%d day%s ", days, str_plural(days));
2476 }
2477 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2478
2479 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2480 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2481 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2482 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2483
2484 /* Display in kilobytes */
2485#define K(x) ((x) << (PAGE_SHIFT - 10))
2486 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2487 "Buffers: %8lu kB\n",
2488 K(val.totalram), K(val.freeram), K(val.bufferram));
2489 return 0;
2490}
2491
2492/*
2493 * kdb_per_cpu - This function implements the 'per_cpu' command.
2494 */
2495static int kdb_per_cpu(int argc, const char **argv)
2496{
2497 char fmtstr[64];
2498 int cpu, diag, nextarg = 1;
2499 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2500
2501 if (argc < 1 || argc > 3)
2502 return KDB_ARGCOUNT;
2503
2504 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2505 if (diag)
2506 return diag;
2507
2508 if (argc >= 2) {
2509 diag = kdbgetularg(argv[2], &bytesperword);
2510 if (diag)
2511 return diag;
2512 }
2513 if (!bytesperword)
2514 bytesperword = KDB_WORD_SIZE;
2515 else if (bytesperword > KDB_WORD_SIZE)
2516 return KDB_BADWIDTH;
2517 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2518 if (argc >= 3) {
2519 diag = kdbgetularg(argv[3], &whichcpu);
2520 if (diag)
2521 return diag;
2522 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2523 kdb_printf("cpu %ld is not online\n", whichcpu);
2524 return KDB_BADCPUNUM;
2525 }
2526 }
2527
2528 /* Most architectures use __per_cpu_offset[cpu], some use
2529 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2530 */
2531#ifdef __per_cpu_offset
2532#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2533#else
2534#ifdef CONFIG_SMP
2535#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2536#else
2537#define KDB_PCU(cpu) 0
2538#endif
2539#endif
2540 for_each_online_cpu(cpu) {
2541 if (KDB_FLAG(CMD_INTERRUPT))
2542 return 0;
2543
2544 if (whichcpu != ~0UL && whichcpu != cpu)
2545 continue;
2546 addr = symaddr + KDB_PCU(cpu);
2547 diag = kdb_getword(&val, addr, bytesperword);
2548 if (diag) {
2549 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2550 "read, diag=%d\n", cpu, addr, diag);
2551 continue;
2552 }
2553 kdb_printf("%5d ", cpu);
2554 kdb_md_line(fmtstr, addr,
2555 bytesperword == KDB_WORD_SIZE,
2556 1, bytesperword, 1, 1, 0);
2557 }
2558#undef KDB_PCU
2559 return 0;
2560}
2561
2562/*
2563 * display help for the use of cmd | grep pattern
2564 */
2565static int kdb_grep_help(int argc, const char **argv)
2566{
2567 kdb_printf("Usage of cmd args | grep pattern:\n");
2568 kdb_printf(" Any command's output may be filtered through an ");
2569 kdb_printf("emulated 'pipe'.\n");
2570 kdb_printf(" 'grep' is just a key word.\n");
2571 kdb_printf(" The pattern may include a very limited set of "
2572 "metacharacters:\n");
2573 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2574 kdb_printf(" And if there are spaces in the pattern, you may "
2575 "quote it:\n");
2576 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2577 " or \"^pat tern$\"\n");
2578 return 0;
2579}
2580
2581/**
2582 * kdb_register() - This function is used to register a kernel debugger
2583 * command.
2584 * @cmd: pointer to kdb command
2585 *
2586 * Note that it's the job of the caller to keep the memory for the cmd
2587 * allocated until unregister is called.
2588 */
2589int kdb_register(kdbtab_t *cmd)
2590{
2591 kdbtab_t *kp;
2592
2593 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2594 if (strcmp(kp->name, cmd->name) == 0) {
2595 kdb_printf("Duplicate kdb cmd: %s, func %p help %s\n",
2596 cmd->name, cmd->func, cmd->help);
2597 return 1;
2598 }
2599 }
2600
2601 list_add_tail(&cmd->list_node, &kdb_cmds_head);
2602 return 0;
2603}
2604EXPORT_SYMBOL_GPL(kdb_register);
2605
2606/**
2607 * kdb_register_table() - This function is used to register a kdb command
2608 * table.
2609 * @kp: pointer to kdb command table
2610 * @len: length of kdb command table
2611 */
2612void kdb_register_table(kdbtab_t *kp, size_t len)
2613{
2614 while (len--) {
2615 list_add_tail(&kp->list_node, &kdb_cmds_head);
2616 kp++;
2617 }
2618}
2619
2620/**
2621 * kdb_unregister() - This function is used to unregister a kernel debugger
2622 * command. It is generally called when a module which
2623 * implements kdb command is unloaded.
2624 * @cmd: pointer to kdb command
2625 */
2626void kdb_unregister(kdbtab_t *cmd)
2627{
2628 list_del(&cmd->list_node);
2629}
2630EXPORT_SYMBOL_GPL(kdb_unregister);
2631
2632static kdbtab_t maintab[] = {
2633 { .name = "md",
2634 .func = kdb_md,
2635 .usage = "<vaddr>",
2636 .help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2637 .minlen = 1,
2638 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2639 },
2640 { .name = "mdr",
2641 .func = kdb_md,
2642 .usage = "<vaddr> <bytes>",
2643 .help = "Display Raw Memory",
2644 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2645 },
2646 { .name = "mdp",
2647 .func = kdb_md,
2648 .usage = "<paddr> <bytes>",
2649 .help = "Display Physical Memory",
2650 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2651 },
2652 { .name = "mds",
2653 .func = kdb_md,
2654 .usage = "<vaddr>",
2655 .help = "Display Memory Symbolically",
2656 .flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2657 },
2658 { .name = "mm",
2659 .func = kdb_mm,
2660 .usage = "<vaddr> <contents>",
2661 .help = "Modify Memory Contents",
2662 .flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2663 },
2664 { .name = "go",
2665 .func = kdb_go,
2666 .usage = "[<vaddr>]",
2667 .help = "Continue Execution",
2668 .minlen = 1,
2669 .flags = KDB_ENABLE_REG_WRITE |
2670 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2671 },
2672 { .name = "rd",
2673 .func = kdb_rd,
2674 .usage = "",
2675 .help = "Display Registers",
2676 .flags = KDB_ENABLE_REG_READ,
2677 },
2678 { .name = "rm",
2679 .func = kdb_rm,
2680 .usage = "<reg> <contents>",
2681 .help = "Modify Registers",
2682 .flags = KDB_ENABLE_REG_WRITE,
2683 },
2684 { .name = "ef",
2685 .func = kdb_ef,
2686 .usage = "<vaddr>",
2687 .help = "Display exception frame",
2688 .flags = KDB_ENABLE_MEM_READ,
2689 },
2690 { .name = "bt",
2691 .func = kdb_bt,
2692 .usage = "[<vaddr>]",
2693 .help = "Stack traceback",
2694 .minlen = 1,
2695 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2696 },
2697 { .name = "btp",
2698 .func = kdb_bt,
2699 .usage = "<pid>",
2700 .help = "Display stack for process <pid>",
2701 .flags = KDB_ENABLE_INSPECT,
2702 },
2703 { .name = "bta",
2704 .func = kdb_bt,
2705 .usage = "[<state_chars>|A]",
2706 .help = "Backtrace all processes whose state matches",
2707 .flags = KDB_ENABLE_INSPECT,
2708 },
2709 { .name = "btc",
2710 .func = kdb_bt,
2711 .usage = "",
2712 .help = "Backtrace current process on each cpu",
2713 .flags = KDB_ENABLE_INSPECT,
2714 },
2715 { .name = "btt",
2716 .func = kdb_bt,
2717 .usage = "<vaddr>",
2718 .help = "Backtrace process given its struct task address",
2719 .flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2720 },
2721 { .name = "env",
2722 .func = kdb_env,
2723 .usage = "",
2724 .help = "Show environment variables",
2725 .flags = KDB_ENABLE_ALWAYS_SAFE,
2726 },
2727 { .name = "set",
2728 .func = kdb_set,
2729 .usage = "",
2730 .help = "Set environment variables",
2731 .flags = KDB_ENABLE_ALWAYS_SAFE,
2732 },
2733 { .name = "help",
2734 .func = kdb_help,
2735 .usage = "",
2736 .help = "Display Help Message",
2737 .minlen = 1,
2738 .flags = KDB_ENABLE_ALWAYS_SAFE,
2739 },
2740 { .name = "?",
2741 .func = kdb_help,
2742 .usage = "",
2743 .help = "Display Help Message",
2744 .flags = KDB_ENABLE_ALWAYS_SAFE,
2745 },
2746 { .name = "cpu",
2747 .func = kdb_cpu,
2748 .usage = "<cpunum>",
2749 .help = "Switch to new cpu",
2750 .flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2751 },
2752 { .name = "kgdb",
2753 .func = kdb_kgdb,
2754 .usage = "",
2755 .help = "Enter kgdb mode",
2756 .flags = 0,
2757 },
2758 { .name = "ps",
2759 .func = kdb_ps,
2760 .usage = "[<state_chars>|A]",
2761 .help = "Display active task list",
2762 .flags = KDB_ENABLE_INSPECT,
2763 },
2764 { .name = "pid",
2765 .func = kdb_pid,
2766 .usage = "<pidnum>",
2767 .help = "Switch to another task",
2768 .flags = KDB_ENABLE_INSPECT,
2769 },
2770 { .name = "reboot",
2771 .func = kdb_reboot,
2772 .usage = "",
2773 .help = "Reboot the machine immediately",
2774 .flags = KDB_ENABLE_REBOOT,
2775 },
2776#if defined(CONFIG_MODULES)
2777 { .name = "lsmod",
2778 .func = kdb_lsmod,
2779 .usage = "",
2780 .help = "List loaded kernel modules",
2781 .flags = KDB_ENABLE_INSPECT,
2782 },
2783#endif
2784#if defined(CONFIG_MAGIC_SYSRQ)
2785 { .name = "sr",
2786 .func = kdb_sr,
2787 .usage = "<key>",
2788 .help = "Magic SysRq key",
2789 .flags = KDB_ENABLE_ALWAYS_SAFE,
2790 },
2791#endif
2792#if defined(CONFIG_PRINTK)
2793 { .name = "dmesg",
2794 .func = kdb_dmesg,
2795 .usage = "[lines]",
2796 .help = "Display syslog buffer",
2797 .flags = KDB_ENABLE_ALWAYS_SAFE,
2798 },
2799#endif
2800 { .name = "defcmd",
2801 .func = kdb_defcmd,
2802 .usage = "name \"usage\" \"help\"",
2803 .help = "Define a set of commands, down to endefcmd",
2804 /*
2805 * Macros are always safe because when executed each
2806 * internal command re-enters kdb_parse() and is safety
2807 * checked individually.
2808 */
2809 .flags = KDB_ENABLE_ALWAYS_SAFE,
2810 },
2811 { .name = "kill",
2812 .func = kdb_kill,
2813 .usage = "<-signal> <pid>",
2814 .help = "Send a signal to a process",
2815 .flags = KDB_ENABLE_SIGNAL,
2816 },
2817 { .name = "summary",
2818 .func = kdb_summary,
2819 .usage = "",
2820 .help = "Summarize the system",
2821 .minlen = 4,
2822 .flags = KDB_ENABLE_ALWAYS_SAFE,
2823 },
2824 { .name = "per_cpu",
2825 .func = kdb_per_cpu,
2826 .usage = "<sym> [<bytes>] [<cpu>]",
2827 .help = "Display per_cpu variables",
2828 .minlen = 3,
2829 .flags = KDB_ENABLE_MEM_READ,
2830 },
2831 { .name = "grephelp",
2832 .func = kdb_grep_help,
2833 .usage = "",
2834 .help = "Display help on | grep",
2835 .flags = KDB_ENABLE_ALWAYS_SAFE,
2836 },
2837};
2838
2839static kdbtab_t nmicmd = {
2840 .name = "disable_nmi",
2841 .func = kdb_disable_nmi,
2842 .usage = "",
2843 .help = "Disable NMI entry to KDB",
2844 .flags = KDB_ENABLE_ALWAYS_SAFE,
2845};
2846
2847/* Initialize the kdb command table. */
2848static void __init kdb_inittab(void)
2849{
2850 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2851 if (arch_kgdb_ops.enable_nmi)
2852 kdb_register_table(&nmicmd, 1);
2853}
2854
2855/* Execute any commands defined in kdb_cmds. */
2856static void __init kdb_cmd_init(void)
2857{
2858 int i, diag;
2859 for (i = 0; kdb_cmds[i]; ++i) {
2860 diag = kdb_parse(kdb_cmds[i]);
2861 if (diag)
2862 kdb_printf("kdb command %s failed, kdb diag %d\n",
2863 kdb_cmds[i], diag);
2864 }
2865 if (defcmd_in_progress) {
2866 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2867 kdb_parse("endefcmd");
2868 }
2869}
2870
2871/* Initialize kdb_printf, breakpoint tables and kdb state */
2872void __init kdb_init(int lvl)
2873{
2874 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2875 int i;
2876
2877 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2878 return;
2879 for (i = kdb_init_lvl; i < lvl; i++) {
2880 switch (i) {
2881 case KDB_NOT_INITIALIZED:
2882 kdb_inittab(); /* Initialize Command Table */
2883 kdb_initbptab(); /* Initialize Breakpoints */
2884 break;
2885 case KDB_INIT_EARLY:
2886 kdb_cmd_init(); /* Build kdb_cmds tables */
2887 break;
2888 }
2889 }
2890 kdb_init_lvl = lvl;
2891}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/kmsg_dump.h>
18#include <linux/reboot.h>
19#include <linux/sched.h>
20#include <linux/sysrq.h>
21#include <linux/smp.h>
22#include <linux/utsname.h>
23#include <linux/vmalloc.h>
24#include <linux/module.h>
25#include <linux/mm.h>
26#include <linux/init.h>
27#include <linux/kallsyms.h>
28#include <linux/kgdb.h>
29#include <linux/kdb.h>
30#include <linux/notifier.h>
31#include <linux/interrupt.h>
32#include <linux/delay.h>
33#include <linux/nmi.h>
34#include <linux/time.h>
35#include <linux/ptrace.h>
36#include <linux/sysctl.h>
37#include <linux/cpu.h>
38#include <linux/kdebug.h>
39#include <linux/proc_fs.h>
40#include <linux/uaccess.h>
41#include <linux/slab.h>
42#include "kdb_private.h"
43
44#define GREP_LEN 256
45char kdb_grep_string[GREP_LEN];
46int kdb_grepping_flag;
47EXPORT_SYMBOL(kdb_grepping_flag);
48int kdb_grep_leading;
49int kdb_grep_trailing;
50
51/*
52 * Kernel debugger state flags
53 */
54int kdb_flags;
55atomic_t kdb_event;
56
57/*
58 * kdb_lock protects updates to kdb_initial_cpu. Used to
59 * single thread processors through the kernel debugger.
60 */
61int kdb_initial_cpu = -1; /* cpu number that owns kdb */
62int kdb_nextline = 1;
63int kdb_state; /* General KDB state */
64
65struct task_struct *kdb_current_task;
66EXPORT_SYMBOL(kdb_current_task);
67struct pt_regs *kdb_current_regs;
68
69const char *kdb_diemsg;
70static int kdb_go_count;
71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
72static unsigned int kdb_continue_catastrophic =
73 CONFIG_KDB_CONTINUE_CATASTROPHIC;
74#else
75static unsigned int kdb_continue_catastrophic;
76#endif
77
78/* kdb_commands describes the available commands. */
79static kdbtab_t *kdb_commands;
80#define KDB_BASE_CMD_MAX 50
81static int kdb_max_commands = KDB_BASE_CMD_MAX;
82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
83#define for_each_kdbcmd(cmd, num) \
84 for ((cmd) = kdb_base_commands, (num) = 0; \
85 num < kdb_max_commands; \
86 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
87
88typedef struct _kdbmsg {
89 int km_diag; /* kdb diagnostic */
90 char *km_msg; /* Corresponding message text */
91} kdbmsg_t;
92
93#define KDBMSG(msgnum, text) \
94 { KDB_##msgnum, text }
95
96static kdbmsg_t kdbmsgs[] = {
97 KDBMSG(NOTFOUND, "Command Not Found"),
98 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
99 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
100 "8 is only allowed on 64 bit systems"),
101 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
102 KDBMSG(NOTENV, "Cannot find environment variable"),
103 KDBMSG(NOENVVALUE, "Environment variable should have value"),
104 KDBMSG(NOTIMP, "Command not implemented"),
105 KDBMSG(ENVFULL, "Environment full"),
106 KDBMSG(ENVBUFFULL, "Environment buffer full"),
107 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
108#ifdef CONFIG_CPU_XSCALE
109 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
110#else
111 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
112#endif
113 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
114 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
115 KDBMSG(BADMODE, "Invalid IDMODE"),
116 KDBMSG(BADINT, "Illegal numeric value"),
117 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
118 KDBMSG(BADREG, "Invalid register name"),
119 KDBMSG(BADCPUNUM, "Invalid cpu number"),
120 KDBMSG(BADLENGTH, "Invalid length field"),
121 KDBMSG(NOBP, "No Breakpoint exists"),
122 KDBMSG(BADADDR, "Invalid address"),
123};
124#undef KDBMSG
125
126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
127
128
129/*
130 * Initial environment. This is all kept static and local to
131 * this file. We don't want to rely on the memory allocation
132 * mechanisms in the kernel, so we use a very limited allocate-only
133 * heap for new and altered environment variables. The entire
134 * environment is limited to a fixed number of entries (add more
135 * to __env[] if required) and a fixed amount of heap (add more to
136 * KDB_ENVBUFSIZE if required).
137 */
138
139static char *__env[] = {
140#if defined(CONFIG_SMP)
141 "PROMPT=[%d]kdb> ",
142 "MOREPROMPT=[%d]more> ",
143#else
144 "PROMPT=kdb> ",
145 "MOREPROMPT=more> ",
146#endif
147 "RADIX=16",
148 "MDCOUNT=8", /* lines of md output */
149 KDB_PLATFORM_ENV,
150 "DTABCOUNT=30",
151 "NOSECT=1",
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176};
177
178static const int __nenv = (sizeof(__env) / sizeof(char *));
179
180struct task_struct *kdb_curr_task(int cpu)
181{
182 struct task_struct *p = curr_task(cpu);
183#ifdef _TIF_MCA_INIT
184 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
185 p = krp->p;
186#endif
187 return p;
188}
189
190/*
191 * kdbgetenv - This function will return the character string value of
192 * an environment variable.
193 * Parameters:
194 * match A character string representing an environment variable.
195 * Returns:
196 * NULL No environment variable matches 'match'
197 * char* Pointer to string value of environment variable.
198 */
199char *kdbgetenv(const char *match)
200{
201 char **ep = __env;
202 int matchlen = strlen(match);
203 int i;
204
205 for (i = 0; i < __nenv; i++) {
206 char *e = *ep++;
207
208 if (!e)
209 continue;
210
211 if ((strncmp(match, e, matchlen) == 0)
212 && ((e[matchlen] == '\0')
213 || (e[matchlen] == '='))) {
214 char *cp = strchr(e, '=');
215 return cp ? ++cp : "";
216 }
217 }
218 return NULL;
219}
220
221/*
222 * kdballocenv - This function is used to allocate bytes for
223 * environment entries.
224 * Parameters:
225 * match A character string representing a numeric value
226 * Outputs:
227 * *value the unsigned long representation of the env variable 'match'
228 * Returns:
229 * Zero on success, a kdb diagnostic on failure.
230 * Remarks:
231 * We use a static environment buffer (envbuffer) to hold the values
232 * of dynamically generated environment variables (see kdb_set). Buffer
233 * space once allocated is never free'd, so over time, the amount of space
234 * (currently 512 bytes) will be exhausted if env variables are changed
235 * frequently.
236 */
237static char *kdballocenv(size_t bytes)
238{
239#define KDB_ENVBUFSIZE 512
240 static char envbuffer[KDB_ENVBUFSIZE];
241 static int envbufsize;
242 char *ep = NULL;
243
244 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
245 ep = &envbuffer[envbufsize];
246 envbufsize += bytes;
247 }
248 return ep;
249}
250
251/*
252 * kdbgetulenv - This function will return the value of an unsigned
253 * long-valued environment variable.
254 * Parameters:
255 * match A character string representing a numeric value
256 * Outputs:
257 * *value the unsigned long represntation of the env variable 'match'
258 * Returns:
259 * Zero on success, a kdb diagnostic on failure.
260 */
261static int kdbgetulenv(const char *match, unsigned long *value)
262{
263 char *ep;
264
265 ep = kdbgetenv(match);
266 if (!ep)
267 return KDB_NOTENV;
268 if (strlen(ep) == 0)
269 return KDB_NOENVVALUE;
270
271 *value = simple_strtoul(ep, NULL, 0);
272
273 return 0;
274}
275
276/*
277 * kdbgetintenv - This function will return the value of an
278 * integer-valued environment variable.
279 * Parameters:
280 * match A character string representing an integer-valued env variable
281 * Outputs:
282 * *value the integer representation of the environment variable 'match'
283 * Returns:
284 * Zero on success, a kdb diagnostic on failure.
285 */
286int kdbgetintenv(const char *match, int *value)
287{
288 unsigned long val;
289 int diag;
290
291 diag = kdbgetulenv(match, &val);
292 if (!diag)
293 *value = (int) val;
294 return diag;
295}
296
297/*
298 * kdbgetularg - This function will convert a numeric string into an
299 * unsigned long value.
300 * Parameters:
301 * arg A character string representing a numeric value
302 * Outputs:
303 * *value the unsigned long represntation of arg.
304 * Returns:
305 * Zero on success, a kdb diagnostic on failure.
306 */
307int kdbgetularg(const char *arg, unsigned long *value)
308{
309 char *endp;
310 unsigned long val;
311
312 val = simple_strtoul(arg, &endp, 0);
313
314 if (endp == arg) {
315 /*
316 * Also try base 16, for us folks too lazy to type the
317 * leading 0x...
318 */
319 val = simple_strtoul(arg, &endp, 16);
320 if (endp == arg)
321 return KDB_BADINT;
322 }
323
324 *value = val;
325
326 return 0;
327}
328
329int kdbgetu64arg(const char *arg, u64 *value)
330{
331 char *endp;
332 u64 val;
333
334 val = simple_strtoull(arg, &endp, 0);
335
336 if (endp == arg) {
337
338 val = simple_strtoull(arg, &endp, 16);
339 if (endp == arg)
340 return KDB_BADINT;
341 }
342
343 *value = val;
344
345 return 0;
346}
347
348/*
349 * kdb_set - This function implements the 'set' command. Alter an
350 * existing environment variable or create a new one.
351 */
352int kdb_set(int argc, const char **argv)
353{
354 int i;
355 char *ep;
356 size_t varlen, vallen;
357
358 /*
359 * we can be invoked two ways:
360 * set var=value argv[1]="var", argv[2]="value"
361 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
362 * - if the latter, shift 'em down.
363 */
364 if (argc == 3) {
365 argv[2] = argv[3];
366 argc--;
367 }
368
369 if (argc != 2)
370 return KDB_ARGCOUNT;
371
372 /*
373 * Check for internal variables
374 */
375 if (strcmp(argv[1], "KDBDEBUG") == 0) {
376 unsigned int debugflags;
377 char *cp;
378
379 debugflags = simple_strtoul(argv[2], &cp, 0);
380 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
381 kdb_printf("kdb: illegal debug flags '%s'\n",
382 argv[2]);
383 return 0;
384 }
385 kdb_flags = (kdb_flags &
386 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
387 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
388
389 return 0;
390 }
391
392 /*
393 * Tokenizer squashed the '=' sign. argv[1] is variable
394 * name, argv[2] = value.
395 */
396 varlen = strlen(argv[1]);
397 vallen = strlen(argv[2]);
398 ep = kdballocenv(varlen + vallen + 2);
399 if (ep == (char *)0)
400 return KDB_ENVBUFFULL;
401
402 sprintf(ep, "%s=%s", argv[1], argv[2]);
403
404 ep[varlen+vallen+1] = '\0';
405
406 for (i = 0; i < __nenv; i++) {
407 if (__env[i]
408 && ((strncmp(__env[i], argv[1], varlen) == 0)
409 && ((__env[i][varlen] == '\0')
410 || (__env[i][varlen] == '=')))) {
411 __env[i] = ep;
412 return 0;
413 }
414 }
415
416 /*
417 * Wasn't existing variable. Fit into slot.
418 */
419 for (i = 0; i < __nenv-1; i++) {
420 if (__env[i] == (char *)0) {
421 __env[i] = ep;
422 return 0;
423 }
424 }
425
426 return KDB_ENVFULL;
427}
428
429static int kdb_check_regs(void)
430{
431 if (!kdb_current_regs) {
432 kdb_printf("No current kdb registers."
433 " You may need to select another task\n");
434 return KDB_BADREG;
435 }
436 return 0;
437}
438
439/*
440 * kdbgetaddrarg - This function is responsible for parsing an
441 * address-expression and returning the value of the expression,
442 * symbol name, and offset to the caller.
443 *
444 * The argument may consist of a numeric value (decimal or
445 * hexidecimal), a symbol name, a register name (preceded by the
446 * percent sign), an environment variable with a numeric value
447 * (preceded by a dollar sign) or a simple arithmetic expression
448 * consisting of a symbol name, +/-, and a numeric constant value
449 * (offset).
450 * Parameters:
451 * argc - count of arguments in argv
452 * argv - argument vector
453 * *nextarg - index to next unparsed argument in argv[]
454 * regs - Register state at time of KDB entry
455 * Outputs:
456 * *value - receives the value of the address-expression
457 * *offset - receives the offset specified, if any
458 * *name - receives the symbol name, if any
459 * *nextarg - index to next unparsed argument in argv[]
460 * Returns:
461 * zero is returned on success, a kdb diagnostic code is
462 * returned on error.
463 */
464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
465 unsigned long *value, long *offset,
466 char **name)
467{
468 unsigned long addr;
469 unsigned long off = 0;
470 int positive;
471 int diag;
472 int found = 0;
473 char *symname;
474 char symbol = '\0';
475 char *cp;
476 kdb_symtab_t symtab;
477
478 /*
479 * Process arguments which follow the following syntax:
480 *
481 * symbol | numeric-address [+/- numeric-offset]
482 * %register
483 * $environment-variable
484 */
485
486 if (*nextarg > argc)
487 return KDB_ARGCOUNT;
488
489 symname = (char *)argv[*nextarg];
490
491 /*
492 * If there is no whitespace between the symbol
493 * or address and the '+' or '-' symbols, we
494 * remember the character and replace it with a
495 * null so the symbol/value can be properly parsed
496 */
497 cp = strpbrk(symname, "+-");
498 if (cp != NULL) {
499 symbol = *cp;
500 *cp++ = '\0';
501 }
502
503 if (symname[0] == '$') {
504 diag = kdbgetulenv(&symname[1], &addr);
505 if (diag)
506 return diag;
507 } else if (symname[0] == '%') {
508 diag = kdb_check_regs();
509 if (diag)
510 return diag;
511 /* Implement register values with % at a later time as it is
512 * arch optional.
513 */
514 return KDB_NOTIMP;
515 } else {
516 found = kdbgetsymval(symname, &symtab);
517 if (found) {
518 addr = symtab.sym_start;
519 } else {
520 diag = kdbgetularg(argv[*nextarg], &addr);
521 if (diag)
522 return diag;
523 }
524 }
525
526 if (!found)
527 found = kdbnearsym(addr, &symtab);
528
529 (*nextarg)++;
530
531 if (name)
532 *name = symname;
533 if (value)
534 *value = addr;
535 if (offset && name && *name)
536 *offset = addr - symtab.sym_start;
537
538 if ((*nextarg > argc)
539 && (symbol == '\0'))
540 return 0;
541
542 /*
543 * check for +/- and offset
544 */
545
546 if (symbol == '\0') {
547 if ((argv[*nextarg][0] != '+')
548 && (argv[*nextarg][0] != '-')) {
549 /*
550 * Not our argument. Return.
551 */
552 return 0;
553 } else {
554 positive = (argv[*nextarg][0] == '+');
555 (*nextarg)++;
556 }
557 } else
558 positive = (symbol == '+');
559
560 /*
561 * Now there must be an offset!
562 */
563 if ((*nextarg > argc)
564 && (symbol == '\0')) {
565 return KDB_INVADDRFMT;
566 }
567
568 if (!symbol) {
569 cp = (char *)argv[*nextarg];
570 (*nextarg)++;
571 }
572
573 diag = kdbgetularg(cp, &off);
574 if (diag)
575 return diag;
576
577 if (!positive)
578 off = -off;
579
580 if (offset)
581 *offset += off;
582
583 if (value)
584 *value += off;
585
586 return 0;
587}
588
589static void kdb_cmderror(int diag)
590{
591 int i;
592
593 if (diag >= 0) {
594 kdb_printf("no error detected (diagnostic is %d)\n", diag);
595 return;
596 }
597
598 for (i = 0; i < __nkdb_err; i++) {
599 if (kdbmsgs[i].km_diag == diag) {
600 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
601 return;
602 }
603 }
604
605 kdb_printf("Unknown diag %d\n", -diag);
606}
607
608/*
609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
610 * command which defines one command as a set of other commands,
611 * terminated by endefcmd. kdb_defcmd processes the initial
612 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
613 * the following commands until 'endefcmd'.
614 * Inputs:
615 * argc argument count
616 * argv argument vector
617 * Returns:
618 * zero for success, a kdb diagnostic if error
619 */
620struct defcmd_set {
621 int count;
622 int usable;
623 char *name;
624 char *usage;
625 char *help;
626 char **command;
627};
628static struct defcmd_set *defcmd_set;
629static int defcmd_set_count;
630static int defcmd_in_progress;
631
632/* Forward references */
633static int kdb_exec_defcmd(int argc, const char **argv);
634
635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
636{
637 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
638 char **save_command = s->command;
639 if (strcmp(argv0, "endefcmd") == 0) {
640 defcmd_in_progress = 0;
641 if (!s->count)
642 s->usable = 0;
643 if (s->usable)
644 kdb_register(s->name, kdb_exec_defcmd,
645 s->usage, s->help, 0);
646 return 0;
647 }
648 if (!s->usable)
649 return KDB_NOTIMP;
650 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
651 if (!s->command) {
652 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
653 cmdstr);
654 s->usable = 0;
655 return KDB_NOTIMP;
656 }
657 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
658 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
659 kfree(save_command);
660 return 0;
661}
662
663static int kdb_defcmd(int argc, const char **argv)
664{
665 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
666 if (defcmd_in_progress) {
667 kdb_printf("kdb: nested defcmd detected, assuming missing "
668 "endefcmd\n");
669 kdb_defcmd2("endefcmd", "endefcmd");
670 }
671 if (argc == 0) {
672 int i;
673 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
674 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
675 s->usage, s->help);
676 for (i = 0; i < s->count; ++i)
677 kdb_printf("%s", s->command[i]);
678 kdb_printf("endefcmd\n");
679 }
680 return 0;
681 }
682 if (argc != 3)
683 return KDB_ARGCOUNT;
684 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
685 GFP_KDB);
686 if (!defcmd_set) {
687 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
688 argv[1]);
689 defcmd_set = save_defcmd_set;
690 return KDB_NOTIMP;
691 }
692 memcpy(defcmd_set, save_defcmd_set,
693 defcmd_set_count * sizeof(*defcmd_set));
694 kfree(save_defcmd_set);
695 s = defcmd_set + defcmd_set_count;
696 memset(s, 0, sizeof(*s));
697 s->usable = 1;
698 s->name = kdb_strdup(argv[1], GFP_KDB);
699 s->usage = kdb_strdup(argv[2], GFP_KDB);
700 s->help = kdb_strdup(argv[3], GFP_KDB);
701 if (s->usage[0] == '"') {
702 strcpy(s->usage, s->usage+1);
703 s->usage[strlen(s->usage)-1] = '\0';
704 }
705 if (s->help[0] == '"') {
706 strcpy(s->help, s->help+1);
707 s->help[strlen(s->help)-1] = '\0';
708 }
709 ++defcmd_set_count;
710 defcmd_in_progress = 1;
711 return 0;
712}
713
714/*
715 * kdb_exec_defcmd - Execute the set of commands associated with this
716 * defcmd name.
717 * Inputs:
718 * argc argument count
719 * argv argument vector
720 * Returns:
721 * zero for success, a kdb diagnostic if error
722 */
723static int kdb_exec_defcmd(int argc, const char **argv)
724{
725 int i, ret;
726 struct defcmd_set *s;
727 if (argc != 0)
728 return KDB_ARGCOUNT;
729 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
730 if (strcmp(s->name, argv[0]) == 0)
731 break;
732 }
733 if (i == defcmd_set_count) {
734 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
735 argv[0]);
736 return KDB_NOTIMP;
737 }
738 for (i = 0; i < s->count; ++i) {
739 /* Recursive use of kdb_parse, do not use argv after
740 * this point */
741 argv = NULL;
742 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
743 ret = kdb_parse(s->command[i]);
744 if (ret)
745 return ret;
746 }
747 return 0;
748}
749
750/* Command history */
751#define KDB_CMD_HISTORY_COUNT 32
752#define CMD_BUFLEN 200 /* kdb_printf: max printline
753 * size == 256 */
754static unsigned int cmd_head, cmd_tail;
755static unsigned int cmdptr;
756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
757static char cmd_cur[CMD_BUFLEN];
758
759/*
760 * The "str" argument may point to something like | grep xyz
761 */
762static void parse_grep(const char *str)
763{
764 int len;
765 char *cp = (char *)str, *cp2;
766
767 /* sanity check: we should have been called with the \ first */
768 if (*cp != '|')
769 return;
770 cp++;
771 while (isspace(*cp))
772 cp++;
773 if (strncmp(cp, "grep ", 5)) {
774 kdb_printf("invalid 'pipe', see grephelp\n");
775 return;
776 }
777 cp += 5;
778 while (isspace(*cp))
779 cp++;
780 cp2 = strchr(cp, '\n');
781 if (cp2)
782 *cp2 = '\0'; /* remove the trailing newline */
783 len = strlen(cp);
784 if (len == 0) {
785 kdb_printf("invalid 'pipe', see grephelp\n");
786 return;
787 }
788 /* now cp points to a nonzero length search string */
789 if (*cp == '"') {
790 /* allow it be "x y z" by removing the "'s - there must
791 be two of them */
792 cp++;
793 cp2 = strchr(cp, '"');
794 if (!cp2) {
795 kdb_printf("invalid quoted string, see grephelp\n");
796 return;
797 }
798 *cp2 = '\0'; /* end the string where the 2nd " was */
799 }
800 kdb_grep_leading = 0;
801 if (*cp == '^') {
802 kdb_grep_leading = 1;
803 cp++;
804 }
805 len = strlen(cp);
806 kdb_grep_trailing = 0;
807 if (*(cp+len-1) == '$') {
808 kdb_grep_trailing = 1;
809 *(cp+len-1) = '\0';
810 }
811 len = strlen(cp);
812 if (!len)
813 return;
814 if (len >= GREP_LEN) {
815 kdb_printf("search string too long\n");
816 return;
817 }
818 strcpy(kdb_grep_string, cp);
819 kdb_grepping_flag++;
820 return;
821}
822
823/*
824 * kdb_parse - Parse the command line, search the command table for a
825 * matching command and invoke the command function. This
826 * function may be called recursively, if it is, the second call
827 * will overwrite argv and cbuf. It is the caller's
828 * responsibility to save their argv if they recursively call
829 * kdb_parse().
830 * Parameters:
831 * cmdstr The input command line to be parsed.
832 * regs The registers at the time kdb was entered.
833 * Returns:
834 * Zero for success, a kdb diagnostic if failure.
835 * Remarks:
836 * Limited to 20 tokens.
837 *
838 * Real rudimentary tokenization. Basically only whitespace
839 * is considered a token delimeter (but special consideration
840 * is taken of the '=' sign as used by the 'set' command).
841 *
842 * The algorithm used to tokenize the input string relies on
843 * there being at least one whitespace (or otherwise useless)
844 * character between tokens as the character immediately following
845 * the token is altered in-place to a null-byte to terminate the
846 * token string.
847 */
848
849#define MAXARGC 20
850
851int kdb_parse(const char *cmdstr)
852{
853 static char *argv[MAXARGC];
854 static int argc;
855 static char cbuf[CMD_BUFLEN+2];
856 char *cp;
857 char *cpp, quoted;
858 kdbtab_t *tp;
859 int i, escaped, ignore_errors = 0, check_grep;
860
861 /*
862 * First tokenize the command string.
863 */
864 cp = (char *)cmdstr;
865 kdb_grepping_flag = check_grep = 0;
866
867 if (KDB_FLAG(CMD_INTERRUPT)) {
868 /* Previous command was interrupted, newline must not
869 * repeat the command */
870 KDB_FLAG_CLEAR(CMD_INTERRUPT);
871 KDB_STATE_SET(PAGER);
872 argc = 0; /* no repeat */
873 }
874
875 if (*cp != '\n' && *cp != '\0') {
876 argc = 0;
877 cpp = cbuf;
878 while (*cp) {
879 /* skip whitespace */
880 while (isspace(*cp))
881 cp++;
882 if ((*cp == '\0') || (*cp == '\n') ||
883 (*cp == '#' && !defcmd_in_progress))
884 break;
885 /* special case: check for | grep pattern */
886 if (*cp == '|') {
887 check_grep++;
888 break;
889 }
890 if (cpp >= cbuf + CMD_BUFLEN) {
891 kdb_printf("kdb_parse: command buffer "
892 "overflow, command ignored\n%s\n",
893 cmdstr);
894 return KDB_NOTFOUND;
895 }
896 if (argc >= MAXARGC - 1) {
897 kdb_printf("kdb_parse: too many arguments, "
898 "command ignored\n%s\n", cmdstr);
899 return KDB_NOTFOUND;
900 }
901 argv[argc++] = cpp;
902 escaped = 0;
903 quoted = '\0';
904 /* Copy to next unquoted and unescaped
905 * whitespace or '=' */
906 while (*cp && *cp != '\n' &&
907 (escaped || quoted || !isspace(*cp))) {
908 if (cpp >= cbuf + CMD_BUFLEN)
909 break;
910 if (escaped) {
911 escaped = 0;
912 *cpp++ = *cp++;
913 continue;
914 }
915 if (*cp == '\\') {
916 escaped = 1;
917 ++cp;
918 continue;
919 }
920 if (*cp == quoted)
921 quoted = '\0';
922 else if (*cp == '\'' || *cp == '"')
923 quoted = *cp;
924 *cpp = *cp++;
925 if (*cpp == '=' && !quoted)
926 break;
927 ++cpp;
928 }
929 *cpp++ = '\0'; /* Squash a ws or '=' character */
930 }
931 }
932 if (!argc)
933 return 0;
934 if (check_grep)
935 parse_grep(cp);
936 if (defcmd_in_progress) {
937 int result = kdb_defcmd2(cmdstr, argv[0]);
938 if (!defcmd_in_progress) {
939 argc = 0; /* avoid repeat on endefcmd */
940 *(argv[0]) = '\0';
941 }
942 return result;
943 }
944 if (argv[0][0] == '-' && argv[0][1] &&
945 (argv[0][1] < '0' || argv[0][1] > '9')) {
946 ignore_errors = 1;
947 ++argv[0];
948 }
949
950 for_each_kdbcmd(tp, i) {
951 if (tp->cmd_name) {
952 /*
953 * If this command is allowed to be abbreviated,
954 * check to see if this is it.
955 */
956
957 if (tp->cmd_minlen
958 && (strlen(argv[0]) <= tp->cmd_minlen)) {
959 if (strncmp(argv[0],
960 tp->cmd_name,
961 tp->cmd_minlen) == 0) {
962 break;
963 }
964 }
965
966 if (strcmp(argv[0], tp->cmd_name) == 0)
967 break;
968 }
969 }
970
971 /*
972 * If we don't find a command by this name, see if the first
973 * few characters of this match any of the known commands.
974 * e.g., md1c20 should match md.
975 */
976 if (i == kdb_max_commands) {
977 for_each_kdbcmd(tp, i) {
978 if (tp->cmd_name) {
979 if (strncmp(argv[0],
980 tp->cmd_name,
981 strlen(tp->cmd_name)) == 0) {
982 break;
983 }
984 }
985 }
986 }
987
988 if (i < kdb_max_commands) {
989 int result;
990 KDB_STATE_SET(CMD);
991 result = (*tp->cmd_func)(argc-1, (const char **)argv);
992 if (result && ignore_errors && result > KDB_CMD_GO)
993 result = 0;
994 KDB_STATE_CLEAR(CMD);
995 switch (tp->cmd_repeat) {
996 case KDB_REPEAT_NONE:
997 argc = 0;
998 if (argv[0])
999 *(argv[0]) = '\0';
1000 break;
1001 case KDB_REPEAT_NO_ARGS:
1002 argc = 1;
1003 if (argv[1])
1004 *(argv[1]) = '\0';
1005 break;
1006 case KDB_REPEAT_WITH_ARGS:
1007 break;
1008 }
1009 return result;
1010 }
1011
1012 /*
1013 * If the input with which we were presented does not
1014 * map to an existing command, attempt to parse it as an
1015 * address argument and display the result. Useful for
1016 * obtaining the address of a variable, or the nearest symbol
1017 * to an address contained in a register.
1018 */
1019 {
1020 unsigned long value;
1021 char *name = NULL;
1022 long offset;
1023 int nextarg = 0;
1024
1025 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026 &value, &offset, &name)) {
1027 return KDB_NOTFOUND;
1028 }
1029
1030 kdb_printf("%s = ", argv[0]);
1031 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032 kdb_printf("\n");
1033 return 0;
1034 }
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P 16
1041#define CTRL_N 14
1042
1043 /* initial situation */
1044 if (cmd_head == cmd_tail)
1045 return 0;
1046 switch (*cmd) {
1047 case CTRL_P:
1048 if (cmdptr != cmd_tail)
1049 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1051 return 1;
1052 case CTRL_N:
1053 if (cmdptr != cmd_head)
1054 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056 return 1;
1057 }
1058 return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command. Reboot
1063 * the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067 emergency_restart();
1068 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069 while (1)
1070 cpu_relax();
1071 /* NOTREACHED */
1072 return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077 int old_lvl = console_loglevel;
1078 console_loglevel = 15;
1079 kdb_trap_printk++;
1080 show_regs(regs);
1081 kdb_trap_printk--;
1082 kdb_printf("\n");
1083 console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088 kdb_current_task = p;
1089
1090 if (kdb_task_has_cpu(p)) {
1091 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092 return;
1093 }
1094 kdb_current_regs = NULL;
1095}
1096
1097/*
1098 * kdb_local - The main code for kdb. This routine is invoked on a
1099 * specific processor, it is not global. The main kdb() routine
1100 * ensures that only one processor at a time is in this routine.
1101 * This code is called with the real reason code on the first
1102 * entry to a kdb session, thereafter it is called with reason
1103 * SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 * reason The reason KDB was invoked
1106 * error The hardware-defined error code
1107 * regs The exception frame at time of fault/breakpoint.
1108 * db_result Result code from the break or debug point.
1109 * Returns:
1110 * 0 KDB was invoked for an event which it wasn't responsible
1111 * 1 KDB handled the event for which it was invoked.
1112 * KDB_CMD_GO User typed 'go'.
1113 * KDB_CMD_CPU User switched to another cpu.
1114 * KDB_CMD_SS Single step.
1115 * KDB_CMD_SSB Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118 kdb_dbtrap_t db_result)
1119{
1120 char *cmdbuf;
1121 int diag;
1122 struct task_struct *kdb_current =
1123 kdb_curr_task(raw_smp_processor_id());
1124
1125 KDB_DEBUG_STATE("kdb_local 1", reason);
1126 kdb_go_count = 0;
1127 if (reason == KDB_REASON_DEBUG) {
1128 /* special case below */
1129 } else {
1130 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131 kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133 kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135 }
1136
1137 switch (reason) {
1138 case KDB_REASON_DEBUG:
1139 {
1140 /*
1141 * If re-entering kdb after a single step
1142 * command, don't print the message.
1143 */
1144 switch (db_result) {
1145 case KDB_DB_BPT:
1146 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147 kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149 kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152 instruction_pointer(regs));
1153 break;
1154 case KDB_DB_SSB:
1155 /*
1156 * In the midst of ssb command. Just return.
1157 */
1158 KDB_DEBUG_STATE("kdb_local 3", reason);
1159 return KDB_CMD_SSB; /* Continue with SSB command */
1160
1161 break;
1162 case KDB_DB_SS:
1163 break;
1164 case KDB_DB_SSBPT:
1165 KDB_DEBUG_STATE("kdb_local 4", reason);
1166 return 1; /* kdba_db_trap did the work */
1167 default:
1168 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169 db_result);
1170 break;
1171 }
1172
1173 }
1174 break;
1175 case KDB_REASON_ENTER:
1176 if (KDB_STATE(KEYBOARD))
1177 kdb_printf("due to Keyboard Entry\n");
1178 else
1179 kdb_printf("due to KDB_ENTER()\n");
1180 break;
1181 case KDB_REASON_KEYBOARD:
1182 KDB_STATE_SET(KEYBOARD);
1183 kdb_printf("due to Keyboard Entry\n");
1184 break;
1185 case KDB_REASON_ENTER_SLAVE:
1186 /* drop through, slaves only get released via cpu switch */
1187 case KDB_REASON_SWITCH:
1188 kdb_printf("due to cpu switch\n");
1189 break;
1190 case KDB_REASON_OOPS:
1191 kdb_printf("Oops: %s\n", kdb_diemsg);
1192 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193 instruction_pointer(regs));
1194 kdb_dumpregs(regs);
1195 break;
1196 case KDB_REASON_NMI:
1197 kdb_printf("due to NonMaskable Interrupt @ "
1198 kdb_machreg_fmt "\n",
1199 instruction_pointer(regs));
1200 kdb_dumpregs(regs);
1201 break;
1202 case KDB_REASON_SSTEP:
1203 case KDB_REASON_BREAK:
1204 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205 reason == KDB_REASON_BREAK ?
1206 "Breakpoint" : "SS trap", instruction_pointer(regs));
1207 /*
1208 * Determine if this breakpoint is one that we
1209 * are interested in.
1210 */
1211 if (db_result != KDB_DB_BPT) {
1212 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213 db_result);
1214 KDB_DEBUG_STATE("kdb_local 6", reason);
1215 return 0; /* Not for us, dismiss it */
1216 }
1217 break;
1218 case KDB_REASON_RECURSE:
1219 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220 instruction_pointer(regs));
1221 break;
1222 default:
1223 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224 KDB_DEBUG_STATE("kdb_local 8", reason);
1225 return 0; /* Not for us, dismiss it */
1226 }
1227
1228 while (1) {
1229 /*
1230 * Initialize pager context.
1231 */
1232 kdb_nextline = 1;
1233 KDB_STATE_CLEAR(SUPPRESS);
1234
1235 cmdbuf = cmd_cur;
1236 *cmdbuf = '\0';
1237 *(cmd_hist[cmd_head]) = '\0';
1238
1239 if (KDB_FLAG(ONLY_DO_DUMP)) {
1240 /* kdb is off but a catastrophic error requires a dump.
1241 * Take the dump and reboot.
1242 * Turn on logging so the kdb output appears in the log
1243 * buffer in the dump.
1244 */
1245 const char *setargs[] = { "set", "LOGGING", "1" };
1246 kdb_set(2, setargs);
1247 kdb_reboot(0, NULL);
1248 /*NOTREACHED*/
1249 }
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254 raw_smp_processor_id());
1255#else
1256 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258 if (defcmd_in_progress)
1259 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261 /*
1262 * Fetch command from keyboard
1263 */
1264 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265 if (*cmdbuf != '\n') {
1266 if (*cmdbuf < 32) {
1267 if (cmdptr == cmd_head) {
1268 strncpy(cmd_hist[cmd_head], cmd_cur,
1269 CMD_BUFLEN);
1270 *(cmd_hist[cmd_head] +
1271 strlen(cmd_hist[cmd_head])-1) = '\0';
1272 }
1273 if (!handle_ctrl_cmd(cmdbuf))
1274 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275 cmdbuf = cmd_cur;
1276 goto do_full_getstr;
1277 } else {
1278 strncpy(cmd_hist[cmd_head], cmd_cur,
1279 CMD_BUFLEN);
1280 }
1281
1282 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283 if (cmd_head == cmd_tail)
1284 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285 }
1286
1287 cmdptr = cmd_head;
1288 diag = kdb_parse(cmdbuf);
1289 if (diag == KDB_NOTFOUND) {
1290 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291 diag = 0;
1292 }
1293 if (diag == KDB_CMD_GO
1294 || diag == KDB_CMD_CPU
1295 || diag == KDB_CMD_SS
1296 || diag == KDB_CMD_SSB
1297 || diag == KDB_CMD_KGDB)
1298 break;
1299
1300 if (diag)
1301 kdb_cmderror(diag);
1302 }
1303 KDB_DEBUG_STATE("kdb_local 9", diag);
1304 return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 * for debugging.
1311 * Inputs:
1312 * text Identifies the debug point
1313 * value Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319 kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 * controlling cpu, all cpus are in this loop. One cpu is in
1325 * control and will issue the kdb prompt, the others will spin
1326 * until 'go' or cpu switch.
1327 *
1328 * To get a consistent view of the kernel stacks for all
1329 * processes, this routine is invoked from the main kdb code via
1330 * an architecture specific routine. kdba_main_loop is
1331 * responsible for making the kernel stacks consistent for all
1332 * processes, there should be no difference between a blocked
1333 * process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 * reason The reason KDB was invoked
1336 * error The hardware-defined error code
1337 * reason2 kdb's current reason code.
1338 * Initially error but can change
1339 * according to kdb state.
1340 * db_result Result code from break or debug point.
1341 * regs The exception frame at time of fault/breakpoint.
1342 * should always be valid.
1343 * Returns:
1344 * 0 KDB was invoked for an event which it wasn't responsible
1345 * 1 KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348 kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350 int result = 1;
1351 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1352 while (1) {
1353 /*
1354 * All processors except the one that is in control
1355 * will spin here.
1356 */
1357 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358 while (KDB_STATE(HOLD_CPU)) {
1359 /* state KDB is turned off by kdb_cpu to see if the
1360 * other cpus are still live, each cpu in this loop
1361 * turns it back on.
1362 */
1363 if (!KDB_STATE(KDB))
1364 KDB_STATE_SET(KDB);
1365 }
1366
1367 KDB_STATE_CLEAR(SUPPRESS);
1368 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369 if (KDB_STATE(LEAVING))
1370 break; /* Another cpu said 'go' */
1371 /* Still using kdb, this processor is in control */
1372 result = kdb_local(reason2, error, regs, db_result);
1373 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375 if (result == KDB_CMD_CPU)
1376 break;
1377
1378 if (result == KDB_CMD_SS) {
1379 KDB_STATE_SET(DOING_SS);
1380 break;
1381 }
1382
1383 if (result == KDB_CMD_SSB) {
1384 KDB_STATE_SET(DOING_SS);
1385 KDB_STATE_SET(DOING_SSB);
1386 break;
1387 }
1388
1389 if (result == KDB_CMD_KGDB) {
1390 if (!KDB_STATE(DOING_KGDB))
1391 kdb_printf("Entering please attach debugger "
1392 "or use $D#44+ or $3#33\n");
1393 break;
1394 }
1395 if (result && result != 1 && result != KDB_CMD_GO)
1396 kdb_printf("\nUnexpected kdb_local return code %d\n",
1397 result);
1398 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399 break;
1400 }
1401 if (KDB_STATE(DOING_SS))
1402 KDB_STATE_CLEAR(SSBPT);
1403
1404 /* Clean up any keyboard devices before leaving */
1405 kdb_kbd_cleanup_state();
1406
1407 return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 * mdr <addr arg>,<byte count>
1414 * Inputs:
1415 * addr Start address
1416 * count Number of bytes
1417 * Returns:
1418 * Always 0. Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422 unsigned char c;
1423 while (count--) {
1424 if (kdb_getarea(c, addr))
1425 return 0;
1426 kdb_printf("%02x", c);
1427 addr++;
1428 }
1429 kdb_printf("\n");
1430 return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 * 'md8' 'mdr' and 'mds' commands.
1436 *
1437 * md|mds [<addr arg> [<line count> [<radix>]]]
1438 * mdWcN [<addr arg> [<line count> [<radix>]]]
1439 * where W = is the width (1, 2, 4 or 8) and N is the count.
1440 * for eg., md1c20 reads 20 bytes, 1 at a time.
1441 * mdr <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444 int symbolic, int nosect, int bytesperword,
1445 int num, int repeat, int phys)
1446{
1447 /* print just one line of data */
1448 kdb_symtab_t symtab;
1449 char cbuf[32];
1450 char *c = cbuf;
1451 int i;
1452 unsigned long word;
1453
1454 memset(cbuf, '\0', sizeof(cbuf));
1455 if (phys)
1456 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457 else
1458 kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460 for (i = 0; i < num && repeat--; i++) {
1461 if (phys) {
1462 if (kdb_getphysword(&word, addr, bytesperword))
1463 break;
1464 } else if (kdb_getword(&word, addr, bytesperword))
1465 break;
1466 kdb_printf(fmtstr, word);
1467 if (symbolic)
1468 kdbnearsym(word, &symtab);
1469 else
1470 memset(&symtab, 0, sizeof(symtab));
1471 if (symtab.sym_name) {
1472 kdb_symbol_print(word, &symtab, 0);
1473 if (!nosect) {
1474 kdb_printf("\n");
1475 kdb_printf(" %s %s "
1476 kdb_machreg_fmt " "
1477 kdb_machreg_fmt " "
1478 kdb_machreg_fmt, symtab.mod_name,
1479 symtab.sec_name, symtab.sec_start,
1480 symtab.sym_start, symtab.sym_end);
1481 }
1482 addr += bytesperword;
1483 } else {
1484 union {
1485 u64 word;
1486 unsigned char c[8];
1487 } wc;
1488 unsigned char *cp;
1489#ifdef __BIG_ENDIAN
1490 cp = wc.c + 8 - bytesperword;
1491#else
1492 cp = wc.c;
1493#endif
1494 wc.word = word;
1495#define printable_char(c) \
1496 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497 switch (bytesperword) {
1498 case 8:
1499 *c++ = printable_char(*cp++);
1500 *c++ = printable_char(*cp++);
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 4;
1504 case 4:
1505 *c++ = printable_char(*cp++);
1506 *c++ = printable_char(*cp++);
1507 addr += 2;
1508 case 2:
1509 *c++ = printable_char(*cp++);
1510 addr++;
1511 case 1:
1512 *c++ = printable_char(*cp++);
1513 addr++;
1514 break;
1515 }
1516#undef printable_char
1517 }
1518 }
1519 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520 " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525 static unsigned long last_addr;
1526 static int last_radix, last_bytesperword, last_repeat;
1527 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528 int nosect = 0;
1529 char fmtchar, fmtstr[64];
1530 unsigned long addr;
1531 unsigned long word;
1532 long offset = 0;
1533 int symbolic = 0;
1534 int valid = 0;
1535 int phys = 0;
1536
1537 kdbgetintenv("MDCOUNT", &mdcount);
1538 kdbgetintenv("RADIX", &radix);
1539 kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541 /* Assume 'md <addr>' and start with environment values */
1542 repeat = mdcount * 16 / bytesperword;
1543
1544 if (strcmp(argv[0], "mdr") == 0) {
1545 if (argc != 2)
1546 return KDB_ARGCOUNT;
1547 valid = 1;
1548 } else if (isdigit(argv[0][2])) {
1549 bytesperword = (int)(argv[0][2] - '0');
1550 if (bytesperword == 0) {
1551 bytesperword = last_bytesperword;
1552 if (bytesperword == 0)
1553 bytesperword = 4;
1554 }
1555 last_bytesperword = bytesperword;
1556 repeat = mdcount * 16 / bytesperword;
1557 if (!argv[0][3])
1558 valid = 1;
1559 else if (argv[0][3] == 'c' && argv[0][4]) {
1560 char *p;
1561 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562 mdcount = ((repeat * bytesperword) + 15) / 16;
1563 valid = !*p;
1564 }
1565 last_repeat = repeat;
1566 } else if (strcmp(argv[0], "md") == 0)
1567 valid = 1;
1568 else if (strcmp(argv[0], "mds") == 0)
1569 valid = 1;
1570 else if (strcmp(argv[0], "mdp") == 0) {
1571 phys = valid = 1;
1572 }
1573 if (!valid)
1574 return KDB_NOTFOUND;
1575
1576 if (argc == 0) {
1577 if (last_addr == 0)
1578 return KDB_ARGCOUNT;
1579 addr = last_addr;
1580 radix = last_radix;
1581 bytesperword = last_bytesperword;
1582 repeat = last_repeat;
1583 mdcount = ((repeat * bytesperword) + 15) / 16;
1584 }
1585
1586 if (argc) {
1587 unsigned long val;
1588 int diag, nextarg = 1;
1589 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590 &offset, NULL);
1591 if (diag)
1592 return diag;
1593 if (argc > nextarg+2)
1594 return KDB_ARGCOUNT;
1595
1596 if (argc >= nextarg) {
1597 diag = kdbgetularg(argv[nextarg], &val);
1598 if (!diag) {
1599 mdcount = (int) val;
1600 repeat = mdcount * 16 / bytesperword;
1601 }
1602 }
1603 if (argc >= nextarg+1) {
1604 diag = kdbgetularg(argv[nextarg+1], &val);
1605 if (!diag)
1606 radix = (int) val;
1607 }
1608 }
1609
1610 if (strcmp(argv[0], "mdr") == 0)
1611 return kdb_mdr(addr, mdcount);
1612
1613 switch (radix) {
1614 case 10:
1615 fmtchar = 'd';
1616 break;
1617 case 16:
1618 fmtchar = 'x';
1619 break;
1620 case 8:
1621 fmtchar = 'o';
1622 break;
1623 default:
1624 return KDB_BADRADIX;
1625 }
1626
1627 last_radix = radix;
1628
1629 if (bytesperword > KDB_WORD_SIZE)
1630 return KDB_BADWIDTH;
1631
1632 switch (bytesperword) {
1633 case 8:
1634 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635 break;
1636 case 4:
1637 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638 break;
1639 case 2:
1640 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641 break;
1642 case 1:
1643 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644 break;
1645 default:
1646 return KDB_BADWIDTH;
1647 }
1648
1649 last_repeat = repeat;
1650 last_bytesperword = bytesperword;
1651
1652 if (strcmp(argv[0], "mds") == 0) {
1653 symbolic = 1;
1654 /* Do not save these changes as last_*, they are temporary mds
1655 * overrides.
1656 */
1657 bytesperword = KDB_WORD_SIZE;
1658 repeat = mdcount;
1659 kdbgetintenv("NOSECT", &nosect);
1660 }
1661
1662 /* Round address down modulo BYTESPERWORD */
1663
1664 addr &= ~(bytesperword-1);
1665
1666 while (repeat > 0) {
1667 unsigned long a;
1668 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670 if (KDB_FLAG(CMD_INTERRUPT))
1671 return 0;
1672 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673 if (phys) {
1674 if (kdb_getphysword(&word, a, bytesperword)
1675 || word)
1676 break;
1677 } else if (kdb_getword(&word, a, bytesperword) || word)
1678 break;
1679 }
1680 n = min(num, repeat);
1681 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682 num, repeat, phys);
1683 addr += bytesperword * n;
1684 repeat -= n;
1685 z = (z + num - 1) / num;
1686 if (z > 2) {
1687 int s = num * (z-2);
1688 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689 " zero suppressed\n",
1690 addr, addr + bytesperword * s - 1);
1691 addr += bytesperword * s;
1692 repeat -= s;
1693 }
1694 }
1695 last_addr = addr;
1696
1697 return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 * mm address-expression new-value
1703 * Remarks:
1704 * mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708 int diag;
1709 unsigned long addr;
1710 long offset = 0;
1711 unsigned long contents;
1712 int nextarg;
1713 int width;
1714
1715 if (argv[0][2] && !isdigit(argv[0][2]))
1716 return KDB_NOTFOUND;
1717
1718 if (argc < 2)
1719 return KDB_ARGCOUNT;
1720
1721 nextarg = 1;
1722 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723 if (diag)
1724 return diag;
1725
1726 if (nextarg > argc)
1727 return KDB_ARGCOUNT;
1728 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729 if (diag)
1730 return diag;
1731
1732 if (nextarg != argc + 1)
1733 return KDB_ARGCOUNT;
1734
1735 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736 diag = kdb_putword(addr, contents, width);
1737 if (diag)
1738 return diag;
1739
1740 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742 return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 * go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751 unsigned long addr;
1752 int diag;
1753 int nextarg;
1754 long offset;
1755
1756 if (raw_smp_processor_id() != kdb_initial_cpu) {
1757 kdb_printf("go must execute on the entry cpu, "
1758 "please use \"cpu %d\" and then execute go\n",
1759 kdb_initial_cpu);
1760 return KDB_BADCPUNUM;
1761 }
1762 if (argc == 1) {
1763 nextarg = 1;
1764 diag = kdbgetaddrarg(argc, argv, &nextarg,
1765 &addr, &offset, NULL);
1766 if (diag)
1767 return diag;
1768 } else if (argc) {
1769 return KDB_ARGCOUNT;
1770 }
1771
1772 diag = KDB_CMD_GO;
1773 if (KDB_FLAG(CATASTROPHIC)) {
1774 kdb_printf("Catastrophic error detected\n");
1775 kdb_printf("kdb_continue_catastrophic=%d, ",
1776 kdb_continue_catastrophic);
1777 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778 kdb_printf("type go a second time if you really want "
1779 "to continue\n");
1780 return 0;
1781 }
1782 if (kdb_continue_catastrophic == 2) {
1783 kdb_printf("forcing reboot\n");
1784 kdb_reboot(0, NULL);
1785 }
1786 kdb_printf("attempting to continue\n");
1787 }
1788 return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796 int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798 int i;
1799 char *rname;
1800 int rsize;
1801 u64 reg64;
1802 u32 reg32;
1803 u16 reg16;
1804 u8 reg8;
1805
1806 if (len)
1807 return len;
1808
1809 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810 rsize = dbg_reg_def[i].size * 2;
1811 if (rsize > 16)
1812 rsize = 2;
1813 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814 len = 0;
1815 kdb_printf("\n");
1816 }
1817 if (len)
1818 len += kdb_printf(" ");
1819 switch(dbg_reg_def[i].size * 8) {
1820 case 8:
1821 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1822 if (!rname)
1823 break;
1824 len += kdb_printf("%s: %02x", rname, reg8);
1825 break;
1826 case 16:
1827 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1828 if (!rname)
1829 break;
1830 len += kdb_printf("%s: %04x", rname, reg16);
1831 break;
1832 case 32:
1833 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1834 if (!rname)
1835 break;
1836 len += kdb_printf("%s: %08x", rname, reg32);
1837 break;
1838 case 64:
1839 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1840 if (!rname)
1841 break;
1842 len += kdb_printf("%s: %016llx", rname, reg64);
1843 break;
1844 default:
1845 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846 }
1847 }
1848 kdb_printf("\n");
1849#else
1850 if (len)
1851 return len;
1852
1853 kdb_dumpregs(kdb_current_regs);
1854#endif
1855 return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify) command.
1860 * rm register-name new-contents
1861 * Remarks:
1862 * Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867 int diag;
1868 const char *rname;
1869 int i;
1870 u64 reg64;
1871 u32 reg32;
1872 u16 reg16;
1873 u8 reg8;
1874
1875 if (argc != 2)
1876 return KDB_ARGCOUNT;
1877 /*
1878 * Allow presence or absence of leading '%' symbol.
1879 */
1880 rname = argv[1];
1881 if (*rname == '%')
1882 rname++;
1883
1884 diag = kdbgetu64arg(argv[2], ®64);
1885 if (diag)
1886 return diag;
1887
1888 diag = kdb_check_regs();
1889 if (diag)
1890 return diag;
1891
1892 diag = KDB_BADREG;
1893 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895 diag = 0;
1896 break;
1897 }
1898 }
1899 if (!diag) {
1900 switch(dbg_reg_def[i].size * 8) {
1901 case 8:
1902 reg8 = reg64;
1903 dbg_set_reg(i, ®8, kdb_current_regs);
1904 break;
1905 case 16:
1906 reg16 = reg64;
1907 dbg_set_reg(i, ®16, kdb_current_regs);
1908 break;
1909 case 32:
1910 reg32 = reg64;
1911 dbg_set_reg(i, ®32, kdb_current_regs);
1912 break;
1913 case 64:
1914 dbg_set_reg(i, ®64, kdb_current_regs);
1915 break;
1916 }
1917 }
1918 return diag;
1919#else
1920 kdb_printf("ERROR: Register set currently not implemented\n");
1921 return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 * sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
1933 if (argc != 1)
1934 return KDB_ARGCOUNT;
1935 kdb_trap_printk++;
1936 __handle_sysrq(*argv[1], false);
1937 kdb_trap_printk--;
1938
1939 return 0;
1940}
1941#endif /* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 * frame) command. This command takes an address and expects to
1946 * find an exception frame at that address, formats and prints
1947 * it.
1948 * regs address-expression
1949 * Remarks:
1950 * Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954 int diag;
1955 unsigned long addr;
1956 long offset;
1957 int nextarg;
1958
1959 if (argc != 1)
1960 return KDB_ARGCOUNT;
1961
1962 nextarg = 1;
1963 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964 if (diag)
1965 return diag;
1966 show_regs((struct pt_regs *)addr);
1967 return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1973 * currently loaded kernel modules.
1974 * Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978 struct module *mod;
1979
1980 if (argc != 0)
1981 return KDB_ARGCOUNT;
1982
1983 kdb_printf("Module Size modstruct Used by\n");
1984 list_for_each_entry(mod, kdb_modules, list) {
1985
1986 kdb_printf("%-20s%8u 0x%p ", mod->name,
1987 mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989 kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991 if (mod->state == MODULE_STATE_GOING)
1992 kdb_printf(" (Unloading)");
1993 else if (mod->state == MODULE_STATE_COMING)
1994 kdb_printf(" (Loading)");
1995 else
1996 kdb_printf(" (Live)");
1997 kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000 {
2001 struct module_use *use;
2002 kdb_printf(" [ ");
2003 list_for_each_entry(use, &mod->source_list,
2004 source_list)
2005 kdb_printf("%s ", use->target->name);
2006 kdb_printf("]\n");
2007 }
2008#endif
2009 }
2010
2011 return 0;
2012}
2013
2014#endif /* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command. Display the
2018 * current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023 int i;
2024
2025 for (i = 0; i < __nenv; i++) {
2026 if (__env[i])
2027 kdb_printf("%s\n", __env[i]);
2028 }
2029
2030 if (KDB_DEBUG(MASK))
2031 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2032
2033 return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 * the contents of the syslog buffer.
2040 * dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044 int diag;
2045 int logging;
2046 int lines = 0;
2047 int adjust = 0;
2048 int n = 0;
2049 int skip = 0;
2050 struct kmsg_dumper dumper = { .active = 1 };
2051 size_t len;
2052 char buf[201];
2053
2054 if (argc > 2)
2055 return KDB_ARGCOUNT;
2056 if (argc) {
2057 char *cp;
2058 lines = simple_strtol(argv[1], &cp, 0);
2059 if (*cp)
2060 lines = 0;
2061 if (argc > 1) {
2062 adjust = simple_strtoul(argv[2], &cp, 0);
2063 if (*cp || adjust < 0)
2064 adjust = 0;
2065 }
2066 }
2067
2068 /* disable LOGGING if set */
2069 diag = kdbgetintenv("LOGGING", &logging);
2070 if (!diag && logging) {
2071 const char *setargs[] = { "set", "LOGGING", "0" };
2072 kdb_set(2, setargs);
2073 }
2074
2075 kmsg_dump_rewind_nolock(&dumper);
2076 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077 n++;
2078
2079 if (lines < 0) {
2080 if (adjust >= n)
2081 kdb_printf("buffer only contains %d lines, nothing "
2082 "printed\n", n);
2083 else if (adjust - lines >= n)
2084 kdb_printf("buffer only contains %d lines, last %d "
2085 "lines printed\n", n, n - adjust);
2086 skip = adjust;
2087 lines = abs(lines);
2088 } else if (lines > 0) {
2089 skip = n - lines - adjust;
2090 lines = abs(lines);
2091 if (adjust >= n) {
2092 kdb_printf("buffer only contains %d lines, "
2093 "nothing printed\n", n);
2094 skip = n;
2095 } else if (skip < 0) {
2096 lines += skip;
2097 skip = 0;
2098 kdb_printf("buffer only contains %d lines, first "
2099 "%d lines printed\n", n, lines);
2100 }
2101 } else {
2102 lines = n;
2103 }
2104
2105 if (skip >= n || skip < 0)
2106 return 0;
2107
2108 kmsg_dump_rewind_nolock(&dumper);
2109 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110 if (skip) {
2111 skip--;
2112 continue;
2113 }
2114 if (!lines--)
2115 break;
2116
2117 kdb_printf("%.*s\n", (int)len - 1, buf);
2118 }
2119
2120 return 0;
2121}
2122#endif /* CONFIG_PRINTK */
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 * cpu [<cpunum>]
2126 * Returns:
2127 * KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131 int i, start_cpu, first_print = 1;
2132 char state, prev_state = '?';
2133
2134 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135 kdb_printf("Available cpus: ");
2136 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137 if (!cpu_online(i)) {
2138 state = 'F'; /* cpu is offline */
2139 } else {
2140 state = ' '; /* cpu is responding to kdb */
2141 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142 state = 'I'; /* idle task */
2143 }
2144 if (state != prev_state) {
2145 if (prev_state != '?') {
2146 if (!first_print)
2147 kdb_printf(", ");
2148 first_print = 0;
2149 kdb_printf("%d", start_cpu);
2150 if (start_cpu < i-1)
2151 kdb_printf("-%d", i-1);
2152 if (prev_state != ' ')
2153 kdb_printf("(%c)", prev_state);
2154 }
2155 prev_state = state;
2156 start_cpu = i;
2157 }
2158 }
2159 /* print the trailing cpus, ignoring them if they are all offline */
2160 if (prev_state != 'F') {
2161 if (!first_print)
2162 kdb_printf(", ");
2163 kdb_printf("%d", start_cpu);
2164 if (start_cpu < i-1)
2165 kdb_printf("-%d", i-1);
2166 if (prev_state != ' ')
2167 kdb_printf("(%c)", prev_state);
2168 }
2169 kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174 unsigned long cpunum;
2175 int diag;
2176
2177 if (argc == 0) {
2178 kdb_cpu_status();
2179 return 0;
2180 }
2181
2182 if (argc != 1)
2183 return KDB_ARGCOUNT;
2184
2185 diag = kdbgetularg(argv[1], &cpunum);
2186 if (diag)
2187 return diag;
2188
2189 /*
2190 * Validate cpunum
2191 */
2192 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193 return KDB_BADCPUNUM;
2194
2195 dbg_switch_cpu = cpunum;
2196
2197 /*
2198 * Switch to other cpu
2199 */
2200 return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208 int idle = 0, daemon = 0;
2209 unsigned long mask_I = kdb_task_state_string("I"),
2210 mask_M = kdb_task_state_string("M");
2211 unsigned long cpu;
2212 const struct task_struct *p, *g;
2213 for_each_online_cpu(cpu) {
2214 p = kdb_curr_task(cpu);
2215 if (kdb_task_state(p, mask_I))
2216 ++idle;
2217 }
2218 kdb_do_each_thread(g, p) {
2219 if (kdb_task_state(p, mask_M))
2220 ++daemon;
2221 } kdb_while_each_thread(g, p);
2222 if (idle || daemon) {
2223 if (idle)
2224 kdb_printf("%d idle process%s (state I)%s\n",
2225 idle, idle == 1 ? "" : "es",
2226 daemon ? " and " : "");
2227 if (daemon)
2228 kdb_printf("%d sleeping system daemon (state M) "
2229 "process%s", daemon,
2230 daemon == 1 ? "" : "es");
2231 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232 }
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 * list of the active processes.
2238 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242 int cpu;
2243 unsigned long tmp;
2244
2245 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2246 return;
2247
2248 cpu = kdb_process_cpu(p);
2249 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2250 (void *)p, p->pid, p->parent->pid,
2251 kdb_task_has_cpu(p), kdb_process_cpu(p),
2252 kdb_task_state_char(p),
2253 (void *)(&p->thread),
2254 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255 p->comm);
2256 if (kdb_task_has_cpu(p)) {
2257 if (!KDB_TSK(cpu)) {
2258 kdb_printf(" Error: no saved data for this cpu\n");
2259 } else {
2260 if (KDB_TSK(cpu) != p)
2261 kdb_printf(" Error: does not match running "
2262 "process table (0x%p)\n", KDB_TSK(cpu));
2263 }
2264 }
2265}
2266
2267static int kdb_ps(int argc, const char **argv)
2268{
2269 struct task_struct *g, *p;
2270 unsigned long mask, cpu;
2271
2272 if (argc == 0)
2273 kdb_ps_suppressed();
2274 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2275 (int)(2*sizeof(void *))+2, "Task Addr",
2276 (int)(2*sizeof(void *))+2, "Thread");
2277 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278 /* Run the active tasks first */
2279 for_each_online_cpu(cpu) {
2280 if (KDB_FLAG(CMD_INTERRUPT))
2281 return 0;
2282 p = kdb_curr_task(cpu);
2283 if (kdb_task_state(p, mask))
2284 kdb_ps1(p);
2285 }
2286 kdb_printf("\n");
2287 /* Now the real tasks */
2288 kdb_do_each_thread(g, p) {
2289 if (KDB_FLAG(CMD_INTERRUPT))
2290 return 0;
2291 if (kdb_task_state(p, mask))
2292 kdb_ps1(p);
2293 } kdb_while_each_thread(g, p);
2294
2295 return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 * the currently active process.
2301 * pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305 struct task_struct *p;
2306 unsigned long val;
2307 int diag;
2308
2309 if (argc > 1)
2310 return KDB_ARGCOUNT;
2311
2312 if (argc) {
2313 if (strcmp(argv[1], "R") == 0) {
2314 p = KDB_TSK(kdb_initial_cpu);
2315 } else {
2316 diag = kdbgetularg(argv[1], &val);
2317 if (diag)
2318 return KDB_BADINT;
2319
2320 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2321 if (!p) {
2322 kdb_printf("No task with pid=%d\n", (pid_t)val);
2323 return 0;
2324 }
2325 }
2326 kdb_set_current_task(p);
2327 }
2328 kdb_printf("KDB current process is %s(pid=%d)\n",
2329 kdb_current_task->comm,
2330 kdb_current_task->pid);
2331
2332 return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 * linked list and executes an arbitrary command for each
2338 * element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342 int diag = 0;
2343 unsigned long addr;
2344 long offset = 0;
2345 unsigned long va;
2346 unsigned long linkoffset;
2347 int nextarg;
2348 const char *command;
2349
2350 if (argc != 3)
2351 return KDB_ARGCOUNT;
2352
2353 nextarg = 1;
2354 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355 if (diag)
2356 return diag;
2357
2358 diag = kdbgetularg(argv[2], &linkoffset);
2359 if (diag)
2360 return diag;
2361
2362 /*
2363 * Using the starting address as
2364 * the first element in the list, and assuming that
2365 * the list ends with a null pointer.
2366 */
2367
2368 va = addr;
2369 command = kdb_strdup(argv[3], GFP_KDB);
2370 if (!command) {
2371 kdb_printf("%s: cannot duplicate command\n", __func__);
2372 return 0;
2373 }
2374 /* Recursive use of kdb_parse, do not use argv after this point */
2375 argv = NULL;
2376
2377 while (va) {
2378 char buf[80];
2379
2380 if (KDB_FLAG(CMD_INTERRUPT))
2381 goto out;
2382
2383 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384 diag = kdb_parse(buf);
2385 if (diag)
2386 goto out;
2387
2388 addr = va + linkoffset;
2389 if (kdb_getword(&va, addr, sizeof(va)))
2390 goto out;
2391 }
2392
2393out:
2394 kfree(command);
2395 return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400 return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408 kdbtab_t *kt;
2409 int i;
2410
2411 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412 kdb_printf("-----------------------------"
2413 "-----------------------------\n");
2414 for_each_kdbcmd(kt, i) {
2415 if (kt->cmd_name)
2416 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417 kt->cmd_usage, kt->cmd_help);
2418 if (KDB_FLAG(CMD_INTERRUPT))
2419 return 0;
2420 }
2421 return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429 long sig, pid;
2430 char *endp;
2431 struct task_struct *p;
2432 struct siginfo info;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if (sig >= 0) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 info.si_signo = sig;
2462 info.si_errno = 0;
2463 info.si_code = SI_USER;
2464 info.si_pid = pid; /* same capabilities as process being signalled */
2465 info.si_uid = 0; /* kdb has root authority */
2466 kdb_send_sig_info(p, &info);
2467 return 0;
2468}
2469
2470struct kdb_tm {
2471 int tm_sec; /* seconds */
2472 int tm_min; /* minutes */
2473 int tm_hour; /* hours */
2474 int tm_mday; /* day of the month */
2475 int tm_mon; /* month */
2476 int tm_year; /* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481 /* This will work from 1970-2099, 2100 is not a leap year */
2482 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483 31, 30, 31, 30, 31 };
2484 memset(tm, 0, sizeof(*tm));
2485 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2486 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2488 tm->tm_min = tm->tm_sec / 60 % 60;
2489 tm->tm_hour = tm->tm_sec / 60 / 60;
2490 tm->tm_sec = tm->tm_sec % 60;
2491 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492 tm->tm_mday %= (4*365+1);
2493 mon_day[1] = 29;
2494 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495 tm->tm_mday -= mon_day[tm->tm_mon];
2496 if (++tm->tm_mon == 12) {
2497 tm->tm_mon = 0;
2498 ++tm->tm_year;
2499 mon_day[1] = 28;
2500 }
2501 }
2502 ++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512 struct timespec uptime;
2513 do_posix_clock_monotonic_gettime(&uptime);
2514 memset(val, 0, sizeof(*val));
2515 val->uptime = uptime.tv_sec;
2516 val->loads[0] = avenrun[0];
2517 val->loads[1] = avenrun[1];
2518 val->loads[2] = avenrun[2];
2519 val->procs = nr_threads-1;
2520 si_meminfo(val);
2521
2522 return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530 struct timespec now;
2531 struct kdb_tm tm;
2532 struct sysinfo val;
2533
2534 if (argc)
2535 return KDB_ARGCOUNT;
2536
2537 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2538 kdb_printf("release %s\n", init_uts_ns.name.release);
2539 kdb_printf("version %s\n", init_uts_ns.name.version);
2540 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2541 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2542 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2544
2545 now = __current_kernel_time();
2546 kdb_gmtime(&now, &tm);
2547 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2548 "tz_minuteswest %d\n",
2549 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550 tm.tm_hour, tm.tm_min, tm.tm_sec,
2551 sys_tz.tz_minuteswest);
2552
2553 kdb_sysinfo(&val);
2554 kdb_printf("uptime ");
2555 if (val.uptime > (24*60*60)) {
2556 int days = val.uptime / (24*60*60);
2557 val.uptime %= (24*60*60);
2558 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559 }
2560 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572 /* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2575 "Buffers: %8lu kB\n",
2576 val.totalram, val.freeram, val.bufferram);
2577 return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585 char fmtstr[64];
2586 int cpu, diag, nextarg = 1;
2587 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589 if (argc < 1 || argc > 3)
2590 return KDB_ARGCOUNT;
2591
2592 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593 if (diag)
2594 return diag;
2595
2596 if (argc >= 2) {
2597 diag = kdbgetularg(argv[2], &bytesperword);
2598 if (diag)
2599 return diag;
2600 }
2601 if (!bytesperword)
2602 bytesperword = KDB_WORD_SIZE;
2603 else if (bytesperword > KDB_WORD_SIZE)
2604 return KDB_BADWIDTH;
2605 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606 if (argc >= 3) {
2607 diag = kdbgetularg(argv[3], &whichcpu);
2608 if (diag)
2609 return diag;
2610 if (!cpu_online(whichcpu)) {
2611 kdb_printf("cpu %ld is not online\n", whichcpu);
2612 return KDB_BADCPUNUM;
2613 }
2614 }
2615
2616 /* Most architectures use __per_cpu_offset[cpu], some use
2617 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618 */
2619#ifdef __per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628 for_each_online_cpu(cpu) {
2629 if (KDB_FLAG(CMD_INTERRUPT))
2630 return 0;
2631
2632 if (whichcpu != ~0UL && whichcpu != cpu)
2633 continue;
2634 addr = symaddr + KDB_PCU(cpu);
2635 diag = kdb_getword(&val, addr, bytesperword);
2636 if (diag) {
2637 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638 "read, diag=%d\n", cpu, addr, diag);
2639 continue;
2640 }
2641 kdb_printf("%5d ", cpu);
2642 kdb_md_line(fmtstr, addr,
2643 bytesperword == KDB_WORD_SIZE,
2644 1, bytesperword, 1, 1, 0);
2645 }
2646#undef KDB_PCU
2647 return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655 kdb_printf("Usage of cmd args | grep pattern:\n");
2656 kdb_printf(" Any command's output may be filtered through an ");
2657 kdb_printf("emulated 'pipe'.\n");
2658 kdb_printf(" 'grep' is just a key word.\n");
2659 kdb_printf(" The pattern may include a very limited set of "
2660 "metacharacters:\n");
2661 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2662 kdb_printf(" And if there are spaces in the pattern, you may "
2663 "quote it:\n");
2664 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665 " or \"^pat tern$\"\n");
2666 return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * debugger command.
2672 * Inputs:
2673 * cmd Command name
2674 * func Function to execute the command
2675 * usage A simple usage string showing arguments
2676 * help A simple help string describing command
2677 * repeat Does the command auto repeat on enter?
2678 * Returns:
2679 * zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50 /* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683 kdb_func_t func,
2684 char *usage,
2685 char *help,
2686 short minlen,
2687 kdb_repeat_t repeat)
2688{
2689 int i;
2690 kdbtab_t *kp;
2691
2692 /*
2693 * Brute force method to determine duplicates
2694 */
2695 for_each_kdbcmd(kp, i) {
2696 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697 kdb_printf("Duplicate kdb command registered: "
2698 "%s, func %p help %s\n", cmd, func, help);
2699 return 1;
2700 }
2701 }
2702
2703 /*
2704 * Insert command into first available location in table
2705 */
2706 for_each_kdbcmd(kp, i) {
2707 if (kp->cmd_name == NULL)
2708 break;
2709 }
2710
2711 if (i >= kdb_max_commands) {
2712 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714 if (!new) {
2715 kdb_printf("Could not allocate new kdb_command "
2716 "table\n");
2717 return 1;
2718 }
2719 if (kdb_commands) {
2720 memcpy(new, kdb_commands,
2721 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722 kfree(kdb_commands);
2723 }
2724 memset(new + kdb_max_commands, 0,
2725 kdb_command_extend * sizeof(*new));
2726 kdb_commands = new;
2727 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728 kdb_max_commands += kdb_command_extend;
2729 }
2730
2731 kp->cmd_name = cmd;
2732 kp->cmd_func = func;
2733 kp->cmd_usage = usage;
2734 kp->cmd_help = help;
2735 kp->cmd_flags = 0;
2736 kp->cmd_minlen = minlen;
2737 kp->cmd_repeat = repeat;
2738
2739 return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 * not need to specify a repeat state. Equivalent to
2747 * kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 * cmd Command name
2750 * func Function to execute the command
2751 * usage A simple usage string showing arguments
2752 * help A simple help string describing command
2753 * Returns:
2754 * zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757 kdb_func_t func,
2758 char *usage,
2759 char *help,
2760 short minlen)
2761{
2762 return kdb_register_repeat(cmd, func, usage, help, minlen,
2763 KDB_REPEAT_NONE);
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 * debugger command. It is generally called when a module which
2770 * implements kdb commands is unloaded.
2771 * Inputs:
2772 * cmd Command name
2773 * Returns:
2774 * zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778 int i;
2779 kdbtab_t *kp;
2780
2781 /*
2782 * find the command.
2783 */
2784 for_each_kdbcmd(kp, i) {
2785 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786 kp->cmd_name = NULL;
2787 return 0;
2788 }
2789 }
2790
2791 /* Couldn't find it. */
2792 return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799 int i;
2800 kdbtab_t *kp;
2801
2802 for_each_kdbcmd(kp, i)
2803 kp->cmd_name = NULL;
2804
2805 kdb_register_repeat("md", kdb_md, "<vaddr>",
2806 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807 KDB_REPEAT_NO_ARGS);
2808 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817 "Continue Execution", 1, KDB_REPEAT_NONE);
2818 kdb_register_repeat("rd", kdb_rd, "",
2819 "Display Registers", 0, KDB_REPEAT_NONE);
2820 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821 "Modify Registers", 0, KDB_REPEAT_NONE);
2822 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823 "Display exception frame", 0, KDB_REPEAT_NONE);
2824 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825 "Stack traceback", 1, KDB_REPEAT_NONE);
2826 kdb_register_repeat("btp", kdb_bt, "<pid>",
2827 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829 "Display stack all processes", 0, KDB_REPEAT_NONE);
2830 kdb_register_repeat("btc", kdb_bt, "",
2831 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2833 "Backtrace process given its struct task address", 0,
2834 KDB_REPEAT_NONE);
2835 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837 kdb_register_repeat("env", kdb_env, "",
2838 "Show environment variables", 0, KDB_REPEAT_NONE);
2839 kdb_register_repeat("set", kdb_set, "",
2840 "Set environment variables", 0, KDB_REPEAT_NONE);
2841 kdb_register_repeat("help", kdb_help, "",
2842 "Display Help Message", 1, KDB_REPEAT_NONE);
2843 kdb_register_repeat("?", kdb_help, "",
2844 "Display Help Message", 0, KDB_REPEAT_NONE);
2845 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847 kdb_register_repeat("kgdb", kdb_kgdb, "",
2848 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850 "Display active task list", 0, KDB_REPEAT_NONE);
2851 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852 "Switch to another task", 0, KDB_REPEAT_NONE);
2853 kdb_register_repeat("reboot", kdb_reboot, "",
2854 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2855#if defined(CONFIG_MODULES)
2856 kdb_register_repeat("lsmod", kdb_lsmod, "",
2857 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860 kdb_register_repeat("sr", kdb_sr, "<key>",
2861 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2862#endif
2863#if defined(CONFIG_PRINTK)
2864 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2866#endif
2867 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("summary", kdb_summary, "",
2872 "Summarize the system", 4, KDB_REPEAT_NONE);
2873 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875 kdb_register_repeat("grephelp", kdb_grep_help, "",
2876 "Display help on | grep", 0, KDB_REPEAT_NONE);
2877}
2878
2879/* Execute any commands defined in kdb_cmds. */
2880static void __init kdb_cmd_init(void)
2881{
2882 int i, diag;
2883 for (i = 0; kdb_cmds[i]; ++i) {
2884 diag = kdb_parse(kdb_cmds[i]);
2885 if (diag)
2886 kdb_printf("kdb command %s failed, kdb diag %d\n",
2887 kdb_cmds[i], diag);
2888 }
2889 if (defcmd_in_progress) {
2890 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891 kdb_parse("endefcmd");
2892 }
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899 int i;
2900
2901 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902 return;
2903 for (i = kdb_init_lvl; i < lvl; i++) {
2904 switch (i) {
2905 case KDB_NOT_INITIALIZED:
2906 kdb_inittab(); /* Initialize Command Table */
2907 kdb_initbptab(); /* Initialize Breakpoints */
2908 break;
2909 case KDB_INIT_EARLY:
2910 kdb_cmd_init(); /* Build kdb_cmds tables */
2911 break;
2912 }
2913 }
2914 kdb_init_lvl = lvl;
2915}