Loading...
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/sched/mm.h>
10#include <linux/spinlock.h>
11#include <linux/blkdev.h>
12#include <linux/swap.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/prefetch.h>
16#include <linux/fsverity.h>
17#include "extent_io.h"
18#include "extent-io-tree.h"
19#include "extent_map.h"
20#include "ctree.h"
21#include "btrfs_inode.h"
22#include "bio.h"
23#include "locking.h"
24#include "backref.h"
25#include "disk-io.h"
26#include "subpage.h"
27#include "zoned.h"
28#include "block-group.h"
29#include "compression.h"
30#include "fs.h"
31#include "accessors.h"
32#include "file-item.h"
33#include "file.h"
34#include "dev-replace.h"
35#include "super.h"
36#include "transaction.h"
37
38static struct kmem_cache *extent_buffer_cache;
39
40#ifdef CONFIG_BTRFS_DEBUG
41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
42{
43 struct btrfs_fs_info *fs_info = eb->fs_info;
44 unsigned long flags;
45
46 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
47 list_add(&eb->leak_list, &fs_info->allocated_ebs);
48 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
49}
50
51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
52{
53 struct btrfs_fs_info *fs_info = eb->fs_info;
54 unsigned long flags;
55
56 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
57 list_del(&eb->leak_list);
58 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
59}
60
61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
62{
63 struct extent_buffer *eb;
64 unsigned long flags;
65
66 /*
67 * If we didn't get into open_ctree our allocated_ebs will not be
68 * initialized, so just skip this.
69 */
70 if (!fs_info->allocated_ebs.next)
71 return;
72
73 WARN_ON(!list_empty(&fs_info->allocated_ebs));
74 spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
75 while (!list_empty(&fs_info->allocated_ebs)) {
76 eb = list_first_entry(&fs_info->allocated_ebs,
77 struct extent_buffer, leak_list);
78 pr_err(
79 "BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
80 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
81 btrfs_header_owner(eb));
82 list_del(&eb->leak_list);
83 WARN_ON_ONCE(1);
84 kmem_cache_free(extent_buffer_cache, eb);
85 }
86 spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
87}
88#else
89#define btrfs_leak_debug_add_eb(eb) do {} while (0)
90#define btrfs_leak_debug_del_eb(eb) do {} while (0)
91#endif
92
93/*
94 * Structure to record info about the bio being assembled, and other info like
95 * how many bytes are there before stripe/ordered extent boundary.
96 */
97struct btrfs_bio_ctrl {
98 struct btrfs_bio *bbio;
99 enum btrfs_compression_type compress_type;
100 u32 len_to_oe_boundary;
101 blk_opf_t opf;
102 btrfs_bio_end_io_t end_io_func;
103 struct writeback_control *wbc;
104
105 /*
106 * The sectors of the page which are going to be submitted by
107 * extent_writepage_io().
108 * This is to avoid touching ranges covered by compression/inline.
109 */
110 unsigned long submit_bitmap;
111};
112
113static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
114{
115 struct btrfs_bio *bbio = bio_ctrl->bbio;
116
117 if (!bbio)
118 return;
119
120 /* Caller should ensure the bio has at least some range added */
121 ASSERT(bbio->bio.bi_iter.bi_size);
122
123 if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
124 bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
125 btrfs_submit_compressed_read(bbio);
126 else
127 btrfs_submit_bbio(bbio, 0);
128
129 /* The bbio is owned by the end_io handler now */
130 bio_ctrl->bbio = NULL;
131}
132
133/*
134 * Submit or fail the current bio in the bio_ctrl structure.
135 */
136static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
137{
138 struct btrfs_bio *bbio = bio_ctrl->bbio;
139
140 if (!bbio)
141 return;
142
143 if (ret) {
144 ASSERT(ret < 0);
145 btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
146 /* The bio is owned by the end_io handler now */
147 bio_ctrl->bbio = NULL;
148 } else {
149 submit_one_bio(bio_ctrl);
150 }
151}
152
153int __init extent_buffer_init_cachep(void)
154{
155 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
156 sizeof(struct extent_buffer), 0, 0,
157 NULL);
158 if (!extent_buffer_cache)
159 return -ENOMEM;
160
161 return 0;
162}
163
164void __cold extent_buffer_free_cachep(void)
165{
166 /*
167 * Make sure all delayed rcu free are flushed before we
168 * destroy caches.
169 */
170 rcu_barrier();
171 kmem_cache_destroy(extent_buffer_cache);
172}
173
174static void process_one_folio(struct btrfs_fs_info *fs_info,
175 struct folio *folio, const struct folio *locked_folio,
176 unsigned long page_ops, u64 start, u64 end)
177{
178 u32 len;
179
180 ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
181 len = end + 1 - start;
182
183 if (page_ops & PAGE_SET_ORDERED)
184 btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
185 if (page_ops & PAGE_START_WRITEBACK) {
186 btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
187 btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
188 }
189 if (page_ops & PAGE_END_WRITEBACK)
190 btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
191
192 if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
193 btrfs_folio_end_lock(fs_info, folio, start, len);
194}
195
196static void __process_folios_contig(struct address_space *mapping,
197 const struct folio *locked_folio, u64 start,
198 u64 end, unsigned long page_ops)
199{
200 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
201 pgoff_t start_index = start >> PAGE_SHIFT;
202 pgoff_t end_index = end >> PAGE_SHIFT;
203 pgoff_t index = start_index;
204 struct folio_batch fbatch;
205 int i;
206
207 folio_batch_init(&fbatch);
208 while (index <= end_index) {
209 int found_folios;
210
211 found_folios = filemap_get_folios_contig(mapping, &index,
212 end_index, &fbatch);
213 for (i = 0; i < found_folios; i++) {
214 struct folio *folio = fbatch.folios[i];
215
216 process_one_folio(fs_info, folio, locked_folio,
217 page_ops, start, end);
218 }
219 folio_batch_release(&fbatch);
220 cond_resched();
221 }
222}
223
224static noinline void __unlock_for_delalloc(const struct inode *inode,
225 const struct folio *locked_folio,
226 u64 start, u64 end)
227{
228 unsigned long index = start >> PAGE_SHIFT;
229 unsigned long end_index = end >> PAGE_SHIFT;
230
231 ASSERT(locked_folio);
232 if (index == locked_folio->index && end_index == index)
233 return;
234
235 __process_folios_contig(inode->i_mapping, locked_folio, start, end,
236 PAGE_UNLOCK);
237}
238
239static noinline int lock_delalloc_folios(struct inode *inode,
240 const struct folio *locked_folio,
241 u64 start, u64 end)
242{
243 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
244 struct address_space *mapping = inode->i_mapping;
245 pgoff_t start_index = start >> PAGE_SHIFT;
246 pgoff_t end_index = end >> PAGE_SHIFT;
247 pgoff_t index = start_index;
248 u64 processed_end = start;
249 struct folio_batch fbatch;
250
251 if (index == locked_folio->index && index == end_index)
252 return 0;
253
254 folio_batch_init(&fbatch);
255 while (index <= end_index) {
256 unsigned int found_folios, i;
257
258 found_folios = filemap_get_folios_contig(mapping, &index,
259 end_index, &fbatch);
260 if (found_folios == 0)
261 goto out;
262
263 for (i = 0; i < found_folios; i++) {
264 struct folio *folio = fbatch.folios[i];
265 u64 range_start;
266 u32 range_len;
267
268 if (folio == locked_folio)
269 continue;
270
271 folio_lock(folio);
272 if (!folio_test_dirty(folio) || folio->mapping != mapping) {
273 folio_unlock(folio);
274 goto out;
275 }
276 range_start = max_t(u64, folio_pos(folio), start);
277 range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
278 end + 1) - range_start;
279 btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
280
281 processed_end = range_start + range_len - 1;
282 }
283 folio_batch_release(&fbatch);
284 cond_resched();
285 }
286
287 return 0;
288out:
289 folio_batch_release(&fbatch);
290 if (processed_end > start)
291 __unlock_for_delalloc(inode, locked_folio, start,
292 processed_end);
293 return -EAGAIN;
294}
295
296/*
297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
298 * more than @max_bytes.
299 *
300 * @start: The original start bytenr to search.
301 * Will store the extent range start bytenr.
302 * @end: The original end bytenr of the search range
303 * Will store the extent range end bytenr.
304 *
305 * Return true if we find a delalloc range which starts inside the original
306 * range, and @start/@end will store the delalloc range start/end.
307 *
308 * Return false if we can't find any delalloc range which starts inside the
309 * original range, and @start/@end will be the non-delalloc range start/end.
310 */
311EXPORT_FOR_TESTS
312noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
313 struct folio *locked_folio,
314 u64 *start, u64 *end)
315{
316 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
317 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
318 const u64 orig_start = *start;
319 const u64 orig_end = *end;
320 /* The sanity tests may not set a valid fs_info. */
321 u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
322 u64 delalloc_start;
323 u64 delalloc_end;
324 bool found;
325 struct extent_state *cached_state = NULL;
326 int ret;
327 int loops = 0;
328
329 /* Caller should pass a valid @end to indicate the search range end */
330 ASSERT(orig_end > orig_start);
331
332 /* The range should at least cover part of the folio */
333 ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
334 orig_end <= folio_pos(locked_folio)));
335again:
336 /* step one, find a bunch of delalloc bytes starting at start */
337 delalloc_start = *start;
338 delalloc_end = 0;
339 found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
340 max_bytes, &cached_state);
341 if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
342 *start = delalloc_start;
343
344 /* @delalloc_end can be -1, never go beyond @orig_end */
345 *end = min(delalloc_end, orig_end);
346 free_extent_state(cached_state);
347 return false;
348 }
349
350 /*
351 * start comes from the offset of locked_folio. We have to lock
352 * folios in order, so we can't process delalloc bytes before
353 * locked_folio
354 */
355 if (delalloc_start < *start)
356 delalloc_start = *start;
357
358 /*
359 * make sure to limit the number of folios we try to lock down
360 */
361 if (delalloc_end + 1 - delalloc_start > max_bytes)
362 delalloc_end = delalloc_start + max_bytes - 1;
363
364 /* step two, lock all the folioss after the folios that has start */
365 ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
366 delalloc_end);
367 ASSERT(!ret || ret == -EAGAIN);
368 if (ret == -EAGAIN) {
369 /* some of the folios are gone, lets avoid looping by
370 * shortening the size of the delalloc range we're searching
371 */
372 free_extent_state(cached_state);
373 cached_state = NULL;
374 if (!loops) {
375 max_bytes = PAGE_SIZE;
376 loops = 1;
377 goto again;
378 } else {
379 found = false;
380 goto out_failed;
381 }
382 }
383
384 /* step three, lock the state bits for the whole range */
385 lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
386
387 /* then test to make sure it is all still delalloc */
388 ret = test_range_bit(tree, delalloc_start, delalloc_end,
389 EXTENT_DELALLOC, cached_state);
390
391 unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
392 if (!ret) {
393 __unlock_for_delalloc(inode, locked_folio, delalloc_start,
394 delalloc_end);
395 cond_resched();
396 goto again;
397 }
398 *start = delalloc_start;
399 *end = delalloc_end;
400out_failed:
401 return found;
402}
403
404void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
405 const struct folio *locked_folio,
406 struct extent_state **cached,
407 u32 clear_bits, unsigned long page_ops)
408{
409 clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
410
411 __process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
412 end, page_ops);
413}
414
415static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
416{
417 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
418
419 if (!fsverity_active(folio->mapping->host) ||
420 btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
421 start >= i_size_read(folio->mapping->host))
422 return true;
423 return fsverity_verify_folio(folio);
424}
425
426static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
427{
428 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
429
430 ASSERT(folio_pos(folio) <= start &&
431 start + len <= folio_pos(folio) + PAGE_SIZE);
432
433 if (uptodate && btrfs_verify_folio(folio, start, len))
434 btrfs_folio_set_uptodate(fs_info, folio, start, len);
435 else
436 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
437
438 if (!btrfs_is_subpage(fs_info, folio->mapping))
439 folio_unlock(folio);
440 else
441 btrfs_folio_end_lock(fs_info, folio, start, len);
442}
443
444/*
445 * After a write IO is done, we need to:
446 *
447 * - clear the uptodate bits on error
448 * - clear the writeback bits in the extent tree for the range
449 * - filio_end_writeback() if there is no more pending io for the folio
450 *
451 * Scheduling is not allowed, so the extent state tree is expected
452 * to have one and only one object corresponding to this IO.
453 */
454static void end_bbio_data_write(struct btrfs_bio *bbio)
455{
456 struct btrfs_fs_info *fs_info = bbio->fs_info;
457 struct bio *bio = &bbio->bio;
458 int error = blk_status_to_errno(bio->bi_status);
459 struct folio_iter fi;
460 const u32 sectorsize = fs_info->sectorsize;
461
462 ASSERT(!bio_flagged(bio, BIO_CLONED));
463 bio_for_each_folio_all(fi, bio) {
464 struct folio *folio = fi.folio;
465 u64 start = folio_pos(folio) + fi.offset;
466 u32 len = fi.length;
467
468 /* Only order 0 (single page) folios are allowed for data. */
469 ASSERT(folio_order(folio) == 0);
470
471 /* Our read/write should always be sector aligned. */
472 if (!IS_ALIGNED(fi.offset, sectorsize))
473 btrfs_err(fs_info,
474 "partial page write in btrfs with offset %zu and length %zu",
475 fi.offset, fi.length);
476 else if (!IS_ALIGNED(fi.length, sectorsize))
477 btrfs_info(fs_info,
478 "incomplete page write with offset %zu and length %zu",
479 fi.offset, fi.length);
480
481 btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
482 !error);
483 if (error)
484 mapping_set_error(folio->mapping, error);
485 btrfs_folio_clear_writeback(fs_info, folio, start, len);
486 }
487
488 bio_put(bio);
489}
490
491static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
492{
493 ASSERT(folio_test_locked(folio));
494 if (!btrfs_is_subpage(fs_info, folio->mapping))
495 return;
496
497 ASSERT(folio_test_private(folio));
498 btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
499}
500
501/*
502 * After a data read IO is done, we need to:
503 *
504 * - clear the uptodate bits on error
505 * - set the uptodate bits if things worked
506 * - set the folio up to date if all extents in the tree are uptodate
507 * - clear the lock bit in the extent tree
508 * - unlock the folio if there are no other extents locked for it
509 *
510 * Scheduling is not allowed, so the extent state tree is expected
511 * to have one and only one object corresponding to this IO.
512 */
513static void end_bbio_data_read(struct btrfs_bio *bbio)
514{
515 struct btrfs_fs_info *fs_info = bbio->fs_info;
516 struct bio *bio = &bbio->bio;
517 struct folio_iter fi;
518 const u32 sectorsize = fs_info->sectorsize;
519
520 ASSERT(!bio_flagged(bio, BIO_CLONED));
521 bio_for_each_folio_all(fi, &bbio->bio) {
522 bool uptodate = !bio->bi_status;
523 struct folio *folio = fi.folio;
524 struct inode *inode = folio->mapping->host;
525 u64 start;
526 u64 end;
527 u32 len;
528
529 /* For now only order 0 folios are supported for data. */
530 ASSERT(folio_order(folio) == 0);
531 btrfs_debug(fs_info,
532 "%s: bi_sector=%llu, err=%d, mirror=%u",
533 __func__, bio->bi_iter.bi_sector, bio->bi_status,
534 bbio->mirror_num);
535
536 /*
537 * We always issue full-sector reads, but if some block in a
538 * folio fails to read, blk_update_request() will advance
539 * bv_offset and adjust bv_len to compensate. Print a warning
540 * for unaligned offsets, and an error if they don't add up to
541 * a full sector.
542 */
543 if (!IS_ALIGNED(fi.offset, sectorsize))
544 btrfs_err(fs_info,
545 "partial page read in btrfs with offset %zu and length %zu",
546 fi.offset, fi.length);
547 else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
548 btrfs_info(fs_info,
549 "incomplete page read with offset %zu and length %zu",
550 fi.offset, fi.length);
551
552 start = folio_pos(folio) + fi.offset;
553 end = start + fi.length - 1;
554 len = fi.length;
555
556 if (likely(uptodate)) {
557 loff_t i_size = i_size_read(inode);
558 pgoff_t end_index = i_size >> folio_shift(folio);
559
560 /*
561 * Zero out the remaining part if this range straddles
562 * i_size.
563 *
564 * Here we should only zero the range inside the folio,
565 * not touch anything else.
566 *
567 * NOTE: i_size is exclusive while end is inclusive.
568 */
569 if (folio_index(folio) == end_index && i_size <= end) {
570 u32 zero_start = max(offset_in_folio(folio, i_size),
571 offset_in_folio(folio, start));
572 u32 zero_len = offset_in_folio(folio, end) + 1 -
573 zero_start;
574
575 folio_zero_range(folio, zero_start, zero_len);
576 }
577 }
578
579 /* Update page status and unlock. */
580 end_folio_read(folio, uptodate, start, len);
581 }
582 bio_put(bio);
583}
584
585/*
586 * Populate every free slot in a provided array with folios using GFP_NOFS.
587 *
588 * @nr_folios: number of folios to allocate
589 * @folio_array: the array to fill with folios; any existing non-NULL entries in
590 * the array will be skipped
591 *
592 * Return: 0 if all folios were able to be allocated;
593 * -ENOMEM otherwise, the partially allocated folios would be freed and
594 * the array slots zeroed
595 */
596int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
597{
598 for (int i = 0; i < nr_folios; i++) {
599 if (folio_array[i])
600 continue;
601 folio_array[i] = folio_alloc(GFP_NOFS, 0);
602 if (!folio_array[i])
603 goto error;
604 }
605 return 0;
606error:
607 for (int i = 0; i < nr_folios; i++) {
608 if (folio_array[i])
609 folio_put(folio_array[i]);
610 }
611 return -ENOMEM;
612}
613
614/*
615 * Populate every free slot in a provided array with pages, using GFP_NOFS.
616 *
617 * @nr_pages: number of pages to allocate
618 * @page_array: the array to fill with pages; any existing non-null entries in
619 * the array will be skipped
620 * @nofail: whether using __GFP_NOFAIL flag
621 *
622 * Return: 0 if all pages were able to be allocated;
623 * -ENOMEM otherwise, the partially allocated pages would be freed and
624 * the array slots zeroed
625 */
626int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
627 bool nofail)
628{
629 const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
630 unsigned int allocated;
631
632 for (allocated = 0; allocated < nr_pages;) {
633 unsigned int last = allocated;
634
635 allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
636 if (unlikely(allocated == last)) {
637 /* No progress, fail and do cleanup. */
638 for (int i = 0; i < allocated; i++) {
639 __free_page(page_array[i]);
640 page_array[i] = NULL;
641 }
642 return -ENOMEM;
643 }
644 }
645 return 0;
646}
647
648/*
649 * Populate needed folios for the extent buffer.
650 *
651 * For now, the folios populated are always in order 0 (aka, single page).
652 */
653static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
654{
655 struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
656 int num_pages = num_extent_pages(eb);
657 int ret;
658
659 ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
660 if (ret < 0)
661 return ret;
662
663 for (int i = 0; i < num_pages; i++)
664 eb->folios[i] = page_folio(page_array[i]);
665 eb->folio_size = PAGE_SIZE;
666 eb->folio_shift = PAGE_SHIFT;
667 return 0;
668}
669
670static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
671 struct folio *folio, u64 disk_bytenr,
672 unsigned int pg_offset)
673{
674 struct bio *bio = &bio_ctrl->bbio->bio;
675 struct bio_vec *bvec = bio_last_bvec_all(bio);
676 const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
677 struct folio *bv_folio = page_folio(bvec->bv_page);
678
679 if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
680 /*
681 * For compression, all IO should have its logical bytenr set
682 * to the starting bytenr of the compressed extent.
683 */
684 return bio->bi_iter.bi_sector == sector;
685 }
686
687 /*
688 * The contig check requires the following conditions to be met:
689 *
690 * 1) The folios are belonging to the same inode
691 * This is implied by the call chain.
692 *
693 * 2) The range has adjacent logical bytenr
694 *
695 * 3) The range has adjacent file offset
696 * This is required for the usage of btrfs_bio->file_offset.
697 */
698 return bio_end_sector(bio) == sector &&
699 folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
700 folio_pos(folio) + pg_offset;
701}
702
703static void alloc_new_bio(struct btrfs_inode *inode,
704 struct btrfs_bio_ctrl *bio_ctrl,
705 u64 disk_bytenr, u64 file_offset)
706{
707 struct btrfs_fs_info *fs_info = inode->root->fs_info;
708 struct btrfs_bio *bbio;
709
710 bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
711 bio_ctrl->end_io_func, NULL);
712 bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
713 bbio->inode = inode;
714 bbio->file_offset = file_offset;
715 bio_ctrl->bbio = bbio;
716 bio_ctrl->len_to_oe_boundary = U32_MAX;
717
718 /* Limit data write bios to the ordered boundary. */
719 if (bio_ctrl->wbc) {
720 struct btrfs_ordered_extent *ordered;
721
722 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
723 if (ordered) {
724 bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
725 ordered->file_offset +
726 ordered->disk_num_bytes - file_offset);
727 bbio->ordered = ordered;
728 }
729
730 /*
731 * Pick the last added device to support cgroup writeback. For
732 * multi-device file systems this means blk-cgroup policies have
733 * to always be set on the last added/replaced device.
734 * This is a bit odd but has been like that for a long time.
735 */
736 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
737 wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
738 }
739}
740
741/*
742 * @disk_bytenr: logical bytenr where the write will be
743 * @page: page to add to the bio
744 * @size: portion of page that we want to write to
745 * @pg_offset: offset of the new bio or to check whether we are adding
746 * a contiguous page to the previous one
747 *
748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
749 * new one in @bio_ctrl->bbio.
750 * The mirror number for this IO should already be initizlied in
751 * @bio_ctrl->mirror_num.
752 */
753static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
754 u64 disk_bytenr, struct folio *folio,
755 size_t size, unsigned long pg_offset)
756{
757 struct btrfs_inode *inode = folio_to_inode(folio);
758
759 ASSERT(pg_offset + size <= PAGE_SIZE);
760 ASSERT(bio_ctrl->end_io_func);
761
762 if (bio_ctrl->bbio &&
763 !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
764 submit_one_bio(bio_ctrl);
765
766 do {
767 u32 len = size;
768
769 /* Allocate new bio if needed */
770 if (!bio_ctrl->bbio) {
771 alloc_new_bio(inode, bio_ctrl, disk_bytenr,
772 folio_pos(folio) + pg_offset);
773 }
774
775 /* Cap to the current ordered extent boundary if there is one. */
776 if (len > bio_ctrl->len_to_oe_boundary) {
777 ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
778 ASSERT(is_data_inode(inode));
779 len = bio_ctrl->len_to_oe_boundary;
780 }
781
782 if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
783 /* bio full: move on to a new one */
784 submit_one_bio(bio_ctrl);
785 continue;
786 }
787
788 if (bio_ctrl->wbc)
789 wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
790 len);
791
792 size -= len;
793 pg_offset += len;
794 disk_bytenr += len;
795
796 /*
797 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
798 * sector aligned. alloc_new_bio() then sets it to the end of
799 * our ordered extent for writes into zoned devices.
800 *
801 * When len_to_oe_boundary is tracking an ordered extent, we
802 * trust the ordered extent code to align things properly, and
803 * the check above to cap our write to the ordered extent
804 * boundary is correct.
805 *
806 * When len_to_oe_boundary is U32_MAX, the cap above would
807 * result in a 4095 byte IO for the last folio right before
808 * we hit the bio limit of UINT_MAX. bio_add_folio() has all
809 * the checks required to make sure we don't overflow the bio,
810 * and we should just ignore len_to_oe_boundary completely
811 * unless we're using it to track an ordered extent.
812 *
813 * It's pretty hard to make a bio sized U32_MAX, but it can
814 * happen when the page cache is able to feed us contiguous
815 * folios for large extents.
816 */
817 if (bio_ctrl->len_to_oe_boundary != U32_MAX)
818 bio_ctrl->len_to_oe_boundary -= len;
819
820 /* Ordered extent boundary: move on to a new bio. */
821 if (bio_ctrl->len_to_oe_boundary == 0)
822 submit_one_bio(bio_ctrl);
823 } while (size);
824}
825
826static int attach_extent_buffer_folio(struct extent_buffer *eb,
827 struct folio *folio,
828 struct btrfs_subpage *prealloc)
829{
830 struct btrfs_fs_info *fs_info = eb->fs_info;
831 int ret = 0;
832
833 /*
834 * If the page is mapped to btree inode, we should hold the private
835 * lock to prevent race.
836 * For cloned or dummy extent buffers, their pages are not mapped and
837 * will not race with any other ebs.
838 */
839 if (folio->mapping)
840 lockdep_assert_held(&folio->mapping->i_private_lock);
841
842 if (fs_info->nodesize >= PAGE_SIZE) {
843 if (!folio_test_private(folio))
844 folio_attach_private(folio, eb);
845 else
846 WARN_ON(folio_get_private(folio) != eb);
847 return 0;
848 }
849
850 /* Already mapped, just free prealloc */
851 if (folio_test_private(folio)) {
852 btrfs_free_subpage(prealloc);
853 return 0;
854 }
855
856 if (prealloc)
857 /* Has preallocated memory for subpage */
858 folio_attach_private(folio, prealloc);
859 else
860 /* Do new allocation to attach subpage */
861 ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
862 return ret;
863}
864
865int set_page_extent_mapped(struct page *page)
866{
867 return set_folio_extent_mapped(page_folio(page));
868}
869
870int set_folio_extent_mapped(struct folio *folio)
871{
872 struct btrfs_fs_info *fs_info;
873
874 ASSERT(folio->mapping);
875
876 if (folio_test_private(folio))
877 return 0;
878
879 fs_info = folio_to_fs_info(folio);
880
881 if (btrfs_is_subpage(fs_info, folio->mapping))
882 return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
883
884 folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
885 return 0;
886}
887
888void clear_folio_extent_mapped(struct folio *folio)
889{
890 struct btrfs_fs_info *fs_info;
891
892 ASSERT(folio->mapping);
893
894 if (!folio_test_private(folio))
895 return;
896
897 fs_info = folio_to_fs_info(folio);
898 if (btrfs_is_subpage(fs_info, folio->mapping))
899 return btrfs_detach_subpage(fs_info, folio);
900
901 folio_detach_private(folio);
902}
903
904static struct extent_map *get_extent_map(struct btrfs_inode *inode,
905 struct folio *folio, u64 start,
906 u64 len, struct extent_map **em_cached)
907{
908 struct extent_map *em;
909
910 ASSERT(em_cached);
911
912 if (*em_cached) {
913 em = *em_cached;
914 if (extent_map_in_tree(em) && start >= em->start &&
915 start < extent_map_end(em)) {
916 refcount_inc(&em->refs);
917 return em;
918 }
919
920 free_extent_map(em);
921 *em_cached = NULL;
922 }
923
924 em = btrfs_get_extent(inode, folio, start, len);
925 if (!IS_ERR(em)) {
926 BUG_ON(*em_cached);
927 refcount_inc(&em->refs);
928 *em_cached = em;
929 }
930
931 return em;
932}
933/*
934 * basic readpage implementation. Locked extent state structs are inserted
935 * into the tree that are removed when the IO is done (by the end_io
936 * handlers)
937 * XXX JDM: This needs looking at to ensure proper page locking
938 * return 0 on success, otherwise return error
939 */
940static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
941 struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
942{
943 struct inode *inode = folio->mapping->host;
944 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
945 u64 start = folio_pos(folio);
946 const u64 end = start + PAGE_SIZE - 1;
947 u64 cur = start;
948 u64 extent_offset;
949 u64 last_byte = i_size_read(inode);
950 u64 block_start;
951 struct extent_map *em;
952 int ret = 0;
953 size_t pg_offset = 0;
954 size_t iosize;
955 size_t blocksize = fs_info->sectorsize;
956
957 ret = set_folio_extent_mapped(folio);
958 if (ret < 0) {
959 folio_unlock(folio);
960 return ret;
961 }
962
963 if (folio->index == last_byte >> folio_shift(folio)) {
964 size_t zero_offset = offset_in_folio(folio, last_byte);
965
966 if (zero_offset) {
967 iosize = folio_size(folio) - zero_offset;
968 folio_zero_range(folio, zero_offset, iosize);
969 }
970 }
971 bio_ctrl->end_io_func = end_bbio_data_read;
972 begin_folio_read(fs_info, folio);
973 while (cur <= end) {
974 enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
975 bool force_bio_submit = false;
976 u64 disk_bytenr;
977
978 ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
979 if (cur >= last_byte) {
980 iosize = folio_size(folio) - pg_offset;
981 folio_zero_range(folio, pg_offset, iosize);
982 end_folio_read(folio, true, cur, iosize);
983 break;
984 }
985 em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
986 if (IS_ERR(em)) {
987 end_folio_read(folio, false, cur, end + 1 - cur);
988 return PTR_ERR(em);
989 }
990 extent_offset = cur - em->start;
991 BUG_ON(extent_map_end(em) <= cur);
992 BUG_ON(end < cur);
993
994 compress_type = extent_map_compression(em);
995
996 iosize = min(extent_map_end(em) - cur, end - cur + 1);
997 iosize = ALIGN(iosize, blocksize);
998 if (compress_type != BTRFS_COMPRESS_NONE)
999 disk_bytenr = em->disk_bytenr;
1000 else
1001 disk_bytenr = extent_map_block_start(em) + extent_offset;
1002 block_start = extent_map_block_start(em);
1003 if (em->flags & EXTENT_FLAG_PREALLOC)
1004 block_start = EXTENT_MAP_HOLE;
1005
1006 /*
1007 * If we have a file range that points to a compressed extent
1008 * and it's followed by a consecutive file range that points
1009 * to the same compressed extent (possibly with a different
1010 * offset and/or length, so it either points to the whole extent
1011 * or only part of it), we must make sure we do not submit a
1012 * single bio to populate the folios for the 2 ranges because
1013 * this makes the compressed extent read zero out the folios
1014 * belonging to the 2nd range. Imagine the following scenario:
1015 *
1016 * File layout
1017 * [0 - 8K] [8K - 24K]
1018 * | |
1019 * | |
1020 * points to extent X, points to extent X,
1021 * offset 4K, length of 8K offset 0, length 16K
1022 *
1023 * [extent X, compressed length = 4K uncompressed length = 16K]
1024 *
1025 * If the bio to read the compressed extent covers both ranges,
1026 * it will decompress extent X into the folios belonging to the
1027 * first range and then it will stop, zeroing out the remaining
1028 * folios that belong to the other range that points to extent X.
1029 * So here we make sure we submit 2 bios, one for the first
1030 * range and another one for the third range. Both will target
1031 * the same physical extent from disk, but we can't currently
1032 * make the compressed bio endio callback populate the folios
1033 * for both ranges because each compressed bio is tightly
1034 * coupled with a single extent map, and each range can have
1035 * an extent map with a different offset value relative to the
1036 * uncompressed data of our extent and different lengths. This
1037 * is a corner case so we prioritize correctness over
1038 * non-optimal behavior (submitting 2 bios for the same extent).
1039 */
1040 if (compress_type != BTRFS_COMPRESS_NONE &&
1041 prev_em_start && *prev_em_start != (u64)-1 &&
1042 *prev_em_start != em->start)
1043 force_bio_submit = true;
1044
1045 if (prev_em_start)
1046 *prev_em_start = em->start;
1047
1048 free_extent_map(em);
1049 em = NULL;
1050
1051 /* we've found a hole, just zero and go on */
1052 if (block_start == EXTENT_MAP_HOLE) {
1053 folio_zero_range(folio, pg_offset, iosize);
1054
1055 end_folio_read(folio, true, cur, iosize);
1056 cur = cur + iosize;
1057 pg_offset += iosize;
1058 continue;
1059 }
1060 /* the get_extent function already copied into the folio */
1061 if (block_start == EXTENT_MAP_INLINE) {
1062 end_folio_read(folio, true, cur, iosize);
1063 cur = cur + iosize;
1064 pg_offset += iosize;
1065 continue;
1066 }
1067
1068 if (bio_ctrl->compress_type != compress_type) {
1069 submit_one_bio(bio_ctrl);
1070 bio_ctrl->compress_type = compress_type;
1071 }
1072
1073 if (force_bio_submit)
1074 submit_one_bio(bio_ctrl);
1075 submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1076 pg_offset);
1077 cur = cur + iosize;
1078 pg_offset += iosize;
1079 }
1080
1081 return 0;
1082}
1083
1084int btrfs_read_folio(struct file *file, struct folio *folio)
1085{
1086 struct btrfs_inode *inode = folio_to_inode(folio);
1087 const u64 start = folio_pos(folio);
1088 const u64 end = start + folio_size(folio) - 1;
1089 struct extent_state *cached_state = NULL;
1090 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091 struct extent_map *em_cached = NULL;
1092 int ret;
1093
1094 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
1095 ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1096 unlock_extent(&inode->io_tree, start, end, &cached_state);
1097
1098 free_extent_map(em_cached);
1099
1100 /*
1101 * If btrfs_do_readpage() failed we will want to submit the assembled
1102 * bio to do the cleanup.
1103 */
1104 submit_one_bio(&bio_ctrl);
1105 return ret;
1106}
1107
1108static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1109 u64 start, u32 len)
1110{
1111 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1112 const u64 folio_start = folio_pos(folio);
1113 unsigned int start_bit;
1114 unsigned int nbits;
1115
1116 ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1117 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1118 nbits = len >> fs_info->sectorsize_bits;
1119 ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1120 bitmap_set(delalloc_bitmap, start_bit, nbits);
1121}
1122
1123static bool find_next_delalloc_bitmap(struct folio *folio,
1124 unsigned long *delalloc_bitmap, u64 start,
1125 u64 *found_start, u32 *found_len)
1126{
1127 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1128 const u64 folio_start = folio_pos(folio);
1129 const unsigned int bitmap_size = fs_info->sectors_per_page;
1130 unsigned int start_bit;
1131 unsigned int first_zero;
1132 unsigned int first_set;
1133
1134 ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1135
1136 start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1137 first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1138 if (first_set >= bitmap_size)
1139 return false;
1140
1141 *found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1142 first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1143 *found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1144 return true;
1145}
1146
1147/*
1148 * Do all of the delayed allocation setup.
1149 *
1150 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1151 * The @folio should no longer be touched (treat it as already unlocked).
1152 *
1153 * Return 0 if there is still dirty block that needs to be submitted through
1154 * extent_writepage_io().
1155 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1156 * submitted, and @folio is still kept locked.
1157 *
1158 * Return <0 if there is any error hit.
1159 * Any allocated ordered extent range covering this folio will be marked
1160 * finished (IOERR), and @folio is still kept locked.
1161 */
1162static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1163 struct folio *folio,
1164 struct btrfs_bio_ctrl *bio_ctrl)
1165{
1166 struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1167 struct writeback_control *wbc = bio_ctrl->wbc;
1168 const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1169 const u64 page_start = folio_pos(folio);
1170 const u64 page_end = page_start + folio_size(folio) - 1;
1171 unsigned long delalloc_bitmap = 0;
1172 /*
1173 * Save the last found delalloc end. As the delalloc end can go beyond
1174 * page boundary, thus we cannot rely on subpage bitmap to locate the
1175 * last delalloc end.
1176 */
1177 u64 last_delalloc_end = 0;
1178 /*
1179 * The range end (exclusive) of the last successfully finished delalloc
1180 * range.
1181 * Any range covered by ordered extent must either be manually marked
1182 * finished (error handling), or has IO submitted (and finish the
1183 * ordered extent normally).
1184 *
1185 * This records the end of ordered extent cleanup if we hit an error.
1186 */
1187 u64 last_finished_delalloc_end = page_start;
1188 u64 delalloc_start = page_start;
1189 u64 delalloc_end = page_end;
1190 u64 delalloc_to_write = 0;
1191 int ret = 0;
1192 int bit;
1193
1194 /* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1195 if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1196 ASSERT(fs_info->sectors_per_page > 1);
1197 btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1198 } else {
1199 bio_ctrl->submit_bitmap = 1;
1200 }
1201
1202 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1203 u64 start = page_start + (bit << fs_info->sectorsize_bits);
1204
1205 btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1206 }
1207
1208 /* Lock all (subpage) delalloc ranges inside the folio first. */
1209 while (delalloc_start < page_end) {
1210 delalloc_end = page_end;
1211 if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1212 &delalloc_start, &delalloc_end)) {
1213 delalloc_start = delalloc_end + 1;
1214 continue;
1215 }
1216 set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1217 min(delalloc_end, page_end) + 1 - delalloc_start);
1218 last_delalloc_end = delalloc_end;
1219 delalloc_start = delalloc_end + 1;
1220 }
1221 delalloc_start = page_start;
1222
1223 if (!last_delalloc_end)
1224 goto out;
1225
1226 /* Run the delalloc ranges for the above locked ranges. */
1227 while (delalloc_start < page_end) {
1228 u64 found_start;
1229 u32 found_len;
1230 bool found;
1231
1232 if (!is_subpage) {
1233 /*
1234 * For non-subpage case, the found delalloc range must
1235 * cover this folio and there must be only one locked
1236 * delalloc range.
1237 */
1238 found_start = page_start;
1239 found_len = last_delalloc_end + 1 - found_start;
1240 found = true;
1241 } else {
1242 found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1243 delalloc_start, &found_start, &found_len);
1244 }
1245 if (!found)
1246 break;
1247 /*
1248 * The subpage range covers the last sector, the delalloc range may
1249 * end beyond the folio boundary, use the saved delalloc_end
1250 * instead.
1251 */
1252 if (found_start + found_len >= page_end)
1253 found_len = last_delalloc_end + 1 - found_start;
1254
1255 if (ret >= 0) {
1256 /*
1257 * Some delalloc range may be created by previous folios.
1258 * Thus we still need to clean up this range during error
1259 * handling.
1260 */
1261 last_finished_delalloc_end = found_start;
1262 /* No errors hit so far, run the current delalloc range. */
1263 ret = btrfs_run_delalloc_range(inode, folio,
1264 found_start,
1265 found_start + found_len - 1,
1266 wbc);
1267 if (ret >= 0)
1268 last_finished_delalloc_end = found_start + found_len;
1269 } else {
1270 /*
1271 * We've hit an error during previous delalloc range,
1272 * have to cleanup the remaining locked ranges.
1273 */
1274 unlock_extent(&inode->io_tree, found_start,
1275 found_start + found_len - 1, NULL);
1276 __unlock_for_delalloc(&inode->vfs_inode, folio,
1277 found_start,
1278 found_start + found_len - 1);
1279 }
1280
1281 /*
1282 * We have some ranges that's going to be submitted asynchronously
1283 * (compression or inline). These range have their own control
1284 * on when to unlock the pages. We should not touch them
1285 * anymore, so clear the range from the submission bitmap.
1286 */
1287 if (ret > 0) {
1288 unsigned int start_bit = (found_start - page_start) >>
1289 fs_info->sectorsize_bits;
1290 unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1291 page_start) >> fs_info->sectorsize_bits;
1292 bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1293 }
1294 /*
1295 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1296 * thus for the last range, we cannot touch the folio anymore.
1297 */
1298 if (found_start + found_len >= last_delalloc_end + 1)
1299 break;
1300
1301 delalloc_start = found_start + found_len;
1302 }
1303 /*
1304 * It's possible we had some ordered extents created before we hit
1305 * an error, cleanup non-async successfully created delalloc ranges.
1306 */
1307 if (unlikely(ret < 0)) {
1308 unsigned int bitmap_size = min(
1309 (last_finished_delalloc_end - page_start) >>
1310 fs_info->sectorsize_bits,
1311 fs_info->sectors_per_page);
1312
1313 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1314 btrfs_mark_ordered_io_finished(inode, folio,
1315 page_start + (bit << fs_info->sectorsize_bits),
1316 fs_info->sectorsize, false);
1317 return ret;
1318 }
1319out:
1320 if (last_delalloc_end)
1321 delalloc_end = last_delalloc_end;
1322 else
1323 delalloc_end = page_end;
1324 /*
1325 * delalloc_end is already one less than the total length, so
1326 * we don't subtract one from PAGE_SIZE
1327 */
1328 delalloc_to_write +=
1329 DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1330
1331 /*
1332 * If all ranges are submitted asynchronously, we just need to account
1333 * for them here.
1334 */
1335 if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1336 wbc->nr_to_write -= delalloc_to_write;
1337 return 1;
1338 }
1339
1340 if (wbc->nr_to_write < delalloc_to_write) {
1341 int thresh = 8192;
1342
1343 if (delalloc_to_write < thresh * 2)
1344 thresh = delalloc_to_write;
1345 wbc->nr_to_write = min_t(u64, delalloc_to_write,
1346 thresh);
1347 }
1348
1349 return 0;
1350}
1351
1352/*
1353 * Return 0 if we have submitted or queued the sector for submission.
1354 * Return <0 for critical errors.
1355 *
1356 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
1357 */
1358static int submit_one_sector(struct btrfs_inode *inode,
1359 struct folio *folio,
1360 u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1361 loff_t i_size)
1362{
1363 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1364 struct extent_map *em;
1365 u64 block_start;
1366 u64 disk_bytenr;
1367 u64 extent_offset;
1368 u64 em_end;
1369 const u32 sectorsize = fs_info->sectorsize;
1370
1371 ASSERT(IS_ALIGNED(filepos, sectorsize));
1372
1373 /* @filepos >= i_size case should be handled by the caller. */
1374 ASSERT(filepos < i_size);
1375
1376 em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1377 if (IS_ERR(em))
1378 return PTR_ERR_OR_ZERO(em);
1379
1380 extent_offset = filepos - em->start;
1381 em_end = extent_map_end(em);
1382 ASSERT(filepos <= em_end);
1383 ASSERT(IS_ALIGNED(em->start, sectorsize));
1384 ASSERT(IS_ALIGNED(em->len, sectorsize));
1385
1386 block_start = extent_map_block_start(em);
1387 disk_bytenr = extent_map_block_start(em) + extent_offset;
1388
1389 ASSERT(!extent_map_is_compressed(em));
1390 ASSERT(block_start != EXTENT_MAP_HOLE);
1391 ASSERT(block_start != EXTENT_MAP_INLINE);
1392
1393 free_extent_map(em);
1394 em = NULL;
1395
1396 /*
1397 * Although the PageDirty bit is cleared before entering this
1398 * function, subpage dirty bit is not cleared.
1399 * So clear subpage dirty bit here so next time we won't submit
1400 * a folio for a range already written to disk.
1401 */
1402 btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1403 btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1404 /*
1405 * Above call should set the whole folio with writeback flag, even
1406 * just for a single subpage sector.
1407 * As long as the folio is properly locked and the range is correct,
1408 * we should always get the folio with writeback flag.
1409 */
1410 ASSERT(folio_test_writeback(folio));
1411
1412 submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1413 sectorsize, filepos - folio_pos(folio));
1414 return 0;
1415}
1416
1417/*
1418 * Helper for extent_writepage(). This calls the writepage start hooks,
1419 * and does the loop to map the page into extents and bios.
1420 *
1421 * We return 1 if the IO is started and the page is unlocked,
1422 * 0 if all went well (page still locked)
1423 * < 0 if there were errors (page still locked)
1424 */
1425static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1426 struct folio *folio,
1427 u64 start, u32 len,
1428 struct btrfs_bio_ctrl *bio_ctrl,
1429 loff_t i_size)
1430{
1431 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1432 unsigned long range_bitmap = 0;
1433 bool submitted_io = false;
1434 bool error = false;
1435 const u64 folio_start = folio_pos(folio);
1436 u64 cur;
1437 int bit;
1438 int ret = 0;
1439
1440 ASSERT(start >= folio_start &&
1441 start + len <= folio_start + folio_size(folio));
1442
1443 ret = btrfs_writepage_cow_fixup(folio);
1444 if (ret) {
1445 /* Fixup worker will requeue */
1446 folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1447 folio_unlock(folio);
1448 return 1;
1449 }
1450
1451 for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1452 set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1453 bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1454 fs_info->sectors_per_page);
1455
1456 bio_ctrl->end_io_func = end_bbio_data_write;
1457
1458 for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1459 cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
1460
1461 if (cur >= i_size) {
1462 btrfs_mark_ordered_io_finished(inode, folio, cur,
1463 start + len - cur, true);
1464 /*
1465 * This range is beyond i_size, thus we don't need to
1466 * bother writing back.
1467 * But we still need to clear the dirty subpage bit, or
1468 * the next time the folio gets dirtied, we will try to
1469 * writeback the sectors with subpage dirty bits,
1470 * causing writeback without ordered extent.
1471 */
1472 btrfs_folio_clear_dirty(fs_info, folio, cur,
1473 start + len - cur);
1474 break;
1475 }
1476 ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1477 if (unlikely(ret < 0)) {
1478 /*
1479 * bio_ctrl may contain a bio crossing several folios.
1480 * Submit it immediately so that the bio has a chance
1481 * to finish normally, other than marked as error.
1482 */
1483 submit_one_bio(bio_ctrl);
1484 /*
1485 * Failed to grab the extent map which should be very rare.
1486 * Since there is no bio submitted to finish the ordered
1487 * extent, we have to manually finish this sector.
1488 */
1489 btrfs_mark_ordered_io_finished(inode, folio, cur,
1490 fs_info->sectorsize, false);
1491 error = true;
1492 continue;
1493 }
1494 submitted_io = true;
1495 }
1496
1497 /*
1498 * If we didn't submitted any sector (>= i_size), folio dirty get
1499 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1500 * by folio_start_writeback() if the folio is not dirty).
1501 *
1502 * Here we set writeback and clear for the range. If the full folio
1503 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1504 *
1505 * If we hit any error, the corresponding sector will still be dirty
1506 * thus no need to clear PAGECACHE_TAG_DIRTY.
1507 */
1508 if (!submitted_io && !error) {
1509 btrfs_folio_set_writeback(fs_info, folio, start, len);
1510 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1511 }
1512 return ret;
1513}
1514
1515/*
1516 * the writepage semantics are similar to regular writepage. extent
1517 * records are inserted to lock ranges in the tree, and as dirty areas
1518 * are found, they are marked writeback. Then the lock bits are removed
1519 * and the end_io handler clears the writeback ranges
1520 *
1521 * Return 0 if everything goes well.
1522 * Return <0 for error.
1523 */
1524static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
1525{
1526 struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1527 struct btrfs_fs_info *fs_info = inode->root->fs_info;
1528 int ret;
1529 size_t pg_offset;
1530 loff_t i_size = i_size_read(&inode->vfs_inode);
1531 unsigned long end_index = i_size >> PAGE_SHIFT;
1532
1533 trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1534
1535 WARN_ON(!folio_test_locked(folio));
1536
1537 pg_offset = offset_in_folio(folio, i_size);
1538 if (folio->index > end_index ||
1539 (folio->index == end_index && !pg_offset)) {
1540 folio_invalidate(folio, 0, folio_size(folio));
1541 folio_unlock(folio);
1542 return 0;
1543 }
1544
1545 if (folio->index == end_index)
1546 folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
1547
1548 /*
1549 * Default to unlock the whole folio.
1550 * The proper bitmap can only be initialized until writepage_delalloc().
1551 */
1552 bio_ctrl->submit_bitmap = (unsigned long)-1;
1553 ret = set_folio_extent_mapped(folio);
1554 if (ret < 0)
1555 goto done;
1556
1557 ret = writepage_delalloc(inode, folio, bio_ctrl);
1558 if (ret == 1)
1559 return 0;
1560 if (ret)
1561 goto done;
1562
1563 ret = extent_writepage_io(inode, folio, folio_pos(folio),
1564 PAGE_SIZE, bio_ctrl, i_size);
1565 if (ret == 1)
1566 return 0;
1567
1568 bio_ctrl->wbc->nr_to_write--;
1569
1570done:
1571 if (ret < 0)
1572 mapping_set_error(folio->mapping, ret);
1573 /*
1574 * Only unlock ranges that are submitted. As there can be some async
1575 * submitted ranges inside the folio.
1576 */
1577 btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
1578 ASSERT(ret <= 0);
1579 return ret;
1580}
1581
1582void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1583{
1584 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1585 TASK_UNINTERRUPTIBLE);
1586}
1587
1588/*
1589 * Lock extent buffer status and pages for writeback.
1590 *
1591 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1592 * extent buffer is not dirty)
1593 * Return %true is the extent buffer is submitted to bio.
1594 */
1595static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1596 struct writeback_control *wbc)
1597{
1598 struct btrfs_fs_info *fs_info = eb->fs_info;
1599 bool ret = false;
1600
1601 btrfs_tree_lock(eb);
1602 while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1603 btrfs_tree_unlock(eb);
1604 if (wbc->sync_mode != WB_SYNC_ALL)
1605 return false;
1606 wait_on_extent_buffer_writeback(eb);
1607 btrfs_tree_lock(eb);
1608 }
1609
1610 /*
1611 * We need to do this to prevent races in people who check if the eb is
1612 * under IO since we can end up having no IO bits set for a short period
1613 * of time.
1614 */
1615 spin_lock(&eb->refs_lock);
1616 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1617 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1618 spin_unlock(&eb->refs_lock);
1619 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1620 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1621 -eb->len,
1622 fs_info->dirty_metadata_batch);
1623 ret = true;
1624 } else {
1625 spin_unlock(&eb->refs_lock);
1626 }
1627 btrfs_tree_unlock(eb);
1628 return ret;
1629}
1630
1631static void set_btree_ioerr(struct extent_buffer *eb)
1632{
1633 struct btrfs_fs_info *fs_info = eb->fs_info;
1634
1635 set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1636
1637 /*
1638 * A read may stumble upon this buffer later, make sure that it gets an
1639 * error and knows there was an error.
1640 */
1641 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1642
1643 /*
1644 * We need to set the mapping with the io error as well because a write
1645 * error will flip the file system readonly, and then syncfs() will
1646 * return a 0 because we are readonly if we don't modify the err seq for
1647 * the superblock.
1648 */
1649 mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
1650
1651 /*
1652 * If writeback for a btree extent that doesn't belong to a log tree
1653 * failed, increment the counter transaction->eb_write_errors.
1654 * We do this because while the transaction is running and before it's
1655 * committing (when we call filemap_fdata[write|wait]_range against
1656 * the btree inode), we might have
1657 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1658 * returns an error or an error happens during writeback, when we're
1659 * committing the transaction we wouldn't know about it, since the pages
1660 * can be no longer dirty nor marked anymore for writeback (if a
1661 * subsequent modification to the extent buffer didn't happen before the
1662 * transaction commit), which makes filemap_fdata[write|wait]_range not
1663 * able to find the pages which contain errors at transaction
1664 * commit time. So if this happens we must abort the transaction,
1665 * otherwise we commit a super block with btree roots that point to
1666 * btree nodes/leafs whose content on disk is invalid - either garbage
1667 * or the content of some node/leaf from a past generation that got
1668 * cowed or deleted and is no longer valid.
1669 *
1670 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1671 * not be enough - we need to distinguish between log tree extents vs
1672 * non-log tree extents, and the next filemap_fdatawait_range() call
1673 * will catch and clear such errors in the mapping - and that call might
1674 * be from a log sync and not from a transaction commit. Also, checking
1675 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1676 * not done and would not be reliable - the eb might have been released
1677 * from memory and reading it back again means that flag would not be
1678 * set (since it's a runtime flag, not persisted on disk).
1679 *
1680 * Using the flags below in the btree inode also makes us achieve the
1681 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1682 * writeback for all dirty pages and before filemap_fdatawait_range()
1683 * is called, the writeback for all dirty pages had already finished
1684 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1685 * filemap_fdatawait_range() would return success, as it could not know
1686 * that writeback errors happened (the pages were no longer tagged for
1687 * writeback).
1688 */
1689 switch (eb->log_index) {
1690 case -1:
1691 set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1692 break;
1693 case 0:
1694 set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1695 break;
1696 case 1:
1697 set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1698 break;
1699 default:
1700 BUG(); /* unexpected, logic error */
1701 }
1702}
1703
1704/*
1705 * The endio specific version which won't touch any unsafe spinlock in endio
1706 * context.
1707 */
1708static struct extent_buffer *find_extent_buffer_nolock(
1709 const struct btrfs_fs_info *fs_info, u64 start)
1710{
1711 struct extent_buffer *eb;
1712
1713 rcu_read_lock();
1714 eb = radix_tree_lookup(&fs_info->buffer_radix,
1715 start >> fs_info->sectorsize_bits);
1716 if (eb && atomic_inc_not_zero(&eb->refs)) {
1717 rcu_read_unlock();
1718 return eb;
1719 }
1720 rcu_read_unlock();
1721 return NULL;
1722}
1723
1724static void end_bbio_meta_write(struct btrfs_bio *bbio)
1725{
1726 struct extent_buffer *eb = bbio->private;
1727 struct btrfs_fs_info *fs_info = eb->fs_info;
1728 bool uptodate = !bbio->bio.bi_status;
1729 struct folio_iter fi;
1730 u32 bio_offset = 0;
1731
1732 if (!uptodate)
1733 set_btree_ioerr(eb);
1734
1735 bio_for_each_folio_all(fi, &bbio->bio) {
1736 u64 start = eb->start + bio_offset;
1737 struct folio *folio = fi.folio;
1738 u32 len = fi.length;
1739
1740 btrfs_folio_clear_writeback(fs_info, folio, start, len);
1741 bio_offset += len;
1742 }
1743
1744 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1745 smp_mb__after_atomic();
1746 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
1747
1748 bio_put(&bbio->bio);
1749}
1750
1751static void prepare_eb_write(struct extent_buffer *eb)
1752{
1753 u32 nritems;
1754 unsigned long start;
1755 unsigned long end;
1756
1757 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1758
1759 /* Set btree blocks beyond nritems with 0 to avoid stale content */
1760 nritems = btrfs_header_nritems(eb);
1761 if (btrfs_header_level(eb) > 0) {
1762 end = btrfs_node_key_ptr_offset(eb, nritems);
1763 memzero_extent_buffer(eb, end, eb->len - end);
1764 } else {
1765 /*
1766 * Leaf:
1767 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1768 */
1769 start = btrfs_item_nr_offset(eb, nritems);
1770 end = btrfs_item_nr_offset(eb, 0);
1771 if (nritems == 0)
1772 end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1773 else
1774 end += btrfs_item_offset(eb, nritems - 1);
1775 memzero_extent_buffer(eb, start, end - start);
1776 }
1777}
1778
1779static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1780 struct writeback_control *wbc)
1781{
1782 struct btrfs_fs_info *fs_info = eb->fs_info;
1783 struct btrfs_bio *bbio;
1784
1785 prepare_eb_write(eb);
1786
1787 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1788 REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1789 eb->fs_info, end_bbio_meta_write, eb);
1790 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1791 bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1792 wbc_init_bio(wbc, &bbio->bio);
1793 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1794 bbio->file_offset = eb->start;
1795 if (fs_info->nodesize < PAGE_SIZE) {
1796 struct folio *folio = eb->folios[0];
1797 bool ret;
1798
1799 folio_lock(folio);
1800 btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1801 if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1802 eb->len)) {
1803 folio_clear_dirty_for_io(folio);
1804 wbc->nr_to_write--;
1805 }
1806 ret = bio_add_folio(&bbio->bio, folio, eb->len,
1807 eb->start - folio_pos(folio));
1808 ASSERT(ret);
1809 wbc_account_cgroup_owner(wbc, folio, eb->len);
1810 folio_unlock(folio);
1811 } else {
1812 int num_folios = num_extent_folios(eb);
1813
1814 for (int i = 0; i < num_folios; i++) {
1815 struct folio *folio = eb->folios[i];
1816 bool ret;
1817
1818 folio_lock(folio);
1819 folio_clear_dirty_for_io(folio);
1820 folio_start_writeback(folio);
1821 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1822 ASSERT(ret);
1823 wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1824 wbc->nr_to_write -= folio_nr_pages(folio);
1825 folio_unlock(folio);
1826 }
1827 }
1828 btrfs_submit_bbio(bbio, 0);
1829}
1830
1831/*
1832 * Submit one subpage btree page.
1833 *
1834 * The main difference to submit_eb_page() is:
1835 * - Page locking
1836 * For subpage, we don't rely on page locking at all.
1837 *
1838 * - Flush write bio
1839 * We only flush bio if we may be unable to fit current extent buffers into
1840 * current bio.
1841 *
1842 * Return >=0 for the number of submitted extent buffers.
1843 * Return <0 for fatal error.
1844 */
1845static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
1846{
1847 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1848 int submitted = 0;
1849 u64 folio_start = folio_pos(folio);
1850 int bit_start = 0;
1851 int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
1852
1853 /* Lock and write each dirty extent buffers in the range */
1854 while (bit_start < fs_info->sectors_per_page) {
1855 struct btrfs_subpage *subpage = folio_get_private(folio);
1856 struct extent_buffer *eb;
1857 unsigned long flags;
1858 u64 start;
1859
1860 /*
1861 * Take private lock to ensure the subpage won't be detached
1862 * in the meantime.
1863 */
1864 spin_lock(&folio->mapping->i_private_lock);
1865 if (!folio_test_private(folio)) {
1866 spin_unlock(&folio->mapping->i_private_lock);
1867 break;
1868 }
1869 spin_lock_irqsave(&subpage->lock, flags);
1870 if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1871 subpage->bitmaps)) {
1872 spin_unlock_irqrestore(&subpage->lock, flags);
1873 spin_unlock(&folio->mapping->i_private_lock);
1874 bit_start++;
1875 continue;
1876 }
1877
1878 start = folio_start + bit_start * fs_info->sectorsize;
1879 bit_start += sectors_per_node;
1880
1881 /*
1882 * Here we just want to grab the eb without touching extra
1883 * spin locks, so call find_extent_buffer_nolock().
1884 */
1885 eb = find_extent_buffer_nolock(fs_info, start);
1886 spin_unlock_irqrestore(&subpage->lock, flags);
1887 spin_unlock(&folio->mapping->i_private_lock);
1888
1889 /*
1890 * The eb has already reached 0 refs thus find_extent_buffer()
1891 * doesn't return it. We don't need to write back such eb
1892 * anyway.
1893 */
1894 if (!eb)
1895 continue;
1896
1897 if (lock_extent_buffer_for_io(eb, wbc)) {
1898 write_one_eb(eb, wbc);
1899 submitted++;
1900 }
1901 free_extent_buffer(eb);
1902 }
1903 return submitted;
1904}
1905
1906/*
1907 * Submit all page(s) of one extent buffer.
1908 *
1909 * @page: the page of one extent buffer
1910 * @eb_context: to determine if we need to submit this page, if current page
1911 * belongs to this eb, we don't need to submit
1912 *
1913 * The caller should pass each page in their bytenr order, and here we use
1914 * @eb_context to determine if we have submitted pages of one extent buffer.
1915 *
1916 * If we have, we just skip until we hit a new page that doesn't belong to
1917 * current @eb_context.
1918 *
1919 * If not, we submit all the page(s) of the extent buffer.
1920 *
1921 * Return >0 if we have submitted the extent buffer successfully.
1922 * Return 0 if we don't need to submit the page, as it's already submitted by
1923 * previous call.
1924 * Return <0 for fatal error.
1925 */
1926static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
1927{
1928 struct writeback_control *wbc = ctx->wbc;
1929 struct address_space *mapping = folio->mapping;
1930 struct extent_buffer *eb;
1931 int ret;
1932
1933 if (!folio_test_private(folio))
1934 return 0;
1935
1936 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1937 return submit_eb_subpage(folio, wbc);
1938
1939 spin_lock(&mapping->i_private_lock);
1940 if (!folio_test_private(folio)) {
1941 spin_unlock(&mapping->i_private_lock);
1942 return 0;
1943 }
1944
1945 eb = folio_get_private(folio);
1946
1947 /*
1948 * Shouldn't happen and normally this would be a BUG_ON but no point
1949 * crashing the machine for something we can survive anyway.
1950 */
1951 if (WARN_ON(!eb)) {
1952 spin_unlock(&mapping->i_private_lock);
1953 return 0;
1954 }
1955
1956 if (eb == ctx->eb) {
1957 spin_unlock(&mapping->i_private_lock);
1958 return 0;
1959 }
1960 ret = atomic_inc_not_zero(&eb->refs);
1961 spin_unlock(&mapping->i_private_lock);
1962 if (!ret)
1963 return 0;
1964
1965 ctx->eb = eb;
1966
1967 ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1968 if (ret) {
1969 if (ret == -EBUSY)
1970 ret = 0;
1971 free_extent_buffer(eb);
1972 return ret;
1973 }
1974
1975 if (!lock_extent_buffer_for_io(eb, wbc)) {
1976 free_extent_buffer(eb);
1977 return 0;
1978 }
1979 /* Implies write in zoned mode. */
1980 if (ctx->zoned_bg) {
1981 /* Mark the last eb in the block group. */
1982 btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1983 ctx->zoned_bg->meta_write_pointer += eb->len;
1984 }
1985 write_one_eb(eb, wbc);
1986 free_extent_buffer(eb);
1987 return 1;
1988}
1989
1990int btree_write_cache_pages(struct address_space *mapping,
1991 struct writeback_control *wbc)
1992{
1993 struct btrfs_eb_write_context ctx = { .wbc = wbc };
1994 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
1995 int ret = 0;
1996 int done = 0;
1997 int nr_to_write_done = 0;
1998 struct folio_batch fbatch;
1999 unsigned int nr_folios;
2000 pgoff_t index;
2001 pgoff_t end; /* Inclusive */
2002 int scanned = 0;
2003 xa_mark_t tag;
2004
2005 folio_batch_init(&fbatch);
2006 if (wbc->range_cyclic) {
2007 index = mapping->writeback_index; /* Start from prev offset */
2008 end = -1;
2009 /*
2010 * Start from the beginning does not need to cycle over the
2011 * range, mark it as scanned.
2012 */
2013 scanned = (index == 0);
2014 } else {
2015 index = wbc->range_start >> PAGE_SHIFT;
2016 end = wbc->range_end >> PAGE_SHIFT;
2017 scanned = 1;
2018 }
2019 if (wbc->sync_mode == WB_SYNC_ALL)
2020 tag = PAGECACHE_TAG_TOWRITE;
2021 else
2022 tag = PAGECACHE_TAG_DIRTY;
2023 btrfs_zoned_meta_io_lock(fs_info);
2024retry:
2025 if (wbc->sync_mode == WB_SYNC_ALL)
2026 tag_pages_for_writeback(mapping, index, end);
2027 while (!done && !nr_to_write_done && (index <= end) &&
2028 (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2029 tag, &fbatch))) {
2030 unsigned i;
2031
2032 for (i = 0; i < nr_folios; i++) {
2033 struct folio *folio = fbatch.folios[i];
2034
2035 ret = submit_eb_page(folio, &ctx);
2036 if (ret == 0)
2037 continue;
2038 if (ret < 0) {
2039 done = 1;
2040 break;
2041 }
2042
2043 /*
2044 * the filesystem may choose to bump up nr_to_write.
2045 * We have to make sure to honor the new nr_to_write
2046 * at any time
2047 */
2048 nr_to_write_done = wbc->nr_to_write <= 0;
2049 }
2050 folio_batch_release(&fbatch);
2051 cond_resched();
2052 }
2053 if (!scanned && !done) {
2054 /*
2055 * We hit the last page and there is more work to be done: wrap
2056 * back to the start of the file
2057 */
2058 scanned = 1;
2059 index = 0;
2060 goto retry;
2061 }
2062 /*
2063 * If something went wrong, don't allow any metadata write bio to be
2064 * submitted.
2065 *
2066 * This would prevent use-after-free if we had dirty pages not
2067 * cleaned up, which can still happen by fuzzed images.
2068 *
2069 * - Bad extent tree
2070 * Allowing existing tree block to be allocated for other trees.
2071 *
2072 * - Log tree operations
2073 * Exiting tree blocks get allocated to log tree, bumps its
2074 * generation, then get cleaned in tree re-balance.
2075 * Such tree block will not be written back, since it's clean,
2076 * thus no WRITTEN flag set.
2077 * And after log writes back, this tree block is not traced by
2078 * any dirty extent_io_tree.
2079 *
2080 * - Offending tree block gets re-dirtied from its original owner
2081 * Since it has bumped generation, no WRITTEN flag, it can be
2082 * reused without COWing. This tree block will not be traced
2083 * by btrfs_transaction::dirty_pages.
2084 *
2085 * Now such dirty tree block will not be cleaned by any dirty
2086 * extent io tree. Thus we don't want to submit such wild eb
2087 * if the fs already has error.
2088 *
2089 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2090 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2091 */
2092 if (ret > 0)
2093 ret = 0;
2094 if (!ret && BTRFS_FS_ERROR(fs_info))
2095 ret = -EROFS;
2096
2097 if (ctx.zoned_bg)
2098 btrfs_put_block_group(ctx.zoned_bg);
2099 btrfs_zoned_meta_io_unlock(fs_info);
2100 return ret;
2101}
2102
2103/*
2104 * Walk the list of dirty pages of the given address space and write all of them.
2105 *
2106 * @mapping: address space structure to write
2107 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2108 * @bio_ctrl: holds context for the write, namely the bio
2109 *
2110 * If a page is already under I/O, write_cache_pages() skips it, even
2111 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2112 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2113 * and msync() need to guarantee that all the data which was dirty at the time
2114 * the call was made get new I/O started against them. If wbc->sync_mode is
2115 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2116 * existing IO to complete.
2117 */
2118static int extent_write_cache_pages(struct address_space *mapping,
2119 struct btrfs_bio_ctrl *bio_ctrl)
2120{
2121 struct writeback_control *wbc = bio_ctrl->wbc;
2122 struct inode *inode = mapping->host;
2123 int ret = 0;
2124 int done = 0;
2125 int nr_to_write_done = 0;
2126 struct folio_batch fbatch;
2127 unsigned int nr_folios;
2128 pgoff_t index;
2129 pgoff_t end; /* Inclusive */
2130 pgoff_t done_index;
2131 int range_whole = 0;
2132 int scanned = 0;
2133 xa_mark_t tag;
2134
2135 /*
2136 * We have to hold onto the inode so that ordered extents can do their
2137 * work when the IO finishes. The alternative to this is failing to add
2138 * an ordered extent if the igrab() fails there and that is a huge pain
2139 * to deal with, so instead just hold onto the inode throughout the
2140 * writepages operation. If it fails here we are freeing up the inode
2141 * anyway and we'd rather not waste our time writing out stuff that is
2142 * going to be truncated anyway.
2143 */
2144 if (!igrab(inode))
2145 return 0;
2146
2147 folio_batch_init(&fbatch);
2148 if (wbc->range_cyclic) {
2149 index = mapping->writeback_index; /* Start from prev offset */
2150 end = -1;
2151 /*
2152 * Start from the beginning does not need to cycle over the
2153 * range, mark it as scanned.
2154 */
2155 scanned = (index == 0);
2156 } else {
2157 index = wbc->range_start >> PAGE_SHIFT;
2158 end = wbc->range_end >> PAGE_SHIFT;
2159 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2160 range_whole = 1;
2161 scanned = 1;
2162 }
2163
2164 /*
2165 * We do the tagged writepage as long as the snapshot flush bit is set
2166 * and we are the first one who do the filemap_flush() on this inode.
2167 *
2168 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2169 * not race in and drop the bit.
2170 */
2171 if (range_whole && wbc->nr_to_write == LONG_MAX &&
2172 test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2173 &BTRFS_I(inode)->runtime_flags))
2174 wbc->tagged_writepages = 1;
2175
2176 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2177 tag = PAGECACHE_TAG_TOWRITE;
2178 else
2179 tag = PAGECACHE_TAG_DIRTY;
2180retry:
2181 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2182 tag_pages_for_writeback(mapping, index, end);
2183 done_index = index;
2184 while (!done && !nr_to_write_done && (index <= end) &&
2185 (nr_folios = filemap_get_folios_tag(mapping, &index,
2186 end, tag, &fbatch))) {
2187 unsigned i;
2188
2189 for (i = 0; i < nr_folios; i++) {
2190 struct folio *folio = fbatch.folios[i];
2191
2192 done_index = folio_next_index(folio);
2193 /*
2194 * At this point we hold neither the i_pages lock nor
2195 * the page lock: the page may be truncated or
2196 * invalidated (changing page->mapping to NULL),
2197 * or even swizzled back from swapper_space to
2198 * tmpfs file mapping
2199 */
2200 if (!folio_trylock(folio)) {
2201 submit_write_bio(bio_ctrl, 0);
2202 folio_lock(folio);
2203 }
2204
2205 if (unlikely(folio->mapping != mapping)) {
2206 folio_unlock(folio);
2207 continue;
2208 }
2209
2210 if (!folio_test_dirty(folio)) {
2211 /* Someone wrote it for us. */
2212 folio_unlock(folio);
2213 continue;
2214 }
2215
2216 /*
2217 * For subpage case, compression can lead to mixed
2218 * writeback and dirty flags, e.g:
2219 * 0 32K 64K 96K 128K
2220 * | |//////||/////| |//|
2221 *
2222 * In above case, [32K, 96K) is asynchronously submitted
2223 * for compression, and [124K, 128K) needs to be written back.
2224 *
2225 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2226 * won't be submitted as the page still has writeback flag
2227 * and will be skipped in the next check.
2228 *
2229 * This mixed writeback and dirty case is only possible for
2230 * subpage case.
2231 *
2232 * TODO: Remove this check after migrating compression to
2233 * regular submission.
2234 */
2235 if (wbc->sync_mode != WB_SYNC_NONE ||
2236 btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
2237 if (folio_test_writeback(folio))
2238 submit_write_bio(bio_ctrl, 0);
2239 folio_wait_writeback(folio);
2240 }
2241
2242 if (folio_test_writeback(folio) ||
2243 !folio_clear_dirty_for_io(folio)) {
2244 folio_unlock(folio);
2245 continue;
2246 }
2247
2248 ret = extent_writepage(folio, bio_ctrl);
2249 if (ret < 0) {
2250 done = 1;
2251 break;
2252 }
2253
2254 /*
2255 * The filesystem may choose to bump up nr_to_write.
2256 * We have to make sure to honor the new nr_to_write
2257 * at any time.
2258 */
2259 nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2260 wbc->nr_to_write <= 0);
2261 }
2262 folio_batch_release(&fbatch);
2263 cond_resched();
2264 }
2265 if (!scanned && !done) {
2266 /*
2267 * We hit the last page and there is more work to be done: wrap
2268 * back to the start of the file
2269 */
2270 scanned = 1;
2271 index = 0;
2272
2273 /*
2274 * If we're looping we could run into a page that is locked by a
2275 * writer and that writer could be waiting on writeback for a
2276 * page in our current bio, and thus deadlock, so flush the
2277 * write bio here.
2278 */
2279 submit_write_bio(bio_ctrl, 0);
2280 goto retry;
2281 }
2282
2283 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2284 mapping->writeback_index = done_index;
2285
2286 btrfs_add_delayed_iput(BTRFS_I(inode));
2287 return ret;
2288}
2289
2290/*
2291 * Submit the pages in the range to bio for call sites which delalloc range has
2292 * already been ran (aka, ordered extent inserted) and all pages are still
2293 * locked.
2294 */
2295void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2296 u64 start, u64 end, struct writeback_control *wbc,
2297 bool pages_dirty)
2298{
2299 bool found_error = false;
2300 int ret = 0;
2301 struct address_space *mapping = inode->i_mapping;
2302 struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2303 const u32 sectorsize = fs_info->sectorsize;
2304 loff_t i_size = i_size_read(inode);
2305 u64 cur = start;
2306 struct btrfs_bio_ctrl bio_ctrl = {
2307 .wbc = wbc,
2308 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2309 };
2310
2311 if (wbc->no_cgroup_owner)
2312 bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2313
2314 ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
2315
2316 while (cur <= end) {
2317 u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2318 u32 cur_len = cur_end + 1 - cur;
2319 struct folio *folio;
2320
2321 folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
2322
2323 /*
2324 * This shouldn't happen, the pages are pinned and locked, this
2325 * code is just in case, but shouldn't actually be run.
2326 */
2327 if (IS_ERR(folio)) {
2328 btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2329 cur, cur_len, false);
2330 mapping_set_error(mapping, PTR_ERR(folio));
2331 cur = cur_end + 1;
2332 continue;
2333 }
2334
2335 ASSERT(folio_test_locked(folio));
2336 if (pages_dirty && folio != locked_folio)
2337 ASSERT(folio_test_dirty(folio));
2338
2339 /*
2340 * Set the submission bitmap to submit all sectors.
2341 * extent_writepage_io() will do the truncation correctly.
2342 */
2343 bio_ctrl.submit_bitmap = (unsigned long)-1;
2344 ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2345 &bio_ctrl, i_size);
2346 if (ret == 1)
2347 goto next_page;
2348
2349 if (ret)
2350 mapping_set_error(mapping, ret);
2351 btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2352 if (ret < 0)
2353 found_error = true;
2354next_page:
2355 folio_put(folio);
2356 cur = cur_end + 1;
2357 }
2358
2359 submit_write_bio(&bio_ctrl, found_error ? ret : 0);
2360}
2361
2362int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
2363{
2364 struct inode *inode = mapping->host;
2365 int ret = 0;
2366 struct btrfs_bio_ctrl bio_ctrl = {
2367 .wbc = wbc,
2368 .opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2369 };
2370
2371 /*
2372 * Allow only a single thread to do the reloc work in zoned mode to
2373 * protect the write pointer updates.
2374 */
2375 btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2376 ret = extent_write_cache_pages(mapping, &bio_ctrl);
2377 submit_write_bio(&bio_ctrl, ret);
2378 btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2379 return ret;
2380}
2381
2382void btrfs_readahead(struct readahead_control *rac)
2383{
2384 struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2385 struct folio *folio;
2386 struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2387 const u64 start = readahead_pos(rac);
2388 const u64 end = start + readahead_length(rac) - 1;
2389 struct extent_state *cached_state = NULL;
2390 struct extent_map *em_cached = NULL;
2391 u64 prev_em_start = (u64)-1;
2392
2393 btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
2394
2395 while ((folio = readahead_folio(rac)) != NULL)
2396 btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2397
2398 unlock_extent(&inode->io_tree, start, end, &cached_state);
2399
2400 if (em_cached)
2401 free_extent_map(em_cached);
2402 submit_one_bio(&bio_ctrl);
2403}
2404
2405/*
2406 * basic invalidate_folio code, this waits on any locked or writeback
2407 * ranges corresponding to the folio, and then deletes any extent state
2408 * records from the tree
2409 */
2410int extent_invalidate_folio(struct extent_io_tree *tree,
2411 struct folio *folio, size_t offset)
2412{
2413 struct extent_state *cached_state = NULL;
2414 u64 start = folio_pos(folio);
2415 u64 end = start + folio_size(folio) - 1;
2416 size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2417
2418 /* This function is only called for the btree inode */
2419 ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2420
2421 start += ALIGN(offset, blocksize);
2422 if (start > end)
2423 return 0;
2424
2425 lock_extent(tree, start, end, &cached_state);
2426 folio_wait_writeback(folio);
2427
2428 /*
2429 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2430 * so here we only need to unlock the extent range to free any
2431 * existing extent state.
2432 */
2433 unlock_extent(tree, start, end, &cached_state);
2434 return 0;
2435}
2436
2437/*
2438 * a helper for release_folio, this tests for areas of the page that
2439 * are locked or under IO and drops the related state bits if it is safe
2440 * to drop the page.
2441 */
2442static bool try_release_extent_state(struct extent_io_tree *tree,
2443 struct folio *folio)
2444{
2445 u64 start = folio_pos(folio);
2446 u64 end = start + PAGE_SIZE - 1;
2447 bool ret;
2448
2449 if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2450 ret = false;
2451 } else {
2452 u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2453 EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2454 EXTENT_QGROUP_RESERVED);
2455 int ret2;
2456
2457 /*
2458 * At this point we can safely clear everything except the
2459 * locked bit, the nodatasum bit and the delalloc new bit.
2460 * The delalloc new bit will be cleared by ordered extent
2461 * completion.
2462 */
2463 ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
2464
2465 /* if clear_extent_bit failed for enomem reasons,
2466 * we can't allow the release to continue.
2467 */
2468 if (ret2 < 0)
2469 ret = false;
2470 else
2471 ret = true;
2472 }
2473 return ret;
2474}
2475
2476/*
2477 * a helper for release_folio. As long as there are no locked extents
2478 * in the range corresponding to the page, both state records and extent
2479 * map records are removed
2480 */
2481bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2482{
2483 u64 start = folio_pos(folio);
2484 u64 end = start + PAGE_SIZE - 1;
2485 struct btrfs_inode *inode = folio_to_inode(folio);
2486 struct extent_io_tree *io_tree = &inode->io_tree;
2487
2488 while (start <= end) {
2489 const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2490 const u64 len = end - start + 1;
2491 struct extent_map_tree *extent_tree = &inode->extent_tree;
2492 struct extent_map *em;
2493
2494 write_lock(&extent_tree->lock);
2495 em = lookup_extent_mapping(extent_tree, start, len);
2496 if (!em) {
2497 write_unlock(&extent_tree->lock);
2498 break;
2499 }
2500 if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2501 write_unlock(&extent_tree->lock);
2502 free_extent_map(em);
2503 break;
2504 }
2505 if (test_range_bit_exists(io_tree, em->start,
2506 extent_map_end(em) - 1, EXTENT_LOCKED))
2507 goto next;
2508 /*
2509 * If it's not in the list of modified extents, used by a fast
2510 * fsync, we can remove it. If it's being logged we can safely
2511 * remove it since fsync took an extra reference on the em.
2512 */
2513 if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2514 goto remove_em;
2515 /*
2516 * If it's in the list of modified extents, remove it only if
2517 * its generation is older then the current one, in which case
2518 * we don't need it for a fast fsync. Otherwise don't remove it,
2519 * we could be racing with an ongoing fast fsync that could miss
2520 * the new extent.
2521 */
2522 if (em->generation >= cur_gen)
2523 goto next;
2524remove_em:
2525 /*
2526 * We only remove extent maps that are not in the list of
2527 * modified extents or that are in the list but with a
2528 * generation lower then the current generation, so there is no
2529 * need to set the full fsync flag on the inode (it hurts the
2530 * fsync performance for workloads with a data size that exceeds
2531 * or is close to the system's memory).
2532 */
2533 remove_extent_mapping(inode, em);
2534 /* Once for the inode's extent map tree. */
2535 free_extent_map(em);
2536next:
2537 start = extent_map_end(em);
2538 write_unlock(&extent_tree->lock);
2539
2540 /* Once for us, for the lookup_extent_mapping() reference. */
2541 free_extent_map(em);
2542
2543 if (need_resched()) {
2544 /*
2545 * If we need to resched but we can't block just exit
2546 * and leave any remaining extent maps.
2547 */
2548 if (!gfpflags_allow_blocking(mask))
2549 break;
2550
2551 cond_resched();
2552 }
2553 }
2554 return try_release_extent_state(io_tree, folio);
2555}
2556
2557static void __free_extent_buffer(struct extent_buffer *eb)
2558{
2559 kmem_cache_free(extent_buffer_cache, eb);
2560}
2561
2562static int extent_buffer_under_io(const struct extent_buffer *eb)
2563{
2564 return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
2565 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2566}
2567
2568static bool folio_range_has_eb(struct folio *folio)
2569{
2570 struct btrfs_subpage *subpage;
2571
2572 lockdep_assert_held(&folio->mapping->i_private_lock);
2573
2574 if (folio_test_private(folio)) {
2575 subpage = folio_get_private(folio);
2576 if (atomic_read(&subpage->eb_refs))
2577 return true;
2578 }
2579 return false;
2580}
2581
2582static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2583{
2584 struct btrfs_fs_info *fs_info = eb->fs_info;
2585 const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2586
2587 /*
2588 * For mapped eb, we're going to change the folio private, which should
2589 * be done under the i_private_lock.
2590 */
2591 if (mapped)
2592 spin_lock(&folio->mapping->i_private_lock);
2593
2594 if (!folio_test_private(folio)) {
2595 if (mapped)
2596 spin_unlock(&folio->mapping->i_private_lock);
2597 return;
2598 }
2599
2600 if (fs_info->nodesize >= PAGE_SIZE) {
2601 /*
2602 * We do this since we'll remove the pages after we've
2603 * removed the eb from the radix tree, so we could race
2604 * and have this page now attached to the new eb. So
2605 * only clear folio if it's still connected to
2606 * this eb.
2607 */
2608 if (folio_test_private(folio) && folio_get_private(folio) == eb) {
2609 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2610 BUG_ON(folio_test_dirty(folio));
2611 BUG_ON(folio_test_writeback(folio));
2612 /* We need to make sure we haven't be attached to a new eb. */
2613 folio_detach_private(folio);
2614 }
2615 if (mapped)
2616 spin_unlock(&folio->mapping->i_private_lock);
2617 return;
2618 }
2619
2620 /*
2621 * For subpage, we can have dummy eb with folio private attached. In
2622 * this case, we can directly detach the private as such folio is only
2623 * attached to one dummy eb, no sharing.
2624 */
2625 if (!mapped) {
2626 btrfs_detach_subpage(fs_info, folio);
2627 return;
2628 }
2629
2630 btrfs_folio_dec_eb_refs(fs_info, folio);
2631
2632 /*
2633 * We can only detach the folio private if there are no other ebs in the
2634 * page range and no unfinished IO.
2635 */
2636 if (!folio_range_has_eb(folio))
2637 btrfs_detach_subpage(fs_info, folio);
2638
2639 spin_unlock(&folio->mapping->i_private_lock);
2640}
2641
2642/* Release all pages attached to the extent buffer */
2643static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2644{
2645 ASSERT(!extent_buffer_under_io(eb));
2646
2647 for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2648 struct folio *folio = eb->folios[i];
2649
2650 if (!folio)
2651 continue;
2652
2653 detach_extent_buffer_folio(eb, folio);
2654
2655 /* One for when we allocated the folio. */
2656 folio_put(folio);
2657 }
2658}
2659
2660/*
2661 * Helper for releasing the extent buffer.
2662 */
2663static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2664{
2665 btrfs_release_extent_buffer_pages(eb);
2666 btrfs_leak_debug_del_eb(eb);
2667 __free_extent_buffer(eb);
2668}
2669
2670static struct extent_buffer *
2671__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2672 unsigned long len)
2673{
2674 struct extent_buffer *eb = NULL;
2675
2676 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2677 eb->start = start;
2678 eb->len = len;
2679 eb->fs_info = fs_info;
2680 init_rwsem(&eb->lock);
2681
2682 btrfs_leak_debug_add_eb(eb);
2683
2684 spin_lock_init(&eb->refs_lock);
2685 atomic_set(&eb->refs, 1);
2686
2687 ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2688
2689 return eb;
2690}
2691
2692struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2693{
2694 struct extent_buffer *new;
2695 int num_folios = num_extent_folios(src);
2696 int ret;
2697
2698 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2699 if (new == NULL)
2700 return NULL;
2701
2702 /*
2703 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2704 * btrfs_release_extent_buffer() have different behavior for
2705 * UNMAPPED subpage extent buffer.
2706 */
2707 set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2708
2709 ret = alloc_eb_folio_array(new, false);
2710 if (ret) {
2711 btrfs_release_extent_buffer(new);
2712 return NULL;
2713 }
2714
2715 for (int i = 0; i < num_folios; i++) {
2716 struct folio *folio = new->folios[i];
2717
2718 ret = attach_extent_buffer_folio(new, folio, NULL);
2719 if (ret < 0) {
2720 btrfs_release_extent_buffer(new);
2721 return NULL;
2722 }
2723 WARN_ON(folio_test_dirty(folio));
2724 }
2725 copy_extent_buffer_full(new, src);
2726 set_extent_buffer_uptodate(new);
2727
2728 return new;
2729}
2730
2731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2732 u64 start, unsigned long len)
2733{
2734 struct extent_buffer *eb;
2735 int num_folios = 0;
2736 int ret;
2737
2738 eb = __alloc_extent_buffer(fs_info, start, len);
2739 if (!eb)
2740 return NULL;
2741
2742 ret = alloc_eb_folio_array(eb, false);
2743 if (ret)
2744 goto err;
2745
2746 num_folios = num_extent_folios(eb);
2747 for (int i = 0; i < num_folios; i++) {
2748 ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
2749 if (ret < 0)
2750 goto err;
2751 }
2752
2753 set_extent_buffer_uptodate(eb);
2754 btrfs_set_header_nritems(eb, 0);
2755 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2756
2757 return eb;
2758err:
2759 for (int i = 0; i < num_folios; i++) {
2760 if (eb->folios[i]) {
2761 detach_extent_buffer_folio(eb, eb->folios[i]);
2762 folio_put(eb->folios[i]);
2763 }
2764 }
2765 __free_extent_buffer(eb);
2766 return NULL;
2767}
2768
2769struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2770 u64 start)
2771{
2772 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2773}
2774
2775static void check_buffer_tree_ref(struct extent_buffer *eb)
2776{
2777 int refs;
2778 /*
2779 * The TREE_REF bit is first set when the extent_buffer is added
2780 * to the radix tree. It is also reset, if unset, when a new reference
2781 * is created by find_extent_buffer.
2782 *
2783 * It is only cleared in two cases: freeing the last non-tree
2784 * reference to the extent_buffer when its STALE bit is set or
2785 * calling release_folio when the tree reference is the only reference.
2786 *
2787 * In both cases, care is taken to ensure that the extent_buffer's
2788 * pages are not under io. However, release_folio can be concurrently
2789 * called with creating new references, which is prone to race
2790 * conditions between the calls to check_buffer_tree_ref in those
2791 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2792 *
2793 * The actual lifetime of the extent_buffer in the radix tree is
2794 * adequately protected by the refcount, but the TREE_REF bit and
2795 * its corresponding reference are not. To protect against this
2796 * class of races, we call check_buffer_tree_ref from the codepaths
2797 * which trigger io. Note that once io is initiated, TREE_REF can no
2798 * longer be cleared, so that is the moment at which any such race is
2799 * best fixed.
2800 */
2801 refs = atomic_read(&eb->refs);
2802 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2803 return;
2804
2805 spin_lock(&eb->refs_lock);
2806 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2807 atomic_inc(&eb->refs);
2808 spin_unlock(&eb->refs_lock);
2809}
2810
2811static void mark_extent_buffer_accessed(struct extent_buffer *eb)
2812{
2813 int num_folios= num_extent_folios(eb);
2814
2815 check_buffer_tree_ref(eb);
2816
2817 for (int i = 0; i < num_folios; i++)
2818 folio_mark_accessed(eb->folios[i]);
2819}
2820
2821struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2822 u64 start)
2823{
2824 struct extent_buffer *eb;
2825
2826 eb = find_extent_buffer_nolock(fs_info, start);
2827 if (!eb)
2828 return NULL;
2829 /*
2830 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2831 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2832 * another task running free_extent_buffer() might have seen that flag
2833 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2834 * writeback flags not set) and it's still in the tree (flag
2835 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2836 * decrementing the extent buffer's reference count twice. So here we
2837 * could race and increment the eb's reference count, clear its stale
2838 * flag, mark it as dirty and drop our reference before the other task
2839 * finishes executing free_extent_buffer, which would later result in
2840 * an attempt to free an extent buffer that is dirty.
2841 */
2842 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2843 spin_lock(&eb->refs_lock);
2844 spin_unlock(&eb->refs_lock);
2845 }
2846 mark_extent_buffer_accessed(eb);
2847 return eb;
2848}
2849
2850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2851struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2852 u64 start)
2853{
2854 struct extent_buffer *eb, *exists = NULL;
2855 int ret;
2856
2857 eb = find_extent_buffer(fs_info, start);
2858 if (eb)
2859 return eb;
2860 eb = alloc_dummy_extent_buffer(fs_info, start);
2861 if (!eb)
2862 return ERR_PTR(-ENOMEM);
2863 eb->fs_info = fs_info;
2864again:
2865 ret = radix_tree_preload(GFP_NOFS);
2866 if (ret) {
2867 exists = ERR_PTR(ret);
2868 goto free_eb;
2869 }
2870 spin_lock(&fs_info->buffer_lock);
2871 ret = radix_tree_insert(&fs_info->buffer_radix,
2872 start >> fs_info->sectorsize_bits, eb);
2873 spin_unlock(&fs_info->buffer_lock);
2874 radix_tree_preload_end();
2875 if (ret == -EEXIST) {
2876 exists = find_extent_buffer(fs_info, start);
2877 if (exists)
2878 goto free_eb;
2879 else
2880 goto again;
2881 }
2882 check_buffer_tree_ref(eb);
2883 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2884
2885 return eb;
2886free_eb:
2887 btrfs_release_extent_buffer(eb);
2888 return exists;
2889}
2890#endif
2891
2892static struct extent_buffer *grab_extent_buffer(
2893 struct btrfs_fs_info *fs_info, struct page *page)
2894{
2895 struct folio *folio = page_folio(page);
2896 struct extent_buffer *exists;
2897
2898 lockdep_assert_held(&page->mapping->i_private_lock);
2899
2900 /*
2901 * For subpage case, we completely rely on radix tree to ensure we
2902 * don't try to insert two ebs for the same bytenr. So here we always
2903 * return NULL and just continue.
2904 */
2905 if (fs_info->nodesize < PAGE_SIZE)
2906 return NULL;
2907
2908 /* Page not yet attached to an extent buffer */
2909 if (!folio_test_private(folio))
2910 return NULL;
2911
2912 /*
2913 * We could have already allocated an eb for this page and attached one
2914 * so lets see if we can get a ref on the existing eb, and if we can we
2915 * know it's good and we can just return that one, else we know we can
2916 * just overwrite folio private.
2917 */
2918 exists = folio_get_private(folio);
2919 if (atomic_inc_not_zero(&exists->refs))
2920 return exists;
2921
2922 WARN_ON(PageDirty(page));
2923 folio_detach_private(folio);
2924 return NULL;
2925}
2926
2927static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2928{
2929 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2930 btrfs_err(fs_info, "bad tree block start %llu", start);
2931 return -EINVAL;
2932 }
2933
2934 if (fs_info->nodesize < PAGE_SIZE &&
2935 offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2936 btrfs_err(fs_info,
2937 "tree block crosses page boundary, start %llu nodesize %u",
2938 start, fs_info->nodesize);
2939 return -EINVAL;
2940 }
2941 if (fs_info->nodesize >= PAGE_SIZE &&
2942 !PAGE_ALIGNED(start)) {
2943 btrfs_err(fs_info,
2944 "tree block is not page aligned, start %llu nodesize %u",
2945 start, fs_info->nodesize);
2946 return -EINVAL;
2947 }
2948 if (!IS_ALIGNED(start, fs_info->nodesize) &&
2949 !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2950 btrfs_warn(fs_info,
2951"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2952 start, fs_info->nodesize);
2953 }
2954 return 0;
2955}
2956
2957
2958/*
2959 * Return 0 if eb->folios[i] is attached to btree inode successfully.
2960 * Return >0 if there is already another extent buffer for the range,
2961 * and @found_eb_ret would be updated.
2962 * Return -EAGAIN if the filemap has an existing folio but with different size
2963 * than @eb.
2964 * The caller needs to free the existing folios and retry using the same order.
2965 */
2966static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2967 struct btrfs_subpage *prealloc,
2968 struct extent_buffer **found_eb_ret)
2969{
2970
2971 struct btrfs_fs_info *fs_info = eb->fs_info;
2972 struct address_space *mapping = fs_info->btree_inode->i_mapping;
2973 const unsigned long index = eb->start >> PAGE_SHIFT;
2974 struct folio *existing_folio = NULL;
2975 int ret;
2976
2977 ASSERT(found_eb_ret);
2978
2979 /* Caller should ensure the folio exists. */
2980 ASSERT(eb->folios[i]);
2981
2982retry:
2983 ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2984 GFP_NOFS | __GFP_NOFAIL);
2985 if (!ret)
2986 goto finish;
2987
2988 existing_folio = filemap_lock_folio(mapping, index + i);
2989 /* The page cache only exists for a very short time, just retry. */
2990 if (IS_ERR(existing_folio)) {
2991 existing_folio = NULL;
2992 goto retry;
2993 }
2994
2995 /* For now, we should only have single-page folios for btree inode. */
2996 ASSERT(folio_nr_pages(existing_folio) == 1);
2997
2998 if (folio_size(existing_folio) != eb->folio_size) {
2999 folio_unlock(existing_folio);
3000 folio_put(existing_folio);
3001 return -EAGAIN;
3002 }
3003
3004finish:
3005 spin_lock(&mapping->i_private_lock);
3006 if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3007 /* We're going to reuse the existing page, can drop our folio now. */
3008 __free_page(folio_page(eb->folios[i], 0));
3009 eb->folios[i] = existing_folio;
3010 } else if (existing_folio) {
3011 struct extent_buffer *existing_eb;
3012
3013 existing_eb = grab_extent_buffer(fs_info,
3014 folio_page(existing_folio, 0));
3015 if (existing_eb) {
3016 /* The extent buffer still exists, we can use it directly. */
3017 *found_eb_ret = existing_eb;
3018 spin_unlock(&mapping->i_private_lock);
3019 folio_unlock(existing_folio);
3020 folio_put(existing_folio);
3021 return 1;
3022 }
3023 /* The extent buffer no longer exists, we can reuse the folio. */
3024 __free_page(folio_page(eb->folios[i], 0));
3025 eb->folios[i] = existing_folio;
3026 }
3027 eb->folio_size = folio_size(eb->folios[i]);
3028 eb->folio_shift = folio_shift(eb->folios[i]);
3029 /* Should not fail, as we have preallocated the memory. */
3030 ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3031 ASSERT(!ret);
3032 /*
3033 * To inform we have an extra eb under allocation, so that
3034 * detach_extent_buffer_page() won't release the folio private when the
3035 * eb hasn't been inserted into radix tree yet.
3036 *
3037 * The ref will be decreased when the eb releases the page, in
3038 * detach_extent_buffer_page(). Thus needs no special handling in the
3039 * error path.
3040 */
3041 btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3042 spin_unlock(&mapping->i_private_lock);
3043 return 0;
3044}
3045
3046struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3047 u64 start, u64 owner_root, int level)
3048{
3049 unsigned long len = fs_info->nodesize;
3050 int num_folios;
3051 int attached = 0;
3052 struct extent_buffer *eb;
3053 struct extent_buffer *existing_eb = NULL;
3054 struct btrfs_subpage *prealloc = NULL;
3055 u64 lockdep_owner = owner_root;
3056 bool page_contig = true;
3057 int uptodate = 1;
3058 int ret;
3059
3060 if (check_eb_alignment(fs_info, start))
3061 return ERR_PTR(-EINVAL);
3062
3063#if BITS_PER_LONG == 32
3064 if (start >= MAX_LFS_FILESIZE) {
3065 btrfs_err_rl(fs_info,
3066 "extent buffer %llu is beyond 32bit page cache limit", start);
3067 btrfs_err_32bit_limit(fs_info);
3068 return ERR_PTR(-EOVERFLOW);
3069 }
3070 if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3071 btrfs_warn_32bit_limit(fs_info);
3072#endif
3073
3074 eb = find_extent_buffer(fs_info, start);
3075 if (eb)
3076 return eb;
3077
3078 eb = __alloc_extent_buffer(fs_info, start, len);
3079 if (!eb)
3080 return ERR_PTR(-ENOMEM);
3081
3082 /*
3083 * The reloc trees are just snapshots, so we need them to appear to be
3084 * just like any other fs tree WRT lockdep.
3085 */
3086 if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3087 lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3088
3089 btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3090
3091 /*
3092 * Preallocate folio private for subpage case, so that we won't
3093 * allocate memory with i_private_lock nor page lock hold.
3094 *
3095 * The memory will be freed by attach_extent_buffer_page() or freed
3096 * manually if we exit earlier.
3097 */
3098 if (fs_info->nodesize < PAGE_SIZE) {
3099 prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3100 if (IS_ERR(prealloc)) {
3101 ret = PTR_ERR(prealloc);
3102 goto out;
3103 }
3104 }
3105
3106reallocate:
3107 /* Allocate all pages first. */
3108 ret = alloc_eb_folio_array(eb, true);
3109 if (ret < 0) {
3110 btrfs_free_subpage(prealloc);
3111 goto out;
3112 }
3113
3114 num_folios = num_extent_folios(eb);
3115 /* Attach all pages to the filemap. */
3116 for (int i = 0; i < num_folios; i++) {
3117 struct folio *folio;
3118
3119 ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3120 if (ret > 0) {
3121 ASSERT(existing_eb);
3122 goto out;
3123 }
3124
3125 /*
3126 * TODO: Special handling for a corner case where the order of
3127 * folios mismatch between the new eb and filemap.
3128 *
3129 * This happens when:
3130 *
3131 * - the new eb is using higher order folio
3132 *
3133 * - the filemap is still using 0-order folios for the range
3134 * This can happen at the previous eb allocation, and we don't
3135 * have higher order folio for the call.
3136 *
3137 * - the existing eb has already been freed
3138 *
3139 * In this case, we have to free the existing folios first, and
3140 * re-allocate using the same order.
3141 * Thankfully this is not going to happen yet, as we're still
3142 * using 0-order folios.
3143 */
3144 if (unlikely(ret == -EAGAIN)) {
3145 ASSERT(0);
3146 goto reallocate;
3147 }
3148 attached++;
3149
3150 /*
3151 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3152 * reliable, as we may choose to reuse the existing page cache
3153 * and free the allocated page.
3154 */
3155 folio = eb->folios[i];
3156 WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3157
3158 /*
3159 * Check if the current page is physically contiguous with previous eb
3160 * page.
3161 * At this stage, either we allocated a large folio, thus @i
3162 * would only be 0, or we fall back to per-page allocation.
3163 */
3164 if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3165 page_contig = false;
3166
3167 if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
3168 uptodate = 0;
3169
3170 /*
3171 * We can't unlock the pages just yet since the extent buffer
3172 * hasn't been properly inserted in the radix tree, this
3173 * opens a race with btree_release_folio which can free a page
3174 * while we are still filling in all pages for the buffer and
3175 * we could crash.
3176 */
3177 }
3178 if (uptodate)
3179 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3180 /* All pages are physically contiguous, can skip cross page handling. */
3181 if (page_contig)
3182 eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3183again:
3184 ret = radix_tree_preload(GFP_NOFS);
3185 if (ret)
3186 goto out;
3187
3188 spin_lock(&fs_info->buffer_lock);
3189 ret = radix_tree_insert(&fs_info->buffer_radix,
3190 start >> fs_info->sectorsize_bits, eb);
3191 spin_unlock(&fs_info->buffer_lock);
3192 radix_tree_preload_end();
3193 if (ret == -EEXIST) {
3194 ret = 0;
3195 existing_eb = find_extent_buffer(fs_info, start);
3196 if (existing_eb)
3197 goto out;
3198 else
3199 goto again;
3200 }
3201 /* add one reference for the tree */
3202 check_buffer_tree_ref(eb);
3203 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3204
3205 /*
3206 * Now it's safe to unlock the pages because any calls to
3207 * btree_release_folio will correctly detect that a page belongs to a
3208 * live buffer and won't free them prematurely.
3209 */
3210 for (int i = 0; i < num_folios; i++)
3211 unlock_page(folio_page(eb->folios[i], 0));
3212 return eb;
3213
3214out:
3215 WARN_ON(!atomic_dec_and_test(&eb->refs));
3216
3217 /*
3218 * Any attached folios need to be detached before we unlock them. This
3219 * is because when we're inserting our new folios into the mapping, and
3220 * then attaching our eb to that folio. If we fail to insert our folio
3221 * we'll lookup the folio for that index, and grab that EB. We do not
3222 * want that to grab this eb, as we're getting ready to free it. So we
3223 * have to detach it first and then unlock it.
3224 *
3225 * We have to drop our reference and NULL it out here because in the
3226 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3227 * Below when we call btrfs_release_extent_buffer() we will call
3228 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3229 * case. If we left eb->folios[i] populated in the subpage case we'd
3230 * double put our reference and be super sad.
3231 */
3232 for (int i = 0; i < attached; i++) {
3233 ASSERT(eb->folios[i]);
3234 detach_extent_buffer_folio(eb, eb->folios[i]);
3235 unlock_page(folio_page(eb->folios[i], 0));
3236 folio_put(eb->folios[i]);
3237 eb->folios[i] = NULL;
3238 }
3239 /*
3240 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3241 * so it can be cleaned up without utilizing page->mapping.
3242 */
3243 set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3244
3245 btrfs_release_extent_buffer(eb);
3246 if (ret < 0)
3247 return ERR_PTR(ret);
3248 ASSERT(existing_eb);
3249 return existing_eb;
3250}
3251
3252static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3253{
3254 struct extent_buffer *eb =
3255 container_of(head, struct extent_buffer, rcu_head);
3256
3257 __free_extent_buffer(eb);
3258}
3259
3260static int release_extent_buffer(struct extent_buffer *eb)
3261 __releases(&eb->refs_lock)
3262{
3263 lockdep_assert_held(&eb->refs_lock);
3264
3265 WARN_ON(atomic_read(&eb->refs) == 0);
3266 if (atomic_dec_and_test(&eb->refs)) {
3267 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3268 struct btrfs_fs_info *fs_info = eb->fs_info;
3269
3270 spin_unlock(&eb->refs_lock);
3271
3272 spin_lock(&fs_info->buffer_lock);
3273 radix_tree_delete(&fs_info->buffer_radix,
3274 eb->start >> fs_info->sectorsize_bits);
3275 spin_unlock(&fs_info->buffer_lock);
3276 } else {
3277 spin_unlock(&eb->refs_lock);
3278 }
3279
3280 btrfs_leak_debug_del_eb(eb);
3281 /* Should be safe to release our pages at this point */
3282 btrfs_release_extent_buffer_pages(eb);
3283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3284 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3285 __free_extent_buffer(eb);
3286 return 1;
3287 }
3288#endif
3289 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3290 return 1;
3291 }
3292 spin_unlock(&eb->refs_lock);
3293
3294 return 0;
3295}
3296
3297void free_extent_buffer(struct extent_buffer *eb)
3298{
3299 int refs;
3300 if (!eb)
3301 return;
3302
3303 refs = atomic_read(&eb->refs);
3304 while (1) {
3305 if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3306 || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3307 refs == 1))
3308 break;
3309 if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
3310 return;
3311 }
3312
3313 spin_lock(&eb->refs_lock);
3314 if (atomic_read(&eb->refs) == 2 &&
3315 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3316 !extent_buffer_under_io(eb) &&
3317 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3318 atomic_dec(&eb->refs);
3319
3320 /*
3321 * I know this is terrible, but it's temporary until we stop tracking
3322 * the uptodate bits and such for the extent buffers.
3323 */
3324 release_extent_buffer(eb);
3325}
3326
3327void free_extent_buffer_stale(struct extent_buffer *eb)
3328{
3329 if (!eb)
3330 return;
3331
3332 spin_lock(&eb->refs_lock);
3333 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3334
3335 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3336 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3337 atomic_dec(&eb->refs);
3338 release_extent_buffer(eb);
3339}
3340
3341static void btree_clear_folio_dirty(struct folio *folio)
3342{
3343 ASSERT(folio_test_dirty(folio));
3344 ASSERT(folio_test_locked(folio));
3345 folio_clear_dirty_for_io(folio);
3346 xa_lock_irq(&folio->mapping->i_pages);
3347 if (!folio_test_dirty(folio))
3348 __xa_clear_mark(&folio->mapping->i_pages,
3349 folio_index(folio), PAGECACHE_TAG_DIRTY);
3350 xa_unlock_irq(&folio->mapping->i_pages);
3351}
3352
3353static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3354{
3355 struct btrfs_fs_info *fs_info = eb->fs_info;
3356 struct folio *folio = eb->folios[0];
3357 bool last;
3358
3359 /* btree_clear_folio_dirty() needs page locked. */
3360 folio_lock(folio);
3361 last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
3362 if (last)
3363 btree_clear_folio_dirty(folio);
3364 folio_unlock(folio);
3365 WARN_ON(atomic_read(&eb->refs) == 0);
3366}
3367
3368void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3369 struct extent_buffer *eb)
3370{
3371 struct btrfs_fs_info *fs_info = eb->fs_info;
3372 int num_folios;
3373
3374 btrfs_assert_tree_write_locked(eb);
3375
3376 if (trans && btrfs_header_generation(eb) != trans->transid)
3377 return;
3378
3379 /*
3380 * Instead of clearing the dirty flag off of the buffer, mark it as
3381 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3382 * write-ordering in zoned mode, without the need to later re-dirty
3383 * the extent_buffer.
3384 *
3385 * The actual zeroout of the buffer will happen later in
3386 * btree_csum_one_bio.
3387 */
3388 if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3389 set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3390 return;
3391 }
3392
3393 if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3394 return;
3395
3396 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3397 fs_info->dirty_metadata_batch);
3398
3399 if (eb->fs_info->nodesize < PAGE_SIZE)
3400 return clear_subpage_extent_buffer_dirty(eb);
3401
3402 num_folios = num_extent_folios(eb);
3403 for (int i = 0; i < num_folios; i++) {
3404 struct folio *folio = eb->folios[i];
3405
3406 if (!folio_test_dirty(folio))
3407 continue;
3408 folio_lock(folio);
3409 btree_clear_folio_dirty(folio);
3410 folio_unlock(folio);
3411 }
3412 WARN_ON(atomic_read(&eb->refs) == 0);
3413}
3414
3415void set_extent_buffer_dirty(struct extent_buffer *eb)
3416{
3417 int num_folios;
3418 bool was_dirty;
3419
3420 check_buffer_tree_ref(eb);
3421
3422 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3423
3424 num_folios = num_extent_folios(eb);
3425 WARN_ON(atomic_read(&eb->refs) == 0);
3426 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3427 WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3428
3429 if (!was_dirty) {
3430 bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3431
3432 /*
3433 * For subpage case, we can have other extent buffers in the
3434 * same page, and in clear_subpage_extent_buffer_dirty() we
3435 * have to clear page dirty without subpage lock held.
3436 * This can cause race where our page gets dirty cleared after
3437 * we just set it.
3438 *
3439 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3440 * its page for other reasons, we can use page lock to prevent
3441 * the above race.
3442 */
3443 if (subpage)
3444 lock_page(folio_page(eb->folios[0], 0));
3445 for (int i = 0; i < num_folios; i++)
3446 btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3447 eb->start, eb->len);
3448 if (subpage)
3449 unlock_page(folio_page(eb->folios[0], 0));
3450 percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3451 eb->len,
3452 eb->fs_info->dirty_metadata_batch);
3453 }
3454#ifdef CONFIG_BTRFS_DEBUG
3455 for (int i = 0; i < num_folios; i++)
3456 ASSERT(folio_test_dirty(eb->folios[i]));
3457#endif
3458}
3459
3460void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3461{
3462 struct btrfs_fs_info *fs_info = eb->fs_info;
3463 int num_folios = num_extent_folios(eb);
3464
3465 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3466 for (int i = 0; i < num_folios; i++) {
3467 struct folio *folio = eb->folios[i];
3468
3469 if (!folio)
3470 continue;
3471
3472 /*
3473 * This is special handling for metadata subpage, as regular
3474 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3475 */
3476 if (fs_info->nodesize >= PAGE_SIZE)
3477 folio_clear_uptodate(folio);
3478 else
3479 btrfs_subpage_clear_uptodate(fs_info, folio,
3480 eb->start, eb->len);
3481 }
3482}
3483
3484void set_extent_buffer_uptodate(struct extent_buffer *eb)
3485{
3486 struct btrfs_fs_info *fs_info = eb->fs_info;
3487 int num_folios = num_extent_folios(eb);
3488
3489 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3490 for (int i = 0; i < num_folios; i++) {
3491 struct folio *folio = eb->folios[i];
3492
3493 /*
3494 * This is special handling for metadata subpage, as regular
3495 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3496 */
3497 if (fs_info->nodesize >= PAGE_SIZE)
3498 folio_mark_uptodate(folio);
3499 else
3500 btrfs_subpage_set_uptodate(fs_info, folio,
3501 eb->start, eb->len);
3502 }
3503}
3504
3505static void clear_extent_buffer_reading(struct extent_buffer *eb)
3506{
3507 clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3508 smp_mb__after_atomic();
3509 wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3510}
3511
3512static void end_bbio_meta_read(struct btrfs_bio *bbio)
3513{
3514 struct extent_buffer *eb = bbio->private;
3515 struct btrfs_fs_info *fs_info = eb->fs_info;
3516 bool uptodate = !bbio->bio.bi_status;
3517 struct folio_iter fi;
3518 u32 bio_offset = 0;
3519
3520 /*
3521 * If the extent buffer is marked UPTODATE before the read operation
3522 * completes, other calls to read_extent_buffer_pages() will return
3523 * early without waiting for the read to finish, causing data races.
3524 */
3525 WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3526
3527 eb->read_mirror = bbio->mirror_num;
3528
3529 if (uptodate &&
3530 btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3531 uptodate = false;
3532
3533 if (uptodate) {
3534 set_extent_buffer_uptodate(eb);
3535 } else {
3536 clear_extent_buffer_uptodate(eb);
3537 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3538 }
3539
3540 bio_for_each_folio_all(fi, &bbio->bio) {
3541 struct folio *folio = fi.folio;
3542 u64 start = eb->start + bio_offset;
3543 u32 len = fi.length;
3544
3545 if (uptodate)
3546 btrfs_folio_set_uptodate(fs_info, folio, start, len);
3547 else
3548 btrfs_folio_clear_uptodate(fs_info, folio, start, len);
3549
3550 bio_offset += len;
3551 }
3552
3553 clear_extent_buffer_reading(eb);
3554 free_extent_buffer(eb);
3555
3556 bio_put(&bbio->bio);
3557}
3558
3559int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3560 const struct btrfs_tree_parent_check *check)
3561{
3562 struct btrfs_bio *bbio;
3563 bool ret;
3564
3565 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3566 return 0;
3567
3568 /*
3569 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3570 * operation, which could potentially still be in flight. In this case
3571 * we simply want to return an error.
3572 */
3573 if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3574 return -EIO;
3575
3576 /* Someone else is already reading the buffer, just wait for it. */
3577 if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3578 goto done;
3579
3580 /*
3581 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3582 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3583 * started and finished reading the same eb. In this case, UPTODATE
3584 * will now be set, and we shouldn't read it in again.
3585 */
3586 if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3587 clear_extent_buffer_reading(eb);
3588 return 0;
3589 }
3590
3591 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3592 eb->read_mirror = 0;
3593 check_buffer_tree_ref(eb);
3594 atomic_inc(&eb->refs);
3595
3596 bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3597 REQ_OP_READ | REQ_META, eb->fs_info,
3598 end_bbio_meta_read, eb);
3599 bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3600 bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3601 bbio->file_offset = eb->start;
3602 memcpy(&bbio->parent_check, check, sizeof(*check));
3603 if (eb->fs_info->nodesize < PAGE_SIZE) {
3604 ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3605 eb->start - folio_pos(eb->folios[0]));
3606 ASSERT(ret);
3607 } else {
3608 int num_folios = num_extent_folios(eb);
3609
3610 for (int i = 0; i < num_folios; i++) {
3611 struct folio *folio = eb->folios[i];
3612
3613 ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3614 ASSERT(ret);
3615 }
3616 }
3617 btrfs_submit_bbio(bbio, mirror_num);
3618
3619done:
3620 if (wait == WAIT_COMPLETE) {
3621 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3622 if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3623 return -EIO;
3624 }
3625
3626 return 0;
3627}
3628
3629static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3630 unsigned long len)
3631{
3632 btrfs_warn(eb->fs_info,
3633 "access to eb bytenr %llu len %u out of range start %lu len %lu",
3634 eb->start, eb->len, start, len);
3635 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3636
3637 return true;
3638}
3639
3640/*
3641 * Check if the [start, start + len) range is valid before reading/writing
3642 * the eb.
3643 * NOTE: @start and @len are offset inside the eb, not logical address.
3644 *
3645 * Caller should not touch the dst/src memory if this function returns error.
3646 */
3647static inline int check_eb_range(const struct extent_buffer *eb,
3648 unsigned long start, unsigned long len)
3649{
3650 unsigned long offset;
3651
3652 /* start, start + len should not go beyond eb->len nor overflow */
3653 if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3654 return report_eb_range(eb, start, len);
3655
3656 return false;
3657}
3658
3659void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3660 unsigned long start, unsigned long len)
3661{
3662 const int unit_size = eb->folio_size;
3663 size_t cur;
3664 size_t offset;
3665 char *dst = (char *)dstv;
3666 unsigned long i = get_eb_folio_index(eb, start);
3667
3668 if (check_eb_range(eb, start, len)) {
3669 /*
3670 * Invalid range hit, reset the memory, so callers won't get
3671 * some random garbage for their uninitialized memory.
3672 */
3673 memset(dstv, 0, len);
3674 return;
3675 }
3676
3677 if (eb->addr) {
3678 memcpy(dstv, eb->addr + start, len);
3679 return;
3680 }
3681
3682 offset = get_eb_offset_in_folio(eb, start);
3683
3684 while (len > 0) {
3685 char *kaddr;
3686
3687 cur = min(len, unit_size - offset);
3688 kaddr = folio_address(eb->folios[i]);
3689 memcpy(dst, kaddr + offset, cur);
3690
3691 dst += cur;
3692 len -= cur;
3693 offset = 0;
3694 i++;
3695 }
3696}
3697
3698int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3699 void __user *dstv,
3700 unsigned long start, unsigned long len)
3701{
3702 const int unit_size = eb->folio_size;
3703 size_t cur;
3704 size_t offset;
3705 char __user *dst = (char __user *)dstv;
3706 unsigned long i = get_eb_folio_index(eb, start);
3707 int ret = 0;
3708
3709 WARN_ON(start > eb->len);
3710 WARN_ON(start + len > eb->start + eb->len);
3711
3712 if (eb->addr) {
3713 if (copy_to_user_nofault(dstv, eb->addr + start, len))
3714 ret = -EFAULT;
3715 return ret;
3716 }
3717
3718 offset = get_eb_offset_in_folio(eb, start);
3719
3720 while (len > 0) {
3721 char *kaddr;
3722
3723 cur = min(len, unit_size - offset);
3724 kaddr = folio_address(eb->folios[i]);
3725 if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3726 ret = -EFAULT;
3727 break;
3728 }
3729
3730 dst += cur;
3731 len -= cur;
3732 offset = 0;
3733 i++;
3734 }
3735
3736 return ret;
3737}
3738
3739int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3740 unsigned long start, unsigned long len)
3741{
3742 const int unit_size = eb->folio_size;
3743 size_t cur;
3744 size_t offset;
3745 char *kaddr;
3746 char *ptr = (char *)ptrv;
3747 unsigned long i = get_eb_folio_index(eb, start);
3748 int ret = 0;
3749
3750 if (check_eb_range(eb, start, len))
3751 return -EINVAL;
3752
3753 if (eb->addr)
3754 return memcmp(ptrv, eb->addr + start, len);
3755
3756 offset = get_eb_offset_in_folio(eb, start);
3757
3758 while (len > 0) {
3759 cur = min(len, unit_size - offset);
3760 kaddr = folio_address(eb->folios[i]);
3761 ret = memcmp(ptr, kaddr + offset, cur);
3762 if (ret)
3763 break;
3764
3765 ptr += cur;
3766 len -= cur;
3767 offset = 0;
3768 i++;
3769 }
3770 return ret;
3771}
3772
3773/*
3774 * Check that the extent buffer is uptodate.
3775 *
3776 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3777 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3778 */
3779static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
3780{
3781 struct btrfs_fs_info *fs_info = eb->fs_info;
3782 struct folio *folio = eb->folios[i];
3783
3784 ASSERT(folio);
3785
3786 /*
3787 * If we are using the commit root we could potentially clear a page
3788 * Uptodate while we're using the extent buffer that we've previously
3789 * looked up. We don't want to complain in this case, as the page was
3790 * valid before, we just didn't write it out. Instead we want to catch
3791 * the case where we didn't actually read the block properly, which
3792 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3793 */
3794 if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3795 return;
3796
3797 if (fs_info->nodesize < PAGE_SIZE) {
3798 folio = eb->folios[0];
3799 ASSERT(i == 0);
3800 if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3801 eb->start, eb->len)))
3802 btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3803 } else {
3804 WARN_ON(!folio_test_uptodate(folio));
3805 }
3806}
3807
3808static void __write_extent_buffer(const struct extent_buffer *eb,
3809 const void *srcv, unsigned long start,
3810 unsigned long len, bool use_memmove)
3811{
3812 const int unit_size = eb->folio_size;
3813 size_t cur;
3814 size_t offset;
3815 char *kaddr;
3816 const char *src = (const char *)srcv;
3817 unsigned long i = get_eb_folio_index(eb, start);
3818 /* For unmapped (dummy) ebs, no need to check their uptodate status. */
3819 const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3820
3821 if (check_eb_range(eb, start, len))
3822 return;
3823
3824 if (eb->addr) {
3825 if (use_memmove)
3826 memmove(eb->addr + start, srcv, len);
3827 else
3828 memcpy(eb->addr + start, srcv, len);
3829 return;
3830 }
3831
3832 offset = get_eb_offset_in_folio(eb, start);
3833
3834 while (len > 0) {
3835 if (check_uptodate)
3836 assert_eb_folio_uptodate(eb, i);
3837
3838 cur = min(len, unit_size - offset);
3839 kaddr = folio_address(eb->folios[i]);
3840 if (use_memmove)
3841 memmove(kaddr + offset, src, cur);
3842 else
3843 memcpy(kaddr + offset, src, cur);
3844
3845 src += cur;
3846 len -= cur;
3847 offset = 0;
3848 i++;
3849 }
3850}
3851
3852void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3853 unsigned long start, unsigned long len)
3854{
3855 return __write_extent_buffer(eb, srcv, start, len, false);
3856}
3857
3858static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3859 unsigned long start, unsigned long len)
3860{
3861 const int unit_size = eb->folio_size;
3862 unsigned long cur = start;
3863
3864 if (eb->addr) {
3865 memset(eb->addr + start, c, len);
3866 return;
3867 }
3868
3869 while (cur < start + len) {
3870 unsigned long index = get_eb_folio_index(eb, cur);
3871 unsigned int offset = get_eb_offset_in_folio(eb, cur);
3872 unsigned int cur_len = min(start + len - cur, unit_size - offset);
3873
3874 assert_eb_folio_uptodate(eb, index);
3875 memset(folio_address(eb->folios[index]) + offset, c, cur_len);
3876
3877 cur += cur_len;
3878 }
3879}
3880
3881void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3882 unsigned long len)
3883{
3884 if (check_eb_range(eb, start, len))
3885 return;
3886 return memset_extent_buffer(eb, 0, start, len);
3887}
3888
3889void copy_extent_buffer_full(const struct extent_buffer *dst,
3890 const struct extent_buffer *src)
3891{
3892 const int unit_size = src->folio_size;
3893 unsigned long cur = 0;
3894
3895 ASSERT(dst->len == src->len);
3896
3897 while (cur < src->len) {
3898 unsigned long index = get_eb_folio_index(src, cur);
3899 unsigned long offset = get_eb_offset_in_folio(src, cur);
3900 unsigned long cur_len = min(src->len, unit_size - offset);
3901 void *addr = folio_address(src->folios[index]) + offset;
3902
3903 write_extent_buffer(dst, addr, cur, cur_len);
3904
3905 cur += cur_len;
3906 }
3907}
3908
3909void copy_extent_buffer(const struct extent_buffer *dst,
3910 const struct extent_buffer *src,
3911 unsigned long dst_offset, unsigned long src_offset,
3912 unsigned long len)
3913{
3914 const int unit_size = dst->folio_size;
3915 u64 dst_len = dst->len;
3916 size_t cur;
3917 size_t offset;
3918 char *kaddr;
3919 unsigned long i = get_eb_folio_index(dst, dst_offset);
3920
3921 if (check_eb_range(dst, dst_offset, len) ||
3922 check_eb_range(src, src_offset, len))
3923 return;
3924
3925 WARN_ON(src->len != dst_len);
3926
3927 offset = get_eb_offset_in_folio(dst, dst_offset);
3928
3929 while (len > 0) {
3930 assert_eb_folio_uptodate(dst, i);
3931
3932 cur = min(len, (unsigned long)(unit_size - offset));
3933
3934 kaddr = folio_address(dst->folios[i]);
3935 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3936
3937 src_offset += cur;
3938 len -= cur;
3939 offset = 0;
3940 i++;
3941 }
3942}
3943
3944/*
3945 * Calculate the folio and offset of the byte containing the given bit number.
3946 *
3947 * @eb: the extent buffer
3948 * @start: offset of the bitmap item in the extent buffer
3949 * @nr: bit number
3950 * @folio_index: return index of the folio in the extent buffer that contains
3951 * the given bit number
3952 * @folio_offset: return offset into the folio given by folio_index
3953 *
3954 * This helper hides the ugliness of finding the byte in an extent buffer which
3955 * contains a given bit.
3956 */
3957static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3958 unsigned long start, unsigned long nr,
3959 unsigned long *folio_index,
3960 size_t *folio_offset)
3961{
3962 size_t byte_offset = BIT_BYTE(nr);
3963 size_t offset;
3964
3965 /*
3966 * The byte we want is the offset of the extent buffer + the offset of
3967 * the bitmap item in the extent buffer + the offset of the byte in the
3968 * bitmap item.
3969 */
3970 offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3971
3972 *folio_index = offset >> eb->folio_shift;
3973 *folio_offset = offset_in_eb_folio(eb, offset);
3974}
3975
3976/*
3977 * Determine whether a bit in a bitmap item is set.
3978 *
3979 * @eb: the extent buffer
3980 * @start: offset of the bitmap item in the extent buffer
3981 * @nr: bit number to test
3982 */
3983int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3984 unsigned long nr)
3985{
3986 unsigned long i;
3987 size_t offset;
3988 u8 *kaddr;
3989
3990 eb_bitmap_offset(eb, start, nr, &i, &offset);
3991 assert_eb_folio_uptodate(eb, i);
3992 kaddr = folio_address(eb->folios[i]);
3993 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3994}
3995
3996static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3997{
3998 unsigned long index = get_eb_folio_index(eb, bytenr);
3999
4000 if (check_eb_range(eb, bytenr, 1))
4001 return NULL;
4002 return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4003}
4004
4005/*
4006 * Set an area of a bitmap to 1.
4007 *
4008 * @eb: the extent buffer
4009 * @start: offset of the bitmap item in the extent buffer
4010 * @pos: bit number of the first bit
4011 * @len: number of bits to set
4012 */
4013void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4014 unsigned long pos, unsigned long len)
4015{
4016 unsigned int first_byte = start + BIT_BYTE(pos);
4017 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4018 const bool same_byte = (first_byte == last_byte);
4019 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4020 u8 *kaddr;
4021
4022 if (same_byte)
4023 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4024
4025 /* Handle the first byte. */
4026 kaddr = extent_buffer_get_byte(eb, first_byte);
4027 *kaddr |= mask;
4028 if (same_byte)
4029 return;
4030
4031 /* Handle the byte aligned part. */
4032 ASSERT(first_byte + 1 <= last_byte);
4033 memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4034
4035 /* Handle the last byte. */
4036 kaddr = extent_buffer_get_byte(eb, last_byte);
4037 *kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
4038}
4039
4040
4041/*
4042 * Clear an area of a bitmap.
4043 *
4044 * @eb: the extent buffer
4045 * @start: offset of the bitmap item in the extent buffer
4046 * @pos: bit number of the first bit
4047 * @len: number of bits to clear
4048 */
4049void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4050 unsigned long start, unsigned long pos,
4051 unsigned long len)
4052{
4053 unsigned int first_byte = start + BIT_BYTE(pos);
4054 unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4055 const bool same_byte = (first_byte == last_byte);
4056 u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4057 u8 *kaddr;
4058
4059 if (same_byte)
4060 mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4061
4062 /* Handle the first byte. */
4063 kaddr = extent_buffer_get_byte(eb, first_byte);
4064 *kaddr &= ~mask;
4065 if (same_byte)
4066 return;
4067
4068 /* Handle the byte aligned part. */
4069 ASSERT(first_byte + 1 <= last_byte);
4070 memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4071
4072 /* Handle the last byte. */
4073 kaddr = extent_buffer_get_byte(eb, last_byte);
4074 *kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
4075}
4076
4077static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4078{
4079 unsigned long distance = (src > dst) ? src - dst : dst - src;
4080 return distance < len;
4081}
4082
4083void memcpy_extent_buffer(const struct extent_buffer *dst,
4084 unsigned long dst_offset, unsigned long src_offset,
4085 unsigned long len)
4086{
4087 const int unit_size = dst->folio_size;
4088 unsigned long cur_off = 0;
4089
4090 if (check_eb_range(dst, dst_offset, len) ||
4091 check_eb_range(dst, src_offset, len))
4092 return;
4093
4094 if (dst->addr) {
4095 const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
4096
4097 if (use_memmove)
4098 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4099 else
4100 memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4101 return;
4102 }
4103
4104 while (cur_off < len) {
4105 unsigned long cur_src = cur_off + src_offset;
4106 unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4107 unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4108 unsigned long cur_len = min(src_offset + len - cur_src,
4109 unit_size - folio_off);
4110 void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4111 const bool use_memmove = areas_overlap(src_offset + cur_off,
4112 dst_offset + cur_off, cur_len);
4113
4114 __write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4115 use_memmove);
4116 cur_off += cur_len;
4117 }
4118}
4119
4120void memmove_extent_buffer(const struct extent_buffer *dst,
4121 unsigned long dst_offset, unsigned long src_offset,
4122 unsigned long len)
4123{
4124 unsigned long dst_end = dst_offset + len - 1;
4125 unsigned long src_end = src_offset + len - 1;
4126
4127 if (check_eb_range(dst, dst_offset, len) ||
4128 check_eb_range(dst, src_offset, len))
4129 return;
4130
4131 if (dst_offset < src_offset) {
4132 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4133 return;
4134 }
4135
4136 if (dst->addr) {
4137 memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4138 return;
4139 }
4140
4141 while (len > 0) {
4142 unsigned long src_i;
4143 size_t cur;
4144 size_t dst_off_in_folio;
4145 size_t src_off_in_folio;
4146 void *src_addr;
4147 bool use_memmove;
4148
4149 src_i = get_eb_folio_index(dst, src_end);
4150
4151 dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4152 src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4153
4154 cur = min_t(unsigned long, len, src_off_in_folio + 1);
4155 cur = min(cur, dst_off_in_folio + 1);
4156
4157 src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4158 cur + 1;
4159 use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4160 cur);
4161
4162 __write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4163 use_memmove);
4164
4165 dst_end -= cur;
4166 src_end -= cur;
4167 len -= cur;
4168 }
4169}
4170
4171#define GANG_LOOKUP_SIZE 16
4172static struct extent_buffer *get_next_extent_buffer(
4173 const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4174{
4175 struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4176 struct extent_buffer *found = NULL;
4177 u64 folio_start = folio_pos(folio);
4178 u64 cur = folio_start;
4179
4180 ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
4181 lockdep_assert_held(&fs_info->buffer_lock);
4182
4183 while (cur < folio_start + PAGE_SIZE) {
4184 int ret;
4185 int i;
4186
4187 ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4188 (void **)gang, cur >> fs_info->sectorsize_bits,
4189 min_t(unsigned int, GANG_LOOKUP_SIZE,
4190 PAGE_SIZE / fs_info->nodesize));
4191 if (ret == 0)
4192 goto out;
4193 for (i = 0; i < ret; i++) {
4194 /* Already beyond page end */
4195 if (gang[i]->start >= folio_start + PAGE_SIZE)
4196 goto out;
4197 /* Found one */
4198 if (gang[i]->start >= bytenr) {
4199 found = gang[i];
4200 goto out;
4201 }
4202 }
4203 cur = gang[ret - 1]->start + gang[ret - 1]->len;
4204 }
4205out:
4206 return found;
4207}
4208
4209static int try_release_subpage_extent_buffer(struct folio *folio)
4210{
4211 struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4212 u64 cur = folio_pos(folio);
4213 const u64 end = cur + PAGE_SIZE;
4214 int ret;
4215
4216 while (cur < end) {
4217 struct extent_buffer *eb = NULL;
4218
4219 /*
4220 * Unlike try_release_extent_buffer() which uses folio private
4221 * to grab buffer, for subpage case we rely on radix tree, thus
4222 * we need to ensure radix tree consistency.
4223 *
4224 * We also want an atomic snapshot of the radix tree, thus go
4225 * with spinlock rather than RCU.
4226 */
4227 spin_lock(&fs_info->buffer_lock);
4228 eb = get_next_extent_buffer(fs_info, folio, cur);
4229 if (!eb) {
4230 /* No more eb in the page range after or at cur */
4231 spin_unlock(&fs_info->buffer_lock);
4232 break;
4233 }
4234 cur = eb->start + eb->len;
4235
4236 /*
4237 * The same as try_release_extent_buffer(), to ensure the eb
4238 * won't disappear out from under us.
4239 */
4240 spin_lock(&eb->refs_lock);
4241 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4242 spin_unlock(&eb->refs_lock);
4243 spin_unlock(&fs_info->buffer_lock);
4244 break;
4245 }
4246 spin_unlock(&fs_info->buffer_lock);
4247
4248 /*
4249 * If tree ref isn't set then we know the ref on this eb is a
4250 * real ref, so just return, this eb will likely be freed soon
4251 * anyway.
4252 */
4253 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4254 spin_unlock(&eb->refs_lock);
4255 break;
4256 }
4257
4258 /*
4259 * Here we don't care about the return value, we will always
4260 * check the folio private at the end. And
4261 * release_extent_buffer() will release the refs_lock.
4262 */
4263 release_extent_buffer(eb);
4264 }
4265 /*
4266 * Finally to check if we have cleared folio private, as if we have
4267 * released all ebs in the page, the folio private should be cleared now.
4268 */
4269 spin_lock(&folio->mapping->i_private_lock);
4270 if (!folio_test_private(folio))
4271 ret = 1;
4272 else
4273 ret = 0;
4274 spin_unlock(&folio->mapping->i_private_lock);
4275 return ret;
4276
4277}
4278
4279int try_release_extent_buffer(struct folio *folio)
4280{
4281 struct extent_buffer *eb;
4282
4283 if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4284 return try_release_subpage_extent_buffer(folio);
4285
4286 /*
4287 * We need to make sure nobody is changing folio private, as we rely on
4288 * folio private as the pointer to extent buffer.
4289 */
4290 spin_lock(&folio->mapping->i_private_lock);
4291 if (!folio_test_private(folio)) {
4292 spin_unlock(&folio->mapping->i_private_lock);
4293 return 1;
4294 }
4295
4296 eb = folio_get_private(folio);
4297 BUG_ON(!eb);
4298
4299 /*
4300 * This is a little awful but should be ok, we need to make sure that
4301 * the eb doesn't disappear out from under us while we're looking at
4302 * this page.
4303 */
4304 spin_lock(&eb->refs_lock);
4305 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4306 spin_unlock(&eb->refs_lock);
4307 spin_unlock(&folio->mapping->i_private_lock);
4308 return 0;
4309 }
4310 spin_unlock(&folio->mapping->i_private_lock);
4311
4312 /*
4313 * If tree ref isn't set then we know the ref on this eb is a real ref,
4314 * so just return, this page will likely be freed soon anyway.
4315 */
4316 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4317 spin_unlock(&eb->refs_lock);
4318 return 0;
4319 }
4320
4321 return release_extent_buffer(eb);
4322}
4323
4324/*
4325 * Attempt to readahead a child block.
4326 *
4327 * @fs_info: the fs_info
4328 * @bytenr: bytenr to read
4329 * @owner_root: objectid of the root that owns this eb
4330 * @gen: generation for the uptodate check, can be 0
4331 * @level: level for the eb
4332 *
4333 * Attempt to readahead a tree block at @bytenr. If @gen is 0 then we do a
4334 * normal uptodate check of the eb, without checking the generation. If we have
4335 * to read the block we will not block on anything.
4336 */
4337void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4338 u64 bytenr, u64 owner_root, u64 gen, int level)
4339{
4340 struct btrfs_tree_parent_check check = {
4341 .level = level,
4342 .transid = gen
4343 };
4344 struct extent_buffer *eb;
4345 int ret;
4346
4347 eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4348 if (IS_ERR(eb))
4349 return;
4350
4351 if (btrfs_buffer_uptodate(eb, gen, 1)) {
4352 free_extent_buffer(eb);
4353 return;
4354 }
4355
4356 ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4357 if (ret < 0)
4358 free_extent_buffer_stale(eb);
4359 else
4360 free_extent_buffer(eb);
4361}
4362
4363/*
4364 * Readahead a node's child block.
4365 *
4366 * @node: parent node we're reading from
4367 * @slot: slot in the parent node for the child we want to read
4368 *
4369 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4370 * the slot in the node provided.
4371 */
4372void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4373{
4374 btrfs_readahead_tree_block(node->fs_info,
4375 btrfs_node_blockptr(node, slot),
4376 btrfs_header_owner(node),
4377 btrfs_node_ptr_generation(node, slot),
4378 btrfs_header_level(node) - 1);
4379}
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/bitops.h>
4#include <linux/slab.h>
5#include <linux/bio.h>
6#include <linux/mm.h>
7#include <linux/pagemap.h>
8#include <linux/page-flags.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/writeback.h>
13#include <linux/pagevec.h>
14#include <linux/prefetch.h>
15#include <linux/cleancache.h>
16#include "extent_io.h"
17#include "extent_map.h"
18#include "ctree.h"
19#include "btrfs_inode.h"
20#include "volumes.h"
21#include "check-integrity.h"
22#include "locking.h"
23#include "rcu-string.h"
24#include "backref.h"
25#include "disk-io.h"
26
27static struct kmem_cache *extent_state_cache;
28static struct kmem_cache *extent_buffer_cache;
29static struct bio_set *btrfs_bioset;
30
31static inline bool extent_state_in_tree(const struct extent_state *state)
32{
33 return !RB_EMPTY_NODE(&state->rb_node);
34}
35
36#ifdef CONFIG_BTRFS_DEBUG
37static LIST_HEAD(buffers);
38static LIST_HEAD(states);
39
40static DEFINE_SPINLOCK(leak_lock);
41
42static inline
43void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44{
45 unsigned long flags;
46
47 spin_lock_irqsave(&leak_lock, flags);
48 list_add(new, head);
49 spin_unlock_irqrestore(&leak_lock, flags);
50}
51
52static inline
53void btrfs_leak_debug_del(struct list_head *entry)
54{
55 unsigned long flags;
56
57 spin_lock_irqsave(&leak_lock, flags);
58 list_del(entry);
59 spin_unlock_irqrestore(&leak_lock, flags);
60}
61
62static inline
63void btrfs_leak_debug_check(void)
64{
65 struct extent_state *state;
66 struct extent_buffer *eb;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, leak_list);
70 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 state->start, state->end, state->state,
72 extent_state_in_tree(state),
73 refcount_read(&state->refs));
74 list_del(&state->leak_list);
75 kmem_cache_free(extent_state_cache, state);
76 }
77
78 while (!list_empty(&buffers)) {
79 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 list_del(&eb->leak_list);
83 kmem_cache_free(extent_buffer_cache, eb);
84 }
85}
86
87#define btrfs_debug_check_extent_io_range(tree, start, end) \
88 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 struct extent_io_tree *tree, u64 start, u64 end)
91{
92 if (tree->ops && tree->ops->check_extent_io_range)
93 tree->ops->check_extent_io_range(tree->private_data, caller,
94 start, end);
95}
96#else
97#define btrfs_leak_debug_add(new, head) do {} while (0)
98#define btrfs_leak_debug_del(entry) do {} while (0)
99#define btrfs_leak_debug_check() do {} while (0)
100#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
101#endif
102
103#define BUFFER_LRU_MAX 64
104
105struct tree_entry {
106 u64 start;
107 u64 end;
108 struct rb_node rb_node;
109};
110
111struct extent_page_data {
112 struct bio *bio;
113 struct extent_io_tree *tree;
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use REQ_SYNC */
120 unsigned int sync_io:1;
121};
122
123static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 struct extent_changeset *changeset,
125 int set)
126{
127 int ret;
128
129 if (!changeset)
130 return 0;
131 if (set && (state->state & bits) == bits)
132 return 0;
133 if (!set && (state->state & bits) == 0)
134 return 0;
135 changeset->bytes_changed += state->end - state->start + 1;
136 ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 GFP_ATOMIC);
138 return ret;
139}
140
141static void flush_write_bio(struct extent_page_data *epd);
142
143static inline struct btrfs_fs_info *
144tree_fs_info(struct extent_io_tree *tree)
145{
146 if (tree->ops)
147 return tree->ops->tree_fs_info(tree->private_data);
148 return NULL;
149}
150
151int __init extent_io_init(void)
152{
153 extent_state_cache = kmem_cache_create("btrfs_extent_state",
154 sizeof(struct extent_state), 0,
155 SLAB_MEM_SPREAD, NULL);
156 if (!extent_state_cache)
157 return -ENOMEM;
158
159 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
160 sizeof(struct extent_buffer), 0,
161 SLAB_MEM_SPREAD, NULL);
162 if (!extent_buffer_cache)
163 goto free_state_cache;
164
165 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
166 offsetof(struct btrfs_io_bio, bio),
167 BIOSET_NEED_BVECS);
168 if (!btrfs_bioset)
169 goto free_buffer_cache;
170
171 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
172 goto free_bioset;
173
174 return 0;
175
176free_bioset:
177 bioset_free(btrfs_bioset);
178 btrfs_bioset = NULL;
179
180free_buffer_cache:
181 kmem_cache_destroy(extent_buffer_cache);
182 extent_buffer_cache = NULL;
183
184free_state_cache:
185 kmem_cache_destroy(extent_state_cache);
186 extent_state_cache = NULL;
187 return -ENOMEM;
188}
189
190void __cold extent_io_exit(void)
191{
192 btrfs_leak_debug_check();
193
194 /*
195 * Make sure all delayed rcu free are flushed before we
196 * destroy caches.
197 */
198 rcu_barrier();
199 kmem_cache_destroy(extent_state_cache);
200 kmem_cache_destroy(extent_buffer_cache);
201 if (btrfs_bioset)
202 bioset_free(btrfs_bioset);
203}
204
205void extent_io_tree_init(struct extent_io_tree *tree,
206 void *private_data)
207{
208 tree->state = RB_ROOT;
209 tree->ops = NULL;
210 tree->dirty_bytes = 0;
211 spin_lock_init(&tree->lock);
212 tree->private_data = private_data;
213}
214
215static struct extent_state *alloc_extent_state(gfp_t mask)
216{
217 struct extent_state *state;
218
219 /*
220 * The given mask might be not appropriate for the slab allocator,
221 * drop the unsupported bits
222 */
223 mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
224 state = kmem_cache_alloc(extent_state_cache, mask);
225 if (!state)
226 return state;
227 state->state = 0;
228 state->failrec = NULL;
229 RB_CLEAR_NODE(&state->rb_node);
230 btrfs_leak_debug_add(&state->leak_list, &states);
231 refcount_set(&state->refs, 1);
232 init_waitqueue_head(&state->wq);
233 trace_alloc_extent_state(state, mask, _RET_IP_);
234 return state;
235}
236
237void free_extent_state(struct extent_state *state)
238{
239 if (!state)
240 return;
241 if (refcount_dec_and_test(&state->refs)) {
242 WARN_ON(extent_state_in_tree(state));
243 btrfs_leak_debug_del(&state->leak_list);
244 trace_free_extent_state(state, _RET_IP_);
245 kmem_cache_free(extent_state_cache, state);
246 }
247}
248
249static struct rb_node *tree_insert(struct rb_root *root,
250 struct rb_node *search_start,
251 u64 offset,
252 struct rb_node *node,
253 struct rb_node ***p_in,
254 struct rb_node **parent_in)
255{
256 struct rb_node **p;
257 struct rb_node *parent = NULL;
258 struct tree_entry *entry;
259
260 if (p_in && parent_in) {
261 p = *p_in;
262 parent = *parent_in;
263 goto do_insert;
264 }
265
266 p = search_start ? &search_start : &root->rb_node;
267 while (*p) {
268 parent = *p;
269 entry = rb_entry(parent, struct tree_entry, rb_node);
270
271 if (offset < entry->start)
272 p = &(*p)->rb_left;
273 else if (offset > entry->end)
274 p = &(*p)->rb_right;
275 else
276 return parent;
277 }
278
279do_insert:
280 rb_link_node(node, parent, p);
281 rb_insert_color(node, root);
282 return NULL;
283}
284
285static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
286 struct rb_node **prev_ret,
287 struct rb_node **next_ret,
288 struct rb_node ***p_ret,
289 struct rb_node **parent_ret)
290{
291 struct rb_root *root = &tree->state;
292 struct rb_node **n = &root->rb_node;
293 struct rb_node *prev = NULL;
294 struct rb_node *orig_prev = NULL;
295 struct tree_entry *entry;
296 struct tree_entry *prev_entry = NULL;
297
298 while (*n) {
299 prev = *n;
300 entry = rb_entry(prev, struct tree_entry, rb_node);
301 prev_entry = entry;
302
303 if (offset < entry->start)
304 n = &(*n)->rb_left;
305 else if (offset > entry->end)
306 n = &(*n)->rb_right;
307 else
308 return *n;
309 }
310
311 if (p_ret)
312 *p_ret = n;
313 if (parent_ret)
314 *parent_ret = prev;
315
316 if (prev_ret) {
317 orig_prev = prev;
318 while (prev && offset > prev_entry->end) {
319 prev = rb_next(prev);
320 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
321 }
322 *prev_ret = prev;
323 prev = orig_prev;
324 }
325
326 if (next_ret) {
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 while (prev && offset < prev_entry->start) {
329 prev = rb_prev(prev);
330 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
331 }
332 *next_ret = prev;
333 }
334 return NULL;
335}
336
337static inline struct rb_node *
338tree_search_for_insert(struct extent_io_tree *tree,
339 u64 offset,
340 struct rb_node ***p_ret,
341 struct rb_node **parent_ret)
342{
343 struct rb_node *prev = NULL;
344 struct rb_node *ret;
345
346 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
347 if (!ret)
348 return prev;
349 return ret;
350}
351
352static inline struct rb_node *tree_search(struct extent_io_tree *tree,
353 u64 offset)
354{
355 return tree_search_for_insert(tree, offset, NULL, NULL);
356}
357
358static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
359 struct extent_state *other)
360{
361 if (tree->ops && tree->ops->merge_extent_hook)
362 tree->ops->merge_extent_hook(tree->private_data, new, other);
363}
364
365/*
366 * utility function to look for merge candidates inside a given range.
367 * Any extents with matching state are merged together into a single
368 * extent in the tree. Extents with EXTENT_IO in their state field
369 * are not merged because the end_io handlers need to be able to do
370 * operations on them without sleeping (or doing allocations/splits).
371 *
372 * This should be called with the tree lock held.
373 */
374static void merge_state(struct extent_io_tree *tree,
375 struct extent_state *state)
376{
377 struct extent_state *other;
378 struct rb_node *other_node;
379
380 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
381 return;
382
383 other_node = rb_prev(&state->rb_node);
384 if (other_node) {
385 other = rb_entry(other_node, struct extent_state, rb_node);
386 if (other->end == state->start - 1 &&
387 other->state == state->state) {
388 merge_cb(tree, state, other);
389 state->start = other->start;
390 rb_erase(&other->rb_node, &tree->state);
391 RB_CLEAR_NODE(&other->rb_node);
392 free_extent_state(other);
393 }
394 }
395 other_node = rb_next(&state->rb_node);
396 if (other_node) {
397 other = rb_entry(other_node, struct extent_state, rb_node);
398 if (other->start == state->end + 1 &&
399 other->state == state->state) {
400 merge_cb(tree, state, other);
401 state->end = other->end;
402 rb_erase(&other->rb_node, &tree->state);
403 RB_CLEAR_NODE(&other->rb_node);
404 free_extent_state(other);
405 }
406 }
407}
408
409static void set_state_cb(struct extent_io_tree *tree,
410 struct extent_state *state, unsigned *bits)
411{
412 if (tree->ops && tree->ops->set_bit_hook)
413 tree->ops->set_bit_hook(tree->private_data, state, bits);
414}
415
416static void clear_state_cb(struct extent_io_tree *tree,
417 struct extent_state *state, unsigned *bits)
418{
419 if (tree->ops && tree->ops->clear_bit_hook)
420 tree->ops->clear_bit_hook(tree->private_data, state, bits);
421}
422
423static void set_state_bits(struct extent_io_tree *tree,
424 struct extent_state *state, unsigned *bits,
425 struct extent_changeset *changeset);
426
427/*
428 * insert an extent_state struct into the tree. 'bits' are set on the
429 * struct before it is inserted.
430 *
431 * This may return -EEXIST if the extent is already there, in which case the
432 * state struct is freed.
433 *
434 * The tree lock is not taken internally. This is a utility function and
435 * probably isn't what you want to call (see set/clear_extent_bit).
436 */
437static int insert_state(struct extent_io_tree *tree,
438 struct extent_state *state, u64 start, u64 end,
439 struct rb_node ***p,
440 struct rb_node **parent,
441 unsigned *bits, struct extent_changeset *changeset)
442{
443 struct rb_node *node;
444
445 if (end < start)
446 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
447 end, start);
448 state->start = start;
449 state->end = end;
450
451 set_state_bits(tree, state, bits, changeset);
452
453 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
454 if (node) {
455 struct extent_state *found;
456 found = rb_entry(node, struct extent_state, rb_node);
457 pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
458 found->start, found->end, start, end);
459 return -EEXIST;
460 }
461 merge_state(tree, state);
462 return 0;
463}
464
465static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
466 u64 split)
467{
468 if (tree->ops && tree->ops->split_extent_hook)
469 tree->ops->split_extent_hook(tree->private_data, orig, split);
470}
471
472/*
473 * split a given extent state struct in two, inserting the preallocated
474 * struct 'prealloc' as the newly created second half. 'split' indicates an
475 * offset inside 'orig' where it should be split.
476 *
477 * Before calling,
478 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
479 * are two extent state structs in the tree:
480 * prealloc: [orig->start, split - 1]
481 * orig: [ split, orig->end ]
482 *
483 * The tree locks are not taken by this function. They need to be held
484 * by the caller.
485 */
486static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
487 struct extent_state *prealloc, u64 split)
488{
489 struct rb_node *node;
490
491 split_cb(tree, orig, split);
492
493 prealloc->start = orig->start;
494 prealloc->end = split - 1;
495 prealloc->state = orig->state;
496 orig->start = split;
497
498 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
499 &prealloc->rb_node, NULL, NULL);
500 if (node) {
501 free_extent_state(prealloc);
502 return -EEXIST;
503 }
504 return 0;
505}
506
507static struct extent_state *next_state(struct extent_state *state)
508{
509 struct rb_node *next = rb_next(&state->rb_node);
510 if (next)
511 return rb_entry(next, struct extent_state, rb_node);
512 else
513 return NULL;
514}
515
516/*
517 * utility function to clear some bits in an extent state struct.
518 * it will optionally wake up any one waiting on this state (wake == 1).
519 *
520 * If no bits are set on the state struct after clearing things, the
521 * struct is freed and removed from the tree
522 */
523static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
524 struct extent_state *state,
525 unsigned *bits, int wake,
526 struct extent_changeset *changeset)
527{
528 struct extent_state *next;
529 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
530 int ret;
531
532 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
533 u64 range = state->end - state->start + 1;
534 WARN_ON(range > tree->dirty_bytes);
535 tree->dirty_bytes -= range;
536 }
537 clear_state_cb(tree, state, bits);
538 ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
539 BUG_ON(ret < 0);
540 state->state &= ~bits_to_clear;
541 if (wake)
542 wake_up(&state->wq);
543 if (state->state == 0) {
544 next = next_state(state);
545 if (extent_state_in_tree(state)) {
546 rb_erase(&state->rb_node, &tree->state);
547 RB_CLEAR_NODE(&state->rb_node);
548 free_extent_state(state);
549 } else {
550 WARN_ON(1);
551 }
552 } else {
553 merge_state(tree, state);
554 next = next_state(state);
555 }
556 return next;
557}
558
559static struct extent_state *
560alloc_extent_state_atomic(struct extent_state *prealloc)
561{
562 if (!prealloc)
563 prealloc = alloc_extent_state(GFP_ATOMIC);
564
565 return prealloc;
566}
567
568static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
569{
570 btrfs_panic(tree_fs_info(tree), err,
571 "Locking error: Extent tree was modified by another thread while locked.");
572}
573
574/*
575 * clear some bits on a range in the tree. This may require splitting
576 * or inserting elements in the tree, so the gfp mask is used to
577 * indicate which allocations or sleeping are allowed.
578 *
579 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
580 * the given range from the tree regardless of state (ie for truncate).
581 *
582 * the range [start, end] is inclusive.
583 *
584 * This takes the tree lock, and returns 0 on success and < 0 on error.
585 */
586int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
587 unsigned bits, int wake, int delete,
588 struct extent_state **cached_state,
589 gfp_t mask, struct extent_changeset *changeset)
590{
591 struct extent_state *state;
592 struct extent_state *cached;
593 struct extent_state *prealloc = NULL;
594 struct rb_node *node;
595 u64 last_end;
596 int err;
597 int clear = 0;
598
599 btrfs_debug_check_extent_io_range(tree, start, end);
600
601 if (bits & EXTENT_DELALLOC)
602 bits |= EXTENT_NORESERVE;
603
604 if (delete)
605 bits |= ~EXTENT_CTLBITS;
606 bits |= EXTENT_FIRST_DELALLOC;
607
608 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
609 clear = 1;
610again:
611 if (!prealloc && gfpflags_allow_blocking(mask)) {
612 /*
613 * Don't care for allocation failure here because we might end
614 * up not needing the pre-allocated extent state at all, which
615 * is the case if we only have in the tree extent states that
616 * cover our input range and don't cover too any other range.
617 * If we end up needing a new extent state we allocate it later.
618 */
619 prealloc = alloc_extent_state(mask);
620 }
621
622 spin_lock(&tree->lock);
623 if (cached_state) {
624 cached = *cached_state;
625
626 if (clear) {
627 *cached_state = NULL;
628 cached_state = NULL;
629 }
630
631 if (cached && extent_state_in_tree(cached) &&
632 cached->start <= start && cached->end > start) {
633 if (clear)
634 refcount_dec(&cached->refs);
635 state = cached;
636 goto hit_next;
637 }
638 if (clear)
639 free_extent_state(cached);
640 }
641 /*
642 * this search will find the extents that end after
643 * our range starts
644 */
645 node = tree_search(tree, start);
646 if (!node)
647 goto out;
648 state = rb_entry(node, struct extent_state, rb_node);
649hit_next:
650 if (state->start > end)
651 goto out;
652 WARN_ON(state->end < start);
653 last_end = state->end;
654
655 /* the state doesn't have the wanted bits, go ahead */
656 if (!(state->state & bits)) {
657 state = next_state(state);
658 goto next;
659 }
660
661 /*
662 * | ---- desired range ---- |
663 * | state | or
664 * | ------------- state -------------- |
665 *
666 * We need to split the extent we found, and may flip
667 * bits on second half.
668 *
669 * If the extent we found extends past our range, we
670 * just split and search again. It'll get split again
671 * the next time though.
672 *
673 * If the extent we found is inside our range, we clear
674 * the desired bit on it.
675 */
676
677 if (state->start < start) {
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
680 err = split_state(tree, state, prealloc, start);
681 if (err)
682 extent_io_tree_panic(tree, err);
683
684 prealloc = NULL;
685 if (err)
686 goto out;
687 if (state->end <= end) {
688 state = clear_state_bit(tree, state, &bits, wake,
689 changeset);
690 goto next;
691 }
692 goto search_again;
693 }
694 /*
695 * | ---- desired range ---- |
696 * | state |
697 * We need to split the extent, and clear the bit
698 * on the first half
699 */
700 if (state->start <= end && state->end > end) {
701 prealloc = alloc_extent_state_atomic(prealloc);
702 BUG_ON(!prealloc);
703 err = split_state(tree, state, prealloc, end + 1);
704 if (err)
705 extent_io_tree_panic(tree, err);
706
707 if (wake)
708 wake_up(&state->wq);
709
710 clear_state_bit(tree, prealloc, &bits, wake, changeset);
711
712 prealloc = NULL;
713 goto out;
714 }
715
716 state = clear_state_bit(tree, state, &bits, wake, changeset);
717next:
718 if (last_end == (u64)-1)
719 goto out;
720 start = last_end + 1;
721 if (start <= end && state && !need_resched())
722 goto hit_next;
723
724search_again:
725 if (start > end)
726 goto out;
727 spin_unlock(&tree->lock);
728 if (gfpflags_allow_blocking(mask))
729 cond_resched();
730 goto again;
731
732out:
733 spin_unlock(&tree->lock);
734 if (prealloc)
735 free_extent_state(prealloc);
736
737 return 0;
738
739}
740
741static void wait_on_state(struct extent_io_tree *tree,
742 struct extent_state *state)
743 __releases(tree->lock)
744 __acquires(tree->lock)
745{
746 DEFINE_WAIT(wait);
747 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
748 spin_unlock(&tree->lock);
749 schedule();
750 spin_lock(&tree->lock);
751 finish_wait(&state->wq, &wait);
752}
753
754/*
755 * waits for one or more bits to clear on a range in the state tree.
756 * The range [start, end] is inclusive.
757 * The tree lock is taken by this function
758 */
759static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
760 unsigned long bits)
761{
762 struct extent_state *state;
763 struct rb_node *node;
764
765 btrfs_debug_check_extent_io_range(tree, start, end);
766
767 spin_lock(&tree->lock);
768again:
769 while (1) {
770 /*
771 * this search will find all the extents that end after
772 * our range starts
773 */
774 node = tree_search(tree, start);
775process_node:
776 if (!node)
777 break;
778
779 state = rb_entry(node, struct extent_state, rb_node);
780
781 if (state->start > end)
782 goto out;
783
784 if (state->state & bits) {
785 start = state->start;
786 refcount_inc(&state->refs);
787 wait_on_state(tree, state);
788 free_extent_state(state);
789 goto again;
790 }
791 start = state->end + 1;
792
793 if (start > end)
794 break;
795
796 if (!cond_resched_lock(&tree->lock)) {
797 node = rb_next(node);
798 goto process_node;
799 }
800 }
801out:
802 spin_unlock(&tree->lock);
803}
804
805static void set_state_bits(struct extent_io_tree *tree,
806 struct extent_state *state,
807 unsigned *bits, struct extent_changeset *changeset)
808{
809 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
810 int ret;
811
812 set_state_cb(tree, state, bits);
813 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
814 u64 range = state->end - state->start + 1;
815 tree->dirty_bytes += range;
816 }
817 ret = add_extent_changeset(state, bits_to_set, changeset, 1);
818 BUG_ON(ret < 0);
819 state->state |= bits_to_set;
820}
821
822static void cache_state_if_flags(struct extent_state *state,
823 struct extent_state **cached_ptr,
824 unsigned flags)
825{
826 if (cached_ptr && !(*cached_ptr)) {
827 if (!flags || (state->state & flags)) {
828 *cached_ptr = state;
829 refcount_inc(&state->refs);
830 }
831 }
832}
833
834static void cache_state(struct extent_state *state,
835 struct extent_state **cached_ptr)
836{
837 return cache_state_if_flags(state, cached_ptr,
838 EXTENT_IOBITS | EXTENT_BOUNDARY);
839}
840
841/*
842 * set some bits on a range in the tree. This may require allocations or
843 * sleeping, so the gfp mask is used to indicate what is allowed.
844 *
845 * If any of the exclusive bits are set, this will fail with -EEXIST if some
846 * part of the range already has the desired bits set. The start of the
847 * existing range is returned in failed_start in this case.
848 *
849 * [start, end] is inclusive This takes the tree lock.
850 */
851
852static int __must_check
853__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
854 unsigned bits, unsigned exclusive_bits,
855 u64 *failed_start, struct extent_state **cached_state,
856 gfp_t mask, struct extent_changeset *changeset)
857{
858 struct extent_state *state;
859 struct extent_state *prealloc = NULL;
860 struct rb_node *node;
861 struct rb_node **p;
862 struct rb_node *parent;
863 int err = 0;
864 u64 last_start;
865 u64 last_end;
866
867 btrfs_debug_check_extent_io_range(tree, start, end);
868
869 bits |= EXTENT_FIRST_DELALLOC;
870again:
871 if (!prealloc && gfpflags_allow_blocking(mask)) {
872 /*
873 * Don't care for allocation failure here because we might end
874 * up not needing the pre-allocated extent state at all, which
875 * is the case if we only have in the tree extent states that
876 * cover our input range and don't cover too any other range.
877 * If we end up needing a new extent state we allocate it later.
878 */
879 prealloc = alloc_extent_state(mask);
880 }
881
882 spin_lock(&tree->lock);
883 if (cached_state && *cached_state) {
884 state = *cached_state;
885 if (state->start <= start && state->end > start &&
886 extent_state_in_tree(state)) {
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
895 node = tree_search_for_insert(tree, start, &p, &parent);
896 if (!node) {
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
899 err = insert_state(tree, prealloc, start, end,
900 &p, &parent, &bits, changeset);
901 if (err)
902 extent_io_tree_panic(tree, err);
903
904 cache_state(prealloc, cached_state);
905 prealloc = NULL;
906 goto out;
907 }
908 state = rb_entry(node, struct extent_state, rb_node);
909hit_next:
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
920 if (state->state & exclusive_bits) {
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
925
926 set_state_bits(tree, state, &bits, changeset);
927 cache_state(state, cached_state);
928 merge_state(tree, state);
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
956 if (state->state & exclusive_bits) {
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
964 err = split_state(tree, state, prealloc, start);
965 if (err)
966 extent_io_tree_panic(tree, err);
967
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
972 set_state_bits(tree, state, &bits, changeset);
973 cache_state(state, cached_state);
974 merge_state(tree, state);
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
997 this_end = last_start - 1;
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
1006 err = insert_state(tree, prealloc, start, this_end,
1007 NULL, NULL, &bits, changeset);
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1023 if (state->state & exclusive_bits) {
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
1031 err = split_state(tree, state, prealloc, end + 1);
1032 if (err)
1033 extent_io_tree_panic(tree, err);
1034
1035 set_state_bits(tree, prealloc, &bits, changeset);
1036 cache_state(prealloc, cached_state);
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042search_again:
1043 if (start > end)
1044 goto out;
1045 spin_unlock(&tree->lock);
1046 if (gfpflags_allow_blocking(mask))
1047 cond_resched();
1048 goto again;
1049
1050out:
1051 spin_unlock(&tree->lock);
1052 if (prealloc)
1053 free_extent_state(prealloc);
1054
1055 return err;
1056
1057}
1058
1059int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1060 unsigned bits, u64 * failed_start,
1061 struct extent_state **cached_state, gfp_t mask)
1062{
1063 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1064 cached_state, mask, NULL);
1065}
1066
1067
1068/**
1069 * convert_extent_bit - convert all bits in a given range from one bit to
1070 * another
1071 * @tree: the io tree to search
1072 * @start: the start offset in bytes
1073 * @end: the end offset in bytes (inclusive)
1074 * @bits: the bits to set in this range
1075 * @clear_bits: the bits to clear in this range
1076 * @cached_state: state that we're going to cache
1077 *
1078 * This will go through and set bits for the given range. If any states exist
1079 * already in this range they are set with the given bit and cleared of the
1080 * clear_bits. This is only meant to be used by things that are mergeable, ie
1081 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1082 * boundary bits like LOCK.
1083 *
1084 * All allocations are done with GFP_NOFS.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1087 unsigned bits, unsigned clear_bits,
1088 struct extent_state **cached_state)
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
1093 struct rb_node **p;
1094 struct rb_node *parent;
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
1098 bool first_iteration = true;
1099
1100 btrfs_debug_check_extent_io_range(tree, start, end);
1101
1102again:
1103 if (!prealloc) {
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
1111 prealloc = alloc_extent_state(GFP_NOFS);
1112 if (!prealloc && !first_iteration)
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
1120 extent_state_in_tree(state)) {
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
1130 node = tree_search_for_insert(tree, start, &p, &parent);
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
1137 err = insert_state(tree, prealloc, start, end,
1138 &p, &parent, &bits, NULL);
1139 if (err)
1140 extent_io_tree_panic(tree, err);
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
1157 set_state_bits(tree, state, &bits, NULL);
1158 cache_state(state, cached_state);
1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1160 if (last_end == (u64)-1)
1161 goto out;
1162 start = last_end + 1;
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
1191 err = split_state(tree, state, prealloc, start);
1192 if (err)
1193 extent_io_tree_panic(tree, err);
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
1198 set_state_bits(tree, state, &bits, NULL);
1199 cache_state(state, cached_state);
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
1236 NULL, NULL, &bits, NULL);
1237 if (err)
1238 extent_io_tree_panic(tree, err);
1239 cache_state(prealloc, cached_state);
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
1256
1257 err = split_state(tree, state, prealloc, end + 1);
1258 if (err)
1259 extent_io_tree_panic(tree, err);
1260
1261 set_state_bits(tree, prealloc, &bits, NULL);
1262 cache_state(prealloc, cached_state);
1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268search_again:
1269 if (start > end)
1270 goto out;
1271 spin_unlock(&tree->lock);
1272 cond_resched();
1273 first_iteration = false;
1274 goto again;
1275
1276out:
1277 spin_unlock(&tree->lock);
1278 if (prealloc)
1279 free_extent_state(prealloc);
1280
1281 return err;
1282}
1283
1284/* wrappers around set/clear extent bit */
1285int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1286 unsigned bits, struct extent_changeset *changeset)
1287{
1288 /*
1289 * We don't support EXTENT_LOCKED yet, as current changeset will
1290 * record any bits changed, so for EXTENT_LOCKED case, it will
1291 * either fail with -EEXIST or changeset will record the whole
1292 * range.
1293 */
1294 BUG_ON(bits & EXTENT_LOCKED);
1295
1296 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1297 changeset);
1298}
1299
1300int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1301 unsigned bits, int wake, int delete,
1302 struct extent_state **cached)
1303{
1304 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1305 cached, GFP_NOFS, NULL);
1306}
1307
1308int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1309 unsigned bits, struct extent_changeset *changeset)
1310{
1311 /*
1312 * Don't support EXTENT_LOCKED case, same reason as
1313 * set_record_extent_bits().
1314 */
1315 BUG_ON(bits & EXTENT_LOCKED);
1316
1317 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1318 changeset);
1319}
1320
1321/*
1322 * either insert or lock state struct between start and end use mask to tell
1323 * us if waiting is desired.
1324 */
1325int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1326 struct extent_state **cached_state)
1327{
1328 int err;
1329 u64 failed_start;
1330
1331 while (1) {
1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1333 EXTENT_LOCKED, &failed_start,
1334 cached_state, GFP_NOFS, NULL);
1335 if (err == -EEXIST) {
1336 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1337 start = failed_start;
1338 } else
1339 break;
1340 WARN_ON(start > end);
1341 }
1342 return err;
1343}
1344
1345int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1346{
1347 int err;
1348 u64 failed_start;
1349
1350 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1351 &failed_start, NULL, GFP_NOFS, NULL);
1352 if (err == -EEXIST) {
1353 if (failed_start > start)
1354 clear_extent_bit(tree, start, failed_start - 1,
1355 EXTENT_LOCKED, 1, 0, NULL);
1356 return 0;
1357 }
1358 return 1;
1359}
1360
1361void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1362{
1363 unsigned long index = start >> PAGE_SHIFT;
1364 unsigned long end_index = end >> PAGE_SHIFT;
1365 struct page *page;
1366
1367 while (index <= end_index) {
1368 page = find_get_page(inode->i_mapping, index);
1369 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1370 clear_page_dirty_for_io(page);
1371 put_page(page);
1372 index++;
1373 }
1374}
1375
1376void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377{
1378 unsigned long index = start >> PAGE_SHIFT;
1379 unsigned long end_index = end >> PAGE_SHIFT;
1380 struct page *page;
1381
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 __set_page_dirty_nobuffers(page);
1386 account_page_redirty(page);
1387 put_page(page);
1388 index++;
1389 }
1390}
1391
1392/*
1393 * helper function to set both pages and extents in the tree writeback
1394 */
1395static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1396{
1397 tree->ops->set_range_writeback(tree->private_data, start, end);
1398}
1399
1400/* find the first state struct with 'bits' set after 'start', and
1401 * return it. tree->lock must be held. NULL will returned if
1402 * nothing was found after 'start'
1403 */
1404static struct extent_state *
1405find_first_extent_bit_state(struct extent_io_tree *tree,
1406 u64 start, unsigned bits)
1407{
1408 struct rb_node *node;
1409 struct extent_state *state;
1410
1411 /*
1412 * this search will find all the extents that end after
1413 * our range starts.
1414 */
1415 node = tree_search(tree, start);
1416 if (!node)
1417 goto out;
1418
1419 while (1) {
1420 state = rb_entry(node, struct extent_state, rb_node);
1421 if (state->end >= start && (state->state & bits))
1422 return state;
1423
1424 node = rb_next(node);
1425 if (!node)
1426 break;
1427 }
1428out:
1429 return NULL;
1430}
1431
1432/*
1433 * find the first offset in the io tree with 'bits' set. zero is
1434 * returned if we find something, and *start_ret and *end_ret are
1435 * set to reflect the state struct that was found.
1436 *
1437 * If nothing was found, 1 is returned. If found something, return 0.
1438 */
1439int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1440 u64 *start_ret, u64 *end_ret, unsigned bits,
1441 struct extent_state **cached_state)
1442{
1443 struct extent_state *state;
1444 struct rb_node *n;
1445 int ret = 1;
1446
1447 spin_lock(&tree->lock);
1448 if (cached_state && *cached_state) {
1449 state = *cached_state;
1450 if (state->end == start - 1 && extent_state_in_tree(state)) {
1451 n = rb_next(&state->rb_node);
1452 while (n) {
1453 state = rb_entry(n, struct extent_state,
1454 rb_node);
1455 if (state->state & bits)
1456 goto got_it;
1457 n = rb_next(n);
1458 }
1459 free_extent_state(*cached_state);
1460 *cached_state = NULL;
1461 goto out;
1462 }
1463 free_extent_state(*cached_state);
1464 *cached_state = NULL;
1465 }
1466
1467 state = find_first_extent_bit_state(tree, start, bits);
1468got_it:
1469 if (state) {
1470 cache_state_if_flags(state, cached_state, 0);
1471 *start_ret = state->start;
1472 *end_ret = state->end;
1473 ret = 0;
1474 }
1475out:
1476 spin_unlock(&tree->lock);
1477 return ret;
1478}
1479
1480/*
1481 * find a contiguous range of bytes in the file marked as delalloc, not
1482 * more than 'max_bytes'. start and end are used to return the range,
1483 *
1484 * 1 is returned if we find something, 0 if nothing was in the tree
1485 */
1486static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1487 u64 *start, u64 *end, u64 max_bytes,
1488 struct extent_state **cached_state)
1489{
1490 struct rb_node *node;
1491 struct extent_state *state;
1492 u64 cur_start = *start;
1493 u64 found = 0;
1494 u64 total_bytes = 0;
1495
1496 spin_lock(&tree->lock);
1497
1498 /*
1499 * this search will find all the extents that end after
1500 * our range starts.
1501 */
1502 node = tree_search(tree, cur_start);
1503 if (!node) {
1504 if (!found)
1505 *end = (u64)-1;
1506 goto out;
1507 }
1508
1509 while (1) {
1510 state = rb_entry(node, struct extent_state, rb_node);
1511 if (found && (state->start != cur_start ||
1512 (state->state & EXTENT_BOUNDARY))) {
1513 goto out;
1514 }
1515 if (!(state->state & EXTENT_DELALLOC)) {
1516 if (!found)
1517 *end = state->end;
1518 goto out;
1519 }
1520 if (!found) {
1521 *start = state->start;
1522 *cached_state = state;
1523 refcount_inc(&state->refs);
1524 }
1525 found++;
1526 *end = state->end;
1527 cur_start = state->end + 1;
1528 node = rb_next(node);
1529 total_bytes += state->end - state->start + 1;
1530 if (total_bytes >= max_bytes)
1531 break;
1532 if (!node)
1533 break;
1534 }
1535out:
1536 spin_unlock(&tree->lock);
1537 return found;
1538}
1539
1540static int __process_pages_contig(struct address_space *mapping,
1541 struct page *locked_page,
1542 pgoff_t start_index, pgoff_t end_index,
1543 unsigned long page_ops, pgoff_t *index_ret);
1544
1545static noinline void __unlock_for_delalloc(struct inode *inode,
1546 struct page *locked_page,
1547 u64 start, u64 end)
1548{
1549 unsigned long index = start >> PAGE_SHIFT;
1550 unsigned long end_index = end >> PAGE_SHIFT;
1551
1552 ASSERT(locked_page);
1553 if (index == locked_page->index && end_index == index)
1554 return;
1555
1556 __process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1557 PAGE_UNLOCK, NULL);
1558}
1559
1560static noinline int lock_delalloc_pages(struct inode *inode,
1561 struct page *locked_page,
1562 u64 delalloc_start,
1563 u64 delalloc_end)
1564{
1565 unsigned long index = delalloc_start >> PAGE_SHIFT;
1566 unsigned long index_ret = index;
1567 unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1568 int ret;
1569
1570 ASSERT(locked_page);
1571 if (index == locked_page->index && index == end_index)
1572 return 0;
1573
1574 ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1575 end_index, PAGE_LOCK, &index_ret);
1576 if (ret == -EAGAIN)
1577 __unlock_for_delalloc(inode, locked_page, delalloc_start,
1578 (u64)index_ret << PAGE_SHIFT);
1579 return ret;
1580}
1581
1582/*
1583 * find a contiguous range of bytes in the file marked as delalloc, not
1584 * more than 'max_bytes'. start and end are used to return the range,
1585 *
1586 * 1 is returned if we find something, 0 if nothing was in the tree
1587 */
1588STATIC u64 find_lock_delalloc_range(struct inode *inode,
1589 struct extent_io_tree *tree,
1590 struct page *locked_page, u64 *start,
1591 u64 *end, u64 max_bytes)
1592{
1593 u64 delalloc_start;
1594 u64 delalloc_end;
1595 u64 found;
1596 struct extent_state *cached_state = NULL;
1597 int ret;
1598 int loops = 0;
1599
1600again:
1601 /* step one, find a bunch of delalloc bytes starting at start */
1602 delalloc_start = *start;
1603 delalloc_end = 0;
1604 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1605 max_bytes, &cached_state);
1606 if (!found || delalloc_end <= *start) {
1607 *start = delalloc_start;
1608 *end = delalloc_end;
1609 free_extent_state(cached_state);
1610 return 0;
1611 }
1612
1613 /*
1614 * start comes from the offset of locked_page. We have to lock
1615 * pages in order, so we can't process delalloc bytes before
1616 * locked_page
1617 */
1618 if (delalloc_start < *start)
1619 delalloc_start = *start;
1620
1621 /*
1622 * make sure to limit the number of pages we try to lock down
1623 */
1624 if (delalloc_end + 1 - delalloc_start > max_bytes)
1625 delalloc_end = delalloc_start + max_bytes - 1;
1626
1627 /* step two, lock all the pages after the page that has start */
1628 ret = lock_delalloc_pages(inode, locked_page,
1629 delalloc_start, delalloc_end);
1630 if (ret == -EAGAIN) {
1631 /* some of the pages are gone, lets avoid looping by
1632 * shortening the size of the delalloc range we're searching
1633 */
1634 free_extent_state(cached_state);
1635 cached_state = NULL;
1636 if (!loops) {
1637 max_bytes = PAGE_SIZE;
1638 loops = 1;
1639 goto again;
1640 } else {
1641 found = 0;
1642 goto out_failed;
1643 }
1644 }
1645 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1646
1647 /* step three, lock the state bits for the whole range */
1648 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1649
1650 /* then test to make sure it is all still delalloc */
1651 ret = test_range_bit(tree, delalloc_start, delalloc_end,
1652 EXTENT_DELALLOC, 1, cached_state);
1653 if (!ret) {
1654 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1655 &cached_state);
1656 __unlock_for_delalloc(inode, locked_page,
1657 delalloc_start, delalloc_end);
1658 cond_resched();
1659 goto again;
1660 }
1661 free_extent_state(cached_state);
1662 *start = delalloc_start;
1663 *end = delalloc_end;
1664out_failed:
1665 return found;
1666}
1667
1668static int __process_pages_contig(struct address_space *mapping,
1669 struct page *locked_page,
1670 pgoff_t start_index, pgoff_t end_index,
1671 unsigned long page_ops, pgoff_t *index_ret)
1672{
1673 unsigned long nr_pages = end_index - start_index + 1;
1674 unsigned long pages_locked = 0;
1675 pgoff_t index = start_index;
1676 struct page *pages[16];
1677 unsigned ret;
1678 int err = 0;
1679 int i;
1680
1681 if (page_ops & PAGE_LOCK) {
1682 ASSERT(page_ops == PAGE_LOCK);
1683 ASSERT(index_ret && *index_ret == start_index);
1684 }
1685
1686 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1687 mapping_set_error(mapping, -EIO);
1688
1689 while (nr_pages > 0) {
1690 ret = find_get_pages_contig(mapping, index,
1691 min_t(unsigned long,
1692 nr_pages, ARRAY_SIZE(pages)), pages);
1693 if (ret == 0) {
1694 /*
1695 * Only if we're going to lock these pages,
1696 * can we find nothing at @index.
1697 */
1698 ASSERT(page_ops & PAGE_LOCK);
1699 err = -EAGAIN;
1700 goto out;
1701 }
1702
1703 for (i = 0; i < ret; i++) {
1704 if (page_ops & PAGE_SET_PRIVATE2)
1705 SetPagePrivate2(pages[i]);
1706
1707 if (pages[i] == locked_page) {
1708 put_page(pages[i]);
1709 pages_locked++;
1710 continue;
1711 }
1712 if (page_ops & PAGE_CLEAR_DIRTY)
1713 clear_page_dirty_for_io(pages[i]);
1714 if (page_ops & PAGE_SET_WRITEBACK)
1715 set_page_writeback(pages[i]);
1716 if (page_ops & PAGE_SET_ERROR)
1717 SetPageError(pages[i]);
1718 if (page_ops & PAGE_END_WRITEBACK)
1719 end_page_writeback(pages[i]);
1720 if (page_ops & PAGE_UNLOCK)
1721 unlock_page(pages[i]);
1722 if (page_ops & PAGE_LOCK) {
1723 lock_page(pages[i]);
1724 if (!PageDirty(pages[i]) ||
1725 pages[i]->mapping != mapping) {
1726 unlock_page(pages[i]);
1727 put_page(pages[i]);
1728 err = -EAGAIN;
1729 goto out;
1730 }
1731 }
1732 put_page(pages[i]);
1733 pages_locked++;
1734 }
1735 nr_pages -= ret;
1736 index += ret;
1737 cond_resched();
1738 }
1739out:
1740 if (err && index_ret)
1741 *index_ret = start_index + pages_locked - 1;
1742 return err;
1743}
1744
1745void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1746 u64 delalloc_end, struct page *locked_page,
1747 unsigned clear_bits,
1748 unsigned long page_ops)
1749{
1750 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1751 NULL);
1752
1753 __process_pages_contig(inode->i_mapping, locked_page,
1754 start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1755 page_ops, NULL);
1756}
1757
1758/*
1759 * count the number of bytes in the tree that have a given bit(s)
1760 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1761 * cached. The total number found is returned.
1762 */
1763u64 count_range_bits(struct extent_io_tree *tree,
1764 u64 *start, u64 search_end, u64 max_bytes,
1765 unsigned bits, int contig)
1766{
1767 struct rb_node *node;
1768 struct extent_state *state;
1769 u64 cur_start = *start;
1770 u64 total_bytes = 0;
1771 u64 last = 0;
1772 int found = 0;
1773
1774 if (WARN_ON(search_end <= cur_start))
1775 return 0;
1776
1777 spin_lock(&tree->lock);
1778 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1779 total_bytes = tree->dirty_bytes;
1780 goto out;
1781 }
1782 /*
1783 * this search will find all the extents that end after
1784 * our range starts.
1785 */
1786 node = tree_search(tree, cur_start);
1787 if (!node)
1788 goto out;
1789
1790 while (1) {
1791 state = rb_entry(node, struct extent_state, rb_node);
1792 if (state->start > search_end)
1793 break;
1794 if (contig && found && state->start > last + 1)
1795 break;
1796 if (state->end >= cur_start && (state->state & bits) == bits) {
1797 total_bytes += min(search_end, state->end) + 1 -
1798 max(cur_start, state->start);
1799 if (total_bytes >= max_bytes)
1800 break;
1801 if (!found) {
1802 *start = max(cur_start, state->start);
1803 found = 1;
1804 }
1805 last = state->end;
1806 } else if (contig && found) {
1807 break;
1808 }
1809 node = rb_next(node);
1810 if (!node)
1811 break;
1812 }
1813out:
1814 spin_unlock(&tree->lock);
1815 return total_bytes;
1816}
1817
1818/*
1819 * set the private field for a given byte offset in the tree. If there isn't
1820 * an extent_state there already, this does nothing.
1821 */
1822static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1823 struct io_failure_record *failrec)
1824{
1825 struct rb_node *node;
1826 struct extent_state *state;
1827 int ret = 0;
1828
1829 spin_lock(&tree->lock);
1830 /*
1831 * this search will find all the extents that end after
1832 * our range starts.
1833 */
1834 node = tree_search(tree, start);
1835 if (!node) {
1836 ret = -ENOENT;
1837 goto out;
1838 }
1839 state = rb_entry(node, struct extent_state, rb_node);
1840 if (state->start != start) {
1841 ret = -ENOENT;
1842 goto out;
1843 }
1844 state->failrec = failrec;
1845out:
1846 spin_unlock(&tree->lock);
1847 return ret;
1848}
1849
1850static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1851 struct io_failure_record **failrec)
1852{
1853 struct rb_node *node;
1854 struct extent_state *state;
1855 int ret = 0;
1856
1857 spin_lock(&tree->lock);
1858 /*
1859 * this search will find all the extents that end after
1860 * our range starts.
1861 */
1862 node = tree_search(tree, start);
1863 if (!node) {
1864 ret = -ENOENT;
1865 goto out;
1866 }
1867 state = rb_entry(node, struct extent_state, rb_node);
1868 if (state->start != start) {
1869 ret = -ENOENT;
1870 goto out;
1871 }
1872 *failrec = state->failrec;
1873out:
1874 spin_unlock(&tree->lock);
1875 return ret;
1876}
1877
1878/*
1879 * searches a range in the state tree for a given mask.
1880 * If 'filled' == 1, this returns 1 only if every extent in the tree
1881 * has the bits set. Otherwise, 1 is returned if any bit in the
1882 * range is found set.
1883 */
1884int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1885 unsigned bits, int filled, struct extent_state *cached)
1886{
1887 struct extent_state *state = NULL;
1888 struct rb_node *node;
1889 int bitset = 0;
1890
1891 spin_lock(&tree->lock);
1892 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1893 cached->end > start)
1894 node = &cached->rb_node;
1895 else
1896 node = tree_search(tree, start);
1897 while (node && start <= end) {
1898 state = rb_entry(node, struct extent_state, rb_node);
1899
1900 if (filled && state->start > start) {
1901 bitset = 0;
1902 break;
1903 }
1904
1905 if (state->start > end)
1906 break;
1907
1908 if (state->state & bits) {
1909 bitset = 1;
1910 if (!filled)
1911 break;
1912 } else if (filled) {
1913 bitset = 0;
1914 break;
1915 }
1916
1917 if (state->end == (u64)-1)
1918 break;
1919
1920 start = state->end + 1;
1921 if (start > end)
1922 break;
1923 node = rb_next(node);
1924 if (!node) {
1925 if (filled)
1926 bitset = 0;
1927 break;
1928 }
1929 }
1930 spin_unlock(&tree->lock);
1931 return bitset;
1932}
1933
1934/*
1935 * helper function to set a given page up to date if all the
1936 * extents in the tree for that page are up to date
1937 */
1938static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1939{
1940 u64 start = page_offset(page);
1941 u64 end = start + PAGE_SIZE - 1;
1942 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1943 SetPageUptodate(page);
1944}
1945
1946int free_io_failure(struct extent_io_tree *failure_tree,
1947 struct extent_io_tree *io_tree,
1948 struct io_failure_record *rec)
1949{
1950 int ret;
1951 int err = 0;
1952
1953 set_state_failrec(failure_tree, rec->start, NULL);
1954 ret = clear_extent_bits(failure_tree, rec->start,
1955 rec->start + rec->len - 1,
1956 EXTENT_LOCKED | EXTENT_DIRTY);
1957 if (ret)
1958 err = ret;
1959
1960 ret = clear_extent_bits(io_tree, rec->start,
1961 rec->start + rec->len - 1,
1962 EXTENT_DAMAGED);
1963 if (ret && !err)
1964 err = ret;
1965
1966 kfree(rec);
1967 return err;
1968}
1969
1970/*
1971 * this bypasses the standard btrfs submit functions deliberately, as
1972 * the standard behavior is to write all copies in a raid setup. here we only
1973 * want to write the one bad copy. so we do the mapping for ourselves and issue
1974 * submit_bio directly.
1975 * to avoid any synchronization issues, wait for the data after writing, which
1976 * actually prevents the read that triggered the error from finishing.
1977 * currently, there can be no more than two copies of every data bit. thus,
1978 * exactly one rewrite is required.
1979 */
1980int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1981 u64 length, u64 logical, struct page *page,
1982 unsigned int pg_offset, int mirror_num)
1983{
1984 struct bio *bio;
1985 struct btrfs_device *dev;
1986 u64 map_length = 0;
1987 u64 sector;
1988 struct btrfs_bio *bbio = NULL;
1989 int ret;
1990
1991 ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1992 BUG_ON(!mirror_num);
1993
1994 bio = btrfs_io_bio_alloc(1);
1995 bio->bi_iter.bi_size = 0;
1996 map_length = length;
1997
1998 /*
1999 * Avoid races with device replace and make sure our bbio has devices
2000 * associated to its stripes that don't go away while we are doing the
2001 * read repair operation.
2002 */
2003 btrfs_bio_counter_inc_blocked(fs_info);
2004 if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2005 /*
2006 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2007 * to update all raid stripes, but here we just want to correct
2008 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2009 * stripe's dev and sector.
2010 */
2011 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2012 &map_length, &bbio, 0);
2013 if (ret) {
2014 btrfs_bio_counter_dec(fs_info);
2015 bio_put(bio);
2016 return -EIO;
2017 }
2018 ASSERT(bbio->mirror_num == 1);
2019 } else {
2020 ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2021 &map_length, &bbio, mirror_num);
2022 if (ret) {
2023 btrfs_bio_counter_dec(fs_info);
2024 bio_put(bio);
2025 return -EIO;
2026 }
2027 BUG_ON(mirror_num != bbio->mirror_num);
2028 }
2029
2030 sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2031 bio->bi_iter.bi_sector = sector;
2032 dev = bbio->stripes[bbio->mirror_num - 1].dev;
2033 btrfs_put_bbio(bbio);
2034 if (!dev || !dev->bdev ||
2035 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2036 btrfs_bio_counter_dec(fs_info);
2037 bio_put(bio);
2038 return -EIO;
2039 }
2040 bio_set_dev(bio, dev->bdev);
2041 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2042 bio_add_page(bio, page, length, pg_offset);
2043
2044 if (btrfsic_submit_bio_wait(bio)) {
2045 /* try to remap that extent elsewhere? */
2046 btrfs_bio_counter_dec(fs_info);
2047 bio_put(bio);
2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2049 return -EIO;
2050 }
2051
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
2054 ino, start,
2055 rcu_str_deref(dev->name), sector);
2056 btrfs_bio_counter_dec(fs_info);
2057 bio_put(bio);
2058 return 0;
2059}
2060
2061int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2062 struct extent_buffer *eb, int mirror_num)
2063{
2064 u64 start = eb->start;
2065 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2066 int ret = 0;
2067
2068 if (sb_rdonly(fs_info->sb))
2069 return -EROFS;
2070
2071 for (i = 0; i < num_pages; i++) {
2072 struct page *p = eb->pages[i];
2073
2074 ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2075 start - page_offset(p), mirror_num);
2076 if (ret)
2077 break;
2078 start += PAGE_SIZE;
2079 }
2080
2081 return ret;
2082}
2083
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
2088int clean_io_failure(struct btrfs_fs_info *fs_info,
2089 struct extent_io_tree *failure_tree,
2090 struct extent_io_tree *io_tree, u64 start,
2091 struct page *page, u64 ino, unsigned int pg_offset)
2092{
2093 u64 private;
2094 struct io_failure_record *failrec;
2095 struct extent_state *state;
2096 int num_copies;
2097 int ret;
2098
2099 private = 0;
2100 ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2101 EXTENT_DIRTY, 0);
2102 if (!ret)
2103 return 0;
2104
2105 ret = get_state_failrec(failure_tree, start, &failrec);
2106 if (ret)
2107 return 0;
2108
2109 BUG_ON(!failrec->this_mirror);
2110
2111 if (failrec->in_validation) {
2112 /* there was no real error, just free the record */
2113 btrfs_debug(fs_info,
2114 "clean_io_failure: freeing dummy error at %llu",
2115 failrec->start);
2116 goto out;
2117 }
2118 if (sb_rdonly(fs_info->sb))
2119 goto out;
2120
2121 spin_lock(&io_tree->lock);
2122 state = find_first_extent_bit_state(io_tree,
2123 failrec->start,
2124 EXTENT_LOCKED);
2125 spin_unlock(&io_tree->lock);
2126
2127 if (state && state->start <= failrec->start &&
2128 state->end >= failrec->start + failrec->len - 1) {
2129 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2130 failrec->len);
2131 if (num_copies > 1) {
2132 repair_io_failure(fs_info, ino, start, failrec->len,
2133 failrec->logical, page, pg_offset,
2134 failrec->failed_mirror);
2135 }
2136 }
2137
2138out:
2139 free_io_failure(failure_tree, io_tree, failrec);
2140
2141 return 0;
2142}
2143
2144/*
2145 * Can be called when
2146 * - hold extent lock
2147 * - under ordered extent
2148 * - the inode is freeing
2149 */
2150void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2151{
2152 struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2153 struct io_failure_record *failrec;
2154 struct extent_state *state, *next;
2155
2156 if (RB_EMPTY_ROOT(&failure_tree->state))
2157 return;
2158
2159 spin_lock(&failure_tree->lock);
2160 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2161 while (state) {
2162 if (state->start > end)
2163 break;
2164
2165 ASSERT(state->end <= end);
2166
2167 next = next_state(state);
2168
2169 failrec = state->failrec;
2170 free_extent_state(state);
2171 kfree(failrec);
2172
2173 state = next;
2174 }
2175 spin_unlock(&failure_tree->lock);
2176}
2177
2178int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2179 struct io_failure_record **failrec_ret)
2180{
2181 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2182 struct io_failure_record *failrec;
2183 struct extent_map *em;
2184 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2185 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2186 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2187 int ret;
2188 u64 logical;
2189
2190 ret = get_state_failrec(failure_tree, start, &failrec);
2191 if (ret) {
2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193 if (!failrec)
2194 return -ENOMEM;
2195
2196 failrec->start = start;
2197 failrec->len = end - start + 1;
2198 failrec->this_mirror = 0;
2199 failrec->bio_flags = 0;
2200 failrec->in_validation = 0;
2201
2202 read_lock(&em_tree->lock);
2203 em = lookup_extent_mapping(em_tree, start, failrec->len);
2204 if (!em) {
2205 read_unlock(&em_tree->lock);
2206 kfree(failrec);
2207 return -EIO;
2208 }
2209
2210 if (em->start > start || em->start + em->len <= start) {
2211 free_extent_map(em);
2212 em = NULL;
2213 }
2214 read_unlock(&em_tree->lock);
2215 if (!em) {
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
2220 logical = start - em->start;
2221 logical = em->block_start + logical;
2222 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2223 logical = em->block_start;
2224 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2225 extent_set_compress_type(&failrec->bio_flags,
2226 em->compress_type);
2227 }
2228
2229 btrfs_debug(fs_info,
2230 "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2231 logical, start, failrec->len);
2232
2233 failrec->logical = logical;
2234 free_extent_map(em);
2235
2236 /* set the bits in the private failure tree */
2237 ret = set_extent_bits(failure_tree, start, end,
2238 EXTENT_LOCKED | EXTENT_DIRTY);
2239 if (ret >= 0)
2240 ret = set_state_failrec(failure_tree, start, failrec);
2241 /* set the bits in the inode's tree */
2242 if (ret >= 0)
2243 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2244 if (ret < 0) {
2245 kfree(failrec);
2246 return ret;
2247 }
2248 } else {
2249 btrfs_debug(fs_info,
2250 "Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2251 failrec->logical, failrec->start, failrec->len,
2252 failrec->in_validation);
2253 /*
2254 * when data can be on disk more than twice, add to failrec here
2255 * (e.g. with a list for failed_mirror) to make
2256 * clean_io_failure() clean all those errors at once.
2257 */
2258 }
2259
2260 *failrec_ret = failrec;
2261
2262 return 0;
2263}
2264
2265bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2266 struct io_failure_record *failrec, int failed_mirror)
2267{
2268 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2269 int num_copies;
2270
2271 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2272 if (num_copies == 1) {
2273 /*
2274 * we only have a single copy of the data, so don't bother with
2275 * all the retry and error correction code that follows. no
2276 * matter what the error is, it is very likely to persist.
2277 */
2278 btrfs_debug(fs_info,
2279 "Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2280 num_copies, failrec->this_mirror, failed_mirror);
2281 return false;
2282 }
2283
2284 /*
2285 * there are two premises:
2286 * a) deliver good data to the caller
2287 * b) correct the bad sectors on disk
2288 */
2289 if (failed_bio_pages > 1) {
2290 /*
2291 * to fulfill b), we need to know the exact failing sectors, as
2292 * we don't want to rewrite any more than the failed ones. thus,
2293 * we need separate read requests for the failed bio
2294 *
2295 * if the following BUG_ON triggers, our validation request got
2296 * merged. we need separate requests for our algorithm to work.
2297 */
2298 BUG_ON(failrec->in_validation);
2299 failrec->in_validation = 1;
2300 failrec->this_mirror = failed_mirror;
2301 } else {
2302 /*
2303 * we're ready to fulfill a) and b) alongside. get a good copy
2304 * of the failed sector and if we succeed, we have setup
2305 * everything for repair_io_failure to do the rest for us.
2306 */
2307 if (failrec->in_validation) {
2308 BUG_ON(failrec->this_mirror != failed_mirror);
2309 failrec->in_validation = 0;
2310 failrec->this_mirror = 0;
2311 }
2312 failrec->failed_mirror = failed_mirror;
2313 failrec->this_mirror++;
2314 if (failrec->this_mirror == failed_mirror)
2315 failrec->this_mirror++;
2316 }
2317
2318 if (failrec->this_mirror > num_copies) {
2319 btrfs_debug(fs_info,
2320 "Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2321 num_copies, failrec->this_mirror, failed_mirror);
2322 return false;
2323 }
2324
2325 return true;
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 struct io_failure_record *failrec,
2331 struct page *page, int pg_offset, int icsum,
2332 bio_end_io_t *endio_func, void *data)
2333{
2334 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2335 struct bio *bio;
2336 struct btrfs_io_bio *btrfs_failed_bio;
2337 struct btrfs_io_bio *btrfs_bio;
2338
2339 bio = btrfs_io_bio_alloc(1);
2340 bio->bi_end_io = endio_func;
2341 bio->bi_iter.bi_sector = failrec->logical >> 9;
2342 bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2343 bio->bi_iter.bi_size = 0;
2344 bio->bi_private = data;
2345
2346 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2347 if (btrfs_failed_bio->csum) {
2348 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2349
2350 btrfs_bio = btrfs_io_bio(bio);
2351 btrfs_bio->csum = btrfs_bio->csum_inline;
2352 icsum *= csum_size;
2353 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2354 csum_size);
2355 }
2356
2357 bio_add_page(bio, page, failrec->len, pg_offset);
2358
2359 return bio;
2360}
2361
2362/*
2363 * this is a generic handler for readpage errors (default
2364 * readpage_io_failed_hook). if other copies exist, read those and write back
2365 * good data to the failed position. does not investigate in remapping the
2366 * failed extent elsewhere, hoping the device will be smart enough to do this as
2367 * needed
2368 */
2369
2370static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2371 struct page *page, u64 start, u64 end,
2372 int failed_mirror)
2373{
2374 struct io_failure_record *failrec;
2375 struct inode *inode = page->mapping->host;
2376 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2377 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2378 struct bio *bio;
2379 int read_mode = 0;
2380 blk_status_t status;
2381 int ret;
2382 unsigned failed_bio_pages = bio_pages_all(failed_bio);
2383
2384 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2385
2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 if (ret)
2388 return ret;
2389
2390 if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2391 failed_mirror)) {
2392 free_io_failure(failure_tree, tree, failrec);
2393 return -EIO;
2394 }
2395
2396 if (failed_bio_pages > 1)
2397 read_mode |= REQ_FAILFAST_DEV;
2398
2399 phy_offset >>= inode->i_sb->s_blocksize_bits;
2400 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2401 start - page_offset(page),
2402 (int)phy_offset, failed_bio->bi_end_io,
2403 NULL);
2404 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
2405
2406 btrfs_debug(btrfs_sb(inode->i_sb),
2407 "Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2408 read_mode, failrec->this_mirror, failrec->in_validation);
2409
2410 status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2411 failrec->bio_flags, 0);
2412 if (status) {
2413 free_io_failure(failure_tree, tree, failrec);
2414 bio_put(bio);
2415 ret = blk_status_to_errno(status);
2416 }
2417
2418 return ret;
2419}
2420
2421/* lots and lots of room for performance fixes in the end_bio funcs */
2422
2423void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2424{
2425 int uptodate = (err == 0);
2426 struct extent_io_tree *tree;
2427 int ret = 0;
2428
2429 tree = &BTRFS_I(page->mapping->host)->io_tree;
2430
2431 if (tree->ops && tree->ops->writepage_end_io_hook)
2432 tree->ops->writepage_end_io_hook(page, start, end, NULL,
2433 uptodate);
2434
2435 if (!uptodate) {
2436 ClearPageUptodate(page);
2437 SetPageError(page);
2438 ret = err < 0 ? err : -EIO;
2439 mapping_set_error(page->mapping, ret);
2440 }
2441}
2442
2443/*
2444 * after a writepage IO is done, we need to:
2445 * clear the uptodate bits on error
2446 * clear the writeback bits in the extent tree for this IO
2447 * end_page_writeback if the page has no more pending IO
2448 *
2449 * Scheduling is not allowed, so the extent state tree is expected
2450 * to have one and only one object corresponding to this IO.
2451 */
2452static void end_bio_extent_writepage(struct bio *bio)
2453{
2454 int error = blk_status_to_errno(bio->bi_status);
2455 struct bio_vec *bvec;
2456 u64 start;
2457 u64 end;
2458 int i;
2459
2460 ASSERT(!bio_flagged(bio, BIO_CLONED));
2461 bio_for_each_segment_all(bvec, bio, i) {
2462 struct page *page = bvec->bv_page;
2463 struct inode *inode = page->mapping->host;
2464 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2465
2466 /* We always issue full-page reads, but if some block
2467 * in a page fails to read, blk_update_request() will
2468 * advance bv_offset and adjust bv_len to compensate.
2469 * Print a warning for nonzero offsets, and an error
2470 * if they don't add up to a full page. */
2471 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2472 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2473 btrfs_err(fs_info,
2474 "partial page write in btrfs with offset %u and length %u",
2475 bvec->bv_offset, bvec->bv_len);
2476 else
2477 btrfs_info(fs_info,
2478 "incomplete page write in btrfs with offset %u and length %u",
2479 bvec->bv_offset, bvec->bv_len);
2480 }
2481
2482 start = page_offset(page);
2483 end = start + bvec->bv_offset + bvec->bv_len - 1;
2484
2485 end_extent_writepage(page, error, start, end);
2486 end_page_writeback(page);
2487 }
2488
2489 bio_put(bio);
2490}
2491
2492static void
2493endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2494 int uptodate)
2495{
2496 struct extent_state *cached = NULL;
2497 u64 end = start + len - 1;
2498
2499 if (uptodate && tree->track_uptodate)
2500 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2501 unlock_extent_cached_atomic(tree, start, end, &cached);
2502}
2503
2504/*
2505 * after a readpage IO is done, we need to:
2506 * clear the uptodate bits on error
2507 * set the uptodate bits if things worked
2508 * set the page up to date if all extents in the tree are uptodate
2509 * clear the lock bit in the extent tree
2510 * unlock the page if there are no other extents locked for it
2511 *
2512 * Scheduling is not allowed, so the extent state tree is expected
2513 * to have one and only one object corresponding to this IO.
2514 */
2515static void end_bio_extent_readpage(struct bio *bio)
2516{
2517 struct bio_vec *bvec;
2518 int uptodate = !bio->bi_status;
2519 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2520 struct extent_io_tree *tree, *failure_tree;
2521 u64 offset = 0;
2522 u64 start;
2523 u64 end;
2524 u64 len;
2525 u64 extent_start = 0;
2526 u64 extent_len = 0;
2527 int mirror;
2528 int ret;
2529 int i;
2530
2531 ASSERT(!bio_flagged(bio, BIO_CLONED));
2532 bio_for_each_segment_all(bvec, bio, i) {
2533 struct page *page = bvec->bv_page;
2534 struct inode *inode = page->mapping->host;
2535 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2536
2537 btrfs_debug(fs_info,
2538 "end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2539 (u64)bio->bi_iter.bi_sector, bio->bi_status,
2540 io_bio->mirror_num);
2541 tree = &BTRFS_I(inode)->io_tree;
2542 failure_tree = &BTRFS_I(inode)->io_failure_tree;
2543
2544 /* We always issue full-page reads, but if some block
2545 * in a page fails to read, blk_update_request() will
2546 * advance bv_offset and adjust bv_len to compensate.
2547 * Print a warning for nonzero offsets, and an error
2548 * if they don't add up to a full page. */
2549 if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2550 if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2551 btrfs_err(fs_info,
2552 "partial page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 else
2555 btrfs_info(fs_info,
2556 "incomplete page read in btrfs with offset %u and length %u",
2557 bvec->bv_offset, bvec->bv_len);
2558 }
2559
2560 start = page_offset(page);
2561 end = start + bvec->bv_offset + bvec->bv_len - 1;
2562 len = bvec->bv_len;
2563
2564 mirror = io_bio->mirror_num;
2565 if (likely(uptodate && tree->ops)) {
2566 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2567 page, start, end,
2568 mirror);
2569 if (ret)
2570 uptodate = 0;
2571 else
2572 clean_io_failure(BTRFS_I(inode)->root->fs_info,
2573 failure_tree, tree, start,
2574 page,
2575 btrfs_ino(BTRFS_I(inode)), 0);
2576 }
2577
2578 if (likely(uptodate))
2579 goto readpage_ok;
2580
2581 if (tree->ops) {
2582 ret = tree->ops->readpage_io_failed_hook(page, mirror);
2583 if (ret == -EAGAIN) {
2584 /*
2585 * Data inode's readpage_io_failed_hook() always
2586 * returns -EAGAIN.
2587 *
2588 * The generic bio_readpage_error handles errors
2589 * the following way: If possible, new read
2590 * requests are created and submitted and will
2591 * end up in end_bio_extent_readpage as well (if
2592 * we're lucky, not in the !uptodate case). In
2593 * that case it returns 0 and we just go on with
2594 * the next page in our bio. If it can't handle
2595 * the error it will return -EIO and we remain
2596 * responsible for that page.
2597 */
2598 ret = bio_readpage_error(bio, offset, page,
2599 start, end, mirror);
2600 if (ret == 0) {
2601 uptodate = !bio->bi_status;
2602 offset += len;
2603 continue;
2604 }
2605 }
2606
2607 /*
2608 * metadata's readpage_io_failed_hook() always returns
2609 * -EIO and fixes nothing. -EIO is also returned if
2610 * data inode error could not be fixed.
2611 */
2612 ASSERT(ret == -EIO);
2613 }
2614readpage_ok:
2615 if (likely(uptodate)) {
2616 loff_t i_size = i_size_read(inode);
2617 pgoff_t end_index = i_size >> PAGE_SHIFT;
2618 unsigned off;
2619
2620 /* Zero out the end if this page straddles i_size */
2621 off = i_size & (PAGE_SIZE-1);
2622 if (page->index == end_index && off)
2623 zero_user_segment(page, off, PAGE_SIZE);
2624 SetPageUptodate(page);
2625 } else {
2626 ClearPageUptodate(page);
2627 SetPageError(page);
2628 }
2629 unlock_page(page);
2630 offset += len;
2631
2632 if (unlikely(!uptodate)) {
2633 if (extent_len) {
2634 endio_readpage_release_extent(tree,
2635 extent_start,
2636 extent_len, 1);
2637 extent_start = 0;
2638 extent_len = 0;
2639 }
2640 endio_readpage_release_extent(tree, start,
2641 end - start + 1, 0);
2642 } else if (!extent_len) {
2643 extent_start = start;
2644 extent_len = end + 1 - start;
2645 } else if (extent_start + extent_len == start) {
2646 extent_len += end + 1 - start;
2647 } else {
2648 endio_readpage_release_extent(tree, extent_start,
2649 extent_len, uptodate);
2650 extent_start = start;
2651 extent_len = end + 1 - start;
2652 }
2653 }
2654
2655 if (extent_len)
2656 endio_readpage_release_extent(tree, extent_start, extent_len,
2657 uptodate);
2658 if (io_bio->end_io)
2659 io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2660 bio_put(bio);
2661}
2662
2663/*
2664 * Initialize the members up to but not including 'bio'. Use after allocating a
2665 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2666 * 'bio' because use of __GFP_ZERO is not supported.
2667 */
2668static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2669{
2670 memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2671}
2672
2673/*
2674 * The following helpers allocate a bio. As it's backed by a bioset, it'll
2675 * never fail. We're returning a bio right now but you can call btrfs_io_bio
2676 * for the appropriate container_of magic
2677 */
2678struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2679{
2680 struct bio *bio;
2681
2682 bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, btrfs_bioset);
2683 bio_set_dev(bio, bdev);
2684 bio->bi_iter.bi_sector = first_byte >> 9;
2685 btrfs_io_bio_init(btrfs_io_bio(bio));
2686 return bio;
2687}
2688
2689struct bio *btrfs_bio_clone(struct bio *bio)
2690{
2691 struct btrfs_io_bio *btrfs_bio;
2692 struct bio *new;
2693
2694 /* Bio allocation backed by a bioset does not fail */
2695 new = bio_clone_fast(bio, GFP_NOFS, btrfs_bioset);
2696 btrfs_bio = btrfs_io_bio(new);
2697 btrfs_io_bio_init(btrfs_bio);
2698 btrfs_bio->iter = bio->bi_iter;
2699 return new;
2700}
2701
2702struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2703{
2704 struct bio *bio;
2705
2706 /* Bio allocation backed by a bioset does not fail */
2707 bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, btrfs_bioset);
2708 btrfs_io_bio_init(btrfs_io_bio(bio));
2709 return bio;
2710}
2711
2712struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2713{
2714 struct bio *bio;
2715 struct btrfs_io_bio *btrfs_bio;
2716
2717 /* this will never fail when it's backed by a bioset */
2718 bio = bio_clone_fast(orig, GFP_NOFS, btrfs_bioset);
2719 ASSERT(bio);
2720
2721 btrfs_bio = btrfs_io_bio(bio);
2722 btrfs_io_bio_init(btrfs_bio);
2723
2724 bio_trim(bio, offset >> 9, size >> 9);
2725 btrfs_bio->iter = bio->bi_iter;
2726 return bio;
2727}
2728
2729static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2730 unsigned long bio_flags)
2731{
2732 blk_status_t ret = 0;
2733 struct bio_vec *bvec = bio_last_bvec_all(bio);
2734 struct page *page = bvec->bv_page;
2735 struct extent_io_tree *tree = bio->bi_private;
2736 u64 start;
2737
2738 start = page_offset(page) + bvec->bv_offset;
2739
2740 bio->bi_private = NULL;
2741
2742 if (tree->ops)
2743 ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2744 mirror_num, bio_flags, start);
2745 else
2746 btrfsic_submit_bio(bio);
2747
2748 return blk_status_to_errno(ret);
2749}
2750
2751/*
2752 * @opf: bio REQ_OP_* and REQ_* flags as one value
2753 * @tree: tree so we can call our merge_bio hook
2754 * @wbc: optional writeback control for io accounting
2755 * @page: page to add to the bio
2756 * @pg_offset: offset of the new bio or to check whether we are adding
2757 * a contiguous page to the previous one
2758 * @size: portion of page that we want to write
2759 * @offset: starting offset in the page
2760 * @bdev: attach newly created bios to this bdev
2761 * @bio_ret: must be valid pointer, newly allocated bio will be stored there
2762 * @end_io_func: end_io callback for new bio
2763 * @mirror_num: desired mirror to read/write
2764 * @prev_bio_flags: flags of previous bio to see if we can merge the current one
2765 * @bio_flags: flags of the current bio to see if we can merge them
2766 */
2767static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2768 struct writeback_control *wbc,
2769 struct page *page, u64 offset,
2770 size_t size, unsigned long pg_offset,
2771 struct block_device *bdev,
2772 struct bio **bio_ret,
2773 bio_end_io_t end_io_func,
2774 int mirror_num,
2775 unsigned long prev_bio_flags,
2776 unsigned long bio_flags,
2777 bool force_bio_submit)
2778{
2779 int ret = 0;
2780 struct bio *bio;
2781 size_t page_size = min_t(size_t, size, PAGE_SIZE);
2782 sector_t sector = offset >> 9;
2783
2784 ASSERT(bio_ret);
2785
2786 if (*bio_ret) {
2787 bool contig;
2788 bool can_merge = true;
2789
2790 bio = *bio_ret;
2791 if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2792 contig = bio->bi_iter.bi_sector == sector;
2793 else
2794 contig = bio_end_sector(bio) == sector;
2795
2796 if (tree->ops && tree->ops->merge_bio_hook(page, offset,
2797 page_size, bio, bio_flags))
2798 can_merge = false;
2799
2800 if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2801 force_bio_submit ||
2802 bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2803 ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2804 if (ret < 0) {
2805 *bio_ret = NULL;
2806 return ret;
2807 }
2808 bio = NULL;
2809 } else {
2810 if (wbc)
2811 wbc_account_io(wbc, page, page_size);
2812 return 0;
2813 }
2814 }
2815
2816 bio = btrfs_bio_alloc(bdev, offset);
2817 bio_add_page(bio, page, page_size, pg_offset);
2818 bio->bi_end_io = end_io_func;
2819 bio->bi_private = tree;
2820 bio->bi_write_hint = page->mapping->host->i_write_hint;
2821 bio->bi_opf = opf;
2822 if (wbc) {
2823 wbc_init_bio(wbc, bio);
2824 wbc_account_io(wbc, page, page_size);
2825 }
2826
2827 *bio_ret = bio;
2828
2829 return ret;
2830}
2831
2832static void attach_extent_buffer_page(struct extent_buffer *eb,
2833 struct page *page)
2834{
2835 if (!PagePrivate(page)) {
2836 SetPagePrivate(page);
2837 get_page(page);
2838 set_page_private(page, (unsigned long)eb);
2839 } else {
2840 WARN_ON(page->private != (unsigned long)eb);
2841 }
2842}
2843
2844void set_page_extent_mapped(struct page *page)
2845{
2846 if (!PagePrivate(page)) {
2847 SetPagePrivate(page);
2848 get_page(page);
2849 set_page_private(page, EXTENT_PAGE_PRIVATE);
2850 }
2851}
2852
2853static struct extent_map *
2854__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2855 u64 start, u64 len, get_extent_t *get_extent,
2856 struct extent_map **em_cached)
2857{
2858 struct extent_map *em;
2859
2860 if (em_cached && *em_cached) {
2861 em = *em_cached;
2862 if (extent_map_in_tree(em) && start >= em->start &&
2863 start < extent_map_end(em)) {
2864 refcount_inc(&em->refs);
2865 return em;
2866 }
2867
2868 free_extent_map(em);
2869 *em_cached = NULL;
2870 }
2871
2872 em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2873 if (em_cached && !IS_ERR_OR_NULL(em)) {
2874 BUG_ON(*em_cached);
2875 refcount_inc(&em->refs);
2876 *em_cached = em;
2877 }
2878 return em;
2879}
2880/*
2881 * basic readpage implementation. Locked extent state structs are inserted
2882 * into the tree that are removed when the IO is done (by the end_io
2883 * handlers)
2884 * XXX JDM: This needs looking at to ensure proper page locking
2885 * return 0 on success, otherwise return error
2886 */
2887static int __do_readpage(struct extent_io_tree *tree,
2888 struct page *page,
2889 get_extent_t *get_extent,
2890 struct extent_map **em_cached,
2891 struct bio **bio, int mirror_num,
2892 unsigned long *bio_flags, unsigned int read_flags,
2893 u64 *prev_em_start)
2894{
2895 struct inode *inode = page->mapping->host;
2896 u64 start = page_offset(page);
2897 const u64 end = start + PAGE_SIZE - 1;
2898 u64 cur = start;
2899 u64 extent_offset;
2900 u64 last_byte = i_size_read(inode);
2901 u64 block_start;
2902 u64 cur_end;
2903 struct extent_map *em;
2904 struct block_device *bdev;
2905 int ret = 0;
2906 int nr = 0;
2907 size_t pg_offset = 0;
2908 size_t iosize;
2909 size_t disk_io_size;
2910 size_t blocksize = inode->i_sb->s_blocksize;
2911 unsigned long this_bio_flag = 0;
2912
2913 set_page_extent_mapped(page);
2914
2915 if (!PageUptodate(page)) {
2916 if (cleancache_get_page(page) == 0) {
2917 BUG_ON(blocksize != PAGE_SIZE);
2918 unlock_extent(tree, start, end);
2919 goto out;
2920 }
2921 }
2922
2923 if (page->index == last_byte >> PAGE_SHIFT) {
2924 char *userpage;
2925 size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2926
2927 if (zero_offset) {
2928 iosize = PAGE_SIZE - zero_offset;
2929 userpage = kmap_atomic(page);
2930 memset(userpage + zero_offset, 0, iosize);
2931 flush_dcache_page(page);
2932 kunmap_atomic(userpage);
2933 }
2934 }
2935 while (cur <= end) {
2936 bool force_bio_submit = false;
2937 u64 offset;
2938
2939 if (cur >= last_byte) {
2940 char *userpage;
2941 struct extent_state *cached = NULL;
2942
2943 iosize = PAGE_SIZE - pg_offset;
2944 userpage = kmap_atomic(page);
2945 memset(userpage + pg_offset, 0, iosize);
2946 flush_dcache_page(page);
2947 kunmap_atomic(userpage);
2948 set_extent_uptodate(tree, cur, cur + iosize - 1,
2949 &cached, GFP_NOFS);
2950 unlock_extent_cached(tree, cur,
2951 cur + iosize - 1, &cached);
2952 break;
2953 }
2954 em = __get_extent_map(inode, page, pg_offset, cur,
2955 end - cur + 1, get_extent, em_cached);
2956 if (IS_ERR_OR_NULL(em)) {
2957 SetPageError(page);
2958 unlock_extent(tree, cur, end);
2959 break;
2960 }
2961 extent_offset = cur - em->start;
2962 BUG_ON(extent_map_end(em) <= cur);
2963 BUG_ON(end < cur);
2964
2965 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2966 this_bio_flag |= EXTENT_BIO_COMPRESSED;
2967 extent_set_compress_type(&this_bio_flag,
2968 em->compress_type);
2969 }
2970
2971 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2972 cur_end = min(extent_map_end(em) - 1, end);
2973 iosize = ALIGN(iosize, blocksize);
2974 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2975 disk_io_size = em->block_len;
2976 offset = em->block_start;
2977 } else {
2978 offset = em->block_start + extent_offset;
2979 disk_io_size = iosize;
2980 }
2981 bdev = em->bdev;
2982 block_start = em->block_start;
2983 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2984 block_start = EXTENT_MAP_HOLE;
2985
2986 /*
2987 * If we have a file range that points to a compressed extent
2988 * and it's followed by a consecutive file range that points to
2989 * to the same compressed extent (possibly with a different
2990 * offset and/or length, so it either points to the whole extent
2991 * or only part of it), we must make sure we do not submit a
2992 * single bio to populate the pages for the 2 ranges because
2993 * this makes the compressed extent read zero out the pages
2994 * belonging to the 2nd range. Imagine the following scenario:
2995 *
2996 * File layout
2997 * [0 - 8K] [8K - 24K]
2998 * | |
2999 * | |
3000 * points to extent X, points to extent X,
3001 * offset 4K, length of 8K offset 0, length 16K
3002 *
3003 * [extent X, compressed length = 4K uncompressed length = 16K]
3004 *
3005 * If the bio to read the compressed extent covers both ranges,
3006 * it will decompress extent X into the pages belonging to the
3007 * first range and then it will stop, zeroing out the remaining
3008 * pages that belong to the other range that points to extent X.
3009 * So here we make sure we submit 2 bios, one for the first
3010 * range and another one for the third range. Both will target
3011 * the same physical extent from disk, but we can't currently
3012 * make the compressed bio endio callback populate the pages
3013 * for both ranges because each compressed bio is tightly
3014 * coupled with a single extent map, and each range can have
3015 * an extent map with a different offset value relative to the
3016 * uncompressed data of our extent and different lengths. This
3017 * is a corner case so we prioritize correctness over
3018 * non-optimal behavior (submitting 2 bios for the same extent).
3019 */
3020 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3021 prev_em_start && *prev_em_start != (u64)-1 &&
3022 *prev_em_start != em->orig_start)
3023 force_bio_submit = true;
3024
3025 if (prev_em_start)
3026 *prev_em_start = em->orig_start;
3027
3028 free_extent_map(em);
3029 em = NULL;
3030
3031 /* we've found a hole, just zero and go on */
3032 if (block_start == EXTENT_MAP_HOLE) {
3033 char *userpage;
3034 struct extent_state *cached = NULL;
3035
3036 userpage = kmap_atomic(page);
3037 memset(userpage + pg_offset, 0, iosize);
3038 flush_dcache_page(page);
3039 kunmap_atomic(userpage);
3040
3041 set_extent_uptodate(tree, cur, cur + iosize - 1,
3042 &cached, GFP_NOFS);
3043 unlock_extent_cached(tree, cur,
3044 cur + iosize - 1, &cached);
3045 cur = cur + iosize;
3046 pg_offset += iosize;
3047 continue;
3048 }
3049 /* the get_extent function already copied into the page */
3050 if (test_range_bit(tree, cur, cur_end,
3051 EXTENT_UPTODATE, 1, NULL)) {
3052 check_page_uptodate(tree, page);
3053 unlock_extent(tree, cur, cur + iosize - 1);
3054 cur = cur + iosize;
3055 pg_offset += iosize;
3056 continue;
3057 }
3058 /* we have an inline extent but it didn't get marked up
3059 * to date. Error out
3060 */
3061 if (block_start == EXTENT_MAP_INLINE) {
3062 SetPageError(page);
3063 unlock_extent(tree, cur, cur + iosize - 1);
3064 cur = cur + iosize;
3065 pg_offset += iosize;
3066 continue;
3067 }
3068
3069 ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3070 page, offset, disk_io_size,
3071 pg_offset, bdev, bio,
3072 end_bio_extent_readpage, mirror_num,
3073 *bio_flags,
3074 this_bio_flag,
3075 force_bio_submit);
3076 if (!ret) {
3077 nr++;
3078 *bio_flags = this_bio_flag;
3079 } else {
3080 SetPageError(page);
3081 unlock_extent(tree, cur, cur + iosize - 1);
3082 goto out;
3083 }
3084 cur = cur + iosize;
3085 pg_offset += iosize;
3086 }
3087out:
3088 if (!nr) {
3089 if (!PageError(page))
3090 SetPageUptodate(page);
3091 unlock_page(page);
3092 }
3093 return ret;
3094}
3095
3096static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3097 struct page *pages[], int nr_pages,
3098 u64 start, u64 end,
3099 struct extent_map **em_cached,
3100 struct bio **bio,
3101 unsigned long *bio_flags,
3102 u64 *prev_em_start)
3103{
3104 struct inode *inode;
3105 struct btrfs_ordered_extent *ordered;
3106 int index;
3107
3108 inode = pages[0]->mapping->host;
3109 while (1) {
3110 lock_extent(tree, start, end);
3111 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3112 end - start + 1);
3113 if (!ordered)
3114 break;
3115 unlock_extent(tree, start, end);
3116 btrfs_start_ordered_extent(inode, ordered, 1);
3117 btrfs_put_ordered_extent(ordered);
3118 }
3119
3120 for (index = 0; index < nr_pages; index++) {
3121 __do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3122 bio, 0, bio_flags, 0, prev_em_start);
3123 put_page(pages[index]);
3124 }
3125}
3126
3127static void __extent_readpages(struct extent_io_tree *tree,
3128 struct page *pages[],
3129 int nr_pages,
3130 struct extent_map **em_cached,
3131 struct bio **bio, unsigned long *bio_flags,
3132 u64 *prev_em_start)
3133{
3134 u64 start = 0;
3135 u64 end = 0;
3136 u64 page_start;
3137 int index;
3138 int first_index = 0;
3139
3140 for (index = 0; index < nr_pages; index++) {
3141 page_start = page_offset(pages[index]);
3142 if (!end) {
3143 start = page_start;
3144 end = start + PAGE_SIZE - 1;
3145 first_index = index;
3146 } else if (end + 1 == page_start) {
3147 end += PAGE_SIZE;
3148 } else {
3149 __do_contiguous_readpages(tree, &pages[first_index],
3150 index - first_index, start,
3151 end, em_cached,
3152 bio, bio_flags,
3153 prev_em_start);
3154 start = page_start;
3155 end = start + PAGE_SIZE - 1;
3156 first_index = index;
3157 }
3158 }
3159
3160 if (end)
3161 __do_contiguous_readpages(tree, &pages[first_index],
3162 index - first_index, start,
3163 end, em_cached, bio,
3164 bio_flags, prev_em_start);
3165}
3166
3167static int __extent_read_full_page(struct extent_io_tree *tree,
3168 struct page *page,
3169 get_extent_t *get_extent,
3170 struct bio **bio, int mirror_num,
3171 unsigned long *bio_flags,
3172 unsigned int read_flags)
3173{
3174 struct inode *inode = page->mapping->host;
3175 struct btrfs_ordered_extent *ordered;
3176 u64 start = page_offset(page);
3177 u64 end = start + PAGE_SIZE - 1;
3178 int ret;
3179
3180 while (1) {
3181 lock_extent(tree, start, end);
3182 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3183 PAGE_SIZE);
3184 if (!ordered)
3185 break;
3186 unlock_extent(tree, start, end);
3187 btrfs_start_ordered_extent(inode, ordered, 1);
3188 btrfs_put_ordered_extent(ordered);
3189 }
3190
3191 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3192 bio_flags, read_flags, NULL);
3193 return ret;
3194}
3195
3196int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3197 get_extent_t *get_extent, int mirror_num)
3198{
3199 struct bio *bio = NULL;
3200 unsigned long bio_flags = 0;
3201 int ret;
3202
3203 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3204 &bio_flags, 0);
3205 if (bio)
3206 ret = submit_one_bio(bio, mirror_num, bio_flags);
3207 return ret;
3208}
3209
3210static void update_nr_written(struct writeback_control *wbc,
3211 unsigned long nr_written)
3212{
3213 wbc->nr_to_write -= nr_written;
3214}
3215
3216/*
3217 * helper for __extent_writepage, doing all of the delayed allocation setup.
3218 *
3219 * This returns 1 if our fill_delalloc function did all the work required
3220 * to write the page (copy into inline extent). In this case the IO has
3221 * been started and the page is already unlocked.
3222 *
3223 * This returns 0 if all went well (page still locked)
3224 * This returns < 0 if there were errors (page still locked)
3225 */
3226static noinline_for_stack int writepage_delalloc(struct inode *inode,
3227 struct page *page, struct writeback_control *wbc,
3228 struct extent_page_data *epd,
3229 u64 delalloc_start,
3230 unsigned long *nr_written)
3231{
3232 struct extent_io_tree *tree = epd->tree;
3233 u64 page_end = delalloc_start + PAGE_SIZE - 1;
3234 u64 nr_delalloc;
3235 u64 delalloc_to_write = 0;
3236 u64 delalloc_end = 0;
3237 int ret;
3238 int page_started = 0;
3239
3240 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3241 return 0;
3242
3243 while (delalloc_end < page_end) {
3244 nr_delalloc = find_lock_delalloc_range(inode, tree,
3245 page,
3246 &delalloc_start,
3247 &delalloc_end,
3248 BTRFS_MAX_EXTENT_SIZE);
3249 if (nr_delalloc == 0) {
3250 delalloc_start = delalloc_end + 1;
3251 continue;
3252 }
3253 ret = tree->ops->fill_delalloc(inode, page,
3254 delalloc_start,
3255 delalloc_end,
3256 &page_started,
3257 nr_written, wbc);
3258 /* File system has been set read-only */
3259 if (ret) {
3260 SetPageError(page);
3261 /* fill_delalloc should be return < 0 for error
3262 * but just in case, we use > 0 here meaning the
3263 * IO is started, so we don't want to return > 0
3264 * unless things are going well.
3265 */
3266 ret = ret < 0 ? ret : -EIO;
3267 goto done;
3268 }
3269 /*
3270 * delalloc_end is already one less than the total length, so
3271 * we don't subtract one from PAGE_SIZE
3272 */
3273 delalloc_to_write += (delalloc_end - delalloc_start +
3274 PAGE_SIZE) >> PAGE_SHIFT;
3275 delalloc_start = delalloc_end + 1;
3276 }
3277 if (wbc->nr_to_write < delalloc_to_write) {
3278 int thresh = 8192;
3279
3280 if (delalloc_to_write < thresh * 2)
3281 thresh = delalloc_to_write;
3282 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3283 thresh);
3284 }
3285
3286 /* did the fill delalloc function already unlock and start
3287 * the IO?
3288 */
3289 if (page_started) {
3290 /*
3291 * we've unlocked the page, so we can't update
3292 * the mapping's writeback index, just update
3293 * nr_to_write.
3294 */
3295 wbc->nr_to_write -= *nr_written;
3296 return 1;
3297 }
3298
3299 ret = 0;
3300
3301done:
3302 return ret;
3303}
3304
3305/*
3306 * helper for __extent_writepage. This calls the writepage start hooks,
3307 * and does the loop to map the page into extents and bios.
3308 *
3309 * We return 1 if the IO is started and the page is unlocked,
3310 * 0 if all went well (page still locked)
3311 * < 0 if there were errors (page still locked)
3312 */
3313static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3314 struct page *page,
3315 struct writeback_control *wbc,
3316 struct extent_page_data *epd,
3317 loff_t i_size,
3318 unsigned long nr_written,
3319 unsigned int write_flags, int *nr_ret)
3320{
3321 struct extent_io_tree *tree = epd->tree;
3322 u64 start = page_offset(page);
3323 u64 page_end = start + PAGE_SIZE - 1;
3324 u64 end;
3325 u64 cur = start;
3326 u64 extent_offset;
3327 u64 block_start;
3328 u64 iosize;
3329 struct extent_map *em;
3330 struct block_device *bdev;
3331 size_t pg_offset = 0;
3332 size_t blocksize;
3333 int ret = 0;
3334 int nr = 0;
3335 bool compressed;
3336
3337 if (tree->ops && tree->ops->writepage_start_hook) {
3338 ret = tree->ops->writepage_start_hook(page, start,
3339 page_end);
3340 if (ret) {
3341 /* Fixup worker will requeue */
3342 if (ret == -EBUSY)
3343 wbc->pages_skipped++;
3344 else
3345 redirty_page_for_writepage(wbc, page);
3346
3347 update_nr_written(wbc, nr_written);
3348 unlock_page(page);
3349 return 1;
3350 }
3351 }
3352
3353 /*
3354 * we don't want to touch the inode after unlocking the page,
3355 * so we update the mapping writeback index now
3356 */
3357 update_nr_written(wbc, nr_written + 1);
3358
3359 end = page_end;
3360 if (i_size <= start) {
3361 if (tree->ops && tree->ops->writepage_end_io_hook)
3362 tree->ops->writepage_end_io_hook(page, start,
3363 page_end, NULL, 1);
3364 goto done;
3365 }
3366
3367 blocksize = inode->i_sb->s_blocksize;
3368
3369 while (cur <= end) {
3370 u64 em_end;
3371 u64 offset;
3372
3373 if (cur >= i_size) {
3374 if (tree->ops && tree->ops->writepage_end_io_hook)
3375 tree->ops->writepage_end_io_hook(page, cur,
3376 page_end, NULL, 1);
3377 break;
3378 }
3379 em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3380 end - cur + 1, 1);
3381 if (IS_ERR_OR_NULL(em)) {
3382 SetPageError(page);
3383 ret = PTR_ERR_OR_ZERO(em);
3384 break;
3385 }
3386
3387 extent_offset = cur - em->start;
3388 em_end = extent_map_end(em);
3389 BUG_ON(em_end <= cur);
3390 BUG_ON(end < cur);
3391 iosize = min(em_end - cur, end - cur + 1);
3392 iosize = ALIGN(iosize, blocksize);
3393 offset = em->block_start + extent_offset;
3394 bdev = em->bdev;
3395 block_start = em->block_start;
3396 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3397 free_extent_map(em);
3398 em = NULL;
3399
3400 /*
3401 * compressed and inline extents are written through other
3402 * paths in the FS
3403 */
3404 if (compressed || block_start == EXTENT_MAP_HOLE ||
3405 block_start == EXTENT_MAP_INLINE) {
3406 /*
3407 * end_io notification does not happen here for
3408 * compressed extents
3409 */
3410 if (!compressed && tree->ops &&
3411 tree->ops->writepage_end_io_hook)
3412 tree->ops->writepage_end_io_hook(page, cur,
3413 cur + iosize - 1,
3414 NULL, 1);
3415 else if (compressed) {
3416 /* we don't want to end_page_writeback on
3417 * a compressed extent. this happens
3418 * elsewhere
3419 */
3420 nr++;
3421 }
3422
3423 cur += iosize;
3424 pg_offset += iosize;
3425 continue;
3426 }
3427
3428 set_range_writeback(tree, cur, cur + iosize - 1);
3429 if (!PageWriteback(page)) {
3430 btrfs_err(BTRFS_I(inode)->root->fs_info,
3431 "page %lu not writeback, cur %llu end %llu",
3432 page->index, cur, end);
3433 }
3434
3435 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3436 page, offset, iosize, pg_offset,
3437 bdev, &epd->bio,
3438 end_bio_extent_writepage,
3439 0, 0, 0, false);
3440 if (ret) {
3441 SetPageError(page);
3442 if (PageWriteback(page))
3443 end_page_writeback(page);
3444 }
3445
3446 cur = cur + iosize;
3447 pg_offset += iosize;
3448 nr++;
3449 }
3450done:
3451 *nr_ret = nr;
3452 return ret;
3453}
3454
3455/*
3456 * the writepage semantics are similar to regular writepage. extent
3457 * records are inserted to lock ranges in the tree, and as dirty areas
3458 * are found, they are marked writeback. Then the lock bits are removed
3459 * and the end_io handler clears the writeback ranges
3460 */
3461static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3462 struct extent_page_data *epd)
3463{
3464 struct inode *inode = page->mapping->host;
3465 u64 start = page_offset(page);
3466 u64 page_end = start + PAGE_SIZE - 1;
3467 int ret;
3468 int nr = 0;
3469 size_t pg_offset = 0;
3470 loff_t i_size = i_size_read(inode);
3471 unsigned long end_index = i_size >> PAGE_SHIFT;
3472 unsigned int write_flags = 0;
3473 unsigned long nr_written = 0;
3474
3475 write_flags = wbc_to_write_flags(wbc);
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
3483 pg_offset = i_size & (PAGE_SIZE - 1);
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
3496 PAGE_SIZE - pg_offset);
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
3516done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
3526 unlock_page(page);
3527 return ret;
3528
3529done_unlocked:
3530 return 0;
3531}
3532
3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3534{
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
3537}
3538
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
3543{
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
3567 btrfs_tree_unlock(eb);
3568 }
3569 }
3570
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3579 spin_unlock(&eb->refs_lock);
3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3581 percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
3584 ret = 1;
3585 } else {
3586 spin_unlock(&eb->refs_lock);
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
3596 struct page *p = eb->pages[i];
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3613 smp_mb__after_atomic();
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
3617static void set_btree_ioerr(struct page *page)
3618{
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620
3621 SetPageError(page);
3622 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3623 return;
3624
3625 /*
3626 * If writeback for a btree extent that doesn't belong to a log tree
3627 * failed, increment the counter transaction->eb_write_errors.
3628 * We do this because while the transaction is running and before it's
3629 * committing (when we call filemap_fdata[write|wait]_range against
3630 * the btree inode), we might have
3631 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3632 * returns an error or an error happens during writeback, when we're
3633 * committing the transaction we wouldn't know about it, since the pages
3634 * can be no longer dirty nor marked anymore for writeback (if a
3635 * subsequent modification to the extent buffer didn't happen before the
3636 * transaction commit), which makes filemap_fdata[write|wait]_range not
3637 * able to find the pages tagged with SetPageError at transaction
3638 * commit time. So if this happens we must abort the transaction,
3639 * otherwise we commit a super block with btree roots that point to
3640 * btree nodes/leafs whose content on disk is invalid - either garbage
3641 * or the content of some node/leaf from a past generation that got
3642 * cowed or deleted and is no longer valid.
3643 *
3644 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3645 * not be enough - we need to distinguish between log tree extents vs
3646 * non-log tree extents, and the next filemap_fdatawait_range() call
3647 * will catch and clear such errors in the mapping - and that call might
3648 * be from a log sync and not from a transaction commit. Also, checking
3649 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3650 * not done and would not be reliable - the eb might have been released
3651 * from memory and reading it back again means that flag would not be
3652 * set (since it's a runtime flag, not persisted on disk).
3653 *
3654 * Using the flags below in the btree inode also makes us achieve the
3655 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3656 * writeback for all dirty pages and before filemap_fdatawait_range()
3657 * is called, the writeback for all dirty pages had already finished
3658 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3659 * filemap_fdatawait_range() would return success, as it could not know
3660 * that writeback errors happened (the pages were no longer tagged for
3661 * writeback).
3662 */
3663 switch (eb->log_index) {
3664 case -1:
3665 set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3666 break;
3667 case 0:
3668 set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3669 break;
3670 case 1:
3671 set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3672 break;
3673 default:
3674 BUG(); /* unexpected, logic error */
3675 }
3676}
3677
3678static void end_bio_extent_buffer_writepage(struct bio *bio)
3679{
3680 struct bio_vec *bvec;
3681 struct extent_buffer *eb;
3682 int i, done;
3683
3684 ASSERT(!bio_flagged(bio, BIO_CLONED));
3685 bio_for_each_segment_all(bvec, bio, i) {
3686 struct page *page = bvec->bv_page;
3687
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
3692 if (bio->bi_status ||
3693 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3694 ClearPageUptodate(page);
3695 set_btree_ioerr(page);
3696 }
3697
3698 end_page_writeback(page);
3699
3700 if (!done)
3701 continue;
3702
3703 end_extent_buffer_writeback(eb);
3704 }
3705
3706 bio_put(bio);
3707}
3708
3709static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3710 struct btrfs_fs_info *fs_info,
3711 struct writeback_control *wbc,
3712 struct extent_page_data *epd)
3713{
3714 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3715 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3716 u64 offset = eb->start;
3717 u32 nritems;
3718 unsigned long i, num_pages;
3719 unsigned long start, end;
3720 unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3721 int ret = 0;
3722
3723 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3724 num_pages = num_extent_pages(eb->start, eb->len);
3725 atomic_set(&eb->io_pages, num_pages);
3726
3727 /* set btree blocks beyond nritems with 0 to avoid stale content. */
3728 nritems = btrfs_header_nritems(eb);
3729 if (btrfs_header_level(eb) > 0) {
3730 end = btrfs_node_key_ptr_offset(nritems);
3731
3732 memzero_extent_buffer(eb, end, eb->len - end);
3733 } else {
3734 /*
3735 * leaf:
3736 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3737 */
3738 start = btrfs_item_nr_offset(nritems);
3739 end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3740 memzero_extent_buffer(eb, start, end - start);
3741 }
3742
3743 for (i = 0; i < num_pages; i++) {
3744 struct page *p = eb->pages[i];
3745
3746 clear_page_dirty_for_io(p);
3747 set_page_writeback(p);
3748 ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3749 p, offset, PAGE_SIZE, 0, bdev,
3750 &epd->bio,
3751 end_bio_extent_buffer_writepage,
3752 0, 0, 0, false);
3753 if (ret) {
3754 set_btree_ioerr(p);
3755 if (PageWriteback(p))
3756 end_page_writeback(p);
3757 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3758 end_extent_buffer_writeback(eb);
3759 ret = -EIO;
3760 break;
3761 }
3762 offset += PAGE_SIZE;
3763 update_nr_written(wbc, 1);
3764 unlock_page(p);
3765 }
3766
3767 if (unlikely(ret)) {
3768 for (; i < num_pages; i++) {
3769 struct page *p = eb->pages[i];
3770 clear_page_dirty_for_io(p);
3771 unlock_page(p);
3772 }
3773 }
3774
3775 return ret;
3776}
3777
3778int btree_write_cache_pages(struct address_space *mapping,
3779 struct writeback_control *wbc)
3780{
3781 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3782 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3783 struct extent_buffer *eb, *prev_eb = NULL;
3784 struct extent_page_data epd = {
3785 .bio = NULL,
3786 .tree = tree,
3787 .extent_locked = 0,
3788 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3789 };
3790 int ret = 0;
3791 int done = 0;
3792 int nr_to_write_done = 0;
3793 struct pagevec pvec;
3794 int nr_pages;
3795 pgoff_t index;
3796 pgoff_t end; /* Inclusive */
3797 int scanned = 0;
3798 int tag;
3799
3800 pagevec_init(&pvec);
3801 if (wbc->range_cyclic) {
3802 index = mapping->writeback_index; /* Start from prev offset */
3803 end = -1;
3804 } else {
3805 index = wbc->range_start >> PAGE_SHIFT;
3806 end = wbc->range_end >> PAGE_SHIFT;
3807 scanned = 1;
3808 }
3809 if (wbc->sync_mode == WB_SYNC_ALL)
3810 tag = PAGECACHE_TAG_TOWRITE;
3811 else
3812 tag = PAGECACHE_TAG_DIRTY;
3813retry:
3814 if (wbc->sync_mode == WB_SYNC_ALL)
3815 tag_pages_for_writeback(mapping, index, end);
3816 while (!done && !nr_to_write_done && (index <= end) &&
3817 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3818 tag))) {
3819 unsigned i;
3820
3821 scanned = 1;
3822 for (i = 0; i < nr_pages; i++) {
3823 struct page *page = pvec.pages[i];
3824
3825 if (!PagePrivate(page))
3826 continue;
3827
3828 spin_lock(&mapping->private_lock);
3829 if (!PagePrivate(page)) {
3830 spin_unlock(&mapping->private_lock);
3831 continue;
3832 }
3833
3834 eb = (struct extent_buffer *)page->private;
3835
3836 /*
3837 * Shouldn't happen and normally this would be a BUG_ON
3838 * but no sense in crashing the users box for something
3839 * we can survive anyway.
3840 */
3841 if (WARN_ON(!eb)) {
3842 spin_unlock(&mapping->private_lock);
3843 continue;
3844 }
3845
3846 if (eb == prev_eb) {
3847 spin_unlock(&mapping->private_lock);
3848 continue;
3849 }
3850
3851 ret = atomic_inc_not_zero(&eb->refs);
3852 spin_unlock(&mapping->private_lock);
3853 if (!ret)
3854 continue;
3855
3856 prev_eb = eb;
3857 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3858 if (!ret) {
3859 free_extent_buffer(eb);
3860 continue;
3861 }
3862
3863 ret = write_one_eb(eb, fs_info, wbc, &epd);
3864 if (ret) {
3865 done = 1;
3866 free_extent_buffer(eb);
3867 break;
3868 }
3869 free_extent_buffer(eb);
3870
3871 /*
3872 * the filesystem may choose to bump up nr_to_write.
3873 * We have to make sure to honor the new nr_to_write
3874 * at any time
3875 */
3876 nr_to_write_done = wbc->nr_to_write <= 0;
3877 }
3878 pagevec_release(&pvec);
3879 cond_resched();
3880 }
3881 if (!scanned && !done) {
3882 /*
3883 * We hit the last page and there is more work to be done: wrap
3884 * back to the start of the file
3885 */
3886 scanned = 1;
3887 index = 0;
3888 goto retry;
3889 }
3890 flush_write_bio(&epd);
3891 return ret;
3892}
3893
3894/**
3895 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3896 * @mapping: address space structure to write
3897 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3898 * @data: data passed to __extent_writepage function
3899 *
3900 * If a page is already under I/O, write_cache_pages() skips it, even
3901 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3902 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3903 * and msync() need to guarantee that all the data which was dirty at the time
3904 * the call was made get new I/O started against them. If wbc->sync_mode is
3905 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3906 * existing IO to complete.
3907 */
3908static int extent_write_cache_pages(struct address_space *mapping,
3909 struct writeback_control *wbc,
3910 struct extent_page_data *epd)
3911{
3912 struct inode *inode = mapping->host;
3913 int ret = 0;
3914 int done = 0;
3915 int nr_to_write_done = 0;
3916 struct pagevec pvec;
3917 int nr_pages;
3918 pgoff_t index;
3919 pgoff_t end; /* Inclusive */
3920 pgoff_t done_index;
3921 int range_whole = 0;
3922 int scanned = 0;
3923 int tag;
3924
3925 /*
3926 * We have to hold onto the inode so that ordered extents can do their
3927 * work when the IO finishes. The alternative to this is failing to add
3928 * an ordered extent if the igrab() fails there and that is a huge pain
3929 * to deal with, so instead just hold onto the inode throughout the
3930 * writepages operation. If it fails here we are freeing up the inode
3931 * anyway and we'd rather not waste our time writing out stuff that is
3932 * going to be truncated anyway.
3933 */
3934 if (!igrab(inode))
3935 return 0;
3936
3937 pagevec_init(&pvec);
3938 if (wbc->range_cyclic) {
3939 index = mapping->writeback_index; /* Start from prev offset */
3940 end = -1;
3941 } else {
3942 index = wbc->range_start >> PAGE_SHIFT;
3943 end = wbc->range_end >> PAGE_SHIFT;
3944 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3945 range_whole = 1;
3946 scanned = 1;
3947 }
3948 if (wbc->sync_mode == WB_SYNC_ALL)
3949 tag = PAGECACHE_TAG_TOWRITE;
3950 else
3951 tag = PAGECACHE_TAG_DIRTY;
3952retry:
3953 if (wbc->sync_mode == WB_SYNC_ALL)
3954 tag_pages_for_writeback(mapping, index, end);
3955 done_index = index;
3956 while (!done && !nr_to_write_done && (index <= end) &&
3957 (nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3958 &index, end, tag))) {
3959 unsigned i;
3960
3961 scanned = 1;
3962 for (i = 0; i < nr_pages; i++) {
3963 struct page *page = pvec.pages[i];
3964
3965 done_index = page->index;
3966 /*
3967 * At this point we hold neither the i_pages lock nor
3968 * the page lock: the page may be truncated or
3969 * invalidated (changing page->mapping to NULL),
3970 * or even swizzled back from swapper_space to
3971 * tmpfs file mapping
3972 */
3973 if (!trylock_page(page)) {
3974 flush_write_bio(epd);
3975 lock_page(page);
3976 }
3977
3978 if (unlikely(page->mapping != mapping)) {
3979 unlock_page(page);
3980 continue;
3981 }
3982
3983 if (wbc->sync_mode != WB_SYNC_NONE) {
3984 if (PageWriteback(page))
3985 flush_write_bio(epd);
3986 wait_on_page_writeback(page);
3987 }
3988
3989 if (PageWriteback(page) ||
3990 !clear_page_dirty_for_io(page)) {
3991 unlock_page(page);
3992 continue;
3993 }
3994
3995 ret = __extent_writepage(page, wbc, epd);
3996
3997 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3998 unlock_page(page);
3999 ret = 0;
4000 }
4001 if (ret < 0) {
4002 /*
4003 * done_index is set past this page,
4004 * so media errors will not choke
4005 * background writeout for the entire
4006 * file. This has consequences for
4007 * range_cyclic semantics (ie. it may
4008 * not be suitable for data integrity
4009 * writeout).
4010 */
4011 done_index = page->index + 1;
4012 done = 1;
4013 break;
4014 }
4015
4016 /*
4017 * the filesystem may choose to bump up nr_to_write.
4018 * We have to make sure to honor the new nr_to_write
4019 * at any time
4020 */
4021 nr_to_write_done = wbc->nr_to_write <= 0;
4022 }
4023 pagevec_release(&pvec);
4024 cond_resched();
4025 }
4026 if (!scanned && !done) {
4027 /*
4028 * We hit the last page and there is more work to be done: wrap
4029 * back to the start of the file
4030 */
4031 scanned = 1;
4032 index = 0;
4033 goto retry;
4034 }
4035
4036 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4037 mapping->writeback_index = done_index;
4038
4039 btrfs_add_delayed_iput(inode);
4040 return ret;
4041}
4042
4043static void flush_write_bio(struct extent_page_data *epd)
4044{
4045 if (epd->bio) {
4046 int ret;
4047
4048 ret = submit_one_bio(epd->bio, 0, 0);
4049 BUG_ON(ret < 0); /* -ENOMEM */
4050 epd->bio = NULL;
4051 }
4052}
4053
4054int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4055{
4056 int ret;
4057 struct extent_page_data epd = {
4058 .bio = NULL,
4059 .tree = &BTRFS_I(page->mapping->host)->io_tree,
4060 .extent_locked = 0,
4061 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4062 };
4063
4064 ret = __extent_writepage(page, wbc, &epd);
4065
4066 flush_write_bio(&epd);
4067 return ret;
4068}
4069
4070int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4071 int mode)
4072{
4073 int ret = 0;
4074 struct address_space *mapping = inode->i_mapping;
4075 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4076 struct page *page;
4077 unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4078 PAGE_SHIFT;
4079
4080 struct extent_page_data epd = {
4081 .bio = NULL,
4082 .tree = tree,
4083 .extent_locked = 1,
4084 .sync_io = mode == WB_SYNC_ALL,
4085 };
4086 struct writeback_control wbc_writepages = {
4087 .sync_mode = mode,
4088 .nr_to_write = nr_pages * 2,
4089 .range_start = start,
4090 .range_end = end + 1,
4091 };
4092
4093 while (start <= end) {
4094 page = find_get_page(mapping, start >> PAGE_SHIFT);
4095 if (clear_page_dirty_for_io(page))
4096 ret = __extent_writepage(page, &wbc_writepages, &epd);
4097 else {
4098 if (tree->ops && tree->ops->writepage_end_io_hook)
4099 tree->ops->writepage_end_io_hook(page, start,
4100 start + PAGE_SIZE - 1,
4101 NULL, 1);
4102 unlock_page(page);
4103 }
4104 put_page(page);
4105 start += PAGE_SIZE;
4106 }
4107
4108 flush_write_bio(&epd);
4109 return ret;
4110}
4111
4112int extent_writepages(struct extent_io_tree *tree,
4113 struct address_space *mapping,
4114 struct writeback_control *wbc)
4115{
4116 int ret = 0;
4117 struct extent_page_data epd = {
4118 .bio = NULL,
4119 .tree = tree,
4120 .extent_locked = 0,
4121 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
4122 };
4123
4124 ret = extent_write_cache_pages(mapping, wbc, &epd);
4125 flush_write_bio(&epd);
4126 return ret;
4127}
4128
4129int extent_readpages(struct extent_io_tree *tree,
4130 struct address_space *mapping,
4131 struct list_head *pages, unsigned nr_pages)
4132{
4133 struct bio *bio = NULL;
4134 unsigned page_idx;
4135 unsigned long bio_flags = 0;
4136 struct page *pagepool[16];
4137 struct page *page;
4138 struct extent_map *em_cached = NULL;
4139 int nr = 0;
4140 u64 prev_em_start = (u64)-1;
4141
4142 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4143 page = list_entry(pages->prev, struct page, lru);
4144
4145 prefetchw(&page->flags);
4146 list_del(&page->lru);
4147 if (add_to_page_cache_lru(page, mapping,
4148 page->index,
4149 readahead_gfp_mask(mapping))) {
4150 put_page(page);
4151 continue;
4152 }
4153
4154 pagepool[nr++] = page;
4155 if (nr < ARRAY_SIZE(pagepool))
4156 continue;
4157 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4158 &bio_flags, &prev_em_start);
4159 nr = 0;
4160 }
4161 if (nr)
4162 __extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4163 &bio_flags, &prev_em_start);
4164
4165 if (em_cached)
4166 free_extent_map(em_cached);
4167
4168 BUG_ON(!list_empty(pages));
4169 if (bio)
4170 return submit_one_bio(bio, 0, bio_flags);
4171 return 0;
4172}
4173
4174/*
4175 * basic invalidatepage code, this waits on any locked or writeback
4176 * ranges corresponding to the page, and then deletes any extent state
4177 * records from the tree
4178 */
4179int extent_invalidatepage(struct extent_io_tree *tree,
4180 struct page *page, unsigned long offset)
4181{
4182 struct extent_state *cached_state = NULL;
4183 u64 start = page_offset(page);
4184 u64 end = start + PAGE_SIZE - 1;
4185 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4186
4187 start += ALIGN(offset, blocksize);
4188 if (start > end)
4189 return 0;
4190
4191 lock_extent_bits(tree, start, end, &cached_state);
4192 wait_on_page_writeback(page);
4193 clear_extent_bit(tree, start, end,
4194 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4195 EXTENT_DO_ACCOUNTING,
4196 1, 1, &cached_state);
4197 return 0;
4198}
4199
4200/*
4201 * a helper for releasepage, this tests for areas of the page that
4202 * are locked or under IO and drops the related state bits if it is safe
4203 * to drop the page.
4204 */
4205static int try_release_extent_state(struct extent_map_tree *map,
4206 struct extent_io_tree *tree,
4207 struct page *page, gfp_t mask)
4208{
4209 u64 start = page_offset(page);
4210 u64 end = start + PAGE_SIZE - 1;
4211 int ret = 1;
4212
4213 if (test_range_bit(tree, start, end,
4214 EXTENT_IOBITS, 0, NULL))
4215 ret = 0;
4216 else {
4217 /*
4218 * at this point we can safely clear everything except the
4219 * locked bit and the nodatasum bit
4220 */
4221 ret = __clear_extent_bit(tree, start, end,
4222 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4223 0, 0, NULL, mask, NULL);
4224
4225 /* if clear_extent_bit failed for enomem reasons,
4226 * we can't allow the release to continue.
4227 */
4228 if (ret < 0)
4229 ret = 0;
4230 else
4231 ret = 1;
4232 }
4233 return ret;
4234}
4235
4236/*
4237 * a helper for releasepage. As long as there are no locked extents
4238 * in the range corresponding to the page, both state records and extent
4239 * map records are removed
4240 */
4241int try_release_extent_mapping(struct extent_map_tree *map,
4242 struct extent_io_tree *tree, struct page *page,
4243 gfp_t mask)
4244{
4245 struct extent_map *em;
4246 u64 start = page_offset(page);
4247 u64 end = start + PAGE_SIZE - 1;
4248
4249 if (gfpflags_allow_blocking(mask) &&
4250 page->mapping->host->i_size > SZ_16M) {
4251 u64 len;
4252 while (start <= end) {
4253 len = end - start + 1;
4254 write_lock(&map->lock);
4255 em = lookup_extent_mapping(map, start, len);
4256 if (!em) {
4257 write_unlock(&map->lock);
4258 break;
4259 }
4260 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4261 em->start != start) {
4262 write_unlock(&map->lock);
4263 free_extent_map(em);
4264 break;
4265 }
4266 if (!test_range_bit(tree, em->start,
4267 extent_map_end(em) - 1,
4268 EXTENT_LOCKED | EXTENT_WRITEBACK,
4269 0, NULL)) {
4270 remove_extent_mapping(map, em);
4271 /* once for the rb tree */
4272 free_extent_map(em);
4273 }
4274 start = extent_map_end(em);
4275 write_unlock(&map->lock);
4276
4277 /* once for us */
4278 free_extent_map(em);
4279 }
4280 }
4281 return try_release_extent_state(map, tree, page, mask);
4282}
4283
4284/*
4285 * helper function for fiemap, which doesn't want to see any holes.
4286 * This maps until we find something past 'last'
4287 */
4288static struct extent_map *get_extent_skip_holes(struct inode *inode,
4289 u64 offset, u64 last)
4290{
4291 u64 sectorsize = btrfs_inode_sectorsize(inode);
4292 struct extent_map *em;
4293 u64 len;
4294
4295 if (offset >= last)
4296 return NULL;
4297
4298 while (1) {
4299 len = last - offset;
4300 if (len == 0)
4301 break;
4302 len = ALIGN(len, sectorsize);
4303 em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4304 len, 0);
4305 if (IS_ERR_OR_NULL(em))
4306 return em;
4307
4308 /* if this isn't a hole return it */
4309 if (em->block_start != EXTENT_MAP_HOLE)
4310 return em;
4311
4312 /* this is a hole, advance to the next extent */
4313 offset = extent_map_end(em);
4314 free_extent_map(em);
4315 if (offset >= last)
4316 break;
4317 }
4318 return NULL;
4319}
4320
4321/*
4322 * To cache previous fiemap extent
4323 *
4324 * Will be used for merging fiemap extent
4325 */
4326struct fiemap_cache {
4327 u64 offset;
4328 u64 phys;
4329 u64 len;
4330 u32 flags;
4331 bool cached;
4332};
4333
4334/*
4335 * Helper to submit fiemap extent.
4336 *
4337 * Will try to merge current fiemap extent specified by @offset, @phys,
4338 * @len and @flags with cached one.
4339 * And only when we fails to merge, cached one will be submitted as
4340 * fiemap extent.
4341 *
4342 * Return value is the same as fiemap_fill_next_extent().
4343 */
4344static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4345 struct fiemap_cache *cache,
4346 u64 offset, u64 phys, u64 len, u32 flags)
4347{
4348 int ret = 0;
4349
4350 if (!cache->cached)
4351 goto assign;
4352
4353 /*
4354 * Sanity check, extent_fiemap() should have ensured that new
4355 * fiemap extent won't overlap with cahced one.
4356 * Not recoverable.
4357 *
4358 * NOTE: Physical address can overlap, due to compression
4359 */
4360 if (cache->offset + cache->len > offset) {
4361 WARN_ON(1);
4362 return -EINVAL;
4363 }
4364
4365 /*
4366 * Only merges fiemap extents if
4367 * 1) Their logical addresses are continuous
4368 *
4369 * 2) Their physical addresses are continuous
4370 * So truly compressed (physical size smaller than logical size)
4371 * extents won't get merged with each other
4372 *
4373 * 3) Share same flags except FIEMAP_EXTENT_LAST
4374 * So regular extent won't get merged with prealloc extent
4375 */
4376 if (cache->offset + cache->len == offset &&
4377 cache->phys + cache->len == phys &&
4378 (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4379 (flags & ~FIEMAP_EXTENT_LAST)) {
4380 cache->len += len;
4381 cache->flags |= flags;
4382 goto try_submit_last;
4383 }
4384
4385 /* Not mergeable, need to submit cached one */
4386 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4387 cache->len, cache->flags);
4388 cache->cached = false;
4389 if (ret)
4390 return ret;
4391assign:
4392 cache->cached = true;
4393 cache->offset = offset;
4394 cache->phys = phys;
4395 cache->len = len;
4396 cache->flags = flags;
4397try_submit_last:
4398 if (cache->flags & FIEMAP_EXTENT_LAST) {
4399 ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4400 cache->phys, cache->len, cache->flags);
4401 cache->cached = false;
4402 }
4403 return ret;
4404}
4405
4406/*
4407 * Emit last fiemap cache
4408 *
4409 * The last fiemap cache may still be cached in the following case:
4410 * 0 4k 8k
4411 * |<- Fiemap range ->|
4412 * |<------------ First extent ----------->|
4413 *
4414 * In this case, the first extent range will be cached but not emitted.
4415 * So we must emit it before ending extent_fiemap().
4416 */
4417static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4418 struct fiemap_extent_info *fieinfo,
4419 struct fiemap_cache *cache)
4420{
4421 int ret;
4422
4423 if (!cache->cached)
4424 return 0;
4425
4426 ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4427 cache->len, cache->flags);
4428 cache->cached = false;
4429 if (ret > 0)
4430 ret = 0;
4431 return ret;
4432}
4433
4434int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4435 __u64 start, __u64 len)
4436{
4437 int ret = 0;
4438 u64 off = start;
4439 u64 max = start + len;
4440 u32 flags = 0;
4441 u32 found_type;
4442 u64 last;
4443 u64 last_for_get_extent = 0;
4444 u64 disko = 0;
4445 u64 isize = i_size_read(inode);
4446 struct btrfs_key found_key;
4447 struct extent_map *em = NULL;
4448 struct extent_state *cached_state = NULL;
4449 struct btrfs_path *path;
4450 struct btrfs_root *root = BTRFS_I(inode)->root;
4451 struct fiemap_cache cache = { 0 };
4452 int end = 0;
4453 u64 em_start = 0;
4454 u64 em_len = 0;
4455 u64 em_end = 0;
4456
4457 if (len == 0)
4458 return -EINVAL;
4459
4460 path = btrfs_alloc_path();
4461 if (!path)
4462 return -ENOMEM;
4463 path->leave_spinning = 1;
4464
4465 start = round_down(start, btrfs_inode_sectorsize(inode));
4466 len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4467
4468 /*
4469 * lookup the last file extent. We're not using i_size here
4470 * because there might be preallocation past i_size
4471 */
4472 ret = btrfs_lookup_file_extent(NULL, root, path,
4473 btrfs_ino(BTRFS_I(inode)), -1, 0);
4474 if (ret < 0) {
4475 btrfs_free_path(path);
4476 return ret;
4477 } else {
4478 WARN_ON(!ret);
4479 if (ret == 1)
4480 ret = 0;
4481 }
4482
4483 path->slots[0]--;
4484 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4485 found_type = found_key.type;
4486
4487 /* No extents, but there might be delalloc bits */
4488 if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4489 found_type != BTRFS_EXTENT_DATA_KEY) {
4490 /* have to trust i_size as the end */
4491 last = (u64)-1;
4492 last_for_get_extent = isize;
4493 } else {
4494 /*
4495 * remember the start of the last extent. There are a
4496 * bunch of different factors that go into the length of the
4497 * extent, so its much less complex to remember where it started
4498 */
4499 last = found_key.offset;
4500 last_for_get_extent = last + 1;
4501 }
4502 btrfs_release_path(path);
4503
4504 /*
4505 * we might have some extents allocated but more delalloc past those
4506 * extents. so, we trust isize unless the start of the last extent is
4507 * beyond isize
4508 */
4509 if (last < isize) {
4510 last = (u64)-1;
4511 last_for_get_extent = isize;
4512 }
4513
4514 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4515 &cached_state);
4516
4517 em = get_extent_skip_holes(inode, start, last_for_get_extent);
4518 if (!em)
4519 goto out;
4520 if (IS_ERR(em)) {
4521 ret = PTR_ERR(em);
4522 goto out;
4523 }
4524
4525 while (!end) {
4526 u64 offset_in_extent = 0;
4527
4528 /* break if the extent we found is outside the range */
4529 if (em->start >= max || extent_map_end(em) < off)
4530 break;
4531
4532 /*
4533 * get_extent may return an extent that starts before our
4534 * requested range. We have to make sure the ranges
4535 * we return to fiemap always move forward and don't
4536 * overlap, so adjust the offsets here
4537 */
4538 em_start = max(em->start, off);
4539
4540 /*
4541 * record the offset from the start of the extent
4542 * for adjusting the disk offset below. Only do this if the
4543 * extent isn't compressed since our in ram offset may be past
4544 * what we have actually allocated on disk.
4545 */
4546 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4547 offset_in_extent = em_start - em->start;
4548 em_end = extent_map_end(em);
4549 em_len = em_end - em_start;
4550 disko = 0;
4551 flags = 0;
4552
4553 /*
4554 * bump off for our next call to get_extent
4555 */
4556 off = extent_map_end(em);
4557 if (off >= max)
4558 end = 1;
4559
4560 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4561 end = 1;
4562 flags |= FIEMAP_EXTENT_LAST;
4563 } else if (em->block_start == EXTENT_MAP_INLINE) {
4564 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4565 FIEMAP_EXTENT_NOT_ALIGNED);
4566 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4567 flags |= (FIEMAP_EXTENT_DELALLOC |
4568 FIEMAP_EXTENT_UNKNOWN);
4569 } else if (fieinfo->fi_extents_max) {
4570 u64 bytenr = em->block_start -
4571 (em->start - em->orig_start);
4572
4573 disko = em->block_start + offset_in_extent;
4574
4575 /*
4576 * As btrfs supports shared space, this information
4577 * can be exported to userspace tools via
4578 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4579 * then we're just getting a count and we can skip the
4580 * lookup stuff.
4581 */
4582 ret = btrfs_check_shared(root,
4583 btrfs_ino(BTRFS_I(inode)),
4584 bytenr);
4585 if (ret < 0)
4586 goto out_free;
4587 if (ret)
4588 flags |= FIEMAP_EXTENT_SHARED;
4589 ret = 0;
4590 }
4591 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4592 flags |= FIEMAP_EXTENT_ENCODED;
4593 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4594 flags |= FIEMAP_EXTENT_UNWRITTEN;
4595
4596 free_extent_map(em);
4597 em = NULL;
4598 if ((em_start >= last) || em_len == (u64)-1 ||
4599 (last == (u64)-1 && isize <= em_end)) {
4600 flags |= FIEMAP_EXTENT_LAST;
4601 end = 1;
4602 }
4603
4604 /* now scan forward to see if this is really the last extent. */
4605 em = get_extent_skip_holes(inode, off, last_for_get_extent);
4606 if (IS_ERR(em)) {
4607 ret = PTR_ERR(em);
4608 goto out;
4609 }
4610 if (!em) {
4611 flags |= FIEMAP_EXTENT_LAST;
4612 end = 1;
4613 }
4614 ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4615 em_len, flags);
4616 if (ret) {
4617 if (ret == 1)
4618 ret = 0;
4619 goto out_free;
4620 }
4621 }
4622out_free:
4623 if (!ret)
4624 ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4625 free_extent_map(em);
4626out:
4627 btrfs_free_path(path);
4628 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4629 &cached_state);
4630 return ret;
4631}
4632
4633static void __free_extent_buffer(struct extent_buffer *eb)
4634{
4635 btrfs_leak_debug_del(&eb->leak_list);
4636 kmem_cache_free(extent_buffer_cache, eb);
4637}
4638
4639int extent_buffer_under_io(struct extent_buffer *eb)
4640{
4641 return (atomic_read(&eb->io_pages) ||
4642 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4643 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4644}
4645
4646/*
4647 * Helper for releasing extent buffer page.
4648 */
4649static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
4650{
4651 unsigned long index;
4652 struct page *page;
4653 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4654
4655 BUG_ON(extent_buffer_under_io(eb));
4656
4657 index = num_extent_pages(eb->start, eb->len);
4658 if (index == 0)
4659 return;
4660
4661 do {
4662 index--;
4663 page = eb->pages[index];
4664 if (!page)
4665 continue;
4666 if (mapped)
4667 spin_lock(&page->mapping->private_lock);
4668 /*
4669 * We do this since we'll remove the pages after we've
4670 * removed the eb from the radix tree, so we could race
4671 * and have this page now attached to the new eb. So
4672 * only clear page_private if it's still connected to
4673 * this eb.
4674 */
4675 if (PagePrivate(page) &&
4676 page->private == (unsigned long)eb) {
4677 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4678 BUG_ON(PageDirty(page));
4679 BUG_ON(PageWriteback(page));
4680 /*
4681 * We need to make sure we haven't be attached
4682 * to a new eb.
4683 */
4684 ClearPagePrivate(page);
4685 set_page_private(page, 0);
4686 /* One for the page private */
4687 put_page(page);
4688 }
4689
4690 if (mapped)
4691 spin_unlock(&page->mapping->private_lock);
4692
4693 /* One for when we allocated the page */
4694 put_page(page);
4695 } while (index != 0);
4696}
4697
4698/*
4699 * Helper for releasing the extent buffer.
4700 */
4701static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4702{
4703 btrfs_release_extent_buffer_page(eb);
4704 __free_extent_buffer(eb);
4705}
4706
4707static struct extent_buffer *
4708__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4709 unsigned long len)
4710{
4711 struct extent_buffer *eb = NULL;
4712
4713 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4714 eb->start = start;
4715 eb->len = len;
4716 eb->fs_info = fs_info;
4717 eb->bflags = 0;
4718 rwlock_init(&eb->lock);
4719 atomic_set(&eb->write_locks, 0);
4720 atomic_set(&eb->read_locks, 0);
4721 atomic_set(&eb->blocking_readers, 0);
4722 atomic_set(&eb->blocking_writers, 0);
4723 atomic_set(&eb->spinning_readers, 0);
4724 atomic_set(&eb->spinning_writers, 0);
4725 eb->lock_nested = 0;
4726 init_waitqueue_head(&eb->write_lock_wq);
4727 init_waitqueue_head(&eb->read_lock_wq);
4728
4729 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4730
4731 spin_lock_init(&eb->refs_lock);
4732 atomic_set(&eb->refs, 1);
4733 atomic_set(&eb->io_pages, 0);
4734
4735 /*
4736 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4737 */
4738 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4739 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4740 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4741
4742 return eb;
4743}
4744
4745struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4746{
4747 unsigned long i;
4748 struct page *p;
4749 struct extent_buffer *new;
4750 unsigned long num_pages = num_extent_pages(src->start, src->len);
4751
4752 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4753 if (new == NULL)
4754 return NULL;
4755
4756 for (i = 0; i < num_pages; i++) {
4757 p = alloc_page(GFP_NOFS);
4758 if (!p) {
4759 btrfs_release_extent_buffer(new);
4760 return NULL;
4761 }
4762 attach_extent_buffer_page(new, p);
4763 WARN_ON(PageDirty(p));
4764 SetPageUptodate(p);
4765 new->pages[i] = p;
4766 copy_page(page_address(p), page_address(src->pages[i]));
4767 }
4768
4769 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4770 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4771
4772 return new;
4773}
4774
4775struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4776 u64 start, unsigned long len)
4777{
4778 struct extent_buffer *eb;
4779 unsigned long num_pages;
4780 unsigned long i;
4781
4782 num_pages = num_extent_pages(start, len);
4783
4784 eb = __alloc_extent_buffer(fs_info, start, len);
4785 if (!eb)
4786 return NULL;
4787
4788 for (i = 0; i < num_pages; i++) {
4789 eb->pages[i] = alloc_page(GFP_NOFS);
4790 if (!eb->pages[i])
4791 goto err;
4792 }
4793 set_extent_buffer_uptodate(eb);
4794 btrfs_set_header_nritems(eb, 0);
4795 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4796
4797 return eb;
4798err:
4799 for (; i > 0; i--)
4800 __free_page(eb->pages[i - 1]);
4801 __free_extent_buffer(eb);
4802 return NULL;
4803}
4804
4805struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4806 u64 start)
4807{
4808 return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4809}
4810
4811static void check_buffer_tree_ref(struct extent_buffer *eb)
4812{
4813 int refs;
4814 /* the ref bit is tricky. We have to make sure it is set
4815 * if we have the buffer dirty. Otherwise the
4816 * code to free a buffer can end up dropping a dirty
4817 * page
4818 *
4819 * Once the ref bit is set, it won't go away while the
4820 * buffer is dirty or in writeback, and it also won't
4821 * go away while we have the reference count on the
4822 * eb bumped.
4823 *
4824 * We can't just set the ref bit without bumping the
4825 * ref on the eb because free_extent_buffer might
4826 * see the ref bit and try to clear it. If this happens
4827 * free_extent_buffer might end up dropping our original
4828 * ref by mistake and freeing the page before we are able
4829 * to add one more ref.
4830 *
4831 * So bump the ref count first, then set the bit. If someone
4832 * beat us to it, drop the ref we added.
4833 */
4834 refs = atomic_read(&eb->refs);
4835 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4836 return;
4837
4838 spin_lock(&eb->refs_lock);
4839 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4840 atomic_inc(&eb->refs);
4841 spin_unlock(&eb->refs_lock);
4842}
4843
4844static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4845 struct page *accessed)
4846{
4847 unsigned long num_pages, i;
4848
4849 check_buffer_tree_ref(eb);
4850
4851 num_pages = num_extent_pages(eb->start, eb->len);
4852 for (i = 0; i < num_pages; i++) {
4853 struct page *p = eb->pages[i];
4854
4855 if (p != accessed)
4856 mark_page_accessed(p);
4857 }
4858}
4859
4860struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4861 u64 start)
4862{
4863 struct extent_buffer *eb;
4864
4865 rcu_read_lock();
4866 eb = radix_tree_lookup(&fs_info->buffer_radix,
4867 start >> PAGE_SHIFT);
4868 if (eb && atomic_inc_not_zero(&eb->refs)) {
4869 rcu_read_unlock();
4870 /*
4871 * Lock our eb's refs_lock to avoid races with
4872 * free_extent_buffer. When we get our eb it might be flagged
4873 * with EXTENT_BUFFER_STALE and another task running
4874 * free_extent_buffer might have seen that flag set,
4875 * eb->refs == 2, that the buffer isn't under IO (dirty and
4876 * writeback flags not set) and it's still in the tree (flag
4877 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4878 * of decrementing the extent buffer's reference count twice.
4879 * So here we could race and increment the eb's reference count,
4880 * clear its stale flag, mark it as dirty and drop our reference
4881 * before the other task finishes executing free_extent_buffer,
4882 * which would later result in an attempt to free an extent
4883 * buffer that is dirty.
4884 */
4885 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4886 spin_lock(&eb->refs_lock);
4887 spin_unlock(&eb->refs_lock);
4888 }
4889 mark_extent_buffer_accessed(eb, NULL);
4890 return eb;
4891 }
4892 rcu_read_unlock();
4893
4894 return NULL;
4895}
4896
4897#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4898struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4899 u64 start)
4900{
4901 struct extent_buffer *eb, *exists = NULL;
4902 int ret;
4903
4904 eb = find_extent_buffer(fs_info, start);
4905 if (eb)
4906 return eb;
4907 eb = alloc_dummy_extent_buffer(fs_info, start);
4908 if (!eb)
4909 return NULL;
4910 eb->fs_info = fs_info;
4911again:
4912 ret = radix_tree_preload(GFP_NOFS);
4913 if (ret)
4914 goto free_eb;
4915 spin_lock(&fs_info->buffer_lock);
4916 ret = radix_tree_insert(&fs_info->buffer_radix,
4917 start >> PAGE_SHIFT, eb);
4918 spin_unlock(&fs_info->buffer_lock);
4919 radix_tree_preload_end();
4920 if (ret == -EEXIST) {
4921 exists = find_extent_buffer(fs_info, start);
4922 if (exists)
4923 goto free_eb;
4924 else
4925 goto again;
4926 }
4927 check_buffer_tree_ref(eb);
4928 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4929
4930 /*
4931 * We will free dummy extent buffer's if they come into
4932 * free_extent_buffer with a ref count of 2, but if we are using this we
4933 * want the buffers to stay in memory until we're done with them, so
4934 * bump the ref count again.
4935 */
4936 atomic_inc(&eb->refs);
4937 return eb;
4938free_eb:
4939 btrfs_release_extent_buffer(eb);
4940 return exists;
4941}
4942#endif
4943
4944struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4945 u64 start)
4946{
4947 unsigned long len = fs_info->nodesize;
4948 unsigned long num_pages = num_extent_pages(start, len);
4949 unsigned long i;
4950 unsigned long index = start >> PAGE_SHIFT;
4951 struct extent_buffer *eb;
4952 struct extent_buffer *exists = NULL;
4953 struct page *p;
4954 struct address_space *mapping = fs_info->btree_inode->i_mapping;
4955 int uptodate = 1;
4956 int ret;
4957
4958 if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4959 btrfs_err(fs_info, "bad tree block start %llu", start);
4960 return ERR_PTR(-EINVAL);
4961 }
4962
4963 eb = find_extent_buffer(fs_info, start);
4964 if (eb)
4965 return eb;
4966
4967 eb = __alloc_extent_buffer(fs_info, start, len);
4968 if (!eb)
4969 return ERR_PTR(-ENOMEM);
4970
4971 for (i = 0; i < num_pages; i++, index++) {
4972 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4973 if (!p) {
4974 exists = ERR_PTR(-ENOMEM);
4975 goto free_eb;
4976 }
4977
4978 spin_lock(&mapping->private_lock);
4979 if (PagePrivate(p)) {
4980 /*
4981 * We could have already allocated an eb for this page
4982 * and attached one so lets see if we can get a ref on
4983 * the existing eb, and if we can we know it's good and
4984 * we can just return that one, else we know we can just
4985 * overwrite page->private.
4986 */
4987 exists = (struct extent_buffer *)p->private;
4988 if (atomic_inc_not_zero(&exists->refs)) {
4989 spin_unlock(&mapping->private_lock);
4990 unlock_page(p);
4991 put_page(p);
4992 mark_extent_buffer_accessed(exists, p);
4993 goto free_eb;
4994 }
4995 exists = NULL;
4996
4997 /*
4998 * Do this so attach doesn't complain and we need to
4999 * drop the ref the old guy had.
5000 */
5001 ClearPagePrivate(p);
5002 WARN_ON(PageDirty(p));
5003 put_page(p);
5004 }
5005 attach_extent_buffer_page(eb, p);
5006 spin_unlock(&mapping->private_lock);
5007 WARN_ON(PageDirty(p));
5008 eb->pages[i] = p;
5009 if (!PageUptodate(p))
5010 uptodate = 0;
5011
5012 /*
5013 * see below about how we avoid a nasty race with release page
5014 * and why we unlock later
5015 */
5016 }
5017 if (uptodate)
5018 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5019again:
5020 ret = radix_tree_preload(GFP_NOFS);
5021 if (ret) {
5022 exists = ERR_PTR(ret);
5023 goto free_eb;
5024 }
5025
5026 spin_lock(&fs_info->buffer_lock);
5027 ret = radix_tree_insert(&fs_info->buffer_radix,
5028 start >> PAGE_SHIFT, eb);
5029 spin_unlock(&fs_info->buffer_lock);
5030 radix_tree_preload_end();
5031 if (ret == -EEXIST) {
5032 exists = find_extent_buffer(fs_info, start);
5033 if (exists)
5034 goto free_eb;
5035 else
5036 goto again;
5037 }
5038 /* add one reference for the tree */
5039 check_buffer_tree_ref(eb);
5040 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5041
5042 /*
5043 * there is a race where release page may have
5044 * tried to find this extent buffer in the radix
5045 * but failed. It will tell the VM it is safe to
5046 * reclaim the, and it will clear the page private bit.
5047 * We must make sure to set the page private bit properly
5048 * after the extent buffer is in the radix tree so
5049 * it doesn't get lost
5050 */
5051 SetPageChecked(eb->pages[0]);
5052 for (i = 1; i < num_pages; i++) {
5053 p = eb->pages[i];
5054 ClearPageChecked(p);
5055 unlock_page(p);
5056 }
5057 unlock_page(eb->pages[0]);
5058 return eb;
5059
5060free_eb:
5061 WARN_ON(!atomic_dec_and_test(&eb->refs));
5062 for (i = 0; i < num_pages; i++) {
5063 if (eb->pages[i])
5064 unlock_page(eb->pages[i]);
5065 }
5066
5067 btrfs_release_extent_buffer(eb);
5068 return exists;
5069}
5070
5071static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5072{
5073 struct extent_buffer *eb =
5074 container_of(head, struct extent_buffer, rcu_head);
5075
5076 __free_extent_buffer(eb);
5077}
5078
5079/* Expects to have eb->eb_lock already held */
5080static int release_extent_buffer(struct extent_buffer *eb)
5081{
5082 WARN_ON(atomic_read(&eb->refs) == 0);
5083 if (atomic_dec_and_test(&eb->refs)) {
5084 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5085 struct btrfs_fs_info *fs_info = eb->fs_info;
5086
5087 spin_unlock(&eb->refs_lock);
5088
5089 spin_lock(&fs_info->buffer_lock);
5090 radix_tree_delete(&fs_info->buffer_radix,
5091 eb->start >> PAGE_SHIFT);
5092 spin_unlock(&fs_info->buffer_lock);
5093 } else {
5094 spin_unlock(&eb->refs_lock);
5095 }
5096
5097 /* Should be safe to release our pages at this point */
5098 btrfs_release_extent_buffer_page(eb);
5099#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5100 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5101 __free_extent_buffer(eb);
5102 return 1;
5103 }
5104#endif
5105 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5106 return 1;
5107 }
5108 spin_unlock(&eb->refs_lock);
5109
5110 return 0;
5111}
5112
5113void free_extent_buffer(struct extent_buffer *eb)
5114{
5115 int refs;
5116 int old;
5117 if (!eb)
5118 return;
5119
5120 while (1) {
5121 refs = atomic_read(&eb->refs);
5122 if (refs <= 3)
5123 break;
5124 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5125 if (old == refs)
5126 return;
5127 }
5128
5129 spin_lock(&eb->refs_lock);
5130 if (atomic_read(&eb->refs) == 2 &&
5131 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5132 atomic_dec(&eb->refs);
5133
5134 if (atomic_read(&eb->refs) == 2 &&
5135 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5136 !extent_buffer_under_io(eb) &&
5137 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5138 atomic_dec(&eb->refs);
5139
5140 /*
5141 * I know this is terrible, but it's temporary until we stop tracking
5142 * the uptodate bits and such for the extent buffers.
5143 */
5144 release_extent_buffer(eb);
5145}
5146
5147void free_extent_buffer_stale(struct extent_buffer *eb)
5148{
5149 if (!eb)
5150 return;
5151
5152 spin_lock(&eb->refs_lock);
5153 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5154
5155 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5156 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5157 atomic_dec(&eb->refs);
5158 release_extent_buffer(eb);
5159}
5160
5161void clear_extent_buffer_dirty(struct extent_buffer *eb)
5162{
5163 unsigned long i;
5164 unsigned long num_pages;
5165 struct page *page;
5166
5167 num_pages = num_extent_pages(eb->start, eb->len);
5168
5169 for (i = 0; i < num_pages; i++) {
5170 page = eb->pages[i];
5171 if (!PageDirty(page))
5172 continue;
5173
5174 lock_page(page);
5175 WARN_ON(!PagePrivate(page));
5176
5177 clear_page_dirty_for_io(page);
5178 xa_lock_irq(&page->mapping->i_pages);
5179 if (!PageDirty(page)) {
5180 radix_tree_tag_clear(&page->mapping->i_pages,
5181 page_index(page),
5182 PAGECACHE_TAG_DIRTY);
5183 }
5184 xa_unlock_irq(&page->mapping->i_pages);
5185 ClearPageError(page);
5186 unlock_page(page);
5187 }
5188 WARN_ON(atomic_read(&eb->refs) == 0);
5189}
5190
5191int set_extent_buffer_dirty(struct extent_buffer *eb)
5192{
5193 unsigned long i;
5194 unsigned long num_pages;
5195 int was_dirty = 0;
5196
5197 check_buffer_tree_ref(eb);
5198
5199 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5200
5201 num_pages = num_extent_pages(eb->start, eb->len);
5202 WARN_ON(atomic_read(&eb->refs) == 0);
5203 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5204
5205 for (i = 0; i < num_pages; i++)
5206 set_page_dirty(eb->pages[i]);
5207 return was_dirty;
5208}
5209
5210void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5211{
5212 unsigned long i;
5213 struct page *page;
5214 unsigned long num_pages;
5215
5216 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5217 num_pages = num_extent_pages(eb->start, eb->len);
5218 for (i = 0; i < num_pages; i++) {
5219 page = eb->pages[i];
5220 if (page)
5221 ClearPageUptodate(page);
5222 }
5223}
5224
5225void set_extent_buffer_uptodate(struct extent_buffer *eb)
5226{
5227 unsigned long i;
5228 struct page *page;
5229 unsigned long num_pages;
5230
5231 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5232 num_pages = num_extent_pages(eb->start, eb->len);
5233 for (i = 0; i < num_pages; i++) {
5234 page = eb->pages[i];
5235 SetPageUptodate(page);
5236 }
5237}
5238
5239int read_extent_buffer_pages(struct extent_io_tree *tree,
5240 struct extent_buffer *eb, int wait, int mirror_num)
5241{
5242 unsigned long i;
5243 struct page *page;
5244 int err;
5245 int ret = 0;
5246 int locked_pages = 0;
5247 int all_uptodate = 1;
5248 unsigned long num_pages;
5249 unsigned long num_reads = 0;
5250 struct bio *bio = NULL;
5251 unsigned long bio_flags = 0;
5252
5253 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5254 return 0;
5255
5256 num_pages = num_extent_pages(eb->start, eb->len);
5257 for (i = 0; i < num_pages; i++) {
5258 page = eb->pages[i];
5259 if (wait == WAIT_NONE) {
5260 if (!trylock_page(page))
5261 goto unlock_exit;
5262 } else {
5263 lock_page(page);
5264 }
5265 locked_pages++;
5266 }
5267 /*
5268 * We need to firstly lock all pages to make sure that
5269 * the uptodate bit of our pages won't be affected by
5270 * clear_extent_buffer_uptodate().
5271 */
5272 for (i = 0; i < num_pages; i++) {
5273 page = eb->pages[i];
5274 if (!PageUptodate(page)) {
5275 num_reads++;
5276 all_uptodate = 0;
5277 }
5278 }
5279
5280 if (all_uptodate) {
5281 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5282 goto unlock_exit;
5283 }
5284
5285 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5286 eb->read_mirror = 0;
5287 atomic_set(&eb->io_pages, num_reads);
5288 for (i = 0; i < num_pages; i++) {
5289 page = eb->pages[i];
5290
5291 if (!PageUptodate(page)) {
5292 if (ret) {
5293 atomic_dec(&eb->io_pages);
5294 unlock_page(page);
5295 continue;
5296 }
5297
5298 ClearPageError(page);
5299 err = __extent_read_full_page(tree, page,
5300 btree_get_extent, &bio,
5301 mirror_num, &bio_flags,
5302 REQ_META);
5303 if (err) {
5304 ret = err;
5305 /*
5306 * We use &bio in above __extent_read_full_page,
5307 * so we ensure that if it returns error, the
5308 * current page fails to add itself to bio and
5309 * it's been unlocked.
5310 *
5311 * We must dec io_pages by ourselves.
5312 */
5313 atomic_dec(&eb->io_pages);
5314 }
5315 } else {
5316 unlock_page(page);
5317 }
5318 }
5319
5320 if (bio) {
5321 err = submit_one_bio(bio, mirror_num, bio_flags);
5322 if (err)
5323 return err;
5324 }
5325
5326 if (ret || wait != WAIT_COMPLETE)
5327 return ret;
5328
5329 for (i = 0; i < num_pages; i++) {
5330 page = eb->pages[i];
5331 wait_on_page_locked(page);
5332 if (!PageUptodate(page))
5333 ret = -EIO;
5334 }
5335
5336 return ret;
5337
5338unlock_exit:
5339 while (locked_pages > 0) {
5340 locked_pages--;
5341 page = eb->pages[locked_pages];
5342 unlock_page(page);
5343 }
5344 return ret;
5345}
5346
5347void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5348 unsigned long start, unsigned long len)
5349{
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *dst = (char *)dstv;
5355 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5357
5358 if (start + len > eb->len) {
5359 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5360 eb->start, eb->len, start, len);
5361 memset(dst, 0, len);
5362 return;
5363 }
5364
5365 offset = (start_offset + start) & (PAGE_SIZE - 1);
5366
5367 while (len > 0) {
5368 page = eb->pages[i];
5369
5370 cur = min(len, (PAGE_SIZE - offset));
5371 kaddr = page_address(page);
5372 memcpy(dst, kaddr + offset, cur);
5373
5374 dst += cur;
5375 len -= cur;
5376 offset = 0;
5377 i++;
5378 }
5379}
5380
5381int read_extent_buffer_to_user(const struct extent_buffer *eb,
5382 void __user *dstv,
5383 unsigned long start, unsigned long len)
5384{
5385 size_t cur;
5386 size_t offset;
5387 struct page *page;
5388 char *kaddr;
5389 char __user *dst = (char __user *)dstv;
5390 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5391 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5392 int ret = 0;
5393
5394 WARN_ON(start > eb->len);
5395 WARN_ON(start + len > eb->start + eb->len);
5396
5397 offset = (start_offset + start) & (PAGE_SIZE - 1);
5398
5399 while (len > 0) {
5400 page = eb->pages[i];
5401
5402 cur = min(len, (PAGE_SIZE - offset));
5403 kaddr = page_address(page);
5404 if (copy_to_user(dst, kaddr + offset, cur)) {
5405 ret = -EFAULT;
5406 break;
5407 }
5408
5409 dst += cur;
5410 len -= cur;
5411 offset = 0;
5412 i++;
5413 }
5414
5415 return ret;
5416}
5417
5418/*
5419 * return 0 if the item is found within a page.
5420 * return 1 if the item spans two pages.
5421 * return -EINVAL otherwise.
5422 */
5423int map_private_extent_buffer(const struct extent_buffer *eb,
5424 unsigned long start, unsigned long min_len,
5425 char **map, unsigned long *map_start,
5426 unsigned long *map_len)
5427{
5428 size_t offset = start & (PAGE_SIZE - 1);
5429 char *kaddr;
5430 struct page *p;
5431 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5432 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5433 unsigned long end_i = (start_offset + start + min_len - 1) >>
5434 PAGE_SHIFT;
5435
5436 if (start + min_len > eb->len) {
5437 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5438 eb->start, eb->len, start, min_len);
5439 return -EINVAL;
5440 }
5441
5442 if (i != end_i)
5443 return 1;
5444
5445 if (i == 0) {
5446 offset = start_offset;
5447 *map_start = 0;
5448 } else {
5449 offset = 0;
5450 *map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5451 }
5452
5453 p = eb->pages[i];
5454 kaddr = page_address(p);
5455 *map = kaddr + offset;
5456 *map_len = PAGE_SIZE - offset;
5457 return 0;
5458}
5459
5460int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5461 unsigned long start, unsigned long len)
5462{
5463 size_t cur;
5464 size_t offset;
5465 struct page *page;
5466 char *kaddr;
5467 char *ptr = (char *)ptrv;
5468 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5469 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5470 int ret = 0;
5471
5472 WARN_ON(start > eb->len);
5473 WARN_ON(start + len > eb->start + eb->len);
5474
5475 offset = (start_offset + start) & (PAGE_SIZE - 1);
5476
5477 while (len > 0) {
5478 page = eb->pages[i];
5479
5480 cur = min(len, (PAGE_SIZE - offset));
5481
5482 kaddr = page_address(page);
5483 ret = memcmp(ptr, kaddr + offset, cur);
5484 if (ret)
5485 break;
5486
5487 ptr += cur;
5488 len -= cur;
5489 offset = 0;
5490 i++;
5491 }
5492 return ret;
5493}
5494
5495void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5496 const void *srcv)
5497{
5498 char *kaddr;
5499
5500 WARN_ON(!PageUptodate(eb->pages[0]));
5501 kaddr = page_address(eb->pages[0]);
5502 memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5503 BTRFS_FSID_SIZE);
5504}
5505
5506void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5507{
5508 char *kaddr;
5509
5510 WARN_ON(!PageUptodate(eb->pages[0]));
5511 kaddr = page_address(eb->pages[0]);
5512 memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5513 BTRFS_FSID_SIZE);
5514}
5515
5516void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5517 unsigned long start, unsigned long len)
5518{
5519 size_t cur;
5520 size_t offset;
5521 struct page *page;
5522 char *kaddr;
5523 char *src = (char *)srcv;
5524 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5525 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5526
5527 WARN_ON(start > eb->len);
5528 WARN_ON(start + len > eb->start + eb->len);
5529
5530 offset = (start_offset + start) & (PAGE_SIZE - 1);
5531
5532 while (len > 0) {
5533 page = eb->pages[i];
5534 WARN_ON(!PageUptodate(page));
5535
5536 cur = min(len, PAGE_SIZE - offset);
5537 kaddr = page_address(page);
5538 memcpy(kaddr + offset, src, cur);
5539
5540 src += cur;
5541 len -= cur;
5542 offset = 0;
5543 i++;
5544 }
5545}
5546
5547void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5548 unsigned long len)
5549{
5550 size_t cur;
5551 size_t offset;
5552 struct page *page;
5553 char *kaddr;
5554 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5555 unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5556
5557 WARN_ON(start > eb->len);
5558 WARN_ON(start + len > eb->start + eb->len);
5559
5560 offset = (start_offset + start) & (PAGE_SIZE - 1);
5561
5562 while (len > 0) {
5563 page = eb->pages[i];
5564 WARN_ON(!PageUptodate(page));
5565
5566 cur = min(len, PAGE_SIZE - offset);
5567 kaddr = page_address(page);
5568 memset(kaddr + offset, 0, cur);
5569
5570 len -= cur;
5571 offset = 0;
5572 i++;
5573 }
5574}
5575
5576void copy_extent_buffer_full(struct extent_buffer *dst,
5577 struct extent_buffer *src)
5578{
5579 int i;
5580 unsigned num_pages;
5581
5582 ASSERT(dst->len == src->len);
5583
5584 num_pages = num_extent_pages(dst->start, dst->len);
5585 for (i = 0; i < num_pages; i++)
5586 copy_page(page_address(dst->pages[i]),
5587 page_address(src->pages[i]));
5588}
5589
5590void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5591 unsigned long dst_offset, unsigned long src_offset,
5592 unsigned long len)
5593{
5594 u64 dst_len = dst->len;
5595 size_t cur;
5596 size_t offset;
5597 struct page *page;
5598 char *kaddr;
5599 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5600 unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5601
5602 WARN_ON(src->len != dst_len);
5603
5604 offset = (start_offset + dst_offset) &
5605 (PAGE_SIZE - 1);
5606
5607 while (len > 0) {
5608 page = dst->pages[i];
5609 WARN_ON(!PageUptodate(page));
5610
5611 cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5612
5613 kaddr = page_address(page);
5614 read_extent_buffer(src, kaddr + offset, src_offset, cur);
5615
5616 src_offset += cur;
5617 len -= cur;
5618 offset = 0;
5619 i++;
5620 }
5621}
5622
5623void le_bitmap_set(u8 *map, unsigned int start, int len)
5624{
5625 u8 *p = map + BIT_BYTE(start);
5626 const unsigned int size = start + len;
5627 int bits_to_set = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5628 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(start);
5629
5630 while (len - bits_to_set >= 0) {
5631 *p |= mask_to_set;
5632 len -= bits_to_set;
5633 bits_to_set = BITS_PER_BYTE;
5634 mask_to_set = ~0;
5635 p++;
5636 }
5637 if (len) {
5638 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5639 *p |= mask_to_set;
5640 }
5641}
5642
5643void le_bitmap_clear(u8 *map, unsigned int start, int len)
5644{
5645 u8 *p = map + BIT_BYTE(start);
5646 const unsigned int size = start + len;
5647 int bits_to_clear = BITS_PER_BYTE - (start % BITS_PER_BYTE);
5648 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(start);
5649
5650 while (len - bits_to_clear >= 0) {
5651 *p &= ~mask_to_clear;
5652 len -= bits_to_clear;
5653 bits_to_clear = BITS_PER_BYTE;
5654 mask_to_clear = ~0;
5655 p++;
5656 }
5657 if (len) {
5658 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5659 *p &= ~mask_to_clear;
5660 }
5661}
5662
5663/*
5664 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5665 * given bit number
5666 * @eb: the extent buffer
5667 * @start: offset of the bitmap item in the extent buffer
5668 * @nr: bit number
5669 * @page_index: return index of the page in the extent buffer that contains the
5670 * given bit number
5671 * @page_offset: return offset into the page given by page_index
5672 *
5673 * This helper hides the ugliness of finding the byte in an extent buffer which
5674 * contains a given bit.
5675 */
5676static inline void eb_bitmap_offset(struct extent_buffer *eb,
5677 unsigned long start, unsigned long nr,
5678 unsigned long *page_index,
5679 size_t *page_offset)
5680{
5681 size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5682 size_t byte_offset = BIT_BYTE(nr);
5683 size_t offset;
5684
5685 /*
5686 * The byte we want is the offset of the extent buffer + the offset of
5687 * the bitmap item in the extent buffer + the offset of the byte in the
5688 * bitmap item.
5689 */
5690 offset = start_offset + start + byte_offset;
5691
5692 *page_index = offset >> PAGE_SHIFT;
5693 *page_offset = offset & (PAGE_SIZE - 1);
5694}
5695
5696/**
5697 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5698 * @eb: the extent buffer
5699 * @start: offset of the bitmap item in the extent buffer
5700 * @nr: bit number to test
5701 */
5702int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5703 unsigned long nr)
5704{
5705 u8 *kaddr;
5706 struct page *page;
5707 unsigned long i;
5708 size_t offset;
5709
5710 eb_bitmap_offset(eb, start, nr, &i, &offset);
5711 page = eb->pages[i];
5712 WARN_ON(!PageUptodate(page));
5713 kaddr = page_address(page);
5714 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5715}
5716
5717/**
5718 * extent_buffer_bitmap_set - set an area of a bitmap
5719 * @eb: the extent buffer
5720 * @start: offset of the bitmap item in the extent buffer
5721 * @pos: bit number of the first bit
5722 * @len: number of bits to set
5723 */
5724void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5725 unsigned long pos, unsigned long len)
5726{
5727 u8 *kaddr;
5728 struct page *page;
5729 unsigned long i;
5730 size_t offset;
5731 const unsigned int size = pos + len;
5732 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5733 u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5734
5735 eb_bitmap_offset(eb, start, pos, &i, &offset);
5736 page = eb->pages[i];
5737 WARN_ON(!PageUptodate(page));
5738 kaddr = page_address(page);
5739
5740 while (len >= bits_to_set) {
5741 kaddr[offset] |= mask_to_set;
5742 len -= bits_to_set;
5743 bits_to_set = BITS_PER_BYTE;
5744 mask_to_set = ~0;
5745 if (++offset >= PAGE_SIZE && len > 0) {
5746 offset = 0;
5747 page = eb->pages[++i];
5748 WARN_ON(!PageUptodate(page));
5749 kaddr = page_address(page);
5750 }
5751 }
5752 if (len) {
5753 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5754 kaddr[offset] |= mask_to_set;
5755 }
5756}
5757
5758
5759/**
5760 * extent_buffer_bitmap_clear - clear an area of a bitmap
5761 * @eb: the extent buffer
5762 * @start: offset of the bitmap item in the extent buffer
5763 * @pos: bit number of the first bit
5764 * @len: number of bits to clear
5765 */
5766void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5767 unsigned long pos, unsigned long len)
5768{
5769 u8 *kaddr;
5770 struct page *page;
5771 unsigned long i;
5772 size_t offset;
5773 const unsigned int size = pos + len;
5774 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5775 u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5776
5777 eb_bitmap_offset(eb, start, pos, &i, &offset);
5778 page = eb->pages[i];
5779 WARN_ON(!PageUptodate(page));
5780 kaddr = page_address(page);
5781
5782 while (len >= bits_to_clear) {
5783 kaddr[offset] &= ~mask_to_clear;
5784 len -= bits_to_clear;
5785 bits_to_clear = BITS_PER_BYTE;
5786 mask_to_clear = ~0;
5787 if (++offset >= PAGE_SIZE && len > 0) {
5788 offset = 0;
5789 page = eb->pages[++i];
5790 WARN_ON(!PageUptodate(page));
5791 kaddr = page_address(page);
5792 }
5793 }
5794 if (len) {
5795 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5796 kaddr[offset] &= ~mask_to_clear;
5797 }
5798}
5799
5800static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5801{
5802 unsigned long distance = (src > dst) ? src - dst : dst - src;
5803 return distance < len;
5804}
5805
5806static void copy_pages(struct page *dst_page, struct page *src_page,
5807 unsigned long dst_off, unsigned long src_off,
5808 unsigned long len)
5809{
5810 char *dst_kaddr = page_address(dst_page);
5811 char *src_kaddr;
5812 int must_memmove = 0;
5813
5814 if (dst_page != src_page) {
5815 src_kaddr = page_address(src_page);
5816 } else {
5817 src_kaddr = dst_kaddr;
5818 if (areas_overlap(src_off, dst_off, len))
5819 must_memmove = 1;
5820 }
5821
5822 if (must_memmove)
5823 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5824 else
5825 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5826}
5827
5828void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5829 unsigned long src_offset, unsigned long len)
5830{
5831 struct btrfs_fs_info *fs_info = dst->fs_info;
5832 size_t cur;
5833 size_t dst_off_in_page;
5834 size_t src_off_in_page;
5835 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5836 unsigned long dst_i;
5837 unsigned long src_i;
5838
5839 if (src_offset + len > dst->len) {
5840 btrfs_err(fs_info,
5841 "memmove bogus src_offset %lu move len %lu dst len %lu",
5842 src_offset, len, dst->len);
5843 BUG_ON(1);
5844 }
5845 if (dst_offset + len > dst->len) {
5846 btrfs_err(fs_info,
5847 "memmove bogus dst_offset %lu move len %lu dst len %lu",
5848 dst_offset, len, dst->len);
5849 BUG_ON(1);
5850 }
5851
5852 while (len > 0) {
5853 dst_off_in_page = (start_offset + dst_offset) &
5854 (PAGE_SIZE - 1);
5855 src_off_in_page = (start_offset + src_offset) &
5856 (PAGE_SIZE - 1);
5857
5858 dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5859 src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5860
5861 cur = min(len, (unsigned long)(PAGE_SIZE -
5862 src_off_in_page));
5863 cur = min_t(unsigned long, cur,
5864 (unsigned long)(PAGE_SIZE - dst_off_in_page));
5865
5866 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5867 dst_off_in_page, src_off_in_page, cur);
5868
5869 src_offset += cur;
5870 dst_offset += cur;
5871 len -= cur;
5872 }
5873}
5874
5875void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5876 unsigned long src_offset, unsigned long len)
5877{
5878 struct btrfs_fs_info *fs_info = dst->fs_info;
5879 size_t cur;
5880 size_t dst_off_in_page;
5881 size_t src_off_in_page;
5882 unsigned long dst_end = dst_offset + len - 1;
5883 unsigned long src_end = src_offset + len - 1;
5884 size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5885 unsigned long dst_i;
5886 unsigned long src_i;
5887
5888 if (src_offset + len > dst->len) {
5889 btrfs_err(fs_info,
5890 "memmove bogus src_offset %lu move len %lu len %lu",
5891 src_offset, len, dst->len);
5892 BUG_ON(1);
5893 }
5894 if (dst_offset + len > dst->len) {
5895 btrfs_err(fs_info,
5896 "memmove bogus dst_offset %lu move len %lu len %lu",
5897 dst_offset, len, dst->len);
5898 BUG_ON(1);
5899 }
5900 if (dst_offset < src_offset) {
5901 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5902 return;
5903 }
5904 while (len > 0) {
5905 dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5906 src_i = (start_offset + src_end) >> PAGE_SHIFT;
5907
5908 dst_off_in_page = (start_offset + dst_end) &
5909 (PAGE_SIZE - 1);
5910 src_off_in_page = (start_offset + src_end) &
5911 (PAGE_SIZE - 1);
5912
5913 cur = min_t(unsigned long, len, src_off_in_page + 1);
5914 cur = min(cur, dst_off_in_page + 1);
5915 copy_pages(dst->pages[dst_i], dst->pages[src_i],
5916 dst_off_in_page - cur + 1,
5917 src_off_in_page - cur + 1, cur);
5918
5919 dst_end -= cur;
5920 src_end -= cur;
5921 len -= cur;
5922 }
5923}
5924
5925int try_release_extent_buffer(struct page *page)
5926{
5927 struct extent_buffer *eb;
5928
5929 /*
5930 * We need to make sure nobody is attaching this page to an eb right
5931 * now.
5932 */
5933 spin_lock(&page->mapping->private_lock);
5934 if (!PagePrivate(page)) {
5935 spin_unlock(&page->mapping->private_lock);
5936 return 1;
5937 }
5938
5939 eb = (struct extent_buffer *)page->private;
5940 BUG_ON(!eb);
5941
5942 /*
5943 * This is a little awful but should be ok, we need to make sure that
5944 * the eb doesn't disappear out from under us while we're looking at
5945 * this page.
5946 */
5947 spin_lock(&eb->refs_lock);
5948 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5949 spin_unlock(&eb->refs_lock);
5950 spin_unlock(&page->mapping->private_lock);
5951 return 0;
5952 }
5953 spin_unlock(&page->mapping->private_lock);
5954
5955 /*
5956 * If tree ref isn't set then we know the ref on this eb is a real ref,
5957 * so just return, this page will likely be freed soon anyway.
5958 */
5959 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5960 spin_unlock(&eb->refs_lock);
5961 return 0;
5962 }
5963
5964 return release_extent_buffer(eb);
5965}