Linux Audio

Check our new training course

Loading...
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * balloc.c
  4 *
  5 * PURPOSE
  6 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  7 *
  8 * COPYRIGHT
 
 
 
 
 
  9 *  (C) 1999-2001 Ben Fennema
 10 *  (C) 1999 Stelias Computing Inc
 11 *
 12 * HISTORY
 13 *
 14 *  02/24/99 blf  Created.
 15 *
 16 */
 17
 18#include "udfdecl.h"
 19
 
 20#include <linux/bitops.h>
 21#include <linux/overflow.h>
 22
 23#include "udf_i.h"
 24#include "udf_sb.h"
 25
 26#define udf_clear_bit	__test_and_clear_bit_le
 27#define udf_set_bit	__test_and_set_bit_le
 28#define udf_test_bit	test_bit_le
 29#define udf_find_next_one_bit	find_next_bit_le
 30
 31static int read_block_bitmap(struct super_block *sb,
 32			     struct udf_bitmap *bitmap, unsigned int block,
 33			     unsigned long bitmap_nr)
 34{
 35	struct buffer_head *bh = NULL;
 36	int i;
 37	int max_bits, off, count;
 38	struct kernel_lb_addr loc;
 39
 40	loc.logicalBlockNum = bitmap->s_extPosition;
 41	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 42
 43	bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
 44	bitmap->s_block_bitmap[bitmap_nr] = bh;
 45	if (!bh)
 46		return -EIO;
 47
 48	/* Check consistency of Space Bitmap buffer. */
 49	max_bits = sb->s_blocksize * 8;
 50	if (!bitmap_nr) {
 51		off = sizeof(struct spaceBitmapDesc) << 3;
 52		count = min(max_bits - off, bitmap->s_nr_groups);
 53	} else {
 54		/*
 55		 * Rough check if bitmap number is too big to have any bitmap
 56 		 * blocks reserved.
 57		 */
 58		if (bitmap_nr >
 59		    (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
 60			return 0;
 61		off = 0;
 62		count = bitmap->s_nr_groups - bitmap_nr * max_bits +
 63				(sizeof(struct spaceBitmapDesc) << 3);
 64		count = min(count, max_bits);
 65	}
 66
 67	for (i = 0; i < count; i++)
 68		if (udf_test_bit(i + off, bh->b_data)) {
 69			bitmap->s_block_bitmap[bitmap_nr] =
 70							ERR_PTR(-EFSCORRUPTED);
 71			brelse(bh);
 72			return -EFSCORRUPTED;
 73		}
 74	return 0;
 75}
 76
 77static int load_block_bitmap(struct super_block *sb,
 78			     struct udf_bitmap *bitmap,
 79			     unsigned int block_group)
 80{
 81	int retval = 0;
 82	int nr_groups = bitmap->s_nr_groups;
 83
 84	if (block_group >= nr_groups) {
 85		udf_debug("block_group (%u) > nr_groups (%d)\n",
 86			  block_group, nr_groups);
 87	}
 88
 89	if (bitmap->s_block_bitmap[block_group]) {
 90		/*
 91		 * The bitmap failed verification in the past. No point in
 92		 * trying again.
 93		 */
 94		if (IS_ERR(bitmap->s_block_bitmap[block_group]))
 95			return PTR_ERR(bitmap->s_block_bitmap[block_group]);
 96		return block_group;
 97	}
 
 
 
 
 
 
 
 
 
 98
 99	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
100	if (retval < 0)
101		return retval;
102
103	return block_group;
 
 
 
104}
105
106static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
107{
108	struct udf_sb_info *sbi = UDF_SB(sb);
109	struct logicalVolIntegrityDesc *lvid;
110
111	if (!sbi->s_lvid_bh)
112		return;
113
114	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
115	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
116	udf_updated_lvid(sb);
117}
118
119static void udf_bitmap_free_blocks(struct super_block *sb,
120				   struct udf_bitmap *bitmap,
121				   struct kernel_lb_addr *bloc,
122				   uint32_t offset,
123				   uint32_t count)
124{
125	struct udf_sb_info *sbi = UDF_SB(sb);
126	struct buffer_head *bh = NULL;
 
127	unsigned long block;
128	unsigned long block_group;
129	unsigned long bit;
130	unsigned long i;
131	int bitmap_nr;
132	unsigned long overflow;
133
134	mutex_lock(&sbi->s_alloc_mutex);
135	/* We make sure this cannot overflow when mounting the filesystem */
 
 
 
 
 
 
 
 
 
136	block = bloc->logicalBlockNum + offset +
137		(sizeof(struct spaceBitmapDesc) << 3);
 
138	do {
139		overflow = 0;
140		block_group = block >> (sb->s_blocksize_bits + 3);
141		bit = block % (sb->s_blocksize << 3);
142
143		/*
144		* Check to see if we are freeing blocks across a group boundary.
145		*/
146		if (bit + count > (sb->s_blocksize << 3)) {
147			overflow = bit + count - (sb->s_blocksize << 3);
148			count -= overflow;
149		}
150		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
151		if (bitmap_nr < 0)
152			goto error_return;
153
154		bh = bitmap->s_block_bitmap[bitmap_nr];
155		for (i = 0; i < count; i++) {
156			if (udf_set_bit(bit + i, bh->b_data)) {
157				udf_debug("bit %lu already set\n", bit + i);
158				udf_debug("byte=%2x\n",
159					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
160			}
161		}
162		udf_add_free_space(sb, sbi->s_partition, count);
163		mark_buffer_dirty(bh);
164		if (overflow) {
165			block += count;
166			count = overflow;
167		}
168	} while (overflow);
169
170error_return:
171	mutex_unlock(&sbi->s_alloc_mutex);
172}
173
174static int udf_bitmap_prealloc_blocks(struct super_block *sb,
175				      struct udf_bitmap *bitmap,
176				      uint16_t partition, uint32_t first_block,
177				      uint32_t block_count)
178{
179	struct udf_sb_info *sbi = UDF_SB(sb);
180	int alloc_count = 0;
181	int bit, block, block_group;
182	int bitmap_nr;
183	struct buffer_head *bh;
184	__u32 part_len;
185
186	mutex_lock(&sbi->s_alloc_mutex);
187	part_len = sbi->s_partmaps[partition].s_partition_len;
188	if (first_block >= part_len)
189		goto out;
190
191	if (first_block + block_count > part_len)
192		block_count = part_len - first_block;
193
194	do {
 
195		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196		block_group = block >> (sb->s_blocksize_bits + 3);
 
197
198		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199		if (bitmap_nr < 0)
200			goto out;
201		bh = bitmap->s_block_bitmap[bitmap_nr];
202
203		bit = block % (sb->s_blocksize << 3);
204
205		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
206			if (!udf_clear_bit(bit, bh->b_data))
207				goto out;
208			block_count--;
209			alloc_count++;
210			bit++;
211			block++;
212		}
213		mark_buffer_dirty(bh);
214	} while (block_count > 0);
215
216out:
217	udf_add_free_space(sb, partition, -alloc_count);
218	mutex_unlock(&sbi->s_alloc_mutex);
219	return alloc_count;
220}
221
222static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
223				struct udf_bitmap *bitmap, uint16_t partition,
224				uint32_t goal, int *err)
225{
226	struct udf_sb_info *sbi = UDF_SB(sb);
227	int newbit, bit = 0;
228	udf_pblk_t block;
229	int block_group, group_start;
230	int end_goal, nr_groups, bitmap_nr, i;
231	struct buffer_head *bh = NULL;
232	char *ptr;
233	udf_pblk_t newblock = 0;
234
235	*err = -ENOSPC;
236	mutex_lock(&sbi->s_alloc_mutex);
237
238repeat:
239	if (goal >= sbi->s_partmaps[partition].s_partition_len)
240		goal = 0;
241
242	nr_groups = bitmap->s_nr_groups;
243	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
244	block_group = block >> (sb->s_blocksize_bits + 3);
245	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
246
247	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
248	if (bitmap_nr < 0)
249		goto error_return;
250	bh = bitmap->s_block_bitmap[bitmap_nr];
251	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
252		      sb->s_blocksize - group_start);
253
254	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
255		bit = block % (sb->s_blocksize << 3);
256		if (udf_test_bit(bit, bh->b_data))
257			goto got_block;
258
259		end_goal = (bit + 63) & ~63;
260		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
261		if (bit < end_goal)
262			goto got_block;
263
264		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
265			      sb->s_blocksize - ((bit + 7) >> 3));
266		newbit = (ptr - ((char *)bh->b_data)) << 3;
267		if (newbit < sb->s_blocksize << 3) {
268			bit = newbit;
269			goto search_back;
270		}
271
272		newbit = udf_find_next_one_bit(bh->b_data,
273					       sb->s_blocksize << 3, bit);
274		if (newbit < sb->s_blocksize << 3) {
275			bit = newbit;
276			goto got_block;
277		}
278	}
279
280	for (i = 0; i < (nr_groups * 2); i++) {
281		block_group++;
282		if (block_group >= nr_groups)
283			block_group = 0;
284		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
285
286		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
287		if (bitmap_nr < 0)
288			goto error_return;
289		bh = bitmap->s_block_bitmap[bitmap_nr];
290		if (i < nr_groups) {
291			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
292				      sb->s_blocksize - group_start);
293			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
294				bit = (ptr - ((char *)bh->b_data)) << 3;
295				break;
296			}
297		} else {
298			bit = udf_find_next_one_bit(bh->b_data,
299						    sb->s_blocksize << 3,
300						    group_start << 3);
301			if (bit < sb->s_blocksize << 3)
302				break;
303		}
304	}
305	if (i >= (nr_groups * 2)) {
306		mutex_unlock(&sbi->s_alloc_mutex);
307		return newblock;
308	}
309	if (bit < sb->s_blocksize << 3)
310		goto search_back;
311	else
312		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
313					    group_start << 3);
314	if (bit >= sb->s_blocksize << 3) {
315		mutex_unlock(&sbi->s_alloc_mutex);
316		return 0;
317	}
318
319search_back:
320	i = 0;
321	while (i < 7 && bit > (group_start << 3) &&
322	       udf_test_bit(bit - 1, bh->b_data)) {
323		++i;
324		--bit;
325	}
326
327got_block:
328	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
329		(sizeof(struct spaceBitmapDesc) << 3);
330
331	if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
332		/*
333		 * Ran off the end of the bitmap, and bits following are
334		 * non-compliant (not all zero)
335		 */
336		udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
337			" as free, partition length is %u)\n", partition,
338			newblock, sbi->s_partmaps[partition].s_partition_len);
339		goto error_return;
340	}
341
342	if (!udf_clear_bit(bit, bh->b_data)) {
343		udf_debug("bit already cleared for block %d\n", bit);
344		goto repeat;
345	}
346
347	mark_buffer_dirty(bh);
348
349	udf_add_free_space(sb, partition, -1);
350	mutex_unlock(&sbi->s_alloc_mutex);
351	*err = 0;
352	return newblock;
353
354error_return:
355	*err = -EIO;
356	mutex_unlock(&sbi->s_alloc_mutex);
357	return 0;
358}
359
360static void udf_table_free_blocks(struct super_block *sb,
361				  struct inode *table,
362				  struct kernel_lb_addr *bloc,
363				  uint32_t offset,
364				  uint32_t count)
365{
366	struct udf_sb_info *sbi = UDF_SB(sb);
 
367	uint32_t start, end;
368	uint32_t elen;
369	struct kernel_lb_addr eloc;
370	struct extent_position oepos, epos;
371	int8_t etype;
 
372	struct udf_inode_info *iinfo;
373	int ret = 0;
374
375	mutex_lock(&sbi->s_alloc_mutex);
 
 
 
 
 
 
 
 
 
 
376	iinfo = UDF_I(table);
377	udf_add_free_space(sb, sbi->s_partition, count);
378
379	start = bloc->logicalBlockNum + offset;
380	end = bloc->logicalBlockNum + offset + count - 1;
381
382	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
383	elen = 0;
384	epos.block = oepos.block = iinfo->i_location;
385	epos.bh = oepos.bh = NULL;
386
387	while (count) {
388		ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
389		if (ret < 0)
390			goto error_return;
391		if (ret == 0)
392			break;
393		if (((eloc.logicalBlockNum +
394			(elen >> sb->s_blocksize_bits)) == start)) {
395			if ((0x3FFFFFFF - elen) <
396					(count << sb->s_blocksize_bits)) {
397				uint32_t tmp = ((0x3FFFFFFF - elen) >>
398							sb->s_blocksize_bits);
399				count -= tmp;
400				start += tmp;
401				elen = (etype << 30) |
402					(0x40000000 - sb->s_blocksize);
403			} else {
404				elen = (etype << 30) |
405					(elen +
406					(count << sb->s_blocksize_bits));
407				start += count;
408				count = 0;
409			}
410			udf_write_aext(table, &oepos, &eloc, elen, 1);
411		} else if (eloc.logicalBlockNum == (end + 1)) {
412			if ((0x3FFFFFFF - elen) <
413					(count << sb->s_blocksize_bits)) {
414				uint32_t tmp = ((0x3FFFFFFF - elen) >>
415						sb->s_blocksize_bits);
416				count -= tmp;
417				end -= tmp;
418				eloc.logicalBlockNum -= tmp;
419				elen = (etype << 30) |
420					(0x40000000 - sb->s_blocksize);
421			} else {
422				eloc.logicalBlockNum = start;
423				elen = (etype << 30) |
424					(elen +
425					(count << sb->s_blocksize_bits));
426				end -= count;
427				count = 0;
428			}
429			udf_write_aext(table, &oepos, &eloc, elen, 1);
430		}
431
432		if (epos.bh != oepos.bh) {
 
433			oepos.block = epos.block;
434			brelse(oepos.bh);
435			get_bh(epos.bh);
436			oepos.bh = epos.bh;
437			oepos.offset = 0;
438		} else {
439			oepos.offset = epos.offset;
440		}
441	}
442
443	if (count) {
444		/*
445		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
446		 * allocate a new block, and since we hold the super block
447		 * lock already very bad things would happen :)
448		 *
449		 * We copy the behavior of udf_add_aext, but instead of
450		 * trying to allocate a new block close to the existing one,
451		 * we just steal a block from the extent we are trying to add.
452		 *
453		 * It would be nice if the blocks were close together, but it
454		 * isn't required.
455		 */
456
457		int adsize;
 
 
 
458
459		eloc.logicalBlockNum = start;
460		elen = EXT_RECORDED_ALLOCATED |
461			(count << sb->s_blocksize_bits);
462
463		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
464			adsize = sizeof(struct short_ad);
465		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
466			adsize = sizeof(struct long_ad);
467		else
 
 
468			goto error_return;
 
469
470		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
471			/* Steal a block from the extent being free'd */
472			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
473						&epos);
 
 
474
 
 
475			eloc.logicalBlockNum++;
476			elen -= sb->s_blocksize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
477		}
478
479		/* It's possible that stealing the block emptied the extent */
480		if (elen)
481			__udf_add_aext(table, &epos, &eloc, elen, 1);
 
 
 
 
 
 
 
 
 
 
 
482	}
483
484error_return:
485	brelse(epos.bh);
486	brelse(oepos.bh);
487
 
488	mutex_unlock(&sbi->s_alloc_mutex);
489	return;
490}
491
492static int udf_table_prealloc_blocks(struct super_block *sb,
493				     struct inode *table, uint16_t partition,
494				     uint32_t first_block, uint32_t block_count)
495{
496	struct udf_sb_info *sbi = UDF_SB(sb);
497	int alloc_count = 0;
498	uint32_t elen, adsize;
499	struct kernel_lb_addr eloc;
500	struct extent_position epos;
501	int8_t etype = -1;
502	struct udf_inode_info *iinfo;
503	int ret = 0;
504
505	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
506		return 0;
507
508	iinfo = UDF_I(table);
509	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
510		adsize = sizeof(struct short_ad);
511	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
512		adsize = sizeof(struct long_ad);
513	else
514		return 0;
515
516	mutex_lock(&sbi->s_alloc_mutex);
517	epos.offset = sizeof(struct unallocSpaceEntry);
518	epos.block = iinfo->i_location;
519	epos.bh = NULL;
520	eloc.logicalBlockNum = 0xFFFFFFFF;
521
522	while (first_block != eloc.logicalBlockNum) {
523		ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
524		if (ret < 0)
525			goto err_out;
526		if (ret == 0)
527			break;
528		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
529			  eloc.logicalBlockNum, elen, first_block);
 
530	}
531
532	if (first_block == eloc.logicalBlockNum) {
533		epos.offset -= adsize;
534
535		alloc_count = (elen >> sb->s_blocksize_bits);
536		if (alloc_count > block_count) {
537			alloc_count = block_count;
538			eloc.logicalBlockNum += alloc_count;
539			elen -= (alloc_count << sb->s_blocksize_bits);
540			udf_write_aext(table, &epos, &eloc,
541					(etype << 30) | elen, 1);
542		} else
543			udf_delete_aext(table, epos);
 
544	} else {
545		alloc_count = 0;
546	}
547
548err_out:
549	brelse(epos.bh);
550
551	if (alloc_count)
552		udf_add_free_space(sb, partition, -alloc_count);
553	mutex_unlock(&sbi->s_alloc_mutex);
554	return alloc_count;
555}
556
557static udf_pblk_t udf_table_new_block(struct super_block *sb,
558			       struct inode *table, uint16_t partition,
559			       uint32_t goal, int *err)
560{
561	struct udf_sb_info *sbi = UDF_SB(sb);
562	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
563	udf_pblk_t newblock = 0;
564	uint32_t adsize;
565	uint32_t elen, goal_elen = 0;
566	struct kernel_lb_addr eloc, goal_eloc;
567	struct extent_position epos, goal_epos;
568	int8_t etype;
569	struct udf_inode_info *iinfo = UDF_I(table);
570	int ret = 0;
571
572	*err = -ENOSPC;
573
574	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575		adsize = sizeof(struct short_ad);
576	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577		adsize = sizeof(struct long_ad);
578	else
579		return newblock;
580
581	mutex_lock(&sbi->s_alloc_mutex);
582	if (goal >= sbi->s_partmaps[partition].s_partition_len)
583		goal = 0;
584
585	/* We search for the closest matching block to goal. If we find
586	   a exact hit, we stop. Otherwise we keep going till we run out
587	   of extents. We store the buffer_head, bloc, and extoffset
588	   of the current closest match and use that when we are done.
589	 */
590	epos.offset = sizeof(struct unallocSpaceEntry);
591	epos.block = iinfo->i_location;
592	epos.bh = goal_epos.bh = NULL;
593
594	while (spread) {
595		ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
596		if (ret <= 0)
597			break;
598		if (goal >= eloc.logicalBlockNum) {
599			if (goal < eloc.logicalBlockNum +
600					(elen >> sb->s_blocksize_bits))
601				nspread = 0;
602			else
603				nspread = goal - eloc.logicalBlockNum -
604					(elen >> sb->s_blocksize_bits);
605		} else {
606			nspread = eloc.logicalBlockNum - goal;
607		}
608
609		if (nspread < spread) {
610			spread = nspread;
611			if (goal_epos.bh != epos.bh) {
612				brelse(goal_epos.bh);
613				goal_epos.bh = epos.bh;
614				get_bh(goal_epos.bh);
615			}
616			goal_epos.block = epos.block;
617			goal_epos.offset = epos.offset - adsize;
618			goal_eloc = eloc;
619			goal_elen = (etype << 30) | elen;
620		}
621	}
622
623	brelse(epos.bh);
624
625	if (ret < 0 || spread == 0xFFFFFFFF) {
626		brelse(goal_epos.bh);
627		mutex_unlock(&sbi->s_alloc_mutex);
628		if (ret < 0)
629			*err = ret;
630		return 0;
631	}
632
633	/* Only allocate blocks from the beginning of the extent.
634	   That way, we only delete (empty) extents, never have to insert an
635	   extent because of splitting */
636	/* This works, but very poorly.... */
637
638	newblock = goal_eloc.logicalBlockNum;
639	goal_eloc.logicalBlockNum++;
640	goal_elen -= sb->s_blocksize;
641
642	if (goal_elen)
643		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
644	else
645		udf_delete_aext(table, goal_epos);
646	brelse(goal_epos.bh);
647
648	udf_add_free_space(sb, partition, -1);
649
650	mutex_unlock(&sbi->s_alloc_mutex);
651	*err = 0;
652	return newblock;
653}
654
655void udf_free_blocks(struct super_block *sb, struct inode *inode,
656		     struct kernel_lb_addr *bloc, uint32_t offset,
657		     uint32_t count)
658{
659	uint16_t partition = bloc->partitionReferenceNum;
660	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
661	uint32_t blk;
662
663	if (check_add_overflow(bloc->logicalBlockNum, offset, &blk) ||
664	    check_add_overflow(blk, count, &blk) ||
665	    bloc->logicalBlockNum + count > map->s_partition_len) {
666		udf_debug("Invalid request to free blocks: (%d, %u), off %u, "
667			  "len %u, partition len %u\n",
668			  partition, bloc->logicalBlockNum, offset, count,
669			  map->s_partition_len);
670		return;
671	}
672
673	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
674		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
675				       bloc, offset, count);
676	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
677		udf_table_free_blocks(sb, map->s_uspace.s_table,
678				      bloc, offset, count);
 
 
 
 
 
 
679	}
680
681	if (inode) {
682		inode_sub_bytes(inode,
683				((sector_t)count) << sb->s_blocksize_bits);
684	}
685}
686
687inline int udf_prealloc_blocks(struct super_block *sb,
688			       struct inode *inode,
689			       uint16_t partition, uint32_t first_block,
690			       uint32_t block_count)
691{
692	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
693	int allocated;
694
695	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
696		allocated = udf_bitmap_prealloc_blocks(sb,
697						       map->s_uspace.s_bitmap,
698						       partition, first_block,
699						       block_count);
700	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
701		allocated = udf_table_prealloc_blocks(sb,
702						      map->s_uspace.s_table,
703						      partition, first_block,
704						      block_count);
 
 
 
 
 
 
 
 
 
 
705	else
706		return 0;
707
708	if (inode && allocated > 0)
709		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
710	return allocated;
711}
712
713inline udf_pblk_t udf_new_block(struct super_block *sb,
714			 struct inode *inode,
715			 uint16_t partition, uint32_t goal, int *err)
716{
717	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
718	udf_pblk_t block;
719
720	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
721		block = udf_bitmap_new_block(sb,
722					     map->s_uspace.s_bitmap,
723					     partition, goal, err);
724	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
725		block = udf_table_new_block(sb,
726					    map->s_uspace.s_table,
 
 
 
 
 
 
 
 
727					    partition, goal, err);
728	else {
729		*err = -EIO;
730		return 0;
731	}
732	if (inode && block)
733		inode_add_bytes(inode, sb->s_blocksize);
734	return block;
735}
v3.15
 
  1/*
  2 * balloc.c
  3 *
  4 * PURPOSE
  5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
  6 *
  7 * COPYRIGHT
  8 *	This file is distributed under the terms of the GNU General Public
  9 *	License (GPL). Copies of the GPL can be obtained from:
 10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
 11 *	Each contributing author retains all rights to their own work.
 12 *
 13 *  (C) 1999-2001 Ben Fennema
 14 *  (C) 1999 Stelias Computing Inc
 15 *
 16 * HISTORY
 17 *
 18 *  02/24/99 blf  Created.
 19 *
 20 */
 21
 22#include "udfdecl.h"
 23
 24#include <linux/buffer_head.h>
 25#include <linux/bitops.h>
 
 26
 27#include "udf_i.h"
 28#include "udf_sb.h"
 29
 30#define udf_clear_bit	__test_and_clear_bit_le
 31#define udf_set_bit	__test_and_set_bit_le
 32#define udf_test_bit	test_bit_le
 33#define udf_find_next_one_bit	find_next_bit_le
 34
 35static int read_block_bitmap(struct super_block *sb,
 36			     struct udf_bitmap *bitmap, unsigned int block,
 37			     unsigned long bitmap_nr)
 38{
 39	struct buffer_head *bh = NULL;
 40	int retval = 0;
 
 41	struct kernel_lb_addr loc;
 42
 43	loc.logicalBlockNum = bitmap->s_extPosition;
 44	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
 45
 46	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
 
 47	if (!bh)
 48		retval = -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 49
 50	bitmap->s_block_bitmap[bitmap_nr] = bh;
 51	return retval;
 
 
 
 
 
 
 52}
 53
 54static int __load_block_bitmap(struct super_block *sb,
 55			       struct udf_bitmap *bitmap,
 56			       unsigned int block_group)
 57{
 58	int retval = 0;
 59	int nr_groups = bitmap->s_nr_groups;
 60
 61	if (block_group >= nr_groups) {
 62		udf_debug("block_group (%d) > nr_groups (%d)\n",
 63			  block_group, nr_groups);
 64	}
 65
 66	if (bitmap->s_block_bitmap[block_group]) {
 67		return block_group;
 68	} else {
 69		retval = read_block_bitmap(sb, bitmap, block_group,
 70					   block_group);
 71		if (retval < 0)
 72			return retval;
 73		return block_group;
 74	}
 75}
 76
 77static inline int load_block_bitmap(struct super_block *sb,
 78				    struct udf_bitmap *bitmap,
 79				    unsigned int block_group)
 80{
 81	int slot;
 82
 83	slot = __load_block_bitmap(sb, bitmap, block_group);
 84
 85	if (slot < 0)
 86		return slot;
 
 87
 88	if (!bitmap->s_block_bitmap[slot])
 89		return -EIO;
 90
 91	return slot;
 92}
 93
 94static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
 95{
 96	struct udf_sb_info *sbi = UDF_SB(sb);
 97	struct logicalVolIntegrityDesc *lvid;
 98
 99	if (!sbi->s_lvid_bh)
100		return;
101
102	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
103	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
104	udf_updated_lvid(sb);
105}
106
107static void udf_bitmap_free_blocks(struct super_block *sb,
108				   struct udf_bitmap *bitmap,
109				   struct kernel_lb_addr *bloc,
110				   uint32_t offset,
111				   uint32_t count)
112{
113	struct udf_sb_info *sbi = UDF_SB(sb);
114	struct buffer_head *bh = NULL;
115	struct udf_part_map *partmap;
116	unsigned long block;
117	unsigned long block_group;
118	unsigned long bit;
119	unsigned long i;
120	int bitmap_nr;
121	unsigned long overflow;
122
123	mutex_lock(&sbi->s_alloc_mutex);
124	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
125	if (bloc->logicalBlockNum + count < count ||
126	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
127		udf_debug("%d < %d || %d + %d > %d\n",
128			  bloc->logicalBlockNum, 0,
129			  bloc->logicalBlockNum, count,
130			  partmap->s_partition_len);
131		goto error_return;
132	}
133
134	block = bloc->logicalBlockNum + offset +
135		(sizeof(struct spaceBitmapDesc) << 3);
136
137	do {
138		overflow = 0;
139		block_group = block >> (sb->s_blocksize_bits + 3);
140		bit = block % (sb->s_blocksize << 3);
141
142		/*
143		* Check to see if we are freeing blocks across a group boundary.
144		*/
145		if (bit + count > (sb->s_blocksize << 3)) {
146			overflow = bit + count - (sb->s_blocksize << 3);
147			count -= overflow;
148		}
149		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
150		if (bitmap_nr < 0)
151			goto error_return;
152
153		bh = bitmap->s_block_bitmap[bitmap_nr];
154		for (i = 0; i < count; i++) {
155			if (udf_set_bit(bit + i, bh->b_data)) {
156				udf_debug("bit %ld already set\n", bit + i);
157				udf_debug("byte=%2x\n",
158					  ((char *)bh->b_data)[(bit + i) >> 3]);
159			}
160		}
161		udf_add_free_space(sb, sbi->s_partition, count);
162		mark_buffer_dirty(bh);
163		if (overflow) {
164			block += count;
165			count = overflow;
166		}
167	} while (overflow);
168
169error_return:
170	mutex_unlock(&sbi->s_alloc_mutex);
171}
172
173static int udf_bitmap_prealloc_blocks(struct super_block *sb,
174				      struct udf_bitmap *bitmap,
175				      uint16_t partition, uint32_t first_block,
176				      uint32_t block_count)
177{
178	struct udf_sb_info *sbi = UDF_SB(sb);
179	int alloc_count = 0;
180	int bit, block, block_group, group_start;
181	int nr_groups, bitmap_nr;
182	struct buffer_head *bh;
183	__u32 part_len;
184
185	mutex_lock(&sbi->s_alloc_mutex);
186	part_len = sbi->s_partmaps[partition].s_partition_len;
187	if (first_block >= part_len)
188		goto out;
189
190	if (first_block + block_count > part_len)
191		block_count = part_len - first_block;
192
193	do {
194		nr_groups = udf_compute_nr_groups(sb, partition);
195		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196		block_group = block >> (sb->s_blocksize_bits + 3);
197		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
198
199		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
200		if (bitmap_nr < 0)
201			goto out;
202		bh = bitmap->s_block_bitmap[bitmap_nr];
203
204		bit = block % (sb->s_blocksize << 3);
205
206		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
207			if (!udf_clear_bit(bit, bh->b_data))
208				goto out;
209			block_count--;
210			alloc_count++;
211			bit++;
212			block++;
213		}
214		mark_buffer_dirty(bh);
215	} while (block_count > 0);
216
217out:
218	udf_add_free_space(sb, partition, -alloc_count);
219	mutex_unlock(&sbi->s_alloc_mutex);
220	return alloc_count;
221}
222
223static int udf_bitmap_new_block(struct super_block *sb,
224				struct udf_bitmap *bitmap, uint16_t partition,
225				uint32_t goal, int *err)
226{
227	struct udf_sb_info *sbi = UDF_SB(sb);
228	int newbit, bit = 0, block, block_group, group_start;
 
 
229	int end_goal, nr_groups, bitmap_nr, i;
230	struct buffer_head *bh = NULL;
231	char *ptr;
232	int newblock = 0;
233
234	*err = -ENOSPC;
235	mutex_lock(&sbi->s_alloc_mutex);
236
237repeat:
238	if (goal >= sbi->s_partmaps[partition].s_partition_len)
239		goal = 0;
240
241	nr_groups = bitmap->s_nr_groups;
242	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
243	block_group = block >> (sb->s_blocksize_bits + 3);
244	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
245
246	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
247	if (bitmap_nr < 0)
248		goto error_return;
249	bh = bitmap->s_block_bitmap[bitmap_nr];
250	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
251		      sb->s_blocksize - group_start);
252
253	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
254		bit = block % (sb->s_blocksize << 3);
255		if (udf_test_bit(bit, bh->b_data))
256			goto got_block;
257
258		end_goal = (bit + 63) & ~63;
259		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
260		if (bit < end_goal)
261			goto got_block;
262
263		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
264			      sb->s_blocksize - ((bit + 7) >> 3));
265		newbit = (ptr - ((char *)bh->b_data)) << 3;
266		if (newbit < sb->s_blocksize << 3) {
267			bit = newbit;
268			goto search_back;
269		}
270
271		newbit = udf_find_next_one_bit(bh->b_data,
272					       sb->s_blocksize << 3, bit);
273		if (newbit < sb->s_blocksize << 3) {
274			bit = newbit;
275			goto got_block;
276		}
277	}
278
279	for (i = 0; i < (nr_groups * 2); i++) {
280		block_group++;
281		if (block_group >= nr_groups)
282			block_group = 0;
283		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
284
285		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
286		if (bitmap_nr < 0)
287			goto error_return;
288		bh = bitmap->s_block_bitmap[bitmap_nr];
289		if (i < nr_groups) {
290			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
291				      sb->s_blocksize - group_start);
292			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
293				bit = (ptr - ((char *)bh->b_data)) << 3;
294				break;
295			}
296		} else {
297			bit = udf_find_next_one_bit(bh->b_data,
298						    sb->s_blocksize << 3,
299						    group_start << 3);
300			if (bit < sb->s_blocksize << 3)
301				break;
302		}
303	}
304	if (i >= (nr_groups * 2)) {
305		mutex_unlock(&sbi->s_alloc_mutex);
306		return newblock;
307	}
308	if (bit < sb->s_blocksize << 3)
309		goto search_back;
310	else
311		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
312					    group_start << 3);
313	if (bit >= sb->s_blocksize << 3) {
314		mutex_unlock(&sbi->s_alloc_mutex);
315		return 0;
316	}
317
318search_back:
319	i = 0;
320	while (i < 7 && bit > (group_start << 3) &&
321	       udf_test_bit(bit - 1, bh->b_data)) {
322		++i;
323		--bit;
324	}
325
326got_block:
327	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
328		(sizeof(struct spaceBitmapDesc) << 3);
329
 
 
 
 
 
 
 
 
 
 
 
330	if (!udf_clear_bit(bit, bh->b_data)) {
331		udf_debug("bit already cleared for block %d\n", bit);
332		goto repeat;
333	}
334
335	mark_buffer_dirty(bh);
336
337	udf_add_free_space(sb, partition, -1);
338	mutex_unlock(&sbi->s_alloc_mutex);
339	*err = 0;
340	return newblock;
341
342error_return:
343	*err = -EIO;
344	mutex_unlock(&sbi->s_alloc_mutex);
345	return 0;
346}
347
348static void udf_table_free_blocks(struct super_block *sb,
349				  struct inode *table,
350				  struct kernel_lb_addr *bloc,
351				  uint32_t offset,
352				  uint32_t count)
353{
354	struct udf_sb_info *sbi = UDF_SB(sb);
355	struct udf_part_map *partmap;
356	uint32_t start, end;
357	uint32_t elen;
358	struct kernel_lb_addr eloc;
359	struct extent_position oepos, epos;
360	int8_t etype;
361	int i;
362	struct udf_inode_info *iinfo;
 
363
364	mutex_lock(&sbi->s_alloc_mutex);
365	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
366	if (bloc->logicalBlockNum + count < count ||
367	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
368		udf_debug("%d < %d || %d + %d > %d\n",
369			  bloc->logicalBlockNum, 0,
370			  bloc->logicalBlockNum, count,
371			  partmap->s_partition_len);
372		goto error_return;
373	}
374
375	iinfo = UDF_I(table);
376	udf_add_free_space(sb, sbi->s_partition, count);
377
378	start = bloc->logicalBlockNum + offset;
379	end = bloc->logicalBlockNum + offset + count - 1;
380
381	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
382	elen = 0;
383	epos.block = oepos.block = iinfo->i_location;
384	epos.bh = oepos.bh = NULL;
385
386	while (count &&
387	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
 
 
 
 
388		if (((eloc.logicalBlockNum +
389			(elen >> sb->s_blocksize_bits)) == start)) {
390			if ((0x3FFFFFFF - elen) <
391					(count << sb->s_blocksize_bits)) {
392				uint32_t tmp = ((0x3FFFFFFF - elen) >>
393							sb->s_blocksize_bits);
394				count -= tmp;
395				start += tmp;
396				elen = (etype << 30) |
397					(0x40000000 - sb->s_blocksize);
398			} else {
399				elen = (etype << 30) |
400					(elen +
401					(count << sb->s_blocksize_bits));
402				start += count;
403				count = 0;
404			}
405			udf_write_aext(table, &oepos, &eloc, elen, 1);
406		} else if (eloc.logicalBlockNum == (end + 1)) {
407			if ((0x3FFFFFFF - elen) <
408					(count << sb->s_blocksize_bits)) {
409				uint32_t tmp = ((0x3FFFFFFF - elen) >>
410						sb->s_blocksize_bits);
411				count -= tmp;
412				end -= tmp;
413				eloc.logicalBlockNum -= tmp;
414				elen = (etype << 30) |
415					(0x40000000 - sb->s_blocksize);
416			} else {
417				eloc.logicalBlockNum = start;
418				elen = (etype << 30) |
419					(elen +
420					(count << sb->s_blocksize_bits));
421				end -= count;
422				count = 0;
423			}
424			udf_write_aext(table, &oepos, &eloc, elen, 1);
425		}
426
427		if (epos.bh != oepos.bh) {
428			i = -1;
429			oepos.block = epos.block;
430			brelse(oepos.bh);
431			get_bh(epos.bh);
432			oepos.bh = epos.bh;
433			oepos.offset = 0;
434		} else {
435			oepos.offset = epos.offset;
436		}
437	}
438
439	if (count) {
440		/*
441		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
442		 * allocate a new block, and since we hold the super block
443		 * lock already very bad things would happen :)
444		 *
445		 * We copy the behavior of udf_add_aext, but instead of
446		 * trying to allocate a new block close to the existing one,
447		 * we just steal a block from the extent we are trying to add.
448		 *
449		 * It would be nice if the blocks were close together, but it
450		 * isn't required.
451		 */
452
453		int adsize;
454		struct short_ad *sad = NULL;
455		struct long_ad *lad = NULL;
456		struct allocExtDesc *aed;
457
458		eloc.logicalBlockNum = start;
459		elen = EXT_RECORDED_ALLOCATED |
460			(count << sb->s_blocksize_bits);
461
462		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
463			adsize = sizeof(struct short_ad);
464		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
465			adsize = sizeof(struct long_ad);
466		else {
467			brelse(oepos.bh);
468			brelse(epos.bh);
469			goto error_return;
470		}
471
472		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
473			unsigned char *sptr, *dptr;
474			int loffset;
475
476			brelse(oepos.bh);
477			oepos = epos;
478
479			/* Steal a block from the extent being free'd */
480			epos.block.logicalBlockNum = eloc.logicalBlockNum;
481			eloc.logicalBlockNum++;
482			elen -= sb->s_blocksize;
483
484			epos.bh = udf_tread(sb,
485					udf_get_lb_pblock(sb, &epos.block, 0));
486			if (!epos.bh) {
487				brelse(oepos.bh);
488				goto error_return;
489			}
490			aed = (struct allocExtDesc *)(epos.bh->b_data);
491			aed->previousAllocExtLocation =
492				cpu_to_le32(oepos.block.logicalBlockNum);
493			if (epos.offset + adsize > sb->s_blocksize) {
494				loffset = epos.offset;
495				aed->lengthAllocDescs = cpu_to_le32(adsize);
496				sptr = iinfo->i_ext.i_data + epos.offset
497								- adsize;
498				dptr = epos.bh->b_data +
499					sizeof(struct allocExtDesc);
500				memcpy(dptr, sptr, adsize);
501				epos.offset = sizeof(struct allocExtDesc) +
502						adsize;
503			} else {
504				loffset = epos.offset + adsize;
505				aed->lengthAllocDescs = cpu_to_le32(0);
506				if (oepos.bh) {
507					sptr = oepos.bh->b_data + epos.offset;
508					aed = (struct allocExtDesc *)
509						oepos.bh->b_data;
510					le32_add_cpu(&aed->lengthAllocDescs,
511							adsize);
512				} else {
513					sptr = iinfo->i_ext.i_data +
514								epos.offset;
515					iinfo->i_lenAlloc += adsize;
516					mark_inode_dirty(table);
517				}
518				epos.offset = sizeof(struct allocExtDesc);
519			}
520			if (sbi->s_udfrev >= 0x0200)
521				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
522					    3, 1, epos.block.logicalBlockNum,
523					    sizeof(struct tag));
524			else
525				udf_new_tag(epos.bh->b_data, TAG_IDENT_AED,
526					    2, 1, epos.block.logicalBlockNum,
527					    sizeof(struct tag));
528
529			switch (iinfo->i_alloc_type) {
530			case ICBTAG_FLAG_AD_SHORT:
531				sad = (struct short_ad *)sptr;
532				sad->extLength = cpu_to_le32(
533					EXT_NEXT_EXTENT_ALLOCDECS |
534					sb->s_blocksize);
535				sad->extPosition =
536					cpu_to_le32(epos.block.logicalBlockNum);
537				break;
538			case ICBTAG_FLAG_AD_LONG:
539				lad = (struct long_ad *)sptr;
540				lad->extLength = cpu_to_le32(
541					EXT_NEXT_EXTENT_ALLOCDECS |
542					sb->s_blocksize);
543				lad->extLocation =
544					cpu_to_lelb(epos.block);
545				break;
546			}
547			if (oepos.bh) {
548				udf_update_tag(oepos.bh->b_data, loffset);
549				mark_buffer_dirty(oepos.bh);
550			} else {
551				mark_inode_dirty(table);
552			}
553		}
554
555		/* It's possible that stealing the block emptied the extent */
556		if (elen) {
557			udf_write_aext(table, &epos, &eloc, elen, 1);
558
559			if (!epos.bh) {
560				iinfo->i_lenAlloc += adsize;
561				mark_inode_dirty(table);
562			} else {
563				aed = (struct allocExtDesc *)epos.bh->b_data;
564				le32_add_cpu(&aed->lengthAllocDescs, adsize);
565				udf_update_tag(epos.bh->b_data, epos.offset);
566				mark_buffer_dirty(epos.bh);
567			}
568		}
569	}
570
 
571	brelse(epos.bh);
572	brelse(oepos.bh);
573
574error_return:
575	mutex_unlock(&sbi->s_alloc_mutex);
576	return;
577}
578
579static int udf_table_prealloc_blocks(struct super_block *sb,
580				     struct inode *table, uint16_t partition,
581				     uint32_t first_block, uint32_t block_count)
582{
583	struct udf_sb_info *sbi = UDF_SB(sb);
584	int alloc_count = 0;
585	uint32_t elen, adsize;
586	struct kernel_lb_addr eloc;
587	struct extent_position epos;
588	int8_t etype = -1;
589	struct udf_inode_info *iinfo;
 
590
591	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
592		return 0;
593
594	iinfo = UDF_I(table);
595	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
596		adsize = sizeof(struct short_ad);
597	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
598		adsize = sizeof(struct long_ad);
599	else
600		return 0;
601
602	mutex_lock(&sbi->s_alloc_mutex);
603	epos.offset = sizeof(struct unallocSpaceEntry);
604	epos.block = iinfo->i_location;
605	epos.bh = NULL;
606	eloc.logicalBlockNum = 0xFFFFFFFF;
607
608	while (first_block != eloc.logicalBlockNum &&
609	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
610		udf_debug("eloc=%d, elen=%d, first_block=%d\n",
 
 
 
 
611			  eloc.logicalBlockNum, elen, first_block);
612		; /* empty loop body */
613	}
614
615	if (first_block == eloc.logicalBlockNum) {
616		epos.offset -= adsize;
617
618		alloc_count = (elen >> sb->s_blocksize_bits);
619		if (alloc_count > block_count) {
620			alloc_count = block_count;
621			eloc.logicalBlockNum += alloc_count;
622			elen -= (alloc_count << sb->s_blocksize_bits);
623			udf_write_aext(table, &epos, &eloc,
624					(etype << 30) | elen, 1);
625		} else
626			udf_delete_aext(table, epos, eloc,
627					(etype << 30) | elen);
628	} else {
629		alloc_count = 0;
630	}
631
 
632	brelse(epos.bh);
633
634	if (alloc_count)
635		udf_add_free_space(sb, partition, -alloc_count);
636	mutex_unlock(&sbi->s_alloc_mutex);
637	return alloc_count;
638}
639
640static int udf_table_new_block(struct super_block *sb,
641			       struct inode *table, uint16_t partition,
642			       uint32_t goal, int *err)
643{
644	struct udf_sb_info *sbi = UDF_SB(sb);
645	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
646	uint32_t newblock = 0, adsize;
 
647	uint32_t elen, goal_elen = 0;
648	struct kernel_lb_addr eloc, uninitialized_var(goal_eloc);
649	struct extent_position epos, goal_epos;
650	int8_t etype;
651	struct udf_inode_info *iinfo = UDF_I(table);
 
652
653	*err = -ENOSPC;
654
655	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
656		adsize = sizeof(struct short_ad);
657	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
658		adsize = sizeof(struct long_ad);
659	else
660		return newblock;
661
662	mutex_lock(&sbi->s_alloc_mutex);
663	if (goal >= sbi->s_partmaps[partition].s_partition_len)
664		goal = 0;
665
666	/* We search for the closest matching block to goal. If we find
667	   a exact hit, we stop. Otherwise we keep going till we run out
668	   of extents. We store the buffer_head, bloc, and extoffset
669	   of the current closest match and use that when we are done.
670	 */
671	epos.offset = sizeof(struct unallocSpaceEntry);
672	epos.block = iinfo->i_location;
673	epos.bh = goal_epos.bh = NULL;
674
675	while (spread &&
676	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
 
 
677		if (goal >= eloc.logicalBlockNum) {
678			if (goal < eloc.logicalBlockNum +
679					(elen >> sb->s_blocksize_bits))
680				nspread = 0;
681			else
682				nspread = goal - eloc.logicalBlockNum -
683					(elen >> sb->s_blocksize_bits);
684		} else {
685			nspread = eloc.logicalBlockNum - goal;
686		}
687
688		if (nspread < spread) {
689			spread = nspread;
690			if (goal_epos.bh != epos.bh) {
691				brelse(goal_epos.bh);
692				goal_epos.bh = epos.bh;
693				get_bh(goal_epos.bh);
694			}
695			goal_epos.block = epos.block;
696			goal_epos.offset = epos.offset - adsize;
697			goal_eloc = eloc;
698			goal_elen = (etype << 30) | elen;
699		}
700	}
701
702	brelse(epos.bh);
703
704	if (spread == 0xFFFFFFFF) {
705		brelse(goal_epos.bh);
706		mutex_unlock(&sbi->s_alloc_mutex);
 
 
707		return 0;
708	}
709
710	/* Only allocate blocks from the beginning of the extent.
711	   That way, we only delete (empty) extents, never have to insert an
712	   extent because of splitting */
713	/* This works, but very poorly.... */
714
715	newblock = goal_eloc.logicalBlockNum;
716	goal_eloc.logicalBlockNum++;
717	goal_elen -= sb->s_blocksize;
718
719	if (goal_elen)
720		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
721	else
722		udf_delete_aext(table, goal_epos, goal_eloc, goal_elen);
723	brelse(goal_epos.bh);
724
725	udf_add_free_space(sb, partition, -1);
726
727	mutex_unlock(&sbi->s_alloc_mutex);
728	*err = 0;
729	return newblock;
730}
731
732void udf_free_blocks(struct super_block *sb, struct inode *inode,
733		     struct kernel_lb_addr *bloc, uint32_t offset,
734		     uint32_t count)
735{
736	uint16_t partition = bloc->partitionReferenceNum;
737	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
 
 
 
 
 
 
 
 
 
 
 
738
739	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
740		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
741				       bloc, offset, count);
742	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
743		udf_table_free_blocks(sb, map->s_uspace.s_table,
744				      bloc, offset, count);
745	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
746		udf_bitmap_free_blocks(sb, map->s_fspace.s_bitmap,
747				       bloc, offset, count);
748	} else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
749		udf_table_free_blocks(sb, map->s_fspace.s_table,
750				      bloc, offset, count);
751	}
752
753	if (inode) {
754		inode_sub_bytes(inode,
755				((sector_t)count) << sb->s_blocksize_bits);
756	}
757}
758
759inline int udf_prealloc_blocks(struct super_block *sb,
760			       struct inode *inode,
761			       uint16_t partition, uint32_t first_block,
762			       uint32_t block_count)
763{
764	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
765	sector_t allocated;
766
767	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
768		allocated = udf_bitmap_prealloc_blocks(sb,
769						       map->s_uspace.s_bitmap,
770						       partition, first_block,
771						       block_count);
772	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
773		allocated = udf_table_prealloc_blocks(sb,
774						      map->s_uspace.s_table,
775						      partition, first_block,
776						      block_count);
777	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
778		allocated = udf_bitmap_prealloc_blocks(sb,
779						       map->s_fspace.s_bitmap,
780						       partition, first_block,
781						       block_count);
782	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
783		allocated = udf_table_prealloc_blocks(sb,
784						      map->s_fspace.s_table,
785						      partition, first_block,
786						      block_count);
787	else
788		return 0;
789
790	if (inode && allocated > 0)
791		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
792	return allocated;
793}
794
795inline int udf_new_block(struct super_block *sb,
796			 struct inode *inode,
797			 uint16_t partition, uint32_t goal, int *err)
798{
799	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
800	int block;
801
802	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
803		block = udf_bitmap_new_block(sb,
804					     map->s_uspace.s_bitmap,
805					     partition, goal, err);
806	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
807		block = udf_table_new_block(sb,
808					    map->s_uspace.s_table,
809					    partition, goal, err);
810	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
811		block = udf_bitmap_new_block(sb,
812					     map->s_fspace.s_bitmap,
813					     partition, goal, err);
814	else if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
815		block = udf_table_new_block(sb,
816					    map->s_fspace.s_table,
817					    partition, goal, err);
818	else {
819		*err = -EIO;
820		return 0;
821	}
822	if (inode && block)
823		inode_add_bytes(inode, sb->s_blocksize);
824	return block;
825}