Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
 
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
 
 
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static void ext4_journalled_zero_new_buffers(handle_t *handle,
  53					    struct inode *inode,
  54					    struct folio *folio,
  55					    unsigned from, unsigned to);
  56
  57static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  58			      struct ext4_inode_info *ei)
  59{
  60	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
 
  61	__u32 csum;
  62	__u16 dummy_csum = 0;
  63	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  64	unsigned int csum_size = sizeof(dummy_csum);
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  67	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  68	offset += csum_size;
  69	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  70			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  71
  72	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  73		offset = offsetof(struct ext4_inode, i_checksum_hi);
  74		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  75				   EXT4_GOOD_OLD_INODE_SIZE,
  76				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  77		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  78			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  79					   csum_size);
  80			offset += csum_size;
  81		}
  82		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  83				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  84	}
  85
 
 
 
 
 
 
 
 
  86	return csum;
  87}
  88
  89static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  90				  struct ext4_inode_info *ei)
  91{
  92	__u32 provided, calculated;
  93
  94	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  95	    cpu_to_le32(EXT4_OS_LINUX) ||
  96	    !ext4_has_metadata_csum(inode->i_sb))
 
  97		return 1;
  98
  99	provided = le16_to_cpu(raw->i_checksum_lo);
 100	calculated = ext4_inode_csum(inode, raw, ei);
 101	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 102	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 103		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 104	else
 105		calculated &= 0xFFFF;
 106
 107	return provided == calculated;
 108}
 109
 110void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 111			 struct ext4_inode_info *ei)
 112{
 113	__u32 csum;
 114
 115	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 116	    cpu_to_le32(EXT4_OS_LINUX) ||
 117	    !ext4_has_metadata_csum(inode->i_sb))
 
 118		return;
 119
 120	csum = ext4_inode_csum(inode, raw, ei);
 121	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 122	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 123	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 124		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 125}
 126
 127static inline int ext4_begin_ordered_truncate(struct inode *inode,
 128					      loff_t new_size)
 129{
 130	trace_ext4_begin_ordered_truncate(inode, new_size);
 131	/*
 132	 * If jinode is zero, then we never opened the file for
 133	 * writing, so there's no need to call
 134	 * jbd2_journal_begin_ordered_truncate() since there's no
 135	 * outstanding writes we need to flush.
 136	 */
 137	if (!EXT4_I(inode)->jinode)
 138		return 0;
 139	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 140						   EXT4_I(inode)->jinode,
 141						   new_size);
 142}
 143
 
 
 
 
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 164}
 165
 166/*
 167 * Called at the last iput() if i_nlink is zero.
 168 */
 169void ext4_evict_inode(struct inode *inode)
 170{
 171	handle_t *handle;
 172	int err;
 173	/*
 174	 * Credits for final inode cleanup and freeing:
 175	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 176	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 177	 */
 178	int extra_credits = 6;
 179	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 180	bool freeze_protected = false;
 181
 182	trace_ext4_evict_inode(inode);
 183
 184	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 185		ext4_evict_ea_inode(inode);
 186	if (inode->i_nlink) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187		truncate_inode_pages_final(&inode->i_data);
 188
 
 189		goto no_delete;
 190	}
 191
 192	if (is_bad_inode(inode))
 193		goto no_delete;
 194	dquot_initialize(inode);
 195
 196	if (ext4_should_order_data(inode))
 197		ext4_begin_ordered_truncate(inode, 0);
 198	truncate_inode_pages_final(&inode->i_data);
 199
 200	/*
 201	 * For inodes with journalled data, transaction commit could have
 202	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 203	 * extents converting worker could merge extents and also have dirtied
 204	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 205	 * we still need to remove the inode from the writeback lists.
 206	 */
 207	if (!list_empty_careful(&inode->i_io_list))
 208		inode_io_list_del(inode);
 209
 210	/*
 211	 * Protect us against freezing - iput() caller didn't have to have any
 212	 * protection against it. When we are in a running transaction though,
 213	 * we are already protected against freezing and we cannot grab further
 214	 * protection due to lock ordering constraints.
 215	 */
 216	if (!ext4_journal_current_handle()) {
 217		sb_start_intwrite(inode->i_sb);
 218		freeze_protected = true;
 219	}
 220
 221	if (!IS_NOQUOTA(inode))
 222		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 223
 224	/*
 225	 * Block bitmap, group descriptor, and inode are accounted in both
 226	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 227	 */
 
 228	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 229			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 230	if (IS_ERR(handle)) {
 231		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 232		/*
 233		 * If we're going to skip the normal cleanup, we still need to
 234		 * make sure that the in-core orphan linked list is properly
 235		 * cleaned up.
 236		 */
 237		ext4_orphan_del(NULL, inode);
 238		if (freeze_protected)
 239			sb_end_intwrite(inode->i_sb);
 240		goto no_delete;
 241	}
 242
 243	if (IS_SYNC(inode))
 244		ext4_handle_sync(handle);
 245
 246	/*
 247	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 248	 * special handling of symlinks here because i_size is used to
 249	 * determine whether ext4_inode_info->i_data contains symlink data or
 250	 * block mappings. Setting i_size to 0 will remove its fast symlink
 251	 * status. Erase i_data so that it becomes a valid empty block map.
 252	 */
 253	if (ext4_inode_is_fast_symlink(inode))
 254		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 255	inode->i_size = 0;
 256	err = ext4_mark_inode_dirty(handle, inode);
 257	if (err) {
 258		ext4_warning(inode->i_sb,
 259			     "couldn't mark inode dirty (err %d)", err);
 260		goto stop_handle;
 261	}
 262	if (inode->i_blocks) {
 263		err = ext4_truncate(inode);
 264		if (err) {
 265			ext4_error_err(inode->i_sb, -err,
 266				       "couldn't truncate inode %lu (err %d)",
 267				       inode->i_ino, err);
 268			goto stop_handle;
 269		}
 270	}
 271
 272	/* Remove xattr references. */
 273	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 274				      extra_credits);
 275	if (err) {
 276		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 277stop_handle:
 278		ext4_journal_stop(handle);
 279		ext4_orphan_del(NULL, inode);
 280		if (freeze_protected)
 
 
 
 
 
 
 
 281			sb_end_intwrite(inode->i_sb);
 282		ext4_xattr_inode_array_free(ea_inode_array);
 283		goto no_delete;
 284	}
 285
 286	/*
 287	 * Kill off the orphan record which ext4_truncate created.
 288	 * AKPM: I think this can be inside the above `if'.
 289	 * Note that ext4_orphan_del() has to be able to cope with the
 290	 * deletion of a non-existent orphan - this is because we don't
 291	 * know if ext4_truncate() actually created an orphan record.
 292	 * (Well, we could do this if we need to, but heck - it works)
 293	 */
 294	ext4_orphan_del(handle, inode);
 295	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 296
 297	/*
 298	 * One subtle ordering requirement: if anything has gone wrong
 299	 * (transaction abort, IO errors, whatever), then we can still
 300	 * do these next steps (the fs will already have been marked as
 301	 * having errors), but we can't free the inode if the mark_dirty
 302	 * fails.
 303	 */
 304	if (ext4_mark_inode_dirty(handle, inode))
 305		/* If that failed, just do the required in-core inode clear. */
 306		ext4_clear_inode(inode);
 307	else
 308		ext4_free_inode(handle, inode);
 309	ext4_journal_stop(handle);
 310	if (freeze_protected)
 311		sb_end_intwrite(inode->i_sb);
 312	ext4_xattr_inode_array_free(ea_inode_array);
 313	return;
 314no_delete:
 315	/*
 316	 * Check out some where else accidentally dirty the evicting inode,
 317	 * which may probably cause inode use-after-free issues later.
 318	 */
 319	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 320
 321	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 322		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 323	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 324}
 325
 326#ifdef CONFIG_QUOTA
 327qsize_t *ext4_get_reserved_space(struct inode *inode)
 328{
 329	return &EXT4_I(inode)->i_reserved_quota;
 330}
 331#endif
 332
 333/*
 
 
 
 
 
 
 
 
 
 
 
 
 334 * Called with i_data_sem down, which is important since we can call
 335 * ext4_discard_preallocations() from here.
 336 */
 337void ext4_da_update_reserve_space(struct inode *inode,
 338					int used, int quota_claim)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 341	struct ext4_inode_info *ei = EXT4_I(inode);
 342
 343	spin_lock(&ei->i_block_reservation_lock);
 344	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 345	if (unlikely(used > ei->i_reserved_data_blocks)) {
 346		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 347			 "with only %d reserved data blocks",
 348			 __func__, inode->i_ino, used,
 349			 ei->i_reserved_data_blocks);
 350		WARN_ON(1);
 351		used = ei->i_reserved_data_blocks;
 352	}
 353
 
 
 
 
 
 
 
 
 
 
 
 354	/* Update per-inode reservations */
 355	ei->i_reserved_data_blocks -= used;
 356	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 
 
 
 357
 358	spin_unlock(&ei->i_block_reservation_lock);
 
 
 
 
 
 
 
 
 
 
 
 359
 360	/* Update quota subsystem for data blocks */
 361	if (quota_claim)
 362		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 363	else {
 364		/*
 365		 * We did fallocate with an offset that is already delayed
 366		 * allocated. So on delayed allocated writeback we should
 367		 * not re-claim the quota for fallocated blocks.
 368		 */
 369		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 370	}
 371
 372	/*
 373	 * If we have done all the pending block allocations and if
 374	 * there aren't any writers on the inode, we can discard the
 375	 * inode's preallocations.
 376	 */
 377	if ((ei->i_reserved_data_blocks == 0) &&
 378	    !inode_is_open_for_write(inode))
 379		ext4_discard_preallocations(inode);
 380}
 381
 382static int __check_block_validity(struct inode *inode, const char *func,
 383				unsigned int line,
 384				struct ext4_map_blocks *map)
 385{
 386	if (ext4_has_feature_journal(inode->i_sb) &&
 387	    (inode->i_ino ==
 388	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 389		return 0;
 390	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 391		ext4_error_inode(inode, func, line, map->m_pblk,
 392				 "lblock %lu mapped to illegal pblock %llu "
 393				 "(length %d)", (unsigned long) map->m_lblk,
 394				 map->m_pblk, map->m_len);
 395		return -EFSCORRUPTED;
 396	}
 397	return 0;
 398}
 399
 400int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 401		       ext4_lblk_t len)
 402{
 403	int ret;
 404
 405	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 406		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 407
 408	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 409	if (ret > 0)
 410		ret = 0;
 411
 412	return ret;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418#ifdef ES_AGGRESSIVE_TEST
 419static void ext4_map_blocks_es_recheck(handle_t *handle,
 420				       struct inode *inode,
 421				       struct ext4_map_blocks *es_map,
 422				       struct ext4_map_blocks *map,
 423				       int flags)
 424{
 425	int retval;
 426
 427	map->m_flags = 0;
 428	/*
 429	 * There is a race window that the result is not the same.
 430	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 431	 * is that we lookup a block mapping in extent status tree with
 432	 * out taking i_data_sem.  So at the time the unwritten extent
 433	 * could be converted.
 434	 */
 435	down_read(&EXT4_I(inode)->i_data_sem);
 
 436	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 437		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 
 438	} else {
 439		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 
 440	}
 441	up_read((&EXT4_I(inode)->i_data_sem));
 
 
 
 
 
 
 442
 443	/*
 444	 * We don't check m_len because extent will be collpased in status
 445	 * tree.  So the m_len might not equal.
 446	 */
 447	if (es_map->m_lblk != map->m_lblk ||
 448	    es_map->m_flags != map->m_flags ||
 449	    es_map->m_pblk != map->m_pblk) {
 450		printk("ES cache assertion failed for inode: %lu "
 451		       "es_cached ex [%d/%d/%llu/%x] != "
 452		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 453		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 454		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 455		       map->m_len, map->m_pblk, map->m_flags,
 456		       retval, flags);
 457	}
 458}
 459#endif /* ES_AGGRESSIVE_TEST */
 460
 461static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
 462				 struct ext4_map_blocks *map)
 463{
 464	unsigned int status;
 465	int retval;
 466
 467	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 468		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 469	else
 470		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 471
 472	if (retval <= 0)
 473		return retval;
 474
 475	if (unlikely(retval != map->m_len)) {
 476		ext4_warning(inode->i_sb,
 477			     "ES len assertion failed for inode "
 478			     "%lu: retval %d != map->m_len %d",
 479			     inode->i_ino, retval, map->m_len);
 480		WARN_ON(1);
 481	}
 482
 483	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 484			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 485	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 486			      map->m_pblk, status, false);
 487	return retval;
 488}
 489
 490static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
 491				  struct ext4_map_blocks *map, int flags)
 492{
 493	struct extent_status es;
 494	unsigned int status;
 495	int err, retval = 0;
 496
 497	/*
 498	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
 499	 * indicates that the blocks and quotas has already been
 500	 * checked when the data was copied into the page cache.
 501	 */
 502	if (map->m_flags & EXT4_MAP_DELAYED)
 503		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
 504
 505	/*
 506	 * Here we clear m_flags because after allocating an new extent,
 507	 * it will be set again.
 508	 */
 509	map->m_flags &= ~EXT4_MAP_FLAGS;
 510
 511	/*
 512	 * We need to check for EXT4 here because migrate could have
 513	 * changed the inode type in between.
 514	 */
 515	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 516		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 517	} else {
 518		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 519
 520		/*
 521		 * We allocated new blocks which will result in i_data's
 522		 * format changing. Force the migrate to fail by clearing
 523		 * migrate flags.
 524		 */
 525		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
 526			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 527	}
 528	if (retval <= 0)
 529		return retval;
 530
 531	if (unlikely(retval != map->m_len)) {
 532		ext4_warning(inode->i_sb,
 533			     "ES len assertion failed for inode %lu: "
 534			     "retval %d != map->m_len %d",
 535			     inode->i_ino, retval, map->m_len);
 536		WARN_ON(1);
 537	}
 538
 539	/*
 540	 * We have to zeroout blocks before inserting them into extent
 541	 * status tree. Otherwise someone could look them up there and
 542	 * use them before they are really zeroed. We also have to
 543	 * unmap metadata before zeroing as otherwise writeback can
 544	 * overwrite zeros with stale data from block device.
 545	 */
 546	if (flags & EXT4_GET_BLOCKS_ZERO &&
 547	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
 548		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
 549					 map->m_len);
 550		if (err)
 551			return err;
 552	}
 553
 554	/*
 555	 * If the extent has been zeroed out, we don't need to update
 556	 * extent status tree.
 557	 */
 558	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
 559	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 560		if (ext4_es_is_written(&es))
 561			return retval;
 562	}
 563
 564	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 565			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 566	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
 567			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
 568
 569	return retval;
 570}
 571
 572/*
 573 * The ext4_map_blocks() function tries to look up the requested blocks,
 574 * and returns if the blocks are already mapped.
 575 *
 576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 577 * and store the allocated blocks in the result buffer head and mark it
 578 * mapped.
 579 *
 580 * If file type is extents based, it will call ext4_ext_map_blocks(),
 581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 582 * based files
 583 *
 584 * On success, it returns the number of blocks being mapped or allocated.
 585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
 586 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
 587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
 588 *
 589 * It returns 0 if plain look up failed (blocks have not been allocated), in
 590 * that case, @map is returned as unmapped but we still do fill map->m_len to
 591 * indicate the length of a hole starting at map->m_lblk.
 592 *
 593 * It returns the error in case of allocation failure.
 594 */
 595int ext4_map_blocks(handle_t *handle, struct inode *inode,
 596		    struct ext4_map_blocks *map, int flags)
 597{
 598	struct extent_status es;
 599	int retval;
 600	int ret = 0;
 601#ifdef ES_AGGRESSIVE_TEST
 602	struct ext4_map_blocks orig_map;
 603
 604	memcpy(&orig_map, map, sizeof(*map));
 605#endif
 606
 607	map->m_flags = 0;
 608	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 609		  flags, map->m_len, (unsigned long) map->m_lblk);
 
 610
 611	/*
 612	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 613	 */
 614	if (unlikely(map->m_len > INT_MAX))
 615		map->m_len = INT_MAX;
 616
 617	/* We can handle the block number less than EXT_MAX_BLOCKS */
 618	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 619		return -EFSCORRUPTED;
 620
 621	/* Lookup extent status tree firstly */
 622	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 623	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 624		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 625			map->m_pblk = ext4_es_pblock(&es) +
 626					map->m_lblk - es.es_lblk;
 627			map->m_flags |= ext4_es_is_written(&es) ?
 628					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 629			retval = es.es_len - (map->m_lblk - es.es_lblk);
 630			if (retval > map->m_len)
 631				retval = map->m_len;
 632			map->m_len = retval;
 633		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 634			map->m_pblk = 0;
 635			map->m_flags |= ext4_es_is_delayed(&es) ?
 636					EXT4_MAP_DELAYED : 0;
 637			retval = es.es_len - (map->m_lblk - es.es_lblk);
 638			if (retval > map->m_len)
 639				retval = map->m_len;
 640			map->m_len = retval;
 641			retval = 0;
 642		} else {
 643			BUG();
 644		}
 645
 646		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 647			return retval;
 648#ifdef ES_AGGRESSIVE_TEST
 649		ext4_map_blocks_es_recheck(handle, inode, map,
 650					   &orig_map, flags);
 651#endif
 652		goto found;
 653	}
 654	/*
 655	 * In the query cache no-wait mode, nothing we can do more if we
 656	 * cannot find extent in the cache.
 657	 */
 658	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 659		return 0;
 660
 661	/*
 662	 * Try to see if we can get the block without requesting a new
 663	 * file system block.
 664	 */
 665	down_read(&EXT4_I(inode)->i_data_sem);
 666	retval = ext4_map_query_blocks(handle, inode, map);
 667	up_read((&EXT4_I(inode)->i_data_sem));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668
 669found:
 670	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 671		ret = check_block_validity(inode, map);
 672		if (ret != 0)
 673			return ret;
 674	}
 675
 676	/* If it is only a block(s) look up */
 677	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 678		return retval;
 679
 680	/*
 681	 * Returns if the blocks have already allocated
 682	 *
 683	 * Note that if blocks have been preallocated
 684	 * ext4_ext_map_blocks() returns with buffer head unmapped
 
 685	 */
 686	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 687		/*
 688		 * If we need to convert extent to unwritten
 689		 * we continue and do the actual work in
 690		 * ext4_ext_map_blocks()
 691		 */
 692		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 693			return retval;
 694
 695	/*
 696	 * New blocks allocate and/or writing to unwritten extent
 
 
 
 
 
 
 697	 * will possibly result in updating i_data, so we take
 698	 * the write lock of i_data_sem, and call get_block()
 699	 * with create == 1 flag.
 700	 */
 701	down_write(&EXT4_I(inode)->i_data_sem);
 702	retval = ext4_map_create_blocks(handle, inode, map, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	up_write((&EXT4_I(inode)->i_data_sem));
 704	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 705		ret = check_block_validity(inode, map);
 706		if (ret != 0)
 707			return ret;
 708
 709		/*
 710		 * Inodes with freshly allocated blocks where contents will be
 711		 * visible after transaction commit must be on transaction's
 712		 * ordered data list.
 713		 */
 714		if (map->m_flags & EXT4_MAP_NEW &&
 715		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 716		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 717		    !ext4_is_quota_file(inode) &&
 718		    ext4_should_order_data(inode)) {
 719			loff_t start_byte =
 720				(loff_t)map->m_lblk << inode->i_blkbits;
 721			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 722
 723			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 724				ret = ext4_jbd2_inode_add_wait(handle, inode,
 725						start_byte, length);
 726			else
 727				ret = ext4_jbd2_inode_add_write(handle, inode,
 728						start_byte, length);
 729			if (ret)
 730				return ret;
 731		}
 732	}
 733	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 734				map->m_flags & EXT4_MAP_MAPPED))
 735		ext4_fc_track_range(handle, inode, map->m_lblk,
 736					map->m_lblk + map->m_len - 1);
 737	if (retval < 0)
 738		ext_debug(inode, "failed with err %d\n", retval);
 739	return retval;
 740}
 741
 742/*
 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 744 * we have to be careful as someone else may be manipulating b_state as well.
 745 */
 746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 747{
 748	unsigned long old_state;
 749	unsigned long new_state;
 750
 751	flags &= EXT4_MAP_FLAGS;
 752
 753	/* Dummy buffer_head? Set non-atomically. */
 754	if (!bh->b_page) {
 755		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 756		return;
 757	}
 758	/*
 759	 * Someone else may be modifying b_state. Be careful! This is ugly but
 760	 * once we get rid of using bh as a container for mapping information
 761	 * to pass to / from get_block functions, this can go away.
 762	 */
 763	old_state = READ_ONCE(bh->b_state);
 764	do {
 765		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 766	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
 767}
 768
 769static int _ext4_get_block(struct inode *inode, sector_t iblock,
 770			   struct buffer_head *bh, int flags)
 771{
 
 772	struct ext4_map_blocks map;
 773	int ret = 0;
 
 774
 775	if (ext4_has_inline_data(inode))
 776		return -ERANGE;
 777
 778	map.m_lblk = iblock;
 779	map.m_len = bh->b_size >> inode->i_blkbits;
 780
 781	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 782			      flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 783	if (ret > 0) {
 
 
 784		map_bh(bh, inode->i_sb, map.m_pblk);
 785		ext4_update_bh_state(bh, map.m_flags);
 
 
 786		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 787		ret = 0;
 788	} else if (ret == 0) {
 789		/* hole case, need to fill in bh->b_size */
 790		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 791	}
 
 
 792	return ret;
 793}
 794
 795int ext4_get_block(struct inode *inode, sector_t iblock,
 796		   struct buffer_head *bh, int create)
 797{
 798	return _ext4_get_block(inode, iblock, bh,
 799			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 800}
 801
 802/*
 803 * Get block function used when preparing for buffered write if we require
 804 * creating an unwritten extent if blocks haven't been allocated.  The extent
 805 * will be converted to written after the IO is complete.
 806 */
 807int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 808			     struct buffer_head *bh_result, int create)
 809{
 810	int ret = 0;
 811
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	ret = _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 816
 817	/*
 818	 * If the buffer is marked unwritten, mark it as new to make sure it is
 819	 * zeroed out correctly in case of partial writes. Otherwise, there is
 820	 * a chance of stale data getting exposed.
 821	 */
 822	if (ret == 0 && buffer_unwritten(bh_result))
 823		set_buffer_new(bh_result);
 824
 825	return ret;
 826}
 827
 828/* Maximum number of blocks we map for direct IO at once. */
 829#define DIO_MAX_BLOCKS 4096
 830
 831/*
 832 * `handle' can be NULL if create is zero
 833 */
 834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 835				ext4_lblk_t block, int map_flags)
 836{
 837	struct ext4_map_blocks map;
 838	struct buffer_head *bh;
 839	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 840	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 841	int err;
 842
 843	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 844		    || handle != NULL || create == 0);
 845	ASSERT(create == 0 || !nowait);
 846
 847	map.m_lblk = block;
 848	map.m_len = 1;
 849	err = ext4_map_blocks(handle, inode, &map, map_flags);
 850
 851	if (err == 0)
 852		return create ? ERR_PTR(-ENOSPC) : NULL;
 853	if (err < 0)
 854		return ERR_PTR(err);
 855
 856	if (nowait)
 857		return sb_find_get_block(inode->i_sb, map.m_pblk);
 858
 859	/*
 860	 * Since bh could introduce extra ref count such as referred by
 861	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
 862	 * as it may fail the migration when journal_head remains.
 863	 */
 864	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
 865				inode->i_sb->s_blocksize);
 866
 867	if (unlikely(!bh))
 868		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 869	if (map.m_flags & EXT4_MAP_NEW) {
 870		ASSERT(create != 0);
 871		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 872			    || (handle != NULL));
 873
 874		/*
 875		 * Now that we do not always journal data, we should
 876		 * keep in mind whether this should always journal the
 877		 * new buffer as metadata.  For now, regular file
 878		 * writes use ext4_get_block instead, so it's not a
 879		 * problem.
 880		 */
 881		lock_buffer(bh);
 882		BUFFER_TRACE(bh, "call get_create_access");
 883		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 884						     EXT4_JTR_NONE);
 885		if (unlikely(err)) {
 886			unlock_buffer(bh);
 887			goto errout;
 888		}
 889		if (!buffer_uptodate(bh)) {
 890			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 891			set_buffer_uptodate(bh);
 892		}
 893		unlock_buffer(bh);
 894		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 895		err = ext4_handle_dirty_metadata(handle, inode, bh);
 896		if (unlikely(err))
 897			goto errout;
 898	} else
 899		BUFFER_TRACE(bh, "not a new buffer");
 
 
 
 
 
 
 900	return bh;
 901errout:
 902	brelse(bh);
 903	return ERR_PTR(err);
 904}
 905
 906struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 907			       ext4_lblk_t block, int map_flags)
 908{
 909	struct buffer_head *bh;
 910	int ret;
 911
 912	bh = ext4_getblk(handle, inode, block, map_flags);
 913	if (IS_ERR(bh))
 914		return bh;
 915	if (!bh || ext4_buffer_uptodate(bh))
 916		return bh;
 917
 918	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 919	if (ret) {
 920		put_bh(bh);
 921		return ERR_PTR(ret);
 922	}
 923	return bh;
 924}
 925
 926/* Read a contiguous batch of blocks. */
 927int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 928		     bool wait, struct buffer_head **bhs)
 929{
 930	int i, err;
 931
 932	for (i = 0; i < bh_count; i++) {
 933		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 934		if (IS_ERR(bhs[i])) {
 935			err = PTR_ERR(bhs[i]);
 936			bh_count = i;
 937			goto out_brelse;
 938		}
 939	}
 940
 941	for (i = 0; i < bh_count; i++)
 942		/* Note that NULL bhs[i] is valid because of holes. */
 943		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 944			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 945
 946	if (!wait)
 947		return 0;
 948
 949	for (i = 0; i < bh_count; i++)
 950		if (bhs[i])
 951			wait_on_buffer(bhs[i]);
 952
 953	for (i = 0; i < bh_count; i++) {
 954		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 955			err = -EIO;
 956			goto out_brelse;
 957		}
 958	}
 959	return 0;
 960
 961out_brelse:
 962	for (i = 0; i < bh_count; i++) {
 963		brelse(bhs[i]);
 964		bhs[i] = NULL;
 965	}
 966	return err;
 967}
 968
 969int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 970			   struct buffer_head *head,
 971			   unsigned from,
 972			   unsigned to,
 973			   int *partial,
 974			   int (*fn)(handle_t *handle, struct inode *inode,
 975				     struct buffer_head *bh))
 976{
 977	struct buffer_head *bh;
 978	unsigned block_start, block_end;
 979	unsigned blocksize = head->b_size;
 980	int err, ret = 0;
 981	struct buffer_head *next;
 982
 983	for (bh = head, block_start = 0;
 984	     ret == 0 && (bh != head || !block_start);
 985	     block_start = block_end, bh = next) {
 986		next = bh->b_this_page;
 987		block_end = block_start + blocksize;
 988		if (block_end <= from || block_start >= to) {
 989			if (partial && !buffer_uptodate(bh))
 990				*partial = 1;
 991			continue;
 992		}
 993		err = (*fn)(handle, inode, bh);
 994		if (!ret)
 995			ret = err;
 996	}
 997	return ret;
 998}
 999
1000/*
1001 * Helper for handling dirtying of journalled data. We also mark the folio as
1002 * dirty so that writeback code knows about this page (and inode) contains
1003 * dirty data. ext4_writepages() then commits appropriate transaction to
1004 * make data stable.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005 */
1006static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1007{
1008	folio_mark_dirty(bh->b_folio);
1009	return ext4_handle_dirty_metadata(handle, NULL, bh);
1010}
1011
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013				struct buffer_head *bh)
1014{
 
 
 
1015	if (!buffer_mapped(bh) || buffer_freed(bh))
1016		return 0;
1017	BUFFER_TRACE(bh, "get write access");
1018	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019					    EXT4_JTR_NONE);
1020}
1021
1022int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023			   loff_t pos, unsigned len,
1024			   get_block_t *get_block)
1025{
1026	unsigned from = pos & (PAGE_SIZE - 1);
1027	unsigned to = from + len;
1028	struct inode *inode = folio->mapping->host;
1029	unsigned block_start, block_end;
1030	sector_t block;
1031	int err = 0;
1032	unsigned blocksize = inode->i_sb->s_blocksize;
1033	unsigned bbits;
1034	struct buffer_head *bh, *head, *wait[2];
1035	int nr_wait = 0;
1036	int i;
1037	bool should_journal_data = ext4_should_journal_data(inode);
1038
1039	BUG_ON(!folio_test_locked(folio));
1040	BUG_ON(from > PAGE_SIZE);
1041	BUG_ON(to > PAGE_SIZE);
1042	BUG_ON(from > to);
1043
1044	head = folio_buffers(folio);
1045	if (!head)
1046		head = create_empty_buffers(folio, blocksize, 0);
1047	bbits = ilog2(blocksize);
1048	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050	for (bh = head, block_start = 0; bh != head || !block_start;
1051	    block++, block_start = block_end, bh = bh->b_this_page) {
1052		block_end = block_start + blocksize;
1053		if (block_end <= from || block_start >= to) {
1054			if (folio_test_uptodate(folio)) {
1055				set_buffer_uptodate(bh);
1056			}
1057			continue;
1058		}
1059		if (buffer_new(bh))
1060			clear_buffer_new(bh);
1061		if (!buffer_mapped(bh)) {
1062			WARN_ON(bh->b_size != blocksize);
1063			err = get_block(inode, block, bh, 1);
1064			if (err)
1065				break;
1066			if (buffer_new(bh)) {
1067				/*
1068				 * We may be zeroing partial buffers or all new
1069				 * buffers in case of failure. Prepare JBD2 for
1070				 * that.
1071				 */
1072				if (should_journal_data)
1073					do_journal_get_write_access(handle,
1074								    inode, bh);
1075				if (folio_test_uptodate(folio)) {
1076					/*
1077					 * Unlike __block_write_begin() we leave
1078					 * dirtying of new uptodate buffers to
1079					 * ->write_end() time or
1080					 * folio_zero_new_buffers().
1081					 */
1082					set_buffer_uptodate(bh);
1083					continue;
1084				}
1085				if (block_end > to || block_start < from)
1086					folio_zero_segments(folio, to,
1087							    block_end,
1088							    block_start, from);
1089				continue;
1090			}
1091		}
1092		if (folio_test_uptodate(folio)) {
1093			set_buffer_uptodate(bh);
1094			continue;
1095		}
1096		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097		    !buffer_unwritten(bh) &&
1098		    (block_start < from || block_end > to)) {
1099			ext4_read_bh_lock(bh, 0, false);
1100			wait[nr_wait++] = bh;
1101		}
1102	}
1103	/*
1104	 * If we issued read requests, let them complete.
1105	 */
1106	for (i = 0; i < nr_wait; i++) {
1107		wait_on_buffer(wait[i]);
1108		if (!buffer_uptodate(wait[i]))
1109			err = -EIO;
1110	}
1111	if (unlikely(err)) {
1112		if (should_journal_data)
1113			ext4_journalled_zero_new_buffers(handle, inode, folio,
1114							 from, to);
1115		else
1116			folio_zero_new_buffers(folio, from, to);
1117	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118		for (i = 0; i < nr_wait; i++) {
1119			int err2;
1120
1121			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122						blocksize, bh_offset(wait[i]));
1123			if (err2) {
1124				clear_buffer_uptodate(wait[i]);
1125				err = err2;
1126			}
1127		}
1128	}
1129
1130	return err;
1131}
1132
1133/*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction.  We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
1140static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141			    loff_t pos, unsigned len,
1142			    struct folio **foliop, void **fsdata)
1143{
1144	struct inode *inode = mapping->host;
1145	int ret, needed_blocks;
1146	handle_t *handle;
1147	int retries = 0;
1148	struct folio *folio;
1149	pgoff_t index;
1150	unsigned from, to;
1151
1152	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153		return -EIO;
1154
1155	trace_ext4_write_begin(inode, pos, len);
1156	/*
1157	 * Reserve one block more for addition to orphan list in case
1158	 * we allocate blocks but write fails for some reason
1159	 */
1160	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161	index = pos >> PAGE_SHIFT;
1162	from = pos & (PAGE_SIZE - 1);
1163	to = from + len;
1164
1165	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167						    foliop);
1168		if (ret < 0)
1169			return ret;
1170		if (ret == 1)
1171			return 0;
1172	}
1173
1174	/*
1175	 * __filemap_get_folio() can take a long time if the
1176	 * system is thrashing due to memory pressure, or if the folio
1177	 * is being written back.  So grab it first before we start
1178	 * the transaction handle.  This also allows us to allocate
1179	 * the folio (if needed) without using GFP_NOFS.
1180	 */
1181retry_grab:
1182	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183					mapping_gfp_mask(mapping));
1184	if (IS_ERR(folio))
1185		return PTR_ERR(folio);
1186	/*
1187	 * The same as page allocation, we prealloc buffer heads before
1188	 * starting the handle.
1189	 */
1190	if (!folio_buffers(folio))
1191		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193	folio_unlock(folio);
1194
1195retry_journal:
1196	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197	if (IS_ERR(handle)) {
1198		folio_put(folio);
1199		return PTR_ERR(handle);
1200	}
1201
1202	folio_lock(folio);
1203	if (folio->mapping != mapping) {
1204		/* The folio got truncated from under us */
1205		folio_unlock(folio);
1206		folio_put(folio);
1207		ext4_journal_stop(handle);
1208		goto retry_grab;
1209	}
1210	/* In case writeback began while the folio was unlocked */
1211	folio_wait_stable(folio);
1212
1213	if (ext4_should_dioread_nolock(inode))
1214		ret = ext4_block_write_begin(handle, folio, pos, len,
1215					     ext4_get_block_unwritten);
1216	else
1217		ret = ext4_block_write_begin(handle, folio, pos, len,
1218					     ext4_get_block);
1219	if (!ret && ext4_should_journal_data(inode)) {
1220		ret = ext4_walk_page_buffers(handle, inode,
1221					     folio_buffers(folio), from, to,
1222					     NULL, do_journal_get_write_access);
1223	}
1224
1225	if (ret) {
1226		bool extended = (pos + len > inode->i_size) &&
1227				!ext4_verity_in_progress(inode);
1228
1229		folio_unlock(folio);
1230		/*
1231		 * ext4_block_write_begin may have instantiated a few blocks
1232		 * outside i_size.  Trim these off again. Don't need
1233		 * i_size_read because we hold i_rwsem.
1234		 *
1235		 * Add inode to orphan list in case we crash before
1236		 * truncate finishes
1237		 */
1238		if (extended && ext4_can_truncate(inode))
1239			ext4_orphan_add(handle, inode);
1240
1241		ext4_journal_stop(handle);
1242		if (extended) {
1243			ext4_truncate_failed_write(inode);
1244			/*
1245			 * If truncate failed early the inode might
1246			 * still be on the orphan list; we need to
1247			 * make sure the inode is removed from the
1248			 * orphan list in that case.
1249			 */
1250			if (inode->i_nlink)
1251				ext4_orphan_del(NULL, inode);
1252		}
1253
1254		if (ret == -ENOSPC &&
1255		    ext4_should_retry_alloc(inode->i_sb, &retries))
1256			goto retry_journal;
1257		folio_put(folio);
1258		return ret;
1259	}
1260	*foliop = folio;
1261	return ret;
1262}
1263
1264/* For write_end() in data=journal mode */
1265static int write_end_fn(handle_t *handle, struct inode *inode,
1266			struct buffer_head *bh)
1267{
1268	int ret;
1269	if (!buffer_mapped(bh) || buffer_freed(bh))
1270		return 0;
1271	set_buffer_uptodate(bh);
1272	ret = ext4_dirty_journalled_data(handle, bh);
1273	clear_buffer_meta(bh);
1274	clear_buffer_prio(bh);
1275	return ret;
1276}
1277
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283 * buffers are managed internally.
1284 */
1285static int ext4_write_end(struct file *file,
1286			  struct address_space *mapping,
1287			  loff_t pos, unsigned len, unsigned copied,
1288			  struct folio *folio, void *fsdata)
1289{
1290	handle_t *handle = ext4_journal_current_handle();
1291	struct inode *inode = mapping->host;
1292	loff_t old_size = inode->i_size;
1293	int ret = 0, ret2;
1294	int i_size_changed = 0;
1295	bool verity = ext4_verity_in_progress(inode);
1296
1297	trace_ext4_write_end(inode, pos, len, copied);
 
 
 
 
 
 
 
 
1298
1299	if (ext4_has_inline_data(inode) &&
1300	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301		return ext4_write_inline_data_end(inode, pos, len, copied,
1302						  folio);
 
 
 
 
 
1303
1304	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1305	/*
1306	 * it's important to update i_size while still holding folio lock:
1307	 * page writeout could otherwise come in and zero beyond i_size.
1308	 *
1309	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310	 * blocks are being written past EOF, so skip the i_size update.
1311	 */
1312	if (!verity)
1313		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314	folio_unlock(folio);
1315	folio_put(folio);
1316
1317	if (old_size < pos && !verity) {
1318		pagecache_isize_extended(inode, old_size, pos);
1319		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320	}
1321	/*
1322	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323	 * makes the holding time of folio lock longer. Second, it forces lock
1324	 * ordering of folio lock and transaction start for journaling
 
 
 
 
 
 
 
1325	 * filesystems.
1326	 */
1327	if (i_size_changed)
1328		ret = ext4_mark_inode_dirty(handle, inode);
1329
1330	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331		/* if we have allocated more blocks and copied
1332		 * less. We will have blocks allocated outside
1333		 * inode->i_size. So truncate them
1334		 */
1335		ext4_orphan_add(handle, inode);
1336
1337	ret2 = ext4_journal_stop(handle);
1338	if (!ret)
1339		ret = ret2;
1340
1341	if (pos + len > inode->i_size && !verity) {
1342		ext4_truncate_failed_write(inode);
1343		/*
1344		 * If truncate failed early the inode might still be
1345		 * on the orphan list; we need to make sure the inode
1346		 * is removed from the orphan list in that case.
1347		 */
1348		if (inode->i_nlink)
1349			ext4_orphan_del(NULL, inode);
1350	}
1351
1352	return ret ? ret : copied;
1353}
1354
1355/*
1356 * This is a private version of folio_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_dirty_journalled_data() instead.
1359 */
1360static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361					    struct inode *inode,
1362					    struct folio *folio,
1363					    unsigned from, unsigned to)
1364{
1365	unsigned int block_start = 0, block_end;
1366	struct buffer_head *head, *bh;
1367
1368	bh = head = folio_buffers(folio);
1369	do {
1370		block_end = block_start + bh->b_size;
1371		if (buffer_new(bh)) {
1372			if (block_end > from && block_start < to) {
1373				if (!folio_test_uptodate(folio)) {
1374					unsigned start, size;
1375
1376					start = max(from, block_start);
1377					size = min(to, block_end) - start;
1378
1379					folio_zero_range(folio, start, size);
1380				}
1381				clear_buffer_new(bh);
1382				write_end_fn(handle, inode, bh);
1383			}
1384		}
1385		block_start = block_end;
1386		bh = bh->b_this_page;
1387	} while (bh != head);
1388}
1389
1390static int ext4_journalled_write_end(struct file *file,
1391				     struct address_space *mapping,
1392				     loff_t pos, unsigned len, unsigned copied,
1393				     struct folio *folio, void *fsdata)
1394{
1395	handle_t *handle = ext4_journal_current_handle();
1396	struct inode *inode = mapping->host;
1397	loff_t old_size = inode->i_size;
1398	int ret = 0, ret2;
1399	int partial = 0;
1400	unsigned from, to;
1401	int size_changed = 0;
1402	bool verity = ext4_verity_in_progress(inode);
1403
1404	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405	from = pos & (PAGE_SIZE - 1);
1406	to = from + len;
1407
1408	BUG_ON(!ext4_handle_valid(handle));
1409
1410	if (ext4_has_inline_data(inode))
1411		return ext4_write_inline_data_end(inode, pos, len, copied,
1412						  folio);
 
 
 
 
 
 
1413
1414	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1415		copied = 0;
1416		ext4_journalled_zero_new_buffers(handle, inode, folio,
1417						 from, to);
1418	} else {
1419		if (unlikely(copied < len))
1420			ext4_journalled_zero_new_buffers(handle, inode, folio,
1421							 from + copied, to);
1422		ret = ext4_walk_page_buffers(handle, inode,
1423					     folio_buffers(folio),
1424					     from, from + copied, &partial,
1425					     write_end_fn);
1426		if (!partial)
1427			folio_mark_uptodate(folio);
1428	}
1429	if (!verity)
1430		size_changed = ext4_update_inode_size(inode, pos + copied);
 
 
1431	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432	folio_unlock(folio);
1433	folio_put(folio);
1434
1435	if (old_size < pos && !verity) {
1436		pagecache_isize_extended(inode, old_size, pos);
1437		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438	}
1439
1440	if (size_changed) {
1441		ret2 = ext4_mark_inode_dirty(handle, inode);
1442		if (!ret)
1443			ret = ret2;
1444	}
1445
1446	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
 
 
1447		/* if we have allocated more blocks and copied
1448		 * less. We will have blocks allocated outside
1449		 * inode->i_size. So truncate them
1450		 */
1451		ext4_orphan_add(handle, inode);
1452
1453	ret2 = ext4_journal_stop(handle);
1454	if (!ret)
1455		ret = ret2;
1456	if (pos + len > inode->i_size && !verity) {
1457		ext4_truncate_failed_write(inode);
1458		/*
1459		 * If truncate failed early the inode might still be
1460		 * on the orphan list; we need to make sure the inode
1461		 * is removed from the orphan list in that case.
1462		 */
1463		if (inode->i_nlink)
1464			ext4_orphan_del(NULL, inode);
1465	}
1466
1467	return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for 'nr_resv' clusters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1472 */
1473static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474{
1475	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476	struct ext4_inode_info *ei = EXT4_I(inode);
 
1477	int ret;
 
 
1478
1479	/*
1480	 * We will charge metadata quota at writeout time; this saves
1481	 * us from metadata over-estimation, though we may go over by
1482	 * a small amount in the end.  Here we just reserve for data.
1483	 */
1484	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485	if (ret)
1486		return ret;
1487
 
 
 
 
 
1488	spin_lock(&ei->i_block_reservation_lock);
1489	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1490		spin_unlock(&ei->i_block_reservation_lock);
1491		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492		return -ENOSPC;
1493	}
1494	ei->i_reserved_data_blocks += nr_resv;
1495	trace_ext4_da_reserve_space(inode, nr_resv);
1496	spin_unlock(&ei->i_block_reservation_lock);
1497
1498	return 0;       /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504	struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506	if (!to_free)
1507		return;		/* Nothing to release, exit */
1508
1509	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511	trace_ext4_da_release_space(inode, to_free);
1512	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513		/*
1514		 * if there aren't enough reserved blocks, then the
1515		 * counter is messed up somewhere.  Since this
1516		 * function is called from invalidate page, it's
1517		 * harmless to return without any action.
1518		 */
1519		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520			 "ino %lu, to_free %d with only %d reserved "
1521			 "data blocks", inode->i_ino, to_free,
1522			 ei->i_reserved_data_blocks);
1523		WARN_ON(1);
1524		to_free = ei->i_reserved_data_blocks;
1525	}
1526	ei->i_reserved_data_blocks -= to_free;
1527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1528	/* update fs dirty data blocks counter */
1529	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541	/* These are input fields for ext4_do_writepages() */
1542	struct inode *inode;
1543	struct writeback_control *wbc;
1544	unsigned int can_map:1;	/* Can writepages call map blocks? */
1545
1546	/* These are internal state of ext4_do_writepages() */
1547	pgoff_t first_page;	/* The first page to write */
1548	pgoff_t next_page;	/* Current page to examine */
1549	pgoff_t last_page;	/* Last page to examine */
1550	/*
1551	 * Extent to map - this can be after first_page because that can be
1552	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553	 * is delalloc or unwritten.
1554	 */
1555	struct ext4_map_blocks map;
1556	struct ext4_io_submit io_submit;	/* IO submission data */
1557	unsigned int do_map:1;
1558	unsigned int scanned_until_end:1;
1559	unsigned int journalled_more_data:1;
1560};
1561
1562static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563				       bool invalidate)
1564{
1565	unsigned nr, i;
1566	pgoff_t index, end;
1567	struct folio_batch fbatch;
1568	struct inode *inode = mpd->inode;
1569	struct address_space *mapping = inode->i_mapping;
1570
1571	/* This is necessary when next_page == 0. */
1572	if (mpd->first_page >= mpd->next_page)
1573		return;
1574
1575	mpd->scanned_until_end = 0;
1576	index = mpd->first_page;
1577	end   = mpd->next_page - 1;
1578	if (invalidate) {
1579		ext4_lblk_t start, last;
1580		start = index << (PAGE_SHIFT - inode->i_blkbits);
1581		last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583		/*
1584		 * avoid racing with extent status tree scans made by
1585		 * ext4_insert_delayed_block()
1586		 */
1587		down_write(&EXT4_I(inode)->i_data_sem);
1588		ext4_es_remove_extent(inode, start, last - start + 1);
1589		up_write(&EXT4_I(inode)->i_data_sem);
1590	}
1591
1592	folio_batch_init(&fbatch);
1593	while (index <= end) {
1594		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595		if (nr == 0)
1596			break;
1597		for (i = 0; i < nr; i++) {
1598			struct folio *folio = fbatch.folios[i];
1599
1600			if (folio->index < mpd->first_page)
1601				continue;
1602			if (folio_next_index(folio) - 1 > end)
1603				continue;
1604			BUG_ON(!folio_test_locked(folio));
1605			BUG_ON(folio_test_writeback(folio));
1606			if (invalidate) {
1607				if (folio_mapped(folio))
1608					folio_clear_dirty_for_io(folio);
1609				block_invalidate_folio(folio, 0,
1610						folio_size(folio));
1611				folio_clear_uptodate(folio);
1612			}
1613			folio_unlock(folio);
1614		}
1615		folio_batch_release(&fbatch);
 
1616	}
1617}
1618
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622	struct super_block *sb = inode->i_sb;
1623	struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627			ext4_count_free_clusters(sb)));
1628	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630	       (long long) EXT4_C2B(EXT4_SB(sb),
1631		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633	       (long long) EXT4_C2B(EXT4_SB(sb),
1634		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637		 ei->i_reserved_data_blocks);
 
 
 
 
1638	return;
1639}
1640
1641/*
1642 * Check whether the cluster containing lblk has been allocated or has
1643 * delalloc reservation.
1644 *
1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646 * reservation, 2 if it's already been allocated, negative error code on
1647 * failure.
1648 */
1649static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650{
1651	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652	int ret;
1653
1654	/* Has delalloc reservation? */
1655	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656		return 1;
1657
1658	/* Already been allocated? */
1659	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660		return 2;
1661	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662	if (ret < 0)
1663		return ret;
1664	if (ret > 0)
1665		return 2;
1666
1667	return 0;
1668}
1669
1670/*
1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672 *                              status tree, incrementing the reserved
1673 *                              cluster/block count or making pending
1674 *                              reservations where needed
1675 *
1676 * @inode - file containing the newly added block
1677 * @lblk - start logical block to be added
1678 * @len - length of blocks to be added
1679 *
1680 * Returns 0 on success, negative error code on failure.
1681 */
1682static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683				      ext4_lblk_t len)
1684{
1685	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686	int ret;
1687	bool lclu_allocated = false;
1688	bool end_allocated = false;
1689	ext4_lblk_t resv_clu;
1690	ext4_lblk_t end = lblk + len - 1;
1691
1692	/*
1693	 * If the cluster containing lblk or end is shared with a delayed,
1694	 * written, or unwritten extent in a bigalloc file system, it's
1695	 * already been accounted for and does not need to be reserved.
1696	 * A pending reservation must be made for the cluster if it's
1697	 * shared with a written or unwritten extent and doesn't already
1698	 * have one.  Written and unwritten extents can be purged from the
1699	 * extents status tree if the system is under memory pressure, so
1700	 * it's necessary to examine the extent tree if a search of the
1701	 * extents status tree doesn't get a match.
1702	 */
1703	if (sbi->s_cluster_ratio == 1) {
1704		ret = ext4_da_reserve_space(inode, len);
1705		if (ret != 0)   /* ENOSPC */
1706			return ret;
1707	} else {   /* bigalloc */
1708		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710		ret = ext4_clu_alloc_state(inode, lblk);
1711		if (ret < 0)
1712			return ret;
1713		if (ret > 0) {
1714			resv_clu--;
1715			lclu_allocated = (ret == 2);
1716		}
1717
1718		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719			ret = ext4_clu_alloc_state(inode, end);
1720			if (ret < 0)
1721				return ret;
1722			if (ret > 0) {
1723				resv_clu--;
1724				end_allocated = (ret == 2);
1725			}
1726		}
1727
1728		if (resv_clu) {
1729			ret = ext4_da_reserve_space(inode, resv_clu);
1730			if (ret != 0)   /* ENOSPC */
1731				return ret;
1732		}
1733	}
1734
1735	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736				      end_allocated);
1737	return 0;
1738}
1739
1740/*
1741 * Looks up the requested blocks and sets the delalloc extent map.
1742 * First try to look up for the extent entry that contains the requested
1743 * blocks in the extent status tree without i_data_sem, then try to look
1744 * up for the ondisk extent mapping with i_data_sem in read mode,
1745 * finally hold i_data_sem in write mode, looks up again and add a
1746 * delalloc extent entry if it still couldn't find any extent. Pass out
1747 * the mapped extent through @map and return 0 on success.
1748 */
1749static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750{
1751	struct extent_status es;
1752	int retval;
 
1753#ifdef ES_AGGRESSIVE_TEST
1754	struct ext4_map_blocks orig_map;
1755
1756	memcpy(&orig_map, map, sizeof(*map));
1757#endif
1758
 
 
 
1759	map->m_flags = 0;
1760	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
 
1761		  (unsigned long) map->m_lblk);
1762
1763	/* Lookup extent status tree firstly */
1764	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765		map->m_len = min_t(unsigned int, map->m_len,
1766				   es.es_len - (map->m_lblk - es.es_lblk));
1767
1768		if (ext4_es_is_hole(&es))
1769			goto add_delayed;
 
1770
1771found:
1772		/*
1773		 * Delayed extent could be allocated by fallocate.
1774		 * So we need to check it.
1775		 */
1776		if (ext4_es_is_delayed(&es)) {
1777			map->m_flags |= EXT4_MAP_DELAYED;
 
 
1778			return 0;
1779		}
1780
1781		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
 
 
 
 
1782		if (ext4_es_is_written(&es))
1783			map->m_flags |= EXT4_MAP_MAPPED;
1784		else if (ext4_es_is_unwritten(&es))
1785			map->m_flags |= EXT4_MAP_UNWRITTEN;
1786		else
1787			BUG();
1788
1789#ifdef ES_AGGRESSIVE_TEST
1790		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791#endif
1792		return 0;
1793	}
1794
1795	/*
1796	 * Try to see if we can get the block without requesting a new
1797	 * file system block.
1798	 */
1799	down_read(&EXT4_I(inode)->i_data_sem);
1800	if (ext4_has_inline_data(inode))
 
 
 
 
 
 
 
 
 
 
1801		retval = 0;
 
 
 
1802	else
1803		retval = ext4_map_query_blocks(NULL, inode, map);
1804	up_read(&EXT4_I(inode)->i_data_sem);
1805	if (retval)
1806		return retval < 0 ? retval : 0;
1807
1808add_delayed:
1809	down_write(&EXT4_I(inode)->i_data_sem);
1810	/*
1811	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812	 * and fallocate path (no folio lock) can race. Make sure we
1813	 * lookup the extent status tree here again while i_data_sem
1814	 * is held in write mode, before inserting a new da entry in
1815	 * the extent status tree.
1816	 */
1817	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818		map->m_len = min_t(unsigned int, map->m_len,
1819				   es.es_len - (map->m_lblk - es.es_lblk));
1820
1821		if (!ext4_es_is_hole(&es)) {
1822			up_write(&EXT4_I(inode)->i_data_sem);
1823			goto found;
 
 
 
 
 
 
 
 
 
 
1824		}
1825	} else if (!ext4_has_inline_data(inode)) {
1826		retval = ext4_map_query_blocks(NULL, inode, map);
1827		if (retval) {
1828			up_write(&EXT4_I(inode)->i_data_sem);
1829			return retval < 0 ? retval : 0;
 
1830		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	}
1832
1833	map->m_flags |= EXT4_MAP_DELAYED;
1834	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835	up_write(&EXT4_I(inode)->i_data_sem);
1836
1837	return retval;
1838}
1839
1840/*
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin().  It will either return mapped block or
1843 * reserve space for a single block.
1844 *
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1847 *
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1851 */
1852int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853			   struct buffer_head *bh, int create)
1854{
1855	struct ext4_map_blocks map;
1856	sector_t invalid_block = ~((sector_t) 0xffff);
1857	int ret = 0;
1858
1859	BUG_ON(create == 0);
1860	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863		invalid_block = ~0;
1864
1865	map.m_lblk = iblock;
1866	map.m_len = 1;
1867
1868	/*
1869	 * first, we need to know whether the block is allocated already
1870	 * preallocated blocks are unmapped but should treated
1871	 * the same as allocated blocks.
1872	 */
1873	ret = ext4_da_map_blocks(inode, &map);
1874	if (ret < 0)
1875		return ret;
1876
1877	if (map.m_flags & EXT4_MAP_DELAYED) {
1878		map_bh(bh, inode->i_sb, invalid_block);
1879		set_buffer_new(bh);
1880		set_buffer_delay(bh);
1881		return 0;
1882	}
1883
1884	map_bh(bh, inode->i_sb, map.m_pblk);
1885	ext4_update_bh_state(bh, map.m_flags);
1886
1887	if (buffer_unwritten(bh)) {
1888		/* A delayed write to unwritten bh should be marked
1889		 * new and mapped.  Mapped ensures that we don't do
1890		 * get_block multiple times when we write to the same
1891		 * offset and new ensures that we do proper zero out
1892		 * for partial write.
1893		 */
1894		set_buffer_new(bh);
1895		set_buffer_mapped(bh);
1896	}
1897	return 0;
1898}
1899
1900static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901{
1902	mpd->first_page += folio_nr_pages(folio);
1903	folio_unlock(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904}
1905
1906static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907{
1908	size_t len;
1909	loff_t size;
1910	int err;
 
 
 
1911
1912	BUG_ON(folio->index != mpd->first_page);
1913	folio_clear_dirty_for_io(folio);
 
 
 
 
 
 
1914	/*
1915	 * We have to be very careful here!  Nothing protects writeback path
1916	 * against i_size changes and the page can be writeably mapped into
1917	 * page tables. So an application can be growing i_size and writing
1918	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919	 * write-protects our page in page tables and the page cannot get
1920	 * written to again until we release folio lock. So only after
1921	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923	 * on the barrier provided by folio_test_clear_dirty() in
1924	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925	 * after page tables are updated.
1926	 */
1927	size = i_size_read(mpd->inode);
1928	len = folio_size(folio);
1929	if (folio_pos(folio) + len > size &&
1930	    !ext4_verity_in_progress(mpd->inode))
1931		len = size & (len - 1);
1932	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1933	if (!err)
1934		mpd->wbc->nr_to_write--;
 
1935
1936	return err;
1937}
1938
1939#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941/*
1942 * mballoc gives us at most this number of blocks...
1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944 * The rest of mballoc seems to handle chunks up to full group size.
1945 */
1946#define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948/*
1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950 *
1951 * @mpd - extent of blocks
1952 * @lblk - logical number of the block in the file
1953 * @bh - buffer head we want to add to the extent
1954 *
1955 * The function is used to collect contig. blocks in the same state. If the
1956 * buffer doesn't require mapping for writeback and we haven't started the
1957 * extent of buffers to map yet, the function returns 'true' immediately - the
1958 * caller can write the buffer right away. Otherwise the function returns true
1959 * if the block has been added to the extent, false if the block couldn't be
1960 * added.
1961 */
1962static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963				   struct buffer_head *bh)
1964{
1965	struct ext4_map_blocks *map = &mpd->map;
1966
1967	/* Buffer that doesn't need mapping for writeback? */
1968	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970		/* So far no extent to map => we write the buffer right away */
1971		if (map->m_len == 0)
1972			return true;
1973		return false;
1974	}
1975
1976	/* First block in the extent? */
1977	if (map->m_len == 0) {
1978		/* We cannot map unless handle is started... */
1979		if (!mpd->do_map)
1980			return false;
1981		map->m_lblk = lblk;
1982		map->m_len = 1;
1983		map->m_flags = bh->b_state & BH_FLAGS;
1984		return true;
1985	}
1986
1987	/* Don't go larger than mballoc is willing to allocate */
1988	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989		return false;
1990
1991	/* Can we merge the block to our big extent? */
1992	if (lblk == map->m_lblk + map->m_len &&
1993	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1994		map->m_len++;
1995		return true;
1996	}
1997	return false;
1998}
1999
2000/*
2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002 *
2003 * @mpd - extent of blocks for mapping
2004 * @head - the first buffer in the page
2005 * @bh - buffer we should start processing from
2006 * @lblk - logical number of the block in the file corresponding to @bh
2007 *
2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009 * the page for IO if all buffers in this page were mapped and there's no
2010 * accumulated extent of buffers to map or add buffers in the page to the
2011 * extent of buffers to map. The function returns 1 if the caller can continue
2012 * by processing the next page, 0 if it should stop adding buffers to the
2013 * extent to map because we cannot extend it anymore. It can also return value
2014 * < 0 in case of error during IO submission.
2015 */
2016static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017				   struct buffer_head *head,
2018				   struct buffer_head *bh,
2019				   ext4_lblk_t lblk)
2020{
2021	struct inode *inode = mpd->inode;
2022	int err;
2023	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024							>> inode->i_blkbits;
2025
2026	if (ext4_verity_in_progress(inode))
2027		blocks = EXT_MAX_BLOCKS;
2028
2029	do {
2030		BUG_ON(buffer_locked(bh));
2031
2032		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033			/* Found extent to map? */
2034			if (mpd->map.m_len)
2035				return 0;
2036			/* Buffer needs mapping and handle is not started? */
2037			if (!mpd->do_map)
2038				return 0;
2039			/* Everything mapped so far and we hit EOF */
2040			break;
2041		}
2042	} while (lblk++, (bh = bh->b_this_page) != head);
2043	/* So far everything mapped? Submit the page for IO. */
2044	if (mpd->map.m_len == 0) {
2045		err = mpage_submit_folio(mpd, head->b_folio);
2046		if (err < 0)
2047			return err;
2048		mpage_folio_done(mpd, head->b_folio);
2049	}
2050	if (lblk >= blocks) {
2051		mpd->scanned_until_end = 1;
2052		return 0;
2053	}
2054	return 1;
2055}
2056
2057/*
2058 * mpage_process_folio - update folio buffers corresponding to changed extent
2059 *			 and may submit fully mapped page for IO
2060 * @mpd: description of extent to map, on return next extent to map
2061 * @folio: Contains these buffers.
2062 * @m_lblk: logical block mapping.
2063 * @m_pblk: corresponding physical mapping.
2064 * @map_bh: determines on return whether this page requires any further
2065 *		  mapping or not.
2066 *
2067 * Scan given folio buffers corresponding to changed extent and update buffer
2068 * state according to new extent state.
2069 * We map delalloc buffers to their physical location, clear unwritten bits.
2070 * If the given folio is not fully mapped, we update @mpd to the next extent in
2071 * the given folio that needs mapping & return @map_bh as true.
2072 */
2073static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075			      bool *map_bh)
2076{
2077	struct buffer_head *head, *bh;
2078	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079	ext4_lblk_t lblk = *m_lblk;
2080	ext4_fsblk_t pblock = *m_pblk;
2081	int err = 0;
2082	int blkbits = mpd->inode->i_blkbits;
2083	ssize_t io_end_size = 0;
2084	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086	bh = head = folio_buffers(folio);
2087	do {
2088		if (lblk < mpd->map.m_lblk)
2089			continue;
2090		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091			/*
2092			 * Buffer after end of mapped extent.
2093			 * Find next buffer in the folio to map.
2094			 */
2095			mpd->map.m_len = 0;
2096			mpd->map.m_flags = 0;
2097			io_end_vec->size += io_end_size;
2098
2099			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100			if (err > 0)
2101				err = 0;
2102			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103				io_end_vec = ext4_alloc_io_end_vec(io_end);
2104				if (IS_ERR(io_end_vec)) {
2105					err = PTR_ERR(io_end_vec);
2106					goto out;
2107				}
2108				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109			}
2110			*map_bh = true;
2111			goto out;
2112		}
2113		if (buffer_delay(bh)) {
2114			clear_buffer_delay(bh);
2115			bh->b_blocknr = pblock++;
2116		}
2117		clear_buffer_unwritten(bh);
2118		io_end_size += (1 << blkbits);
2119	} while (lblk++, (bh = bh->b_this_page) != head);
2120
2121	io_end_vec->size += io_end_size;
2122	*map_bh = false;
2123out:
2124	*m_lblk = lblk;
2125	*m_pblk = pblock;
2126	return err;
2127}
2128
2129/*
2130 * mpage_map_buffers - update buffers corresponding to changed extent and
2131 *		       submit fully mapped pages for IO
2132 *
2133 * @mpd - description of extent to map, on return next extent to map
2134 *
2135 * Scan buffers corresponding to changed extent (we expect corresponding pages
2136 * to be already locked) and update buffer state according to new extent state.
2137 * We map delalloc buffers to their physical location, clear unwritten bits,
2138 * and mark buffers as uninit when we perform writes to unwritten extents
2139 * and do extent conversion after IO is finished. If the last page is not fully
2140 * mapped, we update @map to the next extent in the last page that needs
2141 * mapping. Otherwise we submit the page for IO.
2142 */
2143static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144{
2145	struct folio_batch fbatch;
2146	unsigned nr, i;
2147	struct inode *inode = mpd->inode;
2148	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
 
2149	pgoff_t start, end;
2150	ext4_lblk_t lblk;
2151	ext4_fsblk_t pblock;
2152	int err;
2153	bool map_bh = false;
2154
2155	start = mpd->map.m_lblk >> bpp_bits;
2156	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157	lblk = start << bpp_bits;
2158	pblock = mpd->map.m_pblk;
2159
2160	folio_batch_init(&fbatch);
2161	while (start <= end) {
2162		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163		if (nr == 0)
 
2164			break;
2165		for (i = 0; i < nr; i++) {
2166			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169						 &map_bh);
2170			/*
2171			 * If map_bh is true, means page may require further bh
2172			 * mapping, or maybe the page was submitted for IO.
2173			 * So we return to call further extent mapping.
2174			 */
2175			if (err < 0 || map_bh)
2176				goto out;
2177			/* Page fully mapped - let IO run! */
2178			err = mpage_submit_folio(mpd, folio);
2179			if (err < 0)
2180				goto out;
2181			mpage_folio_done(mpd, folio);
 
 
2182		}
2183		folio_batch_release(&fbatch);
2184	}
2185	/* Extent fully mapped and matches with page boundary. We are done. */
2186	mpd->map.m_len = 0;
2187	mpd->map.m_flags = 0;
2188	return 0;
2189out:
2190	folio_batch_release(&fbatch);
2191	return err;
2192}
2193
2194static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195{
2196	struct inode *inode = mpd->inode;
2197	struct ext4_map_blocks *map = &mpd->map;
2198	int get_blocks_flags;
2199	int err, dioread_nolock;
2200
2201	trace_ext4_da_write_pages_extent(inode, map);
2202	/*
2203	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204	 * to convert an unwritten extent to be initialized (in the case
2205	 * where we have written into one or more preallocated blocks).  It is
2206	 * possible that we're going to need more metadata blocks than
2207	 * previously reserved. However we must not fail because we're in
2208	 * writeback and there is nothing we can do about it so it might result
2209	 * in data loss.  So use reserved blocks to allocate metadata if
2210	 * possible.
 
 
 
 
 
 
 
2211	 */
2212	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214			   EXT4_GET_BLOCKS_IO_SUBMIT;
2215	dioread_nolock = ext4_should_dioread_nolock(inode);
2216	if (dioread_nolock)
2217		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
 
 
2218
2219	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220	if (err < 0)
2221		return err;
2222	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223		if (!mpd->io_submit.io_end->handle &&
2224		    ext4_handle_valid(handle)) {
2225			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226			handle->h_rsv_handle = NULL;
2227		}
2228		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229	}
2230
2231	BUG_ON(map->m_len == 0);
 
 
 
 
 
 
 
2232	return 0;
2233}
2234
2235/*
2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237 *				 mpd->len and submit pages underlying it for IO
2238 *
2239 * @handle - handle for journal operations
2240 * @mpd - extent to map
2241 * @give_up_on_write - we set this to true iff there is a fatal error and there
2242 *                     is no hope of writing the data. The caller should discard
2243 *                     dirty pages to avoid infinite loops.
2244 *
2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247 * them to initialized or split the described range from larger unwritten
2248 * extent. Note that we need not map all the described range since allocation
2249 * can return less blocks or the range is covered by more unwritten extents. We
2250 * cannot map more because we are limited by reserved transaction credits. On
2251 * the other hand we always make sure that the last touched page is fully
2252 * mapped so that it can be written out (and thus forward progress is
2253 * guaranteed). After mapping we submit all mapped pages for IO.
2254 */
2255static int mpage_map_and_submit_extent(handle_t *handle,
2256				       struct mpage_da_data *mpd,
2257				       bool *give_up_on_write)
2258{
2259	struct inode *inode = mpd->inode;
2260	struct ext4_map_blocks *map = &mpd->map;
2261	int err;
2262	loff_t disksize;
2263	int progress = 0;
2264	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265	struct ext4_io_end_vec *io_end_vec;
2266
2267	io_end_vec = ext4_alloc_io_end_vec(io_end);
2268	if (IS_ERR(io_end_vec))
2269		return PTR_ERR(io_end_vec);
2270	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271	do {
2272		err = mpage_map_one_extent(handle, mpd);
2273		if (err < 0) {
2274			struct super_block *sb = inode->i_sb;
2275
2276			if (ext4_forced_shutdown(sb))
2277				goto invalidate_dirty_pages;
2278			/*
2279			 * Let the uper layers retry transient errors.
2280			 * In the case of ENOSPC, if ext4_count_free_blocks()
2281			 * is non-zero, a commit should free up blocks.
2282			 */
2283			if ((err == -ENOMEM) ||
2284			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285				if (progress)
2286					goto update_disksize;
2287				return err;
2288			}
2289			ext4_msg(sb, KERN_CRIT,
2290				 "Delayed block allocation failed for "
2291				 "inode %lu at logical offset %llu with"
2292				 " max blocks %u with error %d",
2293				 inode->i_ino,
2294				 (unsigned long long)map->m_lblk,
2295				 (unsigned)map->m_len, -err);
2296			ext4_msg(sb, KERN_CRIT,
2297				 "This should not happen!! Data will "
2298				 "be lost\n");
2299			if (err == -ENOSPC)
2300				ext4_print_free_blocks(inode);
2301		invalidate_dirty_pages:
2302			*give_up_on_write = true;
2303			return err;
2304		}
2305		progress = 1;
2306		/*
2307		 * Update buffer state, submit mapped pages, and get us new
2308		 * extent to map
2309		 */
2310		err = mpage_map_and_submit_buffers(mpd);
2311		if (err < 0)
2312			goto update_disksize;
2313	} while (map->m_len);
2314
2315update_disksize:
2316	/*
2317	 * Update on-disk size after IO is submitted.  Races with
2318	 * truncate are avoided by checking i_size under i_data_sem.
2319	 */
2320	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322		int err2;
2323		loff_t i_size;
2324
2325		down_write(&EXT4_I(inode)->i_data_sem);
2326		i_size = i_size_read(inode);
2327		if (disksize > i_size)
2328			disksize = i_size;
2329		if (disksize > EXT4_I(inode)->i_disksize)
2330			EXT4_I(inode)->i_disksize = disksize;
2331		up_write(&EXT4_I(inode)->i_data_sem);
2332		err2 = ext4_mark_inode_dirty(handle, inode);
2333		if (err2) {
2334			ext4_error_err(inode->i_sb, -err2,
2335				       "Failed to mark inode %lu dirty",
2336				       inode->i_ino);
2337		}
2338		if (!err)
2339			err = err2;
2340	}
2341	return err;
2342}
2343
2344/*
2345 * Calculate the total number of credits to reserve for one writepages
2346 * iteration. This is called from ext4_writepages(). We map an extent of
2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349 * bpp - 1 blocks in bpp different extents.
2350 */
2351static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352{
2353	int bpp = ext4_journal_blocks_per_page(inode);
2354
2355	return ext4_meta_trans_blocks(inode,
2356				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357}
2358
2359static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360				     size_t len)
2361{
2362	struct buffer_head *page_bufs = folio_buffers(folio);
2363	struct inode *inode = folio->mapping->host;
2364	int ret, err;
2365
2366	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367				     NULL, do_journal_get_write_access);
2368	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369				     NULL, write_end_fn);
2370	if (ret == 0)
2371		ret = err;
2372	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373	if (ret == 0)
2374		ret = err;
2375	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377	return ret;
2378}
2379
2380static int mpage_journal_page_buffers(handle_t *handle,
2381				      struct mpage_da_data *mpd,
2382				      struct folio *folio)
2383{
2384	struct inode *inode = mpd->inode;
2385	loff_t size = i_size_read(inode);
2386	size_t len = folio_size(folio);
2387
2388	folio_clear_checked(folio);
2389	mpd->wbc->nr_to_write--;
2390
2391	if (folio_pos(folio) + len > size &&
2392	    !ext4_verity_in_progress(inode))
2393		len = size & (len - 1);
2394
2395	return ext4_journal_folio_buffers(handle, folio, len);
2396}
2397
2398/*
2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400 * 				 needing mapping, submit mapped pages
2401 *
2402 * @mpd - where to look for pages
2403 *
2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405 * IO immediately. If we cannot map blocks, we submit just already mapped
2406 * buffers in the page for IO and keep page dirty. When we can map blocks and
2407 * we find a page which isn't mapped we start accumulating extent of buffers
2408 * underlying these pages that needs mapping (formed by either delayed or
2409 * unwritten buffers). We also lock the pages containing these buffers. The
2410 * extent found is returned in @mpd structure (starting at mpd->lblk with
2411 * length mpd->len blocks).
2412 *
2413 * Note that this function can attach bios to one io_end structure which are
2414 * neither logically nor physically contiguous. Although it may seem as an
2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416 * case as we need to track IO to all buffers underlying a page in one io_end.
2417 */
2418static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419{
2420	struct address_space *mapping = mpd->inode->i_mapping;
2421	struct folio_batch fbatch;
2422	unsigned int nr_folios;
 
2423	pgoff_t index = mpd->first_page;
2424	pgoff_t end = mpd->last_page;
2425	xa_mark_t tag;
2426	int i, err = 0;
2427	int blkbits = mpd->inode->i_blkbits;
2428	ext4_lblk_t lblk;
2429	struct buffer_head *head;
2430	handle_t *handle = NULL;
2431	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434		tag = PAGECACHE_TAG_TOWRITE;
2435	else
2436		tag = PAGECACHE_TAG_DIRTY;
2437
 
2438	mpd->map.m_len = 0;
2439	mpd->next_page = index;
2440	if (ext4_should_journal_data(mpd->inode)) {
2441		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442					    bpp);
2443		if (IS_ERR(handle))
2444			return PTR_ERR(handle);
2445	}
2446	folio_batch_init(&fbatch);
2447	while (index <= end) {
2448		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449				tag, &fbatch);
2450		if (nr_folios == 0)
2451			break;
2452
2453		for (i = 0; i < nr_folios; i++) {
2454			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
2455
2456			/*
2457			 * Accumulated enough dirty pages? This doesn't apply
2458			 * to WB_SYNC_ALL mode. For integrity sync we have to
2459			 * keep going because someone may be concurrently
2460			 * dirtying pages, and we might have synced a lot of
2461			 * newly appeared dirty pages, but have not synced all
2462			 * of the old dirty pages.
2463			 */
2464			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465			    mpd->wbc->nr_to_write <=
2466			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467				goto out;
2468
2469			/* If we can't merge this page, we are done. */
2470			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471				goto out;
2472
2473			if (handle) {
2474				err = ext4_journal_ensure_credits(handle, bpp,
2475								  0);
2476				if (err < 0)
2477					goto out;
2478			}
2479
2480			folio_lock(folio);
2481			/*
2482			 * If the page is no longer dirty, or its mapping no
2483			 * longer corresponds to inode we are writing (which
2484			 * means it has been truncated or invalidated), or the
2485			 * page is already under writeback and we are not doing
2486			 * a data integrity writeback, skip the page
2487			 */
2488			if (!folio_test_dirty(folio) ||
2489			    (folio_test_writeback(folio) &&
2490			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491			    unlikely(folio->mapping != mapping)) {
2492				folio_unlock(folio);
2493				continue;
2494			}
2495
2496			folio_wait_writeback(folio);
2497			BUG_ON(folio_test_writeback(folio));
2498
2499			/*
2500			 * Should never happen but for buggy code in
2501			 * other subsystems that call
2502			 * set_page_dirty() without properly warning
2503			 * the file system first.  See [1] for more
2504			 * information.
2505			 *
2506			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507			 */
2508			if (!folio_buffers(folio)) {
2509				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510				folio_clear_dirty(folio);
2511				folio_unlock(folio);
2512				continue;
2513			}
2514
2515			if (mpd->map.m_len == 0)
2516				mpd->first_page = folio->index;
2517			mpd->next_page = folio_next_index(folio);
2518			/*
2519			 * Writeout when we cannot modify metadata is simple.
2520			 * Just submit the page. For data=journal mode we
2521			 * first handle writeout of the page for checkpoint and
2522			 * only after that handle delayed page dirtying. This
2523			 * makes sure current data is checkpointed to the final
2524			 * location before possibly journalling it again which
2525			 * is desirable when the page is frequently dirtied
2526			 * through a pin.
2527			 */
2528			if (!mpd->can_map) {
2529				err = mpage_submit_folio(mpd, folio);
2530				if (err < 0)
2531					goto out;
2532				/* Pending dirtying of journalled data? */
2533				if (folio_test_checked(folio)) {
2534					err = mpage_journal_page_buffers(handle,
2535						mpd, folio);
2536					if (err < 0)
2537						goto out;
2538					mpd->journalled_more_data = 1;
2539				}
2540				mpage_folio_done(mpd, folio);
2541			} else {
2542				/* Add all dirty buffers to mpd */
2543				lblk = ((ext4_lblk_t)folio->index) <<
2544					(PAGE_SHIFT - blkbits);
2545				head = folio_buffers(folio);
2546				err = mpage_process_page_bufs(mpd, head, head,
2547						lblk);
2548				if (err <= 0)
2549					goto out;
2550				err = 0;
2551			}
2552		}
2553		folio_batch_release(&fbatch);
2554		cond_resched();
2555	}
2556	mpd->scanned_until_end = 1;
2557	if (handle)
2558		ext4_journal_stop(handle);
2559	return 0;
2560out:
2561	folio_batch_release(&fbatch);
2562	if (handle)
2563		ext4_journal_stop(handle);
2564	return err;
2565}
2566
2567static int ext4_do_writepages(struct mpage_da_data *mpd)
 
 
 
 
 
 
 
 
 
 
2568{
2569	struct writeback_control *wbc = mpd->wbc;
2570	pgoff_t	writeback_index = 0;
2571	long nr_to_write = wbc->nr_to_write;
2572	int range_whole = 0;
2573	int cycled = 1;
2574	handle_t *handle = NULL;
2575	struct inode *inode = mpd->inode;
2576	struct address_space *mapping = inode->i_mapping;
2577	int needed_blocks, rsv_blocks = 0, ret = 0;
2578	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
 
2579	struct blk_plug plug;
2580	bool give_up_on_write = false;
2581
2582	trace_ext4_writepages(inode, wbc);
2583
2584	/*
2585	 * No pages to write? This is mainly a kludge to avoid starting
2586	 * a transaction for special inodes like journal inode on last iput()
2587	 * because that could violate lock ordering on umount
2588	 */
2589	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590		goto out_writepages;
2591
 
 
 
 
 
 
 
 
 
2592	/*
2593	 * If the filesystem has aborted, it is read-only, so return
2594	 * right away instead of dumping stack traces later on that
2595	 * will obscure the real source of the problem.  We test
2596	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597	 * the latter could be true if the filesystem is mounted
2598	 * read-only, and in that case, ext4_writepages should
2599	 * *never* be called, so if that ever happens, we would want
2600	 * the stack trace.
2601	 */
2602	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603		ret = -EROFS;
2604		goto out_writepages;
2605	}
2606
 
 
 
 
 
 
 
 
2607	/*
2608	 * If we have inline data and arrive here, it means that
2609	 * we will soon create the block for the 1st page, so
2610	 * we'd better clear the inline data here.
2611	 */
2612	if (ext4_has_inline_data(inode)) {
2613		/* Just inode will be modified... */
2614		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615		if (IS_ERR(handle)) {
2616			ret = PTR_ERR(handle);
2617			goto out_writepages;
2618		}
2619		BUG_ON(ext4_test_inode_state(inode,
2620				EXT4_STATE_MAY_INLINE_DATA));
2621		ext4_destroy_inline_data(handle, inode);
2622		ext4_journal_stop(handle);
2623	}
2624
2625	/*
2626	 * data=journal mode does not do delalloc so we just need to writeout /
2627	 * journal already mapped buffers. On the other hand we need to commit
2628	 * transaction to make data stable. We expect all the data to be
2629	 * already in the journal (the only exception are DMA pinned pages
2630	 * dirtied behind our back) so we commit transaction here and run the
2631	 * writeback loop to checkpoint them. The checkpointing is not actually
2632	 * necessary to make data persistent *but* quite a few places (extent
2633	 * shifting operations, fsverity, ...) depend on being able to drop
2634	 * pagecache pages after calling filemap_write_and_wait() and for that
2635	 * checkpointing needs to happen.
2636	 */
2637	if (ext4_should_journal_data(inode)) {
2638		mpd->can_map = 0;
2639		if (wbc->sync_mode == WB_SYNC_ALL)
2640			ext4_fc_commit(sbi->s_journal,
2641				       EXT4_I(inode)->i_datasync_tid);
2642	}
2643	mpd->journalled_more_data = 0;
2644
2645	if (ext4_should_dioread_nolock(inode)) {
2646		/*
2647		 * We may need to convert up to one extent per block in
2648		 * the page and we may dirty the inode.
2649		 */
2650		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651						PAGE_SIZE >> inode->i_blkbits);
2652	}
2653
2654	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655		range_whole = 1;
2656
2657	if (wbc->range_cyclic) {
2658		writeback_index = mapping->writeback_index;
2659		if (writeback_index)
2660			cycled = 0;
2661		mpd->first_page = writeback_index;
2662		mpd->last_page = -1;
2663	} else {
2664		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666	}
2667
2668	ext4_io_submit_init(&mpd->io_submit, wbc);
 
 
2669retry:
2670	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671		tag_pages_for_writeback(mapping, mpd->first_page,
2672					mpd->last_page);
2673	blk_start_plug(&plug);
2674
2675	/*
2676	 * First writeback pages that don't need mapping - we can avoid
2677	 * starting a transaction unnecessarily and also avoid being blocked
2678	 * in the block layer on device congestion while having transaction
2679	 * started.
2680	 */
2681	mpd->do_map = 0;
2682	mpd->scanned_until_end = 0;
2683	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684	if (!mpd->io_submit.io_end) {
2685		ret = -ENOMEM;
2686		goto unplug;
2687	}
2688	ret = mpage_prepare_extent_to_map(mpd);
2689	/* Unlock pages we didn't use */
2690	mpage_release_unused_pages(mpd, false);
2691	/* Submit prepared bio */
2692	ext4_io_submit(&mpd->io_submit);
2693	ext4_put_io_end_defer(mpd->io_submit.io_end);
2694	mpd->io_submit.io_end = NULL;
2695	if (ret < 0)
2696		goto unplug;
2697
2698	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699		/* For each extent of pages we use new io_end */
2700		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701		if (!mpd->io_submit.io_end) {
2702			ret = -ENOMEM;
2703			break;
2704		}
2705
2706		WARN_ON_ONCE(!mpd->can_map);
2707		/*
2708		 * We have two constraints: We find one extent to map and we
2709		 * must always write out whole page (makes a difference when
2710		 * blocksize < pagesize) so that we don't block on IO when we
2711		 * try to write out the rest of the page. Journalled mode is
2712		 * not supported by delalloc.
2713		 */
2714		BUG_ON(ext4_should_journal_data(inode));
2715		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717		/* start a new transaction */
2718		handle = ext4_journal_start_with_reserve(inode,
2719				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720		if (IS_ERR(handle)) {
2721			ret = PTR_ERR(handle);
2722			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723			       "%ld pages, ino %lu; err %d", __func__,
2724				wbc->nr_to_write, inode->i_ino, ret);
2725			/* Release allocated io_end */
2726			ext4_put_io_end(mpd->io_submit.io_end);
2727			mpd->io_submit.io_end = NULL;
2728			break;
2729		}
2730		mpd->do_map = 1;
2731
2732		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733		ret = mpage_prepare_extent_to_map(mpd);
2734		if (!ret && mpd->map.m_len)
2735			ret = mpage_map_and_submit_extent(handle, mpd,
 
2736					&give_up_on_write);
2737		/*
2738		 * Caution: If the handle is synchronous,
2739		 * ext4_journal_stop() can wait for transaction commit
2740		 * to finish which may depend on writeback of pages to
2741		 * complete or on page lock to be released.  In that
2742		 * case, we have to wait until after we have
2743		 * submitted all the IO, released page locks we hold,
2744		 * and dropped io_end reference (for extent conversion
2745		 * to be able to complete) before stopping the handle.
2746		 */
2747		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748			ext4_journal_stop(handle);
2749			handle = NULL;
2750			mpd->do_map = 0;
2751		}
2752		/* Unlock pages we didn't use */
2753		mpage_release_unused_pages(mpd, give_up_on_write);
2754		/* Submit prepared bio */
2755		ext4_io_submit(&mpd->io_submit);
2756
2757		/*
2758		 * Drop our io_end reference we got from init. We have
2759		 * to be careful and use deferred io_end finishing if
2760		 * we are still holding the transaction as we can
2761		 * release the last reference to io_end which may end
2762		 * up doing unwritten extent conversion.
2763		 */
2764		if (handle) {
2765			ext4_put_io_end_defer(mpd->io_submit.io_end);
2766			ext4_journal_stop(handle);
2767		} else
2768			ext4_put_io_end(mpd->io_submit.io_end);
2769		mpd->io_submit.io_end = NULL;
2770
2771		if (ret == -ENOSPC && sbi->s_journal) {
2772			/*
2773			 * Commit the transaction which would
2774			 * free blocks released in the transaction
2775			 * and try again
2776			 */
2777			jbd2_journal_force_commit_nested(sbi->s_journal);
2778			ret = 0;
2779			continue;
2780		}
2781		/* Fatal error - ENOMEM, EIO... */
2782		if (ret)
2783			break;
2784	}
2785unplug:
2786	blk_finish_plug(&plug);
2787	if (!ret && !cycled && wbc->nr_to_write > 0) {
2788		cycled = 1;
2789		mpd->last_page = writeback_index - 1;
2790		mpd->first_page = 0;
2791		goto retry;
2792	}
2793
2794	/* Update index */
2795	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796		/*
2797		 * Set the writeback_index so that range_cyclic
2798		 * mode will write it back later
2799		 */
2800		mapping->writeback_index = mpd->first_page;
2801
2802out_writepages:
2803	trace_ext4_writepages_result(inode, wbc, ret,
2804				     nr_to_write - wbc->nr_to_write);
2805	return ret;
2806}
2807
2808static int ext4_writepages(struct address_space *mapping,
2809			   struct writeback_control *wbc)
2810{
2811	struct super_block *sb = mapping->host->i_sb;
2812	struct mpage_da_data mpd = {
2813		.inode = mapping->host,
2814		.wbc = wbc,
2815		.can_map = 1,
2816	};
2817	int ret;
2818	int alloc_ctx;
2819
2820	if (unlikely(ext4_forced_shutdown(sb)))
2821		return -EIO;
2822
2823	alloc_ctx = ext4_writepages_down_read(sb);
2824	ret = ext4_do_writepages(&mpd);
2825	/*
2826	 * For data=journal writeback we could have come across pages marked
2827	 * for delayed dirtying (PageChecked) which were just added to the
2828	 * running transaction. Try once more to get them to stable storage.
2829	 */
2830	if (!ret && mpd.journalled_more_data)
2831		ret = ext4_do_writepages(&mpd);
2832	ext4_writepages_up_read(sb, alloc_ctx);
2833
2834	return ret;
2835}
2836
2837int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838{
2839	struct writeback_control wbc = {
2840		.sync_mode = WB_SYNC_ALL,
2841		.nr_to_write = LONG_MAX,
2842		.range_start = jinode->i_dirty_start,
2843		.range_end = jinode->i_dirty_end,
2844	};
2845	struct mpage_da_data mpd = {
2846		.inode = jinode->i_vfs_inode,
2847		.wbc = &wbc,
2848		.can_map = 0,
2849	};
2850	return ext4_do_writepages(&mpd);
2851}
2852
2853static int ext4_dax_writepages(struct address_space *mapping,
2854			       struct writeback_control *wbc)
2855{
2856	int ret;
2857	long nr_to_write = wbc->nr_to_write;
2858	struct inode *inode = mapping->host;
2859	int alloc_ctx;
2860
2861	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862		return -EIO;
2863
2864	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865	trace_ext4_writepages(inode, wbc);
2866
2867	ret = dax_writeback_mapping_range(mapping,
2868					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869	trace_ext4_writepages_result(inode, wbc, ret,
2870				     nr_to_write - wbc->nr_to_write);
2871	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872	return ret;
2873}
2874
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877	s64 free_clusters, dirty_clusters;
2878	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880	/*
2881	 * switch to non delalloc mode if we are running low
2882	 * on free block. The free block accounting via percpu
2883	 * counters can get slightly wrong with percpu_counter_batch getting
2884	 * accumulated on each CPU without updating global counters
2885	 * Delalloc need an accurate free block accounting. So switch
2886	 * to non delalloc when we are near to error range.
2887	 */
2888	free_clusters =
2889		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890	dirty_clusters =
2891		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892	/*
2893	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894	 */
2895	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898	if (2 * free_clusters < 3 * dirty_clusters ||
2899	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900		/*
2901		 * free block count is less than 150% of dirty blocks
2902		 * or free blocks is less than watermark
2903		 */
2904		return 1;
2905	}
2906	return 0;
2907}
2908
2909static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910			       loff_t pos, unsigned len,
2911			       struct folio **foliop, void **fsdata)
2912{
2913	int ret, retries = 0;
2914	struct folio *folio;
2915	pgoff_t index;
2916	struct inode *inode = mapping->host;
 
2917
2918	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919		return -EIO;
2920
2921	index = pos >> PAGE_SHIFT;
2922
2923	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2924		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925		return ext4_write_begin(file, mapping, pos,
2926					len, foliop, fsdata);
2927	}
2928	*fsdata = (void *)0;
2929	trace_ext4_da_write_begin(inode, pos, len);
2930
2931	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933						      foliop, fsdata);
 
2934		if (ret < 0)
2935			return ret;
2936		if (ret == 1)
2937			return 0;
2938	}
2939
2940retry:
2941	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942			mapping_gfp_mask(mapping));
2943	if (IS_ERR(folio))
2944		return PTR_ERR(folio);
 
 
 
 
 
 
 
2945
2946	ret = ext4_block_write_begin(NULL, folio, pos, len,
2947				     ext4_da_get_block_prep);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2948	if (ret < 0) {
2949		folio_unlock(folio);
2950		folio_put(folio);
2951		/*
2952		 * block_write_begin may have instantiated a few blocks
2953		 * outside i_size.  Trim these off again. Don't need
2954		 * i_size_read because we hold inode lock.
2955		 */
2956		if (pos + len > inode->i_size)
2957			ext4_truncate_failed_write(inode);
2958
2959		if (ret == -ENOSPC &&
2960		    ext4_should_retry_alloc(inode->i_sb, &retries))
2961			goto retry;
 
 
2962		return ret;
2963	}
2964
2965	*foliop = folio;
2966	return ret;
2967}
2968
2969/*
2970 * Check if we should update i_disksize
2971 * when write to the end of file but not require block allocation
2972 */
2973static int ext4_da_should_update_i_disksize(struct folio *folio,
2974					    unsigned long offset)
2975{
2976	struct buffer_head *bh;
2977	struct inode *inode = folio->mapping->host;
2978	unsigned int idx;
2979	int i;
2980
2981	bh = folio_buffers(folio);
2982	idx = offset >> inode->i_blkbits;
2983
2984	for (i = 0; i < idx; i++)
2985		bh = bh->b_this_page;
2986
2987	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988		return 0;
2989	return 1;
2990}
2991
2992static int ext4_da_do_write_end(struct address_space *mapping,
2993			loff_t pos, unsigned len, unsigned copied,
2994			struct folio *folio)
2995{
2996	struct inode *inode = mapping->host;
2997	loff_t old_size = inode->i_size;
2998	bool disksize_changed = false;
2999	loff_t new_i_size, zero_len = 0;
3000	handle_t *handle;
3001
3002	if (unlikely(!folio_buffers(folio))) {
3003		folio_unlock(folio);
3004		folio_put(folio);
3005		return -EIO;
3006	}
3007	/*
3008	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009	 * flag, which all that's needed to trigger page writeback.
3010	 */
3011	copied = block_write_end(NULL, mapping, pos, len, copied,
3012			folio, NULL);
3013	new_i_size = pos + copied;
3014
3015	/*
3016	 * It's important to update i_size while still holding folio lock,
3017	 * because folio writeout could otherwise come in and zero beyond
3018	 * i_size.
3019	 *
3020	 * Since we are holding inode lock, we are sure i_disksize <=
3021	 * i_size. We also know that if i_disksize < i_size, there are
3022	 * delalloc writes pending in the range up to i_size. If the end of
3023	 * the current write is <= i_size, there's no need to touch
3024	 * i_disksize since writeback will push i_disksize up to i_size
3025	 * eventually. If the end of the current write is > i_size and
3026	 * inside an allocated block which ext4_da_should_update_i_disksize()
3027	 * checked, we need to update i_disksize here as certain
3028	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029	 */
3030	if (new_i_size > inode->i_size) {
3031		unsigned long end;
3032
3033		i_size_write(inode, new_i_size);
3034		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036			ext4_update_i_disksize(inode, new_i_size);
3037			disksize_changed = true;
3038		}
3039	}
3040
3041	folio_unlock(folio);
3042	folio_put(folio);
3043
3044	if (pos > old_size) {
3045		pagecache_isize_extended(inode, old_size, pos);
3046		zero_len = pos - old_size;
3047	}
3048
3049	if (!disksize_changed && !zero_len)
3050		return copied;
3051
3052	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053	if (IS_ERR(handle))
3054		return PTR_ERR(handle);
3055	if (zero_len)
3056		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057	ext4_mark_inode_dirty(handle, inode);
3058	ext4_journal_stop(handle);
3059
3060	return copied;
3061}
3062
3063static int ext4_da_write_end(struct file *file,
3064			     struct address_space *mapping,
3065			     loff_t pos, unsigned len, unsigned copied,
3066			     struct folio *folio, void *fsdata)
3067{
3068	struct inode *inode = mapping->host;
 
 
 
 
3069	int write_mode = (int)(unsigned long)fsdata;
3070
3071	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072		return ext4_write_end(file, mapping, pos,
3073				      len, copied, folio, fsdata);
3074
3075	trace_ext4_da_write_end(inode, pos, len, copied);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3076
3077	if (write_mode != CONVERT_INLINE_DATA &&
3078	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079	    ext4_has_inline_data(inode))
3080		return ext4_write_inline_data_end(inode, pos, len, copied,
3081						  folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3082
3083	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084		copied = 0;
3085
3086	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087}
3088
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
3094	trace_ext4_alloc_da_blocks(inode);
3095
3096	if (!EXT4_I(inode)->i_reserved_data_blocks)
 
3097		return 0;
3098
3099	/*
3100	 * We do something simple for now.  The filemap_flush() will
3101	 * also start triggering a write of the data blocks, which is
3102	 * not strictly speaking necessary (and for users of
3103	 * laptop_mode, not even desirable).  However, to do otherwise
3104	 * would require replicating code paths in:
3105	 *
3106	 * ext4_writepages() ->
3107	 *    write_cache_pages() ---> (via passed in callback function)
3108	 *        __mpage_da_writepage() -->
3109	 *           mpage_add_bh_to_extent()
3110	 *           mpage_da_map_blocks()
3111	 *
3112	 * The problem is that write_cache_pages(), located in
3113	 * mm/page-writeback.c, marks pages clean in preparation for
3114	 * doing I/O, which is not desirable if we're not planning on
3115	 * doing I/O at all.
3116	 *
3117	 * We could call write_cache_pages(), and then redirty all of
3118	 * the pages by calling redirty_page_for_writepage() but that
3119	 * would be ugly in the extreme.  So instead we would need to
3120	 * replicate parts of the code in the above functions,
3121	 * simplifying them because we wouldn't actually intend to
3122	 * write out the pages, but rather only collect contiguous
3123	 * logical block extents, call the multi-block allocator, and
3124	 * then update the buffer heads with the block allocations.
3125	 *
3126	 * For now, though, we'll cheat by calling filemap_flush(),
3127	 * which will map the blocks, and start the I/O, but not
3128	 * actually wait for the I/O to complete.
3129	 */
3130	return filemap_flush(inode->i_mapping);
3131}
3132
3133/*
3134 * bmap() is special.  It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148{
3149	struct inode *inode = mapping->host;
3150	sector_t ret = 0;
 
3151
3152	inode_lock_shared(inode);
3153	/*
3154	 * We can get here for an inline file via the FIBMAP ioctl
3155	 */
3156	if (ext4_has_inline_data(inode))
3157		goto out;
3158
3159	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160	    (test_opt(inode->i_sb, DELALLOC) ||
3161	     ext4_should_journal_data(inode))) {
3162		/*
3163		 * With delalloc or journalled data we want to sync the file so
3164		 * that we can make sure we allocate blocks for file and data
3165		 * is in place for the user to see it
3166		 */
3167		filemap_write_and_wait(mapping);
3168	}
3169
3170	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3171
3172out:
3173	inode_unlock_shared(inode);
3174	return ret;
 
 
 
 
 
 
 
 
3175}
3176
3177static int ext4_read_folio(struct file *file, struct folio *folio)
3178{
3179	int ret = -EAGAIN;
3180	struct inode *inode = folio->mapping->host;
3181
3182	trace_ext4_read_folio(inode, folio);
3183
3184	if (ext4_has_inline_data(inode))
3185		ret = ext4_readpage_inline(inode, folio);
3186
3187	if (ret == -EAGAIN)
3188		return ext4_mpage_readpages(inode, NULL, folio);
3189
3190	return ret;
3191}
3192
3193static void ext4_readahead(struct readahead_control *rac)
 
 
3194{
3195	struct inode *inode = rac->mapping->host;
3196
3197	/* If the file has inline data, no need to do readahead. */
3198	if (ext4_has_inline_data(inode))
3199		return;
3200
3201	ext4_mpage_readpages(inode, rac, NULL);
3202}
3203
3204static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205				size_t length)
3206{
3207	trace_ext4_invalidate_folio(folio, offset, length);
3208
3209	/* No journalling happens on data buffers when this function is used */
3210	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211
3212	block_invalidate_folio(folio, offset, length);
3213}
3214
3215static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216					    size_t offset, size_t length)
 
3217{
3218	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222	/*
3223	 * If it's a full truncate we just forget about the pending dirtying
3224	 */
3225	if (offset == 0 && length == folio_size(folio))
3226		folio_clear_checked(folio);
3227
3228	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229}
3230
3231/* Wrapper for aops... */
3232static void ext4_journalled_invalidate_folio(struct folio *folio,
3233					   size_t offset,
3234					   size_t length)
3235{
3236	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237}
3238
3239static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240{
3241	struct inode *inode = folio->mapping->host;
3242	journal_t *journal = EXT4_JOURNAL(inode);
3243
3244	trace_ext4_release_folio(inode, folio);
3245
3246	/* Page has dirty journalled data -> cannot release */
3247	if (folio_test_checked(folio))
3248		return false;
3249	if (journal)
3250		return jbd2_journal_try_to_free_buffers(journal, folio);
3251	else
3252		return try_to_free_buffers(folio);
3253}
3254
3255static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
 
 
 
 
3256{
3257	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3258
3259	if (journal) {
3260		if (jbd2_transaction_committed(journal,
3261			EXT4_I(inode)->i_datasync_tid))
3262			return false;
3263		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264			return !list_empty(&EXT4_I(inode)->i_fc_list);
3265		return true;
3266	}
3267
3268	/* Any metadata buffers to write? */
3269	if (!list_empty(&inode->i_mapping->i_private_list))
3270		return true;
3271	return inode->i_state & I_DIRTY_DATASYNC;
 
 
 
3272}
3273
3274static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275			   struct ext4_map_blocks *map, loff_t offset,
3276			   loff_t length, unsigned int flags)
3277{
3278	u8 blkbits = inode->i_blkbits;
3279
3280	/*
3281	 * Writes that span EOF might trigger an I/O size update on completion,
3282	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283	 * there is no other metadata changes being made or are pending.
3284	 */
3285	iomap->flags = 0;
3286	if (ext4_inode_datasync_dirty(inode) ||
3287	    offset + length > i_size_read(inode))
3288		iomap->flags |= IOMAP_F_DIRTY;
3289
3290	if (map->m_flags & EXT4_MAP_NEW)
3291		iomap->flags |= IOMAP_F_NEW;
 
 
3292
3293	if (flags & IOMAP_DAX)
3294		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295	else
3296		iomap->bdev = inode->i_sb->s_bdev;
3297	iomap->offset = (u64) map->m_lblk << blkbits;
3298	iomap->length = (u64) map->m_len << blkbits;
3299
3300	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302		iomap->flags |= IOMAP_F_MERGED;
3303
3304	/*
3305	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307	 * set. In order for any allocated unwritten extents to be converted
3308	 * into written extents correctly within the ->end_io() handler, we
3309	 * need to ensure that the iomap->type is set appropriately. Hence, the
3310	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311	 * been set first.
3312	 */
3313	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314		iomap->type = IOMAP_UNWRITTEN;
3315		iomap->addr = (u64) map->m_pblk << blkbits;
3316		if (flags & IOMAP_DAX)
3317			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3319		iomap->type = IOMAP_MAPPED;
3320		iomap->addr = (u64) map->m_pblk << blkbits;
3321		if (flags & IOMAP_DAX)
3322			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3324		iomap->type = IOMAP_DELALLOC;
3325		iomap->addr = IOMAP_NULL_ADDR;
3326	} else {
3327		iomap->type = IOMAP_HOLE;
3328		iomap->addr = IOMAP_NULL_ADDR;
3329	}
3330}
3331
3332static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333			    unsigned int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3334{
3335	handle_t *handle;
3336	u8 blkbits = inode->i_blkbits;
3337	int ret, dio_credits, m_flags = 0, retries = 0;
 
 
 
 
 
 
3338
3339	/*
3340	 * Trim the mapping request to the maximum value that we can map at
3341	 * once for direct I/O.
3342	 */
3343	if (map->m_len > DIO_MAX_BLOCKS)
3344		map->m_len = DIO_MAX_BLOCKS;
3345	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347retry:
3348	/*
3349	 * Either we allocate blocks and then don't get an unwritten extent, so
3350	 * in that case we have reserved enough credits. Or, the blocks are
3351	 * already allocated and unwritten. In that case, the extent conversion
3352	 * fits into the credits as well.
3353	 */
3354	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355	if (IS_ERR(handle))
3356		return PTR_ERR(handle);
3357
3358	/*
3359	 * DAX and direct I/O are the only two operations that are currently
3360	 * supported with IOMAP_WRITE.
3361	 */
3362	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363	if (flags & IOMAP_DAX)
3364		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365	/*
3366	 * We use i_size instead of i_disksize here because delalloc writeback
3367	 * can complete at any point during the I/O and subsequently push the
3368	 * i_disksize out to i_size. This could be beyond where direct I/O is
3369	 * happening and thus expose allocated blocks to direct I/O reads.
3370	 */
3371	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372		m_flags = EXT4_GET_BLOCKS_CREATE;
3373	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375
3376	ret = ext4_map_blocks(handle, inode, map, m_flags);
3377
3378	/*
3379	 * We cannot fill holes in indirect tree based inodes as that could
3380	 * expose stale data in the case of a crash. Use the magic error code
3381	 * to fallback to buffered I/O.
3382	 */
3383	if (!m_flags && !ret)
3384		ret = -ENOTBLK;
3385
3386	ext4_journal_stop(handle);
3387	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388		goto retry;
3389
3390	return ret;
3391}
3392
 
 
3393
3394static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3396{
3397	int ret;
3398	struct ext4_map_blocks map;
3399	u8 blkbits = inode->i_blkbits;
3400
3401	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402		return -EINVAL;
3403
3404	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405		return -ERANGE;
3406
3407	/*
3408	 * Calculate the first and last logical blocks respectively.
3409	 */
3410	map.m_lblk = offset >> blkbits;
3411	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413
3414	if (flags & IOMAP_WRITE) {
3415		/*
3416		 * We check here if the blocks are already allocated, then we
3417		 * don't need to start a journal txn and we can directly return
3418		 * the mapping information. This could boost performance
3419		 * especially in multi-threaded overwrite requests.
3420		 */
3421		if (offset + length <= i_size_read(inode)) {
3422			ret = ext4_map_blocks(NULL, inode, &map, 0);
3423			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424				goto out;
 
 
 
 
 
 
 
 
3425		}
3426		ret = ext4_iomap_alloc(inode, &map, flags);
3427	} else {
3428		ret = ext4_map_blocks(NULL, inode, &map, 0);
 
 
 
 
 
 
 
 
3429	}
3430
3431	if (ret < 0)
3432		return ret;
3433out:
3434	/*
3435	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3437	 * limiting the length of the mapping returned.
3438	 */
3439	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443	return 0;
3444}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3445
3446static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447		loff_t length, unsigned flags, struct iomap *iomap,
3448		struct iomap *srcmap)
3449{
3450	int ret;
 
 
 
3451
3452	/*
3453	 * Even for writes we don't need to allocate blocks, so just pretend
3454	 * we are reading to save overhead of starting a transaction.
3455	 */
3456	flags &= ~IOMAP_WRITE;
3457	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459	return ret;
3460}
3461
3462static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463{
3464	/* must be a directio to fall back to buffered */
3465	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466		    (IOMAP_WRITE | IOMAP_DIRECT))
3467		return false;
3468
3469	/* atomic writes are all-or-nothing */
3470	if (flags & IOMAP_ATOMIC)
3471		return false;
3472
3473	/* can only try again if we wrote nothing */
3474	return written == 0;
3475}
3476
3477static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478			  ssize_t written, unsigned flags, struct iomap *iomap)
3479{
3480	/*
3481	 * Check to see whether an error occurred while writing out the data to
3482	 * the allocated blocks. If so, return the magic error code for
3483	 * non-atomic write so that we fallback to buffered I/O and attempt to
3484	 * complete the remainder of the I/O.
3485	 * For non-atomic writes, any blocks that may have been
3486	 * allocated in preparation for the direct I/O will be reused during
3487	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488	 */
3489	if (ext4_want_directio_fallback(flags, written))
3490		return -ENOTBLK;
3491
3492	return 0;
3493}
3494
3495const struct iomap_ops ext4_iomap_ops = {
3496	.iomap_begin		= ext4_iomap_begin,
3497	.iomap_end		= ext4_iomap_end,
3498};
3499
3500const struct iomap_ops ext4_iomap_overwrite_ops = {
3501	.iomap_begin		= ext4_iomap_overwrite_begin,
3502	.iomap_end		= ext4_iomap_end,
3503};
3504
3505static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506				   loff_t length, unsigned int flags,
3507				   struct iomap *iomap, struct iomap *srcmap)
3508{
3509	int ret;
3510	struct ext4_map_blocks map;
3511	u8 blkbits = inode->i_blkbits;
3512
3513	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514		return -EINVAL;
3515
3516	if (ext4_has_inline_data(inode)) {
3517		ret = ext4_inline_data_iomap(inode, iomap);
3518		if (ret != -EAGAIN) {
3519			if (ret == 0 && offset >= iomap->length)
3520				ret = -ENOENT;
3521			return ret;
3522		}
3523	}
3524
3525	/*
3526	 * Calculate the first and last logical block respectively.
3527	 */
3528	map.m_lblk = offset >> blkbits;
3529	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3531
3532	/*
3533	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534	 * So handle it here itself instead of querying ext4_map_blocks().
3535	 * Since ext4_map_blocks() will warn about it and will return
3536	 * -EIO error.
3537	 */
3538	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541		if (offset >= sbi->s_bitmap_maxbytes) {
3542			map.m_flags = 0;
3543			goto set_iomap;
3544		}
3545	}
3546
3547	ret = ext4_map_blocks(NULL, inode, &map, 0);
3548	if (ret < 0)
3549		return ret;
3550set_iomap:
3551	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553	return 0;
 
 
 
 
 
 
 
3554}
3555
3556const struct iomap_ops ext4_iomap_report_ops = {
3557	.iomap_begin = ext4_iomap_begin_report,
3558};
3559
3560/*
3561 * For data=journal mode, folio should be marked dirty only when it was
3562 * writeably mapped. When that happens, it was already attached to the
3563 * transaction and marked as jbddirty (we take care of this in
3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565 * so we should have nothing to do here, except for the case when someone
3566 * had the page pinned and dirtied the page through this pin (e.g. by doing
3567 * direct IO to it). In that case we'd need to attach buffers here to the
3568 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3569 * folio and leave attached buffers clean, because the buffers' dirty state is
3570 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3571 * the journalling code will explode.  So what we do is to mark the folio
3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573 * to the transaction appropriately.
3574 */
3575static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576		struct folio *folio)
3577{
3578	WARN_ON_ONCE(!folio_buffers(folio));
3579	if (folio_maybe_dma_pinned(folio))
3580		folio_set_checked(folio);
3581	return filemap_dirty_folio(mapping, folio);
3582}
3583
3584static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585{
3586	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587	WARN_ON_ONCE(!folio_buffers(folio));
3588	return block_dirty_folio(mapping, folio);
3589}
3590
3591static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592				    struct file *file, sector_t *span)
3593{
3594	return iomap_swapfile_activate(sis, file, span,
3595				       &ext4_iomap_report_ops);
3596}
3597
3598static const struct address_space_operations ext4_aops = {
3599	.read_folio		= ext4_read_folio,
3600	.readahead		= ext4_readahead,
 
3601	.writepages		= ext4_writepages,
3602	.write_begin		= ext4_write_begin,
3603	.write_end		= ext4_write_end,
3604	.dirty_folio		= ext4_dirty_folio,
3605	.bmap			= ext4_bmap,
3606	.invalidate_folio	= ext4_invalidate_folio,
3607	.release_folio		= ext4_release_folio,
3608	.migrate_folio		= buffer_migrate_folio,
 
3609	.is_partially_uptodate  = block_is_partially_uptodate,
3610	.error_remove_folio	= generic_error_remove_folio,
3611	.swap_activate		= ext4_iomap_swap_activate,
3612};
3613
3614static const struct address_space_operations ext4_journalled_aops = {
3615	.read_folio		= ext4_read_folio,
3616	.readahead		= ext4_readahead,
 
3617	.writepages		= ext4_writepages,
3618	.write_begin		= ext4_write_begin,
3619	.write_end		= ext4_journalled_write_end,
3620	.dirty_folio		= ext4_journalled_dirty_folio,
3621	.bmap			= ext4_bmap,
3622	.invalidate_folio	= ext4_journalled_invalidate_folio,
3623	.release_folio		= ext4_release_folio,
3624	.migrate_folio		= buffer_migrate_folio_norefs,
3625	.is_partially_uptodate  = block_is_partially_uptodate,
3626	.error_remove_folio	= generic_error_remove_folio,
3627	.swap_activate		= ext4_iomap_swap_activate,
3628};
3629
3630static const struct address_space_operations ext4_da_aops = {
3631	.read_folio		= ext4_read_folio,
3632	.readahead		= ext4_readahead,
 
3633	.writepages		= ext4_writepages,
3634	.write_begin		= ext4_da_write_begin,
3635	.write_end		= ext4_da_write_end,
3636	.dirty_folio		= ext4_dirty_folio,
3637	.bmap			= ext4_bmap,
3638	.invalidate_folio	= ext4_invalidate_folio,
3639	.release_folio		= ext4_release_folio,
3640	.migrate_folio		= buffer_migrate_folio,
 
3641	.is_partially_uptodate  = block_is_partially_uptodate,
3642	.error_remove_folio	= generic_error_remove_folio,
3643	.swap_activate		= ext4_iomap_swap_activate,
3644};
3645
3646static const struct address_space_operations ext4_dax_aops = {
3647	.writepages		= ext4_dax_writepages,
3648	.dirty_folio		= noop_dirty_folio,
3649	.bmap			= ext4_bmap,
3650	.swap_activate		= ext4_iomap_swap_activate,
3651};
3652
3653void ext4_set_aops(struct inode *inode)
3654{
3655	switch (ext4_inode_journal_mode(inode)) {
3656	case EXT4_INODE_ORDERED_DATA_MODE:
 
 
3657	case EXT4_INODE_WRITEBACK_DATA_MODE:
 
3658		break;
3659	case EXT4_INODE_JOURNAL_DATA_MODE:
3660		inode->i_mapping->a_ops = &ext4_journalled_aops;
3661		return;
3662	default:
3663		BUG();
3664	}
3665	if (IS_DAX(inode))
3666		inode->i_mapping->a_ops = &ext4_dax_aops;
3667	else if (test_opt(inode->i_sb, DELALLOC))
3668		inode->i_mapping->a_ops = &ext4_da_aops;
3669	else
3670		inode->i_mapping->a_ops = &ext4_aops;
3671}
3672
3673/*
3674 * Here we can't skip an unwritten buffer even though it usually reads zero
3675 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677 * racing writeback can come later and flush the stale pagecache to disk.
 
3678 */
3679static int __ext4_block_zero_page_range(handle_t *handle,
3680		struct address_space *mapping, loff_t from, loff_t length)
3681{
3682	ext4_fsblk_t index = from >> PAGE_SHIFT;
3683	unsigned offset = from & (PAGE_SIZE-1);
3684	unsigned blocksize, pos;
3685	ext4_lblk_t iblock;
3686	struct inode *inode = mapping->host;
3687	struct buffer_head *bh;
3688	struct folio *folio;
3689	int err = 0;
3690
3691	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3694	if (IS_ERR(folio))
3695		return PTR_ERR(folio);
3696
3697	blocksize = inode->i_sb->s_blocksize;
 
3698
3699	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
 
 
 
 
 
3700
3701	bh = folio_buffers(folio);
3702	if (!bh)
3703		bh = create_empty_buffers(folio, blocksize, 0);
 
3704
3705	/* Find the buffer that contains "offset" */
 
3706	pos = blocksize;
3707	while (offset >= pos) {
3708		bh = bh->b_this_page;
3709		iblock++;
3710		pos += blocksize;
3711	}
3712	if (buffer_freed(bh)) {
3713		BUFFER_TRACE(bh, "freed: skip");
3714		goto unlock;
3715	}
3716	if (!buffer_mapped(bh)) {
3717		BUFFER_TRACE(bh, "unmapped");
3718		ext4_get_block(inode, iblock, bh, 0);
3719		/* unmapped? It's a hole - nothing to do */
3720		if (!buffer_mapped(bh)) {
3721			BUFFER_TRACE(bh, "still unmapped");
3722			goto unlock;
3723		}
3724	}
3725
3726	/* Ok, it's mapped. Make sure it's up-to-date */
3727	if (folio_test_uptodate(folio))
3728		set_buffer_uptodate(bh);
3729
3730	if (!buffer_uptodate(bh)) {
3731		err = ext4_read_bh_lock(bh, 0, true);
3732		if (err)
 
 
 
3733			goto unlock;
3734		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3735			/* We expect the key to be set. */
3736			BUG_ON(!fscrypt_has_encryption_key(inode));
3737			err = fscrypt_decrypt_pagecache_blocks(folio,
3738							       blocksize,
3739							       bh_offset(bh));
3740			if (err) {
3741				clear_buffer_uptodate(bh);
3742				goto unlock;
3743			}
3744		}
3745	}
3746	if (ext4_should_journal_data(inode)) {
3747		BUFFER_TRACE(bh, "get write access");
3748		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749						    EXT4_JTR_NONE);
3750		if (err)
3751			goto unlock;
3752	}
3753	folio_zero_range(folio, offset, length);
3754	BUFFER_TRACE(bh, "zeroed end of block");
3755
3756	if (ext4_should_journal_data(inode)) {
3757		err = ext4_dirty_journalled_data(handle, bh);
3758	} else {
3759		err = 0;
3760		mark_buffer_dirty(bh);
3761		if (ext4_should_order_data(inode))
3762			err = ext4_jbd2_inode_add_write(handle, inode, from,
3763					length);
3764	}
3765
3766unlock:
3767	folio_unlock(folio);
3768	folio_put(folio);
3769	return err;
3770}
3771
3772/*
3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774 * starting from file offset 'from'.  The range to be zero'd must
3775 * be contained with in one block.  If the specified range exceeds
3776 * the end of the block it will be shortened to end of the block
3777 * that corresponds to 'from'
3778 */
3779static int ext4_block_zero_page_range(handle_t *handle,
3780		struct address_space *mapping, loff_t from, loff_t length)
3781{
3782	struct inode *inode = mapping->host;
3783	unsigned offset = from & (PAGE_SIZE-1);
3784	unsigned blocksize = inode->i_sb->s_blocksize;
3785	unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787	/*
3788	 * correct length if it does not fall between
3789	 * 'from' and the end of the block
3790	 */
3791	if (length > max || length < 0)
3792		length = max;
3793
3794	if (IS_DAX(inode)) {
3795		return dax_zero_range(inode, from, length, NULL,
3796				      &ext4_iomap_ops);
3797	}
3798	return __ext4_block_zero_page_range(handle, mapping, from, length);
3799}
3800
3801/*
3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803 * up to the end of the block which corresponds to `from'.
3804 * This required during truncate. We need to physically zero the tail end
3805 * of that block so it doesn't yield old data if the file is later grown.
3806 */
3807static int ext4_block_truncate_page(handle_t *handle,
3808		struct address_space *mapping, loff_t from)
3809{
3810	unsigned offset = from & (PAGE_SIZE-1);
3811	unsigned length;
3812	unsigned blocksize;
3813	struct inode *inode = mapping->host;
3814
3815	/* If we are processing an encrypted inode during orphan list handling */
3816	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817		return 0;
3818
3819	blocksize = inode->i_sb->s_blocksize;
3820	length = blocksize - (offset & (blocksize - 1));
3821
3822	return ext4_block_zero_page_range(handle, mapping, from, length);
3823}
3824
3825int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826			     loff_t lstart, loff_t length)
3827{
3828	struct super_block *sb = inode->i_sb;
3829	struct address_space *mapping = inode->i_mapping;
3830	unsigned partial_start, partial_end;
3831	ext4_fsblk_t start, end;
3832	loff_t byte_end = (lstart + length - 1);
3833	int err = 0;
3834
3835	partial_start = lstart & (sb->s_blocksize - 1);
3836	partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838	start = lstart >> sb->s_blocksize_bits;
3839	end = byte_end >> sb->s_blocksize_bits;
3840
3841	/* Handle partial zero within the single block */
3842	if (start == end &&
3843	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844		err = ext4_block_zero_page_range(handle, mapping,
3845						 lstart, length);
3846		return err;
3847	}
3848	/* Handle partial zero out on the start of the range */
3849	if (partial_start) {
3850		err = ext4_block_zero_page_range(handle, mapping,
3851						 lstart, sb->s_blocksize);
3852		if (err)
3853			return err;
3854	}
3855	/* Handle partial zero out on the end of the range */
3856	if (partial_end != sb->s_blocksize - 1)
3857		err = ext4_block_zero_page_range(handle, mapping,
3858						 byte_end - partial_end,
3859						 partial_end + 1);
3860	return err;
3861}
3862
3863int ext4_can_truncate(struct inode *inode)
3864{
3865	if (S_ISREG(inode->i_mode))
3866		return 1;
3867	if (S_ISDIR(inode->i_mode))
3868		return 1;
3869	if (S_ISLNK(inode->i_mode))
3870		return !ext4_inode_is_fast_symlink(inode);
3871	return 0;
3872}
3873
3874/*
3875 * We have to make sure i_disksize gets properly updated before we truncate
3876 * page cache due to hole punching or zero range. Otherwise i_disksize update
3877 * can get lost as it may have been postponed to submission of writeback but
3878 * that will never happen after we truncate page cache.
3879 */
3880int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881				      loff_t len)
3882{
3883	handle_t *handle;
3884	int ret;
3885
3886	loff_t size = i_size_read(inode);
3887
3888	WARN_ON(!inode_is_locked(inode));
3889	if (offset > size || offset + len < size)
3890		return 0;
3891
3892	if (EXT4_I(inode)->i_disksize >= size)
3893		return 0;
3894
3895	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896	if (IS_ERR(handle))
3897		return PTR_ERR(handle);
3898	ext4_update_i_disksize(inode, size);
3899	ret = ext4_mark_inode_dirty(handle, inode);
3900	ext4_journal_stop(handle);
3901
3902	return ret;
3903}
3904
3905static void ext4_wait_dax_page(struct inode *inode)
3906{
3907	filemap_invalidate_unlock(inode->i_mapping);
3908	schedule();
3909	filemap_invalidate_lock(inode->i_mapping);
3910}
3911
3912int ext4_break_layouts(struct inode *inode)
3913{
3914	struct page *page;
3915	int error;
3916
3917	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918		return -EINVAL;
3919
3920	do {
3921		page = dax_layout_busy_page(inode->i_mapping);
3922		if (!page)
3923			return 0;
3924
3925		error = ___wait_var_event(&page->_refcount,
3926				atomic_read(&page->_refcount) == 1,
3927				TASK_INTERRUPTIBLE, 0, 0,
3928				ext4_wait_dax_page(inode));
3929	} while (error == 0);
3930
3931	return error;
3932}
3933
3934/*
3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936 * associated with the given offset and length
3937 *
3938 * @inode:  File inode
3939 * @offset: The offset where the hole will begin
3940 * @len:    The length of the hole
3941 *
3942 * Returns: 0 on success or negative on failure
3943 */
3944
3945int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946{
3947	struct inode *inode = file_inode(file);
3948	struct super_block *sb = inode->i_sb;
3949	ext4_lblk_t first_block, stop_block;
3950	struct address_space *mapping = inode->i_mapping;
3951	loff_t first_block_offset, last_block_offset, max_length;
3952	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953	handle_t *handle;
3954	unsigned int credits;
3955	int ret = 0, ret2 = 0;
 
 
 
3956
3957	trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959	/*
3960	 * Write out all dirty pages to avoid race conditions
3961	 * Then release them.
3962	 */
3963	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964		ret = filemap_write_and_wait_range(mapping, offset,
3965						   offset + length - 1);
3966		if (ret)
3967			return ret;
3968	}
3969
3970	inode_lock(inode);
3971
3972	/* No need to punch hole beyond i_size */
3973	if (offset >= inode->i_size)
3974		goto out_mutex;
3975
3976	/*
3977	 * If the hole extends beyond i_size, set the hole
3978	 * to end after the page that contains i_size
3979	 */
3980	if (offset + length > inode->i_size) {
3981		length = inode->i_size +
3982		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983		   offset;
3984	}
3985
3986	/*
3987	 * For punch hole the length + offset needs to be within one block
3988	 * before last range. Adjust the length if it goes beyond that limit.
3989	 */
3990	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991	if (offset + length > max_length)
3992		length = max_length - offset;
3993
3994	if (offset & (sb->s_blocksize - 1) ||
3995	    (offset + length) & (sb->s_blocksize - 1)) {
3996		/*
3997		 * Attach jinode to inode for jbd2 if we do any zeroing of
3998		 * partial block
3999		 */
4000		ret = ext4_inode_attach_jinode(inode);
4001		if (ret < 0)
4002			goto out_mutex;
4003
4004	}
4005
4006	/* Wait all existing dio workers, newcomers will block on i_rwsem */
4007	inode_dio_wait(inode);
4008
4009	ret = file_modified(file);
4010	if (ret)
4011		goto out_mutex;
4012
4013	/*
4014	 * Prevent page faults from reinstantiating pages we have released from
4015	 * page cache.
4016	 */
4017	filemap_invalidate_lock(mapping);
4018
4019	ret = ext4_break_layouts(inode);
4020	if (ret)
4021		goto out_dio;
4022
4023	first_block_offset = round_up(offset, sb->s_blocksize);
4024	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026	/* Now release the pages and zero block aligned part of pages*/
4027	if (last_block_offset > first_block_offset) {
4028		ret = ext4_update_disksize_before_punch(inode, offset, length);
4029		if (ret)
4030			goto out_dio;
4031		truncate_pagecache_range(inode, first_block_offset,
4032					 last_block_offset);
4033	}
 
 
 
4034
4035	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036		credits = ext4_writepage_trans_blocks(inode);
4037	else
4038		credits = ext4_blocks_for_truncate(inode);
4039	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040	if (IS_ERR(handle)) {
4041		ret = PTR_ERR(handle);
4042		ext4_std_error(sb, ret);
4043		goto out_dio;
4044	}
4045
4046	ret = ext4_zero_partial_blocks(handle, inode, offset,
4047				       length);
4048	if (ret)
4049		goto out_stop;
4050
4051	first_block = (offset + sb->s_blocksize - 1) >>
4052		EXT4_BLOCK_SIZE_BITS(sb);
4053	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055	/* If there are blocks to remove, do it */
4056	if (stop_block > first_block) {
4057		ext4_lblk_t hole_len = stop_block - first_block;
4058
4059		down_write(&EXT4_I(inode)->i_data_sem);
4060		ext4_discard_preallocations(inode);
4061
4062		ext4_es_remove_extent(inode, first_block, hole_len);
4063
4064		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065			ret = ext4_ext_remove_space(inode, first_block,
4066						    stop_block - 1);
4067		else
4068			ret = ext4_ind_remove_space(handle, inode, first_block,
4069						    stop_block);
4070
4071		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072				      EXTENT_STATUS_HOLE, 0);
 
4073		up_write(&EXT4_I(inode)->i_data_sem);
 
4074	}
4075	ext4_fc_track_range(handle, inode, first_block, stop_block);
 
 
 
 
 
 
 
 
4076	if (IS_SYNC(inode))
4077		ext4_handle_sync(handle);
4078
4079	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080	ret2 = ext4_mark_inode_dirty(handle, inode);
4081	if (unlikely(ret2))
4082		ret = ret2;
4083	if (ret >= 0)
4084		ext4_update_inode_fsync_trans(handle, inode, 1);
 
4085out_stop:
4086	ext4_journal_stop(handle);
4087out_dio:
4088	filemap_invalidate_unlock(mapping);
4089out_mutex:
4090	inode_unlock(inode);
4091	return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096	struct ext4_inode_info *ei = EXT4_I(inode);
4097	struct jbd2_inode *jinode;
4098
4099	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100		return 0;
4101
4102	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103	spin_lock(&inode->i_lock);
4104	if (!ei->jinode) {
4105		if (!jinode) {
4106			spin_unlock(&inode->i_lock);
4107			return -ENOMEM;
4108		}
4109		ei->jinode = jinode;
4110		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111		jinode = NULL;
4112	}
4113	spin_unlock(&inode->i_lock);
4114	if (unlikely(jinode != NULL))
4115		jbd2_free_inode(jinode);
4116	return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk.  We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable.  It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go.  So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem.  But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149	struct ext4_inode_info *ei = EXT4_I(inode);
4150	unsigned int credits;
4151	int err = 0, err2;
4152	handle_t *handle;
4153	struct address_space *mapping = inode->i_mapping;
4154
4155	/*
4156	 * There is a possibility that we're either freeing the inode
4157	 * or it's a completely new inode. In those cases we might not
4158	 * have i_rwsem locked because it's not necessary.
4159	 */
4160	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161		WARN_ON(!inode_is_locked(inode));
4162	trace_ext4_truncate_enter(inode);
4163
4164	if (!ext4_can_truncate(inode))
4165		goto out_trace;
 
 
4166
4167	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170	if (ext4_has_inline_data(inode)) {
4171		int has_inline = 1;
4172
4173		err = ext4_inline_data_truncate(inode, &has_inline);
4174		if (err || has_inline)
4175			goto out_trace;
4176	}
4177
4178	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180		err = ext4_inode_attach_jinode(inode);
4181		if (err)
4182			goto out_trace;
4183	}
4184
4185	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186		credits = ext4_writepage_trans_blocks(inode);
4187	else
4188		credits = ext4_blocks_for_truncate(inode);
4189
4190	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191	if (IS_ERR(handle)) {
4192		err = PTR_ERR(handle);
4193		goto out_trace;
4194	}
4195
4196	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197		ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199	/*
4200	 * We add the inode to the orphan list, so that if this
4201	 * truncate spans multiple transactions, and we crash, we will
4202	 * resume the truncate when the filesystem recovers.  It also
4203	 * marks the inode dirty, to catch the new size.
4204	 *
4205	 * Implication: the file must always be in a sane, consistent
4206	 * truncatable state while each transaction commits.
4207	 */
4208	err = ext4_orphan_add(handle, inode);
4209	if (err)
4210		goto out_stop;
4211
4212	down_write(&EXT4_I(inode)->i_data_sem);
4213
4214	ext4_discard_preallocations(inode);
4215
4216	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217		err = ext4_ext_truncate(handle, inode);
4218	else
4219		ext4_ind_truncate(handle, inode);
4220
4221	up_write(&ei->i_data_sem);
4222	if (err)
4223		goto out_stop;
4224
4225	if (IS_SYNC(inode))
4226		ext4_handle_sync(handle);
4227
4228out_stop:
4229	/*
4230	 * If this was a simple ftruncate() and the file will remain alive,
4231	 * then we need to clear up the orphan record which we created above.
4232	 * However, if this was a real unlink then we were called by
4233	 * ext4_evict_inode(), and we allow that function to clean up the
4234	 * orphan info for us.
4235	 */
4236	if (inode->i_nlink)
4237		ext4_orphan_del(handle, inode);
4238
4239	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240	err2 = ext4_mark_inode_dirty(handle, inode);
4241	if (unlikely(err2 && !err))
4242		err = err2;
4243	ext4_journal_stop(handle);
4244
4245out_trace:
4246	trace_ext4_truncate_exit(inode);
4247	return err;
4248}
4249
4250static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251{
4252	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253		return inode_peek_iversion_raw(inode);
4254	else
4255		return inode_peek_iversion(inode);
4256}
4257
4258static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259				 struct ext4_inode_info *ei)
4260{
4261	struct inode *inode = &(ei->vfs_inode);
4262	u64 i_blocks = READ_ONCE(inode->i_blocks);
4263	struct super_block *sb = inode->i_sb;
4264
4265	if (i_blocks <= ~0U) {
4266		/*
4267		 * i_blocks can be represented in a 32 bit variable
4268		 * as multiple of 512 bytes
4269		 */
4270		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271		raw_inode->i_blocks_high = 0;
4272		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273		return 0;
4274	}
4275
4276	/*
4277	 * This should never happen since sb->s_maxbytes should not have
4278	 * allowed this, sb->s_maxbytes was set according to the huge_file
4279	 * feature in ext4_fill_super().
4280	 */
4281	if (!ext4_has_feature_huge_file(sb))
4282		return -EFSCORRUPTED;
4283
4284	if (i_blocks <= 0xffffffffffffULL) {
4285		/*
4286		 * i_blocks can be represented in a 48 bit variable
4287		 * as multiple of 512 bytes
4288		 */
4289		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292	} else {
4293		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294		/* i_block is stored in file system block size */
4295		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298	}
4299	return 0;
4300}
4301
4302static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303{
4304	struct ext4_inode_info *ei = EXT4_I(inode);
4305	uid_t i_uid;
4306	gid_t i_gid;
4307	projid_t i_projid;
4308	int block;
4309	int err;
4310
4311	err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314	i_uid = i_uid_read(inode);
4315	i_gid = i_gid_read(inode);
4316	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317	if (!(test_opt(inode->i_sb, NO_UID32))) {
4318		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320		/*
4321		 * Fix up interoperability with old kernels. Otherwise,
4322		 * old inodes get re-used with the upper 16 bits of the
4323		 * uid/gid intact.
4324		 */
4325		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326			raw_inode->i_uid_high = 0;
4327			raw_inode->i_gid_high = 0;
4328		} else {
4329			raw_inode->i_uid_high =
4330				cpu_to_le16(high_16_bits(i_uid));
4331			raw_inode->i_gid_high =
4332				cpu_to_le16(high_16_bits(i_gid));
4333		}
4334	} else {
4335		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337		raw_inode->i_uid_high = 0;
4338		raw_inode->i_gid_high = 0;
4339	}
4340	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342	EXT4_INODE_SET_CTIME(inode, raw_inode);
4343	EXT4_INODE_SET_MTIME(inode, raw_inode);
4344	EXT4_INODE_SET_ATIME(inode, raw_inode);
4345	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350		raw_inode->i_file_acl_high =
4351			cpu_to_le16(ei->i_file_acl >> 32);
4352	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353	ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357		if (old_valid_dev(inode->i_rdev)) {
4358			raw_inode->i_block[0] =
4359				cpu_to_le32(old_encode_dev(inode->i_rdev));
4360			raw_inode->i_block[1] = 0;
4361		} else {
4362			raw_inode->i_block[0] = 0;
4363			raw_inode->i_block[1] =
4364				cpu_to_le32(new_encode_dev(inode->i_rdev));
4365			raw_inode->i_block[2] = 0;
4366		}
4367	} else if (!ext4_has_inline_data(inode)) {
4368		for (block = 0; block < EXT4_N_BLOCKS; block++)
4369			raw_inode->i_block[block] = ei->i_data[block];
4370	}
4371
4372	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373		u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375		raw_inode->i_disk_version = cpu_to_le32(ivers);
4376		if (ei->i_extra_isize) {
4377			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378				raw_inode->i_version_hi =
4379					cpu_to_le32(ivers >> 32);
4380			raw_inode->i_extra_isize =
4381				cpu_to_le16(ei->i_extra_isize);
4382		}
4383	}
4384
4385	if (i_projid != EXT4_DEF_PROJID &&
4386	    !ext4_has_feature_project(inode->i_sb))
4387		err = err ?: -EFSCORRUPTED;
4388
4389	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391		raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393	ext4_inode_csum_set(inode, raw_inode, ei);
4394	return err;
4395}
4396
4397/*
4398 * ext4_get_inode_loc returns with an extra refcount against the inode's
4399 * underlying buffer_head on success. If we pass 'inode' and it does not
4400 * have in-inode xattr, we have all inode data in memory that is needed
4401 * to recreate the on-disk version of this inode.
4402 */
4403static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404				struct inode *inode, struct ext4_iloc *iloc,
4405				ext4_fsblk_t *ret_block)
4406{
4407	struct ext4_group_desc	*gdp;
4408	struct buffer_head	*bh;
 
4409	ext4_fsblk_t		block;
4410	struct blk_plug		plug;
4411	int			inodes_per_block, inode_offset;
4412
4413	iloc->bh = NULL;
4414	if (ino < EXT4_ROOT_INO ||
4415	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416		return -EFSCORRUPTED;
4417
4418	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420	if (!gdp)
4421		return -EIO;
4422
4423	/*
4424	 * Figure out the offset within the block group inode table
4425	 */
4426	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427	inode_offset = ((ino - 1) %
4428			EXT4_INODES_PER_GROUP(sb));
 
4429	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431	block = ext4_inode_table(sb, gdp);
4432	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434		ext4_error(sb, "Invalid inode table block %llu in "
4435			   "block_group %u", block, iloc->block_group);
4436		return -EFSCORRUPTED;
4437	}
4438	block += (inode_offset / inodes_per_block);
4439
4440	bh = sb_getblk(sb, block);
4441	if (unlikely(!bh))
4442		return -ENOMEM;
4443	if (ext4_buffer_uptodate(bh))
4444		goto has_buffer;
4445
4446	lock_buffer(bh);
4447	if (ext4_buffer_uptodate(bh)) {
4448		/* Someone brought it uptodate while we waited */
4449		unlock_buffer(bh);
4450		goto has_buffer;
4451	}
4452
4453	/*
4454	 * If we have all information of the inode in memory and this
4455	 * is the only valid inode in the block, we need not read the
4456	 * block.
4457	 */
4458	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459		struct buffer_head *bitmap_bh;
4460		int i, start;
4461
4462		start = inode_offset & ~(inodes_per_block - 1);
4463
4464		/* Is the inode bitmap in cache? */
4465		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466		if (unlikely(!bitmap_bh))
4467			goto make_io;
4468
4469		/*
4470		 * If the inode bitmap isn't in cache then the
4471		 * optimisation may end up performing two reads instead
4472		 * of one, so skip it.
 
4473		 */
4474		if (!buffer_uptodate(bitmap_bh)) {
4475			brelse(bitmap_bh);
4476			goto make_io;
4477		}
4478		for (i = start; i < start + inodes_per_block; i++) {
4479			if (i == inode_offset)
4480				continue;
4481			if (ext4_test_bit(i, bitmap_bh->b_data))
4482				break;
4483		}
4484		brelse(bitmap_bh);
4485		if (i == start + inodes_per_block) {
4486			struct ext4_inode *raw_inode =
4487				(struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489			/* all other inodes are free, so skip I/O */
4490			memset(bh->b_data, 0, bh->b_size);
4491			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492				ext4_fill_raw_inode(inode, raw_inode);
4493			set_buffer_uptodate(bh);
 
 
 
4494			unlock_buffer(bh);
4495			goto has_buffer;
4496		}
4497	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4498
4499make_io:
4500	/*
4501	 * If we need to do any I/O, try to pre-readahead extra
4502	 * blocks from the inode table.
4503	 */
4504	blk_start_plug(&plug);
4505	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506		ext4_fsblk_t b, end, table;
4507		unsigned num;
4508		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510		table = ext4_inode_table(sb, gdp);
4511		/* s_inode_readahead_blks is always a power of 2 */
4512		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513		if (table > b)
4514			b = table;
4515		end = b + ra_blks;
4516		num = EXT4_INODES_PER_GROUP(sb);
4517		if (ext4_has_group_desc_csum(sb))
4518			num -= ext4_itable_unused_count(sb, gdp);
4519		table += num / inodes_per_block;
4520		if (end > table)
4521			end = table;
4522		while (b <= end)
4523			ext4_sb_breadahead_unmovable(sb, b++);
4524	}
4525
4526	/*
4527	 * There are other valid inodes in the buffer, this inode
4528	 * has in-inode xattrs, or we don't have this inode in memory.
4529	 * Read the block from disk.
4530	 */
4531	trace_ext4_load_inode(sb, ino);
4532	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534	blk_finish_plug(&plug);
4535	wait_on_buffer(bh);
4536	if (!buffer_uptodate(bh)) {
4537		if (ret_block)
4538			*ret_block = block;
4539		brelse(bh);
4540		return -EIO;
 
4541	}
4542has_buffer:
4543	iloc->bh = bh;
4544	return 0;
4545}
4546
4547static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548					struct ext4_iloc *iloc)
4549{
4550	ext4_fsblk_t err_blk = 0;
4551	int ret;
4552
4553	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554					&err_blk);
4555
4556	if (ret == -EIO)
4557		ext4_error_inode_block(inode, err_blk, EIO,
4558					"unable to read itable block");
4559
4560	return ret;
4561}
4562
4563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564{
4565	ext4_fsblk_t err_blk = 0;
4566	int ret;
4567
4568	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569					&err_blk);
4570
4571	if (ret == -EIO)
4572		ext4_error_inode_block(inode, err_blk, EIO,
4573					"unable to read itable block");
4574
4575	return ret;
4576}
4577
4578
4579int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580			  struct ext4_iloc *iloc)
4581{
4582	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583}
4584
4585static bool ext4_should_enable_dax(struct inode *inode)
4586{
4587	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589	if (test_opt2(inode->i_sb, DAX_NEVER))
4590		return false;
4591	if (!S_ISREG(inode->i_mode))
4592		return false;
4593	if (ext4_should_journal_data(inode))
4594		return false;
4595	if (ext4_has_inline_data(inode))
4596		return false;
4597	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598		return false;
4599	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600		return false;
4601	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602		return false;
4603	if (test_opt(inode->i_sb, DAX_ALWAYS))
4604		return true;
4605
4606	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607}
4608
4609void ext4_set_inode_flags(struct inode *inode, bool init)
4610{
4611	unsigned int flags = EXT4_I(inode)->i_flags;
4612	unsigned int new_fl = 0;
4613
4614	WARN_ON_ONCE(IS_DAX(inode) && init);
4615
4616	if (flags & EXT4_SYNC_FL)
4617		new_fl |= S_SYNC;
4618	if (flags & EXT4_APPEND_FL)
4619		new_fl |= S_APPEND;
4620	if (flags & EXT4_IMMUTABLE_FL)
4621		new_fl |= S_IMMUTABLE;
4622	if (flags & EXT4_NOATIME_FL)
4623		new_fl |= S_NOATIME;
4624	if (flags & EXT4_DIRSYNC_FL)
4625		new_fl |= S_DIRSYNC;
4626
4627	/* Because of the way inode_set_flags() works we must preserve S_DAX
4628	 * here if already set. */
4629	new_fl |= (inode->i_flags & S_DAX);
4630	if (init && ext4_should_enable_dax(inode))
4631		new_fl |= S_DAX;
4632
4633	if (flags & EXT4_ENCRYPT_FL)
4634		new_fl |= S_ENCRYPTED;
4635	if (flags & EXT4_CASEFOLD_FL)
4636		new_fl |= S_CASEFOLD;
4637	if (flags & EXT4_VERITY_FL)
4638		new_fl |= S_VERITY;
4639	inode_set_flags(inode, new_fl,
4640			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4642}
4643
4644static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645				  struct ext4_inode_info *ei)
4646{
4647	blkcnt_t i_blocks ;
4648	struct inode *inode = &(ei->vfs_inode);
4649	struct super_block *sb = inode->i_sb;
4650
4651	if (ext4_has_feature_huge_file(sb)) {
 
4652		/* we are using combined 48 bit field */
4653		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654					le32_to_cpu(raw_inode->i_blocks_lo);
4655		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656			/* i_blocks represent file system block size */
4657			return i_blocks  << (inode->i_blkbits - 9);
4658		} else {
4659			return i_blocks;
4660		}
4661	} else {
4662		return le32_to_cpu(raw_inode->i_blocks_lo);
4663	}
4664}
4665
4666static inline int ext4_iget_extra_inode(struct inode *inode,
4667					 struct ext4_inode *raw_inode,
4668					 struct ext4_inode_info *ei)
4669{
4670	__le32 *magic = (void *)raw_inode +
4671			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4674	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675		int err;
4676
4677		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678		err = ext4_find_inline_data_nolock(inode);
4679		if (!err && ext4_has_inline_data(inode))
4680			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681		return err;
4682	} else
4683		EXT4_I(inode)->i_inline_off = 0;
4684	return 0;
4685}
4686
4687int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688{
4689	if (!ext4_has_feature_project(inode->i_sb))
4690		return -EOPNOTSUPP;
4691	*projid = EXT4_I(inode)->i_projid;
4692	return 0;
4693}
4694
4695/*
4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698 * set.
4699 */
4700static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701{
4702	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703		inode_set_iversion_raw(inode, val);
4704	else
4705		inode_set_iversion_queried(inode, val);
4706}
4707
4708static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710{
4711	if (flags & EXT4_IGET_EA_INODE) {
4712		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713			return "missing EA_INODE flag";
4714		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715		    EXT4_I(inode)->i_file_acl)
4716			return "ea_inode with extended attributes";
4717	} else {
4718		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719			return "unexpected EA_INODE flag";
4720	}
4721	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722		return "unexpected bad inode w/o EXT4_IGET_BAD";
4723	return NULL;
4724}
4725
4726struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727			  ext4_iget_flags flags, const char *function,
4728			  unsigned int line)
4729{
4730	struct ext4_iloc iloc;
4731	struct ext4_inode *raw_inode;
4732	struct ext4_inode_info *ei;
4733	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734	struct inode *inode;
4735	const char *err_str;
4736	journal_t *journal = EXT4_SB(sb)->s_journal;
4737	long ret;
4738	loff_t size;
4739	int block;
4740	uid_t i_uid;
4741	gid_t i_gid;
4742	projid_t i_projid;
4743
4744	if ((!(flags & EXT4_IGET_SPECIAL) &&
4745	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750	    (ino < EXT4_ROOT_INO) ||
4751	    (ino > le32_to_cpu(es->s_inodes_count))) {
4752		if (flags & EXT4_IGET_HANDLE)
4753			return ERR_PTR(-ESTALE);
4754		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755			     "inode #%lu: comm %s: iget: illegal inode #",
4756			     ino, current->comm);
4757		return ERR_PTR(-EFSCORRUPTED);
4758	}
4759
4760	inode = iget_locked(sb, ino);
4761	if (!inode)
4762		return ERR_PTR(-ENOMEM);
4763	if (!(inode->i_state & I_NEW)) {
4764		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765			ext4_error_inode(inode, function, line, 0, err_str);
4766			iput(inode);
4767			return ERR_PTR(-EFSCORRUPTED);
4768		}
4769		return inode;
4770	}
4771
4772	ei = EXT4_I(inode);
4773	iloc.bh = NULL;
4774
4775	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776	if (ret < 0)
4777		goto bad_inode;
4778	raw_inode = ext4_raw_inode(&iloc);
4779
4780	if ((flags & EXT4_IGET_HANDLE) &&
4781	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782		ret = -ESTALE;
4783		goto bad_inode;
4784	}
4785
4786	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789			EXT4_INODE_SIZE(inode->i_sb) ||
4790		    (ei->i_extra_isize & 3)) {
4791			ext4_error_inode(inode, function, line, 0,
4792					 "iget: bad extra_isize %u "
4793					 "(inode size %u)",
4794					 ei->i_extra_isize,
4795					 EXT4_INODE_SIZE(inode->i_sb));
4796			ret = -EFSCORRUPTED;
4797			goto bad_inode;
4798		}
4799	} else
4800		ei->i_extra_isize = 0;
4801
4802	/* Precompute checksum seed for inode metadata */
4803	if (ext4_has_metadata_csum(sb)) {
 
4804		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805		__u32 csum;
4806		__le32 inum = cpu_to_le32(inode->i_ino);
4807		__le32 gen = raw_inode->i_generation;
4808		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809				   sizeof(inum));
4810		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811					      sizeof(gen));
4812	}
4813
4814	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817		ext4_error_inode_err(inode, function, line, 0,
4818				EFSBADCRC, "iget: checksum invalid");
4819		ret = -EFSBADCRC;
4820		goto bad_inode;
4821	}
4822
4823	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826	if (ext4_has_feature_project(sb) &&
4827	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830	else
4831		i_projid = EXT4_DEF_PROJID;
4832
4833	if (!(test_opt(inode->i_sb, NO_UID32))) {
4834		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836	}
4837	i_uid_write(inode, i_uid);
4838	i_gid_write(inode, i_gid);
4839	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4843	ei->i_inline_off = 0;
4844	ei->i_dir_start_lookup = 0;
4845	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846	/* We now have enough fields to check if the inode was active or not.
4847	 * This is needed because nfsd might try to access dead inodes
4848	 * the test is that same one that e2fsck uses
4849	 * NeilBrown 1999oct15
4850	 */
4851	if (inode->i_nlink == 0) {
4852		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854		    ino != EXT4_BOOT_LOADER_INO) {
4855			/* this inode is deleted or unallocated */
4856			if (flags & EXT4_IGET_SPECIAL) {
4857				ext4_error_inode(inode, function, line, 0,
4858						 "iget: special inode unallocated");
4859				ret = -EFSCORRUPTED;
4860			} else
4861				ret = -ESTALE;
4862			goto bad_inode;
4863		}
4864		/* The only unlinked inodes we let through here have
4865		 * valid i_mode and are being read by the orphan
4866		 * recovery code: that's fine, we're about to complete
4867		 * the process of deleting those.
4868		 * OR it is the EXT4_BOOT_LOADER_INO which is
4869		 * not initialized on a new filesystem. */
4870	}
4871	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872	ext4_set_inode_flags(inode, true);
4873	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875	if (ext4_has_feature_64bit(sb))
4876		ei->i_file_acl |=
4877			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878	inode->i_size = ext4_isize(sb, raw_inode);
4879	if ((size = i_size_read(inode)) < 0) {
4880		ext4_error_inode(inode, function, line, 0,
4881				 "iget: bad i_size value: %lld", size);
4882		ret = -EFSCORRUPTED;
4883		goto bad_inode;
4884	}
4885	/*
4886	 * If dir_index is not enabled but there's dir with INDEX flag set,
4887	 * we'd normally treat htree data as empty space. But with metadata
4888	 * checksumming that corrupts checksums so forbid that.
4889	 */
4890	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892		ext4_error_inode(inode, function, line, 0,
4893			 "iget: Dir with htree data on filesystem without dir_index feature.");
4894		ret = -EFSCORRUPTED;
4895		goto bad_inode;
4896	}
4897	ei->i_disksize = inode->i_size;
4898#ifdef CONFIG_QUOTA
4899	ei->i_reserved_quota = 0;
4900#endif
4901	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902	ei->i_block_group = iloc.block_group;
4903	ei->i_last_alloc_group = ~0;
4904	/*
4905	 * NOTE! The in-memory inode i_data array is in little-endian order
4906	 * even on big-endian machines: we do NOT byteswap the block numbers!
4907	 */
4908	for (block = 0; block < EXT4_N_BLOCKS; block++)
4909		ei->i_data[block] = raw_inode->i_block[block];
4910	INIT_LIST_HEAD(&ei->i_orphan);
4911	ext4_fc_init_inode(&ei->vfs_inode);
4912
4913	/*
4914	 * Set transaction id's of transactions that have to be committed
4915	 * to finish f[data]sync. We set them to currently running transaction
4916	 * as we cannot be sure that the inode or some of its metadata isn't
4917	 * part of the transaction - the inode could have been reclaimed and
4918	 * now it is reread from disk.
4919	 */
4920	if (journal) {
4921		transaction_t *transaction;
4922		tid_t tid;
4923
4924		read_lock(&journal->j_state_lock);
4925		if (journal->j_running_transaction)
4926			transaction = journal->j_running_transaction;
4927		else
4928			transaction = journal->j_committing_transaction;
4929		if (transaction)
4930			tid = transaction->t_tid;
4931		else
4932			tid = journal->j_commit_sequence;
4933		read_unlock(&journal->j_state_lock);
4934		ei->i_sync_tid = tid;
4935		ei->i_datasync_tid = tid;
4936	}
4937
4938	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939		if (ei->i_extra_isize == 0) {
4940			/* The extra space is currently unused. Use it. */
4941			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942			ei->i_extra_isize = sizeof(struct ext4_inode) -
4943					    EXT4_GOOD_OLD_INODE_SIZE;
4944		} else {
4945			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946			if (ret)
4947				goto bad_inode;
4948		}
4949	}
4950
4951	EXT4_INODE_GET_CTIME(inode, raw_inode);
4952	EXT4_INODE_GET_ATIME(inode, raw_inode);
4953	EXT4_INODE_GET_MTIME(inode, raw_inode);
4954	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961				ivers |=
4962		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963		}
4964		ext4_inode_set_iversion_queried(inode, ivers);
4965	}
4966
4967	ret = 0;
4968	if (ei->i_file_acl &&
4969	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970		ext4_error_inode(inode, function, line, 0,
4971				 "iget: bad extended attribute block %llu",
4972				 ei->i_file_acl);
4973		ret = -EFSCORRUPTED;
4974		goto bad_inode;
4975	} else if (!ext4_has_inline_data(inode)) {
4976		/* validate the block references in the inode */
4977		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979			(S_ISLNK(inode->i_mode) &&
4980			!ext4_inode_is_fast_symlink(inode)))) {
4981			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982				ret = ext4_ext_check_inode(inode);
4983			else
4984				ret = ext4_ind_check_inode(inode);
 
 
 
4985		}
4986	}
4987	if (ret)
4988		goto bad_inode;
4989
4990	if (S_ISREG(inode->i_mode)) {
4991		inode->i_op = &ext4_file_inode_operations;
4992		inode->i_fop = &ext4_file_operations;
4993		ext4_set_aops(inode);
4994	} else if (S_ISDIR(inode->i_mode)) {
4995		inode->i_op = &ext4_dir_inode_operations;
4996		inode->i_fop = &ext4_dir_operations;
4997	} else if (S_ISLNK(inode->i_mode)) {
4998		/* VFS does not allow setting these so must be corruption */
4999		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000			ext4_error_inode(inode, function, line, 0,
5001					 "iget: immutable or append flags "
5002					 "not allowed on symlinks");
5003			ret = -EFSCORRUPTED;
5004			goto bad_inode;
5005		}
5006		if (IS_ENCRYPTED(inode)) {
5007			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5008		} else if (ext4_inode_is_fast_symlink(inode)) {
5009			inode->i_link = (char *)ei->i_data;
5010			inode->i_op = &ext4_fast_symlink_inode_operations;
5011			nd_terminate_link(ei->i_data, inode->i_size,
5012				sizeof(ei->i_data) - 1);
5013		} else {
5014			inode->i_op = &ext4_symlink_inode_operations;
 
5015		}
5016	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018		inode->i_op = &ext4_special_inode_operations;
5019		if (raw_inode->i_block[0])
5020			init_special_inode(inode, inode->i_mode,
5021			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022		else
5023			init_special_inode(inode, inode->i_mode,
5024			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025	} else if (ino == EXT4_BOOT_LOADER_INO) {
5026		make_bad_inode(inode);
5027	} else {
5028		ret = -EFSCORRUPTED;
5029		ext4_error_inode(inode, function, line, 0,
5030				 "iget: bogus i_mode (%o)", inode->i_mode);
5031		goto bad_inode;
5032	}
5033	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034		ext4_error_inode(inode, function, line, 0,
5035				 "casefold flag without casefold feature");
5036		ret = -EFSCORRUPTED;
5037		goto bad_inode;
5038	}
5039	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040		ext4_error_inode(inode, function, line, 0, err_str);
5041		ret = -EFSCORRUPTED;
5042		goto bad_inode;
5043	}
5044
5045	brelse(iloc.bh);
 
5046	unlock_new_inode(inode);
5047	return inode;
5048
5049bad_inode:
5050	brelse(iloc.bh);
5051	iget_failed(inode);
5052	return ERR_PTR(ret);
5053}
5054
5055static void __ext4_update_other_inode_time(struct super_block *sb,
5056					   unsigned long orig_ino,
5057					   unsigned long ino,
5058					   struct ext4_inode *raw_inode)
5059{
5060	struct inode *inode;
5061
5062	inode = find_inode_by_ino_rcu(sb, ino);
5063	if (!inode)
5064		return;
5065
5066	if (!inode_is_dirtytime_only(inode))
5067		return;
5068
5069	spin_lock(&inode->i_lock);
5070	if (inode_is_dirtytime_only(inode)) {
5071		struct ext4_inode_info	*ei = EXT4_I(inode);
5072
5073		inode->i_state &= ~I_DIRTY_TIME;
5074		spin_unlock(&inode->i_lock);
5075
5076		spin_lock(&ei->i_raw_lock);
5077		EXT4_INODE_SET_CTIME(inode, raw_inode);
5078		EXT4_INODE_SET_MTIME(inode, raw_inode);
5079		EXT4_INODE_SET_ATIME(inode, raw_inode);
5080		ext4_inode_csum_set(inode, raw_inode, ei);
5081		spin_unlock(&ei->i_raw_lock);
5082		trace_ext4_other_inode_update_time(inode, orig_ino);
5083		return;
 
5084	}
5085	spin_unlock(&inode->i_lock);
5086}
5087
5088/*
5089 * Opportunistically update the other time fields for other inodes in
5090 * the same inode table block.
5091 */
5092static void ext4_update_other_inodes_time(struct super_block *sb,
5093					  unsigned long orig_ino, char *buf)
5094{
5095	unsigned long ino;
5096	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097	int inode_size = EXT4_INODE_SIZE(sb);
5098
5099	/*
5100	 * Calculate the first inode in the inode table block.  Inode
5101	 * numbers are one-based.  That is, the first inode in a block
5102	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103	 */
5104	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105	rcu_read_lock();
5106	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107		if (ino == orig_ino)
5108			continue;
5109		__ext4_update_other_inode_time(sb, orig_ino, ino,
5110					       (struct ext4_inode *)buf);
 
 
5111	}
5112	rcu_read_unlock();
5113}
5114
5115/*
5116 * Post the struct inode info into an on-disk inode location in the
5117 * buffer-cache.  This gobbles the caller's reference to the
5118 * buffer_head in the inode location struct.
5119 *
5120 * The caller must have write access to iloc->bh.
5121 */
5122static int ext4_do_update_inode(handle_t *handle,
5123				struct inode *inode,
5124				struct ext4_iloc *iloc)
5125{
5126	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127	struct ext4_inode_info *ei = EXT4_I(inode);
5128	struct buffer_head *bh = iloc->bh;
5129	struct super_block *sb = inode->i_sb;
5130	int err;
5131	int need_datasync = 0, set_large_file = 0;
5132
5133	spin_lock(&ei->i_raw_lock);
5134
5135	/*
5136	 * For fields not tracked in the in-memory inode, initialise them
5137	 * to zero for new inodes.
5138	 */
5139	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141
5142	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5143		need_datasync = 1;
 
5144	if (ei->i_disksize > 0x7fffffffULL) {
5145		if (!ext4_has_feature_large_file(sb) ||
5146		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5147			set_large_file = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5148	}
5149
5150	err = ext4_fill_raw_inode(inode, raw_inode);
5151	spin_unlock(&ei->i_raw_lock);
5152	if (err) {
5153		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5154		goto out_brelse;
 
 
 
 
5155	}
5156
5157	if (inode->i_sb->s_flags & SB_LAZYTIME)
5158		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159					      bh->b_data);
5160
5161	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163	if (err)
5164		goto out_error;
5165	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166	if (set_large_file) {
5167		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168		err = ext4_journal_get_write_access(handle, sb,
5169						    EXT4_SB(sb)->s_sbh,
5170						    EXT4_JTR_NONE);
5171		if (err)
5172			goto out_error;
5173		lock_buffer(EXT4_SB(sb)->s_sbh);
5174		ext4_set_feature_large_file(sb);
5175		ext4_superblock_csum_set(sb);
5176		unlock_buffer(EXT4_SB(sb)->s_sbh);
5177		ext4_handle_sync(handle);
5178		err = ext4_handle_dirty_metadata(handle, NULL,
5179						 EXT4_SB(sb)->s_sbh);
5180	}
5181	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182out_error:
5183	ext4_std_error(inode->i_sb, err);
5184out_brelse:
5185	brelse(bh);
 
5186	return err;
5187}
5188
5189/*
5190 * ext4_write_inode()
5191 *
5192 * We are called from a few places:
5193 *
5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195 *   Here, there will be no transaction running. We wait for any running
5196 *   transaction to commit.
5197 *
5198 * - Within flush work (sys_sync(), kupdate and such).
5199 *   We wait on commit, if told to.
5200 *
5201 * - Within iput_final() -> write_inode_now()
5202 *   We wait on commit, if told to.
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
5206 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5207 * writeback.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this.  The code:
5214 *
5215 *	mark_inode_dirty(inode)
5216 *	stuff();
5217 *	inode->i_size = expr;
5218 *
5219 * is in error because write_inode() could occur while `stuff()' is running,
5220 * and the new i_size will be lost.  Plus the inode will no longer be on the
5221 * superblock's dirty inode list.
5222 */
5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224{
5225	int err;
5226
5227	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228		return 0;
5229
5230	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231		return -EIO;
5232
5233	if (EXT4_SB(inode->i_sb)->s_journal) {
5234		if (ext4_journal_current_handle()) {
5235			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236			dump_stack();
5237			return -EIO;
5238		}
5239
5240		/*
5241		 * No need to force transaction in WB_SYNC_NONE mode. Also
5242		 * ext4_sync_fs() will force the commit after everything is
5243		 * written.
5244		 */
5245		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246			return 0;
5247
5248		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249						EXT4_I(inode)->i_sync_tid);
5250	} else {
5251		struct ext4_iloc iloc;
5252
5253		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254		if (err)
5255			return err;
5256		/*
5257		 * sync(2) will flush the whole buffer cache. No need to do
5258		 * it here separately for each inode.
5259		 */
5260		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261			sync_dirty_buffer(iloc.bh);
5262		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264					       "IO error syncing inode");
5265			err = -EIO;
5266		}
5267		brelse(iloc.bh);
5268	}
5269	return err;
5270}
5271
5272/*
5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274 * buffers that are attached to a folio straddling i_size and are undergoing
5275 * commit. In that case we have to wait for commit to finish and try again.
5276 */
5277static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278{
 
5279	unsigned offset;
5280	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281	tid_t commit_tid;
5282	int ret;
5283	bool has_transaction;
5284
5285	offset = inode->i_size & (PAGE_SIZE - 1);
5286	/*
5287	 * If the folio is fully truncated, we don't need to wait for any commit
5288	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289	 * strip all buffers from the folio but keep the folio dirty which can then
5290	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291	 * buffers). Also we don't need to wait for any commit if all buffers in
5292	 * the folio remain valid. This is most beneficial for the common case of
5293	 * blocksize == PAGESIZE.
5294	 */
5295	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296		return;
5297	while (1) {
5298		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299				      inode->i_size >> PAGE_SHIFT);
5300		if (IS_ERR(folio))
5301			return;
5302		ret = __ext4_journalled_invalidate_folio(folio, offset,
5303						folio_size(folio) - offset);
5304		folio_unlock(folio);
5305		folio_put(folio);
5306		if (ret != -EBUSY)
5307			return;
5308		has_transaction = false;
5309		read_lock(&journal->j_state_lock);
5310		if (journal->j_committing_transaction) {
5311			commit_tid = journal->j_committing_transaction->t_tid;
5312			has_transaction = true;
5313		}
5314		read_unlock(&journal->j_state_lock);
5315		if (has_transaction)
5316			jbd2_log_wait_commit(journal, commit_tid);
5317	}
5318}
5319
5320/*
5321 * ext4_setattr()
5322 *
5323 * Called from notify_change.
5324 *
5325 * We want to trap VFS attempts to truncate the file as soon as
5326 * possible.  In particular, we want to make sure that when the VFS
5327 * shrinks i_size, we put the inode on the orphan list and modify
5328 * i_disksize immediately, so that during the subsequent flushing of
5329 * dirty pages and freeing of disk blocks, we can guarantee that any
5330 * commit will leave the blocks being flushed in an unused state on
5331 * disk.  (On recovery, the inode will get truncated and the blocks will
5332 * be freed, so we have a strong guarantee that no future commit will
5333 * leave these blocks visible to the user.)
5334 *
5335 * Another thing we have to assure is that if we are in ordered mode
5336 * and inode is still attached to the committing transaction, we must
5337 * we start writeout of all the dirty pages which are being truncated.
5338 * This way we are sure that all the data written in the previous
5339 * transaction are already on disk (truncate waits for pages under
5340 * writeback).
5341 *
5342 * Called with inode->i_rwsem down.
5343 */
5344int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345		 struct iattr *attr)
5346{
5347	struct inode *inode = d_inode(dentry);
5348	int error, rc = 0;
5349	int orphan = 0;
5350	const unsigned int ia_valid = attr->ia_valid;
5351	bool inc_ivers = true;
5352
5353	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354		return -EIO;
5355
5356	if (unlikely(IS_IMMUTABLE(inode)))
5357		return -EPERM;
5358
5359	if (unlikely(IS_APPEND(inode) &&
5360		     (ia_valid & (ATTR_MODE | ATTR_UID |
5361				  ATTR_GID | ATTR_TIMES_SET))))
5362		return -EPERM;
5363
5364	error = setattr_prepare(idmap, dentry, attr);
5365	if (error)
5366		return error;
5367
5368	error = fscrypt_prepare_setattr(dentry, attr);
5369	if (error)
5370		return error;
5371
5372	error = fsverity_prepare_setattr(dentry, attr);
5373	if (error)
5374		return error;
5375
5376	if (is_quota_modification(idmap, inode, attr)) {
5377		error = dquot_initialize(inode);
5378		if (error)
5379			return error;
5380	}
5381
5382	if (i_uid_needs_update(idmap, attr, inode) ||
5383	    i_gid_needs_update(idmap, attr, inode)) {
5384		handle_t *handle;
5385
5386		/* (user+group)*(old+new) structure, inode write (sb,
5387		 * inode block, ? - but truncate inode update has it) */
5388		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391		if (IS_ERR(handle)) {
5392			error = PTR_ERR(handle);
5393			goto err_out;
5394		}
5395
5396		/* dquot_transfer() calls back ext4_get_inode_usage() which
5397		 * counts xattr inode references.
5398		 */
5399		down_read(&EXT4_I(inode)->xattr_sem);
5400		error = dquot_transfer(idmap, inode, attr);
5401		up_read(&EXT4_I(inode)->xattr_sem);
5402
5403		if (error) {
5404			ext4_journal_stop(handle);
5405			return error;
5406		}
5407		/* Update corresponding info in inode so that everything is in
5408		 * one transaction */
5409		i_uid_update(idmap, attr, inode);
5410		i_gid_update(idmap, attr, inode);
 
 
5411		error = ext4_mark_inode_dirty(handle, inode);
5412		ext4_journal_stop(handle);
5413		if (unlikely(error)) {
5414			return error;
5415		}
5416	}
5417
5418	if (attr->ia_valid & ATTR_SIZE) {
5419		handle_t *handle;
5420		loff_t oldsize = inode->i_size;
5421		loff_t old_disksize;
5422		int shrink = (attr->ia_size < inode->i_size);
5423
5424		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426
5427			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428				return -EFBIG;
5429			}
5430		}
5431		if (!S_ISREG(inode->i_mode)) {
5432			return -EINVAL;
5433		}
5434
5435		if (attr->ia_size == inode->i_size)
5436			inc_ivers = false;
5437
5438		if (shrink) {
 
5439			if (ext4_should_order_data(inode)) {
5440				error = ext4_begin_ordered_truncate(inode,
5441							    attr->ia_size);
5442				if (error)
5443					goto err_out;
5444			}
5445			/*
5446			 * Blocks are going to be removed from the inode. Wait
5447			 * for dio in flight.
5448			 */
5449			inode_dio_wait(inode);
5450		}
5451
5452		filemap_invalidate_lock(inode->i_mapping);
5453
5454		rc = ext4_break_layouts(inode);
5455		if (rc) {
5456			filemap_invalidate_unlock(inode->i_mapping);
5457			goto err_out;
5458		}
5459
5460		if (attr->ia_size != inode->i_size) {
5461			/* attach jbd2 jinode for EOF folio tail zeroing */
5462			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5464				error = ext4_inode_attach_jinode(inode);
5465				if (error)
5466					goto err_out;
5467			}
5468
5469			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470			if (IS_ERR(handle)) {
5471				error = PTR_ERR(handle);
5472				goto out_mmap_sem;
5473			}
5474			if (ext4_handle_valid(handle) && shrink) {
5475				error = ext4_orphan_add(handle, inode);
5476				orphan = 1;
5477			}
5478			/*
5479			 * Update c/mtime and tail zero the EOF folio on
5480			 * truncate up. ext4_truncate() handles the shrink case
5481			 * below.
5482			 */
5483			if (!shrink) {
5484				inode_set_mtime_to_ts(inode,
5485						      inode_set_ctime_current(inode));
5486				if (oldsize & (inode->i_sb->s_blocksize - 1))
5487					ext4_block_truncate_page(handle,
5488							inode->i_mapping, oldsize);
5489			}
5490
5491			if (shrink)
5492				ext4_fc_track_range(handle, inode,
5493					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494					inode->i_sb->s_blocksize_bits,
5495					EXT_MAX_BLOCKS - 1);
5496			else
5497				ext4_fc_track_range(
5498					handle, inode,
5499					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5500					inode->i_sb->s_blocksize_bits,
5501					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502					inode->i_sb->s_blocksize_bits);
5503
5504			down_write(&EXT4_I(inode)->i_data_sem);
5505			old_disksize = EXT4_I(inode)->i_disksize;
5506			EXT4_I(inode)->i_disksize = attr->ia_size;
5507			rc = ext4_mark_inode_dirty(handle, inode);
5508			if (!error)
5509				error = rc;
5510			/*
5511			 * We have to update i_size under i_data_sem together
5512			 * with i_disksize to avoid races with writeback code
5513			 * running ext4_wb_update_i_disksize().
5514			 */
5515			if (!error)
5516				i_size_write(inode, attr->ia_size);
5517			else
5518				EXT4_I(inode)->i_disksize = old_disksize;
5519			up_write(&EXT4_I(inode)->i_data_sem);
5520			ext4_journal_stop(handle);
5521			if (error)
5522				goto out_mmap_sem;
5523			if (!shrink) {
5524				pagecache_isize_extended(inode, oldsize,
5525							 inode->i_size);
5526			} else if (ext4_should_journal_data(inode)) {
5527				ext4_wait_for_tail_page_commit(inode);
5528			}
5529		}
 
5530
5531		/*
5532		 * Truncate pagecache after we've waited for commit
5533		 * in data=journal mode to make pages freeable.
 
5534		 */
5535		truncate_pagecache(inode, inode->i_size);
 
 
 
 
 
 
 
5536		/*
5537		 * Call ext4_truncate() even if i_size didn't change to
5538		 * truncate possible preallocated blocks.
5539		 */
5540		if (attr->ia_size <= oldsize) {
5541			rc = ext4_truncate(inode);
5542			if (rc)
5543				error = rc;
5544		}
5545out_mmap_sem:
5546		filemap_invalidate_unlock(inode->i_mapping);
5547	}
 
 
 
 
 
 
5548
5549	if (!error) {
5550		if (inc_ivers)
5551			inode_inc_iversion(inode);
5552		setattr_copy(idmap, inode, attr);
5553		mark_inode_dirty(inode);
5554	}
5555
5556	/*
5557	 * If the call to ext4_truncate failed to get a transaction handle at
5558	 * all, we need to clean up the in-core orphan list manually.
5559	 */
5560	if (orphan && inode->i_nlink)
5561		ext4_orphan_del(NULL, inode);
5562
5563	if (!error && (ia_valid & ATTR_MODE))
5564		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565
5566err_out:
5567	if  (error)
5568		ext4_std_error(inode->i_sb, error);
5569	if (!error)
5570		error = rc;
5571	return error;
5572}
5573
5574u32 ext4_dio_alignment(struct inode *inode)
 
5575{
5576	if (fsverity_active(inode))
5577		return 0;
5578	if (ext4_should_journal_data(inode))
5579		return 0;
5580	if (ext4_has_inline_data(inode))
5581		return 0;
5582	if (IS_ENCRYPTED(inode)) {
5583		if (!fscrypt_dio_supported(inode))
5584			return 0;
5585		return i_blocksize(inode);
5586	}
5587	return 1; /* use the iomap defaults */
5588}
5589
5590int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592{
5593	struct inode *inode = d_inode(path->dentry);
5594	struct ext4_inode *raw_inode;
5595	struct ext4_inode_info *ei = EXT4_I(inode);
5596	unsigned int flags;
5597
5598	if ((request_mask & STATX_BTIME) &&
5599	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600		stat->result_mask |= STATX_BTIME;
5601		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603	}
5604
5605	/*
5606	 * Return the DIO alignment restrictions if requested.  We only return
5607	 * this information when requested, since on encrypted files it might
5608	 * take a fair bit of work to get if the file wasn't opened recently.
5609	 */
5610	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611		u32 dio_align = ext4_dio_alignment(inode);
5612
5613		stat->result_mask |= STATX_DIOALIGN;
5614		if (dio_align == 1) {
5615			struct block_device *bdev = inode->i_sb->s_bdev;
5616
5617			/* iomap defaults */
5618			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619			stat->dio_offset_align = bdev_logical_block_size(bdev);
5620		} else {
5621			stat->dio_mem_align = dio_align;
5622			stat->dio_offset_align = dio_align;
5623		}
5624	}
5625
5626	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628		unsigned int awu_min = 0, awu_max = 0;
5629
5630		if (ext4_inode_can_atomic_write(inode)) {
5631			awu_min = sbi->s_awu_min;
5632			awu_max = sbi->s_awu_max;
5633		}
5634
5635		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636	}
5637
5638	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639	if (flags & EXT4_APPEND_FL)
5640		stat->attributes |= STATX_ATTR_APPEND;
5641	if (flags & EXT4_COMPR_FL)
5642		stat->attributes |= STATX_ATTR_COMPRESSED;
5643	if (flags & EXT4_ENCRYPT_FL)
5644		stat->attributes |= STATX_ATTR_ENCRYPTED;
5645	if (flags & EXT4_IMMUTABLE_FL)
5646		stat->attributes |= STATX_ATTR_IMMUTABLE;
5647	if (flags & EXT4_NODUMP_FL)
5648		stat->attributes |= STATX_ATTR_NODUMP;
5649	if (flags & EXT4_VERITY_FL)
5650		stat->attributes |= STATX_ATTR_VERITY;
5651
5652	stat->attributes_mask |= (STATX_ATTR_APPEND |
5653				  STATX_ATTR_COMPRESSED |
5654				  STATX_ATTR_ENCRYPTED |
5655				  STATX_ATTR_IMMUTABLE |
5656				  STATX_ATTR_NODUMP |
5657				  STATX_ATTR_VERITY);
5658
5659	generic_fillattr(idmap, request_mask, inode, stat);
5660	return 0;
5661}
5662
5663int ext4_file_getattr(struct mnt_idmap *idmap,
5664		      const struct path *path, struct kstat *stat,
5665		      u32 request_mask, unsigned int query_flags)
5666{
5667	struct inode *inode = d_inode(path->dentry);
5668	u64 delalloc_blocks;
5669
5670	ext4_getattr(idmap, path, stat, request_mask, query_flags);
 
5671
5672	/*
5673	 * If there is inline data in the inode, the inode will normally not
5674	 * have data blocks allocated (it may have an external xattr block).
5675	 * Report at least one sector for such files, so tools like tar, rsync,
5676	 * others don't incorrectly think the file is completely sparse.
5677	 */
5678	if (unlikely(ext4_has_inline_data(inode)))
5679		stat->blocks += (stat->size + 511) >> 9;
5680
5681	/*
5682	 * We can't update i_blocks if the block allocation is delayed
5683	 * otherwise in the case of system crash before the real block
5684	 * allocation is done, we will have i_blocks inconsistent with
5685	 * on-disk file blocks.
5686	 * We always keep i_blocks updated together with real
5687	 * allocation. But to not confuse with user, stat
5688	 * will return the blocks that include the delayed allocation
5689	 * blocks for this file.
5690	 */
5691	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692				   EXT4_I(inode)->i_reserved_data_blocks);
5693	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694	return 0;
5695}
5696
5697static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698				   int pextents)
5699{
5700	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701		return ext4_ind_trans_blocks(inode, lblocks);
5702	return ext4_ext_index_trans_blocks(inode, pextents);
5703}
5704
5705/*
5706 * Account for index blocks, block groups bitmaps and block group
5707 * descriptor blocks if modify datablocks and index blocks
5708 * worse case, the indexs blocks spread over different block groups
5709 *
5710 * If datablocks are discontiguous, they are possible to spread over
5711 * different block groups too. If they are contiguous, with flexbg,
5712 * they could still across block group boundary.
5713 *
5714 * Also account for superblock, inode, quota and xattr blocks
5715 */
5716static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717				  int pextents)
5718{
5719	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720	int gdpblocks;
5721	int idxblocks;
5722	int ret;
5723
5724	/*
5725	 * How many index blocks need to touch to map @lblocks logical blocks
5726	 * to @pextents physical extents?
5727	 */
5728	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729
5730	ret = idxblocks;
5731
5732	/*
5733	 * Now let's see how many group bitmaps and group descriptors need
5734	 * to account
5735	 */
5736	groups = idxblocks + pextents;
5737	gdpblocks = groups;
5738	if (groups > ngroups)
5739		groups = ngroups;
5740	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742
5743	/* bitmaps and block group descriptor blocks */
5744	ret += groups + gdpblocks;
5745
5746	/* Blocks for super block, inode, quota and xattr blocks */
5747	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748
5749	return ret;
5750}
5751
5752/*
5753 * Calculate the total number of credits to reserve to fit
5754 * the modification of a single pages into a single transaction,
5755 * which may include multiple chunks of block allocations.
5756 *
5757 * This could be called via ext4_write_begin()
5758 *
5759 * We need to consider the worse case, when
5760 * one new block per extent.
5761 */
5762int ext4_writepage_trans_blocks(struct inode *inode)
5763{
5764	int bpp = ext4_journal_blocks_per_page(inode);
5765	int ret;
5766
5767	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768
5769	/* Account for data blocks for journalled mode */
5770	if (ext4_should_journal_data(inode))
5771		ret += bpp;
5772	return ret;
5773}
5774
5775/*
5776 * Calculate the journal credits for a chunk of data modification.
5777 *
5778 * This is called from DIO, fallocate or whoever calling
5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780 *
5781 * journal buffers for data blocks are not included here, as DIO
5782 * and fallocate do no need to journal data buffers.
5783 */
5784int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785{
5786	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787}
5788
5789/*
5790 * The caller must have previously called ext4_reserve_inode_write().
5791 * Give this, we know that the caller already has write access to iloc->bh.
5792 */
5793int ext4_mark_iloc_dirty(handle_t *handle,
5794			 struct inode *inode, struct ext4_iloc *iloc)
5795{
5796	int err = 0;
5797
5798	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799		put_bh(iloc->bh);
5800		return -EIO;
5801	}
5802	ext4_fc_track_inode(handle, inode);
5803
5804	/* the do_update_inode consumes one bh->b_count */
5805	get_bh(iloc->bh);
5806
5807	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808	err = ext4_do_update_inode(handle, inode, iloc);
5809	put_bh(iloc->bh);
5810	return err;
5811}
5812
5813/*
5814 * On success, We end up with an outstanding reference count against
5815 * iloc->bh.  This _must_ be cleaned up later.
5816 */
5817
5818int
5819ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820			 struct ext4_iloc *iloc)
5821{
5822	int err;
5823
5824	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825		return -EIO;
5826
5827	err = ext4_get_inode_loc(inode, iloc);
5828	if (!err) {
5829		BUFFER_TRACE(iloc->bh, "get_write_access");
5830		err = ext4_journal_get_write_access(handle, inode->i_sb,
5831						    iloc->bh, EXT4_JTR_NONE);
5832		if (err) {
5833			brelse(iloc->bh);
5834			iloc->bh = NULL;
5835		}
5836	}
5837	ext4_std_error(inode->i_sb, err);
5838	return err;
5839}
5840
5841static int __ext4_expand_extra_isize(struct inode *inode,
5842				     unsigned int new_extra_isize,
5843				     struct ext4_iloc *iloc,
5844				     handle_t *handle, int *no_expand)
 
 
 
 
5845{
5846	struct ext4_inode *raw_inode;
5847	struct ext4_xattr_ibody_header *header;
5848	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849	struct ext4_inode_info *ei = EXT4_I(inode);
5850	int error;
5851
5852	/* this was checked at iget time, but double check for good measure */
5853	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854	    (ei->i_extra_isize & 3)) {
5855		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856				 ei->i_extra_isize,
5857				 EXT4_INODE_SIZE(inode->i_sb));
5858		return -EFSCORRUPTED;
5859	}
5860	if ((new_extra_isize < ei->i_extra_isize) ||
5861	    (new_extra_isize < 4) ||
5862	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863		return -EINVAL;	/* Should never happen */
5864
5865	raw_inode = ext4_raw_inode(iloc);
5866
5867	header = IHDR(inode, raw_inode);
5868
5869	/* No extended attributes present */
5870	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873		       EXT4_I(inode)->i_extra_isize, 0,
5874		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876		return 0;
5877	}
5878
5879	/*
5880	 * We may need to allocate external xattr block so we need quotas
5881	 * initialized. Here we can be called with various locks held so we
5882	 * cannot affort to initialize quotas ourselves. So just bail.
5883	 */
5884	if (dquot_initialize_needed(inode))
5885		return -EAGAIN;
5886
5887	/* try to expand with EAs present */
5888	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889					   raw_inode, handle);
5890	if (error) {
5891		/*
5892		 * Inode size expansion failed; don't try again
5893		 */
5894		*no_expand = 1;
5895	}
5896
5897	return error;
5898}
5899
5900/*
5901 * Expand an inode by new_extra_isize bytes.
5902 * Returns 0 on success or negative error number on failure.
5903 */
5904static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905					  unsigned int new_extra_isize,
5906					  struct ext4_iloc iloc,
5907					  handle_t *handle)
5908{
5909	int no_expand;
5910	int error;
5911
5912	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913		return -EOVERFLOW;
5914
5915	/*
5916	 * In nojournal mode, we can immediately attempt to expand
5917	 * the inode.  When journaled, we first need to obtain extra
5918	 * buffer credits since we may write into the EA block
5919	 * with this same handle. If journal_extend fails, then it will
5920	 * only result in a minor loss of functionality for that inode.
5921	 * If this is felt to be critical, then e2fsck should be run to
5922	 * force a large enough s_min_extra_isize.
5923	 */
5924	if (ext4_journal_extend(handle,
5925				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5926		return -ENOSPC;
5927
5928	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929		return -EBUSY;
5930
5931	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932					  handle, &no_expand);
5933	ext4_write_unlock_xattr(inode, &no_expand);
5934
5935	return error;
5936}
5937
5938int ext4_expand_extra_isize(struct inode *inode,
5939			    unsigned int new_extra_isize,
5940			    struct ext4_iloc *iloc)
5941{
5942	handle_t *handle;
5943	int no_expand;
5944	int error, rc;
5945
5946	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947		brelse(iloc->bh);
5948		return -EOVERFLOW;
5949	}
5950
5951	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953	if (IS_ERR(handle)) {
5954		error = PTR_ERR(handle);
5955		brelse(iloc->bh);
5956		return error;
5957	}
5958
5959	ext4_write_lock_xattr(inode, &no_expand);
5960
5961	BUFFER_TRACE(iloc->bh, "get_write_access");
5962	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963					      EXT4_JTR_NONE);
5964	if (error) {
5965		brelse(iloc->bh);
5966		goto out_unlock;
5967	}
5968
5969	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970					  handle, &no_expand);
5971
5972	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973	if (!error)
5974		error = rc;
5975
5976out_unlock:
5977	ext4_write_unlock_xattr(inode, &no_expand);
5978	ext4_journal_stop(handle);
5979	return error;
5980}
5981
5982/*
5983 * What we do here is to mark the in-core inode as clean with respect to inode
5984 * dirtiness (it may still be data-dirty).
5985 * This means that the in-core inode may be reaped by prune_icache
5986 * without having to perform any I/O.  This is a very good thing,
5987 * because *any* task may call prune_icache - even ones which
5988 * have a transaction open against a different journal.
5989 *
5990 * Is this cheating?  Not really.  Sure, we haven't written the
5991 * inode out, but prune_icache isn't a user-visible syncing function.
5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993 * we start and wait on commits.
5994 */
5995int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996				const char *func, unsigned int line)
5997{
5998	struct ext4_iloc iloc;
5999	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000	int err;
 
6001
6002	might_sleep();
6003	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004	err = ext4_reserve_inode_write(handle, inode, &iloc);
6005	if (err)
6006		goto out;
6007
6008	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010					       iloc, handle);
6011
6012	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013out:
6014	if (unlikely(err))
6015		ext4_error_inode_err(inode, func, line, 0, err,
6016					"mark_inode_dirty error");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6017	return err;
6018}
6019
6020/*
6021 * ext4_dirty_inode() is called from __mark_inode_dirty()
6022 *
6023 * We're really interested in the case where a file is being extended.
6024 * i_size has been changed by generic_commit_write() and we thus need
6025 * to include the updated inode in the current transaction.
6026 *
6027 * Also, dquot_alloc_block() will always dirty the inode when blocks
6028 * are allocated to the file.
6029 *
6030 * If the inode is marked synchronous, we don't honour that here - doing
6031 * so would cause a commit on atime updates, which we don't bother doing.
6032 * We handle synchronous inodes at the highest possible level.
6033 */
6034void ext4_dirty_inode(struct inode *inode, int flags)
6035{
6036	handle_t *handle;
6037
6038	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039	if (IS_ERR(handle))
6040		return;
 
6041	ext4_mark_inode_dirty(handle, inode);
 
6042	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6043}
 
6044
6045int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046{
6047	journal_t *journal;
6048	handle_t *handle;
6049	int err;
6050	int alloc_ctx;
6051
6052	/*
6053	 * We have to be very careful here: changing a data block's
6054	 * journaling status dynamically is dangerous.  If we write a
6055	 * data block to the journal, change the status and then delete
6056	 * that block, we risk forgetting to revoke the old log record
6057	 * from the journal and so a subsequent replay can corrupt data.
6058	 * So, first we make sure that the journal is empty and that
6059	 * nobody is changing anything.
6060	 */
6061
6062	journal = EXT4_JOURNAL(inode);
6063	if (!journal)
6064		return 0;
6065	if (is_journal_aborted(journal))
6066		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
6067
6068	/* Wait for all existing dio workers */
 
6069	inode_dio_wait(inode);
6070
6071	/*
6072	 * Before flushing the journal and switching inode's aops, we have
6073	 * to flush all dirty data the inode has. There can be outstanding
6074	 * delayed allocations, there can be unwritten extents created by
6075	 * fallocate or buffered writes in dioread_nolock mode covered by
6076	 * dirty data which can be converted only after flushing the dirty
6077	 * data (and journalled aops don't know how to handle these cases).
6078	 */
6079	if (val) {
6080		filemap_invalidate_lock(inode->i_mapping);
6081		err = filemap_write_and_wait(inode->i_mapping);
6082		if (err < 0) {
6083			filemap_invalidate_unlock(inode->i_mapping);
6084			return err;
6085		}
6086	}
6087
6088	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089	jbd2_journal_lock_updates(journal);
6090
6091	/*
6092	 * OK, there are no updates running now, and all cached data is
6093	 * synced to disk.  We are now in a completely consistent state
6094	 * which doesn't have anything in the journal, and we know that
6095	 * no filesystem updates are running, so it is safe to modify
6096	 * the inode's in-core data-journaling state flag now.
6097	 */
6098
6099	if (val)
6100		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101	else {
6102		err = jbd2_journal_flush(journal, 0);
6103		if (err < 0) {
6104			jbd2_journal_unlock_updates(journal);
6105			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6106			return err;
6107		}
6108		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109	}
6110	ext4_set_aops(inode);
6111
6112	jbd2_journal_unlock_updates(journal);
6113	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114
6115	if (val)
6116		filemap_invalidate_unlock(inode->i_mapping);
6117
6118	/* Finally we can mark the inode as dirty. */
6119
6120	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121	if (IS_ERR(handle))
6122		return PTR_ERR(handle);
6123
6124	ext4_fc_mark_ineligible(inode->i_sb,
6125		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126	err = ext4_mark_inode_dirty(handle, inode);
6127	ext4_handle_sync(handle);
6128	ext4_journal_stop(handle);
6129	ext4_std_error(inode->i_sb, err);
6130
6131	return err;
6132}
6133
6134static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135			    struct buffer_head *bh)
6136{
6137	return !buffer_mapped(bh);
6138}
6139
6140vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141{
6142	struct vm_area_struct *vma = vmf->vma;
6143	struct folio *folio = page_folio(vmf->page);
6144	loff_t size;
6145	unsigned long len;
6146	int err;
6147	vm_fault_t ret;
6148	struct file *file = vma->vm_file;
6149	struct inode *inode = file_inode(file);
6150	struct address_space *mapping = inode->i_mapping;
6151	handle_t *handle;
6152	get_block_t *get_block;
6153	int retries = 0;
6154
6155	if (unlikely(IS_IMMUTABLE(inode)))
6156		return VM_FAULT_SIGBUS;
6157
6158	sb_start_pagefault(inode->i_sb);
6159	file_update_time(vma->vm_file);
6160
6161	filemap_invalidate_lock_shared(mapping);
6162
6163	err = ext4_convert_inline_data(inode);
6164	if (err)
6165		goto out_ret;
6166
6167	/*
6168	 * On data journalling we skip straight to the transaction handle:
6169	 * there's no delalloc; page truncated will be checked later; the
6170	 * early return w/ all buffers mapped (calculates size/len) can't
6171	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172	 */
6173	if (ext4_should_journal_data(inode))
6174		goto retry_alloc;
6175
6176	/* Delalloc case is easy... */
6177	if (test_opt(inode->i_sb, DELALLOC) &&
 
6178	    !ext4_nonda_switch(inode->i_sb)) {
6179		do {
6180			err = block_page_mkwrite(vma, vmf,
6181						   ext4_da_get_block_prep);
6182		} while (err == -ENOSPC &&
6183		       ext4_should_retry_alloc(inode->i_sb, &retries));
6184		goto out_ret;
6185	}
6186
6187	folio_lock(folio);
6188	size = i_size_read(inode);
6189	/* Page got truncated from under us? */
6190	if (folio->mapping != mapping || folio_pos(folio) > size) {
6191		folio_unlock(folio);
6192		ret = VM_FAULT_NOPAGE;
6193		goto out;
6194	}
6195
6196	len = folio_size(folio);
6197	if (folio_pos(folio) + len > size)
6198		len = size - folio_pos(folio);
 
6199	/*
6200	 * Return if we have all the buffers mapped. This avoids the need to do
6201	 * journal_start/journal_stop which can block and take a long time
6202	 *
6203	 * This cannot be done for data journalling, as we have to add the
6204	 * inode to the transaction's list to writeprotect pages on commit.
6205	 */
6206	if (folio_buffers(folio)) {
6207		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208					    0, len, NULL,
6209					    ext4_bh_unmapped)) {
6210			/* Wait so that we don't change page under IO */
6211			folio_wait_stable(folio);
6212			ret = VM_FAULT_LOCKED;
6213			goto out;
6214		}
6215	}
6216	folio_unlock(folio);
6217	/* OK, we need to fill the hole... */
6218	if (ext4_should_dioread_nolock(inode))
6219		get_block = ext4_get_block_unwritten;
6220	else
6221		get_block = ext4_get_block;
6222retry_alloc:
6223	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224				    ext4_writepage_trans_blocks(inode));
6225	if (IS_ERR(handle)) {
6226		ret = VM_FAULT_SIGBUS;
6227		goto out;
6228	}
6229	/*
6230	 * Data journalling can't use block_page_mkwrite() because it
6231	 * will set_buffer_dirty() before do_journal_get_write_access()
6232	 * thus might hit warning messages for dirty metadata buffers.
6233	 */
6234	if (!ext4_should_journal_data(inode)) {
6235		err = block_page_mkwrite(vma, vmf, get_block);
6236	} else {
6237		folio_lock(folio);
6238		size = i_size_read(inode);
6239		/* Page got truncated from under us? */
6240		if (folio->mapping != mapping || folio_pos(folio) > size) {
6241			ret = VM_FAULT_NOPAGE;
6242			goto out_error;
6243		}
6244
6245		len = folio_size(folio);
6246		if (folio_pos(folio) + len > size)
6247			len = size - folio_pos(folio);
6248
6249		err = ext4_block_write_begin(handle, folio, 0, len,
6250					     ext4_get_block);
6251		if (!err) {
6252			ret = VM_FAULT_SIGBUS;
6253			if (ext4_journal_folio_buffers(handle, folio, len))
6254				goto out_error;
6255		} else {
6256			folio_unlock(folio);
6257		}
 
6258	}
6259	ext4_journal_stop(handle);
6260	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261		goto retry_alloc;
6262out_ret:
6263	ret = vmf_fs_error(err);
6264out:
6265	filemap_invalidate_unlock_shared(mapping);
6266	sb_end_pagefault(inode->i_sb);
6267	return ret;
6268out_error:
6269	folio_unlock(folio);
6270	ext4_journal_stop(handle);
6271	goto out;
6272}
v3.15
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
 
  22#include <linux/time.h>
  23#include <linux/jbd2.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
 
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/ratelimit.h>
  40#include <linux/aio.h>
  41#include <linux/bitops.h>
 
 
  42
  43#include "ext4_jbd2.h"
  44#include "xattr.h"
  45#include "acl.h"
  46#include "truncate.h"
  47
  48#include <trace/events/ext4.h>
  49
  50#define MPAGE_DA_EXTENT_TAIL 0x01
 
 
 
  51
  52static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  53			      struct ext4_inode_info *ei)
  54{
  55	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  56	__u16 csum_lo;
  57	__u16 csum_hi = 0;
  58	__u32 csum;
 
 
 
 
 
 
 
 
 
  59
  60	csum_lo = le16_to_cpu(raw->i_checksum_lo);
  61	raw->i_checksum_lo = 0;
  62	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  63	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  64		csum_hi = le16_to_cpu(raw->i_checksum_hi);
  65		raw->i_checksum_hi = 0;
 
 
 
 
 
 
  66	}
  67
  68	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  69			   EXT4_INODE_SIZE(inode->i_sb));
  70
  71	raw->i_checksum_lo = cpu_to_le16(csum_lo);
  72	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  73	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  74		raw->i_checksum_hi = cpu_to_le16(csum_hi);
  75
  76	return csum;
  77}
  78
  79static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  80				  struct ext4_inode_info *ei)
  81{
  82	__u32 provided, calculated;
  83
  84	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  85	    cpu_to_le32(EXT4_OS_LINUX) ||
  86	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
  87		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
  88		return 1;
  89
  90	provided = le16_to_cpu(raw->i_checksum_lo);
  91	calculated = ext4_inode_csum(inode, raw, ei);
  92	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  93	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  94		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  95	else
  96		calculated &= 0xFFFF;
  97
  98	return provided == calculated;
  99}
 100
 101static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 102				struct ext4_inode_info *ei)
 103{
 104	__u32 csum;
 105
 106	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 107	    cpu_to_le32(EXT4_OS_LINUX) ||
 108	    !EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
 109		EXT4_FEATURE_RO_COMPAT_METADATA_CSUM))
 110		return;
 111
 112	csum = ext4_inode_csum(inode, raw, ei);
 113	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 114	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 115	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 116		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 117}
 118
 119static inline int ext4_begin_ordered_truncate(struct inode *inode,
 120					      loff_t new_size)
 121{
 122	trace_ext4_begin_ordered_truncate(inode, new_size);
 123	/*
 124	 * If jinode is zero, then we never opened the file for
 125	 * writing, so there's no need to call
 126	 * jbd2_journal_begin_ordered_truncate() since there's no
 127	 * outstanding writes we need to flush.
 128	 */
 129	if (!EXT4_I(inode)->jinode)
 130		return 0;
 131	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 132						   EXT4_I(inode)->jinode,
 133						   new_size);
 134}
 135
 136static void ext4_invalidatepage(struct page *page, unsigned int offset,
 137				unsigned int length);
 138static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 139static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 140static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 141				  int pextents);
 142
 143/*
 144 * Test whether an inode is a fast symlink.
 
 145 */
 146static int ext4_inode_is_fast_symlink(struct inode *inode)
 147{
 148        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 149		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 
 150
 151	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 152}
 153
 154/*
 155 * Restart the transaction associated with *handle.  This does a commit,
 156 * so before we call here everything must be consistently dirtied against
 157 * this transaction.
 158 */
 159int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 160				 int nblocks)
 161{
 162	int ret;
 163
 164	/*
 165	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 166	 * moment, get_block can be called only for blocks inside i_size since
 167	 * page cache has been already dropped and writes are blocked by
 168	 * i_mutex. So we can safely drop the i_data_sem here.
 169	 */
 170	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 171	jbd_debug(2, "restarting handle %p\n", handle);
 172	up_write(&EXT4_I(inode)->i_data_sem);
 173	ret = ext4_journal_restart(handle, nblocks);
 174	down_write(&EXT4_I(inode)->i_data_sem);
 175	ext4_discard_preallocations(inode);
 176
 177	return ret;
 178}
 179
 180/*
 181 * Called at the last iput() if i_nlink is zero.
 182 */
 183void ext4_evict_inode(struct inode *inode)
 184{
 185	handle_t *handle;
 186	int err;
 
 
 
 
 
 
 
 
 187
 188	trace_ext4_evict_inode(inode);
 189
 
 
 190	if (inode->i_nlink) {
 191		/*
 192		 * When journalling data dirty buffers are tracked only in the
 193		 * journal. So although mm thinks everything is clean and
 194		 * ready for reaping the inode might still have some pages to
 195		 * write in the running transaction or waiting to be
 196		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 197		 * (via truncate_inode_pages()) to discard these buffers can
 198		 * cause data loss. Also even if we did not discard these
 199		 * buffers, we would have no way to find them after the inode
 200		 * is reaped and thus user could see stale data if he tries to
 201		 * read them before the transaction is checkpointed. So be
 202		 * careful and force everything to disk here... We use
 203		 * ei->i_datasync_tid to store the newest transaction
 204		 * containing inode's data.
 205		 *
 206		 * Note that directories do not have this problem because they
 207		 * don't use page cache.
 208		 */
 209		if (ext4_should_journal_data(inode) &&
 210		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 211		    inode->i_ino != EXT4_JOURNAL_INO) {
 212			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 213			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 214
 215			jbd2_complete_transaction(journal, commit_tid);
 216			filemap_write_and_wait(&inode->i_data);
 217		}
 218		truncate_inode_pages_final(&inode->i_data);
 219
 220		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
 221		goto no_delete;
 222	}
 223
 224	if (!is_bad_inode(inode))
 225		dquot_initialize(inode);
 
 226
 227	if (ext4_should_order_data(inode))
 228		ext4_begin_ordered_truncate(inode, 0);
 229	truncate_inode_pages_final(&inode->i_data);
 230
 231	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
 232	if (is_bad_inode(inode))
 233		goto no_delete;
 
 
 
 
 
 
 234
 235	/*
 236	 * Protect us against freezing - iput() caller didn't have to have any
 237	 * protection against it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 238	 */
 239	sb_start_intwrite(inode->i_sb);
 240	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 241				    ext4_blocks_for_truncate(inode)+3);
 242	if (IS_ERR(handle)) {
 243		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 244		/*
 245		 * If we're going to skip the normal cleanup, we still need to
 246		 * make sure that the in-core orphan linked list is properly
 247		 * cleaned up.
 248		 */
 249		ext4_orphan_del(NULL, inode);
 250		sb_end_intwrite(inode->i_sb);
 
 251		goto no_delete;
 252	}
 253
 254	if (IS_SYNC(inode))
 255		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 256	inode->i_size = 0;
 257	err = ext4_mark_inode_dirty(handle, inode);
 258	if (err) {
 259		ext4_warning(inode->i_sb,
 260			     "couldn't mark inode dirty (err %d)", err);
 261		goto stop_handle;
 262	}
 263	if (inode->i_blocks)
 264		ext4_truncate(inode);
 
 
 
 
 
 
 
 265
 266	/*
 267	 * ext4_ext_truncate() doesn't reserve any slop when it
 268	 * restarts journal transactions; therefore there may not be
 269	 * enough credits left in the handle to remove the inode from
 270	 * the orphan list and set the dtime field.
 271	 */
 272	if (!ext4_handle_has_enough_credits(handle, 3)) {
 273		err = ext4_journal_extend(handle, 3);
 274		if (err > 0)
 275			err = ext4_journal_restart(handle, 3);
 276		if (err != 0) {
 277			ext4_warning(inode->i_sb,
 278				     "couldn't extend journal (err %d)", err);
 279		stop_handle:
 280			ext4_journal_stop(handle);
 281			ext4_orphan_del(NULL, inode);
 282			sb_end_intwrite(inode->i_sb);
 283			goto no_delete;
 284		}
 285	}
 286
 287	/*
 288	 * Kill off the orphan record which ext4_truncate created.
 289	 * AKPM: I think this can be inside the above `if'.
 290	 * Note that ext4_orphan_del() has to be able to cope with the
 291	 * deletion of a non-existent orphan - this is because we don't
 292	 * know if ext4_truncate() actually created an orphan record.
 293	 * (Well, we could do this if we need to, but heck - it works)
 294	 */
 295	ext4_orphan_del(handle, inode);
 296	EXT4_I(inode)->i_dtime	= get_seconds();
 297
 298	/*
 299	 * One subtle ordering requirement: if anything has gone wrong
 300	 * (transaction abort, IO errors, whatever), then we can still
 301	 * do these next steps (the fs will already have been marked as
 302	 * having errors), but we can't free the inode if the mark_dirty
 303	 * fails.
 304	 */
 305	if (ext4_mark_inode_dirty(handle, inode))
 306		/* If that failed, just do the required in-core inode clear. */
 307		ext4_clear_inode(inode);
 308	else
 309		ext4_free_inode(handle, inode);
 310	ext4_journal_stop(handle);
 311	sb_end_intwrite(inode->i_sb);
 
 
 312	return;
 313no_delete:
 
 
 
 
 
 
 
 
 314	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 315}
 316
 317#ifdef CONFIG_QUOTA
 318qsize_t *ext4_get_reserved_space(struct inode *inode)
 319{
 320	return &EXT4_I(inode)->i_reserved_quota;
 321}
 322#endif
 323
 324/*
 325 * Calculate the number of metadata blocks need to reserve
 326 * to allocate a block located at @lblock
 327 */
 328static int ext4_calc_metadata_amount(struct inode *inode, ext4_lblk_t lblock)
 329{
 330	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 331		return ext4_ext_calc_metadata_amount(inode, lblock);
 332
 333	return ext4_ind_calc_metadata_amount(inode, lblock);
 334}
 335
 336/*
 337 * Called with i_data_sem down, which is important since we can call
 338 * ext4_discard_preallocations() from here.
 339 */
 340void ext4_da_update_reserve_space(struct inode *inode,
 341					int used, int quota_claim)
 342{
 343	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 344	struct ext4_inode_info *ei = EXT4_I(inode);
 345
 346	spin_lock(&ei->i_block_reservation_lock);
 347	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 348	if (unlikely(used > ei->i_reserved_data_blocks)) {
 349		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 350			 "with only %d reserved data blocks",
 351			 __func__, inode->i_ino, used,
 352			 ei->i_reserved_data_blocks);
 353		WARN_ON(1);
 354		used = ei->i_reserved_data_blocks;
 355	}
 356
 357	if (unlikely(ei->i_allocated_meta_blocks > ei->i_reserved_meta_blocks)) {
 358		ext4_warning(inode->i_sb, "ino %lu, allocated %d "
 359			"with only %d reserved metadata blocks "
 360			"(releasing %d blocks with reserved %d data blocks)",
 361			inode->i_ino, ei->i_allocated_meta_blocks,
 362			     ei->i_reserved_meta_blocks, used,
 363			     ei->i_reserved_data_blocks);
 364		WARN_ON(1);
 365		ei->i_allocated_meta_blocks = ei->i_reserved_meta_blocks;
 366	}
 367
 368	/* Update per-inode reservations */
 369	ei->i_reserved_data_blocks -= used;
 370	ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
 371	percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 372			   used + ei->i_allocated_meta_blocks);
 373	ei->i_allocated_meta_blocks = 0;
 374
 375	if (ei->i_reserved_data_blocks == 0) {
 376		/*
 377		 * We can release all of the reserved metadata blocks
 378		 * only when we have written all of the delayed
 379		 * allocation blocks.
 380		 */
 381		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
 382				   ei->i_reserved_meta_blocks);
 383		ei->i_reserved_meta_blocks = 0;
 384		ei->i_da_metadata_calc_len = 0;
 385	}
 386	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 387
 388	/* Update quota subsystem for data blocks */
 389	if (quota_claim)
 390		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 391	else {
 392		/*
 393		 * We did fallocate with an offset that is already delayed
 394		 * allocated. So on delayed allocated writeback we should
 395		 * not re-claim the quota for fallocated blocks.
 396		 */
 397		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 398	}
 399
 400	/*
 401	 * If we have done all the pending block allocations and if
 402	 * there aren't any writers on the inode, we can discard the
 403	 * inode's preallocations.
 404	 */
 405	if ((ei->i_reserved_data_blocks == 0) &&
 406	    (atomic_read(&inode->i_writecount) == 0))
 407		ext4_discard_preallocations(inode);
 408}
 409
 410static int __check_block_validity(struct inode *inode, const char *func,
 411				unsigned int line,
 412				struct ext4_map_blocks *map)
 413{
 414	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 415				   map->m_len)) {
 
 
 
 416		ext4_error_inode(inode, func, line, map->m_pblk,
 417				 "lblock %lu mapped to illegal pblock "
 418				 "(length %d)", (unsigned long) map->m_lblk,
 419				 map->m_len);
 420		return -EIO;
 421	}
 422	return 0;
 423}
 424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425#define check_block_validity(inode, map)	\
 426	__check_block_validity((inode), __func__, __LINE__, (map))
 427
 428#ifdef ES_AGGRESSIVE_TEST
 429static void ext4_map_blocks_es_recheck(handle_t *handle,
 430				       struct inode *inode,
 431				       struct ext4_map_blocks *es_map,
 432				       struct ext4_map_blocks *map,
 433				       int flags)
 434{
 435	int retval;
 436
 437	map->m_flags = 0;
 438	/*
 439	 * There is a race window that the result is not the same.
 440	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 441	 * is that we lookup a block mapping in extent status tree with
 442	 * out taking i_data_sem.  So at the time the unwritten extent
 443	 * could be converted.
 444	 */
 445	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 446		down_read((&EXT4_I(inode)->i_data_sem));
 447	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 448		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 449					     EXT4_GET_BLOCKS_KEEP_SIZE);
 450	} else {
 451		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 452					     EXT4_GET_BLOCKS_KEEP_SIZE);
 453	}
 454	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 455		up_read((&EXT4_I(inode)->i_data_sem));
 456	/*
 457	 * Clear EXT4_MAP_FROM_CLUSTER and EXT4_MAP_BOUNDARY flag
 458	 * because it shouldn't be marked in es_map->m_flags.
 459	 */
 460	map->m_flags &= ~(EXT4_MAP_FROM_CLUSTER | EXT4_MAP_BOUNDARY);
 461
 462	/*
 463	 * We don't check m_len because extent will be collpased in status
 464	 * tree.  So the m_len might not equal.
 465	 */
 466	if (es_map->m_lblk != map->m_lblk ||
 467	    es_map->m_flags != map->m_flags ||
 468	    es_map->m_pblk != map->m_pblk) {
 469		printk("ES cache assertion failed for inode: %lu "
 470		       "es_cached ex [%d/%d/%llu/%x] != "
 471		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 472		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 473		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 474		       map->m_len, map->m_pblk, map->m_flags,
 475		       retval, flags);
 476	}
 477}
 478#endif /* ES_AGGRESSIVE_TEST */
 479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 480/*
 481 * The ext4_map_blocks() function tries to look up the requested blocks,
 482 * and returns if the blocks are already mapped.
 483 *
 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 485 * and store the allocated blocks in the result buffer head and mark it
 486 * mapped.
 487 *
 488 * If file type is extents based, it will call ext4_ext_map_blocks(),
 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 490 * based files
 491 *
 492 * On success, it returns the number of blocks being mapped or allocate.
 493 * if create==0 and the blocks are pre-allocated and uninitialized block,
 494 * the result buffer head is unmapped. If the create ==1, it will make sure
 495 * the buffer head is mapped.
 496 *
 497 * It returns 0 if plain look up failed (blocks have not been allocated), in
 498 * that case, buffer head is unmapped
 
 499 *
 500 * It returns the error in case of allocation failure.
 501 */
 502int ext4_map_blocks(handle_t *handle, struct inode *inode,
 503		    struct ext4_map_blocks *map, int flags)
 504{
 505	struct extent_status es;
 506	int retval;
 507	int ret = 0;
 508#ifdef ES_AGGRESSIVE_TEST
 509	struct ext4_map_blocks orig_map;
 510
 511	memcpy(&orig_map, map, sizeof(*map));
 512#endif
 513
 514	map->m_flags = 0;
 515	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 516		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 517		  (unsigned long) map->m_lblk);
 518
 519	/*
 520	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 521	 */
 522	if (unlikely(map->m_len > INT_MAX))
 523		map->m_len = INT_MAX;
 524
 525	/* We can handle the block number less than EXT_MAX_BLOCKS */
 526	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 527		return -EIO;
 528
 529	/* Lookup extent status tree firstly */
 530	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 531		ext4_es_lru_add(inode);
 532		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 533			map->m_pblk = ext4_es_pblock(&es) +
 534					map->m_lblk - es.es_lblk;
 535			map->m_flags |= ext4_es_is_written(&es) ?
 536					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 537			retval = es.es_len - (map->m_lblk - es.es_lblk);
 538			if (retval > map->m_len)
 539				retval = map->m_len;
 540			map->m_len = retval;
 541		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 
 
 
 
 
 
 
 542			retval = 0;
 543		} else {
 544			BUG_ON(1);
 545		}
 
 
 
 546#ifdef ES_AGGRESSIVE_TEST
 547		ext4_map_blocks_es_recheck(handle, inode, map,
 548					   &orig_map, flags);
 549#endif
 550		goto found;
 551	}
 
 
 
 
 
 
 552
 553	/*
 554	 * Try to see if we can get the block without requesting a new
 555	 * file system block.
 556	 */
 557	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 558		down_read((&EXT4_I(inode)->i_data_sem));
 559	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 560		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 561					     EXT4_GET_BLOCKS_KEEP_SIZE);
 562	} else {
 563		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 564					     EXT4_GET_BLOCKS_KEEP_SIZE);
 565	}
 566	if (retval > 0) {
 567		unsigned int status;
 568
 569		if (unlikely(retval != map->m_len)) {
 570			ext4_warning(inode->i_sb,
 571				     "ES len assertion failed for inode "
 572				     "%lu: retval %d != map->m_len %d",
 573				     inode->i_ino, retval, map->m_len);
 574			WARN_ON(1);
 575		}
 576
 577		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 578				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 579		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 580		    ext4_find_delalloc_range(inode, map->m_lblk,
 581					     map->m_lblk + map->m_len - 1))
 582			status |= EXTENT_STATUS_DELAYED;
 583		ret = ext4_es_insert_extent(inode, map->m_lblk,
 584					    map->m_len, map->m_pblk, status);
 585		if (ret < 0)
 586			retval = ret;
 587	}
 588	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
 589		up_read((&EXT4_I(inode)->i_data_sem));
 590
 591found:
 592	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 593		ret = check_block_validity(inode, map);
 594		if (ret != 0)
 595			return ret;
 596	}
 597
 598	/* If it is only a block(s) look up */
 599	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 600		return retval;
 601
 602	/*
 603	 * Returns if the blocks have already allocated
 604	 *
 605	 * Note that if blocks have been preallocated
 606	 * ext4_ext_get_block() returns the create = 0
 607	 * with buffer head unmapped.
 608	 */
 609	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 610		/*
 611		 * If we need to convert extent to unwritten
 612		 * we continue and do the actual work in
 613		 * ext4_ext_map_blocks()
 614		 */
 615		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 616			return retval;
 617
 618	/*
 619	 * Here we clear m_flags because after allocating an new extent,
 620	 * it will be set again.
 621	 */
 622	map->m_flags &= ~EXT4_MAP_FLAGS;
 623
 624	/*
 625	 * New blocks allocate and/or writing to uninitialized extent
 626	 * will possibly result in updating i_data, so we take
 627	 * the write lock of i_data_sem, and call get_blocks()
 628	 * with create == 1 flag.
 629	 */
 630	down_write((&EXT4_I(inode)->i_data_sem));
 631
 632	/*
 633	 * if the caller is from delayed allocation writeout path
 634	 * we have already reserved fs blocks for allocation
 635	 * let the underlying get_block() function know to
 636	 * avoid double accounting
 637	 */
 638	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 639		ext4_set_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 640	/*
 641	 * We need to check for EXT4 here because migrate
 642	 * could have changed the inode type in between
 643	 */
 644	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 645		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 646	} else {
 647		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 648
 649		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 650			/*
 651			 * We allocated new blocks which will result in
 652			 * i_data's format changing.  Force the migrate
 653			 * to fail by clearing migrate flags
 654			 */
 655			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 656		}
 657
 658		/*
 659		 * Update reserved blocks/metadata blocks after successful
 660		 * block allocation which had been deferred till now. We don't
 661		 * support fallocate for non extent files. So we can update
 662		 * reserve space here.
 663		 */
 664		if ((retval > 0) &&
 665			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 666			ext4_da_update_reserve_space(inode, retval, 1);
 667	}
 668	if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
 669		ext4_clear_inode_state(inode, EXT4_STATE_DELALLOC_RESERVED);
 670
 671	if (retval > 0) {
 672		unsigned int status;
 673
 674		if (unlikely(retval != map->m_len)) {
 675			ext4_warning(inode->i_sb,
 676				     "ES len assertion failed for inode "
 677				     "%lu: retval %d != map->m_len %d",
 678				     inode->i_ino, retval, map->m_len);
 679			WARN_ON(1);
 680		}
 681
 682		/*
 683		 * If the extent has been zeroed out, we don't need to update
 684		 * extent status tree.
 685		 */
 686		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 687		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 688			if (ext4_es_is_written(&es))
 689				goto has_zeroout;
 690		}
 691		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 692				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 693		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 694		    ext4_find_delalloc_range(inode, map->m_lblk,
 695					     map->m_lblk + map->m_len - 1))
 696			status |= EXTENT_STATUS_DELAYED;
 697		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 698					    map->m_pblk, status);
 699		if (ret < 0)
 700			retval = ret;
 701	}
 702
 703has_zeroout:
 704	up_write((&EXT4_I(inode)->i_data_sem));
 705	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 706		ret = check_block_validity(inode, map);
 707		if (ret != 0)
 708			return ret;
 709	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 710	return retval;
 711}
 712
 713/* Maximum number of blocks we map for direct IO at once. */
 714#define DIO_MAX_BLOCKS 4096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 715
 716static int _ext4_get_block(struct inode *inode, sector_t iblock,
 717			   struct buffer_head *bh, int flags)
 718{
 719	handle_t *handle = ext4_journal_current_handle();
 720	struct ext4_map_blocks map;
 721	int ret = 0, started = 0;
 722	int dio_credits;
 723
 724	if (ext4_has_inline_data(inode))
 725		return -ERANGE;
 726
 727	map.m_lblk = iblock;
 728	map.m_len = bh->b_size >> inode->i_blkbits;
 729
 730	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
 731		/* Direct IO write... */
 732		if (map.m_len > DIO_MAX_BLOCKS)
 733			map.m_len = DIO_MAX_BLOCKS;
 734		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
 735		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
 736					    dio_credits);
 737		if (IS_ERR(handle)) {
 738			ret = PTR_ERR(handle);
 739			return ret;
 740		}
 741		started = 1;
 742	}
 743
 744	ret = ext4_map_blocks(handle, inode, &map, flags);
 745	if (ret > 0) {
 746		ext4_io_end_t *io_end = ext4_inode_aio(inode);
 747
 748		map_bh(bh, inode->i_sb, map.m_pblk);
 749		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
 750		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
 751			set_buffer_defer_completion(bh);
 752		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 753		ret = 0;
 
 
 
 754	}
 755	if (started)
 756		ext4_journal_stop(handle);
 757	return ret;
 758}
 759
 760int ext4_get_block(struct inode *inode, sector_t iblock,
 761		   struct buffer_head *bh, int create)
 762{
 763	return _ext4_get_block(inode, iblock, bh,
 764			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 765}
 766
 767/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768 * `handle' can be NULL if create is zero
 769 */
 770struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 771				ext4_lblk_t block, int create, int *errp)
 772{
 773	struct ext4_map_blocks map;
 774	struct buffer_head *bh;
 775	int fatal = 0, err;
 
 
 776
 777	J_ASSERT(handle != NULL || create == 0);
 
 
 778
 779	map.m_lblk = block;
 780	map.m_len = 1;
 781	err = ext4_map_blocks(handle, inode, &map,
 782			      create ? EXT4_GET_BLOCKS_CREATE : 0);
 
 
 
 
 783
 784	/* ensure we send some value back into *errp */
 785	*errp = 0;
 
 
 
 
 
 
 
 
 786
 787	if (create && err == 0)
 788		err = -ENOSPC;	/* should never happen */
 789	if (err < 0)
 790		*errp = err;
 791	if (err <= 0)
 792		return NULL;
 793
 794	bh = sb_getblk(inode->i_sb, map.m_pblk);
 795	if (unlikely(!bh)) {
 796		*errp = -ENOMEM;
 797		return NULL;
 798	}
 799	if (map.m_flags & EXT4_MAP_NEW) {
 800		J_ASSERT(create != 0);
 801		J_ASSERT(handle != NULL);
 
 802
 803		/*
 804		 * Now that we do not always journal data, we should
 805		 * keep in mind whether this should always journal the
 806		 * new buffer as metadata.  For now, regular file
 807		 * writes use ext4_get_block instead, so it's not a
 808		 * problem.
 809		 */
 810		lock_buffer(bh);
 811		BUFFER_TRACE(bh, "call get_create_access");
 812		fatal = ext4_journal_get_create_access(handle, bh);
 813		if (!fatal && !buffer_uptodate(bh)) {
 
 
 
 
 
 814			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 815			set_buffer_uptodate(bh);
 816		}
 817		unlock_buffer(bh);
 818		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 819		err = ext4_handle_dirty_metadata(handle, inode, bh);
 820		if (!fatal)
 821			fatal = err;
 822	} else {
 823		BUFFER_TRACE(bh, "not a new buffer");
 824	}
 825	if (fatal) {
 826		*errp = fatal;
 827		brelse(bh);
 828		bh = NULL;
 829	}
 830	return bh;
 
 
 
 831}
 832
 833struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 834			       ext4_lblk_t block, int create, int *err)
 835{
 836	struct buffer_head *bh;
 
 837
 838	bh = ext4_getblk(handle, inode, block, create, err);
 839	if (!bh)
 840		return bh;
 841	if (buffer_uptodate(bh))
 842		return bh;
 843	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 844	wait_on_buffer(bh);
 845	if (buffer_uptodate(bh))
 846		return bh;
 847	put_bh(bh);
 848	*err = -EIO;
 849	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850}
 851
 852int ext4_walk_page_buffers(handle_t *handle,
 853			   struct buffer_head *head,
 854			   unsigned from,
 855			   unsigned to,
 856			   int *partial,
 857			   int (*fn)(handle_t *handle,
 858				     struct buffer_head *bh))
 859{
 860	struct buffer_head *bh;
 861	unsigned block_start, block_end;
 862	unsigned blocksize = head->b_size;
 863	int err, ret = 0;
 864	struct buffer_head *next;
 865
 866	for (bh = head, block_start = 0;
 867	     ret == 0 && (bh != head || !block_start);
 868	     block_start = block_end, bh = next) {
 869		next = bh->b_this_page;
 870		block_end = block_start + blocksize;
 871		if (block_end <= from || block_start >= to) {
 872			if (partial && !buffer_uptodate(bh))
 873				*partial = 1;
 874			continue;
 875		}
 876		err = (*fn)(handle, bh);
 877		if (!ret)
 878			ret = err;
 879	}
 880	return ret;
 881}
 882
 883/*
 884 * To preserve ordering, it is essential that the hole instantiation and
 885 * the data write be encapsulated in a single transaction.  We cannot
 886 * close off a transaction and start a new one between the ext4_get_block()
 887 * and the commit_write().  So doing the jbd2_journal_start at the start of
 888 * prepare_write() is the right place.
 889 *
 890 * Also, this function can nest inside ext4_writepage().  In that case, we
 891 * *know* that ext4_writepage() has generated enough buffer credits to do the
 892 * whole page.  So we won't block on the journal in that case, which is good,
 893 * because the caller may be PF_MEMALLOC.
 894 *
 895 * By accident, ext4 can be reentered when a transaction is open via
 896 * quota file writes.  If we were to commit the transaction while thus
 897 * reentered, there can be a deadlock - we would be holding a quota
 898 * lock, and the commit would never complete if another thread had a
 899 * transaction open and was blocking on the quota lock - a ranking
 900 * violation.
 901 *
 902 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
 903 * will _not_ run commit under these circumstances because handle->h_ref
 904 * is elevated.  We'll still have enough credits for the tiny quotafile
 905 * write.
 906 */
 907int do_journal_get_write_access(handle_t *handle,
 
 
 
 
 
 
 908				struct buffer_head *bh)
 909{
 910	int dirty = buffer_dirty(bh);
 911	int ret;
 912
 913	if (!buffer_mapped(bh) || buffer_freed(bh))
 914		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 915	/*
 916	 * __block_write_begin() could have dirtied some buffers. Clean
 917	 * the dirty bit as jbd2_journal_get_write_access() could complain
 918	 * otherwise about fs integrity issues. Setting of the dirty bit
 919	 * by __block_write_begin() isn't a real problem here as we clear
 920	 * the bit before releasing a page lock and thus writeback cannot
 921	 * ever write the buffer.
 922	 */
 923	if (dirty)
 924		clear_buffer_dirty(bh);
 925	ret = ext4_journal_get_write_access(handle, bh);
 926	if (!ret && dirty)
 927		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
 928	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929}
 930
 931static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
 932		   struct buffer_head *bh_result, int create);
 
 
 
 
 
 933static int ext4_write_begin(struct file *file, struct address_space *mapping,
 934			    loff_t pos, unsigned len, unsigned flags,
 935			    struct page **pagep, void **fsdata)
 936{
 937	struct inode *inode = mapping->host;
 938	int ret, needed_blocks;
 939	handle_t *handle;
 940	int retries = 0;
 941	struct page *page;
 942	pgoff_t index;
 943	unsigned from, to;
 944
 945	trace_ext4_write_begin(inode, pos, len, flags);
 
 
 
 946	/*
 947	 * Reserve one block more for addition to orphan list in case
 948	 * we allocate blocks but write fails for some reason
 949	 */
 950	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
 951	index = pos >> PAGE_CACHE_SHIFT;
 952	from = pos & (PAGE_CACHE_SIZE - 1);
 953	to = from + len;
 954
 955	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
 956		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
 957						    flags, pagep);
 958		if (ret < 0)
 959			return ret;
 960		if (ret == 1)
 961			return 0;
 962	}
 963
 964	/*
 965	 * grab_cache_page_write_begin() can take a long time if the
 966	 * system is thrashing due to memory pressure, or if the page
 967	 * is being written back.  So grab it first before we start
 968	 * the transaction handle.  This also allows us to allocate
 969	 * the page (if needed) without using GFP_NOFS.
 970	 */
 971retry_grab:
 972	page = grab_cache_page_write_begin(mapping, index, flags);
 973	if (!page)
 974		return -ENOMEM;
 975	unlock_page(page);
 
 
 
 
 
 
 
 
 976
 977retry_journal:
 978	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
 979	if (IS_ERR(handle)) {
 980		page_cache_release(page);
 981		return PTR_ERR(handle);
 982	}
 983
 984	lock_page(page);
 985	if (page->mapping != mapping) {
 986		/* The page got truncated from under us */
 987		unlock_page(page);
 988		page_cache_release(page);
 989		ext4_journal_stop(handle);
 990		goto retry_grab;
 991	}
 992	/* In case writeback began while the page was unlocked */
 993	wait_for_stable_page(page);
 994
 995	if (ext4_should_dioread_nolock(inode))
 996		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
 
 997	else
 998		ret = __block_write_begin(page, pos, len, ext4_get_block);
 999
1000	if (!ret && ext4_should_journal_data(inode)) {
1001		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1002					     from, to, NULL,
1003					     do_journal_get_write_access);
1004	}
1005
1006	if (ret) {
1007		unlock_page(page);
 
 
 
1008		/*
1009		 * __block_write_begin may have instantiated a few blocks
1010		 * outside i_size.  Trim these off again. Don't need
1011		 * i_size_read because we hold i_mutex.
1012		 *
1013		 * Add inode to orphan list in case we crash before
1014		 * truncate finishes
1015		 */
1016		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1017			ext4_orphan_add(handle, inode);
1018
1019		ext4_journal_stop(handle);
1020		if (pos + len > inode->i_size) {
1021			ext4_truncate_failed_write(inode);
1022			/*
1023			 * If truncate failed early the inode might
1024			 * still be on the orphan list; we need to
1025			 * make sure the inode is removed from the
1026			 * orphan list in that case.
1027			 */
1028			if (inode->i_nlink)
1029				ext4_orphan_del(NULL, inode);
1030		}
1031
1032		if (ret == -ENOSPC &&
1033		    ext4_should_retry_alloc(inode->i_sb, &retries))
1034			goto retry_journal;
1035		page_cache_release(page);
1036		return ret;
1037	}
1038	*pagep = page;
1039	return ret;
1040}
1041
1042/* For write_end() in data=journal mode */
1043static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 
1044{
1045	int ret;
1046	if (!buffer_mapped(bh) || buffer_freed(bh))
1047		return 0;
1048	set_buffer_uptodate(bh);
1049	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1050	clear_buffer_meta(bh);
1051	clear_buffer_prio(bh);
1052	return ret;
1053}
1054
1055/*
1056 * We need to pick up the new inode size which generic_commit_write gave us
1057 * `file' can be NULL - eg, when called from page_symlink().
1058 *
1059 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1060 * buffers are managed internally.
1061 */
1062static int ext4_write_end(struct file *file,
1063			  struct address_space *mapping,
1064			  loff_t pos, unsigned len, unsigned copied,
1065			  struct page *page, void *fsdata)
1066{
1067	handle_t *handle = ext4_journal_current_handle();
1068	struct inode *inode = mapping->host;
 
1069	int ret = 0, ret2;
1070	int i_size_changed = 0;
 
1071
1072	trace_ext4_write_end(inode, pos, len, copied);
1073	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1074		ret = ext4_jbd2_file_inode(handle, inode);
1075		if (ret) {
1076			unlock_page(page);
1077			page_cache_release(page);
1078			goto errout;
1079		}
1080	}
1081
1082	if (ext4_has_inline_data(inode)) {
1083		ret = ext4_write_inline_data_end(inode, pos, len,
1084						 copied, page);
1085		if (ret < 0)
1086			goto errout;
1087		copied = ret;
1088	} else
1089		copied = block_write_end(file, mapping, pos,
1090					 len, copied, page, fsdata);
1091
 
1092	/*
1093	 * No need to use i_size_read() here, the i_size
1094	 * cannot change under us because we hole i_mutex.
1095	 *
1096	 * But it's important to update i_size while still holding page lock:
1097	 * page writeout could otherwise come in and zero beyond i_size.
1098	 */
1099	if (pos + copied > inode->i_size) {
1100		i_size_write(inode, pos + copied);
1101		i_size_changed = 1;
1102	}
1103
1104	if (pos + copied > EXT4_I(inode)->i_disksize) {
1105		/* We need to mark inode dirty even if
1106		 * new_i_size is less that inode->i_size
1107		 * but greater than i_disksize. (hint delalloc)
1108		 */
1109		ext4_update_i_disksize(inode, (pos + copied));
1110		i_size_changed = 1;
1111	}
1112	unlock_page(page);
1113	page_cache_release(page);
1114
1115	/*
1116	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1117	 * makes the holding time of page lock longer. Second, it forces lock
1118	 * ordering of page lock and transaction start for journaling
1119	 * filesystems.
1120	 */
1121	if (i_size_changed)
1122		ext4_mark_inode_dirty(handle, inode);
1123
1124	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1125		/* if we have allocated more blocks and copied
1126		 * less. We will have blocks allocated outside
1127		 * inode->i_size. So truncate them
1128		 */
1129		ext4_orphan_add(handle, inode);
1130errout:
1131	ret2 = ext4_journal_stop(handle);
1132	if (!ret)
1133		ret = ret2;
1134
1135	if (pos + len > inode->i_size) {
1136		ext4_truncate_failed_write(inode);
1137		/*
1138		 * If truncate failed early the inode might still be
1139		 * on the orphan list; we need to make sure the inode
1140		 * is removed from the orphan list in that case.
1141		 */
1142		if (inode->i_nlink)
1143			ext4_orphan_del(NULL, inode);
1144	}
1145
1146	return ret ? ret : copied;
1147}
1148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149static int ext4_journalled_write_end(struct file *file,
1150				     struct address_space *mapping,
1151				     loff_t pos, unsigned len, unsigned copied,
1152				     struct page *page, void *fsdata)
1153{
1154	handle_t *handle = ext4_journal_current_handle();
1155	struct inode *inode = mapping->host;
 
1156	int ret = 0, ret2;
1157	int partial = 0;
1158	unsigned from, to;
1159	loff_t new_i_size;
 
1160
1161	trace_ext4_journalled_write_end(inode, pos, len, copied);
1162	from = pos & (PAGE_CACHE_SIZE - 1);
1163	to = from + len;
1164
1165	BUG_ON(!ext4_handle_valid(handle));
1166
1167	if (ext4_has_inline_data(inode))
1168		copied = ext4_write_inline_data_end(inode, pos, len,
1169						    copied, page);
1170	else {
1171		if (copied < len) {
1172			if (!PageUptodate(page))
1173				copied = 0;
1174			page_zero_new_buffers(page, from+copied, to);
1175		}
1176
1177		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1178					     to, &partial, write_end_fn);
 
 
 
 
 
 
 
 
 
 
1179		if (!partial)
1180			SetPageUptodate(page);
1181	}
1182	new_i_size = pos + copied;
1183	if (new_i_size > inode->i_size)
1184		i_size_write(inode, pos+copied);
1185	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1186	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1187	if (new_i_size > EXT4_I(inode)->i_disksize) {
1188		ext4_update_i_disksize(inode, new_i_size);
 
 
 
 
 
 
 
1189		ret2 = ext4_mark_inode_dirty(handle, inode);
1190		if (!ret)
1191			ret = ret2;
1192	}
1193
1194	unlock_page(page);
1195	page_cache_release(page);
1196	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1197		/* if we have allocated more blocks and copied
1198		 * less. We will have blocks allocated outside
1199		 * inode->i_size. So truncate them
1200		 */
1201		ext4_orphan_add(handle, inode);
1202
1203	ret2 = ext4_journal_stop(handle);
1204	if (!ret)
1205		ret = ret2;
1206	if (pos + len > inode->i_size) {
1207		ext4_truncate_failed_write(inode);
1208		/*
1209		 * If truncate failed early the inode might still be
1210		 * on the orphan list; we need to make sure the inode
1211		 * is removed from the orphan list in that case.
1212		 */
1213		if (inode->i_nlink)
1214			ext4_orphan_del(NULL, inode);
1215	}
1216
1217	return ret ? ret : copied;
1218}
1219
1220/*
1221 * Reserve a metadata for a single block located at lblock
1222 */
1223static int ext4_da_reserve_metadata(struct inode *inode, ext4_lblk_t lblock)
1224{
1225	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1226	struct ext4_inode_info *ei = EXT4_I(inode);
1227	unsigned int md_needed;
1228	ext4_lblk_t save_last_lblock;
1229	int save_len;
1230
1231	/*
1232	 * recalculate the amount of metadata blocks to reserve
1233	 * in order to allocate nrblocks
1234	 * worse case is one extent per block
1235	 */
1236	spin_lock(&ei->i_block_reservation_lock);
1237	/*
1238	 * ext4_calc_metadata_amount() has side effects, which we have
1239	 * to be prepared undo if we fail to claim space.
1240	 */
1241	save_len = ei->i_da_metadata_calc_len;
1242	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1243	md_needed = EXT4_NUM_B2C(sbi,
1244				 ext4_calc_metadata_amount(inode, lblock));
1245	trace_ext4_da_reserve_space(inode, md_needed);
1246
1247	/*
1248	 * We do still charge estimated metadata to the sb though;
1249	 * we cannot afford to run out of free blocks.
1250	 */
1251	if (ext4_claim_free_clusters(sbi, md_needed, 0)) {
1252		ei->i_da_metadata_calc_len = save_len;
1253		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1254		spin_unlock(&ei->i_block_reservation_lock);
1255		return -ENOSPC;
1256	}
1257	ei->i_reserved_meta_blocks += md_needed;
1258	spin_unlock(&ei->i_block_reservation_lock);
1259
1260	return 0;       /* success */
1261}
1262
1263/*
1264 * Reserve a single cluster located at lblock
1265 */
1266static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1267{
1268	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1269	struct ext4_inode_info *ei = EXT4_I(inode);
1270	unsigned int md_needed;
1271	int ret;
1272	ext4_lblk_t save_last_lblock;
1273	int save_len;
1274
1275	/*
1276	 * We will charge metadata quota at writeout time; this saves
1277	 * us from metadata over-estimation, though we may go over by
1278	 * a small amount in the end.  Here we just reserve for data.
1279	 */
1280	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1281	if (ret)
1282		return ret;
1283
1284	/*
1285	 * recalculate the amount of metadata blocks to reserve
1286	 * in order to allocate nrblocks
1287	 * worse case is one extent per block
1288	 */
1289	spin_lock(&ei->i_block_reservation_lock);
1290	/*
1291	 * ext4_calc_metadata_amount() has side effects, which we have
1292	 * to be prepared undo if we fail to claim space.
1293	 */
1294	save_len = ei->i_da_metadata_calc_len;
1295	save_last_lblock = ei->i_da_metadata_calc_last_lblock;
1296	md_needed = EXT4_NUM_B2C(sbi,
1297				 ext4_calc_metadata_amount(inode, lblock));
1298	trace_ext4_da_reserve_space(inode, md_needed);
1299
1300	/*
1301	 * We do still charge estimated metadata to the sb though;
1302	 * we cannot afford to run out of free blocks.
1303	 */
1304	if (ext4_claim_free_clusters(sbi, md_needed + 1, 0)) {
1305		ei->i_da_metadata_calc_len = save_len;
1306		ei->i_da_metadata_calc_last_lblock = save_last_lblock;
1307		spin_unlock(&ei->i_block_reservation_lock);
1308		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1309		return -ENOSPC;
1310	}
1311	ei->i_reserved_data_blocks++;
1312	ei->i_reserved_meta_blocks += md_needed;
1313	spin_unlock(&ei->i_block_reservation_lock);
1314
1315	return 0;       /* success */
1316}
1317
1318static void ext4_da_release_space(struct inode *inode, int to_free)
1319{
1320	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1321	struct ext4_inode_info *ei = EXT4_I(inode);
1322
1323	if (!to_free)
1324		return;		/* Nothing to release, exit */
1325
1326	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1327
1328	trace_ext4_da_release_space(inode, to_free);
1329	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1330		/*
1331		 * if there aren't enough reserved blocks, then the
1332		 * counter is messed up somewhere.  Since this
1333		 * function is called from invalidate page, it's
1334		 * harmless to return without any action.
1335		 */
1336		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1337			 "ino %lu, to_free %d with only %d reserved "
1338			 "data blocks", inode->i_ino, to_free,
1339			 ei->i_reserved_data_blocks);
1340		WARN_ON(1);
1341		to_free = ei->i_reserved_data_blocks;
1342	}
1343	ei->i_reserved_data_blocks -= to_free;
1344
1345	if (ei->i_reserved_data_blocks == 0) {
1346		/*
1347		 * We can release all of the reserved metadata blocks
1348		 * only when we have written all of the delayed
1349		 * allocation blocks.
1350		 * Note that in case of bigalloc, i_reserved_meta_blocks,
1351		 * i_reserved_data_blocks, etc. refer to number of clusters.
1352		 */
1353		percpu_counter_sub(&sbi->s_dirtyclusters_counter,
1354				   ei->i_reserved_meta_blocks);
1355		ei->i_reserved_meta_blocks = 0;
1356		ei->i_da_metadata_calc_len = 0;
1357	}
1358
1359	/* update fs dirty data blocks counter */
1360	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1361
1362	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1363
1364	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1365}
1366
1367static void ext4_da_page_release_reservation(struct page *page,
1368					     unsigned int offset,
1369					     unsigned int length)
1370{
1371	int to_release = 0;
1372	struct buffer_head *head, *bh;
1373	unsigned int curr_off = 0;
1374	struct inode *inode = page->mapping->host;
1375	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1376	unsigned int stop = offset + length;
1377	int num_clusters;
1378	ext4_fsblk_t lblk;
1379
1380	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1381
1382	head = page_buffers(page);
1383	bh = head;
1384	do {
1385		unsigned int next_off = curr_off + bh->b_size;
1386
1387		if (next_off > stop)
1388			break;
1389
1390		if ((offset <= curr_off) && (buffer_delay(bh))) {
1391			to_release++;
1392			clear_buffer_delay(bh);
1393		}
1394		curr_off = next_off;
1395	} while ((bh = bh->b_this_page) != head);
1396
1397	if (to_release) {
1398		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1399		ext4_es_remove_extent(inode, lblk, to_release);
1400	}
1401
1402	/* If we have released all the blocks belonging to a cluster, then we
1403	 * need to release the reserved space for that cluster. */
1404	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1405	while (num_clusters > 0) {
1406		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1407			((num_clusters - 1) << sbi->s_cluster_bits);
1408		if (sbi->s_cluster_ratio == 1 ||
1409		    !ext4_find_delalloc_cluster(inode, lblk))
1410			ext4_da_release_space(inode, 1);
1411
1412		num_clusters--;
1413	}
1414}
1415
1416/*
1417 * Delayed allocation stuff
1418 */
1419
1420struct mpage_da_data {
 
1421	struct inode *inode;
1422	struct writeback_control *wbc;
 
1423
 
1424	pgoff_t first_page;	/* The first page to write */
1425	pgoff_t next_page;	/* Current page to examine */
1426	pgoff_t last_page;	/* Last page to examine */
1427	/*
1428	 * Extent to map - this can be after first_page because that can be
1429	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1430	 * is delalloc or unwritten.
1431	 */
1432	struct ext4_map_blocks map;
1433	struct ext4_io_submit io_submit;	/* IO submission data */
 
 
 
1434};
1435
1436static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1437				       bool invalidate)
1438{
1439	int nr_pages, i;
1440	pgoff_t index, end;
1441	struct pagevec pvec;
1442	struct inode *inode = mpd->inode;
1443	struct address_space *mapping = inode->i_mapping;
1444
1445	/* This is necessary when next_page == 0. */
1446	if (mpd->first_page >= mpd->next_page)
1447		return;
1448
 
1449	index = mpd->first_page;
1450	end   = mpd->next_page - 1;
1451	if (invalidate) {
1452		ext4_lblk_t start, last;
1453		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1454		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
 
 
 
 
 
 
1455		ext4_es_remove_extent(inode, start, last - start + 1);
 
1456	}
1457
1458	pagevec_init(&pvec, 0);
1459	while (index <= end) {
1460		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1461		if (nr_pages == 0)
1462			break;
1463		for (i = 0; i < nr_pages; i++) {
1464			struct page *page = pvec.pages[i];
1465			if (page->index > end)
1466				break;
1467			BUG_ON(!PageLocked(page));
1468			BUG_ON(PageWriteback(page));
 
 
 
1469			if (invalidate) {
1470				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1471				ClearPageUptodate(page);
 
 
 
1472			}
1473			unlock_page(page);
1474		}
1475		index = pvec.pages[nr_pages - 1]->index + 1;
1476		pagevec_release(&pvec);
1477	}
1478}
1479
1480static void ext4_print_free_blocks(struct inode *inode)
1481{
1482	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1483	struct super_block *sb = inode->i_sb;
1484	struct ext4_inode_info *ei = EXT4_I(inode);
1485
1486	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1487	       EXT4_C2B(EXT4_SB(inode->i_sb),
1488			ext4_count_free_clusters(sb)));
1489	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1490	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1491	       (long long) EXT4_C2B(EXT4_SB(sb),
1492		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1493	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1494	       (long long) EXT4_C2B(EXT4_SB(sb),
1495		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1496	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1497	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1498		 ei->i_reserved_data_blocks);
1499	ext4_msg(sb, KERN_CRIT, "i_reserved_meta_blocks=%u",
1500	       ei->i_reserved_meta_blocks);
1501	ext4_msg(sb, KERN_CRIT, "i_allocated_meta_blocks=%u",
1502	       ei->i_allocated_meta_blocks);
1503	return;
1504}
1505
1506static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
 
 
 
 
 
 
 
 
1507{
1508	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1509}
1510
1511/*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
 
 
 
 
 
 
1516 */
1517static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518			      struct ext4_map_blocks *map,
1519			      struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1520{
1521	struct extent_status es;
1522	int retval;
1523	sector_t invalid_block = ~((sector_t) 0xffff);
1524#ifdef ES_AGGRESSIVE_TEST
1525	struct ext4_map_blocks orig_map;
1526
1527	memcpy(&orig_map, map, sizeof(*map));
1528#endif
1529
1530	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531		invalid_block = ~0;
1532
1533	map->m_flags = 0;
1534	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535		  "logical block %lu\n", inode->i_ino, map->m_len,
1536		  (unsigned long) map->m_lblk);
1537
1538	/* Lookup extent status tree firstly */
1539	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540		ext4_es_lru_add(inode);
1541		if (ext4_es_is_hole(&es)) {
1542			retval = 0;
1543			down_read((&EXT4_I(inode)->i_data_sem));
1544			goto add_delayed;
1545		}
1546
 
1547		/*
1548		 * Delayed extent could be allocated by fallocate.
1549		 * So we need to check it.
1550		 */
1551		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1552			map_bh(bh, inode->i_sb, invalid_block);
1553			set_buffer_new(bh);
1554			set_buffer_delay(bh);
1555			return 0;
1556		}
1557
1558		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1559		retval = es.es_len - (iblock - es.es_lblk);
1560		if (retval > map->m_len)
1561			retval = map->m_len;
1562		map->m_len = retval;
1563		if (ext4_es_is_written(&es))
1564			map->m_flags |= EXT4_MAP_MAPPED;
1565		else if (ext4_es_is_unwritten(&es))
1566			map->m_flags |= EXT4_MAP_UNWRITTEN;
1567		else
1568			BUG_ON(1);
1569
1570#ifdef ES_AGGRESSIVE_TEST
1571		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1572#endif
1573		return retval;
1574	}
1575
1576	/*
1577	 * Try to see if we can get the block without requesting a new
1578	 * file system block.
1579	 */
1580	down_read((&EXT4_I(inode)->i_data_sem));
1581	if (ext4_has_inline_data(inode)) {
1582		/*
1583		 * We will soon create blocks for this page, and let
1584		 * us pretend as if the blocks aren't allocated yet.
1585		 * In case of clusters, we have to handle the work
1586		 * of mapping from cluster so that the reserved space
1587		 * is calculated properly.
1588		 */
1589		if ((EXT4_SB(inode->i_sb)->s_cluster_ratio > 1) &&
1590		    ext4_find_delalloc_cluster(inode, map->m_lblk))
1591			map->m_flags |= EXT4_MAP_FROM_CLUSTER;
1592		retval = 0;
1593	} else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1594		retval = ext4_ext_map_blocks(NULL, inode, map,
1595					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
1596	else
1597		retval = ext4_ind_map_blocks(NULL, inode, map,
1598					     EXT4_GET_BLOCKS_NO_PUT_HOLE);
 
 
1599
1600add_delayed:
1601	if (retval == 0) {
1602		int ret;
1603		/*
1604		 * XXX: __block_prepare_write() unmaps passed block,
1605		 * is it OK?
1606		 */
1607		/*
1608		 * If the block was allocated from previously allocated cluster,
1609		 * then we don't need to reserve it again. However we still need
1610		 * to reserve metadata for every block we're going to write.
1611		 */
1612		if (!(map->m_flags & EXT4_MAP_FROM_CLUSTER)) {
1613			ret = ext4_da_reserve_space(inode, iblock);
1614			if (ret) {
1615				/* not enough space to reserve */
1616				retval = ret;
1617				goto out_unlock;
1618			}
1619		} else {
1620			ret = ext4_da_reserve_metadata(inode, iblock);
1621			if (ret) {
1622				/* not enough space to reserve */
1623				retval = ret;
1624				goto out_unlock;
1625			}
1626		}
1627
1628		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1629					    ~0, EXTENT_STATUS_DELAYED);
1630		if (ret) {
1631			retval = ret;
1632			goto out_unlock;
1633		}
1634
1635		/* Clear EXT4_MAP_FROM_CLUSTER flag since its purpose is served
1636		 * and it should not appear on the bh->b_state.
1637		 */
1638		map->m_flags &= ~EXT4_MAP_FROM_CLUSTER;
1639
1640		map_bh(bh, inode->i_sb, invalid_block);
1641		set_buffer_new(bh);
1642		set_buffer_delay(bh);
1643	} else if (retval > 0) {
1644		int ret;
1645		unsigned int status;
1646
1647		if (unlikely(retval != map->m_len)) {
1648			ext4_warning(inode->i_sb,
1649				     "ES len assertion failed for inode "
1650				     "%lu: retval %d != map->m_len %d",
1651				     inode->i_ino, retval, map->m_len);
1652			WARN_ON(1);
1653		}
1654
1655		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1656				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1657		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1658					    map->m_pblk, status);
1659		if (ret != 0)
1660			retval = ret;
1661	}
1662
1663out_unlock:
1664	up_read((&EXT4_I(inode)->i_data_sem));
 
1665
1666	return retval;
1667}
1668
1669/*
1670 * This is a special get_blocks_t callback which is used by
1671 * ext4_da_write_begin().  It will either return mapped block or
1672 * reserve space for a single block.
1673 *
1674 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1675 * We also have b_blocknr = -1 and b_bdev initialized properly
1676 *
1677 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1678 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1679 * initialized properly.
1680 */
1681int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1682			   struct buffer_head *bh, int create)
1683{
1684	struct ext4_map_blocks map;
 
1685	int ret = 0;
1686
1687	BUG_ON(create == 0);
1688	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1689
 
 
 
1690	map.m_lblk = iblock;
1691	map.m_len = 1;
1692
1693	/*
1694	 * first, we need to know whether the block is allocated already
1695	 * preallocated blocks are unmapped but should treated
1696	 * the same as allocated blocks.
1697	 */
1698	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1699	if (ret <= 0)
1700		return ret;
1701
 
 
 
 
 
 
 
1702	map_bh(bh, inode->i_sb, map.m_pblk);
1703	bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | map.m_flags;
1704
1705	if (buffer_unwritten(bh)) {
1706		/* A delayed write to unwritten bh should be marked
1707		 * new and mapped.  Mapped ensures that we don't do
1708		 * get_block multiple times when we write to the same
1709		 * offset and new ensures that we do proper zero out
1710		 * for partial write.
1711		 */
1712		set_buffer_new(bh);
1713		set_buffer_mapped(bh);
1714	}
1715	return 0;
1716}
1717
1718static int bget_one(handle_t *handle, struct buffer_head *bh)
1719{
1720	get_bh(bh);
1721	return 0;
1722}
1723
1724static int bput_one(handle_t *handle, struct buffer_head *bh)
1725{
1726	put_bh(bh);
1727	return 0;
1728}
1729
1730static int __ext4_journalled_writepage(struct page *page,
1731				       unsigned int len)
1732{
1733	struct address_space *mapping = page->mapping;
1734	struct inode *inode = mapping->host;
1735	struct buffer_head *page_bufs = NULL;
1736	handle_t *handle = NULL;
1737	int ret = 0, err = 0;
1738	int inline_data = ext4_has_inline_data(inode);
1739	struct buffer_head *inode_bh = NULL;
1740
1741	ClearPageChecked(page);
1742
1743	if (inline_data) {
1744		BUG_ON(page->index != 0);
1745		BUG_ON(len > ext4_get_max_inline_size(inode));
1746		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1747		if (inode_bh == NULL)
1748			goto out;
1749	} else {
1750		page_bufs = page_buffers(page);
1751		if (!page_bufs) {
1752			BUG();
1753			goto out;
1754		}
1755		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1756				       NULL, bget_one);
1757	}
1758	/* As soon as we unlock the page, it can go away, but we have
1759	 * references to buffers so we are safe */
1760	unlock_page(page);
1761
1762	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1763				    ext4_writepage_trans_blocks(inode));
1764	if (IS_ERR(handle)) {
1765		ret = PTR_ERR(handle);
1766		goto out;
1767	}
1768
1769	BUG_ON(!ext4_handle_valid(handle));
1770
1771	if (inline_data) {
1772		ret = ext4_journal_get_write_access(handle, inode_bh);
1773
1774		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1775
1776	} else {
1777		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1778					     do_journal_get_write_access);
1779
1780		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1781					     write_end_fn);
1782	}
1783	if (ret == 0)
1784		ret = err;
1785	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1786	err = ext4_journal_stop(handle);
1787	if (!ret)
1788		ret = err;
1789
1790	if (!ext4_has_inline_data(inode))
1791		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1792				       NULL, bput_one);
1793	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1794out:
1795	brelse(inode_bh);
1796	return ret;
1797}
1798
1799/*
1800 * Note that we don't need to start a transaction unless we're journaling data
1801 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1802 * need to file the inode to the transaction's list in ordered mode because if
1803 * we are writing back data added by write(), the inode is already there and if
1804 * we are writing back data modified via mmap(), no one guarantees in which
1805 * transaction the data will hit the disk. In case we are journaling data, we
1806 * cannot start transaction directly because transaction start ranks above page
1807 * lock so we have to do some magic.
1808 *
1809 * This function can get called via...
1810 *   - ext4_writepages after taking page lock (have journal handle)
1811 *   - journal_submit_inode_data_buffers (no journal handle)
1812 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1813 *   - grab_page_cache when doing write_begin (have journal handle)
1814 *
1815 * We don't do any block allocation in this function. If we have page with
1816 * multiple blocks we need to write those buffer_heads that are mapped. This
1817 * is important for mmaped based write. So if we do with blocksize 1K
1818 * truncate(f, 1024);
1819 * a = mmap(f, 0, 4096);
1820 * a[0] = 'a';
1821 * truncate(f, 4096);
1822 * we have in the page first buffer_head mapped via page_mkwrite call back
1823 * but other buffer_heads would be unmapped but dirty (dirty done via the
1824 * do_wp_page). So writepage should write the first block. If we modify
1825 * the mmap area beyond 1024 we will again get a page_fault and the
1826 * page_mkwrite callback will do the block allocation and mark the
1827 * buffer_heads mapped.
1828 *
1829 * We redirty the page if we have any buffer_heads that is either delay or
1830 * unwritten in the page.
1831 *
1832 * We can get recursively called as show below.
1833 *
1834 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1835 *		ext4_writepage()
1836 *
1837 * But since we don't do any block allocation we should not deadlock.
1838 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1839 */
1840static int ext4_writepage(struct page *page,
1841			  struct writeback_control *wbc)
1842{
1843	int ret = 0;
1844	loff_t size;
1845	unsigned int len;
1846	struct buffer_head *page_bufs = NULL;
1847	struct inode *inode = page->mapping->host;
1848	struct ext4_io_submit io_submit;
1849
1850	trace_ext4_writepage(page);
1851	size = i_size_read(inode);
1852	if (page->index == size >> PAGE_CACHE_SHIFT)
1853		len = size & ~PAGE_CACHE_MASK;
1854	else
1855		len = PAGE_CACHE_SIZE;
1856
1857	page_bufs = page_buffers(page);
1858	/*
1859	 * We cannot do block allocation or other extent handling in this
1860	 * function. If there are buffers needing that, we have to redirty
1861	 * the page. But we may reach here when we do a journal commit via
1862	 * journal_submit_inode_data_buffers() and in that case we must write
1863	 * allocated buffers to achieve data=ordered mode guarantees.
1864	 */
1865	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1866				   ext4_bh_delay_or_unwritten)) {
1867		redirty_page_for_writepage(wbc, page);
1868		if (current->flags & PF_MEMALLOC) {
1869			/*
1870			 * For memory cleaning there's no point in writing only
1871			 * some buffers. So just bail out. Warn if we came here
1872			 * from direct reclaim.
1873			 */
1874			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1875							== PF_MEMALLOC);
1876			unlock_page(page);
1877			return 0;
1878		}
1879	}
1880
1881	if (PageChecked(page) && ext4_should_journal_data(inode))
1882		/*
1883		 * It's mmapped pagecache.  Add buffers and journal it.  There
1884		 * doesn't seem much point in redirtying the page here.
1885		 */
1886		return __ext4_journalled_writepage(page, len);
1887
1888	ext4_io_submit_init(&io_submit, wbc);
1889	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1890	if (!io_submit.io_end) {
1891		redirty_page_for_writepage(wbc, page);
1892		unlock_page(page);
1893		return -ENOMEM;
1894	}
1895	ret = ext4_bio_write_page(&io_submit, page, len, wbc);
1896	ext4_io_submit(&io_submit);
1897	/* Drop io_end reference we got from init */
1898	ext4_put_io_end_defer(io_submit.io_end);
1899	return ret;
1900}
1901
1902static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1903{
1904	int len;
1905	loff_t size = i_size_read(mpd->inode);
1906	int err;
1907
1908	BUG_ON(page->index != mpd->first_page);
1909	if (page->index == size >> PAGE_CACHE_SHIFT)
1910		len = size & ~PAGE_CACHE_MASK;
1911	else
1912		len = PAGE_CACHE_SIZE;
1913	clear_page_dirty_for_io(page);
1914	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc);
1915	if (!err)
1916		mpd->wbc->nr_to_write--;
1917	mpd->first_page++;
1918
1919	return err;
1920}
1921
1922#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1923
1924/*
1925 * mballoc gives us at most this number of blocks...
1926 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1927 * The rest of mballoc seems to handle chunks up to full group size.
1928 */
1929#define MAX_WRITEPAGES_EXTENT_LEN 2048
1930
1931/*
1932 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1933 *
1934 * @mpd - extent of blocks
1935 * @lblk - logical number of the block in the file
1936 * @bh - buffer head we want to add to the extent
1937 *
1938 * The function is used to collect contig. blocks in the same state. If the
1939 * buffer doesn't require mapping for writeback and we haven't started the
1940 * extent of buffers to map yet, the function returns 'true' immediately - the
1941 * caller can write the buffer right away. Otherwise the function returns true
1942 * if the block has been added to the extent, false if the block couldn't be
1943 * added.
1944 */
1945static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1946				   struct buffer_head *bh)
1947{
1948	struct ext4_map_blocks *map = &mpd->map;
1949
1950	/* Buffer that doesn't need mapping for writeback? */
1951	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1952	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1953		/* So far no extent to map => we write the buffer right away */
1954		if (map->m_len == 0)
1955			return true;
1956		return false;
1957	}
1958
1959	/* First block in the extent? */
1960	if (map->m_len == 0) {
 
 
 
1961		map->m_lblk = lblk;
1962		map->m_len = 1;
1963		map->m_flags = bh->b_state & BH_FLAGS;
1964		return true;
1965	}
1966
1967	/* Don't go larger than mballoc is willing to allocate */
1968	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1969		return false;
1970
1971	/* Can we merge the block to our big extent? */
1972	if (lblk == map->m_lblk + map->m_len &&
1973	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1974		map->m_len++;
1975		return true;
1976	}
1977	return false;
1978}
1979
1980/*
1981 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1982 *
1983 * @mpd - extent of blocks for mapping
1984 * @head - the first buffer in the page
1985 * @bh - buffer we should start processing from
1986 * @lblk - logical number of the block in the file corresponding to @bh
1987 *
1988 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1989 * the page for IO if all buffers in this page were mapped and there's no
1990 * accumulated extent of buffers to map or add buffers in the page to the
1991 * extent of buffers to map. The function returns 1 if the caller can continue
1992 * by processing the next page, 0 if it should stop adding buffers to the
1993 * extent to map because we cannot extend it anymore. It can also return value
1994 * < 0 in case of error during IO submission.
1995 */
1996static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1997				   struct buffer_head *head,
1998				   struct buffer_head *bh,
1999				   ext4_lblk_t lblk)
2000{
2001	struct inode *inode = mpd->inode;
2002	int err;
2003	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2004							>> inode->i_blkbits;
2005
 
 
 
2006	do {
2007		BUG_ON(buffer_locked(bh));
2008
2009		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2010			/* Found extent to map? */
2011			if (mpd->map.m_len)
2012				return 0;
 
 
 
2013			/* Everything mapped so far and we hit EOF */
2014			break;
2015		}
2016	} while (lblk++, (bh = bh->b_this_page) != head);
2017	/* So far everything mapped? Submit the page for IO. */
2018	if (mpd->map.m_len == 0) {
2019		err = mpage_submit_page(mpd, head->b_page);
2020		if (err < 0)
2021			return err;
 
 
 
 
 
2022	}
2023	return lblk < blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2024}
2025
2026/*
2027 * mpage_map_buffers - update buffers corresponding to changed extent and
2028 *		       submit fully mapped pages for IO
2029 *
2030 * @mpd - description of extent to map, on return next extent to map
2031 *
2032 * Scan buffers corresponding to changed extent (we expect corresponding pages
2033 * to be already locked) and update buffer state according to new extent state.
2034 * We map delalloc buffers to their physical location, clear unwritten bits,
2035 * and mark buffers as uninit when we perform writes to uninitialized extents
2036 * and do extent conversion after IO is finished. If the last page is not fully
2037 * mapped, we update @map to the next extent in the last page that needs
2038 * mapping. Otherwise we submit the page for IO.
2039 */
2040static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2041{
2042	struct pagevec pvec;
2043	int nr_pages, i;
2044	struct inode *inode = mpd->inode;
2045	struct buffer_head *head, *bh;
2046	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2047	pgoff_t start, end;
2048	ext4_lblk_t lblk;
2049	sector_t pblock;
2050	int err;
 
2051
2052	start = mpd->map.m_lblk >> bpp_bits;
2053	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2054	lblk = start << bpp_bits;
2055	pblock = mpd->map.m_pblk;
2056
2057	pagevec_init(&pvec, 0);
2058	while (start <= end) {
2059		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2060					  PAGEVEC_SIZE);
2061		if (nr_pages == 0)
2062			break;
2063		for (i = 0; i < nr_pages; i++) {
2064			struct page *page = pvec.pages[i];
2065
2066			if (page->index > end)
2067				break;
2068			/* Up to 'end' pages must be contiguous */
2069			BUG_ON(page->index != start);
2070			bh = head = page_buffers(page);
2071			do {
2072				if (lblk < mpd->map.m_lblk)
2073					continue;
2074				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2075					/*
2076					 * Buffer after end of mapped extent.
2077					 * Find next buffer in the page to map.
2078					 */
2079					mpd->map.m_len = 0;
2080					mpd->map.m_flags = 0;
2081					/*
2082					 * FIXME: If dioread_nolock supports
2083					 * blocksize < pagesize, we need to make
2084					 * sure we add size mapped so far to
2085					 * io_end->size as the following call
2086					 * can submit the page for IO.
2087					 */
2088					err = mpage_process_page_bufs(mpd, head,
2089								      bh, lblk);
2090					pagevec_release(&pvec);
2091					if (err > 0)
2092						err = 0;
2093					return err;
2094				}
2095				if (buffer_delay(bh)) {
2096					clear_buffer_delay(bh);
2097					bh->b_blocknr = pblock++;
2098				}
2099				clear_buffer_unwritten(bh);
2100			} while (lblk++, (bh = bh->b_this_page) != head);
2101
 
 
2102			/*
2103			 * FIXME: This is going to break if dioread_nolock
2104			 * supports blocksize < pagesize as we will try to
2105			 * convert potentially unmapped parts of inode.
2106			 */
2107			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
 
2108			/* Page fully mapped - let IO run! */
2109			err = mpage_submit_page(mpd, page);
2110			if (err < 0) {
2111				pagevec_release(&pvec);
2112				return err;
2113			}
2114			start++;
2115		}
2116		pagevec_release(&pvec);
2117	}
2118	/* Extent fully mapped and matches with page boundary. We are done. */
2119	mpd->map.m_len = 0;
2120	mpd->map.m_flags = 0;
2121	return 0;
 
 
 
2122}
2123
2124static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2125{
2126	struct inode *inode = mpd->inode;
2127	struct ext4_map_blocks *map = &mpd->map;
2128	int get_blocks_flags;
2129	int err;
2130
2131	trace_ext4_da_write_pages_extent(inode, map);
2132	/*
2133	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2134	 * to convert an uninitialized extent to be initialized (in the case
2135	 * where we have written into one or more preallocated blocks).  It is
2136	 * possible that we're going to need more metadata blocks than
2137	 * previously reserved. However we must not fail because we're in
2138	 * writeback and there is nothing we can do about it so it might result
2139	 * in data loss.  So use reserved blocks to allocate metadata if
2140	 * possible.
2141	 *
2142	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if the blocks
2143	 * in question are delalloc blocks.  This affects functions in many
2144	 * different parts of the allocation call path.  This flag exists
2145	 * primarily because we don't want to change *many* call functions, so
2146	 * ext4_map_blocks() will set the EXT4_STATE_DELALLOC_RESERVED flag
2147	 * once the inode's allocation semaphore is taken.
2148	 */
2149	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2150			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2151	if (ext4_should_dioread_nolock(inode))
 
 
2152		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2153	if (map->m_flags & (1 << BH_Delay))
2154		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2155
2156	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2157	if (err < 0)
2158		return err;
2159	if (map->m_flags & EXT4_MAP_UNINIT) {
2160		if (!mpd->io_submit.io_end->handle &&
2161		    ext4_handle_valid(handle)) {
2162			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2163			handle->h_rsv_handle = NULL;
2164		}
2165		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2166	}
2167
2168	BUG_ON(map->m_len == 0);
2169	if (map->m_flags & EXT4_MAP_NEW) {
2170		struct block_device *bdev = inode->i_sb->s_bdev;
2171		int i;
2172
2173		for (i = 0; i < map->m_len; i++)
2174			unmap_underlying_metadata(bdev, map->m_pblk + i);
2175	}
2176	return 0;
2177}
2178
2179/*
2180 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2181 *				 mpd->len and submit pages underlying it for IO
2182 *
2183 * @handle - handle for journal operations
2184 * @mpd - extent to map
2185 * @give_up_on_write - we set this to true iff there is a fatal error and there
2186 *                     is no hope of writing the data. The caller should discard
2187 *                     dirty pages to avoid infinite loops.
2188 *
2189 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2190 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2191 * them to initialized or split the described range from larger unwritten
2192 * extent. Note that we need not map all the described range since allocation
2193 * can return less blocks or the range is covered by more unwritten extents. We
2194 * cannot map more because we are limited by reserved transaction credits. On
2195 * the other hand we always make sure that the last touched page is fully
2196 * mapped so that it can be written out (and thus forward progress is
2197 * guaranteed). After mapping we submit all mapped pages for IO.
2198 */
2199static int mpage_map_and_submit_extent(handle_t *handle,
2200				       struct mpage_da_data *mpd,
2201				       bool *give_up_on_write)
2202{
2203	struct inode *inode = mpd->inode;
2204	struct ext4_map_blocks *map = &mpd->map;
2205	int err;
2206	loff_t disksize;
2207
2208	mpd->io_submit.io_end->offset =
2209				((loff_t)map->m_lblk) << inode->i_blkbits;
 
 
 
 
 
2210	do {
2211		err = mpage_map_one_extent(handle, mpd);
2212		if (err < 0) {
2213			struct super_block *sb = inode->i_sb;
2214
2215			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2216				goto invalidate_dirty_pages;
2217			/*
2218			 * Let the uper layers retry transient errors.
2219			 * In the case of ENOSPC, if ext4_count_free_blocks()
2220			 * is non-zero, a commit should free up blocks.
2221			 */
2222			if ((err == -ENOMEM) ||
2223			    (err == -ENOSPC && ext4_count_free_clusters(sb)))
 
 
2224				return err;
 
2225			ext4_msg(sb, KERN_CRIT,
2226				 "Delayed block allocation failed for "
2227				 "inode %lu at logical offset %llu with"
2228				 " max blocks %u with error %d",
2229				 inode->i_ino,
2230				 (unsigned long long)map->m_lblk,
2231				 (unsigned)map->m_len, -err);
2232			ext4_msg(sb, KERN_CRIT,
2233				 "This should not happen!! Data will "
2234				 "be lost\n");
2235			if (err == -ENOSPC)
2236				ext4_print_free_blocks(inode);
2237		invalidate_dirty_pages:
2238			*give_up_on_write = true;
2239			return err;
2240		}
 
2241		/*
2242		 * Update buffer state, submit mapped pages, and get us new
2243		 * extent to map
2244		 */
2245		err = mpage_map_and_submit_buffers(mpd);
2246		if (err < 0)
2247			return err;
2248	} while (map->m_len);
2249
 
2250	/*
2251	 * Update on-disk size after IO is submitted.  Races with
2252	 * truncate are avoided by checking i_size under i_data_sem.
2253	 */
2254	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2255	if (disksize > EXT4_I(inode)->i_disksize) {
2256		int err2;
2257		loff_t i_size;
2258
2259		down_write(&EXT4_I(inode)->i_data_sem);
2260		i_size = i_size_read(inode);
2261		if (disksize > i_size)
2262			disksize = i_size;
2263		if (disksize > EXT4_I(inode)->i_disksize)
2264			EXT4_I(inode)->i_disksize = disksize;
 
2265		err2 = ext4_mark_inode_dirty(handle, inode);
2266		up_write(&EXT4_I(inode)->i_data_sem);
2267		if (err2)
2268			ext4_error(inode->i_sb,
2269				   "Failed to mark inode %lu dirty",
2270				   inode->i_ino);
2271		if (!err)
2272			err = err2;
2273	}
2274	return err;
2275}
2276
2277/*
2278 * Calculate the total number of credits to reserve for one writepages
2279 * iteration. This is called from ext4_writepages(). We map an extent of
2280 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2281 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2282 * bpp - 1 blocks in bpp different extents.
2283 */
2284static int ext4_da_writepages_trans_blocks(struct inode *inode)
2285{
2286	int bpp = ext4_journal_blocks_per_page(inode);
2287
2288	return ext4_meta_trans_blocks(inode,
2289				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2290}
2291
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2292/*
2293 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2294 * 				 and underlying extent to map
2295 *
2296 * @mpd - where to look for pages
2297 *
2298 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2299 * IO immediately. When we find a page which isn't mapped we start accumulating
2300 * extent of buffers underlying these pages that needs mapping (formed by
2301 * either delayed or unwritten buffers). We also lock the pages containing
2302 * these buffers. The extent found is returned in @mpd structure (starting at
2303 * mpd->lblk with length mpd->len blocks).
 
 
2304 *
2305 * Note that this function can attach bios to one io_end structure which are
2306 * neither logically nor physically contiguous. Although it may seem as an
2307 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2308 * case as we need to track IO to all buffers underlying a page in one io_end.
2309 */
2310static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2311{
2312	struct address_space *mapping = mpd->inode->i_mapping;
2313	struct pagevec pvec;
2314	unsigned int nr_pages;
2315	long left = mpd->wbc->nr_to_write;
2316	pgoff_t index = mpd->first_page;
2317	pgoff_t end = mpd->last_page;
2318	int tag;
2319	int i, err = 0;
2320	int blkbits = mpd->inode->i_blkbits;
2321	ext4_lblk_t lblk;
2322	struct buffer_head *head;
 
 
2323
2324	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2325		tag = PAGECACHE_TAG_TOWRITE;
2326	else
2327		tag = PAGECACHE_TAG_DIRTY;
2328
2329	pagevec_init(&pvec, 0);
2330	mpd->map.m_len = 0;
2331	mpd->next_page = index;
 
 
 
 
 
 
 
2332	while (index <= end) {
2333		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2334			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2335		if (nr_pages == 0)
2336			goto out;
2337
2338		for (i = 0; i < nr_pages; i++) {
2339			struct page *page = pvec.pages[i];
2340
2341			/*
2342			 * At this point, the page may be truncated or
2343			 * invalidated (changing page->mapping to NULL), or
2344			 * even swizzled back from swapper_space to tmpfs file
2345			 * mapping. However, page->index will not change
2346			 * because we have a reference on the page.
2347			 */
2348			if (page->index > end)
2349				goto out;
2350
2351			/*
2352			 * Accumulated enough dirty pages? This doesn't apply
2353			 * to WB_SYNC_ALL mode. For integrity sync we have to
2354			 * keep going because someone may be concurrently
2355			 * dirtying pages, and we might have synced a lot of
2356			 * newly appeared dirty pages, but have not synced all
2357			 * of the old dirty pages.
2358			 */
2359			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
 
 
2360				goto out;
2361
2362			/* If we can't merge this page, we are done. */
2363			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2364				goto out;
2365
2366			lock_page(page);
 
 
 
 
 
 
 
2367			/*
2368			 * If the page is no longer dirty, or its mapping no
2369			 * longer corresponds to inode we are writing (which
2370			 * means it has been truncated or invalidated), or the
2371			 * page is already under writeback and we are not doing
2372			 * a data integrity writeback, skip the page
2373			 */
2374			if (!PageDirty(page) ||
2375			    (PageWriteback(page) &&
2376			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2377			    unlikely(page->mapping != mapping)) {
2378				unlock_page(page);
2379				continue;
2380			}
2381
2382			wait_on_page_writeback(page);
2383			BUG_ON(PageWriteback(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2384
2385			if (mpd->map.m_len == 0)
2386				mpd->first_page = page->index;
2387			mpd->next_page = page->index + 1;
2388			/* Add all dirty buffers to mpd */
2389			lblk = ((ext4_lblk_t)page->index) <<
2390				(PAGE_CACHE_SHIFT - blkbits);
2391			head = page_buffers(page);
2392			err = mpage_process_page_bufs(mpd, head, head, lblk);
2393			if (err <= 0)
2394				goto out;
2395			err = 0;
2396			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2397		}
2398		pagevec_release(&pvec);
2399		cond_resched();
2400	}
 
 
 
2401	return 0;
2402out:
2403	pagevec_release(&pvec);
 
 
2404	return err;
2405}
2406
2407static int __writepage(struct page *page, struct writeback_control *wbc,
2408		       void *data)
2409{
2410	struct address_space *mapping = data;
2411	int ret = ext4_writepage(page, wbc);
2412	mapping_set_error(mapping, ret);
2413	return ret;
2414}
2415
2416static int ext4_writepages(struct address_space *mapping,
2417			   struct writeback_control *wbc)
2418{
 
2419	pgoff_t	writeback_index = 0;
2420	long nr_to_write = wbc->nr_to_write;
2421	int range_whole = 0;
2422	int cycled = 1;
2423	handle_t *handle = NULL;
2424	struct mpage_da_data mpd;
2425	struct inode *inode = mapping->host;
2426	int needed_blocks, rsv_blocks = 0, ret = 0;
2427	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2428	bool done;
2429	struct blk_plug plug;
2430	bool give_up_on_write = false;
2431
2432	trace_ext4_writepages(inode, wbc);
2433
2434	/*
2435	 * No pages to write? This is mainly a kludge to avoid starting
2436	 * a transaction for special inodes like journal inode on last iput()
2437	 * because that could violate lock ordering on umount
2438	 */
2439	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2440		goto out_writepages;
2441
2442	if (ext4_should_journal_data(inode)) {
2443		struct blk_plug plug;
2444
2445		blk_start_plug(&plug);
2446		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2447		blk_finish_plug(&plug);
2448		goto out_writepages;
2449	}
2450
2451	/*
2452	 * If the filesystem has aborted, it is read-only, so return
2453	 * right away instead of dumping stack traces later on that
2454	 * will obscure the real source of the problem.  We test
2455	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2456	 * the latter could be true if the filesystem is mounted
2457	 * read-only, and in that case, ext4_writepages should
2458	 * *never* be called, so if that ever happens, we would want
2459	 * the stack trace.
2460	 */
2461	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2462		ret = -EROFS;
2463		goto out_writepages;
2464	}
2465
2466	if (ext4_should_dioread_nolock(inode)) {
2467		/*
2468		 * We may need to convert up to one extent per block in
2469		 * the page and we may dirty the inode.
2470		 */
2471		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2472	}
2473
2474	/*
2475	 * If we have inline data and arrive here, it means that
2476	 * we will soon create the block for the 1st page, so
2477	 * we'd better clear the inline data here.
2478	 */
2479	if (ext4_has_inline_data(inode)) {
2480		/* Just inode will be modified... */
2481		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2482		if (IS_ERR(handle)) {
2483			ret = PTR_ERR(handle);
2484			goto out_writepages;
2485		}
2486		BUG_ON(ext4_test_inode_state(inode,
2487				EXT4_STATE_MAY_INLINE_DATA));
2488		ext4_destroy_inline_data(handle, inode);
2489		ext4_journal_stop(handle);
2490	}
2491
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2493		range_whole = 1;
2494
2495	if (wbc->range_cyclic) {
2496		writeback_index = mapping->writeback_index;
2497		if (writeback_index)
2498			cycled = 0;
2499		mpd.first_page = writeback_index;
2500		mpd.last_page = -1;
2501	} else {
2502		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2503		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2504	}
2505
2506	mpd.inode = inode;
2507	mpd.wbc = wbc;
2508	ext4_io_submit_init(&mpd.io_submit, wbc);
2509retry:
2510	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2511		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2512	done = false;
2513	blk_start_plug(&plug);
2514	while (!done && mpd.first_page <= mpd.last_page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2515		/* For each extent of pages we use new io_end */
2516		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2517		if (!mpd.io_submit.io_end) {
2518			ret = -ENOMEM;
2519			break;
2520		}
2521
 
2522		/*
2523		 * We have two constraints: We find one extent to map and we
2524		 * must always write out whole page (makes a difference when
2525		 * blocksize < pagesize) so that we don't block on IO when we
2526		 * try to write out the rest of the page. Journalled mode is
2527		 * not supported by delalloc.
2528		 */
2529		BUG_ON(ext4_should_journal_data(inode));
2530		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2531
2532		/* start a new transaction */
2533		handle = ext4_journal_start_with_reserve(inode,
2534				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2535		if (IS_ERR(handle)) {
2536			ret = PTR_ERR(handle);
2537			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2538			       "%ld pages, ino %lu; err %d", __func__,
2539				wbc->nr_to_write, inode->i_ino, ret);
2540			/* Release allocated io_end */
2541			ext4_put_io_end(mpd.io_submit.io_end);
 
2542			break;
2543		}
 
2544
2545		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2546		ret = mpage_prepare_extent_to_map(&mpd);
2547		if (!ret) {
2548			if (mpd.map.m_len)
2549				ret = mpage_map_and_submit_extent(handle, &mpd,
2550					&give_up_on_write);
2551			else {
2552				/*
2553				 * We scanned the whole range (or exhausted
2554				 * nr_to_write), submitted what was mapped and
2555				 * didn't find anything needing mapping. We are
2556				 * done.
2557				 */
2558				done = true;
2559			}
 
 
 
 
 
2560		}
2561		ext4_journal_stop(handle);
 
2562		/* Submit prepared bio */
2563		ext4_io_submit(&mpd.io_submit);
2564		/* Unlock pages we didn't use */
2565		mpage_release_unused_pages(&mpd, give_up_on_write);
2566		/* Drop our io_end reference we got from init */
2567		ext4_put_io_end(mpd.io_submit.io_end);
 
 
 
 
 
 
 
 
 
 
2568
2569		if (ret == -ENOSPC && sbi->s_journal) {
2570			/*
2571			 * Commit the transaction which would
2572			 * free blocks released in the transaction
2573			 * and try again
2574			 */
2575			jbd2_journal_force_commit_nested(sbi->s_journal);
2576			ret = 0;
2577			continue;
2578		}
2579		/* Fatal error - ENOMEM, EIO... */
2580		if (ret)
2581			break;
2582	}
 
2583	blk_finish_plug(&plug);
2584	if (!ret && !cycled && wbc->nr_to_write > 0) {
2585		cycled = 1;
2586		mpd.last_page = writeback_index - 1;
2587		mpd.first_page = 0;
2588		goto retry;
2589	}
2590
2591	/* Update index */
2592	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2593		/*
2594		 * Set the writeback_index so that range_cyclic
2595		 * mode will write it back later
2596		 */
2597		mapping->writeback_index = mpd.first_page;
2598
2599out_writepages:
2600	trace_ext4_writepages_result(inode, wbc, ret,
2601				     nr_to_write - wbc->nr_to_write);
2602	return ret;
2603}
2604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2605static int ext4_nonda_switch(struct super_block *sb)
2606{
2607	s64 free_clusters, dirty_clusters;
2608	struct ext4_sb_info *sbi = EXT4_SB(sb);
2609
2610	/*
2611	 * switch to non delalloc mode if we are running low
2612	 * on free block. The free block accounting via percpu
2613	 * counters can get slightly wrong with percpu_counter_batch getting
2614	 * accumulated on each CPU without updating global counters
2615	 * Delalloc need an accurate free block accounting. So switch
2616	 * to non delalloc when we are near to error range.
2617	 */
2618	free_clusters =
2619		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2620	dirty_clusters =
2621		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2622	/*
2623	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2624	 */
2625	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2626		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2627
2628	if (2 * free_clusters < 3 * dirty_clusters ||
2629	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2630		/*
2631		 * free block count is less than 150% of dirty blocks
2632		 * or free blocks is less than watermark
2633		 */
2634		return 1;
2635	}
2636	return 0;
2637}
2638
2639static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2640			       loff_t pos, unsigned len, unsigned flags,
2641			       struct page **pagep, void **fsdata)
2642{
2643	int ret, retries = 0;
2644	struct page *page;
2645	pgoff_t index;
2646	struct inode *inode = mapping->host;
2647	handle_t *handle;
2648
2649	index = pos >> PAGE_CACHE_SHIFT;
 
 
 
2650
2651	if (ext4_nonda_switch(inode->i_sb)) {
2652		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2653		return ext4_write_begin(file, mapping, pos,
2654					len, flags, pagep, fsdata);
2655	}
2656	*fsdata = (void *)0;
2657	trace_ext4_da_write_begin(inode, pos, len, flags);
2658
2659	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2660		ret = ext4_da_write_inline_data_begin(mapping, inode,
2661						      pos, len, flags,
2662						      pagep, fsdata);
2663		if (ret < 0)
2664			return ret;
2665		if (ret == 1)
2666			return 0;
2667	}
2668
2669	/*
2670	 * grab_cache_page_write_begin() can take a long time if the
2671	 * system is thrashing due to memory pressure, or if the page
2672	 * is being written back.  So grab it first before we start
2673	 * the transaction handle.  This also allows us to allocate
2674	 * the page (if needed) without using GFP_NOFS.
2675	 */
2676retry_grab:
2677	page = grab_cache_page_write_begin(mapping, index, flags);
2678	if (!page)
2679		return -ENOMEM;
2680	unlock_page(page);
2681
2682	/*
2683	 * With delayed allocation, we don't log the i_disksize update
2684	 * if there is delayed block allocation. But we still need
2685	 * to journalling the i_disksize update if writes to the end
2686	 * of file which has an already mapped buffer.
2687	 */
2688retry_journal:
2689	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1);
2690	if (IS_ERR(handle)) {
2691		page_cache_release(page);
2692		return PTR_ERR(handle);
2693	}
2694
2695	lock_page(page);
2696	if (page->mapping != mapping) {
2697		/* The page got truncated from under us */
2698		unlock_page(page);
2699		page_cache_release(page);
2700		ext4_journal_stop(handle);
2701		goto retry_grab;
2702	}
2703	/* In case writeback began while the page was unlocked */
2704	wait_for_stable_page(page);
2705
2706	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2707	if (ret < 0) {
2708		unlock_page(page);
2709		ext4_journal_stop(handle);
2710		/*
2711		 * block_write_begin may have instantiated a few blocks
2712		 * outside i_size.  Trim these off again. Don't need
2713		 * i_size_read because we hold i_mutex.
2714		 */
2715		if (pos + len > inode->i_size)
2716			ext4_truncate_failed_write(inode);
2717
2718		if (ret == -ENOSPC &&
2719		    ext4_should_retry_alloc(inode->i_sb, &retries))
2720			goto retry_journal;
2721
2722		page_cache_release(page);
2723		return ret;
2724	}
2725
2726	*pagep = page;
2727	return ret;
2728}
2729
2730/*
2731 * Check if we should update i_disksize
2732 * when write to the end of file but not require block allocation
2733 */
2734static int ext4_da_should_update_i_disksize(struct page *page,
2735					    unsigned long offset)
2736{
2737	struct buffer_head *bh;
2738	struct inode *inode = page->mapping->host;
2739	unsigned int idx;
2740	int i;
2741
2742	bh = page_buffers(page);
2743	idx = offset >> inode->i_blkbits;
2744
2745	for (i = 0; i < idx; i++)
2746		bh = bh->b_this_page;
2747
2748	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2749		return 0;
2750	return 1;
2751}
2752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753static int ext4_da_write_end(struct file *file,
2754			     struct address_space *mapping,
2755			     loff_t pos, unsigned len, unsigned copied,
2756			     struct page *page, void *fsdata)
2757{
2758	struct inode *inode = mapping->host;
2759	int ret = 0, ret2;
2760	handle_t *handle = ext4_journal_current_handle();
2761	loff_t new_i_size;
2762	unsigned long start, end;
2763	int write_mode = (int)(unsigned long)fsdata;
2764
2765	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2766		return ext4_write_end(file, mapping, pos,
2767				      len, copied, page, fsdata);
2768
2769	trace_ext4_da_write_end(inode, pos, len, copied);
2770	start = pos & (PAGE_CACHE_SIZE - 1);
2771	end = start + copied - 1;
2772
2773	/*
2774	 * generic_write_end() will run mark_inode_dirty() if i_size
2775	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2776	 * into that.
2777	 */
2778	new_i_size = pos + copied;
2779	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2780		if (ext4_has_inline_data(inode) ||
2781		    ext4_da_should_update_i_disksize(page, end)) {
2782			down_write(&EXT4_I(inode)->i_data_sem);
2783			if (new_i_size > EXT4_I(inode)->i_disksize)
2784				EXT4_I(inode)->i_disksize = new_i_size;
2785			up_write(&EXT4_I(inode)->i_data_sem);
2786			/* We need to mark inode dirty even if
2787			 * new_i_size is less that inode->i_size
2788			 * bu greater than i_disksize.(hint delalloc)
2789			 */
2790			ext4_mark_inode_dirty(handle, inode);
2791		}
2792	}
2793
2794	if (write_mode != CONVERT_INLINE_DATA &&
2795	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2796	    ext4_has_inline_data(inode))
2797		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2798						     page);
2799	else
2800		ret2 = generic_write_end(file, mapping, pos, len, copied,
2801							page, fsdata);
2802
2803	copied = ret2;
2804	if (ret2 < 0)
2805		ret = ret2;
2806	ret2 = ext4_journal_stop(handle);
2807	if (!ret)
2808		ret = ret2;
2809
2810	return ret ? ret : copied;
2811}
2812
2813static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2814				   unsigned int length)
2815{
2816	/*
2817	 * Drop reserved blocks
2818	 */
2819	BUG_ON(!PageLocked(page));
2820	if (!page_has_buffers(page))
2821		goto out;
2822
2823	ext4_da_page_release_reservation(page, offset, length);
2824
2825out:
2826	ext4_invalidatepage(page, offset, length);
2827
2828	return;
2829}
2830
2831/*
2832 * Force all delayed allocation blocks to be allocated for a given inode.
2833 */
2834int ext4_alloc_da_blocks(struct inode *inode)
2835{
2836	trace_ext4_alloc_da_blocks(inode);
2837
2838	if (!EXT4_I(inode)->i_reserved_data_blocks &&
2839	    !EXT4_I(inode)->i_reserved_meta_blocks)
2840		return 0;
2841
2842	/*
2843	 * We do something simple for now.  The filemap_flush() will
2844	 * also start triggering a write of the data blocks, which is
2845	 * not strictly speaking necessary (and for users of
2846	 * laptop_mode, not even desirable).  However, to do otherwise
2847	 * would require replicating code paths in:
2848	 *
2849	 * ext4_writepages() ->
2850	 *    write_cache_pages() ---> (via passed in callback function)
2851	 *        __mpage_da_writepage() -->
2852	 *           mpage_add_bh_to_extent()
2853	 *           mpage_da_map_blocks()
2854	 *
2855	 * The problem is that write_cache_pages(), located in
2856	 * mm/page-writeback.c, marks pages clean in preparation for
2857	 * doing I/O, which is not desirable if we're not planning on
2858	 * doing I/O at all.
2859	 *
2860	 * We could call write_cache_pages(), and then redirty all of
2861	 * the pages by calling redirty_page_for_writepage() but that
2862	 * would be ugly in the extreme.  So instead we would need to
2863	 * replicate parts of the code in the above functions,
2864	 * simplifying them because we wouldn't actually intend to
2865	 * write out the pages, but rather only collect contiguous
2866	 * logical block extents, call the multi-block allocator, and
2867	 * then update the buffer heads with the block allocations.
2868	 *
2869	 * For now, though, we'll cheat by calling filemap_flush(),
2870	 * which will map the blocks, and start the I/O, but not
2871	 * actually wait for the I/O to complete.
2872	 */
2873	return filemap_flush(inode->i_mapping);
2874}
2875
2876/*
2877 * bmap() is special.  It gets used by applications such as lilo and by
2878 * the swapper to find the on-disk block of a specific piece of data.
2879 *
2880 * Naturally, this is dangerous if the block concerned is still in the
2881 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2882 * filesystem and enables swap, then they may get a nasty shock when the
2883 * data getting swapped to that swapfile suddenly gets overwritten by
2884 * the original zero's written out previously to the journal and
2885 * awaiting writeback in the kernel's buffer cache.
2886 *
2887 * So, if we see any bmap calls here on a modified, data-journaled file,
2888 * take extra steps to flush any blocks which might be in the cache.
2889 */
2890static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2891{
2892	struct inode *inode = mapping->host;
2893	journal_t *journal;
2894	int err;
2895
 
2896	/*
2897	 * We can get here for an inline file via the FIBMAP ioctl
2898	 */
2899	if (ext4_has_inline_data(inode))
2900		return 0;
2901
2902	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2903			test_opt(inode->i_sb, DELALLOC)) {
 
2904		/*
2905		 * With delalloc we want to sync the file
2906		 * so that we can make sure we allocate
2907		 * blocks for file
2908		 */
2909		filemap_write_and_wait(mapping);
2910	}
2911
2912	if (EXT4_JOURNAL(inode) &&
2913	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2914		/*
2915		 * This is a REALLY heavyweight approach, but the use of
2916		 * bmap on dirty files is expected to be extremely rare:
2917		 * only if we run lilo or swapon on a freshly made file
2918		 * do we expect this to happen.
2919		 *
2920		 * (bmap requires CAP_SYS_RAWIO so this does not
2921		 * represent an unprivileged user DOS attack --- we'd be
2922		 * in trouble if mortal users could trigger this path at
2923		 * will.)
2924		 *
2925		 * NB. EXT4_STATE_JDATA is not set on files other than
2926		 * regular files.  If somebody wants to bmap a directory
2927		 * or symlink and gets confused because the buffer
2928		 * hasn't yet been flushed to disk, they deserve
2929		 * everything they get.
2930		 */
2931
2932		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2933		journal = EXT4_JOURNAL(inode);
2934		jbd2_journal_lock_updates(journal);
2935		err = jbd2_journal_flush(journal);
2936		jbd2_journal_unlock_updates(journal);
2937
2938		if (err)
2939			return 0;
2940	}
2941
2942	return generic_block_bmap(mapping, block, ext4_get_block);
2943}
2944
2945static int ext4_readpage(struct file *file, struct page *page)
2946{
2947	int ret = -EAGAIN;
2948	struct inode *inode = page->mapping->host;
2949
2950	trace_ext4_readpage(page);
2951
2952	if (ext4_has_inline_data(inode))
2953		ret = ext4_readpage_inline(inode, page);
2954
2955	if (ret == -EAGAIN)
2956		return mpage_readpage(page, ext4_get_block);
2957
2958	return ret;
2959}
2960
2961static int
2962ext4_readpages(struct file *file, struct address_space *mapping,
2963		struct list_head *pages, unsigned nr_pages)
2964{
2965	struct inode *inode = mapping->host;
2966
2967	/* If the file has inline data, no need to do readpages. */
2968	if (ext4_has_inline_data(inode))
2969		return 0;
2970
2971	return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
2972}
2973
2974static void ext4_invalidatepage(struct page *page, unsigned int offset,
2975				unsigned int length)
2976{
2977	trace_ext4_invalidatepage(page, offset, length);
2978
2979	/* No journalling happens on data buffers when this function is used */
2980	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2981
2982	block_invalidatepage(page, offset, length);
2983}
2984
2985static int __ext4_journalled_invalidatepage(struct page *page,
2986					    unsigned int offset,
2987					    unsigned int length)
2988{
2989	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
2990
2991	trace_ext4_journalled_invalidatepage(page, offset, length);
2992
2993	/*
2994	 * If it's a full truncate we just forget about the pending dirtying
2995	 */
2996	if (offset == 0 && length == PAGE_CACHE_SIZE)
2997		ClearPageChecked(page);
2998
2999	return jbd2_journal_invalidatepage(journal, page, offset, length);
3000}
3001
3002/* Wrapper for aops... */
3003static void ext4_journalled_invalidatepage(struct page *page,
3004					   unsigned int offset,
3005					   unsigned int length)
3006{
3007	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3008}
3009
3010static int ext4_releasepage(struct page *page, gfp_t wait)
3011{
3012	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
 
3013
3014	trace_ext4_releasepage(page);
3015
3016	/* Page has dirty journalled data -> cannot release */
3017	if (PageChecked(page))
3018		return 0;
3019	if (journal)
3020		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3021	else
3022		return try_to_free_buffers(page);
3023}
3024
3025/*
3026 * ext4_get_block used when preparing for a DIO write or buffer write.
3027 * We allocate an uinitialized extent if blocks haven't been allocated.
3028 * The extent will be converted to initialized after the IO is complete.
3029 */
3030int ext4_get_block_write(struct inode *inode, sector_t iblock,
3031		   struct buffer_head *bh_result, int create)
3032{
3033	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3034		   inode->i_ino, create);
3035	return _ext4_get_block(inode, iblock, bh_result,
3036			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3037}
 
 
 
 
 
3038
3039static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3040		   struct buffer_head *bh_result, int create)
3041{
3042	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3043		   inode->i_ino, create);
3044	return _ext4_get_block(inode, iblock, bh_result,
3045			       EXT4_GET_BLOCKS_NO_LOCK);
3046}
3047
3048static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3049			    ssize_t size, void *private)
 
3050{
3051        ext4_io_end_t *io_end = iocb->private;
3052
3053	/* if not async direct IO just return */
3054	if (!io_end)
3055		return;
 
 
 
 
 
 
3056
3057	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3058		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3059 		  iocb->private, io_end->inode->i_ino, iocb, offset,
3060		  size);
3061
3062	iocb->private = NULL;
3063	io_end->offset = offset;
3064	io_end->size = size;
3065	ext4_put_io_end(io_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066}
3067
3068/*
3069 * For ext4 extent files, ext4 will do direct-io write to holes,
3070 * preallocated extents, and those write extend the file, no need to
3071 * fall back to buffered IO.
3072 *
3073 * For holes, we fallocate those blocks, mark them as uninitialized
3074 * If those blocks were preallocated, we mark sure they are split, but
3075 * still keep the range to write as uninitialized.
3076 *
3077 * The unwritten extents will be converted to written when DIO is completed.
3078 * For async direct IO, since the IO may still pending when return, we
3079 * set up an end_io call back function, which will do the conversion
3080 * when async direct IO completed.
3081 *
3082 * If the O_DIRECT write will extend the file then add this inode to the
3083 * orphan list.  So recovery will truncate it back to the original size
3084 * if the machine crashes during the write.
3085 *
3086 */
3087static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3088			      const struct iovec *iov, loff_t offset,
3089			      unsigned long nr_segs)
3090{
3091	struct file *file = iocb->ki_filp;
3092	struct inode *inode = file->f_mapping->host;
3093	ssize_t ret;
3094	size_t count = iov_length(iov, nr_segs);
3095	int overwrite = 0;
3096	get_block_t *get_block_func = NULL;
3097	int dio_flags = 0;
3098	loff_t final_size = offset + count;
3099	ext4_io_end_t *io_end = NULL;
3100
3101	/* Use the old path for reads and writes beyond i_size. */
3102	if (rw != WRITE || final_size > inode->i_size)
3103		return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
 
 
 
 
3104
3105	BUG_ON(iocb->private == NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3106
3107	/*
3108	 * Make all waiters for direct IO properly wait also for extent
3109	 * conversion. This also disallows race between truncate() and
3110	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3111	 */
3112	if (rw == WRITE)
3113		atomic_inc(&inode->i_dio_count);
 
 
 
 
 
 
 
3114
3115	/* If we do a overwrite dio, i_mutex locking can be released */
3116	overwrite = *((int *)iocb->private);
3117
3118	if (overwrite) {
3119		down_read(&EXT4_I(inode)->i_data_sem);
3120		mutex_unlock(&inode->i_mutex);
3121	}
 
 
 
 
 
 
 
 
3122
3123	/*
3124	 * We could direct write to holes and fallocate.
3125	 *
3126	 * Allocated blocks to fill the hole are marked as
3127	 * uninitialized to prevent parallel buffered read to expose
3128	 * the stale data before DIO complete the data IO.
3129	 *
3130	 * As to previously fallocated extents, ext4 get_block will
3131	 * just simply mark the buffer mapped but still keep the
3132	 * extents uninitialized.
3133	 *
3134	 * For non AIO case, we will convert those unwritten extents
3135	 * to written after return back from blockdev_direct_IO.
3136	 *
3137	 * For async DIO, the conversion needs to be deferred when the
3138	 * IO is completed. The ext4 end_io callback function will be
3139	 * called to take care of the conversion work.  Here for async
3140	 * case, we allocate an io_end structure to hook to the iocb.
3141	 */
3142	iocb->private = NULL;
3143	ext4_inode_aio_set(inode, NULL);
3144	if (!is_sync_kiocb(iocb)) {
3145		io_end = ext4_init_io_end(inode, GFP_NOFS);
3146		if (!io_end) {
3147			ret = -ENOMEM;
3148			goto retake_lock;
3149		}
3150		/*
3151		 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3152		 */
3153		iocb->private = ext4_get_io_end(io_end);
3154		/*
3155		 * we save the io structure for current async direct
3156		 * IO, so that later ext4_map_blocks() could flag the
3157		 * io structure whether there is a unwritten extents
3158		 * needs to be converted when IO is completed.
3159		 */
3160		ext4_inode_aio_set(inode, io_end);
3161	}
3162
3163	if (overwrite) {
3164		get_block_func = ext4_get_block_write_nolock;
3165	} else {
3166		get_block_func = ext4_get_block_write;
3167		dio_flags = DIO_LOCKING;
3168	}
3169	ret = __blockdev_direct_IO(rw, iocb, inode,
3170				   inode->i_sb->s_bdev, iov,
3171				   offset, nr_segs,
3172				   get_block_func,
3173				   ext4_end_io_dio,
3174				   NULL,
3175				   dio_flags);
3176
3177	/*
3178	 * Put our reference to io_end. This can free the io_end structure e.g.
3179	 * in sync IO case or in case of error. It can even perform extent
3180	 * conversion if all bios we submitted finished before we got here.
3181	 * Note that in that case iocb->private can be already set to NULL
3182	 * here.
3183	 */
3184	if (io_end) {
3185		ext4_inode_aio_set(inode, NULL);
3186		ext4_put_io_end(io_end);
3187		/*
3188		 * When no IO was submitted ext4_end_io_dio() was not
3189		 * called so we have to put iocb's reference.
3190		 */
3191		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3192			WARN_ON(iocb->private != io_end);
3193			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3194			ext4_put_io_end(io_end);
3195			iocb->private = NULL;
3196		}
3197	}
3198	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3199						EXT4_STATE_DIO_UNWRITTEN)) {
3200		int err;
3201		/*
3202		 * for non AIO case, since the IO is already
3203		 * completed, we could do the conversion right here
3204		 */
3205		err = ext4_convert_unwritten_extents(NULL, inode,
3206						     offset, ret);
3207		if (err < 0)
3208			ret = err;
3209		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3210	}
3211
3212retake_lock:
3213	if (rw == WRITE)
3214		inode_dio_done(inode);
3215	/* take i_mutex locking again if we do a ovewrite dio */
3216	if (overwrite) {
3217		up_read(&EXT4_I(inode)->i_data_sem);
3218		mutex_lock(&inode->i_mutex);
3219	}
3220
 
 
 
 
 
 
 
3221	return ret;
3222}
3223
3224static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3225			      const struct iovec *iov, loff_t offset,
3226			      unsigned long nr_segs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3227{
3228	struct file *file = iocb->ki_filp;
3229	struct inode *inode = file->f_mapping->host;
3230	ssize_t ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3231
3232	/*
3233	 * If we are doing data journalling we don't support O_DIRECT
 
 
 
3234	 */
3235	if (ext4_should_journal_data(inode))
3236		return 0;
 
 
 
 
 
 
3237
3238	/* Let buffer I/O handle the inline data case. */
3239	if (ext4_has_inline_data(inode))
3240		return 0;
 
 
3241
3242	trace_ext4_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
3243	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3244		ret = ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3245	else
3246		ret = ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3247	trace_ext4_direct_IO_exit(inode, offset,
3248				iov_length(iov, nr_segs), rw, ret);
3249	return ret;
3250}
3251
 
 
 
 
3252/*
3253 * Pages can be marked dirty completely asynchronously from ext4's journalling
3254 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3255 * much here because ->set_page_dirty is called under VFS locks.  The page is
3256 * not necessarily locked.
3257 *
3258 * We cannot just dirty the page and leave attached buffers clean, because the
3259 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3260 * or jbddirty because all the journalling code will explode.
3261 *
3262 * So what we do is to mark the page "pending dirty" and next time writepage
3263 * is called, propagate that into the buffers appropriately.
3264 */
3265static int ext4_journalled_set_page_dirty(struct page *page)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3266{
3267	SetPageChecked(page);
3268	return __set_page_dirty_nobuffers(page);
3269}
3270
3271static const struct address_space_operations ext4_aops = {
3272	.readpage		= ext4_readpage,
3273	.readpages		= ext4_readpages,
3274	.writepage		= ext4_writepage,
3275	.writepages		= ext4_writepages,
3276	.write_begin		= ext4_write_begin,
3277	.write_end		= ext4_write_end,
 
3278	.bmap			= ext4_bmap,
3279	.invalidatepage		= ext4_invalidatepage,
3280	.releasepage		= ext4_releasepage,
3281	.direct_IO		= ext4_direct_IO,
3282	.migratepage		= buffer_migrate_page,
3283	.is_partially_uptodate  = block_is_partially_uptodate,
3284	.error_remove_page	= generic_error_remove_page,
 
3285};
3286
3287static const struct address_space_operations ext4_journalled_aops = {
3288	.readpage		= ext4_readpage,
3289	.readpages		= ext4_readpages,
3290	.writepage		= ext4_writepage,
3291	.writepages		= ext4_writepages,
3292	.write_begin		= ext4_write_begin,
3293	.write_end		= ext4_journalled_write_end,
3294	.set_page_dirty		= ext4_journalled_set_page_dirty,
3295	.bmap			= ext4_bmap,
3296	.invalidatepage		= ext4_journalled_invalidatepage,
3297	.releasepage		= ext4_releasepage,
3298	.direct_IO		= ext4_direct_IO,
3299	.is_partially_uptodate  = block_is_partially_uptodate,
3300	.error_remove_page	= generic_error_remove_page,
 
3301};
3302
3303static const struct address_space_operations ext4_da_aops = {
3304	.readpage		= ext4_readpage,
3305	.readpages		= ext4_readpages,
3306	.writepage		= ext4_writepage,
3307	.writepages		= ext4_writepages,
3308	.write_begin		= ext4_da_write_begin,
3309	.write_end		= ext4_da_write_end,
 
3310	.bmap			= ext4_bmap,
3311	.invalidatepage		= ext4_da_invalidatepage,
3312	.releasepage		= ext4_releasepage,
3313	.direct_IO		= ext4_direct_IO,
3314	.migratepage		= buffer_migrate_page,
3315	.is_partially_uptodate  = block_is_partially_uptodate,
3316	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
3317};
3318
3319void ext4_set_aops(struct inode *inode)
3320{
3321	switch (ext4_inode_journal_mode(inode)) {
3322	case EXT4_INODE_ORDERED_DATA_MODE:
3323		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3324		break;
3325	case EXT4_INODE_WRITEBACK_DATA_MODE:
3326		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3327		break;
3328	case EXT4_INODE_JOURNAL_DATA_MODE:
3329		inode->i_mapping->a_ops = &ext4_journalled_aops;
3330		return;
3331	default:
3332		BUG();
3333	}
3334	if (test_opt(inode->i_sb, DELALLOC))
 
 
3335		inode->i_mapping->a_ops = &ext4_da_aops;
3336	else
3337		inode->i_mapping->a_ops = &ext4_aops;
3338}
3339
3340/*
3341 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3342 * starting from file offset 'from'.  The range to be zero'd must
3343 * be contained with in one block.  If the specified range exceeds
3344 * the end of the block it will be shortened to end of the block
3345 * that cooresponds to 'from'
3346 */
3347static int ext4_block_zero_page_range(handle_t *handle,
3348		struct address_space *mapping, loff_t from, loff_t length)
3349{
3350	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3351	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3352	unsigned blocksize, max, pos;
3353	ext4_lblk_t iblock;
3354	struct inode *inode = mapping->host;
3355	struct buffer_head *bh;
3356	struct page *page;
3357	int err = 0;
3358
3359	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3360				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3361	if (!page)
3362		return -ENOMEM;
 
3363
3364	blocksize = inode->i_sb->s_blocksize;
3365	max = blocksize - (offset & (blocksize - 1));
3366
3367	/*
3368	 * correct length if it does not fall between
3369	 * 'from' and the end of the block
3370	 */
3371	if (length > max || length < 0)
3372		length = max;
3373
3374	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3375
3376	if (!page_has_buffers(page))
3377		create_empty_buffers(page, blocksize, 0);
3378
3379	/* Find the buffer that contains "offset" */
3380	bh = page_buffers(page);
3381	pos = blocksize;
3382	while (offset >= pos) {
3383		bh = bh->b_this_page;
3384		iblock++;
3385		pos += blocksize;
3386	}
3387	if (buffer_freed(bh)) {
3388		BUFFER_TRACE(bh, "freed: skip");
3389		goto unlock;
3390	}
3391	if (!buffer_mapped(bh)) {
3392		BUFFER_TRACE(bh, "unmapped");
3393		ext4_get_block(inode, iblock, bh, 0);
3394		/* unmapped? It's a hole - nothing to do */
3395		if (!buffer_mapped(bh)) {
3396			BUFFER_TRACE(bh, "still unmapped");
3397			goto unlock;
3398		}
3399	}
3400
3401	/* Ok, it's mapped. Make sure it's up-to-date */
3402	if (PageUptodate(page))
3403		set_buffer_uptodate(bh);
3404
3405	if (!buffer_uptodate(bh)) {
3406		err = -EIO;
3407		ll_rw_block(READ, 1, &bh);
3408		wait_on_buffer(bh);
3409		/* Uhhuh. Read error. Complain and punt. */
3410		if (!buffer_uptodate(bh))
3411			goto unlock;
 
 
 
 
 
 
 
 
 
 
 
3412	}
3413	if (ext4_should_journal_data(inode)) {
3414		BUFFER_TRACE(bh, "get write access");
3415		err = ext4_journal_get_write_access(handle, bh);
 
3416		if (err)
3417			goto unlock;
3418	}
3419	zero_user(page, offset, length);
3420	BUFFER_TRACE(bh, "zeroed end of block");
3421
3422	if (ext4_should_journal_data(inode)) {
3423		err = ext4_handle_dirty_metadata(handle, inode, bh);
3424	} else {
3425		err = 0;
3426		mark_buffer_dirty(bh);
3427		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3428			err = ext4_jbd2_file_inode(handle, inode);
 
3429	}
3430
3431unlock:
3432	unlock_page(page);
3433	page_cache_release(page);
3434	return err;
3435}
3436
3437/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3438 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3439 * up to the end of the block which corresponds to `from'.
3440 * This required during truncate. We need to physically zero the tail end
3441 * of that block so it doesn't yield old data if the file is later grown.
3442 */
3443int ext4_block_truncate_page(handle_t *handle,
3444		struct address_space *mapping, loff_t from)
3445{
3446	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3447	unsigned length;
3448	unsigned blocksize;
3449	struct inode *inode = mapping->host;
3450
 
 
 
 
3451	blocksize = inode->i_sb->s_blocksize;
3452	length = blocksize - (offset & (blocksize - 1));
3453
3454	return ext4_block_zero_page_range(handle, mapping, from, length);
3455}
3456
3457int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3458			     loff_t lstart, loff_t length)
3459{
3460	struct super_block *sb = inode->i_sb;
3461	struct address_space *mapping = inode->i_mapping;
3462	unsigned partial_start, partial_end;
3463	ext4_fsblk_t start, end;
3464	loff_t byte_end = (lstart + length - 1);
3465	int err = 0;
3466
3467	partial_start = lstart & (sb->s_blocksize - 1);
3468	partial_end = byte_end & (sb->s_blocksize - 1);
3469
3470	start = lstart >> sb->s_blocksize_bits;
3471	end = byte_end >> sb->s_blocksize_bits;
3472
3473	/* Handle partial zero within the single block */
3474	if (start == end &&
3475	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3476		err = ext4_block_zero_page_range(handle, mapping,
3477						 lstart, length);
3478		return err;
3479	}
3480	/* Handle partial zero out on the start of the range */
3481	if (partial_start) {
3482		err = ext4_block_zero_page_range(handle, mapping,
3483						 lstart, sb->s_blocksize);
3484		if (err)
3485			return err;
3486	}
3487	/* Handle partial zero out on the end of the range */
3488	if (partial_end != sb->s_blocksize - 1)
3489		err = ext4_block_zero_page_range(handle, mapping,
3490						 byte_end - partial_end,
3491						 partial_end + 1);
3492	return err;
3493}
3494
3495int ext4_can_truncate(struct inode *inode)
3496{
3497	if (S_ISREG(inode->i_mode))
3498		return 1;
3499	if (S_ISDIR(inode->i_mode))
3500		return 1;
3501	if (S_ISLNK(inode->i_mode))
3502		return !ext4_inode_is_fast_symlink(inode);
3503	return 0;
3504}
3505
3506/*
3507 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3508 * associated with the given offset and length
3509 *
3510 * @inode:  File inode
3511 * @offset: The offset where the hole will begin
3512 * @len:    The length of the hole
3513 *
3514 * Returns: 0 on success or negative on failure
3515 */
3516
3517int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3518{
 
3519	struct super_block *sb = inode->i_sb;
3520	ext4_lblk_t first_block, stop_block;
3521	struct address_space *mapping = inode->i_mapping;
3522	loff_t first_block_offset, last_block_offset;
 
3523	handle_t *handle;
3524	unsigned int credits;
3525	int ret = 0;
3526
3527	if (!S_ISREG(inode->i_mode))
3528		return -EOPNOTSUPP;
3529
3530	trace_ext4_punch_hole(inode, offset, length, 0);
3531
3532	/*
3533	 * Write out all dirty pages to avoid race conditions
3534	 * Then release them.
3535	 */
3536	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3537		ret = filemap_write_and_wait_range(mapping, offset,
3538						   offset + length - 1);
3539		if (ret)
3540			return ret;
3541	}
3542
3543	mutex_lock(&inode->i_mutex);
3544
3545	/* No need to punch hole beyond i_size */
3546	if (offset >= inode->i_size)
3547		goto out_mutex;
3548
3549	/*
3550	 * If the hole extends beyond i_size, set the hole
3551	 * to end after the page that contains i_size
3552	 */
3553	if (offset + length > inode->i_size) {
3554		length = inode->i_size +
3555		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3556		   offset;
3557	}
3558
 
 
 
 
 
 
 
 
3559	if (offset & (sb->s_blocksize - 1) ||
3560	    (offset + length) & (sb->s_blocksize - 1)) {
3561		/*
3562		 * Attach jinode to inode for jbd2 if we do any zeroing of
3563		 * partial block
3564		 */
3565		ret = ext4_inode_attach_jinode(inode);
3566		if (ret < 0)
3567			goto out_mutex;
3568
3569	}
3570
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3571	first_block_offset = round_up(offset, sb->s_blocksize);
3572	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3573
3574	/* Now release the pages and zero block aligned part of pages*/
3575	if (last_block_offset > first_block_offset)
 
 
 
3576		truncate_pagecache_range(inode, first_block_offset,
3577					 last_block_offset);
3578
3579	/* Wait all existing dio workers, newcomers will block on i_mutex */
3580	ext4_inode_block_unlocked_dio(inode);
3581	inode_dio_wait(inode);
3582
3583	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3584		credits = ext4_writepage_trans_blocks(inode);
3585	else
3586		credits = ext4_blocks_for_truncate(inode);
3587	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3588	if (IS_ERR(handle)) {
3589		ret = PTR_ERR(handle);
3590		ext4_std_error(sb, ret);
3591		goto out_dio;
3592	}
3593
3594	ret = ext4_zero_partial_blocks(handle, inode, offset,
3595				       length);
3596	if (ret)
3597		goto out_stop;
3598
3599	first_block = (offset + sb->s_blocksize - 1) >>
3600		EXT4_BLOCK_SIZE_BITS(sb);
3601	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3602
3603	/* If there are no blocks to remove, return now */
3604	if (first_block >= stop_block)
3605		goto out_stop;
 
 
 
 
 
3606
3607	down_write(&EXT4_I(inode)->i_data_sem);
3608	ext4_discard_preallocations(inode);
 
 
 
 
3609
3610	ret = ext4_es_remove_extent(inode, first_block,
3611				    stop_block - first_block);
3612	if (ret) {
3613		up_write(&EXT4_I(inode)->i_data_sem);
3614		goto out_stop;
3615	}
3616
3617	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3618		ret = ext4_ext_remove_space(inode, first_block,
3619					    stop_block - 1);
3620	else
3621		ret = ext4_free_hole_blocks(handle, inode, first_block,
3622					    stop_block);
3623
3624	up_write(&EXT4_I(inode)->i_data_sem);
3625	if (IS_SYNC(inode))
3626		ext4_handle_sync(handle);
3627
3628	/* Now release the pages again to reduce race window */
3629	if (last_block_offset > first_block_offset)
3630		truncate_pagecache_range(inode, first_block_offset,
3631					 last_block_offset);
3632
3633	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3634	ext4_mark_inode_dirty(handle, inode);
3635out_stop:
3636	ext4_journal_stop(handle);
3637out_dio:
3638	ext4_inode_resume_unlocked_dio(inode);
3639out_mutex:
3640	mutex_unlock(&inode->i_mutex);
3641	return ret;
3642}
3643
3644int ext4_inode_attach_jinode(struct inode *inode)
3645{
3646	struct ext4_inode_info *ei = EXT4_I(inode);
3647	struct jbd2_inode *jinode;
3648
3649	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3650		return 0;
3651
3652	jinode = jbd2_alloc_inode(GFP_KERNEL);
3653	spin_lock(&inode->i_lock);
3654	if (!ei->jinode) {
3655		if (!jinode) {
3656			spin_unlock(&inode->i_lock);
3657			return -ENOMEM;
3658		}
3659		ei->jinode = jinode;
3660		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3661		jinode = NULL;
3662	}
3663	spin_unlock(&inode->i_lock);
3664	if (unlikely(jinode != NULL))
3665		jbd2_free_inode(jinode);
3666	return 0;
3667}
3668
3669/*
3670 * ext4_truncate()
3671 *
3672 * We block out ext4_get_block() block instantiations across the entire
3673 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3674 * simultaneously on behalf of the same inode.
3675 *
3676 * As we work through the truncate and commit bits of it to the journal there
3677 * is one core, guiding principle: the file's tree must always be consistent on
3678 * disk.  We must be able to restart the truncate after a crash.
3679 *
3680 * The file's tree may be transiently inconsistent in memory (although it
3681 * probably isn't), but whenever we close off and commit a journal transaction,
3682 * the contents of (the filesystem + the journal) must be consistent and
3683 * restartable.  It's pretty simple, really: bottom up, right to left (although
3684 * left-to-right works OK too).
3685 *
3686 * Note that at recovery time, journal replay occurs *before* the restart of
3687 * truncate against the orphan inode list.
3688 *
3689 * The committed inode has the new, desired i_size (which is the same as
3690 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3691 * that this inode's truncate did not complete and it will again call
3692 * ext4_truncate() to have another go.  So there will be instantiated blocks
3693 * to the right of the truncation point in a crashed ext4 filesystem.  But
3694 * that's fine - as long as they are linked from the inode, the post-crash
3695 * ext4_truncate() run will find them and release them.
3696 */
3697void ext4_truncate(struct inode *inode)
3698{
3699	struct ext4_inode_info *ei = EXT4_I(inode);
3700	unsigned int credits;
 
3701	handle_t *handle;
3702	struct address_space *mapping = inode->i_mapping;
3703
3704	/*
3705	 * There is a possibility that we're either freeing the inode
3706	 * or it's a completely new inode. In those cases we might not
3707	 * have i_mutex locked because it's not necessary.
3708	 */
3709	if (!(inode->i_state & (I_NEW|I_FREEING)))
3710		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3711	trace_ext4_truncate_enter(inode);
3712
3713	if (!ext4_can_truncate(inode))
3714		return;
3715
3716	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3717
3718	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3719		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3720
3721	if (ext4_has_inline_data(inode)) {
3722		int has_inline = 1;
3723
3724		ext4_inline_data_truncate(inode, &has_inline);
3725		if (has_inline)
3726			return;
3727	}
3728
3729	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3730	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3731		if (ext4_inode_attach_jinode(inode) < 0)
3732			return;
 
3733	}
3734
3735	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3736		credits = ext4_writepage_trans_blocks(inode);
3737	else
3738		credits = ext4_blocks_for_truncate(inode);
3739
3740	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3741	if (IS_ERR(handle)) {
3742		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3743		return;
3744	}
3745
3746	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3747		ext4_block_truncate_page(handle, mapping, inode->i_size);
3748
3749	/*
3750	 * We add the inode to the orphan list, so that if this
3751	 * truncate spans multiple transactions, and we crash, we will
3752	 * resume the truncate when the filesystem recovers.  It also
3753	 * marks the inode dirty, to catch the new size.
3754	 *
3755	 * Implication: the file must always be in a sane, consistent
3756	 * truncatable state while each transaction commits.
3757	 */
3758	if (ext4_orphan_add(handle, inode))
 
3759		goto out_stop;
3760
3761	down_write(&EXT4_I(inode)->i_data_sem);
3762
3763	ext4_discard_preallocations(inode);
3764
3765	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3766		ext4_ext_truncate(handle, inode);
3767	else
3768		ext4_ind_truncate(handle, inode);
3769
3770	up_write(&ei->i_data_sem);
 
 
3771
3772	if (IS_SYNC(inode))
3773		ext4_handle_sync(handle);
3774
3775out_stop:
3776	/*
3777	 * If this was a simple ftruncate() and the file will remain alive,
3778	 * then we need to clear up the orphan record which we created above.
3779	 * However, if this was a real unlink then we were called by
3780	 * ext4_delete_inode(), and we allow that function to clean up the
3781	 * orphan info for us.
3782	 */
3783	if (inode->i_nlink)
3784		ext4_orphan_del(handle, inode);
3785
3786	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3787	ext4_mark_inode_dirty(handle, inode);
 
 
3788	ext4_journal_stop(handle);
3789
 
3790	trace_ext4_truncate_exit(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3791}
3792
3793/*
3794 * ext4_get_inode_loc returns with an extra refcount against the inode's
3795 * underlying buffer_head on success. If 'in_mem' is true, we have all
3796 * data in memory that is needed to recreate the on-disk version of this
3797 * inode.
3798 */
3799static int __ext4_get_inode_loc(struct inode *inode,
3800				struct ext4_iloc *iloc, int in_mem)
 
3801{
3802	struct ext4_group_desc	*gdp;
3803	struct buffer_head	*bh;
3804	struct super_block	*sb = inode->i_sb;
3805	ext4_fsblk_t		block;
 
3806	int			inodes_per_block, inode_offset;
3807
3808	iloc->bh = NULL;
3809	if (!ext4_valid_inum(sb, inode->i_ino))
3810		return -EIO;
 
3811
3812	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3813	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3814	if (!gdp)
3815		return -EIO;
3816
3817	/*
3818	 * Figure out the offset within the block group inode table
3819	 */
3820	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3821	inode_offset = ((inode->i_ino - 1) %
3822			EXT4_INODES_PER_GROUP(sb));
3823	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3824	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3825
 
 
 
 
 
 
 
 
 
3826	bh = sb_getblk(sb, block);
3827	if (unlikely(!bh))
3828		return -ENOMEM;
3829	if (!buffer_uptodate(bh)) {
3830		lock_buffer(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3831
3832		/*
3833		 * If the buffer has the write error flag, we have failed
3834		 * to write out another inode in the same block.  In this
3835		 * case, we don't have to read the block because we may
3836		 * read the old inode data successfully.
3837		 */
3838		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3839			set_buffer_uptodate(bh);
3840
3841		if (buffer_uptodate(bh)) {
3842			/* someone brought it uptodate while we waited */
3843			unlock_buffer(bh);
3844			goto has_buffer;
3845		}
3846
3847		/*
3848		 * If we have all information of the inode in memory and this
3849		 * is the only valid inode in the block, we need not read the
3850		 * block.
3851		 */
3852		if (in_mem) {
3853			struct buffer_head *bitmap_bh;
3854			int i, start;
3855
3856			start = inode_offset & ~(inodes_per_block - 1);
3857
3858			/* Is the inode bitmap in cache? */
3859			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3860			if (unlikely(!bitmap_bh))
3861				goto make_io;
3862
3863			/*
3864			 * If the inode bitmap isn't in cache then the
3865			 * optimisation may end up performing two reads instead
3866			 * of one, so skip it.
3867			 */
3868			if (!buffer_uptodate(bitmap_bh)) {
3869				brelse(bitmap_bh);
3870				goto make_io;
3871			}
3872			for (i = start; i < start + inodes_per_block; i++) {
3873				if (i == inode_offset)
3874					continue;
3875				if (ext4_test_bit(i, bitmap_bh->b_data))
3876					break;
3877			}
3878			brelse(bitmap_bh);
3879			if (i == start + inodes_per_block) {
3880				/* all other inodes are free, so skip I/O */
3881				memset(bh->b_data, 0, bh->b_size);
3882				set_buffer_uptodate(bh);
3883				unlock_buffer(bh);
3884				goto has_buffer;
3885			}
3886		}
3887
3888make_io:
3889		/*
3890		 * If we need to do any I/O, try to pre-readahead extra
3891		 * blocks from the inode table.
3892		 */
3893		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3894			ext4_fsblk_t b, end, table;
3895			unsigned num;
3896			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3897
3898			table = ext4_inode_table(sb, gdp);
3899			/* s_inode_readahead_blks is always a power of 2 */
3900			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3901			if (table > b)
3902				b = table;
3903			end = b + ra_blks;
3904			num = EXT4_INODES_PER_GROUP(sb);
3905			if (ext4_has_group_desc_csum(sb))
3906				num -= ext4_itable_unused_count(sb, gdp);
3907			table += num / inodes_per_block;
3908			if (end > table)
3909				end = table;
3910			while (b <= end)
3911				sb_breadahead(sb, b++);
3912		}
 
3913
3914		/*
3915		 * There are other valid inodes in the buffer, this inode
3916		 * has in-inode xattrs, or we don't have this inode in memory.
3917		 * Read the block from disk.
3918		 */
3919		trace_ext4_load_inode(inode);
3920		get_bh(bh);
3921		bh->b_end_io = end_buffer_read_sync;
3922		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3923		wait_on_buffer(bh);
3924		if (!buffer_uptodate(bh)) {
3925			EXT4_ERROR_INODE_BLOCK(inode, block,
3926					       "unable to read itable block");
3927			brelse(bh);
3928			return -EIO;
3929		}
3930	}
3931has_buffer:
3932	iloc->bh = bh;
3933	return 0;
3934}
3935
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3936int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
3937{
3938	/* We have all inode data except xattrs in memory here. */
3939	return __ext4_get_inode_loc(inode, iloc,
3940		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3941}
3942
3943void ext4_set_inode_flags(struct inode *inode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3944{
3945	unsigned int flags = EXT4_I(inode)->i_flags;
3946	unsigned int new_fl = 0;
3947
 
 
3948	if (flags & EXT4_SYNC_FL)
3949		new_fl |= S_SYNC;
3950	if (flags & EXT4_APPEND_FL)
3951		new_fl |= S_APPEND;
3952	if (flags & EXT4_IMMUTABLE_FL)
3953		new_fl |= S_IMMUTABLE;
3954	if (flags & EXT4_NOATIME_FL)
3955		new_fl |= S_NOATIME;
3956	if (flags & EXT4_DIRSYNC_FL)
3957		new_fl |= S_DIRSYNC;
 
 
 
 
 
 
 
 
 
 
 
 
 
3958	inode_set_flags(inode, new_fl,
3959			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
3960}
3961
3962/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3963void ext4_get_inode_flags(struct ext4_inode_info *ei)
3964{
3965	unsigned int vfs_fl;
3966	unsigned long old_fl, new_fl;
3967
3968	do {
3969		vfs_fl = ei->vfs_inode.i_flags;
3970		old_fl = ei->i_flags;
3971		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
3972				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
3973				EXT4_DIRSYNC_FL);
3974		if (vfs_fl & S_SYNC)
3975			new_fl |= EXT4_SYNC_FL;
3976		if (vfs_fl & S_APPEND)
3977			new_fl |= EXT4_APPEND_FL;
3978		if (vfs_fl & S_IMMUTABLE)
3979			new_fl |= EXT4_IMMUTABLE_FL;
3980		if (vfs_fl & S_NOATIME)
3981			new_fl |= EXT4_NOATIME_FL;
3982		if (vfs_fl & S_DIRSYNC)
3983			new_fl |= EXT4_DIRSYNC_FL;
3984	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
3985}
3986
3987static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
3988				  struct ext4_inode_info *ei)
3989{
3990	blkcnt_t i_blocks ;
3991	struct inode *inode = &(ei->vfs_inode);
3992	struct super_block *sb = inode->i_sb;
3993
3994	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
3995				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
3996		/* we are using combined 48 bit field */
3997		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
3998					le32_to_cpu(raw_inode->i_blocks_lo);
3999		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4000			/* i_blocks represent file system block size */
4001			return i_blocks  << (inode->i_blkbits - 9);
4002		} else {
4003			return i_blocks;
4004		}
4005	} else {
4006		return le32_to_cpu(raw_inode->i_blocks_lo);
4007	}
4008}
4009
4010static inline void ext4_iget_extra_inode(struct inode *inode,
4011					 struct ext4_inode *raw_inode,
4012					 struct ext4_inode_info *ei)
4013{
4014	__le32 *magic = (void *)raw_inode +
4015			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4016	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
 
 
 
 
4017		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4018		ext4_find_inline_data_nolock(inode);
 
 
 
4019	} else
4020		EXT4_I(inode)->i_inline_off = 0;
 
4021}
4022
4023struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4024{
4025	struct ext4_iloc iloc;
4026	struct ext4_inode *raw_inode;
4027	struct ext4_inode_info *ei;
 
4028	struct inode *inode;
 
4029	journal_t *journal = EXT4_SB(sb)->s_journal;
4030	long ret;
 
4031	int block;
4032	uid_t i_uid;
4033	gid_t i_gid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4034
4035	inode = iget_locked(sb, ino);
4036	if (!inode)
4037		return ERR_PTR(-ENOMEM);
4038	if (!(inode->i_state & I_NEW))
 
 
 
 
 
4039		return inode;
 
4040
4041	ei = EXT4_I(inode);
4042	iloc.bh = NULL;
4043
4044	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4045	if (ret < 0)
4046		goto bad_inode;
4047	raw_inode = ext4_raw_inode(&iloc);
4048
 
 
 
 
 
 
4049	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4050		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4051		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4052		    EXT4_INODE_SIZE(inode->i_sb)) {
4053			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4054				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4055				EXT4_INODE_SIZE(inode->i_sb));
4056			ret = -EIO;
 
 
 
4057			goto bad_inode;
4058		}
4059	} else
4060		ei->i_extra_isize = 0;
4061
4062	/* Precompute checksum seed for inode metadata */
4063	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4064			EXT4_FEATURE_RO_COMPAT_METADATA_CSUM)) {
4065		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4066		__u32 csum;
4067		__le32 inum = cpu_to_le32(inode->i_ino);
4068		__le32 gen = raw_inode->i_generation;
4069		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4070				   sizeof(inum));
4071		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4072					      sizeof(gen));
4073	}
4074
4075	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4076		EXT4_ERROR_INODE(inode, "checksum invalid");
4077		ret = -EIO;
 
 
 
4078		goto bad_inode;
4079	}
4080
4081	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4082	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4083	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
 
 
 
 
 
 
 
4084	if (!(test_opt(inode->i_sb, NO_UID32))) {
4085		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4086		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4087	}
4088	i_uid_write(inode, i_uid);
4089	i_gid_write(inode, i_gid);
 
4090	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4091
4092	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4093	ei->i_inline_off = 0;
4094	ei->i_dir_start_lookup = 0;
4095	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4096	/* We now have enough fields to check if the inode was active or not.
4097	 * This is needed because nfsd might try to access dead inodes
4098	 * the test is that same one that e2fsck uses
4099	 * NeilBrown 1999oct15
4100	 */
4101	if (inode->i_nlink == 0) {
4102		if ((inode->i_mode == 0 ||
4103		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4104		    ino != EXT4_BOOT_LOADER_INO) {
4105			/* this inode is deleted */
4106			ret = -ESTALE;
 
 
 
 
 
4107			goto bad_inode;
4108		}
4109		/* The only unlinked inodes we let through here have
4110		 * valid i_mode and are being read by the orphan
4111		 * recovery code: that's fine, we're about to complete
4112		 * the process of deleting those.
4113		 * OR it is the EXT4_BOOT_LOADER_INO which is
4114		 * not initialized on a new filesystem. */
4115	}
4116	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
4117	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4118	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4119	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4120		ei->i_file_acl |=
4121			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4122	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4123	ei->i_disksize = inode->i_size;
4124#ifdef CONFIG_QUOTA
4125	ei->i_reserved_quota = 0;
4126#endif
4127	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4128	ei->i_block_group = iloc.block_group;
4129	ei->i_last_alloc_group = ~0;
4130	/*
4131	 * NOTE! The in-memory inode i_data array is in little-endian order
4132	 * even on big-endian machines: we do NOT byteswap the block numbers!
4133	 */
4134	for (block = 0; block < EXT4_N_BLOCKS; block++)
4135		ei->i_data[block] = raw_inode->i_block[block];
4136	INIT_LIST_HEAD(&ei->i_orphan);
 
4137
4138	/*
4139	 * Set transaction id's of transactions that have to be committed
4140	 * to finish f[data]sync. We set them to currently running transaction
4141	 * as we cannot be sure that the inode or some of its metadata isn't
4142	 * part of the transaction - the inode could have been reclaimed and
4143	 * now it is reread from disk.
4144	 */
4145	if (journal) {
4146		transaction_t *transaction;
4147		tid_t tid;
4148
4149		read_lock(&journal->j_state_lock);
4150		if (journal->j_running_transaction)
4151			transaction = journal->j_running_transaction;
4152		else
4153			transaction = journal->j_committing_transaction;
4154		if (transaction)
4155			tid = transaction->t_tid;
4156		else
4157			tid = journal->j_commit_sequence;
4158		read_unlock(&journal->j_state_lock);
4159		ei->i_sync_tid = tid;
4160		ei->i_datasync_tid = tid;
4161	}
4162
4163	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4164		if (ei->i_extra_isize == 0) {
4165			/* The extra space is currently unused. Use it. */
 
4166			ei->i_extra_isize = sizeof(struct ext4_inode) -
4167					    EXT4_GOOD_OLD_INODE_SIZE;
4168		} else {
4169			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
4170		}
4171	}
4172
4173	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4174	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4175	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4176	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4177
4178	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4179		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
 
4180		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4181			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4182				inode->i_version |=
4183		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4184		}
 
4185	}
4186
4187	ret = 0;
4188	if (ei->i_file_acl &&
4189	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4190		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
4191				 ei->i_file_acl);
4192		ret = -EIO;
4193		goto bad_inode;
4194	} else if (!ext4_has_inline_data(inode)) {
4195		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4196			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4197			    (S_ISLNK(inode->i_mode) &&
4198			     !ext4_inode_is_fast_symlink(inode))))
4199				/* Validate extent which is part of inode */
 
4200				ret = ext4_ext_check_inode(inode);
4201		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4202			   (S_ISLNK(inode->i_mode) &&
4203			    !ext4_inode_is_fast_symlink(inode))) {
4204			/* Validate block references which are part of inode */
4205			ret = ext4_ind_check_inode(inode);
4206		}
4207	}
4208	if (ret)
4209		goto bad_inode;
4210
4211	if (S_ISREG(inode->i_mode)) {
4212		inode->i_op = &ext4_file_inode_operations;
4213		inode->i_fop = &ext4_file_operations;
4214		ext4_set_aops(inode);
4215	} else if (S_ISDIR(inode->i_mode)) {
4216		inode->i_op = &ext4_dir_inode_operations;
4217		inode->i_fop = &ext4_dir_operations;
4218	} else if (S_ISLNK(inode->i_mode)) {
4219		if (ext4_inode_is_fast_symlink(inode)) {
 
 
 
 
 
 
 
 
 
 
 
4220			inode->i_op = &ext4_fast_symlink_inode_operations;
4221			nd_terminate_link(ei->i_data, inode->i_size,
4222				sizeof(ei->i_data) - 1);
4223		} else {
4224			inode->i_op = &ext4_symlink_inode_operations;
4225			ext4_set_aops(inode);
4226		}
4227	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4228	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4229		inode->i_op = &ext4_special_inode_operations;
4230		if (raw_inode->i_block[0])
4231			init_special_inode(inode, inode->i_mode,
4232			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4233		else
4234			init_special_inode(inode, inode->i_mode,
4235			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4236	} else if (ino == EXT4_BOOT_LOADER_INO) {
4237		make_bad_inode(inode);
4238	} else {
4239		ret = -EIO;
4240		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
 
 
 
 
 
 
4241		goto bad_inode;
4242	}
 
 
 
 
 
 
4243	brelse(iloc.bh);
4244	ext4_set_inode_flags(inode);
4245	unlock_new_inode(inode);
4246	return inode;
4247
4248bad_inode:
4249	brelse(iloc.bh);
4250	iget_failed(inode);
4251	return ERR_PTR(ret);
4252}
4253
4254static int ext4_inode_blocks_set(handle_t *handle,
4255				struct ext4_inode *raw_inode,
4256				struct ext4_inode_info *ei)
 
4257{
4258	struct inode *inode = &(ei->vfs_inode);
4259	u64 i_blocks = inode->i_blocks;
4260	struct super_block *sb = inode->i_sb;
 
 
 
 
 
 
 
 
 
 
 
 
4261
4262	if (i_blocks <= ~0U) {
4263		/*
4264		 * i_blocks can be represented in a 32 bit variable
4265		 * as multiple of 512 bytes
4266		 */
4267		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4268		raw_inode->i_blocks_high = 0;
4269		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4270		return 0;
4271	}
4272	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4273		return -EFBIG;
 
 
 
 
 
 
 
 
 
 
 
4274
4275	if (i_blocks <= 0xffffffffffffULL) {
4276		/*
4277		 * i_blocks can be represented in a 48 bit variable
4278		 * as multiple of 512 bytes
4279		 */
4280		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4281		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4282		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4283	} else {
4284		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4285		/* i_block is stored in file system block size */
4286		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4287		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4288		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4289	}
4290	return 0;
4291}
4292
4293/*
4294 * Post the struct inode info into an on-disk inode location in the
4295 * buffer-cache.  This gobbles the caller's reference to the
4296 * buffer_head in the inode location struct.
4297 *
4298 * The caller must have write access to iloc->bh.
4299 */
4300static int ext4_do_update_inode(handle_t *handle,
4301				struct inode *inode,
4302				struct ext4_iloc *iloc)
4303{
4304	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4305	struct ext4_inode_info *ei = EXT4_I(inode);
4306	struct buffer_head *bh = iloc->bh;
4307	int err = 0, rc, block;
4308	int need_datasync = 0;
4309	uid_t i_uid;
4310	gid_t i_gid;
 
4311
4312	/* For fields not not tracking in the in-memory inode,
4313	 * initialise them to zero for new inodes. */
 
 
4314	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4315		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4316
4317	ext4_get_inode_flags(ei);
4318	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4319	i_uid = i_uid_read(inode);
4320	i_gid = i_gid_read(inode);
4321	if (!(test_opt(inode->i_sb, NO_UID32))) {
4322		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4323		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4324/*
4325 * Fix up interoperability with old kernels. Otherwise, old inodes get
4326 * re-used with the upper 16 bits of the uid/gid intact
4327 */
4328		if (!ei->i_dtime) {
4329			raw_inode->i_uid_high =
4330				cpu_to_le16(high_16_bits(i_uid));
4331			raw_inode->i_gid_high =
4332				cpu_to_le16(high_16_bits(i_gid));
4333		} else {
4334			raw_inode->i_uid_high = 0;
4335			raw_inode->i_gid_high = 0;
4336		}
4337	} else {
4338		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4339		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4340		raw_inode->i_uid_high = 0;
4341		raw_inode->i_gid_high = 0;
4342	}
4343	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4344
4345	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4346	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4347	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4348	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4349
4350	if (ext4_inode_blocks_set(handle, raw_inode, ei))
4351		goto out_brelse;
4352	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4353	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4354	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4355		raw_inode->i_file_acl_high =
4356			cpu_to_le16(ei->i_file_acl >> 32);
4357	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4358	if (ei->i_disksize != ext4_isize(raw_inode)) {
4359		ext4_isize_set(raw_inode, ei->i_disksize);
4360		need_datasync = 1;
4361	}
4362	if (ei->i_disksize > 0x7fffffffULL) {
4363		struct super_block *sb = inode->i_sb;
4364		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4365				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4366				EXT4_SB(sb)->s_es->s_rev_level ==
4367				cpu_to_le32(EXT4_GOOD_OLD_REV)) {
4368			/* If this is the first large file
4369			 * created, add a flag to the superblock.
4370			 */
4371			err = ext4_journal_get_write_access(handle,
4372					EXT4_SB(sb)->s_sbh);
4373			if (err)
4374				goto out_brelse;
4375			ext4_update_dynamic_rev(sb);
4376			EXT4_SET_RO_COMPAT_FEATURE(sb,
4377					EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4378			ext4_handle_sync(handle);
4379			err = ext4_handle_dirty_super(handle, sb);
4380		}
4381	}
4382	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4383	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4384		if (old_valid_dev(inode->i_rdev)) {
4385			raw_inode->i_block[0] =
4386				cpu_to_le32(old_encode_dev(inode->i_rdev));
4387			raw_inode->i_block[1] = 0;
4388		} else {
4389			raw_inode->i_block[0] = 0;
4390			raw_inode->i_block[1] =
4391				cpu_to_le32(new_encode_dev(inode->i_rdev));
4392			raw_inode->i_block[2] = 0;
4393		}
4394	} else if (!ext4_has_inline_data(inode)) {
4395		for (block = 0; block < EXT4_N_BLOCKS; block++)
4396			raw_inode->i_block[block] = ei->i_data[block];
4397	}
4398
4399	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4400		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4401		if (ei->i_extra_isize) {
4402			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4403				raw_inode->i_version_hi =
4404					cpu_to_le32(inode->i_version >> 32);
4405			raw_inode->i_extra_isize =
4406				cpu_to_le16(ei->i_extra_isize);
4407		}
4408	}
4409
4410	ext4_inode_csum_set(inode, raw_inode, ei);
 
 
4411
4412	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4413	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4414	if (!err)
4415		err = rc;
4416	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4417
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4418	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
 
 
4419out_brelse:
4420	brelse(bh);
4421	ext4_std_error(inode->i_sb, err);
4422	return err;
4423}
4424
4425/*
4426 * ext4_write_inode()
4427 *
4428 * We are called from a few places:
4429 *
4430 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4431 *   Here, there will be no transaction running. We wait for any running
4432 *   transaction to commit.
4433 *
4434 * - Within flush work (sys_sync(), kupdate and such).
4435 *   We wait on commit, if told to.
4436 *
4437 * - Within iput_final() -> write_inode_now()
4438 *   We wait on commit, if told to.
4439 *
4440 * In all cases it is actually safe for us to return without doing anything,
4441 * because the inode has been copied into a raw inode buffer in
4442 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4443 * writeback.
4444 *
4445 * Note that we are absolutely dependent upon all inode dirtiers doing the
4446 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4447 * which we are interested.
4448 *
4449 * It would be a bug for them to not do this.  The code:
4450 *
4451 *	mark_inode_dirty(inode)
4452 *	stuff();
4453 *	inode->i_size = expr;
4454 *
4455 * is in error because write_inode() could occur while `stuff()' is running,
4456 * and the new i_size will be lost.  Plus the inode will no longer be on the
4457 * superblock's dirty inode list.
4458 */
4459int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4460{
4461	int err;
4462
4463	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4464		return 0;
4465
 
 
 
4466	if (EXT4_SB(inode->i_sb)->s_journal) {
4467		if (ext4_journal_current_handle()) {
4468			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4469			dump_stack();
4470			return -EIO;
4471		}
4472
4473		/*
4474		 * No need to force transaction in WB_SYNC_NONE mode. Also
4475		 * ext4_sync_fs() will force the commit after everything is
4476		 * written.
4477		 */
4478		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4479			return 0;
4480
4481		err = ext4_force_commit(inode->i_sb);
 
4482	} else {
4483		struct ext4_iloc iloc;
4484
4485		err = __ext4_get_inode_loc(inode, &iloc, 0);
4486		if (err)
4487			return err;
4488		/*
4489		 * sync(2) will flush the whole buffer cache. No need to do
4490		 * it here separately for each inode.
4491		 */
4492		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4493			sync_dirty_buffer(iloc.bh);
4494		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4495			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4496					 "IO error syncing inode");
4497			err = -EIO;
4498		}
4499		brelse(iloc.bh);
4500	}
4501	return err;
4502}
4503
4504/*
4505 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4506 * buffers that are attached to a page stradding i_size and are undergoing
4507 * commit. In that case we have to wait for commit to finish and try again.
4508 */
4509static void ext4_wait_for_tail_page_commit(struct inode *inode)
4510{
4511	struct page *page;
4512	unsigned offset;
4513	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4514	tid_t commit_tid = 0;
4515	int ret;
 
4516
4517	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4518	/*
4519	 * All buffers in the last page remain valid? Then there's nothing to
4520	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4521	 * blocksize case
 
 
 
 
4522	 */
4523	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4524		return;
4525	while (1) {
4526		page = find_lock_page(inode->i_mapping,
4527				      inode->i_size >> PAGE_CACHE_SHIFT);
4528		if (!page)
4529			return;
4530		ret = __ext4_journalled_invalidatepage(page, offset,
4531						PAGE_CACHE_SIZE - offset);
4532		unlock_page(page);
4533		page_cache_release(page);
4534		if (ret != -EBUSY)
4535			return;
4536		commit_tid = 0;
4537		read_lock(&journal->j_state_lock);
4538		if (journal->j_committing_transaction)
4539			commit_tid = journal->j_committing_transaction->t_tid;
 
 
4540		read_unlock(&journal->j_state_lock);
4541		if (commit_tid)
4542			jbd2_log_wait_commit(journal, commit_tid);
4543	}
4544}
4545
4546/*
4547 * ext4_setattr()
4548 *
4549 * Called from notify_change.
4550 *
4551 * We want to trap VFS attempts to truncate the file as soon as
4552 * possible.  In particular, we want to make sure that when the VFS
4553 * shrinks i_size, we put the inode on the orphan list and modify
4554 * i_disksize immediately, so that during the subsequent flushing of
4555 * dirty pages and freeing of disk blocks, we can guarantee that any
4556 * commit will leave the blocks being flushed in an unused state on
4557 * disk.  (On recovery, the inode will get truncated and the blocks will
4558 * be freed, so we have a strong guarantee that no future commit will
4559 * leave these blocks visible to the user.)
4560 *
4561 * Another thing we have to assure is that if we are in ordered mode
4562 * and inode is still attached to the committing transaction, we must
4563 * we start writeout of all the dirty pages which are being truncated.
4564 * This way we are sure that all the data written in the previous
4565 * transaction are already on disk (truncate waits for pages under
4566 * writeback).
4567 *
4568 * Called with inode->i_mutex down.
4569 */
4570int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 
4571{
4572	struct inode *inode = dentry->d_inode;
4573	int error, rc = 0;
4574	int orphan = 0;
4575	const unsigned int ia_valid = attr->ia_valid;
 
 
 
 
4576
4577	error = inode_change_ok(inode, attr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4578	if (error)
4579		return error;
4580
4581	if (is_quota_modification(inode, attr))
4582		dquot_initialize(inode);
4583	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4584	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
 
 
 
 
4585		handle_t *handle;
4586
4587		/* (user+group)*(old+new) structure, inode write (sb,
4588		 * inode block, ? - but truncate inode update has it) */
4589		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4590			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4591			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4592		if (IS_ERR(handle)) {
4593			error = PTR_ERR(handle);
4594			goto err_out;
4595		}
4596		error = dquot_transfer(inode, attr);
 
 
 
 
 
 
 
4597		if (error) {
4598			ext4_journal_stop(handle);
4599			return error;
4600		}
4601		/* Update corresponding info in inode so that everything is in
4602		 * one transaction */
4603		if (attr->ia_valid & ATTR_UID)
4604			inode->i_uid = attr->ia_uid;
4605		if (attr->ia_valid & ATTR_GID)
4606			inode->i_gid = attr->ia_gid;
4607		error = ext4_mark_inode_dirty(handle, inode);
4608		ext4_journal_stop(handle);
 
 
 
4609	}
4610
4611	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4612		handle_t *handle;
 
 
 
4613
4614		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4615			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4616
4617			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4618				return -EFBIG;
 
 
 
 
4619		}
4620
4621		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4622			inode_inc_iversion(inode);
4623
4624		if (S_ISREG(inode->i_mode) &&
4625		    (attr->ia_size < inode->i_size)) {
4626			if (ext4_should_order_data(inode)) {
4627				error = ext4_begin_ordered_truncate(inode,
4628							    attr->ia_size);
4629				if (error)
4630					goto err_out;
4631			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4633			if (IS_ERR(handle)) {
4634				error = PTR_ERR(handle);
4635				goto err_out;
4636			}
4637			if (ext4_handle_valid(handle)) {
4638				error = ext4_orphan_add(handle, inode);
4639				orphan = 1;
4640			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4641			down_write(&EXT4_I(inode)->i_data_sem);
 
4642			EXT4_I(inode)->i_disksize = attr->ia_size;
4643			rc = ext4_mark_inode_dirty(handle, inode);
4644			if (!error)
4645				error = rc;
4646			/*
4647			 * We have to update i_size under i_data_sem together
4648			 * with i_disksize to avoid races with writeback code
4649			 * running ext4_wb_update_i_disksize().
4650			 */
4651			if (!error)
4652				i_size_write(inode, attr->ia_size);
 
 
4653			up_write(&EXT4_I(inode)->i_data_sem);
4654			ext4_journal_stop(handle);
4655			if (error) {
4656				ext4_orphan_del(NULL, inode);
4657				goto err_out;
 
 
 
 
4658			}
4659		} else
4660			i_size_write(inode, attr->ia_size);
4661
4662		/*
4663		 * Blocks are going to be removed from the inode. Wait
4664		 * for dio in flight.  Temporarily disable
4665		 * dioread_nolock to prevent livelock.
4666		 */
4667		if (orphan) {
4668			if (!ext4_should_journal_data(inode)) {
4669				ext4_inode_block_unlocked_dio(inode);
4670				inode_dio_wait(inode);
4671				ext4_inode_resume_unlocked_dio(inode);
4672			} else
4673				ext4_wait_for_tail_page_commit(inode);
4674		}
4675		/*
4676		 * Truncate pagecache after we've waited for commit
4677		 * in data=journal mode to make pages freeable.
4678		 */
4679			truncate_pagecache(inode, inode->i_size);
 
 
 
 
 
 
4680	}
4681	/*
4682	 * We want to call ext4_truncate() even if attr->ia_size ==
4683	 * inode->i_size for cases like truncation of fallocated space
4684	 */
4685	if (attr->ia_valid & ATTR_SIZE)
4686		ext4_truncate(inode);
4687
4688	if (!rc) {
4689		setattr_copy(inode, attr);
 
 
4690		mark_inode_dirty(inode);
4691	}
4692
4693	/*
4694	 * If the call to ext4_truncate failed to get a transaction handle at
4695	 * all, we need to clean up the in-core orphan list manually.
4696	 */
4697	if (orphan && inode->i_nlink)
4698		ext4_orphan_del(NULL, inode);
4699
4700	if (!rc && (ia_valid & ATTR_MODE))
4701		rc = posix_acl_chmod(inode, inode->i_mode);
4702
4703err_out:
4704	ext4_std_error(inode->i_sb, error);
 
4705	if (!error)
4706		error = rc;
4707	return error;
4708}
4709
4710int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4711		 struct kstat *stat)
4712{
4713	struct inode *inode;
4714	unsigned long long delalloc_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4715
4716	inode = dentry->d_inode;
4717	generic_fillattr(inode, stat);
4718
4719	/*
4720	 * If there is inline data in the inode, the inode will normally not
4721	 * have data blocks allocated (it may have an external xattr block).
4722	 * Report at least one sector for such files, so tools like tar, rsync,
4723	 * others doen't incorrectly think the file is completely sparse.
4724	 */
4725	if (unlikely(ext4_has_inline_data(inode)))
4726		stat->blocks += (stat->size + 511) >> 9;
4727
4728	/*
4729	 * We can't update i_blocks if the block allocation is delayed
4730	 * otherwise in the case of system crash before the real block
4731	 * allocation is done, we will have i_blocks inconsistent with
4732	 * on-disk file blocks.
4733	 * We always keep i_blocks updated together with real
4734	 * allocation. But to not confuse with user, stat
4735	 * will return the blocks that include the delayed allocation
4736	 * blocks for this file.
4737	 */
4738	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4739				   EXT4_I(inode)->i_reserved_data_blocks);
4740	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4741	return 0;
4742}
4743
4744static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4745				   int pextents)
4746{
4747	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4748		return ext4_ind_trans_blocks(inode, lblocks);
4749	return ext4_ext_index_trans_blocks(inode, pextents);
4750}
4751
4752/*
4753 * Account for index blocks, block groups bitmaps and block group
4754 * descriptor blocks if modify datablocks and index blocks
4755 * worse case, the indexs blocks spread over different block groups
4756 *
4757 * If datablocks are discontiguous, they are possible to spread over
4758 * different block groups too. If they are contiguous, with flexbg,
4759 * they could still across block group boundary.
4760 *
4761 * Also account for superblock, inode, quota and xattr blocks
4762 */
4763static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4764				  int pextents)
4765{
4766	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4767	int gdpblocks;
4768	int idxblocks;
4769	int ret = 0;
4770
4771	/*
4772	 * How many index blocks need to touch to map @lblocks logical blocks
4773	 * to @pextents physical extents?
4774	 */
4775	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4776
4777	ret = idxblocks;
4778
4779	/*
4780	 * Now let's see how many group bitmaps and group descriptors need
4781	 * to account
4782	 */
4783	groups = idxblocks + pextents;
4784	gdpblocks = groups;
4785	if (groups > ngroups)
4786		groups = ngroups;
4787	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4788		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4789
4790	/* bitmaps and block group descriptor blocks */
4791	ret += groups + gdpblocks;
4792
4793	/* Blocks for super block, inode, quota and xattr blocks */
4794	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4795
4796	return ret;
4797}
4798
4799/*
4800 * Calculate the total number of credits to reserve to fit
4801 * the modification of a single pages into a single transaction,
4802 * which may include multiple chunks of block allocations.
4803 *
4804 * This could be called via ext4_write_begin()
4805 *
4806 * We need to consider the worse case, when
4807 * one new block per extent.
4808 */
4809int ext4_writepage_trans_blocks(struct inode *inode)
4810{
4811	int bpp = ext4_journal_blocks_per_page(inode);
4812	int ret;
4813
4814	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4815
4816	/* Account for data blocks for journalled mode */
4817	if (ext4_should_journal_data(inode))
4818		ret += bpp;
4819	return ret;
4820}
4821
4822/*
4823 * Calculate the journal credits for a chunk of data modification.
4824 *
4825 * This is called from DIO, fallocate or whoever calling
4826 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4827 *
4828 * journal buffers for data blocks are not included here, as DIO
4829 * and fallocate do no need to journal data buffers.
4830 */
4831int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4832{
4833	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4834}
4835
4836/*
4837 * The caller must have previously called ext4_reserve_inode_write().
4838 * Give this, we know that the caller already has write access to iloc->bh.
4839 */
4840int ext4_mark_iloc_dirty(handle_t *handle,
4841			 struct inode *inode, struct ext4_iloc *iloc)
4842{
4843	int err = 0;
4844
4845	if (IS_I_VERSION(inode))
4846		inode_inc_iversion(inode);
 
 
 
4847
4848	/* the do_update_inode consumes one bh->b_count */
4849	get_bh(iloc->bh);
4850
4851	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4852	err = ext4_do_update_inode(handle, inode, iloc);
4853	put_bh(iloc->bh);
4854	return err;
4855}
4856
4857/*
4858 * On success, We end up with an outstanding reference count against
4859 * iloc->bh.  This _must_ be cleaned up later.
4860 */
4861
4862int
4863ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
4864			 struct ext4_iloc *iloc)
4865{
4866	int err;
4867
 
 
 
4868	err = ext4_get_inode_loc(inode, iloc);
4869	if (!err) {
4870		BUFFER_TRACE(iloc->bh, "get_write_access");
4871		err = ext4_journal_get_write_access(handle, iloc->bh);
 
4872		if (err) {
4873			brelse(iloc->bh);
4874			iloc->bh = NULL;
4875		}
4876	}
4877	ext4_std_error(inode->i_sb, err);
4878	return err;
4879}
4880
4881/*
4882 * Expand an inode by new_extra_isize bytes.
4883 * Returns 0 on success or negative error number on failure.
4884 */
4885static int ext4_expand_extra_isize(struct inode *inode,
4886				   unsigned int new_extra_isize,
4887				   struct ext4_iloc iloc,
4888				   handle_t *handle)
4889{
4890	struct ext4_inode *raw_inode;
4891	struct ext4_xattr_ibody_header *header;
 
 
 
4892
4893	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
4894		return 0;
 
 
 
 
 
 
 
 
 
 
4895
4896	raw_inode = ext4_raw_inode(&iloc);
4897
4898	header = IHDR(inode, raw_inode);
4899
4900	/* No extended attributes present */
4901	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4902	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
4903		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
4904			new_extra_isize);
 
4905		EXT4_I(inode)->i_extra_isize = new_extra_isize;
4906		return 0;
4907	}
4908
 
 
 
 
 
 
 
 
4909	/* try to expand with EAs present */
4910	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
4911					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4912}
4913
4914/*
4915 * What we do here is to mark the in-core inode as clean with respect to inode
4916 * dirtiness (it may still be data-dirty).
4917 * This means that the in-core inode may be reaped by prune_icache
4918 * without having to perform any I/O.  This is a very good thing,
4919 * because *any* task may call prune_icache - even ones which
4920 * have a transaction open against a different journal.
4921 *
4922 * Is this cheating?  Not really.  Sure, we haven't written the
4923 * inode out, but prune_icache isn't a user-visible syncing function.
4924 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
4925 * we start and wait on commits.
4926 */
4927int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
4928{
4929	struct ext4_iloc iloc;
4930	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4931	static unsigned int mnt_count;
4932	int err, ret;
4933
4934	might_sleep();
4935	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
4936	err = ext4_reserve_inode_write(handle, inode, &iloc);
4937	if (ext4_handle_valid(handle) &&
4938	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
4939	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
4940		/*
4941		 * We need extra buffer credits since we may write into EA block
4942		 * with this same handle. If journal_extend fails, then it will
4943		 * only result in a minor loss of functionality for that inode.
4944		 * If this is felt to be critical, then e2fsck should be run to
4945		 * force a large enough s_min_extra_isize.
4946		 */
4947		if ((jbd2_journal_extend(handle,
4948			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
4949			ret = ext4_expand_extra_isize(inode,
4950						      sbi->s_want_extra_isize,
4951						      iloc, handle);
4952			if (ret) {
4953				ext4_set_inode_state(inode,
4954						     EXT4_STATE_NO_EXPAND);
4955				if (mnt_count !=
4956					le16_to_cpu(sbi->s_es->s_mnt_count)) {
4957					ext4_warning(inode->i_sb,
4958					"Unable to expand inode %lu. Delete"
4959					" some EAs or run e2fsck.",
4960					inode->i_ino);
4961					mnt_count =
4962					  le16_to_cpu(sbi->s_es->s_mnt_count);
4963				}
4964			}
4965		}
4966	}
4967	if (!err)
4968		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
4969	return err;
4970}
4971
4972/*
4973 * ext4_dirty_inode() is called from __mark_inode_dirty()
4974 *
4975 * We're really interested in the case where a file is being extended.
4976 * i_size has been changed by generic_commit_write() and we thus need
4977 * to include the updated inode in the current transaction.
4978 *
4979 * Also, dquot_alloc_block() will always dirty the inode when blocks
4980 * are allocated to the file.
4981 *
4982 * If the inode is marked synchronous, we don't honour that here - doing
4983 * so would cause a commit on atime updates, which we don't bother doing.
4984 * We handle synchronous inodes at the highest possible level.
4985 */
4986void ext4_dirty_inode(struct inode *inode, int flags)
4987{
4988	handle_t *handle;
4989
4990	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
4991	if (IS_ERR(handle))
4992		goto out;
4993
4994	ext4_mark_inode_dirty(handle, inode);
4995
4996	ext4_journal_stop(handle);
4997out:
4998	return;
4999}
5000
5001#if 0
5002/*
5003 * Bind an inode's backing buffer_head into this transaction, to prevent
5004 * it from being flushed to disk early.  Unlike
5005 * ext4_reserve_inode_write, this leaves behind no bh reference and
5006 * returns no iloc structure, so the caller needs to repeat the iloc
5007 * lookup to mark the inode dirty later.
5008 */
5009static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5010{
5011	struct ext4_iloc iloc;
5012
5013	int err = 0;
5014	if (handle) {
5015		err = ext4_get_inode_loc(inode, &iloc);
5016		if (!err) {
5017			BUFFER_TRACE(iloc.bh, "get_write_access");
5018			err = jbd2_journal_get_write_access(handle, iloc.bh);
5019			if (!err)
5020				err = ext4_handle_dirty_metadata(handle,
5021								 NULL,
5022								 iloc.bh);
5023			brelse(iloc.bh);
5024		}
5025	}
5026	ext4_std_error(inode->i_sb, err);
5027	return err;
5028}
5029#endif
5030
5031int ext4_change_inode_journal_flag(struct inode *inode, int val)
5032{
5033	journal_t *journal;
5034	handle_t *handle;
5035	int err;
 
5036
5037	/*
5038	 * We have to be very careful here: changing a data block's
5039	 * journaling status dynamically is dangerous.  If we write a
5040	 * data block to the journal, change the status and then delete
5041	 * that block, we risk forgetting to revoke the old log record
5042	 * from the journal and so a subsequent replay can corrupt data.
5043	 * So, first we make sure that the journal is empty and that
5044	 * nobody is changing anything.
5045	 */
5046
5047	journal = EXT4_JOURNAL(inode);
5048	if (!journal)
5049		return 0;
5050	if (is_journal_aborted(journal))
5051		return -EROFS;
5052	/* We have to allocate physical blocks for delalloc blocks
5053	 * before flushing journal. otherwise delalloc blocks can not
5054	 * be allocated any more. even more truncate on delalloc blocks
5055	 * could trigger BUG by flushing delalloc blocks in journal.
5056	 * There is no delalloc block in non-journal data mode.
5057	 */
5058	if (val && test_opt(inode->i_sb, DELALLOC)) {
5059		err = ext4_alloc_da_blocks(inode);
5060		if (err < 0)
5061			return err;
5062	}
5063
5064	/* Wait for all existing dio workers */
5065	ext4_inode_block_unlocked_dio(inode);
5066	inode_dio_wait(inode);
5067
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5068	jbd2_journal_lock_updates(journal);
5069
5070	/*
5071	 * OK, there are no updates running now, and all cached data is
5072	 * synced to disk.  We are now in a completely consistent state
5073	 * which doesn't have anything in the journal, and we know that
5074	 * no filesystem updates are running, so it is safe to modify
5075	 * the inode's in-core data-journaling state flag now.
5076	 */
5077
5078	if (val)
5079		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5080	else {
5081		jbd2_journal_flush(journal);
 
 
 
 
 
5082		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5083	}
5084	ext4_set_aops(inode);
5085
5086	jbd2_journal_unlock_updates(journal);
5087	ext4_inode_resume_unlocked_dio(inode);
 
 
 
5088
5089	/* Finally we can mark the inode as dirty. */
5090
5091	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5092	if (IS_ERR(handle))
5093		return PTR_ERR(handle);
5094
 
 
5095	err = ext4_mark_inode_dirty(handle, inode);
5096	ext4_handle_sync(handle);
5097	ext4_journal_stop(handle);
5098	ext4_std_error(inode->i_sb, err);
5099
5100	return err;
5101}
5102
5103static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
 
5104{
5105	return !buffer_mapped(bh);
5106}
5107
5108int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5109{
5110	struct page *page = vmf->page;
 
5111	loff_t size;
5112	unsigned long len;
5113	int ret;
 
5114	struct file *file = vma->vm_file;
5115	struct inode *inode = file_inode(file);
5116	struct address_space *mapping = inode->i_mapping;
5117	handle_t *handle;
5118	get_block_t *get_block;
5119	int retries = 0;
5120
 
 
 
5121	sb_start_pagefault(inode->i_sb);
5122	file_update_time(vma->vm_file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5123	/* Delalloc case is easy... */
5124	if (test_opt(inode->i_sb, DELALLOC) &&
5125	    !ext4_should_journal_data(inode) &&
5126	    !ext4_nonda_switch(inode->i_sb)) {
5127		do {
5128			ret = __block_page_mkwrite(vma, vmf,
5129						   ext4_da_get_block_prep);
5130		} while (ret == -ENOSPC &&
5131		       ext4_should_retry_alloc(inode->i_sb, &retries));
5132		goto out_ret;
5133	}
5134
5135	lock_page(page);
5136	size = i_size_read(inode);
5137	/* Page got truncated from under us? */
5138	if (page->mapping != mapping || page_offset(page) > size) {
5139		unlock_page(page);
5140		ret = VM_FAULT_NOPAGE;
5141		goto out;
5142	}
5143
5144	if (page->index == size >> PAGE_CACHE_SHIFT)
5145		len = size & ~PAGE_CACHE_MASK;
5146	else
5147		len = PAGE_CACHE_SIZE;
5148	/*
5149	 * Return if we have all the buffers mapped. This avoids the need to do
5150	 * journal_start/journal_stop which can block and take a long time
 
 
 
5151	 */
5152	if (page_has_buffers(page)) {
5153		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5154					    0, len, NULL,
5155					    ext4_bh_unmapped)) {
5156			/* Wait so that we don't change page under IO */
5157			wait_for_stable_page(page);
5158			ret = VM_FAULT_LOCKED;
5159			goto out;
5160		}
5161	}
5162	unlock_page(page);
5163	/* OK, we need to fill the hole... */
5164	if (ext4_should_dioread_nolock(inode))
5165		get_block = ext4_get_block_write;
5166	else
5167		get_block = ext4_get_block;
5168retry_alloc:
5169	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5170				    ext4_writepage_trans_blocks(inode));
5171	if (IS_ERR(handle)) {
5172		ret = VM_FAULT_SIGBUS;
5173		goto out;
5174	}
5175	ret = __block_page_mkwrite(vma, vmf, get_block);
5176	if (!ret && ext4_should_journal_data(inode)) {
5177		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5178			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5179			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5180			ret = VM_FAULT_SIGBUS;
5181			ext4_journal_stop(handle);
5182			goto out;
 
 
5183		}
5184		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5185	}
5186	ext4_journal_stop(handle);
5187	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5188		goto retry_alloc;
5189out_ret:
5190	ret = block_page_mkwrite_return(ret);
5191out:
 
5192	sb_end_pagefault(inode->i_sb);
5193	return ret;
 
 
 
 
5194}