Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * mm/mmap.c
   4 *
   5 * Written by obz.
   6 *
   7 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/kernel.h>
  13#include <linux/slab.h>
  14#include <linux/backing-dev.h>
  15#include <linux/mm.h>
  16#include <linux/mm_inline.h>
  17#include <linux/shm.h>
  18#include <linux/mman.h>
  19#include <linux/pagemap.h>
  20#include <linux/swap.h>
  21#include <linux/syscalls.h>
  22#include <linux/capability.h>
  23#include <linux/init.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/personality.h>
  27#include <linux/security.h>
  28#include <linux/hugetlb.h>
  29#include <linux/shmem_fs.h>
  30#include <linux/profile.h>
  31#include <linux/export.h>
  32#include <linux/mount.h>
  33#include <linux/mempolicy.h>
  34#include <linux/rmap.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/mmdebug.h>
  37#include <linux/perf_event.h>
  38#include <linux/audit.h>
  39#include <linux/khugepaged.h>
  40#include <linux/uprobes.h>
 
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
  47#include <linux/oom.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ksm.h>
  50#include <linux/memfd.h>
  51
  52#include <linux/uaccess.h>
  53#include <asm/cacheflush.h>
  54#include <asm/tlb.h>
  55#include <asm/mmu_context.h>
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/mmap.h>
  59
  60#include "internal.h"
  61
  62#ifndef arch_mmap_check
  63#define arch_mmap_check(addr, len, flags)	(0)
  64#endif
  65
  66#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  67const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  68int mmap_rnd_bits_max __ro_after_init = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  69int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  70#endif
  71#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  72const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  73const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  74int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  75#endif
  76
  77static bool ignore_rlimit_data;
  78core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80/* Update vma->vm_page_prot to reflect vma->vm_flags. */
  81void vma_set_page_prot(struct vm_area_struct *vma)
  82{
  83	unsigned long vm_flags = vma->vm_flags;
  84	pgprot_t vm_page_prot;
  85
  86	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
  87	if (vma_wants_writenotify(vma, vm_page_prot)) {
  88		vm_flags &= ~VM_SHARED;
  89		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
  90	}
  91	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
  92	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
  93}
  94
  95/*
  96 * check_brk_limits() - Use platform specific check of range & verify mlock
  97 * limits.
  98 * @addr: The address to check
  99 * @len: The size of increase.
 100 *
 101 * Return: 0 on success.
 102 */
 103static int check_brk_limits(unsigned long addr, unsigned long len)
 
 104{
 105	unsigned long mapped_addr;
 
 
 
 
 
 
 
 
 106
 107	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
 108	if (IS_ERR_VALUE(mapped_addr))
 109		return mapped_addr;
 
 
 
 
 110
 111	return mlock_future_ok(current->mm, current->mm->def_flags, len)
 112		? 0 : -EAGAIN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 113}
 114static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *brkvma,
 115		unsigned long addr, unsigned long request, unsigned long flags);
 
 116SYSCALL_DEFINE1(brk, unsigned long, brk)
 117{
 118	unsigned long newbrk, oldbrk, origbrk;
 
 119	struct mm_struct *mm = current->mm;
 120	struct vm_area_struct *brkvma, *next = NULL;
 121	unsigned long min_brk;
 122	bool populate = false;
 123	LIST_HEAD(uf);
 124	struct vma_iterator vmi;
 125
 126	if (mmap_write_lock_killable(mm))
 127		return -EINTR;
 128
 129	origbrk = mm->brk;
 130
 131#ifdef CONFIG_COMPAT_BRK
 132	/*
 133	 * CONFIG_COMPAT_BRK can still be overridden by setting
 134	 * randomize_va_space to 2, which will still cause mm->start_brk
 135	 * to be arbitrarily shifted
 136	 */
 137	if (current->brk_randomized)
 138		min_brk = mm->start_brk;
 139	else
 140		min_brk = mm->end_data;
 141#else
 142	min_brk = mm->start_brk;
 143#endif
 144	if (brk < min_brk)
 145		goto out;
 146
 147	/*
 148	 * Check against rlimit here. If this check is done later after the test
 149	 * of oldbrk with newbrk then it can escape the test and let the data
 150	 * segment grow beyond its set limit the in case where the limit is
 151	 * not page aligned -Ram Gupta
 152	 */
 153	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 154			      mm->end_data, mm->start_data))
 155		goto out;
 156
 157	newbrk = PAGE_ALIGN(brk);
 158	oldbrk = PAGE_ALIGN(mm->brk);
 159	if (oldbrk == newbrk) {
 160		mm->brk = brk;
 161		goto success;
 162	}
 163
 164	/* Always allow shrinking brk. */
 165	if (brk <= mm->brk) {
 166		/* Search one past newbrk */
 167		vma_iter_init(&vmi, mm, newbrk);
 168		brkvma = vma_find(&vmi, oldbrk);
 169		if (!brkvma || brkvma->vm_start >= oldbrk)
 170			goto out; /* mapping intersects with an existing non-brk vma. */
 171		/*
 172		 * mm->brk must be protected by write mmap_lock.
 173		 * do_vmi_align_munmap() will drop the lock on success,  so
 174		 * update it before calling do_vma_munmap().
 175		 */
 176		mm->brk = brk;
 177		if (do_vmi_align_munmap(&vmi, brkvma, mm, newbrk, oldbrk, &uf,
 178					/* unlock = */ true))
 179			goto out;
 180
 181		goto success_unlocked;
 182	}
 183
 184	if (check_brk_limits(oldbrk, newbrk - oldbrk))
 185		goto out;
 
 186
 187	/*
 188	 * Only check if the next VMA is within the stack_guard_gap of the
 189	 * expansion area
 190	 */
 191	vma_iter_init(&vmi, mm, oldbrk);
 192	next = vma_find(&vmi, newbrk + PAGE_SIZE + stack_guard_gap);
 193	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
 194		goto out;
 195
 196	brkvma = vma_prev_limit(&vmi, mm->start_brk);
 197	/* Ok, looks good - let it rip. */
 198	if (do_brk_flags(&vmi, brkvma, oldbrk, newbrk - oldbrk, 0) < 0)
 199		goto out;
 200
 
 201	mm->brk = brk;
 202	if (mm->def_flags & VM_LOCKED)
 203		populate = true;
 204
 205success:
 206	mmap_write_unlock(mm);
 207success_unlocked:
 208	userfaultfd_unmap_complete(mm, &uf);
 209	if (populate)
 210		mm_populate(oldbrk, newbrk - oldbrk);
 211	return brk;
 212
 213out:
 214	mm->brk = origbrk;
 215	mmap_write_unlock(mm);
 216	return origbrk;
 217}
 218
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 219/*
 220 * If a hint addr is less than mmap_min_addr change hint to be as
 221 * low as possible but still greater than mmap_min_addr
 
 222 */
 223static inline unsigned long round_hint_to_min(unsigned long hint)
 224{
 225	hint &= PAGE_MASK;
 226	if (((void *)hint != NULL) &&
 227	    (hint < mmap_min_addr))
 228		return PAGE_ALIGN(mmap_min_addr);
 229	return hint;
 230}
 231
 232bool mlock_future_ok(struct mm_struct *mm, unsigned long flags,
 233			unsigned long bytes)
 234{
 235	unsigned long locked_pages, limit_pages;
 
 236
 237	if (!(flags & VM_LOCKED) || capable(CAP_IPC_LOCK))
 238		return true;
 239
 240	locked_pages = bytes >> PAGE_SHIFT;
 241	locked_pages += mm->locked_vm;
 
 
 
 
 
 
 
 242
 243	limit_pages = rlimit(RLIMIT_MEMLOCK);
 244	limit_pages >>= PAGE_SHIFT;
 
 
 
 
 
 
 
 
 245
 246	return locked_pages <= limit_pages;
 247}
 248
 249static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
 
 250{
 251	if (S_ISREG(inode->i_mode))
 252		return MAX_LFS_FILESIZE;
 
 
 
 253
 254	if (S_ISBLK(inode->i_mode))
 255		return MAX_LFS_FILESIZE;
 256
 257	if (S_ISSOCK(inode->i_mode))
 258		return MAX_LFS_FILESIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260	/* Special "we do even unsigned file positions" case */
 261	if (file->f_op->fop_flags & FOP_UNSIGNED_OFFSET)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262		return 0;
 263
 264	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
 265	return ULONG_MAX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268static inline bool file_mmap_ok(struct file *file, struct inode *inode,
 269				unsigned long pgoff, unsigned long len)
 270{
 271	u64 maxsize = file_mmap_size_max(file, inode);
 
 
 
 
 272
 273	if (maxsize && len > maxsize)
 274		return false;
 275	maxsize -= len;
 276	if (pgoff > maxsize >> PAGE_SHIFT)
 277		return false;
 278	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 279}
 280
 281/*
 282 * The caller must write-lock current->mm->mmap_lock.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283 */
 284unsigned long do_mmap(struct file *file, unsigned long addr,
 285			unsigned long len, unsigned long prot,
 286			unsigned long flags, vm_flags_t vm_flags,
 287			unsigned long pgoff, unsigned long *populate,
 288			struct list_head *uf)
 289{
 290	struct mm_struct *mm = current->mm;
 291	int pkey = 0;
 292
 293	*populate = 0;
 294
 295	if (!len)
 296		return -EINVAL;
 297
 298	/*
 299	 * Does the application expect PROT_READ to imply PROT_EXEC?
 300	 *
 301	 * (the exception is when the underlying filesystem is noexec
 302	 *  mounted, in which case we don't add PROT_EXEC.)
 303	 */
 304	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
 305		if (!(file && path_noexec(&file->f_path)))
 306			prot |= PROT_EXEC;
 307
 308	/* force arch specific MAP_FIXED handling in get_unmapped_area */
 309	if (flags & MAP_FIXED_NOREPLACE)
 310		flags |= MAP_FIXED;
 311
 312	if (!(flags & MAP_FIXED))
 313		addr = round_hint_to_min(addr);
 314
 315	/* Careful about overflows.. */
 316	len = PAGE_ALIGN(len);
 317	if (!len)
 318		return -ENOMEM;
 319
 320	/* offset overflow? */
 321	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
 322		return -EOVERFLOW;
 323
 324	/* Too many mappings? */
 325	if (mm->map_count > sysctl_max_map_count)
 326		return -ENOMEM;
 327
 328	/*
 329	 * addr is returned from get_unmapped_area,
 330	 * There are two cases:
 331	 * 1> MAP_FIXED == false
 332	 *	unallocated memory, no need to check sealing.
 333	 * 1> MAP_FIXED == true
 334	 *	sealing is checked inside mmap_region when
 335	 *	do_vmi_munmap is called.
 336	 */
 
 
 
 337
 338	if (prot == PROT_EXEC) {
 339		pkey = execute_only_pkey(mm);
 340		if (pkey < 0)
 341			pkey = 0;
 342	}
 343
 344	/* Do simple checking here so the lower-level routines won't have
 345	 * to. we assume access permissions have been handled by the open
 346	 * of the memory object, so we don't do any here.
 347	 */
 348	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(file, flags) |
 349			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
 350
 351	/* Obtain the address to map to. we verify (or select) it and ensure
 352	 * that it represents a valid section of the address space.
 353	 */
 354	addr = __get_unmapped_area(file, addr, len, pgoff, flags, vm_flags);
 355	if (IS_ERR_VALUE(addr))
 356		return addr;
 357
 358	if (flags & MAP_FIXED_NOREPLACE) {
 359		if (find_vma_intersection(mm, addr, addr + len))
 360			return -EEXIST;
 361	}
 362
 363	if (flags & MAP_LOCKED)
 364		if (!can_do_mlock())
 365			return -EPERM;
 366
 367	if (!mlock_future_ok(mm, vm_flags, len))
 368		return -EAGAIN;
 369
 370	if (file) {
 371		struct inode *inode = file_inode(file);
 372		unsigned int seals = memfd_file_seals(file);
 373		unsigned long flags_mask;
 374
 375		if (!file_mmap_ok(file, inode, pgoff, len))
 376			return -EOVERFLOW;
 377
 378		flags_mask = LEGACY_MAP_MASK;
 379		if (file->f_op->fop_flags & FOP_MMAP_SYNC)
 380			flags_mask |= MAP_SYNC;
 381
 382		switch (flags & MAP_TYPE) {
 383		case MAP_SHARED:
 384			/*
 385			 * Force use of MAP_SHARED_VALIDATE with non-legacy
 386			 * flags. E.g. MAP_SYNC is dangerous to use with
 387			 * MAP_SHARED as you don't know which consistency model
 388			 * you will get. We silently ignore unsupported flags
 389			 * with MAP_SHARED to preserve backward compatibility.
 390			 */
 391			flags &= LEGACY_MAP_MASK;
 392			fallthrough;
 393		case MAP_SHARED_VALIDATE:
 394			if (flags & ~flags_mask)
 395				return -EOPNOTSUPP;
 396			if (prot & PROT_WRITE) {
 397				if (!(file->f_mode & FMODE_WRITE))
 398					return -EACCES;
 399				if (IS_SWAPFILE(file->f_mapping->host))
 400					return -ETXTBSY;
 401			}
 402
 403			/*
 404			 * Make sure we don't allow writing to an append-only
 405			 * file..
 406			 */
 407			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
 408				return -EACCES;
 409
 
 
 
 
 
 
 410			vm_flags |= VM_SHARED | VM_MAYSHARE;
 411			if (!(file->f_mode & FMODE_WRITE))
 412				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
 413			else if (is_readonly_sealed(seals, vm_flags))
 414				vm_flags &= ~VM_MAYWRITE;
 415			fallthrough;
 416		case MAP_PRIVATE:
 417			if (!(file->f_mode & FMODE_READ))
 418				return -EACCES;
 419			if (path_noexec(&file->f_path)) {
 420				if (vm_flags & VM_EXEC)
 421					return -EPERM;
 422				vm_flags &= ~VM_MAYEXEC;
 423			}
 424
 425			if (!file->f_op->mmap)
 426				return -ENODEV;
 427			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
 428				return -EINVAL;
 429			break;
 430
 431		default:
 432			return -EINVAL;
 433		}
 434	} else {
 435		switch (flags & MAP_TYPE) {
 436		case MAP_SHARED:
 437			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
 438				return -EINVAL;
 439			/*
 440			 * Ignore pgoff.
 441			 */
 442			pgoff = 0;
 443			vm_flags |= VM_SHARED | VM_MAYSHARE;
 444			break;
 445		case MAP_DROPPABLE:
 446			if (VM_DROPPABLE == VM_NONE)
 447				return -ENOTSUPP;
 448			/*
 449			 * A locked or stack area makes no sense to be droppable.
 450			 *
 451			 * Also, since droppable pages can just go away at any time
 452			 * it makes no sense to copy them on fork or dump them.
 453			 *
 454			 * And don't attempt to combine with hugetlb for now.
 455			 */
 456			if (flags & (MAP_LOCKED | MAP_HUGETLB))
 457			        return -EINVAL;
 458			if (vm_flags & (VM_GROWSDOWN | VM_GROWSUP))
 459			        return -EINVAL;
 460
 461			vm_flags |= VM_DROPPABLE;
 462
 463			/*
 464			 * If the pages can be dropped, then it doesn't make
 465			 * sense to reserve them.
 466			 */
 467			vm_flags |= VM_NORESERVE;
 468
 469			/*
 470			 * Likewise, they're volatile enough that they
 471			 * shouldn't survive forks or coredumps.
 472			 */
 473			vm_flags |= VM_WIPEONFORK | VM_DONTDUMP;
 474			fallthrough;
 475		case MAP_PRIVATE:
 476			/*
 477			 * Set pgoff according to addr for anon_vma.
 478			 */
 479			pgoff = addr >> PAGE_SHIFT;
 480			break;
 481		default:
 482			return -EINVAL;
 483		}
 484	}
 485
 486	/*
 487	 * Set 'VM_NORESERVE' if we should not account for the
 488	 * memory use of this mapping.
 489	 */
 490	if (flags & MAP_NORESERVE) {
 491		/* We honor MAP_NORESERVE if allowed to overcommit */
 492		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
 493			vm_flags |= VM_NORESERVE;
 494
 495		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
 496		if (file && is_file_hugepages(file))
 497			vm_flags |= VM_NORESERVE;
 498	}
 499
 500	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
 501	if (!IS_ERR_VALUE(addr) &&
 502	    ((vm_flags & VM_LOCKED) ||
 503	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
 504		*populate = len;
 505	return addr;
 506}
 507
 508unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
 509			      unsigned long prot, unsigned long flags,
 510			      unsigned long fd, unsigned long pgoff)
 511{
 512	struct file *file = NULL;
 513	unsigned long retval;
 514
 515	if (!(flags & MAP_ANONYMOUS)) {
 516		audit_mmap_fd(fd, flags);
 517		file = fget(fd);
 518		if (!file)
 519			return -EBADF;
 520		if (is_file_hugepages(file)) {
 521			len = ALIGN(len, huge_page_size(hstate_file(file)));
 522		} else if (unlikely(flags & MAP_HUGETLB)) {
 523			retval = -EINVAL;
 524			goto out_fput;
 525		}
 526	} else if (flags & MAP_HUGETLB) {
 
 527		struct hstate *hs;
 528
 529		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
 530		if (!hs)
 531			return -EINVAL;
 532
 533		len = ALIGN(len, huge_page_size(hs));
 534		/*
 535		 * VM_NORESERVE is used because the reservations will be
 536		 * taken when vm_ops->mmap() is called
 
 
 537		 */
 538		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
 539				VM_NORESERVE,
 540				HUGETLB_ANONHUGE_INODE,
 541				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
 542		if (IS_ERR(file))
 543			return PTR_ERR(file);
 544	}
 545
 
 
 546	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
 547out_fput:
 548	if (file)
 549		fput(file);
 550	return retval;
 551}
 552
 553SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
 554		unsigned long, prot, unsigned long, flags,
 555		unsigned long, fd, unsigned long, pgoff)
 556{
 557	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
 558}
 559
 560#ifdef __ARCH_WANT_SYS_OLD_MMAP
 561struct mmap_arg_struct {
 562	unsigned long addr;
 563	unsigned long len;
 564	unsigned long prot;
 565	unsigned long flags;
 566	unsigned long fd;
 567	unsigned long offset;
 568};
 569
 570SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
 571{
 572	struct mmap_arg_struct a;
 573
 574	if (copy_from_user(&a, arg, sizeof(a)))
 575		return -EFAULT;
 576	if (offset_in_page(a.offset))
 577		return -EINVAL;
 578
 579	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
 580			       a.offset >> PAGE_SHIFT);
 581}
 582#endif /* __ARCH_WANT_SYS_OLD_MMAP */
 583
 584/**
 585 * unmapped_area() - Find an area between the low_limit and the high_limit with
 586 * the correct alignment and offset, all from @info. Note: current->mm is used
 587 * for the search.
 588 *
 589 * @info: The unmapped area information including the range [low_limit -
 590 * high_limit), the alignment offset and mask.
 591 *
 592 * Return: A memory address or -ENOMEM.
 593 */
 594static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 595{
 596	unsigned long length, gap;
 597	unsigned long low_limit, high_limit;
 598	struct vm_area_struct *tmp;
 599	VMA_ITERATOR(vmi, current->mm, 0);
 600
 601	/* Adjust search length to account for worst case alignment overhead */
 602	length = info->length + info->align_mask + info->start_gap;
 603	if (length < info->length)
 604		return -ENOMEM;
 605
 606	low_limit = info->low_limit;
 607	if (low_limit < mmap_min_addr)
 608		low_limit = mmap_min_addr;
 609	high_limit = info->high_limit;
 610retry:
 611	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
 612		return -ENOMEM;
 
 
 613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	/*
 615	 * Adjust for the gap first so it doesn't interfere with the
 616	 * later alignment. The first step is the minimum needed to
 617	 * fulill the start gap, the next steps is the minimum to align
 618	 * that. It is the minimum needed to fulill both.
 619	 */
 620	gap = vma_iter_addr(&vmi) + info->start_gap;
 621	gap += (info->align_offset - gap) & info->align_mask;
 622	tmp = vma_next(&vmi);
 623	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
 624		if (vm_start_gap(tmp) < gap + length - 1) {
 625			low_limit = tmp->vm_end;
 626			vma_iter_reset(&vmi);
 627			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 628		}
 629	} else {
 630		tmp = vma_prev(&vmi);
 631		if (tmp && vm_end_gap(tmp) > gap) {
 632			low_limit = vm_end_gap(tmp);
 633			vma_iter_reset(&vmi);
 634			goto retry;
 635		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 
 
 
 637
 638	return gap;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639}
 640
 641/**
 642 * unmapped_area_topdown() - Find an area between the low_limit and the
 643 * high_limit with the correct alignment and offset at the highest available
 644 * address, all from @info. Note: current->mm is used for the search.
 645 *
 646 * @info: The unmapped area information including the range [low_limit -
 647 * high_limit), the alignment offset and mask.
 648 *
 649 * Return: A memory address or -ENOMEM.
 650 */
 651static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 652{
 653	unsigned long length, gap, gap_end;
 654	unsigned long low_limit, high_limit;
 655	struct vm_area_struct *tmp;
 656	VMA_ITERATOR(vmi, current->mm, 0);
 
 
 
 
 
 
 
 657
 658	/* Adjust search length to account for worst case alignment overhead */
 659	length = info->length + info->align_mask + info->start_gap;
 660	if (length < info->length)
 661		return -ENOMEM;
 662
 663	low_limit = info->low_limit;
 664	if (low_limit < mmap_min_addr)
 665		low_limit = mmap_min_addr;
 666	high_limit = info->high_limit;
 667retry:
 668	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
 669		return -ENOMEM;
 670
 671	gap = vma_iter_end(&vmi) - info->length;
 672	gap -= (gap - info->align_offset) & info->align_mask;
 673	gap_end = vma_iter_end(&vmi);
 674	tmp = vma_next(&vmi);
 675	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
 676		if (vm_start_gap(tmp) < gap_end) {
 677			high_limit = vm_start_gap(tmp);
 678			vma_iter_reset(&vmi);
 679			goto retry;
 
 
 
 
 
 
 
 
 
 
 680		}
 681	} else {
 682		tmp = vma_prev(&vmi);
 683		if (tmp && vm_end_gap(tmp) > gap) {
 684			high_limit = tmp->vm_start;
 685			vma_iter_reset(&vmi);
 686			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687		}
 688	}
 689
 690	return gap;
 691}
 
 
 
 
 692
 693/*
 694 * Determine if the allocation needs to ensure that there is no
 695 * existing mapping within it's guard gaps, for use as start_gap.
 696 */
 697static inline unsigned long stack_guard_placement(vm_flags_t vm_flags)
 698{
 699	if (vm_flags & VM_SHADOW_STACK)
 700		return PAGE_SIZE;
 701
 702	return 0;
 
 
 
 
 
 703}
 704
 705/*
 706 * Search for an unmapped address range.
 707 *
 708 * We are looking for a range that:
 709 * - does not intersect with any VMA;
 710 * - is contained within the [low_limit, high_limit) interval;
 711 * - is at least the desired size.
 712 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
 713 */
 714unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
 715{
 716	unsigned long addr;
 
 
 717
 718	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
 719		addr = unmapped_area_topdown(info);
 720	else
 721		addr = unmapped_area(info);
 722
 723	trace_vm_unmapped_area(addr, info);
 724	return addr;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 725}
 726
 727/* Get an address range which is currently unmapped.
 728 * For shmat() with addr=0.
 729 *
 730 * Ugly calling convention alert:
 731 * Return value with the low bits set means error value,
 732 * ie
 733 *	if (ret & ~PAGE_MASK)
 734 *		error = ret;
 735 *
 736 * This function "knows" that -ENOMEM has the bits set.
 737 */
 
 738unsigned long
 739generic_get_unmapped_area(struct file *filp, unsigned long addr,
 740			  unsigned long len, unsigned long pgoff,
 741			  unsigned long flags, vm_flags_t vm_flags)
 742{
 743	struct mm_struct *mm = current->mm;
 744	struct vm_area_struct *vma, *prev;
 745	struct vm_unmapped_area_info info = {};
 746	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 747
 748	if (len > mmap_end - mmap_min_addr)
 749		return -ENOMEM;
 750
 751	if (flags & MAP_FIXED)
 752		return addr;
 753
 754	if (addr) {
 755		addr = PAGE_ALIGN(addr);
 756		vma = find_vma_prev(mm, addr, &prev);
 757		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
 758		    (!vma || addr + len <= vm_start_gap(vma)) &&
 759		    (!prev || addr >= vm_end_gap(prev)))
 760			return addr;
 761	}
 762
 
 763	info.length = len;
 764	info.low_limit = mm->mmap_base;
 765	info.high_limit = mmap_end;
 766	info.start_gap = stack_guard_placement(vm_flags);
 767	if (filp && is_file_hugepages(filp))
 768		info.align_mask = huge_page_mask_align(filp);
 769	return vm_unmapped_area(&info);
 770}
 771
 772#ifndef HAVE_ARCH_UNMAPPED_AREA
 773unsigned long
 774arch_get_unmapped_area(struct file *filp, unsigned long addr,
 775		       unsigned long len, unsigned long pgoff,
 776		       unsigned long flags, vm_flags_t vm_flags)
 777{
 778	return generic_get_unmapped_area(filp, addr, len, pgoff, flags,
 779					 vm_flags);
 780}
 781#endif
 782
 783/*
 784 * This mmap-allocator allocates new areas top-down from below the
 785 * stack's low limit (the base):
 786 */
 
 787unsigned long
 788generic_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 789				  unsigned long len, unsigned long pgoff,
 790				  unsigned long flags, vm_flags_t vm_flags)
 791{
 792	struct vm_area_struct *vma, *prev;
 793	struct mm_struct *mm = current->mm;
 794	struct vm_unmapped_area_info info = {};
 795	const unsigned long mmap_end = arch_get_mmap_end(addr, len, flags);
 796
 797	/* requested length too big for entire address space */
 798	if (len > mmap_end - mmap_min_addr)
 799		return -ENOMEM;
 800
 801	if (flags & MAP_FIXED)
 802		return addr;
 803
 804	/* requesting a specific address */
 805	if (addr) {
 806		addr = PAGE_ALIGN(addr);
 807		vma = find_vma_prev(mm, addr, &prev);
 808		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
 809				(!vma || addr + len <= vm_start_gap(vma)) &&
 810				(!prev || addr >= vm_end_gap(prev)))
 811			return addr;
 812	}
 813
 814	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
 815	info.length = len;
 816	info.low_limit = PAGE_SIZE;
 817	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
 818	info.start_gap = stack_guard_placement(vm_flags);
 819	if (filp && is_file_hugepages(filp))
 820		info.align_mask = huge_page_mask_align(filp);
 821	addr = vm_unmapped_area(&info);
 822
 823	/*
 824	 * A failed mmap() very likely causes application failure,
 825	 * so fall back to the bottom-up function here. This scenario
 826	 * can happen with large stack limits and large mmap()
 827	 * allocations.
 828	 */
 829	if (offset_in_page(addr)) {
 830		VM_BUG_ON(addr != -ENOMEM);
 831		info.flags = 0;
 832		info.low_limit = TASK_UNMAPPED_BASE;
 833		info.high_limit = mmap_end;
 834		addr = vm_unmapped_area(&info);
 835	}
 836
 837	return addr;
 838}
 839
 840#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
 841unsigned long
 842arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
 843			       unsigned long len, unsigned long pgoff,
 844			       unsigned long flags, vm_flags_t vm_flags)
 845{
 846	return generic_get_unmapped_area_topdown(filp, addr, len, pgoff, flags,
 847						 vm_flags);
 848}
 849#endif
 850
 851unsigned long mm_get_unmapped_area_vmflags(struct mm_struct *mm, struct file *filp,
 852					   unsigned long addr, unsigned long len,
 853					   unsigned long pgoff, unsigned long flags,
 854					   vm_flags_t vm_flags)
 855{
 856	if (test_bit(MMF_TOPDOWN, &mm->flags))
 857		return arch_get_unmapped_area_topdown(filp, addr, len, pgoff,
 858						      flags, vm_flags);
 859	return arch_get_unmapped_area(filp, addr, len, pgoff, flags, vm_flags);
 860}
 861
 862unsigned long
 863__get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
 864		unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags)
 865{
 866	unsigned long (*get_area)(struct file *, unsigned long,
 867				  unsigned long, unsigned long, unsigned long)
 868				  = NULL;
 869
 870	unsigned long error = arch_mmap_check(addr, len, flags);
 871	if (error)
 872		return error;
 873
 874	/* Careful about overflows.. */
 875	if (len > TASK_SIZE)
 876		return -ENOMEM;
 877
 
 878	if (file) {
 879		if (file->f_op->get_unmapped_area)
 880			get_area = file->f_op->get_unmapped_area;
 881	} else if (flags & MAP_SHARED) {
 882		/*
 883		 * mmap_region() will call shmem_zero_setup() to create a file,
 884		 * so use shmem's get_unmapped_area in case it can be huge.
 
 885		 */
 
 886		get_area = shmem_get_unmapped_area;
 887	}
 888
 889	/* Always treat pgoff as zero for anonymous memory. */
 890	if (!file)
 891		pgoff = 0;
 892
 893	if (get_area) {
 894		addr = get_area(file, addr, len, pgoff, flags);
 895	} else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) && !file
 896		   && !addr /* no hint */
 897		   && IS_ALIGNED(len, PMD_SIZE)) {
 898		/* Ensures that larger anonymous mappings are THP aligned. */
 899		addr = thp_get_unmapped_area_vmflags(file, addr, len,
 900						     pgoff, flags, vm_flags);
 901	} else {
 902		addr = mm_get_unmapped_area_vmflags(current->mm, file, addr, len,
 903						    pgoff, flags, vm_flags);
 904	}
 905	if (IS_ERR_VALUE(addr))
 906		return addr;
 907
 908	if (addr > TASK_SIZE - len)
 909		return -ENOMEM;
 910	if (offset_in_page(addr))
 911		return -EINVAL;
 912
 913	error = security_mmap_addr(addr);
 914	return error ? error : addr;
 915}
 916
 917unsigned long
 918mm_get_unmapped_area(struct mm_struct *mm, struct file *file,
 919		     unsigned long addr, unsigned long len,
 920		     unsigned long pgoff, unsigned long flags)
 921{
 922	if (test_bit(MMF_TOPDOWN, &mm->flags))
 923		return arch_get_unmapped_area_topdown(file, addr, len, pgoff, flags, 0);
 924	return arch_get_unmapped_area(file, addr, len, pgoff, flags, 0);
 925}
 926EXPORT_SYMBOL(mm_get_unmapped_area);
 927
 928/**
 929 * find_vma_intersection() - Look up the first VMA which intersects the interval
 930 * @mm: The process address space.
 931 * @start_addr: The inclusive start user address.
 932 * @end_addr: The exclusive end user address.
 933 *
 934 * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
 935 * start_addr < end_addr.
 936 */
 937struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
 938					     unsigned long start_addr,
 939					     unsigned long end_addr)
 940{
 941	unsigned long index = start_addr;
 
 942
 943	mmap_assert_locked(mm);
 944	return mt_find(&mm->mm_mt, &index, end_addr - 1);
 945}
 946EXPORT_SYMBOL(find_vma_intersection);
 947
 948/**
 949 * find_vma() - Find the VMA for a given address, or the next VMA.
 950 * @mm: The mm_struct to check
 951 * @addr: The address
 952 *
 953 * Returns: The VMA associated with addr, or the next VMA.
 954 * May return %NULL in the case of no VMA at addr or above.
 955 */
 956struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 957{
 958	unsigned long index = addr;
 959
 960	mmap_assert_locked(mm);
 961	return mt_find(&mm->mm_mt, &index, ULONG_MAX);
 
 
 
 
 
 
 
 
 
 
 962}
 
 963EXPORT_SYMBOL(find_vma);
 964
 965/**
 966 * find_vma_prev() - Find the VMA for a given address, or the next vma and
 967 * set %pprev to the previous VMA, if any.
 968 * @mm: The mm_struct to check
 969 * @addr: The address
 970 * @pprev: The pointer to set to the previous VMA
 971 *
 972 * Note that RCU lock is missing here since the external mmap_lock() is used
 973 * instead.
 974 *
 975 * Returns: The VMA associated with @addr, or the next vma.
 976 * May return %NULL in the case of no vma at addr or above.
 977 */
 978struct vm_area_struct *
 979find_vma_prev(struct mm_struct *mm, unsigned long addr,
 980			struct vm_area_struct **pprev)
 981{
 982	struct vm_area_struct *vma;
 983	VMA_ITERATOR(vmi, mm, addr);
 984
 985	vma = vma_iter_load(&vmi);
 986	*pprev = vma_prev(&vmi);
 987	if (!vma)
 988		vma = vma_next(&vmi);
 
 
 
 
 
 
 
 989	return vma;
 990}
 991
 992/*
 993 * Verify that the stack growth is acceptable and
 994 * update accounting. This is shared with both the
 995 * grow-up and grow-down cases.
 996 */
 997static int acct_stack_growth(struct vm_area_struct *vma,
 998			     unsigned long size, unsigned long grow)
 999{
1000	struct mm_struct *mm = vma->vm_mm;
1001	unsigned long new_start;
 
1002
1003	/* address space limit tests */
1004	if (!may_expand_vm(mm, vma->vm_flags, grow))
1005		return -ENOMEM;
1006
1007	/* Stack limit test */
1008	if (size > rlimit(RLIMIT_STACK))
 
 
 
1009		return -ENOMEM;
1010
1011	/* mlock limit tests */
1012	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
1013		return -ENOMEM;
 
 
 
 
 
 
 
1014
1015	/* Check to ensure the stack will not grow into a hugetlb-only region */
1016	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1017			vma->vm_end - size;
1018	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1019		return -EFAULT;
1020
1021	/*
1022	 * Overcommit..  This must be the final test, as it will
1023	 * update security statistics.
1024	 */
1025	if (security_vm_enough_memory_mm(mm, grow))
1026		return -ENOMEM;
1027
1028	return 0;
1029}
1030
1031#if defined(CONFIG_STACK_GROWSUP)
1032/*
1033 * PA-RISC uses this for its stack.
1034 * vma is the last one with address > vma->vm_end.  Have to extend vma.
1035 */
1036static int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1037{
1038	struct mm_struct *mm = vma->vm_mm;
1039	struct vm_area_struct *next;
1040	unsigned long gap_addr;
1041	int error = 0;
1042	VMA_ITERATOR(vmi, mm, vma->vm_start);
1043
1044	if (!(vma->vm_flags & VM_GROWSUP))
1045		return -EFAULT;
1046
1047	mmap_assert_write_locked(mm);
1048
1049	/* Guard against exceeding limits of the address space. */
1050	address &= PAGE_MASK;
1051	if (address >= (TASK_SIZE & PAGE_MASK))
1052		return -ENOMEM;
1053	address += PAGE_SIZE;
1054
1055	/* Enforce stack_guard_gap */
1056	gap_addr = address + stack_guard_gap;
1057
1058	/* Guard against overflow */
1059	if (gap_addr < address || gap_addr > TASK_SIZE)
1060		gap_addr = TASK_SIZE;
1061
1062	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
1063	if (next && vma_is_accessible(next)) {
1064		if (!(next->vm_flags & VM_GROWSUP))
1065			return -ENOMEM;
1066		/* Check that both stack segments have the same anon_vma? */
1067	}
1068
1069	if (next)
1070		vma_iter_prev_range_limit(&vmi, address);
1071
1072	vma_iter_config(&vmi, vma->vm_start, address);
1073	if (vma_iter_prealloc(&vmi, vma))
1074		return -ENOMEM;
1075
1076	/* We must make sure the anon_vma is allocated. */
1077	if (unlikely(anon_vma_prepare(vma))) {
1078		vma_iter_free(&vmi);
1079		return -ENOMEM;
1080	}
1081
1082	/* Lock the VMA before expanding to prevent concurrent page faults */
1083	vma_start_write(vma);
1084	/* We update the anon VMA tree. */
 
 
1085	anon_vma_lock_write(vma->anon_vma);
1086
1087	/* Somebody else might have raced and expanded it already */
1088	if (address > vma->vm_end) {
1089		unsigned long size, grow;
1090
1091		size = address - vma->vm_start;
1092		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1093
1094		error = -ENOMEM;
1095		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1096			error = acct_stack_growth(vma, size, grow);
1097			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
1098				if (vma->vm_flags & VM_LOCKED)
1099					mm->locked_vm += grow;
1100				vm_stat_account(mm, vma->vm_flags, grow);
1101				anon_vma_interval_tree_pre_update_vma(vma);
1102				vma->vm_end = address;
1103				/* Overwrite old entry in mtree. */
1104				vma_iter_store(&vmi, vma);
1105				anon_vma_interval_tree_post_update_vma(vma);
 
 
 
 
 
1106
1107				perf_event_mmap(vma);
1108			}
1109		}
1110	}
1111	anon_vma_unlock_write(vma->anon_vma);
1112	vma_iter_free(&vmi);
1113	validate_mm(mm);
1114	return error;
1115}
1116#endif /* CONFIG_STACK_GROWSUP */
1117
1118/*
1119 * vma is the first one with address < vma->vm_start.  Have to extend vma.
1120 * mmap_lock held for writing.
1121 */
1122int expand_downwards(struct vm_area_struct *vma, unsigned long address)
 
1123{
1124	struct mm_struct *mm = vma->vm_mm;
1125	struct vm_area_struct *prev;
1126	int error = 0;
1127	VMA_ITERATOR(vmi, mm, vma->vm_start);
1128
1129	if (!(vma->vm_flags & VM_GROWSDOWN))
1130		return -EFAULT;
1131
1132	mmap_assert_write_locked(mm);
1133
1134	address &= PAGE_MASK;
1135	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
1136		return -EPERM;
1137
1138	/* Enforce stack_guard_gap */
1139	prev = vma_prev(&vmi);
1140	/* Check that both stack segments have the same anon_vma? */
1141	if (prev) {
1142		if (!(prev->vm_flags & VM_GROWSDOWN) &&
1143		    vma_is_accessible(prev) &&
1144		    (address - prev->vm_end < stack_guard_gap))
1145			return -ENOMEM;
1146	}
1147
1148	if (prev)
1149		vma_iter_next_range_limit(&vmi, vma->vm_start);
1150
1151	vma_iter_config(&vmi, address, vma->vm_end);
1152	if (vma_iter_prealloc(&vmi, vma))
1153		return -ENOMEM;
1154
1155	/* We must make sure the anon_vma is allocated. */
1156	if (unlikely(anon_vma_prepare(vma))) {
1157		vma_iter_free(&vmi);
1158		return -ENOMEM;
1159	}
1160
1161	/* Lock the VMA before expanding to prevent concurrent page faults */
1162	vma_start_write(vma);
1163	/* We update the anon VMA tree. */
 
 
1164	anon_vma_lock_write(vma->anon_vma);
1165
1166	/* Somebody else might have raced and expanded it already */
1167	if (address < vma->vm_start) {
1168		unsigned long size, grow;
1169
1170		size = vma->vm_end - address;
1171		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1172
1173		error = -ENOMEM;
1174		if (grow <= vma->vm_pgoff) {
1175			error = acct_stack_growth(vma, size, grow);
1176			if (!error) {
 
 
 
 
 
 
 
 
 
 
 
 
1177				if (vma->vm_flags & VM_LOCKED)
1178					mm->locked_vm += grow;
1179				vm_stat_account(mm, vma->vm_flags, grow);
1180				anon_vma_interval_tree_pre_update_vma(vma);
1181				vma->vm_start = address;
1182				vma->vm_pgoff -= grow;
1183				/* Overwrite old entry in mtree. */
1184				vma_iter_store(&vmi, vma);
1185				anon_vma_interval_tree_post_update_vma(vma);
 
 
1186
1187				perf_event_mmap(vma);
1188			}
1189		}
1190	}
1191	anon_vma_unlock_write(vma->anon_vma);
1192	vma_iter_free(&vmi);
1193	validate_mm(mm);
1194	return error;
1195}
1196
1197/* enforced gap between the expanding stack and other mappings. */
1198unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
1199
1200static int __init cmdline_parse_stack_guard_gap(char *p)
1201{
1202	unsigned long val;
1203	char *endptr;
1204
1205	val = simple_strtoul(p, &endptr, 10);
1206	if (!*endptr)
1207		stack_guard_gap = val << PAGE_SHIFT;
1208
1209	return 1;
1210}
1211__setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
1212
1213#ifdef CONFIG_STACK_GROWSUP
1214int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1215{
 
 
 
 
 
 
 
 
1216	return expand_upwards(vma, address);
1217}
1218
1219struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
1220{
1221	struct vm_area_struct *vma, *prev;
1222
1223	addr &= PAGE_MASK;
1224	vma = find_vma_prev(mm, addr, &prev);
1225	if (vma && (vma->vm_start <= addr))
1226		return vma;
1227	if (!prev)
1228		return NULL;
1229	if (expand_stack_locked(prev, addr))
1230		return NULL;
1231	if (prev->vm_flags & VM_LOCKED)
1232		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
1233	return prev;
1234}
1235#else
1236int expand_stack_locked(struct vm_area_struct *vma, unsigned long address)
1237{
 
 
 
 
 
 
 
 
1238	return expand_downwards(vma, address);
1239}
1240
1241struct vm_area_struct *find_extend_vma_locked(struct mm_struct *mm, unsigned long addr)
 
1242{
1243	struct vm_area_struct *vma;
1244	unsigned long start;
1245
1246	addr &= PAGE_MASK;
1247	vma = find_vma(mm, addr);
1248	if (!vma)
1249		return NULL;
1250	if (vma->vm_start <= addr)
1251		return vma;
 
 
1252	start = vma->vm_start;
1253	if (expand_stack_locked(vma, addr))
1254		return NULL;
1255	if (vma->vm_flags & VM_LOCKED)
1256		populate_vma_page_range(vma, addr, start, NULL);
1257	return vma;
1258}
1259#endif
1260
1261#if defined(CONFIG_STACK_GROWSUP)
1262
1263#define vma_expand_up(vma,addr) expand_upwards(vma, addr)
1264#define vma_expand_down(vma, addr) (-EFAULT)
1265
1266#else
 
 
 
 
 
1267
1268#define vma_expand_up(vma,addr) (-EFAULT)
1269#define vma_expand_down(vma, addr) expand_downwards(vma, addr)
 
 
1270
1271#endif
 
 
 
 
 
 
 
1272
1273/*
1274 * expand_stack(): legacy interface for page faulting. Don't use unless
1275 * you have to.
1276 *
1277 * This is called with the mm locked for reading, drops the lock, takes
1278 * the lock for writing, tries to look up a vma again, expands it if
1279 * necessary, and downgrades the lock to reading again.
1280 *
1281 * If no vma is found or it can't be expanded, it returns NULL and has
1282 * dropped the lock.
1283 */
1284struct vm_area_struct *expand_stack(struct mm_struct *mm, unsigned long addr)
 
 
1285{
1286	struct vm_area_struct *vma, *prev;
 
1287
1288	mmap_read_unlock(mm);
1289	if (mmap_write_lock_killable(mm))
1290		return NULL;
 
 
 
 
 
1291
1292	vma = find_vma_prev(mm, addr, &prev);
1293	if (vma && vma->vm_start <= addr)
1294		goto success;
 
 
 
 
 
 
 
1295
1296	if (prev && !vma_expand_up(prev, addr)) {
1297		vma = prev;
1298		goto success;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	}
1300
1301	if (vma && !vma_expand_down(vma, addr))
1302		goto success;
 
1303
1304	mmap_write_unlock(mm);
1305	return NULL;
 
1306
1307success:
1308	mmap_write_downgrade(mm);
1309	return vma;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1310}
1311
1312/* do_munmap() - Wrapper function for non-maple tree aware do_munmap() calls.
1313 * @mm: The mm_struct
1314 * @start: The start address to munmap
1315 * @len: The length to be munmapped.
1316 * @uf: The userfaultfd list_head
1317 *
1318 * Return: 0 on success, error otherwise.
1319 */
1320int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
1321	      struct list_head *uf)
1322{
1323	VMA_ITERATOR(vmi, mm, start);
 
1324
1325	return do_vmi_munmap(&vmi, mm, start, len, uf, false);
1326}
1327
1328unsigned long mmap_region(struct file *file, unsigned long addr,
1329			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1330			  struct list_head *uf)
 
 
 
1331{
1332	unsigned long ret;
1333	bool writable_file_mapping = false;
1334
1335	/* Check to see if MDWE is applicable. */
1336	if (map_deny_write_exec(vm_flags, vm_flags))
1337		return -EACCES;
1338
1339	/* Allow architectures to sanity-check the vm_flags. */
1340	if (!arch_validate_flags(vm_flags))
1341		return -EINVAL;
1342
1343	/* Map writable and ensure this isn't a sealed memfd. */
1344	if (file && is_shared_maywrite(vm_flags)) {
1345		int error = mapping_map_writable(file->f_mapping);
 
 
 
1346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347		if (error)
1348			return error;
1349		writable_file_mapping = true;
1350	}
1351
1352	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
 
 
 
 
 
 
 
1353
1354	/* Clear our write mapping regardless of error. */
1355	if (writable_file_mapping)
1356		mapping_unmap_writable(file->f_mapping);
 
 
 
 
 
 
 
 
 
 
1357
1358	validate_mm(current->mm);
1359	return ret;
 
 
 
 
 
 
 
 
 
 
1360}
1361
1362static int __vm_munmap(unsigned long start, size_t len, bool unlock)
1363{
1364	int ret;
1365	struct mm_struct *mm = current->mm;
1366	LIST_HEAD(uf);
1367	VMA_ITERATOR(vmi, mm, start);
1368
1369	if (mmap_write_lock_killable(mm))
1370		return -EINTR;
1371
1372	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
1373	if (ret || !unlock)
1374		mmap_write_unlock(mm);
1375
1376	userfaultfd_unmap_complete(mm, &uf);
1377	return ret;
1378}
1379
1380int vm_munmap(unsigned long start, size_t len)
1381{
1382	return __vm_munmap(start, len, false);
1383}
1384EXPORT_SYMBOL(vm_munmap);
1385
1386SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1387{
1388	addr = untagged_addr(addr);
1389	return __vm_munmap(addr, len, true);
 
 
 
 
 
 
 
1390}
1391
1392
1393/*
1394 * Emulation of deprecated remap_file_pages() syscall.
1395 */
1396SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
1397		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
1398{
1399
1400	struct mm_struct *mm = current->mm;
1401	struct vm_area_struct *vma;
1402	unsigned long populate = 0;
1403	unsigned long ret = -EINVAL;
1404	struct file *file;
1405	vm_flags_t vm_flags;
1406
1407	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/mm/remap_file_pages.rst.\n",
1408		     current->comm, current->pid);
1409
1410	if (prot)
1411		return ret;
1412	start = start & PAGE_MASK;
1413	size = size & PAGE_MASK;
1414
1415	if (start + size <= start)
1416		return ret;
1417
1418	/* Does pgoff wrap? */
1419	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
1420		return ret;
1421
1422	if (mmap_read_lock_killable(mm))
1423		return -EINTR;
1424
1425	/*
1426	 * Look up VMA under read lock first so we can perform the security
1427	 * without holding locks (which can be problematic). We reacquire a
1428	 * write lock later and check nothing changed underneath us.
1429	 */
1430	vma = vma_lookup(mm, start);
1431
1432	if (!vma || !(vma->vm_flags & VM_SHARED)) {
1433		mmap_read_unlock(mm);
1434		return -EINVAL;
1435	}
1436
1437	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
1438	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
1439	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
1440
1441	flags &= MAP_NONBLOCK;
1442	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
1443	if (vma->vm_flags & VM_LOCKED)
1444		flags |= MAP_LOCKED;
1445
1446	/* Save vm_flags used to calculate prot and flags, and recheck later. */
1447	vm_flags = vma->vm_flags;
1448	file = get_file(vma->vm_file);
1449
1450	mmap_read_unlock(mm);
1451
1452	/* Call outside mmap_lock to be consistent with other callers. */
1453	ret = security_mmap_file(file, prot, flags);
1454	if (ret) {
1455		fput(file);
1456		return ret;
1457	}
1458
1459	ret = -EINVAL;
1460
1461	/* OK security check passed, take write lock + let it rip. */
1462	if (mmap_write_lock_killable(mm)) {
1463		fput(file);
1464		return -EINTR;
1465	}
1466
1467	vma = vma_lookup(mm, start);
1468
1469	if (!vma)
1470		goto out;
1471
1472	/* Make sure things didn't change under us. */
1473	if (vma->vm_flags != vm_flags)
1474		goto out;
1475	if (vma->vm_file != file)
1476		goto out;
1477
1478	if (start + size > vma->vm_end) {
1479		VMA_ITERATOR(vmi, mm, vma->vm_end);
1480		struct vm_area_struct *next, *prev = vma;
1481
1482		for_each_vma_range(vmi, next, start + size) {
1483			/* hole between vmas ? */
1484			if (next->vm_start != prev->vm_end)
1485				goto out;
1486
1487			if (next->vm_file != vma->vm_file)
1488				goto out;
1489
1490			if (next->vm_flags != vma->vm_flags)
1491				goto out;
1492
1493			if (start + size <= next->vm_end)
1494				break;
1495
1496			prev = next;
1497		}
1498
1499		if (!next)
1500			goto out;
1501	}
1502
1503	ret = do_mmap(vma->vm_file, start, size,
1504			prot, flags, 0, pgoff, &populate, NULL);
1505out:
1506	mmap_write_unlock(mm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1507	fput(file);
 
 
1508	if (populate)
1509		mm_populate(ret, populate);
1510	if (!IS_ERR_VALUE(ret))
1511		ret = 0;
1512	return ret;
1513}
1514
 
 
 
 
 
 
 
 
 
 
1515/*
1516 * do_brk_flags() - Increase the brk vma if the flags match.
1517 * @vmi: The vma iterator
1518 * @addr: The start address
1519 * @len: The length of the increase
1520 * @vma: The vma,
1521 * @flags: The VMA Flags
1522 *
1523 * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
1524 * do not match then create a new anonymous VMA.  Eventually we may be able to
1525 * do some brk-specific accounting here.
1526 */
1527static int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
1528		unsigned long addr, unsigned long len, unsigned long flags)
1529{
1530	struct mm_struct *mm = current->mm;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1531
1532	/*
1533	 * Check against address space limits by the changed size
1534	 * Note: This happens *after* clearing old mappings in some code paths.
1535	 */
1536	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
 
 
 
 
 
 
 
 
 
 
 
1537	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
1538		return -ENOMEM;
1539
1540	if (mm->map_count > sysctl_max_map_count)
1541		return -ENOMEM;
1542
1543	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
1544		return -ENOMEM;
1545
 
 
 
 
 
 
1546	/*
1547	 * Expand the existing vma if possible; Note that singular lists do not
1548	 * occur after forking, so the expand will only happen on new VMAs.
1549	 */
1550	if (vma && vma->vm_end == addr) {
1551		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
1552
1553		vmg.prev = vma;
1554		/* vmi is positioned at prev, which this mode expects. */
1555		vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
1556
1557		if (vma_merge_new_range(&vmg))
1558			goto out;
1559		else if (vmg_nomem(&vmg))
1560			goto unacct_fail;
1561	}
1562
1563	if (vma)
1564		vma_iter_next_range(vmi);
1565	/* create a vma struct for an anonymous mapping */
1566	vma = vm_area_alloc(mm);
1567	if (!vma)
1568		goto unacct_fail;
1569
1570	vma_set_anonymous(vma);
1571	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
1572	vm_flags_init(vma, flags);
1573	vma->vm_page_prot = vm_get_page_prot(flags);
1574	vma_start_write(vma);
1575	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
1576		goto mas_store_fail;
1577
1578	mm->map_count++;
1579	validate_mm(mm);
1580	ksm_add_vma(vma);
1581out:
1582	perf_event_mmap(vma);
1583	mm->total_vm += len >> PAGE_SHIFT;
1584	mm->data_vm += len >> PAGE_SHIFT;
1585	if (flags & VM_LOCKED)
1586		mm->locked_vm += (len >> PAGE_SHIFT);
1587	vm_flags_set(vma, VM_SOFTDIRTY);
1588	return 0;
1589
1590mas_store_fail:
1591	vm_area_free(vma);
1592unacct_fail:
1593	vm_unacct_memory(len >> PAGE_SHIFT);
1594	return -ENOMEM;
1595}
1596
1597int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
1598{
1599	struct mm_struct *mm = current->mm;
1600	struct vm_area_struct *vma = NULL;
1601	unsigned long len;
1602	int ret;
1603	bool populate;
1604	LIST_HEAD(uf);
1605	VMA_ITERATOR(vmi, mm, addr);
1606
1607	len = PAGE_ALIGN(request);
1608	if (len < request)
1609		return -ENOMEM;
1610	if (!len)
1611		return 0;
1612
1613	/* Until we need other flags, refuse anything except VM_EXEC. */
1614	if ((flags & (~VM_EXEC)) != 0)
1615		return -EINVAL;
1616
1617	if (mmap_write_lock_killable(mm))
1618		return -EINTR;
1619
1620	ret = check_brk_limits(addr, len);
1621	if (ret)
1622		goto limits_failed;
1623
1624	ret = do_vmi_munmap(&vmi, mm, addr, len, &uf, 0);
1625	if (ret)
1626		goto munmap_failed;
1627
1628	vma = vma_prev(&vmi);
1629	ret = do_brk_flags(&vmi, vma, addr, len, flags);
1630	populate = ((mm->def_flags & VM_LOCKED) != 0);
1631	mmap_write_unlock(mm);
1632	userfaultfd_unmap_complete(mm, &uf);
1633	if (populate && !ret)
1634		mm_populate(addr, len);
1635	return ret;
1636
1637munmap_failed:
1638limits_failed:
1639	mmap_write_unlock(mm);
1640	return ret;
1641}
1642EXPORT_SYMBOL(vm_brk_flags);
1643
1644/* Release all mmaps. */
1645void exit_mmap(struct mm_struct *mm)
1646{
1647	struct mmu_gather tlb;
1648	struct vm_area_struct *vma;
1649	unsigned long nr_accounted = 0;
1650	VMA_ITERATOR(vmi, mm, 0);
1651	int count = 0;
1652
1653	/* mm's last user has gone, and its about to be pulled down */
1654	mmu_notifier_release(mm);
1655
1656	mmap_read_lock(mm);
 
 
 
 
 
 
 
 
1657	arch_exit_mmap(mm);
1658
1659	vma = vma_next(&vmi);
1660	if (!vma || unlikely(xa_is_zero(vma))) {
1661		/* Can happen if dup_mmap() received an OOM */
1662		mmap_read_unlock(mm);
1663		mmap_write_lock(mm);
1664		goto destroy;
1665	}
1666
1667	lru_add_drain();
1668	flush_cache_mm(mm);
1669	tlb_gather_mmu_fullmm(&tlb, mm);
1670	/* update_hiwater_rss(mm) here? but nobody should be looking */
1671	/* Use ULONG_MAX here to ensure all VMAs in the mm are unmapped */
1672	unmap_vmas(&tlb, &vmi.mas, vma, 0, ULONG_MAX, ULONG_MAX, false);
1673	mmap_read_unlock(mm);
1674
1675	/*
1676	 * Set MMF_OOM_SKIP to hide this task from the oom killer/reaper
1677	 * because the memory has been already freed.
1678	 */
1679	set_bit(MMF_OOM_SKIP, &mm->flags);
1680	mmap_write_lock(mm);
1681	mt_clear_in_rcu(&mm->mm_mt);
1682	vma_iter_set(&vmi, vma->vm_end);
1683	free_pgtables(&tlb, &vmi.mas, vma, FIRST_USER_ADDRESS,
1684		      USER_PGTABLES_CEILING, true);
1685	tlb_finish_mmu(&tlb);
1686
1687	/*
1688	 * Walk the list again, actually closing and freeing it, with preemption
1689	 * enabled, without holding any MM locks besides the unreachable
1690	 * mmap_write_lock.
1691	 */
1692	vma_iter_set(&vmi, vma->vm_end);
1693	do {
1694		if (vma->vm_flags & VM_ACCOUNT)
1695			nr_accounted += vma_pages(vma);
1696		remove_vma(vma, /* unreachable = */ true);
1697		count++;
1698		cond_resched();
1699		vma = vma_next(&vmi);
1700	} while (vma && likely(!xa_is_zero(vma)));
1701
1702	BUG_ON(count != mm->map_count);
1703
1704	trace_exit_mmap(mm);
1705destroy:
1706	__mt_destroy(&mm->mm_mt);
1707	mmap_write_unlock(mm);
1708	vm_unacct_memory(nr_accounted);
1709}
1710
1711/* Insert vm structure into process list sorted by address
1712 * and into the inode's i_mmap tree.  If vm_file is non-NULL
1713 * then i_mmap_rwsem is taken here.
1714 */
1715int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
1716{
1717	unsigned long charged = vma_pages(vma);
1718
1719
1720	if (find_vma_intersection(mm, vma->vm_start, vma->vm_end))
 
1721		return -ENOMEM;
1722
1723	if ((vma->vm_flags & VM_ACCOUNT) &&
1724	     security_vm_enough_memory_mm(mm, charged))
1725		return -ENOMEM;
1726
1727	/*
1728	 * The vm_pgoff of a purely anonymous vma should be irrelevant
1729	 * until its first write fault, when page's anon_vma and index
1730	 * are set.  But now set the vm_pgoff it will almost certainly
1731	 * end up with (unless mremap moves it elsewhere before that
1732	 * first wfault), so /proc/pid/maps tells a consistent story.
1733	 *
1734	 * By setting it to reflect the virtual start address of the
1735	 * vma, merges and splits can happen in a seamless way, just
1736	 * using the existing file pgoff checks and manipulations.
1737	 * Similarly in do_mmap and in do_brk_flags.
1738	 */
1739	if (vma_is_anonymous(vma)) {
1740		BUG_ON(vma->anon_vma);
1741		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
1742	}
1743
1744	if (vma_link(mm, vma)) {
1745		if (vma->vm_flags & VM_ACCOUNT)
1746			vm_unacct_memory(charged);
1747		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1748	}
1749
1750	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751}
1752
1753/*
1754 * Return true if the calling process may expand its vm space by the passed
1755 * number of pages
1756 */
1757bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
1758{
1759	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
1760		return false;
1761
1762	if (is_data_mapping(flags) &&
1763	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
1764		/* Workaround for Valgrind */
1765		if (rlimit(RLIMIT_DATA) == 0 &&
1766		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
1767			return true;
1768
1769		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
1770			     current->comm, current->pid,
1771			     (mm->data_vm + npages) << PAGE_SHIFT,
1772			     rlimit(RLIMIT_DATA),
1773			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
1774
1775		if (!ignore_rlimit_data)
1776			return false;
 
1777	}
1778
1779	return true;
1780}
1781
1782void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
1783{
1784	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm)+npages);
1785
1786	if (is_exec_mapping(flags))
1787		mm->exec_vm += npages;
1788	else if (is_stack_mapping(flags))
1789		mm->stack_vm += npages;
1790	else if (is_data_mapping(flags))
1791		mm->data_vm += npages;
1792}
1793
1794static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
 
1795
1796/*
1797 * Close hook, called for unmap() and on the old vma for mremap().
1798 *
1799 * Having a close hook prevents vma merging regardless of flags.
1800 */
1801static void special_mapping_close(struct vm_area_struct *vma)
1802{
1803	const struct vm_special_mapping *sm = vma->vm_private_data;
1804
1805	if (sm->close)
1806		sm->close(sm, vma);
1807}
1808
1809static const char *special_mapping_name(struct vm_area_struct *vma)
1810{
1811	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
1812}
1813
1814static int special_mapping_mremap(struct vm_area_struct *new_vma)
1815{
1816	struct vm_special_mapping *sm = new_vma->vm_private_data;
1817
1818	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
1819		return -EFAULT;
1820
1821	if (sm->mremap)
1822		return sm->mremap(sm, new_vma);
1823
1824	return 0;
1825}
1826
1827static int special_mapping_split(struct vm_area_struct *vma, unsigned long addr)
1828{
1829	/*
1830	 * Forbid splitting special mappings - kernel has expectations over
1831	 * the number of pages in mapping. Together with VM_DONTEXPAND
1832	 * the size of vma should stay the same over the special mapping's
1833	 * lifetime.
1834	 */
1835	return -EINVAL;
1836}
1837
1838static const struct vm_operations_struct special_mapping_vmops = {
1839	.close = special_mapping_close,
1840	.fault = special_mapping_fault,
1841	.mremap = special_mapping_mremap,
1842	.name = special_mapping_name,
1843	/* vDSO code relies that VVAR can't be accessed remotely */
1844	.access = NULL,
1845	.may_split = special_mapping_split,
1846};
1847
1848static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
 
 
 
 
 
 
1849{
1850	struct vm_area_struct *vma = vmf->vma;
1851	pgoff_t pgoff;
1852	struct page **pages;
1853	struct vm_special_mapping *sm = vma->vm_private_data;
1854
1855	if (sm->fault)
1856		return sm->fault(sm, vmf->vma, vmf);
 
 
 
 
 
1857
1858	pages = sm->pages;
 
1859
1860	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
1861		pgoff--;
1862
1863	if (*pages) {
1864		struct page *page = *pages;
1865		get_page(page);
1866		vmf->page = page;
1867		return 0;
1868	}
1869
1870	return VM_FAULT_SIGBUS;
1871}
1872
1873static struct vm_area_struct *__install_special_mapping(
1874	struct mm_struct *mm,
1875	unsigned long addr, unsigned long len,
1876	unsigned long vm_flags, void *priv,
1877	const struct vm_operations_struct *ops)
1878{
1879	int ret;
1880	struct vm_area_struct *vma;
1881
1882	vma = vm_area_alloc(mm);
1883	if (unlikely(vma == NULL))
1884		return ERR_PTR(-ENOMEM);
1885
1886	vma_set_range(vma, addr, addr + len, 0);
1887	vm_flags_init(vma, (vm_flags | mm->def_flags |
1888		      VM_DONTEXPAND | VM_SOFTDIRTY) & ~VM_LOCKED_MASK);
 
 
 
1889	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
1890
1891	vma->vm_ops = ops;
1892	vma->vm_private_data = priv;
1893
1894	ret = insert_vm_struct(mm, vma);
1895	if (ret)
1896		goto out;
1897
1898	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
1899
1900	perf_event_mmap(vma);
1901
1902	return vma;
1903
1904out:
1905	vm_area_free(vma);
1906	return ERR_PTR(ret);
1907}
1908
1909bool vma_is_special_mapping(const struct vm_area_struct *vma,
1910	const struct vm_special_mapping *sm)
1911{
1912	return vma->vm_private_data == sm &&
1913		vma->vm_ops == &special_mapping_vmops;
 
1914}
1915
1916/*
1917 * Called with mm->mmap_lock held for writing.
1918 * Insert a new vma covering the given region, with the given flags.
1919 * Its pages are supplied by the given array of struct page *.
1920 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
1921 * The region past the last page supplied will always produce SIGBUS.
1922 * The array pointer and the pages it points to are assumed to stay alive
1923 * for as long as this mapping might exist.
1924 */
1925struct vm_area_struct *_install_special_mapping(
1926	struct mm_struct *mm,
1927	unsigned long addr, unsigned long len,
1928	unsigned long vm_flags, const struct vm_special_mapping *spec)
1929{
1930	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
1931					&special_mapping_vmops);
1932}
1933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1934/*
1935 * initialise the percpu counter for VM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1936 */
1937void __init mmap_init(void)
1938{
1939	int ret;
1940
1941	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
1942	VM_BUG_ON(ret);
1943}
1944
1945/*
1946 * Initialise sysctl_user_reserve_kbytes.
1947 *
1948 * This is intended to prevent a user from starting a single memory hogging
1949 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
1950 * mode.
1951 *
1952 * The default value is min(3% of free memory, 128MB)
1953 * 128MB is enough to recover with sshd/login, bash, and top/kill.
1954 */
1955static int init_user_reserve(void)
1956{
1957	unsigned long free_kbytes;
1958
1959	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1960
1961	sysctl_user_reserve_kbytes = min(free_kbytes / 32, SZ_128K);
1962	return 0;
1963}
1964subsys_initcall(init_user_reserve);
1965
1966/*
1967 * Initialise sysctl_admin_reserve_kbytes.
1968 *
1969 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
1970 * to log in and kill a memory hogging process.
1971 *
1972 * Systems with more than 256MB will reserve 8MB, enough to recover
1973 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
1974 * only reserve 3% of free pages by default.
1975 */
1976static int init_admin_reserve(void)
1977{
1978	unsigned long free_kbytes;
1979
1980	free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
1981
1982	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, SZ_8K);
1983	return 0;
1984}
1985subsys_initcall(init_admin_reserve);
1986
1987/*
1988 * Reinititalise user and admin reserves if memory is added or removed.
1989 *
1990 * The default user reserve max is 128MB, and the default max for the
1991 * admin reserve is 8MB. These are usually, but not always, enough to
1992 * enable recovery from a memory hogging process using login/sshd, a shell,
1993 * and tools like top. It may make sense to increase or even disable the
1994 * reserve depending on the existence of swap or variations in the recovery
1995 * tools. So, the admin may have changed them.
1996 *
1997 * If memory is added and the reserves have been eliminated or increased above
1998 * the default max, then we'll trust the admin.
1999 *
2000 * If memory is removed and there isn't enough free memory, then we
2001 * need to reset the reserves.
2002 *
2003 * Otherwise keep the reserve set by the admin.
2004 */
2005static int reserve_mem_notifier(struct notifier_block *nb,
2006			     unsigned long action, void *data)
2007{
2008	unsigned long tmp, free_kbytes;
2009
2010	switch (action) {
2011	case MEM_ONLINE:
2012		/* Default max is 128MB. Leave alone if modified by operator. */
2013		tmp = sysctl_user_reserve_kbytes;
2014		if (tmp > 0 && tmp < SZ_128K)
2015			init_user_reserve();
2016
2017		/* Default max is 8MB.  Leave alone if modified by operator. */
2018		tmp = sysctl_admin_reserve_kbytes;
2019		if (tmp > 0 && tmp < SZ_8K)
2020			init_admin_reserve();
2021
2022		break;
2023	case MEM_OFFLINE:
2024		free_kbytes = K(global_zone_page_state(NR_FREE_PAGES));
2025
2026		if (sysctl_user_reserve_kbytes > free_kbytes) {
2027			init_user_reserve();
2028			pr_info("vm.user_reserve_kbytes reset to %lu\n",
2029				sysctl_user_reserve_kbytes);
2030		}
2031
2032		if (sysctl_admin_reserve_kbytes > free_kbytes) {
2033			init_admin_reserve();
2034			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
2035				sysctl_admin_reserve_kbytes);
2036		}
2037		break;
2038	default:
2039		break;
2040	}
2041	return NOTIFY_OK;
2042}
2043
 
 
 
 
2044static int __meminit init_reserve_notifier(void)
2045{
2046	if (hotplug_memory_notifier(reserve_mem_notifier, DEFAULT_CALLBACK_PRI))
2047		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
2048
2049	return 0;
2050}
2051subsys_initcall(init_reserve_notifier);
2052
2053/*
2054 * Relocate a VMA downwards by shift bytes. There cannot be any VMAs between
2055 * this VMA and its relocated range, which will now reside at [vma->vm_start -
2056 * shift, vma->vm_end - shift).
2057 *
2058 * This function is almost certainly NOT what you want for anything other than
2059 * early executable temporary stack relocation.
2060 */
2061int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift)
2062{
2063	/*
2064	 * The process proceeds as follows:
2065	 *
2066	 * 1) Use shift to calculate the new vma endpoints.
2067	 * 2) Extend vma to cover both the old and new ranges.  This ensures the
2068	 *    arguments passed to subsequent functions are consistent.
2069	 * 3) Move vma's page tables to the new range.
2070	 * 4) Free up any cleared pgd range.
2071	 * 5) Shrink the vma to cover only the new range.
2072	 */
2073
2074	struct mm_struct *mm = vma->vm_mm;
2075	unsigned long old_start = vma->vm_start;
2076	unsigned long old_end = vma->vm_end;
2077	unsigned long length = old_end - old_start;
2078	unsigned long new_start = old_start - shift;
2079	unsigned long new_end = old_end - shift;
2080	VMA_ITERATOR(vmi, mm, new_start);
2081	VMG_STATE(vmg, mm, &vmi, new_start, old_end, 0, vma->vm_pgoff);
2082	struct vm_area_struct *next;
2083	struct mmu_gather tlb;
2084
2085	BUG_ON(new_start > new_end);
2086
2087	/*
2088	 * ensure there are no vmas between where we want to go
2089	 * and where we are
2090	 */
2091	if (vma != vma_next(&vmi))
2092		return -EFAULT;
2093
2094	vma_iter_prev_range(&vmi);
2095	/*
2096	 * cover the whole range: [new_start, old_end)
2097	 */
2098	vmg.vma = vma;
2099	if (vma_expand(&vmg))
2100		return -ENOMEM;
2101
2102	/*
2103	 * move the page tables downwards, on failure we rely on
2104	 * process cleanup to remove whatever mess we made.
2105	 */
2106	if (length != move_page_tables(vma, old_start,
2107				       vma, new_start, length, false, true))
2108		return -ENOMEM;
2109
2110	lru_add_drain();
2111	tlb_gather_mmu(&tlb, mm);
2112	next = vma_next(&vmi);
2113	if (new_end > old_start) {
2114		/*
2115		 * when the old and new regions overlap clear from new_end.
2116		 */
2117		free_pgd_range(&tlb, new_end, old_end, new_end,
2118			next ? next->vm_start : USER_PGTABLES_CEILING);
2119	} else {
2120		/*
2121		 * otherwise, clean from old_start; this is done to not touch
2122		 * the address space in [new_end, old_start) some architectures
2123		 * have constraints on va-space that make this illegal (IA64) -
2124		 * for the others its just a little faster.
2125		 */
2126		free_pgd_range(&tlb, old_start, old_end, new_end,
2127			next ? next->vm_start : USER_PGTABLES_CEILING);
2128	}
2129	tlb_finish_mmu(&tlb);
2130
2131	vma_prev(&vmi);
2132	/* Shrink the vma to just the new range */
2133	return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
2134}
v4.10.11
 
   1/*
   2 * mm/mmap.c
   3 *
   4 * Written by obz.
   5 *
   6 * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
   7 */
   8
   9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  10
  11#include <linux/kernel.h>
  12#include <linux/slab.h>
  13#include <linux/backing-dev.h>
  14#include <linux/mm.h>
  15#include <linux/vmacache.h>
  16#include <linux/shm.h>
  17#include <linux/mman.h>
  18#include <linux/pagemap.h>
  19#include <linux/swap.h>
  20#include <linux/syscalls.h>
  21#include <linux/capability.h>
  22#include <linux/init.h>
  23#include <linux/file.h>
  24#include <linux/fs.h>
  25#include <linux/personality.h>
  26#include <linux/security.h>
  27#include <linux/hugetlb.h>
  28#include <linux/shmem_fs.h>
  29#include <linux/profile.h>
  30#include <linux/export.h>
  31#include <linux/mount.h>
  32#include <linux/mempolicy.h>
  33#include <linux/rmap.h>
  34#include <linux/mmu_notifier.h>
  35#include <linux/mmdebug.h>
  36#include <linux/perf_event.h>
  37#include <linux/audit.h>
  38#include <linux/khugepaged.h>
  39#include <linux/uprobes.h>
  40#include <linux/rbtree_augmented.h>
  41#include <linux/notifier.h>
  42#include <linux/memory.h>
  43#include <linux/printk.h>
  44#include <linux/userfaultfd_k.h>
  45#include <linux/moduleparam.h>
  46#include <linux/pkeys.h>
 
 
 
 
  47
  48#include <linux/uaccess.h>
  49#include <asm/cacheflush.h>
  50#include <asm/tlb.h>
  51#include <asm/mmu_context.h>
  52
 
 
 
  53#include "internal.h"
  54
  55#ifndef arch_mmap_check
  56#define arch_mmap_check(addr, len, flags)	(0)
  57#endif
  58
  59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
  60const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
  61const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
  62int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
  63#endif
  64#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
  65const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
  66const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
  67int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
  68#endif
  69
  70static bool ignore_rlimit_data;
  71core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
  72
  73static void unmap_region(struct mm_struct *mm,
  74		struct vm_area_struct *vma, struct vm_area_struct *prev,
  75		unsigned long start, unsigned long end);
  76
  77/* description of effects of mapping type and prot in current implementation.
  78 * this is due to the limited x86 page protection hardware.  The expected
  79 * behavior is in parens:
  80 *
  81 * map_type	prot
  82 *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
  83 * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  84 *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
  85 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  86 *
  87 * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
  88 *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
  89 *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
  90 *
  91 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
  92 * MAP_PRIVATE:
  93 *								r: (no) no
  94 *								w: (no) no
  95 *								x: (yes) yes
  96 */
  97pgprot_t protection_map[16] = {
  98	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
  99	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
 100};
 101
 102pgprot_t vm_get_page_prot(unsigned long vm_flags)
 103{
 104	return __pgprot(pgprot_val(protection_map[vm_flags &
 105				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
 106			pgprot_val(arch_vm_get_page_prot(vm_flags)));
 107}
 108EXPORT_SYMBOL(vm_get_page_prot);
 109
 110static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
 111{
 112	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
 113}
 114
 115/* Update vma->vm_page_prot to reflect vma->vm_flags. */
 116void vma_set_page_prot(struct vm_area_struct *vma)
 117{
 118	unsigned long vm_flags = vma->vm_flags;
 119	pgprot_t vm_page_prot;
 120
 121	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
 122	if (vma_wants_writenotify(vma, vm_page_prot)) {
 123		vm_flags &= ~VM_SHARED;
 124		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
 125	}
 126	/* remove_protection_ptes reads vma->vm_page_prot without mmap_sem */
 127	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
 128}
 129
 130/*
 131 * Requires inode->i_mapping->i_mmap_rwsem
 
 
 
 
 
 132 */
 133static void __remove_shared_vm_struct(struct vm_area_struct *vma,
 134		struct file *file, struct address_space *mapping)
 135{
 136	if (vma->vm_flags & VM_DENYWRITE)
 137		atomic_inc(&file_inode(file)->i_writecount);
 138	if (vma->vm_flags & VM_SHARED)
 139		mapping_unmap_writable(mapping);
 140
 141	flush_dcache_mmap_lock(mapping);
 142	vma_interval_tree_remove(vma, &mapping->i_mmap);
 143	flush_dcache_mmap_unlock(mapping);
 144}
 145
 146/*
 147 * Unlink a file-based vm structure from its interval tree, to hide
 148 * vma from rmap and vmtruncate before freeing its page tables.
 149 */
 150void unlink_file_vma(struct vm_area_struct *vma)
 151{
 152	struct file *file = vma->vm_file;
 153
 154	if (file) {
 155		struct address_space *mapping = file->f_mapping;
 156		i_mmap_lock_write(mapping);
 157		__remove_shared_vm_struct(vma, file, mapping);
 158		i_mmap_unlock_write(mapping);
 159	}
 160}
 161
 162/*
 163 * Close a vm structure and free it, returning the next.
 164 */
 165static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
 166{
 167	struct vm_area_struct *next = vma->vm_next;
 168
 169	might_sleep();
 170	if (vma->vm_ops && vma->vm_ops->close)
 171		vma->vm_ops->close(vma);
 172	if (vma->vm_file)
 173		fput(vma->vm_file);
 174	mpol_put(vma_policy(vma));
 175	kmem_cache_free(vm_area_cachep, vma);
 176	return next;
 177}
 178
 179static int do_brk(unsigned long addr, unsigned long len);
 180
 181SYSCALL_DEFINE1(brk, unsigned long, brk)
 182{
 183	unsigned long retval;
 184	unsigned long newbrk, oldbrk;
 185	struct mm_struct *mm = current->mm;
 
 186	unsigned long min_brk;
 187	bool populate;
 
 
 188
 189	if (down_write_killable(&mm->mmap_sem))
 190		return -EINTR;
 191
 
 
 192#ifdef CONFIG_COMPAT_BRK
 193	/*
 194	 * CONFIG_COMPAT_BRK can still be overridden by setting
 195	 * randomize_va_space to 2, which will still cause mm->start_brk
 196	 * to be arbitrarily shifted
 197	 */
 198	if (current->brk_randomized)
 199		min_brk = mm->start_brk;
 200	else
 201		min_brk = mm->end_data;
 202#else
 203	min_brk = mm->start_brk;
 204#endif
 205	if (brk < min_brk)
 206		goto out;
 207
 208	/*
 209	 * Check against rlimit here. If this check is done later after the test
 210	 * of oldbrk with newbrk then it can escape the test and let the data
 211	 * segment grow beyond its set limit the in case where the limit is
 212	 * not page aligned -Ram Gupta
 213	 */
 214	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
 215			      mm->end_data, mm->start_data))
 216		goto out;
 217
 218	newbrk = PAGE_ALIGN(brk);
 219	oldbrk = PAGE_ALIGN(mm->brk);
 220	if (oldbrk == newbrk)
 221		goto set_brk;
 
 
 222
 223	/* Always allow shrinking brk. */
 224	if (brk <= mm->brk) {
 225		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
 226			goto set_brk;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227		goto out;
 228	}
 229
 230	/* Check against existing mmap mappings. */
 231	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
 
 
 
 
 
 232		goto out;
 233
 
 234	/* Ok, looks good - let it rip. */
 235	if (do_brk(oldbrk, newbrk-oldbrk) < 0)
 236		goto out;
 237
 238set_brk:
 239	mm->brk = brk;
 240	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
 241	up_write(&mm->mmap_sem);
 
 
 
 
 
 242	if (populate)
 243		mm_populate(oldbrk, newbrk - oldbrk);
 244	return brk;
 245
 246out:
 247	retval = mm->brk;
 248	up_write(&mm->mmap_sem);
 249	return retval;
 250}
 251
 252static long vma_compute_subtree_gap(struct vm_area_struct *vma)
 253{
 254	unsigned long max, subtree_gap;
 255	max = vma->vm_start;
 256	if (vma->vm_prev)
 257		max -= vma->vm_prev->vm_end;
 258	if (vma->vm_rb.rb_left) {
 259		subtree_gap = rb_entry(vma->vm_rb.rb_left,
 260				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 261		if (subtree_gap > max)
 262			max = subtree_gap;
 263	}
 264	if (vma->vm_rb.rb_right) {
 265		subtree_gap = rb_entry(vma->vm_rb.rb_right,
 266				struct vm_area_struct, vm_rb)->rb_subtree_gap;
 267		if (subtree_gap > max)
 268			max = subtree_gap;
 269	}
 270	return max;
 271}
 272
 273#ifdef CONFIG_DEBUG_VM_RB
 274static int browse_rb(struct mm_struct *mm)
 275{
 276	struct rb_root *root = &mm->mm_rb;
 277	int i = 0, j, bug = 0;
 278	struct rb_node *nd, *pn = NULL;
 279	unsigned long prev = 0, pend = 0;
 280
 281	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 282		struct vm_area_struct *vma;
 283		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 284		if (vma->vm_start < prev) {
 285			pr_emerg("vm_start %lx < prev %lx\n",
 286				  vma->vm_start, prev);
 287			bug = 1;
 288		}
 289		if (vma->vm_start < pend) {
 290			pr_emerg("vm_start %lx < pend %lx\n",
 291				  vma->vm_start, pend);
 292			bug = 1;
 293		}
 294		if (vma->vm_start > vma->vm_end) {
 295			pr_emerg("vm_start %lx > vm_end %lx\n",
 296				  vma->vm_start, vma->vm_end);
 297			bug = 1;
 298		}
 299		spin_lock(&mm->page_table_lock);
 300		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
 301			pr_emerg("free gap %lx, correct %lx\n",
 302			       vma->rb_subtree_gap,
 303			       vma_compute_subtree_gap(vma));
 304			bug = 1;
 305		}
 306		spin_unlock(&mm->page_table_lock);
 307		i++;
 308		pn = nd;
 309		prev = vma->vm_start;
 310		pend = vma->vm_end;
 311	}
 312	j = 0;
 313	for (nd = pn; nd; nd = rb_prev(nd))
 314		j++;
 315	if (i != j) {
 316		pr_emerg("backwards %d, forwards %d\n", j, i);
 317		bug = 1;
 318	}
 319	return bug ? -1 : i;
 320}
 321
 322static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
 323{
 324	struct rb_node *nd;
 325
 326	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
 327		struct vm_area_struct *vma;
 328		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
 329		VM_BUG_ON_VMA(vma != ignore &&
 330			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
 331			vma);
 332	}
 333}
 334
 335static void validate_mm(struct mm_struct *mm)
 336{
 337	int bug = 0;
 338	int i = 0;
 339	unsigned long highest_address = 0;
 340	struct vm_area_struct *vma = mm->mmap;
 341
 342	while (vma) {
 343		struct anon_vma *anon_vma = vma->anon_vma;
 344		struct anon_vma_chain *avc;
 345
 346		if (anon_vma) {
 347			anon_vma_lock_read(anon_vma);
 348			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 349				anon_vma_interval_tree_verify(avc);
 350			anon_vma_unlock_read(anon_vma);
 351		}
 352
 353		highest_address = vma->vm_end;
 354		vma = vma->vm_next;
 355		i++;
 356	}
 357	if (i != mm->map_count) {
 358		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
 359		bug = 1;
 360	}
 361	if (highest_address != mm->highest_vm_end) {
 362		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
 363			  mm->highest_vm_end, highest_address);
 364		bug = 1;
 365	}
 366	i = browse_rb(mm);
 367	if (i != mm->map_count) {
 368		if (i != -1)
 369			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
 370		bug = 1;
 371	}
 372	VM_BUG_ON_MM(bug, mm);
 373}
 374#else
 375#define validate_mm_rb(root, ignore) do { } while (0)
 376#define validate_mm(mm) do { } while (0)
 377#endif
 378
 379RB_DECLARE_CALLBACKS(static, vma_gap_callbacks, struct vm_area_struct, vm_rb,
 380		     unsigned long, rb_subtree_gap, vma_compute_subtree_gap)
 381
 382/*
 383 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
 384 * vma->vm_prev->vm_end values changed, without modifying the vma's position
 385 * in the rbtree.
 386 */
 387static void vma_gap_update(struct vm_area_struct *vma)
 388{
 389	/*
 390	 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
 391	 * function that does exacltly what we want.
 392	 */
 393	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
 394}
 395
 396static inline void vma_rb_insert(struct vm_area_struct *vma,
 397				 struct rb_root *root)
 398{
 399	/* All rb_subtree_gap values must be consistent prior to insertion */
 400	validate_mm_rb(root, NULL);
 401
 402	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 403}
 404
 405static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
 406{
 407	/*
 408	 * Note rb_erase_augmented is a fairly large inline function,
 409	 * so make sure we instantiate it only once with our desired
 410	 * augmented rbtree callbacks.
 411	 */
 412	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
 413}
 414
 415static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
 416						struct rb_root *root,
 417						struct vm_area_struct *ignore)
 418{
 419	/*
 420	 * All rb_subtree_gap values must be consistent prior to erase,
 421	 * with the possible exception of the "next" vma being erased if
 422	 * next->vm_start was reduced.
 423	 */
 424	validate_mm_rb(root, ignore);
 425
 426	__vma_rb_erase(vma, root);
 427}
 428
 429static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
 430					 struct rb_root *root)
 431{
 432	/*
 433	 * All rb_subtree_gap values must be consistent prior to erase,
 434	 * with the possible exception of the vma being erased.
 435	 */
 436	validate_mm_rb(root, vma);
 437
 438	__vma_rb_erase(vma, root);
 439}
 440
 441/*
 442 * vma has some anon_vma assigned, and is already inserted on that
 443 * anon_vma's interval trees.
 444 *
 445 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
 446 * vma must be removed from the anon_vma's interval trees using
 447 * anon_vma_interval_tree_pre_update_vma().
 448 *
 449 * After the update, the vma will be reinserted using
 450 * anon_vma_interval_tree_post_update_vma().
 451 *
 452 * The entire update must be protected by exclusive mmap_sem and by
 453 * the root anon_vma's mutex.
 454 */
 455static inline void
 456anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
 457{
 458	struct anon_vma_chain *avc;
 459
 460	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 461		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
 462}
 463
 464static inline void
 465anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
 466{
 467	struct anon_vma_chain *avc;
 468
 469	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
 470		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
 471}
 472
 473static int find_vma_links(struct mm_struct *mm, unsigned long addr,
 474		unsigned long end, struct vm_area_struct **pprev,
 475		struct rb_node ***rb_link, struct rb_node **rb_parent)
 476{
 477	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
 478
 479	__rb_link = &mm->mm_rb.rb_node;
 480	rb_prev = __rb_parent = NULL;
 481
 482	while (*__rb_link) {
 483		struct vm_area_struct *vma_tmp;
 484
 485		__rb_parent = *__rb_link;
 486		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
 487
 488		if (vma_tmp->vm_end > addr) {
 489			/* Fail if an existing vma overlaps the area */
 490			if (vma_tmp->vm_start < end)
 491				return -ENOMEM;
 492			__rb_link = &__rb_parent->rb_left;
 493		} else {
 494			rb_prev = __rb_parent;
 495			__rb_link = &__rb_parent->rb_right;
 496		}
 497	}
 498
 499	*pprev = NULL;
 500	if (rb_prev)
 501		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
 502	*rb_link = __rb_link;
 503	*rb_parent = __rb_parent;
 504	return 0;
 505}
 506
 507static unsigned long count_vma_pages_range(struct mm_struct *mm,
 508		unsigned long addr, unsigned long end)
 509{
 510	unsigned long nr_pages = 0;
 511	struct vm_area_struct *vma;
 512
 513	/* Find first overlaping mapping */
 514	vma = find_vma_intersection(mm, addr, end);
 515	if (!vma)
 516		return 0;
 517
 518	nr_pages = (min(end, vma->vm_end) -
 519		max(addr, vma->vm_start)) >> PAGE_SHIFT;
 520
 521	/* Iterate over the rest of the overlaps */
 522	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
 523		unsigned long overlap_len;
 524
 525		if (vma->vm_start > end)
 526			break;
 527
 528		overlap_len = min(end, vma->vm_end) - vma->vm_start;
 529		nr_pages += overlap_len >> PAGE_SHIFT;
 530	}
 531
 532	return nr_pages;
 533}
 534
 535void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
 536		struct rb_node **rb_link, struct rb_node *rb_parent)
 537{
 538	/* Update tracking information for the gap following the new vma. */
 539	if (vma->vm_next)
 540		vma_gap_update(vma->vm_next);
 541	else
 542		mm->highest_vm_end = vma->vm_end;
 543
 544	/*
 545	 * vma->vm_prev wasn't known when we followed the rbtree to find the
 546	 * correct insertion point for that vma. As a result, we could not
 547	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
 548	 * So, we first insert the vma with a zero rb_subtree_gap value
 549	 * (to be consistent with what we did on the way down), and then
 550	 * immediately update the gap to the correct value. Finally we
 551	 * rebalance the rbtree after all augmented values have been set.
 552	 */
 553	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
 554	vma->rb_subtree_gap = 0;
 555	vma_gap_update(vma);
 556	vma_rb_insert(vma, &mm->mm_rb);
 557}
 558
 559static void __vma_link_file(struct vm_area_struct *vma)
 560{
 561	struct file *file;
 562
 563	file = vma->vm_file;
 564	if (file) {
 565		struct address_space *mapping = file->f_mapping;
 566
 567		if (vma->vm_flags & VM_DENYWRITE)
 568			atomic_dec(&file_inode(file)->i_writecount);
 569		if (vma->vm_flags & VM_SHARED)
 570			atomic_inc(&mapping->i_mmap_writable);
 571
 572		flush_dcache_mmap_lock(mapping);
 573		vma_interval_tree_insert(vma, &mapping->i_mmap);
 574		flush_dcache_mmap_unlock(mapping);
 575	}
 576}
 577
 578static void
 579__vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 580	struct vm_area_struct *prev, struct rb_node **rb_link,
 581	struct rb_node *rb_parent)
 582{
 583	__vma_link_list(mm, vma, prev, rb_parent);
 584	__vma_link_rb(mm, vma, rb_link, rb_parent);
 585}
 586
 587static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
 588			struct vm_area_struct *prev, struct rb_node **rb_link,
 589			struct rb_node *rb_parent)
 590{
 591	struct address_space *mapping = NULL;
 592
 593	if (vma->vm_file) {
 594		mapping = vma->vm_file->f_mapping;
 595		i_mmap_lock_write(mapping);
 596	}
 597
 598	__vma_link(mm, vma, prev, rb_link, rb_parent);
 599	__vma_link_file(vma);
 600
 601	if (mapping)
 602		i_mmap_unlock_write(mapping);
 603
 604	mm->map_count++;
 605	validate_mm(mm);
 606}
 607
 608/*
 609 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
 610 * mm's list and rbtree.  It has already been inserted into the interval tree.
 611 */
 612static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
 613{
 614	struct vm_area_struct *prev;
 615	struct rb_node **rb_link, *rb_parent;
 616
 617	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
 618			   &prev, &rb_link, &rb_parent))
 619		BUG();
 620	__vma_link(mm, vma, prev, rb_link, rb_parent);
 621	mm->map_count++;
 622}
 623
 624static __always_inline void __vma_unlink_common(struct mm_struct *mm,
 625						struct vm_area_struct *vma,
 626						struct vm_area_struct *prev,
 627						bool has_prev,
 628						struct vm_area_struct *ignore)
 629{
 630	struct vm_area_struct *next;
 631
 632	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
 633	next = vma->vm_next;
 634	if (has_prev)
 635		prev->vm_next = next;
 636	else {
 637		prev = vma->vm_prev;
 638		if (prev)
 639			prev->vm_next = next;
 640		else
 641			mm->mmap = next;
 642	}
 643	if (next)
 644		next->vm_prev = prev;
 645
 646	/* Kill the cache */
 647	vmacache_invalidate(mm);
 648}
 649
 650static inline void __vma_unlink_prev(struct mm_struct *mm,
 651				     struct vm_area_struct *vma,
 652				     struct vm_area_struct *prev)
 653{
 654	__vma_unlink_common(mm, vma, prev, true, vma);
 655}
 656
 657/*
 658 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
 659 * is already present in an i_mmap tree without adjusting the tree.
 660 * The following helper function should be used when such adjustments
 661 * are necessary.  The "insert" vma (if any) is to be inserted
 662 * before we drop the necessary locks.
 663 */
 664int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
 665	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
 666	struct vm_area_struct *expand)
 667{
 668	struct mm_struct *mm = vma->vm_mm;
 669	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
 670	struct address_space *mapping = NULL;
 671	struct rb_root *root = NULL;
 672	struct anon_vma *anon_vma = NULL;
 673	struct file *file = vma->vm_file;
 674	bool start_changed = false, end_changed = false;
 675	long adjust_next = 0;
 676	int remove_next = 0;
 677
 678	if (next && !insert) {
 679		struct vm_area_struct *exporter = NULL, *importer = NULL;
 680
 681		if (end >= next->vm_end) {
 682			/*
 683			 * vma expands, overlapping all the next, and
 684			 * perhaps the one after too (mprotect case 6).
 685			 * The only other cases that gets here are
 686			 * case 1, case 7 and case 8.
 687			 */
 688			if (next == expand) {
 689				/*
 690				 * The only case where we don't expand "vma"
 691				 * and we expand "next" instead is case 8.
 692				 */
 693				VM_WARN_ON(end != next->vm_end);
 694				/*
 695				 * remove_next == 3 means we're
 696				 * removing "vma" and that to do so we
 697				 * swapped "vma" and "next".
 698				 */
 699				remove_next = 3;
 700				VM_WARN_ON(file != next->vm_file);
 701				swap(vma, next);
 702			} else {
 703				VM_WARN_ON(expand != vma);
 704				/*
 705				 * case 1, 6, 7, remove_next == 2 is case 6,
 706				 * remove_next == 1 is case 1 or 7.
 707				 */
 708				remove_next = 1 + (end > next->vm_end);
 709				VM_WARN_ON(remove_next == 2 &&
 710					   end != next->vm_next->vm_end);
 711				VM_WARN_ON(remove_next == 1 &&
 712					   end != next->vm_end);
 713				/* trim end to next, for case 6 first pass */
 714				end = next->vm_end;
 715			}
 716
 717			exporter = next;
 718			importer = vma;
 719
 720			/*
 721			 * If next doesn't have anon_vma, import from vma after
 722			 * next, if the vma overlaps with it.
 723			 */
 724			if (remove_next == 2 && !next->anon_vma)
 725				exporter = next->vm_next;
 726
 727		} else if (end > next->vm_start) {
 728			/*
 729			 * vma expands, overlapping part of the next:
 730			 * mprotect case 5 shifting the boundary up.
 731			 */
 732			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
 733			exporter = next;
 734			importer = vma;
 735			VM_WARN_ON(expand != importer);
 736		} else if (end < vma->vm_end) {
 737			/*
 738			 * vma shrinks, and !insert tells it's not
 739			 * split_vma inserting another: so it must be
 740			 * mprotect case 4 shifting the boundary down.
 741			 */
 742			adjust_next = -((vma->vm_end - end) >> PAGE_SHIFT);
 743			exporter = vma;
 744			importer = next;
 745			VM_WARN_ON(expand != importer);
 746		}
 747
 748		/*
 749		 * Easily overlooked: when mprotect shifts the boundary,
 750		 * make sure the expanding vma has anon_vma set if the
 751		 * shrinking vma had, to cover any anon pages imported.
 752		 */
 753		if (exporter && exporter->anon_vma && !importer->anon_vma) {
 754			int error;
 755
 756			importer->anon_vma = exporter->anon_vma;
 757			error = anon_vma_clone(importer, exporter);
 758			if (error)
 759				return error;
 760		}
 761	}
 762again:
 763	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
 764
 765	if (file) {
 766		mapping = file->f_mapping;
 767		root = &mapping->i_mmap;
 768		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
 769
 770		if (adjust_next)
 771			uprobe_munmap(next, next->vm_start, next->vm_end);
 772
 773		i_mmap_lock_write(mapping);
 774		if (insert) {
 775			/*
 776			 * Put into interval tree now, so instantiated pages
 777			 * are visible to arm/parisc __flush_dcache_page
 778			 * throughout; but we cannot insert into address
 779			 * space until vma start or end is updated.
 780			 */
 781			__vma_link_file(insert);
 782		}
 783	}
 784
 785	anon_vma = vma->anon_vma;
 786	if (!anon_vma && adjust_next)
 787		anon_vma = next->anon_vma;
 788	if (anon_vma) {
 789		VM_WARN_ON(adjust_next && next->anon_vma &&
 790			   anon_vma != next->anon_vma);
 791		anon_vma_lock_write(anon_vma);
 792		anon_vma_interval_tree_pre_update_vma(vma);
 793		if (adjust_next)
 794			anon_vma_interval_tree_pre_update_vma(next);
 795	}
 796
 797	if (root) {
 798		flush_dcache_mmap_lock(mapping);
 799		vma_interval_tree_remove(vma, root);
 800		if (adjust_next)
 801			vma_interval_tree_remove(next, root);
 802	}
 803
 804	if (start != vma->vm_start) {
 805		vma->vm_start = start;
 806		start_changed = true;
 807	}
 808	if (end != vma->vm_end) {
 809		vma->vm_end = end;
 810		end_changed = true;
 811	}
 812	vma->vm_pgoff = pgoff;
 813	if (adjust_next) {
 814		next->vm_start += adjust_next << PAGE_SHIFT;
 815		next->vm_pgoff += adjust_next;
 816	}
 817
 818	if (root) {
 819		if (adjust_next)
 820			vma_interval_tree_insert(next, root);
 821		vma_interval_tree_insert(vma, root);
 822		flush_dcache_mmap_unlock(mapping);
 823	}
 824
 825	if (remove_next) {
 826		/*
 827		 * vma_merge has merged next into vma, and needs
 828		 * us to remove next before dropping the locks.
 829		 */
 830		if (remove_next != 3)
 831			__vma_unlink_prev(mm, next, vma);
 832		else
 833			/*
 834			 * vma is not before next if they've been
 835			 * swapped.
 836			 *
 837			 * pre-swap() next->vm_start was reduced so
 838			 * tell validate_mm_rb to ignore pre-swap()
 839			 * "next" (which is stored in post-swap()
 840			 * "vma").
 841			 */
 842			__vma_unlink_common(mm, next, NULL, false, vma);
 843		if (file)
 844			__remove_shared_vm_struct(next, file, mapping);
 845	} else if (insert) {
 846		/*
 847		 * split_vma has split insert from vma, and needs
 848		 * us to insert it before dropping the locks
 849		 * (it may either follow vma or precede it).
 850		 */
 851		__insert_vm_struct(mm, insert);
 852	} else {
 853		if (start_changed)
 854			vma_gap_update(vma);
 855		if (end_changed) {
 856			if (!next)
 857				mm->highest_vm_end = end;
 858			else if (!adjust_next)
 859				vma_gap_update(next);
 860		}
 861	}
 862
 863	if (anon_vma) {
 864		anon_vma_interval_tree_post_update_vma(vma);
 865		if (adjust_next)
 866			anon_vma_interval_tree_post_update_vma(next);
 867		anon_vma_unlock_write(anon_vma);
 868	}
 869	if (mapping)
 870		i_mmap_unlock_write(mapping);
 871
 872	if (root) {
 873		uprobe_mmap(vma);
 874
 875		if (adjust_next)
 876			uprobe_mmap(next);
 877	}
 878
 879	if (remove_next) {
 880		if (file) {
 881			uprobe_munmap(next, next->vm_start, next->vm_end);
 882			fput(file);
 883		}
 884		if (next->anon_vma)
 885			anon_vma_merge(vma, next);
 886		mm->map_count--;
 887		mpol_put(vma_policy(next));
 888		kmem_cache_free(vm_area_cachep, next);
 889		/*
 890		 * In mprotect's case 6 (see comments on vma_merge),
 891		 * we must remove another next too. It would clutter
 892		 * up the code too much to do both in one go.
 893		 */
 894		if (remove_next != 3) {
 895			/*
 896			 * If "next" was removed and vma->vm_end was
 897			 * expanded (up) over it, in turn
 898			 * "next->vm_prev->vm_end" changed and the
 899			 * "vma->vm_next" gap must be updated.
 900			 */
 901			next = vma->vm_next;
 902		} else {
 903			/*
 904			 * For the scope of the comment "next" and
 905			 * "vma" considered pre-swap(): if "vma" was
 906			 * removed, next->vm_start was expanded (down)
 907			 * over it and the "next" gap must be updated.
 908			 * Because of the swap() the post-swap() "vma"
 909			 * actually points to pre-swap() "next"
 910			 * (post-swap() "next" as opposed is now a
 911			 * dangling pointer).
 912			 */
 913			next = vma;
 914		}
 915		if (remove_next == 2) {
 916			remove_next = 1;
 917			end = next->vm_end;
 918			goto again;
 919		}
 920		else if (next)
 921			vma_gap_update(next);
 922		else {
 923			/*
 924			 * If remove_next == 2 we obviously can't
 925			 * reach this path.
 926			 *
 927			 * If remove_next == 3 we can't reach this
 928			 * path because pre-swap() next is always not
 929			 * NULL. pre-swap() "next" is not being
 930			 * removed and its next->vm_end is not altered
 931			 * (and furthermore "end" already matches
 932			 * next->vm_end in remove_next == 3).
 933			 *
 934			 * We reach this only in the remove_next == 1
 935			 * case if the "next" vma that was removed was
 936			 * the highest vma of the mm. However in such
 937			 * case next->vm_end == "end" and the extended
 938			 * "vma" has vma->vm_end == next->vm_end so
 939			 * mm->highest_vm_end doesn't need any update
 940			 * in remove_next == 1 case.
 941			 */
 942			VM_WARN_ON(mm->highest_vm_end != end);
 943		}
 944	}
 945	if (insert && file)
 946		uprobe_mmap(insert);
 947
 948	validate_mm(mm);
 949
 950	return 0;
 951}
 952
 953/*
 954 * If the vma has a ->close operation then the driver probably needs to release
 955 * per-vma resources, so we don't attempt to merge those.
 956 */
 957static inline int is_mergeable_vma(struct vm_area_struct *vma,
 958				struct file *file, unsigned long vm_flags,
 959				struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
 960{
 961	/*
 962	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
 963	 * match the flags but dirty bit -- the caller should mark
 964	 * merged VMA as dirty. If dirty bit won't be excluded from
 965	 * comparison, we increase pressue on the memory system forcing
 966	 * the kernel to generate new VMAs when old one could be
 967	 * extended instead.
 968	 */
 969	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
 970		return 0;
 971	if (vma->vm_file != file)
 972		return 0;
 973	if (vma->vm_ops && vma->vm_ops->close)
 974		return 0;
 975	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
 976		return 0;
 977	return 1;
 978}
 979
 980static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
 981					struct anon_vma *anon_vma2,
 982					struct vm_area_struct *vma)
 983{
 984	/*
 985	 * The list_is_singular() test is to avoid merging VMA cloned from
 986	 * parents. This can improve scalability caused by anon_vma lock.
 987	 */
 988	if ((!anon_vma1 || !anon_vma2) && (!vma ||
 989		list_is_singular(&vma->anon_vma_chain)))
 990		return 1;
 991	return anon_vma1 == anon_vma2;
 992}
 993
 994/*
 995 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
 996 * in front of (at a lower virtual address and file offset than) the vma.
 997 *
 998 * We cannot merge two vmas if they have differently assigned (non-NULL)
 999 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1000 *
1001 * We don't check here for the merged mmap wrapping around the end of pagecache
1002 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
1003 * wrap, nor mmaps which cover the final page at index -1UL.
1004 */
1005static int
1006can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1007		     struct anon_vma *anon_vma, struct file *file,
1008		     pgoff_t vm_pgoff,
1009		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1010{
1011	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1012	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1013		if (vma->vm_pgoff == vm_pgoff)
1014			return 1;
1015	}
1016	return 0;
1017}
1018
1019/*
1020 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1021 * beyond (at a higher virtual address and file offset than) the vma.
1022 *
1023 * We cannot merge two vmas if they have differently assigned (non-NULL)
1024 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1025 */
1026static int
1027can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1028		    struct anon_vma *anon_vma, struct file *file,
1029		    pgoff_t vm_pgoff,
1030		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1031{
1032	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx) &&
1033	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1034		pgoff_t vm_pglen;
1035		vm_pglen = vma_pages(vma);
1036		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1037			return 1;
1038	}
1039	return 0;
1040}
1041
1042/*
1043 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1044 * whether that can be merged with its predecessor or its successor.
1045 * Or both (it neatly fills a hole).
1046 *
1047 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1048 * certain not to be mapped by the time vma_merge is called; but when
1049 * called for mprotect, it is certain to be already mapped (either at
1050 * an offset within prev, or at the start of next), and the flags of
1051 * this area are about to be changed to vm_flags - and the no-change
1052 * case has already been eliminated.
1053 *
1054 * The following mprotect cases have to be considered, where AAAA is
1055 * the area passed down from mprotect_fixup, never extending beyond one
1056 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1057 *
1058 *     AAAA             AAAA                AAAA          AAAA
1059 *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
1060 *    cannot merge    might become    might become    might become
1061 *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
1062 *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
1063 *    mremap move:                                    PPPPXXXXXXXX 8
1064 *        AAAA
1065 *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
1066 *    might become    case 1 below    case 2 below    case 3 below
1067 *
1068 * It is important for case 8 that the the vma NNNN overlapping the
1069 * region AAAA is never going to extended over XXXX. Instead XXXX must
1070 * be extended in region AAAA and NNNN must be removed. This way in
1071 * all cases where vma_merge succeeds, the moment vma_adjust drops the
1072 * rmap_locks, the properties of the merged vma will be already
1073 * correct for the whole merged range. Some of those properties like
1074 * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1075 * be correct for the whole merged range immediately after the
1076 * rmap_locks are released. Otherwise if XXXX would be removed and
1077 * NNNN would be extended over the XXXX range, remove_migration_ptes
1078 * or other rmap walkers (if working on addresses beyond the "end"
1079 * parameter) may establish ptes with the wrong permissions of NNNN
1080 * instead of the right permissions of XXXX.
1081 */
1082struct vm_area_struct *vma_merge(struct mm_struct *mm,
1083			struct vm_area_struct *prev, unsigned long addr,
1084			unsigned long end, unsigned long vm_flags,
1085			struct anon_vma *anon_vma, struct file *file,
1086			pgoff_t pgoff, struct mempolicy *policy,
1087			struct vm_userfaultfd_ctx vm_userfaultfd_ctx)
1088{
1089	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1090	struct vm_area_struct *area, *next;
1091	int err;
1092
1093	/*
1094	 * We later require that vma->vm_flags == vm_flags,
1095	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1096	 */
1097	if (vm_flags & VM_SPECIAL)
1098		return NULL;
1099
1100	if (prev)
1101		next = prev->vm_next;
1102	else
1103		next = mm->mmap;
1104	area = next;
1105	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1106		next = next->vm_next;
1107
1108	/* verify some invariant that must be enforced by the caller */
1109	VM_WARN_ON(prev && addr <= prev->vm_start);
1110	VM_WARN_ON(area && end > area->vm_end);
1111	VM_WARN_ON(addr >= end);
1112
1113	/*
1114	 * Can it merge with the predecessor?
1115	 */
1116	if (prev && prev->vm_end == addr &&
1117			mpol_equal(vma_policy(prev), policy) &&
1118			can_vma_merge_after(prev, vm_flags,
1119					    anon_vma, file, pgoff,
1120					    vm_userfaultfd_ctx)) {
1121		/*
1122		 * OK, it can.  Can we now merge in the successor as well?
1123		 */
1124		if (next && end == next->vm_start &&
1125				mpol_equal(policy, vma_policy(next)) &&
1126				can_vma_merge_before(next, vm_flags,
1127						     anon_vma, file,
1128						     pgoff+pglen,
1129						     vm_userfaultfd_ctx) &&
1130				is_mergeable_anon_vma(prev->anon_vma,
1131						      next->anon_vma, NULL)) {
1132							/* cases 1, 6 */
1133			err = __vma_adjust(prev, prev->vm_start,
1134					 next->vm_end, prev->vm_pgoff, NULL,
1135					 prev);
1136		} else					/* cases 2, 5, 7 */
1137			err = __vma_adjust(prev, prev->vm_start,
1138					 end, prev->vm_pgoff, NULL, prev);
1139		if (err)
1140			return NULL;
1141		khugepaged_enter_vma_merge(prev, vm_flags);
1142		return prev;
1143	}
1144
1145	/*
1146	 * Can this new request be merged in front of next?
1147	 */
1148	if (next && end == next->vm_start &&
1149			mpol_equal(policy, vma_policy(next)) &&
1150			can_vma_merge_before(next, vm_flags,
1151					     anon_vma, file, pgoff+pglen,
1152					     vm_userfaultfd_ctx)) {
1153		if (prev && addr < prev->vm_end)	/* case 4 */
1154			err = __vma_adjust(prev, prev->vm_start,
1155					 addr, prev->vm_pgoff, NULL, next);
1156		else {					/* cases 3, 8 */
1157			err = __vma_adjust(area, addr, next->vm_end,
1158					 next->vm_pgoff - pglen, NULL, next);
1159			/*
1160			 * In case 3 area is already equal to next and
1161			 * this is a noop, but in case 8 "area" has
1162			 * been removed and next was expanded over it.
1163			 */
1164			area = next;
1165		}
1166		if (err)
1167			return NULL;
1168		khugepaged_enter_vma_merge(area, vm_flags);
1169		return area;
1170	}
1171
1172	return NULL;
1173}
1174
1175/*
1176 * Rough compatbility check to quickly see if it's even worth looking
1177 * at sharing an anon_vma.
1178 *
1179 * They need to have the same vm_file, and the flags can only differ
1180 * in things that mprotect may change.
1181 *
1182 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1183 * we can merge the two vma's. For example, we refuse to merge a vma if
1184 * there is a vm_ops->close() function, because that indicates that the
1185 * driver is doing some kind of reference counting. But that doesn't
1186 * really matter for the anon_vma sharing case.
1187 */
1188static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1189{
1190	return a->vm_end == b->vm_start &&
1191		mpol_equal(vma_policy(a), vma_policy(b)) &&
1192		a->vm_file == b->vm_file &&
1193		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC|VM_SOFTDIRTY)) &&
1194		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1195}
1196
1197/*
1198 * Do some basic sanity checking to see if we can re-use the anon_vma
1199 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1200 * the same as 'old', the other will be the new one that is trying
1201 * to share the anon_vma.
1202 *
1203 * NOTE! This runs with mm_sem held for reading, so it is possible that
1204 * the anon_vma of 'old' is concurrently in the process of being set up
1205 * by another page fault trying to merge _that_. But that's ok: if it
1206 * is being set up, that automatically means that it will be a singleton
1207 * acceptable for merging, so we can do all of this optimistically. But
1208 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1209 *
1210 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1211 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1212 * is to return an anon_vma that is "complex" due to having gone through
1213 * a fork).
1214 *
1215 * We also make sure that the two vma's are compatible (adjacent,
1216 * and with the same memory policies). That's all stable, even with just
1217 * a read lock on the mm_sem.
1218 */
1219static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1220{
1221	if (anon_vma_compatible(a, b)) {
1222		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1223
1224		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1225			return anon_vma;
1226	}
1227	return NULL;
1228}
1229
1230/*
1231 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1232 * neighbouring vmas for a suitable anon_vma, before it goes off
1233 * to allocate a new anon_vma.  It checks because a repetitive
1234 * sequence of mprotects and faults may otherwise lead to distinct
1235 * anon_vmas being allocated, preventing vma merge in subsequent
1236 * mprotect.
1237 */
1238struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1239{
1240	struct anon_vma *anon_vma;
1241	struct vm_area_struct *near;
1242
1243	near = vma->vm_next;
1244	if (!near)
1245		goto try_prev;
1246
1247	anon_vma = reusable_anon_vma(near, vma, near);
1248	if (anon_vma)
1249		return anon_vma;
1250try_prev:
1251	near = vma->vm_prev;
1252	if (!near)
1253		goto none;
1254
1255	anon_vma = reusable_anon_vma(near, near, vma);
1256	if (anon_vma)
1257		return anon_vma;
1258none:
1259	/*
1260	 * There's no absolute need to look only at touching neighbours:
1261	 * we could search further afield for "compatible" anon_vmas.
1262	 * But it would probably just be a waste of time searching,
1263	 * or lead to too many vmas hanging off the same anon_vma.
1264	 * We're trying to allow mprotect remerging later on,
1265	 * not trying to minimize memory used for anon_vmas.
1266	 */
1267	return NULL;
1268}
1269
1270/*
1271 * If a hint addr is less than mmap_min_addr change hint to be as
1272 * low as possible but still greater than mmap_min_addr
1273 */
1274static inline unsigned long round_hint_to_min(unsigned long hint)
1275{
1276	hint &= PAGE_MASK;
1277	if (((void *)hint != NULL) &&
1278	    (hint < mmap_min_addr))
1279		return PAGE_ALIGN(mmap_min_addr);
1280	return hint;
1281}
1282
1283static inline int mlock_future_check(struct mm_struct *mm,
1284				     unsigned long flags,
1285				     unsigned long len)
1286{
1287	unsigned long locked, lock_limit;
1288
1289	/*  mlock MCL_FUTURE? */
1290	if (flags & VM_LOCKED) {
1291		locked = len >> PAGE_SHIFT;
1292		locked += mm->locked_vm;
1293		lock_limit = rlimit(RLIMIT_MEMLOCK);
1294		lock_limit >>= PAGE_SHIFT;
1295		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1296			return -EAGAIN;
1297	}
1298	return 0;
1299}
1300
1301/*
1302 * The caller must hold down_write(&current->mm->mmap_sem).
1303 */
1304unsigned long do_mmap(struct file *file, unsigned long addr,
1305			unsigned long len, unsigned long prot,
1306			unsigned long flags, vm_flags_t vm_flags,
1307			unsigned long pgoff, unsigned long *populate)
 
1308{
1309	struct mm_struct *mm = current->mm;
1310	int pkey = 0;
1311
1312	*populate = 0;
1313
1314	if (!len)
1315		return -EINVAL;
1316
1317	/*
1318	 * Does the application expect PROT_READ to imply PROT_EXEC?
1319	 *
1320	 * (the exception is when the underlying filesystem is noexec
1321	 *  mounted, in which case we dont add PROT_EXEC.)
1322	 */
1323	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1324		if (!(file && path_noexec(&file->f_path)))
1325			prot |= PROT_EXEC;
1326
 
 
 
 
1327	if (!(flags & MAP_FIXED))
1328		addr = round_hint_to_min(addr);
1329
1330	/* Careful about overflows.. */
1331	len = PAGE_ALIGN(len);
1332	if (!len)
1333		return -ENOMEM;
1334
1335	/* offset overflow? */
1336	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1337		return -EOVERFLOW;
1338
1339	/* Too many mappings? */
1340	if (mm->map_count > sysctl_max_map_count)
1341		return -ENOMEM;
1342
1343	/* Obtain the address to map to. we verify (or select) it and ensure
1344	 * that it represents a valid section of the address space.
 
 
 
 
 
 
1345	 */
1346	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1347	if (offset_in_page(addr))
1348		return addr;
1349
1350	if (prot == PROT_EXEC) {
1351		pkey = execute_only_pkey(mm);
1352		if (pkey < 0)
1353			pkey = 0;
1354	}
1355
1356	/* Do simple checking here so the lower-level routines won't have
1357	 * to. we assume access permissions have been handled by the open
1358	 * of the memory object, so we don't do any here.
1359	 */
1360	vm_flags |= calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1361			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1362
 
 
 
 
 
 
 
 
 
 
 
 
1363	if (flags & MAP_LOCKED)
1364		if (!can_do_mlock())
1365			return -EPERM;
1366
1367	if (mlock_future_check(mm, vm_flags, len))
1368		return -EAGAIN;
1369
1370	if (file) {
1371		struct inode *inode = file_inode(file);
 
 
 
 
 
 
 
 
 
1372
1373		switch (flags & MAP_TYPE) {
1374		case MAP_SHARED:
1375			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1376				return -EACCES;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378			/*
1379			 * Make sure we don't allow writing to an append-only
1380			 * file..
1381			 */
1382			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1383				return -EACCES;
1384
1385			/*
1386			 * Make sure there are no mandatory locks on the file.
1387			 */
1388			if (locks_verify_locked(file))
1389				return -EAGAIN;
1390
1391			vm_flags |= VM_SHARED | VM_MAYSHARE;
1392			if (!(file->f_mode & FMODE_WRITE))
1393				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1394
1395			/* fall through */
 
1396		case MAP_PRIVATE:
1397			if (!(file->f_mode & FMODE_READ))
1398				return -EACCES;
1399			if (path_noexec(&file->f_path)) {
1400				if (vm_flags & VM_EXEC)
1401					return -EPERM;
1402				vm_flags &= ~VM_MAYEXEC;
1403			}
1404
1405			if (!file->f_op->mmap)
1406				return -ENODEV;
1407			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1408				return -EINVAL;
1409			break;
1410
1411		default:
1412			return -EINVAL;
1413		}
1414	} else {
1415		switch (flags & MAP_TYPE) {
1416		case MAP_SHARED:
1417			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1418				return -EINVAL;
1419			/*
1420			 * Ignore pgoff.
1421			 */
1422			pgoff = 0;
1423			vm_flags |= VM_SHARED | VM_MAYSHARE;
1424			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1425		case MAP_PRIVATE:
1426			/*
1427			 * Set pgoff according to addr for anon_vma.
1428			 */
1429			pgoff = addr >> PAGE_SHIFT;
1430			break;
1431		default:
1432			return -EINVAL;
1433		}
1434	}
1435
1436	/*
1437	 * Set 'VM_NORESERVE' if we should not account for the
1438	 * memory use of this mapping.
1439	 */
1440	if (flags & MAP_NORESERVE) {
1441		/* We honor MAP_NORESERVE if allowed to overcommit */
1442		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1443			vm_flags |= VM_NORESERVE;
1444
1445		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1446		if (file && is_file_hugepages(file))
1447			vm_flags |= VM_NORESERVE;
1448	}
1449
1450	addr = mmap_region(file, addr, len, vm_flags, pgoff);
1451	if (!IS_ERR_VALUE(addr) &&
1452	    ((vm_flags & VM_LOCKED) ||
1453	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1454		*populate = len;
1455	return addr;
1456}
1457
1458SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1459		unsigned long, prot, unsigned long, flags,
1460		unsigned long, fd, unsigned long, pgoff)
1461{
1462	struct file *file = NULL;
1463	unsigned long retval;
1464
1465	if (!(flags & MAP_ANONYMOUS)) {
1466		audit_mmap_fd(fd, flags);
1467		file = fget(fd);
1468		if (!file)
1469			return -EBADF;
1470		if (is_file_hugepages(file))
1471			len = ALIGN(len, huge_page_size(hstate_file(file)));
1472		retval = -EINVAL;
1473		if (unlikely(flags & MAP_HUGETLB && !is_file_hugepages(file)))
1474			goto out_fput;
 
1475	} else if (flags & MAP_HUGETLB) {
1476		struct user_struct *user = NULL;
1477		struct hstate *hs;
1478
1479		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & SHM_HUGE_MASK);
1480		if (!hs)
1481			return -EINVAL;
1482
1483		len = ALIGN(len, huge_page_size(hs));
1484		/*
1485		 * VM_NORESERVE is used because the reservations will be
1486		 * taken when vm_ops->mmap() is called
1487		 * A dummy user value is used because we are not locking
1488		 * memory so no accounting is necessary
1489		 */
1490		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1491				VM_NORESERVE,
1492				&user, HUGETLB_ANONHUGE_INODE,
1493				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1494		if (IS_ERR(file))
1495			return PTR_ERR(file);
1496	}
1497
1498	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1499
1500	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501out_fput:
1502	if (file)
1503		fput(file);
1504	return retval;
1505}
1506
 
 
 
 
 
 
 
1507#ifdef __ARCH_WANT_SYS_OLD_MMAP
1508struct mmap_arg_struct {
1509	unsigned long addr;
1510	unsigned long len;
1511	unsigned long prot;
1512	unsigned long flags;
1513	unsigned long fd;
1514	unsigned long offset;
1515};
1516
1517SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1518{
1519	struct mmap_arg_struct a;
1520
1521	if (copy_from_user(&a, arg, sizeof(a)))
1522		return -EFAULT;
1523	if (offset_in_page(a.offset))
1524		return -EINVAL;
1525
1526	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1527			      a.offset >> PAGE_SHIFT);
1528}
1529#endif /* __ARCH_WANT_SYS_OLD_MMAP */
1530
1531/*
1532 * Some shared mappigns will want the pages marked read-only
1533 * to track write events. If so, we'll downgrade vm_page_prot
1534 * to the private version (using protection_map[] without the
1535 * VM_SHARED bit).
1536 */
1537int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1538{
1539	vm_flags_t vm_flags = vma->vm_flags;
1540	const struct vm_operations_struct *vm_ops = vma->vm_ops;
 
 
 
 
 
 
1541
1542	/* If it was private or non-writable, the write bit is already clear */
1543	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1544		return 0;
 
1545
1546	/* The backer wishes to know when pages are first written to? */
1547	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1548		return 1;
1549
1550	/* The open routine did something to the protections that pgprot_modify
1551	 * won't preserve? */
1552	if (pgprot_val(vm_page_prot) !=
1553	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1554		return 0;
1555
1556	/* Do we need to track softdirty? */
1557	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY))
1558		return 1;
1559
1560	/* Specialty mapping? */
1561	if (vm_flags & VM_PFNMAP)
1562		return 0;
1563
1564	/* Can the mapping track the dirty pages? */
1565	return vma->vm_file && vma->vm_file->f_mapping &&
1566		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1567}
1568
1569/*
1570 * We account for memory if it's a private writeable mapping,
1571 * not hugepages and VM_NORESERVE wasn't set.
1572 */
1573static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1574{
1575	/*
1576	 * hugetlb has its own accounting separate from the core VM
1577	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1578	 */
1579	if (file && is_file_hugepages(file))
1580		return 0;
1581
1582	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1583}
1584
1585unsigned long mmap_region(struct file *file, unsigned long addr,
1586		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff)
1587{
1588	struct mm_struct *mm = current->mm;
1589	struct vm_area_struct *vma, *prev;
1590	int error;
1591	struct rb_node **rb_link, *rb_parent;
1592	unsigned long charged = 0;
1593
1594	/* Check against address space limit. */
1595	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1596		unsigned long nr_pages;
1597
1598		/*
1599		 * MAP_FIXED may remove pages of mappings that intersects with
1600		 * requested mapping. Account for the pages it would unmap.
1601		 */
1602		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1603
1604		if (!may_expand_vm(mm, vm_flags,
1605					(len >> PAGE_SHIFT) - nr_pages))
1606			return -ENOMEM;
1607	}
1608
1609	/* Clear old maps */
1610	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
1611			      &rb_parent)) {
1612		if (do_munmap(mm, addr, len))
1613			return -ENOMEM;
1614	}
1615
1616	/*
1617	 * Private writable mapping: check memory availability
1618	 */
1619	if (accountable_mapping(file, vm_flags)) {
1620		charged = len >> PAGE_SHIFT;
1621		if (security_vm_enough_memory_mm(mm, charged))
1622			return -ENOMEM;
1623		vm_flags |= VM_ACCOUNT;
1624	}
1625
1626	/*
1627	 * Can we just expand an old mapping?
1628	 */
1629	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1630			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX);
1631	if (vma)
1632		goto out;
1633
1634	/*
1635	 * Determine the object being mapped and call the appropriate
1636	 * specific mapper. the address has already been validated, but
1637	 * not unmapped, but the maps are removed from the list.
1638	 */
1639	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1640	if (!vma) {
1641		error = -ENOMEM;
1642		goto unacct_error;
1643	}
1644
1645	vma->vm_mm = mm;
1646	vma->vm_start = addr;
1647	vma->vm_end = addr + len;
1648	vma->vm_flags = vm_flags;
1649	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1650	vma->vm_pgoff = pgoff;
1651	INIT_LIST_HEAD(&vma->anon_vma_chain);
1652
1653	if (file) {
1654		if (vm_flags & VM_DENYWRITE) {
1655			error = deny_write_access(file);
1656			if (error)
1657				goto free_vma;
1658		}
1659		if (vm_flags & VM_SHARED) {
1660			error = mapping_map_writable(file->f_mapping);
1661			if (error)
1662				goto allow_write_and_free_vma;
 
 
1663		}
1664
1665		/* ->mmap() can change vma->vm_file, but must guarantee that
1666		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1667		 * and map writably if VM_SHARED is set. This usually means the
1668		 * new file must not have been exposed to user-space, yet.
1669		 */
1670		vma->vm_file = get_file(file);
1671		error = file->f_op->mmap(file, vma);
1672		if (error)
1673			goto unmap_and_free_vma;
1674
1675		/* Can addr have changed??
1676		 *
1677		 * Answer: Yes, several device drivers can do it in their
1678		 *         f_op->mmap method. -DaveM
1679		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1680		 *      be updated for vma_link()
1681		 */
1682		WARN_ON_ONCE(addr != vma->vm_start);
1683
1684		addr = vma->vm_start;
1685		vm_flags = vma->vm_flags;
1686	} else if (vm_flags & VM_SHARED) {
1687		error = shmem_zero_setup(vma);
1688		if (error)
1689			goto free_vma;
1690	}
1691
1692	vma_link(mm, vma, prev, rb_link, rb_parent);
1693	/* Once vma denies write, undo our temporary denial count */
1694	if (file) {
1695		if (vm_flags & VM_SHARED)
1696			mapping_unmap_writable(file->f_mapping);
1697		if (vm_flags & VM_DENYWRITE)
1698			allow_write_access(file);
1699	}
1700	file = vma->vm_file;
1701out:
1702	perf_event_mmap(vma);
1703
1704	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1705	if (vm_flags & VM_LOCKED) {
1706		if (!((vm_flags & VM_SPECIAL) || is_vm_hugetlb_page(vma) ||
1707					vma == get_gate_vma(current->mm)))
1708			mm->locked_vm += (len >> PAGE_SHIFT);
1709		else
1710			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1711	}
1712
1713	if (file)
1714		uprobe_mmap(vma);
1715
1716	/*
1717	 * New (or expanded) vma always get soft dirty status.
1718	 * Otherwise user-space soft-dirty page tracker won't
1719	 * be able to distinguish situation when vma area unmapped,
1720	 * then new mapped in-place (which must be aimed as
1721	 * a completely new data area).
1722	 */
1723	vma->vm_flags |= VM_SOFTDIRTY;
1724
1725	vma_set_page_prot(vma);
1726
1727	return addr;
1728
1729unmap_and_free_vma:
1730	vma->vm_file = NULL;
1731	fput(file);
1732
1733	/* Undo any partial mapping done by a device driver. */
1734	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1735	charged = 0;
1736	if (vm_flags & VM_SHARED)
1737		mapping_unmap_writable(file->f_mapping);
1738allow_write_and_free_vma:
1739	if (vm_flags & VM_DENYWRITE)
1740		allow_write_access(file);
1741free_vma:
1742	kmem_cache_free(vm_area_cachep, vma);
1743unacct_error:
1744	if (charged)
1745		vm_unacct_memory(charged);
1746	return error;
1747}
1748
1749unsigned long unmapped_area(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
 
1750{
1751	/*
1752	 * We implement the search by looking for an rbtree node that
1753	 * immediately follows a suitable gap. That is,
1754	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1755	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1756	 * - gap_end - gap_start >= length
1757	 */
1758
1759	struct mm_struct *mm = current->mm;
1760	struct vm_area_struct *vma;
1761	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1762
1763	/* Adjust search length to account for worst case alignment overhead */
1764	length = info->length + info->align_mask;
1765	if (length < info->length)
1766		return -ENOMEM;
1767
1768	/* Adjust search limits by the desired length */
1769	if (info->high_limit < length)
1770		return -ENOMEM;
1771	high_limit = info->high_limit - length;
1772
1773	if (info->low_limit > high_limit)
1774		return -ENOMEM;
1775	low_limit = info->low_limit + length;
1776
1777	/* Check if rbtree root looks promising */
1778	if (RB_EMPTY_ROOT(&mm->mm_rb))
1779		goto check_highest;
1780	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1781	if (vma->rb_subtree_gap < length)
1782		goto check_highest;
1783
1784	while (true) {
1785		/* Visit left subtree if it looks promising */
1786		gap_end = vma->vm_start;
1787		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1788			struct vm_area_struct *left =
1789				rb_entry(vma->vm_rb.rb_left,
1790					 struct vm_area_struct, vm_rb);
1791			if (left->rb_subtree_gap >= length) {
1792				vma = left;
1793				continue;
1794			}
1795		}
1796
1797		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1798check_current:
1799		/* Check if current node has a suitable gap */
1800		if (gap_start > high_limit)
1801			return -ENOMEM;
1802		if (gap_end >= low_limit && gap_end - gap_start >= length)
1803			goto found;
1804
1805		/* Visit right subtree if it looks promising */
1806		if (vma->vm_rb.rb_right) {
1807			struct vm_area_struct *right =
1808				rb_entry(vma->vm_rb.rb_right,
1809					 struct vm_area_struct, vm_rb);
1810			if (right->rb_subtree_gap >= length) {
1811				vma = right;
1812				continue;
1813			}
1814		}
1815
1816		/* Go back up the rbtree to find next candidate node */
1817		while (true) {
1818			struct rb_node *prev = &vma->vm_rb;
1819			if (!rb_parent(prev))
1820				goto check_highest;
1821			vma = rb_entry(rb_parent(prev),
1822				       struct vm_area_struct, vm_rb);
1823			if (prev == vma->vm_rb.rb_left) {
1824				gap_start = vma->vm_prev->vm_end;
1825				gap_end = vma->vm_start;
1826				goto check_current;
1827			}
1828		}
1829	}
1830
1831check_highest:
1832	/* Check highest gap, which does not precede any rbtree node */
1833	gap_start = mm->highest_vm_end;
1834	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
1835	if (gap_start > high_limit)
1836		return -ENOMEM;
1837
1838found:
1839	/* We found a suitable gap. Clip it with the original low_limit. */
1840	if (gap_start < info->low_limit)
1841		gap_start = info->low_limit;
 
 
 
 
1842
1843	/* Adjust gap address to the desired alignment */
1844	gap_start += (info->align_offset - gap_start) & info->align_mask;
1845
1846	VM_BUG_ON(gap_start + info->length > info->high_limit);
1847	VM_BUG_ON(gap_start + info->length > gap_end);
1848	return gap_start;
1849}
1850
1851unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
 
 
 
 
 
 
 
 
 
1852{
1853	struct mm_struct *mm = current->mm;
1854	struct vm_area_struct *vma;
1855	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1856
1857	/* Adjust search length to account for worst case alignment overhead */
1858	length = info->length + info->align_mask;
1859	if (length < info->length)
1860		return -ENOMEM;
1861
1862	/*
1863	 * Adjust search limits by the desired length.
1864	 * See implementation comment at top of unmapped_area().
1865	 */
1866	gap_end = info->high_limit;
1867	if (gap_end < length)
1868		return -ENOMEM;
1869	high_limit = gap_end - length;
1870
1871	if (info->low_limit > high_limit)
1872		return -ENOMEM;
1873	low_limit = info->low_limit + length;
1874
1875	/* Check highest gap, which does not precede any rbtree node */
1876	gap_start = mm->highest_vm_end;
1877	if (gap_start <= high_limit)
1878		goto found_highest;
1879
1880	/* Check if rbtree root looks promising */
1881	if (RB_EMPTY_ROOT(&mm->mm_rb))
1882		return -ENOMEM;
1883	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1884	if (vma->rb_subtree_gap < length)
1885		return -ENOMEM;
1886
1887	while (true) {
1888		/* Visit right subtree if it looks promising */
1889		gap_start = vma->vm_prev ? vma->vm_prev->vm_end : 0;
1890		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
1891			struct vm_area_struct *right =
1892				rb_entry(vma->vm_rb.rb_right,
1893					 struct vm_area_struct, vm_rb);
1894			if (right->rb_subtree_gap >= length) {
1895				vma = right;
1896				continue;
1897			}
1898		}
1899
1900check_current:
1901		/* Check if current node has a suitable gap */
1902		gap_end = vma->vm_start;
1903		if (gap_end < low_limit)
1904			return -ENOMEM;
1905		if (gap_start <= high_limit && gap_end - gap_start >= length)
1906			goto found;
1907
1908		/* Visit left subtree if it looks promising */
1909		if (vma->vm_rb.rb_left) {
1910			struct vm_area_struct *left =
1911				rb_entry(vma->vm_rb.rb_left,
1912					 struct vm_area_struct, vm_rb);
1913			if (left->rb_subtree_gap >= length) {
1914				vma = left;
1915				continue;
1916			}
1917		}
1918
1919		/* Go back up the rbtree to find next candidate node */
1920		while (true) {
1921			struct rb_node *prev = &vma->vm_rb;
1922			if (!rb_parent(prev))
1923				return -ENOMEM;
1924			vma = rb_entry(rb_parent(prev),
1925				       struct vm_area_struct, vm_rb);
1926			if (prev == vma->vm_rb.rb_right) {
1927				gap_start = vma->vm_prev ?
1928					vma->vm_prev->vm_end : 0;
1929				goto check_current;
1930			}
1931		}
1932	}
1933
1934found:
1935	/* We found a suitable gap. Clip it with the original high_limit. */
1936	if (gap_end > info->high_limit)
1937		gap_end = info->high_limit;
1938
1939found_highest:
1940	/* Compute highest gap address at the desired alignment */
1941	gap_end -= info->length;
1942	gap_end -= (gap_end - info->align_offset) & info->align_mask;
1943
1944	VM_BUG_ON(gap_end < info->low_limit);
1945	VM_BUG_ON(gap_end < gap_start);
1946	return gap_end;
1947}
1948
1949/* Get an address range which is currently unmapped.
1950 * For shmat() with addr=0.
1951 *
1952 * Ugly calling convention alert:
1953 * Return value with the low bits set means error value,
1954 * ie
1955 *	if (ret & ~PAGE_MASK)
1956 *		error = ret;
1957 *
1958 * This function "knows" that -ENOMEM has the bits set.
1959 */
1960#ifndef HAVE_ARCH_UNMAPPED_AREA
1961unsigned long
1962arch_get_unmapped_area(struct file *filp, unsigned long addr,
1963		unsigned long len, unsigned long pgoff, unsigned long flags)
 
1964{
1965	struct mm_struct *mm = current->mm;
1966	struct vm_area_struct *vma;
1967	struct vm_unmapped_area_info info;
 
1968
1969	if (len > TASK_SIZE - mmap_min_addr)
1970		return -ENOMEM;
1971
1972	if (flags & MAP_FIXED)
1973		return addr;
1974
1975	if (addr) {
1976		addr = PAGE_ALIGN(addr);
1977		vma = find_vma(mm, addr);
1978		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
1979		    (!vma || addr + len <= vma->vm_start))
 
1980			return addr;
1981	}
1982
1983	info.flags = 0;
1984	info.length = len;
1985	info.low_limit = mm->mmap_base;
1986	info.high_limit = TASK_SIZE;
1987	info.align_mask = 0;
 
 
1988	return vm_unmapped_area(&info);
1989}
 
 
 
 
 
 
 
 
 
 
1990#endif
1991
1992/*
1993 * This mmap-allocator allocates new areas top-down from below the
1994 * stack's low limit (the base):
1995 */
1996#ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1997unsigned long
1998arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1999			  const unsigned long len, const unsigned long pgoff,
2000			  const unsigned long flags)
2001{
2002	struct vm_area_struct *vma;
2003	struct mm_struct *mm = current->mm;
2004	unsigned long addr = addr0;
2005	struct vm_unmapped_area_info info;
2006
2007	/* requested length too big for entire address space */
2008	if (len > TASK_SIZE - mmap_min_addr)
2009		return -ENOMEM;
2010
2011	if (flags & MAP_FIXED)
2012		return addr;
2013
2014	/* requesting a specific address */
2015	if (addr) {
2016		addr = PAGE_ALIGN(addr);
2017		vma = find_vma(mm, addr);
2018		if (TASK_SIZE - len >= addr && addr >= mmap_min_addr &&
2019				(!vma || addr + len <= vma->vm_start))
 
2020			return addr;
2021	}
2022
2023	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2024	info.length = len;
2025	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2026	info.high_limit = mm->mmap_base;
2027	info.align_mask = 0;
 
 
2028	addr = vm_unmapped_area(&info);
2029
2030	/*
2031	 * A failed mmap() very likely causes application failure,
2032	 * so fall back to the bottom-up function here. This scenario
2033	 * can happen with large stack limits and large mmap()
2034	 * allocations.
2035	 */
2036	if (offset_in_page(addr)) {
2037		VM_BUG_ON(addr != -ENOMEM);
2038		info.flags = 0;
2039		info.low_limit = TASK_UNMAPPED_BASE;
2040		info.high_limit = TASK_SIZE;
2041		addr = vm_unmapped_area(&info);
2042	}
2043
2044	return addr;
2045}
 
 
 
 
 
 
 
 
 
 
2046#endif
2047
 
 
 
 
 
 
 
 
 
 
 
2048unsigned long
2049get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2050		unsigned long pgoff, unsigned long flags)
2051{
2052	unsigned long (*get_area)(struct file *, unsigned long,
2053				  unsigned long, unsigned long, unsigned long);
 
2054
2055	unsigned long error = arch_mmap_check(addr, len, flags);
2056	if (error)
2057		return error;
2058
2059	/* Careful about overflows.. */
2060	if (len > TASK_SIZE)
2061		return -ENOMEM;
2062
2063	get_area = current->mm->get_unmapped_area;
2064	if (file) {
2065		if (file->f_op->get_unmapped_area)
2066			get_area = file->f_op->get_unmapped_area;
2067	} else if (flags & MAP_SHARED) {
2068		/*
2069		 * mmap_region() will call shmem_zero_setup() to create a file,
2070		 * so use shmem's get_unmapped_area in case it can be huge.
2071		 * do_mmap_pgoff() will clear pgoff, so match alignment.
2072		 */
2073		pgoff = 0;
2074		get_area = shmem_get_unmapped_area;
2075	}
2076
2077	addr = get_area(file, addr, len, pgoff, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2078	if (IS_ERR_VALUE(addr))
2079		return addr;
2080
2081	if (addr > TASK_SIZE - len)
2082		return -ENOMEM;
2083	if (offset_in_page(addr))
2084		return -EINVAL;
2085
2086	error = security_mmap_addr(addr);
2087	return error ? error : addr;
2088}
2089
2090EXPORT_SYMBOL(get_unmapped_area);
 
 
 
 
 
 
 
 
 
2091
2092/* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2093struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
2094{
2095	struct rb_node *rb_node;
2096	struct vm_area_struct *vma;
2097
2098	/* Check the cache first. */
2099	vma = vmacache_find(mm, addr);
2100	if (likely(vma))
2101		return vma;
2102
2103	rb_node = mm->mm_rb.rb_node;
2104
2105	while (rb_node) {
2106		struct vm_area_struct *tmp;
2107
2108		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
 
 
 
 
 
2109
2110		if (tmp->vm_end > addr) {
2111			vma = tmp;
2112			if (tmp->vm_start <= addr)
2113				break;
2114			rb_node = rb_node->rb_left;
2115		} else
2116			rb_node = rb_node->rb_right;
2117	}
2118
2119	if (vma)
2120		vmacache_update(addr, vma);
2121	return vma;
2122}
2123
2124EXPORT_SYMBOL(find_vma);
2125
2126/*
2127 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
 
 
 
 
 
 
 
 
 
 
2128 */
2129struct vm_area_struct *
2130find_vma_prev(struct mm_struct *mm, unsigned long addr,
2131			struct vm_area_struct **pprev)
2132{
2133	struct vm_area_struct *vma;
 
2134
2135	vma = find_vma(mm, addr);
2136	if (vma) {
2137		*pprev = vma->vm_prev;
2138	} else {
2139		struct rb_node *rb_node = mm->mm_rb.rb_node;
2140		*pprev = NULL;
2141		while (rb_node) {
2142			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2143			rb_node = rb_node->rb_right;
2144		}
2145	}
2146	return vma;
2147}
2148
2149/*
2150 * Verify that the stack growth is acceptable and
2151 * update accounting. This is shared with both the
2152 * grow-up and grow-down cases.
2153 */
2154static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
 
2155{
2156	struct mm_struct *mm = vma->vm_mm;
2157	struct rlimit *rlim = current->signal->rlim;
2158	unsigned long new_start, actual_size;
2159
2160	/* address space limit tests */
2161	if (!may_expand_vm(mm, vma->vm_flags, grow))
2162		return -ENOMEM;
2163
2164	/* Stack limit test */
2165	actual_size = size;
2166	if (size && (vma->vm_flags & (VM_GROWSUP | VM_GROWSDOWN)))
2167		actual_size -= PAGE_SIZE;
2168	if (actual_size > READ_ONCE(rlim[RLIMIT_STACK].rlim_cur))
2169		return -ENOMEM;
2170
2171	/* mlock limit tests */
2172	if (vma->vm_flags & VM_LOCKED) {
2173		unsigned long locked;
2174		unsigned long limit;
2175		locked = mm->locked_vm + grow;
2176		limit = READ_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
2177		limit >>= PAGE_SHIFT;
2178		if (locked > limit && !capable(CAP_IPC_LOCK))
2179			return -ENOMEM;
2180	}
2181
2182	/* Check to ensure the stack will not grow into a hugetlb-only region */
2183	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2184			vma->vm_end - size;
2185	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2186		return -EFAULT;
2187
2188	/*
2189	 * Overcommit..  This must be the final test, as it will
2190	 * update security statistics.
2191	 */
2192	if (security_vm_enough_memory_mm(mm, grow))
2193		return -ENOMEM;
2194
2195	return 0;
2196}
2197
2198#if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2199/*
2200 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2201 * vma is the last one with address > vma->vm_end.  Have to extend vma.
2202 */
2203int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2204{
2205	struct mm_struct *mm = vma->vm_mm;
 
 
2206	int error = 0;
 
2207
2208	if (!(vma->vm_flags & VM_GROWSUP))
2209		return -EFAULT;
2210
2211	/* Guard against wrapping around to address 0. */
2212	if (address < PAGE_ALIGN(address+4))
2213		address = PAGE_ALIGN(address+4);
2214	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2215		return -ENOMEM;
2216
2217	/* We must make sure the anon_vma is allocated. */
2218	if (unlikely(anon_vma_prepare(vma)))
 
2219		return -ENOMEM;
 
2220
2221	/*
2222	 * vma->vm_start/vm_end cannot change under us because the caller
2223	 * is required to hold the mmap_sem in read mode.  We need the
2224	 * anon_vma lock to serialize against concurrent expand_stacks.
2225	 */
2226	anon_vma_lock_write(vma->anon_vma);
2227
2228	/* Somebody else might have raced and expanded it already */
2229	if (address > vma->vm_end) {
2230		unsigned long size, grow;
2231
2232		size = address - vma->vm_start;
2233		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2234
2235		error = -ENOMEM;
2236		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2237			error = acct_stack_growth(vma, size, grow);
2238			if (!error) {
2239				/*
2240				 * vma_gap_update() doesn't support concurrent
2241				 * updates, but we only hold a shared mmap_sem
2242				 * lock here, so we need to protect against
2243				 * concurrent vma expansions.
2244				 * anon_vma_lock_write() doesn't help here, as
2245				 * we don't guarantee that all growable vmas
2246				 * in a mm share the same root anon vma.
2247				 * So, we reuse mm->page_table_lock to guard
2248				 * against concurrent vma expansions.
2249				 */
2250				spin_lock(&mm->page_table_lock);
2251				if (vma->vm_flags & VM_LOCKED)
2252					mm->locked_vm += grow;
2253				vm_stat_account(mm, vma->vm_flags, grow);
2254				anon_vma_interval_tree_pre_update_vma(vma);
2255				vma->vm_end = address;
 
 
2256				anon_vma_interval_tree_post_update_vma(vma);
2257				if (vma->vm_next)
2258					vma_gap_update(vma->vm_next);
2259				else
2260					mm->highest_vm_end = address;
2261				spin_unlock(&mm->page_table_lock);
2262
2263				perf_event_mmap(vma);
2264			}
2265		}
2266	}
2267	anon_vma_unlock_write(vma->anon_vma);
2268	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2269	validate_mm(mm);
2270	return error;
2271}
2272#endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2273
2274/*
2275 * vma is the first one with address < vma->vm_start.  Have to extend vma.
 
2276 */
2277int expand_downwards(struct vm_area_struct *vma,
2278				   unsigned long address)
2279{
2280	struct mm_struct *mm = vma->vm_mm;
2281	int error;
 
 
 
 
 
 
 
2282
2283	address &= PAGE_MASK;
2284	error = security_mmap_addr(address);
2285	if (error)
2286		return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287
2288	/* We must make sure the anon_vma is allocated. */
2289	if (unlikely(anon_vma_prepare(vma)))
 
2290		return -ENOMEM;
 
2291
2292	/*
2293	 * vma->vm_start/vm_end cannot change under us because the caller
2294	 * is required to hold the mmap_sem in read mode.  We need the
2295	 * anon_vma lock to serialize against concurrent expand_stacks.
2296	 */
2297	anon_vma_lock_write(vma->anon_vma);
2298
2299	/* Somebody else might have raced and expanded it already */
2300	if (address < vma->vm_start) {
2301		unsigned long size, grow;
2302
2303		size = vma->vm_end - address;
2304		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2305
2306		error = -ENOMEM;
2307		if (grow <= vma->vm_pgoff) {
2308			error = acct_stack_growth(vma, size, grow);
2309			if (!error) {
2310				/*
2311				 * vma_gap_update() doesn't support concurrent
2312				 * updates, but we only hold a shared mmap_sem
2313				 * lock here, so we need to protect against
2314				 * concurrent vma expansions.
2315				 * anon_vma_lock_write() doesn't help here, as
2316				 * we don't guarantee that all growable vmas
2317				 * in a mm share the same root anon vma.
2318				 * So, we reuse mm->page_table_lock to guard
2319				 * against concurrent vma expansions.
2320				 */
2321				spin_lock(&mm->page_table_lock);
2322				if (vma->vm_flags & VM_LOCKED)
2323					mm->locked_vm += grow;
2324				vm_stat_account(mm, vma->vm_flags, grow);
2325				anon_vma_interval_tree_pre_update_vma(vma);
2326				vma->vm_start = address;
2327				vma->vm_pgoff -= grow;
 
 
2328				anon_vma_interval_tree_post_update_vma(vma);
2329				vma_gap_update(vma);
2330				spin_unlock(&mm->page_table_lock);
2331
2332				perf_event_mmap(vma);
2333			}
2334		}
2335	}
2336	anon_vma_unlock_write(vma->anon_vma);
2337	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2338	validate_mm(mm);
2339	return error;
2340}
2341
2342/*
2343 * Note how expand_stack() refuses to expand the stack all the way to
2344 * abut the next virtual mapping, *unless* that mapping itself is also
2345 * a stack mapping. We want to leave room for a guard page, after all
2346 * (the guard page itself is not added here, that is done by the
2347 * actual page faulting logic)
2348 *
2349 * This matches the behavior of the guard page logic (see mm/memory.c:
2350 * check_stack_guard_page()), which only allows the guard page to be
2351 * removed under these circumstances.
2352 */
 
 
 
 
 
2353#ifdef CONFIG_STACK_GROWSUP
2354int expand_stack(struct vm_area_struct *vma, unsigned long address)
2355{
2356	struct vm_area_struct *next;
2357
2358	address &= PAGE_MASK;
2359	next = vma->vm_next;
2360	if (next && next->vm_start == address + PAGE_SIZE) {
2361		if (!(next->vm_flags & VM_GROWSUP))
2362			return -ENOMEM;
2363	}
2364	return expand_upwards(vma, address);
2365}
2366
2367struct vm_area_struct *
2368find_extend_vma(struct mm_struct *mm, unsigned long addr)
2369{
2370	struct vm_area_struct *vma, *prev;
2371
2372	addr &= PAGE_MASK;
2373	vma = find_vma_prev(mm, addr, &prev);
2374	if (vma && (vma->vm_start <= addr))
2375		return vma;
2376	if (!prev || expand_stack(prev, addr))
 
 
2377		return NULL;
2378	if (prev->vm_flags & VM_LOCKED)
2379		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2380	return prev;
2381}
2382#else
2383int expand_stack(struct vm_area_struct *vma, unsigned long address)
2384{
2385	struct vm_area_struct *prev;
2386
2387	address &= PAGE_MASK;
2388	prev = vma->vm_prev;
2389	if (prev && prev->vm_end == address) {
2390		if (!(prev->vm_flags & VM_GROWSDOWN))
2391			return -ENOMEM;
2392	}
2393	return expand_downwards(vma, address);
2394}
2395
2396struct vm_area_struct *
2397find_extend_vma(struct mm_struct *mm, unsigned long addr)
2398{
2399	struct vm_area_struct *vma;
2400	unsigned long start;
2401
2402	addr &= PAGE_MASK;
2403	vma = find_vma(mm, addr);
2404	if (!vma)
2405		return NULL;
2406	if (vma->vm_start <= addr)
2407		return vma;
2408	if (!(vma->vm_flags & VM_GROWSDOWN))
2409		return NULL;
2410	start = vma->vm_start;
2411	if (expand_stack(vma, addr))
2412		return NULL;
2413	if (vma->vm_flags & VM_LOCKED)
2414		populate_vma_page_range(vma, addr, start, NULL);
2415	return vma;
2416}
2417#endif
2418
2419EXPORT_SYMBOL_GPL(find_extend_vma);
2420
2421/*
2422 * Ok - we have the memory areas we should free on the vma list,
2423 * so release them, and do the vma updates.
2424 *
2425 * Called with the mm semaphore held.
2426 */
2427static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2428{
2429	unsigned long nr_accounted = 0;
2430
2431	/* Update high watermark before we lower total_vm */
2432	update_hiwater_vm(mm);
2433	do {
2434		long nrpages = vma_pages(vma);
2435
2436		if (vma->vm_flags & VM_ACCOUNT)
2437			nr_accounted += nrpages;
2438		vm_stat_account(mm, vma->vm_flags, -nrpages);
2439		vma = remove_vma(vma);
2440	} while (vma);
2441	vm_unacct_memory(nr_accounted);
2442	validate_mm(mm);
2443}
2444
2445/*
2446 * Get rid of page table information in the indicated region.
 
2447 *
2448 * Called with the mm semaphore held.
 
 
 
 
 
2449 */
2450static void unmap_region(struct mm_struct *mm,
2451		struct vm_area_struct *vma, struct vm_area_struct *prev,
2452		unsigned long start, unsigned long end)
2453{
2454	struct vm_area_struct *next = prev ? prev->vm_next : mm->mmap;
2455	struct mmu_gather tlb;
2456
2457	lru_add_drain();
2458	tlb_gather_mmu(&tlb, mm, start, end);
2459	update_hiwater_rss(mm);
2460	unmap_vmas(&tlb, vma, start, end);
2461	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2462				 next ? next->vm_start : USER_PGTABLES_CEILING);
2463	tlb_finish_mmu(&tlb, start, end);
2464}
2465
2466/*
2467 * Create a list of vma's touched by the unmap, removing them from the mm's
2468 * vma list as we go..
2469 */
2470static void
2471detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2472	struct vm_area_struct *prev, unsigned long end)
2473{
2474	struct vm_area_struct **insertion_point;
2475	struct vm_area_struct *tail_vma = NULL;
2476
2477	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2478	vma->vm_prev = NULL;
2479	do {
2480		vma_rb_erase(vma, &mm->mm_rb);
2481		mm->map_count--;
2482		tail_vma = vma;
2483		vma = vma->vm_next;
2484	} while (vma && vma->vm_start < end);
2485	*insertion_point = vma;
2486	if (vma) {
2487		vma->vm_prev = prev;
2488		vma_gap_update(vma);
2489	} else
2490		mm->highest_vm_end = prev ? prev->vm_end : 0;
2491	tail_vma->vm_next = NULL;
2492
2493	/* Kill the cache */
2494	vmacache_invalidate(mm);
2495}
2496
2497/*
2498 * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2499 * munmap path where it doesn't make sense to fail.
2500 */
2501static int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2502	      unsigned long addr, int new_below)
2503{
2504	struct vm_area_struct *new;
2505	int err;
2506
2507	if (is_vm_hugetlb_page(vma) && (addr &
2508					~(huge_page_mask(hstate_vma(vma)))))
2509		return -EINVAL;
2510
2511	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2512	if (!new)
2513		return -ENOMEM;
2514
2515	/* most fields are the same, copy all, and then fixup */
2516	*new = *vma;
2517
2518	INIT_LIST_HEAD(&new->anon_vma_chain);
2519
2520	if (new_below)
2521		new->vm_end = addr;
2522	else {
2523		new->vm_start = addr;
2524		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2525	}
2526
2527	err = vma_dup_policy(vma, new);
2528	if (err)
2529		goto out_free_vma;
2530
2531	err = anon_vma_clone(new, vma);
2532	if (err)
2533		goto out_free_mpol;
2534
2535	if (new->vm_file)
2536		get_file(new->vm_file);
2537
2538	if (new->vm_ops && new->vm_ops->open)
2539		new->vm_ops->open(new);
2540
2541	if (new_below)
2542		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2543			((addr - new->vm_start) >> PAGE_SHIFT), new);
2544	else
2545		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2546
2547	/* Success. */
2548	if (!err)
2549		return 0;
2550
2551	/* Clean everything up if vma_adjust failed. */
2552	if (new->vm_ops && new->vm_ops->close)
2553		new->vm_ops->close(new);
2554	if (new->vm_file)
2555		fput(new->vm_file);
2556	unlink_anon_vmas(new);
2557 out_free_mpol:
2558	mpol_put(vma_policy(new));
2559 out_free_vma:
2560	kmem_cache_free(vm_area_cachep, new);
2561	return err;
2562}
2563
2564/*
2565 * Split a vma into two pieces at address 'addr', a new vma is allocated
2566 * either for the first part or the tail.
 
 
 
 
2567 */
2568int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2569	      unsigned long addr, int new_below)
2570{
2571	if (mm->map_count >= sysctl_max_map_count)
2572		return -ENOMEM;
2573
2574	return __split_vma(mm, vma, addr, new_below);
2575}
2576
2577/* Munmap is split into 2 main parts -- this part which finds
2578 * what needs doing, and the areas themselves, which do the
2579 * work.  This now handles partial unmappings.
2580 * Jeremy Fitzhardinge <jeremy@goop.org>
2581 */
2582int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2583{
2584	unsigned long end;
2585	struct vm_area_struct *vma, *prev, *last;
2586
2587	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2588		return -EINVAL;
 
2589
2590	len = PAGE_ALIGN(len);
2591	if (len == 0)
2592		return -EINVAL;
2593
2594	/* Find the first overlapping VMA */
2595	vma = find_vma(mm, start);
2596	if (!vma)
2597		return 0;
2598	prev = vma->vm_prev;
2599	/* we have  start < vma->vm_end  */
2600
2601	/* if it doesn't overlap, we have nothing.. */
2602	end = start + len;
2603	if (vma->vm_start >= end)
2604		return 0;
2605
2606	/*
2607	 * If we need to split any vma, do it now to save pain later.
2608	 *
2609	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2610	 * unmapped vm_area_struct will remain in use: so lower split_vma
2611	 * places tmp vma above, and higher split_vma places tmp vma below.
2612	 */
2613	if (start > vma->vm_start) {
2614		int error;
2615
2616		/*
2617		 * Make sure that map_count on return from munmap() will
2618		 * not exceed its limit; but let map_count go just above
2619		 * its limit temporarily, to help free resources as expected.
2620		 */
2621		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2622			return -ENOMEM;
2623
2624		error = __split_vma(mm, vma, start, 0);
2625		if (error)
2626			return error;
2627		prev = vma;
2628	}
2629
2630	/* Does it split the last one? */
2631	last = find_vma(mm, end);
2632	if (last && end > last->vm_start) {
2633		int error = __split_vma(mm, last, end, 1);
2634		if (error)
2635			return error;
2636	}
2637	vma = prev ? prev->vm_next : mm->mmap;
2638
2639	/*
2640	 * unlock any mlock()ed ranges before detaching vmas
2641	 */
2642	if (mm->locked_vm) {
2643		struct vm_area_struct *tmp = vma;
2644		while (tmp && tmp->vm_start < end) {
2645			if (tmp->vm_flags & VM_LOCKED) {
2646				mm->locked_vm -= vma_pages(tmp);
2647				munlock_vma_pages_all(tmp);
2648			}
2649			tmp = tmp->vm_next;
2650		}
2651	}
2652
2653	/*
2654	 * Remove the vma's, and unmap the actual pages
2655	 */
2656	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2657	unmap_region(mm, vma, prev, start, end);
2658
2659	arch_unmap(mm, vma, start, end);
2660
2661	/* Fix up all other VM information */
2662	remove_vma_list(mm, vma);
2663
2664	return 0;
2665}
2666
2667int vm_munmap(unsigned long start, size_t len)
2668{
2669	int ret;
2670	struct mm_struct *mm = current->mm;
 
 
2671
2672	if (down_write_killable(&mm->mmap_sem))
2673		return -EINTR;
2674
2675	ret = do_munmap(mm, start, len);
2676	up_write(&mm->mmap_sem);
 
 
 
2677	return ret;
2678}
 
 
 
 
 
2679EXPORT_SYMBOL(vm_munmap);
2680
2681SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2682{
2683	int ret;
2684	struct mm_struct *mm = current->mm;
2685
2686	profile_munmap(addr);
2687	if (down_write_killable(&mm->mmap_sem))
2688		return -EINTR;
2689	ret = do_munmap(mm, addr, len);
2690	up_write(&mm->mmap_sem);
2691	return ret;
2692}
2693
2694
2695/*
2696 * Emulation of deprecated remap_file_pages() syscall.
2697 */
2698SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
2699		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
2700{
2701
2702	struct mm_struct *mm = current->mm;
2703	struct vm_area_struct *vma;
2704	unsigned long populate = 0;
2705	unsigned long ret = -EINVAL;
2706	struct file *file;
 
2707
2708	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.txt.\n",
2709		     current->comm, current->pid);
2710
2711	if (prot)
2712		return ret;
2713	start = start & PAGE_MASK;
2714	size = size & PAGE_MASK;
2715
2716	if (start + size <= start)
2717		return ret;
2718
2719	/* Does pgoff wrap? */
2720	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
2721		return ret;
2722
2723	if (down_write_killable(&mm->mmap_sem))
2724		return -EINTR;
2725
2726	vma = find_vma(mm, start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2727
2728	if (!vma || !(vma->vm_flags & VM_SHARED))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2729		goto out;
2730
2731	if (start < vma->vm_start)
 
 
 
2732		goto out;
2733
2734	if (start + size > vma->vm_end) {
2735		struct vm_area_struct *next;
 
2736
2737		for (next = vma->vm_next; next; next = next->vm_next) {
2738			/* hole between vmas ? */
2739			if (next->vm_start != next->vm_prev->vm_end)
2740				goto out;
2741
2742			if (next->vm_file != vma->vm_file)
2743				goto out;
2744
2745			if (next->vm_flags != vma->vm_flags)
2746				goto out;
2747
2748			if (start + size <= next->vm_end)
2749				break;
 
 
2750		}
2751
2752		if (!next)
2753			goto out;
2754	}
2755
2756	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
2757	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
2758	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
2759
2760	flags &= MAP_NONBLOCK;
2761	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
2762	if (vma->vm_flags & VM_LOCKED) {
2763		struct vm_area_struct *tmp;
2764		flags |= MAP_LOCKED;
2765
2766		/* drop PG_Mlocked flag for over-mapped range */
2767		for (tmp = vma; tmp->vm_start >= start + size;
2768				tmp = tmp->vm_next) {
2769			/*
2770			 * Split pmd and munlock page on the border
2771			 * of the range.
2772			 */
2773			vma_adjust_trans_huge(tmp, start, start + size, 0);
2774
2775			munlock_vma_pages_range(tmp,
2776					max(tmp->vm_start, start),
2777					min(tmp->vm_end, start + size));
2778		}
2779	}
2780
2781	file = get_file(vma->vm_file);
2782	ret = do_mmap_pgoff(vma->vm_file, start, size,
2783			prot, flags, pgoff, &populate);
2784	fput(file);
2785out:
2786	up_write(&mm->mmap_sem);
2787	if (populate)
2788		mm_populate(ret, populate);
2789	if (!IS_ERR_VALUE(ret))
2790		ret = 0;
2791	return ret;
2792}
2793
2794static inline void verify_mm_writelocked(struct mm_struct *mm)
2795{
2796#ifdef CONFIG_DEBUG_VM
2797	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2798		WARN_ON(1);
2799		up_read(&mm->mmap_sem);
2800	}
2801#endif
2802}
2803
2804/*
2805 *  this is really a simplified "do_mmap".  it only handles
2806 *  anonymous maps.  eventually we may be able to do some
2807 *  brk-specific accounting here.
 
 
 
 
 
 
 
2808 */
2809static int do_brk(unsigned long addr, unsigned long request)
 
2810{
2811	struct mm_struct *mm = current->mm;
2812	struct vm_area_struct *vma, *prev;
2813	unsigned long flags, len;
2814	struct rb_node **rb_link, *rb_parent;
2815	pgoff_t pgoff = addr >> PAGE_SHIFT;
2816	int error;
2817
2818	len = PAGE_ALIGN(request);
2819	if (len < request)
2820		return -ENOMEM;
2821	if (!len)
2822		return 0;
2823
2824	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2825
2826	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2827	if (offset_in_page(error))
2828		return error;
2829
2830	error = mlock_future_check(mm, mm->def_flags, len);
2831	if (error)
2832		return error;
2833
2834	/*
2835	 * mm->mmap_sem is required to protect against another thread
2836	 * changing the mappings in case we sleep.
2837	 */
2838	verify_mm_writelocked(mm);
2839
2840	/*
2841	 * Clear old maps.  this also does some error checking for us
2842	 */
2843	while (find_vma_links(mm, addr, addr + len, &prev, &rb_link,
2844			      &rb_parent)) {
2845		if (do_munmap(mm, addr, len))
2846			return -ENOMEM;
2847	}
2848
2849	/* Check against address space limits *after* clearing old maps... */
2850	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2851		return -ENOMEM;
2852
2853	if (mm->map_count > sysctl_max_map_count)
2854		return -ENOMEM;
2855
2856	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2857		return -ENOMEM;
2858
2859	/* Can we just expand an old private anonymous mapping? */
2860	vma = vma_merge(mm, prev, addr, addr + len, flags,
2861			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX);
2862	if (vma)
2863		goto out;
2864
2865	/*
2866	 * create a vma struct for an anonymous mapping
 
2867	 */
2868	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2869	if (!vma) {
2870		vm_unacct_memory(len >> PAGE_SHIFT);
2871		return -ENOMEM;
 
 
 
 
 
 
 
2872	}
2873
2874	INIT_LIST_HEAD(&vma->anon_vma_chain);
2875	vma->vm_mm = mm;
2876	vma->vm_start = addr;
2877	vma->vm_end = addr + len;
2878	vma->vm_pgoff = pgoff;
2879	vma->vm_flags = flags;
 
 
 
 
2880	vma->vm_page_prot = vm_get_page_prot(flags);
2881	vma_link(mm, vma, prev, rb_link, rb_parent);
 
 
 
 
 
 
2882out:
2883	perf_event_mmap(vma);
2884	mm->total_vm += len >> PAGE_SHIFT;
2885	mm->data_vm += len >> PAGE_SHIFT;
2886	if (flags & VM_LOCKED)
2887		mm->locked_vm += (len >> PAGE_SHIFT);
2888	vma->vm_flags |= VM_SOFTDIRTY;
2889	return 0;
 
 
 
 
 
 
2890}
2891
2892int vm_brk(unsigned long addr, unsigned long len)
2893{
2894	struct mm_struct *mm = current->mm;
 
 
2895	int ret;
2896	bool populate;
 
 
2897
2898	if (down_write_killable(&mm->mmap_sem))
 
 
 
 
 
 
 
 
 
 
2899		return -EINTR;
2900
2901	ret = do_brk(addr, len);
 
 
 
 
 
 
 
 
 
2902	populate = ((mm->def_flags & VM_LOCKED) != 0);
2903	up_write(&mm->mmap_sem);
 
2904	if (populate && !ret)
2905		mm_populate(addr, len);
2906	return ret;
 
 
 
 
 
2907}
2908EXPORT_SYMBOL(vm_brk);
2909
2910/* Release all mmaps. */
2911void exit_mmap(struct mm_struct *mm)
2912{
2913	struct mmu_gather tlb;
2914	struct vm_area_struct *vma;
2915	unsigned long nr_accounted = 0;
 
 
2916
2917	/* mm's last user has gone, and its about to be pulled down */
2918	mmu_notifier_release(mm);
2919
2920	if (mm->locked_vm) {
2921		vma = mm->mmap;
2922		while (vma) {
2923			if (vma->vm_flags & VM_LOCKED)
2924				munlock_vma_pages_all(vma);
2925			vma = vma->vm_next;
2926		}
2927	}
2928
2929	arch_exit_mmap(mm);
2930
2931	vma = mm->mmap;
2932	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2933		return;
 
 
 
 
2934
2935	lru_add_drain();
2936	flush_cache_mm(mm);
2937	tlb_gather_mmu(&tlb, mm, 0, -1);
2938	/* update_hiwater_rss(mm) here? but nobody should be looking */
2939	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2940	unmap_vmas(&tlb, vma, 0, -1);
 
2941
2942	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2943	tlb_finish_mmu(&tlb, 0, -1);
 
 
 
 
 
 
 
 
 
2944
2945	/*
2946	 * Walk the list again, actually closing and freeing it,
2947	 * with preemption enabled, without holding any MM locks.
 
2948	 */
2949	while (vma) {
 
2950		if (vma->vm_flags & VM_ACCOUNT)
2951			nr_accounted += vma_pages(vma);
2952		vma = remove_vma(vma);
2953	}
 
 
 
 
 
 
 
 
 
 
2954	vm_unacct_memory(nr_accounted);
2955}
2956
2957/* Insert vm structure into process list sorted by address
2958 * and into the inode's i_mmap tree.  If vm_file is non-NULL
2959 * then i_mmap_rwsem is taken here.
2960 */
2961int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2962{
2963	struct vm_area_struct *prev;
2964	struct rb_node **rb_link, *rb_parent;
2965
2966	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2967			   &prev, &rb_link, &rb_parent))
2968		return -ENOMEM;
 
2969	if ((vma->vm_flags & VM_ACCOUNT) &&
2970	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2971		return -ENOMEM;
2972
2973	/*
2974	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2975	 * until its first write fault, when page's anon_vma and index
2976	 * are set.  But now set the vm_pgoff it will almost certainly
2977	 * end up with (unless mremap moves it elsewhere before that
2978	 * first wfault), so /proc/pid/maps tells a consistent story.
2979	 *
2980	 * By setting it to reflect the virtual start address of the
2981	 * vma, merges and splits can happen in a seamless way, just
2982	 * using the existing file pgoff checks and manipulations.
2983	 * Similarly in do_mmap_pgoff and in do_brk.
2984	 */
2985	if (vma_is_anonymous(vma)) {
2986		BUG_ON(vma->anon_vma);
2987		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2988	}
2989
2990	vma_link(mm, vma, prev, rb_link, rb_parent);
2991	return 0;
2992}
2993
2994/*
2995 * Copy the vma structure to a new location in the same mm,
2996 * prior to moving page table entries, to effect an mremap move.
2997 */
2998struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2999	unsigned long addr, unsigned long len, pgoff_t pgoff,
3000	bool *need_rmap_locks)
3001{
3002	struct vm_area_struct *vma = *vmap;
3003	unsigned long vma_start = vma->vm_start;
3004	struct mm_struct *mm = vma->vm_mm;
3005	struct vm_area_struct *new_vma, *prev;
3006	struct rb_node **rb_link, *rb_parent;
3007	bool faulted_in_anon_vma = true;
3008
3009	/*
3010	 * If anonymous vma has not yet been faulted, update new pgoff
3011	 * to match new location, to increase its chance of merging.
3012	 */
3013	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3014		pgoff = addr >> PAGE_SHIFT;
3015		faulted_in_anon_vma = false;
3016	}
3017
3018	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3019		return NULL;	/* should never get here */
3020	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3021			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3022			    vma->vm_userfaultfd_ctx);
3023	if (new_vma) {
3024		/*
3025		 * Source vma may have been merged into new_vma
3026		 */
3027		if (unlikely(vma_start >= new_vma->vm_start &&
3028			     vma_start < new_vma->vm_end)) {
3029			/*
3030			 * The only way we can get a vma_merge with
3031			 * self during an mremap is if the vma hasn't
3032			 * been faulted in yet and we were allowed to
3033			 * reset the dst vma->vm_pgoff to the
3034			 * destination address of the mremap to allow
3035			 * the merge to happen. mremap must change the
3036			 * vm_pgoff linearity between src and dst vmas
3037			 * (in turn preventing a vma_merge) to be
3038			 * safe. It is only safe to keep the vm_pgoff
3039			 * linear if there are no pages mapped yet.
3040			 */
3041			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3042			*vmap = vma = new_vma;
3043		}
3044		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3045	} else {
3046		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
3047		if (!new_vma)
3048			goto out;
3049		*new_vma = *vma;
3050		new_vma->vm_start = addr;
3051		new_vma->vm_end = addr + len;
3052		new_vma->vm_pgoff = pgoff;
3053		if (vma_dup_policy(vma, new_vma))
3054			goto out_free_vma;
3055		INIT_LIST_HEAD(&new_vma->anon_vma_chain);
3056		if (anon_vma_clone(new_vma, vma))
3057			goto out_free_mempol;
3058		if (new_vma->vm_file)
3059			get_file(new_vma->vm_file);
3060		if (new_vma->vm_ops && new_vma->vm_ops->open)
3061			new_vma->vm_ops->open(new_vma);
3062		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3063		*need_rmap_locks = false;
3064	}
3065	return new_vma;
3066
3067out_free_mempol:
3068	mpol_put(vma_policy(new_vma));
3069out_free_vma:
3070	kmem_cache_free(vm_area_cachep, new_vma);
3071out:
3072	return NULL;
3073}
3074
3075/*
3076 * Return true if the calling process may expand its vm space by the passed
3077 * number of pages
3078 */
3079bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3080{
3081	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3082		return false;
3083
3084	if (is_data_mapping(flags) &&
3085	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3086		/* Workaround for Valgrind */
3087		if (rlimit(RLIMIT_DATA) == 0 &&
3088		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3089			return true;
3090		if (!ignore_rlimit_data) {
3091			pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits or use boot option ignore_rlimit_data.\n",
3092				     current->comm, current->pid,
3093				     (mm->data_vm + npages) << PAGE_SHIFT,
3094				     rlimit(RLIMIT_DATA));
 
 
 
3095			return false;
3096		}
3097	}
3098
3099	return true;
3100}
3101
3102void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3103{
3104	mm->total_vm += npages;
3105
3106	if (is_exec_mapping(flags))
3107		mm->exec_vm += npages;
3108	else if (is_stack_mapping(flags))
3109		mm->stack_vm += npages;
3110	else if (is_data_mapping(flags))
3111		mm->data_vm += npages;
3112}
3113
3114static int special_mapping_fault(struct vm_area_struct *vma,
3115				 struct vm_fault *vmf);
3116
3117/*
 
 
3118 * Having a close hook prevents vma merging regardless of flags.
3119 */
3120static void special_mapping_close(struct vm_area_struct *vma)
3121{
 
 
 
 
3122}
3123
3124static const char *special_mapping_name(struct vm_area_struct *vma)
3125{
3126	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3127}
3128
3129static int special_mapping_mremap(struct vm_area_struct *new_vma)
3130{
3131	struct vm_special_mapping *sm = new_vma->vm_private_data;
3132
 
 
 
3133	if (sm->mremap)
3134		return sm->mremap(sm, new_vma);
 
3135	return 0;
3136}
3137
 
 
 
 
 
 
 
 
 
 
 
3138static const struct vm_operations_struct special_mapping_vmops = {
3139	.close = special_mapping_close,
3140	.fault = special_mapping_fault,
3141	.mremap = special_mapping_mremap,
3142	.name = special_mapping_name,
 
 
 
3143};
3144
3145static const struct vm_operations_struct legacy_special_mapping_vmops = {
3146	.close = special_mapping_close,
3147	.fault = special_mapping_fault,
3148};
3149
3150static int special_mapping_fault(struct vm_area_struct *vma,
3151				struct vm_fault *vmf)
3152{
 
3153	pgoff_t pgoff;
3154	struct page **pages;
 
3155
3156	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3157		pages = vma->vm_private_data;
3158	} else {
3159		struct vm_special_mapping *sm = vma->vm_private_data;
3160
3161		if (sm->fault)
3162			return sm->fault(sm, vma, vmf);
3163
3164		pages = sm->pages;
3165	}
3166
3167	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3168		pgoff--;
3169
3170	if (*pages) {
3171		struct page *page = *pages;
3172		get_page(page);
3173		vmf->page = page;
3174		return 0;
3175	}
3176
3177	return VM_FAULT_SIGBUS;
3178}
3179
3180static struct vm_area_struct *__install_special_mapping(
3181	struct mm_struct *mm,
3182	unsigned long addr, unsigned long len,
3183	unsigned long vm_flags, void *priv,
3184	const struct vm_operations_struct *ops)
3185{
3186	int ret;
3187	struct vm_area_struct *vma;
3188
3189	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
3190	if (unlikely(vma == NULL))
3191		return ERR_PTR(-ENOMEM);
3192
3193	INIT_LIST_HEAD(&vma->anon_vma_chain);
3194	vma->vm_mm = mm;
3195	vma->vm_start = addr;
3196	vma->vm_end = addr + len;
3197
3198	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3199	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3200
3201	vma->vm_ops = ops;
3202	vma->vm_private_data = priv;
3203
3204	ret = insert_vm_struct(mm, vma);
3205	if (ret)
3206		goto out;
3207
3208	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3209
3210	perf_event_mmap(vma);
3211
3212	return vma;
3213
3214out:
3215	kmem_cache_free(vm_area_cachep, vma);
3216	return ERR_PTR(ret);
3217}
3218
3219bool vma_is_special_mapping(const struct vm_area_struct *vma,
3220	const struct vm_special_mapping *sm)
3221{
3222	return vma->vm_private_data == sm &&
3223		(vma->vm_ops == &special_mapping_vmops ||
3224		 vma->vm_ops == &legacy_special_mapping_vmops);
3225}
3226
3227/*
3228 * Called with mm->mmap_sem held for writing.
3229 * Insert a new vma covering the given region, with the given flags.
3230 * Its pages are supplied by the given array of struct page *.
3231 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3232 * The region past the last page supplied will always produce SIGBUS.
3233 * The array pointer and the pages it points to are assumed to stay alive
3234 * for as long as this mapping might exist.
3235 */
3236struct vm_area_struct *_install_special_mapping(
3237	struct mm_struct *mm,
3238	unsigned long addr, unsigned long len,
3239	unsigned long vm_flags, const struct vm_special_mapping *spec)
3240{
3241	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3242					&special_mapping_vmops);
3243}
3244
3245int install_special_mapping(struct mm_struct *mm,
3246			    unsigned long addr, unsigned long len,
3247			    unsigned long vm_flags, struct page **pages)
3248{
3249	struct vm_area_struct *vma = __install_special_mapping(
3250		mm, addr, len, vm_flags, (void *)pages,
3251		&legacy_special_mapping_vmops);
3252
3253	return PTR_ERR_OR_ZERO(vma);
3254}
3255
3256static DEFINE_MUTEX(mm_all_locks_mutex);
3257
3258static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3259{
3260	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3261		/*
3262		 * The LSB of head.next can't change from under us
3263		 * because we hold the mm_all_locks_mutex.
3264		 */
3265		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_sem);
3266		/*
3267		 * We can safely modify head.next after taking the
3268		 * anon_vma->root->rwsem. If some other vma in this mm shares
3269		 * the same anon_vma we won't take it again.
3270		 *
3271		 * No need of atomic instructions here, head.next
3272		 * can't change from under us thanks to the
3273		 * anon_vma->root->rwsem.
3274		 */
3275		if (__test_and_set_bit(0, (unsigned long *)
3276				       &anon_vma->root->rb_root.rb_node))
3277			BUG();
3278	}
3279}
3280
3281static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3282{
3283	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3284		/*
3285		 * AS_MM_ALL_LOCKS can't change from under us because
3286		 * we hold the mm_all_locks_mutex.
3287		 *
3288		 * Operations on ->flags have to be atomic because
3289		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3290		 * mm_all_locks_mutex, there may be other cpus
3291		 * changing other bitflags in parallel to us.
3292		 */
3293		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3294			BUG();
3295		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_sem);
3296	}
3297}
3298
3299/*
3300 * This operation locks against the VM for all pte/vma/mm related
3301 * operations that could ever happen on a certain mm. This includes
3302 * vmtruncate, try_to_unmap, and all page faults.
3303 *
3304 * The caller must take the mmap_sem in write mode before calling
3305 * mm_take_all_locks(). The caller isn't allowed to release the
3306 * mmap_sem until mm_drop_all_locks() returns.
3307 *
3308 * mmap_sem in write mode is required in order to block all operations
3309 * that could modify pagetables and free pages without need of
3310 * altering the vma layout. It's also needed in write mode to avoid new
3311 * anon_vmas to be associated with existing vmas.
3312 *
3313 * A single task can't take more than one mm_take_all_locks() in a row
3314 * or it would deadlock.
3315 *
3316 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3317 * mapping->flags avoid to take the same lock twice, if more than one
3318 * vma in this mm is backed by the same anon_vma or address_space.
3319 *
3320 * We take locks in following order, accordingly to comment at beginning
3321 * of mm/rmap.c:
3322 *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3323 *     hugetlb mapping);
3324 *   - all i_mmap_rwsem locks;
3325 *   - all anon_vma->rwseml
3326 *
3327 * We can take all locks within these types randomly because the VM code
3328 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3329 * mm_all_locks_mutex.
3330 *
3331 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3332 * that may have to take thousand of locks.
3333 *
3334 * mm_take_all_locks() can fail if it's interrupted by signals.
3335 */
3336int mm_take_all_locks(struct mm_struct *mm)
3337{
3338	struct vm_area_struct *vma;
3339	struct anon_vma_chain *avc;
3340
3341	BUG_ON(down_read_trylock(&mm->mmap_sem));
3342
3343	mutex_lock(&mm_all_locks_mutex);
3344
3345	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3346		if (signal_pending(current))
3347			goto out_unlock;
3348		if (vma->vm_file && vma->vm_file->f_mapping &&
3349				is_vm_hugetlb_page(vma))
3350			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3351	}
3352
3353	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3354		if (signal_pending(current))
3355			goto out_unlock;
3356		if (vma->vm_file && vma->vm_file->f_mapping &&
3357				!is_vm_hugetlb_page(vma))
3358			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3359	}
3360
3361	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3362		if (signal_pending(current))
3363			goto out_unlock;
3364		if (vma->anon_vma)
3365			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3366				vm_lock_anon_vma(mm, avc->anon_vma);
3367	}
3368
3369	return 0;
3370
3371out_unlock:
3372	mm_drop_all_locks(mm);
3373	return -EINTR;
3374}
3375
3376static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3377{
3378	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
3379		/*
3380		 * The LSB of head.next can't change to 0 from under
3381		 * us because we hold the mm_all_locks_mutex.
3382		 *
3383		 * We must however clear the bitflag before unlocking
3384		 * the vma so the users using the anon_vma->rb_root will
3385		 * never see our bitflag.
3386		 *
3387		 * No need of atomic instructions here, head.next
3388		 * can't change from under us until we release the
3389		 * anon_vma->root->rwsem.
3390		 */
3391		if (!__test_and_clear_bit(0, (unsigned long *)
3392					  &anon_vma->root->rb_root.rb_node))
3393			BUG();
3394		anon_vma_unlock_write(anon_vma);
3395	}
3396}
3397
3398static void vm_unlock_mapping(struct address_space *mapping)
3399{
3400	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3401		/*
3402		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3403		 * because we hold the mm_all_locks_mutex.
3404		 */
3405		i_mmap_unlock_write(mapping);
3406		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3407					&mapping->flags))
3408			BUG();
3409	}
3410}
3411
3412/*
3413 * The mmap_sem cannot be released by the caller until
3414 * mm_drop_all_locks() returns.
3415 */
3416void mm_drop_all_locks(struct mm_struct *mm)
3417{
3418	struct vm_area_struct *vma;
3419	struct anon_vma_chain *avc;
3420
3421	BUG_ON(down_read_trylock(&mm->mmap_sem));
3422	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3423
3424	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3425		if (vma->anon_vma)
3426			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3427				vm_unlock_anon_vma(avc->anon_vma);
3428		if (vma->vm_file && vma->vm_file->f_mapping)
3429			vm_unlock_mapping(vma->vm_file->f_mapping);
3430	}
3431
3432	mutex_unlock(&mm_all_locks_mutex);
3433}
3434
3435/*
3436 * initialise the VMA slab
3437 */
3438void __init mmap_init(void)
3439{
3440	int ret;
3441
3442	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3443	VM_BUG_ON(ret);
3444}
3445
3446/*
3447 * Initialise sysctl_user_reserve_kbytes.
3448 *
3449 * This is intended to prevent a user from starting a single memory hogging
3450 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3451 * mode.
3452 *
3453 * The default value is min(3% of free memory, 128MB)
3454 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3455 */
3456static int init_user_reserve(void)
3457{
3458	unsigned long free_kbytes;
3459
3460	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3461
3462	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3463	return 0;
3464}
3465subsys_initcall(init_user_reserve);
3466
3467/*
3468 * Initialise sysctl_admin_reserve_kbytes.
3469 *
3470 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3471 * to log in and kill a memory hogging process.
3472 *
3473 * Systems with more than 256MB will reserve 8MB, enough to recover
3474 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3475 * only reserve 3% of free pages by default.
3476 */
3477static int init_admin_reserve(void)
3478{
3479	unsigned long free_kbytes;
3480
3481	free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3482
3483	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3484	return 0;
3485}
3486subsys_initcall(init_admin_reserve);
3487
3488/*
3489 * Reinititalise user and admin reserves if memory is added or removed.
3490 *
3491 * The default user reserve max is 128MB, and the default max for the
3492 * admin reserve is 8MB. These are usually, but not always, enough to
3493 * enable recovery from a memory hogging process using login/sshd, a shell,
3494 * and tools like top. It may make sense to increase or even disable the
3495 * reserve depending on the existence of swap or variations in the recovery
3496 * tools. So, the admin may have changed them.
3497 *
3498 * If memory is added and the reserves have been eliminated or increased above
3499 * the default max, then we'll trust the admin.
3500 *
3501 * If memory is removed and there isn't enough free memory, then we
3502 * need to reset the reserves.
3503 *
3504 * Otherwise keep the reserve set by the admin.
3505 */
3506static int reserve_mem_notifier(struct notifier_block *nb,
3507			     unsigned long action, void *data)
3508{
3509	unsigned long tmp, free_kbytes;
3510
3511	switch (action) {
3512	case MEM_ONLINE:
3513		/* Default max is 128MB. Leave alone if modified by operator. */
3514		tmp = sysctl_user_reserve_kbytes;
3515		if (0 < tmp && tmp < (1UL << 17))
3516			init_user_reserve();
3517
3518		/* Default max is 8MB.  Leave alone if modified by operator. */
3519		tmp = sysctl_admin_reserve_kbytes;
3520		if (0 < tmp && tmp < (1UL << 13))
3521			init_admin_reserve();
3522
3523		break;
3524	case MEM_OFFLINE:
3525		free_kbytes = global_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3526
3527		if (sysctl_user_reserve_kbytes > free_kbytes) {
3528			init_user_reserve();
3529			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3530				sysctl_user_reserve_kbytes);
3531		}
3532
3533		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3534			init_admin_reserve();
3535			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3536				sysctl_admin_reserve_kbytes);
3537		}
3538		break;
3539	default:
3540		break;
3541	}
3542	return NOTIFY_OK;
3543}
3544
3545static struct notifier_block reserve_mem_nb = {
3546	.notifier_call = reserve_mem_notifier,
3547};
3548
3549static int __meminit init_reserve_notifier(void)
3550{
3551	if (register_hotmemory_notifier(&reserve_mem_nb))
3552		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3553
3554	return 0;
3555}
3556subsys_initcall(init_reserve_notifier);