Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.13.7.
  1#ifndef _ASM_GENERIC_PGTABLE_H
  2#define _ASM_GENERIC_PGTABLE_H
  3
  4#ifndef __ASSEMBLY__
  5#ifdef CONFIG_MMU
  6
  7#include <linux/mm_types.h>
  8#include <linux/bug.h>
  9
 10#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 11extern int ptep_set_access_flags(struct vm_area_struct *vma,
 12				 unsigned long address, pte_t *ptep,
 13				 pte_t entry, int dirty);
 14#endif
 15
 16#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 17extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 18				 unsigned long address, pmd_t *pmdp,
 19				 pmd_t entry, int dirty);
 20#endif
 21
 22#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 23static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
 24					    unsigned long address,
 25					    pte_t *ptep)
 26{
 27	pte_t pte = *ptep;
 28	int r = 1;
 29	if (!pte_young(pte))
 30		r = 0;
 31	else
 32		set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
 33	return r;
 34}
 35#endif
 36
 37#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
 38#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 39static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 40					    unsigned long address,
 41					    pmd_t *pmdp)
 42{
 43	pmd_t pmd = *pmdp;
 44	int r = 1;
 45	if (!pmd_young(pmd))
 46		r = 0;
 47	else
 48		set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
 49	return r;
 50}
 51#else /* CONFIG_TRANSPARENT_HUGEPAGE */
 52static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
 53					    unsigned long address,
 54					    pmd_t *pmdp)
 55{
 56	BUG();
 57	return 0;
 58}
 59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 60#endif
 61
 62#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
 63int ptep_clear_flush_young(struct vm_area_struct *vma,
 64			   unsigned long address, pte_t *ptep);
 65#endif
 66
 67#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 68int pmdp_clear_flush_young(struct vm_area_struct *vma,
 69			   unsigned long address, pmd_t *pmdp);
 70#endif
 71
 72#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
 73static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
 74				       unsigned long address,
 75				       pte_t *ptep)
 76{
 77	pte_t pte = *ptep;
 78	pte_clear(mm, address, ptep);
 79	return pte;
 80}
 81#endif
 82
 83#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
 84#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 85static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
 86				       unsigned long address,
 87				       pmd_t *pmdp)
 88{
 89	pmd_t pmd = *pmdp;
 90	pmd_clear(mm, address, pmdp);
 91	return pmd;
 92}
 93#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
 94#endif
 95
 96#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
 97static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
 98					    unsigned long address, pte_t *ptep,
 99					    int full)
100{
101	pte_t pte;
102	pte = ptep_get_and_clear(mm, address, ptep);
103	return pte;
104}
105#endif
106
107/*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
113static inline void pte_clear_not_present_full(struct mm_struct *mm,
114					      unsigned long address,
115					      pte_t *ptep,
116					      int full)
117{
118	pte_clear(mm, address, ptep);
119}
120#endif
121
122#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
123extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124			      unsigned long address,
125			      pte_t *ptep);
126#endif
127
128#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130			      unsigned long address,
131			      pmd_t *pmdp);
132#endif
133
134#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
135struct mm_struct;
136static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137{
138	pte_t old_pte = *ptep;
139	set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140}
141#endif
142
143#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
145static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146				      unsigned long address, pmd_t *pmdp)
147{
148	pmd_t old_pmd = *pmdp;
149	set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150}
151#else /* CONFIG_TRANSPARENT_HUGEPAGE */
152static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153				      unsigned long address, pmd_t *pmdp)
154{
155	BUG();
156}
157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158#endif
159
160#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
161extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162				 unsigned long address, pmd_t *pmdp);
163#endif
164
165#ifndef __HAVE_ARCH_PTE_SAME
166static inline int pte_same(pte_t pte_a, pte_t pte_b)
167{
168	return pte_val(pte_a) == pte_val(pte_b);
169}
170#endif
171
172#ifndef __HAVE_ARCH_PMD_SAME
173#ifdef CONFIG_TRANSPARENT_HUGEPAGE
174static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
175{
176	return pmd_val(pmd_a) == pmd_val(pmd_b);
177}
178#else /* CONFIG_TRANSPARENT_HUGEPAGE */
179static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
180{
181	BUG();
182	return 0;
183}
184#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
185#endif
186
187#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
188#define page_test_and_clear_dirty(pfn, mapped)	(0)
189#endif
190
191#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_DIRTY
192#define pte_maybe_dirty(pte)		pte_dirty(pte)
193#else
194#define pte_maybe_dirty(pte)		(1)
195#endif
196
197#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
198#define page_test_and_clear_young(pfn) (0)
199#endif
200
201#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
202#define pgd_offset_gate(mm, addr)	pgd_offset(mm, addr)
203#endif
204
205#ifndef __HAVE_ARCH_MOVE_PTE
206#define move_pte(pte, prot, old_addr, new_addr)	(pte)
207#endif
208
209#ifndef flush_tlb_fix_spurious_fault
210#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
211#endif
212
213#ifndef pgprot_noncached
214#define pgprot_noncached(prot)	(prot)
215#endif
216
217#ifndef pgprot_writecombine
218#define pgprot_writecombine pgprot_noncached
219#endif
220
221/*
222 * When walking page tables, get the address of the next boundary,
223 * or the end address of the range if that comes earlier.  Although no
224 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
225 */
226
227#define pgd_addr_end(addr, end)						\
228({	unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK;	\
229	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
230})
231
232#ifndef pud_addr_end
233#define pud_addr_end(addr, end)						\
234({	unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK;	\
235	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
236})
237#endif
238
239#ifndef pmd_addr_end
240#define pmd_addr_end(addr, end)						\
241({	unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK;	\
242	(__boundary - 1 < (end) - 1)? __boundary: (end);		\
243})
244#endif
245
246/*
247 * When walking page tables, we usually want to skip any p?d_none entries;
248 * and any p?d_bad entries - reporting the error before resetting to none.
249 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
250 */
251void pgd_clear_bad(pgd_t *);
252void pud_clear_bad(pud_t *);
253void pmd_clear_bad(pmd_t *);
254
255static inline int pgd_none_or_clear_bad(pgd_t *pgd)
256{
257	if (pgd_none(*pgd))
258		return 1;
259	if (unlikely(pgd_bad(*pgd))) {
260		pgd_clear_bad(pgd);
261		return 1;
262	}
263	return 0;
264}
265
266static inline int pud_none_or_clear_bad(pud_t *pud)
267{
268	if (pud_none(*pud))
269		return 1;
270	if (unlikely(pud_bad(*pud))) {
271		pud_clear_bad(pud);
272		return 1;
273	}
274	return 0;
275}
276
277static inline int pmd_none_or_clear_bad(pmd_t *pmd)
278{
279	if (pmd_none(*pmd))
280		return 1;
281	if (unlikely(pmd_bad(*pmd))) {
282		pmd_clear_bad(pmd);
283		return 1;
284	}
285	return 0;
286}
287
288static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
289					     unsigned long addr,
290					     pte_t *ptep)
291{
292	/*
293	 * Get the current pte state, but zero it out to make it
294	 * non-present, preventing the hardware from asynchronously
295	 * updating it.
296	 */
297	return ptep_get_and_clear(mm, addr, ptep);
298}
299
300static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
301					     unsigned long addr,
302					     pte_t *ptep, pte_t pte)
303{
304	/*
305	 * The pte is non-present, so there's no hardware state to
306	 * preserve.
307	 */
308	set_pte_at(mm, addr, ptep, pte);
309}
310
311#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
312/*
313 * Start a pte protection read-modify-write transaction, which
314 * protects against asynchronous hardware modifications to the pte.
315 * The intention is not to prevent the hardware from making pte
316 * updates, but to prevent any updates it may make from being lost.
317 *
318 * This does not protect against other software modifications of the
319 * pte; the appropriate pte lock must be held over the transation.
320 *
321 * Note that this interface is intended to be batchable, meaning that
322 * ptep_modify_prot_commit may not actually update the pte, but merely
323 * queue the update to be done at some later time.  The update must be
324 * actually committed before the pte lock is released, however.
325 */
326static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
327					   unsigned long addr,
328					   pte_t *ptep)
329{
330	return __ptep_modify_prot_start(mm, addr, ptep);
331}
332
333/*
334 * Commit an update to a pte, leaving any hardware-controlled bits in
335 * the PTE unmodified.
336 */
337static inline void ptep_modify_prot_commit(struct mm_struct *mm,
338					   unsigned long addr,
339					   pte_t *ptep, pte_t pte)
340{
341	__ptep_modify_prot_commit(mm, addr, ptep, pte);
342}
343#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
344#endif /* CONFIG_MMU */
345
346/*
347 * A facility to provide lazy MMU batching.  This allows PTE updates and
348 * page invalidations to be delayed until a call to leave lazy MMU mode
349 * is issued.  Some architectures may benefit from doing this, and it is
350 * beneficial for both shadow and direct mode hypervisors, which may batch
351 * the PTE updates which happen during this window.  Note that using this
352 * interface requires that read hazards be removed from the code.  A read
353 * hazard could result in the direct mode hypervisor case, since the actual
354 * write to the page tables may not yet have taken place, so reads though
355 * a raw PTE pointer after it has been modified are not guaranteed to be
356 * up to date.  This mode can only be entered and left under the protection of
357 * the page table locks for all page tables which may be modified.  In the UP
358 * case, this is required so that preemption is disabled, and in the SMP case,
359 * it must synchronize the delayed page table writes properly on other CPUs.
360 */
361#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
362#define arch_enter_lazy_mmu_mode()	do {} while (0)
363#define arch_leave_lazy_mmu_mode()	do {} while (0)
364#define arch_flush_lazy_mmu_mode()	do {} while (0)
365#endif
366
367/*
368 * A facility to provide batching of the reload of page tables and
369 * other process state with the actual context switch code for
370 * paravirtualized guests.  By convention, only one of the batched
371 * update (lazy) modes (CPU, MMU) should be active at any given time,
372 * entry should never be nested, and entry and exits should always be
373 * paired.  This is for sanity of maintaining and reasoning about the
374 * kernel code.  In this case, the exit (end of the context switch) is
375 * in architecture-specific code, and so doesn't need a generic
376 * definition.
377 */
378#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
379#define arch_start_context_switch(prev)	do {} while (0)
380#endif
381
382#ifndef __HAVE_PFNMAP_TRACKING
383/*
384 * Interface that can be used by architecture code to keep track of
385 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
386 *
387 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
388 * for physical range indicated by pfn and size.
389 */
390static inline int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
391					unsigned long pfn, unsigned long size)
392{
393	return 0;
394}
395
396/*
397 * Interface that can be used by architecture code to keep track of
398 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
399 *
400 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
401 * copied through copy_page_range().
402 */
403static inline int track_pfn_vma_copy(struct vm_area_struct *vma)
404{
405	return 0;
406}
407
408/*
409 * Interface that can be used by architecture code to keep track of
410 * memory type of pfn mappings (remap_pfn_range, vm_insert_pfn)
411 *
412 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
413 * untrack can be called for a specific region indicated by pfn and size or
414 * can be for the entire vma (in which case size can be zero).
415 */
416static inline void untrack_pfn_vma(struct vm_area_struct *vma,
417					unsigned long pfn, unsigned long size)
418{
419}
420#else
421extern int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
422				unsigned long pfn, unsigned long size);
423extern int track_pfn_vma_copy(struct vm_area_struct *vma);
424extern void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
425				unsigned long size);
426#endif
427
428#ifdef CONFIG_MMU
429
430#ifndef CONFIG_TRANSPARENT_HUGEPAGE
431static inline int pmd_trans_huge(pmd_t pmd)
432{
433	return 0;
434}
435static inline int pmd_trans_splitting(pmd_t pmd)
436{
437	return 0;
438}
439#ifndef __HAVE_ARCH_PMD_WRITE
440static inline int pmd_write(pmd_t pmd)
441{
442	BUG();
443	return 0;
444}
445#endif /* __HAVE_ARCH_PMD_WRITE */
446#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
447
448#ifndef pmd_read_atomic
449static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
450{
451	/*
452	 * Depend on compiler for an atomic pmd read. NOTE: this is
453	 * only going to work, if the pmdval_t isn't larger than
454	 * an unsigned long.
455	 */
456	return *pmdp;
457}
458#endif
459
460/*
461 * This function is meant to be used by sites walking pagetables with
462 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
463 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
464 * into a null pmd and the transhuge page fault can convert a null pmd
465 * into an hugepmd or into a regular pmd (if the hugepage allocation
466 * fails). While holding the mmap_sem in read mode the pmd becomes
467 * stable and stops changing under us only if it's not null and not a
468 * transhuge pmd. When those races occurs and this function makes a
469 * difference vs the standard pmd_none_or_clear_bad, the result is
470 * undefined so behaving like if the pmd was none is safe (because it
471 * can return none anyway). The compiler level barrier() is critically
472 * important to compute the two checks atomically on the same pmdval.
473 *
474 * For 32bit kernels with a 64bit large pmd_t this automatically takes
475 * care of reading the pmd atomically to avoid SMP race conditions
476 * against pmd_populate() when the mmap_sem is hold for reading by the
477 * caller (a special atomic read not done by "gcc" as in the generic
478 * version above, is also needed when THP is disabled because the page
479 * fault can populate the pmd from under us).
480 */
481static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
482{
483	pmd_t pmdval = pmd_read_atomic(pmd);
484	/*
485	 * The barrier will stabilize the pmdval in a register or on
486	 * the stack so that it will stop changing under the code.
487	 *
488	 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
489	 * pmd_read_atomic is allowed to return a not atomic pmdval
490	 * (for example pointing to an hugepage that has never been
491	 * mapped in the pmd). The below checks will only care about
492	 * the low part of the pmd with 32bit PAE x86 anyway, with the
493	 * exception of pmd_none(). So the important thing is that if
494	 * the low part of the pmd is found null, the high part will
495	 * be also null or the pmd_none() check below would be
496	 * confused.
497	 */
498#ifdef CONFIG_TRANSPARENT_HUGEPAGE
499	barrier();
500#endif
501	if (pmd_none(pmdval))
502		return 1;
503	if (unlikely(pmd_bad(pmdval))) {
504		if (!pmd_trans_huge(pmdval))
505			pmd_clear_bad(pmd);
506		return 1;
507	}
508	return 0;
509}
510
511/*
512 * This is a noop if Transparent Hugepage Support is not built into
513 * the kernel. Otherwise it is equivalent to
514 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
515 * places that already verified the pmd is not none and they want to
516 * walk ptes while holding the mmap sem in read mode (write mode don't
517 * need this). If THP is not enabled, the pmd can't go away under the
518 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
519 * run a pmd_trans_unstable before walking the ptes after
520 * split_huge_page_pmd returns (because it may have run when the pmd
521 * become null, but then a page fault can map in a THP and not a
522 * regular page).
523 */
524static inline int pmd_trans_unstable(pmd_t *pmd)
525{
526#ifdef CONFIG_TRANSPARENT_HUGEPAGE
527	return pmd_none_or_trans_huge_or_clear_bad(pmd);
528#else
529	return 0;
530#endif
531}
532
533#endif /* CONFIG_MMU */
534
535#endif /* !__ASSEMBLY__ */
536
537#endif /* _ASM_GENERIC_PGTABLE_H */