Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
 
 
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ksm.h>
  50#include <linux/memfd.h>
  51
  52#include <linux/uaccess.h>
  53#include <asm/cacheflush.h>
  54#include <asm/tlb.h>
  55#include <asm/mmu_context.h>
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/mmap.h>
  59
  60#include "internal.h"
  61
  62#ifndef arch_mmap_check
  63#define arch_mmap_check(addr, len, flags)	(0)
  64#endif
  65
  66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  67const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  68int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  69int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  70#endif
  71#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  72const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  73const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  74int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  75#endif
  76
  77static bool ignore_rlimit_data;
  78core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79
  80/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  81void vma_set_page_prot(struct vm_area_struct *vma)
  82{
  83	unsigned long vm_flags = vma->vm_flags;
  84	pgprot_t vm_page_prot;
 
 
 
  85
  86	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
  87	if (vma_wants_writenotify(vma, vm_page_prot)) {
  88		vm_flags &= ~VM_SHARED;
  89		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
  90	}
  91	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
  92	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93}
 
  94
  95/*
  96 * check_brk_limits() - Use platform specific check of range & verify mlock
  97 * limits.
  98 * @addr: The address to check
  99 * @len: The size of increase.
 
 
 100 *
 101 * Return: 0 on success.
 
 
 
 
 
 
 102 */
 103static int check_brk_limits(unsigned long addr, unsigned long len)
 104{
 105	unsigned long mapped_addr;
 106
 107	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 108	if (IS_ERR_VALUE(mapped_addr))
 109		return mapped_addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110
 111	return mlock_future_ok(current->mm, current->mm->def_flags, len)
 112		? 0 : -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113}
 114static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
 115		unsigned long addr, unsigned long request, unsigned long flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 116SYSCALL_DEFINE1(brk, unsigned long, brk)
 117{
 118	unsigned long newbrk, oldbrk, origbrk;
 
 119	struct mm_struct *mm = current->mm;
 120	struct vm_area_struct *brkvma, *next = NULL;
 121	unsigned long min_brk;
 122	bool populate = false;
 123	LIST_HEAD(uf);
 124	struct vma_iterator vmi;
 125
 126	if (mmap_write_lock_killable(mm))
 127		return -EINTR;
 128
 129	origbrk = mm->brk;
 130
 131#ifdef CONFIG_COMPAT_BRK
 132	/*
 133	 * CONFIG_COMPAT_BRK can still be overridden by setting
 134	 * randomize_va_space to 2, which will still cause mm->start_brk
 135	 * to be arbitrarily shifted
 136	 */
 137	if (current->brk_randomized)
 138		min_brk = mm->start_brk;
 139	else
 140		min_brk = mm->end_data;
 141#else
 142	min_brk = mm->start_brk;
 143#endif
 144	if (brk < min_brk)
 145		goto out;
 146
 147	/*
 148	 * Check against rlimit here. If this check is done later after the test
 149	 * of oldbrk with newbrk then it can escape the test and let the data
 150	 * segment grow beyond its set limit the in case where the limit is
 151	 * not page aligned -Ram Gupta
 152	 */
 153	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 154			      mm->end_data, mm->start_data))
 
 155		goto out;
 156
 157	newbrk = PAGE_ALIGN(brk);
 158	oldbrk = PAGE_ALIGN(mm->brk);
 159	if (oldbrk == newbrk) {
 160		mm->brk = brk;
 161		goto success;
 162	}
 163
 164	/* Always allow shrinking brk. */
 165	if (brk <= mm->brk) {
 166		/* Search one past newbrk */
 167		vma_iter_init(&vmi, mm, newbrk);
 168		brkvma = vma_find(&vmi, oldbrk);
 169		if (!brkvma || brkvma->vm_start >= oldbrk)
 170			goto out; /* mapping intersects with an existing non-brk vma. */
 171		/*
 172		 * mm->brk must be protected by write mmap_lock.
 173		 * do_vmi_align_munmap() will drop the lock on success,  so
 174		 * update it before calling do_vma_munmap().
 175		 */
 176		mm->brk = brk;
 177		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
 178					/* unlock = */ true))
 179			goto out;
 180
 181		goto success_unlocked;
 182	}
 183
 184	if (check_brk_limits(oldbrk, newbrk - oldbrk))
 185		goto out;
 
 186
 187	/*
 188	 * Only check if the next VMA is within the stack_guard_gap of the
 189	 * expansion area
 190	 */
 191	vma_iter_init(&vmi, mm, oldbrk);
 192	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
 193	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 194		goto out;
 195
 196	brkvma = vma_prev_limit(&vmi, mm->start_brk);
 197	/* Ok, looks good - let it rip. */
 198	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
 199		goto out;
 200
 
 201	mm->brk = brk;
 202	if (mm->def_flags & VM_LOCKED)
 203		populate = true;
 204
 205success:
 206	mmap_write_unlock(mm);
 207success_unlocked:
 208	userfaultfd_unmap_complete(mm, &uf);
 209	if (populate)
 210		mm_populate(oldbrk, newbrk - oldbrk);
 211	return brk;
 212
 213out:
 214	mm->brk = origbrk;
 215	mmap_write_unlock(mm);
 216	return origbrk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 217}
 
 
 
 
 
 
 
 218
 219/*
 220 * If a hint addr is less than mmap_min_addr change hint to be as
 221 * low as possible but still greater than mmap_min_addr
 
 222 */
 223static inline unsigned long round_hint_to_min(unsigned long hint)
 224{
 225	hint &= PAGE_MASK;
 226	if (((void *)hint != NULL) &&
 227	    (hint < mmap_min_addr))
 228		return PAGE_ALIGN(mmap_min_addr);
 229	return hint;
 
 
 
 
 
 
 
 
 
 230}
 231
 232bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
 233			unsigned long bytes)
 234{
 235	unsigned long locked_pages, limit_pages;
 
 
 
 
 
 
 
 
 
 
 
 
 236
 237	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
 238		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239
 240	locked_pages = bytes >> PAGE_SHIFT;
 241	locked_pages += mm->locked_vm;
 
 242
 243	limit_pages = rlimit(RLIMIT_MEMLOCK);
 244	limit_pages >>= PAGE_SHIFT;
 
 
 245
 246	return locked_pages <= limit_pages;
 
 247}
 248
 249static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
 
 
 250{
 251	if (S_ISREG(inode->i_mode))
 252		return MAX_LFS_FILESIZE;
 
 
 253
 254	if (S_ISBLK(inode->i_mode))
 255		return MAX_LFS_FILESIZE;
 256
 257	if (S_ISSOCK(inode->i_mode))
 258		return MAX_LFS_FILESIZE;
 259
 260	/* Special "we do even unsigned file positions" case */
 261	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263
 264	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
 265	return ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268static inline bool file_mmap_ok(struct file *file, struct inode *inode,
 269				unsigned long pgoff, unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 270{
 271	u64 maxsize = file_mmap_size_max(file, inode);
 
 
 
 272
 273	if (maxsize && len > maxsize)
 274		return false;
 275	maxsize -= len;
 276	if (pgoff > maxsize >> PAGE_SHIFT)
 277		return false;
 278	return true;
 279}
 
 280
 281/*
 282 * The caller must write-lock current->mm->mmap_lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283 */
 284unsigned long do_mmap(struct file *file, unsigned long addr,
 
 285			unsigned long len, unsigned long prot,
 286			unsigned long flags, vm_flags_t vm_flags,
 287			unsigned long pgoff, unsigned long *populate,
 288			struct list_head *uf)
 289{
 290	struct mm_struct *mm = current->mm;
 291	int pkey = 0;
 292
 293	*populate = 0;
 294
 295	if (!len)
 296		return -EINVAL;
 297
 298	/*
 299	 * Does the application expect PROT_READ to imply PROT_EXEC?
 300	 *
 301	 * (the exception is when the underlying filesystem is noexec
 302	 *  mounted, in which case we don't add PROT_EXEC.)
 303	 */
 304	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 305		if (!(file && path_noexec(&file->f_path)))
 306			prot |= PROT_EXEC;
 307
 308	/* force arch specific MAP_FIXED handling in get_unmapped_area */
 309	if (flags & MAP_FIXED_NOREPLACE)
 310		flags |= MAP_FIXED;
 311
 312	if (!(flags & MAP_FIXED))
 313		addr = round_hint_to_min(addr);
 314
 315	/* Careful about overflows.. */
 316	len = PAGE_ALIGN(len);
 317	if (!len)
 318		return -ENOMEM;
 319
 320	/* offset overflow? */
 321	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
 322		return -EOVERFLOW;
 323
 324	/* Too many mappings? */
 325	if (mm->map_count > sysctl_max_map_count)
 326		return -ENOMEM;
 327
 328	/*
 329	 * addr is returned from get_unmapped_area,
 330	 * There are two cases:
 331	 * 1> MAP_FIXED == false
 332	 *	unallocated memory, no need to check sealing.
 333	 * 1> MAP_FIXED == true
 334	 *	sealing is checked inside mmap_region when
 335	 *	do_vmi_munmap is called.
 336	 */
 337
 338	if (prot == PROT_EXEC) {
 339		pkey = execute_only_pkey(mm);
 340		if (pkey < 0)
 341			pkey = 0;
 342	}
 343
 344	/* Do simple checking here so the lower-level routines won't have
 345	 * to. we assume access permissions have been handled by the open
 346	 * of the memory object, so we don't do any here.
 347	 */
 348	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
 349			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
 350
 351	/* Obtain the address to map to. we verify (or select) it and ensure
 352	 * that it represents a valid section of the address space.
 353	 */
 354	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
 355	if (IS_ERR_VALUE(addr))
 356		return addr;
 357
 358	if (flags & MAP_FIXED_NOREPLACE) {
 359		if (find_vma_intersection(mm, addr, addr + len))
 360			return -EEXIST;
 361	}
 362
 363	if (flags & MAP_LOCKED)
 364		if (!can_do_mlock())
 365			return -EPERM;
 366
 367	if (!mlock_future_ok(mm, vm_flags, len))
 368		return -EAGAIN;
 369
 370	if (file) {
 371		struct inode *inode = file_inode(file);
 372		unsigned int seals = memfd_file_seals(file);
 373		unsigned long flags_mask;
 374
 375		if (!file_mmap_ok(file, inode, pgoff, len))
 376			return -EOVERFLOW;
 377
 378		flags_mask = LEGACY_MAP_MASK;
 379		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
 380			flags_mask |= MAP_SYNC;
 381
 382		switch (flags & MAP_TYPE) {
 383		case MAP_SHARED:
 384			/*
 385			 * Force use of MAP_SHARED_VALIDATE with non-legacy
 386			 * flags. E.g. MAP_SYNC is dangerous to use with
 387			 * MAP_SHARED as you don't know which consistency model
 388			 * you will get. We silently ignore unsupported flags
 389			 * with MAP_SHARED to preserve backward compatibility.
 390			 */
 391			flags &= LEGACY_MAP_MASK;
 392			fallthrough;
 393		case MAP_SHARED_VALIDATE:
 394			if (flags & ~flags_mask)
 395				return -EOPNOTSUPP;
 396			if (prot & PROT_WRITE) {
 397				if (!(file->f_mode & FMODE_WRITE))
 398					return -EACCES;
 399				if (IS_SWAPFILE(file->f_mapping->host))
 400					return -ETXTBSY;
 401			}
 402
 403			/*
 404			 * Make sure we don't allow writing to an append-only
 405			 * file..
 406			 */
 407			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
 408				return -EACCES;
 409
 
 
 
 
 
 
 410			vm_flags |= VM_SHARED | VM_MAYSHARE;
 411			if (!(file->f_mode & FMODE_WRITE))
 412				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
 413			else if (is_readonly_sealed(seals, vm_flags))
 414				vm_flags &= ~VM_MAYWRITE;
 415			fallthrough;
 416		case MAP_PRIVATE:
 417			if (!(file->f_mode & FMODE_READ))
 418				return -EACCES;
 419			if (path_noexec(&file->f_path)) {
 420				if (vm_flags & VM_EXEC)
 421					return -EPERM;
 422				vm_flags &= ~VM_MAYEXEC;
 423			}
 424
 425			if (!file->f_op->mmap)
 426				return -ENODEV;
 427			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
 428				return -EINVAL;
 429			break;
 430
 431		default:
 432			return -EINVAL;
 433		}
 434	} else {
 435		switch (flags & MAP_TYPE) {
 436		case MAP_SHARED:
 437			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
 438				return -EINVAL;
 439			/*
 440			 * Ignore pgoff.
 441			 */
 442			pgoff = 0;
 443			vm_flags |= VM_SHARED | VM_MAYSHARE;
 444			break;
 445		case MAP_DROPPABLE:
 446			if (VM_DROPPABLE == VM_NONE)
 447				return -ENOTSUPP;
 448			/*
 449			 * A locked or stack area makes no sense to be droppable.
 450			 *
 451			 * Also, since droppable pages can just go away at any time
 452			 * it makes no sense to copy them on fork or dump them.
 453			 *
 454			 * And don't attempt to combine with hugetlb for now.
 455			 */
 456			if (flags & (MAP_LOCKED | MAP_HUGETLB))
 457			        return -EINVAL;
 458			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
 459			        return -EINVAL;
 460
 461			vm_flags |= VM_DROPPABLE;
 462
 463			/*
 464			 * If the pages can be dropped, then it doesn't make
 465			 * sense to reserve them.
 466			 */
 467			vm_flags |= VM_NORESERVE;
 468
 469			/*
 470			 * Likewise, they're volatile enough that they
 471			 * shouldn't survive forks or coredumps.
 472			 */
 473			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
 474			fallthrough;
 475		case MAP_PRIVATE:
 476			/*
 477			 * Set pgoff according to addr for anon_vma.
 478			 */
 479			pgoff = addr >> PAGE_SHIFT;
 480			break;
 481		default:
 482			return -EINVAL;
 483		}
 484	}
 485
 486	/*
 487	 * Set 'VM_NORESERVE' if we should not account for the
 488	 * memory use of this mapping.
 489	 */
 490	if (flags & MAP_NORESERVE) {
 491		/* We honor MAP_NORESERVE if allowed to overcommit */
 492		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
 493			vm_flags |= VM_NORESERVE;
 494
 495		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
 496		if (file && is_file_hugepages(file))
 497			vm_flags |= VM_NORESERVE;
 498	}
 499
 500	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
 501	if (!IS_ERR_VALUE(addr) &&
 502	    ((vm_flags & VM_LOCKED) ||
 503	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
 504		*populate = len;
 505	return addr;
 506}
 507
 508unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
 509			      unsigned long prot, unsigned long flags,
 510			      unsigned long fd, unsigned long pgoff)
 511{
 512	struct file *file = NULL;
 513	unsigned long retval;
 514
 515	if (!(flags & MAP_ANONYMOUS)) {
 516		audit_mmap_fd(fd, flags);
 517		file = fget(fd);
 518		if (!file)
 519			return -EBADF;
 520		if (is_file_hugepages(file)) {
 521			len = ALIGN(len, huge_page_size(hstate_file(file)));
 522		} else if (unlikely(flags & MAP_HUGETLB)) {
 523			retval = -EINVAL;
 524			goto out_fput;
 525		}
 526	} else if (flags & MAP_HUGETLB) {
 
 527		struct hstate *hs;
 528
 529		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
 530		if (!hs)
 531			return -EINVAL;
 532
 533		len = ALIGN(len, huge_page_size(hs));
 534		/*
 535		 * VM_NORESERVE is used because the reservations will be
 536		 * taken when vm_ops->mmap() is called
 
 
 537		 */
 538		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
 539				VM_NORESERVE,
 540				HUGETLB_ANONHUGE_INODE,
 541				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
 542		if (IS_ERR(file))
 543			return PTR_ERR(file);
 544	}
 545
 
 
 546	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 547out_fput:
 548	if (file)
 549		fput(file);
 
 550	return retval;
 551}
 552
 553SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
 554		unsigned long, prot, unsigned long, flags,
 555		unsigned long, fd, unsigned long, pgoff)
 556{
 557	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
 558}
 559
 560#ifdef __ARCH_WANT_SYS_OLD_MMAP
 561struct mmap_arg_struct {
 562	unsigned long addr;
 563	unsigned long len;
 564	unsigned long prot;
 565	unsigned long flags;
 566	unsigned long fd;
 567	unsigned long offset;
 568};
 569
 570SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
 571{
 572	struct mmap_arg_struct a;
 573
 574	if (copy_from_user(&a, arg, sizeof(a)))
 575		return -EFAULT;
 576	if (offset_in_page(a.offset))
 577		return -EINVAL;
 578
 579	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
 580			       a.offset >> PAGE_SHIFT);
 581}
 582#endif /* __ARCH_WANT_SYS_OLD_MMAP */
 583
 584/**
 585 * unmapped_area() - Find an area between the low_limit and the high_limit with
 586 * the correct alignment and offset, all from @info. Note: current->mm is used
 587 * for the search.
 588 *
 589 * @info: The unmapped area information including the range [low_limit -
 590 * high_limit), the alignment offset and mask.
 591 *
 592 * Return: A memory address or -ENOMEM.
 593 */
 594static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 595{
 596	unsigned long length, gap;
 597	unsigned long low_limit, high_limit;
 598	struct vm_area_struct *tmp;
 599	VMA_ITERATOR(vmi, current->mm, 0);
 600
 601	/* Adjust search length to account for worst case alignment overhead */
 602	length = info->length + info->align_mask + info->start_gap;
 603	if (length < info->length)
 604		return -ENOMEM;
 605
 606	low_limit = info->low_limit;
 607	if (low_limit < mmap_min_addr)
 608		low_limit = mmap_min_addr;
 609	high_limit = info->high_limit;
 610retry:
 611	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
 612		return -ENOMEM;
 
 613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	/*
 615	 * Adjust for the gap first so it doesn't interfere with the
 616	 * later alignment. The first step is the minimum needed to
 617	 * fulill the start gap, the next steps is the minimum to align
 618	 * that. It is the minimum needed to fulill both.
 619	 */
 620	gap = vma_iter_addr(&vmi) + info->start_gap;
 621	gap += (info->align_offset - gap) & info->align_mask;
 622	tmp = vma_next(&vmi);
 623	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
 624		if (vm_start_gap(tmp) < gap + length - 1) {
 625			low_limit = tmp->vm_end;
 626			vma_iter_reset(&vmi);
 627			goto retry;
 628		}
 629	} else {
 630		tmp = vma_prev(&vmi);
 631		if (tmp && vm_end_gap(tmp) > gap) {
 632			low_limit = vm_end_gap(tmp);
 633			vma_iter_reset(&vmi);
 634			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 635		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637
 638	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639}
 640
 641/**
 642 * unmapped_area_topdown() - Find an area between the low_limit and the
 643 * high_limit with the correct alignment and offset at the highest available
 644 * address, all from @info. Note: current->mm is used for the search.
 645 *
 646 * @info: The unmapped area information including the range [low_limit -
 647 * high_limit), the alignment offset and mask.
 648 *
 649 * Return: A memory address or -ENOMEM.
 650 */
 651static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 652{
 653	unsigned long length, gap, gap_end;
 654	unsigned long low_limit, high_limit;
 655	struct vm_area_struct *tmp;
 656	VMA_ITERATOR(vmi, current->mm, 0);
 
 
 
 
 
 
 
 657
 658	/* Adjust search length to account for worst case alignment overhead */
 659	length = info->length + info->align_mask + info->start_gap;
 660	if (length < info->length)
 661		return -ENOMEM;
 662
 663	low_limit = info->low_limit;
 664	if (low_limit < mmap_min_addr)
 665		low_limit = mmap_min_addr;
 666	high_limit = info->high_limit;
 667retry:
 668	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
 669		return -ENOMEM;
 670
 671	gap = vma_iter_end(&vmi) - info->length;
 672	gap -= (gap - info->align_offset) & info->align_mask;
 673	gap_end = vma_iter_end(&vmi);
 674	tmp = vma_next(&vmi);
 675	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
 676		if (vm_start_gap(tmp) < gap_end) {
 677			high_limit = vm_start_gap(tmp);
 678			vma_iter_reset(&vmi);
 679			goto retry;
 
 
 
 
 
 
 
 
 
 
 680		}
 681	} else {
 682		tmp = vma_prev(&vmi);
 683		if (tmp && vm_end_gap(tmp) > gap) {
 684			high_limit = tmp->vm_start;
 685			vma_iter_reset(&vmi);
 686			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687		}
 688	}
 689
 690	return gap;
 691}
 
 
 
 
 692
 693/*
 694 * Determine if the allocation needs to ensure that there is no
 695 * existing mapping within it's guard gaps, for use as start_gap.
 696 */
 697static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
 698{
 699	if (vm_flags & VM_SHADOW_STACK)
 700		return PAGE_SIZE;
 701
 702	return 0;
 
 
 
 
 
 703}
 704
 705/*
 706 * Search for an unmapped address range.
 707 *
 708 * We are looking for a range that:
 709 * - does not intersect with any VMA;
 710 * - is contained within the [low_limit, high_limit) interval;
 711 * - is at least the desired size.
 712 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
 713 */
 714unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
 715{
 716	unsigned long addr;
 
 
 717
 718	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
 719		addr = unmapped_area_topdown(info);
 720	else
 721		addr = unmapped_area(info);
 722
 723	trace_vm_unmapped_area(addr, info);
 724	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725}
 726
 727/* Get an address range which is currently unmapped.
 728 * For shmat() with addr=0.
 729 *
 730 * Ugly calling convention alert:
 731 * Return value with the low bits set means error value,
 732 * ie
 733 *	if (ret & ~PAGE_MASK)
 734 *		error = ret;
 735 *
 736 * This function "knows" that -ENOMEM has the bits set.
 737 */
 
 738unsigned long
 739generic_get_unmapped_area(struct file *filp, unsigned long addr,
 740			  unsigned long len, unsigned long pgoff,
 741			  unsigned long flags, vm_flags_t vm_flags)
 742{
 743	struct mm_struct *mm = current->mm;
 744	struct vm_area_struct *vma, *prev;
 745	struct vm_unmapped_area_info info = {};
 746	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 747
 748	if (len > mmap_end - mmap_min_addr)
 749		return -ENOMEM;
 750
 751	if (flags & MAP_FIXED)
 752		return addr;
 753
 754	if (addr) {
 755		addr = PAGE_ALIGN(addr);
 756		vma = find_vma_prev(mm, addr, &prev);
 757		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
 758		    (!vma || addr + len <= vm_start_gap(vma)) &&
 759		    (!prev || addr >= vm_end_gap(prev)))
 760			return addr;
 761	}
 762
 
 763	info.length = len;
 764	info.low_limit = mm->mmap_base;
 765	info.high_limit = mmap_end;
 766	info.start_gap = stack_guard_placement(vm_flags);
 767	if (filp && is_file_hugepages(filp))
 768		info.align_mask = huge_page_mask_align(filp);
 769	return vm_unmapped_area(&info);
 770}
 771
 772#ifndef HAVE_ARCH_UNMAPPED_AREA
 773unsigned long
 774arch_get_unmapped_area(struct file *filp, unsigned long addr,
 775		       unsigned long len, unsigned long pgoff,
 776		       unsigned long flags, vm_flags_t vm_flags)
 777{
 778	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
 779					 vm_flags);
 780}
 781#endif
 782
 783/*
 784 * This mmap-allocator allocates new areas top-down from below the
 785 * stack's low limit (the base):
 786 */
 
 787unsigned long
 788generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 789				  unsigned long len, unsigned long pgoff,
 790				  unsigned long flags, vm_flags_t vm_flags)
 791{
 792	struct vm_area_struct *vma, *prev;
 793	struct mm_struct *mm = current->mm;
 794	struct vm_unmapped_area_info info = {};
 795	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 796
 797	/* requested length too big for entire address space */
 798	if (len > mmap_end - mmap_min_addr)
 799		return -ENOMEM;
 800
 801	if (flags & MAP_FIXED)
 802		return addr;
 803
 804	/* requesting a specific address */
 805	if (addr) {
 806		addr = PAGE_ALIGN(addr);
 807		vma = find_vma_prev(mm, addr, &prev);
 808		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
 809				(!vma || addr + len <= vm_start_gap(vma)) &&
 810				(!prev || addr >= vm_end_gap(prev)))
 811			return addr;
 812	}
 813
 814	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 815	info.length = len;
 816	info.low_limit = PAGE_SIZE;
 817	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
 818	info.start_gap = stack_guard_placement(vm_flags);
 819	if (filp && is_file_hugepages(filp))
 820		info.align_mask = huge_page_mask_align(filp);
 821	addr = vm_unmapped_area(&info);
 822
 823	/*
 824	 * A failed mmap() very likely causes application failure,
 825	 * so fall back to the bottom-up function here. This scenario
 826	 * can happen with large stack limits and large mmap()
 827	 * allocations.
 828	 */
 829	if (offset_in_page(addr)) {
 830		VM_BUG_ON(addr != -ENOMEM);
 831		info.flags = 0;
 832		info.low_limit = TASK_UNMAPPED_BASE;
 833		info.high_limit = mmap_end;
 834		addr = vm_unmapped_area(&info);
 835	}
 836
 837	return addr;
 838}
 839
 840#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 841unsigned long
 842arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 843			       unsigned long len, unsigned long pgoff,
 844			       unsigned long flags, vm_flags_t vm_flags)
 845{
 846	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
 847						 vm_flags);
 848}
 849#endif
 850
 851unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
 852					   unsigned long addr, unsigned long len,
 853					   unsigned long pgoff, unsigned long flags,
 854					   vm_flags_t vm_flags)
 855{
 856	if (test_bit(MMF_TOPDOWN, &mm->flags))
 857		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
 858						      flags, vm_flags);
 859	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
 860}
 861
 862unsigned long
 863__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
 864		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
 865{
 866	unsigned long (*get_area)(struct file *, unsigned long,
 867				  unsigned long, unsigned long, unsigned long)
 868				  = NULL;
 869
 870	unsigned long error = arch_mmap_check(addr, len, flags);
 871	if (error)
 872		return error;
 873
 874	/* Careful about overflows.. */
 875	if (len > TASK_SIZE)
 876		return -ENOMEM;
 877
 878	if (file) {
 879		if (file->f_op->get_unmapped_area)
 880			get_area = file->f_op->get_unmapped_area;
 881	} else if (flags & MAP_SHARED) {
 882		/*
 883		 * mmap_region() will call shmem_zero_setup() to create a file,
 884		 * so use shmem's get_unmapped_area in case it can be huge.
 885		 */
 886		get_area = shmem_get_unmapped_area;
 887	}
 888
 889	/* Always treat pgoff as zero for anonymous memory. */
 890	if (!file)
 891		pgoff = 0;
 892
 893	if (get_area) {
 894		addr = get_area(file, addr, len, pgoff, flags);
 895	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
 896		   && !addr /* no hint */
 897		   && IS_ALIGNED(len, PMD_SIZE)) {
 898		/* Ensures that larger anonymous mappings are THP aligned. */
 899		addr = thp_get_unmapped_area_vmflags(file, addr, len,
 900						     pgoff, flags, vm_flags);
 901	} else {
 902		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
 903						    pgoff, flags, vm_flags);
 904	}
 905	if (IS_ERR_VALUE(addr))
 906		return addr;
 907
 908	if (addr > TASK_SIZE - len)
 909		return -ENOMEM;
 910	if (offset_in_page(addr))
 911		return -EINVAL;
 912
 
 913	error = security_mmap_addr(addr);
 914	return error ? error : addr;
 915}
 916
 917unsigned long
 918mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
 919		     unsigned long addr, unsigned long len,
 920		     unsigned long pgoff, unsigned long flags)
 921{
 922	if (test_bit(MMF_TOPDOWN, &mm->flags))
 923		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
 924	return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
 925}
 926EXPORT_SYMBOL(mm_get_unmapped_area);
 927
 928/**
 929 * find_vma_intersection() - Look up the first VMA which intersects the interval
 930 * @mm: The process address space.
 931 * @start_addr: The inclusive start user address.
 932 * @end_addr: The exclusive end user address.
 933 *
 934 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
 935 * start_addr < end_addr.
 936 */
 937struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
 938					     unsigned long start_addr,
 939					     unsigned long end_addr)
 940{
 941	unsigned long index = start_addr;
 
 942
 943	mmap_assert_locked(mm);
 944	return mt_find(&mm->mm_mt, &index, end_addr - 1);
 945}
 946EXPORT_SYMBOL(find_vma_intersection);
 947
 948/**
 949 * find_vma() - Find the VMA for a given address, or the next VMA.
 950 * @mm: The mm_struct to check
 951 * @addr: The address
 952 *
 953 * Returns: The VMA associated with addr, or the next VMA.
 954 * May return %NULL in the case of no VMA at addr or above.
 955 */
 956struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 957{
 958	unsigned long index = addr;
 959
 960	mmap_assert_locked(mm);
 961	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 962}
 
 963EXPORT_SYMBOL(find_vma);
 964
 965/**
 966 * find_vma_prev() - Find the VMA for a given address, or the next vma and
 967 * set %pprev to the previous VMA, if any.
 968 * @mm: The mm_struct to check
 969 * @addr: The address
 970 * @pprev: The pointer to set to the previous VMA
 971 *
 972 * Note that RCU lock is missing here since the external mmap_lock() is used
 973 * instead.
 974 *
 975 * Returns: The VMA associated with @addr, or the next vma.
 976 * May return %NULL in the case of no vma at addr or above.
 977 */
 978struct vm_area_struct *
 979find_vma_prev(struct mm_struct *mm, unsigned long addr,
 980			struct vm_area_struct **pprev)
 981{
 982	struct vm_area_struct *vma;
 983	VMA_ITERATOR(vmi, mm, addr);
 984
 985	vma = vma_iter_load(&vmi);
 986	*pprev = vma_prev(&vmi);
 987	if (!vma)
 988		vma = vma_next(&vmi);
 
 
 
 
 
 
 
 989	return vma;
 990}
 991
 992/*
 993 * Verify that the stack growth is acceptable and
 994 * update accounting. This is shared with both the
 995 * grow-up and grow-down cases.
 996 */
 997static int acct_stack_growth(struct vm_area_struct *vma,
 998			     unsigned long size, unsigned long grow)
 999{
1000	struct mm_struct *mm = vma->vm_mm;
 
1001	unsigned long new_start;
1002
1003	/* address space limit tests */
1004	if (!may_expand_vm(mm, vma->vm_flags, grow))
1005		return -ENOMEM;
1006
1007	/* Stack limit test */
1008	if (size > rlimit(RLIMIT_STACK))
1009		return -ENOMEM;
1010
1011	/* mlock limit tests */
1012	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1013		return -ENOMEM;
 
 
 
 
 
 
 
1014
1015	/* Check to ensure the stack will not grow into a hugetlb-only region */
1016	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1017			vma->vm_end - size;
1018	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1019		return -EFAULT;
1020
1021	/*
1022	 * Overcommit..  This must be the final test, as it will
1023	 * update security statistics.
1024	 */
1025	if (security_vm_enough_memory_mm(mm, grow))
1026		return -ENOMEM;
1027
 
 
 
 
1028	return 0;
1029}
1030
1031#if defined(CONFIG_STACK_GROWSUP)
1032/*
1033 * PA-RISC uses this for its stack.
1034 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1035 */
1036static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1037{
1038	struct mm_struct *mm = vma->vm_mm;
1039	struct vm_area_struct *next;
1040	unsigned long gap_addr;
1041	int error = 0;
1042	VMA_ITERATOR(vmi, mm, vma->vm_start);
1043
1044	if (!(vma->vm_flags & VM_GROWSUP))
1045		return -EFAULT;
1046
1047	mmap_assert_write_locked(mm);
1048
1049	/* Guard against exceeding limits of the address space. */
1050	address &= PAGE_MASK;
1051	if (address >= (TASK_SIZE & PAGE_MASK))
1052		return -ENOMEM;
1053	address += PAGE_SIZE;
1054
1055	/* Enforce stack_guard_gap */
1056	gap_addr = address + stack_guard_gap;
1057
1058	/* Guard against overflow */
1059	if (gap_addr < address || gap_addr > TASK_SIZE)
1060		gap_addr = TASK_SIZE;
1061
1062	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1063	if (next && vma_is_accessible(next)) {
1064		if (!(next->vm_flags & VM_GROWSUP))
1065			return -ENOMEM;
1066		/* Check that both stack segments have the same anon_vma? */
1067	}
1068
1069	if (next)
1070		vma_iter_prev_range_limit(&vmi, address);
1071
1072	vma_iter_config(&vmi, vma->vm_start, address);
1073	if (vma_iter_prealloc(&vmi, vma))
1074		return -ENOMEM;
 
1075
1076	/* We must make sure the anon_vma is allocated. */
1077	if (unlikely(anon_vma_prepare(vma))) {
1078		vma_iter_free(&vmi);
 
 
 
 
 
 
 
1079		return -ENOMEM;
1080	}
1081
1082	/* Lock the VMA before expanding to prevent concurrent page faults */
1083	vma_start_write(vma);
1084	/* We update the anon VMA tree. */
1085	anon_vma_lock_write(vma->anon_vma);
1086
1087	/* Somebody else might have raced and expanded it already */
1088	if (address > vma->vm_end) {
1089		unsigned long size, grow;
1090
1091		size = address - vma->vm_start;
1092		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1093
1094		error = -ENOMEM;
1095		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1096			error = acct_stack_growth(vma, size, grow);
1097			if (!error) {
1098				if (vma->vm_flags & VM_LOCKED)
1099					mm->locked_vm += grow;
1100				vm_stat_account(mm, vma->vm_flags, grow);
 
 
 
 
 
 
 
 
 
1101				anon_vma_interval_tree_pre_update_vma(vma);
1102				vma->vm_end = address;
1103				/* Overwrite old entry in mtree. */
1104				vma_iter_store(&vmi, vma);
1105				anon_vma_interval_tree_post_update_vma(vma);
 
 
 
 
 
1106
1107				perf_event_mmap(vma);
1108			}
1109		}
1110	}
1111	anon_vma_unlock_write(vma->anon_vma);
1112	vma_iter_free(&vmi);
1113	validate_mm(mm);
1114	return error;
1115}
1116#endif /* CONFIG_STACK_GROWSUP */
1117
1118/*
1119 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1120 * mmap_lock held for writing.
1121 */
1122int expand_downwards(struct vm_area_struct *vma, unsigned long address)
 
1123{
1124	struct mm_struct *mm = vma->vm_mm;
1125	struct vm_area_struct *prev;
1126	int error = 0;
1127	VMA_ITERATOR(vmi, mm, vma->vm_start);
1128
1129	if (!(vma->vm_flags & VM_GROWSDOWN))
1130		return -EFAULT;
1131
1132	mmap_assert_write_locked(mm);
 
 
 
 
 
1133
1134	address &= PAGE_MASK;
1135	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1136		return -EPERM;
1137
1138	/* Enforce stack_guard_gap */
1139	prev = vma_prev(&vmi);
1140	/* Check that both stack segments have the same anon_vma? */
1141	if (prev) {
1142		if (!(prev->vm_flags & VM_GROWSDOWN) &&
1143		    vma_is_accessible(prev) &&
1144		    (address - prev->vm_end < stack_guard_gap))
1145			return -ENOMEM;
1146	}
1147
1148	if (prev)
1149		vma_iter_next_range_limit(&vmi, vma->vm_start);
1150
1151	vma_iter_config(&vmi, address, vma->vm_end);
1152	if (vma_iter_prealloc(&vmi, vma))
1153		return -ENOMEM;
1154
1155	/* We must make sure the anon_vma is allocated. */
1156	if (unlikely(anon_vma_prepare(vma))) {
1157		vma_iter_free(&vmi);
1158		return -ENOMEM;
1159	}
1160
1161	/* Lock the VMA before expanding to prevent concurrent page faults */
1162	vma_start_write(vma);
1163	/* We update the anon VMA tree. */
1164	anon_vma_lock_write(vma->anon_vma);
 
1165
1166	/* Somebody else might have raced and expanded it already */
1167	if (address < vma->vm_start) {
1168		unsigned long size, grow;
1169
1170		size = vma->vm_end - address;
1171		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1172
1173		error = -ENOMEM;
1174		if (grow <= vma->vm_pgoff) {
1175			error = acct_stack_growth(vma, size, grow);
1176			if (!error) {
1177				if (vma->vm_flags & VM_LOCKED)
1178					mm->locked_vm += grow;
1179				vm_stat_account(mm, vma->vm_flags, grow);
 
 
 
 
 
 
 
 
 
1180				anon_vma_interval_tree_pre_update_vma(vma);
1181				vma->vm_start = address;
1182				vma->vm_pgoff -= grow;
1183				/* Overwrite old entry in mtree. */
1184				vma_iter_store(&vmi, vma);
1185				anon_vma_interval_tree_post_update_vma(vma);
 
 
1186
1187				perf_event_mmap(vma);
1188			}
1189		}
1190	}
1191	anon_vma_unlock_write(vma->anon_vma);
1192	vma_iter_free(&vmi);
1193	validate_mm(mm);
1194	return error;
1195}
1196
1197/* enforced gap between the expanding stack and other mappings. */
1198unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1199
1200static int __init cmdline_parse_stack_guard_gap(char *p)
1201{
1202	unsigned long val;
1203	char *endptr;
1204
1205	val = simple_strtoul(p, &endptr, 10);
1206	if (!*endptr)
1207		stack_guard_gap = val << PAGE_SHIFT;
1208
1209	return 1;
1210}
1211__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1212
1213#ifdef CONFIG_STACK_GROWSUP
1214int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1215{
 
 
 
 
 
 
 
 
1216	return expand_upwards(vma, address);
1217}
1218
1219struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
1220{
1221	struct vm_area_struct *vma, *prev;
1222
1223	addr &= PAGE_MASK;
1224	vma = find_vma_prev(mm, addr, &prev);
1225	if (vma && (vma->vm_start <= addr))
1226		return vma;
1227	if (!prev)
1228		return NULL;
1229	if (expand_stack_locked(prev, addr))
1230		return NULL;
1231	if (prev->vm_flags & VM_LOCKED)
1232		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1233	return prev;
1234}
1235#else
1236int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1237{
 
 
 
 
 
 
 
 
1238	return expand_downwards(vma, address);
1239}
1240
1241struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
1242{
1243	struct vm_area_struct *vma;
1244	unsigned long start;
1245
1246	addr &= PAGE_MASK;
1247	vma = find_vma(mm, addr);
1248	if (!vma)
1249		return NULL;
1250	if (vma->vm_start <= addr)
1251		return vma;
 
 
1252	start = vma->vm_start;
1253	if (expand_stack_locked(vma, addr))
1254		return NULL;
1255	if (vma->vm_flags & VM_LOCKED)
1256		populate_vma_page_range(vma, addr, start, NULL);
1257	return vma;
1258}
1259#endif
1260
1261#if defined(CONFIG_STACK_GROWSUP)
1262
1263#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1264#define vma_expand_down(vma, addr) (-EFAULT)
1265
1266#else
1267
1268#define vma_expand_up(vma,addr) (-EFAULT)
1269#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
1270
1271#endif
1272
1273/*
1274 * expand_stack(): legacy interface for page faulting. Don't use unless
1275 * you have to.
1276 *
1277 * This is called with the mm locked for reading, drops the lock, takes
1278 * the lock for writing, tries to look up a vma again, expands it if
1279 * necessary, and downgrades the lock to reading again.
1280 *
1281 * If no vma is found or it can't be expanded, it returns NULL and has
1282 * dropped the lock.
1283 */
1284struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
1285{
1286	struct vm_area_struct *vma, *prev;
1287
1288	mmap_read_unlock(mm);
1289	if (mmap_write_lock_killable(mm))
1290		return NULL;
1291
1292	vma = find_vma_prev(mm, addr, &prev);
1293	if (vma && vma->vm_start <= addr)
1294		goto success;
1295
1296	if (prev && !vma_expand_up(prev, addr)) {
1297		vma = prev;
1298		goto success;
1299	}
1300
1301	if (vma && !vma_expand_down(vma, addr))
1302		goto success;
1303
1304	mmap_write_unlock(mm);
1305	return NULL;
 
 
1306
1307success:
1308	mmap_write_downgrade(mm);
1309	return vma;
 
 
 
 
1310}
1311
1312/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1313 * @mm: The mm_struct
1314 * @start: The start address to munmap
1315 * @len: The length to be munmapped.
1316 * @uf: The userfaultfd list_head
1317 *
1318 * Return: 0 on success, error otherwise.
1319 */
1320int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1321	      struct list_head *uf)
 
1322{
1323	VMA_ITERATOR(vmi, mm, start);
 
1324
1325	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
 
 
 
 
 
 
1326}
1327
1328unsigned long mmap_region(struct file *file, unsigned long addr,
1329			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1330			  struct list_head *uf)
 
 
 
 
1331{
1332	unsigned long ret;
1333	bool writable_file_mapping = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334
1335	/* Check to see if MDWE is applicable. */
1336	if (map_deny_write_exec(vm_flags, vm_flags))
1337		return -EACCES;
 
 
 
 
 
 
1338
1339	/* Allow architectures to sanity-check the vm_flags. */
1340	if (!arch_validate_flags(vm_flags))
1341		return -EINVAL;
1342
1343	/* Map writable and ensure this isn't a sealed memfd. */
1344	if (file && is_shared_maywrite(vm_flags)) {
1345		int error = mapping_map_writable(file->f_mapping);
1346
1347		if (error)
1348			return error;
1349		writable_file_mapping = true;
1350	}
1351
1352	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
1353
1354	/* Clear our write mapping regardless of error. */
1355	if (writable_file_mapping)
1356		mapping_unmap_writable(file->f_mapping);
 
 
 
1357
1358	validate_mm(current->mm);
1359	return ret;
1360}
1361
1362static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1363{
1364	int ret;
1365	struct mm_struct *mm = current->mm;
1366	LIST_HEAD(uf);
1367	VMA_ITERATOR(vmi, mm, start);
1368
1369	if (mmap_write_lock_killable(mm))
1370		return -EINTR;
1371
1372	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1373	if (ret || !unlock)
1374		mmap_write_unlock(mm);
1375
1376	userfaultfd_unmap_complete(mm, &uf);
1377	return ret;
1378}
 
 
1379
1380int vm_munmap(unsigned long start, size_t len)
1381{
1382	return __vm_munmap(start, len, false);
1383}
1384EXPORT_SYMBOL(vm_munmap);
1385
1386SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1387{
1388	addr = untagged_addr(addr);
1389	return __vm_munmap(addr, len, true);
 
 
 
 
 
 
 
 
1390}
1391
1392
1393/*
1394 * Emulation of deprecated remap_file_pages() syscall.
 
1395 */
1396SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1397		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1398{
 
 
1399
1400	struct mm_struct *mm = current->mm;
1401	struct vm_area_struct *vma;
1402	unsigned long populate = 0;
1403	unsigned long ret = -EINVAL;
1404	struct file *file;
1405	vm_flags_t vm_flags;
1406
1407	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1408		     current->comm, current->pid);
 
 
 
 
 
 
 
1409
1410	if (prot)
1411		return ret;
1412	start = start & PAGE_MASK;
1413	size = size & PAGE_MASK;
1414
1415	if (start + size <= start)
1416		return ret;
1417
1418	/* Does pgoff wrap? */
1419	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1420		return ret;
 
 
 
1421
1422	if (mmap_read_lock_killable(mm))
1423		return -EINTR;
 
 
1424
1425	/*
1426	 * Look up VMA under read lock first so we can perform the security
1427	 * without holding locks (which can be problematic). We reacquire a
1428	 * write lock later and check nothing changed underneath us.
 
 
1429	 */
1430	vma = vma_lookup(mm, start);
1431
1432	if (!vma || !(vma->vm_flags & VM_SHARED)) {
1433		mmap_read_unlock(mm);
1434		return -EINVAL;
1435	}
1436
1437	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1438	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1439	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1440
1441	flags &= MAP_NONBLOCK;
1442	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1443	if (vma->vm_flags & VM_LOCKED)
1444		flags |= MAP_LOCKED;
1445
1446	/* Save vm_flags used to calculate prot and flags, and recheck later. */
1447	vm_flags = vma->vm_flags;
1448	file = get_file(vma->vm_file);
1449
1450	mmap_read_unlock(mm);
 
 
1451
1452	/* Call outside mmap_lock to be consistent with other callers. */
1453	ret = security_mmap_file(file, prot, flags);
1454	if (ret) {
1455		fput(file);
1456		return ret;
1457	}
1458
1459	ret = -EINVAL;
1460
1461	/* OK security check passed, take write lock + let it rip. */
1462	if (mmap_write_lock_killable(mm)) {
1463		fput(file);
1464		return -EINTR;
1465	}
 
1466
1467	vma = vma_lookup(mm, start);
1468
1469	if (!vma)
1470		goto out;
 
 
 
 
 
 
 
 
 
1471
1472	/* Make sure things didn't change under us. */
1473	if (vma->vm_flags != vm_flags)
1474		goto out;
1475	if (vma->vm_file != file)
1476		goto out;
1477
1478	if (start + size > vma->vm_end) {
1479		VMA_ITERATOR(vmi, mm, vma->vm_end);
1480		struct vm_area_struct *next, *prev = vma;
1481
1482		for_each_vma_range(vmi, next, start + size) {
1483			/* hole between vmas ? */
1484			if (next->vm_start != prev->vm_end)
1485				goto out;
1486
1487			if (next->vm_file != vma->vm_file)
1488				goto out;
1489
1490			if (next->vm_flags != vma->vm_flags)
1491				goto out;
 
 
1492
1493			if (start + size <= next->vm_end)
1494				break;
 
 
 
 
1495
1496			prev = next;
1497		}
 
 
 
1498
1499		if (!next)
1500			goto out;
 
 
 
 
1501	}
1502
1503	ret = do_mmap(vma->vm_file, start, size,
1504			prot, flags, 0, pgoff, &populate, NULL);
1505out:
1506	mmap_write_unlock(mm);
1507	fput(file);
1508	if (populate)
1509		mm_populate(ret, populate);
1510	if (!IS_ERR_VALUE(ret))
1511		ret = 0;
1512	return ret;
1513}
1514
1515/*
1516 * do_brk_flags() - Increase the brk vma if the flags match.
1517 * @vmi: The vma iterator
1518 * @addr: The start address
1519 * @len: The length of the increase
1520 * @vma: The vma,
1521 * @flags: The VMA Flags
1522 *
1523 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
1524 * do not match then create a new anonymous VMA.  Eventually we may be able to
1525 * do some brk-specific accounting here.
1526 */
1527static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1528		unsigned long addr, unsigned long len, unsigned long flags)
1529{
1530	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531
1532	/*
1533	 * Check against address space limits by the changed size
1534	 * Note: This happens *after* clearing old mappings in some code paths.
1535	 */
1536	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
1537	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
 
 
 
 
 
 
 
1538		return -ENOMEM;
1539
1540	if (mm->map_count > sysctl_max_map_count)
1541		return -ENOMEM;
1542
1543	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1544		return -ENOMEM;
1545
 
 
 
 
 
 
1546	/*
1547	 * Expand the existing vma if possible; Note that singular lists do not
1548	 * occur after forking, so the expand will only happen on new VMAs.
1549	 */
1550	if (vma && vma->vm_end == addr) {
1551		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1552
1553		vmg.prev = vma;
1554		/* vmi is positioned at prev, which this mode expects. */
1555		vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
1556
1557		if (vma_merge_new_range(&vmg))
1558			goto out;
1559		else if (vmg_nomem(&vmg))
1560			goto unacct_fail;
1561	}
1562
1563	if (vma)
1564		vma_iter_next_range(vmi);
1565	/* create a vma struct for an anonymous mapping */
1566	vma = vm_area_alloc(mm);
1567	if (!vma)
1568		goto unacct_fail;
1569
1570	vma_set_anonymous(vma);
1571	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1572	vm_flags_init(vma, flags);
1573	vma->vm_page_prot = vm_get_page_prot(flags);
1574	vma_start_write(vma);
1575	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1576		goto mas_store_fail;
1577
1578	mm->map_count++;
1579	validate_mm(mm);
1580	ksm_add_vma(vma);
1581out:
1582	perf_event_mmap(vma);
1583	mm->total_vm += len >> PAGE_SHIFT;
1584	mm->data_vm += len >> PAGE_SHIFT;
1585	if (flags & VM_LOCKED)
1586		mm->locked_vm += (len >> PAGE_SHIFT);
1587	vm_flags_set(vma, VM_SOFTDIRTY);
1588	return 0;
1589
1590mas_store_fail:
1591	vm_area_free(vma);
1592unacct_fail:
1593	vm_unacct_memory(len >> PAGE_SHIFT);
1594	return -ENOMEM;
1595}
1596
1597int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1598{
1599	struct mm_struct *mm = current->mm;
1600	struct vm_area_struct *vma = NULL;
1601	unsigned long len;
1602	int ret;
1603	bool populate;
1604	LIST_HEAD(uf);
1605	VMA_ITERATOR(vmi, mm, addr);
1606
1607	len = PAGE_ALIGN(request);
1608	if (len < request)
1609		return -ENOMEM;
1610	if (!len)
1611		return 0;
1612
1613	/* Until we need other flags, refuse anything except VM_EXEC. */
1614	if ((flags & (~VM_EXEC)) != 0)
1615		return -EINVAL;
1616
1617	if (mmap_write_lock_killable(mm))
1618		return -EINTR;
1619
1620	ret = check_brk_limits(addr, len);
1621	if (ret)
1622		goto limits_failed;
1623
1624	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1625	if (ret)
1626		goto munmap_failed;
1627
1628	vma = vma_prev(&vmi);
1629	ret = do_brk_flags(&vmi, vma, addr, len, flags);
1630	populate = ((mm->def_flags & VM_LOCKED) != 0);
1631	mmap_write_unlock(mm);
1632	userfaultfd_unmap_complete(mm, &uf);
1633	if (populate && !ret)
1634		mm_populate(addr, len);
1635	return ret;
1636
1637munmap_failed:
1638limits_failed:
1639	mmap_write_unlock(mm);
1640	return ret;
1641}
1642EXPORT_SYMBOL(vm_brk_flags);
1643
1644/* Release all mmaps. */
1645void exit_mmap(struct mm_struct *mm)
1646{
1647	struct mmu_gather tlb;
1648	struct vm_area_struct *vma;
1649	unsigned long nr_accounted = 0;
1650	VMA_ITERATOR(vmi, mm, 0);
1651	int count = 0;
1652
1653	/* mm's last user has gone, and its about to be pulled down */
1654	mmu_notifier_release(mm);
1655
1656	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
1657	arch_exit_mmap(mm);
1658
1659	vma = vma_next(&vmi);
1660	if (!vma || unlikely(xa_is_zero(vma))) {
1661		/* Can happen if dup_mmap() received an OOM */
1662		mmap_read_unlock(mm);
1663		mmap_write_lock(mm);
1664		goto destroy;
1665	}
1666
1667	lru_add_drain();
1668	flush_cache_mm(mm);
1669	tlb_gather_mmu_fullmm(&tlb, mm);
1670	/* update_hiwater_rss(mm) here? but nobody should be looking */
1671	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1672	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1673	mmap_read_unlock(mm);
1674
1675	/*
1676	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1677	 * because the memory has been already freed.
1678	 */
1679	set_bit(MMF_OOM_SKIP, &mm->flags);
1680	mmap_write_lock(mm);
1681	mt_clear_in_rcu(&mm->mm_mt);
1682	vma_iter_set(&vmi, vma->vm_end);
1683	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1684		      USER_PGTABLES_CEILING, true);
1685	tlb_finish_mmu(&tlb);
1686
1687	/*
1688	 * Walk the list again, actually closing and freeing it, with preemption
1689	 * enabled, without holding any MM locks besides the unreachable
1690	 * mmap_write_lock.
1691	 */
1692	vma_iter_set(&vmi, vma->vm_end);
1693	do {
1694		if (vma->vm_flags & VM_ACCOUNT)
1695			nr_accounted += vma_pages(vma);
1696		remove_vma(vma, /* unreachable = */ true);
1697		count++;
1698		cond_resched();
1699		vma = vma_next(&vmi);
1700	} while (vma && likely(!xa_is_zero(vma)));
1701
1702	BUG_ON(count != mm->map_count);
1703
1704	trace_exit_mmap(mm);
1705destroy:
1706	__mt_destroy(&mm->mm_mt);
1707	mmap_write_unlock(mm);
1708	vm_unacct_memory(nr_accounted);
 
 
 
1709}
1710
1711/* Insert vm structure into process list sorted by address
1712 * and into the inode's i_mmap tree.  If vm_file is non-NULL
1713 * then i_mmap_rwsem is taken here.
1714 */
1715int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1716{
1717	unsigned long charged = vma_pages(vma);
1718
1719
1720	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
1721		return -ENOMEM;
1722
1723	if ((vma->vm_flags & VM_ACCOUNT) &&
1724	     security_vm_enough_memory_mm(mm, charged))
1725		return -ENOMEM;
1726
1727	/*
1728	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1729	 * until its first write fault, when page's anon_vma and index
1730	 * are set.  But now set the vm_pgoff it will almost certainly
1731	 * end up with (unless mremap moves it elsewhere before that
1732	 * first wfault), so /proc/pid/maps tells a consistent story.
1733	 *
1734	 * By setting it to reflect the virtual start address of the
1735	 * vma, merges and splits can happen in a seamless way, just
1736	 * using the existing file pgoff checks and manipulations.
1737	 * Similarly in do_mmap and in do_brk_flags.
1738	 */
1739	if (vma_is_anonymous(vma)) {
1740		BUG_ON(vma->anon_vma);
1741		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1742	}
1743
1744	if (vma_link(mm, vma)) {
1745		if (vma->vm_flags & VM_ACCOUNT)
1746			vm_unacct_memory(charged);
 
1747		return -ENOMEM;
1748	}
1749
 
1750	return 0;
1751}
1752
1753/*
1754 * Return true if the calling process may expand its vm space by the passed
1755 * number of pages
1756 */
1757bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
 
 
1758{
1759	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1760		return false;
1761
1762	if (is_data_mapping(flags) &&
1763	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1764		/* Workaround for Valgrind */
1765		if (rlimit(RLIMIT_DATA) == 0 &&
1766		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1767			return true;
1768
1769		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1770			     current->comm, current->pid,
1771			     (mm->data_vm + npages) << PAGE_SHIFT,
1772			     rlimit(RLIMIT_DATA),
1773			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1774
1775		if (!ignore_rlimit_data)
1776			return false;
 
 
 
 
 
1777	}
1778
1779	return true;
1780}
1781
1782void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1783{
1784	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786	if (is_exec_mapping(flags))
1787		mm->exec_vm += npages;
1788	else if (is_stack_mapping(flags))
1789		mm->stack_vm += npages;
1790	else if (is_data_mapping(flags))
1791		mm->data_vm += npages;
1792}
1793
1794static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
1795
1796/*
1797 * Close hook, called for unmap() and on the old vma for mremap().
1798 *
1799 * Having a close hook prevents vma merging regardless of flags.
1800 */
1801static void special_mapping_close(struct vm_area_struct *vma)
1802{
1803	const struct vm_special_mapping *sm = vma->vm_private_data;
 
1804
1805	if (sm->close)
1806		sm->close(sm, vma);
1807}
1808
1809static const char *special_mapping_name(struct vm_area_struct *vma)
1810{
1811	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1812}
1813
1814static int special_mapping_mremap(struct vm_area_struct *new_vma)
1815{
1816	struct vm_special_mapping *sm = new_vma->vm_private_data;
1817
1818	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1819		return -EFAULT;
1820
1821	if (sm->mremap)
1822		return sm->mremap(sm, new_vma);
1823
1824	return 0;
1825}
1826
1827static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
 
1828{
1829	/*
1830	 * Forbid splitting special mappings - kernel has expectations over
1831	 * the number of pages in mapping. Together with VM_DONTEXPAND
1832	 * the size of vma should stay the same over the special mapping's
1833	 * lifetime.
1834	 */
1835	return -EINVAL;
1836}
1837
1838static const struct vm_operations_struct special_mapping_vmops = {
1839	.close = special_mapping_close,
1840	.fault = special_mapping_fault,
1841	.mremap = special_mapping_mremap,
1842	.name = special_mapping_name,
1843	/* vDSO code relies that VVAR can't be accessed remotely */
1844	.access = NULL,
1845	.may_split = special_mapping_split,
1846};
1847
1848static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
1849{
1850	struct vm_area_struct *vma = vmf->vma;
1851	pgoff_t pgoff;
1852	struct page **pages;
1853	struct vm_special_mapping *sm = vma->vm_private_data;
1854
1855	if (sm->fault)
1856		return sm->fault(sm, vmf->vma, vmf);
1857
1858	pages = sm->pages;
 
 
 
1859
1860	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1861		pgoff--;
1862
1863	if (*pages) {
1864		struct page *page = *pages;
1865		get_page(page);
1866		vmf->page = page;
1867		return 0;
1868	}
1869
1870	return VM_FAULT_SIGBUS;
1871}
1872
1873static struct vm_area_struct *__install_special_mapping(
1874	struct mm_struct *mm,
1875	unsigned long addr, unsigned long len,
1876	unsigned long vm_flags, void *priv,
1877	const struct vm_operations_struct *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878{
1879	int ret;
1880	struct vm_area_struct *vma;
1881
1882	vma = vm_area_alloc(mm);
1883	if (unlikely(vma == NULL))
1884		return ERR_PTR(-ENOMEM);
1885
1886	vma_set_range(vma, addr, addr + len, 0);
1887	vm_flags_init(vma, (vm_flags | mm->def_flags |
1888		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
 
 
 
1889	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1890
1891	vma->vm_ops = ops;
1892	vma->vm_private_data = priv;
1893
1894	ret = insert_vm_struct(mm, vma);
1895	if (ret)
1896		goto out;
1897
1898	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1899
1900	perf_event_mmap(vma);
1901
1902	return vma;
1903
1904out:
1905	vm_area_free(vma);
1906	return ERR_PTR(ret);
1907}
1908
1909bool vma_is_special_mapping(const struct vm_area_struct *vma,
1910	const struct vm_special_mapping *sm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1911{
1912	return vma->vm_private_data == sm &&
1913		vma->vm_ops == &special_mapping_vmops;
 
 
 
 
 
 
 
 
 
 
 
 
1914}
1915
1916/*
1917 * Called with mm->mmap_lock held for writing.
1918 * Insert a new vma covering the given region, with the given flags.
1919 * Its pages are supplied by the given array of struct page *.
1920 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1921 * The region past the last page supplied will always produce SIGBUS.
1922 * The array pointer and the pages it points to are assumed to stay alive
1923 * for as long as this mapping might exist.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1924 */
1925struct vm_area_struct *_install_special_mapping(
1926	struct mm_struct *mm,
1927	unsigned long addr, unsigned long len,
1928	unsigned long vm_flags, const struct vm_special_mapping *spec)
1929{
1930	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1931					&special_mapping_vmops);
 
 
 
 
 
 
 
 
 
 
 
 
 
1932}
1933
1934/*
1935 * initialise the percpu counter for VM
1936 */
1937void __init mmap_init(void)
1938{
1939	int ret;
1940
1941	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1942	VM_BUG_ON(ret);
1943}
1944
1945/*
1946 * Initialise sysctl_user_reserve_kbytes.
1947 *
1948 * This is intended to prevent a user from starting a single memory hogging
1949 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1950 * mode.
1951 *
1952 * The default value is min(3% of free memory, 128MB)
1953 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1954 */
1955static int init_user_reserve(void)
1956{
1957	unsigned long free_kbytes;
1958
1959	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1960
1961	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1962	return 0;
1963}
1964subsys_initcall(init_user_reserve);
1965
1966/*
1967 * Initialise sysctl_admin_reserve_kbytes.
1968 *
1969 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1970 * to log in and kill a memory hogging process.
1971 *
1972 * Systems with more than 256MB will reserve 8MB, enough to recover
1973 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1974 * only reserve 3% of free pages by default.
1975 */
1976static int init_admin_reserve(void)
1977{
1978	unsigned long free_kbytes;
1979
1980	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1981
1982	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1983	return 0;
1984}
1985subsys_initcall(init_admin_reserve);
1986
1987/*
1988 * Reinititalise user and admin reserves if memory is added or removed.
1989 *
1990 * The default user reserve max is 128MB, and the default max for the
1991 * admin reserve is 8MB. These are usually, but not always, enough to
1992 * enable recovery from a memory hogging process using login/sshd, a shell,
1993 * and tools like top. It may make sense to increase or even disable the
1994 * reserve depending on the existence of swap or variations in the recovery
1995 * tools. So, the admin may have changed them.
1996 *
1997 * If memory is added and the reserves have been eliminated or increased above
1998 * the default max, then we'll trust the admin.
1999 *
2000 * If memory is removed and there isn't enough free memory, then we
2001 * need to reset the reserves.
2002 *
2003 * Otherwise keep the reserve set by the admin.
2004 */
2005static int reserve_mem_notifier(struct notifier_block *nb,
2006			     unsigned long action, void *data)
2007{
2008	unsigned long tmp, free_kbytes;
2009
2010	switch (action) {
2011	case MEM_ONLINE:
2012		/* Default max is 128MB. Leave alone if modified by operator. */
2013		tmp = sysctl_user_reserve_kbytes;
2014		if (tmp > 0 && tmp < SZ_128K)
2015			init_user_reserve();
2016
2017		/* Default max is 8MB.  Leave alone if modified by operator. */
2018		tmp = sysctl_admin_reserve_kbytes;
2019		if (tmp > 0 && tmp < SZ_8K)
2020			init_admin_reserve();
2021
2022		break;
2023	case MEM_OFFLINE:
2024		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2025
2026		if (sysctl_user_reserve_kbytes > free_kbytes) {
2027			init_user_reserve();
2028			pr_info("vm.user_reserve_kbytes reset to %lu\n",
2029				sysctl_user_reserve_kbytes);
2030		}
2031
2032		if (sysctl_admin_reserve_kbytes > free_kbytes) {
2033			init_admin_reserve();
2034			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2035				sysctl_admin_reserve_kbytes);
2036		}
2037		break;
2038	default:
2039		break;
2040	}
2041	return NOTIFY_OK;
2042}
2043
 
 
 
 
2044static int __meminit init_reserve_notifier(void)
2045{
2046	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2047		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2048
2049	return 0;
2050}
2051subsys_initcall(init_reserve_notifier);
2052
2053/*
2054 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2055 * this VMA and its relocated range, which will now reside at [vma->vm_start -
2056 * shift, vma->vm_end - shift).
2057 *
2058 * This function is almost certainly NOT what you want for anything other than
2059 * early executable temporary stack relocation.
2060 */
2061int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2062{
2063	/*
2064	 * The process proceeds as follows:
2065	 *
2066	 * 1) Use shift to calculate the new vma endpoints.
2067	 * 2) Extend vma to cover both the old and new ranges.  This ensures the
2068	 *    arguments passed to subsequent functions are consistent.
2069	 * 3) Move vma's page tables to the new range.
2070	 * 4) Free up any cleared pgd range.
2071	 * 5) Shrink the vma to cover only the new range.
2072	 */
2073
2074	struct mm_struct *mm = vma->vm_mm;
2075	unsigned long old_start = vma->vm_start;
2076	unsigned long old_end = vma->vm_end;
2077	unsigned long length = old_end - old_start;
2078	unsigned long new_start = old_start - shift;
2079	unsigned long new_end = old_end - shift;
2080	VMA_ITERATOR(vmi, mm, new_start);
2081	VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2082	struct vm_area_struct *next;
2083	struct mmu_gather tlb;
2084
2085	BUG_ON(new_start > new_end);
2086
2087	/*
2088	 * ensure there are no vmas between where we want to go
2089	 * and where we are
2090	 */
2091	if (vma != vma_next(&vmi))
2092		return -EFAULT;
2093
2094	vma_iter_prev_range(&vmi);
2095	/*
2096	 * cover the whole range: [new_start, old_end)
2097	 */
2098	vmg.vma = vma;
2099	if (vma_expand(&vmg))
2100		return -ENOMEM;
2101
2102	/*
2103	 * move the page tables downwards, on failure we rely on
2104	 * process cleanup to remove whatever mess we made.
2105	 */
2106	if (length != move_page_tables(vma, old_start,
2107				       vma, new_start, length, false, true))
2108		return -ENOMEM;
2109
2110	lru_add_drain();
2111	tlb_gather_mmu(&tlb, mm);
2112	next = vma_next(&vmi);
2113	if (new_end > old_start) {
2114		/*
2115		 * when the old and new regions overlap clear from new_end.
2116		 */
2117		free_pgd_range(&tlb, new_end, old_end, new_end,
2118			next ? next->vm_start : USER_PGTABLES_CEILING);
2119	} else {
2120		/*
2121		 * otherwise, clean from old_start; this is done to not touch
2122		 * the address space in [new_end, old_start) some architectures
2123		 * have constraints on va-space that make this illegal (IA64) -
2124		 * for the others its just a little faster.
2125		 */
2126		free_pgd_range(&tlb, old_start, old_end, new_end,
2127			next ? next->vm_start : USER_PGTABLES_CEILING);
2128	}
2129	tlb_finish_mmu(&tlb);
2130
2131	vma_prev(&vmi);
2132	/* Shrink the vma to just the new range */
2133	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2134}
v3.15
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
 
 
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/backing-dev.h>
  12#include <linux/mm.h>
  13#include <linux/vmacache.h>
  14#include <linux/shm.h>
  15#include <linux/mman.h>
  16#include <linux/pagemap.h>
  17#include <linux/swap.h>
  18#include <linux/syscalls.h>
  19#include <linux/capability.h>
  20#include <linux/init.h>
  21#include <linux/file.h>
  22#include <linux/fs.h>
  23#include <linux/personality.h>
  24#include <linux/security.h>
  25#include <linux/hugetlb.h>
 
  26#include <linux/profile.h>
  27#include <linux/export.h>
  28#include <linux/mount.h>
  29#include <linux/mempolicy.h>
  30#include <linux/rmap.h>
  31#include <linux/mmu_notifier.h>
 
  32#include <linux/perf_event.h>
  33#include <linux/audit.h>
  34#include <linux/khugepaged.h>
  35#include <linux/uprobes.h>
  36#include <linux/rbtree_augmented.h>
  37#include <linux/sched/sysctl.h>
  38#include <linux/notifier.h>
  39#include <linux/memory.h>
 
 
 
 
 
 
 
 
  40
  41#include <asm/uaccess.h>
  42#include <asm/cacheflush.h>
  43#include <asm/tlb.h>
  44#include <asm/mmu_context.h>
  45
 
 
 
  46#include "internal.h"
  47
  48#ifndef arch_mmap_check
  49#define arch_mmap_check(addr, len, flags)	(0)
  50#endif
  51
  52#ifndef arch_rebalance_pgtables
  53#define arch_rebalance_pgtables(addr, len)		(addr)
 
 
 
 
 
 
 
  54#endif
  55
  56static void unmap_region(struct mm_struct *mm,
  57		struct vm_area_struct *vma, struct vm_area_struct *prev,
  58		unsigned long start, unsigned long end);
  59
  60/* description of effects of mapping type and prot in current implementation.
  61 * this is due to the limited x86 page protection hardware.  The expected
  62 * behavior is in parens:
  63 *
  64 * map_type	prot
  65 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  66 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  67 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  68 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  69 *		
  70 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  71 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  72 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  73 *
  74 */
  75pgprot_t protection_map[16] = {
  76	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  77	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
  78};
  79
  80pgprot_t vm_get_page_prot(unsigned long vm_flags)
 
  81{
  82	return __pgprot(pgprot_val(protection_map[vm_flags &
  83				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
  84			pgprot_val(arch_vm_get_page_prot(vm_flags)));
  85}
  86EXPORT_SYMBOL(vm_get_page_prot);
  87
  88int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
  89int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
  90unsigned long sysctl_overcommit_kbytes __read_mostly;
  91int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
  92unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
  93unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
  94/*
  95 * Make sure vm_committed_as in one cacheline and not cacheline shared with
  96 * other variables. It can be updated by several CPUs frequently.
  97 */
  98struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
  99
 100/*
 101 * The global memory commitment made in the system can be a metric
 102 * that can be used to drive ballooning decisions when Linux is hosted
 103 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
 104 * balancing memory across competing virtual machines that are hosted.
 105 * Several metrics drive this policy engine including the guest reported
 106 * memory commitment.
 107 */
 108unsigned long vm_memory_committed(void)
 109{
 110	return percpu_counter_read_positive(&vm_committed_as);
 111}
 112EXPORT_SYMBOL_GPL(vm_memory_committed);
 113
 114/*
 115 * Check that a process has enough memory to allocate a new virtual
 116 * mapping. 0 means there is enough memory for the allocation to
 117 * succeed and -ENOMEM implies there is not.
 118 *
 119 * We currently support three overcommit policies, which are set via the
 120 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
 121 *
 122 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
 123 * Additional code 2002 Jul 20 by Robert Love.
 124 *
 125 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
 126 *
 127 * Note this is a helper function intended to be used by LSMs which
 128 * wish to use this logic.
 129 */
 130int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
 131{
 132	unsigned long free, allowed, reserve;
 133
 134	vm_acct_memory(pages);
 135
 136	/*
 137	 * Sometimes we want to use more memory than we have
 138	 */
 139	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
 140		return 0;
 141
 142	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
 143		free = global_page_state(NR_FREE_PAGES);
 144		free += global_page_state(NR_FILE_PAGES);
 145
 146		/*
 147		 * shmem pages shouldn't be counted as free in this
 148		 * case, they can't be purged, only swapped out, and
 149		 * that won't affect the overall amount of available
 150		 * memory in the system.
 151		 */
 152		free -= global_page_state(NR_SHMEM);
 153
 154		free += get_nr_swap_pages();
 155
 156		/*
 157		 * Any slabs which are created with the
 158		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
 159		 * which are reclaimable, under pressure.  The dentry
 160		 * cache and most inode caches should fall into this
 161		 */
 162		free += global_page_state(NR_SLAB_RECLAIMABLE);
 163
 164		/*
 165		 * Leave reserved pages. The pages are not for anonymous pages.
 166		 */
 167		if (free <= totalreserve_pages)
 168			goto error;
 169		else
 170			free -= totalreserve_pages;
 171
 172		/*
 173		 * Reserve some for root
 174		 */
 175		if (!cap_sys_admin)
 176			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 177
 178		if (free > pages)
 179			return 0;
 180
 181		goto error;
 182	}
 183
 184	allowed = vm_commit_limit();
 185	/*
 186	 * Reserve some for root
 187	 */
 188	if (!cap_sys_admin)
 189		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
 190
 191	/*
 192	 * Don't let a single process grow so big a user can't recover
 193	 */
 194	if (mm) {
 195		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
 196		allowed -= min(mm->total_vm / 32, reserve);
 197	}
 198
 199	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
 200		return 0;
 201error:
 202	vm_unacct_memory(pages);
 203
 204	return -ENOMEM;
 205}
 206
 207/*
 208 * Requires inode->i_mapping->i_mmap_mutex
 209 */
 210static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 211		struct file *file, struct address_space *mapping)
 212{
 213	if (vma->vm_flags & VM_DENYWRITE)
 214		atomic_inc(&file_inode(file)->i_writecount);
 215	if (vma->vm_flags & VM_SHARED)
 216		mapping->i_mmap_writable--;
 217
 218	flush_dcache_mmap_lock(mapping);
 219	if (unlikely(vma->vm_flags & VM_NONLINEAR))
 220		list_del_init(&vma->shared.nonlinear);
 221	else
 222		vma_interval_tree_remove(vma, &mapping->i_mmap);
 223	flush_dcache_mmap_unlock(mapping);
 224}
 225
 226/*
 227 * Unlink a file-based vm structure from its interval tree, to hide
 228 * vma from rmap and vmtruncate before freeing its page tables.
 229 */
 230void unlink_file_vma(struct vm_area_struct *vma)
 231{
 232	struct file *file = vma->vm_file;
 233
 234	if (file) {
 235		struct address_space *mapping = file->f_mapping;
 236		mutex_lock(&mapping->i_mmap_mutex);
 237		__remove_shared_vm_struct(vma, file, mapping);
 238		mutex_unlock(&mapping->i_mmap_mutex);
 239	}
 240}
 241
 242/*
 243 * Close a vm structure and free it, returning the next.
 244 */
 245static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 246{
 247	struct vm_area_struct *next = vma->vm_next;
 248
 249	might_sleep();
 250	if (vma->vm_ops && vma->vm_ops->close)
 251		vma->vm_ops->close(vma);
 252	if (vma->vm_file)
 253		fput(vma->vm_file);
 254	mpol_put(vma_policy(vma));
 255	kmem_cache_free(vm_area_cachep, vma);
 256	return next;
 257}
 258
 259static unsigned long do_brk(unsigned long addr, unsigned long len);
 260
 261SYSCALL_DEFINE1(brk, unsigned long, brk)
 262{
 263	unsigned long rlim, retval;
 264	unsigned long newbrk, oldbrk;
 265	struct mm_struct *mm = current->mm;
 
 266	unsigned long min_brk;
 267	bool populate;
 
 
 
 
 
 268
 269	down_write(&mm->mmap_sem);
 270
 271#ifdef CONFIG_COMPAT_BRK
 272	/*
 273	 * CONFIG_COMPAT_BRK can still be overridden by setting
 274	 * randomize_va_space to 2, which will still cause mm->start_brk
 275	 * to be arbitrarily shifted
 276	 */
 277	if (current->brk_randomized)
 278		min_brk = mm->start_brk;
 279	else
 280		min_brk = mm->end_data;
 281#else
 282	min_brk = mm->start_brk;
 283#endif
 284	if (brk < min_brk)
 285		goto out;
 286
 287	/*
 288	 * Check against rlimit here. If this check is done later after the test
 289	 * of oldbrk with newbrk then it can escape the test and let the data
 290	 * segment grow beyond its set limit the in case where the limit is
 291	 * not page aligned -Ram Gupta
 292	 */
 293	rlim = rlimit(RLIMIT_DATA);
 294	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
 295			(mm->end_data - mm->start_data) > rlim)
 296		goto out;
 297
 298	newbrk = PAGE_ALIGN(brk);
 299	oldbrk = PAGE_ALIGN(mm->brk);
 300	if (oldbrk == newbrk)
 301		goto set_brk;
 
 
 302
 303	/* Always allow shrinking brk. */
 304	if (brk <= mm->brk) {
 305		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 306			goto set_brk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 307		goto out;
 308	}
 309
 310	/* Check against existing mmap mappings. */
 311	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 
 
 
 
 312		goto out;
 313
 
 314	/* Ok, looks good - let it rip. */
 315	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
 316		goto out;
 317
 318set_brk:
 319	mm->brk = brk;
 320	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 321	up_write(&mm->mmap_sem);
 
 
 
 
 
 322	if (populate)
 323		mm_populate(oldbrk, newbrk - oldbrk);
 324	return brk;
 325
 326out:
 327	retval = mm->brk;
 328	up_write(&mm->mmap_sem);
 329	return retval;
 330}
 331
 332static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 333{
 334	unsigned long max, subtree_gap;
 335	max = vma->vm_start;
 336	if (vma->vm_prev)
 337		max -= vma->vm_prev->vm_end;
 338	if (vma->vm_rb.rb_left) {
 339		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 340				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 341		if (subtree_gap > max)
 342			max = subtree_gap;
 343	}
 344	if (vma->vm_rb.rb_right) {
 345		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 346				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 347		if (subtree_gap > max)
 348			max = subtree_gap;
 349	}
 350	return max;
 351}
 352
 353#ifdef CONFIG_DEBUG_VM_RB
 354static int browse_rb(struct rb_root *root)
 355{
 356	int i = 0, j, bug = 0;
 357	struct rb_node *nd, *pn = NULL;
 358	unsigned long prev = 0, pend = 0;
 359
 360	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 361		struct vm_area_struct *vma;
 362		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 363		if (vma->vm_start < prev) {
 364			printk("vm_start %lx prev %lx\n", vma->vm_start, prev);
 365			bug = 1;
 366		}
 367		if (vma->vm_start < pend) {
 368			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
 369			bug = 1;
 370		}
 371		if (vma->vm_start > vma->vm_end) {
 372			printk("vm_end %lx < vm_start %lx\n",
 373				vma->vm_end, vma->vm_start);
 374			bug = 1;
 375		}
 376		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 377			printk("free gap %lx, correct %lx\n",
 378			       vma->rb_subtree_gap,
 379			       vma_compute_subtree_gap(vma));
 380			bug = 1;
 381		}
 382		i++;
 383		pn = nd;
 384		prev = vma->vm_start;
 385		pend = vma->vm_end;
 386	}
 387	j = 0;
 388	for (nd = pn; nd; nd = rb_prev(nd))
 389		j++;
 390	if (i != j) {
 391		printk("backwards %d, forwards %d\n", j, i);
 392		bug = 1;
 393	}
 394	return bug ? -1 : i;
 395}
 396
 397static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 398{
 399	struct rb_node *nd;
 400
 401	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 402		struct vm_area_struct *vma;
 403		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 404		BUG_ON(vma != ignore &&
 405		       vma->rb_subtree_gap != vma_compute_subtree_gap(vma));
 406	}
 407}
 408
 409static void validate_mm(struct mm_struct *mm)
 410{
 411	int bug = 0;
 412	int i = 0;
 413	unsigned long highest_address = 0;
 414	struct vm_area_struct *vma = mm->mmap;
 415	while (vma) {
 416		struct anon_vma_chain *avc;
 417		vma_lock_anon_vma(vma);
 418		list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 419			anon_vma_interval_tree_verify(avc);
 420		vma_unlock_anon_vma(vma);
 421		highest_address = vma->vm_end;
 422		vma = vma->vm_next;
 423		i++;
 424	}
 425	if (i != mm->map_count) {
 426		printk("map_count %d vm_next %d\n", mm->map_count, i);
 427		bug = 1;
 428	}
 429	if (highest_address != mm->highest_vm_end) {
 430		printk("mm->highest_vm_end %lx, found %lx\n",
 431		       mm->highest_vm_end, highest_address);
 432		bug = 1;
 433	}
 434	i = browse_rb(&mm->mm_rb);
 435	if (i != mm->map_count) {
 436		printk("map_count %d rb %d\n", mm->map_count, i);
 437		bug = 1;
 438	}
 439	BUG_ON(bug);
 440}
 441#else
 442#define validate_mm_rb(root, ignore) do { } while (0)
 443#define validate_mm(mm) do { } while (0)
 444#endif
 445
 446RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 447		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 448
 449/*
 450 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 451 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 452 * in the rbtree.
 453 */
 454static void vma_gap_update(struct vm_area_struct *vma)
 455{
 456	/*
 457	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 458	 * function that does exacltly what we want.
 459	 */
 460	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 461}
 462
 463static inline void vma_rb_insert(struct vm_area_struct *vma,
 464				 struct rb_root *root)
 465{
 466	/* All rb_subtree_gap values must be consistent prior to insertion */
 467	validate_mm_rb(root, NULL);
 468
 469	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 470}
 471
 472static void vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 
 473{
 474	/*
 475	 * All rb_subtree_gap values must be consistent prior to erase,
 476	 * with the possible exception of the vma being erased.
 477	 */
 478	validate_mm_rb(root, vma);
 479
 480	/*
 481	 * Note rb_erase_augmented is a fairly large inline function,
 482	 * so make sure we instantiate it only once with our desired
 483	 * augmented rbtree callbacks.
 484	 */
 485	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 486}
 487
 488/*
 489 * vma has some anon_vma assigned, and is already inserted on that
 490 * anon_vma's interval trees.
 491 *
 492 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 493 * vma must be removed from the anon_vma's interval trees using
 494 * anon_vma_interval_tree_pre_update_vma().
 495 *
 496 * After the update, the vma will be reinserted using
 497 * anon_vma_interval_tree_post_update_vma().
 498 *
 499 * The entire update must be protected by exclusive mmap_sem and by
 500 * the root anon_vma's mutex.
 501 */
 502static inline void
 503anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 504{
 505	struct anon_vma_chain *avc;
 506
 507	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 508		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 509}
 510
 511static inline void
 512anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 513{
 514	struct anon_vma_chain *avc;
 515
 516	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 517		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 518}
 519
 520static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 521		unsigned long end, struct vm_area_struct **pprev,
 522		struct rb_node ***rb_link, struct rb_node **rb_parent)
 523{
 524	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 525
 526	__rb_link = &mm->mm_rb.rb_node;
 527	rb_prev = __rb_parent = NULL;
 528
 529	while (*__rb_link) {
 530		struct vm_area_struct *vma_tmp;
 531
 532		__rb_parent = *__rb_link;
 533		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 534
 535		if (vma_tmp->vm_end > addr) {
 536			/* Fail if an existing vma overlaps the area */
 537			if (vma_tmp->vm_start < end)
 538				return -ENOMEM;
 539			__rb_link = &__rb_parent->rb_left;
 540		} else {
 541			rb_prev = __rb_parent;
 542			__rb_link = &__rb_parent->rb_right;
 543		}
 544	}
 545
 546	*pprev = NULL;
 547	if (rb_prev)
 548		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 549	*rb_link = __rb_link;
 550	*rb_parent = __rb_parent;
 551	return 0;
 552}
 553
 554static unsigned long count_vma_pages_range(struct mm_struct *mm,
 555		unsigned long addr, unsigned long end)
 556{
 557	unsigned long nr_pages = 0;
 558	struct vm_area_struct *vma;
 559
 560	/* Find first overlaping mapping */
 561	vma = find_vma_intersection(mm, addr, end);
 562	if (!vma)
 563		return 0;
 564
 565	nr_pages = (min(end, vma->vm_end) -
 566		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 567
 568	/* Iterate over the rest of the overlaps */
 569	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 570		unsigned long overlap_len;
 571
 572		if (vma->vm_start > end)
 573			break;
 574
 575		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 576		nr_pages += overlap_len >> PAGE_SHIFT;
 577	}
 578
 579	return nr_pages;
 580}
 581
 582void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 583		struct rb_node **rb_link, struct rb_node *rb_parent)
 584{
 585	/* Update tracking information for the gap following the new vma. */
 586	if (vma->vm_next)
 587		vma_gap_update(vma->vm_next);
 588	else
 589		mm->highest_vm_end = vma->vm_end;
 590
 591	/*
 592	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 593	 * correct insertion point for that vma. As a result, we could not
 594	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 595	 * So, we first insert the vma with a zero rb_subtree_gap value
 596	 * (to be consistent with what we did on the way down), and then
 597	 * immediately update the gap to the correct value. Finally we
 598	 * rebalance the rbtree after all augmented values have been set.
 599	 */
 600	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 601	vma->rb_subtree_gap = 0;
 602	vma_gap_update(vma);
 603	vma_rb_insert(vma, &mm->mm_rb);
 604}
 605
 606static void __vma_link_file(struct vm_area_struct *vma)
 607{
 608	struct file *file;
 609
 610	file = vma->vm_file;
 611	if (file) {
 612		struct address_space *mapping = file->f_mapping;
 613
 614		if (vma->vm_flags & VM_DENYWRITE)
 615			atomic_dec(&file_inode(file)->i_writecount);
 616		if (vma->vm_flags & VM_SHARED)
 617			mapping->i_mmap_writable++;
 618
 619		flush_dcache_mmap_lock(mapping);
 620		if (unlikely(vma->vm_flags & VM_NONLINEAR))
 621			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
 622		else
 623			vma_interval_tree_insert(vma, &mapping->i_mmap);
 624		flush_dcache_mmap_unlock(mapping);
 625	}
 626}
 627
 628static void
 629__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 630	struct vm_area_struct *prev, struct rb_node **rb_link,
 631	struct rb_node *rb_parent)
 632{
 633	__vma_link_list(mm, vma, prev, rb_parent);
 634	__vma_link_rb(mm, vma, rb_link, rb_parent);
 635}
 636
 637static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 638			struct vm_area_struct *prev, struct rb_node **rb_link,
 639			struct rb_node *rb_parent)
 640{
 641	struct address_space *mapping = NULL;
 642
 643	if (vma->vm_file)
 644		mapping = vma->vm_file->f_mapping;
 645
 646	if (mapping)
 647		mutex_lock(&mapping->i_mmap_mutex);
 648
 649	__vma_link(mm, vma, prev, rb_link, rb_parent);
 650	__vma_link_file(vma);
 651
 652	if (mapping)
 653		mutex_unlock(&mapping->i_mmap_mutex);
 654
 655	mm->map_count++;
 656	validate_mm(mm);
 657}
 658
 659/*
 660 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 661 * mm's list and rbtree.  It has already been inserted into the interval tree.
 662 */
 663static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 664{
 665	struct vm_area_struct *prev;
 666	struct rb_node **rb_link, *rb_parent;
 667
 668	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 669			   &prev, &rb_link, &rb_parent))
 670		BUG();
 671	__vma_link(mm, vma, prev, rb_link, rb_parent);
 672	mm->map_count++;
 673}
 674
 675static inline void
 676__vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
 677		struct vm_area_struct *prev)
 678{
 679	struct vm_area_struct *next;
 680
 681	vma_rb_erase(vma, &mm->mm_rb);
 682	prev->vm_next = next = vma->vm_next;
 683	if (next)
 684		next->vm_prev = prev;
 685
 686	/* Kill the cache */
 687	vmacache_invalidate(mm);
 688}
 689
 690/*
 691 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 692 * is already present in an i_mmap tree without adjusting the tree.
 693 * The following helper function should be used when such adjustments
 694 * are necessary.  The "insert" vma (if any) is to be inserted
 695 * before we drop the necessary locks.
 696 */
 697int vma_adjust(struct vm_area_struct *vma, unsigned long start,
 698	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
 699{
 700	struct mm_struct *mm = vma->vm_mm;
 701	struct vm_area_struct *next = vma->vm_next;
 702	struct vm_area_struct *importer = NULL;
 703	struct address_space *mapping = NULL;
 704	struct rb_root *root = NULL;
 705	struct anon_vma *anon_vma = NULL;
 706	struct file *file = vma->vm_file;
 707	bool start_changed = false, end_changed = false;
 708	long adjust_next = 0;
 709	int remove_next = 0;
 710
 711	if (next && !insert) {
 712		struct vm_area_struct *exporter = NULL;
 713
 714		if (end >= next->vm_end) {
 715			/*
 716			 * vma expands, overlapping all the next, and
 717			 * perhaps the one after too (mprotect case 6).
 718			 */
 719again:			remove_next = 1 + (end > next->vm_end);
 720			end = next->vm_end;
 721			exporter = next;
 722			importer = vma;
 723		} else if (end > next->vm_start) {
 724			/*
 725			 * vma expands, overlapping part of the next:
 726			 * mprotect case 5 shifting the boundary up.
 727			 */
 728			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 729			exporter = next;
 730			importer = vma;
 731		} else if (end < vma->vm_end) {
 732			/*
 733			 * vma shrinks, and !insert tells it's not
 734			 * split_vma inserting another: so it must be
 735			 * mprotect case 4 shifting the boundary down.
 736			 */
 737			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
 738			exporter = vma;
 739			importer = next;
 740		}
 741
 742		/*
 743		 * Easily overlooked: when mprotect shifts the boundary,
 744		 * make sure the expanding vma has anon_vma set if the
 745		 * shrinking vma had, to cover any anon pages imported.
 746		 */
 747		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 748			if (anon_vma_clone(importer, exporter))
 749				return -ENOMEM;
 750			importer->anon_vma = exporter->anon_vma;
 751		}
 752	}
 753
 754	if (file) {
 755		mapping = file->f_mapping;
 756		if (!(vma->vm_flags & VM_NONLINEAR)) {
 757			root = &mapping->i_mmap;
 758			uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 759
 760			if (adjust_next)
 761				uprobe_munmap(next, next->vm_start,
 762							next->vm_end);
 763		}
 764
 765		mutex_lock(&mapping->i_mmap_mutex);
 766		if (insert) {
 767			/*
 768			 * Put into interval tree now, so instantiated pages
 769			 * are visible to arm/parisc __flush_dcache_page
 770			 * throughout; but we cannot insert into address
 771			 * space until vma start or end is updated.
 772			 */
 773			__vma_link_file(insert);
 774		}
 775	}
 776
 777	vma_adjust_trans_huge(vma, start, end, adjust_next);
 778
 779	anon_vma = vma->anon_vma;
 780	if (!anon_vma && adjust_next)
 781		anon_vma = next->anon_vma;
 782	if (anon_vma) {
 783		VM_BUG_ON(adjust_next && next->anon_vma &&
 784			  anon_vma != next->anon_vma);
 785		anon_vma_lock_write(anon_vma);
 786		anon_vma_interval_tree_pre_update_vma(vma);
 787		if (adjust_next)
 788			anon_vma_interval_tree_pre_update_vma(next);
 789	}
 790
 791	if (root) {
 792		flush_dcache_mmap_lock(mapping);
 793		vma_interval_tree_remove(vma, root);
 794		if (adjust_next)
 795			vma_interval_tree_remove(next, root);
 796	}
 797
 798	if (start != vma->vm_start) {
 799		vma->vm_start = start;
 800		start_changed = true;
 801	}
 802	if (end != vma->vm_end) {
 803		vma->vm_end = end;
 804		end_changed = true;
 805	}
 806	vma->vm_pgoff = pgoff;
 807	if (adjust_next) {
 808		next->vm_start += adjust_next << PAGE_SHIFT;
 809		next->vm_pgoff += adjust_next;
 810	}
 811
 812	if (root) {
 813		if (adjust_next)
 814			vma_interval_tree_insert(next, root);
 815		vma_interval_tree_insert(vma, root);
 816		flush_dcache_mmap_unlock(mapping);
 817	}
 818
 819	if (remove_next) {
 820		/*
 821		 * vma_merge has merged next into vma, and needs
 822		 * us to remove next before dropping the locks.
 823		 */
 824		__vma_unlink(mm, next, vma);
 825		if (file)
 826			__remove_shared_vm_struct(next, file, mapping);
 827	} else if (insert) {
 828		/*
 829		 * split_vma has split insert from vma, and needs
 830		 * us to insert it before dropping the locks
 831		 * (it may either follow vma or precede it).
 832		 */
 833		__insert_vm_struct(mm, insert);
 834	} else {
 835		if (start_changed)
 836			vma_gap_update(vma);
 837		if (end_changed) {
 838			if (!next)
 839				mm->highest_vm_end = end;
 840			else if (!adjust_next)
 841				vma_gap_update(next);
 842		}
 843	}
 844
 845	if (anon_vma) {
 846		anon_vma_interval_tree_post_update_vma(vma);
 847		if (adjust_next)
 848			anon_vma_interval_tree_post_update_vma(next);
 849		anon_vma_unlock_write(anon_vma);
 850	}
 851	if (mapping)
 852		mutex_unlock(&mapping->i_mmap_mutex);
 853
 854	if (root) {
 855		uprobe_mmap(vma);
 856
 857		if (adjust_next)
 858			uprobe_mmap(next);
 859	}
 860
 861	if (remove_next) {
 862		if (file) {
 863			uprobe_munmap(next, next->vm_start, next->vm_end);
 864			fput(file);
 865		}
 866		if (next->anon_vma)
 867			anon_vma_merge(vma, next);
 868		mm->map_count--;
 869		mpol_put(vma_policy(next));
 870		kmem_cache_free(vm_area_cachep, next);
 871		/*
 872		 * In mprotect's case 6 (see comments on vma_merge),
 873		 * we must remove another next too. It would clutter
 874		 * up the code too much to do both in one go.
 875		 */
 876		next = vma->vm_next;
 877		if (remove_next == 2)
 878			goto again;
 879		else if (next)
 880			vma_gap_update(next);
 881		else
 882			mm->highest_vm_end = end;
 883	}
 884	if (insert && file)
 885		uprobe_mmap(insert);
 886
 887	validate_mm(mm);
 888
 889	return 0;
 890}
 891
 892/*
 893 * If the vma has a ->close operation then the driver probably needs to release
 894 * per-vma resources, so we don't attempt to merge those.
 895 */
 896static inline int is_mergeable_vma(struct vm_area_struct *vma,
 897			struct file *file, unsigned long vm_flags)
 898{
 899	/*
 900	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 901	 * match the flags but dirty bit -- the caller should mark
 902	 * merged VMA as dirty. If dirty bit won't be excluded from
 903	 * comparison, we increase pressue on the memory system forcing
 904	 * the kernel to generate new VMAs when old one could be
 905	 * extended instead.
 906	 */
 907	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 908		return 0;
 909	if (vma->vm_file != file)
 910		return 0;
 911	if (vma->vm_ops && vma->vm_ops->close)
 912		return 0;
 913	return 1;
 914}
 915
 916static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 917					struct anon_vma *anon_vma2,
 918					struct vm_area_struct *vma)
 919{
 920	/*
 921	 * The list_is_singular() test is to avoid merging VMA cloned from
 922	 * parents. This can improve scalability caused by anon_vma lock.
 923	 */
 924	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 925		list_is_singular(&vma->anon_vma_chain)))
 926		return 1;
 927	return anon_vma1 == anon_vma2;
 928}
 929
 930/*
 931 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 932 * in front of (at a lower virtual address and file offset than) the vma.
 933 *
 934 * We cannot merge two vmas if they have differently assigned (non-NULL)
 935 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 936 *
 937 * We don't check here for the merged mmap wrapping around the end of pagecache
 938 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
 939 * wrap, nor mmaps which cover the final page at index -1UL.
 940 */
 941static int
 942can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
 943	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 944{
 945	if (is_mergeable_vma(vma, file, vm_flags) &&
 946	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 947		if (vma->vm_pgoff == vm_pgoff)
 948			return 1;
 949	}
 950	return 0;
 951}
 952
 953/*
 954 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 955 * beyond (at a higher virtual address and file offset than) the vma.
 956 *
 957 * We cannot merge two vmas if they have differently assigned (non-NULL)
 958 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
 959 */
 960static int
 961can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
 962	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
 963{
 964	if (is_mergeable_vma(vma, file, vm_flags) &&
 965	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
 966		pgoff_t vm_pglen;
 967		vm_pglen = vma_pages(vma);
 968		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
 969			return 1;
 970	}
 971	return 0;
 972}
 973
 974/*
 975 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
 976 * whether that can be merged with its predecessor or its successor.
 977 * Or both (it neatly fills a hole).
 978 *
 979 * In most cases - when called for mmap, brk or mremap - [addr,end) is
 980 * certain not to be mapped by the time vma_merge is called; but when
 981 * called for mprotect, it is certain to be already mapped (either at
 982 * an offset within prev, or at the start of next), and the flags of
 983 * this area are about to be changed to vm_flags - and the no-change
 984 * case has already been eliminated.
 985 *
 986 * The following mprotect cases have to be considered, where AAAA is
 987 * the area passed down from mprotect_fixup, never extending beyond one
 988 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
 989 *
 990 *     AAAA             AAAA                AAAA          AAAA
 991 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
 992 *    cannot merge    might become    might become    might become
 993 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
 994 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
 995 *    mremap move:                                    PPPPNNNNNNNN 8
 996 *        AAAA
 997 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
 998 *    might become    case 1 below    case 2 below    case 3 below
 999 *
1000 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1001 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1002 */
1003struct vm_area_struct *vma_merge(struct mm_struct *mm,
1004			struct vm_area_struct *prev, unsigned long addr,
1005			unsigned long end, unsigned long vm_flags,
1006		     	struct anon_vma *anon_vma, struct file *file,
1007			pgoff_t pgoff, struct mempolicy *policy)
1008{
1009	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1010	struct vm_area_struct *area, *next;
1011	int err;
1012
1013	/*
1014	 * We later require that vma->vm_flags == vm_flags,
1015	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1016	 */
1017	if (vm_flags & VM_SPECIAL)
1018		return NULL;
1019
1020	if (prev)
1021		next = prev->vm_next;
1022	else
1023		next = mm->mmap;
1024	area = next;
1025	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
1026		next = next->vm_next;
1027
1028	/*
1029	 * Can it merge with the predecessor?
1030	 */
1031	if (prev && prev->vm_end == addr &&
1032  			mpol_equal(vma_policy(prev), policy) &&
1033			can_vma_merge_after(prev, vm_flags,
1034						anon_vma, file, pgoff)) {
1035		/*
1036		 * OK, it can.  Can we now merge in the successor as well?
1037		 */
1038		if (next && end == next->vm_start &&
1039				mpol_equal(policy, vma_policy(next)) &&
1040				can_vma_merge_before(next, vm_flags,
1041					anon_vma, file, pgoff+pglen) &&
1042				is_mergeable_anon_vma(prev->anon_vma,
1043						      next->anon_vma, NULL)) {
1044							/* cases 1, 6 */
1045			err = vma_adjust(prev, prev->vm_start,
1046				next->vm_end, prev->vm_pgoff, NULL);
1047		} else					/* cases 2, 5, 7 */
1048			err = vma_adjust(prev, prev->vm_start,
1049				end, prev->vm_pgoff, NULL);
1050		if (err)
1051			return NULL;
1052		khugepaged_enter_vma_merge(prev);
1053		return prev;
1054	}
1055
1056	/*
1057	 * Can this new request be merged in front of next?
1058	 */
1059	if (next && end == next->vm_start &&
1060 			mpol_equal(policy, vma_policy(next)) &&
1061			can_vma_merge_before(next, vm_flags,
1062					anon_vma, file, pgoff+pglen)) {
1063		if (prev && addr < prev->vm_end)	/* case 4 */
1064			err = vma_adjust(prev, prev->vm_start,
1065				addr, prev->vm_pgoff, NULL);
1066		else					/* cases 3, 8 */
1067			err = vma_adjust(area, addr, next->vm_end,
1068				next->vm_pgoff - pglen, NULL);
1069		if (err)
1070			return NULL;
1071		khugepaged_enter_vma_merge(area);
1072		return area;
1073	}
1074
1075	return NULL;
1076}
1077
1078/*
1079 * Rough compatbility check to quickly see if it's even worth looking
1080 * at sharing an anon_vma.
1081 *
1082 * They need to have the same vm_file, and the flags can only differ
1083 * in things that mprotect may change.
1084 *
1085 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1086 * we can merge the two vma's. For example, we refuse to merge a vma if
1087 * there is a vm_ops->close() function, because that indicates that the
1088 * driver is doing some kind of reference counting. But that doesn't
1089 * really matter for the anon_vma sharing case.
1090 */
1091static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1092{
1093	return a->vm_end == b->vm_start &&
1094		mpol_equal(vma_policy(a), vma_policy(b)) &&
1095		a->vm_file == b->vm_file &&
1096		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1097		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1098}
1099
1100/*
1101 * Do some basic sanity checking to see if we can re-use the anon_vma
1102 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1103 * the same as 'old', the other will be the new one that is trying
1104 * to share the anon_vma.
1105 *
1106 * NOTE! This runs with mm_sem held for reading, so it is possible that
1107 * the anon_vma of 'old' is concurrently in the process of being set up
1108 * by another page fault trying to merge _that_. But that's ok: if it
1109 * is being set up, that automatically means that it will be a singleton
1110 * acceptable for merging, so we can do all of this optimistically. But
1111 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1112 *
1113 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1114 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1115 * is to return an anon_vma that is "complex" due to having gone through
1116 * a fork).
1117 *
1118 * We also make sure that the two vma's are compatible (adjacent,
1119 * and with the same memory policies). That's all stable, even with just
1120 * a read lock on the mm_sem.
1121 */
1122static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1123{
1124	if (anon_vma_compatible(a, b)) {
1125		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
1126
1127		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1128			return anon_vma;
1129	}
1130	return NULL;
1131}
1132
1133/*
1134 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1135 * neighbouring vmas for a suitable anon_vma, before it goes off
1136 * to allocate a new anon_vma.  It checks because a repetitive
1137 * sequence of mprotects and faults may otherwise lead to distinct
1138 * anon_vmas being allocated, preventing vma merge in subsequent
1139 * mprotect.
1140 */
1141struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1142{
1143	struct anon_vma *anon_vma;
1144	struct vm_area_struct *near;
1145
1146	near = vma->vm_next;
1147	if (!near)
1148		goto try_prev;
1149
1150	anon_vma = reusable_anon_vma(near, vma, near);
1151	if (anon_vma)
1152		return anon_vma;
1153try_prev:
1154	near = vma->vm_prev;
1155	if (!near)
1156		goto none;
1157
1158	anon_vma = reusable_anon_vma(near, near, vma);
1159	if (anon_vma)
1160		return anon_vma;
1161none:
1162	/*
1163	 * There's no absolute need to look only at touching neighbours:
1164	 * we could search further afield for "compatible" anon_vmas.
1165	 * But it would probably just be a waste of time searching,
1166	 * or lead to too many vmas hanging off the same anon_vma.
1167	 * We're trying to allow mprotect remerging later on,
1168	 * not trying to minimize memory used for anon_vmas.
1169	 */
1170	return NULL;
1171}
1172
1173#ifdef CONFIG_PROC_FS
1174void vm_stat_account(struct mm_struct *mm, unsigned long flags,
1175						struct file *file, long pages)
1176{
1177	const unsigned long stack_flags
1178		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
1179
1180	mm->total_vm += pages;
1181
1182	if (file) {
1183		mm->shared_vm += pages;
1184		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
1185			mm->exec_vm += pages;
1186	} else if (flags & stack_flags)
1187		mm->stack_vm += pages;
1188}
1189#endif /* CONFIG_PROC_FS */
1190
1191/*
1192 * If a hint addr is less than mmap_min_addr change hint to be as
1193 * low as possible but still greater than mmap_min_addr
1194 */
1195static inline unsigned long round_hint_to_min(unsigned long hint)
1196{
1197	hint &= PAGE_MASK;
1198	if (((void *)hint != NULL) &&
1199	    (hint < mmap_min_addr))
1200		return PAGE_ALIGN(mmap_min_addr);
1201	return hint;
1202}
1203
1204static inline int mlock_future_check(struct mm_struct *mm,
1205				     unsigned long flags,
1206				     unsigned long len)
1207{
1208	unsigned long locked, lock_limit;
1209
1210	/*  mlock MCL_FUTURE? */
1211	if (flags & VM_LOCKED) {
1212		locked = len >> PAGE_SHIFT;
1213		locked += mm->locked_vm;
1214		lock_limit = rlimit(RLIMIT_MEMLOCK);
1215		lock_limit >>= PAGE_SHIFT;
1216		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1217			return -EAGAIN;
1218	}
1219	return 0;
1220}
1221
1222/*
1223 * The caller must hold down_write(&current->mm->mmap_sem).
1224 */
1225
1226unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1227			unsigned long len, unsigned long prot,
1228			unsigned long flags, unsigned long pgoff,
1229			unsigned long *populate)
 
1230{
1231	struct mm_struct * mm = current->mm;
1232	vm_flags_t vm_flags;
1233
1234	*populate = 0;
1235
 
 
 
1236	/*
1237	 * Does the application expect PROT_READ to imply PROT_EXEC?
1238	 *
1239	 * (the exception is when the underlying filesystem is noexec
1240	 *  mounted, in which case we dont add PROT_EXEC.)
1241	 */
1242	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1243		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1244			prot |= PROT_EXEC;
1245
1246	if (!len)
1247		return -EINVAL;
 
1248
1249	if (!(flags & MAP_FIXED))
1250		addr = round_hint_to_min(addr);
1251
1252	/* Careful about overflows.. */
1253	len = PAGE_ALIGN(len);
1254	if (!len)
1255		return -ENOMEM;
1256
1257	/* offset overflow? */
1258	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1259               return -EOVERFLOW;
1260
1261	/* Too many mappings? */
1262	if (mm->map_count > sysctl_max_map_count)
1263		return -ENOMEM;
1264
1265	/* Obtain the address to map to. we verify (or select) it and ensure
1266	 * that it represents a valid section of the address space.
 
 
 
 
 
 
1267	 */
1268	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1269	if (addr & ~PAGE_MASK)
1270		return addr;
 
 
 
1271
1272	/* Do simple checking here so the lower-level routines won't have
1273	 * to. we assume access permissions have been handled by the open
1274	 * of the memory object, so we don't do any here.
1275	 */
1276	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1277			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1278
 
 
 
 
 
 
 
 
 
 
 
 
1279	if (flags & MAP_LOCKED)
1280		if (!can_do_mlock())
1281			return -EPERM;
1282
1283	if (mlock_future_check(mm, vm_flags, len))
1284		return -EAGAIN;
1285
1286	if (file) {
1287		struct inode *inode = file_inode(file);
 
 
 
 
 
 
 
 
 
1288
1289		switch (flags & MAP_TYPE) {
1290		case MAP_SHARED:
1291			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1292				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1293
1294			/*
1295			 * Make sure we don't allow writing to an append-only
1296			 * file..
1297			 */
1298			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1299				return -EACCES;
1300
1301			/*
1302			 * Make sure there are no mandatory locks on the file.
1303			 */
1304			if (locks_verify_locked(file))
1305				return -EAGAIN;
1306
1307			vm_flags |= VM_SHARED | VM_MAYSHARE;
1308			if (!(file->f_mode & FMODE_WRITE))
1309				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1310
1311			/* fall through */
 
1312		case MAP_PRIVATE:
1313			if (!(file->f_mode & FMODE_READ))
1314				return -EACCES;
1315			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1316				if (vm_flags & VM_EXEC)
1317					return -EPERM;
1318				vm_flags &= ~VM_MAYEXEC;
1319			}
1320
1321			if (!file->f_op->mmap)
1322				return -ENODEV;
1323			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1324				return -EINVAL;
1325			break;
1326
1327		default:
1328			return -EINVAL;
1329		}
1330	} else {
1331		switch (flags & MAP_TYPE) {
1332		case MAP_SHARED:
1333			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1334				return -EINVAL;
1335			/*
1336			 * Ignore pgoff.
1337			 */
1338			pgoff = 0;
1339			vm_flags |= VM_SHARED | VM_MAYSHARE;
1340			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341		case MAP_PRIVATE:
1342			/*
1343			 * Set pgoff according to addr for anon_vma.
1344			 */
1345			pgoff = addr >> PAGE_SHIFT;
1346			break;
1347		default:
1348			return -EINVAL;
1349		}
1350	}
1351
1352	/*
1353	 * Set 'VM_NORESERVE' if we should not account for the
1354	 * memory use of this mapping.
1355	 */
1356	if (flags & MAP_NORESERVE) {
1357		/* We honor MAP_NORESERVE if allowed to overcommit */
1358		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1359			vm_flags |= VM_NORESERVE;
1360
1361		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1362		if (file && is_file_hugepages(file))
1363			vm_flags |= VM_NORESERVE;
1364	}
1365
1366	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1367	if (!IS_ERR_VALUE(addr) &&
1368	    ((vm_flags & VM_LOCKED) ||
1369	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1370		*populate = len;
1371	return addr;
1372}
1373
1374SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1375		unsigned long, prot, unsigned long, flags,
1376		unsigned long, fd, unsigned long, pgoff)
1377{
1378	struct file *file = NULL;
1379	unsigned long retval = -EBADF;
1380
1381	if (!(flags & MAP_ANONYMOUS)) {
1382		audit_mmap_fd(fd, flags);
1383		file = fget(fd);
1384		if (!file)
1385			goto out;
1386		if (is_file_hugepages(file))
1387			len = ALIGN(len, huge_page_size(hstate_file(file)));
1388		retval = -EINVAL;
1389		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1390			goto out_fput;
 
1391	} else if (flags & MAP_HUGETLB) {
1392		struct user_struct *user = NULL;
1393		struct hstate *hs;
1394
1395		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1396		if (!hs)
1397			return -EINVAL;
1398
1399		len = ALIGN(len, huge_page_size(hs));
1400		/*
1401		 * VM_NORESERVE is used because the reservations will be
1402		 * taken when vm_ops->mmap() is called
1403		 * A dummy user value is used because we are not locking
1404		 * memory so no accounting is necessary
1405		 */
1406		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1407				VM_NORESERVE,
1408				&user, HUGETLB_ANONHUGE_INODE,
1409				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1410		if (IS_ERR(file))
1411			return PTR_ERR(file);
1412	}
1413
1414	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1415
1416	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1417out_fput:
1418	if (file)
1419		fput(file);
1420out:
1421	return retval;
1422}
1423
 
 
 
 
 
 
 
1424#ifdef __ARCH_WANT_SYS_OLD_MMAP
1425struct mmap_arg_struct {
1426	unsigned long addr;
1427	unsigned long len;
1428	unsigned long prot;
1429	unsigned long flags;
1430	unsigned long fd;
1431	unsigned long offset;
1432};
1433
1434SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1435{
1436	struct mmap_arg_struct a;
1437
1438	if (copy_from_user(&a, arg, sizeof(a)))
1439		return -EFAULT;
1440	if (a.offset & ~PAGE_MASK)
1441		return -EINVAL;
1442
1443	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1444			      a.offset >> PAGE_SHIFT);
1445}
1446#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1447
1448/*
1449 * Some shared mappigns will want the pages marked read-only
1450 * to track write events. If so, we'll downgrade vm_page_prot
1451 * to the private version (using protection_map[] without the
1452 * VM_SHARED bit).
1453 */
1454int vma_wants_writenotify(struct vm_area_struct *vma)
1455{
1456	vm_flags_t vm_flags = vma->vm_flags;
 
 
 
 
 
 
 
1457
1458	/* If it was private or non-writable, the write bit is already clear */
1459	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1460		return 0;
 
1461
1462	/* The backer wishes to know when pages are first written to? */
1463	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1464		return 1;
1465
1466	/* The open routine did something to the protections already? */
1467	if (pgprot_val(vma->vm_page_prot) !=
1468	    pgprot_val(vm_get_page_prot(vm_flags)))
1469		return 0;
1470
1471	/* Specialty mapping? */
1472	if (vm_flags & VM_PFNMAP)
1473		return 0;
1474
1475	/* Can the mapping track the dirty pages? */
1476	return vma->vm_file && vma->vm_file->f_mapping &&
1477		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1478}
1479
1480/*
1481 * We account for memory if it's a private writeable mapping,
1482 * not hugepages and VM_NORESERVE wasn't set.
1483 */
1484static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1485{
1486	/*
1487	 * hugetlb has its own accounting separate from the core VM
1488	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1489	 */
1490	if (file && is_file_hugepages(file))
1491		return 0;
1492
1493	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1494}
1495
1496unsigned long mmap_region(struct file *file, unsigned long addr,
1497		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1498{
1499	struct mm_struct *mm = current->mm;
1500	struct vm_area_struct *vma, *prev;
1501	int error;
1502	struct rb_node **rb_link, *rb_parent;
1503	unsigned long charged = 0;
1504
1505	/* Check against address space limit. */
1506	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1507		unsigned long nr_pages;
1508
1509		/*
1510		 * MAP_FIXED may remove pages of mappings that intersects with
1511		 * requested mapping. Account for the pages it would unmap.
1512		 */
1513		if (!(vm_flags & MAP_FIXED))
1514			return -ENOMEM;
1515
1516		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1517
1518		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1519			return -ENOMEM;
1520	}
1521
1522	/* Clear old maps */
1523	error = -ENOMEM;
1524munmap_back:
1525	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1526		if (do_munmap(mm, addr, len))
1527			return -ENOMEM;
1528		goto munmap_back;
1529	}
1530
1531	/*
1532	 * Private writable mapping: check memory availability
1533	 */
1534	if (accountable_mapping(file, vm_flags)) {
1535		charged = len >> PAGE_SHIFT;
1536		if (security_vm_enough_memory_mm(mm, charged))
1537			return -ENOMEM;
1538		vm_flags |= VM_ACCOUNT;
1539	}
1540
1541	/*
1542	 * Can we just expand an old mapping?
1543	 */
1544	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1545	if (vma)
1546		goto out;
1547
1548	/*
1549	 * Determine the object being mapped and call the appropriate
1550	 * specific mapper. the address has already been validated, but
1551	 * not unmapped, but the maps are removed from the list.
1552	 */
1553	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1554	if (!vma) {
1555		error = -ENOMEM;
1556		goto unacct_error;
1557	}
1558
1559	vma->vm_mm = mm;
1560	vma->vm_start = addr;
1561	vma->vm_end = addr + len;
1562	vma->vm_flags = vm_flags;
1563	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1564	vma->vm_pgoff = pgoff;
1565	INIT_LIST_HEAD(&vma->anon_vma_chain);
1566
1567	if (file) {
1568		if (vm_flags & VM_DENYWRITE) {
1569			error = deny_write_access(file);
1570			if (error)
1571				goto free_vma;
1572		}
1573		vma->vm_file = get_file(file);
1574		error = file->f_op->mmap(file, vma);
1575		if (error)
1576			goto unmap_and_free_vma;
1577
1578		/* Can addr have changed??
1579		 *
1580		 * Answer: Yes, several device drivers can do it in their
1581		 *         f_op->mmap method. -DaveM
1582		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1583		 *      be updated for vma_link()
1584		 */
1585		WARN_ON_ONCE(addr != vma->vm_start);
1586
1587		addr = vma->vm_start;
1588		vm_flags = vma->vm_flags;
1589	} else if (vm_flags & VM_SHARED) {
1590		error = shmem_zero_setup(vma);
1591		if (error)
1592			goto free_vma;
1593	}
1594
1595	if (vma_wants_writenotify(vma)) {
1596		pgprot_t pprot = vma->vm_page_prot;
1597
1598		/* Can vma->vm_page_prot have changed??
1599		 *
1600		 * Answer: Yes, drivers may have changed it in their
1601		 *         f_op->mmap method.
1602		 *
1603		 * Ensures that vmas marked as uncached stay that way.
1604		 */
1605		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1606		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1607			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1608	}
1609
1610	vma_link(mm, vma, prev, rb_link, rb_parent);
1611	/* Once vma denies write, undo our temporary denial count */
1612	if (vm_flags & VM_DENYWRITE)
1613		allow_write_access(file);
1614	file = vma->vm_file;
1615out:
1616	perf_event_mmap(vma);
1617
1618	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1619	if (vm_flags & VM_LOCKED) {
1620		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1621					vma == get_gate_vma(current->mm)))
1622			mm->locked_vm += (len >> PAGE_SHIFT);
1623		else
1624			vma->vm_flags &= ~VM_LOCKED;
1625	}
1626
1627	if (file)
1628		uprobe_mmap(vma);
1629
1630	/*
1631	 * New (or expanded) vma always get soft dirty status.
1632	 * Otherwise user-space soft-dirty page tracker won't
1633	 * be able to distinguish situation when vma area unmapped,
1634	 * then new mapped in-place (which must be aimed as
1635	 * a completely new data area).
1636	 */
1637	vma->vm_flags |= VM_SOFTDIRTY;
1638
1639	return addr;
1640
1641unmap_and_free_vma:
1642	if (vm_flags & VM_DENYWRITE)
1643		allow_write_access(file);
1644	vma->vm_file = NULL;
1645	fput(file);
1646
1647	/* Undo any partial mapping done by a device driver. */
1648	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1649	charged = 0;
1650free_vma:
1651	kmem_cache_free(vm_area_cachep, vma);
1652unacct_error:
1653	if (charged)
1654		vm_unacct_memory(charged);
1655	return error;
1656}
1657
1658unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
 
1659{
1660	/*
1661	 * We implement the search by looking for an rbtree node that
1662	 * immediately follows a suitable gap. That is,
1663	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1664	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1665	 * - gap_end - gap_start >= length
1666	 */
1667
1668	struct mm_struct *mm = current->mm;
1669	struct vm_area_struct *vma;
1670	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1671
1672	/* Adjust search length to account for worst case alignment overhead */
1673	length = info->length + info->align_mask;
1674	if (length < info->length)
1675		return -ENOMEM;
1676
1677	/* Adjust search limits by the desired length */
1678	if (info->high_limit < length)
1679		return -ENOMEM;
1680	high_limit = info->high_limit - length;
1681
1682	if (info->low_limit > high_limit)
1683		return -ENOMEM;
1684	low_limit = info->low_limit + length;
1685
1686	/* Check if rbtree root looks promising */
1687	if (RB_EMPTY_ROOT(&mm->mm_rb))
1688		goto check_highest;
1689	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1690	if (vma->rb_subtree_gap < length)
1691		goto check_highest;
1692
1693	while (true) {
1694		/* Visit left subtree if it looks promising */
1695		gap_end = vma->vm_start;
1696		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1697			struct vm_area_struct *left =
1698				rb_entry(vma->vm_rb.rb_left,
1699					 struct vm_area_struct, vm_rb);
1700			if (left->rb_subtree_gap >= length) {
1701				vma = left;
1702				continue;
1703			}
1704		}
1705
1706		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1707check_current:
1708		/* Check if current node has a suitable gap */
1709		if (gap_start > high_limit)
1710			return -ENOMEM;
1711		if (gap_end >= low_limit && gap_end - gap_start >= length)
1712			goto found;
1713
1714		/* Visit right subtree if it looks promising */
1715		if (vma->vm_rb.rb_right) {
1716			struct vm_area_struct *right =
1717				rb_entry(vma->vm_rb.rb_right,
1718					 struct vm_area_struct, vm_rb);
1719			if (right->rb_subtree_gap >= length) {
1720				vma = right;
1721				continue;
1722			}
1723		}
1724
1725		/* Go back up the rbtree to find next candidate node */
1726		while (true) {
1727			struct rb_node *prev = &vma->vm_rb;
1728			if (!rb_parent(prev))
1729				goto check_highest;
1730			vma = rb_entry(rb_parent(prev),
1731				       struct vm_area_struct, vm_rb);
1732			if (prev == vma->vm_rb.rb_left) {
1733				gap_start = vma->vm_prev->vm_end;
1734				gap_end = vma->vm_start;
1735				goto check_current;
1736			}
1737		}
1738	}
1739
1740check_highest:
1741	/* Check highest gap, which does not precede any rbtree node */
1742	gap_start = mm->highest_vm_end;
1743	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1744	if (gap_start > high_limit)
1745		return -ENOMEM;
1746
1747found:
1748	/* We found a suitable gap. Clip it with the original low_limit. */
1749	if (gap_start < info->low_limit)
1750		gap_start = info->low_limit;
 
 
 
 
1751
1752	/* Adjust gap address to the desired alignment */
1753	gap_start += (info->align_offset - gap_start) & info->align_mask;
1754
1755	VM_BUG_ON(gap_start + info->length > info->high_limit);
1756	VM_BUG_ON(gap_start + info->length > gap_end);
1757	return gap_start;
1758}
1759
1760unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
1761{
1762	struct mm_struct *mm = current->mm;
1763	struct vm_area_struct *vma;
1764	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1765
1766	/* Adjust search length to account for worst case alignment overhead */
1767	length = info->length + info->align_mask;
1768	if (length < info->length)
1769		return -ENOMEM;
1770
1771	/*
1772	 * Adjust search limits by the desired length.
1773	 * See implementation comment at top of unmapped_area().
1774	 */
1775	gap_end = info->high_limit;
1776	if (gap_end < length)
1777		return -ENOMEM;
1778	high_limit = gap_end - length;
1779
1780	if (info->low_limit > high_limit)
1781		return -ENOMEM;
1782	low_limit = info->low_limit + length;
1783
1784	/* Check highest gap, which does not precede any rbtree node */
1785	gap_start = mm->highest_vm_end;
1786	if (gap_start <= high_limit)
1787		goto found_highest;
1788
1789	/* Check if rbtree root looks promising */
1790	if (RB_EMPTY_ROOT(&mm->mm_rb))
1791		return -ENOMEM;
1792	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1793	if (vma->rb_subtree_gap < length)
1794		return -ENOMEM;
1795
1796	while (true) {
1797		/* Visit right subtree if it looks promising */
1798		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1799		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1800			struct vm_area_struct *right =
1801				rb_entry(vma->vm_rb.rb_right,
1802					 struct vm_area_struct, vm_rb);
1803			if (right->rb_subtree_gap >= length) {
1804				vma = right;
1805				continue;
1806			}
1807		}
1808
1809check_current:
1810		/* Check if current node has a suitable gap */
1811		gap_end = vma->vm_start;
1812		if (gap_end < low_limit)
1813			return -ENOMEM;
1814		if (gap_start <= high_limit && gap_end - gap_start >= length)
1815			goto found;
1816
1817		/* Visit left subtree if it looks promising */
1818		if (vma->vm_rb.rb_left) {
1819			struct vm_area_struct *left =
1820				rb_entry(vma->vm_rb.rb_left,
1821					 struct vm_area_struct, vm_rb);
1822			if (left->rb_subtree_gap >= length) {
1823				vma = left;
1824				continue;
1825			}
1826		}
1827
1828		/* Go back up the rbtree to find next candidate node */
1829		while (true) {
1830			struct rb_node *prev = &vma->vm_rb;
1831			if (!rb_parent(prev))
1832				return -ENOMEM;
1833			vma = rb_entry(rb_parent(prev),
1834				       struct vm_area_struct, vm_rb);
1835			if (prev == vma->vm_rb.rb_right) {
1836				gap_start = vma->vm_prev ?
1837					vma->vm_prev->vm_end : 0;
1838				goto check_current;
1839			}
1840		}
1841	}
1842
1843found:
1844	/* We found a suitable gap. Clip it with the original high_limit. */
1845	if (gap_end > info->high_limit)
1846		gap_end = info->high_limit;
1847
1848found_highest:
1849	/* Compute highest gap address at the desired alignment */
1850	gap_end -= info->length;
1851	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1852
1853	VM_BUG_ON(gap_end < info->low_limit);
1854	VM_BUG_ON(gap_end < gap_start);
1855	return gap_end;
1856}
1857
1858/* Get an address range which is currently unmapped.
1859 * For shmat() with addr=0.
1860 *
1861 * Ugly calling convention alert:
1862 * Return value with the low bits set means error value,
1863 * ie
1864 *	if (ret & ~PAGE_MASK)
1865 *		error = ret;
1866 *
1867 * This function "knows" that -ENOMEM has the bits set.
1868 */
1869#ifndef HAVE_ARCH_UNMAPPED_AREA
1870unsigned long
1871arch_get_unmapped_area(struct file *filp, unsigned long addr,
1872		unsigned long len, unsigned long pgoff, unsigned long flags)
 
1873{
1874	struct mm_struct *mm = current->mm;
1875	struct vm_area_struct *vma;
1876	struct vm_unmapped_area_info info;
 
1877
1878	if (len > TASK_SIZE - mmap_min_addr)
1879		return -ENOMEM;
1880
1881	if (flags & MAP_FIXED)
1882		return addr;
1883
1884	if (addr) {
1885		addr = PAGE_ALIGN(addr);
1886		vma = find_vma(mm, addr);
1887		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1888		    (!vma || addr + len <= vma->vm_start))
 
1889			return addr;
1890	}
1891
1892	info.flags = 0;
1893	info.length = len;
1894	info.low_limit = mm->mmap_base;
1895	info.high_limit = TASK_SIZE;
1896	info.align_mask = 0;
 
 
1897	return vm_unmapped_area(&info);
1898}
1899#endif	
 
 
 
 
 
 
 
 
 
 
1900
1901/*
1902 * This mmap-allocator allocates new areas top-down from below the
1903 * stack's low limit (the base):
1904 */
1905#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1906unsigned long
1907arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1908			  const unsigned long len, const unsigned long pgoff,
1909			  const unsigned long flags)
1910{
1911	struct vm_area_struct *vma;
1912	struct mm_struct *mm = current->mm;
1913	unsigned long addr = addr0;
1914	struct vm_unmapped_area_info info;
1915
1916	/* requested length too big for entire address space */
1917	if (len > TASK_SIZE - mmap_min_addr)
1918		return -ENOMEM;
1919
1920	if (flags & MAP_FIXED)
1921		return addr;
1922
1923	/* requesting a specific address */
1924	if (addr) {
1925		addr = PAGE_ALIGN(addr);
1926		vma = find_vma(mm, addr);
1927		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1928				(!vma || addr + len <= vma->vm_start))
 
1929			return addr;
1930	}
1931
1932	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
1933	info.length = len;
1934	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
1935	info.high_limit = mm->mmap_base;
1936	info.align_mask = 0;
 
 
1937	addr = vm_unmapped_area(&info);
1938
1939	/*
1940	 * A failed mmap() very likely causes application failure,
1941	 * so fall back to the bottom-up function here. This scenario
1942	 * can happen with large stack limits and large mmap()
1943	 * allocations.
1944	 */
1945	if (addr & ~PAGE_MASK) {
1946		VM_BUG_ON(addr != -ENOMEM);
1947		info.flags = 0;
1948		info.low_limit = TASK_UNMAPPED_BASE;
1949		info.high_limit = TASK_SIZE;
1950		addr = vm_unmapped_area(&info);
1951	}
1952
1953	return addr;
1954}
 
 
 
 
 
 
 
 
 
 
1955#endif
1956
 
 
 
 
 
 
 
 
 
 
 
1957unsigned long
1958get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1959		unsigned long pgoff, unsigned long flags)
1960{
1961	unsigned long (*get_area)(struct file *, unsigned long,
1962				  unsigned long, unsigned long, unsigned long);
 
1963
1964	unsigned long error = arch_mmap_check(addr, len, flags);
1965	if (error)
1966		return error;
1967
1968	/* Careful about overflows.. */
1969	if (len > TASK_SIZE)
1970		return -ENOMEM;
1971
1972	get_area = current->mm->get_unmapped_area;
1973	if (file && file->f_op->get_unmapped_area)
1974		get_area = file->f_op->get_unmapped_area;
1975	addr = get_area(file, addr, len, pgoff, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976	if (IS_ERR_VALUE(addr))
1977		return addr;
1978
1979	if (addr > TASK_SIZE - len)
1980		return -ENOMEM;
1981	if (addr & ~PAGE_MASK)
1982		return -EINVAL;
1983
1984	addr = arch_rebalance_pgtables(addr, len);
1985	error = security_mmap_addr(addr);
1986	return error ? error : addr;
1987}
1988
1989EXPORT_SYMBOL(get_unmapped_area);
 
 
 
 
 
 
 
 
 
1990
1991/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1992struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
1993{
1994	struct rb_node *rb_node;
1995	struct vm_area_struct *vma;
1996
1997	/* Check the cache first. */
1998	vma = vmacache_find(mm, addr);
1999	if (likely(vma))
2000		return vma;
2001
2002	rb_node = mm->mm_rb.rb_node;
2003	vma = NULL;
 
 
 
 
 
 
 
 
 
2004
2005	while (rb_node) {
2006		struct vm_area_struct *tmp;
2007
2008		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2009
2010		if (tmp->vm_end > addr) {
2011			vma = tmp;
2012			if (tmp->vm_start <= addr)
2013				break;
2014			rb_node = rb_node->rb_left;
2015		} else
2016			rb_node = rb_node->rb_right;
2017	}
2018
2019	if (vma)
2020		vmacache_update(addr, vma);
2021	return vma;
2022}
2023
2024EXPORT_SYMBOL(find_vma);
2025
2026/*
2027 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 
 
 
 
 
 
 
 
 
 
2028 */
2029struct vm_area_struct *
2030find_vma_prev(struct mm_struct *mm, unsigned long addr,
2031			struct vm_area_struct **pprev)
2032{
2033	struct vm_area_struct *vma;
 
2034
2035	vma = find_vma(mm, addr);
2036	if (vma) {
2037		*pprev = vma->vm_prev;
2038	} else {
2039		struct rb_node *rb_node = mm->mm_rb.rb_node;
2040		*pprev = NULL;
2041		while (rb_node) {
2042			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2043			rb_node = rb_node->rb_right;
2044		}
2045	}
2046	return vma;
2047}
2048
2049/*
2050 * Verify that the stack growth is acceptable and
2051 * update accounting. This is shared with both the
2052 * grow-up and grow-down cases.
2053 */
2054static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
2055{
2056	struct mm_struct *mm = vma->vm_mm;
2057	struct rlimit *rlim = current->signal->rlim;
2058	unsigned long new_start;
2059
2060	/* address space limit tests */
2061	if (!may_expand_vm(mm, grow))
2062		return -ENOMEM;
2063
2064	/* Stack limit test */
2065	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2066		return -ENOMEM;
2067
2068	/* mlock limit tests */
2069	if (vma->vm_flags & VM_LOCKED) {
2070		unsigned long locked;
2071		unsigned long limit;
2072		locked = mm->locked_vm + grow;
2073		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2074		limit >>= PAGE_SHIFT;
2075		if (locked > limit && !capable(CAP_IPC_LOCK))
2076			return -ENOMEM;
2077	}
2078
2079	/* Check to ensure the stack will not grow into a hugetlb-only region */
2080	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2081			vma->vm_end - size;
2082	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2083		return -EFAULT;
2084
2085	/*
2086	 * Overcommit..  This must be the final test, as it will
2087	 * update security statistics.
2088	 */
2089	if (security_vm_enough_memory_mm(mm, grow))
2090		return -ENOMEM;
2091
2092	/* Ok, everything looks good - let it rip */
2093	if (vma->vm_flags & VM_LOCKED)
2094		mm->locked_vm += grow;
2095	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
2096	return 0;
2097}
2098
2099#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2100/*
2101 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2102 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2103 */
2104int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2105{
2106	int error;
 
 
 
 
2107
2108	if (!(vma->vm_flags & VM_GROWSUP))
2109		return -EFAULT;
2110
2111	/*
2112	 * We must make sure the anon_vma is allocated
2113	 * so that the anon_vma locking is not a noop.
2114	 */
2115	if (unlikely(anon_vma_prepare(vma)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116		return -ENOMEM;
2117	vma_lock_anon_vma(vma);
2118
2119	/*
2120	 * vma->vm_start/vm_end cannot change under us because the caller
2121	 * is required to hold the mmap_sem in read mode.  We need the
2122	 * anon_vma lock to serialize against concurrent expand_stacks.
2123	 * Also guard against wrapping around to address 0.
2124	 */
2125	if (address < PAGE_ALIGN(address+4))
2126		address = PAGE_ALIGN(address+4);
2127	else {
2128		vma_unlock_anon_vma(vma);
2129		return -ENOMEM;
2130	}
2131	error = 0;
 
 
 
 
2132
2133	/* Somebody else might have raced and expanded it already */
2134	if (address > vma->vm_end) {
2135		unsigned long size, grow;
2136
2137		size = address - vma->vm_start;
2138		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2139
2140		error = -ENOMEM;
2141		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2142			error = acct_stack_growth(vma, size, grow);
2143			if (!error) {
2144				/*
2145				 * vma_gap_update() doesn't support concurrent
2146				 * updates, but we only hold a shared mmap_sem
2147				 * lock here, so we need to protect against
2148				 * concurrent vma expansions.
2149				 * vma_lock_anon_vma() doesn't help here, as
2150				 * we don't guarantee that all growable vmas
2151				 * in a mm share the same root anon vma.
2152				 * So, we reuse mm->page_table_lock to guard
2153				 * against concurrent vma expansions.
2154				 */
2155				spin_lock(&vma->vm_mm->page_table_lock);
2156				anon_vma_interval_tree_pre_update_vma(vma);
2157				vma->vm_end = address;
 
 
2158				anon_vma_interval_tree_post_update_vma(vma);
2159				if (vma->vm_next)
2160					vma_gap_update(vma->vm_next);
2161				else
2162					vma->vm_mm->highest_vm_end = address;
2163				spin_unlock(&vma->vm_mm->page_table_lock);
2164
2165				perf_event_mmap(vma);
2166			}
2167		}
2168	}
2169	vma_unlock_anon_vma(vma);
2170	khugepaged_enter_vma_merge(vma);
2171	validate_mm(vma->vm_mm);
2172	return error;
2173}
2174#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2175
2176/*
2177 * vma is the first one with address < vma->vm_start.  Have to extend vma.
 
2178 */
2179int expand_downwards(struct vm_area_struct *vma,
2180				   unsigned long address)
2181{
2182	int error;
 
 
 
 
 
 
2183
2184	/*
2185	 * We must make sure the anon_vma is allocated
2186	 * so that the anon_vma locking is not a noop.
2187	 */
2188	if (unlikely(anon_vma_prepare(vma)))
2189		return -ENOMEM;
2190
2191	address &= PAGE_MASK;
2192	error = security_mmap_addr(address);
2193	if (error)
2194		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195
2196	vma_lock_anon_vma(vma);
 
 
 
 
2197
2198	/*
2199	 * vma->vm_start/vm_end cannot change under us because the caller
2200	 * is required to hold the mmap_sem in read mode.  We need the
2201	 * anon_vma lock to serialize against concurrent expand_stacks.
2202	 */
2203
2204	/* Somebody else might have raced and expanded it already */
2205	if (address < vma->vm_start) {
2206		unsigned long size, grow;
2207
2208		size = vma->vm_end - address;
2209		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2210
2211		error = -ENOMEM;
2212		if (grow <= vma->vm_pgoff) {
2213			error = acct_stack_growth(vma, size, grow);
2214			if (!error) {
2215				/*
2216				 * vma_gap_update() doesn't support concurrent
2217				 * updates, but we only hold a shared mmap_sem
2218				 * lock here, so we need to protect against
2219				 * concurrent vma expansions.
2220				 * vma_lock_anon_vma() doesn't help here, as
2221				 * we don't guarantee that all growable vmas
2222				 * in a mm share the same root anon vma.
2223				 * So, we reuse mm->page_table_lock to guard
2224				 * against concurrent vma expansions.
2225				 */
2226				spin_lock(&vma->vm_mm->page_table_lock);
2227				anon_vma_interval_tree_pre_update_vma(vma);
2228				vma->vm_start = address;
2229				vma->vm_pgoff -= grow;
 
 
2230				anon_vma_interval_tree_post_update_vma(vma);
2231				vma_gap_update(vma);
2232				spin_unlock(&vma->vm_mm->page_table_lock);
2233
2234				perf_event_mmap(vma);
2235			}
2236		}
2237	}
2238	vma_unlock_anon_vma(vma);
2239	khugepaged_enter_vma_merge(vma);
2240	validate_mm(vma->vm_mm);
2241	return error;
2242}
2243
2244/*
2245 * Note how expand_stack() refuses to expand the stack all the way to
2246 * abut the next virtual mapping, *unless* that mapping itself is also
2247 * a stack mapping. We want to leave room for a guard page, after all
2248 * (the guard page itself is not added here, that is done by the
2249 * actual page faulting logic)
2250 *
2251 * This matches the behavior of the guard page logic (see mm/memory.c:
2252 * check_stack_guard_page()), which only allows the guard page to be
2253 * removed under these circumstances.
2254 */
 
 
 
 
 
2255#ifdef CONFIG_STACK_GROWSUP
2256int expand_stack(struct vm_area_struct *vma, unsigned long address)
2257{
2258	struct vm_area_struct *next;
2259
2260	address &= PAGE_MASK;
2261	next = vma->vm_next;
2262	if (next && next->vm_start == address + PAGE_SIZE) {
2263		if (!(next->vm_flags & VM_GROWSUP))
2264			return -ENOMEM;
2265	}
2266	return expand_upwards(vma, address);
2267}
2268
2269struct vm_area_struct *
2270find_extend_vma(struct mm_struct *mm, unsigned long addr)
2271{
2272	struct vm_area_struct *vma, *prev;
2273
2274	addr &= PAGE_MASK;
2275	vma = find_vma_prev(mm, addr, &prev);
2276	if (vma && (vma->vm_start <= addr))
2277		return vma;
2278	if (!prev || expand_stack(prev, addr))
 
 
2279		return NULL;
2280	if (prev->vm_flags & VM_LOCKED)
2281		__mlock_vma_pages_range(prev, addr, prev->vm_end, NULL);
2282	return prev;
2283}
2284#else
2285int expand_stack(struct vm_area_struct *vma, unsigned long address)
2286{
2287	struct vm_area_struct *prev;
2288
2289	address &= PAGE_MASK;
2290	prev = vma->vm_prev;
2291	if (prev && prev->vm_end == address) {
2292		if (!(prev->vm_flags & VM_GROWSDOWN))
2293			return -ENOMEM;
2294	}
2295	return expand_downwards(vma, address);
2296}
2297
2298struct vm_area_struct *
2299find_extend_vma(struct mm_struct * mm, unsigned long addr)
2300{
2301	struct vm_area_struct * vma;
2302	unsigned long start;
2303
2304	addr &= PAGE_MASK;
2305	vma = find_vma(mm,addr);
2306	if (!vma)
2307		return NULL;
2308	if (vma->vm_start <= addr)
2309		return vma;
2310	if (!(vma->vm_flags & VM_GROWSDOWN))
2311		return NULL;
2312	start = vma->vm_start;
2313	if (expand_stack(vma, addr))
2314		return NULL;
2315	if (vma->vm_flags & VM_LOCKED)
2316		__mlock_vma_pages_range(vma, addr, start, NULL);
2317	return vma;
2318}
2319#endif
2320
 
 
 
 
 
 
 
 
 
 
 
 
2321/*
2322 * Ok - we have the memory areas we should free on the vma list,
2323 * so release them, and do the vma updates.
 
 
 
 
2324 *
2325 * Called with the mm semaphore held.
 
2326 */
2327static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2328{
2329	unsigned long nr_accounted = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2330
2331	/* Update high watermark before we lower total_vm */
2332	update_hiwater_vm(mm);
2333	do {
2334		long nrpages = vma_pages(vma);
2335
2336		if (vma->vm_flags & VM_ACCOUNT)
2337			nr_accounted += nrpages;
2338		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
2339		vma = remove_vma(vma);
2340	} while (vma);
2341	vm_unacct_memory(nr_accounted);
2342	validate_mm(mm);
2343}
2344
2345/*
2346 * Get rid of page table information in the indicated region.
 
 
 
2347 *
2348 * Called with the mm semaphore held.
2349 */
2350static void unmap_region(struct mm_struct *mm,
2351		struct vm_area_struct *vma, struct vm_area_struct *prev,
2352		unsigned long start, unsigned long end)
2353{
2354	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
2355	struct mmu_gather tlb;
2356
2357	lru_add_drain();
2358	tlb_gather_mmu(&tlb, mm, start, end);
2359	update_hiwater_rss(mm);
2360	unmap_vmas(&tlb, vma, start, end);
2361	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2362				 next ? next->vm_start : USER_PGTABLES_CEILING);
2363	tlb_finish_mmu(&tlb, start, end);
2364}
2365
2366/*
2367 * Create a list of vma's touched by the unmap, removing them from the mm's
2368 * vma list as we go..
2369 */
2370static void
2371detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2372	struct vm_area_struct *prev, unsigned long end)
2373{
2374	struct vm_area_struct **insertion_point;
2375	struct vm_area_struct *tail_vma = NULL;
2376
2377	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2378	vma->vm_prev = NULL;
2379	do {
2380		vma_rb_erase(vma, &mm->mm_rb);
2381		mm->map_count--;
2382		tail_vma = vma;
2383		vma = vma->vm_next;
2384	} while (vma && vma->vm_start < end);
2385	*insertion_point = vma;
2386	if (vma) {
2387		vma->vm_prev = prev;
2388		vma_gap_update(vma);
2389	} else
2390		mm->highest_vm_end = prev ? prev->vm_end : 0;
2391	tail_vma->vm_next = NULL;
2392
2393	/* Kill the cache */
2394	vmacache_invalidate(mm);
2395}
2396
2397/*
2398 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2399 * munmap path where it doesn't make sense to fail.
2400 */
2401static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2402	      unsigned long addr, int new_below)
2403{
2404	struct vm_area_struct *new;
2405	int err = -ENOMEM;
2406
2407	if (is_vm_hugetlb_page(vma) && (addr &
2408					~(huge_page_mask(hstate_vma(vma)))))
2409		return -EINVAL;
2410
2411	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2412	if (!new)
2413		goto out_err;
2414
2415	/* most fields are the same, copy all, and then fixup */
2416	*new = *vma;
 
 
2417
2418	INIT_LIST_HEAD(&new->anon_vma_chain);
2419
2420	if (new_below)
2421		new->vm_end = addr;
2422	else {
2423		new->vm_start = addr;
2424		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2425	}
2426
2427	err = vma_dup_policy(vma, new);
2428	if (err)
2429		goto out_free_vma;
2430
2431	if (anon_vma_clone(new, vma))
2432		goto out_free_mpol;
 
 
 
 
2433
2434	if (new->vm_file)
2435		get_file(new->vm_file);
2436
2437	if (new->vm_ops && new->vm_ops->open)
2438		new->vm_ops->open(new);
 
2439
2440	if (new_below)
2441		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2442			((addr - new->vm_start) >> PAGE_SHIFT), new);
2443	else
2444		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2445
2446	/* Success. */
2447	if (!err)
2448		return 0;
 
 
2449
2450	/* Clean everything up if vma_adjust failed. */
2451	if (new->vm_ops && new->vm_ops->close)
2452		new->vm_ops->close(new);
2453	if (new->vm_file)
2454		fput(new->vm_file);
2455	unlink_anon_vmas(new);
2456 out_free_mpol:
2457	mpol_put(vma_policy(new));
2458 out_free_vma:
2459	kmem_cache_free(vm_area_cachep, new);
2460 out_err:
2461	return err;
2462}
2463
 
2464/*
2465 * Split a vma into two pieces at address 'addr', a new vma is allocated
2466 * either for the first part or the tail.
2467 */
2468int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2469	      unsigned long addr, int new_below)
2470{
2471	if (mm->map_count >= sysctl_max_map_count)
2472		return -ENOMEM;
2473
2474	return __split_vma(mm, vma, addr, new_below);
2475}
 
 
 
 
2476
2477/* Munmap is split into 2 main parts -- this part which finds
2478 * what needs doing, and the areas themselves, which do the
2479 * work.  This now handles partial unmappings.
2480 * Jeremy Fitzhardinge <jeremy@goop.org>
2481 */
2482int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2483{
2484	unsigned long end;
2485	struct vm_area_struct *vma, *prev, *last;
2486
2487	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2488		return -EINVAL;
 
 
2489
2490	if ((len = PAGE_ALIGN(len)) == 0)
2491		return -EINVAL;
2492
2493	/* Find the first overlapping VMA */
2494	vma = find_vma(mm, start);
2495	if (!vma)
2496		return 0;
2497	prev = vma->vm_prev;
2498	/* we have  start < vma->vm_end  */
2499
2500	/* if it doesn't overlap, we have nothing.. */
2501	end = start + len;
2502	if (vma->vm_start >= end)
2503		return 0;
2504
2505	/*
2506	 * If we need to split any vma, do it now to save pain later.
2507	 *
2508	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2509	 * unmapped vm_area_struct will remain in use: so lower split_vma
2510	 * places tmp vma above, and higher split_vma places tmp vma below.
2511	 */
2512	if (start > vma->vm_start) {
2513		int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
2514
2515		/*
2516		 * Make sure that map_count on return from munmap() will
2517		 * not exceed its limit; but let map_count go just above
2518		 * its limit temporarily, to help free resources as expected.
2519		 */
2520		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2521			return -ENOMEM;
2522
2523		error = __split_vma(mm, vma, start, 0);
2524		if (error)
2525			return error;
2526		prev = vma;
 
2527	}
2528
2529	/* Does it split the last one? */
2530	last = find_vma(mm, end);
2531	if (last && end > last->vm_start) {
2532		int error = __split_vma(mm, last, end, 1);
2533		if (error)
2534			return error;
2535	}
2536	vma = prev? prev->vm_next: mm->mmap;
2537
2538	/*
2539	 * unlock any mlock()ed ranges before detaching vmas
2540	 */
2541	if (mm->locked_vm) {
2542		struct vm_area_struct *tmp = vma;
2543		while (tmp && tmp->vm_start < end) {
2544			if (tmp->vm_flags & VM_LOCKED) {
2545				mm->locked_vm -= vma_pages(tmp);
2546				munlock_vma_pages_all(tmp);
2547			}
2548			tmp = tmp->vm_next;
2549		}
2550	}
2551
2552	/*
2553	 * Remove the vma's, and unmap the actual pages
2554	 */
2555	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2556	unmap_region(mm, vma, prev, start, end);
2557
2558	/* Fix up all other VM information */
2559	remove_vma_list(mm, vma);
 
 
 
 
 
 
2560
2561	return 0;
2562}
2563
2564int vm_munmap(unsigned long start, size_t len)
2565{
2566	int ret;
2567	struct mm_struct *mm = current->mm;
2568
2569	down_write(&mm->mmap_sem);
2570	ret = do_munmap(mm, start, len);
2571	up_write(&mm->mmap_sem);
2572	return ret;
2573}
2574EXPORT_SYMBOL(vm_munmap);
2575
2576SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2577{
2578	profile_munmap(addr);
2579	return vm_munmap(addr, len);
2580}
2581
2582static inline void verify_mm_writelocked(struct mm_struct *mm)
2583{
2584#ifdef CONFIG_DEBUG_VM
2585	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2586		WARN_ON(1);
2587		up_read(&mm->mmap_sem);
2588	}
2589#endif
 
 
 
 
 
 
 
 
 
 
2590}
2591
2592/*
2593 *  this is really a simplified "do_mmap".  it only handles
2594 *  anonymous maps.  eventually we may be able to do some
2595 *  brk-specific accounting here.
 
 
 
 
 
 
 
2596 */
2597static unsigned long do_brk(unsigned long addr, unsigned long len)
 
2598{
2599	struct mm_struct * mm = current->mm;
2600	struct vm_area_struct * vma, * prev;
2601	unsigned long flags;
2602	struct rb_node ** rb_link, * rb_parent;
2603	pgoff_t pgoff = addr >> PAGE_SHIFT;
2604	int error;
2605
2606	len = PAGE_ALIGN(len);
2607	if (!len)
2608		return addr;
2609
2610	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2611
2612	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2613	if (error & ~PAGE_MASK)
2614		return error;
2615
2616	error = mlock_future_check(mm, mm->def_flags, len);
2617	if (error)
2618		return error;
2619
2620	/*
2621	 * mm->mmap_sem is required to protect against another thread
2622	 * changing the mappings in case we sleep.
2623	 */
2624	verify_mm_writelocked(mm);
2625
2626	/*
2627	 * Clear old maps.  this also does some error checking for us
 
2628	 */
2629 munmap_back:
2630	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2631		if (do_munmap(mm, addr, len))
2632			return -ENOMEM;
2633		goto munmap_back;
2634	}
2635
2636	/* Check against address space limits *after* clearing old maps... */
2637	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2638		return -ENOMEM;
2639
2640	if (mm->map_count > sysctl_max_map_count)
2641		return -ENOMEM;
2642
2643	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2644		return -ENOMEM;
2645
2646	/* Can we just expand an old private anonymous mapping? */
2647	vma = vma_merge(mm, prev, addr, addr + len, flags,
2648					NULL, NULL, pgoff, NULL);
2649	if (vma)
2650		goto out;
2651
2652	/*
2653	 * create a vma struct for an anonymous mapping
 
2654	 */
2655	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2656	if (!vma) {
2657		vm_unacct_memory(len >> PAGE_SHIFT);
2658		return -ENOMEM;
 
 
 
 
 
 
 
2659	}
2660
2661	INIT_LIST_HEAD(&vma->anon_vma_chain);
2662	vma->vm_mm = mm;
2663	vma->vm_start = addr;
2664	vma->vm_end = addr + len;
2665	vma->vm_pgoff = pgoff;
2666	vma->vm_flags = flags;
 
 
 
 
2667	vma->vm_page_prot = vm_get_page_prot(flags);
2668	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
2669out:
2670	perf_event_mmap(vma);
2671	mm->total_vm += len >> PAGE_SHIFT;
 
2672	if (flags & VM_LOCKED)
2673		mm->locked_vm += (len >> PAGE_SHIFT);
2674	vma->vm_flags |= VM_SOFTDIRTY;
2675	return addr;
 
 
 
 
 
 
2676}
2677
2678unsigned long vm_brk(unsigned long addr, unsigned long len)
2679{
2680	struct mm_struct *mm = current->mm;
2681	unsigned long ret;
 
 
2682	bool populate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2683
2684	down_write(&mm->mmap_sem);
2685	ret = do_brk(addr, len);
 
 
 
 
2686	populate = ((mm->def_flags & VM_LOCKED) != 0);
2687	up_write(&mm->mmap_sem);
2688	if (populate)
 
2689		mm_populate(addr, len);
2690	return ret;
 
 
 
 
 
2691}
2692EXPORT_SYMBOL(vm_brk);
2693
2694/* Release all mmaps. */
2695void exit_mmap(struct mm_struct *mm)
2696{
2697	struct mmu_gather tlb;
2698	struct vm_area_struct *vma;
2699	unsigned long nr_accounted = 0;
 
 
2700
2701	/* mm's last user has gone, and its about to be pulled down */
2702	mmu_notifier_release(mm);
2703
2704	if (mm->locked_vm) {
2705		vma = mm->mmap;
2706		while (vma) {
2707			if (vma->vm_flags & VM_LOCKED)
2708				munlock_vma_pages_all(vma);
2709			vma = vma->vm_next;
2710		}
2711	}
2712
2713	arch_exit_mmap(mm);
2714
2715	vma = mm->mmap;
2716	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2717		return;
 
 
 
 
2718
2719	lru_add_drain();
2720	flush_cache_mm(mm);
2721	tlb_gather_mmu(&tlb, mm, 0, -1);
2722	/* update_hiwater_rss(mm) here? but nobody should be looking */
2723	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2724	unmap_vmas(&tlb, vma, 0, -1);
 
2725
2726	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2727	tlb_finish_mmu(&tlb, 0, -1);
 
 
 
 
 
 
 
 
 
2728
2729	/*
2730	 * Walk the list again, actually closing and freeing it,
2731	 * with preemption enabled, without holding any MM locks.
 
2732	 */
2733	while (vma) {
 
2734		if (vma->vm_flags & VM_ACCOUNT)
2735			nr_accounted += vma_pages(vma);
2736		vma = remove_vma(vma);
2737	}
 
 
 
 
 
 
 
 
 
 
2738	vm_unacct_memory(nr_accounted);
2739
2740	WARN_ON(atomic_long_read(&mm->nr_ptes) >
2741			(FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2742}
2743
2744/* Insert vm structure into process list sorted by address
2745 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2746 * then i_mmap_mutex is taken here.
2747 */
2748int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2749{
2750	struct vm_area_struct *prev;
2751	struct rb_node **rb_link, *rb_parent;
 
 
 
 
 
 
 
2752
2753	/*
2754	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2755	 * until its first write fault, when page's anon_vma and index
2756	 * are set.  But now set the vm_pgoff it will almost certainly
2757	 * end up with (unless mremap moves it elsewhere before that
2758	 * first wfault), so /proc/pid/maps tells a consistent story.
2759	 *
2760	 * By setting it to reflect the virtual start address of the
2761	 * vma, merges and splits can happen in a seamless way, just
2762	 * using the existing file pgoff checks and manipulations.
2763	 * Similarly in do_mmap_pgoff and in do_brk.
2764	 */
2765	if (!vma->vm_file) {
2766		BUG_ON(vma->anon_vma);
2767		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2768	}
2769	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2770			   &prev, &rb_link, &rb_parent))
2771		return -ENOMEM;
2772	if ((vma->vm_flags & VM_ACCOUNT) &&
2773	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2774		return -ENOMEM;
 
2775
2776	vma_link(mm, vma, prev, rb_link, rb_parent);
2777	return 0;
2778}
2779
2780/*
2781 * Copy the vma structure to a new location in the same mm,
2782 * prior to moving page table entries, to effect an mremap move.
2783 */
2784struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2785	unsigned long addr, unsigned long len, pgoff_t pgoff,
2786	bool *need_rmap_locks)
2787{
2788	struct vm_area_struct *vma = *vmap;
2789	unsigned long vma_start = vma->vm_start;
2790	struct mm_struct *mm = vma->vm_mm;
2791	struct vm_area_struct *new_vma, *prev;
2792	struct rb_node **rb_link, *rb_parent;
2793	bool faulted_in_anon_vma = true;
 
 
 
 
 
 
 
 
 
2794
2795	/*
2796	 * If anonymous vma has not yet been faulted, update new pgoff
2797	 * to match new location, to increase its chance of merging.
2798	 */
2799	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2800		pgoff = addr >> PAGE_SHIFT;
2801		faulted_in_anon_vma = false;
2802	}
2803
2804	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2805		return NULL;	/* should never get here */
2806	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2807			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2808	if (new_vma) {
2809		/*
2810		 * Source vma may have been merged into new_vma
2811		 */
2812		if (unlikely(vma_start >= new_vma->vm_start &&
2813			     vma_start < new_vma->vm_end)) {
2814			/*
2815			 * The only way we can get a vma_merge with
2816			 * self during an mremap is if the vma hasn't
2817			 * been faulted in yet and we were allowed to
2818			 * reset the dst vma->vm_pgoff to the
2819			 * destination address of the mremap to allow
2820			 * the merge to happen. mremap must change the
2821			 * vm_pgoff linearity between src and dst vmas
2822			 * (in turn preventing a vma_merge) to be
2823			 * safe. It is only safe to keep the vm_pgoff
2824			 * linear if there are no pages mapped yet.
2825			 */
2826			VM_BUG_ON(faulted_in_anon_vma);
2827			*vmap = vma = new_vma;
2828		}
2829		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2830	} else {
2831		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2832		if (new_vma) {
2833			*new_vma = *vma;
2834			new_vma->vm_start = addr;
2835			new_vma->vm_end = addr + len;
2836			new_vma->vm_pgoff = pgoff;
2837			if (vma_dup_policy(vma, new_vma))
2838				goto out_free_vma;
2839			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2840			if (anon_vma_clone(new_vma, vma))
2841				goto out_free_mempol;
2842			if (new_vma->vm_file)
2843				get_file(new_vma->vm_file);
2844			if (new_vma->vm_ops && new_vma->vm_ops->open)
2845				new_vma->vm_ops->open(new_vma);
2846			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2847			*need_rmap_locks = false;
2848		}
2849	}
2850	return new_vma;
2851
2852 out_free_mempol:
2853	mpol_put(vma_policy(new_vma));
2854 out_free_vma:
2855	kmem_cache_free(vm_area_cachep, new_vma);
2856	return NULL;
 
2857}
2858
 
 
2859/*
2860 * Return true if the calling process may expand its vm space by the passed
2861 * number of pages
 
2862 */
2863int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2864{
2865	unsigned long cur = mm->total_vm;	/* pages */
2866	unsigned long lim;
2867
2868	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
 
 
2869
2870	if (cur + npages > lim)
2871		return 0;
2872	return 1;
2873}
2874
 
 
 
 
 
 
 
 
 
 
 
 
2875
2876static int special_mapping_fault(struct vm_area_struct *vma,
2877				struct vm_fault *vmf)
2878{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2879	pgoff_t pgoff;
2880	struct page **pages;
 
2881
2882	/*
2883	 * special mappings have no vm_file, and in that case, the mm
2884	 * uses vm_pgoff internally. So we have to subtract it from here.
2885	 * We are allowed to do this because we are the mm; do not copy
2886	 * this code into drivers!
2887	 */
2888	pgoff = vmf->pgoff - vma->vm_pgoff;
2889
2890	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2891		pgoff--;
2892
2893	if (*pages) {
2894		struct page *page = *pages;
2895		get_page(page);
2896		vmf->page = page;
2897		return 0;
2898	}
2899
2900	return VM_FAULT_SIGBUS;
2901}
2902
2903/*
2904 * Having a close hook prevents vma merging regardless of flags.
2905 */
2906static void special_mapping_close(struct vm_area_struct *vma)
2907{
2908}
2909
2910static const struct vm_operations_struct special_mapping_vmops = {
2911	.close = special_mapping_close,
2912	.fault = special_mapping_fault,
2913};
2914
2915/*
2916 * Called with mm->mmap_sem held for writing.
2917 * Insert a new vma covering the given region, with the given flags.
2918 * Its pages are supplied by the given array of struct page *.
2919 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2920 * The region past the last page supplied will always produce SIGBUS.
2921 * The array pointer and the pages it points to are assumed to stay alive
2922 * for as long as this mapping might exist.
2923 */
2924struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2925			    unsigned long addr, unsigned long len,
2926			    unsigned long vm_flags, struct page **pages)
2927{
2928	int ret;
2929	struct vm_area_struct *vma;
2930
2931	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2932	if (unlikely(vma == NULL))
2933		return ERR_PTR(-ENOMEM);
2934
2935	INIT_LIST_HEAD(&vma->anon_vma_chain);
2936	vma->vm_mm = mm;
2937	vma->vm_start = addr;
2938	vma->vm_end = addr + len;
2939
2940	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
2941	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2942
2943	vma->vm_ops = &special_mapping_vmops;
2944	vma->vm_private_data = pages;
2945
2946	ret = insert_vm_struct(mm, vma);
2947	if (ret)
2948		goto out;
2949
2950	mm->total_vm += len >> PAGE_SHIFT;
2951
2952	perf_event_mmap(vma);
2953
2954	return vma;
2955
2956out:
2957	kmem_cache_free(vm_area_cachep, vma);
2958	return ERR_PTR(ret);
2959}
2960
2961int install_special_mapping(struct mm_struct *mm,
2962			    unsigned long addr, unsigned long len,
2963			    unsigned long vm_flags, struct page **pages)
2964{
2965	struct vm_area_struct *vma = _install_special_mapping(mm,
2966			    addr, len, vm_flags, pages);
2967
2968	if (IS_ERR(vma))
2969		return PTR_ERR(vma);
2970	return 0;
2971}
2972
2973static DEFINE_MUTEX(mm_all_locks_mutex);
2974
2975static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2976{
2977	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2978		/*
2979		 * The LSB of head.next can't change from under us
2980		 * because we hold the mm_all_locks_mutex.
2981		 */
2982		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
2983		/*
2984		 * We can safely modify head.next after taking the
2985		 * anon_vma->root->rwsem. If some other vma in this mm shares
2986		 * the same anon_vma we won't take it again.
2987		 *
2988		 * No need of atomic instructions here, head.next
2989		 * can't change from under us thanks to the
2990		 * anon_vma->root->rwsem.
2991		 */
2992		if (__test_and_set_bit(0, (unsigned long *)
2993				       &anon_vma->root->rb_root.rb_node))
2994			BUG();
2995	}
2996}
2997
2998static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2999{
3000	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3001		/*
3002		 * AS_MM_ALL_LOCKS can't change from under us because
3003		 * we hold the mm_all_locks_mutex.
3004		 *
3005		 * Operations on ->flags have to be atomic because
3006		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3007		 * mm_all_locks_mutex, there may be other cpus
3008		 * changing other bitflags in parallel to us.
3009		 */
3010		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3011			BUG();
3012		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
3013	}
3014}
3015
3016/*
3017 * This operation locks against the VM for all pte/vma/mm related
3018 * operations that could ever happen on a certain mm. This includes
3019 * vmtruncate, try_to_unmap, and all page faults.
3020 *
3021 * The caller must take the mmap_sem in write mode before calling
3022 * mm_take_all_locks(). The caller isn't allowed to release the
3023 * mmap_sem until mm_drop_all_locks() returns.
3024 *
3025 * mmap_sem in write mode is required in order to block all operations
3026 * that could modify pagetables and free pages without need of
3027 * altering the vma layout (for example populate_range() with
3028 * nonlinear vmas). It's also needed in write mode to avoid new
3029 * anon_vmas to be associated with existing vmas.
3030 *
3031 * A single task can't take more than one mm_take_all_locks() in a row
3032 * or it would deadlock.
3033 *
3034 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3035 * mapping->flags avoid to take the same lock twice, if more than one
3036 * vma in this mm is backed by the same anon_vma or address_space.
3037 *
3038 * We can take all the locks in random order because the VM code
3039 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3040 * takes more than one of them in a row. Secondly we're protected
3041 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3042 *
3043 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3044 * that may have to take thousand of locks.
3045 *
3046 * mm_take_all_locks() can fail if it's interrupted by signals.
3047 */
3048int mm_take_all_locks(struct mm_struct *mm)
3049{
3050	struct vm_area_struct *vma;
3051	struct anon_vma_chain *avc;
3052
3053	BUG_ON(down_read_trylock(&mm->mmap_sem));
3054
3055	mutex_lock(&mm_all_locks_mutex);
3056
3057	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3058		if (signal_pending(current))
3059			goto out_unlock;
3060		if (vma->vm_file && vma->vm_file->f_mapping)
3061			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3062	}
3063
3064	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3065		if (signal_pending(current))
3066			goto out_unlock;
3067		if (vma->anon_vma)
3068			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3069				vm_lock_anon_vma(mm, avc->anon_vma);
3070	}
3071
3072	return 0;
3073
3074out_unlock:
3075	mm_drop_all_locks(mm);
3076	return -EINTR;
3077}
3078
3079static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3080{
3081	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3082		/*
3083		 * The LSB of head.next can't change to 0 from under
3084		 * us because we hold the mm_all_locks_mutex.
3085		 *
3086		 * We must however clear the bitflag before unlocking
3087		 * the vma so the users using the anon_vma->rb_root will
3088		 * never see our bitflag.
3089		 *
3090		 * No need of atomic instructions here, head.next
3091		 * can't change from under us until we release the
3092		 * anon_vma->root->rwsem.
3093		 */
3094		if (!__test_and_clear_bit(0, (unsigned long *)
3095					  &anon_vma->root->rb_root.rb_node))
3096			BUG();
3097		anon_vma_unlock_write(anon_vma);
3098	}
3099}
3100
3101static void vm_unlock_mapping(struct address_space *mapping)
3102{
3103	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3104		/*
3105		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3106		 * because we hold the mm_all_locks_mutex.
3107		 */
3108		mutex_unlock(&mapping->i_mmap_mutex);
3109		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3110					&mapping->flags))
3111			BUG();
3112	}
3113}
3114
3115/*
3116 * The mmap_sem cannot be released by the caller until
3117 * mm_drop_all_locks() returns.
3118 */
3119void mm_drop_all_locks(struct mm_struct *mm)
 
 
 
3120{
3121	struct vm_area_struct *vma;
3122	struct anon_vma_chain *avc;
3123
3124	BUG_ON(down_read_trylock(&mm->mmap_sem));
3125	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3126
3127	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3128		if (vma->anon_vma)
3129			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3130				vm_unlock_anon_vma(avc->anon_vma);
3131		if (vma->vm_file && vma->vm_file->f_mapping)
3132			vm_unlock_mapping(vma->vm_file->f_mapping);
3133	}
3134
3135	mutex_unlock(&mm_all_locks_mutex);
3136}
3137
3138/*
3139 * initialise the VMA slab
3140 */
3141void __init mmap_init(void)
3142{
3143	int ret;
3144
3145	ret = percpu_counter_init(&vm_committed_as, 0);
3146	VM_BUG_ON(ret);
3147}
3148
3149/*
3150 * Initialise sysctl_user_reserve_kbytes.
3151 *
3152 * This is intended to prevent a user from starting a single memory hogging
3153 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3154 * mode.
3155 *
3156 * The default value is min(3% of free memory, 128MB)
3157 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3158 */
3159static int init_user_reserve(void)
3160{
3161	unsigned long free_kbytes;
3162
3163	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3164
3165	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3166	return 0;
3167}
3168subsys_initcall(init_user_reserve);
3169
3170/*
3171 * Initialise sysctl_admin_reserve_kbytes.
3172 *
3173 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3174 * to log in and kill a memory hogging process.
3175 *
3176 * Systems with more than 256MB will reserve 8MB, enough to recover
3177 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3178 * only reserve 3% of free pages by default.
3179 */
3180static int init_admin_reserve(void)
3181{
3182	unsigned long free_kbytes;
3183
3184	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3185
3186	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3187	return 0;
3188}
3189subsys_initcall(init_admin_reserve);
3190
3191/*
3192 * Reinititalise user and admin reserves if memory is added or removed.
3193 *
3194 * The default user reserve max is 128MB, and the default max for the
3195 * admin reserve is 8MB. These are usually, but not always, enough to
3196 * enable recovery from a memory hogging process using login/sshd, a shell,
3197 * and tools like top. It may make sense to increase or even disable the
3198 * reserve depending on the existence of swap or variations in the recovery
3199 * tools. So, the admin may have changed them.
3200 *
3201 * If memory is added and the reserves have been eliminated or increased above
3202 * the default max, then we'll trust the admin.
3203 *
3204 * If memory is removed and there isn't enough free memory, then we
3205 * need to reset the reserves.
3206 *
3207 * Otherwise keep the reserve set by the admin.
3208 */
3209static int reserve_mem_notifier(struct notifier_block *nb,
3210			     unsigned long action, void *data)
3211{
3212	unsigned long tmp, free_kbytes;
3213
3214	switch (action) {
3215	case MEM_ONLINE:
3216		/* Default max is 128MB. Leave alone if modified by operator. */
3217		tmp = sysctl_user_reserve_kbytes;
3218		if (0 < tmp && tmp < (1UL << 17))
3219			init_user_reserve();
3220
3221		/* Default max is 8MB.  Leave alone if modified by operator. */
3222		tmp = sysctl_admin_reserve_kbytes;
3223		if (0 < tmp && tmp < (1UL << 13))
3224			init_admin_reserve();
3225
3226		break;
3227	case MEM_OFFLINE:
3228		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3229
3230		if (sysctl_user_reserve_kbytes > free_kbytes) {
3231			init_user_reserve();
3232			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3233				sysctl_user_reserve_kbytes);
3234		}
3235
3236		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3237			init_admin_reserve();
3238			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3239				sysctl_admin_reserve_kbytes);
3240		}
3241		break;
3242	default:
3243		break;
3244	}
3245	return NOTIFY_OK;
3246}
3247
3248static struct notifier_block reserve_mem_nb = {
3249	.notifier_call = reserve_mem_notifier,
3250};
3251
3252static int __meminit init_reserve_notifier(void)
3253{
3254	if (register_hotmemory_notifier(&reserve_mem_nb))
3255		printk("Failed registering memory add/remove notifier for admin reserve");
3256
3257	return 0;
3258}
3259subsys_initcall(init_reserve_notifier);