Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
 
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "bio.h"
  23#include "locking.h"
  24#include "backref.h"
  25#include "disk-io.h"
  26#include "subpage.h"
  27#include "zoned.h"
  28#include "block-group.h"
  29#include "compression.h"
  30#include "fs.h"
  31#include "accessors.h"
  32#include "file-item.h"
  33#include "file.h"
  34#include "dev-replace.h"
  35#include "super.h"
  36#include "transaction.h"
  37
 
  38static struct kmem_cache *extent_buffer_cache;
  39
  40#ifdef CONFIG_BTRFS_DEBUG
  41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
  42{
  43	struct btrfs_fs_info *fs_info = eb->fs_info;
  44	unsigned long flags;
  45
  46	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  47	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  48	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  49}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  50
  51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 
 
 
 
  52{
  53	struct btrfs_fs_info *fs_info = eb->fs_info;
  54	unsigned long flags;
 
 
 
  55
  56	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  57	list_del(&eb->leak_list);
  58	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
 
 
 
 
  59}
  60
  61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  62{
 
  63	struct extent_buffer *eb;
  64	unsigned long flags;
  65
  66	/*
  67	 * If we didn't get into open_ctree our allocated_ebs will not be
  68	 * initialized, so just skip this.
  69	 */
  70	if (!fs_info->allocated_ebs.next)
  71		return;
 
 
 
  72
  73	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  74	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  75	while (!list_empty(&fs_info->allocated_ebs)) {
  76		eb = list_first_entry(&fs_info->allocated_ebs,
  77				      struct extent_buffer, leak_list);
  78		pr_err(
  79	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
  80		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  81		       btrfs_header_owner(eb));
  82		list_del(&eb->leak_list);
  83		WARN_ON_ONCE(1);
  84		kmem_cache_free(extent_buffer_cache, eb);
  85	}
  86	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
 
 
 
  87}
  88#else
  89#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  90#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
  91#endif
  92
  93/*
  94 * Structure to record info about the bio being assembled, and other info like
  95 * how many bytes are there before stripe/ordered extent boundary.
  96 */
  97struct btrfs_bio_ctrl {
  98	struct btrfs_bio *bbio;
  99	enum btrfs_compression_type compress_type;
 100	u32 len_to_oe_boundary;
 101	blk_opf_t opf;
 102	btrfs_bio_end_io_t end_io_func;
 103	struct writeback_control *wbc;
 104
 105	/*
 106	 * The sectors of the page which are going to be submitted by
 107	 * extent_writepage_io().
 108	 * This is to avoid touching ranges covered by compression/inline.
 109	 */
 110	unsigned long submit_bitmap;
 111};
 112
 113static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 114{
 115	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 
 
 116
 117	if (!bbio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 118		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120	/* Caller should ensure the bio has at least some range added */
 121	ASSERT(bbio->bio.bi_iter.bi_size);
 
 
 
 
 122
 123	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 124	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 125		btrfs_submit_compressed_read(bbio);
 126	else
 127		btrfs_submit_bbio(bbio, 0);
 128
 129	/* The bbio is owned by the end_io handler now */
 130	bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 131}
 132
 133/*
 134 * Submit or fail the current bio in the bio_ctrl structure.
 135 */
 136static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 137{
 138	struct btrfs_bio *bbio = bio_ctrl->bbio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 139
 140	if (!bbio)
 141		return;
 
 
 
 
 
 
 
 142
 143	if (ret) {
 144		ASSERT(ret < 0);
 145		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 146		/* The bio is owned by the end_io handler now */
 147		bio_ctrl->bbio = NULL;
 148	} else {
 149		submit_one_bio(bio_ctrl);
 150	}
 
 151}
 152
 153int __init extent_buffer_init_cachep(void)
 
 154{
 155	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 156						sizeof(struct extent_buffer), 0, 0,
 157						NULL);
 158	if (!extent_buffer_cache)
 159		return -ENOMEM;
 160
 161	return 0;
 
 
 
 162}
 163
 164void __cold extent_buffer_free_cachep(void)
 
 165{
 166	/*
 167	 * Make sure all delayed rcu free are flushed before we
 168	 * destroy caches.
 169	 */
 170	rcu_barrier();
 171	kmem_cache_destroy(extent_buffer_cache);
 172}
 173
 174static void process_one_folio(struct btrfs_fs_info *fs_info,
 175			      struct folio *folio, const struct folio *locked_folio,
 176			      unsigned long page_ops, u64 start, u64 end)
 
 
 
 
 
 
 
 
 177{
 178	u32 len;
 
 179
 180	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 181	len = end + 1 - start;
 182
 183	if (page_ops & PAGE_SET_ORDERED)
 184		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 185	if (page_ops & PAGE_START_WRITEBACK) {
 186		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 187		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 188	}
 189	if (page_ops & PAGE_END_WRITEBACK)
 190		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 191
 192	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
 193		btrfs_folio_end_lock(fs_info, folio, start, len);
 
 
 
 194}
 195
 196static void __process_folios_contig(struct address_space *mapping,
 197				    const struct folio *locked_folio, u64 start,
 198				    u64 end, unsigned long page_ops)
 199{
 200	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 201	pgoff_t start_index = start >> PAGE_SHIFT;
 202	pgoff_t end_index = end >> PAGE_SHIFT;
 203	pgoff_t index = start_index;
 204	struct folio_batch fbatch;
 205	int i;
 206
 207	folio_batch_init(&fbatch);
 208	while (index <= end_index) {
 209		int found_folios;
 210
 211		found_folios = filemap_get_folios_contig(mapping, &index,
 212				end_index, &fbatch);
 213		for (i = 0; i < found_folios; i++) {
 214			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 215
 216			process_one_folio(fs_info, folio, locked_folio,
 217					  page_ops, start, end);
 218		}
 219		folio_batch_release(&fbatch);
 220		cond_resched();
 221	}
 222}
 
 223
 224static noinline void __unlock_for_delalloc(const struct inode *inode,
 225					   const struct folio *locked_folio,
 226					   u64 start, u64 end)
 227{
 228	unsigned long index = start >> PAGE_SHIFT;
 229	unsigned long end_index = end >> PAGE_SHIFT;
 230
 231	ASSERT(locked_folio);
 232	if (index == locked_folio->index && end_index == index)
 233		return;
 234
 235	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
 236				PAGE_UNLOCK);
 
 
 
 
 
 
 
 237}
 238
 239static noinline int lock_delalloc_folios(struct inode *inode,
 240					 const struct folio *locked_folio,
 241					 u64 start, u64 end)
 242{
 243	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 244	struct address_space *mapping = inode->i_mapping;
 245	pgoff_t start_index = start >> PAGE_SHIFT;
 246	pgoff_t end_index = end >> PAGE_SHIFT;
 247	pgoff_t index = start_index;
 248	u64 processed_end = start;
 249	struct folio_batch fbatch;
 250
 251	if (index == locked_folio->index && index == end_index)
 252		return 0;
 253
 254	folio_batch_init(&fbatch);
 255	while (index <= end_index) {
 256		unsigned int found_folios, i;
 257
 258		found_folios = filemap_get_folios_contig(mapping, &index,
 259				end_index, &fbatch);
 260		if (found_folios == 0)
 261			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262
 263		for (i = 0; i < found_folios; i++) {
 264			struct folio *folio = fbatch.folios[i];
 265			u64 range_start;
 266			u32 range_len;
 267
 268			if (folio == locked_folio)
 269				continue;
 
 
 270
 271			folio_lock(folio);
 272			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
 273				folio_unlock(folio);
 274				goto out;
 275			}
 276			range_start = max_t(u64, folio_pos(folio), start);
 277			range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
 278					  end + 1) - range_start;
 279			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
 280
 281			processed_end = range_start + range_len - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 282		}
 283		folio_batch_release(&fbatch);
 284		cond_resched();
 285	}
 
 
 286
 287	return 0;
 288out:
 289	folio_batch_release(&fbatch);
 290	if (processed_end > start)
 291		__unlock_for_delalloc(inode, locked_folio, start,
 292				      processed_end);
 293	return -EAGAIN;
 294}
 295
 296/*
 297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 298 * more than @max_bytes.
 
 299 *
 300 * @start:	The original start bytenr to search.
 301 *		Will store the extent range start bytenr.
 302 * @end:	The original end bytenr of the search range
 303 *		Will store the extent range end bytenr.
 304 *
 305 * Return true if we find a delalloc range which starts inside the original
 306 * range, and @start/@end will store the delalloc range start/end.
 307 *
 308 * Return false if we can't find any delalloc range which starts inside the
 309 * original range, and @start/@end will be the non-delalloc range start/end.
 310 */
 311EXPORT_FOR_TESTS
 312noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 313						 struct folio *locked_folio,
 314						 u64 *start, u64 *end)
 315{
 316	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 317	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 318	const u64 orig_start = *start;
 319	const u64 orig_end = *end;
 320	/* The sanity tests may not set a valid fs_info. */
 321	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 322	u64 delalloc_start;
 323	u64 delalloc_end;
 324	bool found;
 325	struct extent_state *cached_state = NULL;
 326	int ret;
 327	int loops = 0;
 328
 329	/* Caller should pass a valid @end to indicate the search range end */
 330	ASSERT(orig_end > orig_start);
 
 331
 332	/* The range should at least cover part of the folio */
 333	ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
 334		 orig_end <= folio_pos(locked_folio)));
 335again:
 336	/* step one, find a bunch of delalloc bytes starting at start */
 337	delalloc_start = *start;
 338	delalloc_end = 0;
 339	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 340					  max_bytes, &cached_state);
 341	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 342		*start = delalloc_start;
 343
 344		/* @delalloc_end can be -1, never go beyond @orig_end */
 345		*end = min(delalloc_end, orig_end);
 346		free_extent_state(cached_state);
 347		return false;
 348	}
 349
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350	/*
 351	 * start comes from the offset of locked_folio.  We have to lock
 352	 * folios in order, so we can't process delalloc bytes before
 353	 * locked_folio
 354	 */
 355	if (delalloc_start < *start)
 356		delalloc_start = *start;
 
 
 
 
 
 
 
 357
 358	/*
 359	 * make sure to limit the number of folios we try to lock down
 
 
 
 
 
 
 
 
 
 
 
 
 360	 */
 361	if (delalloc_end + 1 - delalloc_start > max_bytes)
 362		delalloc_end = delalloc_start + max_bytes - 1;
 363
 364	/* step two, lock all the folioss after the folios that has start */
 365	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
 366				   delalloc_end);
 367	ASSERT(!ret || ret == -EAGAIN);
 368	if (ret == -EAGAIN) {
 369		/* some of the folios are gone, lets avoid looping by
 370		 * shortening the size of the delalloc range we're searching
 371		 */
 372		free_extent_state(cached_state);
 373		cached_state = NULL;
 374		if (!loops) {
 375			max_bytes = PAGE_SIZE;
 376			loops = 1;
 377			goto again;
 378		} else {
 379			found = false;
 380			goto out_failed;
 381		}
 
 382	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 383
 384	/* step three, lock the state bits for the whole range */
 385	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 386
 387	/* then test to make sure it is all still delalloc */
 388	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 389			     EXTENT_DELALLOC, cached_state);
 390
 391	unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 392	if (!ret) {
 393		__unlock_for_delalloc(inode, locked_folio, delalloc_start,
 394				      delalloc_end);
 395		cond_resched();
 396		goto again;
 397	}
 398	*start = delalloc_start;
 399	*end = delalloc_end;
 400out_failed:
 401	return found;
 402}
 403
 404void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 405				  const struct folio *locked_folio,
 406				  struct extent_state **cached,
 407				  u32 clear_bits, unsigned long page_ops)
 408{
 409	clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
 410
 411	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
 412				end, page_ops);
 413}
 414
 415static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
 416{
 417	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 418
 419	if (!fsverity_active(folio->mapping->host) ||
 420	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
 421	    start >= i_size_read(folio->mapping->host))
 422		return true;
 423	return fsverity_verify_folio(folio);
 424}
 425
 426static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
 427{
 428	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 429
 430	ASSERT(folio_pos(folio) <= start &&
 431	       start + len <= folio_pos(folio) + PAGE_SIZE);
 432
 433	if (uptodate && btrfs_verify_folio(folio, start, len))
 434		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 435	else
 436		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 437
 438	if (!btrfs_is_subpage(fs_info, folio->mapping))
 439		folio_unlock(folio);
 440	else
 441		btrfs_folio_end_lock(fs_info, folio, start, len);
 442}
 443
 444/*
 445 * After a write IO is done, we need to:
 446 *
 447 * - clear the uptodate bits on error
 448 * - clear the writeback bits in the extent tree for the range
 449 * - filio_end_writeback()  if there is no more pending io for the folio
 450 *
 451 * Scheduling is not allowed, so the extent state tree is expected
 452 * to have one and only one object corresponding to this IO.
 453 */
 454static void end_bbio_data_write(struct btrfs_bio *bbio)
 455{
 456	struct btrfs_fs_info *fs_info = bbio->fs_info;
 457	struct bio *bio = &bbio->bio;
 458	int error = blk_status_to_errno(bio->bi_status);
 459	struct folio_iter fi;
 460	const u32 sectorsize = fs_info->sectorsize;
 461
 462	ASSERT(!bio_flagged(bio, BIO_CLONED));
 463	bio_for_each_folio_all(fi, bio) {
 464		struct folio *folio = fi.folio;
 465		u64 start = folio_pos(folio) + fi.offset;
 466		u32 len = fi.length;
 467
 468		/* Only order 0 (single page) folios are allowed for data. */
 469		ASSERT(folio_order(folio) == 0);
 470
 471		/* Our read/write should always be sector aligned. */
 472		if (!IS_ALIGNED(fi.offset, sectorsize))
 473			btrfs_err(fs_info,
 474		"partial page write in btrfs with offset %zu and length %zu",
 475				  fi.offset, fi.length);
 476		else if (!IS_ALIGNED(fi.length, sectorsize))
 477			btrfs_info(fs_info,
 478		"incomplete page write with offset %zu and length %zu",
 479				   fi.offset, fi.length);
 480
 481		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
 482					    !error);
 483		if (error)
 484			mapping_set_error(folio->mapping, error);
 485		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 486	}
 
 487
 488	bio_put(bio);
 489}
 
 
 490
 491static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
 492{
 493	ASSERT(folio_test_locked(folio));
 494	if (!btrfs_is_subpage(fs_info, folio->mapping))
 495		return;
 496
 497	ASSERT(folio_test_private(folio));
 498	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 499}
 500
 501/*
 502 * After a data read IO is done, we need to:
 503 *
 504 * - clear the uptodate bits on error
 505 * - set the uptodate bits if things worked
 506 * - set the folio up to date if all extents in the tree are uptodate
 507 * - clear the lock bit in the extent tree
 508 * - unlock the folio if there are no other extents locked for it
 509 *
 510 * Scheduling is not allowed, so the extent state tree is expected
 511 * to have one and only one object corresponding to this IO.
 512 */
 513static void end_bbio_data_read(struct btrfs_bio *bbio)
 514{
 515	struct btrfs_fs_info *fs_info = bbio->fs_info;
 516	struct bio *bio = &bbio->bio;
 517	struct folio_iter fi;
 518	const u32 sectorsize = fs_info->sectorsize;
 519
 520	ASSERT(!bio_flagged(bio, BIO_CLONED));
 521	bio_for_each_folio_all(fi, &bbio->bio) {
 522		bool uptodate = !bio->bi_status;
 523		struct folio *folio = fi.folio;
 524		struct inode *inode = folio->mapping->host;
 525		u64 start;
 526		u64 end;
 527		u32 len;
 528
 529		/* For now only order 0 folios are supported for data. */
 530		ASSERT(folio_order(folio) == 0);
 531		btrfs_debug(fs_info,
 532			"%s: bi_sector=%llu, err=%d, mirror=%u",
 533			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 534			bbio->mirror_num);
 535
 
 
 
 536		/*
 537		 * We always issue full-sector reads, but if some block in a
 538		 * folio fails to read, blk_update_request() will advance
 539		 * bv_offset and adjust bv_len to compensate.  Print a warning
 540		 * for unaligned offsets, and an error if they don't add up to
 541		 * a full sector.
 542		 */
 543		if (!IS_ALIGNED(fi.offset, sectorsize))
 544			btrfs_err(fs_info,
 545		"partial page read in btrfs with offset %zu and length %zu",
 546				  fi.offset, fi.length);
 547		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 548			btrfs_info(fs_info,
 549		"incomplete page read with offset %zu and length %zu",
 550				   fi.offset, fi.length);
 551
 552		start = folio_pos(folio) + fi.offset;
 553		end = start + fi.length - 1;
 554		len = fi.length;
 555
 556		if (likely(uptodate)) {
 557			loff_t i_size = i_size_read(inode);
 558			pgoff_t end_index = i_size >> folio_shift(folio);
 559
 560			/*
 561			 * Zero out the remaining part if this range straddles
 562			 * i_size.
 563			 *
 564			 * Here we should only zero the range inside the folio,
 565			 * not touch anything else.
 566			 *
 567			 * NOTE: i_size is exclusive while end is inclusive.
 568			 */
 569			if (folio_index(folio) == end_index && i_size <= end) {
 570				u32 zero_start = max(offset_in_folio(folio, i_size),
 571						     offset_in_folio(folio, start));
 572				u32 zero_len = offset_in_folio(folio, end) + 1 -
 573					       zero_start;
 574
 575				folio_zero_range(folio, zero_start, zero_len);
 576			}
 
 
 
 
 
 
 
 577		}
 
 578
 579		/* Update page status and unlock. */
 580		end_folio_read(folio, uptodate, start, len);
 581	}
 582	bio_put(bio);
 583}
 584
 585/*
 586 * Populate every free slot in a provided array with folios using GFP_NOFS.
 587 *
 588 * @nr_folios:   number of folios to allocate
 589 * @folio_array: the array to fill with folios; any existing non-NULL entries in
 590 *		 the array will be skipped
 591 *
 592 * Return: 0        if all folios were able to be allocated;
 593 *         -ENOMEM  otherwise, the partially allocated folios would be freed and
 594 *                  the array slots zeroed
 595 */
 596int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
 597{
 598	for (int i = 0; i < nr_folios; i++) {
 599		if (folio_array[i])
 600			continue;
 601		folio_array[i] = folio_alloc(GFP_NOFS, 0);
 602		if (!folio_array[i])
 603			goto error;
 604	}
 
 
 605	return 0;
 606error:
 607	for (int i = 0; i < nr_folios; i++) {
 608		if (folio_array[i])
 609			folio_put(folio_array[i]);
 610	}
 611	return -ENOMEM;
 612}
 613
 614/*
 615 * Populate every free slot in a provided array with pages, using GFP_NOFS.
 616 *
 617 * @nr_pages:   number of pages to allocate
 618 * @page_array: the array to fill with pages; any existing non-null entries in
 619 *		the array will be skipped
 620 * @nofail:	whether using __GFP_NOFAIL flag
 621 *
 622 * Return: 0        if all pages were able to be allocated;
 623 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 624 *                  the array slots zeroed
 625 */
 626int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 627			   bool nofail)
 628{
 629	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
 630	unsigned int allocated;
 631
 632	for (allocated = 0; allocated < nr_pages;) {
 633		unsigned int last = allocated;
 
 
 
 
 
 634
 635		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
 636		if (unlikely(allocated == last)) {
 637			/* No progress, fail and do cleanup. */
 638			for (int i = 0; i < allocated; i++) {
 639				__free_page(page_array[i]);
 640				page_array[i] = NULL;
 641			}
 642			return -ENOMEM;
 643		}
 644	}
 645	return 0;
 
 
 
 
 
 
 
 
 646}
 647
 648/*
 649 * Populate needed folios for the extent buffer.
 
 
 
 
 
 650 *
 651 * For now, the folios populated are always in order 0 (aka, single page).
 652 */
 653static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
 
 
 
 654{
 655	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 656	int num_pages = num_extent_pages(eb);
 657	int ret;
 
 
 
 658
 659	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
 660	if (ret < 0)
 661		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662
 663	for (int i = 0; i < num_pages; i++)
 664		eb->folios[i] = page_folio(page_array[i]);
 665	eb->folio_size = PAGE_SIZE;
 666	eb->folio_shift = PAGE_SHIFT;
 667	return 0;
 668}
 669
 670static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 671				struct folio *folio, u64 disk_bytenr,
 672				unsigned int pg_offset)
 673{
 674	struct bio *bio = &bio_ctrl->bbio->bio;
 675	struct bio_vec *bvec = bio_last_bvec_all(bio);
 676	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 677	struct folio *bv_folio = page_folio(bvec->bv_page);
 678
 679	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 680		/*
 681		 * For compression, all IO should have its logical bytenr set
 682		 * to the starting bytenr of the compressed extent.
 683		 */
 684		return bio->bi_iter.bi_sector == sector;
 
 
 
 685	}
 686
 687	/*
 688	 * The contig check requires the following conditions to be met:
 
 
 
 689	 *
 690	 * 1) The folios are belonging to the same inode
 691	 *    This is implied by the call chain.
 692	 *
 693	 * 2) The range has adjacent logical bytenr
 
 
 694	 *
 695	 * 3) The range has adjacent file offset
 696	 *    This is required for the usage of btrfs_bio->file_offset.
 697	 */
 698	return bio_end_sector(bio) == sector &&
 699		folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
 700		folio_pos(folio) + pg_offset;
 701}
 702
 703static void alloc_new_bio(struct btrfs_inode *inode,
 704			  struct btrfs_bio_ctrl *bio_ctrl,
 705			  u64 disk_bytenr, u64 file_offset)
 706{
 707	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 708	struct btrfs_bio *bbio;
 709
 710	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 711			       bio_ctrl->end_io_func, NULL);
 712	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 713	bbio->inode = inode;
 714	bbio->file_offset = file_offset;
 715	bio_ctrl->bbio = bbio;
 716	bio_ctrl->len_to_oe_boundary = U32_MAX;
 717
 718	/* Limit data write bios to the ordered boundary. */
 719	if (bio_ctrl->wbc) {
 720		struct btrfs_ordered_extent *ordered;
 721
 722		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 723		if (ordered) {
 724			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 725					ordered->file_offset +
 726					ordered->disk_num_bytes - file_offset);
 727			bbio->ordered = ordered;
 728		}
 729
 730		/*
 731		 * Pick the last added device to support cgroup writeback.  For
 732		 * multi-device file systems this means blk-cgroup policies have
 733		 * to always be set on the last added/replaced device.
 734		 * This is a bit odd but has been like that for a long time.
 735		 */
 736		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 737		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 
 
 
 
 
 
 
 
 738	}
 739}
 740
 741/*
 742 * @disk_bytenr: logical bytenr where the write will be
 743 * @page:	page to add to the bio
 744 * @size:	portion of page that we want to write to
 745 * @pg_offset:	offset of the new bio or to check whether we are adding
 746 *              a contiguous page to the previous one
 747 *
 748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 749 * new one in @bio_ctrl->bbio.
 750 * The mirror number for this IO should already be initizlied in
 751 * @bio_ctrl->mirror_num.
 752 */
 753static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
 754			       u64 disk_bytenr, struct folio *folio,
 755			       size_t size, unsigned long pg_offset)
 756{
 757	struct btrfs_inode *inode = folio_to_inode(folio);
 758
 759	ASSERT(pg_offset + size <= PAGE_SIZE);
 760	ASSERT(bio_ctrl->end_io_func);
 761
 762	if (bio_ctrl->bbio &&
 763	    !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
 764		submit_one_bio(bio_ctrl);
 765
 766	do {
 767		u32 len = size;
 768
 769		/* Allocate new bio if needed */
 770		if (!bio_ctrl->bbio) {
 771			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 772				      folio_pos(folio) + pg_offset);
 
 
 
 
 
 
 
 773		}
 774
 775		/* Cap to the current ordered extent boundary if there is one. */
 776		if (len > bio_ctrl->len_to_oe_boundary) {
 777			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 778			ASSERT(is_data_inode(inode));
 779			len = bio_ctrl->len_to_oe_boundary;
 
 
 
 
 
 
 
 
 
 
 780		}
 781
 782		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
 783			/* bio full: move on to a new one */
 784			submit_one_bio(bio_ctrl);
 785			continue;
 786		}
 
 
 
 
 
 
 787
 788		if (bio_ctrl->wbc)
 789			wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
 790						 len);
 791
 792		size -= len;
 793		pg_offset += len;
 794		disk_bytenr += len;
 795
 796		/*
 797		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
 798		 * sector aligned.  alloc_new_bio() then sets it to the end of
 799		 * our ordered extent for writes into zoned devices.
 800		 *
 801		 * When len_to_oe_boundary is tracking an ordered extent, we
 802		 * trust the ordered extent code to align things properly, and
 803		 * the check above to cap our write to the ordered extent
 804		 * boundary is correct.
 805		 *
 806		 * When len_to_oe_boundary is U32_MAX, the cap above would
 807		 * result in a 4095 byte IO for the last folio right before
 808		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
 809		 * the checks required to make sure we don't overflow the bio,
 810		 * and we should just ignore len_to_oe_boundary completely
 811		 * unless we're using it to track an ordered extent.
 812		 *
 813		 * It's pretty hard to make a bio sized U32_MAX, but it can
 814		 * happen when the page cache is able to feed us contiguous
 815		 * folios for large extents.
 816		 */
 817		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 818			bio_ctrl->len_to_oe_boundary -= len;
 819
 820		/* Ordered extent boundary: move on to a new bio. */
 821		if (bio_ctrl->len_to_oe_boundary == 0)
 822			submit_one_bio(bio_ctrl);
 823	} while (size);
 
 
 
 
 
 824}
 825
 826static int attach_extent_buffer_folio(struct extent_buffer *eb,
 827				      struct folio *folio,
 828				      struct btrfs_subpage *prealloc)
 829{
 830	struct btrfs_fs_info *fs_info = eb->fs_info;
 831	int ret = 0;
 
 832
 833	/*
 834	 * If the page is mapped to btree inode, we should hold the private
 835	 * lock to prevent race.
 836	 * For cloned or dummy extent buffers, their pages are not mapped and
 837	 * will not race with any other ebs.
 838	 */
 839	if (folio->mapping)
 840		lockdep_assert_held(&folio->mapping->i_private_lock);
 841
 842	if (fs_info->nodesize >= PAGE_SIZE) {
 843		if (!folio_test_private(folio))
 844			folio_attach_private(folio, eb);
 845		else
 846			WARN_ON(folio_get_private(folio) != eb);
 847		return 0;
 848	}
 849
 850	/* Already mapped, just free prealloc */
 851	if (folio_test_private(folio)) {
 852		btrfs_free_subpage(prealloc);
 853		return 0;
 854	}
 
 
 855
 856	if (prealloc)
 857		/* Has preallocated memory for subpage */
 858		folio_attach_private(folio, prealloc);
 859	else
 860		/* Do new allocation to attach subpage */
 861		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 862	return ret;
 863}
 864
 865int set_page_extent_mapped(struct page *page)
 
 866{
 867	return set_folio_extent_mapped(page_folio(page));
 
 868}
 869
 870int set_folio_extent_mapped(struct folio *folio)
 
 871{
 872	struct btrfs_fs_info *fs_info;
 
 
 873
 874	ASSERT(folio->mapping);
 
 
 
 
 
 
 875
 876	if (folio_test_private(folio))
 877		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878
 879	fs_info = folio_to_fs_info(folio);
 
 
 
 880
 881	if (btrfs_is_subpage(fs_info, folio->mapping))
 882		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 
 
 
 883
 884	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 885	return 0;
 
 
 
 
 
 
 
 886}
 887
 888void clear_folio_extent_mapped(struct folio *folio)
 
 889{
 890	struct btrfs_fs_info *fs_info;
 891
 892	ASSERT(folio->mapping);
 893
 894	if (!folio_test_private(folio))
 895		return;
 
 
 
 896
 897	fs_info = folio_to_fs_info(folio);
 898	if (btrfs_is_subpage(fs_info, folio->mapping))
 899		return btrfs_detach_subpage(fs_info, folio);
 
 
 
 
 
 900
 901	folio_detach_private(folio);
 
 
 
 
 
 
 
 902}
 903
 904static struct extent_map *get_extent_map(struct btrfs_inode *inode,
 905					 struct folio *folio, u64 start,
 906					 u64 len, struct extent_map **em_cached)
 
 
 
 907{
 908	struct extent_map *em;
 
 909
 910	ASSERT(em_cached);
 
 
 
 
 
 
 911
 912	if (*em_cached) {
 913		em = *em_cached;
 914		if (extent_map_in_tree(em) && start >= em->start &&
 915		    start < extent_map_end(em)) {
 916			refcount_inc(&em->refs);
 917			return em;
 918		}
 919
 920		free_extent_map(em);
 921		*em_cached = NULL;
 
 922	}
 
 
 
 923
 924	em = btrfs_get_extent(inode, folio, start, len);
 925	if (!IS_ERR(em)) {
 926		BUG_ON(*em_cached);
 927		refcount_inc(&em->refs);
 928		*em_cached = em;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 929	}
 930
 931	return em;
 932}
 
 933/*
 934 * basic readpage implementation.  Locked extent state structs are inserted
 935 * into the tree that are removed when the IO is done (by the end_io
 936 * handlers)
 937 * XXX JDM: This needs looking at to ensure proper page locking
 938 * return 0 on success, otherwise return error
 939 */
 940static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
 941		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 
 942{
 943	struct inode *inode = folio->mapping->host;
 944	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 945	u64 start = folio_pos(folio);
 946	const u64 end = start + PAGE_SIZE - 1;
 947	u64 cur = start;
 948	u64 extent_offset;
 949	u64 last_byte = i_size_read(inode);
 950	u64 block_start;
 951	struct extent_map *em;
 952	int ret = 0;
 953	size_t pg_offset = 0;
 954	size_t iosize;
 955	size_t blocksize = fs_info->sectorsize;
 956
 957	ret = set_folio_extent_mapped(folio);
 958	if (ret < 0) {
 959		folio_unlock(folio);
 960		return ret;
 961	}
 962
 963	if (folio->index == last_byte >> folio_shift(folio)) {
 964		size_t zero_offset = offset_in_folio(folio, last_byte);
 965
 966		if (zero_offset) {
 967			iosize = folio_size(folio) - zero_offset;
 968			folio_zero_range(folio, zero_offset, iosize);
 969		}
 
 
 
 
 
 970	}
 971	bio_ctrl->end_io_func = end_bbio_data_read;
 972	begin_folio_read(fs_info, folio);
 973	while (cur <= end) {
 974		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
 975		bool force_bio_submit = false;
 976		u64 disk_bytenr;
 977
 978		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
 979		if (cur >= last_byte) {
 980			iosize = folio_size(folio) - pg_offset;
 981			folio_zero_range(folio, pg_offset, iosize);
 982			end_folio_read(folio, true, cur, iosize);
 983			break;
 984		}
 985		em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
 986		if (IS_ERR(em)) {
 987			end_folio_read(folio, false, cur, end + 1 - cur);
 988			return PTR_ERR(em);
 989		}
 990		extent_offset = cur - em->start;
 991		BUG_ON(extent_map_end(em) <= cur);
 992		BUG_ON(end < cur);
 993
 994		compress_type = extent_map_compression(em);
 995
 996		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 997		iosize = ALIGN(iosize, blocksize);
 998		if (compress_type != BTRFS_COMPRESS_NONE)
 999			disk_bytenr = em->disk_bytenr;
1000		else
1001			disk_bytenr = extent_map_block_start(em) + extent_offset;
1002		block_start = extent_map_block_start(em);
1003		if (em->flags & EXTENT_FLAG_PREALLOC)
1004			block_start = EXTENT_MAP_HOLE;
1005
1006		/*
1007		 * If we have a file range that points to a compressed extent
1008		 * and it's followed by a consecutive file range that points
1009		 * to the same compressed extent (possibly with a different
1010		 * offset and/or length, so it either points to the whole extent
1011		 * or only part of it), we must make sure we do not submit a
1012		 * single bio to populate the folios for the 2 ranges because
1013		 * this makes the compressed extent read zero out the folios
1014		 * belonging to the 2nd range. Imagine the following scenario:
1015		 *
1016		 *  File layout
1017		 *  [0 - 8K]                     [8K - 24K]
1018		 *    |                               |
1019		 *    |                               |
1020		 * points to extent X,         points to extent X,
1021		 * offset 4K, length of 8K     offset 0, length 16K
1022		 *
1023		 * [extent X, compressed length = 4K uncompressed length = 16K]
1024		 *
1025		 * If the bio to read the compressed extent covers both ranges,
1026		 * it will decompress extent X into the folios belonging to the
1027		 * first range and then it will stop, zeroing out the remaining
1028		 * folios that belong to the other range that points to extent X.
1029		 * So here we make sure we submit 2 bios, one for the first
1030		 * range and another one for the third range. Both will target
1031		 * the same physical extent from disk, but we can't currently
1032		 * make the compressed bio endio callback populate the folios
1033		 * for both ranges because each compressed bio is tightly
1034		 * coupled with a single extent map, and each range can have
1035		 * an extent map with a different offset value relative to the
1036		 * uncompressed data of our extent and different lengths. This
1037		 * is a corner case so we prioritize correctness over
1038		 * non-optimal behavior (submitting 2 bios for the same extent).
1039		 */
1040		if (compress_type != BTRFS_COMPRESS_NONE &&
1041		    prev_em_start && *prev_em_start != (u64)-1 &&
1042		    *prev_em_start != em->start)
1043			force_bio_submit = true;
1044
1045		if (prev_em_start)
1046			*prev_em_start = em->start;
1047
1048		free_extent_map(em);
1049		em = NULL;
1050
1051		/* we've found a hole, just zero and go on */
1052		if (block_start == EXTENT_MAP_HOLE) {
1053			folio_zero_range(folio, pg_offset, iosize);
 
 
 
 
 
 
 
1054
1055			end_folio_read(folio, true, cur, iosize);
1056			cur = cur + iosize;
1057			pg_offset += iosize;
1058			continue;
1059		}
1060		/* the get_extent function already copied into the folio */
1061		if (block_start == EXTENT_MAP_INLINE) {
1062			end_folio_read(folio, true, cur, iosize);
1063			cur = cur + iosize;
1064			pg_offset += iosize;
1065			continue;
1066		}
1067
1068		if (bio_ctrl->compress_type != compress_type) {
1069			submit_one_bio(bio_ctrl);
1070			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
1071		}
1072
1073		if (force_bio_submit)
1074			submit_one_bio(bio_ctrl);
1075		submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1076				    pg_offset);
1077		cur = cur + iosize;
1078		pg_offset += iosize;
1079	}
1080
1081	return 0;
1082}
1083
1084int btrfs_read_folio(struct file *file, struct folio *folio)
1085{
1086	struct btrfs_inode *inode = folio_to_inode(folio);
1087	const u64 start = folio_pos(folio);
1088	const u64 end = start + folio_size(folio) - 1;
1089	struct extent_state *cached_state = NULL;
1090	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091	struct extent_map *em_cached = NULL;
 
 
 
1092	int ret;
 
1093
1094	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
1095	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1096	unlock_extent(&inode->io_tree, start, end, &cached_state);
1097
1098	free_extent_map(em_cached);
1099
1100	/*
1101	 * If btrfs_do_readpage() failed we will want to submit the assembled
1102	 * bio to do the cleanup.
1103	 */
1104	submit_one_bio(&bio_ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1105	return ret;
1106}
1107
1108static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1109				u64 start, u32 len)
1110{
1111	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1112	const u64 folio_start = folio_pos(folio);
1113	unsigned int start_bit;
1114	unsigned int nbits;
1115
1116	ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1117	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1118	nbits = len >> fs_info->sectorsize_bits;
1119	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1120	bitmap_set(delalloc_bitmap, start_bit, nbits);
1121}
1122
1123static bool find_next_delalloc_bitmap(struct folio *folio,
1124				      unsigned long *delalloc_bitmap, u64 start,
1125				      u64 *found_start, u32 *found_len)
1126{
1127	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1128	const u64 folio_start = folio_pos(folio);
1129	const unsigned int bitmap_size = fs_info->sectors_per_page;
1130	unsigned int start_bit;
1131	unsigned int first_zero;
1132	unsigned int first_set;
1133
1134	ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1135
1136	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1137	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1138	if (first_set >= bitmap_size)
1139		return false;
1140
1141	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1142	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1143	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1144	return true;
1145}
1146
1147/*
1148 * Do all of the delayed allocation setup.
1149 *
1150 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1151 * The @folio should no longer be touched (treat it as already unlocked).
1152 *
1153 * Return 0 if there is still dirty block that needs to be submitted through
1154 * extent_writepage_io().
1155 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1156 * submitted, and @folio is still kept locked.
1157 *
1158 * Return <0 if there is any error hit.
1159 * Any allocated ordered extent range covering this folio will be marked
1160 * finished (IOERR), and @folio is still kept locked.
1161 */
1162static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1163						 struct folio *folio,
1164						 struct btrfs_bio_ctrl *bio_ctrl)
1165{
1166	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1167	struct writeback_control *wbc = bio_ctrl->wbc;
1168	const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1169	const u64 page_start = folio_pos(folio);
1170	const u64 page_end = page_start + folio_size(folio) - 1;
1171	unsigned long delalloc_bitmap = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1172	/*
1173	 * Save the last found delalloc end. As the delalloc end can go beyond
1174	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1175	 * last delalloc end.
1176	 */
1177	u64 last_delalloc_end = 0;
 
 
1178	/*
1179	 * The range end (exclusive) of the last successfully finished delalloc
1180	 * range.
1181	 * Any range covered by ordered extent must either be manually marked
1182	 * finished (error handling), or has IO submitted (and finish the
1183	 * ordered extent normally).
1184	 *
1185	 * This records the end of ordered extent cleanup if we hit an error.
1186	 */
1187	u64 last_finished_delalloc_end = page_start;
1188	u64 delalloc_start = page_start;
1189	u64 delalloc_end = page_end;
1190	u64 delalloc_to_write = 0;
1191	int ret = 0;
1192	int bit;
1193
1194	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1195	if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1196		ASSERT(fs_info->sectors_per_page > 1);
1197		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1198	} else {
1199		bio_ctrl->submit_bitmap = 1;
 
 
 
 
 
 
 
 
 
 
 
1200	}
 
1201
1202	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1203		u64 start = page_start + (bit << fs_info->sectorsize_bits);
 
1204
1205		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
 
 
 
 
 
 
 
 
 
1206	}
 
 
 
 
 
 
1207
1208	/* Lock all (subpage) delalloc ranges inside the folio first. */
1209	while (delalloc_start < page_end) {
1210		delalloc_end = page_end;
1211		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1212					      &delalloc_start, &delalloc_end)) {
1213			delalloc_start = delalloc_end + 1;
1214			continue;
1215		}
1216		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1217				    min(delalloc_end, page_end) + 1 - delalloc_start);
1218		last_delalloc_end = delalloc_end;
1219		delalloc_start = delalloc_end + 1;
1220	}
1221	delalloc_start = page_start;
1222
1223	if (!last_delalloc_end)
1224		goto out;
 
 
 
 
 
 
 
 
 
 
 
1225
1226	/* Run the delalloc ranges for the above locked ranges. */
1227	while (delalloc_start < page_end) {
1228		u64 found_start;
1229		u32 found_len;
1230		bool found;
1231
1232		if (!is_subpage) {
1233			/*
1234			 * For non-subpage case, the found delalloc range must
1235			 * cover this folio and there must be only one locked
1236			 * delalloc range.
1237			 */
1238			found_start = page_start;
1239			found_len = last_delalloc_end + 1 - found_start;
1240			found = true;
1241		} else {
1242			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1243					delalloc_start, &found_start, &found_len);
1244		}
1245		if (!found)
1246			break;
1247		/*
1248		 * The subpage range covers the last sector, the delalloc range may
1249		 * end beyond the folio boundary, use the saved delalloc_end
1250		 * instead.
1251		 */
1252		if (found_start + found_len >= page_end)
1253			found_len = last_delalloc_end + 1 - found_start;
1254
1255		if (ret >= 0) {
1256			/*
1257			 * Some delalloc range may be created by previous folios.
1258			 * Thus we still need to clean up this range during error
1259			 * handling.
1260			 */
1261			last_finished_delalloc_end = found_start;
1262			/* No errors hit so far, run the current delalloc range. */
1263			ret = btrfs_run_delalloc_range(inode, folio,
1264						       found_start,
1265						       found_start + found_len - 1,
1266						       wbc);
1267			if (ret >= 0)
1268				last_finished_delalloc_end = found_start + found_len;
1269		} else {
1270			/*
1271			 * We've hit an error during previous delalloc range,
1272			 * have to cleanup the remaining locked ranges.
1273			 */
1274			unlock_extent(&inode->io_tree, found_start,
1275				      found_start + found_len - 1, NULL);
1276			__unlock_for_delalloc(&inode->vfs_inode, folio,
1277					      found_start,
1278					      found_start + found_len - 1);
1279		}
 
 
 
 
 
 
1280
1281		/*
1282		 * We have some ranges that's going to be submitted asynchronously
1283		 * (compression or inline).  These range have their own control
1284		 * on when to unlock the pages.  We should not touch them
1285		 * anymore, so clear the range from the submission bitmap.
1286		 */
1287		if (ret > 0) {
1288			unsigned int start_bit = (found_start - page_start) >>
1289						 fs_info->sectorsize_bits;
1290			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1291						page_start) >> fs_info->sectorsize_bits;
1292			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1293		}
1294		/*
1295		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1296		 * thus for the last range, we cannot touch the folio anymore.
1297		 */
1298		if (found_start + found_len >= last_delalloc_end + 1)
1299			break;
1300
1301		delalloc_start = found_start + found_len;
 
 
 
 
 
 
 
 
1302	}
1303	/*
1304	 * It's possible we had some ordered extents created before we hit
1305	 * an error, cleanup non-async successfully created delalloc ranges.
1306	 */
1307	if (unlikely(ret < 0)) {
1308		unsigned int bitmap_size = min(
1309				(last_finished_delalloc_end - page_start) >>
1310				fs_info->sectorsize_bits,
1311				fs_info->sectors_per_page);
1312
1313		for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1314			btrfs_mark_ordered_io_finished(inode, folio,
1315				page_start + (bit << fs_info->sectorsize_bits),
1316				fs_info->sectorsize, false);
1317		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1318	}
1319out:
1320	if (last_delalloc_end)
1321		delalloc_end = last_delalloc_end;
1322	else
1323		delalloc_end = page_end;
 
 
 
 
 
 
 
 
 
 
 
1324	/*
1325	 * delalloc_end is already one less than the total length, so
1326	 * we don't subtract one from PAGE_SIZE
1327	 */
1328	delalloc_to_write +=
1329		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
1330
 
 
 
 
 
 
 
1331	/*
1332	 * If all ranges are submitted asynchronously, we just need to account
1333	 * for them here.
1334	 */
1335	if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1336		wbc->nr_to_write -= delalloc_to_write;
1337		return 1;
 
 
 
 
 
 
1338	}
 
 
 
 
 
1339
1340	if (wbc->nr_to_write < delalloc_to_write) {
1341		int thresh = 8192;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342
1343		if (delalloc_to_write < thresh * 2)
1344			thresh = delalloc_to_write;
1345		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1346					 thresh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347	}
 
 
 
1348
 
 
 
 
 
 
 
 
 
 
 
1349	return 0;
1350}
1351
1352/*
1353 * Return 0 if we have submitted or queued the sector for submission.
1354 * Return <0 for critical errors.
1355 *
1356 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1357 */
1358static int submit_one_sector(struct btrfs_inode *inode,
1359			     struct folio *folio,
1360			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1361			     loff_t i_size)
1362{
1363	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1364	struct extent_map *em;
1365	u64 block_start;
1366	u64 disk_bytenr;
1367	u64 extent_offset;
1368	u64 em_end;
1369	const u32 sectorsize = fs_info->sectorsize;
1370
1371	ASSERT(IS_ALIGNED(filepos, sectorsize));
1372
1373	/* @filepos >= i_size case should be handled by the caller. */
1374	ASSERT(filepos < i_size);
1375
1376	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1377	if (IS_ERR(em))
1378		return PTR_ERR_OR_ZERO(em);
1379
1380	extent_offset = filepos - em->start;
1381	em_end = extent_map_end(em);
1382	ASSERT(filepos <= em_end);
1383	ASSERT(IS_ALIGNED(em->start, sectorsize));
1384	ASSERT(IS_ALIGNED(em->len, sectorsize));
1385
1386	block_start = extent_map_block_start(em);
1387	disk_bytenr = extent_map_block_start(em) + extent_offset;
1388
1389	ASSERT(!extent_map_is_compressed(em));
1390	ASSERT(block_start != EXTENT_MAP_HOLE);
1391	ASSERT(block_start != EXTENT_MAP_INLINE);
1392
1393	free_extent_map(em);
1394	em = NULL;
1395
1396	/*
1397	 * Although the PageDirty bit is cleared before entering this
1398	 * function, subpage dirty bit is not cleared.
1399	 * So clear subpage dirty bit here so next time we won't submit
1400	 * a folio for a range already written to disk.
1401	 */
1402	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1403	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1404	/*
1405	 * Above call should set the whole folio with writeback flag, even
1406	 * just for a single subpage sector.
1407	 * As long as the folio is properly locked and the range is correct,
1408	 * we should always get the folio with writeback flag.
1409	 */
1410	ASSERT(folio_test_writeback(folio));
1411
1412	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1413			    sectorsize, filepos - folio_pos(folio));
 
 
 
 
 
 
1414	return 0;
1415}
1416
 
 
1417/*
1418 * Helper for extent_writepage().  This calls the writepage start hooks,
1419 * and does the loop to map the page into extents and bios.
 
 
1420 *
1421 * We return 1 if the IO is started and the page is unlocked,
1422 * 0 if all went well (page still locked)
1423 * < 0 if there were errors (page still locked)
1424 */
1425static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1426						  struct folio *folio,
1427						  u64 start, u32 len,
1428						  struct btrfs_bio_ctrl *bio_ctrl,
1429						  loff_t i_size)
1430{
1431	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1432	unsigned long range_bitmap = 0;
1433	bool submitted_io = false;
1434	bool error = false;
1435	const u64 folio_start = folio_pos(folio);
1436	u64 cur;
1437	int bit;
1438	int ret = 0;
1439
1440	ASSERT(start >= folio_start &&
1441	       start + len <= folio_start + folio_size(folio));
 
1442
1443	ret = btrfs_writepage_cow_fixup(folio);
1444	if (ret) {
1445		/* Fixup worker will requeue */
1446		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1447		folio_unlock(folio);
1448		return 1;
1449	}
1450
1451	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1452		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1453	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1454		   fs_info->sectors_per_page);
1455
1456	bio_ctrl->end_io_func = end_bbio_data_write;
1457
1458	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1459		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1460
1461		if (cur >= i_size) {
1462			btrfs_mark_ordered_io_finished(inode, folio, cur,
1463						       start + len - cur, true);
1464			/*
1465			 * This range is beyond i_size, thus we don't need to
1466			 * bother writing back.
1467			 * But we still need to clear the dirty subpage bit, or
1468			 * the next time the folio gets dirtied, we will try to
1469			 * writeback the sectors with subpage dirty bits,
1470			 * causing writeback without ordered extent.
1471			 */
1472			btrfs_folio_clear_dirty(fs_info, folio, cur,
1473						start + len - cur);
1474			break;
1475		}
1476		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1477		if (unlikely(ret < 0)) {
1478			/*
1479			 * bio_ctrl may contain a bio crossing several folios.
1480			 * Submit it immediately so that the bio has a chance
1481			 * to finish normally, other than marked as error.
1482			 */
1483			submit_one_bio(bio_ctrl);
1484			/*
1485			 * Failed to grab the extent map which should be very rare.
1486			 * Since there is no bio submitted to finish the ordered
1487			 * extent, we have to manually finish this sector.
1488			 */
1489			btrfs_mark_ordered_io_finished(inode, folio, cur,
1490						       fs_info->sectorsize, false);
1491			error = true;
1492			continue;
1493		}
1494		submitted_io = true;
1495	}
1496
1497	/*
1498	 * If we didn't submitted any sector (>= i_size), folio dirty get
1499	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1500	 * by folio_start_writeback() if the folio is not dirty).
1501	 *
1502	 * Here we set writeback and clear for the range. If the full folio
1503	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1504	 *
1505	 * If we hit any error, the corresponding sector will still be dirty
1506	 * thus no need to clear PAGECACHE_TAG_DIRTY.
1507	 */
1508	if (!submitted_io && !error) {
1509		btrfs_folio_set_writeback(fs_info, folio, start, len);
1510		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1511	}
1512	return ret;
1513}
1514
1515/*
1516 * the writepage semantics are similar to regular writepage.  extent
1517 * records are inserted to lock ranges in the tree, and as dirty areas
1518 * are found, they are marked writeback.  Then the lock bits are removed
1519 * and the end_io handler clears the writeback ranges
 
 
1520 *
1521 * Return 0 if everything goes well.
1522 * Return <0 for error.
1523 */
1524static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1525{
1526	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1527	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 
 
 
 
 
1528	int ret;
1529	size_t pg_offset;
1530	loff_t i_size = i_size_read(&inode->vfs_inode);
1531	unsigned long end_index = i_size >> PAGE_SHIFT;
1532
1533	trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1534
1535	WARN_ON(!folio_test_locked(folio));
1536
1537	pg_offset = offset_in_folio(folio, i_size);
1538	if (folio->index > end_index ||
1539	   (folio->index == end_index && !pg_offset)) {
1540		folio_invalidate(folio, 0, folio_size(folio));
1541		folio_unlock(folio);
1542		return 0;
1543	}
1544
1545	if (folio->index == end_index)
1546		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1547
1548	/*
1549	 * Default to unlock the whole folio.
1550	 * The proper bitmap can only be initialized until writepage_delalloc().
1551	 */
1552	bio_ctrl->submit_bitmap = (unsigned long)-1;
1553	ret = set_folio_extent_mapped(folio);
1554	if (ret < 0)
1555		goto done;
 
 
1556
1557	ret = writepage_delalloc(inode, folio, bio_ctrl);
1558	if (ret == 1)
1559		return 0;
1560	if (ret)
1561		goto done;
1562
1563	ret = extent_writepage_io(inode, folio, folio_pos(folio),
1564				  PAGE_SIZE, bio_ctrl, i_size);
1565	if (ret == 1)
1566		return 0;
1567
1568	bio_ctrl->wbc->nr_to_write--;
 
 
 
 
 
 
 
 
 
1569
1570done:
1571	if (ret < 0)
1572		mapping_set_error(folio->mapping, ret);
1573	/*
1574	 * Only unlock ranges that are submitted. As there can be some async
1575	 * submitted ranges inside the folio.
1576	 */
1577	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1578	ASSERT(ret <= 0);
1579	return ret;
1580}
 
 
 
 
 
 
 
 
1581
1582void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1583{
1584	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1585		       TASK_UNINTERRUPTIBLE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1586}
1587
1588/*
1589 * Lock extent buffer status and pages for writeback.
1590 *
1591 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1592 * extent buffer is not dirty)
1593 * Return %true is the extent buffer is submitted to bio.
1594 */
1595static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1596			  struct writeback_control *wbc)
1597{
1598	struct btrfs_fs_info *fs_info = eb->fs_info;
1599	bool ret = false;
 
1600
1601	btrfs_tree_lock(eb);
1602	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1603		btrfs_tree_unlock(eb);
1604		if (wbc->sync_mode != WB_SYNC_ALL)
1605			return false;
1606		wait_on_extent_buffer_writeback(eb);
1607		btrfs_tree_lock(eb);
1608	}
1609
1610	/*
1611	 * We need to do this to prevent races in people who check if the eb is
1612	 * under IO since we can end up having no IO bits set for a short period
1613	 * of time.
1614	 */
1615	spin_lock(&eb->refs_lock);
1616	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1617		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1618		spin_unlock(&eb->refs_lock);
1619		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1620		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1621					 -eb->len,
1622					 fs_info->dirty_metadata_batch);
1623		ret = true;
1624	} else {
1625		spin_unlock(&eb->refs_lock);
1626	}
1627	btrfs_tree_unlock(eb);
1628	return ret;
1629}
1630
1631static void set_btree_ioerr(struct extent_buffer *eb)
 
1632{
1633	struct btrfs_fs_info *fs_info = eb->fs_info;
 
 
 
 
1634
1635	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1636
1637	/*
1638	 * A read may stumble upon this buffer later, make sure that it gets an
1639	 * error and knows there was an error.
1640	 */
1641	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1642
1643	/*
1644	 * We need to set the mapping with the io error as well because a write
1645	 * error will flip the file system readonly, and then syncfs() will
1646	 * return a 0 because we are readonly if we don't modify the err seq for
1647	 * the superblock.
1648	 */
1649	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1650
1651	/*
1652	 * If writeback for a btree extent that doesn't belong to a log tree
1653	 * failed, increment the counter transaction->eb_write_errors.
1654	 * We do this because while the transaction is running and before it's
1655	 * committing (when we call filemap_fdata[write|wait]_range against
1656	 * the btree inode), we might have
1657	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1658	 * returns an error or an error happens during writeback, when we're
1659	 * committing the transaction we wouldn't know about it, since the pages
1660	 * can be no longer dirty nor marked anymore for writeback (if a
1661	 * subsequent modification to the extent buffer didn't happen before the
1662	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1663	 * able to find the pages which contain errors at transaction
1664	 * commit time. So if this happens we must abort the transaction,
1665	 * otherwise we commit a super block with btree roots that point to
1666	 * btree nodes/leafs whose content on disk is invalid - either garbage
1667	 * or the content of some node/leaf from a past generation that got
1668	 * cowed or deleted and is no longer valid.
1669	 *
1670	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1671	 * not be enough - we need to distinguish between log tree extents vs
1672	 * non-log tree extents, and the next filemap_fdatawait_range() call
1673	 * will catch and clear such errors in the mapping - and that call might
1674	 * be from a log sync and not from a transaction commit. Also, checking
1675	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1676	 * not done and would not be reliable - the eb might have been released
1677	 * from memory and reading it back again means that flag would not be
1678	 * set (since it's a runtime flag, not persisted on disk).
1679	 *
1680	 * Using the flags below in the btree inode also makes us achieve the
1681	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1682	 * writeback for all dirty pages and before filemap_fdatawait_range()
1683	 * is called, the writeback for all dirty pages had already finished
1684	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1685	 * filemap_fdatawait_range() would return success, as it could not know
1686	 * that writeback errors happened (the pages were no longer tagged for
1687	 * writeback).
1688	 */
1689	switch (eb->log_index) {
1690	case -1:
1691		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1692		break;
1693	case 0:
1694		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1695		break;
1696	case 1:
1697		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1698		break;
1699	default:
1700		BUG(); /* unexpected, logic error */
1701	}
1702}
1703
1704/*
1705 * The endio specific version which won't touch any unsafe spinlock in endio
1706 * context.
1707 */
1708static struct extent_buffer *find_extent_buffer_nolock(
1709		const struct btrfs_fs_info *fs_info, u64 start)
 
 
 
 
1710{
1711	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1712
1713	rcu_read_lock();
1714	eb = radix_tree_lookup(&fs_info->buffer_radix,
1715			       start >> fs_info->sectorsize_bits);
1716	if (eb && atomic_inc_not_zero(&eb->refs)) {
1717		rcu_read_unlock();
1718		return eb;
 
 
 
 
 
1719	}
1720	rcu_read_unlock();
1721	return NULL;
1722}
1723
1724static void end_bbio_meta_write(struct btrfs_bio *bbio)
1725{
1726	struct extent_buffer *eb = bbio->private;
1727	struct btrfs_fs_info *fs_info = eb->fs_info;
1728	bool uptodate = !bbio->bio.bi_status;
1729	struct folio_iter fi;
1730	u32 bio_offset = 0;
1731
1732	if (!uptodate)
1733		set_btree_ioerr(eb);
1734
1735	bio_for_each_folio_all(fi, &bbio->bio) {
1736		u64 start = eb->start + bio_offset;
1737		struct folio *folio = fi.folio;
1738		u32 len = fi.length;
1739
1740		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1741		bio_offset += len;
1742	}
1743
1744	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1745	smp_mb__after_atomic();
1746	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 
1747
1748	bio_put(&bbio->bio);
1749}
1750
1751static void prepare_eb_write(struct extent_buffer *eb)
1752{
1753	u32 nritems;
1754	unsigned long start;
1755	unsigned long end;
1756
1757	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1758
1759	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1760	nritems = btrfs_header_nritems(eb);
1761	if (btrfs_header_level(eb) > 0) {
1762		end = btrfs_node_key_ptr_offset(eb, nritems);
1763		memzero_extent_buffer(eb, end, eb->len - end);
1764	} else {
1765		/*
1766		 * Leaf:
1767		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1768		 */
1769		start = btrfs_item_nr_offset(eb, nritems);
1770		end = btrfs_item_nr_offset(eb, 0);
1771		if (nritems == 0)
1772			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1773		else
1774			end += btrfs_item_offset(eb, nritems - 1);
1775		memzero_extent_buffer(eb, start, end - start);
1776	}
1777}
1778
1779static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1780					    struct writeback_control *wbc)
1781{
1782	struct btrfs_fs_info *fs_info = eb->fs_info;
1783	struct btrfs_bio *bbio;
1784
1785	prepare_eb_write(eb);
1786
1787	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1788			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1789			       eb->fs_info, end_bbio_meta_write, eb);
1790	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1791	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1792	wbc_init_bio(wbc, &bbio->bio);
1793	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1794	bbio->file_offset = eb->start;
1795	if (fs_info->nodesize < PAGE_SIZE) {
1796		struct folio *folio = eb->folios[0];
1797		bool ret;
1798
1799		folio_lock(folio);
1800		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1801		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1802						       eb->len)) {
1803			folio_clear_dirty_for_io(folio);
1804			wbc->nr_to_write--;
1805		}
1806		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1807				    eb->start - folio_pos(folio));
1808		ASSERT(ret);
1809		wbc_account_cgroup_owner(wbc, folio, eb->len);
1810		folio_unlock(folio);
1811	} else {
1812		int num_folios = num_extent_folios(eb);
1813
1814		for (int i = 0; i < num_folios; i++) {
1815			struct folio *folio = eb->folios[i];
1816			bool ret;
1817
1818			folio_lock(folio);
1819			folio_clear_dirty_for_io(folio);
1820			folio_start_writeback(folio);
1821			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1822			ASSERT(ret);
1823			wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1824			wbc->nr_to_write -= folio_nr_pages(folio);
1825			folio_unlock(folio);
1826		}
1827	}
1828	btrfs_submit_bbio(bbio, 0);
1829}
1830
1831/*
1832 * Submit one subpage btree page.
1833 *
1834 * The main difference to submit_eb_page() is:
1835 * - Page locking
1836 *   For subpage, we don't rely on page locking at all.
1837 *
1838 * - Flush write bio
1839 *   We only flush bio if we may be unable to fit current extent buffers into
1840 *   current bio.
1841 *
1842 * Return >=0 for the number of submitted extent buffers.
1843 * Return <0 for fatal error.
1844 */
1845static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1846{
1847	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1848	int submitted = 0;
1849	u64 folio_start = folio_pos(folio);
1850	int bit_start = 0;
1851	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1852
1853	/* Lock and write each dirty extent buffers in the range */
1854	while (bit_start < fs_info->sectors_per_page) {
1855		struct btrfs_subpage *subpage = folio_get_private(folio);
1856		struct extent_buffer *eb;
1857		unsigned long flags;
1858		u64 start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1859
1860		/*
1861		 * Take private lock to ensure the subpage won't be detached
1862		 * in the meantime.
1863		 */
1864		spin_lock(&folio->mapping->i_private_lock);
1865		if (!folio_test_private(folio)) {
1866			spin_unlock(&folio->mapping->i_private_lock);
1867			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868		}
1869		spin_lock_irqsave(&subpage->lock, flags);
1870		if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1871			      subpage->bitmaps)) {
1872			spin_unlock_irqrestore(&subpage->lock, flags);
1873			spin_unlock(&folio->mapping->i_private_lock);
1874			bit_start++;
1875			continue;
 
 
 
 
 
 
 
 
 
1876		}
 
 
 
 
 
 
 
 
 
 
1877
1878		start = folio_start + bit_start * fs_info->sectorsize;
1879		bit_start += sectors_per_node;
 
 
 
1880
1881		/*
1882		 * Here we just want to grab the eb without touching extra
1883		 * spin locks, so call find_extent_buffer_nolock().
1884		 */
1885		eb = find_extent_buffer_nolock(fs_info, start);
1886		spin_unlock_irqrestore(&subpage->lock, flags);
1887		spin_unlock(&folio->mapping->i_private_lock);
 
 
 
 
 
 
 
 
 
1888
1889		/*
1890		 * The eb has already reached 0 refs thus find_extent_buffer()
1891		 * doesn't return it. We don't need to write back such eb
1892		 * anyway.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893		 */
1894		if (!eb)
 
 
 
 
1895			continue;
 
1896
1897		if (lock_extent_buffer_for_io(eb, wbc)) {
1898			write_one_eb(eb, wbc);
1899			submitted++;
 
 
 
 
 
 
 
 
 
 
 
 
 
1900		}
1901		free_extent_buffer(eb);
 
 
 
1902	}
1903	return submitted;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904}
1905
1906/*
1907 * Submit all page(s) of one extent buffer.
1908 *
1909 * @page:	the page of one extent buffer
1910 * @eb_context:	to determine if we need to submit this page, if current page
1911 *		belongs to this eb, we don't need to submit
1912 *
1913 * The caller should pass each page in their bytenr order, and here we use
1914 * @eb_context to determine if we have submitted pages of one extent buffer.
1915 *
1916 * If we have, we just skip until we hit a new page that doesn't belong to
1917 * current @eb_context.
1918 *
1919 * If not, we submit all the page(s) of the extent buffer.
1920 *
1921 * Return >0 if we have submitted the extent buffer successfully.
1922 * Return 0 if we don't need to submit the page, as it's already submitted by
1923 * previous call.
1924 * Return <0 for fatal error.
1925 */
1926static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
 
1927{
1928	struct writeback_control *wbc = ctx->wbc;
1929	struct address_space *mapping = folio->mapping;
1930	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
1931	int ret;
 
 
 
 
 
 
 
 
 
 
 
1932
1933	if (!folio_test_private(folio))
1934		return 0;
 
 
1935
1936	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1937		return submit_eb_subpage(folio, wbc);
1938
1939	spin_lock(&mapping->i_private_lock);
1940	if (!folio_test_private(folio)) {
1941		spin_unlock(&mapping->i_private_lock);
 
 
 
1942		return 0;
1943	}
1944
1945	eb = folio_get_private(folio);
 
1946
1947	/*
1948	 * Shouldn't happen and normally this would be a BUG_ON but no point
1949	 * crashing the machine for something we can survive anyway.
1950	 */
1951	if (WARN_ON(!eb)) {
1952		spin_unlock(&mapping->i_private_lock);
1953		return 0;
1954	}
 
1955
1956	if (eb == ctx->eb) {
1957		spin_unlock(&mapping->i_private_lock);
1958		return 0;
1959	}
1960	ret = atomic_inc_not_zero(&eb->refs);
1961	spin_unlock(&mapping->i_private_lock);
1962	if (!ret)
1963		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964
1965	ctx->eb = eb;
 
 
 
 
1966
1967	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1968	if (ret) {
1969		if (ret == -EBUSY)
 
1970			ret = 0;
1971		free_extent_buffer(eb);
1972		return ret;
 
 
 
 
 
 
1973	}
1974
1975	if (!lock_extent_buffer_for_io(eb, wbc)) {
1976		free_extent_buffer(eb);
1977		return 0;
 
 
 
 
 
 
1978	}
1979	/* Implies write in zoned mode. */
1980	if (ctx->zoned_bg) {
1981		/* Mark the last eb in the block group. */
1982		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1983		ctx->zoned_bg->meta_write_pointer += eb->len;
 
 
 
 
 
 
 
 
1984	}
1985	write_one_eb(eb, wbc);
1986	free_extent_buffer(eb);
1987	return 1;
1988}
1989
1990int btree_write_cache_pages(struct address_space *mapping,
1991				   struct writeback_control *wbc)
1992{
1993	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1994	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1995	int ret = 0;
1996	int done = 0;
1997	int nr_to_write_done = 0;
1998	struct folio_batch fbatch;
1999	unsigned int nr_folios;
2000	pgoff_t index;
2001	pgoff_t end;		/* Inclusive */
2002	int scanned = 0;
2003	xa_mark_t tag;
 
 
 
 
 
 
 
 
 
 
 
 
 
2004
2005	folio_batch_init(&fbatch);
2006	if (wbc->range_cyclic) {
2007		index = mapping->writeback_index; /* Start from prev offset */
2008		end = -1;
2009		/*
2010		 * Start from the beginning does not need to cycle over the
2011		 * range, mark it as scanned.
2012		 */
2013		scanned = (index == 0);
2014	} else {
2015		index = wbc->range_start >> PAGE_SHIFT;
2016		end = wbc->range_end >> PAGE_SHIFT;
2017		scanned = 1;
2018	}
2019	if (wbc->sync_mode == WB_SYNC_ALL)
2020		tag = PAGECACHE_TAG_TOWRITE;
2021	else
2022		tag = PAGECACHE_TAG_DIRTY;
2023	btrfs_zoned_meta_io_lock(fs_info);
2024retry:
2025	if (wbc->sync_mode == WB_SYNC_ALL)
2026		tag_pages_for_writeback(mapping, index, end);
2027	while (!done && !nr_to_write_done && (index <= end) &&
2028	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2029					    tag, &fbatch))) {
2030		unsigned i;
 
 
 
 
 
 
 
 
 
 
 
 
2031
2032		for (i = 0; i < nr_folios; i++) {
2033			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
2034
2035			ret = submit_eb_page(folio, &ctx);
2036			if (ret == 0)
2037				continue;
2038			if (ret < 0) {
2039				done = 1;
2040				break;
2041			}
2042
2043			/*
2044			 * the filesystem may choose to bump up nr_to_write.
2045			 * We have to make sure to honor the new nr_to_write
2046			 * at any time
2047			 */
2048			nr_to_write_done = wbc->nr_to_write <= 0;
 
2049		}
2050		folio_batch_release(&fbatch);
2051		cond_resched();
 
2052	}
2053	if (!scanned && !done) {
2054		/*
2055		 * We hit the last page and there is more work to be done: wrap
2056		 * back to the start of the file
2057		 */
2058		scanned = 1;
2059		index = 0;
2060		goto retry;
2061	}
2062	/*
2063	 * If something went wrong, don't allow any metadata write bio to be
2064	 * submitted.
2065	 *
2066	 * This would prevent use-after-free if we had dirty pages not
2067	 * cleaned up, which can still happen by fuzzed images.
2068	 *
2069	 * - Bad extent tree
2070	 *   Allowing existing tree block to be allocated for other trees.
2071	 *
2072	 * - Log tree operations
2073	 *   Exiting tree blocks get allocated to log tree, bumps its
2074	 *   generation, then get cleaned in tree re-balance.
2075	 *   Such tree block will not be written back, since it's clean,
2076	 *   thus no WRITTEN flag set.
2077	 *   And after log writes back, this tree block is not traced by
2078	 *   any dirty extent_io_tree.
2079	 *
2080	 * - Offending tree block gets re-dirtied from its original owner
2081	 *   Since it has bumped generation, no WRITTEN flag, it can be
2082	 *   reused without COWing. This tree block will not be traced
2083	 *   by btrfs_transaction::dirty_pages.
2084	 *
2085	 *   Now such dirty tree block will not be cleaned by any dirty
2086	 *   extent io tree. Thus we don't want to submit such wild eb
2087	 *   if the fs already has error.
2088	 *
2089	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2090	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2091	 */
2092	if (ret > 0)
2093		ret = 0;
2094	if (!ret && BTRFS_FS_ERROR(fs_info))
2095		ret = -EROFS;
2096
2097	if (ctx.zoned_bg)
2098		btrfs_put_block_group(ctx.zoned_bg);
2099	btrfs_zoned_meta_io_unlock(fs_info);
2100	return ret;
 
2101}
2102
2103/*
2104 * Walk the list of dirty pages of the given address space and write all of them.
2105 *
2106 * @mapping:   address space structure to write
2107 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2108 * @bio_ctrl:  holds context for the write, namely the bio
2109 *
2110 * If a page is already under I/O, write_cache_pages() skips it, even
2111 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2112 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2113 * and msync() need to guarantee that all the data which was dirty at the time
2114 * the call was made get new I/O started against them.  If wbc->sync_mode is
2115 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2116 * existing IO to complete.
2117 */
2118static int extent_write_cache_pages(struct address_space *mapping,
2119			     struct btrfs_bio_ctrl *bio_ctrl)
 
 
 
2120{
2121	struct writeback_control *wbc = bio_ctrl->wbc;
2122	struct inode *inode = mapping->host;
2123	int ret = 0;
2124	int done = 0;
2125	int nr_to_write_done = 0;
2126	struct folio_batch fbatch;
2127	unsigned int nr_folios;
2128	pgoff_t index;
2129	pgoff_t end;		/* Inclusive */
2130	pgoff_t done_index;
2131	int range_whole = 0;
2132	int scanned = 0;
2133	xa_mark_t tag;
2134
2135	/*
2136	 * We have to hold onto the inode so that ordered extents can do their
2137	 * work when the IO finishes.  The alternative to this is failing to add
2138	 * an ordered extent if the igrab() fails there and that is a huge pain
2139	 * to deal with, so instead just hold onto the inode throughout the
2140	 * writepages operation.  If it fails here we are freeing up the inode
2141	 * anyway and we'd rather not waste our time writing out stuff that is
2142	 * going to be truncated anyway.
2143	 */
2144	if (!igrab(inode))
2145		return 0;
2146
2147	folio_batch_init(&fbatch);
2148	if (wbc->range_cyclic) {
2149		index = mapping->writeback_index; /* Start from prev offset */
2150		end = -1;
2151		/*
2152		 * Start from the beginning does not need to cycle over the
2153		 * range, mark it as scanned.
2154		 */
2155		scanned = (index == 0);
2156	} else {
2157		index = wbc->range_start >> PAGE_SHIFT;
2158		end = wbc->range_end >> PAGE_SHIFT;
2159		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2160			range_whole = 1;
2161		scanned = 1;
2162	}
2163
2164	/*
2165	 * We do the tagged writepage as long as the snapshot flush bit is set
2166	 * and we are the first one who do the filemap_flush() on this inode.
2167	 *
2168	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2169	 * not race in and drop the bit.
2170	 */
2171	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2172	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2173			       &BTRFS_I(inode)->runtime_flags))
2174		wbc->tagged_writepages = 1;
2175
2176	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2177		tag = PAGECACHE_TAG_TOWRITE;
2178	else
2179		tag = PAGECACHE_TAG_DIRTY;
2180retry:
2181	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2182		tag_pages_for_writeback(mapping, index, end);
2183	done_index = index;
2184	while (!done && !nr_to_write_done && (index <= end) &&
2185			(nr_folios = filemap_get_folios_tag(mapping, &index,
2186							end, tag, &fbatch))) {
2187		unsigned i;
2188
2189		for (i = 0; i < nr_folios; i++) {
2190			struct folio *folio = fbatch.folios[i];
 
2191
2192			done_index = folio_next_index(folio);
2193			/*
2194			 * At this point we hold neither the i_pages lock nor
2195			 * the page lock: the page may be truncated or
2196			 * invalidated (changing page->mapping to NULL),
2197			 * or even swizzled back from swapper_space to
2198			 * tmpfs file mapping
2199			 */
2200			if (!folio_trylock(folio)) {
2201				submit_write_bio(bio_ctrl, 0);
2202				folio_lock(folio);
2203			}
2204
2205			if (unlikely(folio->mapping != mapping)) {
2206				folio_unlock(folio);
2207				continue;
2208			}
2209
2210			if (!folio_test_dirty(folio)) {
2211				/* Someone wrote it for us. */
2212				folio_unlock(folio);
2213				continue;
2214			}
2215
2216			/*
2217			 * For subpage case, compression can lead to mixed
2218			 * writeback and dirty flags, e.g:
2219			 * 0     32K    64K    96K    128K
2220			 * |     |//////||/////|   |//|
2221			 *
2222			 * In above case, [32K, 96K) is asynchronously submitted
2223			 * for compression, and [124K, 128K) needs to be written back.
2224			 *
2225			 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2226			 * won't be submitted as the page still has writeback flag
2227			 * and will be skipped in the next check.
2228			 *
2229			 * This mixed writeback and dirty case is only possible for
2230			 * subpage case.
2231			 *
2232			 * TODO: Remove this check after migrating compression to
2233			 * regular submission.
2234			 */
2235			if (wbc->sync_mode != WB_SYNC_NONE ||
2236			    btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
2237				if (folio_test_writeback(folio))
2238					submit_write_bio(bio_ctrl, 0);
2239				folio_wait_writeback(folio);
2240			}
2241
2242			if (folio_test_writeback(folio) ||
2243			    !folio_clear_dirty_for_io(folio)) {
2244				folio_unlock(folio);
2245				continue;
2246			}
2247
2248			ret = extent_writepage(folio, bio_ctrl);
2249			if (ret < 0) {
2250				done = 1;
2251				break;
 
2252			}
 
 
2253
2254			/*
2255			 * The filesystem may choose to bump up nr_to_write.
2256			 * We have to make sure to honor the new nr_to_write
2257			 * at any time.
2258			 */
2259			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2260					    wbc->nr_to_write <= 0);
2261		}
2262		folio_batch_release(&fbatch);
2263		cond_resched();
2264	}
2265	if (!scanned && !done) {
2266		/*
2267		 * We hit the last page and there is more work to be done: wrap
2268		 * back to the start of the file
2269		 */
2270		scanned = 1;
2271		index = 0;
2272
2273		/*
2274		 * If we're looping we could run into a page that is locked by a
2275		 * writer and that writer could be waiting on writeback for a
2276		 * page in our current bio, and thus deadlock, so flush the
2277		 * write bio here.
2278		 */
2279		submit_write_bio(bio_ctrl, 0);
2280		goto retry;
2281	}
 
 
2282
2283	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2284		mapping->writeback_index = done_index;
 
 
 
 
 
 
 
 
2285
2286	btrfs_add_delayed_iput(BTRFS_I(inode));
2287	return ret;
 
 
2288}
2289
2290/*
2291 * Submit the pages in the range to bio for call sites which delalloc range has
2292 * already been ran (aka, ordered extent inserted) and all pages are still
2293 * locked.
2294 */
2295void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2296			       u64 start, u64 end, struct writeback_control *wbc,
2297			       bool pages_dirty)
2298{
2299	bool found_error = false;
2300	int ret = 0;
2301	struct address_space *mapping = inode->i_mapping;
2302	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2303	const u32 sectorsize = fs_info->sectorsize;
2304	loff_t i_size = i_size_read(inode);
2305	u64 cur = start;
2306	struct btrfs_bio_ctrl bio_ctrl = {
2307		.wbc = wbc,
2308		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2309	};
2310
2311	if (wbc->no_cgroup_owner)
2312		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2313
2314	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2315
2316	while (cur <= end) {
2317		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2318		u32 cur_len = cur_end + 1 - cur;
2319		struct folio *folio;
2320
2321		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322
2323		/*
2324		 * This shouldn't happen, the pages are pinned and locked, this
2325		 * code is just in case, but shouldn't actually be run.
2326		 */
2327		if (IS_ERR(folio)) {
2328			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2329						       cur, cur_len, false);
2330			mapping_set_error(mapping, PTR_ERR(folio));
2331			cur = cur_end + 1;
2332			continue;
2333		}
2334
2335		ASSERT(folio_test_locked(folio));
2336		if (pages_dirty && folio != locked_folio)
2337			ASSERT(folio_test_dirty(folio));
2338
2339		/*
2340		 * Set the submission bitmap to submit all sectors.
2341		 * extent_writepage_io() will do the truncation correctly.
2342		 */
2343		bio_ctrl.submit_bitmap = (unsigned long)-1;
2344		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2345					  &bio_ctrl, i_size);
2346		if (ret == 1)
2347			goto next_page;
2348
2349		if (ret)
2350			mapping_set_error(mapping, ret);
2351		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2352		if (ret < 0)
2353			found_error = true;
2354next_page:
2355		folio_put(folio);
2356		cur = cur_end + 1;
2357	}
2358
2359	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 
2360}
2361
2362int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
 
 
 
2363{
2364	struct inode *inode = mapping->host;
2365	int ret = 0;
2366	struct btrfs_bio_ctrl bio_ctrl = {
2367		.wbc = wbc,
2368		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
 
 
2369	};
2370
2371	/*
2372	 * Allow only a single thread to do the reloc work in zoned mode to
2373	 * protect the write pointer updates.
2374	 */
2375	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2376	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2377	submit_write_bio(&bio_ctrl, ret);
2378	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2379	return ret;
2380}
2381
2382void btrfs_readahead(struct readahead_control *rac)
2383{
2384	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2385	struct folio *folio;
2386	struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2387	const u64 start = readahead_pos(rac);
2388	const u64 end = start + readahead_length(rac) - 1;
2389	struct extent_state *cached_state = NULL;
2390	struct extent_map *em_cached = NULL;
2391	u64 prev_em_start = (u64)-1;
2392
2393	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
2394
2395	while ((folio = readahead_folio(rac)) != NULL)
2396		btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2397
2398	unlock_extent(&inode->io_tree, start, end, &cached_state);
2399
2400	if (em_cached)
2401		free_extent_map(em_cached);
2402	submit_one_bio(&bio_ctrl);
 
 
 
 
2403}
2404
2405/*
2406 * basic invalidate_folio code, this waits on any locked or writeback
2407 * ranges corresponding to the folio, and then deletes any extent state
2408 * records from the tree
2409 */
2410int extent_invalidate_folio(struct extent_io_tree *tree,
2411			  struct folio *folio, size_t offset)
2412{
2413	struct extent_state *cached_state = NULL;
2414	u64 start = folio_pos(folio);
2415	u64 end = start + folio_size(folio) - 1;
2416	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2417
2418	/* This function is only called for the btree inode */
2419	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2420
2421	start += ALIGN(offset, blocksize);
2422	if (start > end)
2423		return 0;
2424
2425	lock_extent(tree, start, end, &cached_state);
2426	folio_wait_writeback(folio);
2427
2428	/*
2429	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2430	 * so here we only need to unlock the extent range to free any
2431	 * existing extent state.
2432	 */
2433	unlock_extent(tree, start, end, &cached_state);
2434	return 0;
2435}
2436
2437/*
2438 * a helper for release_folio, this tests for areas of the page that
2439 * are locked or under IO and drops the related state bits if it is safe
2440 * to drop the page.
2441 */
2442static bool try_release_extent_state(struct extent_io_tree *tree,
2443				     struct folio *folio)
2444{
2445	u64 start = folio_pos(folio);
2446	u64 end = start + PAGE_SIZE - 1;
2447	bool ret;
 
2448
2449	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2450		ret = false;
2451	} else {
2452		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2453				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2454				   EXTENT_QGROUP_RESERVED);
2455		int ret2;
2456
2457		/*
2458		 * At this point we can safely clear everything except the
2459		 * locked bit, the nodatasum bit and the delalloc new bit.
2460		 * The delalloc new bit will be cleared by ordered extent
2461		 * completion.
2462		 */
2463		ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2464
2465		/* if clear_extent_bit failed for enomem reasons,
2466		 * we can't allow the release to continue.
2467		 */
2468		if (ret2 < 0)
2469			ret = false;
2470		else
2471			ret = true;
2472	}
2473	return ret;
2474}
2475
2476/*
2477 * a helper for release_folio.  As long as there are no locked extents
2478 * in the range corresponding to the page, both state records and extent
2479 * map records are removed
2480 */
2481bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
 
 
2482{
2483	u64 start = folio_pos(folio);
2484	u64 end = start + PAGE_SIZE - 1;
2485	struct btrfs_inode *inode = folio_to_inode(folio);
2486	struct extent_io_tree *io_tree = &inode->io_tree;
2487
2488	while (start <= end) {
2489		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2490		const u64 len = end - start + 1;
2491		struct extent_map_tree *extent_tree = &inode->extent_tree;
2492		struct extent_map *em;
2493
2494		write_lock(&extent_tree->lock);
2495		em = lookup_extent_mapping(extent_tree, start, len);
2496		if (!em) {
2497			write_unlock(&extent_tree->lock);
2498			break;
2499		}
2500		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2501			write_unlock(&extent_tree->lock);
2502			free_extent_map(em);
2503			break;
2504		}
2505		if (test_range_bit_exists(io_tree, em->start,
2506					  extent_map_end(em) - 1, EXTENT_LOCKED))
2507			goto next;
2508		/*
2509		 * If it's not in the list of modified extents, used by a fast
2510		 * fsync, we can remove it. If it's being logged we can safely
2511		 * remove it since fsync took an extra reference on the em.
2512		 */
2513		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2514			goto remove_em;
2515		/*
2516		 * If it's in the list of modified extents, remove it only if
2517		 * its generation is older then the current one, in which case
2518		 * we don't need it for a fast fsync. Otherwise don't remove it,
2519		 * we could be racing with an ongoing fast fsync that could miss
2520		 * the new extent.
2521		 */
2522		if (em->generation >= cur_gen)
2523			goto next;
2524remove_em:
2525		/*
2526		 * We only remove extent maps that are not in the list of
2527		 * modified extents or that are in the list but with a
2528		 * generation lower then the current generation, so there is no
2529		 * need to set the full fsync flag on the inode (it hurts the
2530		 * fsync performance for workloads with a data size that exceeds
2531		 * or is close to the system's memory).
2532		 */
2533		remove_extent_mapping(inode, em);
2534		/* Once for the inode's extent map tree. */
2535		free_extent_map(em);
2536next:
2537		start = extent_map_end(em);
2538		write_unlock(&extent_tree->lock);
2539
2540		/* Once for us, for the lookup_extent_mapping() reference. */
2541		free_extent_map(em);
2542
2543		if (need_resched()) {
2544			/*
2545			 * If we need to resched but we can't block just exit
2546			 * and leave any remaining extent maps.
2547			 */
2548			if (!gfpflags_allow_blocking(mask))
 
 
 
2549				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2550
2551			cond_resched();
 
2552		}
2553	}
2554	return try_release_extent_state(io_tree, folio);
2555}
2556
2557static void __free_extent_buffer(struct extent_buffer *eb)
 
 
 
 
 
 
 
2558{
2559	kmem_cache_free(extent_buffer_cache, eb);
2560}
 
2561
2562static int extent_buffer_under_io(const struct extent_buffer *eb)
2563{
2564	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2565		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2566}
2567
2568static bool folio_range_has_eb(struct folio *folio)
2569{
2570	struct btrfs_subpage *subpage;
 
 
 
 
 
2571
2572	lockdep_assert_held(&folio->mapping->i_private_lock);
 
 
 
 
2573
2574	if (folio_test_private(folio)) {
2575		subpage = folio_get_private(folio);
2576		if (atomic_read(&subpage->eb_refs))
2577			return true;
 
2578	}
2579	return false;
2580}
2581
2582static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
 
2583{
2584	struct btrfs_fs_info *fs_info = eb->fs_info;
2585	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586
2587	/*
2588	 * For mapped eb, we're going to change the folio private, which should
2589	 * be done under the i_private_lock.
2590	 */
2591	if (mapped)
2592		spin_lock(&folio->mapping->i_private_lock);
2593
2594	if (!folio_test_private(folio)) {
2595		if (mapped)
2596			spin_unlock(&folio->mapping->i_private_lock);
2597		return;
2598	}
2599
2600	if (fs_info->nodesize >= PAGE_SIZE) {
 
 
 
 
 
 
 
 
 
 
 
 
2601		/*
2602		 * We do this since we'll remove the pages after we've
2603		 * removed the eb from the radix tree, so we could race
2604		 * and have this page now attached to the new eb.  So
2605		 * only clear folio if it's still connected to
2606		 * this eb.
2607		 */
2608		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2609			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2610			BUG_ON(folio_test_dirty(folio));
2611			BUG_ON(folio_test_writeback(folio));
2612			/* We need to make sure we haven't be attached to a new eb. */
2613			folio_detach_private(folio);
2614		}
2615		if (mapped)
2616			spin_unlock(&folio->mapping->i_private_lock);
2617		return;
2618	}
 
2619
2620	/*
2621	 * For subpage, we can have dummy eb with folio private attached.  In
2622	 * this case, we can directly detach the private as such folio is only
2623	 * attached to one dummy eb, no sharing.
2624	 */
2625	if (!mapped) {
2626		btrfs_detach_subpage(fs_info, folio);
2627		return;
2628	}
2629
2630	btrfs_folio_dec_eb_refs(fs_info, folio);
2631
2632	/*
2633	 * We can only detach the folio private if there are no other ebs in the
2634	 * page range and no unfinished IO.
2635	 */
2636	if (!folio_range_has_eb(folio))
2637		btrfs_detach_subpage(fs_info, folio);
2638
2639	spin_unlock(&folio->mapping->i_private_lock);
2640}
2641
2642/* Release all pages attached to the extent buffer */
2643static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2644{
2645	ASSERT(!extent_buffer_under_io(eb));
2646
2647	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2648		struct folio *folio = eb->folios[i];
2649
2650		if (!folio)
2651			continue;
2652
2653		detach_extent_buffer_folio(eb, folio);
2654
2655		/* One for when we allocated the folio. */
2656		folio_put(folio);
 
 
 
 
 
2657	}
2658}
2659
2660/*
2661 * Helper for releasing the extent buffer.
2662 */
2663static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2664{
2665	btrfs_release_extent_buffer_pages(eb);
2666	btrfs_leak_debug_del_eb(eb);
2667	__free_extent_buffer(eb);
2668}
2669
2670static struct extent_buffer *
2671__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2672		      unsigned long len)
2673{
2674	struct extent_buffer *eb = NULL;
2675
2676	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2677	eb->start = start;
2678	eb->len = len;
2679	eb->fs_info = fs_info;
2680	init_rwsem(&eb->lock);
2681
2682	btrfs_leak_debug_add_eb(eb);
2683
2684	spin_lock_init(&eb->refs_lock);
2685	atomic_set(&eb->refs, 1);
2686
2687	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2688
2689	return eb;
2690}
2691
2692struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2693{
2694	struct extent_buffer *new;
2695	int num_folios = num_extent_folios(src);
2696	int ret;
2697
2698	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2699	if (new == NULL)
2700		return NULL;
2701
2702	/*
2703	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2704	 * btrfs_release_extent_buffer() have different behavior for
2705	 * UNMAPPED subpage extent buffer.
2706	 */
2707	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2708
2709	ret = alloc_eb_folio_array(new, false);
2710	if (ret) {
2711		btrfs_release_extent_buffer(new);
2712		return NULL;
2713	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714
2715	for (int i = 0; i < num_folios; i++) {
2716		struct folio *folio = new->folios[i];
 
 
 
 
 
2717
2718		ret = attach_extent_buffer_folio(new, folio, NULL);
2719		if (ret < 0) {
2720			btrfs_release_extent_buffer(new);
2721			return NULL;
 
 
 
 
 
 
2722		}
2723		WARN_ON(folio_test_dirty(folio));
 
 
 
2724	}
2725	copy_extent_buffer_full(new, src);
2726	set_extent_buffer_uptodate(new);
2727
2728	return new;
 
 
2729}
2730
2731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2732						  u64 start, unsigned long len)
2733{
2734	struct extent_buffer *eb;
2735	int num_folios = 0;
2736	int ret;
2737
2738	eb = __alloc_extent_buffer(fs_info, start, len);
2739	if (!eb)
 
 
 
2740		return NULL;
2741
2742	ret = alloc_eb_folio_array(eb, false);
2743	if (ret)
2744		goto err;
2745
2746	num_folios = num_extent_folios(eb);
2747	for (int i = 0; i < num_folios; i++) {
2748		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2749		if (ret < 0)
2750			goto err;
2751	}
2752
2753	set_extent_buffer_uptodate(eb);
2754	btrfs_set_header_nritems(eb, 0);
2755	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2756
2757	return eb;
2758err:
2759	for (int i = 0; i < num_folios; i++) {
2760		if (eb->folios[i]) {
2761			detach_extent_buffer_folio(eb, eb->folios[i]);
2762			folio_put(eb->folios[i]);
2763		}
2764	}
2765	__free_extent_buffer(eb);
2766	return NULL;
2767}
2768
2769struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2770						u64 start)
2771{
2772	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2773}
2774
2775static void check_buffer_tree_ref(struct extent_buffer *eb)
2776{
2777	int refs;
2778	/*
2779	 * The TREE_REF bit is first set when the extent_buffer is added
2780	 * to the radix tree. It is also reset, if unset, when a new reference
2781	 * is created by find_extent_buffer.
2782	 *
2783	 * It is only cleared in two cases: freeing the last non-tree
2784	 * reference to the extent_buffer when its STALE bit is set or
2785	 * calling release_folio when the tree reference is the only reference.
2786	 *
2787	 * In both cases, care is taken to ensure that the extent_buffer's
2788	 * pages are not under io. However, release_folio can be concurrently
2789	 * called with creating new references, which is prone to race
2790	 * conditions between the calls to check_buffer_tree_ref in those
2791	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2792	 *
2793	 * The actual lifetime of the extent_buffer in the radix tree is
2794	 * adequately protected by the refcount, but the TREE_REF bit and
2795	 * its corresponding reference are not. To protect against this
2796	 * class of races, we call check_buffer_tree_ref from the codepaths
2797	 * which trigger io. Note that once io is initiated, TREE_REF can no
2798	 * longer be cleared, so that is the moment at which any such race is
2799	 * best fixed.
2800	 */
2801	refs = atomic_read(&eb->refs);
2802	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2803		return;
2804
2805	spin_lock(&eb->refs_lock);
2806	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2807		atomic_inc(&eb->refs);
2808	spin_unlock(&eb->refs_lock);
2809}
2810
2811static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2812{
2813	int num_folios= num_extent_folios(eb);
2814
2815	check_buffer_tree_ref(eb);
2816
2817	for (int i = 0; i < num_folios; i++)
2818		folio_mark_accessed(eb->folios[i]);
2819}
2820
2821struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2822					 u64 start)
 
 
2823{
2824	struct extent_buffer *eb;
 
 
 
2825
2826	eb = find_extent_buffer_nolock(fs_info, start);
2827	if (!eb)
2828		return NULL;
2829	/*
2830	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2831	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2832	 * another task running free_extent_buffer() might have seen that flag
2833	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2834	 * writeback flags not set) and it's still in the tree (flag
2835	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2836	 * decrementing the extent buffer's reference count twice.  So here we
2837	 * could race and increment the eb's reference count, clear its stale
2838	 * flag, mark it as dirty and drop our reference before the other task
2839	 * finishes executing free_extent_buffer, which would later result in
2840	 * an attempt to free an extent buffer that is dirty.
2841	 */
2842	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2843		spin_lock(&eb->refs_lock);
2844		spin_unlock(&eb->refs_lock);
2845	}
2846	mark_extent_buffer_accessed(eb);
 
2847	return eb;
2848}
2849
2850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2851struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2852					u64 start)
2853{
2854	struct extent_buffer *eb, *exists = NULL;
2855	int ret;
2856
2857	eb = find_extent_buffer(fs_info, start);
2858	if (eb)
2859		return eb;
2860	eb = alloc_dummy_extent_buffer(fs_info, start);
2861	if (!eb)
2862		return ERR_PTR(-ENOMEM);
2863	eb->fs_info = fs_info;
2864again:
2865	ret = radix_tree_preload(GFP_NOFS);
2866	if (ret) {
2867		exists = ERR_PTR(ret);
2868		goto free_eb;
2869	}
2870	spin_lock(&fs_info->buffer_lock);
2871	ret = radix_tree_insert(&fs_info->buffer_radix,
2872				start >> fs_info->sectorsize_bits, eb);
2873	spin_unlock(&fs_info->buffer_lock);
2874	radix_tree_preload_end();
2875	if (ret == -EEXIST) {
2876		exists = find_extent_buffer(fs_info, start);
2877		if (exists)
2878			goto free_eb;
2879		else
2880			goto again;
2881	}
2882	check_buffer_tree_ref(eb);
2883	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2884
2885	return eb;
2886free_eb:
2887	btrfs_release_extent_buffer(eb);
2888	return exists;
2889}
2890#endif
 
 
2891
2892static struct extent_buffer *grab_extent_buffer(
2893		struct btrfs_fs_info *fs_info, struct page *page)
 
 
 
2894{
2895	struct folio *folio = page_folio(page);
2896	struct extent_buffer *exists;
2897
2898	lockdep_assert_held(&page->mapping->i_private_lock);
2899
2900	/*
2901	 * For subpage case, we completely rely on radix tree to ensure we
2902	 * don't try to insert two ebs for the same bytenr.  So here we always
2903	 * return NULL and just continue.
2904	 */
2905	if (fs_info->nodesize < PAGE_SIZE)
2906		return NULL;
2907
2908	/* Page not yet attached to an extent buffer */
2909	if (!folio_test_private(folio))
2910		return NULL;
2911
2912	/*
2913	 * We could have already allocated an eb for this page and attached one
2914	 * so lets see if we can get a ref on the existing eb, and if we can we
2915	 * know it's good and we can just return that one, else we know we can
2916	 * just overwrite folio private.
2917	 */
2918	exists = folio_get_private(folio);
2919	if (atomic_inc_not_zero(&exists->refs))
2920		return exists;
2921
2922	WARN_ON(PageDirty(page));
2923	folio_detach_private(folio);
2924	return NULL;
2925}
2926
2927static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2928{
2929	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2930		btrfs_err(fs_info, "bad tree block start %llu", start);
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->nodesize < PAGE_SIZE &&
2935	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2936		btrfs_err(fs_info,
2937		"tree block crosses page boundary, start %llu nodesize %u",
2938			  start, fs_info->nodesize);
2939		return -EINVAL;
2940	}
2941	if (fs_info->nodesize >= PAGE_SIZE &&
2942	    !PAGE_ALIGNED(start)) {
2943		btrfs_err(fs_info,
2944		"tree block is not page aligned, start %llu nodesize %u",
2945			  start, fs_info->nodesize);
2946		return -EINVAL;
2947	}
2948	if (!IS_ALIGNED(start, fs_info->nodesize) &&
2949	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2950		btrfs_warn(fs_info,
2951"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2952			      start, fs_info->nodesize);
2953	}
2954	return 0;
2955}
2956
2957
2958/*
2959 * Return 0 if eb->folios[i] is attached to btree inode successfully.
2960 * Return >0 if there is already another extent buffer for the range,
2961 * and @found_eb_ret would be updated.
2962 * Return -EAGAIN if the filemap has an existing folio but with different size
2963 * than @eb.
2964 * The caller needs to free the existing folios and retry using the same order.
2965 */
2966static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2967				      struct btrfs_subpage *prealloc,
2968				      struct extent_buffer **found_eb_ret)
2969{
2970
2971	struct btrfs_fs_info *fs_info = eb->fs_info;
2972	struct address_space *mapping = fs_info->btree_inode->i_mapping;
2973	const unsigned long index = eb->start >> PAGE_SHIFT;
2974	struct folio *existing_folio = NULL;
2975	int ret;
2976
2977	ASSERT(found_eb_ret);
2978
2979	/* Caller should ensure the folio exists. */
2980	ASSERT(eb->folios[i]);
2981
2982retry:
2983	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2984				GFP_NOFS | __GFP_NOFAIL);
2985	if (!ret)
2986		goto finish;
2987
2988	existing_folio = filemap_lock_folio(mapping, index + i);
2989	/* The page cache only exists for a very short time, just retry. */
2990	if (IS_ERR(existing_folio)) {
2991		existing_folio = NULL;
2992		goto retry;
2993	}
2994
2995	/* For now, we should only have single-page folios for btree inode. */
2996	ASSERT(folio_nr_pages(existing_folio) == 1);
2997
2998	if (folio_size(existing_folio) != eb->folio_size) {
2999		folio_unlock(existing_folio);
3000		folio_put(existing_folio);
3001		return -EAGAIN;
3002	}
3003
3004finish:
3005	spin_lock(&mapping->i_private_lock);
3006	if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3007		/* We're going to reuse the existing page, can drop our folio now. */
3008		__free_page(folio_page(eb->folios[i], 0));
3009		eb->folios[i] = existing_folio;
3010	} else if (existing_folio) {
3011		struct extent_buffer *existing_eb;
3012
3013		existing_eb = grab_extent_buffer(fs_info,
3014						 folio_page(existing_folio, 0));
3015		if (existing_eb) {
3016			/* The extent buffer still exists, we can use it directly. */
3017			*found_eb_ret = existing_eb;
3018			spin_unlock(&mapping->i_private_lock);
3019			folio_unlock(existing_folio);
3020			folio_put(existing_folio);
3021			return 1;
3022		}
3023		/* The extent buffer no longer exists, we can reuse the folio. */
3024		__free_page(folio_page(eb->folios[i], 0));
3025		eb->folios[i] = existing_folio;
3026	}
3027	eb->folio_size = folio_size(eb->folios[i]);
3028	eb->folio_shift = folio_shift(eb->folios[i]);
3029	/* Should not fail, as we have preallocated the memory. */
3030	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3031	ASSERT(!ret);
3032	/*
3033	 * To inform we have an extra eb under allocation, so that
3034	 * detach_extent_buffer_page() won't release the folio private when the
3035	 * eb hasn't been inserted into radix tree yet.
3036	 *
3037	 * The ref will be decreased when the eb releases the page, in
3038	 * detach_extent_buffer_page().  Thus needs no special handling in the
3039	 * error path.
3040	 */
3041	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3042	spin_unlock(&mapping->i_private_lock);
3043	return 0;
3044}
3045
3046struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3047					  u64 start, u64 owner_root, int level)
 
3048{
3049	unsigned long len = fs_info->nodesize;
3050	int num_folios;
3051	int attached = 0;
3052	struct extent_buffer *eb;
3053	struct extent_buffer *existing_eb = NULL;
3054	struct btrfs_subpage *prealloc = NULL;
3055	u64 lockdep_owner = owner_root;
3056	bool page_contig = true;
3057	int uptodate = 1;
3058	int ret;
3059
3060	if (check_eb_alignment(fs_info, start))
3061		return ERR_PTR(-EINVAL);
3062
3063#if BITS_PER_LONG == 32
3064	if (start >= MAX_LFS_FILESIZE) {
3065		btrfs_err_rl(fs_info,
3066		"extent buffer %llu is beyond 32bit page cache limit", start);
3067		btrfs_err_32bit_limit(fs_info);
3068		return ERR_PTR(-EOVERFLOW);
3069	}
3070	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3071		btrfs_warn_32bit_limit(fs_info);
3072#endif
3073
3074	eb = find_extent_buffer(fs_info, start);
3075	if (eb)
3076		return eb;
 
 
3077
3078	eb = __alloc_extent_buffer(fs_info, start, len);
3079	if (!eb)
3080		return ERR_PTR(-ENOMEM);
3081
3082	/*
3083	 * The reloc trees are just snapshots, so we need them to appear to be
3084	 * just like any other fs tree WRT lockdep.
3085	 */
3086	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3087		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3088
3089	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3090
3091	/*
3092	 * Preallocate folio private for subpage case, so that we won't
3093	 * allocate memory with i_private_lock nor page lock hold.
3094	 *
3095	 * The memory will be freed by attach_extent_buffer_page() or freed
3096	 * manually if we exit earlier.
3097	 */
3098	if (fs_info->nodesize < PAGE_SIZE) {
3099		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3100		if (IS_ERR(prealloc)) {
3101			ret = PTR_ERR(prealloc);
3102			goto out;
3103		}
3104	}
3105
3106reallocate:
3107	/* Allocate all pages first. */
3108	ret = alloc_eb_folio_array(eb, true);
3109	if (ret < 0) {
3110		btrfs_free_subpage(prealloc);
3111		goto out;
 
 
 
 
 
3112	}
3113
3114	num_folios = num_extent_folios(eb);
3115	/* Attach all pages to the filemap. */
3116	for (int i = 0; i < num_folios; i++) {
3117		struct folio *folio;
3118
3119		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3120		if (ret > 0) {
3121			ASSERT(existing_eb);
3122			goto out;
3123		}
3124
3125		/*
3126		 * TODO: Special handling for a corner case where the order of
3127		 * folios mismatch between the new eb and filemap.
3128		 *
3129		 * This happens when:
3130		 *
3131		 * - the new eb is using higher order folio
3132		 *
3133		 * - the filemap is still using 0-order folios for the range
3134		 *   This can happen at the previous eb allocation, and we don't
3135		 *   have higher order folio for the call.
3136		 *
3137		 * - the existing eb has already been freed
3138		 *
3139		 * In this case, we have to free the existing folios first, and
3140		 * re-allocate using the same order.
3141		 * Thankfully this is not going to happen yet, as we're still
3142		 * using 0-order folios.
3143		 */
3144		if (unlikely(ret == -EAGAIN)) {
3145			ASSERT(0);
3146			goto reallocate;
3147		}
3148		attached++;
3149
3150		/*
3151		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3152		 * reliable, as we may choose to reuse the existing page cache
3153		 * and free the allocated page.
3154		 */
3155		folio = eb->folios[i];
3156		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3157
3158		/*
3159		 * Check if the current page is physically contiguous with previous eb
3160		 * page.
3161		 * At this stage, either we allocated a large folio, thus @i
3162		 * would only be 0, or we fall back to per-page allocation.
3163		 */
3164		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3165			page_contig = false;
3166
3167		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3168			uptodate = 0;
3169
3170		/*
3171		 * We can't unlock the pages just yet since the extent buffer
3172		 * hasn't been properly inserted in the radix tree, this
3173		 * opens a race with btree_release_folio which can free a page
3174		 * while we are still filling in all pages for the buffer and
3175		 * we could crash.
3176		 */
 
 
3177	}
3178	if (uptodate)
3179		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3180	/* All pages are physically contiguous, can skip cross page handling. */
3181	if (page_contig)
3182		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3183again:
3184	ret = radix_tree_preload(GFP_NOFS);
3185	if (ret)
3186		goto out;
3187
3188	spin_lock(&fs_info->buffer_lock);
3189	ret = radix_tree_insert(&fs_info->buffer_radix,
3190				start >> fs_info->sectorsize_bits, eb);
3191	spin_unlock(&fs_info->buffer_lock);
3192	radix_tree_preload_end();
3193	if (ret == -EEXIST) {
3194		ret = 0;
3195		existing_eb = find_extent_buffer(fs_info, start);
3196		if (existing_eb)
3197			goto out;
3198		else
3199			goto again;
 
3200	}
3201	/* add one reference for the tree */
3202	check_buffer_tree_ref(eb);
3203	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
 
3204
3205	/*
3206	 * Now it's safe to unlock the pages because any calls to
3207	 * btree_release_folio will correctly detect that a page belongs to a
3208	 * live buffer and won't free them prematurely.
3209	 */
3210	for (int i = 0; i < num_folios; i++)
3211		unlock_page(folio_page(eb->folios[i], 0));
 
 
 
 
 
 
3212	return eb;
3213
3214out:
3215	WARN_ON(!atomic_dec_and_test(&eb->refs));
3216
3217	/*
3218	 * Any attached folios need to be detached before we unlock them.  This
3219	 * is because when we're inserting our new folios into the mapping, and
3220	 * then attaching our eb to that folio.  If we fail to insert our folio
3221	 * we'll lookup the folio for that index, and grab that EB.  We do not
3222	 * want that to grab this eb, as we're getting ready to free it.  So we
3223	 * have to detach it first and then unlock it.
3224	 *
3225	 * We have to drop our reference and NULL it out here because in the
3226	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3227	 * Below when we call btrfs_release_extent_buffer() we will call
3228	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3229	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3230	 * double put our reference and be super sad.
3231	 */
3232	for (int i = 0; i < attached; i++) {
3233		ASSERT(eb->folios[i]);
3234		detach_extent_buffer_folio(eb, eb->folios[i]);
3235		unlock_page(folio_page(eb->folios[i], 0));
3236		folio_put(eb->folios[i]);
3237		eb->folios[i] = NULL;
3238	}
3239	/*
3240	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3241	 * so it can be cleaned up without utilizing page->mapping.
3242	 */
3243	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3244
 
 
3245	btrfs_release_extent_buffer(eb);
3246	if (ret < 0)
3247		return ERR_PTR(ret);
3248	ASSERT(existing_eb);
3249	return existing_eb;
3250}
3251
3252static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3253{
3254	struct extent_buffer *eb =
3255			container_of(head, struct extent_buffer, rcu_head);
3256
3257	__free_extent_buffer(eb);
3258}
3259
3260static int release_extent_buffer(struct extent_buffer *eb)
3261	__releases(&eb->refs_lock)
3262{
3263	lockdep_assert_held(&eb->refs_lock);
3264
3265	WARN_ON(atomic_read(&eb->refs) == 0);
3266	if (atomic_dec_and_test(&eb->refs)) {
3267		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3268			struct btrfs_fs_info *fs_info = eb->fs_info;
3269
3270			spin_unlock(&eb->refs_lock);
3271
3272			spin_lock(&fs_info->buffer_lock);
3273			radix_tree_delete(&fs_info->buffer_radix,
3274					  eb->start >> fs_info->sectorsize_bits);
3275			spin_unlock(&fs_info->buffer_lock);
3276		} else {
3277			spin_unlock(&eb->refs_lock);
3278		}
3279
3280		btrfs_leak_debug_del_eb(eb);
3281		/* Should be safe to release our pages at this point */
3282		btrfs_release_extent_buffer_pages(eb);
3283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3284		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3285			__free_extent_buffer(eb);
3286			return 1;
3287		}
3288#endif
3289		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3290		return 1;
3291	}
3292	spin_unlock(&eb->refs_lock);
3293
3294	return 0;
3295}
3296
3297void free_extent_buffer(struct extent_buffer *eb)
3298{
3299	int refs;
3300	if (!eb)
3301		return;
3302
3303	refs = atomic_read(&eb->refs);
3304	while (1) {
3305		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3306		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3307			refs == 1))
3308			break;
3309		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3310			return;
3311	}
3312
3313	spin_lock(&eb->refs_lock);
3314	if (atomic_read(&eb->refs) == 2 &&
3315	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3316	    !extent_buffer_under_io(eb) &&
3317	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3318		atomic_dec(&eb->refs);
3319
3320	/*
3321	 * I know this is terrible, but it's temporary until we stop tracking
3322	 * the uptodate bits and such for the extent buffers.
3323	 */
3324	release_extent_buffer(eb);
3325}
3326
3327void free_extent_buffer_stale(struct extent_buffer *eb)
3328{
3329	if (!eb)
3330		return;
3331
3332	spin_lock(&eb->refs_lock);
3333	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3334
3335	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3336	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3337		atomic_dec(&eb->refs);
3338	release_extent_buffer(eb);
3339}
3340
3341static void btree_clear_folio_dirty(struct folio *folio)
3342{
3343	ASSERT(folio_test_dirty(folio));
3344	ASSERT(folio_test_locked(folio));
3345	folio_clear_dirty_for_io(folio);
3346	xa_lock_irq(&folio->mapping->i_pages);
3347	if (!folio_test_dirty(folio))
3348		__xa_clear_mark(&folio->mapping->i_pages,
3349				folio_index(folio), PAGECACHE_TAG_DIRTY);
3350	xa_unlock_irq(&folio->mapping->i_pages);
3351}
3352
3353static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3354{
3355	struct btrfs_fs_info *fs_info = eb->fs_info;
3356	struct folio *folio = eb->folios[0];
3357	bool last;
3358
3359	/* btree_clear_folio_dirty() needs page locked. */
3360	folio_lock(folio);
3361	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3362	if (last)
3363		btree_clear_folio_dirty(folio);
3364	folio_unlock(folio);
3365	WARN_ON(atomic_read(&eb->refs) == 0);
3366}
3367
3368void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3369			      struct extent_buffer *eb)
3370{
3371	struct btrfs_fs_info *fs_info = eb->fs_info;
3372	int num_folios;
3373
3374	btrfs_assert_tree_write_locked(eb);
3375
3376	if (trans && btrfs_header_generation(eb) != trans->transid)
3377		return;
3378
3379	/*
3380	 * Instead of clearing the dirty flag off of the buffer, mark it as
3381	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3382	 * write-ordering in zoned mode, without the need to later re-dirty
3383	 * the extent_buffer.
3384	 *
3385	 * The actual zeroout of the buffer will happen later in
3386	 * btree_csum_one_bio.
3387	 */
3388	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3389		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3390		return;
3391	}
3392
3393	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3394		return;
3395
3396	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3397				 fs_info->dirty_metadata_batch);
3398
3399	if (eb->fs_info->nodesize < PAGE_SIZE)
3400		return clear_subpage_extent_buffer_dirty(eb);
 
 
3401
3402	num_folios = num_extent_folios(eb);
3403	for (int i = 0; i < num_folios; i++) {
3404		struct folio *folio = eb->folios[i];
3405
3406		if (!folio_test_dirty(folio))
3407			continue;
3408		folio_lock(folio);
3409		btree_clear_folio_dirty(folio);
3410		folio_unlock(folio);
 
 
 
 
 
 
 
 
3411	}
3412	WARN_ON(atomic_read(&eb->refs) == 0);
3413}
3414
3415void set_extent_buffer_dirty(struct extent_buffer *eb)
 
3416{
3417	int num_folios;
3418	bool was_dirty;
3419
3420	check_buffer_tree_ref(eb);
3421
3422	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
 
 
 
 
 
3423
3424	num_folios = num_extent_folios(eb);
3425	WARN_ON(atomic_read(&eb->refs) == 0);
3426	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3427	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3428
3429	if (!was_dirty) {
3430		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
 
 
 
3431
3432		/*
3433		 * For subpage case, we can have other extent buffers in the
3434		 * same page, and in clear_subpage_extent_buffer_dirty() we
3435		 * have to clear page dirty without subpage lock held.
3436		 * This can cause race where our page gets dirty cleared after
3437		 * we just set it.
3438		 *
3439		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3440		 * its page for other reasons, we can use page lock to prevent
3441		 * the above race.
3442		 */
3443		if (subpage)
3444			lock_page(folio_page(eb->folios[0], 0));
3445		for (int i = 0; i < num_folios; i++)
3446			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3447					      eb->start, eb->len);
3448		if (subpage)
3449			unlock_page(folio_page(eb->folios[0], 0));
3450		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3451					 eb->len,
3452					 eb->fs_info->dirty_metadata_batch);
3453	}
3454#ifdef CONFIG_BTRFS_DEBUG
3455	for (int i = 0; i < num_folios; i++)
3456		ASSERT(folio_test_dirty(eb->folios[i]));
3457#endif
3458}
3459
3460void clear_extent_buffer_uptodate(struct extent_buffer *eb)
 
 
3461{
3462	struct btrfs_fs_info *fs_info = eb->fs_info;
3463	int num_folios = num_extent_folios(eb);
 
3464
 
3465	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3466	for (int i = 0; i < num_folios; i++) {
3467		struct folio *folio = eb->folios[i];
3468
3469		if (!folio)
3470			continue;
3471
3472		/*
3473		 * This is special handling for metadata subpage, as regular
3474		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3475		 */
3476		if (fs_info->nodesize >= PAGE_SIZE)
3477			folio_clear_uptodate(folio);
3478		else
3479			btrfs_subpage_clear_uptodate(fs_info, folio,
3480						     eb->start, eb->len);
3481	}
 
3482}
3483
3484void set_extent_buffer_uptodate(struct extent_buffer *eb)
 
3485{
3486	struct btrfs_fs_info *fs_info = eb->fs_info;
3487	int num_folios = num_extent_folios(eb);
 
3488
3489	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3490	for (int i = 0; i < num_folios; i++) {
3491		struct folio *folio = eb->folios[i];
3492
3493		/*
3494		 * This is special handling for metadata subpage, as regular
3495		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3496		 */
3497		if (fs_info->nodesize >= PAGE_SIZE)
3498			folio_mark_uptodate(folio);
3499		else
3500			btrfs_subpage_set_uptodate(fs_info, folio,
3501						   eb->start, eb->len);
 
 
 
 
3502	}
 
3503}
3504
3505static void clear_extent_buffer_reading(struct extent_buffer *eb)
 
3506{
3507	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3508	smp_mb__after_atomic();
3509	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3510}
3511
3512static void end_bbio_meta_read(struct btrfs_bio *bbio)
 
 
3513{
3514	struct extent_buffer *eb = bbio->private;
3515	struct btrfs_fs_info *fs_info = eb->fs_info;
3516	bool uptodate = !bbio->bio.bi_status;
3517	struct folio_iter fi;
3518	u32 bio_offset = 0;
3519
3520	/*
3521	 * If the extent buffer is marked UPTODATE before the read operation
3522	 * completes, other calls to read_extent_buffer_pages() will return
3523	 * early without waiting for the read to finish, causing data races.
3524	 */
3525	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3526
3527	eb->read_mirror = bbio->mirror_num;
3528
3529	if (uptodate &&
3530	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3531		uptodate = false;
3532
3533	if (uptodate) {
3534		set_extent_buffer_uptodate(eb);
3535	} else {
3536		clear_extent_buffer_uptodate(eb);
3537		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3538	}
3539
3540	bio_for_each_folio_all(fi, &bbio->bio) {
3541		struct folio *folio = fi.folio;
3542		u64 start = eb->start + bio_offset;
3543		u32 len = fi.length;
3544
3545		if (uptodate)
3546			btrfs_folio_set_uptodate(fs_info, folio, start, len);
3547		else
3548			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3549
3550		bio_offset += len;
3551	}
3552
3553	clear_extent_buffer_reading(eb);
3554	free_extent_buffer(eb);
3555
3556	bio_put(&bbio->bio);
3557}
3558
3559int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3560			     const struct btrfs_tree_parent_check *check)
 
 
3561{
3562	struct btrfs_bio *bbio;
3563	bool ret;
 
 
 
 
 
 
 
 
 
3564
3565	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3566		return 0;
3567
3568	/*
3569	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3570	 * operation, which could potentially still be in flight.  In this case
3571	 * we simply want to return an error.
3572	 */
3573	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3574		return -EIO;
3575
3576	/* Someone else is already reading the buffer, just wait for it. */
3577	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3578		goto done;
3579
3580	/*
3581	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3582	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3583	 * started and finished reading the same eb.  In this case, UPTODATE
3584	 * will now be set, and we shouldn't read it in again.
3585	 */
3586	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3587		clear_extent_buffer_reading(eb);
3588		return 0;
3589	}
3590
3591	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3592	eb->read_mirror = 0;
3593	check_buffer_tree_ref(eb);
3594	atomic_inc(&eb->refs);
3595
3596	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3597			       REQ_OP_READ | REQ_META, eb->fs_info,
3598			       end_bbio_meta_read, eb);
3599	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3600	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3601	bbio->file_offset = eb->start;
3602	memcpy(&bbio->parent_check, check, sizeof(*check));
3603	if (eb->fs_info->nodesize < PAGE_SIZE) {
3604		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3605				    eb->start - folio_pos(eb->folios[0]));
3606		ASSERT(ret);
3607	} else {
3608		int num_folios = num_extent_folios(eb);
3609
3610		for (int i = 0; i < num_folios; i++) {
3611			struct folio *folio = eb->folios[i];
3612
3613			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3614			ASSERT(ret);
3615		}
3616	}
3617	btrfs_submit_bbio(bbio, mirror_num);
3618
3619done:
3620	if (wait == WAIT_COMPLETE) {
3621		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3622		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3623			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3624	}
3625
3626	return 0;
3627}
3628
3629static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3630			    unsigned long len)
3631{
3632	btrfs_warn(eb->fs_info,
3633		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3634		eb->start, eb->len, start, len);
3635	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3636
3637	return true;
3638}
3639
3640/*
3641 * Check if the [start, start + len) range is valid before reading/writing
3642 * the eb.
3643 * NOTE: @start and @len are offset inside the eb, not logical address.
3644 *
3645 * Caller should not touch the dst/src memory if this function returns error.
3646 */
3647static inline int check_eb_range(const struct extent_buffer *eb,
3648				 unsigned long start, unsigned long len)
3649{
3650	unsigned long offset;
3651
3652	/* start, start + len should not go beyond eb->len nor overflow */
3653	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3654		return report_eb_range(eb, start, len);
3655
3656	return false;
 
 
 
 
 
 
 
 
3657}
3658
3659void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3660			unsigned long start, unsigned long len)
 
3661{
3662	const int unit_size = eb->folio_size;
3663	size_t cur;
3664	size_t offset;
 
 
3665	char *dst = (char *)dstv;
3666	unsigned long i = get_eb_folio_index(eb, start);
 
3667
3668	if (check_eb_range(eb, start, len)) {
3669		/*
3670		 * Invalid range hit, reset the memory, so callers won't get
3671		 * some random garbage for their uninitialized memory.
3672		 */
3673		memset(dstv, 0, len);
3674		return;
3675	}
3676
3677	if (eb->addr) {
3678		memcpy(dstv, eb->addr + start, len);
3679		return;
3680	}
3681
3682	offset = get_eb_offset_in_folio(eb, start);
3683
3684	while (len > 0) {
3685		char *kaddr;
3686
3687		cur = min(len, unit_size - offset);
3688		kaddr = folio_address(eb->folios[i]);
3689		memcpy(dst, kaddr + offset, cur);
3690
3691		dst += cur;
3692		len -= cur;
3693		offset = 0;
3694		i++;
3695	}
3696}
3697
3698int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3699				       void __user *dstv,
3700				       unsigned long start, unsigned long len)
 
3701{
3702	const int unit_size = eb->folio_size;
3703	size_t cur;
3704	size_t offset;
3705	char __user *dst = (char __user *)dstv;
3706	unsigned long i = get_eb_folio_index(eb, start);
3707	int ret = 0;
 
3708
3709	WARN_ON(start > eb->len);
3710	WARN_ON(start + len > eb->start + eb->len);
3711
3712	if (eb->addr) {
3713		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3714			ret = -EFAULT;
3715		return ret;
 
 
3716	}
3717
3718	offset = get_eb_offset_in_folio(eb, start);
3719
3720	while (len > 0) {
3721		char *kaddr;
3722
3723		cur = min(len, unit_size - offset);
3724		kaddr = folio_address(eb->folios[i]);
3725		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3726			ret = -EFAULT;
3727			break;
3728		}
3729
3730		dst += cur;
3731		len -= cur;
3732		offset = 0;
3733		i++;
3734	}
3735
3736	return ret;
 
 
 
 
3737}
3738
3739int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3740			 unsigned long start, unsigned long len)
 
3741{
3742	const int unit_size = eb->folio_size;
3743	size_t cur;
3744	size_t offset;
 
3745	char *kaddr;
3746	char *ptr = (char *)ptrv;
3747	unsigned long i = get_eb_folio_index(eb, start);
 
3748	int ret = 0;
3749
3750	if (check_eb_range(eb, start, len))
3751		return -EINVAL;
3752
3753	if (eb->addr)
3754		return memcmp(ptrv, eb->addr + start, len);
3755
3756	offset = get_eb_offset_in_folio(eb, start);
3757
3758	while (len > 0) {
3759		cur = min(len, unit_size - offset);
3760		kaddr = folio_address(eb->folios[i]);
 
 
 
3761		ret = memcmp(ptr, kaddr + offset, cur);
3762		if (ret)
3763			break;
3764
3765		ptr += cur;
3766		len -= cur;
3767		offset = 0;
3768		i++;
3769	}
3770	return ret;
3771}
3772
3773/*
3774 * Check that the extent buffer is uptodate.
3775 *
3776 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3777 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3778 */
3779static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3780{
3781	struct btrfs_fs_info *fs_info = eb->fs_info;
3782	struct folio *folio = eb->folios[i];
3783
3784	ASSERT(folio);
3785
3786	/*
3787	 * If we are using the commit root we could potentially clear a page
3788	 * Uptodate while we're using the extent buffer that we've previously
3789	 * looked up.  We don't want to complain in this case, as the page was
3790	 * valid before, we just didn't write it out.  Instead we want to catch
3791	 * the case where we didn't actually read the block properly, which
3792	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3793	 */
3794	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3795		return;
3796
3797	if (fs_info->nodesize < PAGE_SIZE) {
3798		folio = eb->folios[0];
3799		ASSERT(i == 0);
3800		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3801							 eb->start, eb->len)))
3802			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3803	} else {
3804		WARN_ON(!folio_test_uptodate(folio));
3805	}
3806}
3807
3808static void __write_extent_buffer(const struct extent_buffer *eb,
3809				  const void *srcv, unsigned long start,
3810				  unsigned long len, bool use_memmove)
3811{
3812	const int unit_size = eb->folio_size;
3813	size_t cur;
3814	size_t offset;
 
3815	char *kaddr;
3816	const char *src = (const char *)srcv;
3817	unsigned long i = get_eb_folio_index(eb, start);
3818	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
3819	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3820
3821	if (check_eb_range(eb, start, len))
3822		return;
3823
3824	if (eb->addr) {
3825		if (use_memmove)
3826			memmove(eb->addr + start, srcv, len);
3827		else
3828			memcpy(eb->addr + start, srcv, len);
3829		return;
3830	}
3831
3832	offset = get_eb_offset_in_folio(eb, start);
3833
3834	while (len > 0) {
3835		if (check_uptodate)
3836			assert_eb_folio_uptodate(eb, i);
3837
3838		cur = min(len, unit_size - offset);
3839		kaddr = folio_address(eb->folios[i]);
3840		if (use_memmove)
3841			memmove(kaddr + offset, src, cur);
3842		else
3843			memcpy(kaddr + offset, src, cur);
3844
3845		src += cur;
3846		len -= cur;
3847		offset = 0;
3848		i++;
3849	}
3850}
3851
3852void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3853			 unsigned long start, unsigned long len)
3854{
3855	return __write_extent_buffer(eb, srcv, start, len, false);
3856}
3857
3858static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3859				 unsigned long start, unsigned long len)
3860{
3861	const int unit_size = eb->folio_size;
3862	unsigned long cur = start;
3863
3864	if (eb->addr) {
3865		memset(eb->addr + start, c, len);
3866		return;
3867	}
3868
3869	while (cur < start + len) {
3870		unsigned long index = get_eb_folio_index(eb, cur);
3871		unsigned int offset = get_eb_offset_in_folio(eb, cur);
3872		unsigned int cur_len = min(start + len - cur, unit_size - offset);
3873
3874		assert_eb_folio_uptodate(eb, index);
3875		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3876
3877		cur += cur_len;
3878	}
3879}
3880
3881void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3882			   unsigned long len)
3883{
3884	if (check_eb_range(eb, start, len))
3885		return;
3886	return memset_extent_buffer(eb, 0, start, len);
3887}
 
 
3888
3889void copy_extent_buffer_full(const struct extent_buffer *dst,
3890			     const struct extent_buffer *src)
3891{
3892	const int unit_size = src->folio_size;
3893	unsigned long cur = 0;
3894
3895	ASSERT(dst->len == src->len);
3896
3897	while (cur < src->len) {
3898		unsigned long index = get_eb_folio_index(src, cur);
3899		unsigned long offset = get_eb_offset_in_folio(src, cur);
3900		unsigned long cur_len = min(src->len, unit_size - offset);
3901		void *addr = folio_address(src->folios[index]) + offset;
3902
3903		write_extent_buffer(dst, addr, cur, cur_len);
 
 
3904
3905		cur += cur_len;
 
 
3906	}
3907}
3908
3909void copy_extent_buffer(const struct extent_buffer *dst,
3910			const struct extent_buffer *src,
3911			unsigned long dst_offset, unsigned long src_offset,
3912			unsigned long len)
3913{
3914	const int unit_size = dst->folio_size;
3915	u64 dst_len = dst->len;
3916	size_t cur;
3917	size_t offset;
 
3918	char *kaddr;
3919	unsigned long i = get_eb_folio_index(dst, dst_offset);
3920
3921	if (check_eb_range(dst, dst_offset, len) ||
3922	    check_eb_range(src, src_offset, len))
3923		return;
3924
3925	WARN_ON(src->len != dst_len);
3926
3927	offset = get_eb_offset_in_folio(dst, dst_offset);
 
3928
3929	while (len > 0) {
3930		assert_eb_folio_uptodate(dst, i);
 
3931
3932		cur = min(len, (unsigned long)(unit_size - offset));
3933
3934		kaddr = folio_address(dst->folios[i]);
3935		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3936
3937		src_offset += cur;
3938		len -= cur;
3939		offset = 0;
3940		i++;
3941	}
3942}
3943
3944/*
3945 * Calculate the folio and offset of the byte containing the given bit number.
3946 *
3947 * @eb:           the extent buffer
3948 * @start:        offset of the bitmap item in the extent buffer
3949 * @nr:           bit number
3950 * @folio_index:  return index of the folio in the extent buffer that contains
3951 *                the given bit number
3952 * @folio_offset: return offset into the folio given by folio_index
3953 *
3954 * This helper hides the ugliness of finding the byte in an extent buffer which
3955 * contains a given bit.
3956 */
3957static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3958				    unsigned long start, unsigned long nr,
3959				    unsigned long *folio_index,
3960				    size_t *folio_offset)
3961{
3962	size_t byte_offset = BIT_BYTE(nr);
3963	size_t offset;
3964
3965	/*
3966	 * The byte we want is the offset of the extent buffer + the offset of
3967	 * the bitmap item in the extent buffer + the offset of the byte in the
3968	 * bitmap item.
3969	 */
3970	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3971
3972	*folio_index = offset >> eb->folio_shift;
3973	*folio_offset = offset_in_eb_folio(eb, offset);
3974}
3975
3976/*
3977 * Determine whether a bit in a bitmap item is set.
3978 *
3979 * @eb:     the extent buffer
3980 * @start:  offset of the bitmap item in the extent buffer
3981 * @nr:     bit number to test
3982 */
3983int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3984			   unsigned long nr)
3985{
3986	unsigned long i;
3987	size_t offset;
3988	u8 *kaddr;
3989
3990	eb_bitmap_offset(eb, start, nr, &i, &offset);
3991	assert_eb_folio_uptodate(eb, i);
3992	kaddr = folio_address(eb->folios[i]);
3993	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3994}
3995
3996static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3997{
3998	unsigned long index = get_eb_folio_index(eb, bytenr);
3999
4000	if (check_eb_range(eb, bytenr, 1))
4001		return NULL;
4002	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4003}
4004
4005/*
4006 * Set an area of a bitmap to 1.
4007 *
4008 * @eb:     the extent buffer
4009 * @start:  offset of the bitmap item in the extent buffer
4010 * @pos:    bit number of the first bit
4011 * @len:    number of bits to set
4012 */
4013void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4014			      unsigned long pos, unsigned long len)
4015{
4016	unsigned int first_byte = start + BIT_BYTE(pos);
4017	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4018	const bool same_byte = (first_byte == last_byte);
4019	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4020	u8 *kaddr;
4021
4022	if (same_byte)
4023		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4024
4025	/* Handle the first byte. */
4026	kaddr = extent_buffer_get_byte(eb, first_byte);
4027	*kaddr |= mask;
4028	if (same_byte)
4029		return;
4030
4031	/* Handle the byte aligned part. */
4032	ASSERT(first_byte + 1 <= last_byte);
4033	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4034
4035	/* Handle the last byte. */
4036	kaddr = extent_buffer_get_byte(eb, last_byte);
4037	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4038}
4039
4040
4041/*
4042 * Clear an area of a bitmap.
4043 *
4044 * @eb:     the extent buffer
4045 * @start:  offset of the bitmap item in the extent buffer
4046 * @pos:    bit number of the first bit
4047 * @len:    number of bits to clear
4048 */
4049void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4050				unsigned long start, unsigned long pos,
4051				unsigned long len)
4052{
4053	unsigned int first_byte = start + BIT_BYTE(pos);
4054	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4055	const bool same_byte = (first_byte == last_byte);
4056	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4057	u8 *kaddr;
4058
4059	if (same_byte)
4060		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4061
4062	/* Handle the first byte. */
4063	kaddr = extent_buffer_get_byte(eb, first_byte);
4064	*kaddr &= ~mask;
4065	if (same_byte)
4066		return;
4067
4068	/* Handle the byte aligned part. */
4069	ASSERT(first_byte + 1 <= last_byte);
4070	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4071
4072	/* Handle the last byte. */
4073	kaddr = extent_buffer_get_byte(eb, last_byte);
4074	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4075}
4076
4077static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4078{
4079	unsigned long distance = (src > dst) ? src - dst : dst - src;
4080	return distance < len;
4081}
4082
4083void memcpy_extent_buffer(const struct extent_buffer *dst,
4084			  unsigned long dst_offset, unsigned long src_offset,
4085			  unsigned long len)
4086{
4087	const int unit_size = dst->folio_size;
4088	unsigned long cur_off = 0;
4089
4090	if (check_eb_range(dst, dst_offset, len) ||
4091	    check_eb_range(dst, src_offset, len))
4092		return;
 
 
 
4093
4094	if (dst->addr) {
4095		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4096
4097		if (use_memmove)
4098			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4099		else
4100			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4101		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4102	}
4103
4104	while (cur_off < len) {
4105		unsigned long cur_src = cur_off + src_offset;
4106		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4107		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4108		unsigned long cur_len = min(src_offset + len - cur_src,
4109					    unit_size - folio_off);
4110		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4111		const bool use_memmove = areas_overlap(src_offset + cur_off,
4112						       dst_offset + cur_off, cur_len);
4113
4114		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4115				      use_memmove);
4116		cur_off += cur_len;
 
 
 
 
 
 
 
 
4117	}
4118}
4119
4120void memmove_extent_buffer(const struct extent_buffer *dst,
4121			   unsigned long dst_offset, unsigned long src_offset,
4122			   unsigned long len)
4123{
 
 
 
4124	unsigned long dst_end = dst_offset + len - 1;
4125	unsigned long src_end = src_offset + len - 1;
4126
4127	if (check_eb_range(dst, dst_offset, len) ||
4128	    check_eb_range(dst, src_offset, len))
4129		return;
4130
4131	if (dst_offset < src_offset) {
4132		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4133		return;
 
 
 
 
 
4134	}
4135
4136	if (dst->addr) {
4137		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4138		return;
4139	}
4140
4141	while (len > 0) {
4142		unsigned long src_i;
4143		size_t cur;
4144		size_t dst_off_in_folio;
4145		size_t src_off_in_folio;
4146		void *src_addr;
4147		bool use_memmove;
4148
4149		src_i = get_eb_folio_index(dst, src_end);
4150
4151		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4152		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4153
4154		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4155		cur = min(cur, dst_off_in_folio + 1);
4156
4157		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4158					 cur + 1;
4159		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4160					    cur);
4161
4162		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4163				      use_memmove);
 
 
 
 
 
 
 
 
 
4164
4165		dst_end -= cur;
4166		src_end -= cur;
4167		len -= cur;
4168	}
4169}
4170
4171#define GANG_LOOKUP_SIZE	16
4172static struct extent_buffer *get_next_extent_buffer(
4173		const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4174{
4175	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4176	struct extent_buffer *found = NULL;
4177	u64 folio_start = folio_pos(folio);
4178	u64 cur = folio_start;
4179
4180	ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4181	lockdep_assert_held(&fs_info->buffer_lock);
4182
4183	while (cur < folio_start + PAGE_SIZE) {
4184		int ret;
4185		int i;
4186
4187		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4188				(void **)gang, cur >> fs_info->sectorsize_bits,
4189				min_t(unsigned int, GANG_LOOKUP_SIZE,
4190				      PAGE_SIZE / fs_info->nodesize));
4191		if (ret == 0)
4192			goto out;
4193		for (i = 0; i < ret; i++) {
4194			/* Already beyond page end */
4195			if (gang[i]->start >= folio_start + PAGE_SIZE)
4196				goto out;
4197			/* Found one */
4198			if (gang[i]->start >= bytenr) {
4199				found = gang[i];
4200				goto out;
4201			}
4202		}
4203		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4204	}
4205out:
4206	return found;
4207}
4208
4209static int try_release_subpage_extent_buffer(struct folio *folio)
4210{
4211	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4212	u64 cur = folio_pos(folio);
4213	const u64 end = cur + PAGE_SIZE;
4214	int ret;
4215
4216	while (cur < end) {
4217		struct extent_buffer *eb = NULL;
4218
4219		/*
4220		 * Unlike try_release_extent_buffer() which uses folio private
4221		 * to grab buffer, for subpage case we rely on radix tree, thus
4222		 * we need to ensure radix tree consistency.
4223		 *
4224		 * We also want an atomic snapshot of the radix tree, thus go
4225		 * with spinlock rather than RCU.
4226		 */
4227		spin_lock(&fs_info->buffer_lock);
4228		eb = get_next_extent_buffer(fs_info, folio, cur);
4229		if (!eb) {
4230			/* No more eb in the page range after or at cur */
4231			spin_unlock(&fs_info->buffer_lock);
4232			break;
4233		}
4234		cur = eb->start + eb->len;
4235
4236		/*
4237		 * The same as try_release_extent_buffer(), to ensure the eb
4238		 * won't disappear out from under us.
4239		 */
4240		spin_lock(&eb->refs_lock);
4241		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4242			spin_unlock(&eb->refs_lock);
4243			spin_unlock(&fs_info->buffer_lock);
4244			break;
4245		}
4246		spin_unlock(&fs_info->buffer_lock);
4247
4248		/*
4249		 * If tree ref isn't set then we know the ref on this eb is a
4250		 * real ref, so just return, this eb will likely be freed soon
4251		 * anyway.
4252		 */
4253		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4254			spin_unlock(&eb->refs_lock);
4255			break;
4256		}
4257
4258		/*
4259		 * Here we don't care about the return value, we will always
4260		 * check the folio private at the end.  And
4261		 * release_extent_buffer() will release the refs_lock.
4262		 */
4263		release_extent_buffer(eb);
4264	}
4265	/*
4266	 * Finally to check if we have cleared folio private, as if we have
4267	 * released all ebs in the page, the folio private should be cleared now.
4268	 */
4269	spin_lock(&folio->mapping->i_private_lock);
4270	if (!folio_test_private(folio))
4271		ret = 1;
4272	else
4273		ret = 0;
4274	spin_unlock(&folio->mapping->i_private_lock);
4275	return ret;
4276
 
4277}
4278
4279int try_release_extent_buffer(struct folio *folio)
4280{
 
4281	struct extent_buffer *eb;
 
4282
4283	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4284		return try_release_subpage_extent_buffer(folio);
4285
4286	/*
4287	 * We need to make sure nobody is changing folio private, as we rely on
4288	 * folio private as the pointer to extent buffer.
4289	 */
4290	spin_lock(&folio->mapping->i_private_lock);
4291	if (!folio_test_private(folio)) {
4292		spin_unlock(&folio->mapping->i_private_lock);
4293		return 1;
4294	}
4295
4296	eb = folio_get_private(folio);
4297	BUG_ON(!eb);
4298
4299	/*
4300	 * This is a little awful but should be ok, we need to make sure that
4301	 * the eb doesn't disappear out from under us while we're looking at
4302	 * this page.
4303	 */
4304	spin_lock(&eb->refs_lock);
4305	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4306		spin_unlock(&eb->refs_lock);
4307		spin_unlock(&folio->mapping->i_private_lock);
4308		return 0;
4309	}
4310	spin_unlock(&folio->mapping->i_private_lock);
4311
4312	/*
4313	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4314	 * so just return, this page will likely be freed soon anyway.
4315	 */
4316	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4317		spin_unlock(&eb->refs_lock);
4318		return 0;
4319	}
4320
4321	return release_extent_buffer(eb);
4322}
4323
4324/*
4325 * Attempt to readahead a child block.
4326 *
4327 * @fs_info:	the fs_info
4328 * @bytenr:	bytenr to read
4329 * @owner_root: objectid of the root that owns this eb
4330 * @gen:	generation for the uptodate check, can be 0
4331 * @level:	level for the eb
4332 *
4333 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4334 * normal uptodate check of the eb, without checking the generation.  If we have
4335 * to read the block we will not block on anything.
4336 */
4337void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4338				u64 bytenr, u64 owner_root, u64 gen, int level)
4339{
4340	struct btrfs_tree_parent_check check = {
4341		.level = level,
4342		.transid = gen
4343	};
4344	struct extent_buffer *eb;
4345	int ret;
4346
4347	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4348	if (IS_ERR(eb))
4349		return;
4350
4351	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4352		free_extent_buffer(eb);
4353		return;
4354	}
4355
4356	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4357	if (ret < 0)
4358		free_extent_buffer_stale(eb);
4359	else
4360		free_extent_buffer(eb);
4361}
4362
4363/*
4364 * Readahead a node's child block.
4365 *
4366 * @node:	parent node we're reading from
4367 * @slot:	slot in the parent node for the child we want to read
4368 *
4369 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4370 * the slot in the node provided.
4371 */
4372void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4373{
4374	btrfs_readahead_tree_block(node->fs_info,
4375				   btrfs_node_blockptr(node, slot),
4376				   btrfs_header_owner(node),
4377				   btrfs_node_ptr_generation(node, slot),
4378				   btrfs_header_level(node) - 1);
4379}
v3.1
 
 
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/module.h>
   8#include <linux/spinlock.h>
   9#include <linux/blkdev.h>
  10#include <linux/swap.h>
  11#include <linux/writeback.h>
  12#include <linux/pagevec.h>
  13#include <linux/prefetch.h>
  14#include <linux/cleancache.h>
  15#include "extent_io.h"
 
  16#include "extent_map.h"
  17#include "compat.h"
  18#include "ctree.h"
  19#include "btrfs_inode.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  20
  21static struct kmem_cache *extent_state_cache;
  22static struct kmem_cache *extent_buffer_cache;
  23
  24static LIST_HEAD(buffers);
  25static LIST_HEAD(states);
 
 
 
  26
  27#define LEAK_DEBUG 0
  28#if LEAK_DEBUG
  29static DEFINE_SPINLOCK(leak_lock);
  30#endif
  31
  32#define BUFFER_LRU_MAX 64
  33
  34struct tree_entry {
  35	u64 start;
  36	u64 end;
  37	struct rb_node rb_node;
  38};
  39
  40struct extent_page_data {
  41	struct bio *bio;
  42	struct extent_io_tree *tree;
  43	get_extent_t *get_extent;
  44
  45	/* tells writepage not to lock the state bits for this range
  46	 * it still does the unlocking
  47	 */
  48	unsigned int extent_locked:1;
  49
  50	/* tells the submit_bio code to use a WRITE_SYNC */
  51	unsigned int sync_io:1;
  52};
  53
  54int __init extent_io_init(void)
  55{
  56	extent_state_cache = kmem_cache_create("extent_state",
  57			sizeof(struct extent_state), 0,
  58			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  59	if (!extent_state_cache)
  60		return -ENOMEM;
  61
  62	extent_buffer_cache = kmem_cache_create("extent_buffers",
  63			sizeof(struct extent_buffer), 0,
  64			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
  65	if (!extent_buffer_cache)
  66		goto free_state_cache;
  67	return 0;
  68
  69free_state_cache:
  70	kmem_cache_destroy(extent_state_cache);
  71	return -ENOMEM;
  72}
  73
  74void extent_io_exit(void)
  75{
  76	struct extent_state *state;
  77	struct extent_buffer *eb;
 
  78
  79	while (!list_empty(&states)) {
  80		state = list_entry(states.next, struct extent_state, leak_list);
  81		printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  82		       "state %lu in tree %p refs %d\n",
  83		       (unsigned long long)state->start,
  84		       (unsigned long long)state->end,
  85		       state->state, state->tree, atomic_read(&state->refs));
  86		list_del(&state->leak_list);
  87		kmem_cache_free(extent_state_cache, state);
  88
  89	}
  90
  91	while (!list_empty(&buffers)) {
  92		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  93		printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  94		       "refs %d\n", (unsigned long long)eb->start,
  95		       eb->len, atomic_read(&eb->refs));
 
 
  96		list_del(&eb->leak_list);
 
  97		kmem_cache_free(extent_buffer_cache, eb);
  98	}
  99	if (extent_state_cache)
 100		kmem_cache_destroy(extent_state_cache);
 101	if (extent_buffer_cache)
 102		kmem_cache_destroy(extent_buffer_cache);
 103}
 
 
 
 
 104
 105void extent_io_tree_init(struct extent_io_tree *tree,
 106			 struct address_space *mapping)
 107{
 108	tree->state = RB_ROOT;
 109	INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 110	tree->ops = NULL;
 111	tree->dirty_bytes = 0;
 112	spin_lock_init(&tree->lock);
 113	spin_lock_init(&tree->buffer_lock);
 114	tree->mapping = mapping;
 115}
 
 
 
 
 
 
 
 
 116
 117static struct extent_state *alloc_extent_state(gfp_t mask)
 118{
 119	struct extent_state *state;
 120#if LEAK_DEBUG
 121	unsigned long flags;
 122#endif
 123
 124	state = kmem_cache_alloc(extent_state_cache, mask);
 125	if (!state)
 126		return state;
 127	state->state = 0;
 128	state->private = 0;
 129	state->tree = NULL;
 130#if LEAK_DEBUG
 131	spin_lock_irqsave(&leak_lock, flags);
 132	list_add(&state->leak_list, &states);
 133	spin_unlock_irqrestore(&leak_lock, flags);
 134#endif
 135	atomic_set(&state->refs, 1);
 136	init_waitqueue_head(&state->wq);
 137	return state;
 138}
 139
 140void free_extent_state(struct extent_state *state)
 141{
 142	if (!state)
 143		return;
 144	if (atomic_dec_and_test(&state->refs)) {
 145#if LEAK_DEBUG
 146		unsigned long flags;
 147#endif
 148		WARN_ON(state->tree);
 149#if LEAK_DEBUG
 150		spin_lock_irqsave(&leak_lock, flags);
 151		list_del(&state->leak_list);
 152		spin_unlock_irqrestore(&leak_lock, flags);
 153#endif
 154		kmem_cache_free(extent_state_cache, state);
 155	}
 156}
 157
 158static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 159				   struct rb_node *node)
 160{
 161	struct rb_node **p = &root->rb_node;
 162	struct rb_node *parent = NULL;
 163	struct tree_entry *entry;
 164
 165	while (*p) {
 166		parent = *p;
 167		entry = rb_entry(parent, struct tree_entry, rb_node);
 
 
 168
 169		if (offset < entry->start)
 170			p = &(*p)->rb_left;
 171		else if (offset > entry->end)
 172			p = &(*p)->rb_right;
 173		else
 174			return parent;
 175	}
 176
 177	entry = rb_entry(node, struct tree_entry, rb_node);
 178	rb_link_node(node, parent, p);
 179	rb_insert_color(node, root);
 180	return NULL;
 181}
 182
 183static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 184				     struct rb_node **prev_ret,
 185				     struct rb_node **next_ret)
 186{
 187	struct rb_root *root = &tree->state;
 188	struct rb_node *n = root->rb_node;
 189	struct rb_node *prev = NULL;
 190	struct rb_node *orig_prev = NULL;
 191	struct tree_entry *entry;
 192	struct tree_entry *prev_entry = NULL;
 193
 194	while (n) {
 195		entry = rb_entry(n, struct tree_entry, rb_node);
 196		prev = n;
 197		prev_entry = entry;
 198
 199		if (offset < entry->start)
 200			n = n->rb_left;
 201		else if (offset > entry->end)
 202			n = n->rb_right;
 203		else
 204			return n;
 205	}
 206
 207	if (prev_ret) {
 208		orig_prev = prev;
 209		while (prev && offset > prev_entry->end) {
 210			prev = rb_next(prev);
 211			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 212		}
 213		*prev_ret = prev;
 214		prev = orig_prev;
 215	}
 216
 217	if (next_ret) {
 218		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 219		while (prev && offset < prev_entry->start) {
 220			prev = rb_prev(prev);
 221			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 222		}
 223		*next_ret = prev;
 224	}
 225	return NULL;
 226}
 227
 228static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 229					  u64 offset)
 230{
 231	struct rb_node *prev = NULL;
 232	struct rb_node *ret;
 
 
 
 233
 234	ret = __etree_search(tree, offset, &prev, NULL);
 235	if (!ret)
 236		return prev;
 237	return ret;
 238}
 239
 240static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 241		     struct extent_state *other)
 242{
 243	if (tree->ops && tree->ops->merge_extent_hook)
 244		tree->ops->merge_extent_hook(tree->mapping->host, new,
 245					     other);
 
 
 
 246}
 247
 248/*
 249 * utility function to look for merge candidates inside a given range.
 250 * Any extents with matching state are merged together into a single
 251 * extent in the tree.  Extents with EXTENT_IO in their state field
 252 * are not merged because the end_io handlers need to be able to do
 253 * operations on them without sleeping (or doing allocations/splits).
 254 *
 255 * This should be called with the tree lock held.
 256 */
 257static void merge_state(struct extent_io_tree *tree,
 258		        struct extent_state *state)
 259{
 260	struct extent_state *other;
 261	struct rb_node *other_node;
 262
 263	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 264		return;
 265
 266	other_node = rb_prev(&state->rb_node);
 267	if (other_node) {
 268		other = rb_entry(other_node, struct extent_state, rb_node);
 269		if (other->end == state->start - 1 &&
 270		    other->state == state->state) {
 271			merge_cb(tree, state, other);
 272			state->start = other->start;
 273			other->tree = NULL;
 274			rb_erase(&other->rb_node, &tree->state);
 275			free_extent_state(other);
 276		}
 277	}
 278	other_node = rb_next(&state->rb_node);
 279	if (other_node) {
 280		other = rb_entry(other_node, struct extent_state, rb_node);
 281		if (other->start == state->end + 1 &&
 282		    other->state == state->state) {
 283			merge_cb(tree, state, other);
 284			state->end = other->end;
 285			other->tree = NULL;
 286			rb_erase(&other->rb_node, &tree->state);
 287			free_extent_state(other);
 288		}
 289	}
 290}
 291
 292static void set_state_cb(struct extent_io_tree *tree,
 293			 struct extent_state *state, int *bits)
 294{
 295	if (tree->ops && tree->ops->set_bit_hook)
 296		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 297}
 298
 299static void clear_state_cb(struct extent_io_tree *tree,
 300			   struct extent_state *state, int *bits)
 
 301{
 302	if (tree->ops && tree->ops->clear_bit_hook)
 303		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 304}
 
 
 
 305
 306static void set_state_bits(struct extent_io_tree *tree,
 307			   struct extent_state *state, int *bits);
 
 308
 309/*
 310 * insert an extent_state struct into the tree.  'bits' are set on the
 311 * struct before it is inserted.
 312 *
 313 * This may return -EEXIST if the extent is already there, in which case the
 314 * state struct is freed.
 315 *
 316 * The tree lock is not taken internally.  This is a utility function and
 317 * probably isn't what you want to call (see set/clear_extent_bit).
 318 */
 319static int insert_state(struct extent_io_tree *tree,
 320			struct extent_state *state, u64 start, u64 end,
 321			int *bits)
 322{
 323	struct rb_node *node;
 324
 325	if (end < start) {
 326		printk(KERN_ERR "btrfs end < start %llu %llu\n",
 327		       (unsigned long long)end,
 328		       (unsigned long long)start);
 329		WARN_ON(1);
 330	}
 331	state->start = start;
 332	state->end = end;
 333
 334	set_state_bits(tree, state, bits);
 
 
 
 
 
 335
 336	node = tree_insert(&tree->state, end, &state->rb_node);
 337	if (node) {
 338		struct extent_state *found;
 339		found = rb_entry(node, struct extent_state, rb_node);
 340		printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 341		       "%llu %llu\n", (unsigned long long)found->start,
 342		       (unsigned long long)found->end,
 343		       (unsigned long long)start, (unsigned long long)end);
 344		return -EEXIST;
 345	}
 346	state->tree = tree;
 347	merge_state(tree, state);
 348	return 0;
 349}
 350
 351static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 352		     u64 split)
 
 353{
 354	if (tree->ops && tree->ops->split_extent_hook)
 355		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 356}
 
 
 
 
 
 
 
 
 
 
 
 357
 358/*
 359 * split a given extent state struct in two, inserting the preallocated
 360 * struct 'prealloc' as the newly created second half.  'split' indicates an
 361 * offset inside 'orig' where it should be split.
 362 *
 363 * Before calling,
 364 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 365 * are two extent state structs in the tree:
 366 * prealloc: [orig->start, split - 1]
 367 * orig: [ split, orig->end ]
 368 *
 369 * The tree locks are not taken by this function. They need to be held
 370 * by the caller.
 371 */
 372static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 373		       struct extent_state *prealloc, u64 split)
 374{
 375	struct rb_node *node;
 376
 377	split_cb(tree, orig, split);
 
 
 
 378
 379	prealloc->start = orig->start;
 380	prealloc->end = split - 1;
 381	prealloc->state = orig->state;
 382	orig->start = split;
 383
 384	node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 385	if (node) {
 386		free_extent_state(prealloc);
 387		return -EEXIST;
 388	}
 389	prealloc->tree = tree;
 390	return 0;
 391}
 
 392
 393/*
 394 * utility function to clear some bits in an extent state struct.
 395 * it will optionally wake up any one waiting on this state (wake == 1), or
 396 * forcibly remove the state from the tree (delete == 1).
 397 *
 398 * If no bits are set on the state struct after clearing things, the
 399 * struct is freed and removed from the tree
 400 */
 401static int clear_state_bit(struct extent_io_tree *tree,
 402			    struct extent_state *state,
 403			    int *bits, int wake)
 404{
 405	int bits_to_clear = *bits & ~EXTENT_CTLBITS;
 406	int ret = state->state & bits_to_clear;
 407
 408	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 409		u64 range = state->end - state->start + 1;
 410		WARN_ON(range > tree->dirty_bytes);
 411		tree->dirty_bytes -= range;
 412	}
 413	clear_state_cb(tree, state, bits);
 414	state->state &= ~bits_to_clear;
 415	if (wake)
 416		wake_up(&state->wq);
 417	if (state->state == 0) {
 418		if (state->tree) {
 419			rb_erase(&state->rb_node, &tree->state);
 420			state->tree = NULL;
 421			free_extent_state(state);
 422		} else {
 423			WARN_ON(1);
 424		}
 425	} else {
 426		merge_state(tree, state);
 427	}
 428	return ret;
 429}
 430
 431static struct extent_state *
 432alloc_extent_state_atomic(struct extent_state *prealloc)
 433{
 434	if (!prealloc)
 435		prealloc = alloc_extent_state(GFP_ATOMIC);
 436
 437	return prealloc;
 438}
 439
 440/*
 441 * clear some bits on a range in the tree.  This may require splitting
 442 * or inserting elements in the tree, so the gfp mask is used to
 443 * indicate which allocations or sleeping are allowed.
 444 *
 445 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 446 * the given range from the tree regardless of state (ie for truncate).
 
 
 447 *
 448 * the range [start, end] is inclusive.
 
 449 *
 450 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
 451 * bits were already set, or zero if none of the bits were already set.
 452 */
 453int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 454		     int bits, int wake, int delete,
 455		     struct extent_state **cached_state,
 456		     gfp_t mask)
 457{
 458	struct extent_state *state;
 459	struct extent_state *cached;
 460	struct extent_state *prealloc = NULL;
 461	struct rb_node *next_node;
 462	struct rb_node *node;
 463	u64 last_end;
 464	int err;
 465	int set = 0;
 466	int clear = 0;
 
 
 
 467
 468	if (delete)
 469		bits |= ~EXTENT_CTLBITS;
 470	bits |= EXTENT_FIRST_DELALLOC;
 471
 472	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 473		clear = 1;
 
 474again:
 475	if (!prealloc && (mask & __GFP_WAIT)) {
 476		prealloc = alloc_extent_state(mask);
 477		if (!prealloc)
 478			return -ENOMEM;
 
 
 
 
 
 
 
 
 479	}
 480
 481	spin_lock(&tree->lock);
 482	if (cached_state) {
 483		cached = *cached_state;
 484
 485		if (clear) {
 486			*cached_state = NULL;
 487			cached_state = NULL;
 488		}
 489
 490		if (cached && cached->tree && cached->start <= start &&
 491		    cached->end > start) {
 492			if (clear)
 493				atomic_dec(&cached->refs);
 494			state = cached;
 495			goto hit_next;
 496		}
 497		if (clear)
 498			free_extent_state(cached);
 499	}
 500	/*
 501	 * this search will find the extents that end after
 502	 * our range starts
 
 503	 */
 504	node = tree_search(tree, start);
 505	if (!node)
 506		goto out;
 507	state = rb_entry(node, struct extent_state, rb_node);
 508hit_next:
 509	if (state->start > end)
 510		goto out;
 511	WARN_ON(state->end < start);
 512	last_end = state->end;
 513
 514	/*
 515	 *     | ---- desired range ---- |
 516	 *  | state | or
 517	 *  | ------------- state -------------- |
 518	 *
 519	 * We need to split the extent we found, and may flip
 520	 * bits on second half.
 521	 *
 522	 * If the extent we found extends past our range, we
 523	 * just split and search again.  It'll get split again
 524	 * the next time though.
 525	 *
 526	 * If the extent we found is inside our range, we clear
 527	 * the desired bit on it.
 528	 */
 
 
 529
 530	if (state->start < start) {
 531		prealloc = alloc_extent_state_atomic(prealloc);
 532		BUG_ON(!prealloc);
 533		err = split_state(tree, state, prealloc, start);
 534		BUG_ON(err == -EEXIST);
 535		prealloc = NULL;
 536		if (err)
 537			goto out;
 538		if (state->end <= end) {
 539			set |= clear_state_bit(tree, state, &bits, wake);
 540			if (last_end == (u64)-1)
 541				goto out;
 542			start = last_end + 1;
 
 
 
 
 543		}
 544		goto search_again;
 545	}
 546	/*
 547	 * | ---- desired range ---- |
 548	 *                        | state |
 549	 * We need to split the extent, and clear the bit
 550	 * on the first half
 551	 */
 552	if (state->start <= end && state->end > end) {
 553		prealloc = alloc_extent_state_atomic(prealloc);
 554		BUG_ON(!prealloc);
 555		err = split_state(tree, state, prealloc, end + 1);
 556		BUG_ON(err == -EEXIST);
 557		if (wake)
 558			wake_up(&state->wq);
 559
 560		set |= clear_state_bit(tree, prealloc, &bits, wake);
 
 
 
 
 
 561
 562		prealloc = NULL;
 563		goto out;
 
 
 
 
 564	}
 
 
 
 
 
 
 
 
 
 
 
 
 565
 566	if (state->end < end && prealloc && !need_resched())
 567		next_node = rb_next(&state->rb_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568	else
 569		next_node = NULL;
 
 570
 571	set |= clear_state_bit(tree, state, &bits, wake);
 572	if (last_end == (u64)-1)
 573		goto out;
 574	start = last_end + 1;
 575	if (start <= end && next_node) {
 576		state = rb_entry(next_node, struct extent_state,
 577				 rb_node);
 578		if (state->start == start)
 579			goto hit_next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 580	}
 581	goto search_again;
 582
 583out:
 584	spin_unlock(&tree->lock);
 585	if (prealloc)
 586		free_extent_state(prealloc);
 587
 588	return set;
 
 
 
 
 589
 590search_again:
 591	if (start > end)
 592		goto out;
 593	spin_unlock(&tree->lock);
 594	if (mask & __GFP_WAIT)
 595		cond_resched();
 596	goto again;
 597}
 598
 599static int wait_on_state(struct extent_io_tree *tree,
 600			 struct extent_state *state)
 601		__releases(tree->lock)
 602		__acquires(tree->lock)
 603{
 604	DEFINE_WAIT(wait);
 605	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 606	spin_unlock(&tree->lock);
 607	schedule();
 608	spin_lock(&tree->lock);
 609	finish_wait(&state->wq, &wait);
 610	return 0;
 611}
 612
 613/*
 614 * waits for one or more bits to clear on a range in the state tree.
 615 * The range [start, end] is inclusive.
 616 * The tree lock is taken by this function
 
 
 
 
 
 
 
 617 */
 618int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
 619{
 620	struct extent_state *state;
 621	struct rb_node *node;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	spin_lock(&tree->lock);
 624again:
 625	while (1) {
 626		/*
 627		 * this search will find all the extents that end after
 628		 * our range starts
 
 
 
 629		 */
 630		node = tree_search(tree, start);
 631		if (!node)
 632			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 634		state = rb_entry(node, struct extent_state, rb_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 635
 636		if (state->start > end)
 637			goto out;
 638
 639		if (state->state & bits) {
 640			start = state->start;
 641			atomic_inc(&state->refs);
 642			wait_on_state(tree, state);
 643			free_extent_state(state);
 644			goto again;
 645		}
 646		start = state->end + 1;
 647
 648		if (start > end)
 649			break;
 
 
 
 650
 651		cond_resched_lock(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 652	}
 653out:
 654	spin_unlock(&tree->lock);
 655	return 0;
 
 
 
 
 
 
 656}
 657
 658static void set_state_bits(struct extent_io_tree *tree,
 659			   struct extent_state *state,
 660			   int *bits)
 
 
 
 
 
 
 
 
 
 
 
 661{
 662	int bits_to_set = *bits & ~EXTENT_CTLBITS;
 
 663
 664	set_state_cb(tree, state, bits);
 665	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 666		u64 range = state->end - state->start + 1;
 667		tree->dirty_bytes += range;
 668	}
 669	state->state |= bits_to_set;
 670}
 671
 672static void cache_state(struct extent_state *state,
 673			struct extent_state **cached_ptr)
 674{
 675	if (cached_ptr && !(*cached_ptr)) {
 676		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 677			*cached_ptr = state;
 678			atomic_inc(&state->refs);
 
 679		}
 680	}
 681}
 682
 683static void uncache_state(struct extent_state **cached_ptr)
 684{
 685	if (cached_ptr && (*cached_ptr)) {
 686		struct extent_state *state = *cached_ptr;
 687		*cached_ptr = NULL;
 688		free_extent_state(state);
 689	}
 690}
 691
 692/*
 693 * set some bits on a range in the tree.  This may require allocations or
 694 * sleeping, so the gfp mask is used to indicate what is allowed.
 695 *
 696 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 697 * part of the range already has the desired bits set.  The start of the
 698 * existing range is returned in failed_start in this case.
 699 *
 700 * [start, end] is inclusive This takes the tree lock.
 701 */
 702
 703int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 704		   int bits, int exclusive_bits, u64 *failed_start,
 705		   struct extent_state **cached_state, gfp_t mask)
 706{
 707	struct extent_state *state;
 708	struct extent_state *prealloc = NULL;
 709	struct rb_node *node;
 710	int err = 0;
 711	u64 last_start;
 712	u64 last_end;
 713
 714	bits |= EXTENT_FIRST_DELALLOC;
 715again:
 716	if (!prealloc && (mask & __GFP_WAIT)) {
 717		prealloc = alloc_extent_state(mask);
 718		BUG_ON(!prealloc);
 719	}
 720
 721	spin_lock(&tree->lock);
 722	if (cached_state && *cached_state) {
 723		state = *cached_state;
 724		if (state->start <= start && state->end > start &&
 725		    state->tree) {
 726			node = &state->rb_node;
 727			goto hit_next;
 728		}
 729	}
 730	/*
 731	 * this search will find all the extents that end after
 732	 * our range starts.
 733	 */
 734	node = tree_search(tree, start);
 735	if (!node) {
 736		prealloc = alloc_extent_state_atomic(prealloc);
 737		BUG_ON(!prealloc);
 738		err = insert_state(tree, prealloc, start, end, &bits);
 739		prealloc = NULL;
 740		BUG_ON(err == -EEXIST);
 741		goto out;
 742	}
 743	state = rb_entry(node, struct extent_state, rb_node);
 744hit_next:
 745	last_start = state->start;
 746	last_end = state->end;
 747
 748	/*
 749	 * | ---- desired range ---- |
 750	 * | state |
 751	 *
 752	 * Just lock what we found and keep going
 753	 */
 754	if (state->start == start && state->end <= end) {
 755		struct rb_node *next_node;
 756		if (state->state & exclusive_bits) {
 757			*failed_start = state->start;
 758			err = -EEXIST;
 759			goto out;
 760		}
 761
 762		set_state_bits(tree, state, &bits);
 
 
 
 
 
 763
 764		cache_state(state, cached_state);
 765		merge_state(tree, state);
 766		if (last_end == (u64)-1)
 767			goto out;
 
 
 
 
 768
 769		start = last_end + 1;
 770		next_node = rb_next(&state->rb_node);
 771		if (next_node && start < end && prealloc && !need_resched()) {
 772			state = rb_entry(next_node, struct extent_state,
 773					 rb_node);
 774			if (state->start == start)
 775				goto hit_next;
 776		}
 777		goto search_again;
 778	}
 779
 780	/*
 781	 *     | ---- desired range ---- |
 782	 * | state |
 783	 *   or
 784	 * | ------------- state -------------- |
 785	 *
 786	 * We need to split the extent we found, and may flip bits on
 787	 * second half.
 788	 *
 789	 * If the extent we found extends past our
 790	 * range, we just split and search again.  It'll get split
 791	 * again the next time though.
 792	 *
 793	 * If the extent we found is inside our range, we set the
 794	 * desired bit on it.
 795	 */
 796	if (state->start < start) {
 797		if (state->state & exclusive_bits) {
 798			*failed_start = start;
 799			err = -EEXIST;
 800			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801		}
 802
 803		prealloc = alloc_extent_state_atomic(prealloc);
 804		BUG_ON(!prealloc);
 805		err = split_state(tree, state, prealloc, start);
 806		BUG_ON(err == -EEXIST);
 807		prealloc = NULL;
 808		if (err)
 809			goto out;
 810		if (state->end <= end) {
 811			set_state_bits(tree, state, &bits);
 812			cache_state(state, cached_state);
 813			merge_state(tree, state);
 814			if (last_end == (u64)-1)
 815				goto out;
 816			start = last_end + 1;
 817		}
 818		goto search_again;
 819	}
 820	/*
 821	 * | ---- desired range ---- |
 822	 *     | state | or               | state |
 823	 *
 824	 * There's a hole, we need to insert something in it and
 825	 * ignore the extent we found.
 826	 */
 827	if (state->start > start) {
 828		u64 this_end;
 829		if (end < last_start)
 830			this_end = end;
 831		else
 832			this_end = last_start - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834		prealloc = alloc_extent_state_atomic(prealloc);
 835		BUG_ON(!prealloc);
 836
 837		/*
 838		 * Avoid to free 'prealloc' if it can be merged with
 839		 * the later extent.
 840		 */
 841		err = insert_state(tree, prealloc, start, this_end,
 842				   &bits);
 843		BUG_ON(err == -EEXIST);
 844		if (err) {
 845			free_extent_state(prealloc);
 846			prealloc = NULL;
 847			goto out;
 848		}
 849		cache_state(prealloc, cached_state);
 850		prealloc = NULL;
 851		start = this_end + 1;
 852		goto search_again;
 853	}
 854	/*
 855	 * | ---- desired range ---- |
 856	 *                        | state |
 857	 * We need to split the extent, and set the bit
 858	 * on the first half
 859	 */
 860	if (state->start <= end && state->end > end) {
 861		if (state->state & exclusive_bits) {
 862			*failed_start = start;
 863			err = -EEXIST;
 864			goto out;
 865		}
 866
 867		prealloc = alloc_extent_state_atomic(prealloc);
 868		BUG_ON(!prealloc);
 869		err = split_state(tree, state, prealloc, end + 1);
 870		BUG_ON(err == -EEXIST);
 871
 872		set_state_bits(tree, prealloc, &bits);
 873		cache_state(prealloc, cached_state);
 874		merge_state(tree, prealloc);
 875		prealloc = NULL;
 876		goto out;
 877	}
 878
 879	goto search_again;
 
 
 
 
 
 
 880
 881out:
 882	spin_unlock(&tree->lock);
 883	if (prealloc)
 884		free_extent_state(prealloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 885
 886	return err;
 887
 888search_again:
 889	if (start > end)
 890		goto out;
 891	spin_unlock(&tree->lock);
 892	if (mask & __GFP_WAIT)
 893		cond_resched();
 894	goto again;
 895}
 896
 897/* wrappers around set/clear extent bit */
 898int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 899		     gfp_t mask)
 900{
 901	return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
 902			      NULL, mask);
 903}
 904
 905int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 906		    int bits, gfp_t mask)
 907{
 908	return set_extent_bit(tree, start, end, bits, 0, NULL,
 909			      NULL, mask);
 910}
 
 
 911
 912int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 913		      int bits, gfp_t mask)
 914{
 915	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
 916}
 
 
 917
 918int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
 919			struct extent_state **cached_state, gfp_t mask)
 920{
 921	return set_extent_bit(tree, start, end,
 922			      EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE,
 923			      0, NULL, cached_state, mask);
 924}
 925
 926int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
 927		       gfp_t mask)
 928{
 929	return clear_extent_bit(tree, start, end,
 930				EXTENT_DIRTY | EXTENT_DELALLOC |
 931				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
 
 932}
 933
 934int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
 935		     gfp_t mask)
 936{
 937	return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
 938			      NULL, mask);
 939}
 940
 941int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
 942			struct extent_state **cached_state, gfp_t mask)
 943{
 944	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
 945			      NULL, cached_state, mask);
 946}
 947
 948static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start,
 949				 u64 end, struct extent_state **cached_state,
 950				 gfp_t mask)
 951{
 952	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
 953				cached_state, mask);
 954}
 955
 956/*
 957 * either insert or lock state struct between start and end use mask to tell
 958 * us if waiting is desired.
 959 */
 960int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
 961		     int bits, struct extent_state **cached_state, gfp_t mask)
 962{
 963	int err;
 964	u64 failed_start;
 965	while (1) {
 966		err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
 967				     EXTENT_LOCKED, &failed_start,
 968				     cached_state, mask);
 969		if (err == -EEXIST && (mask & __GFP_WAIT)) {
 970			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
 971			start = failed_start;
 972		} else {
 973			break;
 974		}
 975		WARN_ON(start > end);
 976	}
 977	return err;
 978}
 979
 980int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
 981{
 982	return lock_extent_bits(tree, start, end, 0, NULL, mask);
 983}
 984
 985int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end,
 986		    gfp_t mask)
 987{
 988	int err;
 989	u64 failed_start;
 990
 991	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
 992			     &failed_start, NULL, mask);
 993	if (err == -EEXIST) {
 994		if (failed_start > start)
 995			clear_extent_bit(tree, start, failed_start - 1,
 996					 EXTENT_LOCKED, 1, 0, NULL, mask);
 997		return 0;
 998	}
 999	return 1;
1000}
1001
1002int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1003			 struct extent_state **cached, gfp_t mask)
1004{
1005	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1006				mask);
1007}
1008
1009int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
1010{
1011	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1012				mask);
1013}
1014
1015/*
1016 * helper function to set both pages and extents in the tree writeback
1017 */
1018static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1019{
1020	unsigned long index = start >> PAGE_CACHE_SHIFT;
1021	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1022	struct page *page;
1023
1024	while (index <= end_index) {
1025		page = find_get_page(tree->mapping, index);
1026		BUG_ON(!page);
1027		set_page_writeback(page);
1028		page_cache_release(page);
1029		index++;
1030	}
1031	return 0;
1032}
1033
1034/* find the first state struct with 'bits' set after 'start', and
1035 * return it.  tree->lock must be held.  NULL will returned if
1036 * nothing was found after 'start'
1037 */
1038struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1039						 u64 start, int bits)
1040{
1041	struct rb_node *node;
1042	struct extent_state *state;
1043
1044	/*
1045	 * this search will find all the extents that end after
1046	 * our range starts.
1047	 */
1048	node = tree_search(tree, start);
1049	if (!node)
1050		goto out;
1051
1052	while (1) {
1053		state = rb_entry(node, struct extent_state, rb_node);
1054		if (state->end >= start && (state->state & bits))
1055			return state;
 
 
 
1056
1057		node = rb_next(node);
1058		if (!node)
1059			break;
1060	}
1061out:
1062	return NULL;
1063}
1064
1065/*
1066 * find the first offset in the io tree with 'bits' set. zero is
1067 * returned if we find something, and *start_ret and *end_ret are
1068 * set to reflect the state struct that was found.
1069 *
1070 * If nothing was found, 1 is returned, < 0 on error
1071 */
1072int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1073			  u64 *start_ret, u64 *end_ret, int bits)
1074{
1075	struct extent_state *state;
1076	int ret = 1;
1077
1078	spin_lock(&tree->lock);
1079	state = find_first_extent_bit_state(tree, start, bits);
1080	if (state) {
1081		*start_ret = state->start;
1082		*end_ret = state->end;
1083		ret = 0;
1084	}
1085	spin_unlock(&tree->lock);
1086	return ret;
1087}
1088
1089/*
1090 * find a contiguous range of bytes in the file marked as delalloc, not
1091 * more than 'max_bytes'.  start and end are used to return the range,
1092 *
1093 * 1 is returned if we find something, 0 if nothing was in the tree
 
1094 */
1095static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1096					u64 *start, u64 *end, u64 max_bytes,
1097					struct extent_state **cached_state)
1098{
1099	struct rb_node *node;
1100	struct extent_state *state;
1101	u64 cur_start = *start;
1102	u64 found = 0;
1103	u64 total_bytes = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104
1105	spin_lock(&tree->lock);
 
1106
1107	/*
1108	 * this search will find all the extents that end after
1109	 * our range starts.
1110	 */
1111	node = tree_search(tree, cur_start);
1112	if (!node) {
1113		if (!found)
1114			*end = (u64)-1;
1115		goto out;
1116	}
 
 
 
 
 
 
1117
1118	while (1) {
1119		state = rb_entry(node, struct extent_state, rb_node);
1120		if (found && (state->start != cur_start ||
1121			      (state->state & EXTENT_BOUNDARY))) {
1122			goto out;
 
1123		}
1124		if (!(state->state & EXTENT_DELALLOC)) {
1125			if (!found)
1126				*end = state->end;
1127			goto out;
1128		}
1129		if (!found) {
1130			*start = state->start;
1131			*cached_state = state;
1132			atomic_inc(&state->refs);
1133		}
1134		found++;
1135		*end = state->end;
1136		cur_start = state->end + 1;
1137		node = rb_next(node);
1138		if (!node)
1139			break;
1140		total_bytes += state->end - state->start + 1;
1141		if (total_bytes >= max_bytes)
1142			break;
1143	}
1144out:
1145	spin_unlock(&tree->lock);
1146	return found;
1147}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1148
1149static noinline int __unlock_for_delalloc(struct inode *inode,
1150					  struct page *locked_page,
1151					  u64 start, u64 end)
1152{
1153	int ret;
1154	struct page *pages[16];
1155	unsigned long index = start >> PAGE_CACHE_SHIFT;
1156	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1157	unsigned long nr_pages = end_index - index + 1;
1158	int i;
1159
1160	if (index == locked_page->index && end_index == index)
1161		return 0;
 
 
 
 
 
 
 
 
 
 
1162
1163	while (nr_pages > 0) {
1164		ret = find_get_pages_contig(inode->i_mapping, index,
1165				     min_t(unsigned long, nr_pages,
1166				     ARRAY_SIZE(pages)), pages);
1167		for (i = 0; i < ret; i++) {
1168			if (pages[i] != locked_page)
1169				unlock_page(pages[i]);
1170			page_cache_release(pages[i]);
1171		}
1172		nr_pages -= ret;
1173		index += ret;
1174		cond_resched();
 
 
 
 
1175	}
 
1176	return 0;
1177}
1178
1179static noinline int lock_delalloc_pages(struct inode *inode,
1180					struct page *locked_page,
1181					u64 delalloc_start,
1182					u64 delalloc_end)
1183{
1184	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1185	unsigned long start_index = index;
1186	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1187	unsigned long pages_locked = 0;
1188	struct page *pages[16];
1189	unsigned long nrpages;
1190	int ret;
1191	int i;
1192
1193	/* the caller is responsible for locking the start index */
1194	if (index == locked_page->index && index == end_index)
1195		return 0;
 
 
1196
1197	/* skip the page at the start index */
1198	nrpages = end_index - index + 1;
1199	while (nrpages > 0) {
1200		ret = find_get_pages_contig(inode->i_mapping, index,
1201				     min_t(unsigned long,
1202				     nrpages, ARRAY_SIZE(pages)), pages);
1203		if (ret == 0) {
1204			ret = -EAGAIN;
1205			goto done;
1206		}
1207		/* now we have an array of pages, lock them all */
1208		for (i = 0; i < ret; i++) {
1209			/*
1210			 * the caller is taking responsibility for
1211			 * locked_page
1212			 */
1213			if (pages[i] != locked_page) {
1214				lock_page(pages[i]);
1215				if (!PageDirty(pages[i]) ||
1216				    pages[i]->mapping != inode->i_mapping) {
1217					ret = -EAGAIN;
1218					unlock_page(pages[i]);
1219					page_cache_release(pages[i]);
1220					goto done;
1221				}
1222			}
1223			page_cache_release(pages[i]);
1224			pages_locked++;
1225		}
1226		nrpages -= ret;
1227		index += ret;
1228		cond_resched();
1229	}
1230	ret = 0;
1231done:
1232	if (ret && pages_locked) {
1233		__unlock_for_delalloc(inode, locked_page,
1234			      delalloc_start,
1235			      ((u64)(start_index + pages_locked - 1)) <<
1236			      PAGE_CACHE_SHIFT);
1237	}
1238	return ret;
1239}
1240
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1241/*
1242 * find a contiguous range of bytes in the file marked as delalloc, not
1243 * more than 'max_bytes'.  start and end are used to return the range,
 
 
1244 *
1245 * 1 is returned if we find something, 0 if nothing was in the tree
 
 
 
 
 
 
 
1246 */
1247static noinline u64 find_lock_delalloc_range(struct inode *inode,
1248					     struct extent_io_tree *tree,
1249					     struct page *locked_page,
1250					     u64 *start, u64 *end,
1251					     u64 max_bytes)
1252{
1253	u64 delalloc_start;
1254	u64 delalloc_end;
1255	u64 found;
1256	struct extent_state *cached_state = NULL;
1257	int ret;
1258	int loops = 0;
1259
1260again:
1261	/* step one, find a bunch of delalloc bytes starting at start */
1262	delalloc_start = *start;
1263	delalloc_end = 0;
1264	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1265				    max_bytes, &cached_state);
1266	if (!found || delalloc_end <= *start) {
1267		*start = delalloc_start;
1268		*end = delalloc_end;
1269		free_extent_state(cached_state);
1270		return found;
1271	}
1272
1273	/*
1274	 * start comes from the offset of locked_page.  We have to lock
1275	 * pages in order, so we can't process delalloc bytes before
1276	 * locked_page
1277	 */
1278	if (delalloc_start < *start)
1279		delalloc_start = *start;
1280
1281	/*
1282	 * make sure to limit the number of pages we try to lock down
1283	 * if we're looping.
 
 
 
 
 
1284	 */
1285	if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1286		delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
 
 
 
 
1287
1288	/* step two, lock all the pages after the page that has start */
1289	ret = lock_delalloc_pages(inode, locked_page,
1290				  delalloc_start, delalloc_end);
1291	if (ret == -EAGAIN) {
1292		/* some of the pages are gone, lets avoid looping by
1293		 * shortening the size of the delalloc range we're searching
1294		 */
1295		free_extent_state(cached_state);
1296		if (!loops) {
1297			unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1298			max_bytes = PAGE_CACHE_SIZE - offset;
1299			loops = 1;
1300			goto again;
1301		} else {
1302			found = 0;
1303			goto out_failed;
1304		}
1305	}
1306	BUG_ON(ret);
1307
1308	/* step three, lock the state bits for the whole range */
1309	lock_extent_bits(tree, delalloc_start, delalloc_end,
1310			 0, &cached_state, GFP_NOFS);
1311
1312	/* then test to make sure it is all still delalloc */
1313	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1314			     EXTENT_DELALLOC, 1, cached_state);
1315	if (!ret) {
1316		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1317				     &cached_state, GFP_NOFS);
1318		__unlock_for_delalloc(inode, locked_page,
1319			      delalloc_start, delalloc_end);
1320		cond_resched();
1321		goto again;
1322	}
1323	free_extent_state(cached_state);
1324	*start = delalloc_start;
1325	*end = delalloc_end;
1326out_failed:
1327	return found;
1328}
1329
1330int extent_clear_unlock_delalloc(struct inode *inode,
1331				struct extent_io_tree *tree,
1332				u64 start, u64 end, struct page *locked_page,
1333				unsigned long op)
1334{
1335	int ret;
1336	struct page *pages[16];
1337	unsigned long index = start >> PAGE_CACHE_SHIFT;
1338	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339	unsigned long nr_pages = end_index - index + 1;
1340	int i;
1341	int clear_bits = 0;
 
 
1342
1343	if (op & EXTENT_CLEAR_UNLOCK)
1344		clear_bits |= EXTENT_LOCKED;
1345	if (op & EXTENT_CLEAR_DIRTY)
1346		clear_bits |= EXTENT_DIRTY;
1347
1348	if (op & EXTENT_CLEAR_DELALLOC)
1349		clear_bits |= EXTENT_DELALLOC;
1350
1351	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1352	if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1353		    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1354		    EXTENT_SET_PRIVATE2)))
1355		return 0;
1356
1357	while (nr_pages > 0) {
1358		ret = find_get_pages_contig(inode->i_mapping, index,
1359				     min_t(unsigned long,
1360				     nr_pages, ARRAY_SIZE(pages)), pages);
1361		for (i = 0; i < ret; i++) {
1362
1363			if (op & EXTENT_SET_PRIVATE2)
1364				SetPagePrivate2(pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1365
1366			if (pages[i] == locked_page) {
1367				page_cache_release(pages[i]);
1368				continue;
1369			}
1370			if (op & EXTENT_CLEAR_DIRTY)
1371				clear_page_dirty_for_io(pages[i]);
1372			if (op & EXTENT_SET_WRITEBACK)
1373				set_page_writeback(pages[i]);
1374			if (op & EXTENT_END_WRITEBACK)
1375				end_page_writeback(pages[i]);
1376			if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1377				unlock_page(pages[i]);
1378			page_cache_release(pages[i]);
 
 
 
 
 
 
 
 
 
 
 
1379		}
1380		nr_pages -= ret;
1381		index += ret;
1382		cond_resched();
1383	}
1384	return 0;
1385}
1386
1387/*
1388 * count the number of bytes in the tree that have a given bit(s)
1389 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1390 * cached.  The total number found is returned.
1391 */
1392u64 count_range_bits(struct extent_io_tree *tree,
1393		     u64 *start, u64 search_end, u64 max_bytes,
1394		     unsigned long bits, int contig)
1395{
1396	struct rb_node *node;
1397	struct extent_state *state;
1398	u64 cur_start = *start;
1399	u64 total_bytes = 0;
1400	u64 last = 0;
1401	int found = 0;
 
 
 
 
1402
1403	if (search_end <= cur_start) {
1404		WARN_ON(1);
1405		return 0;
1406	}
1407
1408	spin_lock(&tree->lock);
1409	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1410		total_bytes = tree->dirty_bytes;
1411		goto out;
1412	}
1413	/*
1414	 * this search will find all the extents that end after
1415	 * our range starts.
1416	 */
1417	node = tree_search(tree, cur_start);
1418	if (!node)
1419		goto out;
1420
1421	while (1) {
1422		state = rb_entry(node, struct extent_state, rb_node);
1423		if (state->start > search_end)
1424			break;
1425		if (contig && found && state->start > last + 1)
1426			break;
1427		if (state->end >= cur_start && (state->state & bits) == bits) {
1428			total_bytes += min(search_end, state->end) + 1 -
1429				       max(cur_start, state->start);
1430			if (total_bytes >= max_bytes)
1431				break;
1432			if (!found) {
1433				*start = max(cur_start, state->start);
1434				found = 1;
1435			}
1436			last = state->end;
1437		} else if (contig && found) {
1438			break;
1439		}
1440		node = rb_next(node);
1441		if (!node)
1442			break;
1443	}
1444out:
1445	spin_unlock(&tree->lock);
1446	return total_bytes;
1447}
1448
1449/*
1450 * set the private field for a given byte offset in the tree.  If there isn't
1451 * an extent_state there already, this does nothing.
1452 */
1453int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1454{
1455	struct rb_node *node;
1456	struct extent_state *state;
1457	int ret = 0;
1458
1459	spin_lock(&tree->lock);
1460	/*
1461	 * this search will find all the extents that end after
1462	 * our range starts.
1463	 */
1464	node = tree_search(tree, start);
1465	if (!node) {
1466		ret = -ENOENT;
1467		goto out;
1468	}
1469	state = rb_entry(node, struct extent_state, rb_node);
1470	if (state->start != start) {
1471		ret = -ENOENT;
1472		goto out;
1473	}
1474	state->private = private;
1475out:
1476	spin_unlock(&tree->lock);
1477	return ret;
1478}
1479
1480int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1481{
1482	struct rb_node *node;
1483	struct extent_state *state;
1484	int ret = 0;
1485
1486	spin_lock(&tree->lock);
1487	/*
1488	 * this search will find all the extents that end after
1489	 * our range starts.
1490	 */
1491	node = tree_search(tree, start);
1492	if (!node) {
1493		ret = -ENOENT;
1494		goto out;
1495	}
1496	state = rb_entry(node, struct extent_state, rb_node);
1497	if (state->start != start) {
1498		ret = -ENOENT;
1499		goto out;
1500	}
1501	*private = state->private;
1502out:
1503	spin_unlock(&tree->lock);
1504	return ret;
1505}
1506
1507/*
1508 * searches a range in the state tree for a given mask.
1509 * If 'filled' == 1, this returns 1 only if every extent in the tree
1510 * has the bits set.  Otherwise, 1 is returned if any bit in the
1511 * range is found set.
1512 */
1513int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1514		   int bits, int filled, struct extent_state *cached)
1515{
1516	struct extent_state *state = NULL;
1517	struct rb_node *node;
1518	int bitset = 0;
1519
1520	spin_lock(&tree->lock);
1521	if (cached && cached->tree && cached->start <= start &&
1522	    cached->end > start)
1523		node = &cached->rb_node;
1524	else
1525		node = tree_search(tree, start);
1526	while (node && start <= end) {
1527		state = rb_entry(node, struct extent_state, rb_node);
1528
1529		if (filled && state->start > start) {
1530			bitset = 0;
1531			break;
1532		}
1533
1534		if (state->start > end)
1535			break;
1536
1537		if (state->state & bits) {
1538			bitset = 1;
1539			if (!filled)
1540				break;
1541		} else if (filled) {
1542			bitset = 0;
1543			break;
1544		}
1545
1546		if (state->end == (u64)-1)
1547			break;
1548
1549		start = state->end + 1;
1550		if (start > end)
1551			break;
1552		node = rb_next(node);
1553		if (!node) {
1554			if (filled)
1555				bitset = 0;
1556			break;
1557		}
1558	}
1559	spin_unlock(&tree->lock);
1560	return bitset;
1561}
1562
1563/*
1564 * helper function to set a given page up to date if all the
1565 * extents in the tree for that page are up to date
1566 */
1567static int check_page_uptodate(struct extent_io_tree *tree,
1568			       struct page *page)
1569{
1570	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1571	u64 end = start + PAGE_CACHE_SIZE - 1;
1572	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1573		SetPageUptodate(page);
1574	return 0;
1575}
1576
1577/*
1578 * helper function to unlock a page if all the extents in the tree
1579 * for that page are unlocked
 
 
1580 */
1581static int check_page_locked(struct extent_io_tree *tree,
1582			     struct page *page)
 
 
1583{
1584	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1585	u64 end = start + PAGE_CACHE_SIZE - 1;
1586	if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
1587		unlock_page(page);
1588	return 0;
1589}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1590
1591/*
1592 * helper function to end page writeback if all the extents
1593 * in the tree for that page are done with writeback
1594 */
1595static int check_page_writeback(struct extent_io_tree *tree,
1596			     struct page *page)
1597{
1598	end_page_writeback(page);
1599	return 0;
1600}
1601
1602/* lots and lots of room for performance fixes in the end_bio funcs */
1603
1604/*
1605 * after a writepage IO is done, we need to:
1606 * clear the uptodate bits on error
1607 * clear the writeback bits in the extent tree for this IO
1608 * end_page_writeback if the page has no more pending IO
1609 *
1610 * Scheduling is not allowed, so the extent state tree is expected
1611 * to have one and only one object corresponding to this IO.
 
1612 */
1613static void end_bio_extent_writepage(struct bio *bio, int err)
1614{
1615	int uptodate = err == 0;
1616	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1617	struct extent_io_tree *tree;
1618	u64 start;
1619	u64 end;
1620	int whole_page;
1621	int ret;
 
 
 
 
 
1622
1623	do {
1624		struct page *page = bvec->bv_page;
1625		tree = &BTRFS_I(page->mapping->host)->io_tree;
1626
1627		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1628			 bvec->bv_offset;
1629		end = start + bvec->bv_len - 1;
 
 
 
 
1630
1631		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1632			whole_page = 1;
1633		else
1634			whole_page = 0;
1635
1636		if (--bvec >= bio->bi_io_vec)
1637			prefetchw(&bvec->bv_page->flags);
1638		if (tree->ops && tree->ops->writepage_end_io_hook) {
1639			ret = tree->ops->writepage_end_io_hook(page, start,
1640						       end, NULL, uptodate);
1641			if (ret)
1642				uptodate = 0;
1643		}
1644
1645		if (!uptodate && tree->ops &&
1646		    tree->ops->writepage_io_failed_hook) {
1647			ret = tree->ops->writepage_io_failed_hook(bio, page,
1648							 start, end, NULL);
1649			if (ret == 0) {
1650				uptodate = (err == 0);
1651				continue;
1652			}
 
 
1653		}
1654
1655		if (!uptodate) {
1656			clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS);
1657			ClearPageUptodate(page);
1658			SetPageError(page);
 
 
 
 
 
 
 
 
 
 
 
 
1659		}
 
 
1660
1661		if (whole_page)
1662			end_page_writeback(page);
1663		else
1664			check_page_writeback(tree, page);
1665	} while (bvec >= bio->bi_io_vec);
1666
1667	bio_put(bio);
 
 
 
 
 
 
 
 
 
1668}
1669
1670/*
1671 * after a readpage IO is done, we need to:
1672 * clear the uptodate bits on error
1673 * set the uptodate bits if things worked
1674 * set the page up to date if all extents in the tree are uptodate
1675 * clear the lock bit in the extent tree
1676 * unlock the page if there are no other extents locked for it
1677 *
1678 * Scheduling is not allowed, so the extent state tree is expected
1679 * to have one and only one object corresponding to this IO.
1680 */
1681static void end_bio_extent_readpage(struct bio *bio, int err)
1682{
1683	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1684	struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
1685	struct bio_vec *bvec = bio->bi_io_vec;
1686	struct extent_io_tree *tree;
1687	u64 start;
1688	u64 end;
1689	int whole_page;
1690	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1691
1692	if (err)
1693		uptodate = 0;
1694
1695	do {
1696		struct page *page = bvec->bv_page;
1697		struct extent_state *cached = NULL;
1698		struct extent_state *state;
1699
1700		tree = &BTRFS_I(page->mapping->host)->io_tree;
1701
1702		start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1703			bvec->bv_offset;
1704		end = start + bvec->bv_len - 1;
1705
1706		if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1707			whole_page = 1;
1708		else
1709			whole_page = 0;
 
1710
1711		if (++bvec <= bvec_end)
1712			prefetchw(&bvec->bv_page->flags);
 
 
1713
1714		spin_lock(&tree->lock);
1715		state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
1716		if (state && state->start == start) {
1717			/*
1718			 * take a reference on the state, unlock will drop
1719			 * the ref
1720			 */
1721			cache_state(state, &cached);
1722		}
1723		spin_unlock(&tree->lock);
1724
1725		if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
1726			ret = tree->ops->readpage_end_io_hook(page, start, end,
1727							      state);
1728			if (ret)
1729				uptodate = 0;
1730		}
1731		if (!uptodate && tree->ops &&
1732		    tree->ops->readpage_io_failed_hook) {
1733			ret = tree->ops->readpage_io_failed_hook(bio, page,
1734							 start, end, NULL);
1735			if (ret == 0) {
1736				uptodate =
1737					test_bit(BIO_UPTODATE, &bio->bi_flags);
1738				if (err)
1739					uptodate = 0;
1740				uncache_state(&cached);
1741				continue;
1742			}
1743		}
1744
1745		if (uptodate) {
1746			set_extent_uptodate(tree, start, end, &cached,
1747					    GFP_ATOMIC);
1748		}
1749		unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
1750
1751		if (whole_page) {
1752			if (uptodate) {
1753				SetPageUptodate(page);
1754			} else {
1755				ClearPageUptodate(page);
1756				SetPageError(page);
1757			}
1758			unlock_page(page);
1759		} else {
1760			if (uptodate) {
1761				check_page_uptodate(tree, page);
1762			} else {
1763				ClearPageUptodate(page);
1764				SetPageError(page);
1765			}
1766			check_page_locked(tree, page);
1767		}
1768	} while (bvec <= bvec_end);
1769
1770	bio_put(bio);
1771}
1772
1773struct bio *
1774btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1775		gfp_t gfp_flags)
 
 
 
 
 
 
1776{
1777	struct bio *bio;
1778
1779	bio = bio_alloc(gfp_flags, nr_vecs);
1780
1781	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1782		while (!bio && (nr_vecs /= 2))
1783			bio = bio_alloc(gfp_flags, nr_vecs);
 
 
 
 
1784	}
1785
1786	if (bio) {
1787		bio->bi_size = 0;
1788		bio->bi_bdev = bdev;
1789		bio->bi_sector = first_sector;
 
 
 
 
 
 
 
 
 
 
 
 
1790	}
1791	return bio;
 
1792}
1793
1794static int submit_one_bio(int rw, struct bio *bio, int mirror_num,
1795			  unsigned long bio_flags)
1796{
1797	int ret = 0;
1798	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1799	struct page *page = bvec->bv_page;
1800	struct extent_io_tree *tree = bio->bi_private;
1801	u64 start;
1802
1803	start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1804
1805	bio->bi_private = NULL;
 
 
 
 
1806
1807	bio_get(bio);
 
 
 
 
 
 
1808
1809	if (tree->ops && tree->ops->submit_bio_hook)
1810		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
1811					   mirror_num, bio_flags, start);
1812	else
1813		submit_bio(rw, bio);
1814	if (bio_flagged(bio, BIO_EOPNOTSUPP))
1815		ret = -EOPNOTSUPP;
1816	bio_put(bio);
1817	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818}
1819
1820static int submit_extent_page(int rw, struct extent_io_tree *tree,
1821			      struct page *page, sector_t sector,
1822			      size_t size, unsigned long offset,
1823			      struct block_device *bdev,
1824			      struct bio **bio_ret,
1825			      unsigned long max_pages,
1826			      bio_end_io_t end_io_func,
1827			      int mirror_num,
1828			      unsigned long prev_bio_flags,
1829			      unsigned long bio_flags)
1830{
1831	int ret = 0;
1832	struct bio *bio;
1833	int nr;
1834	int contig = 0;
1835	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
1836	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
1837	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
1838
1839	if (bio_ret && *bio_ret) {
1840		bio = *bio_ret;
1841		if (old_compressed)
1842			contig = bio->bi_sector == sector;
1843		else
1844			contig = bio->bi_sector + (bio->bi_size >> 9) ==
1845				sector;
1846
1847		if (prev_bio_flags != bio_flags || !contig ||
1848		    (tree->ops && tree->ops->merge_bio_hook &&
1849		     tree->ops->merge_bio_hook(page, offset, page_size, bio,
1850					       bio_flags)) ||
1851		    bio_add_page(bio, page, page_size, offset) < page_size) {
1852			ret = submit_one_bio(rw, bio, mirror_num,
1853					     prev_bio_flags);
1854			bio = NULL;
1855		} else {
1856			return 0;
1857		}
1858	}
1859	if (this_compressed)
1860		nr = BIO_MAX_PAGES;
1861	else
1862		nr = bio_get_nr_vecs(bdev);
 
 
 
 
 
 
 
 
 
 
1863
1864	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1865	if (!bio)
1866		return -ENOMEM;
 
1867
1868	bio_add_page(bio, page, page_size, offset);
1869	bio->bi_end_io = end_io_func;
1870	bio->bi_private = tree;
1871
1872	if (bio_ret)
1873		*bio_ret = bio;
1874	else
1875		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
1876
1877	return ret;
1878}
1879
1880void set_page_extent_mapped(struct page *page)
1881{
1882	if (!PagePrivate(page)) {
1883		SetPagePrivate(page);
1884		page_cache_get(page);
1885		set_page_private(page, EXTENT_PAGE_PRIVATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1886	}
1887}
1888
1889static void set_page_extent_head(struct page *page, unsigned long len)
 
1890{
1891	WARN_ON(!PagePrivate(page));
1892	set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893}
1894
1895/*
1896 * basic readpage implementation.  Locked extent state structs are inserted
1897 * into the tree that are removed when the IO is done (by the end_io
1898 * handlers)
 
 
 
 
 
 
 
 
 
1899 */
1900static int __extent_read_full_page(struct extent_io_tree *tree,
1901				   struct page *page,
1902				   get_extent_t *get_extent,
1903				   struct bio **bio, int mirror_num,
1904				   unsigned long *bio_flags)
1905{
1906	struct inode *inode = page->mapping->host;
1907	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1908	u64 page_end = start + PAGE_CACHE_SIZE - 1;
1909	u64 end;
1910	u64 cur = start;
1911	u64 extent_offset;
1912	u64 last_byte = i_size_read(inode);
1913	u64 block_start;
1914	u64 cur_end;
1915	sector_t sector;
1916	struct extent_map *em;
1917	struct block_device *bdev;
1918	struct btrfs_ordered_extent *ordered;
1919	int ret;
1920	int nr = 0;
1921	size_t pg_offset = 0;
1922	size_t iosize;
1923	size_t disk_io_size;
1924	size_t blocksize = inode->i_sb->s_blocksize;
1925	unsigned long this_bio_flag = 0;
1926
1927	set_page_extent_mapped(page);
1928
1929	if (!PageUptodate(page)) {
1930		if (cleancache_get_page(page) == 0) {
1931			BUG_ON(blocksize != PAGE_SIZE);
1932			goto out;
1933		}
1934	}
1935
1936	end = page_end;
1937	while (1) {
1938		lock_extent(tree, start, end, GFP_NOFS);
1939		ordered = btrfs_lookup_ordered_extent(inode, start);
1940		if (!ordered)
 
 
1941			break;
1942		unlock_extent(tree, start, end, GFP_NOFS);
1943		btrfs_start_ordered_extent(inode, ordered, 1);
1944		btrfs_put_ordered_extent(ordered);
1945	}
1946
1947	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
1948		char *userpage;
1949		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
1950
1951		if (zero_offset) {
1952			iosize = PAGE_CACHE_SIZE - zero_offset;
1953			userpage = kmap_atomic(page, KM_USER0);
1954			memset(userpage + zero_offset, 0, iosize);
1955			flush_dcache_page(page);
1956			kunmap_atomic(userpage, KM_USER0);
1957		}
1958	}
1959	while (cur <= end) {
1960		if (cur >= last_byte) {
1961			char *userpage;
1962			struct extent_state *cached = NULL;
1963
1964			iosize = PAGE_CACHE_SIZE - pg_offset;
1965			userpage = kmap_atomic(page, KM_USER0);
1966			memset(userpage + pg_offset, 0, iosize);
1967			flush_dcache_page(page);
1968			kunmap_atomic(userpage, KM_USER0);
1969			set_extent_uptodate(tree, cur, cur + iosize - 1,
1970					    &cached, GFP_NOFS);
1971			unlock_extent_cached(tree, cur, cur + iosize - 1,
1972					     &cached, GFP_NOFS);
1973			break;
1974		}
1975		em = get_extent(inode, page, pg_offset, cur,
1976				end - cur + 1, 0);
1977		if (IS_ERR_OR_NULL(em)) {
1978			SetPageError(page);
1979			unlock_extent(tree, cur, end, GFP_NOFS);
1980			break;
1981		}
1982		extent_offset = cur - em->start;
1983		BUG_ON(extent_map_end(em) <= cur);
1984		BUG_ON(end < cur);
1985
1986		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1987			this_bio_flag = EXTENT_BIO_COMPRESSED;
1988			extent_set_compress_type(&this_bio_flag,
1989						 em->compress_type);
1990		}
1991
1992		iosize = min(extent_map_end(em) - cur, end - cur + 1);
1993		cur_end = min(extent_map_end(em) - 1, end);
1994		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1995		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
1996			disk_io_size = em->block_len;
1997			sector = em->block_start >> 9;
1998		} else {
1999			sector = (em->block_start + extent_offset) >> 9;
2000			disk_io_size = iosize;
2001		}
2002		bdev = em->bdev;
2003		block_start = em->block_start;
2004		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2005			block_start = EXTENT_MAP_HOLE;
2006		free_extent_map(em);
2007		em = NULL;
2008
2009		/* we've found a hole, just zero and go on */
2010		if (block_start == EXTENT_MAP_HOLE) {
2011			char *userpage;
2012			struct extent_state *cached = NULL;
2013
2014			userpage = kmap_atomic(page, KM_USER0);
2015			memset(userpage + pg_offset, 0, iosize);
2016			flush_dcache_page(page);
2017			kunmap_atomic(userpage, KM_USER0);
2018
2019			set_extent_uptodate(tree, cur, cur + iosize - 1,
2020					    &cached, GFP_NOFS);
2021			unlock_extent_cached(tree, cur, cur + iosize - 1,
2022			                     &cached, GFP_NOFS);
2023			cur = cur + iosize;
2024			pg_offset += iosize;
2025			continue;
2026		}
2027		/* the get_extent function already copied into the page */
2028		if (test_range_bit(tree, cur, cur_end,
2029				   EXTENT_UPTODATE, 1, NULL)) {
2030			check_page_uptodate(tree, page);
2031			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2032			cur = cur + iosize;
2033			pg_offset += iosize;
2034			continue;
2035		}
2036		/* we have an inline extent but it didn't get marked up
2037		 * to date.  Error out
2038		 */
2039		if (block_start == EXTENT_MAP_INLINE) {
2040			SetPageError(page);
2041			unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
2042			cur = cur + iosize;
2043			pg_offset += iosize;
2044			continue;
2045		}
2046
2047		ret = 0;
2048		if (tree->ops && tree->ops->readpage_io_hook) {
2049			ret = tree->ops->readpage_io_hook(page, cur,
2050							  cur + iosize - 1);
2051		}
2052		if (!ret) {
2053			unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2054			pnr -= page->index;
2055			ret = submit_extent_page(READ, tree, page,
2056					 sector, disk_io_size, pg_offset,
2057					 bdev, bio, pnr,
2058					 end_bio_extent_readpage, mirror_num,
2059					 *bio_flags,
2060					 this_bio_flag);
2061			nr++;
2062			*bio_flags = this_bio_flag;
2063		}
2064		if (ret)
2065			SetPageError(page);
2066		cur = cur + iosize;
2067		pg_offset += iosize;
2068	}
2069out:
2070	if (!nr) {
2071		if (!PageError(page))
2072			SetPageUptodate(page);
2073		unlock_page(page);
2074	}
2075	return 0;
2076}
2077
2078int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2079			    get_extent_t *get_extent)
2080{
2081	struct bio *bio = NULL;
2082	unsigned long bio_flags = 0;
2083	int ret;
2084
2085	ret = __extent_read_full_page(tree, page, get_extent, &bio, 0,
2086				      &bio_flags);
2087	if (bio)
2088		ret = submit_one_bio(READ, bio, 0, bio_flags);
2089	return ret;
2090}
2091
2092static noinline void update_nr_written(struct page *page,
2093				      struct writeback_control *wbc,
2094				      unsigned long nr_written)
2095{
2096	wbc->nr_to_write -= nr_written;
2097	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2098	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2099		page->mapping->writeback_index = page->index + nr_written;
2100}
2101
2102/*
2103 * the writepage semantics are similar to regular writepage.  extent
2104 * records are inserted to lock ranges in the tree, and as dirty areas
2105 * are found, they are marked writeback.  Then the lock bits are removed
2106 * and the end_io handler clears the writeback ranges
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2107 */
2108static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2109			      void *data)
2110{
2111	struct inode *inode = page->mapping->host;
2112	struct extent_page_data *epd = data;
2113	struct extent_io_tree *tree = epd->tree;
2114	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2115	u64 delalloc_start;
2116	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2117	u64 end;
2118	u64 cur = start;
2119	u64 extent_offset;
2120	u64 last_byte = i_size_read(inode);
2121	u64 block_start;
2122	u64 iosize;
2123	sector_t sector;
2124	struct extent_state *cached_state = NULL;
2125	struct extent_map *em;
2126	struct block_device *bdev;
2127	int ret;
2128	int nr = 0;
2129	size_t pg_offset = 0;
2130	size_t blocksize;
2131	loff_t i_size = i_size_read(inode);
2132	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2133	u64 nr_delalloc;
2134	u64 delalloc_end;
2135	int page_started;
2136	int compressed;
2137	int write_flags;
2138	unsigned long nr_written = 0;
2139
2140	if (wbc->sync_mode == WB_SYNC_ALL)
2141		write_flags = WRITE_SYNC;
2142	else
2143		write_flags = WRITE;
2144
2145	trace___extent_writepage(page, inode, wbc);
 
2146
2147	WARN_ON(!PageLocked(page));
2148	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2149	if (page->index > end_index ||
2150	   (page->index == end_index && !pg_offset)) {
2151		page->mapping->a_ops->invalidatepage(page, 0);
2152		unlock_page(page);
2153		return 0;
2154	}
2155
2156	if (page->index == end_index) {
2157		char *userpage;
2158
2159		userpage = kmap_atomic(page, KM_USER0);
2160		memset(userpage + pg_offset, 0,
2161		       PAGE_CACHE_SIZE - pg_offset);
2162		kunmap_atomic(userpage, KM_USER0);
2163		flush_dcache_page(page);
 
 
2164	}
2165	pg_offset = 0;
2166
2167	set_page_extent_mapped(page);
2168
2169	delalloc_start = start;
2170	delalloc_end = 0;
2171	page_started = 0;
2172	if (!epd->extent_locked) {
2173		u64 delalloc_to_write = 0;
2174		/*
2175		 * make sure the wbc mapping index is at least updated
2176		 * to this page.
2177		 */
2178		update_nr_written(page, wbc, 0);
2179
2180		while (delalloc_end < page_end) {
2181			nr_delalloc = find_lock_delalloc_range(inode, tree,
2182						       page,
2183						       &delalloc_start,
2184						       &delalloc_end,
2185						       128 * 1024 * 1024);
2186			if (nr_delalloc == 0) {
2187				delalloc_start = delalloc_end + 1;
2188				continue;
2189			}
2190			tree->ops->fill_delalloc(inode, page, delalloc_start,
2191						 delalloc_end, &page_started,
2192						 &nr_written);
2193			/*
2194			 * delalloc_end is already one less than the total
2195			 * length, so we don't subtract one from
2196			 * PAGE_CACHE_SIZE
2197			 */
2198			delalloc_to_write += (delalloc_end - delalloc_start +
2199					      PAGE_CACHE_SIZE) >>
2200					      PAGE_CACHE_SHIFT;
2201			delalloc_start = delalloc_end + 1;
2202		}
2203		if (wbc->nr_to_write < delalloc_to_write) {
2204			int thresh = 8192;
2205
2206			if (delalloc_to_write < thresh * 2)
2207				thresh = delalloc_to_write;
2208			wbc->nr_to_write = min_t(u64, delalloc_to_write,
2209						 thresh);
2210		}
2211
2212		/* did the fill delalloc function already unlock and start
2213		 * the IO?
2214		 */
2215		if (page_started) {
2216			ret = 0;
2217			/*
2218			 * we've unlocked the page, so we can't update
2219			 * the mapping's writeback index, just update
2220			 * nr_to_write.
2221			 */
2222			wbc->nr_to_write -= nr_written;
2223			goto done_unlocked;
2224		}
2225	}
2226	if (tree->ops && tree->ops->writepage_start_hook) {
2227		ret = tree->ops->writepage_start_hook(page, start,
2228						      page_end);
2229		if (ret == -EAGAIN) {
2230			redirty_page_for_writepage(wbc, page);
2231			update_nr_written(page, wbc, nr_written);
2232			unlock_page(page);
2233			ret = 0;
2234			goto done_unlocked;
2235		}
2236	}
2237
2238	/*
2239	 * we don't want to touch the inode after unlocking the page,
2240	 * so we update the mapping writeback index now
2241	 */
2242	update_nr_written(page, wbc, nr_written + 1);
2243
2244	end = page_end;
2245	if (last_byte <= start) {
2246		if (tree->ops && tree->ops->writepage_end_io_hook)
2247			tree->ops->writepage_end_io_hook(page, start,
2248							 page_end, NULL, 1);
2249		goto done;
2250	}
 
 
 
 
2251
2252	blocksize = inode->i_sb->s_blocksize;
2253
2254	while (cur <= end) {
2255		if (cur >= last_byte) {
2256			if (tree->ops && tree->ops->writepage_end_io_hook)
2257				tree->ops->writepage_end_io_hook(page, cur,
2258							 page_end, NULL, 1);
2259			break;
2260		}
2261		em = epd->get_extent(inode, page, pg_offset, cur,
2262				     end - cur + 1, 1);
2263		if (IS_ERR_OR_NULL(em)) {
2264			SetPageError(page);
2265			break;
2266		}
2267
2268		extent_offset = cur - em->start;
2269		BUG_ON(extent_map_end(em) <= cur);
2270		BUG_ON(end < cur);
2271		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2272		iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2273		sector = (em->block_start + extent_offset) >> 9;
2274		bdev = em->bdev;
2275		block_start = em->block_start;
2276		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
2277		free_extent_map(em);
2278		em = NULL;
2279
 
 
 
 
2280		/*
2281		 * compressed and inline extents are written through other
2282		 * paths in the FS
2283		 */
2284		if (compressed || block_start == EXTENT_MAP_HOLE ||
2285		    block_start == EXTENT_MAP_INLINE) {
2286			/*
2287			 * end_io notification does not happen here for
2288			 * compressed extents
2289			 */
2290			if (!compressed && tree->ops &&
2291			    tree->ops->writepage_end_io_hook)
2292				tree->ops->writepage_end_io_hook(page, cur,
2293							 cur + iosize - 1,
2294							 NULL, 1);
2295			else if (compressed) {
2296				/* we don't want to end_page_writeback on
2297				 * a compressed extent.  this happens
2298				 * elsewhere
2299				 */
2300				nr++;
2301			}
2302
2303			cur += iosize;
2304			pg_offset += iosize;
2305			continue;
2306		}
2307		/* leave this out until we have a page_mkwrite call */
2308		if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2309				   EXTENT_DIRTY, 0, NULL)) {
2310			cur = cur + iosize;
2311			pg_offset += iosize;
2312			continue;
2313		}
2314
2315		if (tree->ops && tree->ops->writepage_io_hook) {
2316			ret = tree->ops->writepage_io_hook(page, cur,
2317						cur + iosize - 1);
2318		} else {
2319			ret = 0;
2320		}
2321		if (ret) {
2322			SetPageError(page);
2323		} else {
2324			unsigned long max_nr = end_index + 1;
2325
2326			set_range_writeback(tree, cur, cur + iosize - 1);
2327			if (!PageWriteback(page)) {
2328				printk(KERN_ERR "btrfs warning page %lu not "
2329				       "writeback, cur %llu end %llu\n",
2330				       page->index, (unsigned long long)cur,
2331				       (unsigned long long)end);
2332			}
2333
2334			ret = submit_extent_page(write_flags, tree, page,
2335						 sector, iosize, pg_offset,
2336						 bdev, &epd->bio, max_nr,
2337						 end_bio_extent_writepage,
2338						 0, 0, 0);
2339			if (ret)
2340				SetPageError(page);
2341		}
2342		cur = cur + iosize;
2343		pg_offset += iosize;
2344		nr++;
2345	}
2346done:
2347	if (nr == 0) {
2348		/* make sure the mapping tag for page dirty gets cleared */
2349		set_page_writeback(page);
2350		end_page_writeback(page);
 
 
 
2351	}
2352	unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2353
2354done_unlocked:
2355
2356	/* drop our reference on any cached states */
2357	free_extent_state(cached_state);
2358	return 0;
2359}
2360
2361/**
2362 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2363 * @mapping: address space structure to write
2364 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2365 * @writepage: function called for each page
2366 * @data: data passed to writepage function
2367 *
2368 * If a page is already under I/O, write_cache_pages() skips it, even
2369 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2370 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2371 * and msync() need to guarantee that all the data which was dirty at the time
2372 * the call was made get new I/O started against them.  If wbc->sync_mode is
2373 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2374 * existing IO to complete.
2375 */
2376static int extent_write_cache_pages(struct extent_io_tree *tree,
2377			     struct address_space *mapping,
2378			     struct writeback_control *wbc,
2379			     writepage_t writepage, void *data,
2380			     void (*flush_fn)(void *))
2381{
 
 
2382	int ret = 0;
2383	int done = 0;
2384	int nr_to_write_done = 0;
2385	struct pagevec pvec;
2386	int nr_pages;
2387	pgoff_t index;
2388	pgoff_t end;		/* Inclusive */
 
 
2389	int scanned = 0;
2390	int tag;
2391
2392	pagevec_init(&pvec, 0);
 
 
 
 
 
 
 
 
 
 
 
 
2393	if (wbc->range_cyclic) {
2394		index = mapping->writeback_index; /* Start from prev offset */
2395		end = -1;
 
 
 
 
 
2396	} else {
2397		index = wbc->range_start >> PAGE_CACHE_SHIFT;
2398		end = wbc->range_end >> PAGE_CACHE_SHIFT;
 
 
2399		scanned = 1;
2400	}
2401	if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
 
 
 
 
 
 
 
 
 
2402		tag = PAGECACHE_TAG_TOWRITE;
2403	else
2404		tag = PAGECACHE_TAG_DIRTY;
2405retry:
2406	if (wbc->sync_mode == WB_SYNC_ALL)
2407		tag_pages_for_writeback(mapping, index, end);
 
2408	while (!done && !nr_to_write_done && (index <= end) &&
2409	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2410			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2411		unsigned i;
2412
2413		scanned = 1;
2414		for (i = 0; i < nr_pages; i++) {
2415			struct page *page = pvec.pages[i];
2416
 
2417			/*
2418			 * At this point we hold neither mapping->tree_lock nor
2419			 * lock on the page itself: the page may be truncated or
2420			 * invalidated (changing page->mapping to NULL), or even
2421			 * swizzled back from swapper_space to tmpfs file
2422			 * mapping
2423			 */
2424			if (tree->ops && tree->ops->write_cache_pages_lock_hook)
2425				tree->ops->write_cache_pages_lock_hook(page);
2426			else
2427				lock_page(page);
2428
2429			if (unlikely(page->mapping != mapping)) {
2430				unlock_page(page);
2431				continue;
2432			}
2433
2434			if (!wbc->range_cyclic && page->index > end) {
2435				done = 1;
2436				unlock_page(page);
2437				continue;
2438			}
2439
2440			if (wbc->sync_mode != WB_SYNC_NONE) {
2441				if (PageWriteback(page))
2442					flush_fn(data);
2443				wait_on_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2444			}
2445
2446			if (PageWriteback(page) ||
2447			    !clear_page_dirty_for_io(page)) {
2448				unlock_page(page);
2449				continue;
2450			}
2451
2452			ret = (*writepage)(page, wbc, data);
2453
2454			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2455				unlock_page(page);
2456				ret = 0;
2457			}
2458			if (ret)
2459				done = 1;
2460
2461			/*
2462			 * the filesystem may choose to bump up nr_to_write.
2463			 * We have to make sure to honor the new nr_to_write
2464			 * at any time
2465			 */
2466			nr_to_write_done = wbc->nr_to_write <= 0;
 
2467		}
2468		pagevec_release(&pvec);
2469		cond_resched();
2470	}
2471	if (!scanned && !done) {
2472		/*
2473		 * We hit the last page and there is more work to be done: wrap
2474		 * back to the start of the file
2475		 */
2476		scanned = 1;
2477		index = 0;
 
 
 
 
 
 
 
 
2478		goto retry;
2479	}
2480	return ret;
2481}
2482
2483static void flush_epd_write_bio(struct extent_page_data *epd)
2484{
2485	if (epd->bio) {
2486		if (epd->sync_io)
2487			submit_one_bio(WRITE_SYNC, epd->bio, 0, 0);
2488		else
2489			submit_one_bio(WRITE, epd->bio, 0, 0);
2490		epd->bio = NULL;
2491	}
2492}
2493
2494static noinline void flush_write_bio(void *data)
2495{
2496	struct extent_page_data *epd = data;
2497	flush_epd_write_bio(epd);
2498}
2499
2500int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2501			  get_extent_t *get_extent,
2502			  struct writeback_control *wbc)
 
 
 
 
 
2503{
2504	int ret;
2505	struct extent_page_data epd = {
2506		.bio = NULL,
2507		.tree = tree,
2508		.get_extent = get_extent,
2509		.extent_locked = 0,
2510		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
 
 
2511	};
2512
2513	ret = __extent_writepage(page, wbc, &epd);
 
 
 
2514
2515	flush_epd_write_bio(&epd);
2516	return ret;
2517}
 
2518
2519int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
2520			      u64 start, u64 end, get_extent_t *get_extent,
2521			      int mode)
2522{
2523	int ret = 0;
2524	struct address_space *mapping = inode->i_mapping;
2525	struct page *page;
2526	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
2527		PAGE_CACHE_SHIFT;
2528
2529	struct extent_page_data epd = {
2530		.bio = NULL,
2531		.tree = tree,
2532		.get_extent = get_extent,
2533		.extent_locked = 1,
2534		.sync_io = mode == WB_SYNC_ALL,
2535	};
2536	struct writeback_control wbc_writepages = {
2537		.sync_mode	= mode,
2538		.nr_to_write	= nr_pages * 2,
2539		.range_start	= start,
2540		.range_end	= end + 1,
2541	};
2542
2543	while (start <= end) {
2544		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
2545		if (clear_page_dirty_for_io(page))
2546			ret = __extent_writepage(page, &wbc_writepages, &epd);
2547		else {
2548			if (tree->ops && tree->ops->writepage_end_io_hook)
2549				tree->ops->writepage_end_io_hook(page, start,
2550						 start + PAGE_CACHE_SIZE - 1,
2551						 NULL, 1);
2552			unlock_page(page);
2553		}
2554		page_cache_release(page);
2555		start += PAGE_CACHE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2556	}
2557
2558	flush_epd_write_bio(&epd);
2559	return ret;
2560}
2561
2562int extent_writepages(struct extent_io_tree *tree,
2563		      struct address_space *mapping,
2564		      get_extent_t *get_extent,
2565		      struct writeback_control *wbc)
2566{
 
2567	int ret = 0;
2568	struct extent_page_data epd = {
2569		.bio = NULL,
2570		.tree = tree,
2571		.get_extent = get_extent,
2572		.extent_locked = 0,
2573		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
2574	};
2575
2576	ret = extent_write_cache_pages(tree, mapping, wbc,
2577				       __extent_writepage, &epd,
2578				       flush_write_bio);
2579	flush_epd_write_bio(&epd);
 
 
 
 
2580	return ret;
2581}
2582
2583int extent_readpages(struct extent_io_tree *tree,
2584		     struct address_space *mapping,
2585		     struct list_head *pages, unsigned nr_pages,
2586		     get_extent_t get_extent)
2587{
2588	struct bio *bio = NULL;
2589	unsigned page_idx;
2590	unsigned long bio_flags = 0;
2591
2592	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2593		struct page *page = list_entry(pages->prev, struct page, lru);
2594
2595		prefetchw(&page->flags);
2596		list_del(&page->lru);
2597		if (!add_to_page_cache_lru(page, mapping,
2598					page->index, GFP_NOFS)) {
2599			__extent_read_full_page(tree, page, get_extent,
2600						&bio, 0, &bio_flags);
2601		}
2602		page_cache_release(page);
2603	}
2604	BUG_ON(!list_empty(pages));
2605	if (bio)
2606		submit_one_bio(READ, bio, 0, bio_flags);
2607	return 0;
2608}
2609
2610/*
2611 * basic invalidatepage code, this waits on any locked or writeback
2612 * ranges corresponding to the page, and then deletes any extent state
2613 * records from the tree
2614 */
2615int extent_invalidatepage(struct extent_io_tree *tree,
2616			  struct page *page, unsigned long offset)
2617{
2618	struct extent_state *cached_state = NULL;
2619	u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2620	u64 end = start + PAGE_CACHE_SIZE - 1;
2621	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
 
 
 
2622
2623	start += (offset + blocksize - 1) & ~(blocksize - 1);
2624	if (start > end)
2625		return 0;
2626
2627	lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS);
2628	wait_on_page_writeback(page);
2629	clear_extent_bit(tree, start, end,
2630			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2631			 EXTENT_DO_ACCOUNTING,
2632			 1, 1, &cached_state, GFP_NOFS);
 
 
 
2633	return 0;
2634}
2635
2636/*
2637 * a helper for releasepage, this tests for areas of the page that
2638 * are locked or under IO and drops the related state bits if it is safe
2639 * to drop the page.
2640 */
2641int try_release_extent_state(struct extent_map_tree *map,
2642			     struct extent_io_tree *tree, struct page *page,
2643			     gfp_t mask)
2644{
2645	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2646	u64 end = start + PAGE_CACHE_SIZE - 1;
2647	int ret = 1;
2648
2649	if (test_range_bit(tree, start, end,
2650			   EXTENT_IOBITS, 0, NULL))
2651		ret = 0;
2652	else {
2653		if ((mask & GFP_NOFS) == GFP_NOFS)
2654			mask = GFP_NOFS;
2655		/*
2656		 * at this point we can safely clear everything except the
2657		 * locked bit and the nodatasum bit
2658		 */
2659		ret = clear_extent_bit(tree, start, end,
2660				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
2661				 0, 0, NULL, mask);
 
 
2662
2663		/* if clear_extent_bit failed for enomem reasons,
2664		 * we can't allow the release to continue.
2665		 */
2666		if (ret < 0)
2667			ret = 0;
2668		else
2669			ret = 1;
2670	}
2671	return ret;
2672}
2673
2674/*
2675 * a helper for releasepage.  As long as there are no locked extents
2676 * in the range corresponding to the page, both state records and extent
2677 * map records are removed
2678 */
2679int try_release_extent_mapping(struct extent_map_tree *map,
2680			       struct extent_io_tree *tree, struct page *page,
2681			       gfp_t mask)
2682{
2683	struct extent_map *em;
2684	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2685	u64 end = start + PAGE_CACHE_SIZE - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2686
2687	if ((mask & __GFP_WAIT) &&
2688	    page->mapping->host->i_size > 16 * 1024 * 1024) {
2689		u64 len;
2690		while (start <= end) {
2691			len = end - start + 1;
2692			write_lock(&map->lock);
2693			em = lookup_extent_mapping(map, start, len);
2694			if (IS_ERR_OR_NULL(em)) {
2695				write_unlock(&map->lock);
2696				break;
2697			}
2698			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
2699			    em->start != start) {
2700				write_unlock(&map->lock);
2701				free_extent_map(em);
2702				break;
2703			}
2704			if (!test_range_bit(tree, em->start,
2705					    extent_map_end(em) - 1,
2706					    EXTENT_LOCKED | EXTENT_WRITEBACK,
2707					    0, NULL)) {
2708				remove_extent_mapping(map, em);
2709				/* once for the rb tree */
2710				free_extent_map(em);
2711			}
2712			start = extent_map_end(em);
2713			write_unlock(&map->lock);
2714
2715			/* once for us */
2716			free_extent_map(em);
2717		}
2718	}
2719	return try_release_extent_state(map, tree, page, mask);
2720}
2721
2722/*
2723 * helper function for fiemap, which doesn't want to see any holes.
2724 * This maps until we find something past 'last'
2725 */
2726static struct extent_map *get_extent_skip_holes(struct inode *inode,
2727						u64 offset,
2728						u64 last,
2729						get_extent_t *get_extent)
2730{
2731	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
2732	struct extent_map *em;
2733	u64 len;
2734
2735	if (offset >= last)
2736		return NULL;
 
 
 
2737
2738	while(1) {
2739		len = last - offset;
2740		if (len == 0)
2741			break;
2742		len = (len + sectorsize - 1) & ~(sectorsize - 1);
2743		em = get_extent(inode, NULL, 0, offset, len, 0);
2744		if (IS_ERR_OR_NULL(em))
2745			return em;
2746
2747		/* if this isn't a hole return it */
2748		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
2749		    em->block_start != EXTENT_MAP_HOLE) {
2750			return em;
2751		}
2752
2753		/* this is a hole, advance to the next extent */
2754		offset = extent_map_end(em);
2755		free_extent_map(em);
2756		if (offset >= last)
2757			break;
2758	}
2759	return NULL;
2760}
2761
2762int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
2763		__u64 start, __u64 len, get_extent_t *get_extent)
2764{
2765	int ret = 0;
2766	u64 off = start;
2767	u64 max = start + len;
2768	u32 flags = 0;
2769	u32 found_type;
2770	u64 last;
2771	u64 last_for_get_extent = 0;
2772	u64 disko = 0;
2773	u64 isize = i_size_read(inode);
2774	struct btrfs_key found_key;
2775	struct extent_map *em = NULL;
2776	struct extent_state *cached_state = NULL;
2777	struct btrfs_path *path;
2778	struct btrfs_file_extent_item *item;
2779	int end = 0;
2780	u64 em_start = 0;
2781	u64 em_len = 0;
2782	u64 em_end = 0;
2783	unsigned long emflags;
2784
2785	if (len == 0)
2786		return -EINVAL;
2787
2788	path = btrfs_alloc_path();
2789	if (!path)
2790		return -ENOMEM;
2791	path->leave_spinning = 1;
2792
2793	/*
2794	 * lookup the last file extent.  We're not using i_size here
2795	 * because there might be preallocation past i_size
2796	 */
2797	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
2798				       path, btrfs_ino(inode), -1, 0);
2799	if (ret < 0) {
2800		btrfs_free_path(path);
2801		return ret;
 
 
2802	}
2803	WARN_ON(!ret);
2804	path->slots[0]--;
2805	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2806			      struct btrfs_file_extent_item);
2807	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
2808	found_type = btrfs_key_type(&found_key);
2809
2810	/* No extents, but there might be delalloc bits */
2811	if (found_key.objectid != btrfs_ino(inode) ||
2812	    found_type != BTRFS_EXTENT_DATA_KEY) {
2813		/* have to trust i_size as the end */
2814		last = (u64)-1;
2815		last_for_get_extent = isize;
2816	} else {
2817		/*
2818		 * remember the start of the last extent.  There are a
2819		 * bunch of different factors that go into the length of the
2820		 * extent, so its much less complex to remember where it started
 
 
2821		 */
2822		last = found_key.offset;
2823		last_for_get_extent = last + 1;
 
 
 
 
 
 
 
 
2824	}
2825	btrfs_free_path(path);
2826
2827	/*
2828	 * we might have some extents allocated but more delalloc past those
2829	 * extents.  so, we trust isize unless the start of the last extent is
2830	 * beyond isize
2831	 */
2832	if (last < isize) {
2833		last = (u64)-1;
2834		last_for_get_extent = isize;
2835	}
2836
2837	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
2838			 &cached_state, GFP_NOFS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2839
2840	em = get_extent_skip_holes(inode, off, last_for_get_extent,
2841				   get_extent);
2842	if (!em)
2843		goto out;
2844	if (IS_ERR(em)) {
2845		ret = PTR_ERR(em);
2846		goto out;
2847	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2848
2849	while (!end) {
2850		u64 offset_in_extent;
 
2851
2852		/* break if the extent we found is outside the range */
2853		if (em->start >= max || extent_map_end(em) < off)
2854			break;
 
 
 
2855
2856		/*
2857		 * get_extent may return an extent that starts before our
2858		 * requested range.  We have to make sure the ranges
2859		 * we return to fiemap always move forward and don't
2860		 * overlap, so adjust the offsets here
2861		 */
2862		em_start = max(em->start, off);
2863
2864		/*
2865		 * record the offset from the start of the extent
2866		 * for adjusting the disk offset below
2867		 */
2868		offset_in_extent = em_start - em->start;
2869		em_end = extent_map_end(em);
2870		em_len = em_end - em_start;
2871		emflags = em->flags;
2872		disko = 0;
2873		flags = 0;
2874
2875		/*
2876		 * bump off for our next call to get_extent
2877		 */
2878		off = extent_map_end(em);
2879		if (off >= max)
2880			end = 1;
2881
2882		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
2883			end = 1;
2884			flags |= FIEMAP_EXTENT_LAST;
2885		} else if (em->block_start == EXTENT_MAP_INLINE) {
2886			flags |= (FIEMAP_EXTENT_DATA_INLINE |
2887				  FIEMAP_EXTENT_NOT_ALIGNED);
2888		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
2889			flags |= (FIEMAP_EXTENT_DELALLOC |
2890				  FIEMAP_EXTENT_UNKNOWN);
2891		} else {
2892			disko = em->block_start + offset_in_extent;
2893		}
2894		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
2895			flags |= FIEMAP_EXTENT_ENCODED;
2896
2897		free_extent_map(em);
2898		em = NULL;
2899		if ((em_start >= last) || em_len == (u64)-1 ||
2900		   (last == (u64)-1 && isize <= em_end)) {
2901			flags |= FIEMAP_EXTENT_LAST;
2902			end = 1;
2903		}
2904
2905		/* now scan forward to see if this is really the last extent. */
2906		em = get_extent_skip_holes(inode, off, last_for_get_extent,
2907					   get_extent);
2908		if (IS_ERR(em)) {
2909			ret = PTR_ERR(em);
2910			goto out;
2911		}
2912		if (!em) {
2913			flags |= FIEMAP_EXTENT_LAST;
2914			end = 1;
2915		}
2916		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
2917					      em_len, flags);
2918		if (ret)
2919			goto out_free;
2920	}
2921out_free:
2922	free_extent_map(em);
2923out:
2924	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
2925			     &cached_state, GFP_NOFS);
2926	return ret;
2927}
2928
2929static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2930					      unsigned long i)
2931{
2932	struct page *p;
2933	struct address_space *mapping;
 
2934
2935	if (i == 0)
2936		return eb->first_page;
2937	i += eb->start >> PAGE_CACHE_SHIFT;
2938	mapping = eb->first_page->mapping;
2939	if (!mapping)
2940		return NULL;
2941
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2942	/*
2943	 * extent_buffer_page is only called after pinning the page
2944	 * by increasing the reference count.  So we know the page must
2945	 * be in the radix tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2946	 */
2947	rcu_read_lock();
2948	p = radix_tree_lookup(&mapping->page_tree, i);
2949	rcu_read_unlock();
2950
2951	return p;
 
 
 
2952}
2953
2954static inline unsigned long num_extent_pages(u64 start, u64 len)
2955{
2956	return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2957		(start >> PAGE_CACHE_SHIFT);
 
 
 
 
2958}
2959
2960static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2961						   u64 start,
2962						   unsigned long len,
2963						   gfp_t mask)
2964{
2965	struct extent_buffer *eb = NULL;
2966#if LEAK_DEBUG
2967	unsigned long flags;
2968#endif
2969
2970	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2971	if (eb == NULL)
2972		return NULL;
2973	eb->start = start;
2974	eb->len = len;
2975	rwlock_init(&eb->lock);
2976	atomic_set(&eb->write_locks, 0);
2977	atomic_set(&eb->read_locks, 0);
2978	atomic_set(&eb->blocking_readers, 0);
2979	atomic_set(&eb->blocking_writers, 0);
2980	atomic_set(&eb->spinning_readers, 0);
2981	atomic_set(&eb->spinning_writers, 0);
2982	init_waitqueue_head(&eb->write_lock_wq);
2983	init_waitqueue_head(&eb->read_lock_wq);
2984
2985#if LEAK_DEBUG
2986	spin_lock_irqsave(&leak_lock, flags);
2987	list_add(&eb->leak_list, &buffers);
2988	spin_unlock_irqrestore(&leak_lock, flags);
2989#endif
2990	atomic_set(&eb->refs, 1);
2991
2992	return eb;
2993}
2994
2995static void __free_extent_buffer(struct extent_buffer *eb)
 
 
2996{
2997#if LEAK_DEBUG
2998	unsigned long flags;
2999	spin_lock_irqsave(&leak_lock, flags);
3000	list_del(&eb->leak_list);
3001	spin_unlock_irqrestore(&leak_lock, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3002#endif
3003	kmem_cache_free(extent_buffer_cache, eb);
3004}
3005
3006/*
3007 * Helper for releasing extent buffer page.
3008 */
3009static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
3010						unsigned long start_idx)
3011{
3012	unsigned long index;
3013	struct page *page;
 
 
3014
3015	if (!eb->first_page)
3016		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3017
3018	index = num_extent_pages(eb->start, eb->len);
3019	if (start_idx >= index)
3020		return;
 
 
 
3021
3022	do {
3023		index--;
3024		page = extent_buffer_page(eb, index);
3025		if (page)
3026			page_cache_release(page);
3027	} while (index != start_idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3028}
3029
 
3030/*
3031 * Helper for releasing the extent buffer.
 
 
 
 
 
3032 */
3033static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
 
 
3034{
3035	btrfs_release_extent_buffer_page(eb, 0);
3036	__free_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3037}
3038
3039struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
3040					  u64 start, unsigned long len,
3041					  struct page *page0)
3042{
3043	unsigned long num_pages = num_extent_pages(start, len);
3044	unsigned long i;
3045	unsigned long index = start >> PAGE_CACHE_SHIFT;
3046	struct extent_buffer *eb;
3047	struct extent_buffer *exists = NULL;
3048	struct page *p;
3049	struct address_space *mapping = tree->mapping;
 
3050	int uptodate = 1;
3051	int ret;
3052
3053	rcu_read_lock();
3054	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3055	if (eb && atomic_inc_not_zero(&eb->refs)) {
3056		rcu_read_unlock();
3057		mark_page_accessed(eb->first_page);
 
 
 
 
 
 
 
 
 
 
 
3058		return eb;
3059	}
3060	rcu_read_unlock();
3061
3062	eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
3063	if (!eb)
3064		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3065
3066	if (page0) {
3067		eb->first_page = page0;
3068		i = 1;
3069		index++;
3070		page_cache_get(page0);
3071		mark_page_accessed(page0);
3072		set_page_extent_mapped(page0);
3073		set_page_extent_head(page0, len);
3074		uptodate = PageUptodate(page0);
3075	} else {
3076		i = 0;
3077	}
3078	for (; i < num_pages; i++, index++) {
3079		p = find_or_create_page(mapping, index, GFP_NOFS);
3080		if (!p) {
3081			WARN_ON(1);
3082			goto free_eb;
 
 
 
 
 
3083		}
3084		set_page_extent_mapped(p);
3085		mark_page_accessed(p);
3086		if (i == 0) {
3087			eb->first_page = p;
3088			set_page_extent_head(p, len);
3089		} else {
3090			set_page_private(p, EXTENT_PAGE_PRIVATE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3091		}
3092		if (!PageUptodate(p))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3093			uptodate = 0;
3094
3095		/*
3096		 * see below about how we avoid a nasty race with release page
3097		 * and why we unlock later
 
 
 
3098		 */
3099		if (i != 0)
3100			unlock_page(p);
3101	}
3102	if (uptodate)
3103		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3104
3105	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
 
 
 
3106	if (ret)
3107		goto free_eb;
3108
3109	spin_lock(&tree->buffer_lock);
3110	ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
 
 
 
3111	if (ret == -EEXIST) {
3112		exists = radix_tree_lookup(&tree->buffer,
3113						start >> PAGE_CACHE_SHIFT);
3114		/* add one reference for the caller */
3115		atomic_inc(&exists->refs);
3116		spin_unlock(&tree->buffer_lock);
3117		radix_tree_preload_end();
3118		goto free_eb;
3119	}
3120	/* add one reference for the tree */
3121	atomic_inc(&eb->refs);
3122	spin_unlock(&tree->buffer_lock);
3123	radix_tree_preload_end();
3124
3125	/*
3126	 * there is a race where release page may have
3127	 * tried to find this extent buffer in the radix
3128	 * but failed.  It will tell the VM it is safe to
3129	 * reclaim the, and it will clear the page private bit.
3130	 * We must make sure to set the page private bit properly
3131	 * after the extent buffer is in the radix tree so
3132	 * it doesn't get lost
3133	 */
3134	set_page_extent_mapped(eb->first_page);
3135	set_page_extent_head(eb->first_page, eb->len);
3136	if (!page0)
3137		unlock_page(eb->first_page);
3138	return eb;
3139
3140free_eb:
3141	if (eb->first_page && !page0)
3142		unlock_page(eb->first_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3143
3144	if (!atomic_dec_and_test(&eb->refs))
3145		return exists;
3146	btrfs_release_extent_buffer(eb);
3147	return exists;
 
 
 
 
 
 
 
 
 
 
 
3148}
3149
3150struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
3151					 u64 start, unsigned long len)
3152{
3153	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3154
3155	rcu_read_lock();
3156	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3157	if (eb && atomic_inc_not_zero(&eb->refs)) {
3158		rcu_read_unlock();
3159		mark_page_accessed(eb->first_page);
3160		return eb;
 
 
 
 
 
3161	}
3162	rcu_read_unlock();
3163
3164	return NULL;
3165}
3166
3167void free_extent_buffer(struct extent_buffer *eb)
3168{
 
3169	if (!eb)
3170		return;
3171
3172	if (!atomic_dec_and_test(&eb->refs))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3173		return;
3174
3175	WARN_ON(1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3176}
3177
3178int clear_extent_buffer_dirty(struct extent_io_tree *tree,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3179			      struct extent_buffer *eb)
3180{
3181	unsigned long i;
3182	unsigned long num_pages;
3183	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3184
3185	num_pages = num_extent_pages(eb->start, eb->len);
 
3186
3187	for (i = 0; i < num_pages; i++) {
3188		page = extent_buffer_page(eb, i);
3189		if (!PageDirty(page))
3190			continue;
3191
3192		lock_page(page);
3193		WARN_ON(!PagePrivate(page));
 
3194
3195		set_page_extent_mapped(page);
3196		if (i == 0)
3197			set_page_extent_head(page, eb->len);
3198
3199		clear_page_dirty_for_io(page);
3200		spin_lock_irq(&page->mapping->tree_lock);
3201		if (!PageDirty(page)) {
3202			radix_tree_tag_clear(&page->mapping->page_tree,
3203						page_index(page),
3204						PAGECACHE_TAG_DIRTY);
3205		}
3206		spin_unlock_irq(&page->mapping->tree_lock);
3207		unlock_page(page);
3208	}
3209	return 0;
3210}
3211
3212int set_extent_buffer_dirty(struct extent_io_tree *tree,
3213			     struct extent_buffer *eb)
3214{
3215	unsigned long i;
3216	unsigned long num_pages;
3217	int was_dirty = 0;
 
3218
3219	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3220	num_pages = num_extent_pages(eb->start, eb->len);
3221	for (i = 0; i < num_pages; i++)
3222		__set_page_dirty_nobuffers(extent_buffer_page(eb, i));
3223	return was_dirty;
3224}
3225
3226static int __eb_straddles_pages(u64 start, u64 len)
3227{
3228	if (len < PAGE_CACHE_SIZE)
3229		return 1;
3230	if (start & (PAGE_CACHE_SIZE - 1))
3231		return 1;
3232	if ((start + len) & (PAGE_CACHE_SIZE - 1))
3233		return 1;
3234	return 0;
3235}
3236
3237static int eb_straddles_pages(struct extent_buffer *eb)
3238{
3239	return __eb_straddles_pages(eb->start, eb->len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3240}
3241
3242int clear_extent_buffer_uptodate(struct extent_io_tree *tree,
3243				struct extent_buffer *eb,
3244				struct extent_state **cached_state)
3245{
3246	unsigned long i;
3247	struct page *page;
3248	unsigned long num_pages;
3249
3250	num_pages = num_extent_pages(eb->start, eb->len);
3251	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
3252
3253	if (eb_straddles_pages(eb)) {
3254		clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3255				      cached_state, GFP_NOFS);
3256	}
3257	for (i = 0; i < num_pages; i++) {
3258		page = extent_buffer_page(eb, i);
3259		if (page)
3260			ClearPageUptodate(page);
 
 
 
 
3261	}
3262	return 0;
3263}
3264
3265int set_extent_buffer_uptodate(struct extent_io_tree *tree,
3266				struct extent_buffer *eb)
3267{
3268	unsigned long i;
3269	struct page *page;
3270	unsigned long num_pages;
3271
3272	num_pages = num_extent_pages(eb->start, eb->len);
 
 
3273
3274	if (eb_straddles_pages(eb)) {
3275		set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
3276				    NULL, GFP_NOFS);
3277	}
3278	for (i = 0; i < num_pages; i++) {
3279		page = extent_buffer_page(eb, i);
3280		if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
3281		    ((i == num_pages - 1) &&
3282		     ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
3283			check_page_uptodate(tree, page);
3284			continue;
3285		}
3286		SetPageUptodate(page);
3287	}
3288	return 0;
3289}
3290
3291int extent_range_uptodate(struct extent_io_tree *tree,
3292			  u64 start, u64 end)
3293{
3294	struct page *page;
3295	int ret;
3296	int pg_uptodate = 1;
3297	int uptodate;
3298	unsigned long index;
3299
3300	if (__eb_straddles_pages(start, end - start + 1)) {
3301		ret = test_range_bit(tree, start, end,
3302				     EXTENT_UPTODATE, 1, NULL);
3303		if (ret)
3304			return 1;
3305	}
3306	while (start <= end) {
3307		index = start >> PAGE_CACHE_SHIFT;
3308		page = find_get_page(tree->mapping, index);
3309		uptodate = PageUptodate(page);
3310		page_cache_release(page);
3311		if (!uptodate) {
3312			pg_uptodate = 0;
3313			break;
3314		}
3315		start += PAGE_CACHE_SIZE;
3316	}
3317	return pg_uptodate;
3318}
3319
3320int extent_buffer_uptodate(struct extent_io_tree *tree,
3321			   struct extent_buffer *eb,
3322			   struct extent_state *cached_state)
3323{
3324	int ret = 0;
3325	unsigned long num_pages;
3326	unsigned long i;
3327	struct page *page;
3328	int pg_uptodate = 1;
 
 
 
 
 
 
 
 
 
3329
3330	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3331		return 1;
 
3332
3333	if (eb_straddles_pages(eb)) {
3334		ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3335				   EXTENT_UPTODATE, 1, cached_state);
3336		if (ret)
3337			return ret;
3338	}
3339
3340	num_pages = num_extent_pages(eb->start, eb->len);
3341	for (i = 0; i < num_pages; i++) {
3342		page = extent_buffer_page(eb, i);
3343		if (!PageUptodate(page)) {
3344			pg_uptodate = 0;
3345			break;
3346		}
 
 
 
 
3347	}
3348	return pg_uptodate;
 
 
 
 
3349}
3350
3351int read_extent_buffer_pages(struct extent_io_tree *tree,
3352			     struct extent_buffer *eb,
3353			     u64 start, int wait,
3354			     get_extent_t *get_extent, int mirror_num)
3355{
3356	unsigned long i;
3357	unsigned long start_i;
3358	struct page *page;
3359	int err;
3360	int ret = 0;
3361	int locked_pages = 0;
3362	int all_uptodate = 1;
3363	int inc_all_pages = 0;
3364	unsigned long num_pages;
3365	struct bio *bio = NULL;
3366	unsigned long bio_flags = 0;
3367
3368	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3369		return 0;
3370
3371	if (eb_straddles_pages(eb)) {
3372		if (test_range_bit(tree, eb->start, eb->start + eb->len - 1,
3373				   EXTENT_UPTODATE, 1, NULL)) {
3374			return 0;
3375		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3376	}
3377
3378	if (start) {
3379		WARN_ON(start < eb->start);
3380		start_i = (start >> PAGE_CACHE_SHIFT) -
3381			(eb->start >> PAGE_CACHE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
3382	} else {
3383		start_i = 0;
 
 
 
 
 
 
 
3384	}
 
3385
3386	num_pages = num_extent_pages(eb->start, eb->len);
3387	for (i = start_i; i < num_pages; i++) {
3388		page = extent_buffer_page(eb, i);
3389		if (!wait) {
3390			if (!trylock_page(page))
3391				goto unlock_exit;
3392		} else {
3393			lock_page(page);
3394		}
3395		locked_pages++;
3396		if (!PageUptodate(page))
3397			all_uptodate = 0;
3398	}
3399	if (all_uptodate) {
3400		if (start_i == 0)
3401			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3402		goto unlock_exit;
3403	}
3404
3405	for (i = start_i; i < num_pages; i++) {
3406		page = extent_buffer_page(eb, i);
3407
3408		WARN_ON(!PagePrivate(page));
3409
3410		set_page_extent_mapped(page);
3411		if (i == 0)
3412			set_page_extent_head(page, eb->len);
3413
3414		if (inc_all_pages)
3415			page_cache_get(page);
3416		if (!PageUptodate(page)) {
3417			if (start_i == 0)
3418				inc_all_pages = 1;
3419			ClearPageError(page);
3420			err = __extent_read_full_page(tree, page,
3421						      get_extent, &bio,
3422						      mirror_num, &bio_flags);
3423			if (err)
3424				ret = err;
3425		} else {
3426			unlock_page(page);
3427		}
3428	}
3429
3430	if (bio)
3431		submit_one_bio(READ, bio, mirror_num, bio_flags);
3432
3433	if (ret || !wait)
3434		return ret;
 
 
 
 
 
 
 
 
3435
3436	for (i = start_i; i < num_pages; i++) {
3437		page = extent_buffer_page(eb, i);
3438		wait_on_page_locked(page);
3439		if (!PageUptodate(page))
3440			ret = -EIO;
3441	}
 
 
 
 
 
3442
3443	if (!ret)
3444		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3445	return ret;
3446
3447unlock_exit:
3448	i = start_i;
3449	while (locked_pages > 0) {
3450		page = extent_buffer_page(eb, i);
3451		i++;
3452		unlock_page(page);
3453		locked_pages--;
3454	}
3455	return ret;
3456}
3457
3458void read_extent_buffer(struct extent_buffer *eb, void *dstv,
3459			unsigned long start,
3460			unsigned long len)
3461{
 
3462	size_t cur;
3463	size_t offset;
3464	struct page *page;
3465	char *kaddr;
3466	char *dst = (char *)dstv;
3467	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3468	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3469
3470	WARN_ON(start > eb->len);
3471	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
 
 
 
 
 
 
3472
3473	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3474
3475	while (len > 0) {
3476		page = extent_buffer_page(eb, i);
3477
3478		cur = min(len, (PAGE_CACHE_SIZE - offset));
3479		kaddr = page_address(page);
3480		memcpy(dst, kaddr + offset, cur);
3481
3482		dst += cur;
3483		len -= cur;
3484		offset = 0;
3485		i++;
3486	}
3487}
3488
3489int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3490			       unsigned long min_len, char **map,
3491			       unsigned long *map_start,
3492			       unsigned long *map_len)
3493{
3494	size_t offset = start & (PAGE_CACHE_SIZE - 1);
3495	char *kaddr;
3496	struct page *p;
3497	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3498	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3499	unsigned long end_i = (start_offset + start + min_len - 1) >>
3500		PAGE_CACHE_SHIFT;
3501
3502	if (i != end_i)
3503		return -EINVAL;
3504
3505	if (i == 0) {
3506		offset = start_offset;
3507		*map_start = 0;
3508	} else {
3509		offset = 0;
3510		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3511	}
3512
3513	if (start + min_len > eb->len) {
3514		printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
3515		       "wanted %lu %lu\n", (unsigned long long)eb->start,
3516		       eb->len, start, min_len);
3517		WARN_ON(1);
3518		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
3519	}
3520
3521	p = extent_buffer_page(eb, i);
3522	kaddr = page_address(p);
3523	*map = kaddr + offset;
3524	*map_len = PAGE_CACHE_SIZE - offset;
3525	return 0;
3526}
3527
3528int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3529			  unsigned long start,
3530			  unsigned long len)
3531{
 
3532	size_t cur;
3533	size_t offset;
3534	struct page *page;
3535	char *kaddr;
3536	char *ptr = (char *)ptrv;
3537	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3538	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3539	int ret = 0;
3540
3541	WARN_ON(start > eb->len);
3542	WARN_ON(start + len > eb->start + eb->len);
 
 
 
3543
3544	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3545
3546	while (len > 0) {
3547		page = extent_buffer_page(eb, i);
3548
3549		cur = min(len, (PAGE_CACHE_SIZE - offset));
3550
3551		kaddr = page_address(page);
3552		ret = memcmp(ptr, kaddr + offset, cur);
3553		if (ret)
3554			break;
3555
3556		ptr += cur;
3557		len -= cur;
3558		offset = 0;
3559		i++;
3560	}
3561	return ret;
3562}
3563
3564void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3565			 unsigned long start, unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3566{
 
3567	size_t cur;
3568	size_t offset;
3569	struct page *page;
3570	char *kaddr;
3571	char *src = (char *)srcv;
3572	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3573	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
 
 
 
 
3574
3575	WARN_ON(start > eb->len);
3576	WARN_ON(start + len > eb->start + eb->len);
 
 
 
 
 
3577
3578	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3579
3580	while (len > 0) {
3581		page = extent_buffer_page(eb, i);
3582		WARN_ON(!PageUptodate(page));
3583
3584		cur = min(len, PAGE_CACHE_SIZE - offset);
3585		kaddr = page_address(page);
3586		memcpy(kaddr + offset, src, cur);
 
 
 
3587
3588		src += cur;
3589		len -= cur;
3590		offset = 0;
3591		i++;
3592	}
3593}
3594
3595void memset_extent_buffer(struct extent_buffer *eb, char c,
3596			  unsigned long start, unsigned long len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3597{
3598	size_t cur;
3599	size_t offset;
3600	struct page *page;
3601	char *kaddr;
3602	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3603	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3604
3605	WARN_ON(start > eb->len);
3606	WARN_ON(start + len > eb->start + eb->len);
 
 
 
3607
3608	offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3609
3610	while (len > 0) {
3611		page = extent_buffer_page(eb, i);
3612		WARN_ON(!PageUptodate(page));
 
 
3613
3614		cur = min(len, PAGE_CACHE_SIZE - offset);
3615		kaddr = page_address(page);
3616		memset(kaddr + offset, c, cur);
3617
3618		len -= cur;
3619		offset = 0;
3620		i++;
3621	}
3622}
3623
3624void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
 
3625			unsigned long dst_offset, unsigned long src_offset,
3626			unsigned long len)
3627{
 
3628	u64 dst_len = dst->len;
3629	size_t cur;
3630	size_t offset;
3631	struct page *page;
3632	char *kaddr;
3633	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3634	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
 
 
 
3635
3636	WARN_ON(src->len != dst_len);
3637
3638	offset = (start_offset + dst_offset) &
3639		((unsigned long)PAGE_CACHE_SIZE - 1);
3640
3641	while (len > 0) {
3642		page = extent_buffer_page(dst, i);
3643		WARN_ON(!PageUptodate(page));
3644
3645		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3646
3647		kaddr = page_address(page);
3648		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3649
3650		src_offset += cur;
3651		len -= cur;
3652		offset = 0;
3653		i++;
3654	}
3655}
3656
3657static void move_pages(struct page *dst_page, struct page *src_page,
3658		       unsigned long dst_off, unsigned long src_off,
3659		       unsigned long len)
3660{
3661	char *dst_kaddr = page_address(dst_page);
3662	if (dst_page == src_page) {
3663		memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3664	} else {
3665		char *src_kaddr = page_address(src_page);
3666		char *p = dst_kaddr + dst_off + len;
3667		char *s = src_kaddr + src_off + len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3668
3669		while (len--)
3670			*--p = *--s;
3671	}
 
 
 
 
3672}
3673
3674static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
3675{
3676	unsigned long distance = (src > dst) ? src - dst : dst - src;
3677	return distance < len;
3678}
3679
3680static void copy_pages(struct page *dst_page, struct page *src_page,
3681		       unsigned long dst_off, unsigned long src_off,
3682		       unsigned long len)
3683{
3684	char *dst_kaddr = page_address(dst_page);
3685	char *src_kaddr;
3686
3687	if (dst_page != src_page) {
3688		src_kaddr = page_address(src_page);
3689	} else {
3690		src_kaddr = dst_kaddr;
3691		BUG_ON(areas_overlap(src_off, dst_off, len));
3692	}
3693
3694	memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3695}
3696
3697void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3698			   unsigned long src_offset, unsigned long len)
3699{
3700	size_t cur;
3701	size_t dst_off_in_page;
3702	size_t src_off_in_page;
3703	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3704	unsigned long dst_i;
3705	unsigned long src_i;
3706
3707	if (src_offset + len > dst->len) {
3708		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3709		       "len %lu dst len %lu\n", src_offset, len, dst->len);
3710		BUG_ON(1);
3711	}
3712	if (dst_offset + len > dst->len) {
3713		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3714		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
3715		BUG_ON(1);
3716	}
3717
3718	while (len > 0) {
3719		dst_off_in_page = (start_offset + dst_offset) &
3720			((unsigned long)PAGE_CACHE_SIZE - 1);
3721		src_off_in_page = (start_offset + src_offset) &
3722			((unsigned long)PAGE_CACHE_SIZE - 1);
3723
3724		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3725		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3726
3727		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3728					       src_off_in_page));
3729		cur = min_t(unsigned long, cur,
3730			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3731
3732		copy_pages(extent_buffer_page(dst, dst_i),
3733			   extent_buffer_page(dst, src_i),
3734			   dst_off_in_page, src_off_in_page, cur);
3735
3736		src_offset += cur;
3737		dst_offset += cur;
3738		len -= cur;
3739	}
3740}
3741
3742void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3743			   unsigned long src_offset, unsigned long len)
 
3744{
3745	size_t cur;
3746	size_t dst_off_in_page;
3747	size_t src_off_in_page;
3748	unsigned long dst_end = dst_offset + len - 1;
3749	unsigned long src_end = src_offset + len - 1;
3750	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3751	unsigned long dst_i;
3752	unsigned long src_i;
3753
3754	if (src_offset + len > dst->len) {
3755		printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
3756		       "len %lu len %lu\n", src_offset, len, dst->len);
3757		BUG_ON(1);
3758	}
3759	if (dst_offset + len > dst->len) {
3760		printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
3761		       "len %lu len %lu\n", dst_offset, len, dst->len);
3762		BUG_ON(1);
3763	}
3764	if (!areas_overlap(src_offset, dst_offset, len)) {
3765		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
 
3766		return;
3767	}
 
3768	while (len > 0) {
3769		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3770		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3771
3772		dst_off_in_page = (start_offset + dst_end) &
3773			((unsigned long)PAGE_CACHE_SIZE - 1);
3774		src_off_in_page = (start_offset + src_end) &
3775			((unsigned long)PAGE_CACHE_SIZE - 1);
3776
3777		cur = min_t(unsigned long, len, src_off_in_page + 1);
3778		cur = min(cur, dst_off_in_page + 1);
3779		move_pages(extent_buffer_page(dst, dst_i),
3780			   extent_buffer_page(dst, src_i),
3781			   dst_off_in_page - cur + 1,
3782			   src_off_in_page - cur + 1, cur);
3783
3784		dst_end -= cur;
3785		src_end -= cur;
3786		len -= cur;
3787	}
3788}
3789
3790static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3791{
3792	struct extent_buffer *eb =
3793			container_of(head, struct extent_buffer, rcu_head);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3794
3795	btrfs_release_extent_buffer(eb);
3796}
3797
3798int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page)
3799{
3800	u64 start = page_offset(page);
3801	struct extent_buffer *eb;
3802	int ret = 1;
3803
3804	spin_lock(&tree->buffer_lock);
3805	eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3806	if (!eb) {
3807		spin_unlock(&tree->buffer_lock);
3808		return ret;
 
 
 
 
 
 
3809	}
3810
3811	if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3812		ret = 0;
3813		goto out;
 
 
 
 
 
 
 
 
 
 
3814	}
 
3815
3816	/*
3817	 * set @eb->refs to 0 if it is already 1, and then release the @eb.
3818	 * Or go back.
3819	 */
3820	if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) {
3821		ret = 0;
3822		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3823	}
3824
3825	radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT);
3826out:
3827	spin_unlock(&tree->buffer_lock);
 
 
 
3828
3829	/* at this point we can safely release the extent buffer */
3830	if (atomic_read(&eb->refs) == 0)
3831		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3832	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3833}