Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1#ifndef _ASM_GENERIC_PGTABLE_H
  2#define _ASM_GENERIC_PGTABLE_H
  3
  4#include <linux/pfn.h>
  5
  6#ifndef __ASSEMBLY__
  7#ifdef CONFIG_MMU
  8
  9#include <linux/mm_types.h>
 10#include <linux/bug.h>
 11#include <linux/errno.h>
 12
 13#if 4 - defined(__PAGETABLE_PUD_FOLDED) - defined(__PAGETABLE_PMD_FOLDED) != \
 14	CONFIG_PGTABLE_LEVELS
 15#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{PUD,PMD}_FOLDED
 16#endif
 17
 18/*
 19 * On almost all architectures and configurations, 0 can be used as the
 20 * upper ceiling to free_pgtables(): on many architectures it has the same
 21 * effect as using TASK_SIZE.  However, there is one configuration which
 22 * must impose a more careful limit, to avoid freeing kernel pgtables.
 23 */
 24#ifndef USER_PGTABLES_CEILING
 25#define USER_PGTABLES_CEILING	0UL
 26#endif
 27
 28#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 29extern int ptep_set_access_flags(struct vm_area_struct *vma,
 30				 unsigned long address, pte_t *ptep,
 31				 pte_t entry, int dirty);
 32#endif
 33
 34#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 35#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 36extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 37				 unsigned long address, pmd_t *pmdp,
 38				 pmd_t entry, int dirty);
 39#else
 40static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
 41					unsigned long address, pmd_t *pmdp,
 42					pmd_t entry, int dirty)
 43{
 44	BUILD_BUG();
 45	return 0;
 46}
 47#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 48#endif
 49
 50#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 51static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 52					    unsigned long address,
 53					    pte_t *ptep)
 54{
 55	pte_t pte = *ptep;
 56	int r = 1;
 57	if (!pte_young(pte))
 58		r = 0;
 59	else
 60		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 61	return r;
 62}
 63#endif
 64
 65#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 66#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 67static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 68					    unsigned long address,
 69					    pmd_t *pmdp)
 70{
 71	pmd_t pmd = *pmdp;
 72	int r = 1;
 73	if (!pmd_young(pmd))
 74		r = 0;
 75	else
 76		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 77	return r;
 78}
 79#else
 80static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 81					    unsigned long address,
 82					    pmd_t *pmdp)
 83{
 84	BUILD_BUG();
 85	return 0;
 86}
 87#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 88#endif
 89
 90#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 91int ptep_clear_flush_young(struct vm_area_struct *vma,
 92			   unsigned long address, pte_t *ptep);
 93#endif
 94
 95#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 96#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 97extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 98				  unsigned long address, pmd_t *pmdp);
 99#else
100/*
101 * Despite relevant to THP only, this API is called from generic rmap code
102 * under PageTransHuge(), hence needs a dummy implementation for !THP
103 */
104static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
105					 unsigned long address, pmd_t *pmdp)
106{
107	BUILD_BUG();
108	return 0;
109}
110#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
111#endif
112
113#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
114static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
115				       unsigned long address,
116				       pte_t *ptep)
117{
118	pte_t pte = *ptep;
119	pte_clear(mm, address, ptep);
120	return pte;
121}
122#endif
123
124#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
125#ifdef CONFIG_TRANSPARENT_HUGEPAGE
126static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
127					    unsigned long address,
128					    pmd_t *pmdp)
129{
130	pmd_t pmd = *pmdp;
131	pmd_clear(pmdp);
132	return pmd;
133}
134#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
135#endif
136
137#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
138#ifdef CONFIG_TRANSPARENT_HUGEPAGE
139static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
140					    unsigned long address, pmd_t *pmdp,
141					    int full)
142{
143	return pmdp_huge_get_and_clear(mm, address, pmdp);
144}
145#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
146#endif
147
148#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
149static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
150					    unsigned long address, pte_t *ptep,
151					    int full)
152{
153	pte_t pte;
154	pte = ptep_get_and_clear(mm, address, ptep);
155	return pte;
156}
157#endif
158
159/*
160 * Some architectures may be able to avoid expensive synchronization
161 * primitives when modifications are made to PTE's which are already
162 * not present, or in the process of an address space destruction.
163 */
164#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
165static inline void pte_clear_not_present_full(struct mm_struct *mm,
166					      unsigned long address,
167					      pte_t *ptep,
168					      int full)
169{
170	pte_clear(mm, address, ptep);
171}
172#endif
173
174#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
175extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
176			      unsigned long address,
177			      pte_t *ptep);
178#endif
179
180#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
181extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
182			      unsigned long address,
183			      pmd_t *pmdp);
184#endif
185
186#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
187struct mm_struct;
188static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
189{
190	pte_t old_pte = *ptep;
191	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
192}
193#endif
194
195#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
197static inline void pmdp_set_wrprotect(struct mm_struct *mm,
198				      unsigned long address, pmd_t *pmdp)
199{
200	pmd_t old_pmd = *pmdp;
201	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
202}
203#else
204static inline void pmdp_set_wrprotect(struct mm_struct *mm,
205				      unsigned long address, pmd_t *pmdp)
206{
207	BUILD_BUG();
208}
209#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
210#endif
211
212#ifndef pmdp_collapse_flush
213#ifdef CONFIG_TRANSPARENT_HUGEPAGE
214extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
215				 unsigned long address, pmd_t *pmdp);
216#else
217static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
218					unsigned long address,
219					pmd_t *pmdp)
220{
221	BUILD_BUG();
222	return *pmdp;
223}
224#define pmdp_collapse_flush pmdp_collapse_flush
225#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
226#endif
227
228#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
229extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
230				       pgtable_t pgtable);
231#endif
232
233#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
234extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
235#endif
236
237#ifndef __HAVE_ARCH_PMDP_INVALIDATE
238extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
239			    pmd_t *pmdp);
240#endif
241
242#ifndef __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE
243static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma,
244					   unsigned long address, pmd_t *pmdp)
245{
246
247}
248#endif
249
250#ifndef __HAVE_ARCH_PTE_SAME
251static inline int pte_same(pte_t pte_a, pte_t pte_b)
252{
253	return pte_val(pte_a) == pte_val(pte_b);
254}
255#endif
256
257#ifndef __HAVE_ARCH_PTE_UNUSED
258/*
259 * Some architectures provide facilities to virtualization guests
260 * so that they can flag allocated pages as unused. This allows the
261 * host to transparently reclaim unused pages. This function returns
262 * whether the pte's page is unused.
263 */
264static inline int pte_unused(pte_t pte)
265{
266	return 0;
267}
268#endif
269
270#ifndef __HAVE_ARCH_PMD_SAME
271#ifdef CONFIG_TRANSPARENT_HUGEPAGE
272static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
273{
274	return pmd_val(pmd_a) == pmd_val(pmd_b);
275}
276#else /* CONFIG_TRANSPARENT_HUGEPAGE */
277static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
278{
279	BUILD_BUG();
280	return 0;
281}
282#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
283#endif
284
285#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
286#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
287#endif
288
289#ifndef __HAVE_ARCH_MOVE_PTE
290#define move_pte(pte, prot, old_addr, new_addr)	(pte)
291#endif
292
293#ifndef pte_accessible
294# define pte_accessible(mm, pte)	((void)(pte), 1)
295#endif
296
297#ifndef flush_tlb_fix_spurious_fault
298#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
299#endif
300
301#ifndef pgprot_noncached
302#define pgprot_noncached(prot)	(prot)
303#endif
304
305#ifndef pgprot_writecombine
306#define pgprot_writecombine pgprot_noncached
307#endif
308
309#ifndef pgprot_writethrough
310#define pgprot_writethrough pgprot_noncached
311#endif
312
313#ifndef pgprot_device
314#define pgprot_device pgprot_noncached
315#endif
316
317#ifndef pgprot_modify
318#define pgprot_modify pgprot_modify
319static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
320{
321	if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
322		newprot = pgprot_noncached(newprot);
323	if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
324		newprot = pgprot_writecombine(newprot);
325	if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
326		newprot = pgprot_device(newprot);
327	return newprot;
328}
329#endif
330
331/*
332 * When walking page tables, get the address of the next boundary,
333 * or the end address of the range if that comes earlier.  Although no
334 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
335 */
336
337#define pgd_addr_end(addr, end)						\
338({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
339	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
340})
341
342#ifndef pud_addr_end
343#define pud_addr_end(addr, end)						\
344({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
345	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
346})
347#endif
348
349#ifndef pmd_addr_end
350#define pmd_addr_end(addr, end)						\
351({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
352	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
353})
354#endif
355
356/*
357 * When walking page tables, we usually want to skip any p?d_none entries;
358 * and any p?d_bad entries - reporting the error before resetting to none.
359 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
360 */
361void pgd_clear_bad(pgd_t *);
362void pud_clear_bad(pud_t *);
363void pmd_clear_bad(pmd_t *);
364
365static inline int pgd_none_or_clear_bad(pgd_t *pgd)
366{
367	if (pgd_none(*pgd))
368		return 1;
369	if (unlikely(pgd_bad(*pgd))) {
370		pgd_clear_bad(pgd);
371		return 1;
372	}
373	return 0;
374}
375
376static inline int pud_none_or_clear_bad(pud_t *pud)
377{
378	if (pud_none(*pud))
379		return 1;
380	if (unlikely(pud_bad(*pud))) {
381		pud_clear_bad(pud);
382		return 1;
383	}
384	return 0;
385}
386
387static inline int pmd_none_or_clear_bad(pmd_t *pmd)
388{
389	if (pmd_none(*pmd))
390		return 1;
391	if (unlikely(pmd_bad(*pmd))) {
392		pmd_clear_bad(pmd);
393		return 1;
394	}
395	return 0;
396}
397
398static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
399					     unsigned long addr,
400					     pte_t *ptep)
401{
402	/*
403	 * Get the current pte state, but zero it out to make it
404	 * non-present, preventing the hardware from asynchronously
405	 * updating it.
406	 */
407	return ptep_get_and_clear(mm, addr, ptep);
408}
409
410static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
411					     unsigned long addr,
412					     pte_t *ptep, pte_t pte)
413{
414	/*
415	 * The pte is non-present, so there's no hardware state to
416	 * preserve.
417	 */
418	set_pte_at(mm, addr, ptep, pte);
419}
420
421#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
422/*
423 * Start a pte protection read-modify-write transaction, which
424 * protects against asynchronous hardware modifications to the pte.
425 * The intention is not to prevent the hardware from making pte
426 * updates, but to prevent any updates it may make from being lost.
427 *
428 * This does not protect against other software modifications of the
429 * pte; the appropriate pte lock must be held over the transation.
430 *
431 * Note that this interface is intended to be batchable, meaning that
432 * ptep_modify_prot_commit may not actually update the pte, but merely
433 * queue the update to be done at some later time.  The update must be
434 * actually committed before the pte lock is released, however.
435 */
436static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
437					   unsigned long addr,
438					   pte_t *ptep)
439{
440	return __ptep_modify_prot_start(mm, addr, ptep);
441}
442
443/*
444 * Commit an update to a pte, leaving any hardware-controlled bits in
445 * the PTE unmodified.
446 */
447static inline void ptep_modify_prot_commit(struct mm_struct *mm,
448					   unsigned long addr,
449					   pte_t *ptep, pte_t pte)
450{
451	__ptep_modify_prot_commit(mm, addr, ptep, pte);
452}
453#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
454#endif /* CONFIG_MMU */
455
456/*
457 * A facility to provide lazy MMU batching.  This allows PTE updates and
458 * page invalidations to be delayed until a call to leave lazy MMU mode
459 * is issued.  Some architectures may benefit from doing this, and it is
460 * beneficial for both shadow and direct mode hypervisors, which may batch
461 * the PTE updates which happen during this window.  Note that using this
462 * interface requires that read hazards be removed from the code.  A read
463 * hazard could result in the direct mode hypervisor case, since the actual
464 * write to the page tables may not yet have taken place, so reads though
465 * a raw PTE pointer after it has been modified are not guaranteed to be
466 * up to date.  This mode can only be entered and left under the protection of
467 * the page table locks for all page tables which may be modified.  In the UP
468 * case, this is required so that preemption is disabled, and in the SMP case,
469 * it must synchronize the delayed page table writes properly on other CPUs.
470 */
471#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
472#define arch_enter_lazy_mmu_mode()	do {} while (0)
473#define arch_leave_lazy_mmu_mode()	do {} while (0)
474#define arch_flush_lazy_mmu_mode()	do {} while (0)
475#endif
476
477/*
478 * A facility to provide batching of the reload of page tables and
479 * other process state with the actual context switch code for
480 * paravirtualized guests.  By convention, only one of the batched
481 * update (lazy) modes (CPU, MMU) should be active at any given time,
482 * entry should never be nested, and entry and exits should always be
483 * paired.  This is for sanity of maintaining and reasoning about the
484 * kernel code.  In this case, the exit (end of the context switch) is
485 * in architecture-specific code, and so doesn't need a generic
486 * definition.
487 */
488#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
489#define arch_start_context_switch(prev)	do {} while (0)
490#endif
491
492#ifndef CONFIG_HAVE_ARCH_SOFT_DIRTY
493static inline int pte_soft_dirty(pte_t pte)
494{
495	return 0;
496}
497
498static inline int pmd_soft_dirty(pmd_t pmd)
499{
500	return 0;
501}
502
503static inline pte_t pte_mksoft_dirty(pte_t pte)
504{
505	return pte;
506}
507
508static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
509{
510	return pmd;
511}
512
513static inline pte_t pte_clear_soft_dirty(pte_t pte)
514{
515	return pte;
516}
517
518static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
519{
520	return pmd;
521}
522
523static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
524{
525	return pte;
526}
527
528static inline int pte_swp_soft_dirty(pte_t pte)
529{
530	return 0;
531}
532
533static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
534{
535	return pte;
536}
537#endif
538
539#ifndef __HAVE_PFNMAP_TRACKING
540/*
541 * Interfaces that can be used by architecture code to keep track of
542 * memory type of pfn mappings specified by the remap_pfn_range,
543 * vm_insert_pfn.
544 */
545
546/*
547 * track_pfn_remap is called when a _new_ pfn mapping is being established
548 * by remap_pfn_range() for physical range indicated by pfn and size.
549 */
550static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
551				  unsigned long pfn, unsigned long addr,
552				  unsigned long size)
553{
554	return 0;
555}
556
557/*
558 * track_pfn_insert is called when a _new_ single pfn is established
559 * by vm_insert_pfn().
560 */
561static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
562				    pfn_t pfn)
563{
564}
565
566/*
567 * track_pfn_copy is called when vma that is covering the pfnmap gets
568 * copied through copy_page_range().
569 */
570static inline int track_pfn_copy(struct vm_area_struct *vma)
571{
572	return 0;
573}
574
575/*
576 * untrack_pfn is called while unmapping a pfnmap for a region.
577 * untrack can be called for a specific region indicated by pfn and size or
578 * can be for the entire vma (in which case pfn, size are zero).
579 */
580static inline void untrack_pfn(struct vm_area_struct *vma,
581			       unsigned long pfn, unsigned long size)
582{
583}
584
585/*
586 * untrack_pfn_moved is called while mremapping a pfnmap for a new region.
587 */
588static inline void untrack_pfn_moved(struct vm_area_struct *vma)
589{
590}
591#else
592extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
593			   unsigned long pfn, unsigned long addr,
594			   unsigned long size);
595extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
596			     pfn_t pfn);
597extern int track_pfn_copy(struct vm_area_struct *vma);
598extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
599			unsigned long size);
600extern void untrack_pfn_moved(struct vm_area_struct *vma);
601#endif
602
603#ifdef __HAVE_COLOR_ZERO_PAGE
604static inline int is_zero_pfn(unsigned long pfn)
605{
606	extern unsigned long zero_pfn;
607	unsigned long offset_from_zero_pfn = pfn - zero_pfn;
608	return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
609}
610
611#define my_zero_pfn(addr)	page_to_pfn(ZERO_PAGE(addr))
612
613#else
614static inline int is_zero_pfn(unsigned long pfn)
615{
616	extern unsigned long zero_pfn;
617	return pfn == zero_pfn;
618}
619
620static inline unsigned long my_zero_pfn(unsigned long addr)
621{
622	extern unsigned long zero_pfn;
623	return zero_pfn;
624}
625#endif
626
627#ifdef CONFIG_MMU
628
629#ifndef CONFIG_TRANSPARENT_HUGEPAGE
630static inline int pmd_trans_huge(pmd_t pmd)
631{
632	return 0;
633}
634#ifndef __HAVE_ARCH_PMD_WRITE
635static inline int pmd_write(pmd_t pmd)
636{
637	BUG();
638	return 0;
639}
640#endif /* __HAVE_ARCH_PMD_WRITE */
641#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
642
643#ifndef pmd_read_atomic
644static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
645{
646	/*
647	 * Depend on compiler for an atomic pmd read. NOTE: this is
648	 * only going to work, if the pmdval_t isn't larger than
649	 * an unsigned long.
650	 */
651	return *pmdp;
652}
653#endif
654
655#ifndef arch_needs_pgtable_deposit
656#define arch_needs_pgtable_deposit() (false)
657#endif
658/*
659 * This function is meant to be used by sites walking pagetables with
660 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
661 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
662 * into a null pmd and the transhuge page fault can convert a null pmd
663 * into an hugepmd or into a regular pmd (if the hugepage allocation
664 * fails). While holding the mmap_sem in read mode the pmd becomes
665 * stable and stops changing under us only if it's not null and not a
666 * transhuge pmd. When those races occurs and this function makes a
667 * difference vs the standard pmd_none_or_clear_bad, the result is
668 * undefined so behaving like if the pmd was none is safe (because it
669 * can return none anyway). The compiler level barrier() is critically
670 * important to compute the two checks atomically on the same pmdval.
671 *
672 * For 32bit kernels with a 64bit large pmd_t this automatically takes
673 * care of reading the pmd atomically to avoid SMP race conditions
674 * against pmd_populate() when the mmap_sem is hold for reading by the
675 * caller (a special atomic read not done by "gcc" as in the generic
676 * version above, is also needed when THP is disabled because the page
677 * fault can populate the pmd from under us).
678 */
679static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
680{
681	pmd_t pmdval = pmd_read_atomic(pmd);
682	/*
683	 * The barrier will stabilize the pmdval in a register or on
684	 * the stack so that it will stop changing under the code.
685	 *
686	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
687	 * pmd_read_atomic is allowed to return a not atomic pmdval
688	 * (for example pointing to an hugepage that has never been
689	 * mapped in the pmd). The below checks will only care about
690	 * the low part of the pmd with 32bit PAE x86 anyway, with the
691	 * exception of pmd_none(). So the important thing is that if
692	 * the low part of the pmd is found null, the high part will
693	 * be also null or the pmd_none() check below would be
694	 * confused.
695	 */
696#ifdef CONFIG_TRANSPARENT_HUGEPAGE
697	barrier();
698#endif
699	if (pmd_none(pmdval) || pmd_trans_huge(pmdval))
700		return 1;
701	if (unlikely(pmd_bad(pmdval))) {
702		pmd_clear_bad(pmd);
703		return 1;
704	}
705	return 0;
706}
707
708/*
709 * This is a noop if Transparent Hugepage Support is not built into
710 * the kernel. Otherwise it is equivalent to
711 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
712 * places that already verified the pmd is not none and they want to
713 * walk ptes while holding the mmap sem in read mode (write mode don't
714 * need this). If THP is not enabled, the pmd can't go away under the
715 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
716 * run a pmd_trans_unstable before walking the ptes after
717 * split_huge_page_pmd returns (because it may have run when the pmd
718 * become null, but then a page fault can map in a THP and not a
719 * regular page).
720 */
721static inline int pmd_trans_unstable(pmd_t *pmd)
722{
723#ifdef CONFIG_TRANSPARENT_HUGEPAGE
724	return pmd_none_or_trans_huge_or_clear_bad(pmd);
725#else
726	return 0;
727#endif
728}
729
730#ifndef CONFIG_NUMA_BALANCING
731/*
732 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
733 * the only case the kernel cares is for NUMA balancing and is only ever set
734 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
735 * _PAGE_PROTNONE so by by default, implement the helper as "always no". It
736 * is the responsibility of the caller to distinguish between PROT_NONE
737 * protections and NUMA hinting fault protections.
738 */
739static inline int pte_protnone(pte_t pte)
740{
741	return 0;
742}
743
744static inline int pmd_protnone(pmd_t pmd)
745{
746	return 0;
747}
748#endif /* CONFIG_NUMA_BALANCING */
749
750#endif /* CONFIG_MMU */
751
752#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
753int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
754int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
755int pud_clear_huge(pud_t *pud);
756int pmd_clear_huge(pmd_t *pmd);
757#else	/* !CONFIG_HAVE_ARCH_HUGE_VMAP */
758static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
759{
760	return 0;
761}
762static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
763{
764	return 0;
765}
766static inline int pud_clear_huge(pud_t *pud)
767{
768	return 0;
769}
770static inline int pmd_clear_huge(pmd_t *pmd)
771{
772	return 0;
773}
774#endif	/* CONFIG_HAVE_ARCH_HUGE_VMAP */
775
776#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
777#ifdef CONFIG_TRANSPARENT_HUGEPAGE
778/*
779 * ARCHes with special requirements for evicting THP backing TLB entries can
780 * implement this. Otherwise also, it can help optimize normal TLB flush in
781 * THP regime. stock flush_tlb_range() typically has optimization to nuke the
782 * entire TLB TLB if flush span is greater than a threshold, which will
783 * likely be true for a single huge page. Thus a single thp flush will
784 * invalidate the entire TLB which is not desitable.
785 * e.g. see arch/arc: flush_pmd_tlb_range
786 */
787#define flush_pmd_tlb_range(vma, addr, end)	flush_tlb_range(vma, addr, end)
788#else
789#define flush_pmd_tlb_range(vma, addr, end)	BUILD_BUG()
790#endif
791#endif
792
793struct file;
794int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
795			unsigned long size, pgprot_t *vma_prot);
796#endif /* !__ASSEMBLY__ */
797
798#ifndef io_remap_pfn_range
799#define io_remap_pfn_range remap_pfn_range
800#endif
801
802#ifndef has_transparent_hugepage
803#ifdef CONFIG_TRANSPARENT_HUGEPAGE
804#define has_transparent_hugepage() 1
805#else
806#define has_transparent_hugepage() 0
807#endif
808#endif
809
810#endif /* _ASM_GENERIC_PGTABLE_H */