Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
 
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
 
  26#include <linux/prefetch.h>
  27#include <linux/suspend.h>
  28
  29#include "e1000.h"
  30#define CREATE_TRACE_POINTS
  31#include "e1000e_trace.h"
  32
 
 
 
  33char e1000e_driver_name[] = "e1000e";
 
  34
  35#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  36static int debug = -1;
  37module_param(debug, int, 0);
  38MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  39
 
 
  40static const struct e1000_info *e1000_info_tbl[] = {
  41	[board_82571]		= &e1000_82571_info,
  42	[board_82572]		= &e1000_82572_info,
  43	[board_82573]		= &e1000_82573_info,
  44	[board_82574]		= &e1000_82574_info,
  45	[board_82583]		= &e1000_82583_info,
  46	[board_80003es2lan]	= &e1000_es2_info,
  47	[board_ich8lan]		= &e1000_ich8_info,
  48	[board_ich9lan]		= &e1000_ich9_info,
  49	[board_ich10lan]	= &e1000_ich10_info,
  50	[board_pchlan]		= &e1000_pch_info,
  51	[board_pch2lan]		= &e1000_pch2_info,
  52	[board_pch_lpt]		= &e1000_pch_lpt_info,
  53	[board_pch_spt]		= &e1000_pch_spt_info,
  54	[board_pch_cnp]		= &e1000_pch_cnp_info,
  55	[board_pch_tgp]		= &e1000_pch_tgp_info,
  56	[board_pch_adp]		= &e1000_pch_adp_info,
  57	[board_pch_mtp]		= &e1000_pch_mtp_info,
  58};
  59
  60struct e1000_reg_info {
  61	u32 ofs;
  62	char *name;
  63};
  64
 
 
 
 
 
 
 
 
 
 
 
 
  65static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 
  66	/* General Registers */
  67	{E1000_CTRL, "CTRL"},
  68	{E1000_STATUS, "STATUS"},
  69	{E1000_CTRL_EXT, "CTRL_EXT"},
  70
  71	/* Interrupt Registers */
  72	{E1000_ICR, "ICR"},
  73
  74	/* Rx Registers */
  75	{E1000_RCTL, "RCTL"},
  76	{E1000_RDLEN(0), "RDLEN"},
  77	{E1000_RDH(0), "RDH"},
  78	{E1000_RDT(0), "RDT"},
  79	{E1000_RDTR, "RDTR"},
  80	{E1000_RXDCTL(0), "RXDCTL"},
  81	{E1000_ERT, "ERT"},
  82	{E1000_RDBAL(0), "RDBAL"},
  83	{E1000_RDBAH(0), "RDBAH"},
  84	{E1000_RDFH, "RDFH"},
  85	{E1000_RDFT, "RDFT"},
  86	{E1000_RDFHS, "RDFHS"},
  87	{E1000_RDFTS, "RDFTS"},
  88	{E1000_RDFPC, "RDFPC"},
  89
  90	/* Tx Registers */
  91	{E1000_TCTL, "TCTL"},
  92	{E1000_TDBAL(0), "TDBAL"},
  93	{E1000_TDBAH(0), "TDBAH"},
  94	{E1000_TDLEN(0), "TDLEN"},
  95	{E1000_TDH(0), "TDH"},
  96	{E1000_TDT(0), "TDT"},
  97	{E1000_TIDV, "TIDV"},
  98	{E1000_TXDCTL(0), "TXDCTL"},
  99	{E1000_TADV, "TADV"},
 100	{E1000_TARC(0), "TARC"},
 101	{E1000_TDFH, "TDFH"},
 102	{E1000_TDFT, "TDFT"},
 103	{E1000_TDFHS, "TDFHS"},
 104	{E1000_TDFTS, "TDFTS"},
 105	{E1000_TDFPC, "TDFPC"},
 106
 107	/* List Terminator */
 108	{0, NULL}
 109};
 110
 111/**
 112 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 113 * @hw: pointer to the HW structure
 114 *
 115 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 116 * be accessing the registers at the same time.  Normally, this is handled in
 117 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 118 * accesses later than it should which could result in the register to have
 119 * an incorrect value.  Workaround this by checking the FWSM register which
 120 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 121 * and try again a number of times.
 122 **/
 123static void __ew32_prepare(struct e1000_hw *hw)
 124{
 125	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 126
 127	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 128		udelay(50);
 129}
 130
 131void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 132{
 133	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 134		__ew32_prepare(hw);
 135
 136	writel(val, hw->hw_addr + reg);
 137}
 138
 139/**
 140 * e1000_regdump - register printout routine
 141 * @hw: pointer to the HW structure
 142 * @reginfo: pointer to the register info table
 143 **/
 144static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 145{
 146	int n = 0;
 147	char rname[16];
 148	u32 regs[8];
 149
 150	switch (reginfo->ofs) {
 151	case E1000_RXDCTL(0):
 152		for (n = 0; n < 2; n++)
 153			regs[n] = __er32(hw, E1000_RXDCTL(n));
 154		break;
 155	case E1000_TXDCTL(0):
 156		for (n = 0; n < 2; n++)
 157			regs[n] = __er32(hw, E1000_TXDCTL(n));
 158		break;
 159	case E1000_TARC(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_TARC(n));
 162		break;
 163	default:
 164		pr_info("%-15s %08x\n",
 165			reginfo->name, __er32(hw, reginfo->ofs));
 166		return;
 167	}
 168
 169	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 170	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 171}
 172
 173static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 174				 struct e1000_buffer *bi)
 175{
 176	int i;
 177	struct e1000_ps_page *ps_page;
 178
 179	for (i = 0; i < adapter->rx_ps_pages; i++) {
 180		ps_page = &bi->ps_pages[i];
 181
 182		if (ps_page->page) {
 183			pr_info("packet dump for ps_page %d:\n", i);
 184			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 185				       16, 1, page_address(ps_page->page),
 186				       PAGE_SIZE, true);
 187		}
 188	}
 189}
 190
 191/**
 192 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 193 * @adapter: board private structure
 194 **/
 195static void e1000e_dump(struct e1000_adapter *adapter)
 196{
 197	struct net_device *netdev = adapter->netdev;
 198	struct e1000_hw *hw = &adapter->hw;
 199	struct e1000_reg_info *reginfo;
 200	struct e1000_ring *tx_ring = adapter->tx_ring;
 201	struct e1000_tx_desc *tx_desc;
 202	struct my_u0 {
 203		__le64 a;
 204		__le64 b;
 205	} *u0;
 206	struct e1000_buffer *buffer_info;
 207	struct e1000_ring *rx_ring = adapter->rx_ring;
 208	union e1000_rx_desc_packet_split *rx_desc_ps;
 209	union e1000_rx_desc_extended *rx_desc;
 210	struct my_u1 {
 211		__le64 a;
 212		__le64 b;
 213		__le64 c;
 214		__le64 d;
 215	} *u1;
 216	u32 staterr;
 217	int i = 0;
 218
 219	if (!netif_msg_hw(adapter))
 220		return;
 221
 222	/* Print netdevice Info */
 223	if (netdev) {
 224		dev_info(&adapter->pdev->dev, "Net device Info\n");
 225		pr_info("Device Name     state            trans_start\n");
 226		pr_info("%-15s %016lX %016lX\n", netdev->name,
 227			netdev->state, dev_trans_start(netdev));
 
 228	}
 229
 230	/* Print Registers */
 231	dev_info(&adapter->pdev->dev, "Register Dump\n");
 232	pr_info(" Register Name   Value\n");
 233	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 234	     reginfo->name; reginfo++) {
 235		e1000_regdump(hw, reginfo);
 236	}
 237
 238	/* Print Tx Ring Summary */
 239	if (!netdev || !netif_running(netdev))
 240		return;
 241
 242	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 243	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 244	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 245	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 246		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 247		(unsigned long long)buffer_info->dma,
 248		buffer_info->length,
 249		buffer_info->next_to_watch,
 250		(unsigned long long)buffer_info->time_stamp);
 251
 252	/* Print Tx Ring */
 253	if (!netif_msg_tx_done(adapter))
 254		goto rx_ring_summary;
 255
 256	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 257
 258	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 259	 *
 260	 * Legacy Transmit Descriptor
 261	 *   +--------------------------------------------------------------+
 262	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 263	 *   +--------------------------------------------------------------+
 264	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 265	 *   +--------------------------------------------------------------+
 266	 *   63       48 47        36 35    32 31     24 23    16 15        0
 267	 *
 268	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 269	 *   63      48 47    40 39       32 31             16 15    8 7      0
 270	 *   +----------------------------------------------------------------+
 271	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 272	 *   +----------------------------------------------------------------+
 273	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 274	 *   +----------------------------------------------------------------+
 275	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 276	 *
 277	 * Extended Data Descriptor (DTYP=0x1)
 278	 *   +----------------------------------------------------------------+
 279	 * 0 |                     Buffer Address [63:0]                      |
 280	 *   +----------------------------------------------------------------+
 281	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 282	 *   +----------------------------------------------------------------+
 283	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 284	 */
 285	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 286	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 287	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 288	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 289		const char *next_desc;
 290		tx_desc = E1000_TX_DESC(*tx_ring, i);
 291		buffer_info = &tx_ring->buffer_info[i];
 292		u0 = (struct my_u0 *)tx_desc;
 293		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 294			next_desc = " NTC/U";
 295		else if (i == tx_ring->next_to_use)
 296			next_desc = " NTU";
 297		else if (i == tx_ring->next_to_clean)
 298			next_desc = " NTC";
 299		else
 300			next_desc = "";
 301		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 302			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 303			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 304			i,
 305			(unsigned long long)le64_to_cpu(u0->a),
 306			(unsigned long long)le64_to_cpu(u0->b),
 307			(unsigned long long)buffer_info->dma,
 308			buffer_info->length, buffer_info->next_to_watch,
 309			(unsigned long long)buffer_info->time_stamp,
 310			buffer_info->skb, next_desc);
 311
 312		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 313			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 314				       16, 1, buffer_info->skb->data,
 315				       buffer_info->skb->len, true);
 316	}
 317
 318	/* Print Rx Ring Summary */
 319rx_ring_summary:
 320	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 321	pr_info("Queue [NTU] [NTC]\n");
 322	pr_info(" %5d %5X %5X\n",
 323		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 324
 325	/* Print Rx Ring */
 326	if (!netif_msg_rx_status(adapter))
 327		return;
 328
 329	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 330	switch (adapter->rx_ps_pages) {
 331	case 1:
 332	case 2:
 333	case 3:
 334		/* [Extended] Packet Split Receive Descriptor Format
 335		 *
 336		 *    +-----------------------------------------------------+
 337		 *  0 |                Buffer Address 0 [63:0]              |
 338		 *    +-----------------------------------------------------+
 339		 *  8 |                Buffer Address 1 [63:0]              |
 340		 *    +-----------------------------------------------------+
 341		 * 16 |                Buffer Address 2 [63:0]              |
 342		 *    +-----------------------------------------------------+
 343		 * 24 |                Buffer Address 3 [63:0]              |
 344		 *    +-----------------------------------------------------+
 345		 */
 346		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 347		/* [Extended] Receive Descriptor (Write-Back) Format
 348		 *
 349		 *   63       48 47    32 31     13 12    8 7    4 3        0
 350		 *   +------------------------------------------------------+
 351		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 352		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 353		 *   +------------------------------------------------------+
 354		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 355		 *   +------------------------------------------------------+
 356		 *   63       48 47    32 31            20 19               0
 357		 */
 358		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 359		for (i = 0; i < rx_ring->count; i++) {
 360			const char *next_desc;
 361			buffer_info = &rx_ring->buffer_info[i];
 362			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 363			u1 = (struct my_u1 *)rx_desc_ps;
 364			staterr =
 365			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 366
 367			if (i == rx_ring->next_to_use)
 368				next_desc = " NTU";
 369			else if (i == rx_ring->next_to_clean)
 370				next_desc = " NTC";
 371			else
 372				next_desc = "";
 373
 374			if (staterr & E1000_RXD_STAT_DD) {
 375				/* Descriptor Done */
 376				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 377					"RWB", i,
 378					(unsigned long long)le64_to_cpu(u1->a),
 379					(unsigned long long)le64_to_cpu(u1->b),
 380					(unsigned long long)le64_to_cpu(u1->c),
 381					(unsigned long long)le64_to_cpu(u1->d),
 382					buffer_info->skb, next_desc);
 383			} else {
 384				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 385					"R  ", i,
 386					(unsigned long long)le64_to_cpu(u1->a),
 387					(unsigned long long)le64_to_cpu(u1->b),
 388					(unsigned long long)le64_to_cpu(u1->c),
 389					(unsigned long long)le64_to_cpu(u1->d),
 390					(unsigned long long)buffer_info->dma,
 391					buffer_info->skb, next_desc);
 392
 393				if (netif_msg_pktdata(adapter))
 394					e1000e_dump_ps_pages(adapter,
 395							     buffer_info);
 
 
 396			}
 397		}
 398		break;
 399	default:
 400	case 0:
 401		/* Extended Receive Descriptor (Read) Format
 402		 *
 403		 *   +-----------------------------------------------------+
 404		 * 0 |                Buffer Address [63:0]                |
 405		 *   +-----------------------------------------------------+
 406		 * 8 |                      Reserved                       |
 407		 *   +-----------------------------------------------------+
 408		 */
 409		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 410		/* Extended Receive Descriptor (Write-Back) Format
 411		 *
 412		 *   63       48 47    32 31    24 23            4 3        0
 413		 *   +------------------------------------------------------+
 414		 *   |     RSS Hash      |        |               |         |
 415		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 416		 *   | Packet   | IP     |        |               |  Type   |
 417		 *   | Checksum | Ident  |        |               |         |
 418		 *   +------------------------------------------------------+
 419		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 420		 *   +------------------------------------------------------+
 421		 *   63       48 47    32 31            20 19               0
 422		 */
 423		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 424
 425		for (i = 0; i < rx_ring->count; i++) {
 426			const char *next_desc;
 427
 428			buffer_info = &rx_ring->buffer_info[i];
 429			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 430			u1 = (struct my_u1 *)rx_desc;
 431			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 432
 433			if (i == rx_ring->next_to_use)
 434				next_desc = " NTU";
 435			else if (i == rx_ring->next_to_clean)
 436				next_desc = " NTC";
 437			else
 438				next_desc = "";
 439
 440			if (staterr & E1000_RXD_STAT_DD) {
 441				/* Descriptor Done */
 442				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 443					"RWB", i,
 444					(unsigned long long)le64_to_cpu(u1->a),
 445					(unsigned long long)le64_to_cpu(u1->b),
 446					buffer_info->skb, next_desc);
 447			} else {
 448				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 449					"R  ", i,
 450					(unsigned long long)le64_to_cpu(u1->a),
 451					(unsigned long long)le64_to_cpu(u1->b),
 452					(unsigned long long)buffer_info->dma,
 453					buffer_info->skb, next_desc);
 454
 455				if (netif_msg_pktdata(adapter) &&
 456				    buffer_info->skb)
 457					print_hex_dump(KERN_INFO, "",
 458						       DUMP_PREFIX_ADDRESS, 16,
 459						       1,
 460						       buffer_info->skb->data,
 
 461						       adapter->rx_buffer_len,
 462						       true);
 463			}
 464		}
 465	}
 466}
 467
 468/**
 469 * e1000_desc_unused - calculate if we have unused descriptors
 470 * @ring: pointer to ring struct to perform calculation on
 471 **/
 472static int e1000_desc_unused(struct e1000_ring *ring)
 473{
 474	if (ring->next_to_clean > ring->next_to_use)
 475		return ring->next_to_clean - ring->next_to_use - 1;
 476
 477	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 478}
 479
 480/**
 481 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 482 * @adapter: board private structure
 483 * @hwtstamps: time stamp structure to update
 484 * @systim: unsigned 64bit system time value.
 485 *
 486 * Convert the system time value stored in the RX/TXSTMP registers into a
 487 * hwtstamp which can be used by the upper level time stamping functions.
 488 *
 489 * The 'systim_lock' spinlock is used to protect the consistency of the
 490 * system time value. This is needed because reading the 64 bit time
 491 * value involves reading two 32 bit registers. The first read latches the
 492 * value.
 493 **/
 494static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 495				      struct skb_shared_hwtstamps *hwtstamps,
 496				      u64 systim)
 497{
 498	u64 ns;
 499	unsigned long flags;
 500
 501	spin_lock_irqsave(&adapter->systim_lock, flags);
 502	ns = timecounter_cyc2time(&adapter->tc, systim);
 503	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 504
 505	memset(hwtstamps, 0, sizeof(*hwtstamps));
 506	hwtstamps->hwtstamp = ns_to_ktime(ns);
 507}
 508
 509/**
 510 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 511 * @adapter: board private structure
 512 * @status: descriptor extended error and status field
 513 * @skb: particular skb to include time stamp
 514 *
 515 * If the time stamp is valid, convert it into the timecounter ns value
 516 * and store that result into the shhwtstamps structure which is passed
 517 * up the network stack.
 518 **/
 519static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 520			       struct sk_buff *skb)
 521{
 522	struct e1000_hw *hw = &adapter->hw;
 523	u64 rxstmp;
 524
 525	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 526	    !(status & E1000_RXDEXT_STATERR_TST) ||
 527	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 528		return;
 529
 530	/* The Rx time stamp registers contain the time stamp.  No other
 531	 * received packet will be time stamped until the Rx time stamp
 532	 * registers are read.  Because only one packet can be time stamped
 533	 * at a time, the register values must belong to this packet and
 534	 * therefore none of the other additional attributes need to be
 535	 * compared.
 536	 */
 537	rxstmp = (u64)er32(RXSTMPL);
 538	rxstmp |= (u64)er32(RXSTMPH) << 32;
 539	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 540
 541	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 542}
 543
 544/**
 545 * e1000_receive_skb - helper function to handle Rx indications
 546 * @adapter: board private structure
 547 * @netdev: pointer to netdev struct
 548 * @staterr: descriptor extended error and status field as written by hardware
 549 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 550 * @skb: pointer to sk_buff to be indicated to stack
 551 **/
 552static void e1000_receive_skb(struct e1000_adapter *adapter,
 553			      struct net_device *netdev, struct sk_buff *skb,
 554			      u32 staterr, __le16 vlan)
 555{
 556	u16 tag = le16_to_cpu(vlan);
 557
 558	e1000e_rx_hwtstamp(adapter, staterr, skb);
 559
 560	skb->protocol = eth_type_trans(skb, netdev);
 561
 562	if (staterr & E1000_RXD_STAT_VP)
 563		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 564
 565	napi_gro_receive(&adapter->napi, skb);
 566}
 567
 568/**
 569 * e1000_rx_checksum - Receive Checksum Offload
 570 * @adapter: board private structure
 571 * @status_err: receive descriptor status and error fields
 572 * @skb: socket buffer with received data
 
 573 **/
 574static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 575			      struct sk_buff *skb)
 576{
 577	u16 status = (u16)status_err;
 578	u8 errors = (u8)(status_err >> 24);
 579
 580	skb_checksum_none_assert(skb);
 581
 582	/* Rx checksum disabled */
 583	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 584		return;
 585
 586	/* Ignore Checksum bit is set */
 587	if (status & E1000_RXD_STAT_IXSM)
 588		return;
 589
 590	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 591	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 592		/* let the stack verify checksum errors */
 593		adapter->hw_csum_err++;
 594		return;
 595	}
 596
 597	/* TCP/UDP Checksum has not been calculated */
 598	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 599		return;
 600
 601	/* It must be a TCP or UDP packet with a valid checksum */
 602	skb->ip_summed = CHECKSUM_UNNECESSARY;
 603	adapter->hw_csum_good++;
 604}
 605
 606static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 607{
 608	struct e1000_adapter *adapter = rx_ring->adapter;
 609	struct e1000_hw *hw = &adapter->hw;
 
 610
 611	__ew32_prepare(hw);
 612	writel(i, rx_ring->tail);
 613
 614	if (unlikely(i != readl(rx_ring->tail))) {
 615		u32 rctl = er32(RCTL);
 616
 617		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 618		e_err("ME firmware caused invalid RDT - resetting\n");
 619		schedule_work(&adapter->reset_task);
 620	}
 621}
 622
 623static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 624{
 625	struct e1000_adapter *adapter = tx_ring->adapter;
 626	struct e1000_hw *hw = &adapter->hw;
 
 627
 628	__ew32_prepare(hw);
 629	writel(i, tx_ring->tail);
 630
 631	if (unlikely(i != readl(tx_ring->tail))) {
 632		u32 tctl = er32(TCTL);
 633
 634		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 635		e_err("ME firmware caused invalid TDT - resetting\n");
 636		schedule_work(&adapter->reset_task);
 637	}
 638}
 639
 640/**
 641 * e1000_alloc_rx_buffers - Replace used receive buffers
 642 * @rx_ring: Rx descriptor ring
 643 * @cleaned_count: number to reallocate
 644 * @gfp: flags for allocation
 645 **/
 646static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 647				   int cleaned_count, gfp_t gfp)
 648{
 649	struct e1000_adapter *adapter = rx_ring->adapter;
 650	struct net_device *netdev = adapter->netdev;
 651	struct pci_dev *pdev = adapter->pdev;
 652	union e1000_rx_desc_extended *rx_desc;
 653	struct e1000_buffer *buffer_info;
 654	struct sk_buff *skb;
 655	unsigned int i;
 656	unsigned int bufsz = adapter->rx_buffer_len;
 657
 658	i = rx_ring->next_to_use;
 659	buffer_info = &rx_ring->buffer_info[i];
 660
 661	while (cleaned_count--) {
 662		skb = buffer_info->skb;
 663		if (skb) {
 664			skb_trim(skb, 0);
 665			goto map_skb;
 666		}
 667
 668		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 669		if (!skb) {
 670			/* Better luck next round */
 671			adapter->alloc_rx_buff_failed++;
 672			break;
 673		}
 674
 675		buffer_info->skb = skb;
 676map_skb:
 677		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 678						  adapter->rx_buffer_len,
 679						  DMA_FROM_DEVICE);
 680		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 681			dev_err(&pdev->dev, "Rx DMA map failed\n");
 682			adapter->rx_dma_failed++;
 683			break;
 684		}
 685
 686		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 687		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 688
 689		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 690			/* Force memory writes to complete before letting h/w
 
 691			 * know there are new descriptors to fetch.  (Only
 692			 * applicable for weak-ordered memory model archs,
 693			 * such as IA-64).
 694			 */
 695			wmb();
 696			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 697				e1000e_update_rdt_wa(rx_ring, i);
 698			else
 699				writel(i, rx_ring->tail);
 700		}
 701		i++;
 702		if (i == rx_ring->count)
 703			i = 0;
 704		buffer_info = &rx_ring->buffer_info[i];
 705	}
 706
 707	rx_ring->next_to_use = i;
 708}
 709
 710/**
 711 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 712 * @rx_ring: Rx descriptor ring
 713 * @cleaned_count: number to reallocate
 714 * @gfp: flags for allocation
 715 **/
 716static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 717				      int cleaned_count, gfp_t gfp)
 718{
 719	struct e1000_adapter *adapter = rx_ring->adapter;
 720	struct net_device *netdev = adapter->netdev;
 721	struct pci_dev *pdev = adapter->pdev;
 722	union e1000_rx_desc_packet_split *rx_desc;
 723	struct e1000_buffer *buffer_info;
 724	struct e1000_ps_page *ps_page;
 725	struct sk_buff *skb;
 726	unsigned int i, j;
 727
 728	i = rx_ring->next_to_use;
 729	buffer_info = &rx_ring->buffer_info[i];
 730
 731	while (cleaned_count--) {
 732		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 733
 734		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 735			ps_page = &buffer_info->ps_pages[j];
 736			if (j >= adapter->rx_ps_pages) {
 737				/* all unused desc entries get hw null ptr */
 738				rx_desc->read.buffer_addr[j + 1] =
 739				    ~cpu_to_le64(0);
 740				continue;
 741			}
 742			if (!ps_page->page) {
 743				ps_page->page = alloc_page(gfp);
 744				if (!ps_page->page) {
 745					adapter->alloc_rx_buff_failed++;
 746					goto no_buffers;
 747				}
 748				ps_page->dma = dma_map_page(&pdev->dev,
 749							    ps_page->page,
 750							    0, PAGE_SIZE,
 751							    DMA_FROM_DEVICE);
 752				if (dma_mapping_error(&pdev->dev,
 753						      ps_page->dma)) {
 754					dev_err(&adapter->pdev->dev,
 755						"Rx DMA page map failed\n");
 756					adapter->rx_dma_failed++;
 757					goto no_buffers;
 758				}
 759			}
 760			/* Refresh the desc even if buffer_addrs
 
 761			 * didn't change because each write-back
 762			 * erases this info.
 763			 */
 764			rx_desc->read.buffer_addr[j + 1] =
 765			    cpu_to_le64(ps_page->dma);
 766		}
 767
 768		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 
 769						  gfp);
 770
 771		if (!skb) {
 772			adapter->alloc_rx_buff_failed++;
 773			break;
 774		}
 775
 776		buffer_info->skb = skb;
 777		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 778						  adapter->rx_ps_bsize0,
 779						  DMA_FROM_DEVICE);
 780		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 781			dev_err(&pdev->dev, "Rx DMA map failed\n");
 782			adapter->rx_dma_failed++;
 783			/* cleanup skb */
 784			dev_kfree_skb_any(skb);
 785			buffer_info->skb = NULL;
 786			break;
 787		}
 788
 789		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 792			/* Force memory writes to complete before letting h/w
 
 793			 * know there are new descriptors to fetch.  (Only
 794			 * applicable for weak-ordered memory model archs,
 795			 * such as IA-64).
 796			 */
 797			wmb();
 798			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 799				e1000e_update_rdt_wa(rx_ring, i << 1);
 800			else
 801				writel(i << 1, rx_ring->tail);
 802		}
 803
 804		i++;
 805		if (i == rx_ring->count)
 806			i = 0;
 807		buffer_info = &rx_ring->buffer_info[i];
 808	}
 809
 810no_buffers:
 811	rx_ring->next_to_use = i;
 812}
 813
 814/**
 815 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 816 * @rx_ring: Rx descriptor ring
 817 * @cleaned_count: number of buffers to allocate this pass
 818 * @gfp: flags for allocation
 819 **/
 820
 821static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 822					 int cleaned_count, gfp_t gfp)
 823{
 824	struct e1000_adapter *adapter = rx_ring->adapter;
 825	struct net_device *netdev = adapter->netdev;
 826	struct pci_dev *pdev = adapter->pdev;
 827	union e1000_rx_desc_extended *rx_desc;
 828	struct e1000_buffer *buffer_info;
 829	struct sk_buff *skb;
 830	unsigned int i;
 831	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 832
 833	i = rx_ring->next_to_use;
 834	buffer_info = &rx_ring->buffer_info[i];
 835
 836	while (cleaned_count--) {
 837		skb = buffer_info->skb;
 838		if (skb) {
 839			skb_trim(skb, 0);
 840			goto check_page;
 841		}
 842
 843		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 844		if (unlikely(!skb)) {
 845			/* Better luck next round */
 846			adapter->alloc_rx_buff_failed++;
 847			break;
 848		}
 849
 850		buffer_info->skb = skb;
 851check_page:
 852		/* allocate a new page if necessary */
 853		if (!buffer_info->page) {
 854			buffer_info->page = alloc_page(gfp);
 855			if (unlikely(!buffer_info->page)) {
 856				adapter->alloc_rx_buff_failed++;
 857				break;
 858			}
 859		}
 860
 861		if (!buffer_info->dma) {
 862			buffer_info->dma = dma_map_page(&pdev->dev,
 863							buffer_info->page, 0,
 864							PAGE_SIZE,
 865							DMA_FROM_DEVICE);
 866			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 867				adapter->alloc_rx_buff_failed++;
 868				break;
 869			}
 870		}
 871
 872		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 873		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 874
 875		if (unlikely(++i == rx_ring->count))
 876			i = 0;
 877		buffer_info = &rx_ring->buffer_info[i];
 878	}
 879
 880	if (likely(rx_ring->next_to_use != i)) {
 881		rx_ring->next_to_use = i;
 882		if (unlikely(i-- == 0))
 883			i = (rx_ring->count - 1);
 884
 885		/* Force memory writes to complete before letting h/w
 886		 * know there are new descriptors to fetch.  (Only
 887		 * applicable for weak-ordered memory model archs,
 888		 * such as IA-64).
 889		 */
 890		wmb();
 891		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 892			e1000e_update_rdt_wa(rx_ring, i);
 893		else
 894			writel(i, rx_ring->tail);
 895	}
 896}
 897
 898static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 899				 struct sk_buff *skb)
 900{
 901	if (netdev->features & NETIF_F_RXHASH)
 902		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 903}
 904
 905/**
 906 * e1000_clean_rx_irq - Send received data up the network stack
 907 * @rx_ring: Rx descriptor ring
 908 * @work_done: output parameter for indicating completed work
 909 * @work_to_do: how many packets we can clean
 910 *
 911 * the return value indicates whether actual cleaning was done, there
 912 * is no guarantee that everything was cleaned
 913 **/
 914static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 915			       int work_to_do)
 916{
 917	struct e1000_adapter *adapter = rx_ring->adapter;
 918	struct net_device *netdev = adapter->netdev;
 919	struct pci_dev *pdev = adapter->pdev;
 920	struct e1000_hw *hw = &adapter->hw;
 921	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 922	struct e1000_buffer *buffer_info, *next_buffer;
 923	u32 length, staterr;
 924	unsigned int i;
 925	int cleaned_count = 0;
 926	bool cleaned = false;
 927	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 928
 929	i = rx_ring->next_to_clean;
 930	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 931	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 932	buffer_info = &rx_ring->buffer_info[i];
 933
 934	while (staterr & E1000_RXD_STAT_DD) {
 935		struct sk_buff *skb;
 936
 937		if (*work_done >= work_to_do)
 938			break;
 939		(*work_done)++;
 940		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 941
 942		skb = buffer_info->skb;
 943		buffer_info->skb = NULL;
 944
 945		prefetch(skb->data - NET_IP_ALIGN);
 946
 947		i++;
 948		if (i == rx_ring->count)
 949			i = 0;
 950		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 951		prefetch(next_rxd);
 952
 953		next_buffer = &rx_ring->buffer_info[i];
 954
 955		cleaned = true;
 956		cleaned_count++;
 957		dma_unmap_single(&pdev->dev, buffer_info->dma,
 958				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 
 
 959		buffer_info->dma = 0;
 960
 961		length = le16_to_cpu(rx_desc->wb.upper.length);
 962
 963		/* !EOP means multiple descriptors were used to store a single
 
 964		 * packet, if that's the case we need to toss it.  In fact, we
 965		 * need to toss every packet with the EOP bit clear and the
 966		 * next frame that _does_ have the EOP bit set, as it is by
 967		 * definition only a frame fragment
 968		 */
 969		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 970			adapter->flags2 |= FLAG2_IS_DISCARDING;
 971
 972		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 973			/* All receives must fit into a single buffer */
 974			e_dbg("Receive packet consumed multiple buffers\n");
 975			/* recycle */
 976			buffer_info->skb = skb;
 977			if (staterr & E1000_RXD_STAT_EOP)
 978				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 979			goto next_desc;
 980		}
 981
 982		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 983			     !(netdev->features & NETIF_F_RXALL))) {
 984			/* recycle */
 985			buffer_info->skb = skb;
 986			goto next_desc;
 987		}
 988
 989		/* adjust length to remove Ethernet CRC */
 990		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 991			/* If configured to store CRC, don't subtract FCS,
 992			 * but keep the FCS bytes out of the total_rx_bytes
 993			 * counter
 994			 */
 995			if (netdev->features & NETIF_F_RXFCS)
 996				total_rx_bytes -= 4;
 997			else
 998				length -= 4;
 999		}
1000
1001		total_rx_bytes += length;
1002		total_rx_packets++;
1003
1004		/* code added for copybreak, this should improve
 
1005		 * performance for small packets with large amounts
1006		 * of reassembly being done in the stack
1007		 */
1008		if (length < copybreak) {
1009			struct sk_buff *new_skb =
1010				napi_alloc_skb(&adapter->napi, length);
1011			if (new_skb) {
1012				skb_copy_to_linear_data_offset(new_skb,
1013							       -NET_IP_ALIGN,
1014							       (skb->data -
1015								NET_IP_ALIGN),
1016							       (length +
1017								NET_IP_ALIGN));
1018				/* save the skb in buffer_info as good */
1019				buffer_info->skb = skb;
1020				skb = new_skb;
1021			}
1022			/* else just continue with the old one */
1023		}
1024		/* end copybreak code */
1025		skb_put(skb, length);
1026
1027		/* Receive Checksum Offload */
1028		e1000_rx_checksum(adapter, staterr, skb);
1029
1030		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1031
1032		e1000_receive_skb(adapter, netdev, skb, staterr,
1033				  rx_desc->wb.upper.vlan);
1034
1035next_desc:
1036		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1037
1038		/* return some buffers to hardware, one at a time is too slow */
1039		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1040			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1041					      GFP_ATOMIC);
1042			cleaned_count = 0;
1043		}
1044
1045		/* use prefetched values */
1046		rx_desc = next_rxd;
1047		buffer_info = next_buffer;
1048
1049		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1050	}
1051	rx_ring->next_to_clean = i;
1052
1053	cleaned_count = e1000_desc_unused(rx_ring);
1054	if (cleaned_count)
1055		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1056
1057	adapter->total_rx_bytes += total_rx_bytes;
1058	adapter->total_rx_packets += total_rx_packets;
1059	return cleaned;
1060}
1061
1062static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1063			    struct e1000_buffer *buffer_info,
1064			    bool drop)
1065{
1066	struct e1000_adapter *adapter = tx_ring->adapter;
1067
1068	if (buffer_info->dma) {
1069		if (buffer_info->mapped_as_page)
1070			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1071				       buffer_info->length, DMA_TO_DEVICE);
1072		else
1073			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1074					 buffer_info->length, DMA_TO_DEVICE);
1075		buffer_info->dma = 0;
1076	}
1077	if (buffer_info->skb) {
1078		if (drop)
1079			dev_kfree_skb_any(buffer_info->skb);
1080		else
1081			dev_consume_skb_any(buffer_info->skb);
1082		buffer_info->skb = NULL;
1083	}
1084	buffer_info->time_stamp = 0;
1085}
1086
1087static void e1000_print_hw_hang(struct work_struct *work)
1088{
1089	struct e1000_adapter *adapter = container_of(work,
1090						     struct e1000_adapter,
1091						     print_hang_task);
1092	struct net_device *netdev = adapter->netdev;
1093	struct e1000_ring *tx_ring = adapter->tx_ring;
1094	unsigned int i = tx_ring->next_to_clean;
1095	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1096	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1097	struct e1000_hw *hw = &adapter->hw;
1098	u16 phy_status, phy_1000t_status, phy_ext_status;
1099	u16 pci_status;
1100
1101	if (test_bit(__E1000_DOWN, &adapter->state))
1102		return;
1103
1104	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1105		/* May be block on write-back, flush and detect again
 
 
1106		 * flush pending descriptor writebacks to memory
1107		 */
1108		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1109		/* execute the writes immediately */
1110		e1e_flush();
1111		/* Due to rare timing issues, write to TIDV again to ensure
 
1112		 * the write is successful
1113		 */
1114		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115		/* execute the writes immediately */
1116		e1e_flush();
1117		adapter->tx_hang_recheck = true;
1118		return;
1119	}
1120	adapter->tx_hang_recheck = false;
1121
1122	if (er32(TDH(0)) == er32(TDT(0))) {
1123		e_dbg("false hang detected, ignoring\n");
1124		return;
1125	}
1126
1127	/* Real hang detected */
 
1128	netif_stop_queue(netdev);
1129
1130	e1e_rphy(hw, MII_BMSR, &phy_status);
1131	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1132	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1133
1134	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1135
1136	/* detected Hardware unit hang */
1137	e_err("Detected Hardware Unit Hang:\n"
1138	      "  TDH                  <%x>\n"
1139	      "  TDT                  <%x>\n"
1140	      "  next_to_use          <%x>\n"
1141	      "  next_to_clean        <%x>\n"
1142	      "buffer_info[next_to_clean]:\n"
1143	      "  time_stamp           <%lx>\n"
1144	      "  next_to_watch        <%x>\n"
1145	      "  jiffies              <%lx>\n"
1146	      "  next_to_watch.status <%x>\n"
1147	      "MAC Status             <%x>\n"
1148	      "PHY Status             <%x>\n"
1149	      "PHY 1000BASE-T Status  <%x>\n"
1150	      "PHY Extended Status    <%x>\n"
1151	      "PCI Status             <%x>\n",
1152	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1153	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1154	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1155	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1156
1157	e1000e_dump(adapter);
 
 
 
 
 
 
 
1158
1159	/* Suggest workaround for known h/w issue */
1160	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1161		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1162}
1163
1164/**
1165 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1166 * @work: pointer to work struct
1167 *
1168 * This work function polls the TSYNCTXCTL valid bit to determine when a
1169 * timestamp has been taken for the current stored skb.  The timestamp must
1170 * be for this skb because only one such packet is allowed in the queue.
1171 */
1172static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1173{
1174	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1175						     tx_hwtstamp_work);
1176	struct e1000_hw *hw = &adapter->hw;
1177
1178	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1179		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1180		struct skb_shared_hwtstamps shhwtstamps;
1181		u64 txstmp;
1182
1183		txstmp = er32(TXSTMPL);
1184		txstmp |= (u64)er32(TXSTMPH) << 32;
1185
1186		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1187
1188		/* Clear the global tx_hwtstamp_skb pointer and force writes
1189		 * prior to notifying the stack of a Tx timestamp.
1190		 */
1191		adapter->tx_hwtstamp_skb = NULL;
1192		wmb(); /* force write prior to skb_tstamp_tx */
1193
1194		skb_tstamp_tx(skb, &shhwtstamps);
1195		dev_consume_skb_any(skb);
1196	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197			      + adapter->tx_timeout_factor * HZ)) {
1198		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199		adapter->tx_hwtstamp_skb = NULL;
1200		adapter->tx_hwtstamp_timeouts++;
1201		e_warn("clearing Tx timestamp hang\n");
1202	} else {
1203		/* reschedule to check later */
1204		schedule_work(&adapter->tx_hwtstamp_work);
1205	}
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217	struct e1000_adapter *adapter = tx_ring->adapter;
1218	struct net_device *netdev = adapter->netdev;
1219	struct e1000_hw *hw = &adapter->hw;
1220	struct e1000_tx_desc *tx_desc, *eop_desc;
1221	struct e1000_buffer *buffer_info;
1222	unsigned int i, eop;
1223	unsigned int count = 0;
1224	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225	unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227	i = tx_ring->next_to_clean;
1228	eop = tx_ring->buffer_info[i].next_to_watch;
1229	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232	       (count < tx_ring->count)) {
1233		bool cleaned = false;
1234
1235		dma_rmb();		/* read buffer_info after eop_desc */
1236		for (; !cleaned; count++) {
1237			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238			buffer_info = &tx_ring->buffer_info[i];
1239			cleaned = (i == eop);
1240
1241			if (cleaned) {
1242				total_tx_packets += buffer_info->segs;
1243				total_tx_bytes += buffer_info->bytecount;
1244				if (buffer_info->skb) {
1245					bytes_compl += buffer_info->skb->len;
1246					pkts_compl++;
1247				}
1248			}
1249
1250			e1000_put_txbuf(tx_ring, buffer_info, false);
1251			tx_desc->upper.data = 0;
1252
1253			i++;
1254			if (i == tx_ring->count)
1255				i = 0;
1256		}
1257
1258		if (i == tx_ring->next_to_use)
1259			break;
1260		eop = tx_ring->buffer_info[i].next_to_watch;
1261		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262	}
1263
1264	tx_ring->next_to_clean = i;
1265
1266	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269	if (count && netif_carrier_ok(netdev) &&
1270	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271		/* Make sure that anybody stopping the queue after this
1272		 * sees the new next_to_clean.
1273		 */
1274		smp_mb();
1275
1276		if (netif_queue_stopped(netdev) &&
1277		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278			netif_wake_queue(netdev);
1279			++adapter->restart_queue;
1280		}
1281	}
1282
1283	if (adapter->detect_tx_hung) {
1284		/* Detect a transmit hang in hardware, this serializes the
 
1285		 * check with the clearing of time_stamp and movement of i
1286		 */
1287		adapter->detect_tx_hung = false;
1288		if (tx_ring->buffer_info[i].time_stamp &&
1289		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290			       + (adapter->tx_timeout_factor * HZ)) &&
1291		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292			schedule_work(&adapter->print_hang_task);
1293		else
1294			adapter->tx_hang_recheck = false;
1295	}
1296	adapter->total_tx_bytes += total_tx_bytes;
1297	adapter->total_tx_packets += total_tx_packets;
1298	return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 * @work_done: output parameter for indicating completed work
1305 * @work_to_do: how many packets we can clean
1306 *
1307 * the return value indicates whether actual cleaning was done, there
1308 * is no guarantee that everything was cleaned
1309 **/
1310static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1311				  int work_to_do)
1312{
1313	struct e1000_adapter *adapter = rx_ring->adapter;
1314	struct e1000_hw *hw = &adapter->hw;
1315	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1316	struct net_device *netdev = adapter->netdev;
1317	struct pci_dev *pdev = adapter->pdev;
1318	struct e1000_buffer *buffer_info, *next_buffer;
1319	struct e1000_ps_page *ps_page;
1320	struct sk_buff *skb;
1321	unsigned int i, j;
1322	u32 length, staterr;
1323	int cleaned_count = 0;
1324	bool cleaned = false;
1325	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1326
1327	i = rx_ring->next_to_clean;
1328	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1329	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1330	buffer_info = &rx_ring->buffer_info[i];
1331
1332	while (staterr & E1000_RXD_STAT_DD) {
1333		if (*work_done >= work_to_do)
1334			break;
1335		(*work_done)++;
1336		skb = buffer_info->skb;
1337		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1338
1339		/* in the packet split case this is header only */
1340		prefetch(skb->data - NET_IP_ALIGN);
1341
1342		i++;
1343		if (i == rx_ring->count)
1344			i = 0;
1345		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1346		prefetch(next_rxd);
1347
1348		next_buffer = &rx_ring->buffer_info[i];
1349
1350		cleaned = true;
1351		cleaned_count++;
1352		dma_unmap_single(&pdev->dev, buffer_info->dma,
1353				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1354		buffer_info->dma = 0;
1355
1356		/* see !EOP comment in other Rx routine */
1357		if (!(staterr & E1000_RXD_STAT_EOP))
1358			adapter->flags2 |= FLAG2_IS_DISCARDING;
1359
1360		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1361			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1362			dev_kfree_skb_irq(skb);
1363			if (staterr & E1000_RXD_STAT_EOP)
1364				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1365			goto next_desc;
1366		}
1367
1368		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1369			     !(netdev->features & NETIF_F_RXALL))) {
1370			dev_kfree_skb_irq(skb);
1371			goto next_desc;
1372		}
1373
1374		length = le16_to_cpu(rx_desc->wb.middle.length0);
1375
1376		if (!length) {
1377			e_dbg("Last part of the packet spanning multiple descriptors\n");
1378			dev_kfree_skb_irq(skb);
1379			goto next_desc;
1380		}
1381
1382		/* Good Receive */
1383		skb_put(skb, length);
1384
1385		{
1386			/* this looks ugly, but it seems compiler issues make
 
1387			 * it more efficient than reusing j
1388			 */
1389			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1390
1391			/* page alloc/put takes too long and effects small
 
1392			 * packet throughput, so unsplit small packets and
1393			 * save the alloc/put
 
1394			 */
1395			if (l1 && (l1 <= copybreak) &&
1396			    ((length + l1) <= adapter->rx_ps_bsize0)) {
 
 
1397				ps_page = &buffer_info->ps_pages[0];
1398
 
 
 
 
 
1399				dma_sync_single_for_cpu(&pdev->dev,
1400							ps_page->dma,
1401							PAGE_SIZE,
1402							DMA_FROM_DEVICE);
1403				memcpy(skb_tail_pointer(skb),
1404				       page_address(ps_page->page), l1);
 
1405				dma_sync_single_for_device(&pdev->dev,
1406							   ps_page->dma,
1407							   PAGE_SIZE,
1408							   DMA_FROM_DEVICE);
1409
1410				/* remove the CRC */
1411				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1412					if (!(netdev->features & NETIF_F_RXFCS))
1413						l1 -= 4;
1414				}
1415
1416				skb_put(skb, l1);
1417				goto copydone;
1418			}	/* if */
1419		}
1420
1421		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1422			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1423			if (!length)
1424				break;
1425
1426			ps_page = &buffer_info->ps_pages[j];
1427			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1428				       DMA_FROM_DEVICE);
1429			ps_page->dma = 0;
1430			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1431			ps_page->page = NULL;
1432			skb->len += length;
1433			skb->data_len += length;
1434			skb->truesize += PAGE_SIZE;
1435		}
1436
1437		/* strip the ethernet crc, problem is we're using pages now so
1438		 * this whole operation can get a little cpu intensive
1439		 */
1440		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1441			if (!(netdev->features & NETIF_F_RXFCS))
1442				pskb_trim(skb, skb->len - 4);
1443		}
1444
1445copydone:
1446		total_rx_bytes += skb->len;
1447		total_rx_packets++;
1448
1449		e1000_rx_checksum(adapter, staterr, skb);
1450
1451		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1452
1453		if (rx_desc->wb.upper.header_status &
1454		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1455			adapter->rx_hdr_split++;
1456
1457		e1000_receive_skb(adapter, netdev, skb, staterr,
1458				  rx_desc->wb.middle.vlan);
1459
1460next_desc:
1461		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1462		buffer_info->skb = NULL;
1463
1464		/* return some buffers to hardware, one at a time is too slow */
1465		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1466			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1467					      GFP_ATOMIC);
1468			cleaned_count = 0;
1469		}
1470
1471		/* use prefetched values */
1472		rx_desc = next_rxd;
1473		buffer_info = next_buffer;
1474
1475		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1476	}
1477	rx_ring->next_to_clean = i;
1478
1479	cleaned_count = e1000_desc_unused(rx_ring);
1480	if (cleaned_count)
1481		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1482
1483	adapter->total_rx_bytes += total_rx_bytes;
1484	adapter->total_rx_packets += total_rx_packets;
1485	return cleaned;
1486}
1487
 
 
 
1488static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1489			       u16 length)
1490{
1491	bi->page = NULL;
1492	skb->len += length;
1493	skb->data_len += length;
1494	skb->truesize += PAGE_SIZE;
1495}
1496
1497/**
1498 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1499 * @rx_ring: Rx descriptor ring
1500 * @work_done: output parameter for indicating completed work
1501 * @work_to_do: how many packets we can clean
1502 *
1503 * the return value indicates whether actual cleaning was done, there
1504 * is no guarantee that everything was cleaned
1505 **/
1506static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1507				     int work_to_do)
1508{
1509	struct e1000_adapter *adapter = rx_ring->adapter;
1510	struct net_device *netdev = adapter->netdev;
1511	struct pci_dev *pdev = adapter->pdev;
1512	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1513	struct e1000_buffer *buffer_info, *next_buffer;
1514	u32 length, staterr;
1515	unsigned int i;
1516	int cleaned_count = 0;
1517	bool cleaned = false;
1518	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1519	struct skb_shared_info *shinfo;
1520
1521	i = rx_ring->next_to_clean;
1522	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1523	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1524	buffer_info = &rx_ring->buffer_info[i];
1525
1526	while (staterr & E1000_RXD_STAT_DD) {
1527		struct sk_buff *skb;
1528
1529		if (*work_done >= work_to_do)
1530			break;
1531		(*work_done)++;
1532		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1533
1534		skb = buffer_info->skb;
1535		buffer_info->skb = NULL;
1536
1537		++i;
1538		if (i == rx_ring->count)
1539			i = 0;
1540		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1541		prefetch(next_rxd);
1542
1543		next_buffer = &rx_ring->buffer_info[i];
1544
1545		cleaned = true;
1546		cleaned_count++;
1547		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1548			       DMA_FROM_DEVICE);
1549		buffer_info->dma = 0;
1550
1551		length = le16_to_cpu(rx_desc->wb.upper.length);
1552
1553		/* errors is only valid for DD + EOP descriptors */
1554		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1555			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1556			      !(netdev->features & NETIF_F_RXALL)))) {
1557			/* recycle both page and skb */
1558			buffer_info->skb = skb;
1559			/* an error means any chain goes out the window too */
1560			if (rx_ring->rx_skb_top)
1561				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1562			rx_ring->rx_skb_top = NULL;
1563			goto next_desc;
1564		}
 
1565#define rxtop (rx_ring->rx_skb_top)
1566		if (!(staterr & E1000_RXD_STAT_EOP)) {
1567			/* this descriptor is only the beginning (or middle) */
1568			if (!rxtop) {
1569				/* this is the beginning of a chain */
1570				rxtop = skb;
1571				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1572						   0, length);
1573			} else {
1574				/* this is the middle of a chain */
1575				shinfo = skb_shinfo(rxtop);
1576				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1577						   buffer_info->page, 0,
1578						   length);
1579				/* re-use the skb, only consumed the page */
1580				buffer_info->skb = skb;
1581			}
1582			e1000_consume_page(buffer_info, rxtop, length);
1583			goto next_desc;
1584		} else {
1585			if (rxtop) {
1586				/* end of the chain */
1587				shinfo = skb_shinfo(rxtop);
1588				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1589						   buffer_info->page, 0,
1590						   length);
1591				/* re-use the current skb, we only consumed the
1592				 * page
1593				 */
1594				buffer_info->skb = skb;
1595				skb = rxtop;
1596				rxtop = NULL;
1597				e1000_consume_page(buffer_info, skb, length);
1598			} else {
1599				/* no chain, got EOP, this buf is the packet
1600				 * copybreak to save the put_page/alloc_page
1601				 */
1602				if (length <= copybreak &&
1603				    skb_tailroom(skb) >= length) {
1604					memcpy(skb_tail_pointer(skb),
1605					       page_address(buffer_info->page),
 
1606					       length);
 
1607					/* re-use the page, so don't erase
1608					 * buffer_info->page
1609					 */
1610					skb_put(skb, length);
1611				} else {
1612					skb_fill_page_desc(skb, 0,
1613							   buffer_info->page, 0,
1614							   length);
1615					e1000_consume_page(buffer_info, skb,
1616							   length);
1617				}
1618			}
1619		}
1620
1621		/* Receive Checksum Offload */
1622		e1000_rx_checksum(adapter, staterr, skb);
1623
1624		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1625
1626		/* probably a little skewed due to removing CRC */
1627		total_rx_bytes += skb->len;
1628		total_rx_packets++;
1629
1630		/* eth type trans needs skb->data to point to something */
1631		if (!pskb_may_pull(skb, ETH_HLEN)) {
1632			e_err("pskb_may_pull failed.\n");
1633			dev_kfree_skb_irq(skb);
1634			goto next_desc;
1635		}
1636
1637		e1000_receive_skb(adapter, netdev, skb, staterr,
1638				  rx_desc->wb.upper.vlan);
1639
1640next_desc:
1641		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1642
1643		/* return some buffers to hardware, one at a time is too slow */
1644		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1645			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1646					      GFP_ATOMIC);
1647			cleaned_count = 0;
1648		}
1649
1650		/* use prefetched values */
1651		rx_desc = next_rxd;
1652		buffer_info = next_buffer;
1653
1654		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1655	}
1656	rx_ring->next_to_clean = i;
1657
1658	cleaned_count = e1000_desc_unused(rx_ring);
1659	if (cleaned_count)
1660		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1661
1662	adapter->total_rx_bytes += total_rx_bytes;
1663	adapter->total_rx_packets += total_rx_packets;
1664	return cleaned;
1665}
1666
1667/**
1668 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1669 * @rx_ring: Rx descriptor ring
1670 **/
1671static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1672{
1673	struct e1000_adapter *adapter = rx_ring->adapter;
1674	struct e1000_buffer *buffer_info;
1675	struct e1000_ps_page *ps_page;
1676	struct pci_dev *pdev = adapter->pdev;
1677	unsigned int i, j;
1678
1679	/* Free all the Rx ring sk_buffs */
1680	for (i = 0; i < rx_ring->count; i++) {
1681		buffer_info = &rx_ring->buffer_info[i];
1682		if (buffer_info->dma) {
1683			if (adapter->clean_rx == e1000_clean_rx_irq)
1684				dma_unmap_single(&pdev->dev, buffer_info->dma,
1685						 adapter->rx_buffer_len,
1686						 DMA_FROM_DEVICE);
1687			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1688				dma_unmap_page(&pdev->dev, buffer_info->dma,
1689					       PAGE_SIZE, DMA_FROM_DEVICE);
 
1690			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_ps_bsize0,
1693						 DMA_FROM_DEVICE);
1694			buffer_info->dma = 0;
1695		}
1696
1697		if (buffer_info->page) {
1698			put_page(buffer_info->page);
1699			buffer_info->page = NULL;
1700		}
1701
1702		if (buffer_info->skb) {
1703			dev_kfree_skb(buffer_info->skb);
1704			buffer_info->skb = NULL;
1705		}
1706
1707		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1708			ps_page = &buffer_info->ps_pages[j];
1709			if (!ps_page->page)
1710				break;
1711			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1712				       DMA_FROM_DEVICE);
1713			ps_page->dma = 0;
1714			put_page(ps_page->page);
1715			ps_page->page = NULL;
1716		}
1717	}
1718
1719	/* there also may be some cached data from a chained receive */
1720	if (rx_ring->rx_skb_top) {
1721		dev_kfree_skb(rx_ring->rx_skb_top);
1722		rx_ring->rx_skb_top = NULL;
1723	}
1724
1725	/* Zero out the descriptor ring */
1726	memset(rx_ring->desc, 0, rx_ring->size);
1727
1728	rx_ring->next_to_clean = 0;
1729	rx_ring->next_to_use = 0;
1730	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 
 
 
 
 
 
1731}
1732
1733static void e1000e_downshift_workaround(struct work_struct *work)
1734{
1735	struct e1000_adapter *adapter = container_of(work,
1736						     struct e1000_adapter,
1737						     downshift_task);
1738
1739	if (test_bit(__E1000_DOWN, &adapter->state))
1740		return;
1741
1742	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1743}
1744
1745/**
1746 * e1000_intr_msi - Interrupt Handler
1747 * @irq: interrupt number
1748 * @data: pointer to a network interface device structure
1749 **/
1750static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1751{
1752	struct net_device *netdev = data;
1753	struct e1000_adapter *adapter = netdev_priv(netdev);
1754	struct e1000_hw *hw = &adapter->hw;
1755	u32 icr = er32(ICR);
1756
1757	/* read ICR disables interrupts using IAM */
 
 
 
1758	if (icr & E1000_ICR_LSC) {
1759		hw->mac.get_link_status = true;
1760		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1761		 * disconnect (LSC) before accessing any PHY registers
1762		 */
1763		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1764		    (!(er32(STATUS) & E1000_STATUS_LU)))
1765			schedule_work(&adapter->downshift_task);
1766
1767		/* 80003ES2LAN workaround-- For packet buffer work-around on
 
1768		 * link down event; disable receives here in the ISR and reset
1769		 * adapter in watchdog
1770		 */
1771		if (netif_carrier_ok(netdev) &&
1772		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1773			/* disable receives */
1774			u32 rctl = er32(RCTL);
1775
1776			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1777			adapter->flags |= FLAG_RESTART_NOW;
1778		}
1779		/* guard against interrupt when we're going down */
1780		if (!test_bit(__E1000_DOWN, &adapter->state))
1781			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1782	}
1783
1784	/* Reset on uncorrectable ECC error */
1785	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1786		u32 pbeccsts = er32(PBECCSTS);
1787
1788		adapter->corr_errors +=
1789		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1790		adapter->uncorr_errors +=
1791		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1792
1793		/* Do the reset outside of interrupt context */
1794		schedule_work(&adapter->reset_task);
1795
1796		/* return immediately since reset is imminent */
1797		return IRQ_HANDLED;
1798	}
1799
1800	if (napi_schedule_prep(&adapter->napi)) {
1801		adapter->total_tx_bytes = 0;
1802		adapter->total_tx_packets = 0;
1803		adapter->total_rx_bytes = 0;
1804		adapter->total_rx_packets = 0;
1805		__napi_schedule(&adapter->napi);
1806	}
1807
1808	return IRQ_HANDLED;
1809}
1810
1811/**
1812 * e1000_intr - Interrupt Handler
1813 * @irq: interrupt number
1814 * @data: pointer to a network interface device structure
1815 **/
1816static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1817{
1818	struct net_device *netdev = data;
1819	struct e1000_adapter *adapter = netdev_priv(netdev);
1820	struct e1000_hw *hw = &adapter->hw;
1821	u32 rctl, icr = er32(ICR);
1822
1823	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1824		return IRQ_NONE;	/* Not our interrupt */
1825
1826	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 
1827	 * not set, then the adapter didn't send an interrupt
1828	 */
1829	if (!(icr & E1000_ICR_INT_ASSERTED))
1830		return IRQ_NONE;
1831
1832	/* Interrupt Auto-Mask...upon reading ICR,
 
1833	 * interrupts are masked.  No need for the
1834	 * IMC write
1835	 */
1836
1837	if (icr & E1000_ICR_LSC) {
1838		hw->mac.get_link_status = true;
1839		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1840		 * disconnect (LSC) before accessing any PHY registers
1841		 */
1842		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1843		    (!(er32(STATUS) & E1000_STATUS_LU)))
1844			schedule_work(&adapter->downshift_task);
1845
1846		/* 80003ES2LAN workaround--
 
1847		 * For packet buffer work-around on link down event;
1848		 * disable receives here in the ISR and
1849		 * reset adapter in watchdog
1850		 */
1851		if (netif_carrier_ok(netdev) &&
1852		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1853			/* disable receives */
1854			rctl = er32(RCTL);
1855			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1856			adapter->flags |= FLAG_RESTART_NOW;
1857		}
1858		/* guard against interrupt when we're going down */
1859		if (!test_bit(__E1000_DOWN, &adapter->state))
1860			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1861	}
1862
1863	/* Reset on uncorrectable ECC error */
1864	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1865		u32 pbeccsts = er32(PBECCSTS);
1866
1867		adapter->corr_errors +=
1868		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1869		adapter->uncorr_errors +=
1870		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
1871
1872		/* Do the reset outside of interrupt context */
1873		schedule_work(&adapter->reset_task);
1874
1875		/* return immediately since reset is imminent */
1876		return IRQ_HANDLED;
1877	}
1878
1879	if (napi_schedule_prep(&adapter->napi)) {
1880		adapter->total_tx_bytes = 0;
1881		adapter->total_tx_packets = 0;
1882		adapter->total_rx_bytes = 0;
1883		adapter->total_rx_packets = 0;
1884		__napi_schedule(&adapter->napi);
1885	}
1886
1887	return IRQ_HANDLED;
1888}
1889
1890static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1891{
1892	struct net_device *netdev = data;
1893	struct e1000_adapter *adapter = netdev_priv(netdev);
1894	struct e1000_hw *hw = &adapter->hw;
1895	u32 icr = er32(ICR);
1896
 
 
 
 
 
 
1897	if (icr & adapter->eiac_mask)
1898		ew32(ICS, (icr & adapter->eiac_mask));
1899
1900	if (icr & E1000_ICR_LSC) {
 
 
1901		hw->mac.get_link_status = true;
1902		/* guard against interrupt when we're going down */
1903		if (!test_bit(__E1000_DOWN, &adapter->state))
1904			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1905	}
1906
 
1907	if (!test_bit(__E1000_DOWN, &adapter->state))
1908		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1909
1910	return IRQ_HANDLED;
1911}
1912
1913static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
 
1914{
1915	struct net_device *netdev = data;
1916	struct e1000_adapter *adapter = netdev_priv(netdev);
1917	struct e1000_hw *hw = &adapter->hw;
1918	struct e1000_ring *tx_ring = adapter->tx_ring;
1919
 
1920	adapter->total_tx_bytes = 0;
1921	adapter->total_tx_packets = 0;
1922
1923	if (!e1000_clean_tx_irq(tx_ring))
1924		/* Ring was not completely cleaned, so fire another interrupt */
1925		ew32(ICS, tx_ring->ims_val);
1926
1927	if (!test_bit(__E1000_DOWN, &adapter->state))
1928		ew32(IMS, adapter->tx_ring->ims_val);
1929
1930	return IRQ_HANDLED;
1931}
1932
1933static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1934{
1935	struct net_device *netdev = data;
1936	struct e1000_adapter *adapter = netdev_priv(netdev);
1937	struct e1000_ring *rx_ring = adapter->rx_ring;
1938
1939	/* Write the ITR value calculated at the end of the
1940	 * previous interrupt.
1941	 */
1942	if (rx_ring->set_itr) {
1943		u32 itr = rx_ring->itr_val ?
1944			  1000000000 / (rx_ring->itr_val * 256) : 0;
1945
1946		writel(itr, rx_ring->itr_register);
1947		rx_ring->set_itr = 0;
1948	}
1949
1950	if (napi_schedule_prep(&adapter->napi)) {
1951		adapter->total_rx_bytes = 0;
1952		adapter->total_rx_packets = 0;
1953		__napi_schedule(&adapter->napi);
1954	}
1955	return IRQ_HANDLED;
1956}
1957
1958/**
1959 * e1000_configure_msix - Configure MSI-X hardware
1960 * @adapter: board private structure
1961 *
1962 * e1000_configure_msix sets up the hardware to properly
1963 * generate MSI-X interrupts.
1964 **/
1965static void e1000_configure_msix(struct e1000_adapter *adapter)
1966{
1967	struct e1000_hw *hw = &adapter->hw;
1968	struct e1000_ring *rx_ring = adapter->rx_ring;
1969	struct e1000_ring *tx_ring = adapter->tx_ring;
1970	int vector = 0;
1971	u32 ctrl_ext, ivar = 0;
1972
1973	adapter->eiac_mask = 0;
1974
1975	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1976	if (hw->mac.type == e1000_82574) {
1977		u32 rfctl = er32(RFCTL);
1978
1979		rfctl |= E1000_RFCTL_ACK_DIS;
1980		ew32(RFCTL, rfctl);
1981	}
1982
 
1983	/* Configure Rx vector */
1984	rx_ring->ims_val = E1000_IMS_RXQ0;
1985	adapter->eiac_mask |= rx_ring->ims_val;
1986	if (rx_ring->itr_val)
1987		writel(1000000000 / (rx_ring->itr_val * 256),
1988		       rx_ring->itr_register);
1989	else
1990		writel(1, rx_ring->itr_register);
1991	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1992
1993	/* Configure Tx vector */
1994	tx_ring->ims_val = E1000_IMS_TXQ0;
1995	vector++;
1996	if (tx_ring->itr_val)
1997		writel(1000000000 / (tx_ring->itr_val * 256),
1998		       tx_ring->itr_register);
1999	else
2000		writel(1, tx_ring->itr_register);
2001	adapter->eiac_mask |= tx_ring->ims_val;
2002	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2003
2004	/* set vector for Other Causes, e.g. link changes */
2005	vector++;
2006	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2007	if (rx_ring->itr_val)
2008		writel(1000000000 / (rx_ring->itr_val * 256),
2009		       hw->hw_addr + E1000_EITR_82574(vector));
2010	else
2011		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2012
2013	/* Cause Tx interrupts on every write back */
2014	ivar |= BIT(31);
2015
2016	ew32(IVAR, ivar);
2017
2018	/* enable MSI-X PBA support */
2019	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2020	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
 
 
 
 
 
2021	ew32(CTRL_EXT, ctrl_ext);
2022	e1e_flush();
2023}
2024
2025void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2026{
2027	if (adapter->msix_entries) {
2028		pci_disable_msix(adapter->pdev);
2029		kfree(adapter->msix_entries);
2030		adapter->msix_entries = NULL;
2031	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2032		pci_disable_msi(adapter->pdev);
2033		adapter->flags &= ~FLAG_MSI_ENABLED;
2034	}
2035}
2036
2037/**
2038 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2039 * @adapter: board private structure
2040 *
2041 * Attempt to configure interrupts using the best available
2042 * capabilities of the hardware and kernel.
2043 **/
2044void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2045{
2046	int err;
2047	int i;
2048
2049	switch (adapter->int_mode) {
2050	case E1000E_INT_MODE_MSIX:
2051		if (adapter->flags & FLAG_HAS_MSIX) {
2052			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2053			adapter->msix_entries = kcalloc(adapter->num_vectors,
2054							sizeof(struct
2055							       msix_entry),
2056							GFP_KERNEL);
2057			if (adapter->msix_entries) {
2058				struct e1000_adapter *a = adapter;
2059
2060				for (i = 0; i < adapter->num_vectors; i++)
2061					adapter->msix_entries[i].entry = i;
2062
2063				err = pci_enable_msix_range(a->pdev,
2064							    a->msix_entries,
2065							    a->num_vectors,
2066							    a->num_vectors);
2067				if (err > 0)
2068					return;
2069			}
2070			/* MSI-X failed, so fall through and try MSI */
2071			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2072			e1000e_reset_interrupt_capability(adapter);
2073		}
2074		adapter->int_mode = E1000E_INT_MODE_MSI;
2075		fallthrough;
2076	case E1000E_INT_MODE_MSI:
2077		if (!pci_enable_msi(adapter->pdev)) {
2078			adapter->flags |= FLAG_MSI_ENABLED;
2079		} else {
2080			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2081			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2082		}
2083		fallthrough;
2084	case E1000E_INT_MODE_LEGACY:
2085		/* Don't do anything; this is the system default */
2086		break;
2087	}
2088
2089	/* store the number of vectors being used */
2090	adapter->num_vectors = 1;
2091}
2092
2093/**
2094 * e1000_request_msix - Initialize MSI-X interrupts
2095 * @adapter: board private structure
2096 *
2097 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2098 * kernel.
2099 **/
2100static int e1000_request_msix(struct e1000_adapter *adapter)
2101{
2102	struct net_device *netdev = adapter->netdev;
2103	int err = 0, vector = 0;
2104
2105	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2106		snprintf(adapter->rx_ring->name,
2107			 sizeof(adapter->rx_ring->name) - 1,
2108			 "%.14s-rx-0", netdev->name);
2109	else
2110		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2111	err = request_irq(adapter->msix_entries[vector].vector,
2112			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2113			  netdev);
2114	if (err)
2115		return err;
2116	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2117	    E1000_EITR_82574(vector);
2118	adapter->rx_ring->itr_val = adapter->itr;
2119	vector++;
2120
2121	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2122		snprintf(adapter->tx_ring->name,
2123			 sizeof(adapter->tx_ring->name) - 1,
2124			 "%.14s-tx-0", netdev->name);
2125	else
2126		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2127	err = request_irq(adapter->msix_entries[vector].vector,
2128			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2129			  netdev);
2130	if (err)
2131		return err;
2132	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2133	    E1000_EITR_82574(vector);
2134	adapter->tx_ring->itr_val = adapter->itr;
2135	vector++;
2136
2137	err = request_irq(adapter->msix_entries[vector].vector,
2138			  e1000_msix_other, 0, netdev->name, netdev);
2139	if (err)
2140		return err;
2141
2142	e1000_configure_msix(adapter);
2143
2144	return 0;
2145}
2146
2147/**
2148 * e1000_request_irq - initialize interrupts
2149 * @adapter: board private structure
2150 *
2151 * Attempts to configure interrupts using the best available
2152 * capabilities of the hardware and kernel.
2153 **/
2154static int e1000_request_irq(struct e1000_adapter *adapter)
2155{
2156	struct net_device *netdev = adapter->netdev;
2157	int err;
2158
2159	if (adapter->msix_entries) {
2160		err = e1000_request_msix(adapter);
2161		if (!err)
2162			return err;
2163		/* fall back to MSI */
2164		e1000e_reset_interrupt_capability(adapter);
2165		adapter->int_mode = E1000E_INT_MODE_MSI;
2166		e1000e_set_interrupt_capability(adapter);
2167	}
2168	if (adapter->flags & FLAG_MSI_ENABLED) {
2169		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2170				  netdev->name, netdev);
2171		if (!err)
2172			return err;
2173
2174		/* fall back to legacy interrupt */
2175		e1000e_reset_interrupt_capability(adapter);
2176		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2177	}
2178
2179	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2180			  netdev->name, netdev);
2181	if (err)
2182		e_err("Unable to allocate interrupt, Error: %d\n", err);
2183
2184	return err;
2185}
2186
2187static void e1000_free_irq(struct e1000_adapter *adapter)
2188{
2189	struct net_device *netdev = adapter->netdev;
2190
2191	if (adapter->msix_entries) {
2192		int vector = 0;
2193
2194		free_irq(adapter->msix_entries[vector].vector, netdev);
2195		vector++;
2196
2197		free_irq(adapter->msix_entries[vector].vector, netdev);
2198		vector++;
2199
2200		/* Other Causes interrupt vector */
2201		free_irq(adapter->msix_entries[vector].vector, netdev);
2202		return;
2203	}
2204
2205	free_irq(adapter->pdev->irq, netdev);
2206}
2207
2208/**
2209 * e1000_irq_disable - Mask off interrupt generation on the NIC
2210 * @adapter: board private structure
2211 **/
2212static void e1000_irq_disable(struct e1000_adapter *adapter)
2213{
2214	struct e1000_hw *hw = &adapter->hw;
2215
2216	ew32(IMC, ~0);
2217	if (adapter->msix_entries)
2218		ew32(EIAC_82574, 0);
2219	e1e_flush();
2220
2221	if (adapter->msix_entries) {
2222		int i;
2223
2224		for (i = 0; i < adapter->num_vectors; i++)
2225			synchronize_irq(adapter->msix_entries[i].vector);
2226	} else {
2227		synchronize_irq(adapter->pdev->irq);
2228	}
2229}
2230
2231/**
2232 * e1000_irq_enable - Enable default interrupt generation settings
2233 * @adapter: board private structure
2234 **/
2235static void e1000_irq_enable(struct e1000_adapter *adapter)
2236{
2237	struct e1000_hw *hw = &adapter->hw;
2238
2239	if (adapter->msix_entries) {
2240		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2241		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2242		     IMS_OTHER_MASK);
2243	} else if (hw->mac.type >= e1000_pch_lpt) {
2244		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2245	} else {
2246		ew32(IMS, IMS_ENABLE_MASK);
2247	}
2248	e1e_flush();
2249}
2250
2251/**
2252 * e1000e_get_hw_control - get control of the h/w from f/w
2253 * @adapter: address of board private structure
2254 *
2255 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2256 * For ASF and Pass Through versions of f/w this means that
2257 * the driver is loaded. For AMT version (only with 82573)
2258 * of the f/w this means that the network i/f is open.
2259 **/
2260void e1000e_get_hw_control(struct e1000_adapter *adapter)
2261{
2262	struct e1000_hw *hw = &adapter->hw;
2263	u32 ctrl_ext;
2264	u32 swsm;
2265
2266	/* Let firmware know the driver has taken over */
2267	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2268		swsm = er32(SWSM);
2269		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2270	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2271		ctrl_ext = er32(CTRL_EXT);
2272		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2273	}
2274}
2275
2276/**
2277 * e1000e_release_hw_control - release control of the h/w to f/w
2278 * @adapter: address of board private structure
2279 *
2280 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2281 * For ASF and Pass Through versions of f/w this means that the
2282 * driver is no longer loaded. For AMT version (only with 82573) i
2283 * of the f/w this means that the network i/f is closed.
2284 *
2285 **/
2286void e1000e_release_hw_control(struct e1000_adapter *adapter)
2287{
2288	struct e1000_hw *hw = &adapter->hw;
2289	u32 ctrl_ext;
2290	u32 swsm;
2291
2292	/* Let firmware taken over control of h/w */
2293	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2294		swsm = er32(SWSM);
2295		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2296	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2297		ctrl_ext = er32(CTRL_EXT);
2298		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2299	}
2300}
2301
2302/**
2303 * e1000_alloc_ring_dma - allocate memory for a ring structure
2304 * @adapter: board private structure
2305 * @ring: ring struct for which to allocate dma
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308				struct e1000_ring *ring)
2309{
2310	struct pci_dev *pdev = adapter->pdev;
2311
2312	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313					GFP_KERNEL);
2314	if (!ring->desc)
2315		return -ENOMEM;
2316
2317	return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328	struct e1000_adapter *adapter = tx_ring->adapter;
2329	int err = -ENOMEM, size;
2330
2331	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332	tx_ring->buffer_info = vzalloc(size);
2333	if (!tx_ring->buffer_info)
2334		goto err;
2335
2336	/* round up to nearest 4K */
2337	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341	if (err)
2342		goto err;
2343
2344	tx_ring->next_to_use = 0;
2345	tx_ring->next_to_clean = 0;
2346
2347	return 0;
2348err:
2349	vfree(tx_ring->buffer_info);
2350	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351	return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362	struct e1000_adapter *adapter = rx_ring->adapter;
2363	struct e1000_buffer *buffer_info;
2364	int i, size, desc_len, err = -ENOMEM;
2365
2366	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367	rx_ring->buffer_info = vzalloc(size);
2368	if (!rx_ring->buffer_info)
2369		goto err;
2370
2371	for (i = 0; i < rx_ring->count; i++) {
2372		buffer_info = &rx_ring->buffer_info[i];
2373		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374						sizeof(struct e1000_ps_page),
2375						GFP_KERNEL);
2376		if (!buffer_info->ps_pages)
2377			goto err_pages;
2378	}
2379
2380	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382	/* Round up to nearest 4K */
2383	rx_ring->size = rx_ring->count * desc_len;
2384	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387	if (err)
2388		goto err_pages;
2389
2390	rx_ring->next_to_clean = 0;
2391	rx_ring->next_to_use = 0;
2392	rx_ring->rx_skb_top = NULL;
2393
2394	return 0;
2395
2396err_pages:
2397	for (i = 0; i < rx_ring->count; i++) {
2398		buffer_info = &rx_ring->buffer_info[i];
2399		kfree(buffer_info->ps_pages);
2400	}
2401err:
2402	vfree(rx_ring->buffer_info);
2403	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404	return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413	struct e1000_adapter *adapter = tx_ring->adapter;
2414	struct e1000_buffer *buffer_info;
2415	unsigned long size;
2416	unsigned int i;
2417
2418	for (i = 0; i < tx_ring->count; i++) {
2419		buffer_info = &tx_ring->buffer_info[i];
2420		e1000_put_txbuf(tx_ring, buffer_info, false);
2421	}
2422
2423	netdev_reset_queue(adapter->netdev);
2424	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425	memset(tx_ring->buffer_info, 0, size);
2426
2427	memset(tx_ring->desc, 0, tx_ring->size);
2428
2429	tx_ring->next_to_use = 0;
2430	tx_ring->next_to_clean = 0;
 
 
 
 
 
 
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441	struct e1000_adapter *adapter = tx_ring->adapter;
2442	struct pci_dev *pdev = adapter->pdev;
2443
2444	e1000_clean_tx_ring(tx_ring);
2445
2446	vfree(tx_ring->buffer_info);
2447	tx_ring->buffer_info = NULL;
2448
2449	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450			  tx_ring->dma);
2451	tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462	struct e1000_adapter *adapter = rx_ring->adapter;
2463	struct pci_dev *pdev = adapter->pdev;
2464	int i;
2465
2466	e1000_clean_rx_ring(rx_ring);
2467
2468	for (i = 0; i < rx_ring->count; i++)
2469		kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471	vfree(rx_ring->buffer_info);
2472	rx_ring->buffer_info = NULL;
2473
2474	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475			  rx_ring->dma);
2476	rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
 
2481 * @itr_setting: current adapter->itr
2482 * @packets: the number of packets during this measurement interval
2483 * @bytes: the number of bytes during this measurement interval
2484 *
2485 *      Stores a new ITR value based on packets and byte
2486 *      counts during the last interrupt.  The advantage of per interrupt
2487 *      computation is faster updates and more accurate ITR for the current
2488 *      traffic pattern.  Constants in this function were computed
2489 *      based on theoretical maximum wire speed and thresholds were set based
2490 *      on testing data as well as attempting to minimize response time
2491 *      while increasing bulk throughput.  This functionality is controlled
2492 *      by the InterruptThrottleRate module parameter.
2493 **/
2494static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
 
 
2495{
2496	unsigned int retval = itr_setting;
2497
2498	if (packets == 0)
2499		return itr_setting;
2500
2501	switch (itr_setting) {
2502	case lowest_latency:
2503		/* handle TSO and jumbo frames */
2504		if (bytes / packets > 8000)
2505			retval = bulk_latency;
2506		else if ((packets < 5) && (bytes > 512))
2507			retval = low_latency;
2508		break;
2509	case low_latency:	/* 50 usec aka 20000 ints/s */
2510		if (bytes > 10000) {
2511			/* this if handles the TSO accounting */
2512			if (bytes / packets > 8000)
2513				retval = bulk_latency;
2514			else if ((packets < 10) || ((bytes / packets) > 1200))
2515				retval = bulk_latency;
2516			else if ((packets > 35))
2517				retval = lowest_latency;
2518		} else if (bytes / packets > 2000) {
2519			retval = bulk_latency;
2520		} else if (packets <= 2 && bytes < 512) {
2521			retval = lowest_latency;
2522		}
2523		break;
2524	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2525		if (bytes > 25000) {
2526			if (packets > 35)
2527				retval = low_latency;
2528		} else if (bytes < 6000) {
2529			retval = low_latency;
2530		}
2531		break;
2532	}
2533
2534	return retval;
2535}
2536
2537static void e1000_set_itr(struct e1000_adapter *adapter)
2538{
 
2539	u16 current_itr;
2540	u32 new_itr = adapter->itr;
2541
2542	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2543	if (adapter->link_speed != SPEED_1000) {
 
2544		new_itr = 4000;
2545		goto set_itr_now;
2546	}
2547
2548	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2549		new_itr = 0;
2550		goto set_itr_now;
2551	}
2552
2553	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2554					   adapter->total_tx_packets,
2555					   adapter->total_tx_bytes);
 
2556	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2557	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2558		adapter->tx_itr = low_latency;
2559
2560	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2561					   adapter->total_rx_packets,
2562					   adapter->total_rx_bytes);
 
2563	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2564	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2565		adapter->rx_itr = low_latency;
2566
2567	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2568
2569	/* counts and packets in update_itr are dependent on these numbers */
2570	switch (current_itr) {
 
2571	case lowest_latency:
2572		new_itr = 70000;
2573		break;
2574	case low_latency:
2575		new_itr = 20000;	/* aka hwitr = ~200 */
2576		break;
2577	case bulk_latency:
2578		new_itr = 4000;
2579		break;
2580	default:
2581		break;
2582	}
2583
2584set_itr_now:
2585	if (new_itr != adapter->itr) {
2586		/* this attempts to bias the interrupt rate towards Bulk
 
2587		 * by adding intermediate steps when interrupt rate is
2588		 * increasing
2589		 */
2590		new_itr = new_itr > adapter->itr ?
2591		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
 
2592		adapter->itr = new_itr;
2593		adapter->rx_ring->itr_val = new_itr;
2594		if (adapter->msix_entries)
2595			adapter->rx_ring->set_itr = 1;
2596		else
2597			e1000e_write_itr(adapter, new_itr);
2598	}
2599}
2600
2601/**
2602 * e1000e_write_itr - write the ITR value to the appropriate registers
2603 * @adapter: address of board private structure
2604 * @itr: new ITR value to program
2605 *
2606 * e1000e_write_itr determines if the adapter is in MSI-X mode
2607 * and, if so, writes the EITR registers with the ITR value.
2608 * Otherwise, it writes the ITR value into the ITR register.
2609 **/
2610void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2611{
2612	struct e1000_hw *hw = &adapter->hw;
2613	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2614
2615	if (adapter->msix_entries) {
2616		int vector;
2617
2618		for (vector = 0; vector < adapter->num_vectors; vector++)
2619			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2620	} else {
2621		ew32(ITR, new_itr);
2622	}
2623}
2624
2625/**
2626 * e1000_alloc_queues - Allocate memory for all rings
2627 * @adapter: board private structure to initialize
2628 **/
2629static int e1000_alloc_queues(struct e1000_adapter *adapter)
2630{
2631	int size = sizeof(struct e1000_ring);
2632
2633	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2634	if (!adapter->tx_ring)
2635		goto err;
2636	adapter->tx_ring->count = adapter->tx_ring_count;
2637	adapter->tx_ring->adapter = adapter;
2638
2639	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2640	if (!adapter->rx_ring)
2641		goto err;
2642	adapter->rx_ring->count = adapter->rx_ring_count;
2643	adapter->rx_ring->adapter = adapter;
2644
2645	return 0;
2646err:
2647	e_err("Unable to allocate memory for queues\n");
2648	kfree(adapter->rx_ring);
2649	kfree(adapter->tx_ring);
2650	return -ENOMEM;
2651}
2652
2653/**
2654 * e1000e_poll - NAPI Rx polling callback
2655 * @napi: struct associated with this polling callback
2656 * @budget: number of packets driver is allowed to process this poll
2657 **/
2658static int e1000e_poll(struct napi_struct *napi, int budget)
2659{
2660	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2661						     napi);
2662	struct e1000_hw *hw = &adapter->hw;
2663	struct net_device *poll_dev = adapter->netdev;
2664	int tx_cleaned = 1, work_done = 0;
2665
2666	adapter = netdev_priv(poll_dev);
2667
2668	if (!adapter->msix_entries ||
2669	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2670		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2671
2672	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2673
2674	if (!tx_cleaned || work_done == budget)
2675		return budget;
2676
2677	/* Exit the polling mode, but don't re-enable interrupts if stack might
2678	 * poll us due to busy-polling
2679	 */
2680	if (likely(napi_complete_done(napi, work_done))) {
2681		if (adapter->itr_setting & 3)
2682			e1000_set_itr(adapter);
 
2683		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2684			if (adapter->msix_entries)
2685				ew32(IMS, adapter->rx_ring->ims_val);
2686			else
2687				e1000_irq_enable(adapter);
2688		}
2689	}
2690
2691	return work_done;
2692}
2693
2694static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2695				 __always_unused __be16 proto, u16 vid)
2696{
2697	struct e1000_adapter *adapter = netdev_priv(netdev);
2698	struct e1000_hw *hw = &adapter->hw;
2699	u32 vfta, index;
2700
2701	/* don't update vlan cookie if already programmed */
2702	if ((adapter->hw.mng_cookie.status &
2703	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2704	    (vid == adapter->mng_vlan_id))
2705		return 0;
2706
2707	/* add VID to filter table */
2708	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2709		index = (vid >> 5) & 0x7F;
2710		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2711		vfta |= BIT((vid & 0x1F));
2712		hw->mac.ops.write_vfta(hw, index, vfta);
2713	}
2714
2715	set_bit(vid, adapter->active_vlans);
2716
2717	return 0;
2718}
2719
2720static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2721				  __always_unused __be16 proto, u16 vid)
2722{
2723	struct e1000_adapter *adapter = netdev_priv(netdev);
2724	struct e1000_hw *hw = &adapter->hw;
2725	u32 vfta, index;
2726
2727	if ((adapter->hw.mng_cookie.status &
2728	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2729	    (vid == adapter->mng_vlan_id)) {
2730		/* release control to f/w */
2731		e1000e_release_hw_control(adapter);
2732		return 0;
2733	}
2734
2735	/* remove VID from filter table */
2736	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2737		index = (vid >> 5) & 0x7F;
2738		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2739		vfta &= ~BIT((vid & 0x1F));
2740		hw->mac.ops.write_vfta(hw, index, vfta);
2741	}
2742
2743	clear_bit(vid, adapter->active_vlans);
2744
2745	return 0;
2746}
2747
2748/**
2749 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2750 * @adapter: board private structure to initialize
2751 **/
2752static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2753{
2754	struct net_device *netdev = adapter->netdev;
2755	struct e1000_hw *hw = &adapter->hw;
2756	u32 rctl;
2757
2758	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2759		/* disable VLAN receive filtering */
2760		rctl = er32(RCTL);
2761		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2762		ew32(RCTL, rctl);
2763
2764		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2765			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2766					       adapter->mng_vlan_id);
2767			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2768		}
2769	}
2770}
2771
2772/**
2773 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2774 * @adapter: board private structure to initialize
2775 **/
2776static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2777{
2778	struct e1000_hw *hw = &adapter->hw;
2779	u32 rctl;
2780
2781	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2782		/* enable VLAN receive filtering */
2783		rctl = er32(RCTL);
2784		rctl |= E1000_RCTL_VFE;
2785		rctl &= ~E1000_RCTL_CFIEN;
2786		ew32(RCTL, rctl);
2787	}
2788}
2789
2790/**
2791 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2792 * @adapter: board private structure to initialize
2793 **/
2794static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2795{
2796	struct e1000_hw *hw = &adapter->hw;
2797	u32 ctrl;
2798
2799	/* disable VLAN tag insert/strip */
2800	ctrl = er32(CTRL);
2801	ctrl &= ~E1000_CTRL_VME;
2802	ew32(CTRL, ctrl);
2803}
2804
2805/**
2806 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2807 * @adapter: board private structure to initialize
2808 **/
2809static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2810{
2811	struct e1000_hw *hw = &adapter->hw;
2812	u32 ctrl;
2813
2814	/* enable VLAN tag insert/strip */
2815	ctrl = er32(CTRL);
2816	ctrl |= E1000_CTRL_VME;
2817	ew32(CTRL, ctrl);
2818}
2819
2820static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2821{
2822	struct net_device *netdev = adapter->netdev;
2823	u16 vid = adapter->hw.mng_cookie.vlan_id;
2824	u16 old_vid = adapter->mng_vlan_id;
2825
2826	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2827		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 
2828		adapter->mng_vlan_id = vid;
2829	}
2830
2831	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2832		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2833}
2834
2835static void e1000_restore_vlan(struct e1000_adapter *adapter)
2836{
2837	u16 vid;
2838
2839	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2840
2841	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2842	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2843}
2844
2845static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2846{
2847	struct e1000_hw *hw = &adapter->hw;
2848	u32 manc, manc2h, mdef, i, j;
2849
2850	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2851		return;
2852
2853	manc = er32(MANC);
2854
2855	/* enable receiving management packets to the host. this will probably
 
2856	 * generate destination unreachable messages from the host OS, but
2857	 * the packets will be handled on SMBUS
2858	 */
2859	manc |= E1000_MANC_EN_MNG2HOST;
2860	manc2h = er32(MANC2H);
2861
2862	switch (hw->mac.type) {
2863	default:
2864		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2865		break;
2866	case e1000_82574:
2867	case e1000_82583:
2868		/* Check if IPMI pass-through decision filter already exists;
 
2869		 * if so, enable it.
2870		 */
2871		for (i = 0, j = 0; i < 8; i++) {
2872			mdef = er32(MDEF(i));
2873
2874			/* Ignore filters with anything other than IPMI ports */
2875			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2876				continue;
2877
2878			/* Enable this decision filter in MANC2H */
2879			if (mdef)
2880				manc2h |= BIT(i);
2881
2882			j |= mdef;
2883		}
2884
2885		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886			break;
2887
2888		/* Create new decision filter in an empty filter */
2889		for (i = 0, j = 0; i < 8; i++)
2890			if (er32(MDEF(i)) == 0) {
2891				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2892					       E1000_MDEF_PORT_664));
2893				manc2h |= BIT(1);
2894				j++;
2895				break;
2896			}
2897
2898		if (!j)
2899			e_warn("Unable to create IPMI pass-through filter\n");
2900		break;
2901	}
2902
2903	ew32(MANC2H, manc2h);
2904	ew32(MANC, manc);
2905}
2906
2907/**
2908 * e1000_configure_tx - Configure Transmit Unit after Reset
2909 * @adapter: board private structure
2910 *
2911 * Configure the Tx unit of the MAC after a reset.
2912 **/
2913static void e1000_configure_tx(struct e1000_adapter *adapter)
2914{
2915	struct e1000_hw *hw = &adapter->hw;
2916	struct e1000_ring *tx_ring = adapter->tx_ring;
2917	u64 tdba;
2918	u32 tdlen, tctl, tarc;
2919
2920	/* Setup the HW Tx Head and Tail descriptor pointers */
2921	tdba = tx_ring->dma;
2922	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2923	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2924	ew32(TDBAH(0), (tdba >> 32));
2925	ew32(TDLEN(0), tdlen);
2926	ew32(TDH(0), 0);
2927	ew32(TDT(0), 0);
2928	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2929	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2930
2931	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2932		e1000e_update_tdt_wa(tx_ring, 0);
2933
2934	/* Set the Tx Interrupt Delay register */
2935	ew32(TIDV, adapter->tx_int_delay);
2936	/* Tx irq moderation */
2937	ew32(TADV, adapter->tx_abs_int_delay);
2938
2939	if (adapter->flags2 & FLAG2_DMA_BURST) {
2940		u32 txdctl = er32(TXDCTL(0));
2941
2942		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2943			    E1000_TXDCTL_WTHRESH);
2944		/* set up some performance related parameters to encourage the
 
2945		 * hardware to use the bus more efficiently in bursts, depends
2946		 * on the tx_int_delay to be enabled,
2947		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2948		 * hthresh = 1 ==> prefetch when one or more available
2949		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2950		 * BEWARE: this seems to work but should be considered first if
2951		 * there are Tx hangs or other Tx related bugs
2952		 */
2953		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2954		ew32(TXDCTL(0), txdctl);
2955	}
2956	/* erratum work around: set txdctl the same for both queues */
2957	ew32(TXDCTL(1), er32(TXDCTL(0)));
2958
2959	/* Program the Transmit Control Register */
2960	tctl = er32(TCTL);
2961	tctl &= ~E1000_TCTL_CT;
2962	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2963		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2964
2965	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2966		tarc = er32(TARC(0));
2967		/* set the speed mode bit, we'll clear it if we're not at
 
2968		 * gigabit link later
2969		 */
2970#define SPEED_MODE_BIT BIT(21)
2971		tarc |= SPEED_MODE_BIT;
2972		ew32(TARC(0), tarc);
2973	}
2974
2975	/* errata: program both queues to unweighted RR */
2976	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2977		tarc = er32(TARC(0));
2978		tarc |= 1;
2979		ew32(TARC(0), tarc);
2980		tarc = er32(TARC(1));
2981		tarc |= 1;
2982		ew32(TARC(1), tarc);
2983	}
2984
2985	/* Setup Transmit Descriptor Settings for eop descriptor */
2986	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2987
2988	/* only set IDE if we are delaying interrupts using the timers */
2989	if (adapter->tx_int_delay)
2990		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2991
2992	/* enable Report Status bit */
2993	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2994
2995	ew32(TCTL, tctl);
2996
2997	hw->mac.ops.config_collision_dist(hw);
2998
2999	/* SPT and KBL Si errata workaround to avoid data corruption */
3000	if (hw->mac.type == e1000_pch_spt) {
3001		u32 reg_val;
3002
3003		reg_val = er32(IOSFPC);
3004		reg_val |= E1000_RCTL_RDMTS_HEX;
3005		ew32(IOSFPC, reg_val);
3006
3007		reg_val = er32(TARC(0));
3008		/* SPT and KBL Si errata workaround to avoid Tx hang.
3009		 * Dropping the number of outstanding requests from
3010		 * 3 to 2 in order to avoid a buffer overrun.
3011		 */
3012		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3013		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3014		ew32(TARC(0), reg_val);
3015	}
3016}
3017
3018#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3019			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3020
3021/**
3022 * e1000_setup_rctl - configure the receive control registers
3023 * @adapter: Board private structure
3024 **/
 
 
3025static void e1000_setup_rctl(struct e1000_adapter *adapter)
3026{
3027	struct e1000_hw *hw = &adapter->hw;
3028	u32 rctl, rfctl;
3029	u32 pages = 0;
3030
3031	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3032	 * If jumbo frames not set, program related MAC/PHY registers
3033	 * to h/w defaults
3034	 */
3035	if (hw->mac.type >= e1000_pch2lan) {
3036		s32 ret_val;
3037
3038		if (adapter->netdev->mtu > ETH_DATA_LEN)
3039			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3040		else
3041			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3042
3043		if (ret_val)
3044			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3045	}
3046
3047	/* Program MC offset vector base */
3048	rctl = er32(RCTL);
3049	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3050	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3051	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3052	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3053
3054	/* Do not Store bad packets */
3055	rctl &= ~E1000_RCTL_SBP;
3056
3057	/* Enable Long Packet receive */
3058	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3059		rctl &= ~E1000_RCTL_LPE;
3060	else
3061		rctl |= E1000_RCTL_LPE;
3062
3063	/* Some systems expect that the CRC is included in SMBUS traffic. The
3064	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3065	 * host memory when this is enabled
3066	 */
3067	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3068		rctl |= E1000_RCTL_SECRC;
3069
3070	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3071	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3072		u16 phy_data;
3073
3074		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3075		phy_data &= 0xfff8;
3076		phy_data |= BIT(2);
3077		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3078
3079		e1e_rphy(hw, 22, &phy_data);
3080		phy_data &= 0x0fff;
3081		phy_data |= BIT(14);
3082		e1e_wphy(hw, 0x10, 0x2823);
3083		e1e_wphy(hw, 0x11, 0x0003);
3084		e1e_wphy(hw, 22, phy_data);
3085	}
3086
3087	/* Setup buffer sizes */
3088	rctl &= ~E1000_RCTL_SZ_4096;
3089	rctl |= E1000_RCTL_BSEX;
3090	switch (adapter->rx_buffer_len) {
3091	case 2048:
3092	default:
3093		rctl |= E1000_RCTL_SZ_2048;
3094		rctl &= ~E1000_RCTL_BSEX;
3095		break;
3096	case 4096:
3097		rctl |= E1000_RCTL_SZ_4096;
3098		break;
3099	case 8192:
3100		rctl |= E1000_RCTL_SZ_8192;
3101		break;
3102	case 16384:
3103		rctl |= E1000_RCTL_SZ_16384;
3104		break;
3105	}
3106
3107	/* Enable Extended Status in all Receive Descriptors */
3108	rfctl = er32(RFCTL);
3109	rfctl |= E1000_RFCTL_EXTEN;
3110	ew32(RFCTL, rfctl);
3111
3112	/* 82571 and greater support packet-split where the protocol
 
3113	 * header is placed in skb->data and the packet data is
3114	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3115	 * In the case of a non-split, skb->data is linearly filled,
3116	 * followed by the page buffers.  Therefore, skb->data is
3117	 * sized to hold the largest protocol header.
3118	 *
3119	 * allocations using alloc_page take too long for regular MTU
3120	 * so only enable packet split for jumbo frames
3121	 *
3122	 * Using pages when the page size is greater than 16k wastes
3123	 * a lot of memory, since we allocate 3 pages at all times
3124	 * per packet.
3125	 */
3126	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3127	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3128		adapter->rx_ps_pages = pages;
3129	else
3130		adapter->rx_ps_pages = 0;
3131
3132	if (adapter->rx_ps_pages) {
3133		u32 psrctl = 0;
3134
3135		/* Enable Packet split descriptors */
3136		rctl |= E1000_RCTL_DTYP_PS;
3137
3138		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
 
3139
3140		switch (adapter->rx_ps_pages) {
3141		case 3:
3142			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3143			fallthrough;
3144		case 2:
3145			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3146			fallthrough;
3147		case 1:
3148			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
 
3149			break;
3150		}
3151
3152		ew32(PSRCTL, psrctl);
3153	}
3154
3155	/* This is useful for sniffing bad packets. */
3156	if (adapter->netdev->features & NETIF_F_RXALL) {
3157		/* UPE and MPE will be handled by normal PROMISC logic
3158		 * in e1000e_set_rx_mode
3159		 */
3160		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3161			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3162			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3163
3164		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3165			  E1000_RCTL_DPF |	/* Allow filtered pause */
3166			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3167		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3168		 * and that breaks VLANs.
3169		 */
3170	}
3171
3172	ew32(RCTL, rctl);
3173	/* just started the receive unit, no need to restart */
3174	adapter->flags &= ~FLAG_RESTART_NOW;
3175}
3176
3177/**
3178 * e1000_configure_rx - Configure Receive Unit after Reset
3179 * @adapter: board private structure
3180 *
3181 * Configure the Rx unit of the MAC after a reset.
3182 **/
3183static void e1000_configure_rx(struct e1000_adapter *adapter)
3184{
3185	struct e1000_hw *hw = &adapter->hw;
3186	struct e1000_ring *rx_ring = adapter->rx_ring;
3187	u64 rdba;
3188	u32 rdlen, rctl, rxcsum, ctrl_ext;
3189
3190	if (adapter->rx_ps_pages) {
3191		/* this is a 32 byte descriptor */
3192		rdlen = rx_ring->count *
3193		    sizeof(union e1000_rx_desc_packet_split);
3194		adapter->clean_rx = e1000_clean_rx_irq_ps;
3195		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3196	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3197		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3198		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3199		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3200	} else {
3201		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3202		adapter->clean_rx = e1000_clean_rx_irq;
3203		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3204	}
3205
3206	/* disable receives while setting up the descriptors */
3207	rctl = er32(RCTL);
3208	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3209		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3210	e1e_flush();
3211	usleep_range(10000, 11000);
3212
3213	if (adapter->flags2 & FLAG2_DMA_BURST) {
3214		/* set the writeback threshold (only takes effect if the RDTR
 
3215		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3216		 * enable prefetching of 0x20 Rx descriptors
3217		 * granularity = 01
3218		 * wthresh = 04,
3219		 * hthresh = 04,
3220		 * pthresh = 0x20
3221		 */
3222		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3223		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
 
 
 
 
 
 
 
 
 
3224	}
3225
3226	/* set the Receive Delay Timer Register */
3227	ew32(RDTR, adapter->rx_int_delay);
3228
3229	/* irq moderation */
3230	ew32(RADV, adapter->rx_abs_int_delay);
3231	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3232		e1000e_write_itr(adapter, adapter->itr);
3233
3234	ctrl_ext = er32(CTRL_EXT);
3235	/* Auto-Mask interrupts upon ICR access */
3236	ctrl_ext |= E1000_CTRL_EXT_IAME;
3237	ew32(IAM, 0xffffffff);
3238	ew32(CTRL_EXT, ctrl_ext);
3239	e1e_flush();
3240
3241	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 
3242	 * the Base and Length of the Rx Descriptor Ring
3243	 */
3244	rdba = rx_ring->dma;
3245	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3246	ew32(RDBAH(0), (rdba >> 32));
3247	ew32(RDLEN(0), rdlen);
3248	ew32(RDH(0), 0);
3249	ew32(RDT(0), 0);
3250	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3251	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3252
3253	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3254		e1000e_update_rdt_wa(rx_ring, 0);
3255
3256	/* Enable Receive Checksum Offload for TCP and UDP */
3257	rxcsum = er32(RXCSUM);
3258	if (adapter->netdev->features & NETIF_F_RXCSUM)
3259		rxcsum |= E1000_RXCSUM_TUOFL;
3260	else
3261		rxcsum &= ~E1000_RXCSUM_TUOFL;
3262	ew32(RXCSUM, rxcsum);
3263
3264	/* With jumbo frames, excessive C-state transition latencies result
3265	 * in dropped transactions.
3266	 */
3267	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3268		u32 lat =
3269		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3270		     adapter->max_frame_size) * 8 / 1000;
3271
3272		if (adapter->flags & FLAG_IS_ICH) {
3273			u32 rxdctl = er32(RXDCTL(0));
3274
3275			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
 
 
 
3276		}
3277
3278		dev_info(&adapter->pdev->dev,
3279			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3280		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3281	} else {
3282		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3283					       PM_QOS_DEFAULT_VALUE);
3284	}
3285
3286	/* Enable Receives */
3287	ew32(RCTL, rctl);
3288}
3289
3290/**
3291 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3292 * @netdev: network interface device structure
3293 *
3294 * Writes multicast address list to the MTA hash table.
3295 * Returns: -ENOMEM on failure
3296 *                0 on no addresses written
3297 *                X on writing X addresses to MTA
3298 */
3299static int e1000e_write_mc_addr_list(struct net_device *netdev)
3300{
3301	struct e1000_adapter *adapter = netdev_priv(netdev);
3302	struct e1000_hw *hw = &adapter->hw;
3303	struct netdev_hw_addr *ha;
3304	u8 *mta_list;
3305	int i;
3306
3307	if (netdev_mc_empty(netdev)) {
3308		/* nothing to program, so clear mc list */
3309		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3310		return 0;
3311	}
3312
3313	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3314	if (!mta_list)
3315		return -ENOMEM;
3316
3317	/* update_mc_addr_list expects a packed array of only addresses. */
3318	i = 0;
3319	netdev_for_each_mc_addr(ha, netdev)
3320	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3321
3322	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3323	kfree(mta_list);
3324
3325	return netdev_mc_count(netdev);
3326}
3327
3328/**
3329 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3330 * @netdev: network interface device structure
3331 *
3332 * Writes unicast address list to the RAR table.
3333 * Returns: -ENOMEM on failure/insufficient address space
3334 *                0 on no addresses written
3335 *                X on writing X addresses to the RAR table
3336 **/
3337static int e1000e_write_uc_addr_list(struct net_device *netdev)
3338{
3339	struct e1000_adapter *adapter = netdev_priv(netdev);
3340	struct e1000_hw *hw = &adapter->hw;
3341	unsigned int rar_entries;
3342	int count = 0;
3343
3344	rar_entries = hw->mac.ops.rar_get_count(hw);
3345
3346	/* save a rar entry for our hardware address */
3347	rar_entries--;
3348
3349	/* save a rar entry for the LAA workaround */
3350	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3351		rar_entries--;
3352
3353	/* return ENOMEM indicating insufficient memory for addresses */
3354	if (netdev_uc_count(netdev) > rar_entries)
3355		return -ENOMEM;
3356
3357	if (!netdev_uc_empty(netdev) && rar_entries) {
3358		struct netdev_hw_addr *ha;
3359
3360		/* write the addresses in reverse order to avoid write
 
3361		 * combining
3362		 */
3363		netdev_for_each_uc_addr(ha, netdev) {
3364			int ret_val;
3365
3366			if (!rar_entries)
3367				break;
3368			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3369			if (ret_val < 0)
3370				return -ENOMEM;
3371			count++;
3372		}
3373	}
3374
3375	/* zero out the remaining RAR entries not used above */
3376	for (; rar_entries > 0; rar_entries--) {
3377		ew32(RAH(rar_entries), 0);
3378		ew32(RAL(rar_entries), 0);
3379	}
3380	e1e_flush();
3381
3382	return count;
3383}
3384
3385/**
3386 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3387 * @netdev: network interface device structure
3388 *
3389 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3390 * address list or the network interface flags are updated.  This routine is
3391 * responsible for configuring the hardware for proper unicast, multicast,
3392 * promiscuous mode, and all-multi behavior.
3393 **/
3394static void e1000e_set_rx_mode(struct net_device *netdev)
3395{
3396	struct e1000_adapter *adapter = netdev_priv(netdev);
3397	struct e1000_hw *hw = &adapter->hw;
3398	u32 rctl;
3399
3400	if (pm_runtime_suspended(netdev->dev.parent))
3401		return;
3402
3403	/* Check for Promiscuous and All Multicast modes */
3404	rctl = er32(RCTL);
3405
3406	/* clear the affected bits */
3407	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3408
3409	if (netdev->flags & IFF_PROMISC) {
3410		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3411		/* Do not hardware filter VLANs in promisc mode */
3412		e1000e_vlan_filter_disable(adapter);
3413	} else {
3414		int count;
3415
3416		if (netdev->flags & IFF_ALLMULTI) {
3417			rctl |= E1000_RCTL_MPE;
3418		} else {
3419			/* Write addresses to the MTA, if the attempt fails
 
3420			 * then we should just turn on promiscuous mode so
3421			 * that we can at least receive multicast traffic
3422			 */
3423			count = e1000e_write_mc_addr_list(netdev);
3424			if (count < 0)
3425				rctl |= E1000_RCTL_MPE;
3426		}
3427		e1000e_vlan_filter_enable(adapter);
3428		/* Write addresses to available RAR registers, if there is not
 
3429		 * sufficient space to store all the addresses then enable
3430		 * unicast promiscuous mode
3431		 */
3432		count = e1000e_write_uc_addr_list(netdev);
3433		if (count < 0)
3434			rctl |= E1000_RCTL_UPE;
3435	}
3436
3437	ew32(RCTL, rctl);
3438
3439	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3440		e1000e_vlan_strip_enable(adapter);
3441	else
3442		e1000e_vlan_strip_disable(adapter);
3443}
3444
3445static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3446{
3447	struct e1000_hw *hw = &adapter->hw;
3448	u32 mrqc, rxcsum;
3449	u32 rss_key[10];
3450	int i;
 
 
 
 
3451
3452	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3453	for (i = 0; i < 10; i++)
3454		ew32(RSSRK(i), rss_key[i]);
3455
3456	/* Direct all traffic to queue 0 */
3457	for (i = 0; i < 32; i++)
3458		ew32(RETA(i), 0);
3459
3460	/* Disable raw packet checksumming so that RSS hash is placed in
 
3461	 * descriptor on writeback.
3462	 */
3463	rxcsum = er32(RXCSUM);
3464	rxcsum |= E1000_RXCSUM_PCSD;
3465
3466	ew32(RXCSUM, rxcsum);
3467
3468	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3469		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3470		E1000_MRQC_RSS_FIELD_IPV6 |
3471		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3472		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3473
3474	ew32(MRQC, mrqc);
3475}
3476
3477/**
3478 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3479 * @adapter: board private structure
3480 * @timinca: pointer to returned time increment attributes
3481 *
3482 * Get attributes for incrementing the System Time Register SYSTIML/H at
3483 * the default base frequency, and set the cyclecounter shift value.
3484 **/
3485s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3486{
3487	struct e1000_hw *hw = &adapter->hw;
3488	u32 incvalue, incperiod, shift;
3489
3490	/* Make sure clock is enabled on I217/I218/I219  before checking
3491	 * the frequency
3492	 */
3493	if ((hw->mac.type >= e1000_pch_lpt) &&
3494	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3495	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3496		u32 fextnvm7 = er32(FEXTNVM7);
3497
3498		if (!(fextnvm7 & BIT(0))) {
3499			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3500			e1e_flush();
3501		}
3502	}
3503
3504	switch (hw->mac.type) {
3505	case e1000_pch2lan:
3506		/* Stable 96MHz frequency */
3507		incperiod = INCPERIOD_96MHZ;
3508		incvalue = INCVALUE_96MHZ;
3509		shift = INCVALUE_SHIFT_96MHZ;
3510		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3511		break;
3512	case e1000_pch_lpt:
3513		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3514			/* Stable 96MHz frequency */
3515			incperiod = INCPERIOD_96MHZ;
3516			incvalue = INCVALUE_96MHZ;
3517			shift = INCVALUE_SHIFT_96MHZ;
3518			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3519		} else {
3520			/* Stable 25MHz frequency */
3521			incperiod = INCPERIOD_25MHZ;
3522			incvalue = INCVALUE_25MHZ;
3523			shift = INCVALUE_SHIFT_25MHZ;
3524			adapter->cc.shift = shift;
3525		}
3526		break;
3527	case e1000_pch_spt:
3528		/* Stable 24MHz frequency */
3529		incperiod = INCPERIOD_24MHZ;
3530		incvalue = INCVALUE_24MHZ;
3531		shift = INCVALUE_SHIFT_24MHZ;
3532		adapter->cc.shift = shift;
3533		break;
3534	case e1000_pch_cnp:
3535	case e1000_pch_tgp:
3536	case e1000_pch_adp:
3537	case e1000_pch_mtp:
3538	case e1000_pch_lnp:
3539	case e1000_pch_ptp:
3540	case e1000_pch_nvp:
3541		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3542			/* Stable 24MHz frequency */
3543			incperiod = INCPERIOD_24MHZ;
3544			incvalue = INCVALUE_24MHZ;
3545			shift = INCVALUE_SHIFT_24MHZ;
3546			adapter->cc.shift = shift;
3547		} else {
3548			/* Stable 38400KHz frequency */
3549			incperiod = INCPERIOD_38400KHZ;
3550			incvalue = INCVALUE_38400KHZ;
3551			shift = INCVALUE_SHIFT_38400KHZ;
3552			adapter->cc.shift = shift;
3553		}
3554		break;
3555	case e1000_82574:
3556	case e1000_82583:
3557		/* Stable 25MHz frequency */
3558		incperiod = INCPERIOD_25MHZ;
3559		incvalue = INCVALUE_25MHZ;
3560		shift = INCVALUE_SHIFT_25MHZ;
3561		adapter->cc.shift = shift;
3562		break;
3563	default:
3564		return -EINVAL;
3565	}
3566
3567	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3568		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3569
3570	return 0;
3571}
3572
3573/**
3574 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3575 * @adapter: board private structure
3576 * @config: timestamp configuration
3577 *
3578 * Outgoing time stamping can be enabled and disabled. Play nice and
3579 * disable it when requested, although it shouldn't cause any overhead
3580 * when no packet needs it. At most one packet in the queue may be
3581 * marked for time stamping, otherwise it would be impossible to tell
3582 * for sure to which packet the hardware time stamp belongs.
3583 *
3584 * Incoming time stamping has to be configured via the hardware filters.
3585 * Not all combinations are supported, in particular event type has to be
3586 * specified. Matching the kind of event packet is not supported, with the
3587 * exception of "all V2 events regardless of level 2 or 4".
3588 **/
3589static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3590				  struct hwtstamp_config *config)
3591{
3592	struct e1000_hw *hw = &adapter->hw;
3593	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3594	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3595	u32 rxmtrl = 0;
3596	u16 rxudp = 0;
3597	bool is_l4 = false;
3598	bool is_l2 = false;
3599	u32 regval;
3600
3601	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3602		return -EINVAL;
3603
3604	switch (config->tx_type) {
3605	case HWTSTAMP_TX_OFF:
3606		tsync_tx_ctl = 0;
3607		break;
3608	case HWTSTAMP_TX_ON:
3609		break;
3610	default:
3611		return -ERANGE;
3612	}
3613
3614	switch (config->rx_filter) {
3615	case HWTSTAMP_FILTER_NONE:
3616		tsync_rx_ctl = 0;
3617		break;
3618	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3619		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3620		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3621		is_l4 = true;
3622		break;
3623	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3624		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3625		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3626		is_l4 = true;
3627		break;
3628	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3629		/* Also time stamps V2 L2 Path Delay Request/Response */
3630		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3631		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3632		is_l2 = true;
3633		break;
3634	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3635		/* Also time stamps V2 L2 Path Delay Request/Response. */
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3637		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3638		is_l2 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3641		/* Hardware cannot filter just V2 L4 Sync messages */
3642		fallthrough;
3643	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3644		/* Also time stamps V2 Path Delay Request/Response. */
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3647		is_l2 = true;
3648		is_l4 = true;
3649		break;
3650	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3651		/* Hardware cannot filter just V2 L4 Delay Request messages */
3652		fallthrough;
3653	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3654		/* Also time stamps V2 Path Delay Request/Response. */
3655		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3656		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3657		is_l2 = true;
3658		is_l4 = true;
3659		break;
3660	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3661	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3662		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3663		fallthrough;
3664	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3665		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3666		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3667		is_l2 = true;
3668		is_l4 = true;
3669		break;
3670	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3671		/* For V1, the hardware can only filter Sync messages or
3672		 * Delay Request messages but not both so fall-through to
3673		 * time stamp all packets.
3674		 */
3675		fallthrough;
3676	case HWTSTAMP_FILTER_NTP_ALL:
3677	case HWTSTAMP_FILTER_ALL:
3678		is_l2 = true;
3679		is_l4 = true;
3680		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3681		config->rx_filter = HWTSTAMP_FILTER_ALL;
3682		break;
3683	default:
3684		return -ERANGE;
3685	}
3686
3687	adapter->hwtstamp_config = *config;
3688
3689	/* enable/disable Tx h/w time stamping */
3690	regval = er32(TSYNCTXCTL);
3691	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3692	regval |= tsync_tx_ctl;
3693	ew32(TSYNCTXCTL, regval);
3694	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3695	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3696		e_err("Timesync Tx Control register not set as expected\n");
3697		return -EAGAIN;
3698	}
3699
3700	/* enable/disable Rx h/w time stamping */
3701	regval = er32(TSYNCRXCTL);
3702	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3703	regval |= tsync_rx_ctl;
3704	ew32(TSYNCRXCTL, regval);
3705	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3706				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3707	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3708		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3709		e_err("Timesync Rx Control register not set as expected\n");
3710		return -EAGAIN;
3711	}
3712
3713	/* L2: define ethertype filter for time stamped packets */
3714	if (is_l2)
3715		rxmtrl |= ETH_P_1588;
3716
3717	/* define which PTP packets get time stamped */
3718	ew32(RXMTRL, rxmtrl);
3719
3720	/* Filter by destination port */
3721	if (is_l4) {
3722		rxudp = PTP_EV_PORT;
3723		cpu_to_be16s(&rxudp);
3724	}
3725	ew32(RXUDP, rxudp);
3726
3727	e1e_flush();
3728
3729	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3730	er32(RXSTMPH);
3731	er32(TXSTMPH);
3732
3733	return 0;
3734}
3735
3736/**
3737 * e1000_configure - configure the hardware for Rx and Tx
3738 * @adapter: private board structure
3739 **/
3740static void e1000_configure(struct e1000_adapter *adapter)
3741{
3742	struct e1000_ring *rx_ring = adapter->rx_ring;
3743
3744	e1000e_set_rx_mode(adapter->netdev);
3745
3746	e1000_restore_vlan(adapter);
3747	e1000_init_manageability_pt(adapter);
3748
3749	e1000_configure_tx(adapter);
3750
3751	if (adapter->netdev->features & NETIF_F_RXHASH)
3752		e1000e_setup_rss_hash(adapter);
3753	e1000_setup_rctl(adapter);
3754	e1000_configure_rx(adapter);
3755	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3756}
3757
3758/**
3759 * e1000e_power_up_phy - restore link in case the phy was powered down
3760 * @adapter: address of board private structure
3761 *
3762 * The phy may be powered down to save power and turn off link when the
3763 * driver is unloaded and wake on lan is not enabled (among others)
3764 * *** this routine MUST be followed by a call to e1000e_reset ***
3765 **/
3766void e1000e_power_up_phy(struct e1000_adapter *adapter)
3767{
3768	if (adapter->hw.phy.ops.power_up)
3769		adapter->hw.phy.ops.power_up(&adapter->hw);
3770
3771	adapter->hw.mac.ops.setup_link(&adapter->hw);
3772}
3773
3774/**
3775 * e1000_power_down_phy - Power down the PHY
3776 * @adapter: board private structure
3777 *
3778 * Power down the PHY so no link is implied when interface is down.
3779 * The PHY cannot be powered down if management or WoL is active.
3780 */
3781static void e1000_power_down_phy(struct e1000_adapter *adapter)
3782{
3783	if (adapter->hw.phy.ops.power_down)
3784		adapter->hw.phy.ops.power_down(&adapter->hw);
3785}
3786
3787/**
3788 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3789 * @adapter: board private structure
3790 *
3791 * We want to clear all pending descriptors from the TX ring.
3792 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3793 * the data of the next descriptor. We don't care about the data we are about
3794 * to reset the HW.
3795 */
3796static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3797{
3798	struct e1000_hw *hw = &adapter->hw;
3799	struct e1000_ring *tx_ring = adapter->tx_ring;
3800	struct e1000_tx_desc *tx_desc = NULL;
3801	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3802	u16 size = 512;
3803
3804	tctl = er32(TCTL);
3805	ew32(TCTL, tctl | E1000_TCTL_EN);
3806	tdt = er32(TDT(0));
3807	BUG_ON(tdt != tx_ring->next_to_use);
3808	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3809	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3810
3811	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3812	tx_desc->upper.data = 0;
3813	/* flush descriptors to memory before notifying the HW */
3814	wmb();
3815	tx_ring->next_to_use++;
3816	if (tx_ring->next_to_use == tx_ring->count)
3817		tx_ring->next_to_use = 0;
3818	ew32(TDT(0), tx_ring->next_to_use);
3819	usleep_range(200, 250);
3820}
3821
3822/**
3823 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3824 * @adapter: board private structure
3825 *
3826 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3827 */
3828static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3829{
3830	u32 rctl, rxdctl;
3831	struct e1000_hw *hw = &adapter->hw;
3832
3833	rctl = er32(RCTL);
3834	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3835	e1e_flush();
3836	usleep_range(100, 150);
3837
3838	rxdctl = er32(RXDCTL(0));
3839	/* zero the lower 14 bits (prefetch and host thresholds) */
3840	rxdctl &= 0xffffc000;
3841
3842	/* update thresholds: prefetch threshold to 31, host threshold to 1
3843	 * and make sure the granularity is "descriptors" and not "cache lines"
3844	 */
3845	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3846
3847	ew32(RXDCTL(0), rxdctl);
3848	/* momentarily enable the RX ring for the changes to take effect */
3849	ew32(RCTL, rctl | E1000_RCTL_EN);
3850	e1e_flush();
3851	usleep_range(100, 150);
3852	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3853}
3854
3855/**
3856 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3857 * @adapter: board private structure
3858 *
3859 * In i219, the descriptor rings must be emptied before resetting the HW
3860 * or before changing the device state to D3 during runtime (runtime PM).
3861 *
3862 * Failure to do this will cause the HW to enter a unit hang state which can
3863 * only be released by PCI reset on the device
3864 *
3865 */
3866
3867static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3868{
3869	u16 hang_state;
3870	u32 fext_nvm11, tdlen;
3871	struct e1000_hw *hw = &adapter->hw;
3872
3873	/* First, disable MULR fix in FEXTNVM11 */
3874	fext_nvm11 = er32(FEXTNVM11);
3875	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3876	ew32(FEXTNVM11, fext_nvm11);
3877	/* do nothing if we're not in faulty state, or if the queue is empty */
3878	tdlen = er32(TDLEN(0));
3879	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3880			     &hang_state);
3881	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3882		return;
3883	e1000_flush_tx_ring(adapter);
3884	/* recheck, maybe the fault is caused by the rx ring */
3885	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3886			     &hang_state);
3887	if (hang_state & FLUSH_DESC_REQUIRED)
3888		e1000_flush_rx_ring(adapter);
3889}
3890
3891/**
3892 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3893 * @adapter: board private structure
3894 *
3895 * When the MAC is reset, all hardware bits for timesync will be reset to the
3896 * default values. This function will restore the settings last in place.
3897 * Since the clock SYSTIME registers are reset, we will simply restore the
3898 * cyclecounter to the kernel real clock time.
3899 **/
3900static void e1000e_systim_reset(struct e1000_adapter *adapter)
3901{
3902	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3903	struct e1000_hw *hw = &adapter->hw;
3904	unsigned long flags;
3905	u32 timinca;
3906	s32 ret_val;
3907
3908	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3909		return;
3910
3911	if (info->adjfine) {
3912		/* restore the previous ptp frequency delta */
3913		ret_val = info->adjfine(info, adapter->ptp_delta);
3914	} else {
3915		/* set the default base frequency if no adjustment possible */
3916		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3917		if (!ret_val)
3918			ew32(TIMINCA, timinca);
3919	}
3920
3921	if (ret_val) {
3922		dev_warn(&adapter->pdev->dev,
3923			 "Failed to restore TIMINCA clock rate delta: %d\n",
3924			 ret_val);
3925		return;
3926	}
3927
3928	/* reset the systim ns time counter */
3929	spin_lock_irqsave(&adapter->systim_lock, flags);
3930	timecounter_init(&adapter->tc, &adapter->cc,
3931			 ktime_to_ns(ktime_get_real()));
3932	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3933
3934	/* restore the previous hwtstamp configuration settings */
3935	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3936}
3937
3938/**
3939 * e1000e_reset - bring the hardware into a known good state
3940 * @adapter: board private structure
3941 *
3942 * This function boots the hardware and enables some settings that
3943 * require a configuration cycle of the hardware - those cannot be
3944 * set/changed during runtime. After reset the device needs to be
3945 * properly configured for Rx, Tx etc.
3946 */
3947void e1000e_reset(struct e1000_adapter *adapter)
3948{
3949	struct e1000_mac_info *mac = &adapter->hw.mac;
3950	struct e1000_fc_info *fc = &adapter->hw.fc;
3951	struct e1000_hw *hw = &adapter->hw;
3952	u32 tx_space, min_tx_space, min_rx_space;
3953	u32 pba = adapter->pba;
3954	u16 hwm;
3955
3956	/* reset Packet Buffer Allocation to default */
3957	ew32(PBA, pba);
3958
3959	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3960		/* To maintain wire speed transmits, the Tx FIFO should be
 
3961		 * large enough to accommodate two full transmit packets,
3962		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3963		 * the Rx FIFO should be large enough to accommodate at least
3964		 * one full receive packet and is similarly rounded up and
3965		 * expressed in KB.
3966		 */
3967		pba = er32(PBA);
3968		/* upper 16 bits has Tx packet buffer allocation size in KB */
3969		tx_space = pba >> 16;
3970		/* lower 16 bits has Rx packet buffer allocation size in KB */
3971		pba &= 0xffff;
3972		/* the Tx fifo also stores 16 bytes of information about the Tx
 
3973		 * but don't include ethernet FCS because hardware appends it
3974		 */
3975		min_tx_space = (adapter->max_frame_size +
3976				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
 
3977		min_tx_space = ALIGN(min_tx_space, 1024);
3978		min_tx_space >>= 10;
3979		/* software strips receive CRC, so leave room for it */
3980		min_rx_space = adapter->max_frame_size;
3981		min_rx_space = ALIGN(min_rx_space, 1024);
3982		min_rx_space >>= 10;
3983
3984		/* If current Tx allocation is less than the min Tx FIFO size,
 
3985		 * and the min Tx FIFO size is less than the current Rx FIFO
3986		 * allocation, take space away from current Rx allocation
3987		 */
3988		if ((tx_space < min_tx_space) &&
3989		    ((min_tx_space - tx_space) < pba)) {
3990			pba -= min_tx_space - tx_space;
3991
3992			/* if short on Rx space, Rx wins and must trump Tx
3993			 * adjustment
 
3994			 */
3995			if (pba < min_rx_space)
3996				pba = min_rx_space;
3997		}
3998
3999		ew32(PBA, pba);
4000	}
4001
4002	/* flow control settings
 
4003	 *
4004	 * The high water mark must be low enough to fit one full frame
4005	 * (or the size used for early receive) above it in the Rx FIFO.
4006	 * Set it to the lower of:
4007	 * - 90% of the Rx FIFO size, and
4008	 * - the full Rx FIFO size minus one full frame
4009	 */
4010	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4011		fc->pause_time = 0xFFFF;
4012	else
4013		fc->pause_time = E1000_FC_PAUSE_TIME;
4014	fc->send_xon = true;
4015	fc->current_mode = fc->requested_mode;
4016
4017	switch (hw->mac.type) {
4018	case e1000_ich9lan:
4019	case e1000_ich10lan:
4020		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4021			pba = 14;
4022			ew32(PBA, pba);
4023			fc->high_water = 0x2800;
4024			fc->low_water = fc->high_water - 8;
4025			break;
4026		}
4027		fallthrough;
4028	default:
4029		hwm = min(((pba << 10) * 9 / 10),
4030			  ((pba << 10) - adapter->max_frame_size));
4031
4032		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4033		fc->low_water = fc->high_water - 8;
4034		break;
4035	case e1000_pchlan:
4036		/* Workaround PCH LOM adapter hangs with certain network
 
4037		 * loads.  If hangs persist, try disabling Tx flow control.
4038		 */
4039		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4040			fc->high_water = 0x3500;
4041			fc->low_water = 0x1500;
4042		} else {
4043			fc->high_water = 0x5000;
4044			fc->low_water = 0x3000;
4045		}
4046		fc->refresh_time = 0x1000;
4047		break;
4048	case e1000_pch2lan:
4049	case e1000_pch_lpt:
4050	case e1000_pch_spt:
4051	case e1000_pch_cnp:
4052	case e1000_pch_tgp:
4053	case e1000_pch_adp:
4054	case e1000_pch_mtp:
4055	case e1000_pch_lnp:
4056	case e1000_pch_ptp:
4057	case e1000_pch_nvp:
4058		fc->refresh_time = 0xFFFF;
4059		fc->pause_time = 0xFFFF;
4060
4061		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4062			fc->high_water = 0x05C20;
4063			fc->low_water = 0x05048;
4064			break;
4065		}
4066
4067		pba = 14;
4068		ew32(PBA, pba);
4069		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4070		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4071		break;
4072	}
4073
4074	/* Alignment of Tx data is on an arbitrary byte boundary with the
 
4075	 * maximum size per Tx descriptor limited only to the transmit
4076	 * allocation of the packet buffer minus 96 bytes with an upper
4077	 * limit of 24KB due to receive synchronization limitations.
4078	 */
4079	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4080				       24 << 10);
4081
4082	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
 
4083	 * fit in receive buffer.
4084	 */
4085	if (adapter->itr_setting & 0x3) {
4086		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4087			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4088				dev_info(&adapter->pdev->dev,
4089					 "Interrupt Throttle Rate off\n");
4090				adapter->flags2 |= FLAG2_DISABLE_AIM;
4091				e1000e_write_itr(adapter, 0);
4092			}
4093		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4094			dev_info(&adapter->pdev->dev,
4095				 "Interrupt Throttle Rate on\n");
4096			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4097			adapter->itr = 20000;
4098			e1000e_write_itr(adapter, adapter->itr);
4099		}
4100	}
4101
4102	if (hw->mac.type >= e1000_pch_spt)
4103		e1000_flush_desc_rings(adapter);
4104	/* Allow time for pending master requests to run */
4105	mac->ops.reset_hw(hw);
4106
4107	/* For parts with AMT enabled, let the firmware know
 
4108	 * that the network interface is in control
4109	 */
4110	if (adapter->flags & FLAG_HAS_AMT)
4111		e1000e_get_hw_control(adapter);
4112
4113	ew32(WUC, 0);
4114
4115	if (mac->ops.init_hw(hw))
4116		e_err("Hardware Error\n");
4117
4118	e1000_update_mng_vlan(adapter);
4119
4120	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4121	ew32(VET, ETH_P_8021Q);
4122
4123	e1000e_reset_adaptive(hw);
4124
4125	/* restore systim and hwtstamp settings */
4126	e1000e_systim_reset(adapter);
4127
4128	/* Set EEE advertisement as appropriate */
4129	if (adapter->flags2 & FLAG2_HAS_EEE) {
4130		s32 ret_val;
4131		u16 adv_addr;
4132
4133		switch (hw->phy.type) {
4134		case e1000_phy_82579:
4135			adv_addr = I82579_EEE_ADVERTISEMENT;
4136			break;
4137		case e1000_phy_i217:
4138			adv_addr = I217_EEE_ADVERTISEMENT;
4139			break;
4140		default:
4141			dev_err(&adapter->pdev->dev,
4142				"Invalid PHY type setting EEE advertisement\n");
4143			return;
4144		}
4145
4146		ret_val = hw->phy.ops.acquire(hw);
4147		if (ret_val) {
4148			dev_err(&adapter->pdev->dev,
4149				"EEE advertisement - unable to acquire PHY\n");
4150			return;
4151		}
4152
4153		e1000_write_emi_reg_locked(hw, adv_addr,
4154					   hw->dev_spec.ich8lan.eee_disable ?
4155					   0 : adapter->eee_advert);
4156
4157		hw->phy.ops.release(hw);
4158	}
4159
4160	if (!netif_running(adapter->netdev) &&
4161	    !test_bit(__E1000_TESTING, &adapter->state))
4162		e1000_power_down_phy(adapter);
 
 
4163
4164	e1000_get_phy_info(hw);
4165
4166	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4167	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4168		u16 phy_data = 0;
4169		/* speed up time to link by disabling smart power down, ignore
 
4170		 * the return value of this function because there is nothing
4171		 * different we would do if it failed
4172		 */
4173		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4174		phy_data &= ~IGP02E1000_PM_SPD;
4175		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4176	}
4177	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4178		u32 reg;
4179
4180		/* Fextnvm7 @ 0xe4[2] = 1 */
4181		reg = er32(FEXTNVM7);
4182		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4183		ew32(FEXTNVM7, reg);
4184		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4185		reg = er32(FEXTNVM9);
4186		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4187		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4188		ew32(FEXTNVM9, reg);
4189	}
4190
4191}
4192
4193/**
4194 * e1000e_trigger_lsc - trigger an LSC interrupt
4195 * @adapter: board private structure
4196 *
4197 * Fire a link status change interrupt to start the watchdog.
4198 **/
4199static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4200{
4201	struct e1000_hw *hw = &adapter->hw;
4202
4203	if (adapter->msix_entries)
4204		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4205	else
4206		ew32(ICS, E1000_ICS_LSC);
4207}
4208
4209void e1000e_up(struct e1000_adapter *adapter)
4210{
4211	/* hardware has been reset, we need to reload some things */
4212	e1000_configure(adapter);
4213
4214	clear_bit(__E1000_DOWN, &adapter->state);
4215
4216	if (adapter->msix_entries)
4217		e1000_configure_msix(adapter);
4218	e1000_irq_enable(adapter);
4219
4220	/* Tx queue started by watchdog timer when link is up */
 
 
 
 
 
 
4221
4222	e1000e_trigger_lsc(adapter);
4223}
4224
4225static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4226{
4227	struct e1000_hw *hw = &adapter->hw;
4228
4229	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4230		return;
4231
4232	/* flush pending descriptor writebacks to memory */
4233	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4234	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4235
4236	/* execute the writes immediately */
4237	e1e_flush();
4238
4239	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
 
4240	 * write is successful
4241	 */
4242	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4243	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4244
4245	/* execute the writes immediately */
4246	e1e_flush();
4247}
4248
4249static void e1000e_update_stats(struct e1000_adapter *adapter);
4250
4251/**
4252 * e1000e_down - quiesce the device and optionally reset the hardware
4253 * @adapter: board private structure
4254 * @reset: boolean flag to reset the hardware or not
4255 */
4256void e1000e_down(struct e1000_adapter *adapter, bool reset)
4257{
4258	struct net_device *netdev = adapter->netdev;
4259	struct e1000_hw *hw = &adapter->hw;
4260	u32 tctl, rctl;
4261
4262	/* signal that we're down so the interrupt handler does not
 
4263	 * reschedule our watchdog timer
4264	 */
4265	set_bit(__E1000_DOWN, &adapter->state);
4266
4267	netif_carrier_off(netdev);
4268
4269	/* disable receives in the hardware */
4270	rctl = er32(RCTL);
4271	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4272		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4273	/* flush and sleep below */
4274
4275	netif_stop_queue(netdev);
4276
4277	/* disable transmits in the hardware */
4278	tctl = er32(TCTL);
4279	tctl &= ~E1000_TCTL_EN;
4280	ew32(TCTL, tctl);
4281
4282	/* flush both disables and wait for them to finish */
4283	e1e_flush();
4284	usleep_range(10000, 11000);
4285
4286	e1000_irq_disable(adapter);
4287
4288	napi_synchronize(&adapter->napi);
4289
4290	del_timer_sync(&adapter->watchdog_timer);
4291	del_timer_sync(&adapter->phy_info_timer);
4292
 
 
4293	spin_lock(&adapter->stats64_lock);
4294	e1000e_update_stats(adapter);
4295	spin_unlock(&adapter->stats64_lock);
4296
4297	e1000e_flush_descriptors(adapter);
 
 
4298
4299	adapter->link_speed = 0;
4300	adapter->link_duplex = 0;
4301
4302	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4303	if ((hw->mac.type >= e1000_pch2lan) &&
4304	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4305	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4306		e_dbg("failed to disable jumbo frame workaround mode\n");
4307
4308	if (!pci_channel_offline(adapter->pdev)) {
4309		if (reset)
4310			e1000e_reset(adapter);
4311		else if (hw->mac.type >= e1000_pch_spt)
4312			e1000_flush_desc_rings(adapter);
4313	}
4314	e1000_clean_tx_ring(adapter->tx_ring);
4315	e1000_clean_rx_ring(adapter->rx_ring);
4316}
4317
4318void e1000e_reinit_locked(struct e1000_adapter *adapter)
4319{
4320	might_sleep();
4321	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4322		usleep_range(1000, 1100);
4323	e1000e_down(adapter, true);
4324	e1000e_up(adapter);
4325	clear_bit(__E1000_RESETTING, &adapter->state);
4326}
4327
4328/**
4329 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4330 * @hw: pointer to the HW structure
4331 * @systim: PHC time value read, sanitized and returned
4332 * @sts: structure to hold system time before and after reading SYSTIML,
4333 * may be NULL
4334 *
4335 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4336 * check to see that the time is incrementing at a reasonable
4337 * rate and is a multiple of incvalue.
4338 **/
4339static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4340				  struct ptp_system_timestamp *sts)
4341{
4342	u64 time_delta, rem, temp;
4343	u64 systim_next;
4344	u32 incvalue;
4345	int i;
4346
4347	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4348	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4349		/* latch SYSTIMH on read of SYSTIML */
4350		ptp_read_system_prets(sts);
4351		systim_next = (u64)er32(SYSTIML);
4352		ptp_read_system_postts(sts);
4353		systim_next |= (u64)er32(SYSTIMH) << 32;
4354
4355		time_delta = systim_next - systim;
4356		temp = time_delta;
4357		/* VMWare users have seen incvalue of zero, don't div / 0 */
4358		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4359
4360		systim = systim_next;
4361
4362		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4363			break;
4364	}
4365
4366	return systim;
4367}
4368
4369/**
4370 * e1000e_read_systim - read SYSTIM register
4371 * @adapter: board private structure
4372 * @sts: structure which will contain system time before and after reading
4373 * SYSTIML, may be NULL
4374 **/
4375u64 e1000e_read_systim(struct e1000_adapter *adapter,
4376		       struct ptp_system_timestamp *sts)
4377{
4378	struct e1000_hw *hw = &adapter->hw;
4379	u32 systimel, systimel_2, systimeh;
4380	u64 systim;
4381	/* SYSTIMH latching upon SYSTIML read does not work well.
4382	 * This means that if SYSTIML overflows after we read it but before
4383	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4384	 * will experience a huge non linear increment in the systime value
4385	 * to fix that we test for overflow and if true, we re-read systime.
4386	 */
4387	ptp_read_system_prets(sts);
4388	systimel = er32(SYSTIML);
4389	ptp_read_system_postts(sts);
4390	systimeh = er32(SYSTIMH);
4391	/* Is systimel is so large that overflow is possible? */
4392	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4393		ptp_read_system_prets(sts);
4394		systimel_2 = er32(SYSTIML);
4395		ptp_read_system_postts(sts);
4396		if (systimel > systimel_2) {
4397			/* There was an overflow, read again SYSTIMH, and use
4398			 * systimel_2
4399			 */
4400			systimeh = er32(SYSTIMH);
4401			systimel = systimel_2;
4402		}
4403	}
4404	systim = (u64)systimel;
4405	systim |= (u64)systimeh << 32;
4406
4407	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4408		systim = e1000e_sanitize_systim(hw, systim, sts);
4409
4410	return systim;
4411}
4412
4413/**
4414 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4415 * @cc: cyclecounter structure
4416 **/
4417static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4418{
4419	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4420						     cc);
4421
4422	return e1000e_read_systim(adapter, NULL);
4423}
4424
4425/**
4426 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4427 * @adapter: board private structure to initialize
4428 *
4429 * e1000_sw_init initializes the Adapter private data structure.
4430 * Fields are initialized based on PCI device information and
4431 * OS network device settings (MTU size).
4432 **/
4433static int e1000_sw_init(struct e1000_adapter *adapter)
4434{
4435	struct net_device *netdev = adapter->netdev;
4436
4437	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4438	adapter->rx_ps_bsize0 = 128;
4439	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4440	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4441	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4442	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4443
4444	spin_lock_init(&adapter->stats64_lock);
4445
4446	e1000e_set_interrupt_capability(adapter);
4447
4448	if (e1000_alloc_queues(adapter))
4449		return -ENOMEM;
4450
4451	/* Setup hardware time stamping cyclecounter */
4452	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4453		adapter->cc.read = e1000e_cyclecounter_read;
4454		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4455		adapter->cc.mult = 1;
4456		/* cc.shift set in e1000e_get_base_tininca() */
4457
4458		spin_lock_init(&adapter->systim_lock);
4459		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4460	}
4461
4462	/* Explicitly disable IRQ since the NIC can be in any state. */
4463	e1000_irq_disable(adapter);
4464
4465	set_bit(__E1000_DOWN, &adapter->state);
4466	return 0;
4467}
4468
4469/**
4470 * e1000_intr_msi_test - Interrupt Handler
4471 * @irq: interrupt number
4472 * @data: pointer to a network interface device structure
4473 **/
4474static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4475{
4476	struct net_device *netdev = data;
4477	struct e1000_adapter *adapter = netdev_priv(netdev);
4478	struct e1000_hw *hw = &adapter->hw;
4479	u32 icr = er32(ICR);
4480
4481	e_dbg("icr is %08X\n", icr);
4482	if (icr & E1000_ICR_RXSEQ) {
4483		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4484		/* Force memory writes to complete before acknowledging the
4485		 * interrupt is handled.
4486		 */
4487		wmb();
4488	}
4489
4490	return IRQ_HANDLED;
4491}
4492
4493/**
4494 * e1000_test_msi_interrupt - Returns 0 for successful test
4495 * @adapter: board private struct
4496 *
4497 * code flow taken from tg3.c
4498 **/
4499static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4500{
4501	struct net_device *netdev = adapter->netdev;
4502	struct e1000_hw *hw = &adapter->hw;
4503	int err;
4504
4505	/* poll_enable hasn't been called yet, so don't need disable */
4506	/* clear any pending events */
4507	er32(ICR);
4508
4509	/* free the real vector and request a test handler */
4510	e1000_free_irq(adapter);
4511	e1000e_reset_interrupt_capability(adapter);
4512
4513	/* Assume that the test fails, if it succeeds then the test
4514	 * MSI irq handler will unset this flag
4515	 */
4516	adapter->flags |= FLAG_MSI_TEST_FAILED;
4517
4518	err = pci_enable_msi(adapter->pdev);
4519	if (err)
4520		goto msi_test_failed;
4521
4522	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4523			  netdev->name, netdev);
4524	if (err) {
4525		pci_disable_msi(adapter->pdev);
4526		goto msi_test_failed;
4527	}
4528
4529	/* Force memory writes to complete before enabling and firing an
4530	 * interrupt.
4531	 */
4532	wmb();
4533
4534	e1000_irq_enable(adapter);
4535
4536	/* fire an unusual interrupt on the test handler */
4537	ew32(ICS, E1000_ICS_RXSEQ);
4538	e1e_flush();
4539	msleep(100);
4540
4541	e1000_irq_disable(adapter);
4542
4543	rmb();			/* read flags after interrupt has been fired */
4544
4545	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4546		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4547		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4548	} else {
4549		e_dbg("MSI interrupt test succeeded!\n");
4550	}
4551
4552	free_irq(adapter->pdev->irq, netdev);
4553	pci_disable_msi(adapter->pdev);
4554
4555msi_test_failed:
4556	e1000e_set_interrupt_capability(adapter);
4557	return e1000_request_irq(adapter);
4558}
4559
4560/**
4561 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4562 * @adapter: board private struct
4563 *
4564 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4565 **/
4566static int e1000_test_msi(struct e1000_adapter *adapter)
4567{
4568	int err;
4569	u16 pci_cmd;
4570
4571	if (!(adapter->flags & FLAG_MSI_ENABLED))
4572		return 0;
4573
4574	/* disable SERR in case the MSI write causes a master abort */
4575	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4576	if (pci_cmd & PCI_COMMAND_SERR)
4577		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4578				      pci_cmd & ~PCI_COMMAND_SERR);
4579
4580	err = e1000_test_msi_interrupt(adapter);
4581
4582	/* re-enable SERR */
4583	if (pci_cmd & PCI_COMMAND_SERR) {
4584		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4585		pci_cmd |= PCI_COMMAND_SERR;
4586		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4587	}
4588
4589	return err;
4590}
4591
4592/**
4593 * e1000e_open - Called when a network interface is made active
4594 * @netdev: network interface device structure
4595 *
4596 * Returns 0 on success, negative value on failure
4597 *
4598 * The open entry point is called when a network interface is made
4599 * active by the system (IFF_UP).  At this point all resources needed
4600 * for transmit and receive operations are allocated, the interrupt
4601 * handler is registered with the OS, the watchdog timer is started,
4602 * and the stack is notified that the interface is ready.
4603 **/
4604int e1000e_open(struct net_device *netdev)
4605{
4606	struct e1000_adapter *adapter = netdev_priv(netdev);
4607	struct e1000_hw *hw = &adapter->hw;
4608	struct pci_dev *pdev = adapter->pdev;
4609	int err;
4610	int irq;
4611
4612	/* disallow open during test */
4613	if (test_bit(__E1000_TESTING, &adapter->state))
4614		return -EBUSY;
4615
4616	pm_runtime_get_sync(&pdev->dev);
4617
4618	netif_carrier_off(netdev);
4619	netif_stop_queue(netdev);
4620
4621	/* allocate transmit descriptors */
4622	err = e1000e_setup_tx_resources(adapter->tx_ring);
4623	if (err)
4624		goto err_setup_tx;
4625
4626	/* allocate receive descriptors */
4627	err = e1000e_setup_rx_resources(adapter->rx_ring);
4628	if (err)
4629		goto err_setup_rx;
4630
4631	/* If AMT is enabled, let the firmware know that the network
 
4632	 * interface is now open and reset the part to a known state.
4633	 */
4634	if (adapter->flags & FLAG_HAS_AMT) {
4635		e1000e_get_hw_control(adapter);
4636		e1000e_reset(adapter);
4637	}
4638
4639	e1000e_power_up_phy(adapter);
4640
4641	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4642	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
 
4643		e1000_update_mng_vlan(adapter);
4644
4645	/* DMA latency requirement to workaround jumbo issue */
4646	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
 
 
 
4647
4648	/* before we allocate an interrupt, we must be ready to handle it.
 
4649	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4650	 * as soon as we call pci_request_irq, so we have to setup our
4651	 * clean_rx handler before we do so.
4652	 */
4653	e1000_configure(adapter);
4654
4655	err = e1000_request_irq(adapter);
4656	if (err)
4657		goto err_req_irq;
4658
4659	/* Work around PCIe errata with MSI interrupts causing some chipsets to
 
4660	 * ignore e1000e MSI messages, which means we need to test our MSI
4661	 * interrupt now
4662	 */
4663	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4664		err = e1000_test_msi(adapter);
4665		if (err) {
4666			e_err("Interrupt allocation failed\n");
4667			goto err_req_irq;
4668		}
4669	}
4670
4671	/* From here on the code is the same as e1000e_up() */
4672	clear_bit(__E1000_DOWN, &adapter->state);
4673
4674	if (adapter->int_mode == E1000E_INT_MODE_MSIX)
4675		irq = adapter->msix_entries[0].vector;
4676	else
4677		irq = adapter->pdev->irq;
4678
4679	netif_napi_set_irq(&adapter->napi, irq);
4680	napi_enable(&adapter->napi);
4681	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, &adapter->napi);
4682	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, &adapter->napi);
4683
4684	e1000_irq_enable(adapter);
4685
4686	adapter->tx_hang_recheck = false;
 
4687
4688	hw->mac.get_link_status = true;
4689	pm_runtime_put(&pdev->dev);
4690
4691	e1000e_trigger_lsc(adapter);
 
 
 
 
4692
4693	return 0;
4694
4695err_req_irq:
4696	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4697	e1000e_release_hw_control(adapter);
4698	e1000_power_down_phy(adapter);
4699	e1000e_free_rx_resources(adapter->rx_ring);
4700err_setup_rx:
4701	e1000e_free_tx_resources(adapter->tx_ring);
4702err_setup_tx:
4703	e1000e_reset(adapter);
4704	pm_runtime_put_sync(&pdev->dev);
4705
4706	return err;
4707}
4708
4709/**
4710 * e1000e_close - Disables a network interface
4711 * @netdev: network interface device structure
4712 *
4713 * Returns 0, this is not allowed to fail
4714 *
4715 * The close entry point is called when an interface is de-activated
4716 * by the OS.  The hardware is still under the drivers control, but
4717 * needs to be disabled.  A global MAC reset is issued to stop the
4718 * hardware, and all transmit and receive resources are freed.
4719 **/
4720int e1000e_close(struct net_device *netdev)
4721{
4722	struct e1000_adapter *adapter = netdev_priv(netdev);
4723	struct pci_dev *pdev = adapter->pdev;
4724	int count = E1000_CHECK_RESET_COUNT;
4725
4726	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4727		usleep_range(10000, 11000);
4728
4729	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4730
4731	pm_runtime_get_sync(&pdev->dev);
4732
4733	if (netif_device_present(netdev)) {
4734		e1000e_down(adapter, true);
4735		e1000_free_irq(adapter);
4736
4737		/* Link status message must follow this format */
4738		netdev_info(netdev, "NIC Link is Down\n");
 
4739	}
4740
4741	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_RX, NULL);
4742	netif_queue_set_napi(netdev, 0, NETDEV_QUEUE_TYPE_TX, NULL);
4743	napi_disable(&adapter->napi);
4744
4745	e1000e_free_tx_resources(adapter->tx_ring);
4746	e1000e_free_rx_resources(adapter->rx_ring);
4747
4748	/* kill manageability vlan ID if supported, but not if a vlan with
 
4749	 * the same ID is registered on the host OS (let 8021q kill it)
4750	 */
4751	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4752		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4753				       adapter->mng_vlan_id);
4754
4755	/* If AMT is enabled, let the firmware know that the network
 
4756	 * interface is now closed
4757	 */
4758	if ((adapter->flags & FLAG_HAS_AMT) &&
4759	    !test_bit(__E1000_TESTING, &adapter->state))
4760		e1000e_release_hw_control(adapter);
4761
4762	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
 
4763
4764	pm_runtime_put_sync(&pdev->dev);
4765
4766	return 0;
4767}
4768
4769/**
4770 * e1000_set_mac - Change the Ethernet Address of the NIC
4771 * @netdev: network interface device structure
4772 * @p: pointer to an address structure
4773 *
4774 * Returns 0 on success, negative on failure
4775 **/
4776static int e1000_set_mac(struct net_device *netdev, void *p)
4777{
4778	struct e1000_adapter *adapter = netdev_priv(netdev);
4779	struct e1000_hw *hw = &adapter->hw;
4780	struct sockaddr *addr = p;
4781
4782	if (!is_valid_ether_addr(addr->sa_data))
4783		return -EADDRNOTAVAIL;
4784
4785	eth_hw_addr_set(netdev, addr->sa_data);
4786	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4787
4788	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4789
4790	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4791		/* activate the work around */
4792		e1000e_set_laa_state_82571(&adapter->hw, 1);
4793
4794		/* Hold a copy of the LAA in RAR[14] This is done so that
 
4795		 * between the time RAR[0] gets clobbered  and the time it
4796		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4797		 * of the RARs and no incoming packets directed to this port
4798		 * are dropped. Eventually the LAA will be in RAR[0] and
4799		 * RAR[14]
4800		 */
4801		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4802				    adapter->hw.mac.rar_entry_count - 1);
4803	}
4804
4805	return 0;
4806}
4807
4808/**
4809 * e1000e_update_phy_task - work thread to update phy
4810 * @work: pointer to our work struct
4811 *
4812 * this worker thread exists because we must acquire a
4813 * semaphore to read the phy, which we could msleep while
4814 * waiting for it, and we can't msleep in a timer.
4815 **/
4816static void e1000e_update_phy_task(struct work_struct *work)
4817{
4818	struct e1000_adapter *adapter = container_of(work,
4819						     struct e1000_adapter,
4820						     update_phy_task);
4821	struct e1000_hw *hw = &adapter->hw;
4822
4823	if (test_bit(__E1000_DOWN, &adapter->state))
4824		return;
4825
4826	e1000_get_phy_info(hw);
4827
4828	/* Enable EEE on 82579 after link up */
4829	if (hw->phy.type >= e1000_phy_82579)
4830		e1000_set_eee_pchlan(hw);
4831}
4832
4833/**
4834 * e1000_update_phy_info - timre call-back to update PHY info
4835 * @t: pointer to timer_list containing private info adapter
4836 *
4837 * Need to wait a few seconds after link up to get diagnostic information from
4838 * the phy
4839 **/
4840static void e1000_update_phy_info(struct timer_list *t)
4841{
4842	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4843
4844	if (test_bit(__E1000_DOWN, &adapter->state))
4845		return;
4846
4847	schedule_work(&adapter->update_phy_task);
4848}
4849
4850/**
4851 * e1000e_update_phy_stats - Update the PHY statistics counters
4852 * @adapter: board private structure
4853 *
4854 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4855 **/
4856static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4857{
4858	struct e1000_hw *hw = &adapter->hw;
4859	s32 ret_val;
4860	u16 phy_data;
4861
4862	ret_val = hw->phy.ops.acquire(hw);
4863	if (ret_val)
4864		return;
4865
4866	/* A page set is expensive so check if already on desired page.
 
4867	 * If not, set to the page with the PHY status registers.
4868	 */
4869	hw->phy.addr = 1;
4870	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4871					   &phy_data);
4872	if (ret_val)
4873		goto release;
4874	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4875		ret_val = hw->phy.ops.set_page(hw,
4876					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4877		if (ret_val)
4878			goto release;
4879	}
4880
4881	/* Single Collision Count */
4882	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4883	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4884	if (!ret_val)
4885		adapter->stats.scc += phy_data;
4886
4887	/* Excessive Collision Count */
4888	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4889	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4890	if (!ret_val)
4891		adapter->stats.ecol += phy_data;
4892
4893	/* Multiple Collision Count */
4894	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4895	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4896	if (!ret_val)
4897		adapter->stats.mcc += phy_data;
4898
4899	/* Late Collision Count */
4900	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4901	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4902	if (!ret_val)
4903		adapter->stats.latecol += phy_data;
4904
4905	/* Collision Count - also used for adaptive IFS */
4906	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4907	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4908	if (!ret_val)
4909		hw->mac.collision_delta = phy_data;
4910
4911	/* Defer Count */
4912	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4913	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4914	if (!ret_val)
4915		adapter->stats.dc += phy_data;
4916
4917	/* Transmit with no CRS */
4918	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4919	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4920	if (!ret_val)
4921		adapter->stats.tncrs += phy_data;
4922
4923release:
4924	hw->phy.ops.release(hw);
4925}
4926
4927/**
4928 * e1000e_update_stats - Update the board statistics counters
4929 * @adapter: board private structure
4930 **/
4931static void e1000e_update_stats(struct e1000_adapter *adapter)
4932{
4933	struct net_device *netdev = adapter->netdev;
4934	struct e1000_hw *hw = &adapter->hw;
4935	struct pci_dev *pdev = adapter->pdev;
4936
4937	/* Prevent stats update while adapter is being reset, or if the pci
 
4938	 * connection is down.
4939	 */
4940	if (adapter->link_speed == 0)
4941		return;
4942	if (pci_channel_offline(pdev))
4943		return;
4944
4945	adapter->stats.crcerrs += er32(CRCERRS);
4946	adapter->stats.gprc += er32(GPRC);
4947	adapter->stats.gorc += er32(GORCL);
4948	er32(GORCH);		/* Clear gorc */
4949	adapter->stats.bprc += er32(BPRC);
4950	adapter->stats.mprc += er32(MPRC);
4951	adapter->stats.roc += er32(ROC);
4952
4953	adapter->stats.mpc += er32(MPC);
4954
4955	/* Half-duplex statistics */
4956	if (adapter->link_duplex == HALF_DUPLEX) {
4957		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4958			e1000e_update_phy_stats(adapter);
4959		} else {
4960			adapter->stats.scc += er32(SCC);
4961			adapter->stats.ecol += er32(ECOL);
4962			adapter->stats.mcc += er32(MCC);
4963			adapter->stats.latecol += er32(LATECOL);
4964			adapter->stats.dc += er32(DC);
4965
4966			hw->mac.collision_delta = er32(COLC);
4967
4968			if ((hw->mac.type != e1000_82574) &&
4969			    (hw->mac.type != e1000_82583))
4970				adapter->stats.tncrs += er32(TNCRS);
4971		}
4972		adapter->stats.colc += hw->mac.collision_delta;
4973	}
4974
4975	adapter->stats.xonrxc += er32(XONRXC);
4976	adapter->stats.xontxc += er32(XONTXC);
4977	adapter->stats.xoffrxc += er32(XOFFRXC);
4978	adapter->stats.xofftxc += er32(XOFFTXC);
4979	adapter->stats.gptc += er32(GPTC);
4980	adapter->stats.gotc += er32(GOTCL);
4981	er32(GOTCH);		/* Clear gotc */
4982	adapter->stats.rnbc += er32(RNBC);
4983	adapter->stats.ruc += er32(RUC);
4984
4985	adapter->stats.mptc += er32(MPTC);
4986	adapter->stats.bptc += er32(BPTC);
4987
4988	/* used for adaptive IFS */
4989
4990	hw->mac.tx_packet_delta = er32(TPT);
4991	adapter->stats.tpt += hw->mac.tx_packet_delta;
4992
4993	adapter->stats.algnerrc += er32(ALGNERRC);
4994	adapter->stats.rxerrc += er32(RXERRC);
4995	adapter->stats.cexterr += er32(CEXTERR);
4996	adapter->stats.tsctc += er32(TSCTC);
4997	adapter->stats.tsctfc += er32(TSCTFC);
4998
4999	/* Fill out the OS statistics structure */
5000	netdev->stats.multicast = adapter->stats.mprc;
5001	netdev->stats.collisions = adapter->stats.colc;
5002
5003	/* Rx Errors */
5004
5005	/* RLEC on some newer hardware can be incorrect so build
 
5006	 * our own version based on RUC and ROC
5007	 */
5008	netdev->stats.rx_errors = adapter->stats.rxerrc +
5009	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5010	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
 
5011	netdev->stats.rx_length_errors = adapter->stats.ruc +
5012	    adapter->stats.roc;
5013	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5014	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5015	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5016
5017	/* Tx Errors */
5018	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
5019	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5020	netdev->stats.tx_window_errors = adapter->stats.latecol;
5021	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5022
5023	/* Tx Dropped needs to be maintained elsewhere */
5024
5025	/* Management Stats */
5026	adapter->stats.mgptc += er32(MGTPTC);
5027	adapter->stats.mgprc += er32(MGTPRC);
5028	adapter->stats.mgpdc += er32(MGTPDC);
5029
5030	/* Correctable ECC Errors */
5031	if (hw->mac.type >= e1000_pch_lpt) {
5032		u32 pbeccsts = er32(PBECCSTS);
5033
5034		adapter->corr_errors +=
5035		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5036		adapter->uncorr_errors +=
5037		    FIELD_GET(E1000_PBECCSTS_UNCORR_ERR_CNT_MASK, pbeccsts);
5038	}
5039}
5040
5041/**
5042 * e1000_phy_read_status - Update the PHY register status snapshot
5043 * @adapter: board private structure
5044 **/
5045static void e1000_phy_read_status(struct e1000_adapter *adapter)
5046{
5047	struct e1000_hw *hw = &adapter->hw;
5048	struct e1000_phy_regs *phy = &adapter->phy_regs;
5049
5050	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5051	    (er32(STATUS) & E1000_STATUS_LU) &&
5052	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5053		int ret_val;
5054
5055		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5056		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5057		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5058		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5059		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5060		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5061		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5062		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5063		if (ret_val)
5064			e_warn("Error reading PHY register\n");
5065	} else {
5066		/* Do not read PHY registers if link is not up
 
5067		 * Set values to typical power-on defaults
5068		 */
5069		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5070		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5071			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5072			     BMSR_ERCAP);
5073		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5074				  ADVERTISE_ALL | ADVERTISE_CSMA);
5075		phy->lpa = 0;
5076		phy->expansion = EXPANSION_ENABLENPAGE;
5077		phy->ctrl1000 = ADVERTISE_1000FULL;
5078		phy->stat1000 = 0;
5079		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5080	}
5081}
5082
5083static void e1000_print_link_info(struct e1000_adapter *adapter)
5084{
5085	struct e1000_hw *hw = &adapter->hw;
5086	u32 ctrl = er32(CTRL);
5087
5088	/* Link status message must follow this format for user tools */
5089	netdev_info(adapter->netdev,
5090		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5091		    adapter->link_speed,
5092		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5093		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5094		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5095		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5096}
5097
5098static bool e1000e_has_link(struct e1000_adapter *adapter)
5099{
5100	struct e1000_hw *hw = &adapter->hw;
5101	bool link_active = false;
5102	s32 ret_val = 0;
5103
5104	/* get_link_status is set on LSC (link status) interrupt or
 
5105	 * Rx sequence error interrupt.  get_link_status will stay
5106	 * true until the check_for_link establishes link
5107	 * for copper adapters ONLY
5108	 */
5109	switch (hw->phy.media_type) {
5110	case e1000_media_type_copper:
5111		if (hw->mac.get_link_status) {
5112			ret_val = hw->mac.ops.check_for_link(hw);
5113			link_active = !hw->mac.get_link_status;
5114		} else {
5115			link_active = true;
5116		}
5117		break;
5118	case e1000_media_type_fiber:
5119		ret_val = hw->mac.ops.check_for_link(hw);
5120		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5121		break;
5122	case e1000_media_type_internal_serdes:
5123		ret_val = hw->mac.ops.check_for_link(hw);
5124		link_active = hw->mac.serdes_has_link;
5125		break;
5126	default:
5127	case e1000_media_type_unknown:
5128		break;
5129	}
5130
5131	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5132	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5133		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5134		e_info("Gigabit has been disabled, downgrading speed\n");
5135	}
5136
5137	return link_active;
5138}
5139
5140static void e1000e_enable_receives(struct e1000_adapter *adapter)
5141{
5142	/* make sure the receive unit is started */
5143	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5144	    (adapter->flags & FLAG_RESTART_NOW)) {
5145		struct e1000_hw *hw = &adapter->hw;
5146		u32 rctl = er32(RCTL);
5147
5148		ew32(RCTL, rctl | E1000_RCTL_EN);
5149		adapter->flags &= ~FLAG_RESTART_NOW;
5150	}
5151}
5152
5153static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5154{
5155	struct e1000_hw *hw = &adapter->hw;
5156
5157	/* With 82574 controllers, PHY needs to be checked periodically
 
5158	 * for hung state and reset, if two calls return true
5159	 */
5160	if (e1000_check_phy_82574(hw))
5161		adapter->phy_hang_count++;
5162	else
5163		adapter->phy_hang_count = 0;
5164
5165	if (adapter->phy_hang_count > 1) {
5166		adapter->phy_hang_count = 0;
5167		e_dbg("PHY appears hung - resetting\n");
5168		schedule_work(&adapter->reset_task);
5169	}
5170}
5171
5172/**
5173 * e1000_watchdog - Timer Call-back
5174 * @t: pointer to timer_list containing private info adapter
5175 **/
5176static void e1000_watchdog(struct timer_list *t)
5177{
5178	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5179
5180	/* Do the rest outside of interrupt context */
5181	schedule_work(&adapter->watchdog_task);
5182
5183	/* TODO: make this use queue_delayed_work() */
5184}
5185
5186static void e1000_watchdog_task(struct work_struct *work)
5187{
5188	struct e1000_adapter *adapter = container_of(work,
5189						     struct e1000_adapter,
5190						     watchdog_task);
5191	struct net_device *netdev = adapter->netdev;
5192	struct e1000_mac_info *mac = &adapter->hw.mac;
5193	struct e1000_phy_info *phy = &adapter->hw.phy;
5194	struct e1000_ring *tx_ring = adapter->tx_ring;
5195	u32 dmoff_exit_timeout = 100, tries = 0;
5196	struct e1000_hw *hw = &adapter->hw;
5197	u32 link, tctl, pcim_state;
5198
5199	if (test_bit(__E1000_DOWN, &adapter->state))
5200		return;
5201
5202	link = e1000e_has_link(adapter);
5203	if ((netif_carrier_ok(netdev)) && link) {
5204		/* Cancel scheduled suspend requests. */
5205		pm_runtime_resume(netdev->dev.parent);
5206
5207		e1000e_enable_receives(adapter);
5208		goto link_up;
5209	}
5210
5211	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5212	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5213		e1000_update_mng_vlan(adapter);
5214
5215	if (link) {
5216		if (!netif_carrier_ok(netdev)) {
5217			bool txb2b = true;
5218
5219			/* Cancel scheduled suspend requests. */
5220			pm_runtime_resume(netdev->dev.parent);
5221
5222			/* Checking if MAC is in DMoff state*/
5223			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5224				pcim_state = er32(STATUS);
5225				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5226					if (tries++ == dmoff_exit_timeout) {
5227						e_dbg("Error in exiting dmoff\n");
5228						break;
5229					}
5230					usleep_range(10000, 20000);
5231					pcim_state = er32(STATUS);
5232
5233					/* Checking if MAC exited DMoff state */
5234					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5235						e1000_phy_hw_reset(&adapter->hw);
5236				}
5237			}
5238
5239			/* update snapshot of PHY registers on LSC */
5240			e1000_phy_read_status(adapter);
5241			mac->ops.get_link_up_info(&adapter->hw,
5242						  &adapter->link_speed,
5243						  &adapter->link_duplex);
5244			e1000_print_link_info(adapter);
5245
5246			/* check if SmartSpeed worked */
5247			e1000e_check_downshift(hw);
5248			if (phy->speed_downgraded)
5249				netdev_warn(netdev,
5250					    "Link Speed was downgraded by SmartSpeed\n");
5251
5252			/* On supported PHYs, check for duplex mismatch only
5253			 * if link has autonegotiated at 10/100 half
5254			 */
5255			if ((hw->phy.type == e1000_phy_igp_3 ||
5256			     hw->phy.type == e1000_phy_bm) &&
5257			    hw->mac.autoneg &&
5258			    (adapter->link_speed == SPEED_10 ||
5259			     adapter->link_speed == SPEED_100) &&
5260			    (adapter->link_duplex == HALF_DUPLEX)) {
5261				u16 autoneg_exp;
5262
5263				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5264
5265				if (!(autoneg_exp & EXPANSION_NWAY))
5266					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5267			}
5268
5269			/* adjust timeout factor according to speed/duplex */
5270			adapter->tx_timeout_factor = 1;
5271			switch (adapter->link_speed) {
5272			case SPEED_10:
5273				txb2b = false;
5274				adapter->tx_timeout_factor = 16;
5275				break;
5276			case SPEED_100:
5277				txb2b = false;
5278				adapter->tx_timeout_factor = 10;
5279				break;
5280			}
5281
5282			/* workaround: re-program speed mode bit after
 
5283			 * link-up event
5284			 */
5285			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5286			    !txb2b) {
5287				u32 tarc0;
5288
5289				tarc0 = er32(TARC(0));
5290				tarc0 &= ~SPEED_MODE_BIT;
5291				ew32(TARC(0), tarc0);
5292			}
5293
5294			/* enable transmits in the hardware, need to do this
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5295			 * after setting TARC(0)
5296			 */
5297			tctl = er32(TCTL);
5298			tctl |= E1000_TCTL_EN;
5299			ew32(TCTL, tctl);
5300
5301			/* Perform any post-link-up configuration before
 
5302			 * reporting link up.
5303			 */
5304			if (phy->ops.cfg_on_link_up)
5305				phy->ops.cfg_on_link_up(hw);
5306
5307			netif_wake_queue(netdev);
5308			netif_carrier_on(netdev);
5309
5310			if (!test_bit(__E1000_DOWN, &adapter->state))
5311				mod_timer(&adapter->phy_info_timer,
5312					  round_jiffies(jiffies + 2 * HZ));
5313		}
5314	} else {
5315		if (netif_carrier_ok(netdev)) {
5316			adapter->link_speed = 0;
5317			adapter->link_duplex = 0;
5318			/* Link status message must follow this format */
5319			netdev_info(netdev, "NIC Link is Down\n");
 
5320			netif_carrier_off(netdev);
5321			netif_stop_queue(netdev);
5322			if (!test_bit(__E1000_DOWN, &adapter->state))
5323				mod_timer(&adapter->phy_info_timer,
5324					  round_jiffies(jiffies + 2 * HZ));
5325
5326			/* 8000ES2LAN requires a Rx packet buffer work-around
5327			 * on link down event; reset the controller to flush
5328			 * the Rx packet buffer.
5329			 */
5330			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5331				adapter->flags |= FLAG_RESTART_NOW;
5332			else
5333				pm_schedule_suspend(netdev->dev.parent,
5334						    LINK_TIMEOUT);
5335		}
5336	}
5337
5338link_up:
5339	spin_lock(&adapter->stats64_lock);
5340	e1000e_update_stats(adapter);
5341
5342	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5343	adapter->tpt_old = adapter->stats.tpt;
5344	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5345	adapter->colc_old = adapter->stats.colc;
5346
5347	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5348	adapter->gorc_old = adapter->stats.gorc;
5349	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5350	adapter->gotc_old = adapter->stats.gotc;
5351	spin_unlock(&adapter->stats64_lock);
5352
5353	/* If the link is lost the controller stops DMA, but
5354	 * if there is queued Tx work it cannot be done.  So
5355	 * reset the controller to flush the Tx packet buffers.
5356	 */
5357	if (!netif_carrier_ok(netdev) &&
5358	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5359		adapter->flags |= FLAG_RESTART_NOW;
5360
5361	/* If reset is necessary, do it outside of interrupt context. */
5362	if (adapter->flags & FLAG_RESTART_NOW) {
 
 
 
 
 
 
5363		schedule_work(&adapter->reset_task);
5364		/* return immediately since reset is imminent */
5365		return;
5366	}
5367
5368	e1000e_update_adaptive(&adapter->hw);
5369
5370	/* Simple mode for Interrupt Throttle Rate (ITR) */
5371	if (adapter->itr_setting == 4) {
5372		/* Symmetric Tx/Rx gets a reduced ITR=2000;
 
5373		 * Total asymmetrical Tx or Rx gets ITR=8000;
5374		 * everyone else is between 2000-8000.
5375		 */
5376		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5377		u32 dif = (adapter->gotc > adapter->gorc ?
5378			   adapter->gotc - adapter->gorc :
5379			   adapter->gorc - adapter->gotc) / 10000;
5380		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5381
5382		e1000e_write_itr(adapter, itr);
5383	}
5384
5385	/* Cause software interrupt to ensure Rx ring is cleaned */
5386	if (adapter->msix_entries)
5387		ew32(ICS, adapter->rx_ring->ims_val);
5388	else
5389		ew32(ICS, E1000_ICS_RXDMT0);
5390
5391	/* flush pending descriptors to memory before detecting Tx hang */
5392	e1000e_flush_descriptors(adapter);
5393
5394	/* Force detection of hung controller every watchdog period */
5395	adapter->detect_tx_hung = true;
5396
5397	/* With 82571 controllers, LAA may be overwritten due to controller
 
5398	 * reset from the other port. Set the appropriate LAA in RAR[0]
5399	 */
5400	if (e1000e_get_laa_state_82571(hw))
5401		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5402
5403	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5404		e1000e_check_82574_phy_workaround(adapter);
5405
5406	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5407	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5408		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5409		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5410			er32(RXSTMPH);
5411			adapter->rx_hwtstamp_cleared++;
5412		} else {
5413			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5414		}
5415	}
5416
5417	/* Reset the timer */
5418	if (!test_bit(__E1000_DOWN, &adapter->state))
5419		mod_timer(&adapter->watchdog_timer,
5420			  round_jiffies(jiffies + 2 * HZ));
5421}
5422
5423#define E1000_TX_FLAGS_CSUM		0x00000001
5424#define E1000_TX_FLAGS_VLAN		0x00000002
5425#define E1000_TX_FLAGS_TSO		0x00000004
5426#define E1000_TX_FLAGS_IPV4		0x00000008
5427#define E1000_TX_FLAGS_NO_FCS		0x00000010
5428#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5429#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5430#define E1000_TX_FLAGS_VLAN_SHIFT	16
5431
5432static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5433		     __be16 protocol)
5434{
5435	struct e1000_context_desc *context_desc;
5436	struct e1000_buffer *buffer_info;
5437	unsigned int i;
5438	u32 cmd_length = 0;
5439	u16 ipcse = 0, mss;
5440	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5441	int err;
5442
5443	if (!skb_is_gso(skb))
5444		return 0;
5445
5446	err = skb_cow_head(skb, 0);
5447	if (err < 0)
5448		return err;
 
 
 
5449
5450	hdr_len = skb_tcp_all_headers(skb);
5451	mss = skb_shinfo(skb)->gso_size;
5452	if (protocol == htons(ETH_P_IP)) {
5453		struct iphdr *iph = ip_hdr(skb);
5454		iph->tot_len = 0;
5455		iph->check = 0;
5456		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5457							 0, IPPROTO_TCP, 0);
5458		cmd_length = E1000_TXD_CMD_IP;
5459		ipcse = skb_transport_offset(skb) - 1;
5460	} else if (skb_is_gso_v6(skb)) {
5461		tcp_v6_gso_csum_prep(skb);
 
 
 
5462		ipcse = 0;
5463	}
5464	ipcss = skb_network_offset(skb);
5465	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5466	tucss = skb_transport_offset(skb);
5467	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
 
5468
5469	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5470		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5471
5472	i = tx_ring->next_to_use;
5473	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5474	buffer_info = &tx_ring->buffer_info[i];
5475
5476	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5477	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5478	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5479	context_desc->upper_setup.tcp_fields.tucss = tucss;
5480	context_desc->upper_setup.tcp_fields.tucso = tucso;
5481	context_desc->upper_setup.tcp_fields.tucse = 0;
5482	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5483	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5484	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5485
5486	buffer_info->time_stamp = jiffies;
5487	buffer_info->next_to_watch = i;
5488
5489	i++;
5490	if (i == tx_ring->count)
5491		i = 0;
5492	tx_ring->next_to_use = i;
5493
5494	return 1;
5495}
5496
5497static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5498			  __be16 protocol)
5499{
5500	struct e1000_adapter *adapter = tx_ring->adapter;
5501	struct e1000_context_desc *context_desc;
5502	struct e1000_buffer *buffer_info;
5503	unsigned int i;
5504	u8 css;
5505	u32 cmd_len = E1000_TXD_CMD_DEXT;
 
5506
5507	if (skb->ip_summed != CHECKSUM_PARTIAL)
5508		return false;
 
 
 
 
 
5509
5510	switch (protocol) {
5511	case cpu_to_be16(ETH_P_IP):
5512		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5513			cmd_len |= E1000_TXD_CMD_TCP;
5514		break;
5515	case cpu_to_be16(ETH_P_IPV6):
5516		/* XXX not handling all IPV6 headers */
5517		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5518			cmd_len |= E1000_TXD_CMD_TCP;
5519		break;
5520	default:
5521		if (unlikely(net_ratelimit()))
5522			e_warn("checksum_partial proto=%x!\n",
5523			       be16_to_cpu(protocol));
5524		break;
5525	}
5526
5527	css = skb_checksum_start_offset(skb);
5528
5529	i = tx_ring->next_to_use;
5530	buffer_info = &tx_ring->buffer_info[i];
5531	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5532
5533	context_desc->lower_setup.ip_config = 0;
5534	context_desc->upper_setup.tcp_fields.tucss = css;
5535	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
 
5536	context_desc->upper_setup.tcp_fields.tucse = 0;
5537	context_desc->tcp_seg_setup.data = 0;
5538	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5539
5540	buffer_info->time_stamp = jiffies;
5541	buffer_info->next_to_watch = i;
5542
5543	i++;
5544	if (i == tx_ring->count)
5545		i = 0;
5546	tx_ring->next_to_use = i;
5547
5548	return true;
5549}
5550
5551static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5552			unsigned int first, unsigned int max_per_txd,
5553			unsigned int nr_frags)
5554{
5555	struct e1000_adapter *adapter = tx_ring->adapter;
5556	struct pci_dev *pdev = adapter->pdev;
5557	struct e1000_buffer *buffer_info;
5558	unsigned int len = skb_headlen(skb);
5559	unsigned int offset = 0, size, count = 0, i;
5560	unsigned int f, bytecount, segs;
5561
5562	i = tx_ring->next_to_use;
5563
5564	while (len) {
5565		buffer_info = &tx_ring->buffer_info[i];
5566		size = min(len, max_per_txd);
5567
5568		buffer_info->length = size;
5569		buffer_info->time_stamp = jiffies;
5570		buffer_info->next_to_watch = i;
5571		buffer_info->dma = dma_map_single(&pdev->dev,
5572						  skb->data + offset,
5573						  size, DMA_TO_DEVICE);
5574		buffer_info->mapped_as_page = false;
5575		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5576			goto dma_error;
5577
5578		len -= size;
5579		offset += size;
5580		count++;
5581
5582		if (len) {
5583			i++;
5584			if (i == tx_ring->count)
5585				i = 0;
5586		}
5587	}
5588
5589	for (f = 0; f < nr_frags; f++) {
5590		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5591
 
5592		len = skb_frag_size(frag);
5593		offset = 0;
5594
5595		while (len) {
5596			i++;
5597			if (i == tx_ring->count)
5598				i = 0;
5599
5600			buffer_info = &tx_ring->buffer_info[i];
5601			size = min(len, max_per_txd);
5602
5603			buffer_info->length = size;
5604			buffer_info->time_stamp = jiffies;
5605			buffer_info->next_to_watch = i;
5606			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5607							    offset, size,
5608							    DMA_TO_DEVICE);
5609			buffer_info->mapped_as_page = true;
5610			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5611				goto dma_error;
5612
5613			len -= size;
5614			offset += size;
5615			count++;
5616		}
5617	}
5618
5619	segs = skb_shinfo(skb)->gso_segs ? : 1;
5620	/* multiply data chunks by size of headers */
5621	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5622
5623	tx_ring->buffer_info[i].skb = skb;
5624	tx_ring->buffer_info[i].segs = segs;
5625	tx_ring->buffer_info[i].bytecount = bytecount;
5626	tx_ring->buffer_info[first].next_to_watch = i;
5627
5628	return count;
5629
5630dma_error:
5631	dev_err(&pdev->dev, "Tx DMA map failed\n");
5632	buffer_info->dma = 0;
5633	if (count)
5634		count--;
5635
5636	while (count--) {
5637		if (i == 0)
5638			i += tx_ring->count;
5639		i--;
5640		buffer_info = &tx_ring->buffer_info[i];
5641		e1000_put_txbuf(tx_ring, buffer_info, true);
5642	}
5643
5644	return 0;
5645}
5646
5647static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5648{
5649	struct e1000_adapter *adapter = tx_ring->adapter;
5650	struct e1000_tx_desc *tx_desc = NULL;
5651	struct e1000_buffer *buffer_info;
5652	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5653	unsigned int i;
5654
5655	if (tx_flags & E1000_TX_FLAGS_TSO) {
5656		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5657		    E1000_TXD_CMD_TSE;
5658		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5659
5660		if (tx_flags & E1000_TX_FLAGS_IPV4)
5661			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5662	}
5663
5664	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5665		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5666		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5667	}
5668
5669	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5670		txd_lower |= E1000_TXD_CMD_VLE;
5671		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5672	}
5673
5674	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5675		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5676
5677	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5678		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5679		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5680	}
5681
5682	i = tx_ring->next_to_use;
5683
5684	do {
5685		buffer_info = &tx_ring->buffer_info[i];
5686		tx_desc = E1000_TX_DESC(*tx_ring, i);
5687		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5688		tx_desc->lower.data = cpu_to_le32(txd_lower |
5689						  buffer_info->length);
5690		tx_desc->upper.data = cpu_to_le32(txd_upper);
5691
5692		i++;
5693		if (i == tx_ring->count)
5694			i = 0;
5695	} while (--count > 0);
5696
5697	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5698
5699	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5700	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5701		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5702
5703	/* Force memory writes to complete before letting h/w
 
5704	 * know there are new descriptors to fetch.  (Only
5705	 * applicable for weak-ordered memory model archs,
5706	 * such as IA-64).
5707	 */
5708	wmb();
5709
5710	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
5711}
5712
5713#define MINIMUM_DHCP_PACKET_SIZE 282
5714static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5715				    struct sk_buff *skb)
5716{
5717	struct e1000_hw *hw = &adapter->hw;
5718	u16 length, offset;
5719
5720	if (skb_vlan_tag_present(skb) &&
5721	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5722	      (adapter->hw.mng_cookie.status &
5723	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5724		return 0;
 
5725
5726	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5727		return 0;
5728
5729	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5730		return 0;
5731
5732	{
5733		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5734		struct udphdr *udp;
5735
5736		if (ip->protocol != IPPROTO_UDP)
5737			return 0;
5738
5739		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5740		if (ntohs(udp->dest) != 67)
5741			return 0;
5742
5743		offset = (u8 *)udp + 8 - skb->data;
5744		length = skb->len - offset;
5745		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5746	}
5747
5748	return 0;
5749}
5750
5751static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5752{
5753	struct e1000_adapter *adapter = tx_ring->adapter;
5754
5755	netif_stop_queue(adapter->netdev);
5756	/* Herbert's original patch had:
 
5757	 *  smp_mb__after_netif_stop_queue();
5758	 * but since that doesn't exist yet, just open code it.
5759	 */
5760	smp_mb();
5761
5762	/* We need to check again in a case another CPU has just
 
5763	 * made room available.
5764	 */
5765	if (e1000_desc_unused(tx_ring) < size)
5766		return -EBUSY;
5767
5768	/* A reprieve! */
5769	netif_start_queue(adapter->netdev);
5770	++adapter->restart_queue;
5771	return 0;
5772}
5773
5774static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5775{
5776	BUG_ON(size > tx_ring->count);
5777
5778	if (e1000_desc_unused(tx_ring) >= size)
5779		return 0;
5780	return __e1000_maybe_stop_tx(tx_ring, size);
5781}
5782
5783static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5784				    struct net_device *netdev)
5785{
5786	struct e1000_adapter *adapter = netdev_priv(netdev);
5787	struct e1000_ring *tx_ring = adapter->tx_ring;
5788	unsigned int first;
5789	unsigned int tx_flags = 0;
5790	unsigned int len = skb_headlen(skb);
5791	unsigned int nr_frags;
5792	unsigned int mss;
5793	int count = 0;
5794	int tso;
5795	unsigned int f;
5796	__be16 protocol = vlan_get_protocol(skb);
5797
5798	if (test_bit(__E1000_DOWN, &adapter->state)) {
5799		dev_kfree_skb_any(skb);
5800		return NETDEV_TX_OK;
5801	}
5802
5803	if (skb->len <= 0) {
5804		dev_kfree_skb_any(skb);
5805		return NETDEV_TX_OK;
5806	}
5807
5808	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5809	 * pad skb in order to meet this minimum size requirement
5810	 */
5811	if (skb_put_padto(skb, 17))
5812		return NETDEV_TX_OK;
5813
5814	mss = skb_shinfo(skb)->gso_size;
5815	if (mss) {
5816		u8 hdr_len;
5817
5818		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
 
5819		 * points to just header, pull a few bytes of payload from
5820		 * frags into skb->data
5821		 */
5822		hdr_len = skb_tcp_all_headers(skb);
5823		/* we do this workaround for ES2LAN, but it is un-necessary,
 
5824		 * avoiding it could save a lot of cycles
5825		 */
5826		if (skb->data_len && (hdr_len == len)) {
5827			unsigned int pull_size;
5828
5829			pull_size = min_t(unsigned int, 4, skb->data_len);
5830			if (!__pskb_pull_tail(skb, pull_size)) {
5831				e_err("__pskb_pull_tail failed.\n");
5832				dev_kfree_skb_any(skb);
5833				return NETDEV_TX_OK;
5834			}
5835			len = skb_headlen(skb);
5836		}
5837	}
5838
5839	/* reserve a descriptor for the offload context */
5840	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5841		count++;
5842	count++;
5843
5844	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5845
5846	nr_frags = skb_shinfo(skb)->nr_frags;
5847	for (f = 0; f < nr_frags; f++)
5848		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5849				      adapter->tx_fifo_limit);
5850
5851	if (adapter->hw.mac.tx_pkt_filtering)
5852		e1000_transfer_dhcp_info(adapter, skb);
5853
5854	/* need: count + 2 desc gap to keep tail from touching
 
5855	 * head, otherwise try next time
5856	 */
5857	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5858		return NETDEV_TX_BUSY;
5859
5860	if (skb_vlan_tag_present(skb)) {
5861		tx_flags |= E1000_TX_FLAGS_VLAN;
5862		tx_flags |= (skb_vlan_tag_get(skb) <<
5863			     E1000_TX_FLAGS_VLAN_SHIFT);
5864	}
5865
5866	first = tx_ring->next_to_use;
5867
5868	tso = e1000_tso(tx_ring, skb, protocol);
5869	if (tso < 0) {
5870		dev_kfree_skb_any(skb);
5871		return NETDEV_TX_OK;
5872	}
5873
5874	if (tso)
5875		tx_flags |= E1000_TX_FLAGS_TSO;
5876	else if (e1000_tx_csum(tx_ring, skb, protocol))
5877		tx_flags |= E1000_TX_FLAGS_CSUM;
5878
5879	/* Old method was to assume IPv4 packet by default if TSO was enabled.
 
5880	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5881	 * no longer assume, we must.
5882	 */
5883	if (protocol == htons(ETH_P_IP))
5884		tx_flags |= E1000_TX_FLAGS_IPV4;
5885
5886	if (unlikely(skb->no_fcs))
5887		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5888
5889	/* if count is 0 then mapping error has occurred */
5890	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5891			     nr_frags);
5892	if (count) {
5893		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5894		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5895			if (!adapter->tx_hwtstamp_skb) {
5896				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5897				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5898				adapter->tx_hwtstamp_skb = skb_get(skb);
5899				adapter->tx_hwtstamp_start = jiffies;
5900				schedule_work(&adapter->tx_hwtstamp_work);
5901			} else {
5902				adapter->tx_hwtstamp_skipped++;
5903			}
5904		}
5905
5906		skb_tx_timestamp(skb);
5907
5908		netdev_sent_queue(netdev, skb->len);
5909		e1000_tx_queue(tx_ring, tx_flags, count);
5910		/* Make sure there is space in the ring for the next send. */
5911		e1000_maybe_stop_tx(tx_ring,
5912				    ((MAX_SKB_FRAGS + 1) *
5913				     DIV_ROUND_UP(PAGE_SIZE,
5914						  adapter->tx_fifo_limit) + 4));
5915
5916		if (!netdev_xmit_more() ||
5917		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5918			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5919				e1000e_update_tdt_wa(tx_ring,
5920						     tx_ring->next_to_use);
5921			else
5922				writel(tx_ring->next_to_use, tx_ring->tail);
5923		}
5924	} else {
5925		dev_kfree_skb_any(skb);
5926		tx_ring->buffer_info[first].time_stamp = 0;
5927		tx_ring->next_to_use = first;
5928	}
5929
5930	return NETDEV_TX_OK;
5931}
5932
5933/**
5934 * e1000_tx_timeout - Respond to a Tx Hang
5935 * @netdev: network interface device structure
5936 * @txqueue: index of the hung queue (unused)
5937 **/
5938static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5939{
5940	struct e1000_adapter *adapter = netdev_priv(netdev);
5941
5942	/* Do the reset outside of interrupt context */
5943	adapter->tx_timeout_count++;
5944	schedule_work(&adapter->reset_task);
5945}
5946
5947static void e1000_reset_task(struct work_struct *work)
5948{
5949	struct e1000_adapter *adapter;
5950	adapter = container_of(work, struct e1000_adapter, reset_task);
5951
5952	rtnl_lock();
5953	/* don't run the task if already down */
5954	if (test_bit(__E1000_DOWN, &adapter->state)) {
5955		rtnl_unlock();
5956		return;
5957	}
5958
5959	if (!(adapter->flags & FLAG_RESTART_NOW)) {
 
5960		e1000e_dump(adapter);
5961		e_err("Reset adapter unexpectedly\n");
5962	}
5963	e1000e_reinit_locked(adapter);
5964	rtnl_unlock();
5965}
5966
5967/**
5968 * e1000e_get_stats64 - Get System Network Statistics
5969 * @netdev: network interface device structure
5970 * @stats: rtnl_link_stats64 pointer
5971 *
5972 * Returns the address of the device statistics structure.
5973 **/
5974void e1000e_get_stats64(struct net_device *netdev,
5975			struct rtnl_link_stats64 *stats)
5976{
5977	struct e1000_adapter *adapter = netdev_priv(netdev);
5978
 
5979	spin_lock(&adapter->stats64_lock);
5980	e1000e_update_stats(adapter);
5981	/* Fill out the OS statistics structure */
5982	stats->rx_bytes = adapter->stats.gorc;
5983	stats->rx_packets = adapter->stats.gprc;
5984	stats->tx_bytes = adapter->stats.gotc;
5985	stats->tx_packets = adapter->stats.gptc;
5986	stats->multicast = adapter->stats.mprc;
5987	stats->collisions = adapter->stats.colc;
5988
5989	/* Rx Errors */
5990
5991	/* RLEC on some newer hardware can be incorrect so build
 
5992	 * our own version based on RUC and ROC
5993	 */
5994	stats->rx_errors = adapter->stats.rxerrc +
5995	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5996	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5997	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
 
 
5998	stats->rx_crc_errors = adapter->stats.crcerrs;
5999	stats->rx_frame_errors = adapter->stats.algnerrc;
6000	stats->rx_missed_errors = adapter->stats.mpc;
6001
6002	/* Tx Errors */
6003	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
6004	stats->tx_aborted_errors = adapter->stats.ecol;
6005	stats->tx_window_errors = adapter->stats.latecol;
6006	stats->tx_carrier_errors = adapter->stats.tncrs;
6007
6008	/* Tx Dropped needs to be maintained elsewhere */
6009
6010	spin_unlock(&adapter->stats64_lock);
 
6011}
6012
6013/**
6014 * e1000_change_mtu - Change the Maximum Transfer Unit
6015 * @netdev: network interface device structure
6016 * @new_mtu: new value for maximum frame size
6017 *
6018 * Returns 0 on success, negative on failure
6019 **/
6020static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6021{
6022	struct e1000_adapter *adapter = netdev_priv(netdev);
6023	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6024
6025	/* Jumbo frame support */
6026	if ((new_mtu > ETH_DATA_LEN) &&
6027	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6028		e_err("Jumbo Frames not supported.\n");
6029		return -EINVAL;
6030	}
6031
 
 
 
 
 
 
 
6032	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6033	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6034	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6035	    (new_mtu > ETH_DATA_LEN)) {
6036		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6037		return -EINVAL;
6038	}
6039
6040	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6041		usleep_range(1000, 1100);
6042	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6043	adapter->max_frame_size = max_frame;
6044	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6045		   netdev->mtu, new_mtu);
6046	WRITE_ONCE(netdev->mtu, new_mtu);
6047
6048	pm_runtime_get_sync(netdev->dev.parent);
6049
6050	if (netif_running(netdev))
6051		e1000e_down(adapter, true);
6052
6053	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
 
6054	 * means we reserve 2 more, this pushes us to allocate from the next
6055	 * larger slab size.
6056	 * i.e. RXBUFFER_2048 --> size-4096 slab
6057	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6058	 * fragmented skbs
6059	 */
6060
6061	if (max_frame <= 2048)
6062		adapter->rx_buffer_len = 2048;
6063	else
6064		adapter->rx_buffer_len = 4096;
6065
6066	/* adjust allocation if LPE protects us, and we aren't using SBP */
6067	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6068		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
 
 
6069
6070	if (netif_running(netdev))
6071		e1000e_up(adapter);
6072	else
6073		e1000e_reset(adapter);
6074
6075	pm_runtime_put_sync(netdev->dev.parent);
6076
6077	clear_bit(__E1000_RESETTING, &adapter->state);
6078
6079	return 0;
6080}
6081
6082static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6083			   int cmd)
6084{
6085	struct e1000_adapter *adapter = netdev_priv(netdev);
6086	struct mii_ioctl_data *data = if_mii(ifr);
6087
6088	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6089		return -EOPNOTSUPP;
6090
6091	switch (cmd) {
6092	case SIOCGMIIPHY:
6093		data->phy_id = adapter->hw.phy.addr;
6094		break;
6095	case SIOCGMIIREG:
6096		e1000_phy_read_status(adapter);
6097
6098		switch (data->reg_num & 0x1F) {
6099		case MII_BMCR:
6100			data->val_out = adapter->phy_regs.bmcr;
6101			break;
6102		case MII_BMSR:
6103			data->val_out = adapter->phy_regs.bmsr;
6104			break;
6105		case MII_PHYSID1:
6106			data->val_out = (adapter->hw.phy.id >> 16);
6107			break;
6108		case MII_PHYSID2:
6109			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6110			break;
6111		case MII_ADVERTISE:
6112			data->val_out = adapter->phy_regs.advertise;
6113			break;
6114		case MII_LPA:
6115			data->val_out = adapter->phy_regs.lpa;
6116			break;
6117		case MII_EXPANSION:
6118			data->val_out = adapter->phy_regs.expansion;
6119			break;
6120		case MII_CTRL1000:
6121			data->val_out = adapter->phy_regs.ctrl1000;
6122			break;
6123		case MII_STAT1000:
6124			data->val_out = adapter->phy_regs.stat1000;
6125			break;
6126		case MII_ESTATUS:
6127			data->val_out = adapter->phy_regs.estatus;
6128			break;
6129		default:
6130			return -EIO;
6131		}
6132		break;
6133	case SIOCSMIIREG:
6134	default:
6135		return -EOPNOTSUPP;
6136	}
6137	return 0;
6138}
6139
6140/**
6141 * e1000e_hwtstamp_set - control hardware time stamping
6142 * @netdev: network interface device structure
6143 * @ifr: interface request
6144 *
6145 * Outgoing time stamping can be enabled and disabled. Play nice and
6146 * disable it when requested, although it shouldn't cause any overhead
6147 * when no packet needs it. At most one packet in the queue may be
6148 * marked for time stamping, otherwise it would be impossible to tell
6149 * for sure to which packet the hardware time stamp belongs.
6150 *
6151 * Incoming time stamping has to be configured via the hardware filters.
6152 * Not all combinations are supported, in particular event type has to be
6153 * specified. Matching the kind of event packet is not supported, with the
6154 * exception of "all V2 events regardless of level 2 or 4".
6155 **/
6156static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6157{
6158	struct e1000_adapter *adapter = netdev_priv(netdev);
6159	struct hwtstamp_config config;
6160	int ret_val;
6161
6162	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6163		return -EFAULT;
6164
6165	ret_val = e1000e_config_hwtstamp(adapter, &config);
6166	if (ret_val)
6167		return ret_val;
6168
6169	switch (config.rx_filter) {
6170	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6171	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6172	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6173	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6174	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6175	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6176		/* With V2 type filters which specify a Sync or Delay Request,
6177		 * Path Delay Request/Response messages are also time stamped
6178		 * by hardware so notify the caller the requested packets plus
6179		 * some others are time stamped.
6180		 */
6181		config.rx_filter = HWTSTAMP_FILTER_SOME;
6182		break;
6183	default:
6184		break;
6185	}
6186
6187	return copy_to_user(ifr->ifr_data, &config,
6188			    sizeof(config)) ? -EFAULT : 0;
6189}
6190
6191static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6192{
6193	struct e1000_adapter *adapter = netdev_priv(netdev);
6194
6195	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6196			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6197}
6198
6199static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6200{
6201	switch (cmd) {
6202	case SIOCGMIIPHY:
6203	case SIOCGMIIREG:
6204	case SIOCSMIIREG:
6205		return e1000_mii_ioctl(netdev, ifr, cmd);
6206	case SIOCSHWTSTAMP:
6207		return e1000e_hwtstamp_set(netdev, ifr);
6208	case SIOCGHWTSTAMP:
6209		return e1000e_hwtstamp_get(netdev, ifr);
6210	default:
6211		return -EOPNOTSUPP;
6212	}
6213}
6214
6215static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6216{
6217	struct e1000_hw *hw = &adapter->hw;
6218	u32 i, mac_reg, wuc;
6219	u16 phy_reg, wuc_enable;
6220	int retval;
6221
6222	/* copy MAC RARs to PHY RARs */
6223	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6224
6225	retval = hw->phy.ops.acquire(hw);
6226	if (retval) {
6227		e_err("Could not acquire PHY\n");
6228		return retval;
6229	}
6230
6231	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6232	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6233	if (retval)
6234		goto release;
6235
6236	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6237	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6238		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6239		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6240					   (u16)(mac_reg & 0xFFFF));
6241		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6242					   (u16)((mac_reg >> 16) & 0xFFFF));
6243	}
6244
6245	/* configure PHY Rx Control register */
6246	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6247	mac_reg = er32(RCTL);
6248	if (mac_reg & E1000_RCTL_UPE)
6249		phy_reg |= BM_RCTL_UPE;
6250	if (mac_reg & E1000_RCTL_MPE)
6251		phy_reg |= BM_RCTL_MPE;
6252	phy_reg &= ~(BM_RCTL_MO_MASK);
6253	if (mac_reg & E1000_RCTL_MO_3)
6254		phy_reg |= (FIELD_GET(E1000_RCTL_MO_3, mac_reg)
6255			    << BM_RCTL_MO_SHIFT);
6256	if (mac_reg & E1000_RCTL_BAM)
6257		phy_reg |= BM_RCTL_BAM;
6258	if (mac_reg & E1000_RCTL_PMCF)
6259		phy_reg |= BM_RCTL_PMCF;
6260	mac_reg = er32(CTRL);
6261	if (mac_reg & E1000_CTRL_RFCE)
6262		phy_reg |= BM_RCTL_RFCE;
6263	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6264
6265	wuc = E1000_WUC_PME_EN;
6266	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6267		wuc |= E1000_WUC_APME;
6268
6269	/* enable PHY wakeup in MAC register */
6270	ew32(WUFC, wufc);
6271	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6272		   E1000_WUC_PME_STATUS | wuc));
6273
6274	/* configure and enable PHY wakeup in PHY registers */
6275	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6276	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6277
6278	/* activate PHY wakeup */
6279	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6280	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6281	if (retval)
6282		e_err("Could not set PHY Host Wakeup bit\n");
6283release:
6284	hw->phy.ops.release(hw);
6285
6286	return retval;
6287}
6288
6289static void e1000e_flush_lpic(struct pci_dev *pdev)
 
6290{
6291	struct net_device *netdev = pci_get_drvdata(pdev);
6292	struct e1000_adapter *adapter = netdev_priv(netdev);
6293	struct e1000_hw *hw = &adapter->hw;
6294	u32 ret_val;
6295
6296	pm_runtime_get_sync(netdev->dev.parent);
6297
6298	ret_val = hw->phy.ops.acquire(hw);
6299	if (ret_val)
6300		goto fl_out;
6301
6302	pr_info("EEE TX LPI TIMER: %08X\n",
6303		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6304
6305	hw->phy.ops.release(hw);
6306
6307fl_out:
6308	pm_runtime_put_sync(netdev->dev.parent);
6309}
6310
6311/* S0ix implementation */
6312static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6313{
6314	struct e1000_hw *hw = &adapter->hw;
6315	u32 mac_data;
6316	u16 phy_data;
6317
6318	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6319	    hw->mac.type >= e1000_pch_adp) {
6320		/* Request ME configure the device for S0ix */
6321		mac_data = er32(H2ME);
6322		mac_data |= E1000_H2ME_START_DPG;
6323		mac_data &= ~E1000_H2ME_EXIT_DPG;
6324		trace_e1000e_trace_mac_register(mac_data);
6325		ew32(H2ME, mac_data);
6326	} else {
6327		/* Request driver configure the device to S0ix */
6328		/* Disable the periodic inband message,
6329		 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6330		 */
6331		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6332		phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6333		phy_data |= BIT(10);
6334		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6335
6336		/* Make sure we don't exit K1 every time a new packet arrives
6337		 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6338		 */
6339		e1e_rphy(hw, I217_CGFREG, &phy_data);
6340		phy_data |= BIT(5);
6341		e1e_wphy(hw, I217_CGFREG, phy_data);
6342
6343		/* Change the MAC/PHY interface to SMBus
6344		 * Force the SMBus in PHY page769_23[0] = 1
6345		 * Force the SMBus in MAC CTRL_EXT[11] = 1
6346		 */
6347		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6348		phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6349		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6350		mac_data = er32(CTRL_EXT);
6351		mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6352		ew32(CTRL_EXT, mac_data);
6353
6354		/* DFT control: PHY bit: page769_20[0] = 1
6355		 * page769_20[7] - PHY PLL stop
6356		 * page769_20[8] - PHY go to the electrical idle
6357		 * page769_20[9] - PHY serdes disable
6358		 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6359		 */
6360		e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6361		phy_data |= BIT(0);
6362		phy_data |= BIT(7);
6363		phy_data |= BIT(8);
6364		phy_data |= BIT(9);
6365		e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6366
6367		mac_data = er32(EXTCNF_CTRL);
6368		mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6369		ew32(EXTCNF_CTRL, mac_data);
6370
6371		/* Disable disconnected cable conditioning for Power Gating */
6372		mac_data = er32(DPGFR);
6373		mac_data |= BIT(2);
6374		ew32(DPGFR, mac_data);
6375
6376		/* Enable the Dynamic Clock Gating in the DMA and MAC */
6377		mac_data = er32(CTRL_EXT);
6378		mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6379		ew32(CTRL_EXT, mac_data);
6380	}
6381
6382	/* Enable the Dynamic Power Gating in the MAC */
6383	mac_data = er32(FEXTNVM7);
6384	mac_data |= BIT(22);
6385	ew32(FEXTNVM7, mac_data);
6386
6387	/* Don't wake from dynamic Power Gating with clock request */
6388	mac_data = er32(FEXTNVM12);
6389	mac_data |= BIT(12);
6390	ew32(FEXTNVM12, mac_data);
6391
6392	/* Ungate PGCB clock */
6393	mac_data = er32(FEXTNVM9);
6394	mac_data &= ~BIT(28);
6395	ew32(FEXTNVM9, mac_data);
6396
6397	/* Enable K1 off to enable mPHY Power Gating */
6398	mac_data = er32(FEXTNVM6);
6399	mac_data |= BIT(31);
6400	ew32(FEXTNVM6, mac_data);
6401
6402	/* Enable mPHY power gating for any link and speed */
6403	mac_data = er32(FEXTNVM8);
6404	mac_data |= BIT(9);
6405	ew32(FEXTNVM8, mac_data);
6406
6407	/* No MAC DPG gating SLP_S0 in modern standby
6408	 * Switch the logic of the lanphypc to use PMC counter
6409	 */
6410	mac_data = er32(FEXTNVM5);
6411	mac_data |= BIT(7);
6412	ew32(FEXTNVM5, mac_data);
6413
6414	/* Disable the time synchronization clock */
6415	mac_data = er32(FEXTNVM7);
6416	mac_data |= BIT(31);
6417	mac_data &= ~BIT(0);
6418	ew32(FEXTNVM7, mac_data);
6419
6420	/* Dynamic Power Gating Enable */
6421	mac_data = er32(CTRL_EXT);
6422	mac_data |= BIT(3);
6423	ew32(CTRL_EXT, mac_data);
6424
6425	/* Check MAC Tx/Rx packet buffer pointers.
6426	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6427	 * pending traffic indication that would prevent power gating.
6428	 */
6429	mac_data = er32(TDFH);
6430	if (mac_data)
6431		ew32(TDFH, 0);
6432	mac_data = er32(TDFT);
6433	if (mac_data)
6434		ew32(TDFT, 0);
6435	mac_data = er32(TDFHS);
6436	if (mac_data)
6437		ew32(TDFHS, 0);
6438	mac_data = er32(TDFTS);
6439	if (mac_data)
6440		ew32(TDFTS, 0);
6441	mac_data = er32(TDFPC);
6442	if (mac_data)
6443		ew32(TDFPC, 0);
6444	mac_data = er32(RDFH);
6445	if (mac_data)
6446		ew32(RDFH, 0);
6447	mac_data = er32(RDFT);
6448	if (mac_data)
6449		ew32(RDFT, 0);
6450	mac_data = er32(RDFHS);
6451	if (mac_data)
6452		ew32(RDFHS, 0);
6453	mac_data = er32(RDFTS);
6454	if (mac_data)
6455		ew32(RDFTS, 0);
6456	mac_data = er32(RDFPC);
6457	if (mac_data)
6458		ew32(RDFPC, 0);
6459}
6460
6461static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6462{
6463	struct e1000_hw *hw = &adapter->hw;
6464	bool firmware_bug = false;
6465	u32 mac_data;
6466	u16 phy_data;
6467	u32 i = 0;
6468
6469	if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6470	    hw->mac.type >= e1000_pch_adp) {
6471		/* Keep the GPT clock enabled for CSME */
6472		mac_data = er32(FEXTNVM);
6473		mac_data |= BIT(3);
6474		ew32(FEXTNVM, mac_data);
6475		/* Request ME unconfigure the device from S0ix */
6476		mac_data = er32(H2ME);
6477		mac_data &= ~E1000_H2ME_START_DPG;
6478		mac_data |= E1000_H2ME_EXIT_DPG;
6479		trace_e1000e_trace_mac_register(mac_data);
6480		ew32(H2ME, mac_data);
6481
6482		/* Poll up to 2.5 seconds for ME to unconfigure DPG.
6483		 * If this takes more than 1 second, show a warning indicating a
6484		 * firmware bug
6485		 */
6486		while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6487			if (i > 100 && !firmware_bug)
6488				firmware_bug = true;
6489
6490			if (i++ == 250) {
6491				e_dbg("Timeout (firmware bug): %d msec\n",
6492				      i * 10);
6493				break;
6494			}
6495
6496			usleep_range(10000, 11000);
6497		}
6498		if (firmware_bug)
6499			e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6500			       i * 10);
6501		else
6502			e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6503	} else {
6504		/* Request driver unconfigure the device from S0ix */
6505
6506		/* Cancel disable disconnected cable conditioning
6507		 * for Power Gating
6508		 */
6509		mac_data = er32(DPGFR);
6510		mac_data &= ~BIT(2);
6511		ew32(DPGFR, mac_data);
6512
6513		/* Disable the Dynamic Clock Gating in the DMA and MAC */
6514		mac_data = er32(CTRL_EXT);
6515		mac_data &= 0xFFF7FFFF;
6516		ew32(CTRL_EXT, mac_data);
6517
6518		/* Enable the periodic inband message,
6519		 * Request PCIe clock in K1 page770_17[10:9] =01b
6520		 */
6521		e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6522		phy_data &= 0xFBFF;
6523		phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6524		e1e_wphy(hw, HV_PM_CTRL, phy_data);
6525
6526		/* Return back configuration
6527		 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6528		 */
6529		e1e_rphy(hw, I217_CGFREG, &phy_data);
6530		phy_data &= 0xFFDF;
6531		e1e_wphy(hw, I217_CGFREG, phy_data);
6532
6533		/* Change the MAC/PHY interface to Kumeran
6534		 * Unforce the SMBus in PHY page769_23[0] = 0
6535		 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6536		 */
6537		e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6538		phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6539		e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6540		mac_data = er32(CTRL_EXT);
6541		mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6542		ew32(CTRL_EXT, mac_data);
6543	}
6544
6545	/* Disable Dynamic Power Gating */
6546	mac_data = er32(CTRL_EXT);
6547	mac_data &= 0xFFFFFFF7;
6548	ew32(CTRL_EXT, mac_data);
6549
6550	/* Enable the time synchronization clock */
6551	mac_data = er32(FEXTNVM7);
6552	mac_data &= ~BIT(31);
6553	mac_data |= BIT(0);
6554	ew32(FEXTNVM7, mac_data);
6555
6556	/* Disable the Dynamic Power Gating in the MAC */
6557	mac_data = er32(FEXTNVM7);
6558	mac_data &= 0xFFBFFFFF;
6559	ew32(FEXTNVM7, mac_data);
6560
6561	/* Disable mPHY power gating for any link and speed */
6562	mac_data = er32(FEXTNVM8);
6563	mac_data &= ~BIT(9);
6564	ew32(FEXTNVM8, mac_data);
6565
6566	/* Disable K1 off */
6567	mac_data = er32(FEXTNVM6);
6568	mac_data &= ~BIT(31);
6569	ew32(FEXTNVM6, mac_data);
6570
6571	/* Disable Ungate PGCB clock */
6572	mac_data = er32(FEXTNVM9);
6573	mac_data |= BIT(28);
6574	ew32(FEXTNVM9, mac_data);
6575
6576	/* Cancel not waking from dynamic
6577	 * Power Gating with clock request
6578	 */
6579	mac_data = er32(FEXTNVM12);
6580	mac_data &= ~BIT(12);
6581	ew32(FEXTNVM12, mac_data);
6582
6583	/* Revert the lanphypc logic to use the internal Gbe counter
6584	 * and not the PMC counter
6585	 */
6586	mac_data = er32(FEXTNVM5);
6587	mac_data &= 0xFFFFFF7F;
6588	ew32(FEXTNVM5, mac_data);
6589}
6590
6591static int e1000e_pm_freeze(struct device *dev)
6592{
6593	struct net_device *netdev = dev_get_drvdata(dev);
6594	struct e1000_adapter *adapter = netdev_priv(netdev);
6595	bool present;
6596
6597	rtnl_lock();
6598
6599	present = netif_device_present(netdev);
6600	netif_device_detach(netdev);
6601
6602	if (present && netif_running(netdev)) {
6603		int count = E1000_CHECK_RESET_COUNT;
6604
6605		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6606			usleep_range(10000, 11000);
6607
6608		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6609
6610		/* Quiesce the device without resetting the hardware */
6611		e1000e_down(adapter, false);
6612		e1000_free_irq(adapter);
6613	}
6614	rtnl_unlock();
6615
6616	e1000e_reset_interrupt_capability(adapter);
6617
6618	/* Allow time for pending master requests to run */
6619	e1000e_disable_pcie_master(&adapter->hw);
6620
6621	return 0;
6622}
6623
6624static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6625{
6626	struct net_device *netdev = pci_get_drvdata(pdev);
6627	struct e1000_adapter *adapter = netdev_priv(netdev);
6628	struct e1000_hw *hw = &adapter->hw;
6629	u32 ctrl, ctrl_ext, rctl, status, wufc;
6630	int retval = 0;
6631
6632	/* Runtime suspend should only enable wakeup for link changes */
6633	if (runtime)
6634		wufc = E1000_WUFC_LNKC;
6635	else if (device_may_wakeup(&pdev->dev))
6636		wufc = adapter->wol;
6637	else
6638		wufc = 0;
6639
6640	status = er32(STATUS);
6641	if (status & E1000_STATUS_LU)
6642		wufc &= ~E1000_WUFC_LNKC;
6643
6644	if (wufc) {
6645		e1000_setup_rctl(adapter);
6646		e1000e_set_rx_mode(netdev);
6647
6648		/* turn on all-multi mode if wake on multicast is enabled */
6649		if (wufc & E1000_WUFC_MC) {
6650			rctl = er32(RCTL);
6651			rctl |= E1000_RCTL_MPE;
6652			ew32(RCTL, rctl);
6653		}
6654
6655		ctrl = er32(CTRL);
 
 
 
 
6656		ctrl |= E1000_CTRL_ADVD3WUC;
6657		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6658			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6659		ew32(CTRL, ctrl);
6660
6661		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6662		    adapter->hw.phy.media_type ==
6663		    e1000_media_type_internal_serdes) {
6664			/* keep the laser running in D3 */
6665			ctrl_ext = er32(CTRL_EXT);
6666			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6667			ew32(CTRL_EXT, ctrl_ext);
6668		}
6669
6670		if (!runtime)
6671			e1000e_power_up_phy(adapter);
6672
6673		if (adapter->flags & FLAG_IS_ICH)
6674			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6675
 
 
 
6676		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6677			/* enable wakeup by the PHY */
6678			retval = e1000_init_phy_wakeup(adapter, wufc);
6679			if (retval) {
6680				e_err("Failed to enable wakeup\n");
6681				goto skip_phy_configurations;
6682			}
6683		} else {
6684			/* enable wakeup by the MAC */
6685			ew32(WUFC, wufc);
6686			ew32(WUC, E1000_WUC_PME_EN);
6687		}
6688	} else {
6689		ew32(WUC, 0);
6690		ew32(WUFC, 0);
6691
6692		e1000_power_down_phy(adapter);
6693	}
6694
6695	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6696		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6697	} else if (hw->mac.type >= e1000_pch_lpt) {
6698		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC))) {
6699			/* ULP does not support wake from unicast, multicast
6700			 * or broadcast.
6701			 */
6702			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6703			if (retval) {
6704				e_err("Failed to enable ULP\n");
6705				goto skip_phy_configurations;
6706			}
6707		}
6708	}
6709
6710	/* Ensure that the appropriate bits are set in LPI_CTRL
6711	 * for EEE in Sx
6712	 */
6713	if ((hw->phy.type >= e1000_phy_i217) &&
6714	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6715		u16 lpi_ctrl = 0;
6716
6717		retval = hw->phy.ops.acquire(hw);
6718		if (!retval) {
6719			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6720						 &lpi_ctrl);
6721			if (!retval) {
6722				if (adapter->eee_advert &
6723				    hw->dev_spec.ich8lan.eee_lp_ability &
6724				    I82579_EEE_100_SUPPORTED)
6725					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6726				if (adapter->eee_advert &
6727				    hw->dev_spec.ich8lan.eee_lp_ability &
6728				    I82579_EEE_1000_SUPPORTED)
6729					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6730
6731				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6732							 lpi_ctrl);
6733			}
6734		}
6735		hw->phy.ops.release(hw);
6736	}
6737
6738skip_phy_configurations:
6739	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6740	 * would have already happened in close and is redundant.
6741	 */
6742	e1000e_release_hw_control(adapter);
6743
6744	pci_clear_master(pdev);
6745
6746	/* The pci-e switch on some quad port adapters will report a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6747	 * correctable error when the MAC transitions from D0 to D3.  To
6748	 * prevent this we need to mask off the correctable errors on the
6749	 * downstream port of the pci-e switch.
6750	 *
6751	 * We don't have the associated upstream bridge while assigning
6752	 * the PCI device into guest. For example, the KVM on power is
6753	 * one of the cases.
6754	 */
6755	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6756		struct pci_dev *us_dev = pdev->bus->self;
 
6757		u16 devctl;
6758
6759		if (!us_dev)
6760			return 0;
6761
6762		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6763		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6764					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6765
6766		pci_save_state(pdev);
6767		pci_prepare_to_sleep(pdev);
6768
6769		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
 
 
6770	}
6771
6772	return 0;
6773}
6774
6775/**
6776 * __e1000e_disable_aspm - Disable ASPM states
6777 * @pdev: pointer to PCI device struct
6778 * @state: bit-mask of ASPM states to disable
6779 * @locked: indication if this context holds pci_bus_sem locked.
6780 *
6781 * Some devices *must* have certain ASPM states disabled per hardware errata.
6782 **/
6783static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6784{
6785	struct pci_dev *parent = pdev->bus->self;
6786	u16 aspm_dis_mask = 0;
6787	u16 pdev_aspmc, parent_aspmc;
6788
6789	switch (state) {
6790	case PCIE_LINK_STATE_L0S:
6791	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6792		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6793		fallthrough; /* can't have L1 without L0s */
6794	case PCIE_LINK_STATE_L1:
6795		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6796		break;
6797	default:
6798		return;
6799	}
6800
6801	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6802	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6803
6804	if (parent) {
6805		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6806					  &parent_aspmc);
6807		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6808	}
6809
6810	/* Nothing to do if the ASPM states to be disabled already are */
6811	if (!(pdev_aspmc & aspm_dis_mask) &&
6812	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6813		return;
6814
6815	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6816		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6817		 "L0s" : "",
6818		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6819		 "L1" : "");
6820
6821#ifdef CONFIG_PCIEASPM
6822	if (locked)
6823		pci_disable_link_state_locked(pdev, state);
6824	else
6825		pci_disable_link_state(pdev, state);
 
 
 
 
 
6826
6827	/* Double-check ASPM control.  If not disabled by the above, the
6828	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6829	 * not enabled); override by writing PCI config space directly.
6830	 */
6831	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6832	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
 
 
6833
6834	if (!(aspm_dis_mask & pdev_aspmc))
6835		return;
6836#endif
6837
6838	/* Both device and parent should have the same ASPM setting.
6839	 * Disable ASPM in downstream component first and then upstream.
6840	 */
6841	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6842
6843	if (parent)
6844		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6845					   aspm_dis_mask);
 
6846}
6847
6848/**
6849 * e1000e_disable_aspm - Disable ASPM states.
6850 * @pdev: pointer to PCI device struct
6851 * @state: bit-mask of ASPM states to disable
6852 *
6853 * This function acquires the pci_bus_sem!
6854 * Some devices *must* have certain ASPM states disabled per hardware errata.
6855 **/
6856static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6857{
6858	__e1000e_disable_aspm(pdev, state, 0);
6859}
 
6860
6861/**
6862 * e1000e_disable_aspm_locked - Disable ASPM states.
6863 * @pdev: pointer to PCI device struct
6864 * @state: bit-mask of ASPM states to disable
6865 *
6866 * This function must be called with pci_bus_sem acquired!
6867 * Some devices *must* have certain ASPM states disabled per hardware errata.
6868 **/
6869static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6870{
6871	__e1000e_disable_aspm(pdev, state, 1);
6872}
6873
6874static int e1000e_pm_thaw(struct device *dev)
 
6875{
6876	struct net_device *netdev = dev_get_drvdata(dev);
6877	struct e1000_adapter *adapter = netdev_priv(netdev);
6878	int rc = 0;
6879
6880	e1000e_set_interrupt_capability(adapter);
6881
6882	rtnl_lock();
6883	if (netif_running(netdev)) {
6884		rc = e1000_request_irq(adapter);
6885		if (rc)
6886			goto err_irq;
6887
6888		e1000e_up(adapter);
6889	}
6890
6891	netif_device_attach(netdev);
6892err_irq:
6893	rtnl_unlock();
6894
6895	return rc;
6896}
6897
6898static int __e1000_resume(struct pci_dev *pdev)
6899{
6900	struct net_device *netdev = pci_get_drvdata(pdev);
6901	struct e1000_adapter *adapter = netdev_priv(netdev);
6902	struct e1000_hw *hw = &adapter->hw;
6903	u16 aspm_disable_flag = 0;
 
6904
6905	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6906		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6907	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6908		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6909	if (aspm_disable_flag)
6910		e1000e_disable_aspm(pdev, aspm_disable_flag);
6911
6912	pci_set_master(pdev);
 
 
 
 
 
 
 
 
 
6913
6914	if (hw->mac.type >= e1000_pch2lan)
6915		e1000_resume_workarounds_pchlan(&adapter->hw);
6916
6917	e1000e_power_up_phy(adapter);
6918
6919	/* report the system wakeup cause from S3/S4 */
6920	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6921		u16 phy_data;
6922
6923		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6924		if (phy_data) {
6925			e_info("PHY Wakeup cause - %s\n",
6926			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6927			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6928			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6929			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6930			       phy_data & E1000_WUS_LNKC ?
6931			       "Link Status Change" : "other");
6932		}
6933		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6934	} else {
6935		u32 wus = er32(WUS);
6936
6937		if (wus) {
6938			e_info("MAC Wakeup cause - %s\n",
6939			       wus & E1000_WUS_EX ? "Unicast Packet" :
6940			       wus & E1000_WUS_MC ? "Multicast Packet" :
6941			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6942			       wus & E1000_WUS_MAG ? "Magic Packet" :
6943			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6944			       "other");
6945		}
6946		ew32(WUS, ~0);
6947	}
6948
6949	e1000e_reset(adapter);
6950
6951	e1000_init_manageability_pt(adapter);
6952
6953	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
 
 
 
 
 
6954	 * is up.  For all other cases, let the f/w know that the h/w is now
6955	 * under the control of the driver.
6956	 */
6957	if (!(adapter->flags & FLAG_HAS_AMT))
6958		e1000e_get_hw_control(adapter);
6959
6960	return 0;
6961}
6962
6963static int e1000e_pm_prepare(struct device *dev)
6964{
6965	return pm_runtime_suspended(dev) &&
6966		pm_suspend_via_firmware();
6967}
6968
6969static int e1000e_pm_suspend(struct device *dev)
6970{
6971	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6972	struct e1000_adapter *adapter = netdev_priv(netdev);
6973	struct pci_dev *pdev = to_pci_dev(dev);
6974	int rc;
6975
6976	e1000e_flush_lpic(pdev);
6977
6978	e1000e_pm_freeze(dev);
6979
6980	rc = __e1000_shutdown(pdev, false);
6981	if (!rc) {
6982		/* Introduce S0ix implementation */
6983		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6984			e1000e_s0ix_entry_flow(adapter);
6985	}
6986
6987	return 0;
6988}
6989
6990static int e1000e_pm_resume(struct device *dev)
6991{
6992	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6993	struct e1000_adapter *adapter = netdev_priv(netdev);
6994	struct pci_dev *pdev = to_pci_dev(dev);
6995	int rc;
6996
6997	/* Introduce S0ix implementation */
6998	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6999		e1000e_s0ix_exit_flow(adapter);
7000
7001	rc = __e1000_resume(pdev);
7002	if (rc)
7003		return rc;
7004
7005	return e1000e_pm_thaw(dev);
7006}
 
7007
7008static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
 
7009{
7010	struct net_device *netdev = dev_get_drvdata(dev);
 
7011	struct e1000_adapter *adapter = netdev_priv(netdev);
7012	u16 eee_lp;
7013
7014	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
 
7015
7016	if (!e1000e_has_link(adapter)) {
7017		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7018		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7019	}
7020
7021	return -EBUSY;
7022}
7023
7024static int e1000e_pm_runtime_resume(struct device *dev)
7025{
7026	struct pci_dev *pdev = to_pci_dev(dev);
7027	struct net_device *netdev = pci_get_drvdata(pdev);
7028	struct e1000_adapter *adapter = netdev_priv(netdev);
7029	int rc;
7030
7031	pdev->pme_poll = true;
7032
7033	rc = __e1000_resume(pdev);
7034	if (rc)
7035		return rc;
7036
7037	if (netdev->flags & IFF_UP)
7038		e1000e_up(adapter);
 
 
 
7039
7040	return rc;
7041}
7042
7043static int e1000e_pm_runtime_suspend(struct device *dev)
7044{
7045	struct pci_dev *pdev = to_pci_dev(dev);
7046	struct net_device *netdev = pci_get_drvdata(pdev);
7047	struct e1000_adapter *adapter = netdev_priv(netdev);
7048
7049	if (netdev->flags & IFF_UP) {
7050		int count = E1000_CHECK_RESET_COUNT;
7051
7052		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7053			usleep_range(10000, 11000);
7054
7055		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7056
7057		/* Down the device without resetting the hardware */
7058		e1000e_down(adapter, false);
7059	}
7060
7061	if (__e1000_shutdown(pdev, true)) {
7062		e1000e_pm_runtime_resume(dev);
7063		return -EBUSY;
7064	}
7065
7066	return 0;
 
7067}
 
 
7068
7069static void e1000_shutdown(struct pci_dev *pdev)
7070{
7071	e1000e_flush_lpic(pdev);
7072
7073	e1000e_pm_freeze(&pdev->dev);
7074
7075	__e1000_shutdown(pdev, false);
 
7076}
7077
7078#ifdef CONFIG_NET_POLL_CONTROLLER
7079
7080static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7081{
7082	struct net_device *netdev = data;
7083	struct e1000_adapter *adapter = netdev_priv(netdev);
7084
7085	if (adapter->msix_entries) {
7086		int vector, msix_irq;
7087
7088		vector = 0;
7089		msix_irq = adapter->msix_entries[vector].vector;
7090		if (disable_hardirq(msix_irq))
7091			e1000_intr_msix_rx(msix_irq, netdev);
7092		enable_irq(msix_irq);
7093
7094		vector++;
7095		msix_irq = adapter->msix_entries[vector].vector;
7096		if (disable_hardirq(msix_irq))
7097			e1000_intr_msix_tx(msix_irq, netdev);
7098		enable_irq(msix_irq);
7099
7100		vector++;
7101		msix_irq = adapter->msix_entries[vector].vector;
7102		if (disable_hardirq(msix_irq))
7103			e1000_msix_other(msix_irq, netdev);
7104		enable_irq(msix_irq);
7105	}
7106
7107	return IRQ_HANDLED;
7108}
7109
7110/**
7111 * e1000_netpoll
7112 * @netdev: network interface device structure
7113 *
7114 * Polling 'interrupt' - used by things like netconsole to send skbs
7115 * without having to re-enable interrupts. It's not called while
7116 * the interrupt routine is executing.
7117 */
7118static void e1000_netpoll(struct net_device *netdev)
7119{
7120	struct e1000_adapter *adapter = netdev_priv(netdev);
7121
7122	switch (adapter->int_mode) {
7123	case E1000E_INT_MODE_MSIX:
7124		e1000_intr_msix(adapter->pdev->irq, netdev);
7125		break;
7126	case E1000E_INT_MODE_MSI:
7127		if (disable_hardirq(adapter->pdev->irq))
7128			e1000_intr_msi(adapter->pdev->irq, netdev);
7129		enable_irq(adapter->pdev->irq);
7130		break;
7131	default:		/* E1000E_INT_MODE_LEGACY */
7132		if (disable_hardirq(adapter->pdev->irq))
7133			e1000_intr(adapter->pdev->irq, netdev);
7134		enable_irq(adapter->pdev->irq);
7135		break;
7136	}
7137}
7138#endif
7139
7140/**
7141 * e1000_io_error_detected - called when PCI error is detected
7142 * @pdev: Pointer to PCI device
7143 * @state: The current pci connection state
7144 *
7145 * This function is called after a PCI bus error affecting
7146 * this device has been detected.
7147 */
7148static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7149						pci_channel_state_t state)
7150{
7151	e1000e_pm_freeze(&pdev->dev);
 
 
 
7152
7153	if (state == pci_channel_io_perm_failure)
7154		return PCI_ERS_RESULT_DISCONNECT;
7155
 
 
7156	pci_disable_device(pdev);
7157
7158	/* Request a slot reset. */
7159	return PCI_ERS_RESULT_NEED_RESET;
7160}
7161
7162/**
7163 * e1000_io_slot_reset - called after the pci bus has been reset.
7164 * @pdev: Pointer to PCI device
7165 *
7166 * Restart the card from scratch, as if from a cold-boot. Implementation
7167 * resembles the first-half of the e1000e_pm_resume routine.
7168 */
7169static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7170{
7171	struct net_device *netdev = pci_get_drvdata(pdev);
7172	struct e1000_adapter *adapter = netdev_priv(netdev);
7173	struct e1000_hw *hw = &adapter->hw;
7174	u16 aspm_disable_flag = 0;
7175	int err;
7176	pci_ers_result_t result;
7177
7178	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7179		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7180	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7181		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7182	if (aspm_disable_flag)
7183		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7184
7185	err = pci_enable_device_mem(pdev);
7186	if (err) {
7187		dev_err(&pdev->dev,
7188			"Cannot re-enable PCI device after reset.\n");
7189		result = PCI_ERS_RESULT_DISCONNECT;
7190	} else {
 
7191		pdev->state_saved = true;
7192		pci_restore_state(pdev);
7193		pci_set_master(pdev);
7194
7195		pci_enable_wake(pdev, PCI_D3hot, 0);
7196		pci_enable_wake(pdev, PCI_D3cold, 0);
7197
7198		e1000e_reset(adapter);
7199		ew32(WUS, ~0);
7200		result = PCI_ERS_RESULT_RECOVERED;
7201	}
7202
 
 
7203	return result;
7204}
7205
7206/**
7207 * e1000_io_resume - called when traffic can start flowing again.
7208 * @pdev: Pointer to PCI device
7209 *
7210 * This callback is called when the error recovery driver tells us that
7211 * its OK to resume normal operation. Implementation resembles the
7212 * second-half of the e1000e_pm_resume routine.
7213 */
7214static void e1000_io_resume(struct pci_dev *pdev)
7215{
7216	struct net_device *netdev = pci_get_drvdata(pdev);
7217	struct e1000_adapter *adapter = netdev_priv(netdev);
7218
7219	e1000_init_manageability_pt(adapter);
7220
7221	e1000e_pm_thaw(&pdev->dev);
 
 
 
 
 
 
 
 
7222
7223	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
7224	 * is up.  For all other cases, let the f/w know that the h/w is now
7225	 * under the control of the driver.
7226	 */
7227	if (!(adapter->flags & FLAG_HAS_AMT))
7228		e1000e_get_hw_control(adapter);
 
7229}
7230
7231static void e1000_print_device_info(struct e1000_adapter *adapter)
7232{
7233	struct e1000_hw *hw = &adapter->hw;
7234	struct net_device *netdev = adapter->netdev;
7235	u32 ret_val;
7236	u8 pba_str[E1000_PBANUM_LENGTH];
7237
7238	/* print bus type/speed/width info */
7239	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7240	       /* bus width */
7241	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7242		"Width x1"),
7243	       /* MAC address */
7244	       netdev->dev_addr);
7245	e_info("Intel(R) PRO/%s Network Connection\n",
7246	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7247	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7248						E1000_PBANUM_LENGTH);
7249	if (ret_val)
7250		strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7251	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7252	       hw->mac.type, hw->phy.type, pba_str);
7253}
7254
7255static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7256{
7257	struct e1000_hw *hw = &adapter->hw;
7258	int ret_val;
7259	u16 buf = 0;
7260
7261	if (hw->mac.type != e1000_82573)
7262		return;
7263
7264	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7265	le16_to_cpus(&buf);
7266	if (!ret_val && (!(buf & BIT(0)))) {
7267		/* Deep Smart Power Down (DSPD) */
7268		dev_warn(&adapter->pdev->dev,
7269			 "Warning: detected DSPD enabled in EEPROM\n");
7270	}
7271}
7272
7273static netdev_features_t e1000_fix_features(struct net_device *netdev,
7274					    netdev_features_t features)
7275{
7276	struct e1000_adapter *adapter = netdev_priv(netdev);
7277	struct e1000_hw *hw = &adapter->hw;
7278
7279	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7280	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7281		features &= ~NETIF_F_RXFCS;
7282
7283	/* Since there is no support for separate Rx/Tx vlan accel
7284	 * enable/disable make sure Tx flag is always in same state as Rx.
7285	 */
7286	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7287		features |= NETIF_F_HW_VLAN_CTAG_TX;
7288	else
7289		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7290
7291	return features;
7292}
7293
7294static int e1000_set_features(struct net_device *netdev,
7295			      netdev_features_t features)
7296{
7297	struct e1000_adapter *adapter = netdev_priv(netdev);
7298	netdev_features_t changed = features ^ netdev->features;
7299
7300	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7301		adapter->flags |= FLAG_TSO_FORCE;
7302
7303	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7304			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7305			 NETIF_F_RXALL)))
7306		return 0;
7307
7308	if (changed & NETIF_F_RXFCS) {
7309		if (features & NETIF_F_RXFCS) {
7310			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7311		} else {
7312			/* We need to take it back to defaults, which might mean
7313			 * stripping is still disabled at the adapter level.
7314			 */
7315			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7316				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7317			else
7318				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7319		}
7320	}
7321
7322	netdev->features = features;
7323
7324	if (netif_running(netdev))
7325		e1000e_reinit_locked(adapter);
7326	else
7327		e1000e_reset(adapter);
7328
7329	return 1;
7330}
7331
7332static const struct net_device_ops e1000e_netdev_ops = {
7333	.ndo_open		= e1000e_open,
7334	.ndo_stop		= e1000e_close,
7335	.ndo_start_xmit		= e1000_xmit_frame,
7336	.ndo_get_stats64	= e1000e_get_stats64,
7337	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7338	.ndo_set_mac_address	= e1000_set_mac,
7339	.ndo_change_mtu		= e1000_change_mtu,
7340	.ndo_eth_ioctl		= e1000_ioctl,
7341	.ndo_tx_timeout		= e1000_tx_timeout,
7342	.ndo_validate_addr	= eth_validate_addr,
7343
7344	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7345	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7346#ifdef CONFIG_NET_POLL_CONTROLLER
7347	.ndo_poll_controller	= e1000_netpoll,
7348#endif
7349	.ndo_set_features = e1000_set_features,
7350	.ndo_fix_features = e1000_fix_features,
7351	.ndo_features_check	= passthru_features_check,
7352};
7353
7354/**
7355 * e1000_probe - Device Initialization Routine
7356 * @pdev: PCI device information struct
7357 * @ent: entry in e1000_pci_tbl
7358 *
7359 * Returns 0 on success, negative on failure
7360 *
7361 * e1000_probe initializes an adapter identified by a pci_dev structure.
7362 * The OS initialization, configuring of the adapter private structure,
7363 * and a hardware reset occur.
7364 **/
7365static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 
7366{
7367	struct net_device *netdev;
7368	struct e1000_adapter *adapter;
7369	struct e1000_hw *hw;
7370	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7371	resource_size_t mmio_start, mmio_len;
7372	resource_size_t flash_start, flash_len;
7373	static int cards_found;
7374	u16 aspm_disable_flag = 0;
 
7375	u16 eeprom_data = 0;
7376	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7377	int bars, i, err;
7378	s32 ret_val = 0;
7379
7380	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7381		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7382	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7383		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7384	if (aspm_disable_flag)
7385		e1000e_disable_aspm(pdev, aspm_disable_flag);
7386
7387	err = pci_enable_device_mem(pdev);
7388	if (err)
7389		return err;
7390
7391	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7392	if (err) {
7393		dev_err(&pdev->dev,
7394			"No usable DMA configuration, aborting\n");
7395		goto err_dma;
 
 
 
 
 
 
 
 
 
 
 
7396	}
7397
7398	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7399	err = pci_request_selected_regions_exclusive(pdev, bars,
7400						     e1000e_driver_name);
7401	if (err)
7402		goto err_pci_reg;
7403
 
 
 
7404	pci_set_master(pdev);
7405	/* PCI config space info */
7406	err = pci_save_state(pdev);
7407	if (err)
7408		goto err_alloc_etherdev;
7409
7410	err = -ENOMEM;
7411	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7412	if (!netdev)
7413		goto err_alloc_etherdev;
7414
7415	SET_NETDEV_DEV(netdev, &pdev->dev);
7416
7417	netdev->irq = pdev->irq;
7418
7419	pci_set_drvdata(pdev, netdev);
7420	adapter = netdev_priv(netdev);
7421	hw = &adapter->hw;
7422	adapter->netdev = netdev;
7423	adapter->pdev = pdev;
7424	adapter->ei = ei;
7425	adapter->pba = ei->pba;
7426	adapter->flags = ei->flags;
7427	adapter->flags2 = ei->flags2;
7428	adapter->hw.adapter = adapter;
7429	adapter->hw.mac.type = ei->mac;
7430	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7431	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7432
7433	mmio_start = pci_resource_start(pdev, 0);
7434	mmio_len = pci_resource_len(pdev, 0);
7435
7436	err = -EIO;
7437	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7438	if (!adapter->hw.hw_addr)
7439		goto err_ioremap;
7440
7441	if ((adapter->flags & FLAG_HAS_FLASH) &&
7442	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7443	    (hw->mac.type < e1000_pch_spt)) {
7444		flash_start = pci_resource_start(pdev, 1);
7445		flash_len = pci_resource_len(pdev, 1);
7446		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7447		if (!adapter->hw.flash_address)
7448			goto err_flashmap;
7449	}
7450
7451	/* Set default EEE advertisement */
7452	if (adapter->flags2 & FLAG2_HAS_EEE)
7453		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7454
7455	/* construct the net_device struct */
7456	netdev->netdev_ops = &e1000e_netdev_ops;
7457	e1000e_set_ethtool_ops(netdev);
7458	netdev->watchdog_timeo = 5 * HZ;
7459	netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7460	strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7461
7462	netdev->mem_start = mmio_start;
7463	netdev->mem_end = mmio_start + mmio_len;
7464
7465	adapter->bd_number = cards_found++;
7466
7467	e1000e_check_options(adapter);
7468
7469	/* setup adapter struct */
7470	err = e1000_sw_init(adapter);
7471	if (err)
7472		goto err_sw_init;
7473
7474	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7475	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7476	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7477
7478	err = ei->get_variants(adapter);
7479	if (err)
7480		goto err_hw_init;
7481
7482	if ((adapter->flags & FLAG_IS_ICH) &&
7483	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7484	    (hw->mac.type < e1000_pch_spt))
7485		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7486
7487	hw->mac.ops.get_bus_info(&adapter->hw);
7488
7489	adapter->hw.phy.autoneg_wait_to_complete = 0;
7490
7491	/* Copper options */
7492	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7493		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7494		adapter->hw.phy.disable_polarity_correction = 0;
7495		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7496	}
7497
7498	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7499		dev_info(&pdev->dev,
7500			 "PHY reset is blocked due to SOL/IDER session.\n");
7501
7502	/* Set initial default active device features */
7503	netdev->features = (NETIF_F_SG |
7504			    NETIF_F_HW_VLAN_CTAG_RX |
7505			    NETIF_F_HW_VLAN_CTAG_TX |
7506			    NETIF_F_TSO |
7507			    NETIF_F_TSO6 |
7508			    NETIF_F_RXHASH |
7509			    NETIF_F_RXCSUM |
7510			    NETIF_F_HW_CSUM);
7511
7512	/* disable TSO for pcie and 10/100 speeds to avoid
7513	 * some hardware issues and for i219 to fix transfer
7514	 * speed being capped at 60%
7515	 */
7516	if (!(adapter->flags & FLAG_TSO_FORCE)) {
7517		switch (adapter->link_speed) {
7518		case SPEED_10:
7519		case SPEED_100:
7520			e_info("10/100 speed: disabling TSO\n");
7521			netdev->features &= ~NETIF_F_TSO;
7522			netdev->features &= ~NETIF_F_TSO6;
7523			break;
7524		case SPEED_1000:
7525			netdev->features |= NETIF_F_TSO;
7526			netdev->features |= NETIF_F_TSO6;
7527			break;
7528		default:
7529			/* oops */
7530			break;
7531		}
7532		if (hw->mac.type == e1000_pch_spt) {
7533			netdev->features &= ~NETIF_F_TSO;
7534			netdev->features &= ~NETIF_F_TSO6;
7535		}
7536	}
7537
7538	/* Set user-changeable features (subset of all device features) */
7539	netdev->hw_features = netdev->features;
7540	netdev->hw_features |= NETIF_F_RXFCS;
7541	netdev->priv_flags |= IFF_SUPP_NOFCS;
7542	netdev->hw_features |= NETIF_F_RXALL;
7543
7544	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7545		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7546
7547	netdev->vlan_features |= (NETIF_F_SG |
7548				  NETIF_F_TSO |
7549				  NETIF_F_TSO6 |
7550				  NETIF_F_HW_CSUM);
7551
7552	netdev->priv_flags |= IFF_UNICAST_FLT;
7553
7554	netdev->features |= NETIF_F_HIGHDMA;
7555	netdev->vlan_features |= NETIF_F_HIGHDMA;
7556
7557	/* MTU range: 68 - max_hw_frame_size */
7558	netdev->min_mtu = ETH_MIN_MTU;
7559	netdev->max_mtu = adapter->max_hw_frame_size -
7560			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7561
7562	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7563		adapter->flags |= FLAG_MNG_PT_ENABLED;
7564
7565	/* before reading the NVM, reset the controller to
 
7566	 * put the device in a known good starting state
7567	 */
7568	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7569
7570	/* systems with ASPM and others may see the checksum fail on the first
 
7571	 * attempt. Let's give it a few tries
7572	 */
7573	for (i = 0;; i++) {
7574		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7575			break;
7576		if (i == 2) {
7577			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7578			err = -EIO;
7579			goto err_eeprom;
7580		}
7581	}
7582
7583	e1000_eeprom_checks(adapter);
7584
7585	/* copy the MAC address */
7586	if (e1000e_read_mac_addr(&adapter->hw))
7587		dev_err(&pdev->dev,
7588			"NVM Read Error while reading MAC address\n");
7589
7590	eth_hw_addr_set(netdev, adapter->hw.mac.addr);
 
7591
7592	if (!is_valid_ether_addr(netdev->dev_addr)) {
7593		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7594			netdev->dev_addr);
7595		err = -EIO;
7596		goto err_eeprom;
7597	}
7598
7599	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7600	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
 
 
 
 
 
7601
7602	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7603	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7604	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7605	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7606	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7607
7608	/* Initialize link parameters. User can change them with ethtool */
7609	adapter->hw.mac.autoneg = 1;
7610	adapter->fc_autoneg = true;
7611	adapter->hw.fc.requested_mode = e1000_fc_default;
7612	adapter->hw.fc.current_mode = e1000_fc_default;
7613	adapter->hw.phy.autoneg_advertised = 0x2f;
7614
7615	/* Initial Wake on LAN setting - If APM wake is enabled in
 
 
 
 
 
7616	 * the EEPROM, enable the ACPI Magic Packet filter
7617	 */
7618	if (adapter->flags & FLAG_APME_IN_WUC) {
7619		/* APME bit in EEPROM is mapped to WUC.APME */
7620		eeprom_data = er32(WUC);
7621		eeprom_apme_mask = E1000_WUC_APME;
7622		if ((hw->mac.type > e1000_ich10lan) &&
7623		    (eeprom_data & E1000_WUC_PHY_WAKE))
7624			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7625	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7626		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7627		    (adapter->hw.bus.func == 1))
7628			ret_val = e1000_read_nvm(&adapter->hw,
7629					      NVM_INIT_CONTROL3_PORT_B,
7630					      1, &eeprom_data);
7631		else
7632			ret_val = e1000_read_nvm(&adapter->hw,
7633					      NVM_INIT_CONTROL3_PORT_A,
7634					      1, &eeprom_data);
7635	}
7636
7637	/* fetch WoL from EEPROM */
7638	if (ret_val)
7639		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7640	else if (eeprom_data & eeprom_apme_mask)
7641		adapter->eeprom_wol |= E1000_WUFC_MAG;
7642
7643	/* now that we have the eeprom settings, apply the special cases
 
7644	 * where the eeprom may be wrong or the board simply won't support
7645	 * wake on lan on a particular port
7646	 */
7647	if (!(adapter->flags & FLAG_HAS_WOL))
7648		adapter->eeprom_wol = 0;
7649
7650	/* initialize the wol settings based on the eeprom settings */
7651	adapter->wol = adapter->eeprom_wol;
7652
7653	/* make sure adapter isn't asleep if manageability is enabled */
7654	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7655	    (hw->mac.ops.check_mng_mode(hw)))
7656		device_wakeup_enable(&pdev->dev);
7657
7658	/* save off EEPROM version number */
7659	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7660
7661	if (ret_val) {
7662		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7663		adapter->eeprom_vers = 0;
7664	}
7665
7666	/* init PTP hardware clock */
7667	e1000e_ptp_init(adapter);
7668
7669	/* reset the hardware with the new settings */
7670	e1000e_reset(adapter);
7671
7672	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
7673	 * is up.  For all other cases, let the f/w know that the h/w is now
7674	 * under the control of the driver.
7675	 */
7676	if (!(adapter->flags & FLAG_HAS_AMT))
7677		e1000e_get_hw_control(adapter);
7678
7679	if (hw->mac.type >= e1000_pch_cnp)
7680		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7681
7682	strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7683	err = register_netdev(netdev);
7684	if (err)
7685		goto err_register;
7686
7687	/* carrier off reporting is important to ethtool even BEFORE open */
7688	netif_carrier_off(netdev);
7689
7690	e1000_print_device_info(adapter);
7691
7692	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7693
7694	if (pci_dev_run_wake(pdev))
7695		pm_runtime_put_noidle(&pdev->dev);
7696
7697	return 0;
7698
7699err_register:
7700	if (!(adapter->flags & FLAG_HAS_AMT))
7701		e1000e_release_hw_control(adapter);
7702err_eeprom:
7703	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7704		e1000_phy_hw_reset(&adapter->hw);
7705err_hw_init:
7706	kfree(adapter->tx_ring);
7707	kfree(adapter->rx_ring);
7708err_sw_init:
7709	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7710		iounmap(adapter->hw.flash_address);
7711	e1000e_reset_interrupt_capability(adapter);
7712err_flashmap:
7713	iounmap(adapter->hw.hw_addr);
7714err_ioremap:
7715	free_netdev(netdev);
7716err_alloc_etherdev:
7717	pci_release_mem_regions(pdev);
 
7718err_pci_reg:
7719err_dma:
7720	pci_disable_device(pdev);
7721	return err;
7722}
7723
7724/**
7725 * e1000_remove - Device Removal Routine
7726 * @pdev: PCI device information struct
7727 *
7728 * e1000_remove is called by the PCI subsystem to alert the driver
7729 * that it should release a PCI device.  This could be caused by a
7730 * Hot-Plug event, or because the driver is going to be removed from
7731 * memory.
7732 **/
7733static void e1000_remove(struct pci_dev *pdev)
7734{
7735	struct net_device *netdev = pci_get_drvdata(pdev);
7736	struct e1000_adapter *adapter = netdev_priv(netdev);
 
7737
7738	e1000e_ptp_remove(adapter);
7739
7740	/* The timers may be rescheduled, so explicitly disable them
7741	 * from being rescheduled.
7742	 */
7743	set_bit(__E1000_DOWN, &adapter->state);
 
7744	del_timer_sync(&adapter->watchdog_timer);
7745	del_timer_sync(&adapter->phy_info_timer);
7746
7747	cancel_work_sync(&adapter->reset_task);
7748	cancel_work_sync(&adapter->watchdog_task);
7749	cancel_work_sync(&adapter->downshift_task);
7750	cancel_work_sync(&adapter->update_phy_task);
7751	cancel_work_sync(&adapter->print_hang_task);
7752
7753	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7754		cancel_work_sync(&adapter->tx_hwtstamp_work);
7755		if (adapter->tx_hwtstamp_skb) {
7756			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7757			adapter->tx_hwtstamp_skb = NULL;
7758		}
7759	}
7760
 
 
 
7761	unregister_netdev(netdev);
7762
7763	if (pci_dev_run_wake(pdev))
7764		pm_runtime_get_noresume(&pdev->dev);
7765
7766	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 
7767	 * would have already happened in close and is redundant.
7768	 */
7769	e1000e_release_hw_control(adapter);
7770
7771	e1000e_reset_interrupt_capability(adapter);
7772	kfree(adapter->tx_ring);
7773	kfree(adapter->rx_ring);
7774
7775	iounmap(adapter->hw.hw_addr);
7776	if ((adapter->hw.flash_address) &&
7777	    (adapter->hw.mac.type < e1000_pch_spt))
7778		iounmap(adapter->hw.flash_address);
7779	pci_release_mem_regions(pdev);
 
7780
7781	free_netdev(netdev);
7782
 
 
 
7783	pci_disable_device(pdev);
7784}
7785
7786/* PCI Error Recovery (ERS) */
7787static const struct pci_error_handlers e1000_err_handler = {
7788	.error_detected = e1000_io_error_detected,
7789	.slot_reset = e1000_io_slot_reset,
7790	.resume = e1000_io_resume,
7791};
7792
7793static const struct pci_device_id e1000_pci_tbl[] = {
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7796	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7798	  board_82571 },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7800	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7804
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7808	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7809
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7811	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7813
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7815	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7816	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7817
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7819	  board_80003es2lan },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7821	  board_80003es2lan },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7823	  board_80003es2lan },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7825	  board_80003es2lan },
7826
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7835
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7845
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7849
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7853
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7858
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7861
7862	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7863	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7864	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7865	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7866	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7867	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7868	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7869	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7870	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7871	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7872	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7873	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7874	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7875	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7876	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7877	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7878	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7879	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7880	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7881	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7882	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7883	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7884	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7885	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7886	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7887	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7888	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7889	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7890	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7891	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7892	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7893	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7894	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7895	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7896	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7897	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7898	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7899	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7900	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7901	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7902	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7903	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7904	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7905	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7906	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7907	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM19), board_pch_adp },
7908	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V19), board_pch_adp },
7909	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7910	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7911	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7912	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7913	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7914	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7915	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7916	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7917	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7918	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7919	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7920	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7921	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7922	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7923	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_LM29), board_pch_mtp },
7924	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_NVL_I219_V29), board_pch_mtp },
7925
7926	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7927};
7928MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7929
7930static const struct dev_pm_ops e1000e_pm_ops = {
7931	.prepare	= e1000e_pm_prepare,
7932	.suspend	= e1000e_pm_suspend,
7933	.resume		= e1000e_pm_resume,
7934	.freeze		= e1000e_pm_freeze,
7935	.thaw		= e1000e_pm_thaw,
7936	.poweroff	= e1000e_pm_suspend,
7937	.restore	= e1000e_pm_resume,
7938	RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7939		       e1000e_pm_runtime_idle)
7940};
 
7941
7942/* PCI Device API Driver */
7943static struct pci_driver e1000_driver = {
7944	.name     = e1000e_driver_name,
7945	.id_table = e1000_pci_tbl,
7946	.probe    = e1000_probe,
7947	.remove   = e1000_remove,
7948	.driver.pm = pm_ptr(&e1000e_pm_ops),
 
 
 
 
7949	.shutdown = e1000_shutdown,
7950	.err_handler = &e1000_err_handler
7951};
7952
7953/**
7954 * e1000_init_module - Driver Registration Routine
7955 *
7956 * e1000_init_module is the first routine called when the driver is
7957 * loaded. All it does is register with the PCI subsystem.
7958 **/
7959static int __init e1000_init_module(void)
7960{
7961	pr_info("Intel(R) PRO/1000 Network Driver\n");
7962	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
 
 
 
7963
7964	return pci_register_driver(&e1000_driver);
7965}
7966module_init(e1000_init_module);
7967
7968/**
7969 * e1000_exit_module - Driver Exit Cleanup Routine
7970 *
7971 * e1000_exit_module is called just before the driver is removed
7972 * from memory.
7973 **/
7974static void __exit e1000_exit_module(void)
7975{
7976	pci_unregister_driver(&e1000_driver);
7977}
7978module_exit(e1000_exit_module);
7979
 
 
7980MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7981MODULE_LICENSE("GPL v2");
 
7982
7983/* netdev.c */
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/init.h>
  34#include <linux/pci.h>
  35#include <linux/vmalloc.h>
  36#include <linux/pagemap.h>
  37#include <linux/delay.h>
  38#include <linux/netdevice.h>
  39#include <linux/interrupt.h>
  40#include <linux/tcp.h>
  41#include <linux/ipv6.h>
  42#include <linux/slab.h>
  43#include <net/checksum.h>
  44#include <net/ip6_checksum.h>
  45#include <linux/mii.h>
  46#include <linux/ethtool.h>
  47#include <linux/if_vlan.h>
  48#include <linux/cpu.h>
  49#include <linux/smp.h>
  50#include <linux/pm_qos.h>
  51#include <linux/pm_runtime.h>
  52#include <linux/aer.h>
  53#include <linux/prefetch.h>
 
  54
  55#include "e1000.h"
 
 
  56
  57#define DRV_EXTRAVERSION "-k"
  58
  59#define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
  60char e1000e_driver_name[] = "e1000e";
  61const char e1000e_driver_version[] = DRV_VERSION;
  62
  63#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  64static int debug = -1;
  65module_param(debug, int, 0);
  66MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67
  68static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
  69
  70static const struct e1000_info *e1000_info_tbl[] = {
  71	[board_82571]		= &e1000_82571_info,
  72	[board_82572]		= &e1000_82572_info,
  73	[board_82573]		= &e1000_82573_info,
  74	[board_82574]		= &e1000_82574_info,
  75	[board_82583]		= &e1000_82583_info,
  76	[board_80003es2lan]	= &e1000_es2_info,
  77	[board_ich8lan]		= &e1000_ich8_info,
  78	[board_ich9lan]		= &e1000_ich9_info,
  79	[board_ich10lan]	= &e1000_ich10_info,
  80	[board_pchlan]		= &e1000_pch_info,
  81	[board_pch2lan]		= &e1000_pch2_info,
  82	[board_pch_lpt]		= &e1000_pch_lpt_info,
 
 
 
 
 
  83};
  84
  85struct e1000_reg_info {
  86	u32 ofs;
  87	char *name;
  88};
  89
  90#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
  91#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
  92#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
  93#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
  94#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
  95
  96#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
  97#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
  98#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
  99#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
 100#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
 101
 102static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 103
 104	/* General Registers */
 105	{E1000_CTRL, "CTRL"},
 106	{E1000_STATUS, "STATUS"},
 107	{E1000_CTRL_EXT, "CTRL_EXT"},
 108
 109	/* Interrupt Registers */
 110	{E1000_ICR, "ICR"},
 111
 112	/* Rx Registers */
 113	{E1000_RCTL, "RCTL"},
 114	{E1000_RDLEN(0), "RDLEN"},
 115	{E1000_RDH(0), "RDH"},
 116	{E1000_RDT(0), "RDT"},
 117	{E1000_RDTR, "RDTR"},
 118	{E1000_RXDCTL(0), "RXDCTL"},
 119	{E1000_ERT, "ERT"},
 120	{E1000_RDBAL(0), "RDBAL"},
 121	{E1000_RDBAH(0), "RDBAH"},
 122	{E1000_RDFH, "RDFH"},
 123	{E1000_RDFT, "RDFT"},
 124	{E1000_RDFHS, "RDFHS"},
 125	{E1000_RDFTS, "RDFTS"},
 126	{E1000_RDFPC, "RDFPC"},
 127
 128	/* Tx Registers */
 129	{E1000_TCTL, "TCTL"},
 130	{E1000_TDBAL(0), "TDBAL"},
 131	{E1000_TDBAH(0), "TDBAH"},
 132	{E1000_TDLEN(0), "TDLEN"},
 133	{E1000_TDH(0), "TDH"},
 134	{E1000_TDT(0), "TDT"},
 135	{E1000_TIDV, "TIDV"},
 136	{E1000_TXDCTL(0), "TXDCTL"},
 137	{E1000_TADV, "TADV"},
 138	{E1000_TARC(0), "TARC"},
 139	{E1000_TDFH, "TDFH"},
 140	{E1000_TDFT, "TDFT"},
 141	{E1000_TDFHS, "TDFHS"},
 142	{E1000_TDFTS, "TDFTS"},
 143	{E1000_TDFPC, "TDFPC"},
 144
 145	/* List Terminator */
 146	{0, NULL}
 147};
 148
 149/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150 * e1000_regdump - register printout routine
 151 */
 
 
 152static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 153{
 154	int n = 0;
 155	char rname[16];
 156	u32 regs[8];
 157
 158	switch (reginfo->ofs) {
 159	case E1000_RXDCTL(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_RXDCTL(n));
 162		break;
 163	case E1000_TXDCTL(0):
 164		for (n = 0; n < 2; n++)
 165			regs[n] = __er32(hw, E1000_TXDCTL(n));
 166		break;
 167	case E1000_TARC(0):
 168		for (n = 0; n < 2; n++)
 169			regs[n] = __er32(hw, E1000_TARC(n));
 170		break;
 171	default:
 172		pr_info("%-15s %08x\n",
 173			reginfo->name, __er32(hw, reginfo->ofs));
 174		return;
 175	}
 176
 177	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 178	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 179}
 180
 181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 183 */
 
 184static void e1000e_dump(struct e1000_adapter *adapter)
 185{
 186	struct net_device *netdev = adapter->netdev;
 187	struct e1000_hw *hw = &adapter->hw;
 188	struct e1000_reg_info *reginfo;
 189	struct e1000_ring *tx_ring = adapter->tx_ring;
 190	struct e1000_tx_desc *tx_desc;
 191	struct my_u0 {
 192		__le64 a;
 193		__le64 b;
 194	} *u0;
 195	struct e1000_buffer *buffer_info;
 196	struct e1000_ring *rx_ring = adapter->rx_ring;
 197	union e1000_rx_desc_packet_split *rx_desc_ps;
 198	union e1000_rx_desc_extended *rx_desc;
 199	struct my_u1 {
 200		__le64 a;
 201		__le64 b;
 202		__le64 c;
 203		__le64 d;
 204	} *u1;
 205	u32 staterr;
 206	int i = 0;
 207
 208	if (!netif_msg_hw(adapter))
 209		return;
 210
 211	/* Print netdevice Info */
 212	if (netdev) {
 213		dev_info(&adapter->pdev->dev, "Net device Info\n");
 214		pr_info("Device Name     state            trans_start      last_rx\n");
 215		pr_info("%-15s %016lX %016lX %016lX\n",
 216			netdev->name, netdev->state, netdev->trans_start,
 217			netdev->last_rx);
 218	}
 219
 220	/* Print Registers */
 221	dev_info(&adapter->pdev->dev, "Register Dump\n");
 222	pr_info(" Register Name   Value\n");
 223	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 224	     reginfo->name; reginfo++) {
 225		e1000_regdump(hw, reginfo);
 226	}
 227
 228	/* Print Tx Ring Summary */
 229	if (!netdev || !netif_running(netdev))
 230		return;
 231
 232	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 233	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 234	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 235	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 236		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 237		(unsigned long long)buffer_info->dma,
 238		buffer_info->length,
 239		buffer_info->next_to_watch,
 240		(unsigned long long)buffer_info->time_stamp);
 241
 242	/* Print Tx Ring */
 243	if (!netif_msg_tx_done(adapter))
 244		goto rx_ring_summary;
 245
 246	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 247
 248	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 249	 *
 250	 * Legacy Transmit Descriptor
 251	 *   +--------------------------------------------------------------+
 252	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 253	 *   +--------------------------------------------------------------+
 254	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 255	 *   +--------------------------------------------------------------+
 256	 *   63       48 47        36 35    32 31     24 23    16 15        0
 257	 *
 258	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 259	 *   63      48 47    40 39       32 31             16 15    8 7      0
 260	 *   +----------------------------------------------------------------+
 261	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 262	 *   +----------------------------------------------------------------+
 263	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 264	 *   +----------------------------------------------------------------+
 265	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 266	 *
 267	 * Extended Data Descriptor (DTYP=0x1)
 268	 *   +----------------------------------------------------------------+
 269	 * 0 |                     Buffer Address [63:0]                      |
 270	 *   +----------------------------------------------------------------+
 271	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 272	 *   +----------------------------------------------------------------+
 273	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 274	 */
 275	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 276	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 277	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 278	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 279		const char *next_desc;
 280		tx_desc = E1000_TX_DESC(*tx_ring, i);
 281		buffer_info = &tx_ring->buffer_info[i];
 282		u0 = (struct my_u0 *)tx_desc;
 283		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 284			next_desc = " NTC/U";
 285		else if (i == tx_ring->next_to_use)
 286			next_desc = " NTU";
 287		else if (i == tx_ring->next_to_clean)
 288			next_desc = " NTC";
 289		else
 290			next_desc = "";
 291		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 292			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 293			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 294			i,
 295			(unsigned long long)le64_to_cpu(u0->a),
 296			(unsigned long long)le64_to_cpu(u0->b),
 297			(unsigned long long)buffer_info->dma,
 298			buffer_info->length, buffer_info->next_to_watch,
 299			(unsigned long long)buffer_info->time_stamp,
 300			buffer_info->skb, next_desc);
 301
 302		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
 303			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 304				       16, 1, phys_to_virt(buffer_info->dma),
 305				       buffer_info->length, true);
 306	}
 307
 308	/* Print Rx Ring Summary */
 309rx_ring_summary:
 310	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 311	pr_info("Queue [NTU] [NTC]\n");
 312	pr_info(" %5d %5X %5X\n",
 313		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 314
 315	/* Print Rx Ring */
 316	if (!netif_msg_rx_status(adapter))
 317		return;
 318
 319	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 320	switch (adapter->rx_ps_pages) {
 321	case 1:
 322	case 2:
 323	case 3:
 324		/* [Extended] Packet Split Receive Descriptor Format
 325		 *
 326		 *    +-----------------------------------------------------+
 327		 *  0 |                Buffer Address 0 [63:0]              |
 328		 *    +-----------------------------------------------------+
 329		 *  8 |                Buffer Address 1 [63:0]              |
 330		 *    +-----------------------------------------------------+
 331		 * 16 |                Buffer Address 2 [63:0]              |
 332		 *    +-----------------------------------------------------+
 333		 * 24 |                Buffer Address 3 [63:0]              |
 334		 *    +-----------------------------------------------------+
 335		 */
 336		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 337		/* [Extended] Receive Descriptor (Write-Back) Format
 338		 *
 339		 *   63       48 47    32 31     13 12    8 7    4 3        0
 340		 *   +------------------------------------------------------+
 341		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 342		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 343		 *   +------------------------------------------------------+
 344		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 345		 *   +------------------------------------------------------+
 346		 *   63       48 47    32 31            20 19               0
 347		 */
 348		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 349		for (i = 0; i < rx_ring->count; i++) {
 350			const char *next_desc;
 351			buffer_info = &rx_ring->buffer_info[i];
 352			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 353			u1 = (struct my_u1 *)rx_desc_ps;
 354			staterr =
 355			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 356
 357			if (i == rx_ring->next_to_use)
 358				next_desc = " NTU";
 359			else if (i == rx_ring->next_to_clean)
 360				next_desc = " NTC";
 361			else
 362				next_desc = "";
 363
 364			if (staterr & E1000_RXD_STAT_DD) {
 365				/* Descriptor Done */
 366				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 367					"RWB", i,
 368					(unsigned long long)le64_to_cpu(u1->a),
 369					(unsigned long long)le64_to_cpu(u1->b),
 370					(unsigned long long)le64_to_cpu(u1->c),
 371					(unsigned long long)le64_to_cpu(u1->d),
 372					buffer_info->skb, next_desc);
 373			} else {
 374				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 375					"R  ", i,
 376					(unsigned long long)le64_to_cpu(u1->a),
 377					(unsigned long long)le64_to_cpu(u1->b),
 378					(unsigned long long)le64_to_cpu(u1->c),
 379					(unsigned long long)le64_to_cpu(u1->d),
 380					(unsigned long long)buffer_info->dma,
 381					buffer_info->skb, next_desc);
 382
 383				if (netif_msg_pktdata(adapter))
 384					print_hex_dump(KERN_INFO, "",
 385						DUMP_PREFIX_ADDRESS, 16, 1,
 386						phys_to_virt(buffer_info->dma),
 387						adapter->rx_ps_bsize0, true);
 388			}
 389		}
 390		break;
 391	default:
 392	case 0:
 393		/* Extended Receive Descriptor (Read) Format
 394		 *
 395		 *   +-----------------------------------------------------+
 396		 * 0 |                Buffer Address [63:0]                |
 397		 *   +-----------------------------------------------------+
 398		 * 8 |                      Reserved                       |
 399		 *   +-----------------------------------------------------+
 400		 */
 401		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 402		/* Extended Receive Descriptor (Write-Back) Format
 403		 *
 404		 *   63       48 47    32 31    24 23            4 3        0
 405		 *   +------------------------------------------------------+
 406		 *   |     RSS Hash      |        |               |         |
 407		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 408		 *   | Packet   | IP     |        |               |  Type   |
 409		 *   | Checksum | Ident  |        |               |         |
 410		 *   +------------------------------------------------------+
 411		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 412		 *   +------------------------------------------------------+
 413		 *   63       48 47    32 31            20 19               0
 414		 */
 415		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 416
 417		for (i = 0; i < rx_ring->count; i++) {
 418			const char *next_desc;
 419
 420			buffer_info = &rx_ring->buffer_info[i];
 421			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 422			u1 = (struct my_u1 *)rx_desc;
 423			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 424
 425			if (i == rx_ring->next_to_use)
 426				next_desc = " NTU";
 427			else if (i == rx_ring->next_to_clean)
 428				next_desc = " NTC";
 429			else
 430				next_desc = "";
 431
 432			if (staterr & E1000_RXD_STAT_DD) {
 433				/* Descriptor Done */
 434				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 435					"RWB", i,
 436					(unsigned long long)le64_to_cpu(u1->a),
 437					(unsigned long long)le64_to_cpu(u1->b),
 438					buffer_info->skb, next_desc);
 439			} else {
 440				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 441					"R  ", i,
 442					(unsigned long long)le64_to_cpu(u1->a),
 443					(unsigned long long)le64_to_cpu(u1->b),
 444					(unsigned long long)buffer_info->dma,
 445					buffer_info->skb, next_desc);
 446
 447				if (netif_msg_pktdata(adapter))
 
 448					print_hex_dump(KERN_INFO, "",
 449						       DUMP_PREFIX_ADDRESS, 16,
 450						       1,
 451						       phys_to_virt
 452						       (buffer_info->dma),
 453						       adapter->rx_buffer_len,
 454						       true);
 455			}
 456		}
 457	}
 458}
 459
 460/**
 461 * e1000_desc_unused - calculate if we have unused descriptors
 
 462 **/
 463static int e1000_desc_unused(struct e1000_ring *ring)
 464{
 465	if (ring->next_to_clean > ring->next_to_use)
 466		return ring->next_to_clean - ring->next_to_use - 1;
 467
 468	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 469}
 470
 471/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472 * e1000_receive_skb - helper function to handle Rx indications
 473 * @adapter: board private structure
 474 * @status: descriptor status field as written by hardware
 
 475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 476 * @skb: pointer to sk_buff to be indicated to stack
 477 **/
 478static void e1000_receive_skb(struct e1000_adapter *adapter,
 479			      struct net_device *netdev, struct sk_buff *skb,
 480			      u8 status, __le16 vlan)
 481{
 482	u16 tag = le16_to_cpu(vlan);
 
 
 
 483	skb->protocol = eth_type_trans(skb, netdev);
 484
 485	if (status & E1000_RXD_STAT_VP)
 486		__vlan_hwaccel_put_tag(skb, tag);
 487
 488	napi_gro_receive(&adapter->napi, skb);
 489}
 490
 491/**
 492 * e1000_rx_checksum - Receive Checksum Offload
 493 * @adapter: board private structure
 494 * @status_err: receive descriptor status and error fields
 495 * @csum: receive descriptor csum field
 496 * @sk_buff: socket buffer with received data
 497 **/
 498static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 499			      struct sk_buff *skb)
 500{
 501	u16 status = (u16)status_err;
 502	u8 errors = (u8)(status_err >> 24);
 503
 504	skb_checksum_none_assert(skb);
 505
 506	/* Rx checksum disabled */
 507	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 508		return;
 509
 510	/* Ignore Checksum bit is set */
 511	if (status & E1000_RXD_STAT_IXSM)
 512		return;
 513
 514	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 515	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 516		/* let the stack verify checksum errors */
 517		adapter->hw_csum_err++;
 518		return;
 519	}
 520
 521	/* TCP/UDP Checksum has not been calculated */
 522	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 523		return;
 524
 525	/* It must be a TCP or UDP packet with a valid checksum */
 526	skb->ip_summed = CHECKSUM_UNNECESSARY;
 527	adapter->hw_csum_good++;
 528}
 529
 530static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 531{
 532	struct e1000_adapter *adapter = rx_ring->adapter;
 533	struct e1000_hw *hw = &adapter->hw;
 534	s32 ret_val = __ew32_prepare(hw);
 535
 
 536	writel(i, rx_ring->tail);
 537
 538	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 539		u32 rctl = er32(RCTL);
 
 540		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 541		e_err("ME firmware caused invalid RDT - resetting\n");
 542		schedule_work(&adapter->reset_task);
 543	}
 544}
 545
 546static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 547{
 548	struct e1000_adapter *adapter = tx_ring->adapter;
 549	struct e1000_hw *hw = &adapter->hw;
 550	s32 ret_val = __ew32_prepare(hw);
 551
 
 552	writel(i, tx_ring->tail);
 553
 554	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 555		u32 tctl = er32(TCTL);
 
 556		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 557		e_err("ME firmware caused invalid TDT - resetting\n");
 558		schedule_work(&adapter->reset_task);
 559	}
 560}
 561
 562/**
 563 * e1000_alloc_rx_buffers - Replace used receive buffers
 564 * @rx_ring: Rx descriptor ring
 
 
 565 **/
 566static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 567				   int cleaned_count, gfp_t gfp)
 568{
 569	struct e1000_adapter *adapter = rx_ring->adapter;
 570	struct net_device *netdev = adapter->netdev;
 571	struct pci_dev *pdev = adapter->pdev;
 572	union e1000_rx_desc_extended *rx_desc;
 573	struct e1000_buffer *buffer_info;
 574	struct sk_buff *skb;
 575	unsigned int i;
 576	unsigned int bufsz = adapter->rx_buffer_len;
 577
 578	i = rx_ring->next_to_use;
 579	buffer_info = &rx_ring->buffer_info[i];
 580
 581	while (cleaned_count--) {
 582		skb = buffer_info->skb;
 583		if (skb) {
 584			skb_trim(skb, 0);
 585			goto map_skb;
 586		}
 587
 588		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 589		if (!skb) {
 590			/* Better luck next round */
 591			adapter->alloc_rx_buff_failed++;
 592			break;
 593		}
 594
 595		buffer_info->skb = skb;
 596map_skb:
 597		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 598						  adapter->rx_buffer_len,
 599						  DMA_FROM_DEVICE);
 600		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 601			dev_err(&pdev->dev, "Rx DMA map failed\n");
 602			adapter->rx_dma_failed++;
 603			break;
 604		}
 605
 606		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 607		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 608
 609		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 610			/*
 611			 * Force memory writes to complete before letting h/w
 612			 * know there are new descriptors to fetch.  (Only
 613			 * applicable for weak-ordered memory model archs,
 614			 * such as IA-64).
 615			 */
 616			wmb();
 617			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 618				e1000e_update_rdt_wa(rx_ring, i);
 619			else
 620				writel(i, rx_ring->tail);
 621		}
 622		i++;
 623		if (i == rx_ring->count)
 624			i = 0;
 625		buffer_info = &rx_ring->buffer_info[i];
 626	}
 627
 628	rx_ring->next_to_use = i;
 629}
 630
 631/**
 632 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 633 * @rx_ring: Rx descriptor ring
 
 
 634 **/
 635static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 636				      int cleaned_count, gfp_t gfp)
 637{
 638	struct e1000_adapter *adapter = rx_ring->adapter;
 639	struct net_device *netdev = adapter->netdev;
 640	struct pci_dev *pdev = adapter->pdev;
 641	union e1000_rx_desc_packet_split *rx_desc;
 642	struct e1000_buffer *buffer_info;
 643	struct e1000_ps_page *ps_page;
 644	struct sk_buff *skb;
 645	unsigned int i, j;
 646
 647	i = rx_ring->next_to_use;
 648	buffer_info = &rx_ring->buffer_info[i];
 649
 650	while (cleaned_count--) {
 651		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 652
 653		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 654			ps_page = &buffer_info->ps_pages[j];
 655			if (j >= adapter->rx_ps_pages) {
 656				/* all unused desc entries get hw null ptr */
 657				rx_desc->read.buffer_addr[j + 1] =
 658				    ~cpu_to_le64(0);
 659				continue;
 660			}
 661			if (!ps_page->page) {
 662				ps_page->page = alloc_page(gfp);
 663				if (!ps_page->page) {
 664					adapter->alloc_rx_buff_failed++;
 665					goto no_buffers;
 666				}
 667				ps_page->dma = dma_map_page(&pdev->dev,
 668							    ps_page->page,
 669							    0, PAGE_SIZE,
 670							    DMA_FROM_DEVICE);
 671				if (dma_mapping_error(&pdev->dev,
 672						      ps_page->dma)) {
 673					dev_err(&adapter->pdev->dev,
 674						"Rx DMA page map failed\n");
 675					adapter->rx_dma_failed++;
 676					goto no_buffers;
 677				}
 678			}
 679			/*
 680			 * Refresh the desc even if buffer_addrs
 681			 * didn't change because each write-back
 682			 * erases this info.
 683			 */
 684			rx_desc->read.buffer_addr[j + 1] =
 685			    cpu_to_le64(ps_page->dma);
 686		}
 687
 688		skb = __netdev_alloc_skb_ip_align(netdev,
 689						  adapter->rx_ps_bsize0,
 690						  gfp);
 691
 692		if (!skb) {
 693			adapter->alloc_rx_buff_failed++;
 694			break;
 695		}
 696
 697		buffer_info->skb = skb;
 698		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 699						  adapter->rx_ps_bsize0,
 700						  DMA_FROM_DEVICE);
 701		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 702			dev_err(&pdev->dev, "Rx DMA map failed\n");
 703			adapter->rx_dma_failed++;
 704			/* cleanup skb */
 705			dev_kfree_skb_any(skb);
 706			buffer_info->skb = NULL;
 707			break;
 708		}
 709
 710		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 711
 712		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 713			/*
 714			 * Force memory writes to complete before letting h/w
 715			 * know there are new descriptors to fetch.  (Only
 716			 * applicable for weak-ordered memory model archs,
 717			 * such as IA-64).
 718			 */
 719			wmb();
 720			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 721				e1000e_update_rdt_wa(rx_ring, i << 1);
 722			else
 723				writel(i << 1, rx_ring->tail);
 724		}
 725
 726		i++;
 727		if (i == rx_ring->count)
 728			i = 0;
 729		buffer_info = &rx_ring->buffer_info[i];
 730	}
 731
 732no_buffers:
 733	rx_ring->next_to_use = i;
 734}
 735
 736/**
 737 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 738 * @rx_ring: Rx descriptor ring
 739 * @cleaned_count: number of buffers to allocate this pass
 
 740 **/
 741
 742static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 743					 int cleaned_count, gfp_t gfp)
 744{
 745	struct e1000_adapter *adapter = rx_ring->adapter;
 746	struct net_device *netdev = adapter->netdev;
 747	struct pci_dev *pdev = adapter->pdev;
 748	union e1000_rx_desc_extended *rx_desc;
 749	struct e1000_buffer *buffer_info;
 750	struct sk_buff *skb;
 751	unsigned int i;
 752	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
 753
 754	i = rx_ring->next_to_use;
 755	buffer_info = &rx_ring->buffer_info[i];
 756
 757	while (cleaned_count--) {
 758		skb = buffer_info->skb;
 759		if (skb) {
 760			skb_trim(skb, 0);
 761			goto check_page;
 762		}
 763
 764		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 765		if (unlikely(!skb)) {
 766			/* Better luck next round */
 767			adapter->alloc_rx_buff_failed++;
 768			break;
 769		}
 770
 771		buffer_info->skb = skb;
 772check_page:
 773		/* allocate a new page if necessary */
 774		if (!buffer_info->page) {
 775			buffer_info->page = alloc_page(gfp);
 776			if (unlikely(!buffer_info->page)) {
 777				adapter->alloc_rx_buff_failed++;
 778				break;
 779			}
 780		}
 781
 782		if (!buffer_info->dma)
 783			buffer_info->dma = dma_map_page(&pdev->dev,
 784			                                buffer_info->page, 0,
 785			                                PAGE_SIZE,
 786							DMA_FROM_DEVICE);
 
 
 
 
 
 787
 788		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 789		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(++i == rx_ring->count))
 792			i = 0;
 793		buffer_info = &rx_ring->buffer_info[i];
 794	}
 795
 796	if (likely(rx_ring->next_to_use != i)) {
 797		rx_ring->next_to_use = i;
 798		if (unlikely(i-- == 0))
 799			i = (rx_ring->count - 1);
 800
 801		/* Force memory writes to complete before letting h/w
 802		 * know there are new descriptors to fetch.  (Only
 803		 * applicable for weak-ordered memory model archs,
 804		 * such as IA-64). */
 
 805		wmb();
 806		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 807			e1000e_update_rdt_wa(rx_ring, i);
 808		else
 809			writel(i, rx_ring->tail);
 810	}
 811}
 812
 813static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 814				 struct sk_buff *skb)
 815{
 816	if (netdev->features & NETIF_F_RXHASH)
 817		skb->rxhash = le32_to_cpu(rss);
 818}
 819
 820/**
 821 * e1000_clean_rx_irq - Send received data up the network stack
 822 * @rx_ring: Rx descriptor ring
 
 
 823 *
 824 * the return value indicates whether actual cleaning was done, there
 825 * is no guarantee that everything was cleaned
 826 **/
 827static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 828			       int work_to_do)
 829{
 830	struct e1000_adapter *adapter = rx_ring->adapter;
 831	struct net_device *netdev = adapter->netdev;
 832	struct pci_dev *pdev = adapter->pdev;
 833	struct e1000_hw *hw = &adapter->hw;
 834	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 835	struct e1000_buffer *buffer_info, *next_buffer;
 836	u32 length, staterr;
 837	unsigned int i;
 838	int cleaned_count = 0;
 839	bool cleaned = false;
 840	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 841
 842	i = rx_ring->next_to_clean;
 843	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 844	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 845	buffer_info = &rx_ring->buffer_info[i];
 846
 847	while (staterr & E1000_RXD_STAT_DD) {
 848		struct sk_buff *skb;
 849
 850		if (*work_done >= work_to_do)
 851			break;
 852		(*work_done)++;
 853		rmb();	/* read descriptor and rx_buffer_info after status DD */
 854
 855		skb = buffer_info->skb;
 856		buffer_info->skb = NULL;
 857
 858		prefetch(skb->data - NET_IP_ALIGN);
 859
 860		i++;
 861		if (i == rx_ring->count)
 862			i = 0;
 863		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 864		prefetch(next_rxd);
 865
 866		next_buffer = &rx_ring->buffer_info[i];
 867
 868		cleaned = true;
 869		cleaned_count++;
 870		dma_unmap_single(&pdev->dev,
 871				 buffer_info->dma,
 872				 adapter->rx_buffer_len,
 873				 DMA_FROM_DEVICE);
 874		buffer_info->dma = 0;
 875
 876		length = le16_to_cpu(rx_desc->wb.upper.length);
 877
 878		/*
 879		 * !EOP means multiple descriptors were used to store a single
 880		 * packet, if that's the case we need to toss it.  In fact, we
 881		 * need to toss every packet with the EOP bit clear and the
 882		 * next frame that _does_ have the EOP bit set, as it is by
 883		 * definition only a frame fragment
 884		 */
 885		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 886			adapter->flags2 |= FLAG2_IS_DISCARDING;
 887
 888		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 889			/* All receives must fit into a single buffer */
 890			e_dbg("Receive packet consumed multiple buffers\n");
 891			/* recycle */
 892			buffer_info->skb = skb;
 893			if (staterr & E1000_RXD_STAT_EOP)
 894				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 895			goto next_desc;
 896		}
 897
 898		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 899			     !(netdev->features & NETIF_F_RXALL))) {
 900			/* recycle */
 901			buffer_info->skb = skb;
 902			goto next_desc;
 903		}
 904
 905		/* adjust length to remove Ethernet CRC */
 906		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 907			/* If configured to store CRC, don't subtract FCS,
 908			 * but keep the FCS bytes out of the total_rx_bytes
 909			 * counter
 910			 */
 911			if (netdev->features & NETIF_F_RXFCS)
 912				total_rx_bytes -= 4;
 913			else
 914				length -= 4;
 915		}
 916
 917		total_rx_bytes += length;
 918		total_rx_packets++;
 919
 920		/*
 921		 * code added for copybreak, this should improve
 922		 * performance for small packets with large amounts
 923		 * of reassembly being done in the stack
 924		 */
 925		if (length < copybreak) {
 926			struct sk_buff *new_skb =
 927			    netdev_alloc_skb_ip_align(netdev, length);
 928			if (new_skb) {
 929				skb_copy_to_linear_data_offset(new_skb,
 930							       -NET_IP_ALIGN,
 931							       (skb->data -
 932								NET_IP_ALIGN),
 933							       (length +
 934								NET_IP_ALIGN));
 935				/* save the skb in buffer_info as good */
 936				buffer_info->skb = skb;
 937				skb = new_skb;
 938			}
 939			/* else just continue with the old one */
 940		}
 941		/* end copybreak code */
 942		skb_put(skb, length);
 943
 944		/* Receive Checksum Offload */
 945		e1000_rx_checksum(adapter, staterr, skb);
 946
 947		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
 948
 949		e1000_receive_skb(adapter, netdev, skb, staterr,
 950				  rx_desc->wb.upper.vlan);
 951
 952next_desc:
 953		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
 954
 955		/* return some buffers to hardware, one at a time is too slow */
 956		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
 957			adapter->alloc_rx_buf(rx_ring, cleaned_count,
 958					      GFP_ATOMIC);
 959			cleaned_count = 0;
 960		}
 961
 962		/* use prefetched values */
 963		rx_desc = next_rxd;
 964		buffer_info = next_buffer;
 965
 966		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 967	}
 968	rx_ring->next_to_clean = i;
 969
 970	cleaned_count = e1000_desc_unused(rx_ring);
 971	if (cleaned_count)
 972		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
 973
 974	adapter->total_rx_bytes += total_rx_bytes;
 975	adapter->total_rx_packets += total_rx_packets;
 976	return cleaned;
 977}
 978
 979static void e1000_put_txbuf(struct e1000_ring *tx_ring,
 980			    struct e1000_buffer *buffer_info)
 
 981{
 982	struct e1000_adapter *adapter = tx_ring->adapter;
 983
 984	if (buffer_info->dma) {
 985		if (buffer_info->mapped_as_page)
 986			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
 987				       buffer_info->length, DMA_TO_DEVICE);
 988		else
 989			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
 990					 buffer_info->length, DMA_TO_DEVICE);
 991		buffer_info->dma = 0;
 992	}
 993	if (buffer_info->skb) {
 994		dev_kfree_skb_any(buffer_info->skb);
 
 
 
 995		buffer_info->skb = NULL;
 996	}
 997	buffer_info->time_stamp = 0;
 998}
 999
1000static void e1000_print_hw_hang(struct work_struct *work)
1001{
1002	struct e1000_adapter *adapter = container_of(work,
1003	                                             struct e1000_adapter,
1004	                                             print_hang_task);
1005	struct net_device *netdev = adapter->netdev;
1006	struct e1000_ring *tx_ring = adapter->tx_ring;
1007	unsigned int i = tx_ring->next_to_clean;
1008	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010	struct e1000_hw *hw = &adapter->hw;
1011	u16 phy_status, phy_1000t_status, phy_ext_status;
1012	u16 pci_status;
1013
1014	if (test_bit(__E1000_DOWN, &adapter->state))
1015		return;
1016
1017	if (!adapter->tx_hang_recheck &&
1018	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1019		/*
1020		 * May be block on write-back, flush and detect again
1021		 * flush pending descriptor writebacks to memory
1022		 */
1023		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024		/* execute the writes immediately */
1025		e1e_flush();
1026		/*
1027		 * Due to rare timing issues, write to TIDV again to ensure
1028		 * the write is successful
1029		 */
1030		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031		/* execute the writes immediately */
1032		e1e_flush();
1033		adapter->tx_hang_recheck = true;
1034		return;
1035	}
 
 
 
 
 
 
 
1036	/* Real hang detected */
1037	adapter->tx_hang_recheck = false;
1038	netif_stop_queue(netdev);
1039
1040	e1e_rphy(hw, PHY_STATUS, &phy_status);
1041	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043
1044	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1045
1046	/* detected Hardware unit hang */
1047	e_err("Detected Hardware Unit Hang:\n"
1048	      "  TDH                  <%x>\n"
1049	      "  TDT                  <%x>\n"
1050	      "  next_to_use          <%x>\n"
1051	      "  next_to_clean        <%x>\n"
1052	      "buffer_info[next_to_clean]:\n"
1053	      "  time_stamp           <%lx>\n"
1054	      "  next_to_watch        <%x>\n"
1055	      "  jiffies              <%lx>\n"
1056	      "  next_to_watch.status <%x>\n"
1057	      "MAC Status             <%x>\n"
1058	      "PHY Status             <%x>\n"
1059	      "PHY 1000BASE-T Status  <%x>\n"
1060	      "PHY Extended Status    <%x>\n"
1061	      "PCI Status             <%x>\n",
1062	      readl(tx_ring->head),
1063	      readl(tx_ring->tail),
1064	      tx_ring->next_to_use,
1065	      tx_ring->next_to_clean,
1066	      tx_ring->buffer_info[eop].time_stamp,
1067	      eop,
1068	      jiffies,
1069	      eop_desc->upper.fields.status,
1070	      er32(STATUS),
1071	      phy_status,
1072	      phy_1000t_status,
1073	      phy_ext_status,
1074	      pci_status);
1075
1076	/* Suggest workaround for known h/w issue */
1077	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079}
1080
1081/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @tx_ring: Tx descriptor ring
1084 *
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1087 **/
1088static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089{
1090	struct e1000_adapter *adapter = tx_ring->adapter;
1091	struct net_device *netdev = adapter->netdev;
1092	struct e1000_hw *hw = &adapter->hw;
1093	struct e1000_tx_desc *tx_desc, *eop_desc;
1094	struct e1000_buffer *buffer_info;
1095	unsigned int i, eop;
1096	unsigned int count = 0;
1097	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098	unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100	i = tx_ring->next_to_clean;
1101	eop = tx_ring->buffer_info[i].next_to_watch;
1102	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105	       (count < tx_ring->count)) {
1106		bool cleaned = false;
1107		rmb(); /* read buffer_info after eop_desc */
 
1108		for (; !cleaned; count++) {
1109			tx_desc = E1000_TX_DESC(*tx_ring, i);
1110			buffer_info = &tx_ring->buffer_info[i];
1111			cleaned = (i == eop);
1112
1113			if (cleaned) {
1114				total_tx_packets += buffer_info->segs;
1115				total_tx_bytes += buffer_info->bytecount;
1116				if (buffer_info->skb) {
1117					bytes_compl += buffer_info->skb->len;
1118					pkts_compl++;
1119				}
1120			}
1121
1122			e1000_put_txbuf(tx_ring, buffer_info);
1123			tx_desc->upper.data = 0;
1124
1125			i++;
1126			if (i == tx_ring->count)
1127				i = 0;
1128		}
1129
1130		if (i == tx_ring->next_to_use)
1131			break;
1132		eop = tx_ring->buffer_info[i].next_to_watch;
1133		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134	}
1135
1136	tx_ring->next_to_clean = i;
1137
1138	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140#define TX_WAKE_THRESHOLD 32
1141	if (count && netif_carrier_ok(netdev) &&
1142	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143		/* Make sure that anybody stopping the queue after this
1144		 * sees the new next_to_clean.
1145		 */
1146		smp_mb();
1147
1148		if (netif_queue_stopped(netdev) &&
1149		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1150			netif_wake_queue(netdev);
1151			++adapter->restart_queue;
1152		}
1153	}
1154
1155	if (adapter->detect_tx_hung) {
1156		/*
1157		 * Detect a transmit hang in hardware, this serializes the
1158		 * check with the clearing of time_stamp and movement of i
1159		 */
1160		adapter->detect_tx_hung = false;
1161		if (tx_ring->buffer_info[i].time_stamp &&
1162		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163			       + (adapter->tx_timeout_factor * HZ)) &&
1164		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1165			schedule_work(&adapter->print_hang_task);
1166		else
1167			adapter->tx_hang_recheck = false;
1168	}
1169	adapter->total_tx_bytes += total_tx_bytes;
1170	adapter->total_tx_packets += total_tx_packets;
1171	return count < tx_ring->count;
1172}
1173
1174/**
1175 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176 * @rx_ring: Rx descriptor ring
 
 
1177 *
1178 * the return value indicates whether actual cleaning was done, there
1179 * is no guarantee that everything was cleaned
1180 **/
1181static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1182				  int work_to_do)
1183{
1184	struct e1000_adapter *adapter = rx_ring->adapter;
1185	struct e1000_hw *hw = &adapter->hw;
1186	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187	struct net_device *netdev = adapter->netdev;
1188	struct pci_dev *pdev = adapter->pdev;
1189	struct e1000_buffer *buffer_info, *next_buffer;
1190	struct e1000_ps_page *ps_page;
1191	struct sk_buff *skb;
1192	unsigned int i, j;
1193	u32 length, staterr;
1194	int cleaned_count = 0;
1195	bool cleaned = false;
1196	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198	i = rx_ring->next_to_clean;
1199	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201	buffer_info = &rx_ring->buffer_info[i];
1202
1203	while (staterr & E1000_RXD_STAT_DD) {
1204		if (*work_done >= work_to_do)
1205			break;
1206		(*work_done)++;
1207		skb = buffer_info->skb;
1208		rmb();	/* read descriptor and rx_buffer_info after status DD */
1209
1210		/* in the packet split case this is header only */
1211		prefetch(skb->data - NET_IP_ALIGN);
1212
1213		i++;
1214		if (i == rx_ring->count)
1215			i = 0;
1216		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217		prefetch(next_rxd);
1218
1219		next_buffer = &rx_ring->buffer_info[i];
1220
1221		cleaned = true;
1222		cleaned_count++;
1223		dma_unmap_single(&pdev->dev, buffer_info->dma,
1224				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225		buffer_info->dma = 0;
1226
1227		/* see !EOP comment in other Rx routine */
1228		if (!(staterr & E1000_RXD_STAT_EOP))
1229			adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233			dev_kfree_skb_irq(skb);
1234			if (staterr & E1000_RXD_STAT_EOP)
1235				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236			goto next_desc;
1237		}
1238
1239		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240			     !(netdev->features & NETIF_F_RXALL))) {
1241			dev_kfree_skb_irq(skb);
1242			goto next_desc;
1243		}
1244
1245		length = le16_to_cpu(rx_desc->wb.middle.length0);
1246
1247		if (!length) {
1248			e_dbg("Last part of the packet spanning multiple descriptors\n");
1249			dev_kfree_skb_irq(skb);
1250			goto next_desc;
1251		}
1252
1253		/* Good Receive */
1254		skb_put(skb, length);
1255
1256		{
1257			/*
1258			 * this looks ugly, but it seems compiler issues make
1259			 * it more efficient than reusing j
1260			 */
1261			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262
1263			/*
1264			 * page alloc/put takes too long and effects small
1265			 * packet throughput, so unsplit small packets and
1266			 * save the alloc/put only valid in softirq (napi)
1267			 * context to call kmap_*
1268			 */
1269			if (l1 && (l1 <= copybreak) &&
1270			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1271				u8 *vaddr;
1272
1273				ps_page = &buffer_info->ps_pages[0];
1274
1275				/*
1276				 * there is no documentation about how to call
1277				 * kmap_atomic, so we can't hold the mapping
1278				 * very long
1279				 */
1280				dma_sync_single_for_cpu(&pdev->dev,
1281							ps_page->dma,
1282							PAGE_SIZE,
1283							DMA_FROM_DEVICE);
1284				vaddr = kmap_atomic(ps_page->page);
1285				memcpy(skb_tail_pointer(skb), vaddr, l1);
1286				kunmap_atomic(vaddr);
1287				dma_sync_single_for_device(&pdev->dev,
1288							   ps_page->dma,
1289							   PAGE_SIZE,
1290							   DMA_FROM_DEVICE);
1291
1292				/* remove the CRC */
1293				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294					if (!(netdev->features & NETIF_F_RXFCS))
1295						l1 -= 4;
1296				}
1297
1298				skb_put(skb, l1);
1299				goto copydone;
1300			} /* if */
1301		}
1302
1303		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1305			if (!length)
1306				break;
1307
1308			ps_page = &buffer_info->ps_pages[j];
1309			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1310				       DMA_FROM_DEVICE);
1311			ps_page->dma = 0;
1312			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313			ps_page->page = NULL;
1314			skb->len += length;
1315			skb->data_len += length;
1316			skb->truesize += PAGE_SIZE;
1317		}
1318
1319		/* strip the ethernet crc, problem is we're using pages now so
1320		 * this whole operation can get a little cpu intensive
1321		 */
1322		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323			if (!(netdev->features & NETIF_F_RXFCS))
1324				pskb_trim(skb, skb->len - 4);
1325		}
1326
1327copydone:
1328		total_rx_bytes += skb->len;
1329		total_rx_packets++;
1330
1331		e1000_rx_checksum(adapter, staterr, skb);
1332
1333		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1334
1335		if (rx_desc->wb.upper.header_status &
1336			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337			adapter->rx_hdr_split++;
1338
1339		e1000_receive_skb(adapter, netdev, skb,
1340				  staterr, rx_desc->wb.middle.vlan);
1341
1342next_desc:
1343		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344		buffer_info->skb = NULL;
1345
1346		/* return some buffers to hardware, one at a time is too slow */
1347		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349					      GFP_ATOMIC);
1350			cleaned_count = 0;
1351		}
1352
1353		/* use prefetched values */
1354		rx_desc = next_rxd;
1355		buffer_info = next_buffer;
1356
1357		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358	}
1359	rx_ring->next_to_clean = i;
1360
1361	cleaned_count = e1000_desc_unused(rx_ring);
1362	if (cleaned_count)
1363		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364
1365	adapter->total_rx_bytes += total_rx_bytes;
1366	adapter->total_rx_packets += total_rx_packets;
1367	return cleaned;
1368}
1369
1370/**
1371 * e1000_consume_page - helper function
1372 **/
1373static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1374                               u16 length)
1375{
1376	bi->page = NULL;
1377	skb->len += length;
1378	skb->data_len += length;
1379	skb->truesize += PAGE_SIZE;
1380}
1381
1382/**
1383 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384 * @adapter: board private structure
 
 
1385 *
1386 * the return value indicates whether actual cleaning was done, there
1387 * is no guarantee that everything was cleaned
1388 **/
1389static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1390				     int work_to_do)
1391{
1392	struct e1000_adapter *adapter = rx_ring->adapter;
1393	struct net_device *netdev = adapter->netdev;
1394	struct pci_dev *pdev = adapter->pdev;
1395	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396	struct e1000_buffer *buffer_info, *next_buffer;
1397	u32 length, staterr;
1398	unsigned int i;
1399	int cleaned_count = 0;
1400	bool cleaned = false;
1401	unsigned int total_rx_bytes=0, total_rx_packets=0;
 
1402
1403	i = rx_ring->next_to_clean;
1404	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406	buffer_info = &rx_ring->buffer_info[i];
1407
1408	while (staterr & E1000_RXD_STAT_DD) {
1409		struct sk_buff *skb;
1410
1411		if (*work_done >= work_to_do)
1412			break;
1413		(*work_done)++;
1414		rmb();	/* read descriptor and rx_buffer_info after status DD */
1415
1416		skb = buffer_info->skb;
1417		buffer_info->skb = NULL;
1418
1419		++i;
1420		if (i == rx_ring->count)
1421			i = 0;
1422		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423		prefetch(next_rxd);
1424
1425		next_buffer = &rx_ring->buffer_info[i];
1426
1427		cleaned = true;
1428		cleaned_count++;
1429		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1430			       DMA_FROM_DEVICE);
1431		buffer_info->dma = 0;
1432
1433		length = le16_to_cpu(rx_desc->wb.upper.length);
1434
1435		/* errors is only valid for DD + EOP descriptors */
1436		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438			      !(netdev->features & NETIF_F_RXALL)))) {
1439			/* recycle both page and skb */
1440			buffer_info->skb = skb;
1441			/* an error means any chain goes out the window too */
1442			if (rx_ring->rx_skb_top)
1443				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444			rx_ring->rx_skb_top = NULL;
1445			goto next_desc;
1446		}
1447
1448#define rxtop (rx_ring->rx_skb_top)
1449		if (!(staterr & E1000_RXD_STAT_EOP)) {
1450			/* this descriptor is only the beginning (or middle) */
1451			if (!rxtop) {
1452				/* this is the beginning of a chain */
1453				rxtop = skb;
1454				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1455				                   0, length);
1456			} else {
1457				/* this is the middle of a chain */
1458				skb_fill_page_desc(rxtop,
1459				    skb_shinfo(rxtop)->nr_frags,
1460				    buffer_info->page, 0, length);
 
1461				/* re-use the skb, only consumed the page */
1462				buffer_info->skb = skb;
1463			}
1464			e1000_consume_page(buffer_info, rxtop, length);
1465			goto next_desc;
1466		} else {
1467			if (rxtop) {
1468				/* end of the chain */
1469				skb_fill_page_desc(rxtop,
1470				    skb_shinfo(rxtop)->nr_frags,
1471				    buffer_info->page, 0, length);
 
1472				/* re-use the current skb, we only consumed the
1473				 * page */
 
1474				buffer_info->skb = skb;
1475				skb = rxtop;
1476				rxtop = NULL;
1477				e1000_consume_page(buffer_info, skb, length);
1478			} else {
1479				/* no chain, got EOP, this buf is the packet
1480				 * copybreak to save the put_page/alloc_page */
 
1481				if (length <= copybreak &&
1482				    skb_tailroom(skb) >= length) {
1483					u8 *vaddr;
1484					vaddr = kmap_atomic(buffer_info->page);
1485					memcpy(skb_tail_pointer(skb), vaddr,
1486					       length);
1487					kunmap_atomic(vaddr);
1488					/* re-use the page, so don't erase
1489					 * buffer_info->page */
 
1490					skb_put(skb, length);
1491				} else {
1492					skb_fill_page_desc(skb, 0,
1493					                   buffer_info->page, 0,
1494				                           length);
1495					e1000_consume_page(buffer_info, skb,
1496					                   length);
1497				}
1498			}
1499		}
1500
1501		/* Receive Checksum Offload */
1502		e1000_rx_checksum(adapter, staterr, skb);
1503
1504		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1505
1506		/* probably a little skewed due to removing CRC */
1507		total_rx_bytes += skb->len;
1508		total_rx_packets++;
1509
1510		/* eth type trans needs skb->data to point to something */
1511		if (!pskb_may_pull(skb, ETH_HLEN)) {
1512			e_err("pskb_may_pull failed.\n");
1513			dev_kfree_skb_irq(skb);
1514			goto next_desc;
1515		}
1516
1517		e1000_receive_skb(adapter, netdev, skb, staterr,
1518				  rx_desc->wb.upper.vlan);
1519
1520next_desc:
1521		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522
1523		/* return some buffers to hardware, one at a time is too slow */
1524		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526					      GFP_ATOMIC);
1527			cleaned_count = 0;
1528		}
1529
1530		/* use prefetched values */
1531		rx_desc = next_rxd;
1532		buffer_info = next_buffer;
1533
1534		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535	}
1536	rx_ring->next_to_clean = i;
1537
1538	cleaned_count = e1000_desc_unused(rx_ring);
1539	if (cleaned_count)
1540		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541
1542	adapter->total_rx_bytes += total_rx_bytes;
1543	adapter->total_rx_packets += total_rx_packets;
1544	return cleaned;
1545}
1546
1547/**
1548 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549 * @rx_ring: Rx descriptor ring
1550 **/
1551static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552{
1553	struct e1000_adapter *adapter = rx_ring->adapter;
1554	struct e1000_buffer *buffer_info;
1555	struct e1000_ps_page *ps_page;
1556	struct pci_dev *pdev = adapter->pdev;
1557	unsigned int i, j;
1558
1559	/* Free all the Rx ring sk_buffs */
1560	for (i = 0; i < rx_ring->count; i++) {
1561		buffer_info = &rx_ring->buffer_info[i];
1562		if (buffer_info->dma) {
1563			if (adapter->clean_rx == e1000_clean_rx_irq)
1564				dma_unmap_single(&pdev->dev, buffer_info->dma,
1565						 adapter->rx_buffer_len,
1566						 DMA_FROM_DEVICE);
1567			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568				dma_unmap_page(&pdev->dev, buffer_info->dma,
1569				               PAGE_SIZE,
1570					       DMA_FROM_DEVICE);
1571			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572				dma_unmap_single(&pdev->dev, buffer_info->dma,
1573						 adapter->rx_ps_bsize0,
1574						 DMA_FROM_DEVICE);
1575			buffer_info->dma = 0;
1576		}
1577
1578		if (buffer_info->page) {
1579			put_page(buffer_info->page);
1580			buffer_info->page = NULL;
1581		}
1582
1583		if (buffer_info->skb) {
1584			dev_kfree_skb(buffer_info->skb);
1585			buffer_info->skb = NULL;
1586		}
1587
1588		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589			ps_page = &buffer_info->ps_pages[j];
1590			if (!ps_page->page)
1591				break;
1592			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1593				       DMA_FROM_DEVICE);
1594			ps_page->dma = 0;
1595			put_page(ps_page->page);
1596			ps_page->page = NULL;
1597		}
1598	}
1599
1600	/* there also may be some cached data from a chained receive */
1601	if (rx_ring->rx_skb_top) {
1602		dev_kfree_skb(rx_ring->rx_skb_top);
1603		rx_ring->rx_skb_top = NULL;
1604	}
1605
1606	/* Zero out the descriptor ring */
1607	memset(rx_ring->desc, 0, rx_ring->size);
1608
1609	rx_ring->next_to_clean = 0;
1610	rx_ring->next_to_use = 0;
1611	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612
1613	writel(0, rx_ring->head);
1614	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615		e1000e_update_rdt_wa(rx_ring, 0);
1616	else
1617		writel(0, rx_ring->tail);
1618}
1619
1620static void e1000e_downshift_workaround(struct work_struct *work)
1621{
1622	struct e1000_adapter *adapter = container_of(work,
1623					struct e1000_adapter, downshift_task);
 
1624
1625	if (test_bit(__E1000_DOWN, &adapter->state))
1626		return;
1627
1628	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1629}
1630
1631/**
1632 * e1000_intr_msi - Interrupt Handler
1633 * @irq: interrupt number
1634 * @data: pointer to a network interface device structure
1635 **/
1636static irqreturn_t e1000_intr_msi(int irq, void *data)
1637{
1638	struct net_device *netdev = data;
1639	struct e1000_adapter *adapter = netdev_priv(netdev);
1640	struct e1000_hw *hw = &adapter->hw;
1641	u32 icr = er32(ICR);
1642
1643	/*
1644	 * read ICR disables interrupts using IAM
1645	 */
1646
1647	if (icr & E1000_ICR_LSC) {
1648		hw->mac.get_link_status = true;
1649		/*
1650		 * ICH8 workaround-- Call gig speed drop workaround on cable
1651		 * disconnect (LSC) before accessing any PHY registers
1652		 */
1653		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654		    (!(er32(STATUS) & E1000_STATUS_LU)))
1655			schedule_work(&adapter->downshift_task);
1656
1657		/*
1658		 * 80003ES2LAN workaround-- For packet buffer work-around on
1659		 * link down event; disable receives here in the ISR and reset
1660		 * adapter in watchdog
1661		 */
1662		if (netif_carrier_ok(netdev) &&
1663		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664			/* disable receives */
1665			u32 rctl = er32(RCTL);
 
1666			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667			adapter->flags |= FLAG_RX_RESTART_NOW;
1668		}
1669		/* guard against interrupt when we're going down */
1670		if (!test_bit(__E1000_DOWN, &adapter->state))
1671			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1672	}
1673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674	if (napi_schedule_prep(&adapter->napi)) {
1675		adapter->total_tx_bytes = 0;
1676		adapter->total_tx_packets = 0;
1677		adapter->total_rx_bytes = 0;
1678		adapter->total_rx_packets = 0;
1679		__napi_schedule(&adapter->napi);
1680	}
1681
1682	return IRQ_HANDLED;
1683}
1684
1685/**
1686 * e1000_intr - Interrupt Handler
1687 * @irq: interrupt number
1688 * @data: pointer to a network interface device structure
1689 **/
1690static irqreturn_t e1000_intr(int irq, void *data)
1691{
1692	struct net_device *netdev = data;
1693	struct e1000_adapter *adapter = netdev_priv(netdev);
1694	struct e1000_hw *hw = &adapter->hw;
1695	u32 rctl, icr = er32(ICR);
1696
1697	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698		return IRQ_NONE;  /* Not our interrupt */
1699
1700	/*
1701	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702	 * not set, then the adapter didn't send an interrupt
1703	 */
1704	if (!(icr & E1000_ICR_INT_ASSERTED))
1705		return IRQ_NONE;
1706
1707	/*
1708	 * Interrupt Auto-Mask...upon reading ICR,
1709	 * interrupts are masked.  No need for the
1710	 * IMC write
1711	 */
1712
1713	if (icr & E1000_ICR_LSC) {
1714		hw->mac.get_link_status = true;
1715		/*
1716		 * ICH8 workaround-- Call gig speed drop workaround on cable
1717		 * disconnect (LSC) before accessing any PHY registers
1718		 */
1719		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720		    (!(er32(STATUS) & E1000_STATUS_LU)))
1721			schedule_work(&adapter->downshift_task);
1722
1723		/*
1724		 * 80003ES2LAN workaround--
1725		 * For packet buffer work-around on link down event;
1726		 * disable receives here in the ISR and
1727		 * reset adapter in watchdog
1728		 */
1729		if (netif_carrier_ok(netdev) &&
1730		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731			/* disable receives */
1732			rctl = er32(RCTL);
1733			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734			adapter->flags |= FLAG_RX_RESTART_NOW;
1735		}
1736		/* guard against interrupt when we're going down */
1737		if (!test_bit(__E1000_DOWN, &adapter->state))
1738			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1739	}
1740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741	if (napi_schedule_prep(&adapter->napi)) {
1742		adapter->total_tx_bytes = 0;
1743		adapter->total_tx_packets = 0;
1744		adapter->total_rx_bytes = 0;
1745		adapter->total_rx_packets = 0;
1746		__napi_schedule(&adapter->napi);
1747	}
1748
1749	return IRQ_HANDLED;
1750}
1751
1752static irqreturn_t e1000_msix_other(int irq, void *data)
1753{
1754	struct net_device *netdev = data;
1755	struct e1000_adapter *adapter = netdev_priv(netdev);
1756	struct e1000_hw *hw = &adapter->hw;
1757	u32 icr = er32(ICR);
1758
1759	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760		if (!test_bit(__E1000_DOWN, &adapter->state))
1761			ew32(IMS, E1000_IMS_OTHER);
1762		return IRQ_NONE;
1763	}
1764
1765	if (icr & adapter->eiac_mask)
1766		ew32(ICS, (icr & adapter->eiac_mask));
1767
1768	if (icr & E1000_ICR_OTHER) {
1769		if (!(icr & E1000_ICR_LSC))
1770			goto no_link_interrupt;
1771		hw->mac.get_link_status = true;
1772		/* guard against interrupt when we're going down */
1773		if (!test_bit(__E1000_DOWN, &adapter->state))
1774			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1775	}
1776
1777no_link_interrupt:
1778	if (!test_bit(__E1000_DOWN, &adapter->state))
1779		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780
1781	return IRQ_HANDLED;
1782}
1783
1784
1785static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1786{
1787	struct net_device *netdev = data;
1788	struct e1000_adapter *adapter = netdev_priv(netdev);
1789	struct e1000_hw *hw = &adapter->hw;
1790	struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792
1793	adapter->total_tx_bytes = 0;
1794	adapter->total_tx_packets = 0;
1795
1796	if (!e1000_clean_tx_irq(tx_ring))
1797		/* Ring was not completely cleaned, so fire another interrupt */
1798		ew32(ICS, tx_ring->ims_val);
1799
 
 
 
1800	return IRQ_HANDLED;
1801}
1802
1803static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1804{
1805	struct net_device *netdev = data;
1806	struct e1000_adapter *adapter = netdev_priv(netdev);
1807	struct e1000_ring *rx_ring = adapter->rx_ring;
1808
1809	/* Write the ITR value calculated at the end of the
1810	 * previous interrupt.
1811	 */
1812	if (rx_ring->set_itr) {
1813		writel(1000000000 / (rx_ring->itr_val * 256),
1814		       rx_ring->itr_register);
 
 
1815		rx_ring->set_itr = 0;
1816	}
1817
1818	if (napi_schedule_prep(&adapter->napi)) {
1819		adapter->total_rx_bytes = 0;
1820		adapter->total_rx_packets = 0;
1821		__napi_schedule(&adapter->napi);
1822	}
1823	return IRQ_HANDLED;
1824}
1825
1826/**
1827 * e1000_configure_msix - Configure MSI-X hardware
 
1828 *
1829 * e1000_configure_msix sets up the hardware to properly
1830 * generate MSI-X interrupts.
1831 **/
1832static void e1000_configure_msix(struct e1000_adapter *adapter)
1833{
1834	struct e1000_hw *hw = &adapter->hw;
1835	struct e1000_ring *rx_ring = adapter->rx_ring;
1836	struct e1000_ring *tx_ring = adapter->tx_ring;
1837	int vector = 0;
1838	u32 ctrl_ext, ivar = 0;
1839
1840	adapter->eiac_mask = 0;
1841
1842	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843	if (hw->mac.type == e1000_82574) {
1844		u32 rfctl = er32(RFCTL);
 
1845		rfctl |= E1000_RFCTL_ACK_DIS;
1846		ew32(RFCTL, rfctl);
1847	}
1848
1849#define E1000_IVAR_INT_ALLOC_VALID	0x8
1850	/* Configure Rx vector */
1851	rx_ring->ims_val = E1000_IMS_RXQ0;
1852	adapter->eiac_mask |= rx_ring->ims_val;
1853	if (rx_ring->itr_val)
1854		writel(1000000000 / (rx_ring->itr_val * 256),
1855		       rx_ring->itr_register);
1856	else
1857		writel(1, rx_ring->itr_register);
1858	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1859
1860	/* Configure Tx vector */
1861	tx_ring->ims_val = E1000_IMS_TXQ0;
1862	vector++;
1863	if (tx_ring->itr_val)
1864		writel(1000000000 / (tx_ring->itr_val * 256),
1865		       tx_ring->itr_register);
1866	else
1867		writel(1, tx_ring->itr_register);
1868	adapter->eiac_mask |= tx_ring->ims_val;
1869	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1870
1871	/* set vector for Other Causes, e.g. link changes */
1872	vector++;
1873	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874	if (rx_ring->itr_val)
1875		writel(1000000000 / (rx_ring->itr_val * 256),
1876		       hw->hw_addr + E1000_EITR_82574(vector));
1877	else
1878		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1879
1880	/* Cause Tx interrupts on every write back */
1881	ivar |= (1 << 31);
1882
1883	ew32(IVAR, ivar);
1884
1885	/* enable MSI-X PBA support */
1886	ctrl_ext = er32(CTRL_EXT);
1887	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1888
1889	/* Auto-Mask Other interrupts upon ICR read */
1890#define E1000_EIAC_MASK_82574   0x01F00000
1891	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893	ew32(CTRL_EXT, ctrl_ext);
1894	e1e_flush();
1895}
1896
1897void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1898{
1899	if (adapter->msix_entries) {
1900		pci_disable_msix(adapter->pdev);
1901		kfree(adapter->msix_entries);
1902		adapter->msix_entries = NULL;
1903	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1904		pci_disable_msi(adapter->pdev);
1905		adapter->flags &= ~FLAG_MSI_ENABLED;
1906	}
1907}
1908
1909/**
1910 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 
1911 *
1912 * Attempt to configure interrupts using the best available
1913 * capabilities of the hardware and kernel.
1914 **/
1915void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1916{
1917	int err;
1918	int i;
1919
1920	switch (adapter->int_mode) {
1921	case E1000E_INT_MODE_MSIX:
1922		if (adapter->flags & FLAG_HAS_MSIX) {
1923			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924			adapter->msix_entries = kcalloc(adapter->num_vectors,
1925						      sizeof(struct msix_entry),
1926						      GFP_KERNEL);
 
1927			if (adapter->msix_entries) {
 
 
1928				for (i = 0; i < adapter->num_vectors; i++)
1929					adapter->msix_entries[i].entry = i;
1930
1931				err = pci_enable_msix(adapter->pdev,
1932						      adapter->msix_entries,
1933						      adapter->num_vectors);
1934				if (err == 0)
 
1935					return;
1936			}
1937			/* MSI-X failed, so fall through and try MSI */
1938			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1939			e1000e_reset_interrupt_capability(adapter);
1940		}
1941		adapter->int_mode = E1000E_INT_MODE_MSI;
1942		/* Fall through */
1943	case E1000E_INT_MODE_MSI:
1944		if (!pci_enable_msi(adapter->pdev)) {
1945			adapter->flags |= FLAG_MSI_ENABLED;
1946		} else {
1947			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1949		}
1950		/* Fall through */
1951	case E1000E_INT_MODE_LEGACY:
1952		/* Don't do anything; this is the system default */
1953		break;
1954	}
1955
1956	/* store the number of vectors being used */
1957	adapter->num_vectors = 1;
1958}
1959
1960/**
1961 * e1000_request_msix - Initialize MSI-X interrupts
 
1962 *
1963 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1964 * kernel.
1965 **/
1966static int e1000_request_msix(struct e1000_adapter *adapter)
1967{
1968	struct net_device *netdev = adapter->netdev;
1969	int err = 0, vector = 0;
1970
1971	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972		snprintf(adapter->rx_ring->name,
1973			 sizeof(adapter->rx_ring->name) - 1,
1974			 "%s-rx-0", netdev->name);
1975	else
1976		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977	err = request_irq(adapter->msix_entries[vector].vector,
1978			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979			  netdev);
1980	if (err)
1981		return err;
1982	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983	    E1000_EITR_82574(vector);
1984	adapter->rx_ring->itr_val = adapter->itr;
1985	vector++;
1986
1987	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988		snprintf(adapter->tx_ring->name,
1989			 sizeof(adapter->tx_ring->name) - 1,
1990			 "%s-tx-0", netdev->name);
1991	else
1992		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993	err = request_irq(adapter->msix_entries[vector].vector,
1994			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995			  netdev);
1996	if (err)
1997		return err;
1998	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999	    E1000_EITR_82574(vector);
2000	adapter->tx_ring->itr_val = adapter->itr;
2001	vector++;
2002
2003	err = request_irq(adapter->msix_entries[vector].vector,
2004			  e1000_msix_other, 0, netdev->name, netdev);
2005	if (err)
2006		return err;
2007
2008	e1000_configure_msix(adapter);
2009
2010	return 0;
2011}
2012
2013/**
2014 * e1000_request_irq - initialize interrupts
 
2015 *
2016 * Attempts to configure interrupts using the best available
2017 * capabilities of the hardware and kernel.
2018 **/
2019static int e1000_request_irq(struct e1000_adapter *adapter)
2020{
2021	struct net_device *netdev = adapter->netdev;
2022	int err;
2023
2024	if (adapter->msix_entries) {
2025		err = e1000_request_msix(adapter);
2026		if (!err)
2027			return err;
2028		/* fall back to MSI */
2029		e1000e_reset_interrupt_capability(adapter);
2030		adapter->int_mode = E1000E_INT_MODE_MSI;
2031		e1000e_set_interrupt_capability(adapter);
2032	}
2033	if (adapter->flags & FLAG_MSI_ENABLED) {
2034		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035				  netdev->name, netdev);
2036		if (!err)
2037			return err;
2038
2039		/* fall back to legacy interrupt */
2040		e1000e_reset_interrupt_capability(adapter);
2041		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042	}
2043
2044	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045			  netdev->name, netdev);
2046	if (err)
2047		e_err("Unable to allocate interrupt, Error: %d\n", err);
2048
2049	return err;
2050}
2051
2052static void e1000_free_irq(struct e1000_adapter *adapter)
2053{
2054	struct net_device *netdev = adapter->netdev;
2055
2056	if (adapter->msix_entries) {
2057		int vector = 0;
2058
2059		free_irq(adapter->msix_entries[vector].vector, netdev);
2060		vector++;
2061
2062		free_irq(adapter->msix_entries[vector].vector, netdev);
2063		vector++;
2064
2065		/* Other Causes interrupt vector */
2066		free_irq(adapter->msix_entries[vector].vector, netdev);
2067		return;
2068	}
2069
2070	free_irq(adapter->pdev->irq, netdev);
2071}
2072
2073/**
2074 * e1000_irq_disable - Mask off interrupt generation on the NIC
 
2075 **/
2076static void e1000_irq_disable(struct e1000_adapter *adapter)
2077{
2078	struct e1000_hw *hw = &adapter->hw;
2079
2080	ew32(IMC, ~0);
2081	if (adapter->msix_entries)
2082		ew32(EIAC_82574, 0);
2083	e1e_flush();
2084
2085	if (adapter->msix_entries) {
2086		int i;
 
2087		for (i = 0; i < adapter->num_vectors; i++)
2088			synchronize_irq(adapter->msix_entries[i].vector);
2089	} else {
2090		synchronize_irq(adapter->pdev->irq);
2091	}
2092}
2093
2094/**
2095 * e1000_irq_enable - Enable default interrupt generation settings
 
2096 **/
2097static void e1000_irq_enable(struct e1000_adapter *adapter)
2098{
2099	struct e1000_hw *hw = &adapter->hw;
2100
2101	if (adapter->msix_entries) {
2102		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
 
 
 
2104	} else {
2105		ew32(IMS, IMS_ENABLE_MASK);
2106	}
2107	e1e_flush();
2108}
2109
2110/**
2111 * e1000e_get_hw_control - get control of the h/w from f/w
2112 * @adapter: address of board private structure
2113 *
2114 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 * For ASF and Pass Through versions of f/w this means that
2116 * the driver is loaded. For AMT version (only with 82573)
2117 * of the f/w this means that the network i/f is open.
2118 **/
2119void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120{
2121	struct e1000_hw *hw = &adapter->hw;
2122	u32 ctrl_ext;
2123	u32 swsm;
2124
2125	/* Let firmware know the driver has taken over */
2126	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2127		swsm = er32(SWSM);
2128		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130		ctrl_ext = er32(CTRL_EXT);
2131		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132	}
2133}
2134
2135/**
2136 * e1000e_release_hw_control - release control of the h/w to f/w
2137 * @adapter: address of board private structure
2138 *
2139 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 * For ASF and Pass Through versions of f/w this means that the
2141 * driver is no longer loaded. For AMT version (only with 82573) i
2142 * of the f/w this means that the network i/f is closed.
2143 *
2144 **/
2145void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146{
2147	struct e1000_hw *hw = &adapter->hw;
2148	u32 ctrl_ext;
2149	u32 swsm;
2150
2151	/* Let firmware taken over control of h/w */
2152	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2153		swsm = er32(SWSM);
2154		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156		ctrl_ext = er32(CTRL_EXT);
2157		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158	}
2159}
2160
2161/**
2162 * @e1000_alloc_ring - allocate memory for a ring structure
 
 
2163 **/
2164static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165				struct e1000_ring *ring)
2166{
2167	struct pci_dev *pdev = adapter->pdev;
2168
2169	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2170					GFP_KERNEL);
2171	if (!ring->desc)
2172		return -ENOMEM;
2173
2174	return 0;
2175}
2176
2177/**
2178 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179 * @tx_ring: Tx descriptor ring
2180 *
2181 * Return 0 on success, negative on failure
2182 **/
2183int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184{
2185	struct e1000_adapter *adapter = tx_ring->adapter;
2186	int err = -ENOMEM, size;
2187
2188	size = sizeof(struct e1000_buffer) * tx_ring->count;
2189	tx_ring->buffer_info = vzalloc(size);
2190	if (!tx_ring->buffer_info)
2191		goto err;
2192
2193	/* round up to nearest 4K */
2194	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195	tx_ring->size = ALIGN(tx_ring->size, 4096);
2196
2197	err = e1000_alloc_ring_dma(adapter, tx_ring);
2198	if (err)
2199		goto err;
2200
2201	tx_ring->next_to_use = 0;
2202	tx_ring->next_to_clean = 0;
2203
2204	return 0;
2205err:
2206	vfree(tx_ring->buffer_info);
2207	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208	return err;
2209}
2210
2211/**
2212 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213 * @rx_ring: Rx descriptor ring
2214 *
2215 * Returns 0 on success, negative on failure
2216 **/
2217int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218{
2219	struct e1000_adapter *adapter = rx_ring->adapter;
2220	struct e1000_buffer *buffer_info;
2221	int i, size, desc_len, err = -ENOMEM;
2222
2223	size = sizeof(struct e1000_buffer) * rx_ring->count;
2224	rx_ring->buffer_info = vzalloc(size);
2225	if (!rx_ring->buffer_info)
2226		goto err;
2227
2228	for (i = 0; i < rx_ring->count; i++) {
2229		buffer_info = &rx_ring->buffer_info[i];
2230		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231						sizeof(struct e1000_ps_page),
2232						GFP_KERNEL);
2233		if (!buffer_info->ps_pages)
2234			goto err_pages;
2235	}
2236
2237	desc_len = sizeof(union e1000_rx_desc_packet_split);
2238
2239	/* Round up to nearest 4K */
2240	rx_ring->size = rx_ring->count * desc_len;
2241	rx_ring->size = ALIGN(rx_ring->size, 4096);
2242
2243	err = e1000_alloc_ring_dma(adapter, rx_ring);
2244	if (err)
2245		goto err_pages;
2246
2247	rx_ring->next_to_clean = 0;
2248	rx_ring->next_to_use = 0;
2249	rx_ring->rx_skb_top = NULL;
2250
2251	return 0;
2252
2253err_pages:
2254	for (i = 0; i < rx_ring->count; i++) {
2255		buffer_info = &rx_ring->buffer_info[i];
2256		kfree(buffer_info->ps_pages);
2257	}
2258err:
2259	vfree(rx_ring->buffer_info);
2260	e_err("Unable to allocate memory for the receive descriptor ring\n");
2261	return err;
2262}
2263
2264/**
2265 * e1000_clean_tx_ring - Free Tx Buffers
2266 * @tx_ring: Tx descriptor ring
2267 **/
2268static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269{
2270	struct e1000_adapter *adapter = tx_ring->adapter;
2271	struct e1000_buffer *buffer_info;
2272	unsigned long size;
2273	unsigned int i;
2274
2275	for (i = 0; i < tx_ring->count; i++) {
2276		buffer_info = &tx_ring->buffer_info[i];
2277		e1000_put_txbuf(tx_ring, buffer_info);
2278	}
2279
2280	netdev_reset_queue(adapter->netdev);
2281	size = sizeof(struct e1000_buffer) * tx_ring->count;
2282	memset(tx_ring->buffer_info, 0, size);
2283
2284	memset(tx_ring->desc, 0, tx_ring->size);
2285
2286	tx_ring->next_to_use = 0;
2287	tx_ring->next_to_clean = 0;
2288
2289	writel(0, tx_ring->head);
2290	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291		e1000e_update_tdt_wa(tx_ring, 0);
2292	else
2293		writel(0, tx_ring->tail);
2294}
2295
2296/**
2297 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298 * @tx_ring: Tx descriptor ring
2299 *
2300 * Free all transmit software resources
2301 **/
2302void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303{
2304	struct e1000_adapter *adapter = tx_ring->adapter;
2305	struct pci_dev *pdev = adapter->pdev;
2306
2307	e1000_clean_tx_ring(tx_ring);
2308
2309	vfree(tx_ring->buffer_info);
2310	tx_ring->buffer_info = NULL;
2311
2312	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2313			  tx_ring->dma);
2314	tx_ring->desc = NULL;
2315}
2316
2317/**
2318 * e1000e_free_rx_resources - Free Rx Resources
2319 * @rx_ring: Rx descriptor ring
2320 *
2321 * Free all receive software resources
2322 **/
2323void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324{
2325	struct e1000_adapter *adapter = rx_ring->adapter;
2326	struct pci_dev *pdev = adapter->pdev;
2327	int i;
2328
2329	e1000_clean_rx_ring(rx_ring);
2330
2331	for (i = 0; i < rx_ring->count; i++)
2332		kfree(rx_ring->buffer_info[i].ps_pages);
2333
2334	vfree(rx_ring->buffer_info);
2335	rx_ring->buffer_info = NULL;
2336
2337	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2338			  rx_ring->dma);
2339	rx_ring->desc = NULL;
2340}
2341
2342/**
2343 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 * @adapter: pointer to adapter
2345 * @itr_setting: current adapter->itr
2346 * @packets: the number of packets during this measurement interval
2347 * @bytes: the number of bytes during this measurement interval
2348 *
2349 *      Stores a new ITR value based on packets and byte
2350 *      counts during the last interrupt.  The advantage of per interrupt
2351 *      computation is faster updates and more accurate ITR for the current
2352 *      traffic pattern.  Constants in this function were computed
2353 *      based on theoretical maximum wire speed and thresholds were set based
2354 *      on testing data as well as attempting to minimize response time
2355 *      while increasing bulk throughput.  This functionality is controlled
2356 *      by the InterruptThrottleRate module parameter.
2357 **/
2358static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359				     u16 itr_setting, int packets,
2360				     int bytes)
2361{
2362	unsigned int retval = itr_setting;
2363
2364	if (packets == 0)
2365		return itr_setting;
2366
2367	switch (itr_setting) {
2368	case lowest_latency:
2369		/* handle TSO and jumbo frames */
2370		if (bytes/packets > 8000)
2371			retval = bulk_latency;
2372		else if ((packets < 5) && (bytes > 512))
2373			retval = low_latency;
2374		break;
2375	case low_latency:  /* 50 usec aka 20000 ints/s */
2376		if (bytes > 10000) {
2377			/* this if handles the TSO accounting */
2378			if (bytes/packets > 8000)
2379				retval = bulk_latency;
2380			else if ((packets < 10) || ((bytes/packets) > 1200))
2381				retval = bulk_latency;
2382			else if ((packets > 35))
2383				retval = lowest_latency;
2384		} else if (bytes/packets > 2000) {
2385			retval = bulk_latency;
2386		} else if (packets <= 2 && bytes < 512) {
2387			retval = lowest_latency;
2388		}
2389		break;
2390	case bulk_latency: /* 250 usec aka 4000 ints/s */
2391		if (bytes > 25000) {
2392			if (packets > 35)
2393				retval = low_latency;
2394		} else if (bytes < 6000) {
2395			retval = low_latency;
2396		}
2397		break;
2398	}
2399
2400	return retval;
2401}
2402
2403static void e1000_set_itr(struct e1000_adapter *adapter)
2404{
2405	struct e1000_hw *hw = &adapter->hw;
2406	u16 current_itr;
2407	u32 new_itr = adapter->itr;
2408
2409	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410	if (adapter->link_speed != SPEED_1000) {
2411		current_itr = 0;
2412		new_itr = 4000;
2413		goto set_itr_now;
2414	}
2415
2416	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2417		new_itr = 0;
2418		goto set_itr_now;
2419	}
2420
2421	adapter->tx_itr = e1000_update_itr(adapter,
2422				    adapter->tx_itr,
2423				    adapter->total_tx_packets,
2424				    adapter->total_tx_bytes);
2425	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2426	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427		adapter->tx_itr = low_latency;
2428
2429	adapter->rx_itr = e1000_update_itr(adapter,
2430				    adapter->rx_itr,
2431				    adapter->total_rx_packets,
2432				    adapter->total_rx_bytes);
2433	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2434	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435		adapter->rx_itr = low_latency;
2436
2437	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2438
 
2439	switch (current_itr) {
2440	/* counts and packets in update_itr are dependent on these numbers */
2441	case lowest_latency:
2442		new_itr = 70000;
2443		break;
2444	case low_latency:
2445		new_itr = 20000; /* aka hwitr = ~200 */
2446		break;
2447	case bulk_latency:
2448		new_itr = 4000;
2449		break;
2450	default:
2451		break;
2452	}
2453
2454set_itr_now:
2455	if (new_itr != adapter->itr) {
2456		/*
2457		 * this attempts to bias the interrupt rate towards Bulk
2458		 * by adding intermediate steps when interrupt rate is
2459		 * increasing
2460		 */
2461		new_itr = new_itr > adapter->itr ?
2462			     min(adapter->itr + (new_itr >> 2), new_itr) :
2463			     new_itr;
2464		adapter->itr = new_itr;
2465		adapter->rx_ring->itr_val = new_itr;
2466		if (adapter->msix_entries)
2467			adapter->rx_ring->set_itr = 1;
2468		else
2469			if (new_itr)
2470				ew32(ITR, 1000000000 / (new_itr * 256));
2471			else
2472				ew32(ITR, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473	}
2474}
2475
2476/**
2477 * e1000_alloc_queues - Allocate memory for all rings
2478 * @adapter: board private structure to initialize
2479 **/
2480static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2481{
2482	int size = sizeof(struct e1000_ring);
2483
2484	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2485	if (!adapter->tx_ring)
2486		goto err;
2487	adapter->tx_ring->count = adapter->tx_ring_count;
2488	adapter->tx_ring->adapter = adapter;
2489
2490	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2491	if (!adapter->rx_ring)
2492		goto err;
2493	adapter->rx_ring->count = adapter->rx_ring_count;
2494	adapter->rx_ring->adapter = adapter;
2495
2496	return 0;
2497err:
2498	e_err("Unable to allocate memory for queues\n");
2499	kfree(adapter->rx_ring);
2500	kfree(adapter->tx_ring);
2501	return -ENOMEM;
2502}
2503
2504/**
2505 * e1000e_poll - NAPI Rx polling callback
2506 * @napi: struct associated with this polling callback
2507 * @weight: number of packets driver is allowed to process this poll
2508 **/
2509static int e1000e_poll(struct napi_struct *napi, int weight)
2510{
2511	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2512						     napi);
2513	struct e1000_hw *hw = &adapter->hw;
2514	struct net_device *poll_dev = adapter->netdev;
2515	int tx_cleaned = 1, work_done = 0;
2516
2517	adapter = netdev_priv(poll_dev);
2518
2519	if (!adapter->msix_entries ||
2520	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2521		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2522
2523	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2524
2525	if (!tx_cleaned)
2526		work_done = weight;
2527
2528	/* If weight not fully consumed, exit the polling mode */
2529	if (work_done < weight) {
 
 
2530		if (adapter->itr_setting & 3)
2531			e1000_set_itr(adapter);
2532		napi_complete(napi);
2533		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2534			if (adapter->msix_entries)
2535				ew32(IMS, adapter->rx_ring->ims_val);
2536			else
2537				e1000_irq_enable(adapter);
2538		}
2539	}
2540
2541	return work_done;
2542}
2543
2544static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 
2545{
2546	struct e1000_adapter *adapter = netdev_priv(netdev);
2547	struct e1000_hw *hw = &adapter->hw;
2548	u32 vfta, index;
2549
2550	/* don't update vlan cookie if already programmed */
2551	if ((adapter->hw.mng_cookie.status &
2552	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2553	    (vid == adapter->mng_vlan_id))
2554		return 0;
2555
2556	/* add VID to filter table */
2557	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2558		index = (vid >> 5) & 0x7F;
2559		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2560		vfta |= (1 << (vid & 0x1F));
2561		hw->mac.ops.write_vfta(hw, index, vfta);
2562	}
2563
2564	set_bit(vid, adapter->active_vlans);
2565
2566	return 0;
2567}
2568
2569static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 
2570{
2571	struct e1000_adapter *adapter = netdev_priv(netdev);
2572	struct e1000_hw *hw = &adapter->hw;
2573	u32 vfta, index;
2574
2575	if ((adapter->hw.mng_cookie.status &
2576	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577	    (vid == adapter->mng_vlan_id)) {
2578		/* release control to f/w */
2579		e1000e_release_hw_control(adapter);
2580		return 0;
2581	}
2582
2583	/* remove VID from filter table */
2584	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2585		index = (vid >> 5) & 0x7F;
2586		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2587		vfta &= ~(1 << (vid & 0x1F));
2588		hw->mac.ops.write_vfta(hw, index, vfta);
2589	}
2590
2591	clear_bit(vid, adapter->active_vlans);
2592
2593	return 0;
2594}
2595
2596/**
2597 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2598 * @adapter: board private structure to initialize
2599 **/
2600static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2601{
2602	struct net_device *netdev = adapter->netdev;
2603	struct e1000_hw *hw = &adapter->hw;
2604	u32 rctl;
2605
2606	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2607		/* disable VLAN receive filtering */
2608		rctl = er32(RCTL);
2609		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2610		ew32(RCTL, rctl);
2611
2612		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2613			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 
2614			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2615		}
2616	}
2617}
2618
2619/**
2620 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2621 * @adapter: board private structure to initialize
2622 **/
2623static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2624{
2625	struct e1000_hw *hw = &adapter->hw;
2626	u32 rctl;
2627
2628	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2629		/* enable VLAN receive filtering */
2630		rctl = er32(RCTL);
2631		rctl |= E1000_RCTL_VFE;
2632		rctl &= ~E1000_RCTL_CFIEN;
2633		ew32(RCTL, rctl);
2634	}
2635}
2636
2637/**
2638 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2639 * @adapter: board private structure to initialize
2640 **/
2641static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2642{
2643	struct e1000_hw *hw = &adapter->hw;
2644	u32 ctrl;
2645
2646	/* disable VLAN tag insert/strip */
2647	ctrl = er32(CTRL);
2648	ctrl &= ~E1000_CTRL_VME;
2649	ew32(CTRL, ctrl);
2650}
2651
2652/**
2653 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2655 **/
2656static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2657{
2658	struct e1000_hw *hw = &adapter->hw;
2659	u32 ctrl;
2660
2661	/* enable VLAN tag insert/strip */
2662	ctrl = er32(CTRL);
2663	ctrl |= E1000_CTRL_VME;
2664	ew32(CTRL, ctrl);
2665}
2666
2667static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2668{
2669	struct net_device *netdev = adapter->netdev;
2670	u16 vid = adapter->hw.mng_cookie.vlan_id;
2671	u16 old_vid = adapter->mng_vlan_id;
2672
2673	if (adapter->hw.mng_cookie.status &
2674	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2675		e1000_vlan_rx_add_vid(netdev, vid);
2676		adapter->mng_vlan_id = vid;
2677	}
2678
2679	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2680		e1000_vlan_rx_kill_vid(netdev, old_vid);
2681}
2682
2683static void e1000_restore_vlan(struct e1000_adapter *adapter)
2684{
2685	u16 vid;
2686
2687	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2688
2689	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2690		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2691}
2692
2693static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2694{
2695	struct e1000_hw *hw = &adapter->hw;
2696	u32 manc, manc2h, mdef, i, j;
2697
2698	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2699		return;
2700
2701	manc = er32(MANC);
2702
2703	/*
2704	 * enable receiving management packets to the host. this will probably
2705	 * generate destination unreachable messages from the host OS, but
2706	 * the packets will be handled on SMBUS
2707	 */
2708	manc |= E1000_MANC_EN_MNG2HOST;
2709	manc2h = er32(MANC2H);
2710
2711	switch (hw->mac.type) {
2712	default:
2713		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2714		break;
2715	case e1000_82574:
2716	case e1000_82583:
2717		/*
2718		 * Check if IPMI pass-through decision filter already exists;
2719		 * if so, enable it.
2720		 */
2721		for (i = 0, j = 0; i < 8; i++) {
2722			mdef = er32(MDEF(i));
2723
2724			/* Ignore filters with anything other than IPMI ports */
2725			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2726				continue;
2727
2728			/* Enable this decision filter in MANC2H */
2729			if (mdef)
2730				manc2h |= (1 << i);
2731
2732			j |= mdef;
2733		}
2734
2735		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2736			break;
2737
2738		/* Create new decision filter in an empty filter */
2739		for (i = 0, j = 0; i < 8; i++)
2740			if (er32(MDEF(i)) == 0) {
2741				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2742					       E1000_MDEF_PORT_664));
2743				manc2h |= (1 << 1);
2744				j++;
2745				break;
2746			}
2747
2748		if (!j)
2749			e_warn("Unable to create IPMI pass-through filter\n");
2750		break;
2751	}
2752
2753	ew32(MANC2H, manc2h);
2754	ew32(MANC, manc);
2755}
2756
2757/**
2758 * e1000_configure_tx - Configure Transmit Unit after Reset
2759 * @adapter: board private structure
2760 *
2761 * Configure the Tx unit of the MAC after a reset.
2762 **/
2763static void e1000_configure_tx(struct e1000_adapter *adapter)
2764{
2765	struct e1000_hw *hw = &adapter->hw;
2766	struct e1000_ring *tx_ring = adapter->tx_ring;
2767	u64 tdba;
2768	u32 tdlen, tarc;
2769
2770	/* Setup the HW Tx Head and Tail descriptor pointers */
2771	tdba = tx_ring->dma;
2772	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2773	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2774	ew32(TDBAH(0), (tdba >> 32));
2775	ew32(TDLEN(0), tdlen);
2776	ew32(TDH(0), 0);
2777	ew32(TDT(0), 0);
2778	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2779	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2780
 
 
 
2781	/* Set the Tx Interrupt Delay register */
2782	ew32(TIDV, adapter->tx_int_delay);
2783	/* Tx irq moderation */
2784	ew32(TADV, adapter->tx_abs_int_delay);
2785
2786	if (adapter->flags2 & FLAG2_DMA_BURST) {
2787		u32 txdctl = er32(TXDCTL(0));
 
2788		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2789			    E1000_TXDCTL_WTHRESH);
2790		/*
2791		 * set up some performance related parameters to encourage the
2792		 * hardware to use the bus more efficiently in bursts, depends
2793		 * on the tx_int_delay to be enabled,
2794		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2795		 * hthresh = 1 ==> prefetch when one or more available
2796		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2797		 * BEWARE: this seems to work but should be considered first if
2798		 * there are Tx hangs or other Tx related bugs
2799		 */
2800		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2801		ew32(TXDCTL(0), txdctl);
2802	}
2803	/* erratum work around: set txdctl the same for both queues */
2804	ew32(TXDCTL(1), er32(TXDCTL(0)));
2805
 
 
 
 
 
 
2806	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807		tarc = er32(TARC(0));
2808		/*
2809		 * set the speed mode bit, we'll clear it if we're not at
2810		 * gigabit link later
2811		 */
2812#define SPEED_MODE_BIT (1 << 21)
2813		tarc |= SPEED_MODE_BIT;
2814		ew32(TARC(0), tarc);
2815	}
2816
2817	/* errata: program both queues to unweighted RR */
2818	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819		tarc = er32(TARC(0));
2820		tarc |= 1;
2821		ew32(TARC(0), tarc);
2822		tarc = er32(TARC(1));
2823		tarc |= 1;
2824		ew32(TARC(1), tarc);
2825	}
2826
2827	/* Setup Transmit Descriptor Settings for eop descriptor */
2828	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829
2830	/* only set IDE if we are delaying interrupts using the timers */
2831	if (adapter->tx_int_delay)
2832		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833
2834	/* enable Report Status bit */
2835	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836
 
 
2837	hw->mac.ops.config_collision_dist(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
 
 
 
2840/**
2841 * e1000_setup_rctl - configure the receive control registers
2842 * @adapter: Board private structure
2843 **/
2844#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2845			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2846static void e1000_setup_rctl(struct e1000_adapter *adapter)
2847{
2848	struct e1000_hw *hw = &adapter->hw;
2849	u32 rctl, rfctl;
2850	u32 pages = 0;
2851
2852	/* Workaround Si errata on PCHx - configure jumbo frame flow */
 
 
 
2853	if (hw->mac.type >= e1000_pch2lan) {
2854		s32 ret_val;
2855
2856		if (adapter->netdev->mtu > ETH_DATA_LEN)
2857			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2858		else
2859			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2860
2861		if (ret_val)
2862			e_dbg("failed to enable jumbo frame workaround mode\n");
2863	}
2864
2865	/* Program MC offset vector base */
2866	rctl = er32(RCTL);
2867	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2868	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2869		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2870		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2871
2872	/* Do not Store bad packets */
2873	rctl &= ~E1000_RCTL_SBP;
2874
2875	/* Enable Long Packet receive */
2876	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2877		rctl &= ~E1000_RCTL_LPE;
2878	else
2879		rctl |= E1000_RCTL_LPE;
2880
2881	/* Some systems expect that the CRC is included in SMBUS traffic. The
2882	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2883	 * host memory when this is enabled
2884	 */
2885	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2886		rctl |= E1000_RCTL_SECRC;
2887
2888	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2889	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2890		u16 phy_data;
2891
2892		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2893		phy_data &= 0xfff8;
2894		phy_data |= (1 << 2);
2895		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2896
2897		e1e_rphy(hw, 22, &phy_data);
2898		phy_data &= 0x0fff;
2899		phy_data |= (1 << 14);
2900		e1e_wphy(hw, 0x10, 0x2823);
2901		e1e_wphy(hw, 0x11, 0x0003);
2902		e1e_wphy(hw, 22, phy_data);
2903	}
2904
2905	/* Setup buffer sizes */
2906	rctl &= ~E1000_RCTL_SZ_4096;
2907	rctl |= E1000_RCTL_BSEX;
2908	switch (adapter->rx_buffer_len) {
2909	case 2048:
2910	default:
2911		rctl |= E1000_RCTL_SZ_2048;
2912		rctl &= ~E1000_RCTL_BSEX;
2913		break;
2914	case 4096:
2915		rctl |= E1000_RCTL_SZ_4096;
2916		break;
2917	case 8192:
2918		rctl |= E1000_RCTL_SZ_8192;
2919		break;
2920	case 16384:
2921		rctl |= E1000_RCTL_SZ_16384;
2922		break;
2923	}
2924
2925	/* Enable Extended Status in all Receive Descriptors */
2926	rfctl = er32(RFCTL);
2927	rfctl |= E1000_RFCTL_EXTEN;
2928	ew32(RFCTL, rfctl);
2929
2930	/*
2931	 * 82571 and greater support packet-split where the protocol
2932	 * header is placed in skb->data and the packet data is
2933	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2934	 * In the case of a non-split, skb->data is linearly filled,
2935	 * followed by the page buffers.  Therefore, skb->data is
2936	 * sized to hold the largest protocol header.
2937	 *
2938	 * allocations using alloc_page take too long for regular MTU
2939	 * so only enable packet split for jumbo frames
2940	 *
2941	 * Using pages when the page size is greater than 16k wastes
2942	 * a lot of memory, since we allocate 3 pages at all times
2943	 * per packet.
2944	 */
2945	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2946	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2947		adapter->rx_ps_pages = pages;
2948	else
2949		adapter->rx_ps_pages = 0;
2950
2951	if (adapter->rx_ps_pages) {
2952		u32 psrctl = 0;
2953
2954		/* Enable Packet split descriptors */
2955		rctl |= E1000_RCTL_DTYP_PS;
2956
2957		psrctl |= adapter->rx_ps_bsize0 >>
2958			E1000_PSRCTL_BSIZE0_SHIFT;
2959
2960		switch (adapter->rx_ps_pages) {
2961		case 3:
2962			psrctl |= PAGE_SIZE <<
2963				E1000_PSRCTL_BSIZE3_SHIFT;
2964		case 2:
2965			psrctl |= PAGE_SIZE <<
2966				E1000_PSRCTL_BSIZE2_SHIFT;
2967		case 1:
2968			psrctl |= PAGE_SIZE >>
2969				E1000_PSRCTL_BSIZE1_SHIFT;
2970			break;
2971		}
2972
2973		ew32(PSRCTL, psrctl);
2974	}
2975
2976	/* This is useful for sniffing bad packets. */
2977	if (adapter->netdev->features & NETIF_F_RXALL) {
2978		/* UPE and MPE will be handled by normal PROMISC logic
2979		 * in e1000e_set_rx_mode */
2980		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983
2984		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985			  E1000_RCTL_DPF | /* Allow filtered pause */
2986			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 
2987		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988		 * and that breaks VLANs.
2989		 */
2990	}
2991
2992	ew32(RCTL, rctl);
2993	/* just started the receive unit, no need to restart */
2994	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2995}
2996
2997/**
2998 * e1000_configure_rx - Configure Receive Unit after Reset
2999 * @adapter: board private structure
3000 *
3001 * Configure the Rx unit of the MAC after a reset.
3002 **/
3003static void e1000_configure_rx(struct e1000_adapter *adapter)
3004{
3005	struct e1000_hw *hw = &adapter->hw;
3006	struct e1000_ring *rx_ring = adapter->rx_ring;
3007	u64 rdba;
3008	u32 rdlen, rctl, rxcsum, ctrl_ext;
3009
3010	if (adapter->rx_ps_pages) {
3011		/* this is a 32 byte descriptor */
3012		rdlen = rx_ring->count *
3013		    sizeof(union e1000_rx_desc_packet_split);
3014		adapter->clean_rx = e1000_clean_rx_irq_ps;
3015		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3016	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3017		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3018		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3019		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3020	} else {
3021		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3022		adapter->clean_rx = e1000_clean_rx_irq;
3023		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3024	}
3025
3026	/* disable receives while setting up the descriptors */
3027	rctl = er32(RCTL);
3028	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3029		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3030	e1e_flush();
3031	usleep_range(10000, 20000);
3032
3033	if (adapter->flags2 & FLAG2_DMA_BURST) {
3034		/*
3035		 * set the writeback threshold (only takes effect if the RDTR
3036		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3037		 * enable prefetching of 0x20 Rx descriptors
3038		 * granularity = 01
3039		 * wthresh = 04,
3040		 * hthresh = 04,
3041		 * pthresh = 0x20
3042		 */
3043		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3044		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3045
3046		/*
3047		 * override the delay timers for enabling bursting, only if
3048		 * the value was not set by the user via module options
3049		 */
3050		if (adapter->rx_int_delay == DEFAULT_RDTR)
3051			adapter->rx_int_delay = BURST_RDTR;
3052		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3053			adapter->rx_abs_int_delay = BURST_RADV;
3054	}
3055
3056	/* set the Receive Delay Timer Register */
3057	ew32(RDTR, adapter->rx_int_delay);
3058
3059	/* irq moderation */
3060	ew32(RADV, adapter->rx_abs_int_delay);
3061	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3062		ew32(ITR, 1000000000 / (adapter->itr * 256));
3063
3064	ctrl_ext = er32(CTRL_EXT);
3065	/* Auto-Mask interrupts upon ICR access */
3066	ctrl_ext |= E1000_CTRL_EXT_IAME;
3067	ew32(IAM, 0xffffffff);
3068	ew32(CTRL_EXT, ctrl_ext);
3069	e1e_flush();
3070
3071	/*
3072	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3073	 * the Base and Length of the Rx Descriptor Ring
3074	 */
3075	rdba = rx_ring->dma;
3076	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3077	ew32(RDBAH(0), (rdba >> 32));
3078	ew32(RDLEN(0), rdlen);
3079	ew32(RDH(0), 0);
3080	ew32(RDT(0), 0);
3081	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3082	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3083
 
 
 
3084	/* Enable Receive Checksum Offload for TCP and UDP */
3085	rxcsum = er32(RXCSUM);
3086	if (adapter->netdev->features & NETIF_F_RXCSUM)
3087		rxcsum |= E1000_RXCSUM_TUOFL;
3088	else
3089		rxcsum &= ~E1000_RXCSUM_TUOFL;
3090	ew32(RXCSUM, rxcsum);
3091
3092	if (adapter->hw.mac.type == e1000_pch2lan) {
3093		/*
3094		 * With jumbo frames, excessive C-state transition
3095		 * latencies result in dropped transactions.
3096		 */
3097		if (adapter->netdev->mtu > ETH_DATA_LEN) {
 
 
 
3098			u32 rxdctl = er32(RXDCTL(0));
3099			ew32(RXDCTL(0), rxdctl | 0x3);
3100			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3101		} else {
3102			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3103					      PM_QOS_DEFAULT_VALUE);
3104		}
 
 
 
 
 
 
 
3105	}
3106
3107	/* Enable Receives */
3108	ew32(RCTL, rctl);
3109}
3110
3111/**
3112 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3113 * @netdev: network interface device structure
3114 *
3115 * Writes multicast address list to the MTA hash table.
3116 * Returns: -ENOMEM on failure
3117 *                0 on no addresses written
3118 *                X on writing X addresses to MTA
3119 */
3120static int e1000e_write_mc_addr_list(struct net_device *netdev)
3121{
3122	struct e1000_adapter *adapter = netdev_priv(netdev);
3123	struct e1000_hw *hw = &adapter->hw;
3124	struct netdev_hw_addr *ha;
3125	u8 *mta_list;
3126	int i;
3127
3128	if (netdev_mc_empty(netdev)) {
3129		/* nothing to program, so clear mc list */
3130		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3131		return 0;
3132	}
3133
3134	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3135	if (!mta_list)
3136		return -ENOMEM;
3137
3138	/* update_mc_addr_list expects a packed array of only addresses. */
3139	i = 0;
3140	netdev_for_each_mc_addr(ha, netdev)
3141		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3142
3143	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3144	kfree(mta_list);
3145
3146	return netdev_mc_count(netdev);
3147}
3148
3149/**
3150 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3151 * @netdev: network interface device structure
3152 *
3153 * Writes unicast address list to the RAR table.
3154 * Returns: -ENOMEM on failure/insufficient address space
3155 *                0 on no addresses written
3156 *                X on writing X addresses to the RAR table
3157 **/
3158static int e1000e_write_uc_addr_list(struct net_device *netdev)
3159{
3160	struct e1000_adapter *adapter = netdev_priv(netdev);
3161	struct e1000_hw *hw = &adapter->hw;
3162	unsigned int rar_entries = hw->mac.rar_entry_count;
3163	int count = 0;
3164
 
 
3165	/* save a rar entry for our hardware address */
3166	rar_entries--;
3167
3168	/* save a rar entry for the LAA workaround */
3169	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3170		rar_entries--;
3171
3172	/* return ENOMEM indicating insufficient memory for addresses */
3173	if (netdev_uc_count(netdev) > rar_entries)
3174		return -ENOMEM;
3175
3176	if (!netdev_uc_empty(netdev) && rar_entries) {
3177		struct netdev_hw_addr *ha;
3178
3179		/*
3180		 * write the addresses in reverse order to avoid write
3181		 * combining
3182		 */
3183		netdev_for_each_uc_addr(ha, netdev) {
 
 
3184			if (!rar_entries)
3185				break;
3186			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
 
 
3187			count++;
3188		}
3189	}
3190
3191	/* zero out the remaining RAR entries not used above */
3192	for (; rar_entries > 0; rar_entries--) {
3193		ew32(RAH(rar_entries), 0);
3194		ew32(RAL(rar_entries), 0);
3195	}
3196	e1e_flush();
3197
3198	return count;
3199}
3200
3201/**
3202 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3203 * @netdev: network interface device structure
3204 *
3205 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3206 * address list or the network interface flags are updated.  This routine is
3207 * responsible for configuring the hardware for proper unicast, multicast,
3208 * promiscuous mode, and all-multi behavior.
3209 **/
3210static void e1000e_set_rx_mode(struct net_device *netdev)
3211{
3212	struct e1000_adapter *adapter = netdev_priv(netdev);
3213	struct e1000_hw *hw = &adapter->hw;
3214	u32 rctl;
3215
 
 
 
3216	/* Check for Promiscuous and All Multicast modes */
3217	rctl = er32(RCTL);
3218
3219	/* clear the affected bits */
3220	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3221
3222	if (netdev->flags & IFF_PROMISC) {
3223		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3224		/* Do not hardware filter VLANs in promisc mode */
3225		e1000e_vlan_filter_disable(adapter);
3226	} else {
3227		int count;
3228
3229		if (netdev->flags & IFF_ALLMULTI) {
3230			rctl |= E1000_RCTL_MPE;
3231		} else {
3232			/*
3233			 * Write addresses to the MTA, if the attempt fails
3234			 * then we should just turn on promiscuous mode so
3235			 * that we can at least receive multicast traffic
3236			 */
3237			count = e1000e_write_mc_addr_list(netdev);
3238			if (count < 0)
3239				rctl |= E1000_RCTL_MPE;
3240		}
3241		e1000e_vlan_filter_enable(adapter);
3242		/*
3243		 * Write addresses to available RAR registers, if there is not
3244		 * sufficient space to store all the addresses then enable
3245		 * unicast promiscuous mode
3246		 */
3247		count = e1000e_write_uc_addr_list(netdev);
3248		if (count < 0)
3249			rctl |= E1000_RCTL_UPE;
3250	}
3251
3252	ew32(RCTL, rctl);
3253
3254	if (netdev->features & NETIF_F_HW_VLAN_RX)
3255		e1000e_vlan_strip_enable(adapter);
3256	else
3257		e1000e_vlan_strip_disable(adapter);
3258}
3259
3260static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3261{
3262	struct e1000_hw *hw = &adapter->hw;
3263	u32 mrqc, rxcsum;
 
3264	int i;
3265	static const u32 rsskey[10] = {
3266		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3267		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3268	};
3269
3270	/* Fill out hash function seed */
3271	for (i = 0; i < 10; i++)
3272		ew32(RSSRK(i), rsskey[i]);
3273
3274	/* Direct all traffic to queue 0 */
3275	for (i = 0; i < 32; i++)
3276		ew32(RETA(i), 0);
3277
3278	/*
3279	 * Disable raw packet checksumming so that RSS hash is placed in
3280	 * descriptor on writeback.
3281	 */
3282	rxcsum = er32(RXCSUM);
3283	rxcsum |= E1000_RXCSUM_PCSD;
3284
3285	ew32(RXCSUM, rxcsum);
3286
3287	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3288		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3289		E1000_MRQC_RSS_FIELD_IPV6 |
3290		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3291		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3292
3293	ew32(MRQC, mrqc);
3294}
3295
3296/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297 * e1000_configure - configure the hardware for Rx and Tx
3298 * @adapter: private board structure
3299 **/
3300static void e1000_configure(struct e1000_adapter *adapter)
3301{
3302	struct e1000_ring *rx_ring = adapter->rx_ring;
3303
3304	e1000e_set_rx_mode(adapter->netdev);
3305
3306	e1000_restore_vlan(adapter);
3307	e1000_init_manageability_pt(adapter);
3308
3309	e1000_configure_tx(adapter);
3310
3311	if (adapter->netdev->features & NETIF_F_RXHASH)
3312		e1000e_setup_rss_hash(adapter);
3313	e1000_setup_rctl(adapter);
3314	e1000_configure_rx(adapter);
3315	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3316}
3317
3318/**
3319 * e1000e_power_up_phy - restore link in case the phy was powered down
3320 * @adapter: address of board private structure
3321 *
3322 * The phy may be powered down to save power and turn off link when the
3323 * driver is unloaded and wake on lan is not enabled (among others)
3324 * *** this routine MUST be followed by a call to e1000e_reset ***
3325 **/
3326void e1000e_power_up_phy(struct e1000_adapter *adapter)
3327{
3328	if (adapter->hw.phy.ops.power_up)
3329		adapter->hw.phy.ops.power_up(&adapter->hw);
3330
3331	adapter->hw.mac.ops.setup_link(&adapter->hw);
3332}
3333
3334/**
3335 * e1000_power_down_phy - Power down the PHY
 
3336 *
3337 * Power down the PHY so no link is implied when interface is down.
3338 * The PHY cannot be powered down if management or WoL is active.
3339 */
3340static void e1000_power_down_phy(struct e1000_adapter *adapter)
3341{
3342	/* WoL is enabled */
3343	if (adapter->wol)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3344		return;
3345
3346	if (adapter->hw.phy.ops.power_down)
3347		adapter->hw.phy.ops.power_down(&adapter->hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3348}
3349
3350/**
3351 * e1000e_reset - bring the hardware into a known good state
 
3352 *
3353 * This function boots the hardware and enables some settings that
3354 * require a configuration cycle of the hardware - those cannot be
3355 * set/changed during runtime. After reset the device needs to be
3356 * properly configured for Rx, Tx etc.
3357 */
3358void e1000e_reset(struct e1000_adapter *adapter)
3359{
3360	struct e1000_mac_info *mac = &adapter->hw.mac;
3361	struct e1000_fc_info *fc = &adapter->hw.fc;
3362	struct e1000_hw *hw = &adapter->hw;
3363	u32 tx_space, min_tx_space, min_rx_space;
3364	u32 pba = adapter->pba;
3365	u16 hwm;
3366
3367	/* reset Packet Buffer Allocation to default */
3368	ew32(PBA, pba);
3369
3370	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3371		/*
3372		 * To maintain wire speed transmits, the Tx FIFO should be
3373		 * large enough to accommodate two full transmit packets,
3374		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3375		 * the Rx FIFO should be large enough to accommodate at least
3376		 * one full receive packet and is similarly rounded up and
3377		 * expressed in KB.
3378		 */
3379		pba = er32(PBA);
3380		/* upper 16 bits has Tx packet buffer allocation size in KB */
3381		tx_space = pba >> 16;
3382		/* lower 16 bits has Rx packet buffer allocation size in KB */
3383		pba &= 0xffff;
3384		/*
3385		 * the Tx fifo also stores 16 bytes of information about the Tx
3386		 * but don't include ethernet FCS because hardware appends it
3387		 */
3388		min_tx_space = (adapter->max_frame_size +
3389				sizeof(struct e1000_tx_desc) -
3390				ETH_FCS_LEN) * 2;
3391		min_tx_space = ALIGN(min_tx_space, 1024);
3392		min_tx_space >>= 10;
3393		/* software strips receive CRC, so leave room for it */
3394		min_rx_space = adapter->max_frame_size;
3395		min_rx_space = ALIGN(min_rx_space, 1024);
3396		min_rx_space >>= 10;
3397
3398		/*
3399		 * If current Tx allocation is less than the min Tx FIFO size,
3400		 * and the min Tx FIFO size is less than the current Rx FIFO
3401		 * allocation, take space away from current Rx allocation
3402		 */
3403		if ((tx_space < min_tx_space) &&
3404		    ((min_tx_space - tx_space) < pba)) {
3405			pba -= min_tx_space - tx_space;
3406
3407			/*
3408			 * if short on Rx space, Rx wins and must trump Tx
3409			 * adjustment or use Early Receive if available
3410			 */
3411			if (pba < min_rx_space)
3412				pba = min_rx_space;
3413		}
3414
3415		ew32(PBA, pba);
3416	}
3417
3418	/*
3419	 * flow control settings
3420	 *
3421	 * The high water mark must be low enough to fit one full frame
3422	 * (or the size used for early receive) above it in the Rx FIFO.
3423	 * Set it to the lower of:
3424	 * - 90% of the Rx FIFO size, and
3425	 * - the full Rx FIFO size minus one full frame
3426	 */
3427	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3428		fc->pause_time = 0xFFFF;
3429	else
3430		fc->pause_time = E1000_FC_PAUSE_TIME;
3431	fc->send_xon = true;
3432	fc->current_mode = fc->requested_mode;
3433
3434	switch (hw->mac.type) {
3435	case e1000_ich9lan:
3436	case e1000_ich10lan:
3437		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3438			pba = 14;
3439			ew32(PBA, pba);
3440			fc->high_water = 0x2800;
3441			fc->low_water = fc->high_water - 8;
3442			break;
3443		}
3444		/* fall-through */
3445	default:
3446		hwm = min(((pba << 10) * 9 / 10),
3447			  ((pba << 10) - adapter->max_frame_size));
3448
3449		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3450		fc->low_water = fc->high_water - 8;
3451		break;
3452	case e1000_pchlan:
3453		/*
3454		 * Workaround PCH LOM adapter hangs with certain network
3455		 * loads.  If hangs persist, try disabling Tx flow control.
3456		 */
3457		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3458			fc->high_water = 0x3500;
3459			fc->low_water  = 0x1500;
3460		} else {
3461			fc->high_water = 0x5000;
3462			fc->low_water  = 0x3000;
3463		}
3464		fc->refresh_time = 0x1000;
3465		break;
3466	case e1000_pch2lan:
3467	case e1000_pch_lpt:
3468		fc->high_water = 0x05C20;
3469		fc->low_water = 0x05048;
3470		fc->pause_time = 0x0650;
3471		fc->refresh_time = 0x0400;
3472		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3473			pba = 14;
3474			ew32(PBA, pba);
 
 
 
 
 
 
 
 
3475		}
 
 
 
 
 
3476		break;
3477	}
3478
3479	/*
3480	 * Alignment of Tx data is on an arbitrary byte boundary with the
3481	 * maximum size per Tx descriptor limited only to the transmit
3482	 * allocation of the packet buffer minus 96 bytes with an upper
3483	 * limit of 24KB due to receive synchronization limitations.
3484	 */
3485	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3486				       24 << 10);
3487
3488	/*
3489	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3490	 * fit in receive buffer.
3491	 */
3492	if (adapter->itr_setting & 0x3) {
3493		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3494			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3495				dev_info(&adapter->pdev->dev,
3496					"Interrupt Throttle Rate turned off\n");
3497				adapter->flags2 |= FLAG2_DISABLE_AIM;
3498				ew32(ITR, 0);
3499			}
3500		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3501			dev_info(&adapter->pdev->dev,
3502				 "Interrupt Throttle Rate turned on\n");
3503			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3504			adapter->itr = 20000;
3505			ew32(ITR, 1000000000 / (adapter->itr * 256));
3506		}
3507	}
3508
 
 
3509	/* Allow time for pending master requests to run */
3510	mac->ops.reset_hw(hw);
3511
3512	/*
3513	 * For parts with AMT enabled, let the firmware know
3514	 * that the network interface is in control
3515	 */
3516	if (adapter->flags & FLAG_HAS_AMT)
3517		e1000e_get_hw_control(adapter);
3518
3519	ew32(WUC, 0);
3520
3521	if (mac->ops.init_hw(hw))
3522		e_err("Hardware Error\n");
3523
3524	e1000_update_mng_vlan(adapter);
3525
3526	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3527	ew32(VET, ETH_P_8021Q);
3528
3529	e1000e_reset_adaptive(hw);
3530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531	if (!netif_running(adapter->netdev) &&
3532	    !test_bit(__E1000_TESTING, &adapter->state)) {
3533		e1000_power_down_phy(adapter);
3534		return;
3535	}
3536
3537	e1000_get_phy_info(hw);
3538
3539	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3540	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3541		u16 phy_data = 0;
3542		/*
3543		 * speed up time to link by disabling smart power down, ignore
3544		 * the return value of this function because there is nothing
3545		 * different we would do if it failed
3546		 */
3547		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3548		phy_data &= ~IGP02E1000_PM_SPD;
3549		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3550	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3551}
3552
3553int e1000e_up(struct e1000_adapter *adapter)
 
 
 
 
 
 
3554{
3555	struct e1000_hw *hw = &adapter->hw;
3556
 
 
 
 
 
 
 
 
3557	/* hardware has been reset, we need to reload some things */
3558	e1000_configure(adapter);
3559
3560	clear_bit(__E1000_DOWN, &adapter->state);
3561
3562	if (adapter->msix_entries)
3563		e1000_configure_msix(adapter);
3564	e1000_irq_enable(adapter);
3565
3566	netif_start_queue(adapter->netdev);
3567
3568	/* fire a link change interrupt to start the watchdog */
3569	if (adapter->msix_entries)
3570		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3571	else
3572		ew32(ICS, E1000_ICS_LSC);
3573
3574	return 0;
3575}
3576
3577static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3578{
3579	struct e1000_hw *hw = &adapter->hw;
3580
3581	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3582		return;
3583
3584	/* flush pending descriptor writebacks to memory */
3585	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3586	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3587
3588	/* execute the writes immediately */
3589	e1e_flush();
3590
3591	/*
3592	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3593	 * write is successful
3594	 */
3595	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3596	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3597
3598	/* execute the writes immediately */
3599	e1e_flush();
3600}
3601
3602static void e1000e_update_stats(struct e1000_adapter *adapter);
3603
3604void e1000e_down(struct e1000_adapter *adapter)
 
 
 
 
 
3605{
3606	struct net_device *netdev = adapter->netdev;
3607	struct e1000_hw *hw = &adapter->hw;
3608	u32 tctl, rctl;
3609
3610	/*
3611	 * signal that we're down so the interrupt handler does not
3612	 * reschedule our watchdog timer
3613	 */
3614	set_bit(__E1000_DOWN, &adapter->state);
3615
 
 
3616	/* disable receives in the hardware */
3617	rctl = er32(RCTL);
3618	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3619		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3620	/* flush and sleep below */
3621
3622	netif_stop_queue(netdev);
3623
3624	/* disable transmits in the hardware */
3625	tctl = er32(TCTL);
3626	tctl &= ~E1000_TCTL_EN;
3627	ew32(TCTL, tctl);
3628
3629	/* flush both disables and wait for them to finish */
3630	e1e_flush();
3631	usleep_range(10000, 20000);
3632
3633	e1000_irq_disable(adapter);
3634
 
 
3635	del_timer_sync(&adapter->watchdog_timer);
3636	del_timer_sync(&adapter->phy_info_timer);
3637
3638	netif_carrier_off(netdev);
3639
3640	spin_lock(&adapter->stats64_lock);
3641	e1000e_update_stats(adapter);
3642	spin_unlock(&adapter->stats64_lock);
3643
3644	e1000e_flush_descriptors(adapter);
3645	e1000_clean_tx_ring(adapter->tx_ring);
3646	e1000_clean_rx_ring(adapter->rx_ring);
3647
3648	adapter->link_speed = 0;
3649	adapter->link_duplex = 0;
3650
3651	if (!pci_channel_offline(adapter->pdev))
3652		e1000e_reset(adapter);
3653
3654	/*
3655	 * TODO: for power management, we could drop the link and
3656	 * pci_disable_device here.
3657	 */
 
 
 
 
 
 
 
3658}
3659
3660void e1000e_reinit_locked(struct e1000_adapter *adapter)
3661{
3662	might_sleep();
3663	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3664		usleep_range(1000, 2000);
3665	e1000e_down(adapter);
3666	e1000e_up(adapter);
3667	clear_bit(__E1000_RESETTING, &adapter->state);
3668}
3669
3670/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3672 * @adapter: board private structure to initialize
3673 *
3674 * e1000_sw_init initializes the Adapter private data structure.
3675 * Fields are initialized based on PCI device information and
3676 * OS network device settings (MTU size).
3677 **/
3678static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3679{
3680	struct net_device *netdev = adapter->netdev;
3681
3682	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3683	adapter->rx_ps_bsize0 = 128;
3684	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3685	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3686	adapter->tx_ring_count = E1000_DEFAULT_TXD;
3687	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3688
3689	spin_lock_init(&adapter->stats64_lock);
3690
3691	e1000e_set_interrupt_capability(adapter);
3692
3693	if (e1000_alloc_queues(adapter))
3694		return -ENOMEM;
3695
 
 
 
 
 
 
 
 
 
 
 
3696	/* Explicitly disable IRQ since the NIC can be in any state. */
3697	e1000_irq_disable(adapter);
3698
3699	set_bit(__E1000_DOWN, &adapter->state);
3700	return 0;
3701}
3702
3703/**
3704 * e1000_intr_msi_test - Interrupt Handler
3705 * @irq: interrupt number
3706 * @data: pointer to a network interface device structure
3707 **/
3708static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3709{
3710	struct net_device *netdev = data;
3711	struct e1000_adapter *adapter = netdev_priv(netdev);
3712	struct e1000_hw *hw = &adapter->hw;
3713	u32 icr = er32(ICR);
3714
3715	e_dbg("icr is %08X\n", icr);
3716	if (icr & E1000_ICR_RXSEQ) {
3717		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
 
 
 
3718		wmb();
3719	}
3720
3721	return IRQ_HANDLED;
3722}
3723
3724/**
3725 * e1000_test_msi_interrupt - Returns 0 for successful test
3726 * @adapter: board private struct
3727 *
3728 * code flow taken from tg3.c
3729 **/
3730static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3731{
3732	struct net_device *netdev = adapter->netdev;
3733	struct e1000_hw *hw = &adapter->hw;
3734	int err;
3735
3736	/* poll_enable hasn't been called yet, so don't need disable */
3737	/* clear any pending events */
3738	er32(ICR);
3739
3740	/* free the real vector and request a test handler */
3741	e1000_free_irq(adapter);
3742	e1000e_reset_interrupt_capability(adapter);
3743
3744	/* Assume that the test fails, if it succeeds then the test
3745	 * MSI irq handler will unset this flag */
 
3746	adapter->flags |= FLAG_MSI_TEST_FAILED;
3747
3748	err = pci_enable_msi(adapter->pdev);
3749	if (err)
3750		goto msi_test_failed;
3751
3752	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3753			  netdev->name, netdev);
3754	if (err) {
3755		pci_disable_msi(adapter->pdev);
3756		goto msi_test_failed;
3757	}
3758
 
 
 
3759	wmb();
3760
3761	e1000_irq_enable(adapter);
3762
3763	/* fire an unusual interrupt on the test handler */
3764	ew32(ICS, E1000_ICS_RXSEQ);
3765	e1e_flush();
3766	msleep(100);
3767
3768	e1000_irq_disable(adapter);
3769
3770	rmb();
3771
3772	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3773		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3774		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3775	} else {
3776		e_dbg("MSI interrupt test succeeded!\n");
3777	}
3778
3779	free_irq(adapter->pdev->irq, netdev);
3780	pci_disable_msi(adapter->pdev);
3781
3782msi_test_failed:
3783	e1000e_set_interrupt_capability(adapter);
3784	return e1000_request_irq(adapter);
3785}
3786
3787/**
3788 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3789 * @adapter: board private struct
3790 *
3791 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3792 **/
3793static int e1000_test_msi(struct e1000_adapter *adapter)
3794{
3795	int err;
3796	u16 pci_cmd;
3797
3798	if (!(adapter->flags & FLAG_MSI_ENABLED))
3799		return 0;
3800
3801	/* disable SERR in case the MSI write causes a master abort */
3802	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3803	if (pci_cmd & PCI_COMMAND_SERR)
3804		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3805				      pci_cmd & ~PCI_COMMAND_SERR);
3806
3807	err = e1000_test_msi_interrupt(adapter);
3808
3809	/* re-enable SERR */
3810	if (pci_cmd & PCI_COMMAND_SERR) {
3811		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3812		pci_cmd |= PCI_COMMAND_SERR;
3813		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3814	}
3815
3816	return err;
3817}
3818
3819/**
3820 * e1000_open - Called when a network interface is made active
3821 * @netdev: network interface device structure
3822 *
3823 * Returns 0 on success, negative value on failure
3824 *
3825 * The open entry point is called when a network interface is made
3826 * active by the system (IFF_UP).  At this point all resources needed
3827 * for transmit and receive operations are allocated, the interrupt
3828 * handler is registered with the OS, the watchdog timer is started,
3829 * and the stack is notified that the interface is ready.
3830 **/
3831static int e1000_open(struct net_device *netdev)
3832{
3833	struct e1000_adapter *adapter = netdev_priv(netdev);
3834	struct e1000_hw *hw = &adapter->hw;
3835	struct pci_dev *pdev = adapter->pdev;
3836	int err;
 
3837
3838	/* disallow open during test */
3839	if (test_bit(__E1000_TESTING, &adapter->state))
3840		return -EBUSY;
3841
3842	pm_runtime_get_sync(&pdev->dev);
3843
3844	netif_carrier_off(netdev);
 
3845
3846	/* allocate transmit descriptors */
3847	err = e1000e_setup_tx_resources(adapter->tx_ring);
3848	if (err)
3849		goto err_setup_tx;
3850
3851	/* allocate receive descriptors */
3852	err = e1000e_setup_rx_resources(adapter->rx_ring);
3853	if (err)
3854		goto err_setup_rx;
3855
3856	/*
3857	 * If AMT is enabled, let the firmware know that the network
3858	 * interface is now open and reset the part to a known state.
3859	 */
3860	if (adapter->flags & FLAG_HAS_AMT) {
3861		e1000e_get_hw_control(adapter);
3862		e1000e_reset(adapter);
3863	}
3864
3865	e1000e_power_up_phy(adapter);
3866
3867	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3868	if ((adapter->hw.mng_cookie.status &
3869	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3870		e1000_update_mng_vlan(adapter);
3871
3872	/* DMA latency requirement to workaround jumbo issue */
3873	if (adapter->hw.mac.type == e1000_pch2lan)
3874		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3875				   PM_QOS_CPU_DMA_LATENCY,
3876				   PM_QOS_DEFAULT_VALUE);
3877
3878	/*
3879	 * before we allocate an interrupt, we must be ready to handle it.
3880	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3881	 * as soon as we call pci_request_irq, so we have to setup our
3882	 * clean_rx handler before we do so.
3883	 */
3884	e1000_configure(adapter);
3885
3886	err = e1000_request_irq(adapter);
3887	if (err)
3888		goto err_req_irq;
3889
3890	/*
3891	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3892	 * ignore e1000e MSI messages, which means we need to test our MSI
3893	 * interrupt now
3894	 */
3895	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3896		err = e1000_test_msi(adapter);
3897		if (err) {
3898			e_err("Interrupt allocation failed\n");
3899			goto err_req_irq;
3900		}
3901	}
3902
3903	/* From here on the code is the same as e1000e_up() */
3904	clear_bit(__E1000_DOWN, &adapter->state);
3905
 
 
 
 
 
 
3906	napi_enable(&adapter->napi);
 
 
3907
3908	e1000_irq_enable(adapter);
3909
3910	adapter->tx_hang_recheck = false;
3911	netif_start_queue(netdev);
3912
3913	adapter->idle_check = true;
3914	pm_runtime_put(&pdev->dev);
3915
3916	/* fire a link status change interrupt to start the watchdog */
3917	if (adapter->msix_entries)
3918		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3919	else
3920		ew32(ICS, E1000_ICS_LSC);
3921
3922	return 0;
3923
3924err_req_irq:
 
3925	e1000e_release_hw_control(adapter);
3926	e1000_power_down_phy(adapter);
3927	e1000e_free_rx_resources(adapter->rx_ring);
3928err_setup_rx:
3929	e1000e_free_tx_resources(adapter->tx_ring);
3930err_setup_tx:
3931	e1000e_reset(adapter);
3932	pm_runtime_put_sync(&pdev->dev);
3933
3934	return err;
3935}
3936
3937/**
3938 * e1000_close - Disables a network interface
3939 * @netdev: network interface device structure
3940 *
3941 * Returns 0, this is not allowed to fail
3942 *
3943 * The close entry point is called when an interface is de-activated
3944 * by the OS.  The hardware is still under the drivers control, but
3945 * needs to be disabled.  A global MAC reset is issued to stop the
3946 * hardware, and all transmit and receive resources are freed.
3947 **/
3948static int e1000_close(struct net_device *netdev)
3949{
3950	struct e1000_adapter *adapter = netdev_priv(netdev);
3951	struct pci_dev *pdev = adapter->pdev;
3952	int count = E1000_CHECK_RESET_COUNT;
3953
3954	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3955		usleep_range(10000, 20000);
3956
3957	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3958
3959	pm_runtime_get_sync(&pdev->dev);
3960
3961	napi_disable(&adapter->napi);
 
 
3962
3963	if (!test_bit(__E1000_DOWN, &adapter->state)) {
3964		e1000e_down(adapter);
3965		e1000_free_irq(adapter);
3966	}
3967	e1000_power_down_phy(adapter);
 
 
 
3968
3969	e1000e_free_tx_resources(adapter->tx_ring);
3970	e1000e_free_rx_resources(adapter->rx_ring);
3971
3972	/*
3973	 * kill manageability vlan ID if supported, but not if a vlan with
3974	 * the same ID is registered on the host OS (let 8021q kill it)
3975	 */
3976	if (adapter->hw.mng_cookie.status &
3977	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3978		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3979
3980	/*
3981	 * If AMT is enabled, let the firmware know that the network
3982	 * interface is now closed
3983	 */
3984	if ((adapter->flags & FLAG_HAS_AMT) &&
3985	    !test_bit(__E1000_TESTING, &adapter->state))
3986		e1000e_release_hw_control(adapter);
3987
3988	if (adapter->hw.mac.type == e1000_pch2lan)
3989		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3990
3991	pm_runtime_put_sync(&pdev->dev);
3992
3993	return 0;
3994}
 
3995/**
3996 * e1000_set_mac - Change the Ethernet Address of the NIC
3997 * @netdev: network interface device structure
3998 * @p: pointer to an address structure
3999 *
4000 * Returns 0 on success, negative on failure
4001 **/
4002static int e1000_set_mac(struct net_device *netdev, void *p)
4003{
4004	struct e1000_adapter *adapter = netdev_priv(netdev);
4005	struct e1000_hw *hw = &adapter->hw;
4006	struct sockaddr *addr = p;
4007
4008	if (!is_valid_ether_addr(addr->sa_data))
4009		return -EADDRNOTAVAIL;
4010
4011	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4012	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4013
4014	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4015
4016	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4017		/* activate the work around */
4018		e1000e_set_laa_state_82571(&adapter->hw, 1);
4019
4020		/*
4021		 * Hold a copy of the LAA in RAR[14] This is done so that
4022		 * between the time RAR[0] gets clobbered  and the time it
4023		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4024		 * of the RARs and no incoming packets directed to this port
4025		 * are dropped. Eventually the LAA will be in RAR[0] and
4026		 * RAR[14]
4027		 */
4028		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4029				    adapter->hw.mac.rar_entry_count - 1);
4030	}
4031
4032	return 0;
4033}
4034
4035/**
4036 * e1000e_update_phy_task - work thread to update phy
4037 * @work: pointer to our work struct
4038 *
4039 * this worker thread exists because we must acquire a
4040 * semaphore to read the phy, which we could msleep while
4041 * waiting for it, and we can't msleep in a timer.
4042 **/
4043static void e1000e_update_phy_task(struct work_struct *work)
4044{
4045	struct e1000_adapter *adapter = container_of(work,
4046					struct e1000_adapter, update_phy_task);
 
 
4047
4048	if (test_bit(__E1000_DOWN, &adapter->state))
4049		return;
4050
4051	e1000_get_phy_info(&adapter->hw);
 
 
 
 
4052}
4053
4054/*
 
 
 
4055 * Need to wait a few seconds after link up to get diagnostic information from
4056 * the phy
4057 */
4058static void e1000_update_phy_info(unsigned long data)
4059{
4060	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4061
4062	if (test_bit(__E1000_DOWN, &adapter->state))
4063		return;
4064
4065	schedule_work(&adapter->update_phy_task);
4066}
4067
4068/**
4069 * e1000e_update_phy_stats - Update the PHY statistics counters
4070 * @adapter: board private structure
4071 *
4072 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4073 **/
4074static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4075{
4076	struct e1000_hw *hw = &adapter->hw;
4077	s32 ret_val;
4078	u16 phy_data;
4079
4080	ret_val = hw->phy.ops.acquire(hw);
4081	if (ret_val)
4082		return;
4083
4084	/*
4085	 * A page set is expensive so check if already on desired page.
4086	 * If not, set to the page with the PHY status registers.
4087	 */
4088	hw->phy.addr = 1;
4089	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4090					   &phy_data);
4091	if (ret_val)
4092		goto release;
4093	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4094		ret_val = hw->phy.ops.set_page(hw,
4095					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4096		if (ret_val)
4097			goto release;
4098	}
4099
4100	/* Single Collision Count */
4101	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4102	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4103	if (!ret_val)
4104		adapter->stats.scc += phy_data;
4105
4106	/* Excessive Collision Count */
4107	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4108	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4109	if (!ret_val)
4110		adapter->stats.ecol += phy_data;
4111
4112	/* Multiple Collision Count */
4113	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4114	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4115	if (!ret_val)
4116		adapter->stats.mcc += phy_data;
4117
4118	/* Late Collision Count */
4119	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4120	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4121	if (!ret_val)
4122		adapter->stats.latecol += phy_data;
4123
4124	/* Collision Count - also used for adaptive IFS */
4125	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4126	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4127	if (!ret_val)
4128		hw->mac.collision_delta = phy_data;
4129
4130	/* Defer Count */
4131	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4132	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4133	if (!ret_val)
4134		adapter->stats.dc += phy_data;
4135
4136	/* Transmit with no CRS */
4137	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4138	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4139	if (!ret_val)
4140		adapter->stats.tncrs += phy_data;
4141
4142release:
4143	hw->phy.ops.release(hw);
4144}
4145
4146/**
4147 * e1000e_update_stats - Update the board statistics counters
4148 * @adapter: board private structure
4149 **/
4150static void e1000e_update_stats(struct e1000_adapter *adapter)
4151{
4152	struct net_device *netdev = adapter->netdev;
4153	struct e1000_hw *hw = &adapter->hw;
4154	struct pci_dev *pdev = adapter->pdev;
4155
4156	/*
4157	 * Prevent stats update while adapter is being reset, or if the pci
4158	 * connection is down.
4159	 */
4160	if (adapter->link_speed == 0)
4161		return;
4162	if (pci_channel_offline(pdev))
4163		return;
4164
4165	adapter->stats.crcerrs += er32(CRCERRS);
4166	adapter->stats.gprc += er32(GPRC);
4167	adapter->stats.gorc += er32(GORCL);
4168	er32(GORCH); /* Clear gorc */
4169	adapter->stats.bprc += er32(BPRC);
4170	adapter->stats.mprc += er32(MPRC);
4171	adapter->stats.roc += er32(ROC);
4172
4173	adapter->stats.mpc += er32(MPC);
4174
4175	/* Half-duplex statistics */
4176	if (adapter->link_duplex == HALF_DUPLEX) {
4177		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4178			e1000e_update_phy_stats(adapter);
4179		} else {
4180			adapter->stats.scc += er32(SCC);
4181			adapter->stats.ecol += er32(ECOL);
4182			adapter->stats.mcc += er32(MCC);
4183			adapter->stats.latecol += er32(LATECOL);
4184			adapter->stats.dc += er32(DC);
4185
4186			hw->mac.collision_delta = er32(COLC);
4187
4188			if ((hw->mac.type != e1000_82574) &&
4189			    (hw->mac.type != e1000_82583))
4190				adapter->stats.tncrs += er32(TNCRS);
4191		}
4192		adapter->stats.colc += hw->mac.collision_delta;
4193	}
4194
4195	adapter->stats.xonrxc += er32(XONRXC);
4196	adapter->stats.xontxc += er32(XONTXC);
4197	adapter->stats.xoffrxc += er32(XOFFRXC);
4198	adapter->stats.xofftxc += er32(XOFFTXC);
4199	adapter->stats.gptc += er32(GPTC);
4200	adapter->stats.gotc += er32(GOTCL);
4201	er32(GOTCH); /* Clear gotc */
4202	adapter->stats.rnbc += er32(RNBC);
4203	adapter->stats.ruc += er32(RUC);
4204
4205	adapter->stats.mptc += er32(MPTC);
4206	adapter->stats.bptc += er32(BPTC);
4207
4208	/* used for adaptive IFS */
4209
4210	hw->mac.tx_packet_delta = er32(TPT);
4211	adapter->stats.tpt += hw->mac.tx_packet_delta;
4212
4213	adapter->stats.algnerrc += er32(ALGNERRC);
4214	adapter->stats.rxerrc += er32(RXERRC);
4215	adapter->stats.cexterr += er32(CEXTERR);
4216	adapter->stats.tsctc += er32(TSCTC);
4217	adapter->stats.tsctfc += er32(TSCTFC);
4218
4219	/* Fill out the OS statistics structure */
4220	netdev->stats.multicast = adapter->stats.mprc;
4221	netdev->stats.collisions = adapter->stats.colc;
4222
4223	/* Rx Errors */
4224
4225	/*
4226	 * RLEC on some newer hardware can be incorrect so build
4227	 * our own version based on RUC and ROC
4228	 */
4229	netdev->stats.rx_errors = adapter->stats.rxerrc +
4230		adapter->stats.crcerrs + adapter->stats.algnerrc +
4231		adapter->stats.ruc + adapter->stats.roc +
4232		adapter->stats.cexterr;
4233	netdev->stats.rx_length_errors = adapter->stats.ruc +
4234					      adapter->stats.roc;
4235	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4236	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4237	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4238
4239	/* Tx Errors */
4240	netdev->stats.tx_errors = adapter->stats.ecol +
4241				       adapter->stats.latecol;
4242	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4243	netdev->stats.tx_window_errors = adapter->stats.latecol;
4244	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4245
4246	/* Tx Dropped needs to be maintained elsewhere */
4247
4248	/* Management Stats */
4249	adapter->stats.mgptc += er32(MGTPTC);
4250	adapter->stats.mgprc += er32(MGTPRC);
4251	adapter->stats.mgpdc += er32(MGTPDC);
 
 
 
 
 
 
 
 
 
 
4252}
4253
4254/**
4255 * e1000_phy_read_status - Update the PHY register status snapshot
4256 * @adapter: board private structure
4257 **/
4258static void e1000_phy_read_status(struct e1000_adapter *adapter)
4259{
4260	struct e1000_hw *hw = &adapter->hw;
4261	struct e1000_phy_regs *phy = &adapter->phy_regs;
4262
4263	if ((er32(STATUS) & E1000_STATUS_LU) &&
 
4264	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4265		int ret_val;
4266
4267		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4268		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4269		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4270		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4271		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4272		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4273		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4274		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4275		if (ret_val)
4276			e_warn("Error reading PHY register\n");
4277	} else {
4278		/*
4279		 * Do not read PHY registers if link is not up
4280		 * Set values to typical power-on defaults
4281		 */
4282		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4283		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4284			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4285			     BMSR_ERCAP);
4286		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4287				  ADVERTISE_ALL | ADVERTISE_CSMA);
4288		phy->lpa = 0;
4289		phy->expansion = EXPANSION_ENABLENPAGE;
4290		phy->ctrl1000 = ADVERTISE_1000FULL;
4291		phy->stat1000 = 0;
4292		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4293	}
4294}
4295
4296static void e1000_print_link_info(struct e1000_adapter *adapter)
4297{
4298	struct e1000_hw *hw = &adapter->hw;
4299	u32 ctrl = er32(CTRL);
4300
4301	/* Link status message must follow this format for user tools */
4302	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4303		adapter->netdev->name,
4304		adapter->link_speed,
4305		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4306		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4307		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4308		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4309}
4310
4311static bool e1000e_has_link(struct e1000_adapter *adapter)
4312{
4313	struct e1000_hw *hw = &adapter->hw;
4314	bool link_active = false;
4315	s32 ret_val = 0;
4316
4317	/*
4318	 * get_link_status is set on LSC (link status) interrupt or
4319	 * Rx sequence error interrupt.  get_link_status will stay
4320	 * false until the check_for_link establishes link
4321	 * for copper adapters ONLY
4322	 */
4323	switch (hw->phy.media_type) {
4324	case e1000_media_type_copper:
4325		if (hw->mac.get_link_status) {
4326			ret_val = hw->mac.ops.check_for_link(hw);
4327			link_active = !hw->mac.get_link_status;
4328		} else {
4329			link_active = true;
4330		}
4331		break;
4332	case e1000_media_type_fiber:
4333		ret_val = hw->mac.ops.check_for_link(hw);
4334		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4335		break;
4336	case e1000_media_type_internal_serdes:
4337		ret_val = hw->mac.ops.check_for_link(hw);
4338		link_active = adapter->hw.mac.serdes_has_link;
4339		break;
4340	default:
4341	case e1000_media_type_unknown:
4342		break;
4343	}
4344
4345	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4346	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4347		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4348		e_info("Gigabit has been disabled, downgrading speed\n");
4349	}
4350
4351	return link_active;
4352}
4353
4354static void e1000e_enable_receives(struct e1000_adapter *adapter)
4355{
4356	/* make sure the receive unit is started */
4357	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4358	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4359		struct e1000_hw *hw = &adapter->hw;
4360		u32 rctl = er32(RCTL);
 
4361		ew32(RCTL, rctl | E1000_RCTL_EN);
4362		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4363	}
4364}
4365
4366static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4367{
4368	struct e1000_hw *hw = &adapter->hw;
4369
4370	/*
4371	 * With 82574 controllers, PHY needs to be checked periodically
4372	 * for hung state and reset, if two calls return true
4373	 */
4374	if (e1000_check_phy_82574(hw))
4375		adapter->phy_hang_count++;
4376	else
4377		adapter->phy_hang_count = 0;
4378
4379	if (adapter->phy_hang_count > 1) {
4380		adapter->phy_hang_count = 0;
 
4381		schedule_work(&adapter->reset_task);
4382	}
4383}
4384
4385/**
4386 * e1000_watchdog - Timer Call-back
4387 * @data: pointer to adapter cast into an unsigned long
4388 **/
4389static void e1000_watchdog(unsigned long data)
4390{
4391	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4392
4393	/* Do the rest outside of interrupt context */
4394	schedule_work(&adapter->watchdog_task);
4395
4396	/* TODO: make this use queue_delayed_work() */
4397}
4398
4399static void e1000_watchdog_task(struct work_struct *work)
4400{
4401	struct e1000_adapter *adapter = container_of(work,
4402					struct e1000_adapter, watchdog_task);
 
4403	struct net_device *netdev = adapter->netdev;
4404	struct e1000_mac_info *mac = &adapter->hw.mac;
4405	struct e1000_phy_info *phy = &adapter->hw.phy;
4406	struct e1000_ring *tx_ring = adapter->tx_ring;
 
4407	struct e1000_hw *hw = &adapter->hw;
4408	u32 link, tctl;
4409
4410	if (test_bit(__E1000_DOWN, &adapter->state))
4411		return;
4412
4413	link = e1000e_has_link(adapter);
4414	if ((netif_carrier_ok(netdev)) && link) {
4415		/* Cancel scheduled suspend requests. */
4416		pm_runtime_resume(netdev->dev.parent);
4417
4418		e1000e_enable_receives(adapter);
4419		goto link_up;
4420	}
4421
4422	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4423	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4424		e1000_update_mng_vlan(adapter);
4425
4426	if (link) {
4427		if (!netif_carrier_ok(netdev)) {
4428			bool txb2b = true;
4429
4430			/* Cancel scheduled suspend requests. */
4431			pm_runtime_resume(netdev->dev.parent);
4432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4433			/* update snapshot of PHY registers on LSC */
4434			e1000_phy_read_status(adapter);
4435			mac->ops.get_link_up_info(&adapter->hw,
4436						   &adapter->link_speed,
4437						   &adapter->link_duplex);
4438			e1000_print_link_info(adapter);
4439			/*
4440			 * On supported PHYs, check for duplex mismatch only
 
 
 
 
 
 
4441			 * if link has autonegotiated at 10/100 half
4442			 */
4443			if ((hw->phy.type == e1000_phy_igp_3 ||
4444			     hw->phy.type == e1000_phy_bm) &&
4445			    (hw->mac.autoneg == true) &&
4446			    (adapter->link_speed == SPEED_10 ||
4447			     adapter->link_speed == SPEED_100) &&
4448			    (adapter->link_duplex == HALF_DUPLEX)) {
4449				u16 autoneg_exp;
4450
4451				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4452
4453				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4454					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4455			}
4456
4457			/* adjust timeout factor according to speed/duplex */
4458			adapter->tx_timeout_factor = 1;
4459			switch (adapter->link_speed) {
4460			case SPEED_10:
4461				txb2b = false;
4462				adapter->tx_timeout_factor = 16;
4463				break;
4464			case SPEED_100:
4465				txb2b = false;
4466				adapter->tx_timeout_factor = 10;
4467				break;
4468			}
4469
4470			/*
4471			 * workaround: re-program speed mode bit after
4472			 * link-up event
4473			 */
4474			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4475			    !txb2b) {
4476				u32 tarc0;
 
4477				tarc0 = er32(TARC(0));
4478				tarc0 &= ~SPEED_MODE_BIT;
4479				ew32(TARC(0), tarc0);
4480			}
4481
4482			/*
4483			 * disable TSO for pcie and 10/100 speeds, to avoid
4484			 * some hardware issues
4485			 */
4486			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4487				switch (adapter->link_speed) {
4488				case SPEED_10:
4489				case SPEED_100:
4490					e_info("10/100 speed: disabling TSO\n");
4491					netdev->features &= ~NETIF_F_TSO;
4492					netdev->features &= ~NETIF_F_TSO6;
4493					break;
4494				case SPEED_1000:
4495					netdev->features |= NETIF_F_TSO;
4496					netdev->features |= NETIF_F_TSO6;
4497					break;
4498				default:
4499					/* oops */
4500					break;
4501				}
4502			}
4503
4504			/*
4505			 * enable transmits in the hardware, need to do this
4506			 * after setting TARC(0)
4507			 */
4508			tctl = er32(TCTL);
4509			tctl |= E1000_TCTL_EN;
4510			ew32(TCTL, tctl);
4511
4512                        /*
4513			 * Perform any post-link-up configuration before
4514			 * reporting link up.
4515			 */
4516			if (phy->ops.cfg_on_link_up)
4517				phy->ops.cfg_on_link_up(hw);
4518
 
4519			netif_carrier_on(netdev);
4520
4521			if (!test_bit(__E1000_DOWN, &adapter->state))
4522				mod_timer(&adapter->phy_info_timer,
4523					  round_jiffies(jiffies + 2 * HZ));
4524		}
4525	} else {
4526		if (netif_carrier_ok(netdev)) {
4527			adapter->link_speed = 0;
4528			adapter->link_duplex = 0;
4529			/* Link status message must follow this format */
4530			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4531			       adapter->netdev->name);
4532			netif_carrier_off(netdev);
 
4533			if (!test_bit(__E1000_DOWN, &adapter->state))
4534				mod_timer(&adapter->phy_info_timer,
4535					  round_jiffies(jiffies + 2 * HZ));
4536
 
 
 
 
4537			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4538				schedule_work(&adapter->reset_task);
4539			else
4540				pm_schedule_suspend(netdev->dev.parent,
4541							LINK_TIMEOUT);
4542		}
4543	}
4544
4545link_up:
4546	spin_lock(&adapter->stats64_lock);
4547	e1000e_update_stats(adapter);
4548
4549	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4550	adapter->tpt_old = adapter->stats.tpt;
4551	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4552	adapter->colc_old = adapter->stats.colc;
4553
4554	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4555	adapter->gorc_old = adapter->stats.gorc;
4556	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4557	adapter->gotc_old = adapter->stats.gotc;
4558	spin_unlock(&adapter->stats64_lock);
4559
4560	e1000e_update_adaptive(&adapter->hw);
 
 
 
 
 
 
4561
4562	if (!netif_carrier_ok(netdev) &&
4563	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4564		/*
4565		 * We've lost link, so the controller stops DMA,
4566		 * but we've got queued Tx work that's never going
4567		 * to get done, so reset controller to flush Tx.
4568		 * (Do the reset outside of interrupt context).
4569		 */
4570		schedule_work(&adapter->reset_task);
4571		/* return immediately since reset is imminent */
4572		return;
4573	}
4574
 
 
4575	/* Simple mode for Interrupt Throttle Rate (ITR) */
4576	if (adapter->itr_setting == 4) {
4577		/*
4578		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4579		 * Total asymmetrical Tx or Rx gets ITR=8000;
4580		 * everyone else is between 2000-8000.
4581		 */
4582		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4583		u32 dif = (adapter->gotc > adapter->gorc ?
4584			    adapter->gotc - adapter->gorc :
4585			    adapter->gorc - adapter->gotc) / 10000;
4586		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4587
4588		ew32(ITR, 1000000000 / (itr * 256));
4589	}
4590
4591	/* Cause software interrupt to ensure Rx ring is cleaned */
4592	if (adapter->msix_entries)
4593		ew32(ICS, adapter->rx_ring->ims_val);
4594	else
4595		ew32(ICS, E1000_ICS_RXDMT0);
4596
4597	/* flush pending descriptors to memory before detecting Tx hang */
4598	e1000e_flush_descriptors(adapter);
4599
4600	/* Force detection of hung controller every watchdog period */
4601	adapter->detect_tx_hung = true;
4602
4603	/*
4604	 * With 82571 controllers, LAA may be overwritten due to controller
4605	 * reset from the other port. Set the appropriate LAA in RAR[0]
4606	 */
4607	if (e1000e_get_laa_state_82571(hw))
4608		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4609
4610	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4611		e1000e_check_82574_phy_workaround(adapter);
4612
 
 
 
 
 
 
 
 
 
 
 
4613	/* Reset the timer */
4614	if (!test_bit(__E1000_DOWN, &adapter->state))
4615		mod_timer(&adapter->watchdog_timer,
4616			  round_jiffies(jiffies + 2 * HZ));
4617}
4618
4619#define E1000_TX_FLAGS_CSUM		0x00000001
4620#define E1000_TX_FLAGS_VLAN		0x00000002
4621#define E1000_TX_FLAGS_TSO		0x00000004
4622#define E1000_TX_FLAGS_IPV4		0x00000008
4623#define E1000_TX_FLAGS_NO_FCS		0x00000010
 
4624#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4625#define E1000_TX_FLAGS_VLAN_SHIFT	16
4626
4627static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4628{
4629	struct e1000_context_desc *context_desc;
4630	struct e1000_buffer *buffer_info;
4631	unsigned int i;
4632	u32 cmd_length = 0;
4633	u16 ipcse = 0, tucse, mss;
4634	u8 ipcss, ipcso, tucss, tucso, hdr_len;
 
4635
4636	if (!skb_is_gso(skb))
4637		return 0;
4638
4639	if (skb_header_cloned(skb)) {
4640		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4641
4642		if (err)
4643			return err;
4644	}
4645
4646	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4647	mss = skb_shinfo(skb)->gso_size;
4648	if (skb->protocol == htons(ETH_P_IP)) {
4649		struct iphdr *iph = ip_hdr(skb);
4650		iph->tot_len = 0;
4651		iph->check = 0;
4652		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4653		                                         0, IPPROTO_TCP, 0);
4654		cmd_length = E1000_TXD_CMD_IP;
4655		ipcse = skb_transport_offset(skb) - 1;
4656	} else if (skb_is_gso_v6(skb)) {
4657		ipv6_hdr(skb)->payload_len = 0;
4658		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4659		                                       &ipv6_hdr(skb)->daddr,
4660		                                       0, IPPROTO_TCP, 0);
4661		ipcse = 0;
4662	}
4663	ipcss = skb_network_offset(skb);
4664	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4665	tucss = skb_transport_offset(skb);
4666	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4667	tucse = 0;
4668
4669	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4670	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4671
4672	i = tx_ring->next_to_use;
4673	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4674	buffer_info = &tx_ring->buffer_info[i];
4675
4676	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4677	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4678	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4679	context_desc->upper_setup.tcp_fields.tucss = tucss;
4680	context_desc->upper_setup.tcp_fields.tucso = tucso;
4681	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4682	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4683	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4684	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4685
4686	buffer_info->time_stamp = jiffies;
4687	buffer_info->next_to_watch = i;
4688
4689	i++;
4690	if (i == tx_ring->count)
4691		i = 0;
4692	tx_ring->next_to_use = i;
4693
4694	return 1;
4695}
4696
4697static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4698{
4699	struct e1000_adapter *adapter = tx_ring->adapter;
4700	struct e1000_context_desc *context_desc;
4701	struct e1000_buffer *buffer_info;
4702	unsigned int i;
4703	u8 css;
4704	u32 cmd_len = E1000_TXD_CMD_DEXT;
4705	__be16 protocol;
4706
4707	if (skb->ip_summed != CHECKSUM_PARTIAL)
4708		return 0;
4709
4710	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4711		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4712	else
4713		protocol = skb->protocol;
4714
4715	switch (protocol) {
4716	case cpu_to_be16(ETH_P_IP):
4717		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4718			cmd_len |= E1000_TXD_CMD_TCP;
4719		break;
4720	case cpu_to_be16(ETH_P_IPV6):
4721		/* XXX not handling all IPV6 headers */
4722		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4723			cmd_len |= E1000_TXD_CMD_TCP;
4724		break;
4725	default:
4726		if (unlikely(net_ratelimit()))
4727			e_warn("checksum_partial proto=%x!\n",
4728			       be16_to_cpu(protocol));
4729		break;
4730	}
4731
4732	css = skb_checksum_start_offset(skb);
4733
4734	i = tx_ring->next_to_use;
4735	buffer_info = &tx_ring->buffer_info[i];
4736	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4737
4738	context_desc->lower_setup.ip_config = 0;
4739	context_desc->upper_setup.tcp_fields.tucss = css;
4740	context_desc->upper_setup.tcp_fields.tucso =
4741				css + skb->csum_offset;
4742	context_desc->upper_setup.tcp_fields.tucse = 0;
4743	context_desc->tcp_seg_setup.data = 0;
4744	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4745
4746	buffer_info->time_stamp = jiffies;
4747	buffer_info->next_to_watch = i;
4748
4749	i++;
4750	if (i == tx_ring->count)
4751		i = 0;
4752	tx_ring->next_to_use = i;
4753
4754	return 1;
4755}
4756
4757static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4758			unsigned int first, unsigned int max_per_txd,
4759			unsigned int nr_frags)
4760{
4761	struct e1000_adapter *adapter = tx_ring->adapter;
4762	struct pci_dev *pdev = adapter->pdev;
4763	struct e1000_buffer *buffer_info;
4764	unsigned int len = skb_headlen(skb);
4765	unsigned int offset = 0, size, count = 0, i;
4766	unsigned int f, bytecount, segs;
4767
4768	i = tx_ring->next_to_use;
4769
4770	while (len) {
4771		buffer_info = &tx_ring->buffer_info[i];
4772		size = min(len, max_per_txd);
4773
4774		buffer_info->length = size;
4775		buffer_info->time_stamp = jiffies;
4776		buffer_info->next_to_watch = i;
4777		buffer_info->dma = dma_map_single(&pdev->dev,
4778						  skb->data + offset,
4779						  size, DMA_TO_DEVICE);
4780		buffer_info->mapped_as_page = false;
4781		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4782			goto dma_error;
4783
4784		len -= size;
4785		offset += size;
4786		count++;
4787
4788		if (len) {
4789			i++;
4790			if (i == tx_ring->count)
4791				i = 0;
4792		}
4793	}
4794
4795	for (f = 0; f < nr_frags; f++) {
4796		const struct skb_frag_struct *frag;
4797
4798		frag = &skb_shinfo(skb)->frags[f];
4799		len = skb_frag_size(frag);
4800		offset = 0;
4801
4802		while (len) {
4803			i++;
4804			if (i == tx_ring->count)
4805				i = 0;
4806
4807			buffer_info = &tx_ring->buffer_info[i];
4808			size = min(len, max_per_txd);
4809
4810			buffer_info->length = size;
4811			buffer_info->time_stamp = jiffies;
4812			buffer_info->next_to_watch = i;
4813			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4814						offset, size, DMA_TO_DEVICE);
 
4815			buffer_info->mapped_as_page = true;
4816			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4817				goto dma_error;
4818
4819			len -= size;
4820			offset += size;
4821			count++;
4822		}
4823	}
4824
4825	segs = skb_shinfo(skb)->gso_segs ? : 1;
4826	/* multiply data chunks by size of headers */
4827	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4828
4829	tx_ring->buffer_info[i].skb = skb;
4830	tx_ring->buffer_info[i].segs = segs;
4831	tx_ring->buffer_info[i].bytecount = bytecount;
4832	tx_ring->buffer_info[first].next_to_watch = i;
4833
4834	return count;
4835
4836dma_error:
4837	dev_err(&pdev->dev, "Tx DMA map failed\n");
4838	buffer_info->dma = 0;
4839	if (count)
4840		count--;
4841
4842	while (count--) {
4843		if (i == 0)
4844			i += tx_ring->count;
4845		i--;
4846		buffer_info = &tx_ring->buffer_info[i];
4847		e1000_put_txbuf(tx_ring, buffer_info);
4848	}
4849
4850	return 0;
4851}
4852
4853static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4854{
4855	struct e1000_adapter *adapter = tx_ring->adapter;
4856	struct e1000_tx_desc *tx_desc = NULL;
4857	struct e1000_buffer *buffer_info;
4858	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4859	unsigned int i;
4860
4861	if (tx_flags & E1000_TX_FLAGS_TSO) {
4862		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4863			     E1000_TXD_CMD_TSE;
4864		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4865
4866		if (tx_flags & E1000_TX_FLAGS_IPV4)
4867			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4868	}
4869
4870	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4871		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4872		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4873	}
4874
4875	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4876		txd_lower |= E1000_TXD_CMD_VLE;
4877		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4878	}
4879
4880	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4881		txd_lower &= ~(E1000_TXD_CMD_IFCS);
4882
 
 
 
 
 
4883	i = tx_ring->next_to_use;
4884
4885	do {
4886		buffer_info = &tx_ring->buffer_info[i];
4887		tx_desc = E1000_TX_DESC(*tx_ring, i);
4888		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4889		tx_desc->lower.data =
4890			cpu_to_le32(txd_lower | buffer_info->length);
4891		tx_desc->upper.data = cpu_to_le32(txd_upper);
4892
4893		i++;
4894		if (i == tx_ring->count)
4895			i = 0;
4896	} while (--count > 0);
4897
4898	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4899
4900	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4901	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4902		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4903
4904	/*
4905	 * Force memory writes to complete before letting h/w
4906	 * know there are new descriptors to fetch.  (Only
4907	 * applicable for weak-ordered memory model archs,
4908	 * such as IA-64).
4909	 */
4910	wmb();
4911
4912	tx_ring->next_to_use = i;
4913
4914	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4915		e1000e_update_tdt_wa(tx_ring, i);
4916	else
4917		writel(i, tx_ring->tail);
4918
4919	/*
4920	 * we need this if more than one processor can write to our tail
4921	 * at a time, it synchronizes IO on IA64/Altix systems
4922	 */
4923	mmiowb();
4924}
4925
4926#define MINIMUM_DHCP_PACKET_SIZE 282
4927static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4928				    struct sk_buff *skb)
4929{
4930	struct e1000_hw *hw =  &adapter->hw;
4931	u16 length, offset;
4932
4933	if (vlan_tx_tag_present(skb)) {
4934		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4935		    (adapter->hw.mng_cookie.status &
4936			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4937			return 0;
4938	}
4939
4940	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4941		return 0;
4942
4943	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4944		return 0;
4945
4946	{
4947		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4948		struct udphdr *udp;
4949
4950		if (ip->protocol != IPPROTO_UDP)
4951			return 0;
4952
4953		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4954		if (ntohs(udp->dest) != 67)
4955			return 0;
4956
4957		offset = (u8 *)udp + 8 - skb->data;
4958		length = skb->len - offset;
4959		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4960	}
4961
4962	return 0;
4963}
4964
4965static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4966{
4967	struct e1000_adapter *adapter = tx_ring->adapter;
4968
4969	netif_stop_queue(adapter->netdev);
4970	/*
4971	 * Herbert's original patch had:
4972	 *  smp_mb__after_netif_stop_queue();
4973	 * but since that doesn't exist yet, just open code it.
4974	 */
4975	smp_mb();
4976
4977	/*
4978	 * We need to check again in a case another CPU has just
4979	 * made room available.
4980	 */
4981	if (e1000_desc_unused(tx_ring) < size)
4982		return -EBUSY;
4983
4984	/* A reprieve! */
4985	netif_start_queue(adapter->netdev);
4986	++adapter->restart_queue;
4987	return 0;
4988}
4989
4990static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4991{
4992	BUG_ON(size > tx_ring->count);
4993
4994	if (e1000_desc_unused(tx_ring) >= size)
4995		return 0;
4996	return __e1000_maybe_stop_tx(tx_ring, size);
4997}
4998
4999static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5000				    struct net_device *netdev)
5001{
5002	struct e1000_adapter *adapter = netdev_priv(netdev);
5003	struct e1000_ring *tx_ring = adapter->tx_ring;
5004	unsigned int first;
5005	unsigned int tx_flags = 0;
5006	unsigned int len = skb_headlen(skb);
5007	unsigned int nr_frags;
5008	unsigned int mss;
5009	int count = 0;
5010	int tso;
5011	unsigned int f;
 
5012
5013	if (test_bit(__E1000_DOWN, &adapter->state)) {
5014		dev_kfree_skb_any(skb);
5015		return NETDEV_TX_OK;
5016	}
5017
5018	if (skb->len <= 0) {
5019		dev_kfree_skb_any(skb);
5020		return NETDEV_TX_OK;
5021	}
5022
 
 
 
 
 
 
5023	mss = skb_shinfo(skb)->gso_size;
5024	if (mss) {
5025		u8 hdr_len;
5026
5027		/*
5028		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5029		 * points to just header, pull a few bytes of payload from
5030		 * frags into skb->data
5031		 */
5032		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5033		/*
5034		 * we do this workaround for ES2LAN, but it is un-necessary,
5035		 * avoiding it could save a lot of cycles
5036		 */
5037		if (skb->data_len && (hdr_len == len)) {
5038			unsigned int pull_size;
5039
5040			pull_size = min_t(unsigned int, 4, skb->data_len);
5041			if (!__pskb_pull_tail(skb, pull_size)) {
5042				e_err("__pskb_pull_tail failed.\n");
5043				dev_kfree_skb_any(skb);
5044				return NETDEV_TX_OK;
5045			}
5046			len = skb_headlen(skb);
5047		}
5048	}
5049
5050	/* reserve a descriptor for the offload context */
5051	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5052		count++;
5053	count++;
5054
5055	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5056
5057	nr_frags = skb_shinfo(skb)->nr_frags;
5058	for (f = 0; f < nr_frags; f++)
5059		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5060				      adapter->tx_fifo_limit);
5061
5062	if (adapter->hw.mac.tx_pkt_filtering)
5063		e1000_transfer_dhcp_info(adapter, skb);
5064
5065	/*
5066	 * need: count + 2 desc gap to keep tail from touching
5067	 * head, otherwise try next time
5068	 */
5069	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5070		return NETDEV_TX_BUSY;
5071
5072	if (vlan_tx_tag_present(skb)) {
5073		tx_flags |= E1000_TX_FLAGS_VLAN;
5074		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
5075	}
5076
5077	first = tx_ring->next_to_use;
5078
5079	tso = e1000_tso(tx_ring, skb);
5080	if (tso < 0) {
5081		dev_kfree_skb_any(skb);
5082		return NETDEV_TX_OK;
5083	}
5084
5085	if (tso)
5086		tx_flags |= E1000_TX_FLAGS_TSO;
5087	else if (e1000_tx_csum(tx_ring, skb))
5088		tx_flags |= E1000_TX_FLAGS_CSUM;
5089
5090	/*
5091	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5092	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5093	 * no longer assume, we must.
5094	 */
5095	if (skb->protocol == htons(ETH_P_IP))
5096		tx_flags |= E1000_TX_FLAGS_IPV4;
5097
5098	if (unlikely(skb->no_fcs))
5099		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5100
5101	/* if count is 0 then mapping error has occurred */
5102	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5103			     nr_frags);
5104	if (count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
5105		skb_tx_timestamp(skb);
5106
5107		netdev_sent_queue(netdev, skb->len);
5108		e1000_tx_queue(tx_ring, tx_flags, count);
5109		/* Make sure there is space in the ring for the next send. */
5110		e1000_maybe_stop_tx(tx_ring,
5111				    (MAX_SKB_FRAGS *
5112				     DIV_ROUND_UP(PAGE_SIZE,
5113						  adapter->tx_fifo_limit) + 2));
 
 
 
 
 
 
 
 
 
5114	} else {
5115		dev_kfree_skb_any(skb);
5116		tx_ring->buffer_info[first].time_stamp = 0;
5117		tx_ring->next_to_use = first;
5118	}
5119
5120	return NETDEV_TX_OK;
5121}
5122
5123/**
5124 * e1000_tx_timeout - Respond to a Tx Hang
5125 * @netdev: network interface device structure
 
5126 **/
5127static void e1000_tx_timeout(struct net_device *netdev)
5128{
5129	struct e1000_adapter *adapter = netdev_priv(netdev);
5130
5131	/* Do the reset outside of interrupt context */
5132	adapter->tx_timeout_count++;
5133	schedule_work(&adapter->reset_task);
5134}
5135
5136static void e1000_reset_task(struct work_struct *work)
5137{
5138	struct e1000_adapter *adapter;
5139	adapter = container_of(work, struct e1000_adapter, reset_task);
5140
 
5141	/* don't run the task if already down */
5142	if (test_bit(__E1000_DOWN, &adapter->state))
 
5143		return;
 
5144
5145	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5147		e1000e_dump(adapter);
5148		e_err("Reset adapter\n");
5149	}
5150	e1000e_reinit_locked(adapter);
 
5151}
5152
5153/**
5154 * e1000_get_stats64 - Get System Network Statistics
5155 * @netdev: network interface device structure
5156 * @stats: rtnl_link_stats64 pointer
5157 *
5158 * Returns the address of the device statistics structure.
5159 **/
5160struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5161                                             struct rtnl_link_stats64 *stats)
5162{
5163	struct e1000_adapter *adapter = netdev_priv(netdev);
5164
5165	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5166	spin_lock(&adapter->stats64_lock);
5167	e1000e_update_stats(adapter);
5168	/* Fill out the OS statistics structure */
5169	stats->rx_bytes = adapter->stats.gorc;
5170	stats->rx_packets = adapter->stats.gprc;
5171	stats->tx_bytes = adapter->stats.gotc;
5172	stats->tx_packets = adapter->stats.gptc;
5173	stats->multicast = adapter->stats.mprc;
5174	stats->collisions = adapter->stats.colc;
5175
5176	/* Rx Errors */
5177
5178	/*
5179	 * RLEC on some newer hardware can be incorrect so build
5180	 * our own version based on RUC and ROC
5181	 */
5182	stats->rx_errors = adapter->stats.rxerrc +
5183		adapter->stats.crcerrs + adapter->stats.algnerrc +
5184		adapter->stats.ruc + adapter->stats.roc +
5185		adapter->stats.cexterr;
5186	stats->rx_length_errors = adapter->stats.ruc +
5187					      adapter->stats.roc;
5188	stats->rx_crc_errors = adapter->stats.crcerrs;
5189	stats->rx_frame_errors = adapter->stats.algnerrc;
5190	stats->rx_missed_errors = adapter->stats.mpc;
5191
5192	/* Tx Errors */
5193	stats->tx_errors = adapter->stats.ecol +
5194				       adapter->stats.latecol;
5195	stats->tx_aborted_errors = adapter->stats.ecol;
5196	stats->tx_window_errors = adapter->stats.latecol;
5197	stats->tx_carrier_errors = adapter->stats.tncrs;
5198
5199	/* Tx Dropped needs to be maintained elsewhere */
5200
5201	spin_unlock(&adapter->stats64_lock);
5202	return stats;
5203}
5204
5205/**
5206 * e1000_change_mtu - Change the Maximum Transfer Unit
5207 * @netdev: network interface device structure
5208 * @new_mtu: new value for maximum frame size
5209 *
5210 * Returns 0 on success, negative on failure
5211 **/
5212static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5213{
5214	struct e1000_adapter *adapter = netdev_priv(netdev);
5215	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5216
5217	/* Jumbo frame support */
5218	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5219	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5220		e_err("Jumbo Frames not supported.\n");
5221		return -EINVAL;
5222	}
5223
5224	/* Supported frame sizes */
5225	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5226	    (max_frame > adapter->max_hw_frame_size)) {
5227		e_err("Unsupported MTU setting\n");
5228		return -EINVAL;
5229	}
5230
5231	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5232	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5233	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5234	    (new_mtu > ETH_DATA_LEN)) {
5235		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5236		return -EINVAL;
5237	}
5238
5239	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5240		usleep_range(1000, 2000);
5241	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5242	adapter->max_frame_size = max_frame;
5243	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5244	netdev->mtu = new_mtu;
 
 
 
 
5245	if (netif_running(netdev))
5246		e1000e_down(adapter);
5247
5248	/*
5249	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5250	 * means we reserve 2 more, this pushes us to allocate from the next
5251	 * larger slab size.
5252	 * i.e. RXBUFFER_2048 --> size-4096 slab
5253	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5254	 * fragmented skbs
5255	 */
5256
5257	if (max_frame <= 2048)
5258		adapter->rx_buffer_len = 2048;
5259	else
5260		adapter->rx_buffer_len = 4096;
5261
5262	/* adjust allocation if LPE protects us, and we aren't using SBP */
5263	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5264	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5265		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5266					 + ETH_FCS_LEN;
5267
5268	if (netif_running(netdev))
5269		e1000e_up(adapter);
5270	else
5271		e1000e_reset(adapter);
5272
 
 
5273	clear_bit(__E1000_RESETTING, &adapter->state);
5274
5275	return 0;
5276}
5277
5278static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5279			   int cmd)
5280{
5281	struct e1000_adapter *adapter = netdev_priv(netdev);
5282	struct mii_ioctl_data *data = if_mii(ifr);
5283
5284	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5285		return -EOPNOTSUPP;
5286
5287	switch (cmd) {
5288	case SIOCGMIIPHY:
5289		data->phy_id = adapter->hw.phy.addr;
5290		break;
5291	case SIOCGMIIREG:
5292		e1000_phy_read_status(adapter);
5293
5294		switch (data->reg_num & 0x1F) {
5295		case MII_BMCR:
5296			data->val_out = adapter->phy_regs.bmcr;
5297			break;
5298		case MII_BMSR:
5299			data->val_out = adapter->phy_regs.bmsr;
5300			break;
5301		case MII_PHYSID1:
5302			data->val_out = (adapter->hw.phy.id >> 16);
5303			break;
5304		case MII_PHYSID2:
5305			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5306			break;
5307		case MII_ADVERTISE:
5308			data->val_out = adapter->phy_regs.advertise;
5309			break;
5310		case MII_LPA:
5311			data->val_out = adapter->phy_regs.lpa;
5312			break;
5313		case MII_EXPANSION:
5314			data->val_out = adapter->phy_regs.expansion;
5315			break;
5316		case MII_CTRL1000:
5317			data->val_out = adapter->phy_regs.ctrl1000;
5318			break;
5319		case MII_STAT1000:
5320			data->val_out = adapter->phy_regs.stat1000;
5321			break;
5322		case MII_ESTATUS:
5323			data->val_out = adapter->phy_regs.estatus;
5324			break;
5325		default:
5326			return -EIO;
5327		}
5328		break;
5329	case SIOCSMIIREG:
5330	default:
5331		return -EOPNOTSUPP;
5332	}
5333	return 0;
5334}
5335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5336static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5337{
5338	switch (cmd) {
5339	case SIOCGMIIPHY:
5340	case SIOCGMIIREG:
5341	case SIOCSMIIREG:
5342		return e1000_mii_ioctl(netdev, ifr, cmd);
 
 
 
 
5343	default:
5344		return -EOPNOTSUPP;
5345	}
5346}
5347
5348static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5349{
5350	struct e1000_hw *hw = &adapter->hw;
5351	u32 i, mac_reg;
5352	u16 phy_reg, wuc_enable;
5353	int retval = 0;
5354
5355	/* copy MAC RARs to PHY RARs */
5356	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5357
5358	retval = hw->phy.ops.acquire(hw);
5359	if (retval) {
5360		e_err("Could not acquire PHY\n");
5361		return retval;
5362	}
5363
5364	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5365	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5366	if (retval)
5367		goto release;
5368
5369	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5370	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5371		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5372		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5373					   (u16)(mac_reg & 0xFFFF));
5374		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5375					   (u16)((mac_reg >> 16) & 0xFFFF));
5376	}
5377
5378	/* configure PHY Rx Control register */
5379	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5380	mac_reg = er32(RCTL);
5381	if (mac_reg & E1000_RCTL_UPE)
5382		phy_reg |= BM_RCTL_UPE;
5383	if (mac_reg & E1000_RCTL_MPE)
5384		phy_reg |= BM_RCTL_MPE;
5385	phy_reg &= ~(BM_RCTL_MO_MASK);
5386	if (mac_reg & E1000_RCTL_MO_3)
5387		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5388				<< BM_RCTL_MO_SHIFT);
5389	if (mac_reg & E1000_RCTL_BAM)
5390		phy_reg |= BM_RCTL_BAM;
5391	if (mac_reg & E1000_RCTL_PMCF)
5392		phy_reg |= BM_RCTL_PMCF;
5393	mac_reg = er32(CTRL);
5394	if (mac_reg & E1000_CTRL_RFCE)
5395		phy_reg |= BM_RCTL_RFCE;
5396	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5397
 
 
 
 
5398	/* enable PHY wakeup in MAC register */
5399	ew32(WUFC, wufc);
5400	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
 
5401
5402	/* configure and enable PHY wakeup in PHY registers */
5403	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5404	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5405
5406	/* activate PHY wakeup */
5407	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5408	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5409	if (retval)
5410		e_err("Could not set PHY Host Wakeup bit\n");
5411release:
5412	hw->phy.ops.release(hw);
5413
5414	return retval;
5415}
5416
5417static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5418			    bool runtime)
5419{
5420	struct net_device *netdev = pci_get_drvdata(pdev);
5421	struct e1000_adapter *adapter = netdev_priv(netdev);
5422	struct e1000_hw *hw = &adapter->hw;
5423	u32 ctrl, ctrl_ext, rctl, status;
5424	/* Runtime suspend should only enable wakeup for link changes */
5425	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5426	int retval = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5427
 
5428	netif_device_detach(netdev);
5429
5430	if (netif_running(netdev)) {
5431		int count = E1000_CHECK_RESET_COUNT;
5432
5433		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5434			usleep_range(10000, 20000);
5435
5436		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5437		e1000e_down(adapter);
 
 
5438		e1000_free_irq(adapter);
5439	}
 
 
5440	e1000e_reset_interrupt_capability(adapter);
5441
5442	retval = pci_save_state(pdev);
5443	if (retval)
5444		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5445
5446	status = er32(STATUS);
5447	if (status & E1000_STATUS_LU)
5448		wufc &= ~E1000_WUFC_LNKC;
5449
5450	if (wufc) {
5451		e1000_setup_rctl(adapter);
5452		e1000e_set_rx_mode(netdev);
5453
5454		/* turn on all-multi mode if wake on multicast is enabled */
5455		if (wufc & E1000_WUFC_MC) {
5456			rctl = er32(RCTL);
5457			rctl |= E1000_RCTL_MPE;
5458			ew32(RCTL, rctl);
5459		}
5460
5461		ctrl = er32(CTRL);
5462		/* advertise wake from D3Cold */
5463		#define E1000_CTRL_ADVD3WUC 0x00100000
5464		/* phy power management enable */
5465		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5466		ctrl |= E1000_CTRL_ADVD3WUC;
5467		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5468			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5469		ew32(CTRL, ctrl);
5470
5471		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5472		    adapter->hw.phy.media_type ==
5473		    e1000_media_type_internal_serdes) {
5474			/* keep the laser running in D3 */
5475			ctrl_ext = er32(CTRL_EXT);
5476			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5477			ew32(CTRL_EXT, ctrl_ext);
5478		}
5479
 
 
 
5480		if (adapter->flags & FLAG_IS_ICH)
5481			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5482
5483		/* Allow time for pending master requests to run */
5484		e1000e_disable_pcie_master(&adapter->hw);
5485
5486		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5487			/* enable wakeup by the PHY */
5488			retval = e1000_init_phy_wakeup(adapter, wufc);
5489			if (retval)
5490				return retval;
 
 
5491		} else {
5492			/* enable wakeup by the MAC */
5493			ew32(WUFC, wufc);
5494			ew32(WUC, E1000_WUC_PME_EN);
5495		}
5496	} else {
5497		ew32(WUC, 0);
5498		ew32(WUFC, 0);
 
 
5499	}
5500
5501	*enable_wake = !!wufc;
 
 
 
 
 
 
 
 
 
 
 
 
 
5502
5503	/* make sure adapter isn't asleep if manageability is enabled */
5504	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5505	    (hw->mac.ops.check_mng_mode(hw)))
5506		*enable_wake = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5507
5508	if (adapter->hw.phy.type == e1000_phy_igp_3)
5509		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
 
 
 
 
5510
5511	/*
5512	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5513	 * would have already happened in close and is redundant.
5514	 */
5515	e1000e_release_hw_control(adapter);
5516
5517	pci_disable_device(pdev);
5518
5519	return 0;
5520}
5521
5522static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5523{
5524	if (sleep && wake) {
5525		pci_prepare_to_sleep(pdev);
5526		return;
5527	}
5528
5529	pci_wake_from_d3(pdev, wake);
5530	pci_set_power_state(pdev, PCI_D3hot);
5531}
5532
5533static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5534                                    bool wake)
5535{
5536	struct net_device *netdev = pci_get_drvdata(pdev);
5537	struct e1000_adapter *adapter = netdev_priv(netdev);
5538
5539	/*
5540	 * The pci-e switch on some quad port adapters will report a
5541	 * correctable error when the MAC transitions from D0 to D3.  To
5542	 * prevent this we need to mask off the correctable errors on the
5543	 * downstream port of the pci-e switch.
 
 
 
 
5544	 */
5545	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5546		struct pci_dev *us_dev = pdev->bus->self;
5547		int pos = pci_pcie_cap(us_dev);
5548		u16 devctl;
5549
5550		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5551		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5552		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
 
 
 
5553
5554		e1000_power_off(pdev, sleep, wake);
 
5555
5556		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5557	} else {
5558		e1000_power_off(pdev, sleep, wake);
5559	}
 
 
5560}
5561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5562#ifdef CONFIG_PCIEASPM
5563static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5564{
5565	pci_disable_link_state_locked(pdev, state);
5566}
5567#else
5568static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5569{
5570	int pos;
5571	u16 reg16;
5572
5573	/*
5574	 * Both device and parent should have the same ASPM setting.
5575	 * Disable ASPM in downstream component first and then upstream.
5576	 */
5577	pos = pci_pcie_cap(pdev);
5578	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5579	reg16 &= ~state;
5580	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5581
5582	if (!pdev->bus->self)
5583		return;
 
 
 
 
 
 
5584
5585	pos = pci_pcie_cap(pdev->bus->self);
5586	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5587	reg16 &= ~state;
5588	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5589}
5590#endif
 
 
 
 
 
 
 
 
5591static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5592{
5593	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5594		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5595		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5596
5597	__e1000e_disable_aspm(pdev, state);
 
 
 
 
 
 
 
 
 
 
5598}
5599
5600#ifdef CONFIG_PM
5601static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5602{
5603	return !!adapter->tx_ring->buffer_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5604}
5605
5606static int __e1000_resume(struct pci_dev *pdev)
5607{
5608	struct net_device *netdev = pci_get_drvdata(pdev);
5609	struct e1000_adapter *adapter = netdev_priv(netdev);
5610	struct e1000_hw *hw = &adapter->hw;
5611	u16 aspm_disable_flag = 0;
5612	u32 err;
5613
5614	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5615		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5616	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5617		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5618	if (aspm_disable_flag)
5619		e1000e_disable_aspm(pdev, aspm_disable_flag);
5620
5621	pci_set_power_state(pdev, PCI_D0);
5622	pci_restore_state(pdev);
5623	pci_save_state(pdev);
5624
5625	e1000e_set_interrupt_capability(adapter);
5626	if (netif_running(netdev)) {
5627		err = e1000_request_irq(adapter);
5628		if (err)
5629			return err;
5630	}
5631
5632	if (hw->mac.type >= e1000_pch2lan)
5633		e1000_resume_workarounds_pchlan(&adapter->hw);
5634
5635	e1000e_power_up_phy(adapter);
5636
5637	/* report the system wakeup cause from S3/S4 */
5638	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5639		u16 phy_data;
5640
5641		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5642		if (phy_data) {
5643			e_info("PHY Wakeup cause - %s\n",
5644				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5645				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5646				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5647				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5648				phy_data & E1000_WUS_LNKC ?
5649				"Link Status Change" : "other");
5650		}
5651		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5652	} else {
5653		u32 wus = er32(WUS);
 
5654		if (wus) {
5655			e_info("MAC Wakeup cause - %s\n",
5656				wus & E1000_WUS_EX ? "Unicast Packet" :
5657				wus & E1000_WUS_MC ? "Multicast Packet" :
5658				wus & E1000_WUS_BC ? "Broadcast Packet" :
5659				wus & E1000_WUS_MAG ? "Magic Packet" :
5660				wus & E1000_WUS_LNKC ? "Link Status Change" :
5661				"other");
5662		}
5663		ew32(WUS, ~0);
5664	}
5665
5666	e1000e_reset(adapter);
5667
5668	e1000_init_manageability_pt(adapter);
5669
5670	if (netif_running(netdev))
5671		e1000e_up(adapter);
5672
5673	netif_device_attach(netdev);
5674
5675	/*
5676	 * If the controller has AMT, do not set DRV_LOAD until the interface
5677	 * is up.  For all other cases, let the f/w know that the h/w is now
5678	 * under the control of the driver.
5679	 */
5680	if (!(adapter->flags & FLAG_HAS_AMT))
5681		e1000e_get_hw_control(adapter);
5682
5683	return 0;
5684}
5685
5686#ifdef CONFIG_PM_SLEEP
5687static int e1000_suspend(struct device *dev)
 
 
 
 
 
5688{
 
 
5689	struct pci_dev *pdev = to_pci_dev(dev);
5690	int retval;
5691	bool wake;
 
 
 
5692
5693	retval = __e1000_shutdown(pdev, &wake, false);
5694	if (!retval)
5695		e1000_complete_shutdown(pdev, true, wake);
 
 
 
5696
5697	return retval;
5698}
5699
5700static int e1000_resume(struct device *dev)
5701{
 
 
5702	struct pci_dev *pdev = to_pci_dev(dev);
5703	struct net_device *netdev = pci_get_drvdata(pdev);
5704	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
 
5705
5706	if (e1000e_pm_ready(adapter))
5707		adapter->idle_check = true;
 
5708
5709	return __e1000_resume(pdev);
5710}
5711#endif /* CONFIG_PM_SLEEP */
5712
5713#ifdef CONFIG_PM_RUNTIME
5714static int e1000_runtime_suspend(struct device *dev)
5715{
5716	struct pci_dev *pdev = to_pci_dev(dev);
5717	struct net_device *netdev = pci_get_drvdata(pdev);
5718	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5719
5720	if (e1000e_pm_ready(adapter)) {
5721		bool wake;
5722
5723		__e1000_shutdown(pdev, &wake, true);
 
 
5724	}
5725
5726	return 0;
5727}
5728
5729static int e1000_idle(struct device *dev)
5730{
5731	struct pci_dev *pdev = to_pci_dev(dev);
5732	struct net_device *netdev = pci_get_drvdata(pdev);
5733	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5734
5735	if (!e1000e_pm_ready(adapter))
5736		return 0;
 
 
 
5737
5738	if (adapter->idle_check) {
5739		adapter->idle_check = false;
5740		if (!e1000e_has_link(adapter))
5741			pm_schedule_suspend(dev, MSEC_PER_SEC);
5742	}
5743
5744	return -EBUSY;
5745}
5746
5747static int e1000_runtime_resume(struct device *dev)
5748{
5749	struct pci_dev *pdev = to_pci_dev(dev);
5750	struct net_device *netdev = pci_get_drvdata(pdev);
5751	struct e1000_adapter *adapter = netdev_priv(netdev);
5752
5753	if (!e1000e_pm_ready(adapter))
5754		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5755
5756	adapter->idle_check = !dev->power.runtime_auto;
5757	return __e1000_resume(pdev);
5758}
5759#endif /* CONFIG_PM_RUNTIME */
5760#endif /* CONFIG_PM */
5761
5762static void e1000_shutdown(struct pci_dev *pdev)
5763{
5764	bool wake = false;
5765
5766	__e1000_shutdown(pdev, &wake, false);
5767
5768	if (system_state == SYSTEM_POWER_OFF)
5769		e1000_complete_shutdown(pdev, false, wake);
5770}
5771
5772#ifdef CONFIG_NET_POLL_CONTROLLER
5773
5774static irqreturn_t e1000_intr_msix(int irq, void *data)
5775{
5776	struct net_device *netdev = data;
5777	struct e1000_adapter *adapter = netdev_priv(netdev);
5778
5779	if (adapter->msix_entries) {
5780		int vector, msix_irq;
5781
5782		vector = 0;
5783		msix_irq = adapter->msix_entries[vector].vector;
5784		disable_irq(msix_irq);
5785		e1000_intr_msix_rx(msix_irq, netdev);
5786		enable_irq(msix_irq);
5787
5788		vector++;
5789		msix_irq = adapter->msix_entries[vector].vector;
5790		disable_irq(msix_irq);
5791		e1000_intr_msix_tx(msix_irq, netdev);
5792		enable_irq(msix_irq);
5793
5794		vector++;
5795		msix_irq = adapter->msix_entries[vector].vector;
5796		disable_irq(msix_irq);
5797		e1000_msix_other(msix_irq, netdev);
5798		enable_irq(msix_irq);
5799	}
5800
5801	return IRQ_HANDLED;
5802}
5803
5804/*
 
 
 
5805 * Polling 'interrupt' - used by things like netconsole to send skbs
5806 * without having to re-enable interrupts. It's not called while
5807 * the interrupt routine is executing.
5808 */
5809static void e1000_netpoll(struct net_device *netdev)
5810{
5811	struct e1000_adapter *adapter = netdev_priv(netdev);
5812
5813	switch (adapter->int_mode) {
5814	case E1000E_INT_MODE_MSIX:
5815		e1000_intr_msix(adapter->pdev->irq, netdev);
5816		break;
5817	case E1000E_INT_MODE_MSI:
5818		disable_irq(adapter->pdev->irq);
5819		e1000_intr_msi(adapter->pdev->irq, netdev);
5820		enable_irq(adapter->pdev->irq);
5821		break;
5822	default: /* E1000E_INT_MODE_LEGACY */
5823		disable_irq(adapter->pdev->irq);
5824		e1000_intr(adapter->pdev->irq, netdev);
5825		enable_irq(adapter->pdev->irq);
5826		break;
5827	}
5828}
5829#endif
5830
5831/**
5832 * e1000_io_error_detected - called when PCI error is detected
5833 * @pdev: Pointer to PCI device
5834 * @state: The current pci connection state
5835 *
5836 * This function is called after a PCI bus error affecting
5837 * this device has been detected.
5838 */
5839static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5840						pci_channel_state_t state)
5841{
5842	struct net_device *netdev = pci_get_drvdata(pdev);
5843	struct e1000_adapter *adapter = netdev_priv(netdev);
5844
5845	netif_device_detach(netdev);
5846
5847	if (state == pci_channel_io_perm_failure)
5848		return PCI_ERS_RESULT_DISCONNECT;
5849
5850	if (netif_running(netdev))
5851		e1000e_down(adapter);
5852	pci_disable_device(pdev);
5853
5854	/* Request a slot slot reset. */
5855	return PCI_ERS_RESULT_NEED_RESET;
5856}
5857
5858/**
5859 * e1000_io_slot_reset - called after the pci bus has been reset.
5860 * @pdev: Pointer to PCI device
5861 *
5862 * Restart the card from scratch, as if from a cold-boot. Implementation
5863 * resembles the first-half of the e1000_resume routine.
5864 */
5865static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5866{
5867	struct net_device *netdev = pci_get_drvdata(pdev);
5868	struct e1000_adapter *adapter = netdev_priv(netdev);
5869	struct e1000_hw *hw = &adapter->hw;
5870	u16 aspm_disable_flag = 0;
5871	int err;
5872	pci_ers_result_t result;
5873
5874	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5875		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5876	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5877		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5878	if (aspm_disable_flag)
5879		e1000e_disable_aspm(pdev, aspm_disable_flag);
5880
5881	err = pci_enable_device_mem(pdev);
5882	if (err) {
5883		dev_err(&pdev->dev,
5884			"Cannot re-enable PCI device after reset.\n");
5885		result = PCI_ERS_RESULT_DISCONNECT;
5886	} else {
5887		pci_set_master(pdev);
5888		pdev->state_saved = true;
5889		pci_restore_state(pdev);
 
5890
5891		pci_enable_wake(pdev, PCI_D3hot, 0);
5892		pci_enable_wake(pdev, PCI_D3cold, 0);
5893
5894		e1000e_reset(adapter);
5895		ew32(WUS, ~0);
5896		result = PCI_ERS_RESULT_RECOVERED;
5897	}
5898
5899	pci_cleanup_aer_uncorrect_error_status(pdev);
5900
5901	return result;
5902}
5903
5904/**
5905 * e1000_io_resume - called when traffic can start flowing again.
5906 * @pdev: Pointer to PCI device
5907 *
5908 * This callback is called when the error recovery driver tells us that
5909 * its OK to resume normal operation. Implementation resembles the
5910 * second-half of the e1000_resume routine.
5911 */
5912static void e1000_io_resume(struct pci_dev *pdev)
5913{
5914	struct net_device *netdev = pci_get_drvdata(pdev);
5915	struct e1000_adapter *adapter = netdev_priv(netdev);
5916
5917	e1000_init_manageability_pt(adapter);
5918
5919	if (netif_running(netdev)) {
5920		if (e1000e_up(adapter)) {
5921			dev_err(&pdev->dev,
5922				"can't bring device back up after reset\n");
5923			return;
5924		}
5925	}
5926
5927	netif_device_attach(netdev);
5928
5929	/*
5930	 * If the controller has AMT, do not set DRV_LOAD until the interface
5931	 * is up.  For all other cases, let the f/w know that the h/w is now
5932	 * under the control of the driver.
5933	 */
5934	if (!(adapter->flags & FLAG_HAS_AMT))
5935		e1000e_get_hw_control(adapter);
5936
5937}
5938
5939static void e1000_print_device_info(struct e1000_adapter *adapter)
5940{
5941	struct e1000_hw *hw = &adapter->hw;
5942	struct net_device *netdev = adapter->netdev;
5943	u32 ret_val;
5944	u8 pba_str[E1000_PBANUM_LENGTH];
5945
5946	/* print bus type/speed/width info */
5947	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5948	       /* bus width */
5949	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5950	        "Width x1"),
5951	       /* MAC address */
5952	       netdev->dev_addr);
5953	e_info("Intel(R) PRO/%s Network Connection\n",
5954	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5955	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5956						E1000_PBANUM_LENGTH);
5957	if (ret_val)
5958		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5959	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5960	       hw->mac.type, hw->phy.type, pba_str);
5961}
5962
5963static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5964{
5965	struct e1000_hw *hw = &adapter->hw;
5966	int ret_val;
5967	u16 buf = 0;
5968
5969	if (hw->mac.type != e1000_82573)
5970		return;
5971
5972	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5973	le16_to_cpus(&buf);
5974	if (!ret_val && (!(buf & (1 << 0)))) {
5975		/* Deep Smart Power Down (DSPD) */
5976		dev_warn(&adapter->pdev->dev,
5977			 "Warning: detected DSPD enabled in EEPROM\n");
5978	}
5979}
5980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5981static int e1000_set_features(struct net_device *netdev,
5982			      netdev_features_t features)
5983{
5984	struct e1000_adapter *adapter = netdev_priv(netdev);
5985	netdev_features_t changed = features ^ netdev->features;
5986
5987	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5988		adapter->flags |= FLAG_TSO_FORCE;
5989
5990	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5991			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
5992			 NETIF_F_RXALL)))
5993		return 0;
5994
5995	if (changed & NETIF_F_RXFCS) {
5996		if (features & NETIF_F_RXFCS) {
5997			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
5998		} else {
5999			/* We need to take it back to defaults, which might mean
6000			 * stripping is still disabled at the adapter level.
6001			 */
6002			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6003				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6004			else
6005				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6006		}
6007	}
6008
6009	netdev->features = features;
6010
6011	if (netif_running(netdev))
6012		e1000e_reinit_locked(adapter);
6013	else
6014		e1000e_reset(adapter);
6015
6016	return 0;
6017}
6018
6019static const struct net_device_ops e1000e_netdev_ops = {
6020	.ndo_open		= e1000_open,
6021	.ndo_stop		= e1000_close,
6022	.ndo_start_xmit		= e1000_xmit_frame,
6023	.ndo_get_stats64	= e1000e_get_stats64,
6024	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6025	.ndo_set_mac_address	= e1000_set_mac,
6026	.ndo_change_mtu		= e1000_change_mtu,
6027	.ndo_do_ioctl		= e1000_ioctl,
6028	.ndo_tx_timeout		= e1000_tx_timeout,
6029	.ndo_validate_addr	= eth_validate_addr,
6030
6031	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6032	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6033#ifdef CONFIG_NET_POLL_CONTROLLER
6034	.ndo_poll_controller	= e1000_netpoll,
6035#endif
6036	.ndo_set_features = e1000_set_features,
 
 
6037};
6038
6039/**
6040 * e1000_probe - Device Initialization Routine
6041 * @pdev: PCI device information struct
6042 * @ent: entry in e1000_pci_tbl
6043 *
6044 * Returns 0 on success, negative on failure
6045 *
6046 * e1000_probe initializes an adapter identified by a pci_dev structure.
6047 * The OS initialization, configuring of the adapter private structure,
6048 * and a hardware reset occur.
6049 **/
6050static int __devinit e1000_probe(struct pci_dev *pdev,
6051				 const struct pci_device_id *ent)
6052{
6053	struct net_device *netdev;
6054	struct e1000_adapter *adapter;
6055	struct e1000_hw *hw;
6056	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6057	resource_size_t mmio_start, mmio_len;
6058	resource_size_t flash_start, flash_len;
6059	static int cards_found;
6060	u16 aspm_disable_flag = 0;
6061	int i, err, pci_using_dac;
6062	u16 eeprom_data = 0;
6063	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
 
6064
6065	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6066		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6067	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6068		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6069	if (aspm_disable_flag)
6070		e1000e_disable_aspm(pdev, aspm_disable_flag);
6071
6072	err = pci_enable_device_mem(pdev);
6073	if (err)
6074		return err;
6075
6076	pci_using_dac = 0;
6077	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6078	if (!err) {
6079		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6080		if (!err)
6081			pci_using_dac = 1;
6082	} else {
6083		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6084		if (err) {
6085			err = dma_set_coherent_mask(&pdev->dev,
6086						    DMA_BIT_MASK(32));
6087			if (err) {
6088				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6089				goto err_dma;
6090			}
6091		}
6092	}
6093
6094	err = pci_request_selected_regions_exclusive(pdev,
6095	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6096	                                  e1000e_driver_name);
6097	if (err)
6098		goto err_pci_reg;
6099
6100	/* AER (Advanced Error Reporting) hooks */
6101	pci_enable_pcie_error_reporting(pdev);
6102
6103	pci_set_master(pdev);
6104	/* PCI config space info */
6105	err = pci_save_state(pdev);
6106	if (err)
6107		goto err_alloc_etherdev;
6108
6109	err = -ENOMEM;
6110	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6111	if (!netdev)
6112		goto err_alloc_etherdev;
6113
6114	SET_NETDEV_DEV(netdev, &pdev->dev);
6115
6116	netdev->irq = pdev->irq;
6117
6118	pci_set_drvdata(pdev, netdev);
6119	adapter = netdev_priv(netdev);
6120	hw = &adapter->hw;
6121	adapter->netdev = netdev;
6122	adapter->pdev = pdev;
6123	adapter->ei = ei;
6124	adapter->pba = ei->pba;
6125	adapter->flags = ei->flags;
6126	adapter->flags2 = ei->flags2;
6127	adapter->hw.adapter = adapter;
6128	adapter->hw.mac.type = ei->mac;
6129	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6130	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6131
6132	mmio_start = pci_resource_start(pdev, 0);
6133	mmio_len = pci_resource_len(pdev, 0);
6134
6135	err = -EIO;
6136	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6137	if (!adapter->hw.hw_addr)
6138		goto err_ioremap;
6139
6140	if ((adapter->flags & FLAG_HAS_FLASH) &&
6141	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
 
6142		flash_start = pci_resource_start(pdev, 1);
6143		flash_len = pci_resource_len(pdev, 1);
6144		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6145		if (!adapter->hw.flash_address)
6146			goto err_flashmap;
6147	}
6148
 
 
 
 
6149	/* construct the net_device struct */
6150	netdev->netdev_ops		= &e1000e_netdev_ops;
6151	e1000e_set_ethtool_ops(netdev);
6152	netdev->watchdog_timeo		= 5 * HZ;
6153	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6154	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6155
6156	netdev->mem_start = mmio_start;
6157	netdev->mem_end = mmio_start + mmio_len;
6158
6159	adapter->bd_number = cards_found++;
6160
6161	e1000e_check_options(adapter);
6162
6163	/* setup adapter struct */
6164	err = e1000_sw_init(adapter);
6165	if (err)
6166		goto err_sw_init;
6167
6168	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6169	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6170	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6171
6172	err = ei->get_variants(adapter);
6173	if (err)
6174		goto err_hw_init;
6175
6176	if ((adapter->flags & FLAG_IS_ICH) &&
6177	    (adapter->flags & FLAG_READ_ONLY_NVM))
 
6178		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6179
6180	hw->mac.ops.get_bus_info(&adapter->hw);
6181
6182	adapter->hw.phy.autoneg_wait_to_complete = 0;
6183
6184	/* Copper options */
6185	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6186		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6187		adapter->hw.phy.disable_polarity_correction = 0;
6188		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6189	}
6190
6191	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6192		e_info("PHY reset is blocked due to SOL/IDER session.\n");
 
6193
6194	/* Set initial default active device features */
6195	netdev->features = (NETIF_F_SG |
6196			    NETIF_F_HW_VLAN_RX |
6197			    NETIF_F_HW_VLAN_TX |
6198			    NETIF_F_TSO |
6199			    NETIF_F_TSO6 |
6200			    NETIF_F_RXHASH |
6201			    NETIF_F_RXCSUM |
6202			    NETIF_F_HW_CSUM);
6203
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6204	/* Set user-changeable features (subset of all device features) */
6205	netdev->hw_features = netdev->features;
6206	netdev->hw_features |= NETIF_F_RXFCS;
6207	netdev->priv_flags |= IFF_SUPP_NOFCS;
6208	netdev->hw_features |= NETIF_F_RXALL;
6209
6210	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6211		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6212
6213	netdev->vlan_features |= (NETIF_F_SG |
6214				  NETIF_F_TSO |
6215				  NETIF_F_TSO6 |
6216				  NETIF_F_HW_CSUM);
6217
6218	netdev->priv_flags |= IFF_UNICAST_FLT;
6219
6220	if (pci_using_dac) {
6221		netdev->features |= NETIF_F_HIGHDMA;
6222		netdev->vlan_features |= NETIF_F_HIGHDMA;
6223	}
 
 
 
6224
6225	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6226		adapter->flags |= FLAG_MNG_PT_ENABLED;
6227
6228	/*
6229	 * before reading the NVM, reset the controller to
6230	 * put the device in a known good starting state
6231	 */
6232	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6233
6234	/*
6235	 * systems with ASPM and others may see the checksum fail on the first
6236	 * attempt. Let's give it a few tries
6237	 */
6238	for (i = 0;; i++) {
6239		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6240			break;
6241		if (i == 2) {
6242			e_err("The NVM Checksum Is Not Valid\n");
6243			err = -EIO;
6244			goto err_eeprom;
6245		}
6246	}
6247
6248	e1000_eeprom_checks(adapter);
6249
6250	/* copy the MAC address */
6251	if (e1000e_read_mac_addr(&adapter->hw))
6252		e_err("NVM Read Error while reading MAC address\n");
 
6253
6254	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6255	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6256
6257	if (!is_valid_ether_addr(netdev->perm_addr)) {
6258		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
 
6259		err = -EIO;
6260		goto err_eeprom;
6261	}
6262
6263	init_timer(&adapter->watchdog_timer);
6264	adapter->watchdog_timer.function = e1000_watchdog;
6265	adapter->watchdog_timer.data = (unsigned long) adapter;
6266
6267	init_timer(&adapter->phy_info_timer);
6268	adapter->phy_info_timer.function = e1000_update_phy_info;
6269	adapter->phy_info_timer.data = (unsigned long) adapter;
6270
6271	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6272	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6273	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6274	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6275	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6276
6277	/* Initialize link parameters. User can change them with ethtool */
6278	adapter->hw.mac.autoneg = 1;
6279	adapter->fc_autoneg = true;
6280	adapter->hw.fc.requested_mode = e1000_fc_default;
6281	adapter->hw.fc.current_mode = e1000_fc_default;
6282	adapter->hw.phy.autoneg_advertised = 0x2f;
6283
6284	/* ring size defaults */
6285	adapter->rx_ring->count = E1000_DEFAULT_RXD;
6286	adapter->tx_ring->count = E1000_DEFAULT_TXD;
6287
6288	/*
6289	 * Initial Wake on LAN setting - If APM wake is enabled in
6290	 * the EEPROM, enable the ACPI Magic Packet filter
6291	 */
6292	if (adapter->flags & FLAG_APME_IN_WUC) {
6293		/* APME bit in EEPROM is mapped to WUC.APME */
6294		eeprom_data = er32(WUC);
6295		eeprom_apme_mask = E1000_WUC_APME;
6296		if ((hw->mac.type > e1000_ich10lan) &&
6297		    (eeprom_data & E1000_WUC_PHY_WAKE))
6298			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6299	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6300		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6301		    (adapter->hw.bus.func == 1))
6302			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6303				       1, &eeprom_data);
 
6304		else
6305			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6306				       1, &eeprom_data);
 
6307	}
6308
6309	/* fetch WoL from EEPROM */
6310	if (eeprom_data & eeprom_apme_mask)
 
 
6311		adapter->eeprom_wol |= E1000_WUFC_MAG;
6312
6313	/*
6314	 * now that we have the eeprom settings, apply the special cases
6315	 * where the eeprom may be wrong or the board simply won't support
6316	 * wake on lan on a particular port
6317	 */
6318	if (!(adapter->flags & FLAG_HAS_WOL))
6319		adapter->eeprom_wol = 0;
6320
6321	/* initialize the wol settings based on the eeprom settings */
6322	adapter->wol = adapter->eeprom_wol;
6323	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
 
 
 
 
6324
6325	/* save off EEPROM version number */
6326	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
 
 
 
 
 
 
 
 
6327
6328	/* reset the hardware with the new settings */
6329	e1000e_reset(adapter);
6330
6331	/*
6332	 * If the controller has AMT, do not set DRV_LOAD until the interface
6333	 * is up.  For all other cases, let the f/w know that the h/w is now
6334	 * under the control of the driver.
6335	 */
6336	if (!(adapter->flags & FLAG_HAS_AMT))
6337		e1000e_get_hw_control(adapter);
6338
6339	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
 
 
 
6340	err = register_netdev(netdev);
6341	if (err)
6342		goto err_register;
6343
6344	/* carrier off reporting is important to ethtool even BEFORE open */
6345	netif_carrier_off(netdev);
6346
6347	e1000_print_device_info(adapter);
6348
 
 
6349	if (pci_dev_run_wake(pdev))
6350		pm_runtime_put_noidle(&pdev->dev);
6351
6352	return 0;
6353
6354err_register:
6355	if (!(adapter->flags & FLAG_HAS_AMT))
6356		e1000e_release_hw_control(adapter);
6357err_eeprom:
6358	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6359		e1000_phy_hw_reset(&adapter->hw);
6360err_hw_init:
6361	kfree(adapter->tx_ring);
6362	kfree(adapter->rx_ring);
6363err_sw_init:
6364	if (adapter->hw.flash_address)
6365		iounmap(adapter->hw.flash_address);
6366	e1000e_reset_interrupt_capability(adapter);
6367err_flashmap:
6368	iounmap(adapter->hw.hw_addr);
6369err_ioremap:
6370	free_netdev(netdev);
6371err_alloc_etherdev:
6372	pci_release_selected_regions(pdev,
6373	                             pci_select_bars(pdev, IORESOURCE_MEM));
6374err_pci_reg:
6375err_dma:
6376	pci_disable_device(pdev);
6377	return err;
6378}
6379
6380/**
6381 * e1000_remove - Device Removal Routine
6382 * @pdev: PCI device information struct
6383 *
6384 * e1000_remove is called by the PCI subsystem to alert the driver
6385 * that it should release a PCI device.  The could be caused by a
6386 * Hot-Plug event, or because the driver is going to be removed from
6387 * memory.
6388 **/
6389static void __devexit e1000_remove(struct pci_dev *pdev)
6390{
6391	struct net_device *netdev = pci_get_drvdata(pdev);
6392	struct e1000_adapter *adapter = netdev_priv(netdev);
6393	bool down = test_bit(__E1000_DOWN, &adapter->state);
6394
6395	/*
6396	 * The timers may be rescheduled, so explicitly disable them
 
6397	 * from being rescheduled.
6398	 */
6399	if (!down)
6400		set_bit(__E1000_DOWN, &adapter->state);
6401	del_timer_sync(&adapter->watchdog_timer);
6402	del_timer_sync(&adapter->phy_info_timer);
6403
6404	cancel_work_sync(&adapter->reset_task);
6405	cancel_work_sync(&adapter->watchdog_task);
6406	cancel_work_sync(&adapter->downshift_task);
6407	cancel_work_sync(&adapter->update_phy_task);
6408	cancel_work_sync(&adapter->print_hang_task);
6409
6410	if (!(netdev->flags & IFF_UP))
6411		e1000_power_down_phy(adapter);
 
 
 
 
 
6412
6413	/* Don't lie to e1000_close() down the road. */
6414	if (!down)
6415		clear_bit(__E1000_DOWN, &adapter->state);
6416	unregister_netdev(netdev);
6417
6418	if (pci_dev_run_wake(pdev))
6419		pm_runtime_get_noresume(&pdev->dev);
6420
6421	/*
6422	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6423	 * would have already happened in close and is redundant.
6424	 */
6425	e1000e_release_hw_control(adapter);
6426
6427	e1000e_reset_interrupt_capability(adapter);
6428	kfree(adapter->tx_ring);
6429	kfree(adapter->rx_ring);
6430
6431	iounmap(adapter->hw.hw_addr);
6432	if (adapter->hw.flash_address)
 
6433		iounmap(adapter->hw.flash_address);
6434	pci_release_selected_regions(pdev,
6435	                             pci_select_bars(pdev, IORESOURCE_MEM));
6436
6437	free_netdev(netdev);
6438
6439	/* AER disable */
6440	pci_disable_pcie_error_reporting(pdev);
6441
6442	pci_disable_device(pdev);
6443}
6444
6445/* PCI Error Recovery (ERS) */
6446static struct pci_error_handlers e1000_err_handler = {
6447	.error_detected = e1000_io_error_detected,
6448	.slot_reset = e1000_io_slot_reset,
6449	.resume = e1000_io_resume,
6450};
6451
6452static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6453	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6454	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6455	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6456	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
 
6457	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6458	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6459	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6460	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6461	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6462
6463	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6464	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6465	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6466	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6467
6468	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6469	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6470	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6471
6472	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6473	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6474	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6475
6476	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6477	  board_80003es2lan },
6478	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6479	  board_80003es2lan },
6480	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6481	  board_80003es2lan },
6482	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6483	  board_80003es2lan },
6484
6485	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6486	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6487	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6488	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6489	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6490	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6491	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6492	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6493
6494	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6495	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6496	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6497	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6498	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6499	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6500	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6501	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6502	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6503
6504	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6505	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6506	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6507
6508	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6509	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6510	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6511
6512	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6513	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6514	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6515	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6516
6517	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6518	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6519
6520	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6521	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6522
6523	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6524};
6525MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6526
6527#ifdef CONFIG_PM
6528static const struct dev_pm_ops e1000_pm_ops = {
6529	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6530	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6531				e1000_runtime_resume, e1000_idle)
 
 
 
 
 
6532};
6533#endif
6534
6535/* PCI Device API Driver */
6536static struct pci_driver e1000_driver = {
6537	.name     = e1000e_driver_name,
6538	.id_table = e1000_pci_tbl,
6539	.probe    = e1000_probe,
6540	.remove   = __devexit_p(e1000_remove),
6541#ifdef CONFIG_PM
6542	.driver   = {
6543		.pm = &e1000_pm_ops,
6544	},
6545#endif
6546	.shutdown = e1000_shutdown,
6547	.err_handler = &e1000_err_handler
6548};
6549
6550/**
6551 * e1000_init_module - Driver Registration Routine
6552 *
6553 * e1000_init_module is the first routine called when the driver is
6554 * loaded. All it does is register with the PCI subsystem.
6555 **/
6556static int __init e1000_init_module(void)
6557{
6558	int ret;
6559	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6560		e1000e_driver_version);
6561	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6562	ret = pci_register_driver(&e1000_driver);
6563
6564	return ret;
6565}
6566module_init(e1000_init_module);
6567
6568/**
6569 * e1000_exit_module - Driver Exit Cleanup Routine
6570 *
6571 * e1000_exit_module is called just before the driver is removed
6572 * from memory.
6573 **/
6574static void __exit e1000_exit_module(void)
6575{
6576	pci_unregister_driver(&e1000_driver);
6577}
6578module_exit(e1000_exit_module);
6579
6580
6581MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6582MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6583MODULE_LICENSE("GPL");
6584MODULE_VERSION(DRV_VERSION);
6585
6586/* netdev.c */