Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
   9#include <linux/sched/mm.h>
  10#include <linux/spinlock.h>
  11#include <linux/blkdev.h>
  12#include <linux/swap.h>
  13#include <linux/writeback.h>
  14#include <linux/pagevec.h>
  15#include <linux/prefetch.h>
  16#include <linux/fsverity.h>
 
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "bio.h"
 
  23#include "locking.h"
 
  24#include "backref.h"
  25#include "disk-io.h"
  26#include "subpage.h"
  27#include "zoned.h"
  28#include "block-group.h"
  29#include "compression.h"
  30#include "fs.h"
  31#include "accessors.h"
  32#include "file-item.h"
  33#include "file.h"
  34#include "dev-replace.h"
  35#include "super.h"
  36#include "transaction.h"
  37
 
  38static struct kmem_cache *extent_buffer_cache;
 
 
 
 
 
 
  39
  40#ifdef CONFIG_BTRFS_DEBUG
  41static inline void btrfs_leak_debug_add_eb(struct extent_buffer *eb)
 
 
 
 
 
  42{
  43	struct btrfs_fs_info *fs_info = eb->fs_info;
  44	unsigned long flags;
  45
  46	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  47	list_add(&eb->leak_list, &fs_info->allocated_ebs);
  48	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  49}
  50
  51static inline void btrfs_leak_debug_del_eb(struct extent_buffer *eb)
 
  52{
  53	struct btrfs_fs_info *fs_info = eb->fs_info;
  54	unsigned long flags;
  55
  56	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  57	list_del(&eb->leak_list);
  58	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  59}
  60
  61void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  62{
  63	struct extent_buffer *eb;
  64	unsigned long flags;
  65
  66	/*
  67	 * If we didn't get into open_ctree our allocated_ebs will not be
  68	 * initialized, so just skip this.
  69	 */
  70	if (!fs_info->allocated_ebs.next)
  71		return;
  72
  73	WARN_ON(!list_empty(&fs_info->allocated_ebs));
  74	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  75	while (!list_empty(&fs_info->allocated_ebs)) {
  76		eb = list_first_entry(&fs_info->allocated_ebs,
  77				      struct extent_buffer, leak_list);
  78		pr_err(
  79	"BTRFS: buffer leak start %llu len %u refs %d bflags %lu owner %llu\n",
  80		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  81		       btrfs_header_owner(eb));
  82		list_del(&eb->leak_list);
  83		WARN_ON_ONCE(1);
  84		kmem_cache_free(extent_buffer_cache, eb);
  85	}
  86	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  87}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88#else
  89#define btrfs_leak_debug_add_eb(eb)			do {} while (0)
  90#define btrfs_leak_debug_del_eb(eb)			do {} while (0)
 
 
  91#endif
  92
  93/*
  94 * Structure to record info about the bio being assembled, and other info like
  95 * how many bytes are there before stripe/ordered extent boundary.
  96 */
  97struct btrfs_bio_ctrl {
  98	struct btrfs_bio *bbio;
  99	enum btrfs_compression_type compress_type;
 100	u32 len_to_oe_boundary;
 101	blk_opf_t opf;
 102	btrfs_bio_end_io_t end_io_func;
 103	struct writeback_control *wbc;
 104
 105	/*
 106	 * The sectors of the page which are going to be submitted by
 107	 * extent_writepage_io().
 108	 * This is to avoid touching ranges covered by compression/inline.
 109	 */
 110	unsigned long submit_bitmap;
 
 
 
 111};
 112
 113static void submit_one_bio(struct btrfs_bio_ctrl *bio_ctrl)
 
 
 114{
 115	struct btrfs_bio *bbio = bio_ctrl->bbio;
 116
 117	if (!bbio)
 118		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 119
 120	/* Caller should ensure the bio has at least some range added */
 121	ASSERT(bbio->bio.bi_iter.bi_size);
 122
 123	if (btrfs_op(&bbio->bio) == BTRFS_MAP_READ &&
 124	    bio_ctrl->compress_type != BTRFS_COMPRESS_NONE)
 125		btrfs_submit_compressed_read(bbio);
 126	else
 127		btrfs_submit_bbio(bbio, 0);
 
 128
 129	/* The bbio is owned by the end_io handler now */
 130	bio_ctrl->bbio = NULL;
 
 
 
 
 
 
 
 
 
 
 
 131}
 132
 133/*
 134 * Submit or fail the current bio in the bio_ctrl structure.
 
 
 
 135 */
 136static void submit_write_bio(struct btrfs_bio_ctrl *bio_ctrl, int ret)
 137{
 138	struct btrfs_bio *bbio = bio_ctrl->bbio;
 139
 140	if (!bbio)
 141		return;
 142
 143	if (ret) {
 144		ASSERT(ret < 0);
 145		btrfs_bio_end_io(bbio, errno_to_blk_status(ret));
 146		/* The bio is owned by the end_io handler now */
 147		bio_ctrl->bbio = NULL;
 148	} else {
 149		submit_one_bio(bio_ctrl);
 
 
 
 150	}
 
 151}
 152
 153int __init extent_buffer_init_cachep(void)
 
 
 
 
 
 
 
 
 
 
 154{
 155	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 156						sizeof(struct extent_buffer), 0, 0,
 157						NULL);
 158	if (!extent_buffer_cache)
 159		return -ENOMEM;
 160
 
 
 
 
 
 
 
 
 161	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162}
 163
 164void __cold extent_buffer_free_cachep(void)
 165{
 166	/*
 167	 * Make sure all delayed rcu free are flushed before we
 168	 * destroy caches.
 169	 */
 170	rcu_barrier();
 171	kmem_cache_destroy(extent_buffer_cache);
 
 172}
 173
 174static void process_one_folio(struct btrfs_fs_info *fs_info,
 175			      struct folio *folio, const struct folio *locked_folio,
 176			      unsigned long page_ops, u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 177{
 178	u32 len;
 179
 180	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
 181	len = end + 1 - start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183	if (page_ops & PAGE_SET_ORDERED)
 184		btrfs_folio_clamp_set_ordered(fs_info, folio, start, len);
 185	if (page_ops & PAGE_START_WRITEBACK) {
 186		btrfs_folio_clamp_clear_dirty(fs_info, folio, start, len);
 187		btrfs_folio_clamp_set_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 188	}
 189	if (page_ops & PAGE_END_WRITEBACK)
 190		btrfs_folio_clamp_clear_writeback(fs_info, folio, start, len);
 191
 192	if (folio != locked_folio && (page_ops & PAGE_UNLOCK))
 193		btrfs_folio_end_lock(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194}
 195
 196static void __process_folios_contig(struct address_space *mapping,
 197				    const struct folio *locked_folio, u64 start,
 198				    u64 end, unsigned long page_ops)
 
 
 199{
 200	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 201	pgoff_t start_index = start >> PAGE_SHIFT;
 202	pgoff_t end_index = end >> PAGE_SHIFT;
 203	pgoff_t index = start_index;
 204	struct folio_batch fbatch;
 205	int i;
 206
 207	folio_batch_init(&fbatch);
 208	while (index <= end_index) {
 209		int found_folios;
 
 
 210
 211		found_folios = filemap_get_folios_contig(mapping, &index,
 212				end_index, &fbatch);
 213		for (i = 0; i < found_folios; i++) {
 214			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215
 216			process_one_folio(fs_info, folio, locked_folio,
 217					  page_ops, start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 218		}
 219		folio_batch_release(&fbatch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 220		cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221	}
 
 
 222}
 223
 224static noinline void __unlock_for_delalloc(const struct inode *inode,
 225					   const struct folio *locked_folio,
 226					   u64 start, u64 end)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 227{
 228	unsigned long index = start >> PAGE_SHIFT;
 229	unsigned long end_index = end >> PAGE_SHIFT;
 
 230
 231	ASSERT(locked_folio);
 232	if (index == locked_folio->index && end_index == index)
 233		return;
 
 
 
 
 
 
 
 
 
 
 
 234
 235	__process_folios_contig(inode->i_mapping, locked_folio, start, end,
 236				PAGE_UNLOCK);
 
 
 
 
 
 
 237}
 238
 239static noinline int lock_delalloc_folios(struct inode *inode,
 240					 const struct folio *locked_folio,
 241					 u64 start, u64 end)
 
 
 
 242{
 243	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 244	struct address_space *mapping = inode->i_mapping;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 245	pgoff_t start_index = start >> PAGE_SHIFT;
 246	pgoff_t end_index = end >> PAGE_SHIFT;
 247	pgoff_t index = start_index;
 248	u64 processed_end = start;
 249	struct folio_batch fbatch;
 
 
 
 250
 251	if (index == locked_folio->index && index == end_index)
 252		return 0;
 
 
 253
 254	folio_batch_init(&fbatch);
 255	while (index <= end_index) {
 256		unsigned int found_folios, i;
 257
 258		found_folios = filemap_get_folios_contig(mapping, &index,
 259				end_index, &fbatch);
 260		if (found_folios == 0)
 261			goto out;
 262
 263		for (i = 0; i < found_folios; i++) {
 264			struct folio *folio = fbatch.folios[i];
 265			u64 range_start;
 266			u32 range_len;
 
 
 
 
 
 
 
 
 267
 268			if (folio == locked_folio)
 269				continue;
 270
 271			folio_lock(folio);
 272			if (!folio_test_dirty(folio) || folio->mapping != mapping) {
 273				folio_unlock(folio);
 
 
 
 
 274				goto out;
 275			}
 276			range_start = max_t(u64, folio_pos(folio), start);
 277			range_len = min_t(u64, folio_pos(folio) + folio_size(folio),
 278					  end + 1) - range_start;
 279			btrfs_folio_set_lock(fs_info, folio, range_start, range_len);
 280
 281			processed_end = range_start + range_len - 1;
 282		}
 283		folio_batch_release(&fbatch);
 
 284		cond_resched();
 285	}
 286
 287	return 0;
 288out:
 289	folio_batch_release(&fbatch);
 290	if (processed_end > start)
 291		__unlock_for_delalloc(inode, locked_folio, start,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 292				      processed_end);
 293	return -EAGAIN;
 294}
 295
 296/*
 297 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
 298 * more than @max_bytes.
 299 *
 300 * @start:	The original start bytenr to search.
 301 *		Will store the extent range start bytenr.
 302 * @end:	The original end bytenr of the search range
 303 *		Will store the extent range end bytenr.
 304 *
 305 * Return true if we find a delalloc range which starts inside the original
 306 * range, and @start/@end will store the delalloc range start/end.
 307 *
 308 * Return false if we can't find any delalloc range which starts inside the
 309 * original range, and @start/@end will be the non-delalloc range start/end.
 310 */
 311EXPORT_FOR_TESTS
 312noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
 313						 struct folio *locked_folio,
 314						 u64 *start, u64 *end)
 315{
 316	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 317	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
 318	const u64 orig_start = *start;
 319	const u64 orig_end = *end;
 320	/* The sanity tests may not set a valid fs_info. */
 321	u64 max_bytes = fs_info ? fs_info->max_extent_size : BTRFS_MAX_EXTENT_SIZE;
 322	u64 delalloc_start;
 323	u64 delalloc_end;
 324	bool found;
 325	struct extent_state *cached_state = NULL;
 326	int ret;
 327	int loops = 0;
 328
 329	/* Caller should pass a valid @end to indicate the search range end */
 330	ASSERT(orig_end > orig_start);
 331
 332	/* The range should at least cover part of the folio */
 333	ASSERT(!(orig_start >= folio_pos(locked_folio) + folio_size(locked_folio) ||
 334		 orig_end <= folio_pos(locked_folio)));
 335again:
 336	/* step one, find a bunch of delalloc bytes starting at start */
 337	delalloc_start = *start;
 338	delalloc_end = 0;
 339	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
 340					  max_bytes, &cached_state);
 341	if (!found || delalloc_end <= *start || delalloc_start > orig_end) {
 342		*start = delalloc_start;
 343
 344		/* @delalloc_end can be -1, never go beyond @orig_end */
 345		*end = min(delalloc_end, orig_end);
 346		free_extent_state(cached_state);
 347		return false;
 348	}
 349
 350	/*
 351	 * start comes from the offset of locked_folio.  We have to lock
 352	 * folios in order, so we can't process delalloc bytes before
 353	 * locked_folio
 354	 */
 355	if (delalloc_start < *start)
 356		delalloc_start = *start;
 357
 358	/*
 359	 * make sure to limit the number of folios we try to lock down
 360	 */
 361	if (delalloc_end + 1 - delalloc_start > max_bytes)
 362		delalloc_end = delalloc_start + max_bytes - 1;
 363
 364	/* step two, lock all the folioss after the folios that has start */
 365	ret = lock_delalloc_folios(inode, locked_folio, delalloc_start,
 366				   delalloc_end);
 367	ASSERT(!ret || ret == -EAGAIN);
 368	if (ret == -EAGAIN) {
 369		/* some of the folios are gone, lets avoid looping by
 370		 * shortening the size of the delalloc range we're searching
 371		 */
 372		free_extent_state(cached_state);
 373		cached_state = NULL;
 374		if (!loops) {
 375			max_bytes = PAGE_SIZE;
 376			loops = 1;
 377			goto again;
 378		} else {
 379			found = false;
 380			goto out_failed;
 381		}
 382	}
 383
 384	/* step three, lock the state bits for the whole range */
 385	lock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 386
 387	/* then test to make sure it is all still delalloc */
 388	ret = test_range_bit(tree, delalloc_start, delalloc_end,
 389			     EXTENT_DELALLOC, cached_state);
 390
 391	unlock_extent(tree, delalloc_start, delalloc_end, &cached_state);
 392	if (!ret) {
 393		__unlock_for_delalloc(inode, locked_folio, delalloc_start,
 394				      delalloc_end);
 
 
 395		cond_resched();
 396		goto again;
 397	}
 
 398	*start = delalloc_start;
 399	*end = delalloc_end;
 400out_failed:
 401	return found;
 402}
 403
 404void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
 405				  const struct folio *locked_folio,
 406				  struct extent_state **cached,
 407				  u32 clear_bits, unsigned long page_ops)
 408{
 409	clear_extent_bit(&inode->io_tree, start, end, clear_bits, cached);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 410
 411	__process_folios_contig(inode->vfs_inode.i_mapping, locked_folio, start,
 412				end, page_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 413}
 414
 415static bool btrfs_verify_folio(struct folio *folio, u64 start, u32 len)
 
 
 
 
 
 416{
 417	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 
 
 418
 419	if (!fsverity_active(folio->mapping->host) ||
 420	    btrfs_folio_test_uptodate(fs_info, folio, start, len) ||
 421	    start >= i_size_read(folio->mapping->host))
 422		return true;
 423	return fsverity_verify_folio(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424}
 425
 426static void end_folio_read(struct folio *folio, bool uptodate, u64 start, u32 len)
 427{
 428	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
 
 
 429
 430	ASSERT(folio_pos(folio) <= start &&
 431	       start + len <= folio_pos(folio) + PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433	if (uptodate && btrfs_verify_folio(folio, start, len))
 434		btrfs_folio_set_uptodate(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435	else
 436		btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437
 438	if (!btrfs_is_subpage(fs_info, folio->mapping))
 439		folio_unlock(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 440	else
 441		btrfs_folio_end_lock(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 442}
 443
 444/*
 445 * After a write IO is done, we need to:
 446 *
 447 * - clear the uptodate bits on error
 448 * - clear the writeback bits in the extent tree for the range
 449 * - filio_end_writeback()  if there is no more pending io for the folio
 450 *
 451 * Scheduling is not allowed, so the extent state tree is expected
 452 * to have one and only one object corresponding to this IO.
 453 */
 454static void end_bbio_data_write(struct btrfs_bio *bbio)
 455{
 456	struct btrfs_fs_info *fs_info = bbio->fs_info;
 457	struct bio *bio = &bbio->bio;
 458	int error = blk_status_to_errno(bio->bi_status);
 459	struct folio_iter fi;
 460	const u32 sectorsize = fs_info->sectorsize;
 
 
 
 461
 462	ASSERT(!bio_flagged(bio, BIO_CLONED));
 463	bio_for_each_folio_all(fi, bio) {
 464		struct folio *folio = fi.folio;
 465		u64 start = folio_pos(folio) + fi.offset;
 466		u32 len = fi.length;
 467
 468		/* Only order 0 (single page) folios are allowed for data. */
 469		ASSERT(folio_order(folio) == 0);
 470
 471		/* Our read/write should always be sector aligned. */
 472		if (!IS_ALIGNED(fi.offset, sectorsize))
 473			btrfs_err(fs_info,
 474		"partial page write in btrfs with offset %zu and length %zu",
 475				  fi.offset, fi.length);
 476		else if (!IS_ALIGNED(fi.length, sectorsize))
 477			btrfs_info(fs_info,
 478		"incomplete page write with offset %zu and length %zu",
 479				   fi.offset, fi.length);
 480
 481		btrfs_finish_ordered_extent(bbio->ordered, folio, start, len,
 482					    !error);
 483		if (error)
 484			mapping_set_error(folio->mapping, error);
 485		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 486	}
 487
 488	bio_put(bio);
 489}
 490
 491static void begin_folio_read(struct btrfs_fs_info *fs_info, struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 492{
 493	ASSERT(folio_test_locked(folio));
 494	if (!btrfs_is_subpage(fs_info, folio->mapping))
 495		return;
 496
 497	ASSERT(folio_test_private(folio));
 498	btrfs_folio_set_lock(fs_info, folio, folio_pos(folio), PAGE_SIZE);
 499}
 500
 501/*
 502 * After a data read IO is done, we need to:
 503 *
 504 * - clear the uptodate bits on error
 505 * - set the uptodate bits if things worked
 506 * - set the folio up to date if all extents in the tree are uptodate
 507 * - clear the lock bit in the extent tree
 508 * - unlock the folio if there are no other extents locked for it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 509 *
 510 * Scheduling is not allowed, so the extent state tree is expected
 511 * to have one and only one object corresponding to this IO.
 512 */
 513static void end_bbio_data_read(struct btrfs_bio *bbio)
 514{
 515	struct btrfs_fs_info *fs_info = bbio->fs_info;
 516	struct bio *bio = &bbio->bio;
 517	struct folio_iter fi;
 518	const u32 sectorsize = fs_info->sectorsize;
 
 
 
 
 
 
 
 
 519
 520	ASSERT(!bio_flagged(bio, BIO_CLONED));
 521	bio_for_each_folio_all(fi, &bbio->bio) {
 522		bool uptodate = !bio->bi_status;
 523		struct folio *folio = fi.folio;
 524		struct inode *inode = folio->mapping->host;
 
 
 
 525		u64 start;
 526		u64 end;
 527		u32 len;
 528
 529		/* For now only order 0 folios are supported for data. */
 530		ASSERT(folio_order(folio) == 0);
 531		btrfs_debug(fs_info,
 532			"%s: bi_sector=%llu, err=%d, mirror=%u",
 533			__func__, bio->bi_iter.bi_sector, bio->bi_status,
 534			bbio->mirror_num);
 
 
 535
 536		/*
 537		 * We always issue full-sector reads, but if some block in a
 538		 * folio fails to read, blk_update_request() will advance
 539		 * bv_offset and adjust bv_len to compensate.  Print a warning
 540		 * for unaligned offsets, and an error if they don't add up to
 541		 * a full sector.
 542		 */
 543		if (!IS_ALIGNED(fi.offset, sectorsize))
 544			btrfs_err(fs_info,
 545		"partial page read in btrfs with offset %zu and length %zu",
 546				  fi.offset, fi.length);
 547		else if (!IS_ALIGNED(fi.offset + fi.length, sectorsize))
 
 548			btrfs_info(fs_info,
 549		"incomplete page read with offset %zu and length %zu",
 550				   fi.offset, fi.length);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 551
 552		start = folio_pos(folio) + fi.offset;
 553		end = start + fi.length - 1;
 554		len = fi.length;
 
 
 
 
 
 
 
 
 
 
 
 
 555
 
 
 
 
 
 
 
 
 
 556		if (likely(uptodate)) {
 557			loff_t i_size = i_size_read(inode);
 558			pgoff_t end_index = i_size >> folio_shift(folio);
 559
 560			/*
 561			 * Zero out the remaining part if this range straddles
 562			 * i_size.
 563			 *
 564			 * Here we should only zero the range inside the folio,
 565			 * not touch anything else.
 566			 *
 567			 * NOTE: i_size is exclusive while end is inclusive.
 568			 */
 569			if (folio_index(folio) == end_index && i_size <= end) {
 570				u32 zero_start = max(offset_in_folio(folio, i_size),
 571						     offset_in_folio(folio, start));
 572				u32 zero_len = offset_in_folio(folio, end) + 1 -
 573					       zero_start;
 574
 575				folio_zero_range(folio, zero_start, zero_len);
 
 576			}
 577		}
 
 
 578
 579		/* Update page status and unlock. */
 580		end_folio_read(folio, uptodate, start, len);
 581	}
 
 
 
 
 
 582	bio_put(bio);
 583}
 584
 585/*
 586 * Populate every free slot in a provided array with folios using GFP_NOFS.
 587 *
 588 * @nr_folios:   number of folios to allocate
 589 * @folio_array: the array to fill with folios; any existing non-NULL entries in
 590 *		 the array will be skipped
 591 *
 592 * Return: 0        if all folios were able to be allocated;
 593 *         -ENOMEM  otherwise, the partially allocated folios would be freed and
 594 *                  the array slots zeroed
 595 */
 596int btrfs_alloc_folio_array(unsigned int nr_folios, struct folio **folio_array)
 597{
 598	for (int i = 0; i < nr_folios; i++) {
 599		if (folio_array[i])
 600			continue;
 601		folio_array[i] = folio_alloc(GFP_NOFS, 0);
 602		if (!folio_array[i])
 603			goto error;
 604	}
 605	return 0;
 606error:
 607	for (int i = 0; i < nr_folios; i++) {
 608		if (folio_array[i])
 609			folio_put(folio_array[i]);
 610	}
 611	return -ENOMEM;
 612}
 613
 614/*
 615 * Populate every free slot in a provided array with pages, using GFP_NOFS.
 616 *
 617 * @nr_pages:   number of pages to allocate
 618 * @page_array: the array to fill with pages; any existing non-null entries in
 619 *		the array will be skipped
 620 * @nofail:	whether using __GFP_NOFAIL flag
 621 *
 622 * Return: 0        if all pages were able to be allocated;
 623 *         -ENOMEM  otherwise, the partially allocated pages would be freed and
 624 *                  the array slots zeroed
 625 */
 626int btrfs_alloc_page_array(unsigned int nr_pages, struct page **page_array,
 627			   bool nofail)
 628{
 629	const gfp_t gfp = nofail ? (GFP_NOFS | __GFP_NOFAIL) : GFP_NOFS;
 630	unsigned int allocated;
 631
 632	for (allocated = 0; allocated < nr_pages;) {
 633		unsigned int last = allocated;
 634
 635		allocated = alloc_pages_bulk_array(gfp, nr_pages, page_array);
 636		if (unlikely(allocated == last)) {
 637			/* No progress, fail and do cleanup. */
 638			for (int i = 0; i < allocated; i++) {
 639				__free_page(page_array[i]);
 640				page_array[i] = NULL;
 641			}
 642			return -ENOMEM;
 643		}
 644	}
 645	return 0;
 646}
 647
 648/*
 649 * Populate needed folios for the extent buffer.
 650 *
 651 * For now, the folios populated are always in order 0 (aka, single page).
 652 */
 653static int alloc_eb_folio_array(struct extent_buffer *eb, bool nofail)
 654{
 655	struct page *page_array[INLINE_EXTENT_BUFFER_PAGES] = { 0 };
 656	int num_pages = num_extent_pages(eb);
 657	int ret;
 658
 659	ret = btrfs_alloc_page_array(num_pages, page_array, nofail);
 660	if (ret < 0)
 661		return ret;
 
 
 
 
 662
 663	for (int i = 0; i < num_pages; i++)
 664		eb->folios[i] = page_folio(page_array[i]);
 665	eb->folio_size = PAGE_SIZE;
 666	eb->folio_shift = PAGE_SHIFT;
 667	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 668}
 669
 670static bool btrfs_bio_is_contig(struct btrfs_bio_ctrl *bio_ctrl,
 671				struct folio *folio, u64 disk_bytenr,
 672				unsigned int pg_offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673{
 674	struct bio *bio = &bio_ctrl->bbio->bio;
 675	struct bio_vec *bvec = bio_last_bvec_all(bio);
 676	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
 677	struct folio *bv_folio = page_folio(bvec->bv_page);
 
 678
 679	if (bio_ctrl->compress_type != BTRFS_COMPRESS_NONE) {
 680		/*
 681		 * For compression, all IO should have its logical bytenr set
 682		 * to the starting bytenr of the compressed extent.
 683		 */
 684		return bio->bi_iter.bi_sector == sector;
 685	}
 686
 687	/*
 688	 * The contig check requires the following conditions to be met:
 689	 *
 690	 * 1) The folios are belonging to the same inode
 691	 *    This is implied by the call chain.
 692	 *
 693	 * 2) The range has adjacent logical bytenr
 694	 *
 695	 * 3) The range has adjacent file offset
 696	 *    This is required for the usage of btrfs_bio->file_offset.
 697	 */
 698	return bio_end_sector(bio) == sector &&
 699		folio_pos(bv_folio) + bvec->bv_offset + bvec->bv_len ==
 700		folio_pos(folio) + pg_offset;
 
 
 
 701}
 702
 703static void alloc_new_bio(struct btrfs_inode *inode,
 704			  struct btrfs_bio_ctrl *bio_ctrl,
 705			  u64 disk_bytenr, u64 file_offset)
 706{
 707	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 708	struct btrfs_bio *bbio;
 
 
 
 
 709
 710	bbio = btrfs_bio_alloc(BIO_MAX_VECS, bio_ctrl->opf, fs_info,
 711			       bio_ctrl->end_io_func, NULL);
 712	bbio->bio.bi_iter.bi_sector = disk_bytenr >> SECTOR_SHIFT;
 713	bbio->inode = inode;
 714	bbio->file_offset = file_offset;
 715	bio_ctrl->bbio = bbio;
 716	bio_ctrl->len_to_oe_boundary = U32_MAX;
 717
 718	/* Limit data write bios to the ordered boundary. */
 719	if (bio_ctrl->wbc) {
 720		struct btrfs_ordered_extent *ordered;
 721
 722		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
 723		if (ordered) {
 724			bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
 725					ordered->file_offset +
 726					ordered->disk_num_bytes - file_offset);
 727			bbio->ordered = ordered;
 728		}
 
 
 
 
 
 
 729
 730		/*
 731		 * Pick the last added device to support cgroup writeback.  For
 732		 * multi-device file systems this means blk-cgroup policies have
 733		 * to always be set on the last added/replaced device.
 734		 * This is a bit odd but has been like that for a long time.
 735		 */
 736		bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
 737		wbc_init_bio(bio_ctrl->wbc, &bbio->bio);
 738	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 739}
 740
 741/*
 742 * @disk_bytenr: logical bytenr where the write will be
 
 743 * @page:	page to add to the bio
 
 744 * @size:	portion of page that we want to write to
 745 * @pg_offset:	offset of the new bio or to check whether we are adding
 746 *              a contiguous page to the previous one
 747 *
 748 * The will either add the page into the existing @bio_ctrl->bbio, or allocate a
 749 * new one in @bio_ctrl->bbio.
 750 * The mirror number for this IO should already be initizlied in
 751 * @bio_ctrl->mirror_num.
 752 */
 753static void submit_extent_folio(struct btrfs_bio_ctrl *bio_ctrl,
 754			       u64 disk_bytenr, struct folio *folio,
 755			       size_t size, unsigned long pg_offset)
 
 
 
 
 
 
 756{
 757	struct btrfs_inode *inode = folio_to_inode(folio);
 
 
 
 
 
 758
 759	ASSERT(pg_offset + size <= PAGE_SIZE);
 760	ASSERT(bio_ctrl->end_io_func);
 761
 762	if (bio_ctrl->bbio &&
 763	    !btrfs_bio_is_contig(bio_ctrl, folio, disk_bytenr, pg_offset))
 764		submit_one_bio(bio_ctrl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766	do {
 767		u32 len = size;
 
 
 
 
 
 
 768
 769		/* Allocate new bio if needed */
 770		if (!bio_ctrl->bbio) {
 771			alloc_new_bio(inode, bio_ctrl, disk_bytenr,
 772				      folio_pos(folio) + pg_offset);
 773		}
 
 
 774
 775		/* Cap to the current ordered extent boundary if there is one. */
 776		if (len > bio_ctrl->len_to_oe_boundary) {
 777			ASSERT(bio_ctrl->compress_type == BTRFS_COMPRESS_NONE);
 778			ASSERT(is_data_inode(inode));
 779			len = bio_ctrl->len_to_oe_boundary;
 780		}
 781
 782		if (!bio_add_folio(&bio_ctrl->bbio->bio, folio, len, pg_offset)) {
 783			/* bio full: move on to a new one */
 784			submit_one_bio(bio_ctrl);
 785			continue;
 786		}
 787
 788		if (bio_ctrl->wbc)
 789			wbc_account_cgroup_owner(bio_ctrl->wbc, folio,
 790						 len);
 791
 792		size -= len;
 793		pg_offset += len;
 794		disk_bytenr += len;
 795
 796		/*
 797		 * len_to_oe_boundary defaults to U32_MAX, which isn't folio or
 798		 * sector aligned.  alloc_new_bio() then sets it to the end of
 799		 * our ordered extent for writes into zoned devices.
 800		 *
 801		 * When len_to_oe_boundary is tracking an ordered extent, we
 802		 * trust the ordered extent code to align things properly, and
 803		 * the check above to cap our write to the ordered extent
 804		 * boundary is correct.
 805		 *
 806		 * When len_to_oe_boundary is U32_MAX, the cap above would
 807		 * result in a 4095 byte IO for the last folio right before
 808		 * we hit the bio limit of UINT_MAX.  bio_add_folio() has all
 809		 * the checks required to make sure we don't overflow the bio,
 810		 * and we should just ignore len_to_oe_boundary completely
 811		 * unless we're using it to track an ordered extent.
 812		 *
 813		 * It's pretty hard to make a bio sized U32_MAX, but it can
 814		 * happen when the page cache is able to feed us contiguous
 815		 * folios for large extents.
 816		 */
 817		if (bio_ctrl->len_to_oe_boundary != U32_MAX)
 818			bio_ctrl->len_to_oe_boundary -= len;
 819
 820		/* Ordered extent boundary: move on to a new bio. */
 821		if (bio_ctrl->len_to_oe_boundary == 0)
 822			submit_one_bio(bio_ctrl);
 823	} while (size);
 824}
 825
 826static int attach_extent_buffer_folio(struct extent_buffer *eb,
 827				      struct folio *folio,
 828				      struct btrfs_subpage *prealloc)
 829{
 830	struct btrfs_fs_info *fs_info = eb->fs_info;
 831	int ret = 0;
 832
 833	/*
 834	 * If the page is mapped to btree inode, we should hold the private
 835	 * lock to prevent race.
 836	 * For cloned or dummy extent buffers, their pages are not mapped and
 837	 * will not race with any other ebs.
 838	 */
 839	if (folio->mapping)
 840		lockdep_assert_held(&folio->mapping->i_private_lock);
 841
 842	if (fs_info->nodesize >= PAGE_SIZE) {
 843		if (!folio_test_private(folio))
 844			folio_attach_private(folio, eb);
 845		else
 846			WARN_ON(folio_get_private(folio) != eb);
 847		return 0;
 848	}
 849
 850	/* Already mapped, just free prealloc */
 851	if (folio_test_private(folio)) {
 852		btrfs_free_subpage(prealloc);
 853		return 0;
 854	}
 855
 856	if (prealloc)
 857		/* Has preallocated memory for subpage */
 858		folio_attach_private(folio, prealloc);
 859	else
 860		/* Do new allocation to attach subpage */
 861		ret = btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_METADATA);
 
 862	return ret;
 863}
 864
 865int set_page_extent_mapped(struct page *page)
 866{
 867	return set_folio_extent_mapped(page_folio(page));
 868}
 869
 870int set_folio_extent_mapped(struct folio *folio)
 871{
 872	struct btrfs_fs_info *fs_info;
 873
 874	ASSERT(folio->mapping);
 875
 876	if (folio_test_private(folio))
 877		return 0;
 878
 879	fs_info = folio_to_fs_info(folio);
 880
 881	if (btrfs_is_subpage(fs_info, folio->mapping))
 882		return btrfs_attach_subpage(fs_info, folio, BTRFS_SUBPAGE_DATA);
 883
 884	folio_attach_private(folio, (void *)EXTENT_FOLIO_PRIVATE);
 885	return 0;
 886}
 887
 888void clear_folio_extent_mapped(struct folio *folio)
 889{
 890	struct btrfs_fs_info *fs_info;
 891
 892	ASSERT(folio->mapping);
 893
 894	if (!folio_test_private(folio))
 895		return;
 896
 897	fs_info = folio_to_fs_info(folio);
 898	if (btrfs_is_subpage(fs_info, folio->mapping))
 899		return btrfs_detach_subpage(fs_info, folio);
 900
 901	folio_detach_private(folio);
 902}
 903
 904static struct extent_map *get_extent_map(struct btrfs_inode *inode,
 905					 struct folio *folio, u64 start,
 906					 u64 len, struct extent_map **em_cached)
 907{
 908	struct extent_map *em;
 909
 910	ASSERT(em_cached);
 911
 912	if (*em_cached) {
 913		em = *em_cached;
 914		if (extent_map_in_tree(em) && start >= em->start &&
 915		    start < extent_map_end(em)) {
 916			refcount_inc(&em->refs);
 917			return em;
 918		}
 919
 920		free_extent_map(em);
 921		*em_cached = NULL;
 922	}
 923
 924	em = btrfs_get_extent(inode, folio, start, len);
 925	if (!IS_ERR(em)) {
 926		BUG_ON(*em_cached);
 927		refcount_inc(&em->refs);
 928		*em_cached = em;
 929	}
 930
 931	return em;
 932}
 933/*
 934 * basic readpage implementation.  Locked extent state structs are inserted
 935 * into the tree that are removed when the IO is done (by the end_io
 936 * handlers)
 937 * XXX JDM: This needs looking at to ensure proper page locking
 938 * return 0 on success, otherwise return error
 939 */
 940static int btrfs_do_readpage(struct folio *folio, struct extent_map **em_cached,
 941		      struct btrfs_bio_ctrl *bio_ctrl, u64 *prev_em_start)
 942{
 943	struct inode *inode = folio->mapping->host;
 944	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
 945	u64 start = folio_pos(folio);
 
 946	const u64 end = start + PAGE_SIZE - 1;
 947	u64 cur = start;
 948	u64 extent_offset;
 949	u64 last_byte = i_size_read(inode);
 950	u64 block_start;
 
 951	struct extent_map *em;
 952	int ret = 0;
 
 953	size_t pg_offset = 0;
 954	size_t iosize;
 955	size_t blocksize = fs_info->sectorsize;
 
 
 956
 957	ret = set_folio_extent_mapped(folio);
 958	if (ret < 0) {
 959		folio_unlock(folio);
 960		return ret;
 
 
 961	}
 962
 963	if (folio->index == last_byte >> folio_shift(folio)) {
 964		size_t zero_offset = offset_in_folio(folio, last_byte);
 
 
 
 
 
 
 
 
 
 965
 966		if (zero_offset) {
 967			iosize = folio_size(folio) - zero_offset;
 968			folio_zero_range(folio, zero_offset, iosize);
 
 969		}
 970	}
 971	bio_ctrl->end_io_func = end_bbio_data_read;
 972	begin_folio_read(fs_info, folio);
 973	while (cur <= end) {
 974		enum btrfs_compression_type compress_type = BTRFS_COMPRESS_NONE;
 975		bool force_bio_submit = false;
 976		u64 disk_bytenr;
 977
 978		ASSERT(IS_ALIGNED(cur, fs_info->sectorsize));
 979		if (cur >= last_byte) {
 980			iosize = folio_size(folio) - pg_offset;
 981			folio_zero_range(folio, pg_offset, iosize);
 982			end_folio_read(folio, true, cur, iosize);
 
 
 
 
 
 
 
 983			break;
 984		}
 985		em = get_extent_map(BTRFS_I(inode), folio, cur, end - cur + 1, em_cached);
 986		if (IS_ERR(em)) {
 987			end_folio_read(folio, false, cur, end + 1 - cur);
 988			return PTR_ERR(em);
 
 
 989		}
 990		extent_offset = cur - em->start;
 991		BUG_ON(extent_map_end(em) <= cur);
 992		BUG_ON(end < cur);
 993
 994		compress_type = extent_map_compression(em);
 
 
 
 
 995
 996		iosize = min(extent_map_end(em) - cur, end - cur + 1);
 
 997		iosize = ALIGN(iosize, blocksize);
 998		if (compress_type != BTRFS_COMPRESS_NONE)
 999			disk_bytenr = em->disk_bytenr;
1000		else
1001			disk_bytenr = extent_map_block_start(em) + extent_offset;
1002		block_start = extent_map_block_start(em);
1003		if (em->flags & EXTENT_FLAG_PREALLOC)
1004			block_start = EXTENT_MAP_HOLE;
1005
1006		/*
1007		 * If we have a file range that points to a compressed extent
1008		 * and it's followed by a consecutive file range that points
1009		 * to the same compressed extent (possibly with a different
1010		 * offset and/or length, so it either points to the whole extent
1011		 * or only part of it), we must make sure we do not submit a
1012		 * single bio to populate the folios for the 2 ranges because
1013		 * this makes the compressed extent read zero out the folios
1014		 * belonging to the 2nd range. Imagine the following scenario:
1015		 *
1016		 *  File layout
1017		 *  [0 - 8K]                     [8K - 24K]
1018		 *    |                               |
1019		 *    |                               |
1020		 * points to extent X,         points to extent X,
1021		 * offset 4K, length of 8K     offset 0, length 16K
1022		 *
1023		 * [extent X, compressed length = 4K uncompressed length = 16K]
1024		 *
1025		 * If the bio to read the compressed extent covers both ranges,
1026		 * it will decompress extent X into the folios belonging to the
1027		 * first range and then it will stop, zeroing out the remaining
1028		 * folios that belong to the other range that points to extent X.
1029		 * So here we make sure we submit 2 bios, one for the first
1030		 * range and another one for the third range. Both will target
1031		 * the same physical extent from disk, but we can't currently
1032		 * make the compressed bio endio callback populate the folios
1033		 * for both ranges because each compressed bio is tightly
1034		 * coupled with a single extent map, and each range can have
1035		 * an extent map with a different offset value relative to the
1036		 * uncompressed data of our extent and different lengths. This
1037		 * is a corner case so we prioritize correctness over
1038		 * non-optimal behavior (submitting 2 bios for the same extent).
1039		 */
1040		if (compress_type != BTRFS_COMPRESS_NONE &&
1041		    prev_em_start && *prev_em_start != (u64)-1 &&
1042		    *prev_em_start != em->start)
1043			force_bio_submit = true;
1044
1045		if (prev_em_start)
1046			*prev_em_start = em->start;
1047
1048		free_extent_map(em);
1049		em = NULL;
1050
1051		/* we've found a hole, just zero and go on */
1052		if (block_start == EXTENT_MAP_HOLE) {
1053			folio_zero_range(folio, pg_offset, iosize);
1054
1055			end_folio_read(folio, true, cur, iosize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1056			cur = cur + iosize;
1057			pg_offset += iosize;
1058			continue;
1059		}
1060		/* the get_extent function already copied into the folio */
 
 
1061		if (block_start == EXTENT_MAP_INLINE) {
1062			end_folio_read(folio, true, cur, iosize);
 
1063			cur = cur + iosize;
1064			pg_offset += iosize;
1065			continue;
1066		}
1067
1068		if (bio_ctrl->compress_type != compress_type) {
1069			submit_one_bio(bio_ctrl);
1070			bio_ctrl->compress_type = compress_type;
 
 
 
 
 
 
 
 
 
1071		}
1072
1073		if (force_bio_submit)
1074			submit_one_bio(bio_ctrl);
1075		submit_extent_folio(bio_ctrl, disk_bytenr, folio, iosize,
1076				    pg_offset);
1077		cur = cur + iosize;
1078		pg_offset += iosize;
1079	}
1080
1081	return 0;
1082}
1083
1084int btrfs_read_folio(struct file *file, struct folio *folio)
 
 
 
 
1085{
1086	struct btrfs_inode *inode = folio_to_inode(folio);
1087	const u64 start = folio_pos(folio);
1088	const u64 end = start + folio_size(folio) - 1;
1089	struct extent_state *cached_state = NULL;
1090	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ };
1091	struct extent_map *em_cached = NULL;
1092	int ret;
1093
1094	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
1095	ret = btrfs_do_readpage(folio, &em_cached, &bio_ctrl, NULL);
1096	unlock_extent(&inode->io_tree, start, end, &cached_state);
1097
1098	free_extent_map(em_cached);
1099
1100	/*
1101	 * If btrfs_do_readpage() failed we will want to submit the assembled
1102	 * bio to do the cleanup.
1103	 */
1104	submit_one_bio(&bio_ctrl);
1105	return ret;
1106}
1107
1108static void set_delalloc_bitmap(struct folio *folio, unsigned long *delalloc_bitmap,
1109				u64 start, u32 len)
1110{
1111	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1112	const u64 folio_start = folio_pos(folio);
1113	unsigned int start_bit;
1114	unsigned int nbits;
1115
1116	ASSERT(start >= folio_start && start + len <= folio_start + PAGE_SIZE);
1117	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1118	nbits = len >> fs_info->sectorsize_bits;
1119	ASSERT(bitmap_test_range_all_zero(delalloc_bitmap, start_bit, nbits));
1120	bitmap_set(delalloc_bitmap, start_bit, nbits);
1121}
1122
1123static bool find_next_delalloc_bitmap(struct folio *folio,
1124				      unsigned long *delalloc_bitmap, u64 start,
1125				      u64 *found_start, u32 *found_len)
1126{
1127	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1128	const u64 folio_start = folio_pos(folio);
1129	const unsigned int bitmap_size = fs_info->sectors_per_page;
1130	unsigned int start_bit;
1131	unsigned int first_zero;
1132	unsigned int first_set;
1133
1134	ASSERT(start >= folio_start && start < folio_start + PAGE_SIZE);
1135
1136	start_bit = (start - folio_start) >> fs_info->sectorsize_bits;
1137	first_set = find_next_bit(delalloc_bitmap, bitmap_size, start_bit);
1138	if (first_set >= bitmap_size)
1139		return false;
1140
1141	*found_start = folio_start + (first_set << fs_info->sectorsize_bits);
1142	first_zero = find_next_zero_bit(delalloc_bitmap, bitmap_size, first_set);
1143	*found_len = (first_zero - first_set) << fs_info->sectorsize_bits;
1144	return true;
1145}
1146
1147/*
1148 * Do all of the delayed allocation setup.
1149 *
1150 * Return >0 if all the dirty blocks are submitted async (compression) or inlined.
1151 * The @folio should no longer be touched (treat it as already unlocked).
 
1152 *
1153 * Return 0 if there is still dirty block that needs to be submitted through
1154 * extent_writepage_io().
1155 * bio_ctrl->submit_bitmap will indicate which blocks of the folio should be
1156 * submitted, and @folio is still kept locked.
1157 *
1158 * Return <0 if there is any error hit.
1159 * Any allocated ordered extent range covering this folio will be marked
1160 * finished (IOERR), and @folio is still kept locked.
1161 */
1162static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
1163						 struct folio *folio,
1164						 struct btrfs_bio_ctrl *bio_ctrl)
1165{
1166	struct btrfs_fs_info *fs_info = inode_to_fs_info(&inode->vfs_inode);
1167	struct writeback_control *wbc = bio_ctrl->wbc;
1168	const bool is_subpage = btrfs_is_subpage(fs_info, folio->mapping);
1169	const u64 page_start = folio_pos(folio);
1170	const u64 page_end = page_start + folio_size(folio) - 1;
1171	unsigned long delalloc_bitmap = 0;
1172	/*
1173	 * Save the last found delalloc end. As the delalloc end can go beyond
1174	 * page boundary, thus we cannot rely on subpage bitmap to locate the
1175	 * last delalloc end.
1176	 */
1177	u64 last_delalloc_end = 0;
1178	/*
1179	 * The range end (exclusive) of the last successfully finished delalloc
1180	 * range.
1181	 * Any range covered by ordered extent must either be manually marked
1182	 * finished (error handling), or has IO submitted (and finish the
1183	 * ordered extent normally).
1184	 *
1185	 * This records the end of ordered extent cleanup if we hit an error.
1186	 */
1187	u64 last_finished_delalloc_end = page_start;
1188	u64 delalloc_start = page_start;
1189	u64 delalloc_end = page_end;
1190	u64 delalloc_to_write = 0;
1191	int ret = 0;
1192	int bit;
1193
1194	/* Save the dirty bitmap as our submission bitmap will be a subset of it. */
1195	if (btrfs_is_subpage(fs_info, inode->vfs_inode.i_mapping)) {
1196		ASSERT(fs_info->sectors_per_page > 1);
1197		btrfs_get_subpage_dirty_bitmap(fs_info, folio, &bio_ctrl->submit_bitmap);
1198	} else {
1199		bio_ctrl->submit_bitmap = 1;
1200	}
1201
1202	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1203		u64 start = page_start + (bit << fs_info->sectorsize_bits);
1204
1205		btrfs_folio_set_lock(fs_info, folio, start, fs_info->sectorsize);
1206	}
1207
1208	/* Lock all (subpage) delalloc ranges inside the folio first. */
1209	while (delalloc_start < page_end) {
1210		delalloc_end = page_end;
1211		if (!find_lock_delalloc_range(&inode->vfs_inode, folio,
1212					      &delalloc_start, &delalloc_end)) {
1213			delalloc_start = delalloc_end + 1;
1214			continue;
1215		}
1216		set_delalloc_bitmap(folio, &delalloc_bitmap, delalloc_start,
1217				    min(delalloc_end, page_end) + 1 - delalloc_start);
1218		last_delalloc_end = delalloc_end;
1219		delalloc_start = delalloc_end + 1;
1220	}
1221	delalloc_start = page_start;
1222
1223	if (!last_delalloc_end)
1224		goto out;
1225
1226	/* Run the delalloc ranges for the above locked ranges. */
1227	while (delalloc_start < page_end) {
1228		u64 found_start;
1229		u32 found_len;
1230		bool found;
1231
1232		if (!is_subpage) {
1233			/*
1234			 * For non-subpage case, the found delalloc range must
1235			 * cover this folio and there must be only one locked
1236			 * delalloc range.
1237			 */
1238			found_start = page_start;
1239			found_len = last_delalloc_end + 1 - found_start;
1240			found = true;
1241		} else {
1242			found = find_next_delalloc_bitmap(folio, &delalloc_bitmap,
1243					delalloc_start, &found_start, &found_len);
1244		}
1245		if (!found)
1246			break;
1247		/*
1248		 * The subpage range covers the last sector, the delalloc range may
1249		 * end beyond the folio boundary, use the saved delalloc_end
1250		 * instead.
1251		 */
1252		if (found_start + found_len >= page_end)
1253			found_len = last_delalloc_end + 1 - found_start;
1254
1255		if (ret >= 0) {
1256			/*
1257			 * Some delalloc range may be created by previous folios.
1258			 * Thus we still need to clean up this range during error
1259			 * handling.
 
1260			 */
1261			last_finished_delalloc_end = found_start;
1262			/* No errors hit so far, run the current delalloc range. */
1263			ret = btrfs_run_delalloc_range(inode, folio,
1264						       found_start,
1265						       found_start + found_len - 1,
1266						       wbc);
1267			if (ret >= 0)
1268				last_finished_delalloc_end = found_start + found_len;
1269		} else {
1270			/*
1271			 * We've hit an error during previous delalloc range,
1272			 * have to cleanup the remaining locked ranges.
1273			 */
1274			unlock_extent(&inode->io_tree, found_start,
1275				      found_start + found_len - 1, NULL);
1276			__unlock_for_delalloc(&inode->vfs_inode, folio,
1277					      found_start,
1278					      found_start + found_len - 1);
1279		}
1280
1281		/*
1282		 * We have some ranges that's going to be submitted asynchronously
1283		 * (compression or inline).  These range have their own control
1284		 * on when to unlock the pages.  We should not touch them
1285		 * anymore, so clear the range from the submission bitmap.
1286		 */
1287		if (ret > 0) {
1288			unsigned int start_bit = (found_start - page_start) >>
1289						 fs_info->sectorsize_bits;
1290			unsigned int end_bit = (min(page_end + 1, found_start + found_len) -
1291						page_start) >> fs_info->sectorsize_bits;
1292			bitmap_clear(&bio_ctrl->submit_bitmap, start_bit, end_bit - start_bit);
1293		}
1294		/*
1295		 * Above btrfs_run_delalloc_range() may have unlocked the folio,
1296		 * thus for the last range, we cannot touch the folio anymore.
1297		 */
1298		if (found_start + found_len >= last_delalloc_end + 1)
1299			break;
1300
1301		delalloc_start = found_start + found_len;
1302	}
1303	/*
1304	 * It's possible we had some ordered extents created before we hit
1305	 * an error, cleanup non-async successfully created delalloc ranges.
1306	 */
1307	if (unlikely(ret < 0)) {
1308		unsigned int bitmap_size = min(
1309				(last_finished_delalloc_end - page_start) >>
1310				fs_info->sectorsize_bits,
1311				fs_info->sectors_per_page);
1312
1313		for_each_set_bit(bit, &bio_ctrl->submit_bitmap, bitmap_size)
1314			btrfs_mark_ordered_io_finished(inode, folio,
1315				page_start + (bit << fs_info->sectorsize_bits),
1316				fs_info->sectorsize, false);
1317		return ret;
1318	}
1319out:
1320	if (last_delalloc_end)
1321		delalloc_end = last_delalloc_end;
1322	else
1323		delalloc_end = page_end;
1324	/*
1325	 * delalloc_end is already one less than the total length, so
1326	 * we don't subtract one from PAGE_SIZE
1327	 */
1328	delalloc_to_write +=
1329		DIV_ROUND_UP(delalloc_end + 1 - page_start, PAGE_SIZE);
1330
1331	/*
1332	 * If all ranges are submitted asynchronously, we just need to account
1333	 * for them here.
1334	 */
1335	if (bitmap_empty(&bio_ctrl->submit_bitmap, fs_info->sectors_per_page)) {
1336		wbc->nr_to_write -= delalloc_to_write;
1337		return 1;
1338	}
1339
1340	if (wbc->nr_to_write < delalloc_to_write) {
1341		int thresh = 8192;
1342
1343		if (delalloc_to_write < thresh * 2)
1344			thresh = delalloc_to_write;
1345		wbc->nr_to_write = min_t(u64, delalloc_to_write,
1346					 thresh);
1347	}
1348
 
 
 
 
 
 
 
 
 
 
 
 
 
1349	return 0;
1350}
1351
1352/*
1353 * Return 0 if we have submitted or queued the sector for submission.
1354 * Return <0 for critical errors.
1355 *
1356 * Caller should make sure filepos < i_size and handle filepos >= i_size case.
 
 
 
 
 
 
 
 
 
 
1357 */
1358static int submit_one_sector(struct btrfs_inode *inode,
1359			     struct folio *folio,
1360			     u64 filepos, struct btrfs_bio_ctrl *bio_ctrl,
1361			     loff_t i_size)
1362{
1363	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1364	struct extent_map *em;
1365	u64 block_start;
1366	u64 disk_bytenr;
1367	u64 extent_offset;
1368	u64 em_end;
1369	const u32 sectorsize = fs_info->sectorsize;
1370
1371	ASSERT(IS_ALIGNED(filepos, sectorsize));
1372
1373	/* @filepos >= i_size case should be handled by the caller. */
1374	ASSERT(filepos < i_size);
1375
1376	em = btrfs_get_extent(inode, NULL, filepos, sectorsize);
1377	if (IS_ERR(em))
1378		return PTR_ERR_OR_ZERO(em);
1379
1380	extent_offset = filepos - em->start;
1381	em_end = extent_map_end(em);
1382	ASSERT(filepos <= em_end);
1383	ASSERT(IS_ALIGNED(em->start, sectorsize));
1384	ASSERT(IS_ALIGNED(em->len, sectorsize));
1385
1386	block_start = extent_map_block_start(em);
1387	disk_bytenr = extent_map_block_start(em) + extent_offset;
1388
1389	ASSERT(!extent_map_is_compressed(em));
1390	ASSERT(block_start != EXTENT_MAP_HOLE);
1391	ASSERT(block_start != EXTENT_MAP_INLINE);
1392
1393	free_extent_map(em);
1394	em = NULL;
1395
1396	/*
1397	 * Although the PageDirty bit is cleared before entering this
1398	 * function, subpage dirty bit is not cleared.
1399	 * So clear subpage dirty bit here so next time we won't submit
1400	 * a folio for a range already written to disk.
1401	 */
1402	btrfs_folio_clear_dirty(fs_info, folio, filepos, sectorsize);
1403	btrfs_folio_set_writeback(fs_info, folio, filepos, sectorsize);
1404	/*
1405	 * Above call should set the whole folio with writeback flag, even
1406	 * just for a single subpage sector.
1407	 * As long as the folio is properly locked and the range is correct,
1408	 * we should always get the folio with writeback flag.
1409	 */
1410	ASSERT(folio_test_writeback(folio));
1411
1412	submit_extent_folio(bio_ctrl, disk_bytenr, folio,
1413			    sectorsize, filepos - folio_pos(folio));
1414	return 0;
 
 
 
 
 
 
1415}
1416
1417/*
1418 * Helper for extent_writepage().  This calls the writepage start hooks,
1419 * and does the loop to map the page into extents and bios.
1420 *
1421 * We return 1 if the IO is started and the page is unlocked,
1422 * 0 if all went well (page still locked)
1423 * < 0 if there were errors (page still locked)
1424 */
1425static noinline_for_stack int extent_writepage_io(struct btrfs_inode *inode,
1426						  struct folio *folio,
1427						  u64 start, u32 len,
1428						  struct btrfs_bio_ctrl *bio_ctrl,
1429						  loff_t i_size)
 
 
1430{
1431	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1432	unsigned long range_bitmap = 0;
1433	bool submitted_io = false;
1434	bool error = false;
1435	const u64 folio_start = folio_pos(folio);
1436	u64 cur;
1437	int bit;
1438	int ret = 0;
 
 
 
 
1439
1440	ASSERT(start >= folio_start &&
1441	       start + len <= folio_start + folio_size(folio));
1442
1443	ret = btrfs_writepage_cow_fixup(folio);
1444	if (ret) {
1445		/* Fixup worker will requeue */
1446		folio_redirty_for_writepage(bio_ctrl->wbc, folio);
1447		folio_unlock(folio);
 
1448		return 1;
1449	}
1450
1451	for (cur = start; cur < start + len; cur += fs_info->sectorsize)
1452		set_bit((cur - folio_start) >> fs_info->sectorsize_bits, &range_bitmap);
1453	bitmap_and(&bio_ctrl->submit_bitmap, &bio_ctrl->submit_bitmap, &range_bitmap,
1454		   fs_info->sectors_per_page);
1455
1456	bio_ctrl->end_io_func = end_bbio_data_write;
1457
1458	for_each_set_bit(bit, &bio_ctrl->submit_bitmap, fs_info->sectors_per_page) {
1459		cur = folio_pos(folio) + (bit << fs_info->sectorsize_bits);
 
 
 
 
1460
1461		if (cur >= i_size) {
1462			btrfs_mark_ordered_io_finished(inode, folio, cur,
1463						       start + len - cur, true);
1464			/*
1465			 * This range is beyond i_size, thus we don't need to
1466			 * bother writing back.
1467			 * But we still need to clear the dirty subpage bit, or
1468			 * the next time the folio gets dirtied, we will try to
1469			 * writeback the sectors with subpage dirty bits,
1470			 * causing writeback without ordered extent.
1471			 */
1472			btrfs_folio_clear_dirty(fs_info, folio, cur,
1473						start + len - cur);
1474			break;
1475		}
1476		ret = submit_one_sector(inode, folio, cur, bio_ctrl, i_size);
1477		if (unlikely(ret < 0)) {
1478			/*
1479			 * bio_ctrl may contain a bio crossing several folios.
1480			 * Submit it immediately so that the bio has a chance
1481			 * to finish normally, other than marked as error.
1482			 */
1483			submit_one_bio(bio_ctrl);
1484			/*
1485			 * Failed to grab the extent map which should be very rare.
1486			 * Since there is no bio submitted to finish the ordered
1487			 * extent, we have to manually finish this sector.
1488			 */
1489			btrfs_mark_ordered_io_finished(inode, folio, cur,
1490						       fs_info->sectorsize, false);
1491			error = true;
1492			continue;
1493		}
1494		submitted_io = true;
1495	}
1496
1497	/*
1498	 * If we didn't submitted any sector (>= i_size), folio dirty get
1499	 * cleared but PAGECACHE_TAG_DIRTY is not cleared (only cleared
1500	 * by folio_start_writeback() if the folio is not dirty).
1501	 *
1502	 * Here we set writeback and clear for the range. If the full folio
1503	 * is no longer dirty then we clear the PAGECACHE_TAG_DIRTY tag.
1504	 *
1505	 * If we hit any error, the corresponding sector will still be dirty
1506	 * thus no need to clear PAGECACHE_TAG_DIRTY.
1507	 */
1508	if (!submitted_io && !error) {
1509		btrfs_folio_set_writeback(fs_info, folio, start, len);
1510		btrfs_folio_clear_writeback(fs_info, folio, start, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1511	}
 
1512	return ret;
1513}
1514
1515/*
1516 * the writepage semantics are similar to regular writepage.  extent
1517 * records are inserted to lock ranges in the tree, and as dirty areas
1518 * are found, they are marked writeback.  Then the lock bits are removed
1519 * and the end_io handler clears the writeback ranges
1520 *
1521 * Return 0 if everything goes well.
1522 * Return <0 for error.
1523 */
1524static int extent_writepage(struct folio *folio, struct btrfs_bio_ctrl *bio_ctrl)
 
1525{
1526	struct btrfs_inode *inode = BTRFS_I(folio->mapping->host);
1527	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 
1528	int ret;
 
1529	size_t pg_offset;
1530	loff_t i_size = i_size_read(&inode->vfs_inode);
1531	unsigned long end_index = i_size >> PAGE_SHIFT;
 
1532
1533	trace_extent_writepage(folio, &inode->vfs_inode, bio_ctrl->wbc);
1534
1535	WARN_ON(!folio_test_locked(folio));
1536
1537	pg_offset = offset_in_folio(folio, i_size);
1538	if (folio->index > end_index ||
1539	   (folio->index == end_index && !pg_offset)) {
1540		folio_invalidate(folio, 0, folio_size(folio));
1541		folio_unlock(folio);
 
 
1542		return 0;
1543	}
1544
1545	if (folio->index == end_index)
1546		folio_zero_range(folio, pg_offset, folio_size(folio) - pg_offset);
 
 
1547
1548	/*
1549	 * Default to unlock the whole folio.
1550	 * The proper bitmap can only be initialized until writepage_delalloc().
1551	 */
1552	bio_ctrl->submit_bitmap = (unsigned long)-1;
1553	ret = set_folio_extent_mapped(folio);
1554	if (ret < 0)
1555		goto done;
 
1556
1557	ret = writepage_delalloc(inode, folio, bio_ctrl);
1558	if (ret == 1)
1559		return 0;
1560	if (ret)
1561		goto done;
 
 
 
1562
1563	ret = extent_writepage_io(inode, folio, folio_pos(folio),
1564				  PAGE_SIZE, bio_ctrl, i_size);
1565	if (ret == 1)
1566		return 0;
1567
1568	bio_ctrl->wbc->nr_to_write--;
1569
1570done:
1571	if (ret < 0)
1572		mapping_set_error(folio->mapping, ret);
1573	/*
1574	 * Only unlock ranges that are submitted. As there can be some async
1575	 * submitted ranges inside the folio.
1576	 */
1577	btrfs_folio_end_lock_bitmap(fs_info, folio, bio_ctrl->submit_bitmap);
 
 
 
1578	ASSERT(ret <= 0);
1579	return ret;
1580}
1581
1582void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
1583{
1584	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
1585		       TASK_UNINTERRUPTIBLE);
1586}
1587
 
 
 
 
 
 
 
1588/*
1589 * Lock extent buffer status and pages for writeback.
1590 *
1591 * Return %false if the extent buffer doesn't need to be submitted (e.g. the
1592 * extent buffer is not dirty)
1593 * Return %true is the extent buffer is submitted to bio.
 
 
 
1594 */
1595static noinline_for_stack bool lock_extent_buffer_for_io(struct extent_buffer *eb,
1596			  struct writeback_control *wbc)
1597{
1598	struct btrfs_fs_info *fs_info = eb->fs_info;
1599	bool ret = false;
 
 
1600
1601	btrfs_tree_lock(eb);
1602	while (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
1603		btrfs_tree_unlock(eb);
1604		if (wbc->sync_mode != WB_SYNC_ALL)
1605			return false;
1606		wait_on_extent_buffer_writeback(eb);
1607		btrfs_tree_lock(eb);
1608	}
1609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1610	/*
1611	 * We need to do this to prevent races in people who check if the eb is
1612	 * under IO since we can end up having no IO bits set for a short period
1613	 * of time.
1614	 */
1615	spin_lock(&eb->refs_lock);
1616	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
1617		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1618		spin_unlock(&eb->refs_lock);
1619		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
1620		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1621					 -eb->len,
1622					 fs_info->dirty_metadata_batch);
1623		ret = true;
1624	} else {
1625		spin_unlock(&eb->refs_lock);
1626	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1627	btrfs_tree_unlock(eb);
1628	return ret;
1629}
1630
1631static void set_btree_ioerr(struct extent_buffer *eb)
1632{
1633	struct btrfs_fs_info *fs_info = eb->fs_info;
1634
1635	set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
1636
1637	/*
1638	 * A read may stumble upon this buffer later, make sure that it gets an
1639	 * error and knows there was an error.
1640	 */
1641	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
1642
1643	/*
1644	 * We need to set the mapping with the io error as well because a write
1645	 * error will flip the file system readonly, and then syncfs() will
1646	 * return a 0 because we are readonly if we don't modify the err seq for
1647	 * the superblock.
1648	 */
1649	mapping_set_error(eb->fs_info->btree_inode->i_mapping, -EIO);
 
1650
1651	/*
1652	 * If writeback for a btree extent that doesn't belong to a log tree
1653	 * failed, increment the counter transaction->eb_write_errors.
1654	 * We do this because while the transaction is running and before it's
1655	 * committing (when we call filemap_fdata[write|wait]_range against
1656	 * the btree inode), we might have
1657	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
1658	 * returns an error or an error happens during writeback, when we're
1659	 * committing the transaction we wouldn't know about it, since the pages
1660	 * can be no longer dirty nor marked anymore for writeback (if a
1661	 * subsequent modification to the extent buffer didn't happen before the
1662	 * transaction commit), which makes filemap_fdata[write|wait]_range not
1663	 * able to find the pages which contain errors at transaction
1664	 * commit time. So if this happens we must abort the transaction,
1665	 * otherwise we commit a super block with btree roots that point to
1666	 * btree nodes/leafs whose content on disk is invalid - either garbage
1667	 * or the content of some node/leaf from a past generation that got
1668	 * cowed or deleted and is no longer valid.
1669	 *
1670	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
1671	 * not be enough - we need to distinguish between log tree extents vs
1672	 * non-log tree extents, and the next filemap_fdatawait_range() call
1673	 * will catch and clear such errors in the mapping - and that call might
1674	 * be from a log sync and not from a transaction commit. Also, checking
1675	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
1676	 * not done and would not be reliable - the eb might have been released
1677	 * from memory and reading it back again means that flag would not be
1678	 * set (since it's a runtime flag, not persisted on disk).
1679	 *
1680	 * Using the flags below in the btree inode also makes us achieve the
1681	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
1682	 * writeback for all dirty pages and before filemap_fdatawait_range()
1683	 * is called, the writeback for all dirty pages had already finished
1684	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
1685	 * filemap_fdatawait_range() would return success, as it could not know
1686	 * that writeback errors happened (the pages were no longer tagged for
1687	 * writeback).
1688	 */
1689	switch (eb->log_index) {
1690	case -1:
1691		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
1692		break;
1693	case 0:
1694		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
1695		break;
1696	case 1:
1697		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
1698		break;
1699	default:
1700		BUG(); /* unexpected, logic error */
1701	}
1702}
1703
1704/*
1705 * The endio specific version which won't touch any unsafe spinlock in endio
1706 * context.
1707 */
1708static struct extent_buffer *find_extent_buffer_nolock(
1709		const struct btrfs_fs_info *fs_info, u64 start)
1710{
1711	struct extent_buffer *eb;
1712
1713	rcu_read_lock();
1714	eb = radix_tree_lookup(&fs_info->buffer_radix,
1715			       start >> fs_info->sectorsize_bits);
1716	if (eb && atomic_inc_not_zero(&eb->refs)) {
1717		rcu_read_unlock();
1718		return eb;
1719	}
1720	rcu_read_unlock();
1721	return NULL;
1722}
1723
1724static void end_bbio_meta_write(struct btrfs_bio *bbio)
 
 
 
 
 
 
1725{
1726	struct extent_buffer *eb = bbio->private;
1727	struct btrfs_fs_info *fs_info = eb->fs_info;
1728	bool uptodate = !bbio->bio.bi_status;
1729	struct folio_iter fi;
1730	u32 bio_offset = 0;
1731
1732	if (!uptodate)
1733		set_btree_ioerr(eb);
1734
1735	bio_for_each_folio_all(fi, &bbio->bio) {
1736		u64 start = eb->start + bio_offset;
1737		struct folio *folio = fi.folio;
1738		u32 len = fi.length;
 
 
 
 
 
 
 
 
 
1739
1740		btrfs_folio_clear_writeback(fs_info, folio, start, len);
1741		bio_offset += len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1742	}
 
 
1743
1744	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
1745	smp_mb__after_atomic();
1746	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747
1748	bio_put(&bbio->bio);
 
 
 
 
 
 
1749}
1750
1751static void prepare_eb_write(struct extent_buffer *eb)
1752{
1753	u32 nritems;
1754	unsigned long start;
1755	unsigned long end;
1756
1757	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
 
1758
1759	/* Set btree blocks beyond nritems with 0 to avoid stale content */
1760	nritems = btrfs_header_nritems(eb);
1761	if (btrfs_header_level(eb) > 0) {
1762		end = btrfs_node_key_ptr_offset(eb, nritems);
1763		memzero_extent_buffer(eb, end, eb->len - end);
1764	} else {
1765		/*
1766		 * Leaf:
1767		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
1768		 */
1769		start = btrfs_item_nr_offset(eb, nritems);
1770		end = btrfs_item_nr_offset(eb, 0);
1771		if (nritems == 0)
1772			end += BTRFS_LEAF_DATA_SIZE(eb->fs_info);
1773		else
1774			end += btrfs_item_offset(eb, nritems - 1);
1775		memzero_extent_buffer(eb, start, end - start);
1776	}
1777}
1778
1779static noinline_for_stack void write_one_eb(struct extent_buffer *eb,
1780					    struct writeback_control *wbc)
 
 
 
 
 
1781{
1782	struct btrfs_fs_info *fs_info = eb->fs_info;
1783	struct btrfs_bio *bbio;
 
 
 
1784
1785	prepare_eb_write(eb);
1786
1787	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
1788			       REQ_OP_WRITE | REQ_META | wbc_to_write_flags(wbc),
1789			       eb->fs_info, end_bbio_meta_write, eb);
1790	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
1791	bio_set_dev(&bbio->bio, fs_info->fs_devices->latest_dev->bdev);
1792	wbc_init_bio(wbc, &bbio->bio);
1793	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
1794	bbio->file_offset = eb->start;
1795	if (fs_info->nodesize < PAGE_SIZE) {
1796		struct folio *folio = eb->folios[0];
1797		bool ret;
1798
1799		folio_lock(folio);
1800		btrfs_subpage_set_writeback(fs_info, folio, eb->start, eb->len);
1801		if (btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start,
1802						       eb->len)) {
1803			folio_clear_dirty_for_io(folio);
1804			wbc->nr_to_write--;
1805		}
1806		ret = bio_add_folio(&bbio->bio, folio, eb->len,
1807				    eb->start - folio_pos(folio));
1808		ASSERT(ret);
1809		wbc_account_cgroup_owner(wbc, folio, eb->len);
1810		folio_unlock(folio);
1811	} else {
1812		int num_folios = num_extent_folios(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813
1814		for (int i = 0; i < num_folios; i++) {
1815			struct folio *folio = eb->folios[i];
1816			bool ret;
1817
1818			folio_lock(folio);
1819			folio_clear_dirty_for_io(folio);
1820			folio_start_writeback(folio);
1821			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
1822			ASSERT(ret);
1823			wbc_account_cgroup_owner(wbc, folio, eb->folio_size);
1824			wbc->nr_to_write -= folio_nr_pages(folio);
1825			folio_unlock(folio);
 
 
 
 
 
 
 
1826		}
 
 
 
1827	}
1828	btrfs_submit_bbio(bbio, 0);
 
 
 
 
 
 
 
 
 
1829}
1830
1831/*
1832 * Submit one subpage btree page.
1833 *
1834 * The main difference to submit_eb_page() is:
1835 * - Page locking
1836 *   For subpage, we don't rely on page locking at all.
1837 *
1838 * - Flush write bio
1839 *   We only flush bio if we may be unable to fit current extent buffers into
1840 *   current bio.
1841 *
1842 * Return >=0 for the number of submitted extent buffers.
1843 * Return <0 for fatal error.
1844 */
1845static int submit_eb_subpage(struct folio *folio, struct writeback_control *wbc)
 
 
1846{
1847	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
1848	int submitted = 0;
1849	u64 folio_start = folio_pos(folio);
1850	int bit_start = 0;
 
1851	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
 
1852
1853	/* Lock and write each dirty extent buffers in the range */
1854	while (bit_start < fs_info->sectors_per_page) {
1855		struct btrfs_subpage *subpage = folio_get_private(folio);
1856		struct extent_buffer *eb;
1857		unsigned long flags;
1858		u64 start;
1859
1860		/*
1861		 * Take private lock to ensure the subpage won't be detached
1862		 * in the meantime.
1863		 */
1864		spin_lock(&folio->mapping->i_private_lock);
1865		if (!folio_test_private(folio)) {
1866			spin_unlock(&folio->mapping->i_private_lock);
1867			break;
1868		}
1869		spin_lock_irqsave(&subpage->lock, flags);
1870		if (!test_bit(bit_start + btrfs_bitmap_nr_dirty * fs_info->sectors_per_page,
1871			      subpage->bitmaps)) {
1872			spin_unlock_irqrestore(&subpage->lock, flags);
1873			spin_unlock(&folio->mapping->i_private_lock);
1874			bit_start++;
1875			continue;
1876		}
1877
1878		start = folio_start + bit_start * fs_info->sectorsize;
1879		bit_start += sectors_per_node;
1880
1881		/*
1882		 * Here we just want to grab the eb without touching extra
1883		 * spin locks, so call find_extent_buffer_nolock().
1884		 */
1885		eb = find_extent_buffer_nolock(fs_info, start);
1886		spin_unlock_irqrestore(&subpage->lock, flags);
1887		spin_unlock(&folio->mapping->i_private_lock);
1888
1889		/*
1890		 * The eb has already reached 0 refs thus find_extent_buffer()
1891		 * doesn't return it. We don't need to write back such eb
1892		 * anyway.
1893		 */
1894		if (!eb)
1895			continue;
1896
1897		if (lock_extent_buffer_for_io(eb, wbc)) {
1898			write_one_eb(eb, wbc);
1899			submitted++;
 
1900		}
 
 
 
 
 
1901		free_extent_buffer(eb);
 
 
 
1902	}
1903	return submitted;
 
 
 
 
 
1904}
1905
1906/*
1907 * Submit all page(s) of one extent buffer.
1908 *
1909 * @page:	the page of one extent buffer
1910 * @eb_context:	to determine if we need to submit this page, if current page
1911 *		belongs to this eb, we don't need to submit
1912 *
1913 * The caller should pass each page in their bytenr order, and here we use
1914 * @eb_context to determine if we have submitted pages of one extent buffer.
1915 *
1916 * If we have, we just skip until we hit a new page that doesn't belong to
1917 * current @eb_context.
1918 *
1919 * If not, we submit all the page(s) of the extent buffer.
1920 *
1921 * Return >0 if we have submitted the extent buffer successfully.
1922 * Return 0 if we don't need to submit the page, as it's already submitted by
1923 * previous call.
1924 * Return <0 for fatal error.
1925 */
1926static int submit_eb_page(struct folio *folio, struct btrfs_eb_write_context *ctx)
 
 
1927{
1928	struct writeback_control *wbc = ctx->wbc;
1929	struct address_space *mapping = folio->mapping;
1930	struct extent_buffer *eb;
1931	int ret;
1932
1933	if (!folio_test_private(folio))
1934		return 0;
1935
1936	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
1937		return submit_eb_subpage(folio, wbc);
1938
1939	spin_lock(&mapping->i_private_lock);
1940	if (!folio_test_private(folio)) {
1941		spin_unlock(&mapping->i_private_lock);
1942		return 0;
1943	}
1944
1945	eb = folio_get_private(folio);
1946
1947	/*
1948	 * Shouldn't happen and normally this would be a BUG_ON but no point
1949	 * crashing the machine for something we can survive anyway.
1950	 */
1951	if (WARN_ON(!eb)) {
1952		spin_unlock(&mapping->i_private_lock);
1953		return 0;
1954	}
1955
1956	if (eb == ctx->eb) {
1957		spin_unlock(&mapping->i_private_lock);
1958		return 0;
1959	}
1960	ret = atomic_inc_not_zero(&eb->refs);
1961	spin_unlock(&mapping->i_private_lock);
1962	if (!ret)
1963		return 0;
1964
1965	ctx->eb = eb;
1966
1967	ret = btrfs_check_meta_write_pointer(eb->fs_info, ctx);
1968	if (ret) {
1969		if (ret == -EBUSY)
 
 
 
1970			ret = 0;
1971		free_extent_buffer(eb);
1972		return ret;
1973	}
1974
1975	if (!lock_extent_buffer_for_io(eb, wbc)) {
 
 
 
 
 
 
1976		free_extent_buffer(eb);
1977		return 0;
1978	}
1979	/* Implies write in zoned mode. */
1980	if (ctx->zoned_bg) {
1981		/* Mark the last eb in the block group. */
1982		btrfs_schedule_zone_finish_bg(ctx->zoned_bg, eb);
1983		ctx->zoned_bg->meta_write_pointer += eb->len;
1984	}
1985	write_one_eb(eb, wbc);
 
 
1986	free_extent_buffer(eb);
 
 
1987	return 1;
1988}
1989
1990int btree_write_cache_pages(struct address_space *mapping,
1991				   struct writeback_control *wbc)
1992{
1993	struct btrfs_eb_write_context ctx = { .wbc = wbc };
1994	struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
 
 
 
 
 
1995	int ret = 0;
1996	int done = 0;
1997	int nr_to_write_done = 0;
1998	struct folio_batch fbatch;
1999	unsigned int nr_folios;
2000	pgoff_t index;
2001	pgoff_t end;		/* Inclusive */
2002	int scanned = 0;
2003	xa_mark_t tag;
2004
2005	folio_batch_init(&fbatch);
2006	if (wbc->range_cyclic) {
2007		index = mapping->writeback_index; /* Start from prev offset */
2008		end = -1;
2009		/*
2010		 * Start from the beginning does not need to cycle over the
2011		 * range, mark it as scanned.
2012		 */
2013		scanned = (index == 0);
2014	} else {
2015		index = wbc->range_start >> PAGE_SHIFT;
2016		end = wbc->range_end >> PAGE_SHIFT;
2017		scanned = 1;
2018	}
2019	if (wbc->sync_mode == WB_SYNC_ALL)
2020		tag = PAGECACHE_TAG_TOWRITE;
2021	else
2022		tag = PAGECACHE_TAG_DIRTY;
2023	btrfs_zoned_meta_io_lock(fs_info);
2024retry:
2025	if (wbc->sync_mode == WB_SYNC_ALL)
2026		tag_pages_for_writeback(mapping, index, end);
2027	while (!done && !nr_to_write_done && (index <= end) &&
2028	       (nr_folios = filemap_get_folios_tag(mapping, &index, end,
2029					    tag, &fbatch))) {
2030		unsigned i;
2031
2032		for (i = 0; i < nr_folios; i++) {
2033			struct folio *folio = fbatch.folios[i];
2034
2035			ret = submit_eb_page(folio, &ctx);
2036			if (ret == 0)
2037				continue;
2038			if (ret < 0) {
2039				done = 1;
2040				break;
2041			}
2042
2043			/*
2044			 * the filesystem may choose to bump up nr_to_write.
2045			 * We have to make sure to honor the new nr_to_write
2046			 * at any time
2047			 */
2048			nr_to_write_done = wbc->nr_to_write <= 0;
2049		}
2050		folio_batch_release(&fbatch);
2051		cond_resched();
2052	}
2053	if (!scanned && !done) {
2054		/*
2055		 * We hit the last page and there is more work to be done: wrap
2056		 * back to the start of the file
2057		 */
2058		scanned = 1;
2059		index = 0;
2060		goto retry;
2061	}
 
 
 
 
2062	/*
2063	 * If something went wrong, don't allow any metadata write bio to be
2064	 * submitted.
2065	 *
2066	 * This would prevent use-after-free if we had dirty pages not
2067	 * cleaned up, which can still happen by fuzzed images.
2068	 *
2069	 * - Bad extent tree
2070	 *   Allowing existing tree block to be allocated for other trees.
2071	 *
2072	 * - Log tree operations
2073	 *   Exiting tree blocks get allocated to log tree, bumps its
2074	 *   generation, then get cleaned in tree re-balance.
2075	 *   Such tree block will not be written back, since it's clean,
2076	 *   thus no WRITTEN flag set.
2077	 *   And after log writes back, this tree block is not traced by
2078	 *   any dirty extent_io_tree.
2079	 *
2080	 * - Offending tree block gets re-dirtied from its original owner
2081	 *   Since it has bumped generation, no WRITTEN flag, it can be
2082	 *   reused without COWing. This tree block will not be traced
2083	 *   by btrfs_transaction::dirty_pages.
2084	 *
2085	 *   Now such dirty tree block will not be cleaned by any dirty
2086	 *   extent io tree. Thus we don't want to submit such wild eb
2087	 *   if the fs already has error.
2088	 *
2089	 * We can get ret > 0 from submit_extent_folio() indicating how many ebs
2090	 * were submitted. Reset it to 0 to avoid false alerts for the caller.
2091	 */
2092	if (ret > 0)
2093		ret = 0;
2094	if (!ret && BTRFS_FS_ERROR(fs_info))
2095		ret = -EROFS;
2096
2097	if (ctx.zoned_bg)
2098		btrfs_put_block_group(ctx.zoned_bg);
2099	btrfs_zoned_meta_io_unlock(fs_info);
2100	return ret;
2101}
2102
2103/*
2104 * Walk the list of dirty pages of the given address space and write all of them.
2105 *
2106 * @mapping:   address space structure to write
2107 * @wbc:       subtract the number of written pages from *@wbc->nr_to_write
2108 * @bio_ctrl:  holds context for the write, namely the bio
2109 *
2110 * If a page is already under I/O, write_cache_pages() skips it, even
2111 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2112 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2113 * and msync() need to guarantee that all the data which was dirty at the time
2114 * the call was made get new I/O started against them.  If wbc->sync_mode is
2115 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2116 * existing IO to complete.
2117 */
2118static int extent_write_cache_pages(struct address_space *mapping,
2119			     struct btrfs_bio_ctrl *bio_ctrl)
 
2120{
2121	struct writeback_control *wbc = bio_ctrl->wbc;
2122	struct inode *inode = mapping->host;
2123	int ret = 0;
2124	int done = 0;
2125	int nr_to_write_done = 0;
2126	struct folio_batch fbatch;
2127	unsigned int nr_folios;
2128	pgoff_t index;
2129	pgoff_t end;		/* Inclusive */
2130	pgoff_t done_index;
2131	int range_whole = 0;
2132	int scanned = 0;
2133	xa_mark_t tag;
2134
2135	/*
2136	 * We have to hold onto the inode so that ordered extents can do their
2137	 * work when the IO finishes.  The alternative to this is failing to add
2138	 * an ordered extent if the igrab() fails there and that is a huge pain
2139	 * to deal with, so instead just hold onto the inode throughout the
2140	 * writepages operation.  If it fails here we are freeing up the inode
2141	 * anyway and we'd rather not waste our time writing out stuff that is
2142	 * going to be truncated anyway.
2143	 */
2144	if (!igrab(inode))
2145		return 0;
2146
2147	folio_batch_init(&fbatch);
2148	if (wbc->range_cyclic) {
2149		index = mapping->writeback_index; /* Start from prev offset */
2150		end = -1;
2151		/*
2152		 * Start from the beginning does not need to cycle over the
2153		 * range, mark it as scanned.
2154		 */
2155		scanned = (index == 0);
2156	} else {
2157		index = wbc->range_start >> PAGE_SHIFT;
2158		end = wbc->range_end >> PAGE_SHIFT;
2159		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2160			range_whole = 1;
2161		scanned = 1;
2162	}
2163
2164	/*
2165	 * We do the tagged writepage as long as the snapshot flush bit is set
2166	 * and we are the first one who do the filemap_flush() on this inode.
2167	 *
2168	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
2169	 * not race in and drop the bit.
2170	 */
2171	if (range_whole && wbc->nr_to_write == LONG_MAX &&
2172	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
2173			       &BTRFS_I(inode)->runtime_flags))
2174		wbc->tagged_writepages = 1;
2175
2176	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2177		tag = PAGECACHE_TAG_TOWRITE;
2178	else
2179		tag = PAGECACHE_TAG_DIRTY;
2180retry:
2181	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2182		tag_pages_for_writeback(mapping, index, end);
2183	done_index = index;
2184	while (!done && !nr_to_write_done && (index <= end) &&
2185			(nr_folios = filemap_get_folios_tag(mapping, &index,
2186							end, tag, &fbatch))) {
2187		unsigned i;
2188
2189		for (i = 0; i < nr_folios; i++) {
2190			struct folio *folio = fbatch.folios[i];
2191
2192			done_index = folio_next_index(folio);
2193			/*
2194			 * At this point we hold neither the i_pages lock nor
2195			 * the page lock: the page may be truncated or
2196			 * invalidated (changing page->mapping to NULL),
2197			 * or even swizzled back from swapper_space to
2198			 * tmpfs file mapping
2199			 */
2200			if (!folio_trylock(folio)) {
2201				submit_write_bio(bio_ctrl, 0);
2202				folio_lock(folio);
2203			}
2204
2205			if (unlikely(folio->mapping != mapping)) {
2206				folio_unlock(folio);
2207				continue;
2208			}
2209
2210			if (!folio_test_dirty(folio)) {
2211				/* Someone wrote it for us. */
2212				folio_unlock(folio);
2213				continue;
2214			}
2215
2216			/*
2217			 * For subpage case, compression can lead to mixed
2218			 * writeback and dirty flags, e.g:
2219			 * 0     32K    64K    96K    128K
2220			 * |     |//////||/////|   |//|
2221			 *
2222			 * In above case, [32K, 96K) is asynchronously submitted
2223			 * for compression, and [124K, 128K) needs to be written back.
2224			 *
2225			 * If we didn't wait wrtiteback for page 64K, [128K, 128K)
2226			 * won't be submitted as the page still has writeback flag
2227			 * and will be skipped in the next check.
2228			 *
2229			 * This mixed writeback and dirty case is only possible for
2230			 * subpage case.
2231			 *
2232			 * TODO: Remove this check after migrating compression to
2233			 * regular submission.
2234			 */
2235			if (wbc->sync_mode != WB_SYNC_NONE ||
2236			    btrfs_is_subpage(inode_to_fs_info(inode), mapping)) {
2237				if (folio_test_writeback(folio))
2238					submit_write_bio(bio_ctrl, 0);
2239				folio_wait_writeback(folio);
2240			}
2241
2242			if (folio_test_writeback(folio) ||
2243			    !folio_clear_dirty_for_io(folio)) {
2244				folio_unlock(folio);
2245				continue;
2246			}
2247
2248			ret = extent_writepage(folio, bio_ctrl);
2249			if (ret < 0) {
2250				done = 1;
2251				break;
2252			}
2253
2254			/*
2255			 * The filesystem may choose to bump up nr_to_write.
2256			 * We have to make sure to honor the new nr_to_write
2257			 * at any time.
2258			 */
2259			nr_to_write_done = (wbc->sync_mode == WB_SYNC_NONE &&
2260					    wbc->nr_to_write <= 0);
2261		}
2262		folio_batch_release(&fbatch);
2263		cond_resched();
2264	}
2265	if (!scanned && !done) {
2266		/*
2267		 * We hit the last page and there is more work to be done: wrap
2268		 * back to the start of the file
2269		 */
2270		scanned = 1;
2271		index = 0;
2272
2273		/*
2274		 * If we're looping we could run into a page that is locked by a
2275		 * writer and that writer could be waiting on writeback for a
2276		 * page in our current bio, and thus deadlock, so flush the
2277		 * write bio here.
2278		 */
2279		submit_write_bio(bio_ctrl, 0);
2280		goto retry;
 
2281	}
2282
2283	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
2284		mapping->writeback_index = done_index;
2285
2286	btrfs_add_delayed_iput(BTRFS_I(inode));
2287	return ret;
2288}
2289
2290/*
2291 * Submit the pages in the range to bio for call sites which delalloc range has
2292 * already been ran (aka, ordered extent inserted) and all pages are still
2293 * locked.
2294 */
2295void extent_write_locked_range(struct inode *inode, const struct folio *locked_folio,
2296			       u64 start, u64 end, struct writeback_control *wbc,
2297			       bool pages_dirty)
2298{
2299	bool found_error = false;
2300	int ret = 0;
2301	struct address_space *mapping = inode->i_mapping;
2302	struct btrfs_fs_info *fs_info = inode_to_fs_info(inode);
2303	const u32 sectorsize = fs_info->sectorsize;
2304	loff_t i_size = i_size_read(inode);
2305	u64 cur = start;
2306	struct btrfs_bio_ctrl bio_ctrl = {
2307		.wbc = wbc,
2308		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
2309	};
2310
2311	if (wbc->no_cgroup_owner)
2312		bio_ctrl.opf |= REQ_BTRFS_CGROUP_PUNT;
2313
2314	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(end + 1, sectorsize));
 
 
2315
2316	while (cur <= end) {
2317		u64 cur_end = min(round_down(cur, PAGE_SIZE) + PAGE_SIZE - 1, end);
2318		u32 cur_len = cur_end + 1 - cur;
2319		struct folio *folio;
2320
2321		folio = filemap_get_folio(mapping, cur >> PAGE_SHIFT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322
2323		/*
2324		 * This shouldn't happen, the pages are pinned and locked, this
2325		 * code is just in case, but shouldn't actually be run.
2326		 */
2327		if (IS_ERR(folio)) {
2328			btrfs_mark_ordered_io_finished(BTRFS_I(inode), NULL,
2329						       cur, cur_len, false);
2330			mapping_set_error(mapping, PTR_ERR(folio));
2331			cur = cur_end + 1;
2332			continue;
2333		}
2334
2335		ASSERT(folio_test_locked(folio));
2336		if (pages_dirty && folio != locked_folio)
2337			ASSERT(folio_test_dirty(folio));
2338
2339		/*
2340		 * Set the submission bitmap to submit all sectors.
2341		 * extent_writepage_io() will do the truncation correctly.
2342		 */
2343		bio_ctrl.submit_bitmap = (unsigned long)-1;
2344		ret = extent_writepage_io(BTRFS_I(inode), folio, cur, cur_len,
2345					  &bio_ctrl, i_size);
2346		if (ret == 1)
2347			goto next_page;
2348
2349		if (ret)
2350			mapping_set_error(mapping, ret);
2351		btrfs_folio_end_lock(fs_info, folio, cur, cur_len);
2352		if (ret < 0)
2353			found_error = true;
2354next_page:
2355		folio_put(folio);
2356		cur = cur_end + 1;
2357	}
2358
2359	submit_write_bio(&bio_ctrl, found_error ? ret : 0);
 
 
 
 
 
 
 
2360}
2361
2362int btrfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
 
2363{
2364	struct inode *inode = mapping->host;
2365	int ret = 0;
2366	struct btrfs_bio_ctrl bio_ctrl = {
2367		.wbc = wbc,
2368		.opf = REQ_OP_WRITE | wbc_to_write_flags(wbc),
 
2369	};
2370
2371	/*
2372	 * Allow only a single thread to do the reloc work in zoned mode to
2373	 * protect the write pointer updates.
2374	 */
2375	btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
2376	ret = extent_write_cache_pages(mapping, &bio_ctrl);
2377	submit_write_bio(&bio_ctrl, ret);
2378	btrfs_zoned_data_reloc_unlock(BTRFS_I(inode));
2379	return ret;
2380}
2381
2382void btrfs_readahead(struct readahead_control *rac)
2383{
2384	struct btrfs_bio_ctrl bio_ctrl = { .opf = REQ_OP_READ | REQ_RAHEAD };
2385	struct folio *folio;
2386	struct btrfs_inode *inode = BTRFS_I(rac->mapping->host);
2387	const u64 start = readahead_pos(rac);
2388	const u64 end = start + readahead_length(rac) - 1;
2389	struct extent_state *cached_state = NULL;
2390	struct extent_map *em_cached = NULL;
2391	u64 prev_em_start = (u64)-1;
 
2392
2393	btrfs_lock_and_flush_ordered_range(inode, start, end, &cached_state);
2394
2395	while ((folio = readahead_folio(rac)) != NULL)
2396		btrfs_do_readpage(folio, &em_cached, &bio_ctrl, &prev_em_start);
2397
2398	unlock_extent(&inode->io_tree, start, end, &cached_state);
 
 
2399
2400	if (em_cached)
2401		free_extent_map(em_cached);
2402	submit_one_bio(&bio_ctrl);
 
 
 
 
2403}
2404
2405/*
2406 * basic invalidate_folio code, this waits on any locked or writeback
2407 * ranges corresponding to the folio, and then deletes any extent state
2408 * records from the tree
2409 */
2410int extent_invalidate_folio(struct extent_io_tree *tree,
2411			  struct folio *folio, size_t offset)
2412{
2413	struct extent_state *cached_state = NULL;
2414	u64 start = folio_pos(folio);
2415	u64 end = start + folio_size(folio) - 1;
2416	size_t blocksize = folio_to_fs_info(folio)->sectorsize;
2417
2418	/* This function is only called for the btree inode */
2419	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
2420
2421	start += ALIGN(offset, blocksize);
2422	if (start > end)
2423		return 0;
2424
2425	lock_extent(tree, start, end, &cached_state);
2426	folio_wait_writeback(folio);
2427
2428	/*
2429	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
2430	 * so here we only need to unlock the extent range to free any
2431	 * existing extent state.
2432	 */
2433	unlock_extent(tree, start, end, &cached_state);
2434	return 0;
2435}
2436
2437/*
2438 * a helper for release_folio, this tests for areas of the page that
2439 * are locked or under IO and drops the related state bits if it is safe
2440 * to drop the page.
2441 */
2442static bool try_release_extent_state(struct extent_io_tree *tree,
2443				     struct folio *folio)
2444{
2445	u64 start = folio_pos(folio);
2446	u64 end = start + PAGE_SIZE - 1;
2447	bool ret;
2448
2449	if (test_range_bit_exists(tree, start, end, EXTENT_LOCKED)) {
2450		ret = false;
2451	} else {
2452		u32 clear_bits = ~(EXTENT_LOCKED | EXTENT_NODATASUM |
2453				   EXTENT_DELALLOC_NEW | EXTENT_CTLBITS |
2454				   EXTENT_QGROUP_RESERVED);
2455		int ret2;
2456
2457		/*
2458		 * At this point we can safely clear everything except the
2459		 * locked bit, the nodatasum bit and the delalloc new bit.
2460		 * The delalloc new bit will be cleared by ordered extent
2461		 * completion.
2462		 */
2463		ret2 = __clear_extent_bit(tree, start, end, clear_bits, NULL, NULL);
 
 
2464
2465		/* if clear_extent_bit failed for enomem reasons,
2466		 * we can't allow the release to continue.
2467		 */
2468		if (ret2 < 0)
2469			ret = false;
2470		else
2471			ret = true;
2472	}
2473	return ret;
2474}
2475
2476/*
2477 * a helper for release_folio.  As long as there are no locked extents
2478 * in the range corresponding to the page, both state records and extent
2479 * map records are removed
2480 */
2481bool try_release_extent_mapping(struct folio *folio, gfp_t mask)
2482{
2483	u64 start = folio_pos(folio);
 
2484	u64 end = start + PAGE_SIZE - 1;
2485	struct btrfs_inode *inode = folio_to_inode(folio);
2486	struct extent_io_tree *io_tree = &inode->io_tree;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488	while (start <= end) {
2489		const u64 cur_gen = btrfs_get_fs_generation(inode->root->fs_info);
2490		const u64 len = end - start + 1;
2491		struct extent_map_tree *extent_tree = &inode->extent_tree;
2492		struct extent_map *em;
2493
2494		write_lock(&extent_tree->lock);
2495		em = lookup_extent_mapping(extent_tree, start, len);
2496		if (!em) {
2497			write_unlock(&extent_tree->lock);
2498			break;
2499		}
2500		if ((em->flags & EXTENT_FLAG_PINNED) || em->start != start) {
2501			write_unlock(&extent_tree->lock);
2502			free_extent_map(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2503			break;
2504		}
2505		if (test_range_bit_exists(io_tree, em->start,
2506					  extent_map_end(em) - 1, EXTENT_LOCKED))
2507			goto next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2508		/*
2509		 * If it's not in the list of modified extents, used by a fast
2510		 * fsync, we can remove it. If it's being logged we can safely
2511		 * remove it since fsync took an extra reference on the em.
2512		 */
2513		if (list_empty(&em->list) || (em->flags & EXTENT_FLAG_LOGGING))
2514			goto remove_em;
2515		/*
2516		 * If it's in the list of modified extents, remove it only if
2517		 * its generation is older then the current one, in which case
2518		 * we don't need it for a fast fsync. Otherwise don't remove it,
2519		 * we could be racing with an ongoing fast fsync that could miss
2520		 * the new extent.
2521		 */
2522		if (em->generation >= cur_gen)
2523			goto next;
2524remove_em:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525		/*
2526		 * We only remove extent maps that are not in the list of
2527		 * modified extents or that are in the list but with a
2528		 * generation lower then the current generation, so there is no
2529		 * need to set the full fsync flag on the inode (it hurts the
2530		 * fsync performance for workloads with a data size that exceeds
2531		 * or is close to the system's memory).
2532		 */
2533		remove_extent_mapping(inode, em);
2534		/* Once for the inode's extent map tree. */
2535		free_extent_map(em);
2536next:
2537		start = extent_map_end(em);
2538		write_unlock(&extent_tree->lock);
2539
2540		/* Once for us, for the lookup_extent_mapping() reference. */
2541		free_extent_map(em);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2542
2543		if (need_resched()) {
2544			/*
2545			 * If we need to resched but we can't block just exit
2546			 * and leave any remaining extent maps.
 
 
 
2547			 */
2548			if (!gfpflags_allow_blocking(mask))
2549				break;
 
 
 
 
 
 
 
 
 
 
2550
2551			cond_resched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552		}
2553	}
2554	return try_release_extent_state(io_tree, folio);
 
 
 
 
 
 
 
 
 
 
 
 
2555}
2556
2557static void __free_extent_buffer(struct extent_buffer *eb)
2558{
2559	kmem_cache_free(extent_buffer_cache, eb);
2560}
2561
2562static int extent_buffer_under_io(const struct extent_buffer *eb)
2563{
2564	return (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
 
2565		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2566}
2567
2568static bool folio_range_has_eb(struct folio *folio)
2569{
2570	struct btrfs_subpage *subpage;
2571
2572	lockdep_assert_held(&folio->mapping->i_private_lock);
2573
2574	if (folio_test_private(folio)) {
2575		subpage = folio_get_private(folio);
2576		if (atomic_read(&subpage->eb_refs))
2577			return true;
 
 
 
 
 
 
2578	}
2579	return false;
2580}
2581
2582static void detach_extent_buffer_folio(const struct extent_buffer *eb, struct folio *folio)
2583{
2584	struct btrfs_fs_info *fs_info = eb->fs_info;
2585	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2586
2587	/*
2588	 * For mapped eb, we're going to change the folio private, which should
2589	 * be done under the i_private_lock.
2590	 */
2591	if (mapped)
2592		spin_lock(&folio->mapping->i_private_lock);
2593
2594	if (!folio_test_private(folio)) {
2595		if (mapped)
2596			spin_unlock(&folio->mapping->i_private_lock);
2597		return;
2598	}
2599
2600	if (fs_info->nodesize >= PAGE_SIZE) {
2601		/*
2602		 * We do this since we'll remove the pages after we've
2603		 * removed the eb from the radix tree, so we could race
2604		 * and have this page now attached to the new eb.  So
2605		 * only clear folio if it's still connected to
2606		 * this eb.
2607		 */
2608		if (folio_test_private(folio) && folio_get_private(folio) == eb) {
 
2609			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
2610			BUG_ON(folio_test_dirty(folio));
2611			BUG_ON(folio_test_writeback(folio));
2612			/* We need to make sure we haven't be attached to a new eb. */
2613			folio_detach_private(folio);
 
 
 
2614		}
2615		if (mapped)
2616			spin_unlock(&folio->mapping->i_private_lock);
2617		return;
2618	}
2619
2620	/*
2621	 * For subpage, we can have dummy eb with folio private attached.  In
2622	 * this case, we can directly detach the private as such folio is only
2623	 * attached to one dummy eb, no sharing.
2624	 */
2625	if (!mapped) {
2626		btrfs_detach_subpage(fs_info, folio);
2627		return;
2628	}
2629
2630	btrfs_folio_dec_eb_refs(fs_info, folio);
2631
2632	/*
2633	 * We can only detach the folio private if there are no other ebs in the
2634	 * page range and no unfinished IO.
2635	 */
2636	if (!folio_range_has_eb(folio))
2637		btrfs_detach_subpage(fs_info, folio);
2638
2639	spin_unlock(&folio->mapping->i_private_lock);
2640}
2641
2642/* Release all pages attached to the extent buffer */
2643static void btrfs_release_extent_buffer_pages(const struct extent_buffer *eb)
2644{
 
 
 
2645	ASSERT(!extent_buffer_under_io(eb));
2646
2647	for (int i = 0; i < INLINE_EXTENT_BUFFER_PAGES; i++) {
2648		struct folio *folio = eb->folios[i];
 
2649
2650		if (!folio)
2651			continue;
2652
2653		detach_extent_buffer_folio(eb, folio);
2654
2655		/* One for when we allocated the folio. */
2656		folio_put(folio);
2657	}
2658}
2659
2660/*
2661 * Helper for releasing the extent buffer.
2662 */
2663static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
2664{
2665	btrfs_release_extent_buffer_pages(eb);
2666	btrfs_leak_debug_del_eb(eb);
2667	__free_extent_buffer(eb);
2668}
2669
2670static struct extent_buffer *
2671__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
2672		      unsigned long len)
2673{
2674	struct extent_buffer *eb = NULL;
2675
2676	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
2677	eb->start = start;
2678	eb->len = len;
2679	eb->fs_info = fs_info;
 
2680	init_rwsem(&eb->lock);
2681
2682	btrfs_leak_debug_add_eb(eb);
 
 
2683
2684	spin_lock_init(&eb->refs_lock);
2685	atomic_set(&eb->refs, 1);
 
2686
2687	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
2688
2689	return eb;
2690}
2691
2692struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
2693{
 
 
2694	struct extent_buffer *new;
2695	int num_folios = num_extent_folios(src);
2696	int ret;
2697
2698	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
2699	if (new == NULL)
2700		return NULL;
2701
2702	/*
2703	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
2704	 * btrfs_release_extent_buffer() have different behavior for
2705	 * UNMAPPED subpage extent buffer.
2706	 */
2707	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
2708
2709	ret = alloc_eb_folio_array(new, false);
2710	if (ret) {
2711		btrfs_release_extent_buffer(new);
2712		return NULL;
2713	}
2714
2715	for (int i = 0; i < num_folios; i++) {
2716		struct folio *folio = new->folios[i];
2717
2718		ret = attach_extent_buffer_folio(new, folio, NULL);
 
 
 
 
 
2719		if (ret < 0) {
 
2720			btrfs_release_extent_buffer(new);
2721			return NULL;
2722		}
2723		WARN_ON(folio_test_dirty(folio));
 
 
2724	}
2725	copy_extent_buffer_full(new, src);
2726	set_extent_buffer_uptodate(new);
2727
2728	return new;
2729}
2730
2731struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2732						  u64 start, unsigned long len)
2733{
2734	struct extent_buffer *eb;
2735	int num_folios = 0;
2736	int ret;
2737
2738	eb = __alloc_extent_buffer(fs_info, start, len);
2739	if (!eb)
2740		return NULL;
2741
2742	ret = alloc_eb_folio_array(eb, false);
2743	if (ret)
2744		goto err;
2745
2746	num_folios = num_extent_folios(eb);
2747	for (int i = 0; i < num_folios; i++) {
2748		ret = attach_extent_buffer_folio(eb, eb->folios[i], NULL);
 
2749		if (ret < 0)
2750			goto err;
2751	}
2752
2753	set_extent_buffer_uptodate(eb);
2754	btrfs_set_header_nritems(eb, 0);
2755	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
2756
2757	return eb;
2758err:
2759	for (int i = 0; i < num_folios; i++) {
2760		if (eb->folios[i]) {
2761			detach_extent_buffer_folio(eb, eb->folios[i]);
2762			folio_put(eb->folios[i]);
2763		}
2764	}
2765	__free_extent_buffer(eb);
2766	return NULL;
2767}
2768
2769struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
2770						u64 start)
2771{
2772	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
2773}
2774
2775static void check_buffer_tree_ref(struct extent_buffer *eb)
2776{
2777	int refs;
2778	/*
2779	 * The TREE_REF bit is first set when the extent_buffer is added
2780	 * to the radix tree. It is also reset, if unset, when a new reference
2781	 * is created by find_extent_buffer.
2782	 *
2783	 * It is only cleared in two cases: freeing the last non-tree
2784	 * reference to the extent_buffer when its STALE bit is set or
2785	 * calling release_folio when the tree reference is the only reference.
2786	 *
2787	 * In both cases, care is taken to ensure that the extent_buffer's
2788	 * pages are not under io. However, release_folio can be concurrently
2789	 * called with creating new references, which is prone to race
2790	 * conditions between the calls to check_buffer_tree_ref in those
2791	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
2792	 *
2793	 * The actual lifetime of the extent_buffer in the radix tree is
2794	 * adequately protected by the refcount, but the TREE_REF bit and
2795	 * its corresponding reference are not. To protect against this
2796	 * class of races, we call check_buffer_tree_ref from the codepaths
2797	 * which trigger io. Note that once io is initiated, TREE_REF can no
2798	 * longer be cleared, so that is the moment at which any such race is
2799	 * best fixed.
2800	 */
2801	refs = atomic_read(&eb->refs);
2802	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2803		return;
2804
2805	spin_lock(&eb->refs_lock);
2806	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
2807		atomic_inc(&eb->refs);
2808	spin_unlock(&eb->refs_lock);
2809}
2810
2811static void mark_extent_buffer_accessed(struct extent_buffer *eb)
 
2812{
2813	int num_folios= num_extent_folios(eb);
2814
2815	check_buffer_tree_ref(eb);
2816
2817	for (int i = 0; i < num_folios; i++)
2818		folio_mark_accessed(eb->folios[i]);
 
 
 
 
 
2819}
2820
2821struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
2822					 u64 start)
2823{
2824	struct extent_buffer *eb;
2825
2826	eb = find_extent_buffer_nolock(fs_info, start);
2827	if (!eb)
2828		return NULL;
2829	/*
2830	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
2831	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
2832	 * another task running free_extent_buffer() might have seen that flag
2833	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
2834	 * writeback flags not set) and it's still in the tree (flag
2835	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
2836	 * decrementing the extent buffer's reference count twice.  So here we
2837	 * could race and increment the eb's reference count, clear its stale
2838	 * flag, mark it as dirty and drop our reference before the other task
2839	 * finishes executing free_extent_buffer, which would later result in
2840	 * an attempt to free an extent buffer that is dirty.
2841	 */
2842	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
2843		spin_lock(&eb->refs_lock);
2844		spin_unlock(&eb->refs_lock);
2845	}
2846	mark_extent_buffer_accessed(eb);
2847	return eb;
2848}
2849
2850#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
2851struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
2852					u64 start)
2853{
2854	struct extent_buffer *eb, *exists = NULL;
2855	int ret;
2856
2857	eb = find_extent_buffer(fs_info, start);
2858	if (eb)
2859		return eb;
2860	eb = alloc_dummy_extent_buffer(fs_info, start);
2861	if (!eb)
2862		return ERR_PTR(-ENOMEM);
2863	eb->fs_info = fs_info;
2864again:
2865	ret = radix_tree_preload(GFP_NOFS);
2866	if (ret) {
2867		exists = ERR_PTR(ret);
2868		goto free_eb;
2869	}
2870	spin_lock(&fs_info->buffer_lock);
2871	ret = radix_tree_insert(&fs_info->buffer_radix,
2872				start >> fs_info->sectorsize_bits, eb);
2873	spin_unlock(&fs_info->buffer_lock);
2874	radix_tree_preload_end();
2875	if (ret == -EEXIST) {
2876		exists = find_extent_buffer(fs_info, start);
2877		if (exists)
2878			goto free_eb;
2879		else
2880			goto again;
2881	}
2882	check_buffer_tree_ref(eb);
2883	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
2884
2885	return eb;
2886free_eb:
2887	btrfs_release_extent_buffer(eb);
2888	return exists;
2889}
2890#endif
2891
2892static struct extent_buffer *grab_extent_buffer(
2893		struct btrfs_fs_info *fs_info, struct page *page)
2894{
2895	struct folio *folio = page_folio(page);
2896	struct extent_buffer *exists;
2897
2898	lockdep_assert_held(&page->mapping->i_private_lock);
2899
2900	/*
2901	 * For subpage case, we completely rely on radix tree to ensure we
2902	 * don't try to insert two ebs for the same bytenr.  So here we always
2903	 * return NULL and just continue.
2904	 */
2905	if (fs_info->nodesize < PAGE_SIZE)
2906		return NULL;
2907
2908	/* Page not yet attached to an extent buffer */
2909	if (!folio_test_private(folio))
2910		return NULL;
2911
2912	/*
2913	 * We could have already allocated an eb for this page and attached one
2914	 * so lets see if we can get a ref on the existing eb, and if we can we
2915	 * know it's good and we can just return that one, else we know we can
2916	 * just overwrite folio private.
2917	 */
2918	exists = folio_get_private(folio);
2919	if (atomic_inc_not_zero(&exists->refs))
2920		return exists;
2921
2922	WARN_ON(PageDirty(page));
2923	folio_detach_private(folio);
2924	return NULL;
2925}
2926
2927static int check_eb_alignment(struct btrfs_fs_info *fs_info, u64 start)
2928{
2929	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
2930		btrfs_err(fs_info, "bad tree block start %llu", start);
2931		return -EINVAL;
2932	}
2933
2934	if (fs_info->nodesize < PAGE_SIZE &&
2935	    offset_in_page(start) + fs_info->nodesize > PAGE_SIZE) {
2936		btrfs_err(fs_info,
2937		"tree block crosses page boundary, start %llu nodesize %u",
2938			  start, fs_info->nodesize);
2939		return -EINVAL;
2940	}
2941	if (fs_info->nodesize >= PAGE_SIZE &&
2942	    !PAGE_ALIGNED(start)) {
2943		btrfs_err(fs_info,
2944		"tree block is not page aligned, start %llu nodesize %u",
2945			  start, fs_info->nodesize);
2946		return -EINVAL;
2947	}
2948	if (!IS_ALIGNED(start, fs_info->nodesize) &&
2949	    !test_and_set_bit(BTRFS_FS_UNALIGNED_TREE_BLOCK, &fs_info->flags)) {
2950		btrfs_warn(fs_info,
2951"tree block not nodesize aligned, start %llu nodesize %u, can be resolved by a full metadata balance",
2952			      start, fs_info->nodesize);
2953	}
2954	return 0;
2955}
2956
2957
2958/*
2959 * Return 0 if eb->folios[i] is attached to btree inode successfully.
2960 * Return >0 if there is already another extent buffer for the range,
2961 * and @found_eb_ret would be updated.
2962 * Return -EAGAIN if the filemap has an existing folio but with different size
2963 * than @eb.
2964 * The caller needs to free the existing folios and retry using the same order.
2965 */
2966static int attach_eb_folio_to_filemap(struct extent_buffer *eb, int i,
2967				      struct btrfs_subpage *prealloc,
2968				      struct extent_buffer **found_eb_ret)
2969{
2970
2971	struct btrfs_fs_info *fs_info = eb->fs_info;
2972	struct address_space *mapping = fs_info->btree_inode->i_mapping;
2973	const unsigned long index = eb->start >> PAGE_SHIFT;
2974	struct folio *existing_folio = NULL;
2975	int ret;
2976
2977	ASSERT(found_eb_ret);
2978
2979	/* Caller should ensure the folio exists. */
2980	ASSERT(eb->folios[i]);
2981
2982retry:
2983	ret = filemap_add_folio(mapping, eb->folios[i], index + i,
2984				GFP_NOFS | __GFP_NOFAIL);
2985	if (!ret)
2986		goto finish;
2987
2988	existing_folio = filemap_lock_folio(mapping, index + i);
2989	/* The page cache only exists for a very short time, just retry. */
2990	if (IS_ERR(existing_folio)) {
2991		existing_folio = NULL;
2992		goto retry;
2993	}
2994
2995	/* For now, we should only have single-page folios for btree inode. */
2996	ASSERT(folio_nr_pages(existing_folio) == 1);
2997
2998	if (folio_size(existing_folio) != eb->folio_size) {
2999		folio_unlock(existing_folio);
3000		folio_put(existing_folio);
3001		return -EAGAIN;
3002	}
3003
3004finish:
3005	spin_lock(&mapping->i_private_lock);
3006	if (existing_folio && fs_info->nodesize < PAGE_SIZE) {
3007		/* We're going to reuse the existing page, can drop our folio now. */
3008		__free_page(folio_page(eb->folios[i], 0));
3009		eb->folios[i] = existing_folio;
3010	} else if (existing_folio) {
3011		struct extent_buffer *existing_eb;
3012
3013		existing_eb = grab_extent_buffer(fs_info,
3014						 folio_page(existing_folio, 0));
3015		if (existing_eb) {
3016			/* The extent buffer still exists, we can use it directly. */
3017			*found_eb_ret = existing_eb;
3018			spin_unlock(&mapping->i_private_lock);
3019			folio_unlock(existing_folio);
3020			folio_put(existing_folio);
3021			return 1;
3022		}
3023		/* The extent buffer no longer exists, we can reuse the folio. */
3024		__free_page(folio_page(eb->folios[i], 0));
3025		eb->folios[i] = existing_folio;
3026	}
3027	eb->folio_size = folio_size(eb->folios[i]);
3028	eb->folio_shift = folio_shift(eb->folios[i]);
3029	/* Should not fail, as we have preallocated the memory. */
3030	ret = attach_extent_buffer_folio(eb, eb->folios[i], prealloc);
3031	ASSERT(!ret);
3032	/*
3033	 * To inform we have an extra eb under allocation, so that
3034	 * detach_extent_buffer_page() won't release the folio private when the
3035	 * eb hasn't been inserted into radix tree yet.
3036	 *
3037	 * The ref will be decreased when the eb releases the page, in
3038	 * detach_extent_buffer_page().  Thus needs no special handling in the
3039	 * error path.
3040	 */
3041	btrfs_folio_inc_eb_refs(fs_info, eb->folios[i]);
3042	spin_unlock(&mapping->i_private_lock);
3043	return 0;
3044}
3045
3046struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
3047					  u64 start, u64 owner_root, int level)
3048{
3049	unsigned long len = fs_info->nodesize;
3050	int num_folios;
3051	int attached = 0;
 
3052	struct extent_buffer *eb;
3053	struct extent_buffer *existing_eb = NULL;
3054	struct btrfs_subpage *prealloc = NULL;
3055	u64 lockdep_owner = owner_root;
3056	bool page_contig = true;
3057	int uptodate = 1;
3058	int ret;
3059
3060	if (check_eb_alignment(fs_info, start))
 
3061		return ERR_PTR(-EINVAL);
 
3062
3063#if BITS_PER_LONG == 32
3064	if (start >= MAX_LFS_FILESIZE) {
3065		btrfs_err_rl(fs_info,
3066		"extent buffer %llu is beyond 32bit page cache limit", start);
3067		btrfs_err_32bit_limit(fs_info);
3068		return ERR_PTR(-EOVERFLOW);
3069	}
3070	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
3071		btrfs_warn_32bit_limit(fs_info);
3072#endif
3073
 
 
 
 
 
 
 
 
3074	eb = find_extent_buffer(fs_info, start);
3075	if (eb)
3076		return eb;
3077
3078	eb = __alloc_extent_buffer(fs_info, start, len);
3079	if (!eb)
3080		return ERR_PTR(-ENOMEM);
 
3081
3082	/*
3083	 * The reloc trees are just snapshots, so we need them to appear to be
3084	 * just like any other fs tree WRT lockdep.
3085	 */
3086	if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID)
3087		lockdep_owner = BTRFS_FS_TREE_OBJECTID;
3088
3089	btrfs_set_buffer_lockdep_class(lockdep_owner, eb, level);
3090
3091	/*
3092	 * Preallocate folio private for subpage case, so that we won't
3093	 * allocate memory with i_private_lock nor page lock hold.
3094	 *
3095	 * The memory will be freed by attach_extent_buffer_page() or freed
3096	 * manually if we exit earlier.
3097	 */
3098	if (fs_info->nodesize < PAGE_SIZE) {
3099		prealloc = btrfs_alloc_subpage(fs_info, BTRFS_SUBPAGE_METADATA);
3100		if (IS_ERR(prealloc)) {
3101			ret = PTR_ERR(prealloc);
3102			goto out;
3103		}
3104	}
3105
3106reallocate:
3107	/* Allocate all pages first. */
3108	ret = alloc_eb_folio_array(eb, true);
3109	if (ret < 0) {
3110		btrfs_free_subpage(prealloc);
3111		goto out;
3112	}
3113
3114	num_folios = num_extent_folios(eb);
3115	/* Attach all pages to the filemap. */
3116	for (int i = 0; i < num_folios; i++) {
3117		struct folio *folio;
3118
3119		ret = attach_eb_folio_to_filemap(eb, i, prealloc, &existing_eb);
3120		if (ret > 0) {
3121			ASSERT(existing_eb);
3122			goto out;
3123		}
3124
3125		/*
3126		 * TODO: Special handling for a corner case where the order of
3127		 * folios mismatch between the new eb and filemap.
3128		 *
3129		 * This happens when:
3130		 *
3131		 * - the new eb is using higher order folio
3132		 *
3133		 * - the filemap is still using 0-order folios for the range
3134		 *   This can happen at the previous eb allocation, and we don't
3135		 *   have higher order folio for the call.
3136		 *
3137		 * - the existing eb has already been freed
3138		 *
3139		 * In this case, we have to free the existing folios first, and
3140		 * re-allocate using the same order.
3141		 * Thankfully this is not going to happen yet, as we're still
3142		 * using 0-order folios.
3143		 */
3144		if (unlikely(ret == -EAGAIN)) {
3145			ASSERT(0);
3146			goto reallocate;
 
 
 
 
3147		}
3148		attached++;
3149
3150		/*
3151		 * Only after attach_eb_folio_to_filemap(), eb->folios[] is
3152		 * reliable, as we may choose to reuse the existing page cache
3153		 * and free the allocated page.
3154		 */
3155		folio = eb->folios[i];
3156		WARN_ON(btrfs_folio_test_dirty(fs_info, folio, eb->start, eb->len));
3157
 
 
 
 
 
 
 
 
 
 
 
 
 
3158		/*
3159		 * Check if the current page is physically contiguous with previous eb
3160		 * page.
3161		 * At this stage, either we allocated a large folio, thus @i
3162		 * would only be 0, or we fall back to per-page allocation.
 
 
 
3163		 */
3164		if (i && folio_page(eb->folios[i - 1], 0) + 1 != folio_page(folio, 0))
3165			page_contig = false;
3166
3167		if (!btrfs_folio_test_uptodate(fs_info, folio, eb->start, eb->len))
 
 
3168			uptodate = 0;
3169
3170		/*
3171		 * We can't unlock the pages just yet since the extent buffer
3172		 * hasn't been properly inserted in the radix tree, this
3173		 * opens a race with btree_release_folio which can free a page
3174		 * while we are still filling in all pages for the buffer and
3175		 * we could crash.
3176		 */
3177	}
3178	if (uptodate)
3179		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3180	/* All pages are physically contiguous, can skip cross page handling. */
3181	if (page_contig)
3182		eb->addr = folio_address(eb->folios[0]) + offset_in_page(eb->start);
3183again:
3184	ret = radix_tree_preload(GFP_NOFS);
3185	if (ret)
3186		goto out;
 
 
3187
3188	spin_lock(&fs_info->buffer_lock);
3189	ret = radix_tree_insert(&fs_info->buffer_radix,
3190				start >> fs_info->sectorsize_bits, eb);
3191	spin_unlock(&fs_info->buffer_lock);
3192	radix_tree_preload_end();
3193	if (ret == -EEXIST) {
3194		ret = 0;
3195		existing_eb = find_extent_buffer(fs_info, start);
3196		if (existing_eb)
3197			goto out;
3198		else
3199			goto again;
3200	}
3201	/* add one reference for the tree */
3202	check_buffer_tree_ref(eb);
3203	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
3204
3205	/*
3206	 * Now it's safe to unlock the pages because any calls to
3207	 * btree_release_folio will correctly detect that a page belongs to a
3208	 * live buffer and won't free them prematurely.
3209	 */
3210	for (int i = 0; i < num_folios; i++)
3211		unlock_page(folio_page(eb->folios[i], 0));
3212	return eb;
3213
3214out:
3215	WARN_ON(!atomic_dec_and_test(&eb->refs));
3216
3217	/*
3218	 * Any attached folios need to be detached before we unlock them.  This
3219	 * is because when we're inserting our new folios into the mapping, and
3220	 * then attaching our eb to that folio.  If we fail to insert our folio
3221	 * we'll lookup the folio for that index, and grab that EB.  We do not
3222	 * want that to grab this eb, as we're getting ready to free it.  So we
3223	 * have to detach it first and then unlock it.
3224	 *
3225	 * We have to drop our reference and NULL it out here because in the
3226	 * subpage case detaching does a btrfs_folio_dec_eb_refs() for our eb.
3227	 * Below when we call btrfs_release_extent_buffer() we will call
3228	 * detach_extent_buffer_folio() on our remaining pages in the !subpage
3229	 * case.  If we left eb->folios[i] populated in the subpage case we'd
3230	 * double put our reference and be super sad.
3231	 */
3232	for (int i = 0; i < attached; i++) {
3233		ASSERT(eb->folios[i]);
3234		detach_extent_buffer_folio(eb, eb->folios[i]);
3235		unlock_page(folio_page(eb->folios[i], 0));
3236		folio_put(eb->folios[i]);
3237		eb->folios[i] = NULL;
3238	}
3239	/*
3240	 * Now all pages of that extent buffer is unmapped, set UNMAPPED flag,
3241	 * so it can be cleaned up without utilizing page->mapping.
3242	 */
3243	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3244
3245	btrfs_release_extent_buffer(eb);
3246	if (ret < 0)
3247		return ERR_PTR(ret);
3248	ASSERT(existing_eb);
3249	return existing_eb;
3250}
3251
3252static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
3253{
3254	struct extent_buffer *eb =
3255			container_of(head, struct extent_buffer, rcu_head);
3256
3257	__free_extent_buffer(eb);
3258}
3259
3260static int release_extent_buffer(struct extent_buffer *eb)
3261	__releases(&eb->refs_lock)
3262{
3263	lockdep_assert_held(&eb->refs_lock);
3264
3265	WARN_ON(atomic_read(&eb->refs) == 0);
3266	if (atomic_dec_and_test(&eb->refs)) {
3267		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
3268			struct btrfs_fs_info *fs_info = eb->fs_info;
3269
3270			spin_unlock(&eb->refs_lock);
3271
3272			spin_lock(&fs_info->buffer_lock);
3273			radix_tree_delete(&fs_info->buffer_radix,
3274					  eb->start >> fs_info->sectorsize_bits);
3275			spin_unlock(&fs_info->buffer_lock);
3276		} else {
3277			spin_unlock(&eb->refs_lock);
3278		}
3279
3280		btrfs_leak_debug_del_eb(eb);
3281		/* Should be safe to release our pages at this point */
3282		btrfs_release_extent_buffer_pages(eb);
3283#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3284		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
3285			__free_extent_buffer(eb);
3286			return 1;
3287		}
3288#endif
3289		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
3290		return 1;
3291	}
3292	spin_unlock(&eb->refs_lock);
3293
3294	return 0;
3295}
3296
3297void free_extent_buffer(struct extent_buffer *eb)
3298{
3299	int refs;
 
3300	if (!eb)
3301		return;
3302
3303	refs = atomic_read(&eb->refs);
3304	while (1) {
 
3305		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
3306		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
3307			refs == 1))
3308			break;
3309		if (atomic_try_cmpxchg(&eb->refs, &refs, refs - 1))
 
3310			return;
3311	}
3312
3313	spin_lock(&eb->refs_lock);
3314	if (atomic_read(&eb->refs) == 2 &&
3315	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
3316	    !extent_buffer_under_io(eb) &&
3317	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3318		atomic_dec(&eb->refs);
3319
3320	/*
3321	 * I know this is terrible, but it's temporary until we stop tracking
3322	 * the uptodate bits and such for the extent buffers.
3323	 */
3324	release_extent_buffer(eb);
3325}
3326
3327void free_extent_buffer_stale(struct extent_buffer *eb)
3328{
3329	if (!eb)
3330		return;
3331
3332	spin_lock(&eb->refs_lock);
3333	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
3334
3335	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3336	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
3337		atomic_dec(&eb->refs);
3338	release_extent_buffer(eb);
3339}
3340
3341static void btree_clear_folio_dirty(struct folio *folio)
3342{
3343	ASSERT(folio_test_dirty(folio));
3344	ASSERT(folio_test_locked(folio));
3345	folio_clear_dirty_for_io(folio);
3346	xa_lock_irq(&folio->mapping->i_pages);
3347	if (!folio_test_dirty(folio))
3348		__xa_clear_mark(&folio->mapping->i_pages,
3349				folio_index(folio), PAGECACHE_TAG_DIRTY);
3350	xa_unlock_irq(&folio->mapping->i_pages);
3351}
3352
3353static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
3354{
3355	struct btrfs_fs_info *fs_info = eb->fs_info;
3356	struct folio *folio = eb->folios[0];
3357	bool last;
3358
3359	/* btree_clear_folio_dirty() needs page locked. */
3360	folio_lock(folio);
3361	last = btrfs_subpage_clear_and_test_dirty(fs_info, folio, eb->start, eb->len);
 
3362	if (last)
3363		btree_clear_folio_dirty(folio);
3364	folio_unlock(folio);
3365	WARN_ON(atomic_read(&eb->refs) == 0);
3366}
3367
3368void btrfs_clear_buffer_dirty(struct btrfs_trans_handle *trans,
3369			      struct extent_buffer *eb)
3370{
3371	struct btrfs_fs_info *fs_info = eb->fs_info;
3372	int num_folios;
3373
3374	btrfs_assert_tree_write_locked(eb);
3375
3376	if (trans && btrfs_header_generation(eb) != trans->transid)
3377		return;
3378
3379	/*
3380	 * Instead of clearing the dirty flag off of the buffer, mark it as
3381	 * EXTENT_BUFFER_ZONED_ZEROOUT. This allows us to preserve
3382	 * write-ordering in zoned mode, without the need to later re-dirty
3383	 * the extent_buffer.
3384	 *
3385	 * The actual zeroout of the buffer will happen later in
3386	 * btree_csum_one_bio.
3387	 */
3388	if (btrfs_is_zoned(fs_info) && test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3389		set_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags);
3390		return;
3391	}
3392
3393	if (!test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags))
3394		return;
3395
3396	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, -eb->len,
3397				 fs_info->dirty_metadata_batch);
3398
3399	if (eb->fs_info->nodesize < PAGE_SIZE)
3400		return clear_subpage_extent_buffer_dirty(eb);
3401
3402	num_folios = num_extent_folios(eb);
3403	for (int i = 0; i < num_folios; i++) {
3404		struct folio *folio = eb->folios[i];
3405
3406		if (!folio_test_dirty(folio))
 
 
3407			continue;
3408		folio_lock(folio);
3409		btree_clear_folio_dirty(folio);
3410		folio_unlock(folio);
 
3411	}
3412	WARN_ON(atomic_read(&eb->refs) == 0);
3413}
3414
3415void set_extent_buffer_dirty(struct extent_buffer *eb)
3416{
3417	int num_folios;
 
3418	bool was_dirty;
3419
3420	check_buffer_tree_ref(eb);
3421
3422	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
3423
3424	num_folios = num_extent_folios(eb);
3425	WARN_ON(atomic_read(&eb->refs) == 0);
3426	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
3427	WARN_ON(test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags));
3428
3429	if (!was_dirty) {
3430		bool subpage = eb->fs_info->nodesize < PAGE_SIZE;
3431
3432		/*
3433		 * For subpage case, we can have other extent buffers in the
3434		 * same page, and in clear_subpage_extent_buffer_dirty() we
3435		 * have to clear page dirty without subpage lock held.
3436		 * This can cause race where our page gets dirty cleared after
3437		 * we just set it.
3438		 *
3439		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
3440		 * its page for other reasons, we can use page lock to prevent
3441		 * the above race.
3442		 */
3443		if (subpage)
3444			lock_page(folio_page(eb->folios[0], 0));
3445		for (int i = 0; i < num_folios; i++)
3446			btrfs_folio_set_dirty(eb->fs_info, eb->folios[i],
3447					      eb->start, eb->len);
3448		if (subpage)
3449			unlock_page(folio_page(eb->folios[0], 0));
3450		percpu_counter_add_batch(&eb->fs_info->dirty_metadata_bytes,
3451					 eb->len,
3452					 eb->fs_info->dirty_metadata_batch);
3453	}
3454#ifdef CONFIG_BTRFS_DEBUG
3455	for (int i = 0; i < num_folios; i++)
3456		ASSERT(folio_test_dirty(eb->folios[i]));
3457#endif
 
 
3458}
3459
3460void clear_extent_buffer_uptodate(struct extent_buffer *eb)
3461{
3462	struct btrfs_fs_info *fs_info = eb->fs_info;
3463	int num_folios = num_extent_folios(eb);
 
 
3464
3465	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3466	for (int i = 0; i < num_folios; i++) {
3467		struct folio *folio = eb->folios[i];
3468
3469		if (!folio)
3470			continue;
3471
3472		/*
3473		 * This is special handling for metadata subpage, as regular
3474		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3475		 */
3476		if (fs_info->nodesize >= PAGE_SIZE)
3477			folio_clear_uptodate(folio);
3478		else
3479			btrfs_subpage_clear_uptodate(fs_info, folio,
3480						     eb->start, eb->len);
3481	}
3482}
3483
3484void set_extent_buffer_uptodate(struct extent_buffer *eb)
3485{
3486	struct btrfs_fs_info *fs_info = eb->fs_info;
3487	int num_folios = num_extent_folios(eb);
 
 
3488
3489	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
3490	for (int i = 0; i < num_folios; i++) {
3491		struct folio *folio = eb->folios[i];
3492
3493		/*
3494		 * This is special handling for metadata subpage, as regular
3495		 * btrfs_is_subpage() can not handle cloned/dummy metadata.
3496		 */
3497		if (fs_info->nodesize >= PAGE_SIZE)
3498			folio_mark_uptodate(folio);
3499		else
3500			btrfs_subpage_set_uptodate(fs_info, folio,
3501						   eb->start, eb->len);
3502	}
3503}
3504
3505static void clear_extent_buffer_reading(struct extent_buffer *eb)
3506{
3507	clear_bit(EXTENT_BUFFER_READING, &eb->bflags);
3508	smp_mb__after_atomic();
3509	wake_up_bit(&eb->bflags, EXTENT_BUFFER_READING);
3510}
3511
3512static void end_bbio_meta_read(struct btrfs_bio *bbio)
3513{
3514	struct extent_buffer *eb = bbio->private;
3515	struct btrfs_fs_info *fs_info = eb->fs_info;
3516	bool uptodate = !bbio->bio.bi_status;
3517	struct folio_iter fi;
3518	u32 bio_offset = 0;
3519
3520	/*
3521	 * If the extent buffer is marked UPTODATE before the read operation
3522	 * completes, other calls to read_extent_buffer_pages() will return
3523	 * early without waiting for the read to finish, causing data races.
3524	 */
3525	WARN_ON(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags));
3526
3527	eb->read_mirror = bbio->mirror_num;
3528
3529	if (uptodate &&
3530	    btrfs_validate_extent_buffer(eb, &bbio->parent_check) < 0)
3531		uptodate = false;
3532
3533	if (uptodate) {
3534		set_extent_buffer_uptodate(eb);
 
 
 
 
 
3535	} else {
3536		clear_extent_buffer_uptodate(eb);
3537		set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 
3538	}
3539
3540	bio_for_each_folio_all(fi, &bbio->bio) {
3541		struct folio *folio = fi.folio;
3542		u64 start = eb->start + bio_offset;
3543		u32 len = fi.length;
 
 
 
 
3544
3545		if (uptodate)
3546			btrfs_folio_set_uptodate(fs_info, folio, start, len);
3547		else
3548			btrfs_folio_clear_uptodate(fs_info, folio, start, len);
 
3549
3550		bio_offset += len;
 
 
 
 
 
 
 
 
 
 
 
 
3551	}
 
 
3552
3553	clear_extent_buffer_reading(eb);
3554	free_extent_buffer(eb);
 
 
 
 
 
3555
3556	bio_put(&bbio->bio);
 
 
 
3557}
3558
3559int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num,
3560			     const struct btrfs_tree_parent_check *check)
3561{
3562	struct btrfs_bio *bbio;
3563	bool ret;
 
 
 
 
 
 
 
3564
3565	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3566		return 0;
3567
3568	/*
3569	 * We could have had EXTENT_BUFFER_UPTODATE cleared by the write
3570	 * operation, which could potentially still be in flight.  In this case
3571	 * we simply want to return an error.
3572	 */
3573	if (unlikely(test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)))
3574		return -EIO;
3575
3576	/* Someone else is already reading the buffer, just wait for it. */
3577	if (test_and_set_bit(EXTENT_BUFFER_READING, &eb->bflags))
3578		goto done;
3579
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3580	/*
3581	 * Between the initial test_bit(EXTENT_BUFFER_UPTODATE) and the above
3582	 * test_and_set_bit(EXTENT_BUFFER_READING), someone else could have
3583	 * started and finished reading the same eb.  In this case, UPTODATE
3584	 * will now be set, and we shouldn't read it in again.
3585	 */
3586	if (unlikely(test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))) {
3587		clear_extent_buffer_reading(eb);
3588		return 0;
 
 
 
 
 
 
 
 
3589	}
3590
3591	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3592	eb->read_mirror = 0;
 
 
 
 
 
3593	check_buffer_tree_ref(eb);
3594	atomic_inc(&eb->refs);
3595
3596	bbio = btrfs_bio_alloc(INLINE_EXTENT_BUFFER_PAGES,
3597			       REQ_OP_READ | REQ_META, eb->fs_info,
3598			       end_bbio_meta_read, eb);
3599	bbio->bio.bi_iter.bi_sector = eb->start >> SECTOR_SHIFT;
3600	bbio->inode = BTRFS_I(eb->fs_info->btree_inode);
3601	bbio->file_offset = eb->start;
3602	memcpy(&bbio->parent_check, check, sizeof(*check));
3603	if (eb->fs_info->nodesize < PAGE_SIZE) {
3604		ret = bio_add_folio(&bbio->bio, eb->folios[0], eb->len,
3605				    eb->start - folio_pos(eb->folios[0]));
3606		ASSERT(ret);
3607	} else {
3608		int num_folios = num_extent_folios(eb);
3609
3610		for (int i = 0; i < num_folios; i++) {
3611			struct folio *folio = eb->folios[i];
 
 
 
 
3612
3613			ret = bio_add_folio(&bbio->bio, folio, eb->folio_size, 0);
3614			ASSERT(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3615		}
3616	}
3617	btrfs_submit_bbio(bbio, mirror_num);
3618
3619done:
3620	if (wait == WAIT_COMPLETE) {
3621		wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_READING, TASK_UNINTERRUPTIBLE);
3622		if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
3623			return -EIO;
3624	}
3625
3626	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627}
3628
3629static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
3630			    unsigned long len)
3631{
3632	btrfs_warn(eb->fs_info,
3633		"access to eb bytenr %llu len %u out of range start %lu len %lu",
3634		eb->start, eb->len, start, len);
3635	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
3636
3637	return true;
3638}
3639
3640/*
3641 * Check if the [start, start + len) range is valid before reading/writing
3642 * the eb.
3643 * NOTE: @start and @len are offset inside the eb, not logical address.
3644 *
3645 * Caller should not touch the dst/src memory if this function returns error.
3646 */
3647static inline int check_eb_range(const struct extent_buffer *eb,
3648				 unsigned long start, unsigned long len)
3649{
3650	unsigned long offset;
3651
3652	/* start, start + len should not go beyond eb->len nor overflow */
3653	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
3654		return report_eb_range(eb, start, len);
3655
3656	return false;
3657}
3658
3659void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
3660			unsigned long start, unsigned long len)
3661{
3662	const int unit_size = eb->folio_size;
3663	size_t cur;
3664	size_t offset;
 
 
3665	char *dst = (char *)dstv;
3666	unsigned long i = get_eb_folio_index(eb, start);
3667
3668	if (check_eb_range(eb, start, len)) {
3669		/*
3670		 * Invalid range hit, reset the memory, so callers won't get
3671		 * some random garbage for their uninitialized memory.
3672		 */
3673		memset(dstv, 0, len);
3674		return;
3675	}
3676
3677	if (eb->addr) {
3678		memcpy(dstv, eb->addr + start, len);
3679		return;
3680	}
3681
3682	offset = get_eb_offset_in_folio(eb, start);
3683
3684	while (len > 0) {
3685		char *kaddr;
3686
3687		cur = min(len, unit_size - offset);
3688		kaddr = folio_address(eb->folios[i]);
3689		memcpy(dst, kaddr + offset, cur);
3690
3691		dst += cur;
3692		len -= cur;
3693		offset = 0;
3694		i++;
3695	}
3696}
3697
3698int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
3699				       void __user *dstv,
3700				       unsigned long start, unsigned long len)
3701{
3702	const int unit_size = eb->folio_size;
3703	size_t cur;
3704	size_t offset;
 
 
3705	char __user *dst = (char __user *)dstv;
3706	unsigned long i = get_eb_folio_index(eb, start);
3707	int ret = 0;
3708
3709	WARN_ON(start > eb->len);
3710	WARN_ON(start + len > eb->start + eb->len);
3711
3712	if (eb->addr) {
3713		if (copy_to_user_nofault(dstv, eb->addr + start, len))
3714			ret = -EFAULT;
3715		return ret;
3716	}
3717
3718	offset = get_eb_offset_in_folio(eb, start);
3719
3720	while (len > 0) {
3721		char *kaddr;
3722
3723		cur = min(len, unit_size - offset);
3724		kaddr = folio_address(eb->folios[i]);
3725		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
3726			ret = -EFAULT;
3727			break;
3728		}
3729
3730		dst += cur;
3731		len -= cur;
3732		offset = 0;
3733		i++;
3734	}
3735
3736	return ret;
3737}
3738
3739int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
3740			 unsigned long start, unsigned long len)
3741{
3742	const int unit_size = eb->folio_size;
3743	size_t cur;
3744	size_t offset;
 
3745	char *kaddr;
3746	char *ptr = (char *)ptrv;
3747	unsigned long i = get_eb_folio_index(eb, start);
3748	int ret = 0;
3749
3750	if (check_eb_range(eb, start, len))
3751		return -EINVAL;
3752
3753	if (eb->addr)
3754		return memcmp(ptrv, eb->addr + start, len);
3755
3756	offset = get_eb_offset_in_folio(eb, start);
3757
3758	while (len > 0) {
3759		cur = min(len, unit_size - offset);
3760		kaddr = folio_address(eb->folios[i]);
 
 
 
3761		ret = memcmp(ptr, kaddr + offset, cur);
3762		if (ret)
3763			break;
3764
3765		ptr += cur;
3766		len -= cur;
3767		offset = 0;
3768		i++;
3769	}
3770	return ret;
3771}
3772
3773/*
3774 * Check that the extent buffer is uptodate.
3775 *
3776 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
3777 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
3778 */
3779static void assert_eb_folio_uptodate(const struct extent_buffer *eb, int i)
 
3780{
3781	struct btrfs_fs_info *fs_info = eb->fs_info;
3782	struct folio *folio = eb->folios[i];
3783
3784	ASSERT(folio);
 
3785
3786	/*
3787	 * If we are using the commit root we could potentially clear a page
3788	 * Uptodate while we're using the extent buffer that we've previously
3789	 * looked up.  We don't want to complain in this case, as the page was
3790	 * valid before, we just didn't write it out.  Instead we want to catch
3791	 * the case where we didn't actually read the block properly, which
3792	 * would have !PageUptodate and !EXTENT_BUFFER_WRITE_ERR.
3793	 */
3794	if (test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3795		return;
3796
3797	if (fs_info->nodesize < PAGE_SIZE) {
3798		folio = eb->folios[0];
3799		ASSERT(i == 0);
3800		if (WARN_ON(!btrfs_subpage_test_uptodate(fs_info, folio,
3801							 eb->start, eb->len)))
3802			btrfs_subpage_dump_bitmap(fs_info, folio, eb->start, eb->len);
3803	} else {
3804		WARN_ON(!folio_test_uptodate(folio));
3805	}
3806}
3807
3808static void __write_extent_buffer(const struct extent_buffer *eb,
3809				  const void *srcv, unsigned long start,
3810				  unsigned long len, bool use_memmove)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3811{
3812	const int unit_size = eb->folio_size;
3813	size_t cur;
3814	size_t offset;
 
3815	char *kaddr;
3816	const char *src = (const char *)srcv;
3817	unsigned long i = get_eb_folio_index(eb, start);
3818	/* For unmapped (dummy) ebs, no need to check their uptodate status. */
3819	const bool check_uptodate = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
3820
3821	if (check_eb_range(eb, start, len))
3822		return;
3823
3824	if (eb->addr) {
3825		if (use_memmove)
3826			memmove(eb->addr + start, srcv, len);
3827		else
3828			memcpy(eb->addr + start, srcv, len);
3829		return;
3830	}
3831
3832	offset = get_eb_offset_in_folio(eb, start);
3833
3834	while (len > 0) {
3835		if (check_uptodate)
3836			assert_eb_folio_uptodate(eb, i);
3837
3838		cur = min(len, unit_size - offset);
3839		kaddr = folio_address(eb->folios[i]);
3840		if (use_memmove)
3841			memmove(kaddr + offset, src, cur);
3842		else
3843			memcpy(kaddr + offset, src, cur);
3844
3845		src += cur;
3846		len -= cur;
3847		offset = 0;
3848		i++;
3849	}
3850}
3851
3852void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
3853			 unsigned long start, unsigned long len)
3854{
3855	return __write_extent_buffer(eb, srcv, start, len, false);
3856}
3857
3858static void memset_extent_buffer(const struct extent_buffer *eb, int c,
3859				 unsigned long start, unsigned long len)
3860{
3861	const int unit_size = eb->folio_size;
3862	unsigned long cur = start;
 
 
 
3863
3864	if (eb->addr) {
3865		memset(eb->addr + start, c, len);
3866		return;
3867	}
3868
3869	while (cur < start + len) {
3870		unsigned long index = get_eb_folio_index(eb, cur);
3871		unsigned int offset = get_eb_offset_in_folio(eb, cur);
3872		unsigned int cur_len = min(start + len - cur, unit_size - offset);
3873
3874		assert_eb_folio_uptodate(eb, index);
3875		memset(folio_address(eb->folios[index]) + offset, c, cur_len);
 
3876
3877		cur += cur_len;
3878	}
3879}
3880
3881void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
3882			   unsigned long len)
3883{
3884	if (check_eb_range(eb, start, len))
3885		return;
3886	return memset_extent_buffer(eb, 0, start, len);
3887}
3888
3889void copy_extent_buffer_full(const struct extent_buffer *dst,
3890			     const struct extent_buffer *src)
3891{
3892	const int unit_size = src->folio_size;
3893	unsigned long cur = 0;
3894
3895	ASSERT(dst->len == src->len);
3896
3897	while (cur < src->len) {
3898		unsigned long index = get_eb_folio_index(src, cur);
3899		unsigned long offset = get_eb_offset_in_folio(src, cur);
3900		unsigned long cur_len = min(src->len, unit_size - offset);
3901		void *addr = folio_address(src->folios[index]) + offset;
3902
3903		write_extent_buffer(dst, addr, cur, cur_len);
 
3904
3905		cur += cur_len;
 
 
 
3906	}
3907}
3908
3909void copy_extent_buffer(const struct extent_buffer *dst,
3910			const struct extent_buffer *src,
3911			unsigned long dst_offset, unsigned long src_offset,
3912			unsigned long len)
3913{
3914	const int unit_size = dst->folio_size;
3915	u64 dst_len = dst->len;
3916	size_t cur;
3917	size_t offset;
 
3918	char *kaddr;
3919	unsigned long i = get_eb_folio_index(dst, dst_offset);
3920
3921	if (check_eb_range(dst, dst_offset, len) ||
3922	    check_eb_range(src, src_offset, len))
3923		return;
3924
3925	WARN_ON(src->len != dst_len);
3926
3927	offset = get_eb_offset_in_folio(dst, dst_offset);
3928
3929	while (len > 0) {
3930		assert_eb_folio_uptodate(dst, i);
 
3931
3932		cur = min(len, (unsigned long)(unit_size - offset));
3933
3934		kaddr = folio_address(dst->folios[i]);
3935		read_extent_buffer(src, kaddr + offset, src_offset, cur);
3936
3937		src_offset += cur;
3938		len -= cur;
3939		offset = 0;
3940		i++;
3941	}
3942}
3943
3944/*
3945 * Calculate the folio and offset of the byte containing the given bit number.
3946 *
3947 * @eb:           the extent buffer
3948 * @start:        offset of the bitmap item in the extent buffer
3949 * @nr:           bit number
3950 * @folio_index:  return index of the folio in the extent buffer that contains
3951 *                the given bit number
3952 * @folio_offset: return offset into the folio given by folio_index
3953 *
3954 * This helper hides the ugliness of finding the byte in an extent buffer which
3955 * contains a given bit.
3956 */
3957static inline void eb_bitmap_offset(const struct extent_buffer *eb,
3958				    unsigned long start, unsigned long nr,
3959				    unsigned long *folio_index,
3960				    size_t *folio_offset)
3961{
3962	size_t byte_offset = BIT_BYTE(nr);
3963	size_t offset;
3964
3965	/*
3966	 * The byte we want is the offset of the extent buffer + the offset of
3967	 * the bitmap item in the extent buffer + the offset of the byte in the
3968	 * bitmap item.
3969	 */
3970	offset = start + offset_in_eb_folio(eb, eb->start) + byte_offset;
3971
3972	*folio_index = offset >> eb->folio_shift;
3973	*folio_offset = offset_in_eb_folio(eb, offset);
3974}
3975
3976/*
3977 * Determine whether a bit in a bitmap item is set.
3978 *
3979 * @eb:     the extent buffer
3980 * @start:  offset of the bitmap item in the extent buffer
3981 * @nr:     bit number to test
3982 */
3983int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
3984			   unsigned long nr)
3985{
 
 
3986	unsigned long i;
3987	size_t offset;
3988	u8 *kaddr;
3989
3990	eb_bitmap_offset(eb, start, nr, &i, &offset);
3991	assert_eb_folio_uptodate(eb, i);
3992	kaddr = folio_address(eb->folios[i]);
 
3993	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
3994}
3995
3996static u8 *extent_buffer_get_byte(const struct extent_buffer *eb, unsigned long bytenr)
3997{
3998	unsigned long index = get_eb_folio_index(eb, bytenr);
3999
4000	if (check_eb_range(eb, bytenr, 1))
4001		return NULL;
4002	return folio_address(eb->folios[index]) + get_eb_offset_in_folio(eb, bytenr);
4003}
4004
4005/*
4006 * Set an area of a bitmap to 1.
4007 *
4008 * @eb:     the extent buffer
4009 * @start:  offset of the bitmap item in the extent buffer
4010 * @pos:    bit number of the first bit
4011 * @len:    number of bits to set
4012 */
4013void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
4014			      unsigned long pos, unsigned long len)
4015{
4016	unsigned int first_byte = start + BIT_BYTE(pos);
4017	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4018	const bool same_byte = (first_byte == last_byte);
4019	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4020	u8 *kaddr;
4021
4022	if (same_byte)
4023		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4024
4025	/* Handle the first byte. */
4026	kaddr = extent_buffer_get_byte(eb, first_byte);
4027	*kaddr |= mask;
4028	if (same_byte)
4029		return;
4030
4031	/* Handle the byte aligned part. */
4032	ASSERT(first_byte + 1 <= last_byte);
4033	memset_extent_buffer(eb, 0xff, first_byte + 1, last_byte - first_byte - 1);
4034
4035	/* Handle the last byte. */
4036	kaddr = extent_buffer_get_byte(eb, last_byte);
4037	*kaddr |= BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4038}
4039
4040
4041/*
4042 * Clear an area of a bitmap.
4043 *
4044 * @eb:     the extent buffer
4045 * @start:  offset of the bitmap item in the extent buffer
4046 * @pos:    bit number of the first bit
4047 * @len:    number of bits to clear
4048 */
4049void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
4050				unsigned long start, unsigned long pos,
4051				unsigned long len)
4052{
4053	unsigned int first_byte = start + BIT_BYTE(pos);
4054	unsigned int last_byte = start + BIT_BYTE(pos + len - 1);
4055	const bool same_byte = (first_byte == last_byte);
4056	u8 mask = BITMAP_FIRST_BYTE_MASK(pos);
4057	u8 *kaddr;
4058
4059	if (same_byte)
4060		mask &= BITMAP_LAST_BYTE_MASK(pos + len);
4061
4062	/* Handle the first byte. */
4063	kaddr = extent_buffer_get_byte(eb, first_byte);
4064	*kaddr &= ~mask;
4065	if (same_byte)
4066		return;
4067
4068	/* Handle the byte aligned part. */
4069	ASSERT(first_byte + 1 <= last_byte);
4070	memset_extent_buffer(eb, 0, first_byte + 1, last_byte - first_byte - 1);
4071
4072	/* Handle the last byte. */
4073	kaddr = extent_buffer_get_byte(eb, last_byte);
4074	*kaddr &= ~BITMAP_LAST_BYTE_MASK(pos + len);
 
 
 
 
 
 
 
 
 
 
 
4075}
4076
4077static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4078{
4079	unsigned long distance = (src > dst) ? src - dst : dst - src;
4080	return distance < len;
4081}
4082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4083void memcpy_extent_buffer(const struct extent_buffer *dst,
4084			  unsigned long dst_offset, unsigned long src_offset,
4085			  unsigned long len)
4086{
4087	const int unit_size = dst->folio_size;
4088	unsigned long cur_off = 0;
 
 
 
4089
4090	if (check_eb_range(dst, dst_offset, len) ||
4091	    check_eb_range(dst, src_offset, len))
4092		return;
4093
4094	if (dst->addr) {
4095		const bool use_memmove = areas_overlap(src_offset, dst_offset, len);
 
4096
4097		if (use_memmove)
4098			memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4099		else
4100			memcpy(dst->addr + dst_offset, dst->addr + src_offset, len);
4101		return;
4102	}
 
4103
4104	while (cur_off < len) {
4105		unsigned long cur_src = cur_off + src_offset;
4106		unsigned long folio_index = get_eb_folio_index(dst, cur_src);
4107		unsigned long folio_off = get_eb_offset_in_folio(dst, cur_src);
4108		unsigned long cur_len = min(src_offset + len - cur_src,
4109					    unit_size - folio_off);
4110		void *src_addr = folio_address(dst->folios[folio_index]) + folio_off;
4111		const bool use_memmove = areas_overlap(src_offset + cur_off,
4112						       dst_offset + cur_off, cur_len);
4113
4114		__write_extent_buffer(dst, src_addr, dst_offset + cur_off, cur_len,
4115				      use_memmove);
4116		cur_off += cur_len;
4117	}
4118}
4119
4120void memmove_extent_buffer(const struct extent_buffer *dst,
4121			   unsigned long dst_offset, unsigned long src_offset,
4122			   unsigned long len)
4123{
 
 
 
4124	unsigned long dst_end = dst_offset + len - 1;
4125	unsigned long src_end = src_offset + len - 1;
 
 
4126
4127	if (check_eb_range(dst, dst_offset, len) ||
4128	    check_eb_range(dst, src_offset, len))
4129		return;
4130
4131	if (dst_offset < src_offset) {
4132		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4133		return;
4134	}
4135
4136	if (dst->addr) {
4137		memmove(dst->addr + dst_offset, dst->addr + src_offset, len);
4138		return;
4139	}
4140
4141	while (len > 0) {
4142		unsigned long src_i;
4143		size_t cur;
4144		size_t dst_off_in_folio;
4145		size_t src_off_in_folio;
4146		void *src_addr;
4147		bool use_memmove;
4148
4149		src_i = get_eb_folio_index(dst, src_end);
4150
4151		dst_off_in_folio = get_eb_offset_in_folio(dst, dst_end);
4152		src_off_in_folio = get_eb_offset_in_folio(dst, src_end);
4153
4154		cur = min_t(unsigned long, len, src_off_in_folio + 1);
4155		cur = min(cur, dst_off_in_folio + 1);
4156
4157		src_addr = folio_address(dst->folios[src_i]) + src_off_in_folio -
4158					 cur + 1;
4159		use_memmove = areas_overlap(src_end - cur + 1, dst_end - cur + 1,
4160					    cur);
4161
4162		__write_extent_buffer(dst, src_addr, dst_end - cur + 1, cur,
4163				      use_memmove);
 
 
 
 
 
 
4164
4165		dst_end -= cur;
4166		src_end -= cur;
4167		len -= cur;
4168	}
4169}
4170
4171#define GANG_LOOKUP_SIZE	16
4172static struct extent_buffer *get_next_extent_buffer(
4173		const struct btrfs_fs_info *fs_info, struct folio *folio, u64 bytenr)
4174{
4175	struct extent_buffer *gang[GANG_LOOKUP_SIZE];
4176	struct extent_buffer *found = NULL;
4177	u64 folio_start = folio_pos(folio);
4178	u64 cur = folio_start;
 
4179
4180	ASSERT(in_range(bytenr, folio_start, PAGE_SIZE));
 
4181	lockdep_assert_held(&fs_info->buffer_lock);
4182
4183	while (cur < folio_start + PAGE_SIZE) {
4184		int ret;
4185		int i;
4186
4187		ret = radix_tree_gang_lookup(&fs_info->buffer_radix,
4188				(void **)gang, cur >> fs_info->sectorsize_bits,
4189				min_t(unsigned int, GANG_LOOKUP_SIZE,
4190				      PAGE_SIZE / fs_info->nodesize));
4191		if (ret == 0)
4192			goto out;
4193		for (i = 0; i < ret; i++) {
4194			/* Already beyond page end */
4195			if (gang[i]->start >= folio_start + PAGE_SIZE)
4196				goto out;
4197			/* Found one */
4198			if (gang[i]->start >= bytenr) {
4199				found = gang[i];
4200				goto out;
4201			}
4202		}
4203		cur = gang[ret - 1]->start + gang[ret - 1]->len;
4204	}
4205out:
4206	return found;
4207}
4208
4209static int try_release_subpage_extent_buffer(struct folio *folio)
4210{
4211	struct btrfs_fs_info *fs_info = folio_to_fs_info(folio);
4212	u64 cur = folio_pos(folio);
4213	const u64 end = cur + PAGE_SIZE;
4214	int ret;
4215
4216	while (cur < end) {
4217		struct extent_buffer *eb = NULL;
4218
4219		/*
4220		 * Unlike try_release_extent_buffer() which uses folio private
4221		 * to grab buffer, for subpage case we rely on radix tree, thus
4222		 * we need to ensure radix tree consistency.
4223		 *
4224		 * We also want an atomic snapshot of the radix tree, thus go
4225		 * with spinlock rather than RCU.
4226		 */
4227		spin_lock(&fs_info->buffer_lock);
4228		eb = get_next_extent_buffer(fs_info, folio, cur);
4229		if (!eb) {
4230			/* No more eb in the page range after or at cur */
4231			spin_unlock(&fs_info->buffer_lock);
4232			break;
4233		}
4234		cur = eb->start + eb->len;
4235
4236		/*
4237		 * The same as try_release_extent_buffer(), to ensure the eb
4238		 * won't disappear out from under us.
4239		 */
4240		spin_lock(&eb->refs_lock);
4241		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4242			spin_unlock(&eb->refs_lock);
4243			spin_unlock(&fs_info->buffer_lock);
4244			break;
4245		}
4246		spin_unlock(&fs_info->buffer_lock);
4247
4248		/*
4249		 * If tree ref isn't set then we know the ref on this eb is a
4250		 * real ref, so just return, this eb will likely be freed soon
4251		 * anyway.
4252		 */
4253		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4254			spin_unlock(&eb->refs_lock);
4255			break;
4256		}
4257
4258		/*
4259		 * Here we don't care about the return value, we will always
4260		 * check the folio private at the end.  And
4261		 * release_extent_buffer() will release the refs_lock.
4262		 */
4263		release_extent_buffer(eb);
4264	}
4265	/*
4266	 * Finally to check if we have cleared folio private, as if we have
4267	 * released all ebs in the page, the folio private should be cleared now.
4268	 */
4269	spin_lock(&folio->mapping->i_private_lock);
4270	if (!folio_test_private(folio))
4271		ret = 1;
4272	else
4273		ret = 0;
4274	spin_unlock(&folio->mapping->i_private_lock);
4275	return ret;
4276
4277}
4278
4279int try_release_extent_buffer(struct folio *folio)
4280{
4281	struct extent_buffer *eb;
4282
4283	if (folio_to_fs_info(folio)->nodesize < PAGE_SIZE)
4284		return try_release_subpage_extent_buffer(folio);
4285
4286	/*
4287	 * We need to make sure nobody is changing folio private, as we rely on
4288	 * folio private as the pointer to extent buffer.
4289	 */
4290	spin_lock(&folio->mapping->i_private_lock);
4291	if (!folio_test_private(folio)) {
4292		spin_unlock(&folio->mapping->i_private_lock);
4293		return 1;
4294	}
4295
4296	eb = folio_get_private(folio);
4297	BUG_ON(!eb);
4298
4299	/*
4300	 * This is a little awful but should be ok, we need to make sure that
4301	 * the eb doesn't disappear out from under us while we're looking at
4302	 * this page.
4303	 */
4304	spin_lock(&eb->refs_lock);
4305	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
4306		spin_unlock(&eb->refs_lock);
4307		spin_unlock(&folio->mapping->i_private_lock);
4308		return 0;
4309	}
4310	spin_unlock(&folio->mapping->i_private_lock);
4311
4312	/*
4313	 * If tree ref isn't set then we know the ref on this eb is a real ref,
4314	 * so just return, this page will likely be freed soon anyway.
4315	 */
4316	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4317		spin_unlock(&eb->refs_lock);
4318		return 0;
4319	}
4320
4321	return release_extent_buffer(eb);
4322}
4323
4324/*
4325 * Attempt to readahead a child block.
4326 *
4327 * @fs_info:	the fs_info
4328 * @bytenr:	bytenr to read
4329 * @owner_root: objectid of the root that owns this eb
4330 * @gen:	generation for the uptodate check, can be 0
4331 * @level:	level for the eb
4332 *
4333 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
4334 * normal uptodate check of the eb, without checking the generation.  If we have
4335 * to read the block we will not block on anything.
4336 */
4337void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
4338				u64 bytenr, u64 owner_root, u64 gen, int level)
4339{
4340	struct btrfs_tree_parent_check check = {
4341		.level = level,
4342		.transid = gen
4343	};
4344	struct extent_buffer *eb;
4345	int ret;
4346
4347	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
4348	if (IS_ERR(eb))
4349		return;
4350
4351	if (btrfs_buffer_uptodate(eb, gen, 1)) {
4352		free_extent_buffer(eb);
4353		return;
4354	}
4355
4356	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0, &check);
4357	if (ret < 0)
4358		free_extent_buffer_stale(eb);
4359	else
4360		free_extent_buffer(eb);
4361}
4362
4363/*
4364 * Readahead a node's child block.
4365 *
4366 * @node:	parent node we're reading from
4367 * @slot:	slot in the parent node for the child we want to read
4368 *
4369 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
4370 * the slot in the node provided.
4371 */
4372void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
4373{
4374	btrfs_readahead_tree_block(node->fs_info,
4375				   btrfs_node_blockptr(node, slot),
4376				   btrfs_header_owner(node),
4377				   btrfs_node_ptr_generation(node, slot),
4378				   btrfs_header_level(node) - 1);
4379}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2
   3#include <linux/bitops.h>
   4#include <linux/slab.h>
   5#include <linux/bio.h>
   6#include <linux/mm.h>
   7#include <linux/pagemap.h>
   8#include <linux/page-flags.h>
 
   9#include <linux/spinlock.h>
  10#include <linux/blkdev.h>
  11#include <linux/swap.h>
  12#include <linux/writeback.h>
  13#include <linux/pagevec.h>
  14#include <linux/prefetch.h>
  15#include <linux/cleancache.h>
  16#include "misc.h"
  17#include "extent_io.h"
  18#include "extent-io-tree.h"
  19#include "extent_map.h"
  20#include "ctree.h"
  21#include "btrfs_inode.h"
  22#include "volumes.h"
  23#include "check-integrity.h"
  24#include "locking.h"
  25#include "rcu-string.h"
  26#include "backref.h"
  27#include "disk-io.h"
  28#include "subpage.h"
  29#include "zoned.h"
  30#include "block-group.h"
 
 
 
 
 
 
 
 
  31
  32static struct kmem_cache *extent_state_cache;
  33static struct kmem_cache *extent_buffer_cache;
  34static struct bio_set btrfs_bioset;
  35
  36static inline bool extent_state_in_tree(const struct extent_state *state)
  37{
  38	return !RB_EMPTY_NODE(&state->rb_node);
  39}
  40
  41#ifdef CONFIG_BTRFS_DEBUG
  42static LIST_HEAD(states);
  43static DEFINE_SPINLOCK(leak_lock);
  44
  45static inline void btrfs_leak_debug_add(spinlock_t *lock,
  46					struct list_head *new,
  47					struct list_head *head)
  48{
 
  49	unsigned long flags;
  50
  51	spin_lock_irqsave(lock, flags);
  52	list_add(new, head);
  53	spin_unlock_irqrestore(lock, flags);
  54}
  55
  56static inline void btrfs_leak_debug_del(spinlock_t *lock,
  57					struct list_head *entry)
  58{
 
  59	unsigned long flags;
  60
  61	spin_lock_irqsave(lock, flags);
  62	list_del(entry);
  63	spin_unlock_irqrestore(lock, flags);
  64}
  65
  66void btrfs_extent_buffer_leak_debug_check(struct btrfs_fs_info *fs_info)
  67{
  68	struct extent_buffer *eb;
  69	unsigned long flags;
  70
  71	/*
  72	 * If we didn't get into open_ctree our allocated_ebs will not be
  73	 * initialized, so just skip this.
  74	 */
  75	if (!fs_info->allocated_ebs.next)
  76		return;
  77
 
  78	spin_lock_irqsave(&fs_info->eb_leak_lock, flags);
  79	while (!list_empty(&fs_info->allocated_ebs)) {
  80		eb = list_first_entry(&fs_info->allocated_ebs,
  81				      struct extent_buffer, leak_list);
  82		pr_err(
  83	"BTRFS: buffer leak start %llu len %lu refs %d bflags %lu owner %llu\n",
  84		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags,
  85		       btrfs_header_owner(eb));
  86		list_del(&eb->leak_list);
 
  87		kmem_cache_free(extent_buffer_cache, eb);
  88	}
  89	spin_unlock_irqrestore(&fs_info->eb_leak_lock, flags);
  90}
  91
  92static inline void btrfs_extent_state_leak_debug_check(void)
  93{
  94	struct extent_state *state;
  95
  96	while (!list_empty(&states)) {
  97		state = list_entry(states.next, struct extent_state, leak_list);
  98		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
  99		       state->start, state->end, state->state,
 100		       extent_state_in_tree(state),
 101		       refcount_read(&state->refs));
 102		list_del(&state->leak_list);
 103		kmem_cache_free(extent_state_cache, state);
 104	}
 105}
 106
 107#define btrfs_debug_check_extent_io_range(tree, start, end)		\
 108	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
 109static inline void __btrfs_debug_check_extent_io_range(const char *caller,
 110		struct extent_io_tree *tree, u64 start, u64 end)
 111{
 112	struct inode *inode = tree->private_data;
 113	u64 isize;
 114
 115	if (!inode || !is_data_inode(inode))
 116		return;
 117
 118	isize = i_size_read(inode);
 119	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
 120		btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
 121		    "%s: ino %llu isize %llu odd range [%llu,%llu]",
 122			caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
 123	}
 124}
 125#else
 126#define btrfs_leak_debug_add(lock, new, head)	do {} while (0)
 127#define btrfs_leak_debug_del(lock, entry)	do {} while (0)
 128#define btrfs_extent_state_leak_debug_check()	do {} while (0)
 129#define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
 130#endif
 131
 132struct tree_entry {
 133	u64 start;
 134	u64 end;
 135	struct rb_node rb_node;
 136};
 137
 138struct extent_page_data {
 139	struct btrfs_bio_ctrl bio_ctrl;
 140	/* tells writepage not to lock the state bits for this range
 141	 * it still does the unlocking
 
 
 
 
 
 
 142	 */
 143	unsigned int extent_locked:1;
 144
 145	/* tells the submit_bio code to use REQ_SYNC */
 146	unsigned int sync_io:1;
 147};
 148
 149static int add_extent_changeset(struct extent_state *state, u32 bits,
 150				 struct extent_changeset *changeset,
 151				 int set)
 152{
 153	int ret;
 154
 155	if (!changeset)
 156		return 0;
 157	if (set && (state->state & bits) == bits)
 158		return 0;
 159	if (!set && (state->state & bits) == 0)
 160		return 0;
 161	changeset->bytes_changed += state->end - state->start + 1;
 162	ret = ulist_add(&changeset->range_changed, state->start, state->end,
 163			GFP_ATOMIC);
 164	return ret;
 165}
 166
 167int __must_check submit_one_bio(struct bio *bio, int mirror_num,
 168				unsigned long bio_flags)
 169{
 170	blk_status_t ret = 0;
 171	struct extent_io_tree *tree = bio->bi_private;
 172
 173	bio->bi_private = NULL;
 
 174
 175	if (is_data_inode(tree->private_data))
 176		ret = btrfs_submit_data_bio(tree->private_data, bio, mirror_num,
 177					    bio_flags);
 178	else
 179		ret = btrfs_submit_metadata_bio(tree->private_data, bio,
 180						mirror_num, bio_flags);
 181
 182	return blk_status_to_errno(ret);
 183}
 184
 185/* Cleanup unsubmitted bios */
 186static void end_write_bio(struct extent_page_data *epd, int ret)
 187{
 188	struct bio *bio = epd->bio_ctrl.bio;
 189
 190	if (bio) {
 191		bio->bi_status = errno_to_blk_status(ret);
 192		bio_endio(bio);
 193		epd->bio_ctrl.bio = NULL;
 194	}
 195}
 196
 197/*
 198 * Submit bio from extent page data via submit_one_bio
 199 *
 200 * Return 0 if everything is OK.
 201 * Return <0 for error.
 202 */
 203static int __must_check flush_write_bio(struct extent_page_data *epd)
 204{
 205	int ret = 0;
 206	struct bio *bio = epd->bio_ctrl.bio;
 
 
 207
 208	if (bio) {
 209		ret = submit_one_bio(bio, 0, 0);
 210		/*
 211		 * Clean up of epd->bio is handled by its endio function.
 212		 * And endio is either triggered by successful bio execution
 213		 * or the error handler of submit bio hook.
 214		 * So at this point, no matter what happened, we don't need
 215		 * to clean up epd->bio.
 216		 */
 217		epd->bio_ctrl.bio = NULL;
 218	}
 219	return ret;
 220}
 221
 222int __init extent_state_cache_init(void)
 223{
 224	extent_state_cache = kmem_cache_create("btrfs_extent_state",
 225			sizeof(struct extent_state), 0,
 226			SLAB_MEM_SPREAD, NULL);
 227	if (!extent_state_cache)
 228		return -ENOMEM;
 229	return 0;
 230}
 231
 232int __init extent_io_init(void)
 233{
 234	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 235			sizeof(struct extent_buffer), 0,
 236			SLAB_MEM_SPREAD, NULL);
 237	if (!extent_buffer_cache)
 238		return -ENOMEM;
 239
 240	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
 241			offsetof(struct btrfs_io_bio, bio),
 242			BIOSET_NEED_BVECS))
 243		goto free_buffer_cache;
 244
 245	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
 246		goto free_bioset;
 247
 248	return 0;
 249
 250free_bioset:
 251	bioset_exit(&btrfs_bioset);
 252
 253free_buffer_cache:
 254	kmem_cache_destroy(extent_buffer_cache);
 255	extent_buffer_cache = NULL;
 256	return -ENOMEM;
 257}
 258
 259void __cold extent_state_cache_exit(void)
 260{
 261	btrfs_extent_state_leak_debug_check();
 262	kmem_cache_destroy(extent_state_cache);
 263}
 264
 265void __cold extent_io_exit(void)
 266{
 267	/*
 268	 * Make sure all delayed rcu free are flushed before we
 269	 * destroy caches.
 270	 */
 271	rcu_barrier();
 272	kmem_cache_destroy(extent_buffer_cache);
 273	bioset_exit(&btrfs_bioset);
 274}
 275
 276/*
 277 * For the file_extent_tree, we want to hold the inode lock when we lookup and
 278 * update the disk_i_size, but lockdep will complain because our io_tree we hold
 279 * the tree lock and get the inode lock when setting delalloc.  These two things
 280 * are unrelated, so make a class for the file_extent_tree so we don't get the
 281 * two locking patterns mixed up.
 282 */
 283static struct lock_class_key file_extent_tree_class;
 284
 285void extent_io_tree_init(struct btrfs_fs_info *fs_info,
 286			 struct extent_io_tree *tree, unsigned int owner,
 287			 void *private_data)
 288{
 289	tree->fs_info = fs_info;
 290	tree->state = RB_ROOT;
 291	tree->dirty_bytes = 0;
 292	spin_lock_init(&tree->lock);
 293	tree->private_data = private_data;
 294	tree->owner = owner;
 295	if (owner == IO_TREE_INODE_FILE_EXTENT)
 296		lockdep_set_class(&tree->lock, &file_extent_tree_class);
 297}
 298
 299void extent_io_tree_release(struct extent_io_tree *tree)
 300{
 301	spin_lock(&tree->lock);
 302	/*
 303	 * Do a single barrier for the waitqueue_active check here, the state
 304	 * of the waitqueue should not change once extent_io_tree_release is
 305	 * called.
 306	 */
 307	smp_mb();
 308	while (!RB_EMPTY_ROOT(&tree->state)) {
 309		struct rb_node *node;
 310		struct extent_state *state;
 311
 312		node = rb_first(&tree->state);
 313		state = rb_entry(node, struct extent_state, rb_node);
 314		rb_erase(&state->rb_node, &tree->state);
 315		RB_CLEAR_NODE(&state->rb_node);
 316		/*
 317		 * btree io trees aren't supposed to have tasks waiting for
 318		 * changes in the flags of extent states ever.
 319		 */
 320		ASSERT(!waitqueue_active(&state->wq));
 321		free_extent_state(state);
 322
 323		cond_resched_lock(&tree->lock);
 324	}
 325	spin_unlock(&tree->lock);
 326}
 327
 328static struct extent_state *alloc_extent_state(gfp_t mask)
 329{
 330	struct extent_state *state;
 331
 332	/*
 333	 * The given mask might be not appropriate for the slab allocator,
 334	 * drop the unsupported bits
 335	 */
 336	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
 337	state = kmem_cache_alloc(extent_state_cache, mask);
 338	if (!state)
 339		return state;
 340	state->state = 0;
 341	state->failrec = NULL;
 342	RB_CLEAR_NODE(&state->rb_node);
 343	btrfs_leak_debug_add(&leak_lock, &state->leak_list, &states);
 344	refcount_set(&state->refs, 1);
 345	init_waitqueue_head(&state->wq);
 346	trace_alloc_extent_state(state, mask, _RET_IP_);
 347	return state;
 348}
 349
 350void free_extent_state(struct extent_state *state)
 351{
 352	if (!state)
 353		return;
 354	if (refcount_dec_and_test(&state->refs)) {
 355		WARN_ON(extent_state_in_tree(state));
 356		btrfs_leak_debug_del(&leak_lock, &state->leak_list);
 357		trace_free_extent_state(state, _RET_IP_);
 358		kmem_cache_free(extent_state_cache, state);
 359	}
 360}
 361
 362static struct rb_node *tree_insert(struct rb_root *root,
 363				   struct rb_node *search_start,
 364				   u64 offset,
 365				   struct rb_node *node,
 366				   struct rb_node ***p_in,
 367				   struct rb_node **parent_in)
 368{
 369	struct rb_node **p;
 370	struct rb_node *parent = NULL;
 371	struct tree_entry *entry;
 372
 373	if (p_in && parent_in) {
 374		p = *p_in;
 375		parent = *parent_in;
 376		goto do_insert;
 377	}
 378
 379	p = search_start ? &search_start : &root->rb_node;
 380	while (*p) {
 381		parent = *p;
 382		entry = rb_entry(parent, struct tree_entry, rb_node);
 383
 384		if (offset < entry->start)
 385			p = &(*p)->rb_left;
 386		else if (offset > entry->end)
 387			p = &(*p)->rb_right;
 388		else
 389			return parent;
 390	}
 391
 392do_insert:
 393	rb_link_node(node, parent, p);
 394	rb_insert_color(node, root);
 395	return NULL;
 396}
 397
 398/**
 399 * Search @tree for an entry that contains @offset. Such entry would have
 400 * entry->start <= offset && entry->end >= offset.
 401 *
 402 * @tree:       the tree to search
 403 * @offset:     offset that should fall within an entry in @tree
 404 * @next_ret:   pointer to the first entry whose range ends after @offset
 405 * @prev_ret:   pointer to the first entry whose range begins before @offset
 406 * @p_ret:      pointer where new node should be anchored (used when inserting an
 407 *	        entry in the tree)
 408 * @parent_ret: points to entry which would have been the parent of the entry,
 409 *               containing @offset
 410 *
 411 * This function returns a pointer to the entry that contains @offset byte
 412 * address. If no such entry exists, then NULL is returned and the other
 413 * pointer arguments to the function are filled, otherwise the found entry is
 414 * returned and other pointers are left untouched.
 415 */
 416static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 417				      struct rb_node **next_ret,
 418				      struct rb_node **prev_ret,
 419				      struct rb_node ***p_ret,
 420				      struct rb_node **parent_ret)
 421{
 422	struct rb_root *root = &tree->state;
 423	struct rb_node **n = &root->rb_node;
 424	struct rb_node *prev = NULL;
 425	struct rb_node *orig_prev = NULL;
 426	struct tree_entry *entry;
 427	struct tree_entry *prev_entry = NULL;
 428
 429	while (*n) {
 430		prev = *n;
 431		entry = rb_entry(prev, struct tree_entry, rb_node);
 432		prev_entry = entry;
 433
 434		if (offset < entry->start)
 435			n = &(*n)->rb_left;
 436		else if (offset > entry->end)
 437			n = &(*n)->rb_right;
 438		else
 439			return *n;
 440	}
 
 
 441
 442	if (p_ret)
 443		*p_ret = n;
 444	if (parent_ret)
 445		*parent_ret = prev;
 446
 447	if (next_ret) {
 448		orig_prev = prev;
 449		while (prev && offset > prev_entry->end) {
 450			prev = rb_next(prev);
 451			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 452		}
 453		*next_ret = prev;
 454		prev = orig_prev;
 455	}
 456
 457	if (prev_ret) {
 458		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 459		while (prev && offset < prev_entry->start) {
 460			prev = rb_prev(prev);
 461			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 462		}
 463		*prev_ret = prev;
 464	}
 465	return NULL;
 466}
 467
 468static inline struct rb_node *
 469tree_search_for_insert(struct extent_io_tree *tree,
 470		       u64 offset,
 471		       struct rb_node ***p_ret,
 472		       struct rb_node **parent_ret)
 473{
 474	struct rb_node *next= NULL;
 475	struct rb_node *ret;
 
 
 
 
 476
 477	ret = __etree_search(tree, offset, &next, NULL, p_ret, parent_ret);
 478	if (!ret)
 479		return next;
 480	return ret;
 481}
 482
 483static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 484					  u64 offset)
 485{
 486	return tree_search_for_insert(tree, offset, NULL, NULL);
 487}
 488
 489/*
 490 * utility function to look for merge candidates inside a given range.
 491 * Any extents with matching state are merged together into a single
 492 * extent in the tree.  Extents with EXTENT_IO in their state field
 493 * are not merged because the end_io handlers need to be able to do
 494 * operations on them without sleeping (or doing allocations/splits).
 495 *
 496 * This should be called with the tree lock held.
 497 */
 498static void merge_state(struct extent_io_tree *tree,
 499		        struct extent_state *state)
 500{
 501	struct extent_state *other;
 502	struct rb_node *other_node;
 503
 504	if (state->state & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 505		return;
 506
 507	other_node = rb_prev(&state->rb_node);
 508	if (other_node) {
 509		other = rb_entry(other_node, struct extent_state, rb_node);
 510		if (other->end == state->start - 1 &&
 511		    other->state == state->state) {
 512			if (tree->private_data &&
 513			    is_data_inode(tree->private_data))
 514				btrfs_merge_delalloc_extent(tree->private_data,
 515							    state, other);
 516			state->start = other->start;
 517			rb_erase(&other->rb_node, &tree->state);
 518			RB_CLEAR_NODE(&other->rb_node);
 519			free_extent_state(other);
 520		}
 521	}
 522	other_node = rb_next(&state->rb_node);
 523	if (other_node) {
 524		other = rb_entry(other_node, struct extent_state, rb_node);
 525		if (other->start == state->end + 1 &&
 526		    other->state == state->state) {
 527			if (tree->private_data &&
 528			    is_data_inode(tree->private_data))
 529				btrfs_merge_delalloc_extent(tree->private_data,
 530							    state, other);
 531			state->end = other->end;
 532			rb_erase(&other->rb_node, &tree->state);
 533			RB_CLEAR_NODE(&other->rb_node);
 534			free_extent_state(other);
 535		}
 536	}
 537}
 538
 539static void set_state_bits(struct extent_io_tree *tree,
 540			   struct extent_state *state, u32 *bits,
 541			   struct extent_changeset *changeset);
 542
 543/*
 544 * insert an extent_state struct into the tree.  'bits' are set on the
 545 * struct before it is inserted.
 546 *
 547 * This may return -EEXIST if the extent is already there, in which case the
 548 * state struct is freed.
 549 *
 550 * The tree lock is not taken internally.  This is a utility function and
 551 * probably isn't what you want to call (see set/clear_extent_bit).
 552 */
 553static int insert_state(struct extent_io_tree *tree,
 554			struct extent_state *state, u64 start, u64 end,
 555			struct rb_node ***p,
 556			struct rb_node **parent,
 557			u32 *bits, struct extent_changeset *changeset)
 558{
 559	struct rb_node *node;
 560
 561	if (end < start) {
 562		btrfs_err(tree->fs_info,
 563			"insert state: end < start %llu %llu", end, start);
 564		WARN_ON(1);
 565	}
 566	state->start = start;
 567	state->end = end;
 568
 569	set_state_bits(tree, state, bits, changeset);
 570
 571	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
 572	if (node) {
 573		struct extent_state *found;
 574		found = rb_entry(node, struct extent_state, rb_node);
 575		btrfs_err(tree->fs_info,
 576		       "found node %llu %llu on insert of %llu %llu",
 577		       found->start, found->end, start, end);
 578		return -EEXIST;
 579	}
 580	merge_state(tree, state);
 581	return 0;
 582}
 583
 584/*
 585 * split a given extent state struct in two, inserting the preallocated
 586 * struct 'prealloc' as the newly created second half.  'split' indicates an
 587 * offset inside 'orig' where it should be split.
 588 *
 589 * Before calling,
 590 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 591 * are two extent state structs in the tree:
 592 * prealloc: [orig->start, split - 1]
 593 * orig: [ split, orig->end ]
 594 *
 595 * The tree locks are not taken by this function. They need to be held
 596 * by the caller.
 597 */
 598static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 599		       struct extent_state *prealloc, u64 split)
 600{
 601	struct rb_node *node;
 602
 603	if (tree->private_data && is_data_inode(tree->private_data))
 604		btrfs_split_delalloc_extent(tree->private_data, orig, split);
 605
 606	prealloc->start = orig->start;
 607	prealloc->end = split - 1;
 608	prealloc->state = orig->state;
 609	orig->start = split;
 610
 611	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
 612			   &prealloc->rb_node, NULL, NULL);
 613	if (node) {
 614		free_extent_state(prealloc);
 615		return -EEXIST;
 616	}
 617	return 0;
 618}
 619
 620static struct extent_state *next_state(struct extent_state *state)
 621{
 622	struct rb_node *next = rb_next(&state->rb_node);
 623	if (next)
 624		return rb_entry(next, struct extent_state, rb_node);
 625	else
 626		return NULL;
 627}
 628
 629/*
 630 * utility function to clear some bits in an extent state struct.
 631 * it will optionally wake up anyone waiting on this state (wake == 1).
 632 *
 633 * If no bits are set on the state struct after clearing things, the
 634 * struct is freed and removed from the tree
 635 */
 636static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 637					    struct extent_state *state,
 638					    u32 *bits, int wake,
 639					    struct extent_changeset *changeset)
 640{
 641	struct extent_state *next;
 642	u32 bits_to_clear = *bits & ~EXTENT_CTLBITS;
 643	int ret;
 644
 645	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 646		u64 range = state->end - state->start + 1;
 647		WARN_ON(range > tree->dirty_bytes);
 648		tree->dirty_bytes -= range;
 649	}
 650
 651	if (tree->private_data && is_data_inode(tree->private_data))
 652		btrfs_clear_delalloc_extent(tree->private_data, state, bits);
 653
 654	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
 655	BUG_ON(ret < 0);
 656	state->state &= ~bits_to_clear;
 657	if (wake)
 658		wake_up(&state->wq);
 659	if (state->state == 0) {
 660		next = next_state(state);
 661		if (extent_state_in_tree(state)) {
 662			rb_erase(&state->rb_node, &tree->state);
 663			RB_CLEAR_NODE(&state->rb_node);
 664			free_extent_state(state);
 665		} else {
 666			WARN_ON(1);
 667		}
 668	} else {
 669		merge_state(tree, state);
 670		next = next_state(state);
 671	}
 672	return next;
 673}
 674
 675static struct extent_state *
 676alloc_extent_state_atomic(struct extent_state *prealloc)
 677{
 678	if (!prealloc)
 679		prealloc = alloc_extent_state(GFP_ATOMIC);
 680
 681	return prealloc;
 682}
 683
 684static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 685{
 686	btrfs_panic(tree->fs_info, err,
 687	"locking error: extent tree was modified by another thread while locked");
 688}
 689
 690/*
 691 * clear some bits on a range in the tree.  This may require splitting
 692 * or inserting elements in the tree, so the gfp mask is used to
 693 * indicate which allocations or sleeping are allowed.
 694 *
 695 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 696 * the given range from the tree regardless of state (ie for truncate).
 697 *
 698 * the range [start, end] is inclusive.
 699 *
 700 * This takes the tree lock, and returns 0 on success and < 0 on error.
 701 */
 702int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 703		       u32 bits, int wake, int delete,
 704		       struct extent_state **cached_state,
 705		       gfp_t mask, struct extent_changeset *changeset)
 706{
 707	struct extent_state *state;
 708	struct extent_state *cached;
 709	struct extent_state *prealloc = NULL;
 710	struct rb_node *node;
 711	u64 last_end;
 712	int err;
 713	int clear = 0;
 714
 715	btrfs_debug_check_extent_io_range(tree, start, end);
 716	trace_btrfs_clear_extent_bit(tree, start, end - start + 1, bits);
 717
 718	if (bits & EXTENT_DELALLOC)
 719		bits |= EXTENT_NORESERVE;
 720
 721	if (delete)
 722		bits |= ~EXTENT_CTLBITS;
 723
 724	if (bits & (EXTENT_LOCKED | EXTENT_BOUNDARY))
 725		clear = 1;
 726again:
 727	if (!prealloc && gfpflags_allow_blocking(mask)) {
 728		/*
 729		 * Don't care for allocation failure here because we might end
 730		 * up not needing the pre-allocated extent state at all, which
 731		 * is the case if we only have in the tree extent states that
 732		 * cover our input range and don't cover too any other range.
 733		 * If we end up needing a new extent state we allocate it later.
 734		 */
 735		prealloc = alloc_extent_state(mask);
 736	}
 737
 738	spin_lock(&tree->lock);
 739	if (cached_state) {
 740		cached = *cached_state;
 741
 742		if (clear) {
 743			*cached_state = NULL;
 744			cached_state = NULL;
 745		}
 746
 747		if (cached && extent_state_in_tree(cached) &&
 748		    cached->start <= start && cached->end > start) {
 749			if (clear)
 750				refcount_dec(&cached->refs);
 751			state = cached;
 752			goto hit_next;
 753		}
 754		if (clear)
 755			free_extent_state(cached);
 756	}
 757	/*
 758	 * this search will find the extents that end after
 759	 * our range starts
 760	 */
 761	node = tree_search(tree, start);
 762	if (!node)
 763		goto out;
 764	state = rb_entry(node, struct extent_state, rb_node);
 765hit_next:
 766	if (state->start > end)
 767		goto out;
 768	WARN_ON(state->end < start);
 769	last_end = state->end;
 770
 771	/* the state doesn't have the wanted bits, go ahead */
 772	if (!(state->state & bits)) {
 773		state = next_state(state);
 774		goto next;
 775	}
 776
 777	/*
 778	 *     | ---- desired range ---- |
 779	 *  | state | or
 780	 *  | ------------- state -------------- |
 781	 *
 782	 * We need to split the extent we found, and may flip
 783	 * bits on second half.
 784	 *
 785	 * If the extent we found extends past our range, we
 786	 * just split and search again.  It'll get split again
 787	 * the next time though.
 788	 *
 789	 * If the extent we found is inside our range, we clear
 790	 * the desired bit on it.
 791	 */
 792
 793	if (state->start < start) {
 794		prealloc = alloc_extent_state_atomic(prealloc);
 795		BUG_ON(!prealloc);
 796		err = split_state(tree, state, prealloc, start);
 797		if (err)
 798			extent_io_tree_panic(tree, err);
 799
 800		prealloc = NULL;
 801		if (err)
 802			goto out;
 803		if (state->end <= end) {
 804			state = clear_state_bit(tree, state, &bits, wake,
 805						changeset);
 806			goto next;
 807		}
 808		goto search_again;
 809	}
 810	/*
 811	 * | ---- desired range ---- |
 812	 *                        | state |
 813	 * We need to split the extent, and clear the bit
 814	 * on the first half
 815	 */
 816	if (state->start <= end && state->end > end) {
 817		prealloc = alloc_extent_state_atomic(prealloc);
 818		BUG_ON(!prealloc);
 819		err = split_state(tree, state, prealloc, end + 1);
 820		if (err)
 821			extent_io_tree_panic(tree, err);
 822
 823		if (wake)
 824			wake_up(&state->wq);
 825
 826		clear_state_bit(tree, prealloc, &bits, wake, changeset);
 827
 828		prealloc = NULL;
 829		goto out;
 830	}
 831
 832	state = clear_state_bit(tree, state, &bits, wake, changeset);
 833next:
 834	if (last_end == (u64)-1)
 835		goto out;
 836	start = last_end + 1;
 837	if (start <= end && state && !need_resched())
 838		goto hit_next;
 839
 840search_again:
 841	if (start > end)
 842		goto out;
 843	spin_unlock(&tree->lock);
 844	if (gfpflags_allow_blocking(mask))
 845		cond_resched();
 846	goto again;
 847
 848out:
 849	spin_unlock(&tree->lock);
 850	if (prealloc)
 851		free_extent_state(prealloc);
 852
 853	return 0;
 854
 855}
 856
 857static void wait_on_state(struct extent_io_tree *tree,
 858			  struct extent_state *state)
 859		__releases(tree->lock)
 860		__acquires(tree->lock)
 861{
 862	DEFINE_WAIT(wait);
 863	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 864	spin_unlock(&tree->lock);
 865	schedule();
 866	spin_lock(&tree->lock);
 867	finish_wait(&state->wq, &wait);
 868}
 869
 870/*
 871 * waits for one or more bits to clear on a range in the state tree.
 872 * The range [start, end] is inclusive.
 873 * The tree lock is taken by this function
 874 */
 875static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 876			    u32 bits)
 877{
 878	struct extent_state *state;
 879	struct rb_node *node;
 880
 881	btrfs_debug_check_extent_io_range(tree, start, end);
 882
 883	spin_lock(&tree->lock);
 884again:
 885	while (1) {
 886		/*
 887		 * this search will find all the extents that end after
 888		 * our range starts
 889		 */
 890		node = tree_search(tree, start);
 891process_node:
 892		if (!node)
 893			break;
 894
 895		state = rb_entry(node, struct extent_state, rb_node);
 896
 897		if (state->start > end)
 898			goto out;
 899
 900		if (state->state & bits) {
 901			start = state->start;
 902			refcount_inc(&state->refs);
 903			wait_on_state(tree, state);
 904			free_extent_state(state);
 905			goto again;
 906		}
 907		start = state->end + 1;
 908
 909		if (start > end)
 910			break;
 911
 912		if (!cond_resched_lock(&tree->lock)) {
 913			node = rb_next(node);
 914			goto process_node;
 915		}
 916	}
 917out:
 918	spin_unlock(&tree->lock);
 919}
 920
 921static void set_state_bits(struct extent_io_tree *tree,
 922			   struct extent_state *state,
 923			   u32 *bits, struct extent_changeset *changeset)
 924{
 925	u32 bits_to_set = *bits & ~EXTENT_CTLBITS;
 926	int ret;
 927
 928	if (tree->private_data && is_data_inode(tree->private_data))
 929		btrfs_set_delalloc_extent(tree->private_data, state, bits);
 930
 931	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 932		u64 range = state->end - state->start + 1;
 933		tree->dirty_bytes += range;
 934	}
 935	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
 936	BUG_ON(ret < 0);
 937	state->state |= bits_to_set;
 938}
 939
 940static void cache_state_if_flags(struct extent_state *state,
 941				 struct extent_state **cached_ptr,
 942				 unsigned flags)
 943{
 944	if (cached_ptr && !(*cached_ptr)) {
 945		if (!flags || (state->state & flags)) {
 946			*cached_ptr = state;
 947			refcount_inc(&state->refs);
 948		}
 949	}
 950}
 951
 952static void cache_state(struct extent_state *state,
 953			struct extent_state **cached_ptr)
 954{
 955	return cache_state_if_flags(state, cached_ptr,
 956				    EXTENT_LOCKED | EXTENT_BOUNDARY);
 957}
 958
 959/*
 960 * set some bits on a range in the tree.  This may require allocations or
 961 * sleeping, so the gfp mask is used to indicate what is allowed.
 962 *
 963 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 964 * part of the range already has the desired bits set.  The start of the
 965 * existing range is returned in failed_start in this case.
 966 *
 967 * [start, end] is inclusive This takes the tree lock.
 968 */
 969int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, u32 bits,
 970		   u32 exclusive_bits, u64 *failed_start,
 971		   struct extent_state **cached_state, gfp_t mask,
 972		   struct extent_changeset *changeset)
 973{
 974	struct extent_state *state;
 975	struct extent_state *prealloc = NULL;
 976	struct rb_node *node;
 977	struct rb_node **p;
 978	struct rb_node *parent;
 979	int err = 0;
 980	u64 last_start;
 981	u64 last_end;
 982
 983	btrfs_debug_check_extent_io_range(tree, start, end);
 984	trace_btrfs_set_extent_bit(tree, start, end - start + 1, bits);
 985
 986	if (exclusive_bits)
 987		ASSERT(failed_start);
 988	else
 989		ASSERT(failed_start == NULL);
 990again:
 991	if (!prealloc && gfpflags_allow_blocking(mask)) {
 992		/*
 993		 * Don't care for allocation failure here because we might end
 994		 * up not needing the pre-allocated extent state at all, which
 995		 * is the case if we only have in the tree extent states that
 996		 * cover our input range and don't cover too any other range.
 997		 * If we end up needing a new extent state we allocate it later.
 998		 */
 999		prealloc = alloc_extent_state(mask);
1000	}
1001
1002	spin_lock(&tree->lock);
1003	if (cached_state && *cached_state) {
1004		state = *cached_state;
1005		if (state->start <= start && state->end > start &&
1006		    extent_state_in_tree(state)) {
1007			node = &state->rb_node;
1008			goto hit_next;
1009		}
1010	}
1011	/*
1012	 * this search will find all the extents that end after
1013	 * our range starts.
1014	 */
1015	node = tree_search_for_insert(tree, start, &p, &parent);
1016	if (!node) {
1017		prealloc = alloc_extent_state_atomic(prealloc);
1018		BUG_ON(!prealloc);
1019		err = insert_state(tree, prealloc, start, end,
1020				   &p, &parent, &bits, changeset);
1021		if (err)
1022			extent_io_tree_panic(tree, err);
1023
1024		cache_state(prealloc, cached_state);
1025		prealloc = NULL;
1026		goto out;
1027	}
1028	state = rb_entry(node, struct extent_state, rb_node);
1029hit_next:
1030	last_start = state->start;
1031	last_end = state->end;
1032
1033	/*
1034	 * | ---- desired range ---- |
1035	 * | state |
1036	 *
1037	 * Just lock what we found and keep going
1038	 */
1039	if (state->start == start && state->end <= end) {
1040		if (state->state & exclusive_bits) {
1041			*failed_start = state->start;
1042			err = -EEXIST;
1043			goto out;
1044		}
1045
1046		set_state_bits(tree, state, &bits, changeset);
1047		cache_state(state, cached_state);
1048		merge_state(tree, state);
1049		if (last_end == (u64)-1)
1050			goto out;
1051		start = last_end + 1;
1052		state = next_state(state);
1053		if (start < end && state && state->start == start &&
1054		    !need_resched())
1055			goto hit_next;
1056		goto search_again;
1057	}
1058
1059	/*
1060	 *     | ---- desired range ---- |
1061	 * | state |
1062	 *   or
1063	 * | ------------- state -------------- |
1064	 *
1065	 * We need to split the extent we found, and may flip bits on
1066	 * second half.
1067	 *
1068	 * If the extent we found extends past our
1069	 * range, we just split and search again.  It'll get split
1070	 * again the next time though.
1071	 *
1072	 * If the extent we found is inside our range, we set the
1073	 * desired bit on it.
1074	 */
1075	if (state->start < start) {
1076		if (state->state & exclusive_bits) {
1077			*failed_start = start;
1078			err = -EEXIST;
1079			goto out;
1080		}
1081
1082		/*
1083		 * If this extent already has all the bits we want set, then
1084		 * skip it, not necessary to split it or do anything with it.
1085		 */
1086		if ((state->state & bits) == bits) {
1087			start = state->end + 1;
1088			cache_state(state, cached_state);
1089			goto search_again;
1090		}
1091
1092		prealloc = alloc_extent_state_atomic(prealloc);
1093		BUG_ON(!prealloc);
1094		err = split_state(tree, state, prealloc, start);
1095		if (err)
1096			extent_io_tree_panic(tree, err);
1097
1098		prealloc = NULL;
1099		if (err)
1100			goto out;
1101		if (state->end <= end) {
1102			set_state_bits(tree, state, &bits, changeset);
1103			cache_state(state, cached_state);
1104			merge_state(tree, state);
1105			if (last_end == (u64)-1)
1106				goto out;
1107			start = last_end + 1;
1108			state = next_state(state);
1109			if (start < end && state && state->start == start &&
1110			    !need_resched())
1111				goto hit_next;
1112		}
1113		goto search_again;
1114	}
1115	/*
1116	 * | ---- desired range ---- |
1117	 *     | state | or               | state |
1118	 *
1119	 * There's a hole, we need to insert something in it and
1120	 * ignore the extent we found.
1121	 */
1122	if (state->start > start) {
1123		u64 this_end;
1124		if (end < last_start)
1125			this_end = end;
1126		else
1127			this_end = last_start - 1;
1128
1129		prealloc = alloc_extent_state_atomic(prealloc);
1130		BUG_ON(!prealloc);
1131
1132		/*
1133		 * Avoid to free 'prealloc' if it can be merged with
1134		 * the later extent.
1135		 */
1136		err = insert_state(tree, prealloc, start, this_end,
1137				   NULL, NULL, &bits, changeset);
1138		if (err)
1139			extent_io_tree_panic(tree, err);
1140
1141		cache_state(prealloc, cached_state);
1142		prealloc = NULL;
1143		start = this_end + 1;
1144		goto search_again;
1145	}
1146	/*
1147	 * | ---- desired range ---- |
1148	 *                        | state |
1149	 * We need to split the extent, and set the bit
1150	 * on the first half
1151	 */
1152	if (state->start <= end && state->end > end) {
1153		if (state->state & exclusive_bits) {
1154			*failed_start = start;
1155			err = -EEXIST;
1156			goto out;
1157		}
1158
1159		prealloc = alloc_extent_state_atomic(prealloc);
1160		BUG_ON(!prealloc);
1161		err = split_state(tree, state, prealloc, end + 1);
1162		if (err)
1163			extent_io_tree_panic(tree, err);
1164
1165		set_state_bits(tree, prealloc, &bits, changeset);
1166		cache_state(prealloc, cached_state);
1167		merge_state(tree, prealloc);
1168		prealloc = NULL;
1169		goto out;
1170	}
1171
1172search_again:
1173	if (start > end)
1174		goto out;
1175	spin_unlock(&tree->lock);
1176	if (gfpflags_allow_blocking(mask))
1177		cond_resched();
1178	goto again;
1179
1180out:
1181	spin_unlock(&tree->lock);
1182	if (prealloc)
1183		free_extent_state(prealloc);
1184
1185	return err;
1186
1187}
1188
1189/**
1190 * convert_extent_bit - convert all bits in a given range from one bit to
1191 * 			another
1192 * @tree:	the io tree to search
1193 * @start:	the start offset in bytes
1194 * @end:	the end offset in bytes (inclusive)
1195 * @bits:	the bits to set in this range
1196 * @clear_bits:	the bits to clear in this range
1197 * @cached_state:	state that we're going to cache
1198 *
1199 * This will go through and set bits for the given range.  If any states exist
1200 * already in this range they are set with the given bit and cleared of the
1201 * clear_bits.  This is only meant to be used by things that are mergeable, ie
1202 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1203 * boundary bits like LOCK.
1204 *
1205 * All allocations are done with GFP_NOFS.
1206 */
1207int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1208		       u32 bits, u32 clear_bits,
1209		       struct extent_state **cached_state)
1210{
1211	struct extent_state *state;
1212	struct extent_state *prealloc = NULL;
1213	struct rb_node *node;
1214	struct rb_node **p;
1215	struct rb_node *parent;
1216	int err = 0;
1217	u64 last_start;
1218	u64 last_end;
1219	bool first_iteration = true;
1220
1221	btrfs_debug_check_extent_io_range(tree, start, end);
1222	trace_btrfs_convert_extent_bit(tree, start, end - start + 1, bits,
1223				       clear_bits);
1224
1225again:
1226	if (!prealloc) {
1227		/*
1228		 * Best effort, don't worry if extent state allocation fails
1229		 * here for the first iteration. We might have a cached state
1230		 * that matches exactly the target range, in which case no
1231		 * extent state allocations are needed. We'll only know this
1232		 * after locking the tree.
1233		 */
1234		prealloc = alloc_extent_state(GFP_NOFS);
1235		if (!prealloc && !first_iteration)
1236			return -ENOMEM;
1237	}
1238
1239	spin_lock(&tree->lock);
1240	if (cached_state && *cached_state) {
1241		state = *cached_state;
1242		if (state->start <= start && state->end > start &&
1243		    extent_state_in_tree(state)) {
1244			node = &state->rb_node;
1245			goto hit_next;
1246		}
1247	}
1248
1249	/*
1250	 * this search will find all the extents that end after
1251	 * our range starts.
1252	 */
1253	node = tree_search_for_insert(tree, start, &p, &parent);
1254	if (!node) {
1255		prealloc = alloc_extent_state_atomic(prealloc);
1256		if (!prealloc) {
1257			err = -ENOMEM;
1258			goto out;
1259		}
1260		err = insert_state(tree, prealloc, start, end,
1261				   &p, &parent, &bits, NULL);
1262		if (err)
1263			extent_io_tree_panic(tree, err);
1264		cache_state(prealloc, cached_state);
1265		prealloc = NULL;
1266		goto out;
1267	}
1268	state = rb_entry(node, struct extent_state, rb_node);
1269hit_next:
1270	last_start = state->start;
1271	last_end = state->end;
1272
1273	/*
1274	 * | ---- desired range ---- |
1275	 * | state |
1276	 *
1277	 * Just lock what we found and keep going
1278	 */
1279	if (state->start == start && state->end <= end) {
1280		set_state_bits(tree, state, &bits, NULL);
1281		cache_state(state, cached_state);
1282		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1283		if (last_end == (u64)-1)
1284			goto out;
1285		start = last_end + 1;
1286		if (start < end && state && state->start == start &&
1287		    !need_resched())
1288			goto hit_next;
1289		goto search_again;
1290	}
1291
1292	/*
1293	 *     | ---- desired range ---- |
1294	 * | state |
1295	 *   or
1296	 * | ------------- state -------------- |
1297	 *
1298	 * We need to split the extent we found, and may flip bits on
1299	 * second half.
1300	 *
1301	 * If the extent we found extends past our
1302	 * range, we just split and search again.  It'll get split
1303	 * again the next time though.
1304	 *
1305	 * If the extent we found is inside our range, we set the
1306	 * desired bit on it.
1307	 */
1308	if (state->start < start) {
1309		prealloc = alloc_extent_state_atomic(prealloc);
1310		if (!prealloc) {
1311			err = -ENOMEM;
1312			goto out;
1313		}
1314		err = split_state(tree, state, prealloc, start);
1315		if (err)
1316			extent_io_tree_panic(tree, err);
1317		prealloc = NULL;
1318		if (err)
1319			goto out;
1320		if (state->end <= end) {
1321			set_state_bits(tree, state, &bits, NULL);
1322			cache_state(state, cached_state);
1323			state = clear_state_bit(tree, state, &clear_bits, 0,
1324						NULL);
1325			if (last_end == (u64)-1)
1326				goto out;
1327			start = last_end + 1;
1328			if (start < end && state && state->start == start &&
1329			    !need_resched())
1330				goto hit_next;
1331		}
1332		goto search_again;
1333	}
1334	/*
1335	 * | ---- desired range ---- |
1336	 *     | state | or               | state |
1337	 *
1338	 * There's a hole, we need to insert something in it and
1339	 * ignore the extent we found.
1340	 */
1341	if (state->start > start) {
1342		u64 this_end;
1343		if (end < last_start)
1344			this_end = end;
1345		else
1346			this_end = last_start - 1;
1347
1348		prealloc = alloc_extent_state_atomic(prealloc);
1349		if (!prealloc) {
1350			err = -ENOMEM;
1351			goto out;
1352		}
1353
1354		/*
1355		 * Avoid to free 'prealloc' if it can be merged with
1356		 * the later extent.
1357		 */
1358		err = insert_state(tree, prealloc, start, this_end,
1359				   NULL, NULL, &bits, NULL);
1360		if (err)
1361			extent_io_tree_panic(tree, err);
1362		cache_state(prealloc, cached_state);
1363		prealloc = NULL;
1364		start = this_end + 1;
1365		goto search_again;
1366	}
1367	/*
1368	 * | ---- desired range ---- |
1369	 *                        | state |
1370	 * We need to split the extent, and set the bit
1371	 * on the first half
1372	 */
1373	if (state->start <= end && state->end > end) {
1374		prealloc = alloc_extent_state_atomic(prealloc);
1375		if (!prealloc) {
1376			err = -ENOMEM;
1377			goto out;
1378		}
1379
1380		err = split_state(tree, state, prealloc, end + 1);
1381		if (err)
1382			extent_io_tree_panic(tree, err);
1383
1384		set_state_bits(tree, prealloc, &bits, NULL);
1385		cache_state(prealloc, cached_state);
1386		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1387		prealloc = NULL;
1388		goto out;
1389	}
1390
1391search_again:
1392	if (start > end)
1393		goto out;
1394	spin_unlock(&tree->lock);
1395	cond_resched();
1396	first_iteration = false;
1397	goto again;
1398
1399out:
1400	spin_unlock(&tree->lock);
1401	if (prealloc)
1402		free_extent_state(prealloc);
1403
1404	return err;
1405}
1406
1407/* wrappers around set/clear extent bit */
1408int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1409			   u32 bits, struct extent_changeset *changeset)
1410{
1411	/*
1412	 * We don't support EXTENT_LOCKED yet, as current changeset will
1413	 * record any bits changed, so for EXTENT_LOCKED case, it will
1414	 * either fail with -EEXIST or changeset will record the whole
1415	 * range.
1416	 */
1417	BUG_ON(bits & EXTENT_LOCKED);
1418
1419	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1420			      changeset);
1421}
1422
1423int set_extent_bits_nowait(struct extent_io_tree *tree, u64 start, u64 end,
1424			   u32 bits)
1425{
1426	return set_extent_bit(tree, start, end, bits, 0, NULL, NULL,
1427			      GFP_NOWAIT, NULL);
1428}
1429
1430int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1431		     u32 bits, int wake, int delete,
1432		     struct extent_state **cached)
1433{
1434	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1435				  cached, GFP_NOFS, NULL);
1436}
1437
1438int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1439		u32 bits, struct extent_changeset *changeset)
1440{
1441	/*
1442	 * Don't support EXTENT_LOCKED case, same reason as
1443	 * set_record_extent_bits().
1444	 */
1445	BUG_ON(bits & EXTENT_LOCKED);
1446
1447	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1448				  changeset);
1449}
1450
1451/*
1452 * either insert or lock state struct between start and end use mask to tell
1453 * us if waiting is desired.
1454 */
1455int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1456		     struct extent_state **cached_state)
1457{
1458	int err;
1459	u64 failed_start;
1460
1461	while (1) {
1462		err = set_extent_bit(tree, start, end, EXTENT_LOCKED,
1463				     EXTENT_LOCKED, &failed_start,
1464				     cached_state, GFP_NOFS, NULL);
1465		if (err == -EEXIST) {
1466			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1467			start = failed_start;
1468		} else
1469			break;
1470		WARN_ON(start > end);
1471	}
1472	return err;
1473}
1474
1475int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1476{
1477	int err;
1478	u64 failed_start;
1479
1480	err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1481			     &failed_start, NULL, GFP_NOFS, NULL);
1482	if (err == -EEXIST) {
1483		if (failed_start > start)
1484			clear_extent_bit(tree, start, failed_start - 1,
1485					 EXTENT_LOCKED, 1, 0, NULL);
1486		return 0;
1487	}
1488	return 1;
1489}
1490
1491void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1492{
1493	unsigned long index = start >> PAGE_SHIFT;
1494	unsigned long end_index = end >> PAGE_SHIFT;
1495	struct page *page;
1496
1497	while (index <= end_index) {
1498		page = find_get_page(inode->i_mapping, index);
1499		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1500		clear_page_dirty_for_io(page);
1501		put_page(page);
1502		index++;
1503	}
1504}
1505
1506void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1507{
1508	unsigned long index = start >> PAGE_SHIFT;
1509	unsigned long end_index = end >> PAGE_SHIFT;
1510	struct page *page;
1511
1512	while (index <= end_index) {
1513		page = find_get_page(inode->i_mapping, index);
1514		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1515		__set_page_dirty_nobuffers(page);
1516		account_page_redirty(page);
1517		put_page(page);
1518		index++;
1519	}
1520}
1521
1522/* find the first state struct with 'bits' set after 'start', and
1523 * return it.  tree->lock must be held.  NULL will returned if
1524 * nothing was found after 'start'
1525 */
1526static struct extent_state *
1527find_first_extent_bit_state(struct extent_io_tree *tree, u64 start, u32 bits)
1528{
1529	struct rb_node *node;
1530	struct extent_state *state;
1531
1532	/*
1533	 * this search will find all the extents that end after
1534	 * our range starts.
1535	 */
1536	node = tree_search(tree, start);
1537	if (!node)
1538		goto out;
1539
1540	while (1) {
1541		state = rb_entry(node, struct extent_state, rb_node);
1542		if (state->end >= start && (state->state & bits))
1543			return state;
1544
1545		node = rb_next(node);
1546		if (!node)
1547			break;
1548	}
1549out:
1550	return NULL;
1551}
1552
1553/*
1554 * Find the first offset in the io tree with one or more @bits set.
1555 *
1556 * Note: If there are multiple bits set in @bits, any of them will match.
1557 *
1558 * Return 0 if we find something, and update @start_ret and @end_ret.
1559 * Return 1 if we found nothing.
1560 */
1561int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1562			  u64 *start_ret, u64 *end_ret, u32 bits,
1563			  struct extent_state **cached_state)
1564{
1565	struct extent_state *state;
1566	int ret = 1;
1567
1568	spin_lock(&tree->lock);
1569	if (cached_state && *cached_state) {
1570		state = *cached_state;
1571		if (state->end == start - 1 && extent_state_in_tree(state)) {
1572			while ((state = next_state(state)) != NULL) {
1573				if (state->state & bits)
1574					goto got_it;
1575			}
1576			free_extent_state(*cached_state);
1577			*cached_state = NULL;
1578			goto out;
1579		}
1580		free_extent_state(*cached_state);
1581		*cached_state = NULL;
1582	}
1583
1584	state = find_first_extent_bit_state(tree, start, bits);
1585got_it:
1586	if (state) {
1587		cache_state_if_flags(state, cached_state, 0);
1588		*start_ret = state->start;
1589		*end_ret = state->end;
1590		ret = 0;
1591	}
1592out:
1593	spin_unlock(&tree->lock);
1594	return ret;
1595}
1596
1597/**
1598 * Find a contiguous area of bits
1599 *
1600 * @tree:      io tree to check
1601 * @start:     offset to start the search from
1602 * @start_ret: the first offset we found with the bits set
1603 * @end_ret:   the final contiguous range of the bits that were set
1604 * @bits:      bits to look for
1605 *
1606 * set_extent_bit and clear_extent_bit can temporarily split contiguous ranges
1607 * to set bits appropriately, and then merge them again.  During this time it
1608 * will drop the tree->lock, so use this helper if you want to find the actual
1609 * contiguous area for given bits.  We will search to the first bit we find, and
1610 * then walk down the tree until we find a non-contiguous area.  The area
1611 * returned will be the full contiguous area with the bits set.
1612 */
1613int find_contiguous_extent_bit(struct extent_io_tree *tree, u64 start,
1614			       u64 *start_ret, u64 *end_ret, u32 bits)
1615{
1616	struct extent_state *state;
1617	int ret = 1;
1618
1619	spin_lock(&tree->lock);
1620	state = find_first_extent_bit_state(tree, start, bits);
1621	if (state) {
1622		*start_ret = state->start;
1623		*end_ret = state->end;
1624		while ((state = next_state(state)) != NULL) {
1625			if (state->start > (*end_ret + 1))
1626				break;
1627			*end_ret = state->end;
1628		}
1629		ret = 0;
1630	}
1631	spin_unlock(&tree->lock);
1632	return ret;
1633}
1634
1635/**
1636 * Find the first range that has @bits not set. This range could start before
1637 * @start.
1638 *
1639 * @tree:      the tree to search
1640 * @start:     offset at/after which the found extent should start
1641 * @start_ret: records the beginning of the range
1642 * @end_ret:   records the end of the range (inclusive)
1643 * @bits:      the set of bits which must be unset
1644 *
1645 * Since unallocated range is also considered one which doesn't have the bits
1646 * set it's possible that @end_ret contains -1, this happens in case the range
1647 * spans (last_range_end, end of device]. In this case it's up to the caller to
1648 * trim @end_ret to the appropriate size.
1649 */
1650void find_first_clear_extent_bit(struct extent_io_tree *tree, u64 start,
1651				 u64 *start_ret, u64 *end_ret, u32 bits)
1652{
1653	struct extent_state *state;
1654	struct rb_node *node, *prev = NULL, *next;
1655
1656	spin_lock(&tree->lock);
1657
1658	/* Find first extent with bits cleared */
1659	while (1) {
1660		node = __etree_search(tree, start, &next, &prev, NULL, NULL);
1661		if (!node && !next && !prev) {
1662			/*
1663			 * Tree is completely empty, send full range and let
1664			 * caller deal with it
1665			 */
1666			*start_ret = 0;
1667			*end_ret = -1;
1668			goto out;
1669		} else if (!node && !next) {
1670			/*
1671			 * We are past the last allocated chunk, set start at
1672			 * the end of the last extent.
1673			 */
1674			state = rb_entry(prev, struct extent_state, rb_node);
1675			*start_ret = state->end + 1;
1676			*end_ret = -1;
1677			goto out;
1678		} else if (!node) {
1679			node = next;
1680		}
1681		/*
1682		 * At this point 'node' either contains 'start' or start is
1683		 * before 'node'
1684		 */
1685		state = rb_entry(node, struct extent_state, rb_node);
1686
1687		if (in_range(start, state->start, state->end - state->start + 1)) {
1688			if (state->state & bits) {
1689				/*
1690				 * |--range with bits sets--|
1691				 *    |
1692				 *    start
1693				 */
1694				start = state->end + 1;
1695			} else {
1696				/*
1697				 * 'start' falls within a range that doesn't
1698				 * have the bits set, so take its start as
1699				 * the beginning of the desired range
1700				 *
1701				 * |--range with bits cleared----|
1702				 *      |
1703				 *      start
1704				 */
1705				*start_ret = state->start;
1706				break;
1707			}
1708		} else {
1709			/*
1710			 * |---prev range---|---hole/unset---|---node range---|
1711			 *                          |
1712			 *                        start
1713			 *
1714			 *                        or
1715			 *
1716			 * |---hole/unset--||--first node--|
1717			 * 0   |
1718			 *    start
1719			 */
1720			if (prev) {
1721				state = rb_entry(prev, struct extent_state,
1722						 rb_node);
1723				*start_ret = state->end + 1;
1724			} else {
1725				*start_ret = 0;
1726			}
1727			break;
1728		}
1729	}
1730
1731	/*
1732	 * Find the longest stretch from start until an entry which has the
1733	 * bits set
1734	 */
1735	while (1) {
1736		state = rb_entry(node, struct extent_state, rb_node);
1737		if (state->end >= start && !(state->state & bits)) {
1738			*end_ret = state->end;
1739		} else {
1740			*end_ret = state->start - 1;
1741			break;
1742		}
1743
1744		node = rb_next(node);
1745		if (!node)
1746			break;
1747	}
1748out:
1749	spin_unlock(&tree->lock);
1750}
1751
1752/*
1753 * find a contiguous range of bytes in the file marked as delalloc, not
1754 * more than 'max_bytes'.  start and end are used to return the range,
1755 *
1756 * true is returned if we find something, false if nothing was in the tree
1757 */
1758bool btrfs_find_delalloc_range(struct extent_io_tree *tree, u64 *start,
1759			       u64 *end, u64 max_bytes,
1760			       struct extent_state **cached_state)
1761{
1762	struct rb_node *node;
1763	struct extent_state *state;
1764	u64 cur_start = *start;
1765	bool found = false;
1766	u64 total_bytes = 0;
1767
1768	spin_lock(&tree->lock);
1769
1770	/*
1771	 * this search will find all the extents that end after
1772	 * our range starts.
1773	 */
1774	node = tree_search(tree, cur_start);
1775	if (!node) {
1776		*end = (u64)-1;
1777		goto out;
1778	}
1779
1780	while (1) {
1781		state = rb_entry(node, struct extent_state, rb_node);
1782		if (found && (state->start != cur_start ||
1783			      (state->state & EXTENT_BOUNDARY))) {
1784			goto out;
1785		}
1786		if (!(state->state & EXTENT_DELALLOC)) {
1787			if (!found)
1788				*end = state->end;
1789			goto out;
1790		}
1791		if (!found) {
1792			*start = state->start;
1793			*cached_state = state;
1794			refcount_inc(&state->refs);
1795		}
1796		found = true;
1797		*end = state->end;
1798		cur_start = state->end + 1;
1799		node = rb_next(node);
1800		total_bytes += state->end - state->start + 1;
1801		if (total_bytes >= max_bytes)
1802			break;
1803		if (!node)
1804			break;
1805	}
1806out:
1807	spin_unlock(&tree->lock);
1808	return found;
1809}
1810
1811/*
1812 * Process one page for __process_pages_contig().
1813 *
1814 * Return >0 if we hit @page == @locked_page.
1815 * Return 0 if we updated the page status.
1816 * Return -EGAIN if the we need to try again.
1817 * (For PAGE_LOCK case but got dirty page or page not belong to mapping)
1818 */
1819static int process_one_page(struct btrfs_fs_info *fs_info,
1820			    struct address_space *mapping,
1821			    struct page *page, struct page *locked_page,
1822			    unsigned long page_ops, u64 start, u64 end)
1823{
1824	u32 len;
1825
1826	ASSERT(end + 1 - start != 0 && end + 1 - start < U32_MAX);
1827	len = end + 1 - start;
1828
1829	if (page_ops & PAGE_SET_ORDERED)
1830		btrfs_page_clamp_set_ordered(fs_info, page, start, len);
1831	if (page_ops & PAGE_SET_ERROR)
1832		btrfs_page_clamp_set_error(fs_info, page, start, len);
1833	if (page_ops & PAGE_START_WRITEBACK) {
1834		btrfs_page_clamp_clear_dirty(fs_info, page, start, len);
1835		btrfs_page_clamp_set_writeback(fs_info, page, start, len);
1836	}
1837	if (page_ops & PAGE_END_WRITEBACK)
1838		btrfs_page_clamp_clear_writeback(fs_info, page, start, len);
1839
1840	if (page == locked_page)
1841		return 1;
1842
1843	if (page_ops & PAGE_LOCK) {
1844		int ret;
1845
1846		ret = btrfs_page_start_writer_lock(fs_info, page, start, len);
1847		if (ret)
1848			return ret;
1849		if (!PageDirty(page) || page->mapping != mapping) {
1850			btrfs_page_end_writer_lock(fs_info, page, start, len);
1851			return -EAGAIN;
1852		}
1853	}
1854	if (page_ops & PAGE_UNLOCK)
1855		btrfs_page_end_writer_lock(fs_info, page, start, len);
1856	return 0;
1857}
1858
1859static int __process_pages_contig(struct address_space *mapping,
1860				  struct page *locked_page,
1861				  u64 start, u64 end, unsigned long page_ops,
1862				  u64 *processed_end)
1863{
1864	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
1865	pgoff_t start_index = start >> PAGE_SHIFT;
1866	pgoff_t end_index = end >> PAGE_SHIFT;
1867	pgoff_t index = start_index;
1868	unsigned long nr_pages = end_index - start_index + 1;
1869	unsigned long pages_processed = 0;
1870	struct page *pages[16];
1871	int err = 0;
1872	int i;
1873
1874	if (page_ops & PAGE_LOCK) {
1875		ASSERT(page_ops == PAGE_LOCK);
1876		ASSERT(processed_end && *processed_end == start);
1877	}
1878
1879	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1880		mapping_set_error(mapping, -EIO);
 
1881
1882	while (nr_pages > 0) {
1883		int found_pages;
 
 
1884
1885		found_pages = find_get_pages_contig(mapping, index,
1886				     min_t(unsigned long,
1887				     nr_pages, ARRAY_SIZE(pages)), pages);
1888		if (found_pages == 0) {
1889			/*
1890			 * Only if we're going to lock these pages, we can find
1891			 * nothing at @index.
1892			 */
1893			ASSERT(page_ops & PAGE_LOCK);
1894			err = -EAGAIN;
1895			goto out;
1896		}
1897
1898		for (i = 0; i < found_pages; i++) {
1899			int process_ret;
1900
1901			process_ret = process_one_page(fs_info, mapping,
1902					pages[i], locked_page, page_ops,
1903					start, end);
1904			if (process_ret < 0) {
1905				for (; i < found_pages; i++)
1906					put_page(pages[i]);
1907				err = -EAGAIN;
1908				goto out;
1909			}
1910			put_page(pages[i]);
1911			pages_processed++;
 
 
 
 
1912		}
1913		nr_pages -= found_pages;
1914		index += found_pages;
1915		cond_resched();
1916	}
 
 
1917out:
1918	if (err && processed_end) {
1919		/*
1920		 * Update @processed_end. I know this is awful since it has
1921		 * two different return value patterns (inclusive vs exclusive).
1922		 *
1923		 * But the exclusive pattern is necessary if @start is 0, or we
1924		 * underflow and check against processed_end won't work as
1925		 * expected.
1926		 */
1927		if (pages_processed)
1928			*processed_end = min(end,
1929			((u64)(start_index + pages_processed) << PAGE_SHIFT) - 1);
1930		else
1931			*processed_end = start;
1932	}
1933	return err;
1934}
1935
1936static noinline void __unlock_for_delalloc(struct inode *inode,
1937					   struct page *locked_page,
1938					   u64 start, u64 end)
1939{
1940	unsigned long index = start >> PAGE_SHIFT;
1941	unsigned long end_index = end >> PAGE_SHIFT;
1942
1943	ASSERT(locked_page);
1944	if (index == locked_page->index && end_index == index)
1945		return;
1946
1947	__process_pages_contig(inode->i_mapping, locked_page, start, end,
1948			       PAGE_UNLOCK, NULL);
1949}
1950
1951static noinline int lock_delalloc_pages(struct inode *inode,
1952					struct page *locked_page,
1953					u64 delalloc_start,
1954					u64 delalloc_end)
1955{
1956	unsigned long index = delalloc_start >> PAGE_SHIFT;
1957	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1958	u64 processed_end = delalloc_start;
1959	int ret;
1960
1961	ASSERT(locked_page);
1962	if (index == locked_page->index && index == end_index)
1963		return 0;
1964
1965	ret = __process_pages_contig(inode->i_mapping, locked_page, delalloc_start,
1966				     delalloc_end, PAGE_LOCK, &processed_end);
1967	if (ret == -EAGAIN && processed_end > delalloc_start)
1968		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1969				      processed_end);
1970	return ret;
1971}
1972
1973/*
1974 * Find and lock a contiguous range of bytes in the file marked as delalloc, no
1975 * more than @max_bytes.  @Start and @end are used to return the range,
 
 
 
 
 
1976 *
1977 * Return: true if we find something
1978 *         false if nothing was in the tree
 
 
 
1979 */
1980EXPORT_FOR_TESTS
1981noinline_for_stack bool find_lock_delalloc_range(struct inode *inode,
1982				    struct page *locked_page, u64 *start,
1983				    u64 *end)
1984{
 
1985	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1986	u64 max_bytes = BTRFS_MAX_EXTENT_SIZE;
 
 
 
1987	u64 delalloc_start;
1988	u64 delalloc_end;
1989	bool found;
1990	struct extent_state *cached_state = NULL;
1991	int ret;
1992	int loops = 0;
1993
 
 
 
 
 
 
1994again:
1995	/* step one, find a bunch of delalloc bytes starting at start */
1996	delalloc_start = *start;
1997	delalloc_end = 0;
1998	found = btrfs_find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1999					  max_bytes, &cached_state);
2000	if (!found || delalloc_end <= *start) {
2001		*start = delalloc_start;
2002		*end = delalloc_end;
 
 
2003		free_extent_state(cached_state);
2004		return false;
2005	}
2006
2007	/*
2008	 * start comes from the offset of locked_page.  We have to lock
2009	 * pages in order, so we can't process delalloc bytes before
2010	 * locked_page
2011	 */
2012	if (delalloc_start < *start)
2013		delalloc_start = *start;
2014
2015	/*
2016	 * make sure to limit the number of pages we try to lock down
2017	 */
2018	if (delalloc_end + 1 - delalloc_start > max_bytes)
2019		delalloc_end = delalloc_start + max_bytes - 1;
2020
2021	/* step two, lock all the pages after the page that has start */
2022	ret = lock_delalloc_pages(inode, locked_page,
2023				  delalloc_start, delalloc_end);
2024	ASSERT(!ret || ret == -EAGAIN);
2025	if (ret == -EAGAIN) {
2026		/* some of the pages are gone, lets avoid looping by
2027		 * shortening the size of the delalloc range we're searching
2028		 */
2029		free_extent_state(cached_state);
2030		cached_state = NULL;
2031		if (!loops) {
2032			max_bytes = PAGE_SIZE;
2033			loops = 1;
2034			goto again;
2035		} else {
2036			found = false;
2037			goto out_failed;
2038		}
2039	}
2040
2041	/* step three, lock the state bits for the whole range */
2042	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
2043
2044	/* then test to make sure it is all still delalloc */
2045	ret = test_range_bit(tree, delalloc_start, delalloc_end,
2046			     EXTENT_DELALLOC, 1, cached_state);
 
 
2047	if (!ret) {
2048		unlock_extent_cached(tree, delalloc_start, delalloc_end,
2049				     &cached_state);
2050		__unlock_for_delalloc(inode, locked_page,
2051			      delalloc_start, delalloc_end);
2052		cond_resched();
2053		goto again;
2054	}
2055	free_extent_state(cached_state);
2056	*start = delalloc_start;
2057	*end = delalloc_end;
2058out_failed:
2059	return found;
2060}
2061
2062void extent_clear_unlock_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2063				  struct page *locked_page,
 
2064				  u32 clear_bits, unsigned long page_ops)
2065{
2066	clear_extent_bit(&inode->io_tree, start, end, clear_bits, 1, 0, NULL);
2067
2068	__process_pages_contig(inode->vfs_inode.i_mapping, locked_page,
2069			       start, end, page_ops, NULL);
2070}
2071
2072/*
2073 * count the number of bytes in the tree that have a given bit(s)
2074 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
2075 * cached.  The total number found is returned.
2076 */
2077u64 count_range_bits(struct extent_io_tree *tree,
2078		     u64 *start, u64 search_end, u64 max_bytes,
2079		     u32 bits, int contig)
2080{
2081	struct rb_node *node;
2082	struct extent_state *state;
2083	u64 cur_start = *start;
2084	u64 total_bytes = 0;
2085	u64 last = 0;
2086	int found = 0;
2087
2088	if (WARN_ON(search_end <= cur_start))
2089		return 0;
2090
2091	spin_lock(&tree->lock);
2092	if (cur_start == 0 && bits == EXTENT_DIRTY) {
2093		total_bytes = tree->dirty_bytes;
2094		goto out;
2095	}
2096	/*
2097	 * this search will find all the extents that end after
2098	 * our range starts.
2099	 */
2100	node = tree_search(tree, cur_start);
2101	if (!node)
2102		goto out;
2103
2104	while (1) {
2105		state = rb_entry(node, struct extent_state, rb_node);
2106		if (state->start > search_end)
2107			break;
2108		if (contig && found && state->start > last + 1)
2109			break;
2110		if (state->end >= cur_start && (state->state & bits) == bits) {
2111			total_bytes += min(search_end, state->end) + 1 -
2112				       max(cur_start, state->start);
2113			if (total_bytes >= max_bytes)
2114				break;
2115			if (!found) {
2116				*start = max(cur_start, state->start);
2117				found = 1;
2118			}
2119			last = state->end;
2120		} else if (contig && found) {
2121			break;
2122		}
2123		node = rb_next(node);
2124		if (!node)
2125			break;
2126	}
2127out:
2128	spin_unlock(&tree->lock);
2129	return total_bytes;
2130}
2131
2132/*
2133 * set the private field for a given byte offset in the tree.  If there isn't
2134 * an extent_state there already, this does nothing.
2135 */
2136int set_state_failrec(struct extent_io_tree *tree, u64 start,
2137		      struct io_failure_record *failrec)
2138{
2139	struct rb_node *node;
2140	struct extent_state *state;
2141	int ret = 0;
2142
2143	spin_lock(&tree->lock);
2144	/*
2145	 * this search will find all the extents that end after
2146	 * our range starts.
2147	 */
2148	node = tree_search(tree, start);
2149	if (!node) {
2150		ret = -ENOENT;
2151		goto out;
2152	}
2153	state = rb_entry(node, struct extent_state, rb_node);
2154	if (state->start != start) {
2155		ret = -ENOENT;
2156		goto out;
2157	}
2158	state->failrec = failrec;
2159out:
2160	spin_unlock(&tree->lock);
2161	return ret;
2162}
2163
2164struct io_failure_record *get_state_failrec(struct extent_io_tree *tree, u64 start)
2165{
2166	struct rb_node *node;
2167	struct extent_state *state;
2168	struct io_failure_record *failrec;
2169
2170	spin_lock(&tree->lock);
2171	/*
2172	 * this search will find all the extents that end after
2173	 * our range starts.
2174	 */
2175	node = tree_search(tree, start);
2176	if (!node) {
2177		failrec = ERR_PTR(-ENOENT);
2178		goto out;
2179	}
2180	state = rb_entry(node, struct extent_state, rb_node);
2181	if (state->start != start) {
2182		failrec = ERR_PTR(-ENOENT);
2183		goto out;
2184	}
2185
2186	failrec = state->failrec;
2187out:
2188	spin_unlock(&tree->lock);
2189	return failrec;
2190}
2191
2192/*
2193 * searches a range in the state tree for a given mask.
2194 * If 'filled' == 1, this returns 1 only if every extent in the tree
2195 * has the bits set.  Otherwise, 1 is returned if any bit in the
2196 * range is found set.
2197 */
2198int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
2199		   u32 bits, int filled, struct extent_state *cached)
2200{
2201	struct extent_state *state = NULL;
2202	struct rb_node *node;
2203	int bitset = 0;
2204
2205	spin_lock(&tree->lock);
2206	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
2207	    cached->end > start)
2208		node = &cached->rb_node;
2209	else
2210		node = tree_search(tree, start);
2211	while (node && start <= end) {
2212		state = rb_entry(node, struct extent_state, rb_node);
2213
2214		if (filled && state->start > start) {
2215			bitset = 0;
2216			break;
2217		}
2218
2219		if (state->start > end)
2220			break;
2221
2222		if (state->state & bits) {
2223			bitset = 1;
2224			if (!filled)
2225				break;
2226		} else if (filled) {
2227			bitset = 0;
2228			break;
2229		}
2230
2231		if (state->end == (u64)-1)
2232			break;
2233
2234		start = state->end + 1;
2235		if (start > end)
2236			break;
2237		node = rb_next(node);
2238		if (!node) {
2239			if (filled)
2240				bitset = 0;
2241			break;
2242		}
2243	}
2244	spin_unlock(&tree->lock);
2245	return bitset;
2246}
2247
2248/*
2249 * helper function to set a given page up to date if all the
2250 * extents in the tree for that page are up to date
2251 */
2252static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
2253{
2254	u64 start = page_offset(page);
2255	u64 end = start + PAGE_SIZE - 1;
2256	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
2257		SetPageUptodate(page);
2258}
2259
2260int free_io_failure(struct extent_io_tree *failure_tree,
2261		    struct extent_io_tree *io_tree,
2262		    struct io_failure_record *rec)
2263{
2264	int ret;
2265	int err = 0;
2266
2267	set_state_failrec(failure_tree, rec->start, NULL);
2268	ret = clear_extent_bits(failure_tree, rec->start,
2269				rec->start + rec->len - 1,
2270				EXTENT_LOCKED | EXTENT_DIRTY);
2271	if (ret)
2272		err = ret;
2273
2274	ret = clear_extent_bits(io_tree, rec->start,
2275				rec->start + rec->len - 1,
2276				EXTENT_DAMAGED);
2277	if (ret && !err)
2278		err = ret;
2279
2280	kfree(rec);
2281	return err;
2282}
2283
2284/*
2285 * this bypasses the standard btrfs submit functions deliberately, as
2286 * the standard behavior is to write all copies in a raid setup. here we only
2287 * want to write the one bad copy. so we do the mapping for ourselves and issue
2288 * submit_bio directly.
2289 * to avoid any synchronization issues, wait for the data after writing, which
2290 * actually prevents the read that triggered the error from finishing.
2291 * currently, there can be no more than two copies of every data bit. thus,
2292 * exactly one rewrite is required.
2293 */
2294int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
2295		      u64 length, u64 logical, struct page *page,
2296		      unsigned int pg_offset, int mirror_num)
2297{
2298	struct bio *bio;
2299	struct btrfs_device *dev;
2300	u64 map_length = 0;
2301	u64 sector;
2302	struct btrfs_bio *bbio = NULL;
2303	int ret;
2304
2305	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
2306	BUG_ON(!mirror_num);
2307
2308	if (btrfs_is_zoned(fs_info))
2309		return btrfs_repair_one_zone(fs_info, logical);
2310
2311	bio = btrfs_io_bio_alloc(1);
2312	bio->bi_iter.bi_size = 0;
2313	map_length = length;
2314
2315	/*
2316	 * Avoid races with device replace and make sure our bbio has devices
2317	 * associated to its stripes that don't go away while we are doing the
2318	 * read repair operation.
2319	 */
2320	btrfs_bio_counter_inc_blocked(fs_info);
2321	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
2322		/*
2323		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
2324		 * to update all raid stripes, but here we just want to correct
2325		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
2326		 * stripe's dev and sector.
2327		 */
2328		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
2329				      &map_length, &bbio, 0);
2330		if (ret) {
2331			btrfs_bio_counter_dec(fs_info);
2332			bio_put(bio);
2333			return -EIO;
2334		}
2335		ASSERT(bbio->mirror_num == 1);
2336	} else {
2337		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2338				      &map_length, &bbio, mirror_num);
2339		if (ret) {
2340			btrfs_bio_counter_dec(fs_info);
2341			bio_put(bio);
2342			return -EIO;
2343		}
2344		BUG_ON(mirror_num != bbio->mirror_num);
2345	}
2346
2347	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2348	bio->bi_iter.bi_sector = sector;
2349	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2350	btrfs_put_bbio(bbio);
2351	if (!dev || !dev->bdev ||
2352	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2353		btrfs_bio_counter_dec(fs_info);
2354		bio_put(bio);
2355		return -EIO;
2356	}
2357	bio_set_dev(bio, dev->bdev);
2358	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2359	bio_add_page(bio, page, length, pg_offset);
2360
2361	if (btrfsic_submit_bio_wait(bio)) {
2362		/* try to remap that extent elsewhere? */
2363		btrfs_bio_counter_dec(fs_info);
2364		bio_put(bio);
2365		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2366		return -EIO;
2367	}
2368
2369	btrfs_info_rl_in_rcu(fs_info,
2370		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2371				  ino, start,
2372				  rcu_str_deref(dev->name), sector);
2373	btrfs_bio_counter_dec(fs_info);
2374	bio_put(bio);
2375	return 0;
2376}
2377
2378int btrfs_repair_eb_io_failure(const struct extent_buffer *eb, int mirror_num)
2379{
2380	struct btrfs_fs_info *fs_info = eb->fs_info;
2381	u64 start = eb->start;
2382	int i, num_pages = num_extent_pages(eb);
2383	int ret = 0;
2384
2385	if (sb_rdonly(fs_info->sb))
2386		return -EROFS;
2387
2388	for (i = 0; i < num_pages; i++) {
2389		struct page *p = eb->pages[i];
2390
2391		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2392					start - page_offset(p), mirror_num);
2393		if (ret)
2394			break;
2395		start += PAGE_SIZE;
2396	}
2397
2398	return ret;
2399}
2400
2401/*
2402 * each time an IO finishes, we do a fast check in the IO failure tree
2403 * to see if we need to process or clean up an io_failure_record
2404 */
2405int clean_io_failure(struct btrfs_fs_info *fs_info,
2406		     struct extent_io_tree *failure_tree,
2407		     struct extent_io_tree *io_tree, u64 start,
2408		     struct page *page, u64 ino, unsigned int pg_offset)
2409{
2410	u64 private;
2411	struct io_failure_record *failrec;
2412	struct extent_state *state;
2413	int num_copies;
2414	int ret;
2415
2416	private = 0;
2417	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2418			       EXTENT_DIRTY, 0);
2419	if (!ret)
2420		return 0;
2421
2422	failrec = get_state_failrec(failure_tree, start);
2423	if (IS_ERR(failrec))
2424		return 0;
2425
2426	BUG_ON(!failrec->this_mirror);
2427
2428	if (sb_rdonly(fs_info->sb))
2429		goto out;
2430
2431	spin_lock(&io_tree->lock);
2432	state = find_first_extent_bit_state(io_tree,
2433					    failrec->start,
2434					    EXTENT_LOCKED);
2435	spin_unlock(&io_tree->lock);
2436
2437	if (state && state->start <= failrec->start &&
2438	    state->end >= failrec->start + failrec->len - 1) {
2439		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2440					      failrec->len);
2441		if (num_copies > 1)  {
2442			repair_io_failure(fs_info, ino, start, failrec->len,
2443					  failrec->logical, page, pg_offset,
2444					  failrec->failed_mirror);
2445		}
2446	}
2447
2448out:
2449	free_io_failure(failure_tree, io_tree, failrec);
2450
2451	return 0;
2452}
2453
2454/*
2455 * Can be called when
2456 * - hold extent lock
2457 * - under ordered extent
2458 * - the inode is freeing
2459 */
2460void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2461{
2462	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2463	struct io_failure_record *failrec;
2464	struct extent_state *state, *next;
2465
2466	if (RB_EMPTY_ROOT(&failure_tree->state))
2467		return;
2468
2469	spin_lock(&failure_tree->lock);
2470	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2471	while (state) {
2472		if (state->start > end)
2473			break;
2474
2475		ASSERT(state->end <= end);
2476
2477		next = next_state(state);
2478
2479		failrec = state->failrec;
2480		free_extent_state(state);
2481		kfree(failrec);
2482
2483		state = next;
2484	}
2485	spin_unlock(&failure_tree->lock);
2486}
2487
2488static struct io_failure_record *btrfs_get_io_failure_record(struct inode *inode,
2489							     u64 start)
2490{
2491	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2492	struct io_failure_record *failrec;
2493	struct extent_map *em;
2494	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2495	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2496	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2497	const u32 sectorsize = fs_info->sectorsize;
2498	int ret;
2499	u64 logical;
2500
2501	failrec = get_state_failrec(failure_tree, start);
2502	if (!IS_ERR(failrec)) {
2503		btrfs_debug(fs_info,
2504	"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu",
2505			failrec->logical, failrec->start, failrec->len);
2506		/*
2507		 * when data can be on disk more than twice, add to failrec here
2508		 * (e.g. with a list for failed_mirror) to make
2509		 * clean_io_failure() clean all those errors at once.
2510		 */
2511
2512		return failrec;
2513	}
2514
2515	failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2516	if (!failrec)
2517		return ERR_PTR(-ENOMEM);
2518
2519	failrec->start = start;
2520	failrec->len = sectorsize;
2521	failrec->this_mirror = 0;
2522	failrec->bio_flags = 0;
2523
2524	read_lock(&em_tree->lock);
2525	em = lookup_extent_mapping(em_tree, start, failrec->len);
2526	if (!em) {
2527		read_unlock(&em_tree->lock);
2528		kfree(failrec);
2529		return ERR_PTR(-EIO);
2530	}
2531
2532	if (em->start > start || em->start + em->len <= start) {
2533		free_extent_map(em);
2534		em = NULL;
2535	}
2536	read_unlock(&em_tree->lock);
2537	if (!em) {
2538		kfree(failrec);
2539		return ERR_PTR(-EIO);
2540	}
2541
2542	logical = start - em->start;
2543	logical = em->block_start + logical;
2544	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2545		logical = em->block_start;
2546		failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2547		extent_set_compress_type(&failrec->bio_flags, em->compress_type);
2548	}
2549
2550	btrfs_debug(fs_info,
2551		    "Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2552		    logical, start, failrec->len);
2553
2554	failrec->logical = logical;
2555	free_extent_map(em);
2556
2557	/* Set the bits in the private failure tree */
2558	ret = set_extent_bits(failure_tree, start, start + sectorsize - 1,
2559			      EXTENT_LOCKED | EXTENT_DIRTY);
2560	if (ret >= 0) {
2561		ret = set_state_failrec(failure_tree, start, failrec);
2562		/* Set the bits in the inode's tree */
2563		ret = set_extent_bits(tree, start, start + sectorsize - 1,
2564				      EXTENT_DAMAGED);
2565	} else if (ret < 0) {
2566		kfree(failrec);
2567		return ERR_PTR(ret);
2568	}
2569
2570	return failrec;
2571}
2572
2573static bool btrfs_check_repairable(struct inode *inode,
2574				   struct io_failure_record *failrec,
2575				   int failed_mirror)
2576{
2577	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2578	int num_copies;
2579
2580	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2581	if (num_copies == 1) {
2582		/*
2583		 * we only have a single copy of the data, so don't bother with
2584		 * all the retry and error correction code that follows. no
2585		 * matter what the error is, it is very likely to persist.
2586		 */
2587		btrfs_debug(fs_info,
2588			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2589			num_copies, failrec->this_mirror, failed_mirror);
2590		return false;
2591	}
2592
2593	/* The failure record should only contain one sector */
2594	ASSERT(failrec->len == fs_info->sectorsize);
2595
2596	/*
2597	 * There are two premises:
2598	 * a) deliver good data to the caller
2599	 * b) correct the bad sectors on disk
2600	 *
2601	 * Since we're only doing repair for one sector, we only need to get
2602	 * a good copy of the failed sector and if we succeed, we have setup
2603	 * everything for repair_io_failure to do the rest for us.
2604	 */
2605	failrec->failed_mirror = failed_mirror;
2606	failrec->this_mirror++;
2607	if (failrec->this_mirror == failed_mirror)
2608		failrec->this_mirror++;
2609
2610	if (failrec->this_mirror > num_copies) {
2611		btrfs_debug(fs_info,
2612			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2613			num_copies, failrec->this_mirror, failed_mirror);
2614		return false;
2615	}
2616
2617	return true;
2618}
2619
2620int btrfs_repair_one_sector(struct inode *inode,
2621			    struct bio *failed_bio, u32 bio_offset,
2622			    struct page *page, unsigned int pgoff,
2623			    u64 start, int failed_mirror,
2624			    submit_bio_hook_t *submit_bio_hook)
2625{
2626	struct io_failure_record *failrec;
2627	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2628	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2629	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2630	struct btrfs_io_bio *failed_io_bio = btrfs_io_bio(failed_bio);
2631	const int icsum = bio_offset >> fs_info->sectorsize_bits;
2632	struct bio *repair_bio;
2633	struct btrfs_io_bio *repair_io_bio;
2634	blk_status_t status;
2635
2636	btrfs_debug(fs_info,
2637		   "repair read error: read error at %llu", start);
2638
2639	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2640
2641	failrec = btrfs_get_io_failure_record(inode, start);
2642	if (IS_ERR(failrec))
2643		return PTR_ERR(failrec);
2644
2645
2646	if (!btrfs_check_repairable(inode, failrec, failed_mirror)) {
2647		free_io_failure(failure_tree, tree, failrec);
2648		return -EIO;
2649	}
2650
2651	repair_bio = btrfs_io_bio_alloc(1);
2652	repair_io_bio = btrfs_io_bio(repair_bio);
2653	repair_bio->bi_opf = REQ_OP_READ;
2654	repair_bio->bi_end_io = failed_bio->bi_end_io;
2655	repair_bio->bi_iter.bi_sector = failrec->logical >> 9;
2656	repair_bio->bi_private = failed_bio->bi_private;
2657
2658	if (failed_io_bio->csum) {
2659		const u32 csum_size = fs_info->csum_size;
2660
2661		repair_io_bio->csum = repair_io_bio->csum_inline;
2662		memcpy(repair_io_bio->csum,
2663		       failed_io_bio->csum + csum_size * icsum, csum_size);
2664	}
2665
2666	bio_add_page(repair_bio, page, failrec->len, pgoff);
2667	repair_io_bio->logical = failrec->start;
2668	repair_io_bio->iter = repair_bio->bi_iter;
2669
2670	btrfs_debug(btrfs_sb(inode->i_sb),
2671		    "repair read error: submitting new read to mirror %d",
2672		    failrec->this_mirror);
2673
2674	status = submit_bio_hook(inode, repair_bio, failrec->this_mirror,
2675				 failrec->bio_flags);
2676	if (status) {
2677		free_io_failure(failure_tree, tree, failrec);
2678		bio_put(repair_bio);
2679	}
2680	return blk_status_to_errno(status);
2681}
2682
2683static void end_page_read(struct page *page, bool uptodate, u64 start, u32 len)
2684{
2685	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
2686
2687	ASSERT(page_offset(page) <= start &&
2688	       start + len <= page_offset(page) + PAGE_SIZE);
2689
2690	if (uptodate) {
2691		btrfs_page_set_uptodate(fs_info, page, start, len);
2692	} else {
2693		btrfs_page_clear_uptodate(fs_info, page, start, len);
2694		btrfs_page_set_error(fs_info, page, start, len);
2695	}
2696
2697	if (fs_info->sectorsize == PAGE_SIZE)
2698		unlock_page(page);
2699	else
2700		btrfs_subpage_end_reader(fs_info, page, start, len);
2701}
2702
2703static blk_status_t submit_read_repair(struct inode *inode,
2704				      struct bio *failed_bio, u32 bio_offset,
2705				      struct page *page, unsigned int pgoff,
2706				      u64 start, u64 end, int failed_mirror,
2707				      unsigned int error_bitmap,
2708				      submit_bio_hook_t *submit_bio_hook)
2709{
2710	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2711	const u32 sectorsize = fs_info->sectorsize;
2712	const int nr_bits = (end + 1 - start) >> fs_info->sectorsize_bits;
2713	int error = 0;
2714	int i;
2715
2716	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2717
2718	/* We're here because we had some read errors or csum mismatch */
2719	ASSERT(error_bitmap);
2720
2721	/*
2722	 * We only get called on buffered IO, thus page must be mapped and bio
2723	 * must not be cloned.
2724	 */
2725	ASSERT(page->mapping && !bio_flagged(failed_bio, BIO_CLONED));
2726
2727	/* Iterate through all the sectors in the range */
2728	for (i = 0; i < nr_bits; i++) {
2729		const unsigned int offset = i * sectorsize;
2730		struct extent_state *cached = NULL;
2731		bool uptodate = false;
2732		int ret;
2733
2734		if (!(error_bitmap & (1U << i))) {
2735			/*
2736			 * This sector has no error, just end the page read
2737			 * and unlock the range.
2738			 */
2739			uptodate = true;
2740			goto next;
2741		}
2742
2743		ret = btrfs_repair_one_sector(inode, failed_bio,
2744				bio_offset + offset,
2745				page, pgoff + offset, start + offset,
2746				failed_mirror, submit_bio_hook);
2747		if (!ret) {
2748			/*
2749			 * We have submitted the read repair, the page release
2750			 * will be handled by the endio function of the
2751			 * submitted repair bio.
2752			 * Thus we don't need to do any thing here.
2753			 */
2754			continue;
2755		}
2756		/*
2757		 * Repair failed, just record the error but still continue.
2758		 * Or the remaining sectors will not be properly unlocked.
2759		 */
2760		if (!error)
2761			error = ret;
2762next:
2763		end_page_read(page, uptodate, start + offset, sectorsize);
2764		if (uptodate)
2765			set_extent_uptodate(&BTRFS_I(inode)->io_tree,
2766					start + offset,
2767					start + offset + sectorsize - 1,
2768					&cached, GFP_ATOMIC);
2769		unlock_extent_cached_atomic(&BTRFS_I(inode)->io_tree,
2770				start + offset,
2771				start + offset + sectorsize - 1,
2772				&cached);
2773	}
2774	return errno_to_blk_status(error);
2775}
2776
2777/* lots and lots of room for performance fixes in the end_bio funcs */
2778
2779void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2780{
2781	struct btrfs_inode *inode;
2782	int uptodate = (err == 0);
2783	int ret = 0;
2784
2785	ASSERT(page && page->mapping);
2786	inode = BTRFS_I(page->mapping->host);
2787	btrfs_writepage_endio_finish_ordered(inode, page, start, end, uptodate);
2788
2789	if (!uptodate) {
2790		ClearPageUptodate(page);
2791		SetPageError(page);
2792		ret = err < 0 ? err : -EIO;
2793		mapping_set_error(page->mapping, ret);
2794	}
2795}
2796
2797/*
2798 * after a writepage IO is done, we need to:
2799 * clear the uptodate bits on error
2800 * clear the writeback bits in the extent tree for this IO
2801 * end_page_writeback if the page has no more pending IO
 
2802 *
2803 * Scheduling is not allowed, so the extent state tree is expected
2804 * to have one and only one object corresponding to this IO.
2805 */
2806static void end_bio_extent_writepage(struct bio *bio)
2807{
 
 
2808	int error = blk_status_to_errno(bio->bi_status);
2809	struct bio_vec *bvec;
2810	u64 start;
2811	u64 end;
2812	struct bvec_iter_all iter_all;
2813	bool first_bvec = true;
2814
2815	ASSERT(!bio_flagged(bio, BIO_CLONED));
2816	bio_for_each_segment_all(bvec, bio, iter_all) {
2817		struct page *page = bvec->bv_page;
2818		struct inode *inode = page->mapping->host;
2819		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2820		const u32 sectorsize = fs_info->sectorsize;
 
 
2821
2822		/* Our read/write should always be sector aligned. */
2823		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
2824			btrfs_err(fs_info,
2825		"partial page write in btrfs with offset %u and length %u",
2826				  bvec->bv_offset, bvec->bv_len);
2827		else if (!IS_ALIGNED(bvec->bv_len, sectorsize))
2828			btrfs_info(fs_info,
2829		"incomplete page write with offset %u and length %u",
2830				   bvec->bv_offset, bvec->bv_len);
2831
2832		start = page_offset(page) + bvec->bv_offset;
2833		end = start + bvec->bv_len - 1;
2834
2835		if (first_bvec) {
2836			btrfs_record_physical_zoned(inode, start, bio);
2837			first_bvec = false;
2838		}
2839
2840		end_extent_writepage(page, error, start, end);
2841
2842		btrfs_page_clear_writeback(fs_info, page, start, bvec->bv_len);
2843	}
2844
2845	bio_put(bio);
2846}
2847
2848/*
2849 * Record previously processed extent range
2850 *
2851 * For endio_readpage_release_extent() to handle a full extent range, reducing
2852 * the extent io operations.
2853 */
2854struct processed_extent {
2855	struct btrfs_inode *inode;
2856	/* Start of the range in @inode */
2857	u64 start;
2858	/* End of the range in @inode */
2859	u64 end;
2860	bool uptodate;
2861};
2862
2863/*
2864 * Try to release processed extent range
2865 *
2866 * May not release the extent range right now if the current range is
2867 * contiguous to processed extent.
2868 *
2869 * Will release processed extent when any of @inode, @uptodate, the range is
2870 * no longer contiguous to the processed range.
2871 *
2872 * Passing @inode == NULL will force processed extent to be released.
2873 */
2874static void endio_readpage_release_extent(struct processed_extent *processed,
2875			      struct btrfs_inode *inode, u64 start, u64 end,
2876			      bool uptodate)
2877{
2878	struct extent_state *cached = NULL;
2879	struct extent_io_tree *tree;
2880
2881	/* The first extent, initialize @processed */
2882	if (!processed->inode)
2883		goto update;
2884
2885	/*
2886	 * Contiguous to processed extent, just uptodate the end.
2887	 *
2888	 * Several things to notice:
2889	 *
2890	 * - bio can be merged as long as on-disk bytenr is contiguous
2891	 *   This means we can have page belonging to other inodes, thus need to
2892	 *   check if the inode still matches.
2893	 * - bvec can contain range beyond current page for multi-page bvec
2894	 *   Thus we need to do processed->end + 1 >= start check
2895	 */
2896	if (processed->inode == inode && processed->uptodate == uptodate &&
2897	    processed->end + 1 >= start && end >= processed->end) {
2898		processed->end = end;
2899		return;
2900	}
2901
2902	tree = &processed->inode->io_tree;
2903	/*
2904	 * Now we don't have range contiguous to the processed range, release
2905	 * the processed range now.
2906	 */
2907	if (processed->uptodate && tree->track_uptodate)
2908		set_extent_uptodate(tree, processed->start, processed->end,
2909				    &cached, GFP_ATOMIC);
2910	unlock_extent_cached_atomic(tree, processed->start, processed->end,
2911				    &cached);
2912
2913update:
2914	/* Update processed to current range */
2915	processed->inode = inode;
2916	processed->start = start;
2917	processed->end = end;
2918	processed->uptodate = uptodate;
2919}
2920
2921static void begin_page_read(struct btrfs_fs_info *fs_info, struct page *page)
2922{
2923	ASSERT(PageLocked(page));
2924	if (fs_info->sectorsize == PAGE_SIZE)
2925		return;
2926
2927	ASSERT(PagePrivate(page));
2928	btrfs_subpage_start_reader(fs_info, page, page_offset(page), PAGE_SIZE);
2929}
2930
2931/*
2932 * Find extent buffer for a givne bytenr.
2933 *
2934 * This is for end_bio_extent_readpage(), thus we can't do any unsafe locking
2935 * in endio context.
2936 */
2937static struct extent_buffer *find_extent_buffer_readpage(
2938		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
2939{
2940	struct extent_buffer *eb;
2941
2942	/*
2943	 * For regular sectorsize, we can use page->private to grab extent
2944	 * buffer
2945	 */
2946	if (fs_info->sectorsize == PAGE_SIZE) {
2947		ASSERT(PagePrivate(page) && page->private);
2948		return (struct extent_buffer *)page->private;
2949	}
2950
2951	/* For subpage case, we need to lookup buffer radix tree */
2952	rcu_read_lock();
2953	eb = radix_tree_lookup(&fs_info->buffer_radix,
2954			       bytenr >> fs_info->sectorsize_bits);
2955	rcu_read_unlock();
2956	ASSERT(eb);
2957	return eb;
2958}
2959
2960/*
2961 * after a readpage IO is done, we need to:
2962 * clear the uptodate bits on error
2963 * set the uptodate bits if things worked
2964 * set the page up to date if all extents in the tree are uptodate
2965 * clear the lock bit in the extent tree
2966 * unlock the page if there are no other extents locked for it
2967 *
2968 * Scheduling is not allowed, so the extent state tree is expected
2969 * to have one and only one object corresponding to this IO.
2970 */
2971static void end_bio_extent_readpage(struct bio *bio)
2972{
2973	struct bio_vec *bvec;
2974	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2975	struct extent_io_tree *tree, *failure_tree;
2976	struct processed_extent processed = { 0 };
2977	/*
2978	 * The offset to the beginning of a bio, since one bio can never be
2979	 * larger than UINT_MAX, u32 here is enough.
2980	 */
2981	u32 bio_offset = 0;
2982	int mirror;
2983	int ret;
2984	struct bvec_iter_all iter_all;
2985
2986	ASSERT(!bio_flagged(bio, BIO_CLONED));
2987	bio_for_each_segment_all(bvec, bio, iter_all) {
2988		bool uptodate = !bio->bi_status;
2989		struct page *page = bvec->bv_page;
2990		struct inode *inode = page->mapping->host;
2991		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2992		const u32 sectorsize = fs_info->sectorsize;
2993		unsigned int error_bitmap = (unsigned int)-1;
2994		u64 start;
2995		u64 end;
2996		u32 len;
2997
 
 
2998		btrfs_debug(fs_info,
2999			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
3000			bio->bi_iter.bi_sector, bio->bi_status,
3001			io_bio->mirror_num);
3002		tree = &BTRFS_I(inode)->io_tree;
3003		failure_tree = &BTRFS_I(inode)->io_failure_tree;
3004
3005		/*
3006		 * We always issue full-sector reads, but if some block in a
3007		 * page fails to read, blk_update_request() will advance
3008		 * bv_offset and adjust bv_len to compensate.  Print a warning
3009		 * for unaligned offsets, and an error if they don't add up to
3010		 * a full sector.
3011		 */
3012		if (!IS_ALIGNED(bvec->bv_offset, sectorsize))
3013			btrfs_err(fs_info,
3014		"partial page read in btrfs with offset %u and length %u",
3015				  bvec->bv_offset, bvec->bv_len);
3016		else if (!IS_ALIGNED(bvec->bv_offset + bvec->bv_len,
3017				     sectorsize))
3018			btrfs_info(fs_info,
3019		"incomplete page read with offset %u and length %u",
3020				   bvec->bv_offset, bvec->bv_len);
3021
3022		start = page_offset(page) + bvec->bv_offset;
3023		end = start + bvec->bv_len - 1;
3024		len = bvec->bv_len;
3025
3026		mirror = io_bio->mirror_num;
3027		if (likely(uptodate)) {
3028			if (is_data_inode(inode)) {
3029				error_bitmap = btrfs_verify_data_csum(io_bio,
3030						bio_offset, page, start, end);
3031				ret = error_bitmap;
3032			} else {
3033				ret = btrfs_validate_metadata_buffer(io_bio,
3034					page, start, end, mirror);
3035			}
3036			if (ret)
3037				uptodate = false;
3038			else
3039				clean_io_failure(BTRFS_I(inode)->root->fs_info,
3040						 failure_tree, tree, start,
3041						 page,
3042						 btrfs_ino(BTRFS_I(inode)), 0);
3043		}
3044
3045		if (likely(uptodate))
3046			goto readpage_ok;
3047
3048		if (is_data_inode(inode)) {
3049			/*
3050			 * btrfs_submit_read_repair() will handle all the good
3051			 * and bad sectors, we just continue to the next bvec.
3052			 */
3053			submit_read_repair(inode, bio, bio_offset, page,
3054					   start - page_offset(page), start,
3055					   end, mirror, error_bitmap,
3056					   btrfs_submit_data_bio);
3057
3058			ASSERT(bio_offset + len > bio_offset);
3059			bio_offset += len;
3060			continue;
3061		} else {
3062			struct extent_buffer *eb;
3063
3064			eb = find_extent_buffer_readpage(fs_info, page, start);
3065			set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
3066			eb->read_mirror = mirror;
3067			atomic_dec(&eb->io_pages);
3068			if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD,
3069					       &eb->bflags))
3070				btree_readahead_hook(eb, -EIO);
3071		}
3072readpage_ok:
3073		if (likely(uptodate)) {
3074			loff_t i_size = i_size_read(inode);
3075			pgoff_t end_index = i_size >> PAGE_SHIFT;
3076
3077			/*
3078			 * Zero out the remaining part if this range straddles
3079			 * i_size.
3080			 *
3081			 * Here we should only zero the range inside the bvec,
3082			 * not touch anything else.
3083			 *
3084			 * NOTE: i_size is exclusive while end is inclusive.
3085			 */
3086			if (page->index == end_index && i_size <= end) {
3087				u32 zero_start = max(offset_in_page(i_size),
3088						     offset_in_page(start));
 
 
3089
3090				zero_user_segment(page, zero_start,
3091						  offset_in_page(end) + 1);
3092			}
3093		}
3094		ASSERT(bio_offset + len > bio_offset);
3095		bio_offset += len;
3096
3097		/* Update page status and unlock */
3098		end_page_read(page, uptodate, start, len);
3099		endio_readpage_release_extent(&processed, BTRFS_I(inode),
3100					      start, end, uptodate);
3101	}
3102	/* Release the last extent */
3103	endio_readpage_release_extent(&processed, NULL, 0, 0, false);
3104	btrfs_io_bio_free_csum(io_bio);
3105	bio_put(bio);
3106}
3107
3108/*
3109 * Initialize the members up to but not including 'bio'. Use after allocating a
3110 * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
3111 * 'bio' because use of __GFP_ZERO is not supported.
 
 
 
 
 
 
3112 */
3113static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
3114{
3115	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
 
 
 
 
 
 
 
 
 
 
 
 
 
3116}
3117
3118/*
3119 * The following helpers allocate a bio. As it's backed by a bioset, it'll
3120 * never fail.  We're returning a bio right now but you can call btrfs_io_bio
3121 * for the appropriate container_of magic
3122 */
3123struct bio *btrfs_bio_alloc(u64 first_byte)
3124{
3125	struct bio *bio;
3126
3127	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_VECS, &btrfs_bioset);
3128	bio->bi_iter.bi_sector = first_byte >> 9;
3129	btrfs_io_bio_init(btrfs_io_bio(bio));
3130	return bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3131}
3132
3133struct bio *btrfs_bio_clone(struct bio *bio)
 
 
 
 
 
3134{
3135	struct btrfs_io_bio *btrfs_bio;
3136	struct bio *new;
 
3137
3138	/* Bio allocation backed by a bioset does not fail */
3139	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
3140	btrfs_bio = btrfs_io_bio(new);
3141	btrfs_io_bio_init(btrfs_bio);
3142	btrfs_bio->iter = bio->bi_iter;
3143	return new;
3144}
3145
3146struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
3147{
3148	struct bio *bio;
3149
3150	/* Bio allocation backed by a bioset does not fail */
3151	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
3152	btrfs_io_bio_init(btrfs_io_bio(bio));
3153	return bio;
3154}
3155
3156struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
3157{
3158	struct bio *bio;
3159	struct btrfs_io_bio *btrfs_bio;
3160
3161	/* this will never fail when it's backed by a bioset */
3162	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
3163	ASSERT(bio);
3164
3165	btrfs_bio = btrfs_io_bio(bio);
3166	btrfs_io_bio_init(btrfs_bio);
3167
3168	bio_trim(bio, offset >> 9, size >> 9);
3169	btrfs_bio->iter = bio->bi_iter;
3170	return bio;
3171}
3172
3173/**
3174 * Attempt to add a page to bio
3175 *
3176 * @bio:	destination bio
3177 * @page:	page to add to the bio
3178 * @disk_bytenr:  offset of the new bio or to check whether we are adding
3179 *                a contiguous page to the previous one
3180 * @pg_offset:	starting offset in the page
3181 * @size:	portion of page that we want to write
3182 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3183 * @bio_flags:	flags of the current bio to see if we can merge them
3184 * @return:	true if page was added, false otherwise
3185 *
3186 * Attempt to add a page to bio considering stripe alignment etc.
3187 *
3188 * Return true if successfully page added. Otherwise, return false.
3189 */
3190static bool btrfs_bio_add_page(struct btrfs_bio_ctrl *bio_ctrl,
3191			       struct page *page,
3192			       u64 disk_bytenr, unsigned int size,
3193			       unsigned int pg_offset,
3194			       unsigned long bio_flags)
3195{
3196	struct bio *bio = bio_ctrl->bio;
3197	u32 bio_size = bio->bi_iter.bi_size;
3198	const sector_t sector = disk_bytenr >> SECTOR_SHIFT;
3199	bool contig;
3200	int ret;
3201
3202	ASSERT(bio);
3203	/* The limit should be calculated when bio_ctrl->bio is allocated */
3204	ASSERT(bio_ctrl->len_to_oe_boundary && bio_ctrl->len_to_stripe_boundary);
3205	if (bio_ctrl->bio_flags != bio_flags)
3206		return false;
 
 
3207
3208	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED)
3209		contig = bio->bi_iter.bi_sector == sector;
3210	else
3211		contig = bio_end_sector(bio) == sector;
3212	if (!contig)
3213		return false;
3214
3215	if (bio_size + size > bio_ctrl->len_to_oe_boundary ||
3216	    bio_size + size > bio_ctrl->len_to_stripe_boundary)
3217		return false;
3218
3219	if (bio_op(bio) == REQ_OP_ZONE_APPEND)
3220		ret = bio_add_zone_append_page(bio, page, size, pg_offset);
3221	else
3222		ret = bio_add_page(bio, page, size, pg_offset);
3223
3224	return ret == size;
3225}
3226
3227static int calc_bio_boundaries(struct btrfs_bio_ctrl *bio_ctrl,
3228			       struct btrfs_inode *inode)
 
3229{
3230	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3231	struct btrfs_io_geometry geom;
3232	struct btrfs_ordered_extent *ordered;
3233	struct extent_map *em;
3234	u64 logical = (bio_ctrl->bio->bi_iter.bi_sector << SECTOR_SHIFT);
3235	int ret;
3236
3237	/*
3238	 * Pages for compressed extent are never submitted to disk directly,
3239	 * thus it has no real boundary, just set them to U32_MAX.
3240	 *
3241	 * The split happens for real compressed bio, which happens in
3242	 * btrfs_submit_compressed_read/write().
3243	 */
3244	if (bio_ctrl->bio_flags & EXTENT_BIO_COMPRESSED) {
3245		bio_ctrl->len_to_oe_boundary = U32_MAX;
3246		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3247		return 0;
3248	}
3249	em = btrfs_get_chunk_map(fs_info, logical, fs_info->sectorsize);
3250	if (IS_ERR(em))
3251		return PTR_ERR(em);
3252	ret = btrfs_get_io_geometry(fs_info, em, btrfs_op(bio_ctrl->bio),
3253				    logical, &geom);
3254	free_extent_map(em);
3255	if (ret < 0) {
3256		return ret;
3257	}
3258	if (geom.len > U32_MAX)
3259		bio_ctrl->len_to_stripe_boundary = U32_MAX;
3260	else
3261		bio_ctrl->len_to_stripe_boundary = (u32)geom.len;
3262
3263	if (!btrfs_is_zoned(fs_info) ||
3264	    bio_op(bio_ctrl->bio) != REQ_OP_ZONE_APPEND) {
3265		bio_ctrl->len_to_oe_boundary = U32_MAX;
3266		return 0;
 
 
 
 
3267	}
3268
3269	ASSERT(fs_info->max_zone_append_size > 0);
3270	/* Ordered extent not yet created, so we're good */
3271	ordered = btrfs_lookup_ordered_extent(inode, logical);
3272	if (!ordered) {
3273		bio_ctrl->len_to_oe_boundary = U32_MAX;
3274		return 0;
3275	}
3276
3277	bio_ctrl->len_to_oe_boundary = min_t(u32, U32_MAX,
3278		ordered->disk_bytenr + ordered->disk_num_bytes - logical);
3279	btrfs_put_ordered_extent(ordered);
3280	return 0;
3281}
3282
3283/*
3284 * @opf:	bio REQ_OP_* and REQ_* flags as one value
3285 * @wbc:	optional writeback control for io accounting
3286 * @page:	page to add to the bio
3287 * @disk_bytenr: logical bytenr where the write will be
3288 * @size:	portion of page that we want to write to
3289 * @pg_offset:	offset of the new bio or to check whether we are adding
3290 *              a contiguous page to the previous one
3291 * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
3292 * @end_io_func:     end_io callback for new bio
3293 * @mirror_num:	     desired mirror to read/write
3294 * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
3295 * @bio_flags:	flags of the current bio to see if we can merge them
3296 */
3297static int submit_extent_page(unsigned int opf,
3298			      struct writeback_control *wbc,
3299			      struct btrfs_bio_ctrl *bio_ctrl,
3300			      struct page *page, u64 disk_bytenr,
3301			      size_t size, unsigned long pg_offset,
3302			      bio_end_io_t end_io_func,
3303			      int mirror_num,
3304			      unsigned long bio_flags,
3305			      bool force_bio_submit)
3306{
3307	int ret = 0;
3308	struct bio *bio;
3309	size_t io_size = min_t(size_t, size, PAGE_SIZE);
3310	struct btrfs_inode *inode = BTRFS_I(page->mapping->host);
3311	struct extent_io_tree *tree = &inode->io_tree;
3312	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3313
3314	ASSERT(bio_ctrl);
 
3315
3316	ASSERT(pg_offset < PAGE_SIZE && size <= PAGE_SIZE &&
3317	       pg_offset + size <= PAGE_SIZE);
3318	if (bio_ctrl->bio) {
3319		bio = bio_ctrl->bio;
3320		if (force_bio_submit ||
3321		    !btrfs_bio_add_page(bio_ctrl, page, disk_bytenr, io_size,
3322					pg_offset, bio_flags)) {
3323			ret = submit_one_bio(bio, mirror_num, bio_ctrl->bio_flags);
3324			bio_ctrl->bio = NULL;
3325			if (ret < 0)
3326				return ret;
3327		} else {
3328			if (wbc)
3329				wbc_account_cgroup_owner(wbc, page, io_size);
3330			return 0;
3331		}
3332	}
3333
3334	bio = btrfs_bio_alloc(disk_bytenr);
3335	bio_add_page(bio, page, io_size, pg_offset);
3336	bio->bi_end_io = end_io_func;
3337	bio->bi_private = tree;
3338	bio->bi_write_hint = page->mapping->host->i_write_hint;
3339	bio->bi_opf = opf;
3340	if (wbc) {
3341		struct block_device *bdev;
3342
3343		bdev = fs_info->fs_devices->latest_bdev;
3344		bio_set_dev(bio, bdev);
3345		wbc_init_bio(wbc, bio);
3346		wbc_account_cgroup_owner(wbc, page, io_size);
3347	}
3348	if (btrfs_is_zoned(fs_info) && bio_op(bio) == REQ_OP_ZONE_APPEND) {
3349		struct btrfs_device *device;
3350
3351		device = btrfs_zoned_get_device(fs_info, disk_bytenr, io_size);
3352		if (IS_ERR(device))
3353			return PTR_ERR(device);
 
 
 
3354
3355		btrfs_io_bio(bio)->device = device;
3356	}
 
 
 
3357
3358	bio_ctrl->bio = bio;
3359	bio_ctrl->bio_flags = bio_flags;
3360	ret = calc_bio_boundaries(bio_ctrl, inode);
 
 
 
 
3361
3362	return ret;
3363}
3364
3365static int attach_extent_buffer_page(struct extent_buffer *eb,
3366				     struct page *page,
3367				     struct btrfs_subpage *prealloc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3368{
3369	struct btrfs_fs_info *fs_info = eb->fs_info;
3370	int ret = 0;
3371
3372	/*
3373	 * If the page is mapped to btree inode, we should hold the private
3374	 * lock to prevent race.
3375	 * For cloned or dummy extent buffers, their pages are not mapped and
3376	 * will not race with any other ebs.
3377	 */
3378	if (page->mapping)
3379		lockdep_assert_held(&page->mapping->private_lock);
3380
3381	if (fs_info->sectorsize == PAGE_SIZE) {
3382		if (!PagePrivate(page))
3383			attach_page_private(page, eb);
3384		else
3385			WARN_ON(page->private != (unsigned long)eb);
3386		return 0;
3387	}
3388
3389	/* Already mapped, just free prealloc */
3390	if (PagePrivate(page)) {
3391		btrfs_free_subpage(prealloc);
3392		return 0;
3393	}
3394
3395	if (prealloc)
3396		/* Has preallocated memory for subpage */
3397		attach_page_private(page, prealloc);
3398	else
3399		/* Do new allocation to attach subpage */
3400		ret = btrfs_attach_subpage(fs_info, page,
3401					   BTRFS_SUBPAGE_METADATA);
3402	return ret;
3403}
3404
3405int set_page_extent_mapped(struct page *page)
3406{
 
 
 
 
 
3407	struct btrfs_fs_info *fs_info;
3408
3409	ASSERT(page->mapping);
3410
3411	if (PagePrivate(page))
3412		return 0;
3413
3414	fs_info = btrfs_sb(page->mapping->host->i_sb);
3415
3416	if (fs_info->sectorsize < PAGE_SIZE)
3417		return btrfs_attach_subpage(fs_info, page, BTRFS_SUBPAGE_DATA);
3418
3419	attach_page_private(page, (void *)EXTENT_PAGE_PRIVATE);
3420	return 0;
3421}
3422
3423void clear_page_extent_mapped(struct page *page)
3424{
3425	struct btrfs_fs_info *fs_info;
3426
3427	ASSERT(page->mapping);
3428
3429	if (!PagePrivate(page))
3430		return;
3431
3432	fs_info = btrfs_sb(page->mapping->host->i_sb);
3433	if (fs_info->sectorsize < PAGE_SIZE)
3434		return btrfs_detach_subpage(fs_info, page);
3435
3436	detach_page_private(page);
3437}
3438
3439static struct extent_map *
3440__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
3441		 u64 start, u64 len, struct extent_map **em_cached)
3442{
3443	struct extent_map *em;
3444
3445	if (em_cached && *em_cached) {
 
 
3446		em = *em_cached;
3447		if (extent_map_in_tree(em) && start >= em->start &&
3448		    start < extent_map_end(em)) {
3449			refcount_inc(&em->refs);
3450			return em;
3451		}
3452
3453		free_extent_map(em);
3454		*em_cached = NULL;
3455	}
3456
3457	em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, start, len);
3458	if (em_cached && !IS_ERR_OR_NULL(em)) {
3459		BUG_ON(*em_cached);
3460		refcount_inc(&em->refs);
3461		*em_cached = em;
3462	}
 
3463	return em;
3464}
3465/*
3466 * basic readpage implementation.  Locked extent state structs are inserted
3467 * into the tree that are removed when the IO is done (by the end_io
3468 * handlers)
3469 * XXX JDM: This needs looking at to ensure proper page locking
3470 * return 0 on success, otherwise return error
3471 */
3472int btrfs_do_readpage(struct page *page, struct extent_map **em_cached,
3473		      struct btrfs_bio_ctrl *bio_ctrl,
3474		      unsigned int read_flags, u64 *prev_em_start)
3475{
3476	struct inode *inode = page->mapping->host;
3477	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3478	u64 start = page_offset(page);
3479	const u64 end = start + PAGE_SIZE - 1;
3480	u64 cur = start;
3481	u64 extent_offset;
3482	u64 last_byte = i_size_read(inode);
3483	u64 block_start;
3484	u64 cur_end;
3485	struct extent_map *em;
3486	int ret = 0;
3487	int nr = 0;
3488	size_t pg_offset = 0;
3489	size_t iosize;
3490	size_t blocksize = inode->i_sb->s_blocksize;
3491	unsigned long this_bio_flag = 0;
3492	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
3493
3494	ret = set_page_extent_mapped(page);
3495	if (ret < 0) {
3496		unlock_extent(tree, start, end);
3497		btrfs_page_set_error(fs_info, page, start, PAGE_SIZE);
3498		unlock_page(page);
3499		goto out;
3500	}
3501
3502	if (!PageUptodate(page)) {
3503		if (cleancache_get_page(page) == 0) {
3504			BUG_ON(blocksize != PAGE_SIZE);
3505			unlock_extent(tree, start, end);
3506			unlock_page(page);
3507			goto out;
3508		}
3509	}
3510
3511	if (page->index == last_byte >> PAGE_SHIFT) {
3512		size_t zero_offset = offset_in_page(last_byte);
3513
3514		if (zero_offset) {
3515			iosize = PAGE_SIZE - zero_offset;
3516			memzero_page(page, zero_offset, iosize);
3517			flush_dcache_page(page);
3518		}
3519	}
3520	begin_page_read(fs_info, page);
 
3521	while (cur <= end) {
 
3522		bool force_bio_submit = false;
3523		u64 disk_bytenr;
3524
 
3525		if (cur >= last_byte) {
3526			struct extent_state *cached = NULL;
3527
3528			iosize = PAGE_SIZE - pg_offset;
3529			memzero_page(page, pg_offset, iosize);
3530			flush_dcache_page(page);
3531			set_extent_uptodate(tree, cur, cur + iosize - 1,
3532					    &cached, GFP_NOFS);
3533			unlock_extent_cached(tree, cur,
3534					     cur + iosize - 1, &cached);
3535			end_page_read(page, true, cur, iosize);
3536			break;
3537		}
3538		em = __get_extent_map(inode, page, pg_offset, cur,
3539				      end - cur + 1, em_cached);
3540		if (IS_ERR_OR_NULL(em)) {
3541			unlock_extent(tree, cur, end);
3542			end_page_read(page, false, cur, end + 1 - cur);
3543			break;
3544		}
3545		extent_offset = cur - em->start;
3546		BUG_ON(extent_map_end(em) <= cur);
3547		BUG_ON(end < cur);
3548
3549		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
3550			this_bio_flag |= EXTENT_BIO_COMPRESSED;
3551			extent_set_compress_type(&this_bio_flag,
3552						 em->compress_type);
3553		}
3554
3555		iosize = min(extent_map_end(em) - cur, end - cur + 1);
3556		cur_end = min(extent_map_end(em) - 1, end);
3557		iosize = ALIGN(iosize, blocksize);
3558		if (this_bio_flag & EXTENT_BIO_COMPRESSED)
3559			disk_bytenr = em->block_start;
3560		else
3561			disk_bytenr = em->block_start + extent_offset;
3562		block_start = em->block_start;
3563		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3564			block_start = EXTENT_MAP_HOLE;
3565
3566		/*
3567		 * If we have a file range that points to a compressed extent
3568		 * and it's followed by a consecutive file range that points
3569		 * to the same compressed extent (possibly with a different
3570		 * offset and/or length, so it either points to the whole extent
3571		 * or only part of it), we must make sure we do not submit a
3572		 * single bio to populate the pages for the 2 ranges because
3573		 * this makes the compressed extent read zero out the pages
3574		 * belonging to the 2nd range. Imagine the following scenario:
3575		 *
3576		 *  File layout
3577		 *  [0 - 8K]                     [8K - 24K]
3578		 *    |                               |
3579		 *    |                               |
3580		 * points to extent X,         points to extent X,
3581		 * offset 4K, length of 8K     offset 0, length 16K
3582		 *
3583		 * [extent X, compressed length = 4K uncompressed length = 16K]
3584		 *
3585		 * If the bio to read the compressed extent covers both ranges,
3586		 * it will decompress extent X into the pages belonging to the
3587		 * first range and then it will stop, zeroing out the remaining
3588		 * pages that belong to the other range that points to extent X.
3589		 * So here we make sure we submit 2 bios, one for the first
3590		 * range and another one for the third range. Both will target
3591		 * the same physical extent from disk, but we can't currently
3592		 * make the compressed bio endio callback populate the pages
3593		 * for both ranges because each compressed bio is tightly
3594		 * coupled with a single extent map, and each range can have
3595		 * an extent map with a different offset value relative to the
3596		 * uncompressed data of our extent and different lengths. This
3597		 * is a corner case so we prioritize correctness over
3598		 * non-optimal behavior (submitting 2 bios for the same extent).
3599		 */
3600		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3601		    prev_em_start && *prev_em_start != (u64)-1 &&
3602		    *prev_em_start != em->start)
3603			force_bio_submit = true;
3604
3605		if (prev_em_start)
3606			*prev_em_start = em->start;
3607
3608		free_extent_map(em);
3609		em = NULL;
3610
3611		/* we've found a hole, just zero and go on */
3612		if (block_start == EXTENT_MAP_HOLE) {
3613			struct extent_state *cached = NULL;
3614
3615			memzero_page(page, pg_offset, iosize);
3616			flush_dcache_page(page);
3617
3618			set_extent_uptodate(tree, cur, cur + iosize - 1,
3619					    &cached, GFP_NOFS);
3620			unlock_extent_cached(tree, cur,
3621					     cur + iosize - 1, &cached);
3622			end_page_read(page, true, cur, iosize);
3623			cur = cur + iosize;
3624			pg_offset += iosize;
3625			continue;
3626		}
3627		/* the get_extent function already copied into the page */
3628		if (test_range_bit(tree, cur, cur_end,
3629				   EXTENT_UPTODATE, 1, NULL)) {
3630			check_page_uptodate(tree, page);
3631			unlock_extent(tree, cur, cur + iosize - 1);
3632			end_page_read(page, true, cur, iosize);
3633			cur = cur + iosize;
3634			pg_offset += iosize;
3635			continue;
3636		}
3637		/* we have an inline extent but it didn't get marked up
3638		 * to date.  Error out
3639		 */
3640		if (block_start == EXTENT_MAP_INLINE) {
3641			unlock_extent(tree, cur, cur + iosize - 1);
3642			end_page_read(page, false, cur, iosize);
3643			cur = cur + iosize;
3644			pg_offset += iosize;
3645			continue;
3646		}
3647
3648		ret = submit_extent_page(REQ_OP_READ | read_flags, NULL,
3649					 bio_ctrl, page, disk_bytenr, iosize,
3650					 pg_offset,
3651					 end_bio_extent_readpage, 0,
3652					 this_bio_flag,
3653					 force_bio_submit);
3654		if (!ret) {
3655			nr++;
3656		} else {
3657			unlock_extent(tree, cur, cur + iosize - 1);
3658			end_page_read(page, false, cur, iosize);
3659			goto out;
3660		}
 
 
 
 
 
3661		cur = cur + iosize;
3662		pg_offset += iosize;
3663	}
3664out:
3665	return ret;
3666}
3667
3668static inline void contiguous_readpages(struct page *pages[], int nr_pages,
3669					u64 start, u64 end,
3670					struct extent_map **em_cached,
3671					struct btrfs_bio_ctrl *bio_ctrl,
3672					u64 *prev_em_start)
3673{
3674	struct btrfs_inode *inode = BTRFS_I(pages[0]->mapping->host);
3675	int index;
 
 
 
 
 
 
 
 
 
3676
3677	btrfs_lock_and_flush_ordered_range(inode, start, end, NULL);
3678
3679	for (index = 0; index < nr_pages; index++) {
3680		btrfs_do_readpage(pages[index], em_cached, bio_ctrl,
3681				  REQ_RAHEAD, prev_em_start);
3682		put_page(pages[index]);
3683	}
 
3684}
3685
3686static void update_nr_written(struct writeback_control *wbc,
3687			      unsigned long nr_written)
3688{
3689	wbc->nr_to_write -= nr_written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3690}
3691
3692/*
3693 * helper for __extent_writepage, doing all of the delayed allocation setup.
3694 *
3695 * This returns 1 if btrfs_run_delalloc_range function did all the work required
3696 * to write the page (copy into inline extent).  In this case the IO has
3697 * been started and the page is already unlocked.
3698 *
3699 * This returns 0 if all went well (page still locked)
3700 * This returns < 0 if there were errors (page still locked)
 
 
 
 
 
 
3701 */
3702static noinline_for_stack int writepage_delalloc(struct btrfs_inode *inode,
3703		struct page *page, struct writeback_control *wbc,
3704		u64 delalloc_start, unsigned long *nr_written)
3705{
3706	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3707	bool found;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3708	u64 delalloc_to_write = 0;
3709	u64 delalloc_end = 0;
3710	int ret;
3711	int page_started = 0;
 
 
 
 
 
 
 
3712
 
 
3713
3714	while (delalloc_end < page_end) {
3715		found = find_lock_delalloc_range(&inode->vfs_inode, page,
3716					       &delalloc_start,
3717					       &delalloc_end);
3718		if (!found) {
 
 
 
3719			delalloc_start = delalloc_end + 1;
3720			continue;
3721		}
3722		ret = btrfs_run_delalloc_range(inode, page, delalloc_start,
3723				delalloc_end, &page_started, nr_written, wbc);
3724		if (ret) {
3725			SetPageError(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3726			/*
3727			 * btrfs_run_delalloc_range should return < 0 for error
3728			 * but just in case, we use > 0 here meaning the IO is
3729			 * started, so we don't want to return > 0 unless
3730			 * things are going well.
3731			 */
3732			return ret < 0 ? ret : -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3733		}
3734		/*
3735		 * delalloc_end is already one less than the total length, so
3736		 * we don't subtract one from PAGE_SIZE
3737		 */
3738		delalloc_to_write += (delalloc_end - delalloc_start +
3739				      PAGE_SIZE) >> PAGE_SHIFT;
3740		delalloc_start = delalloc_end + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3741	}
 
3742	if (wbc->nr_to_write < delalloc_to_write) {
3743		int thresh = 8192;
3744
3745		if (delalloc_to_write < thresh * 2)
3746			thresh = delalloc_to_write;
3747		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3748					 thresh);
3749	}
3750
3751	/* did the fill delalloc function already unlock and start
3752	 * the IO?
3753	 */
3754	if (page_started) {
3755		/*
3756		 * we've unlocked the page, so we can't update
3757		 * the mapping's writeback index, just update
3758		 * nr_to_write.
3759		 */
3760		wbc->nr_to_write -= *nr_written;
3761		return 1;
3762	}
3763
3764	return 0;
3765}
3766
3767/*
3768 * Find the first byte we need to write.
 
3769 *
3770 * For subpage, one page can contain several sectors, and
3771 * __extent_writepage_io() will just grab all extent maps in the page
3772 * range and try to submit all non-inline/non-compressed extents.
3773 *
3774 * This is a big problem for subpage, we shouldn't re-submit already written
3775 * data at all.
3776 * This function will lookup subpage dirty bit to find which range we really
3777 * need to submit.
3778 *
3779 * Return the next dirty range in [@start, @end).
3780 * If no dirty range is found, @start will be page_offset(page) + PAGE_SIZE.
3781 */
3782static void find_next_dirty_byte(struct btrfs_fs_info *fs_info,
3783				 struct page *page, u64 *start, u64 *end)
 
 
3784{
3785	struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
3786	u64 orig_start = *start;
3787	/* Declare as unsigned long so we can use bitmap ops */
3788	unsigned long dirty_bitmap;
3789	unsigned long flags;
3790	int nbits = (orig_start - page_offset(page)) >> fs_info->sectorsize_bits;
3791	int range_start_bit = nbits;
3792	int range_end_bit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3793
3794	/*
3795	 * For regular sector size == page size case, since one page only
3796	 * contains one sector, we return the page offset directly.
 
 
3797	 */
3798	if (fs_info->sectorsize == PAGE_SIZE) {
3799		*start = page_offset(page);
3800		*end = page_offset(page) + PAGE_SIZE;
3801		return;
3802	}
 
 
 
 
3803
3804	/* We should have the page locked, but just in case */
3805	spin_lock_irqsave(&subpage->lock, flags);
3806	dirty_bitmap = subpage->dirty_bitmap;
3807	spin_unlock_irqrestore(&subpage->lock, flags);
3808
3809	bitmap_next_set_region(&dirty_bitmap, &range_start_bit, &range_end_bit,
3810			       BTRFS_SUBPAGE_BITMAP_SIZE);
3811	*start = page_offset(page) + range_start_bit * fs_info->sectorsize;
3812	*end = page_offset(page) + range_end_bit * fs_info->sectorsize;
3813}
3814
3815/*
3816 * helper for __extent_writepage.  This calls the writepage start hooks,
3817 * and does the loop to map the page into extents and bios.
3818 *
3819 * We return 1 if the IO is started and the page is unlocked,
3820 * 0 if all went well (page still locked)
3821 * < 0 if there were errors (page still locked)
3822 */
3823static noinline_for_stack int __extent_writepage_io(struct btrfs_inode *inode,
3824				 struct page *page,
3825				 struct writeback_control *wbc,
3826				 struct extent_page_data *epd,
3827				 loff_t i_size,
3828				 unsigned long nr_written,
3829				 int *nr_ret)
3830{
3831	struct btrfs_fs_info *fs_info = inode->root->fs_info;
3832	u64 start = page_offset(page);
3833	u64 end = start + PAGE_SIZE - 1;
3834	u64 cur = start;
3835	u64 extent_offset;
3836	u64 block_start;
3837	struct extent_map *em;
3838	int ret = 0;
3839	int nr = 0;
3840	u32 opf = REQ_OP_WRITE;
3841	const unsigned int write_flags = wbc_to_write_flags(wbc);
3842	bool compressed;
3843
3844	ret = btrfs_writepage_cow_fixup(page, start, end);
 
 
 
3845	if (ret) {
3846		/* Fixup worker will requeue */
3847		redirty_page_for_writepage(wbc, page);
3848		update_nr_written(wbc, nr_written);
3849		unlock_page(page);
3850		return 1;
3851	}
3852
3853	/*
3854	 * we don't want to touch the inode after unlocking the page,
3855	 * so we update the mapping writeback index now
3856	 */
3857	update_nr_written(wbc, nr_written + 1);
 
3858
3859	while (cur <= end) {
3860		u64 disk_bytenr;
3861		u64 em_end;
3862		u64 dirty_range_start = cur;
3863		u64 dirty_range_end;
3864		u32 iosize;
3865
3866		if (cur >= i_size) {
3867			btrfs_writepage_endio_finish_ordered(inode, page, cur,
3868							     end, 1);
 
 
 
 
 
 
 
 
 
 
3869			break;
3870		}
3871
3872		find_next_dirty_byte(fs_info, page, &dirty_range_start,
3873				     &dirty_range_end);
3874		if (cur < dirty_range_start) {
3875			cur = dirty_range_start;
 
 
 
 
 
 
 
 
 
 
 
3876			continue;
3877		}
 
 
3878
3879		em = btrfs_get_extent(inode, NULL, 0, cur, end - cur + 1);
3880		if (IS_ERR_OR_NULL(em)) {
3881			btrfs_page_set_error(fs_info, page, cur, end - cur + 1);
3882			ret = PTR_ERR_OR_ZERO(em);
3883			break;
3884		}
3885
3886		extent_offset = cur - em->start;
3887		em_end = extent_map_end(em);
3888		ASSERT(cur <= em_end);
3889		ASSERT(cur < end);
3890		ASSERT(IS_ALIGNED(em->start, fs_info->sectorsize));
3891		ASSERT(IS_ALIGNED(em->len, fs_info->sectorsize));
3892		block_start = em->block_start;
3893		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3894		disk_bytenr = em->block_start + extent_offset;
3895
3896		/*
3897		 * Note that em_end from extent_map_end() and dirty_range_end from
3898		 * find_next_dirty_byte() are all exclusive
3899		 */
3900		iosize = min(min(em_end, end + 1), dirty_range_end) - cur;
3901
3902		if (btrfs_use_zone_append(inode, em->block_start))
3903			opf = REQ_OP_ZONE_APPEND;
3904
3905		free_extent_map(em);
3906		em = NULL;
3907
3908		/*
3909		 * compressed and inline extents are written through other
3910		 * paths in the FS
3911		 */
3912		if (compressed || block_start == EXTENT_MAP_HOLE ||
3913		    block_start == EXTENT_MAP_INLINE) {
3914			if (compressed)
3915				nr++;
3916			else
3917				btrfs_writepage_endio_finish_ordered(inode,
3918						page, cur, cur + iosize - 1, 1);
3919			cur += iosize;
3920			continue;
3921		}
3922
3923		btrfs_set_range_writeback(inode, cur, cur + iosize - 1);
3924		if (!PageWriteback(page)) {
3925			btrfs_err(inode->root->fs_info,
3926				   "page %lu not writeback, cur %llu end %llu",
3927			       page->index, cur, end);
3928		}
3929
3930		/*
3931		 * Although the PageDirty bit is cleared before entering this
3932		 * function, subpage dirty bit is not cleared.
3933		 * So clear subpage dirty bit here so next time we won't submit
3934		 * page for range already written to disk.
3935		 */
3936		btrfs_page_clear_dirty(fs_info, page, cur, iosize);
3937
3938		ret = submit_extent_page(opf | write_flags, wbc,
3939					 &epd->bio_ctrl, page,
3940					 disk_bytenr, iosize,
3941					 cur - page_offset(page),
3942					 end_bio_extent_writepage,
3943					 0, 0, false);
3944		if (ret) {
3945			btrfs_page_set_error(fs_info, page, cur, iosize);
3946			if (PageWriteback(page))
3947				btrfs_page_clear_writeback(fs_info, page, cur,
3948							   iosize);
3949		}
3950
3951		cur += iosize;
3952		nr++;
3953	}
3954	*nr_ret = nr;
3955	return ret;
3956}
3957
3958/*
3959 * the writepage semantics are similar to regular writepage.  extent
3960 * records are inserted to lock ranges in the tree, and as dirty areas
3961 * are found, they are marked writeback.  Then the lock bits are removed
3962 * and the end_io handler clears the writeback ranges
3963 *
3964 * Return 0 if everything goes well.
3965 * Return <0 for error.
3966 */
3967static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3968			      struct extent_page_data *epd)
3969{
3970	struct inode *inode = page->mapping->host;
3971	u64 start = page_offset(page);
3972	u64 page_end = start + PAGE_SIZE - 1;
3973	int ret;
3974	int nr = 0;
3975	size_t pg_offset;
3976	loff_t i_size = i_size_read(inode);
3977	unsigned long end_index = i_size >> PAGE_SHIFT;
3978	unsigned long nr_written = 0;
3979
3980	trace___extent_writepage(page, inode, wbc);
3981
3982	WARN_ON(!PageLocked(page));
3983
3984	ClearPageError(page);
3985
3986	pg_offset = offset_in_page(i_size);
3987	if (page->index > end_index ||
3988	   (page->index == end_index && !pg_offset)) {
3989		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3990		unlock_page(page);
3991		return 0;
3992	}
3993
3994	if (page->index == end_index) {
3995		memzero_page(page, pg_offset, PAGE_SIZE - pg_offset);
3996		flush_dcache_page(page);
3997	}
3998
3999	ret = set_page_extent_mapped(page);
4000	if (ret < 0) {
4001		SetPageError(page);
 
 
 
 
4002		goto done;
4003	}
4004
4005	if (!epd->extent_locked) {
4006		ret = writepage_delalloc(BTRFS_I(inode), page, wbc, start,
4007					 &nr_written);
4008		if (ret == 1)
4009			return 0;
4010		if (ret)
4011			goto done;
4012	}
4013
4014	ret = __extent_writepage_io(BTRFS_I(inode), page, wbc, epd, i_size,
4015				    nr_written, &nr);
4016	if (ret == 1)
4017		return 0;
4018
 
 
4019done:
4020	if (nr == 0) {
4021		/* make sure the mapping tag for page dirty gets cleared */
4022		set_page_writeback(page);
4023		end_page_writeback(page);
4024	}
4025	if (PageError(page)) {
4026		ret = ret < 0 ? ret : -EIO;
4027		end_extent_writepage(page, ret, start, page_end);
4028	}
4029	unlock_page(page);
4030	ASSERT(ret <= 0);
4031	return ret;
4032}
4033
4034void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
4035{
4036	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
4037		       TASK_UNINTERRUPTIBLE);
4038}
4039
4040static void end_extent_buffer_writeback(struct extent_buffer *eb)
4041{
4042	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4043	smp_mb__after_atomic();
4044	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
4045}
4046
4047/*
4048 * Lock extent buffer status and pages for writeback.
4049 *
4050 * May try to flush write bio if we can't get the lock.
4051 *
4052 * Return  0 if the extent buffer doesn't need to be submitted.
4053 *           (E.g. the extent buffer is not dirty)
4054 * Return >0 is the extent buffer is submitted to bio.
4055 * Return <0 if something went wrong, no page is locked.
4056 */
4057static noinline_for_stack int lock_extent_buffer_for_io(struct extent_buffer *eb,
4058			  struct extent_page_data *epd)
4059{
4060	struct btrfs_fs_info *fs_info = eb->fs_info;
4061	int i, num_pages, failed_page_nr;
4062	int flush = 0;
4063	int ret = 0;
4064
4065	if (!btrfs_try_tree_write_lock(eb)) {
4066		ret = flush_write_bio(epd);
4067		if (ret < 0)
4068			return ret;
4069		flush = 1;
 
4070		btrfs_tree_lock(eb);
4071	}
4072
4073	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
4074		btrfs_tree_unlock(eb);
4075		if (!epd->sync_io)
4076			return 0;
4077		if (!flush) {
4078			ret = flush_write_bio(epd);
4079			if (ret < 0)
4080				return ret;
4081			flush = 1;
4082		}
4083		while (1) {
4084			wait_on_extent_buffer_writeback(eb);
4085			btrfs_tree_lock(eb);
4086			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
4087				break;
4088			btrfs_tree_unlock(eb);
4089		}
4090	}
4091
4092	/*
4093	 * We need to do this to prevent races in people who check if the eb is
4094	 * under IO since we can end up having no IO bits set for a short period
4095	 * of time.
4096	 */
4097	spin_lock(&eb->refs_lock);
4098	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
4099		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4100		spin_unlock(&eb->refs_lock);
4101		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4102		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4103					 -eb->len,
4104					 fs_info->dirty_metadata_batch);
4105		ret = 1;
4106	} else {
4107		spin_unlock(&eb->refs_lock);
4108	}
4109
4110	btrfs_tree_unlock(eb);
4111
4112	/*
4113	 * Either we don't need to submit any tree block, or we're submitting
4114	 * subpage eb.
4115	 * Subpage metadata doesn't use page locking at all, so we can skip
4116	 * the page locking.
4117	 */
4118	if (!ret || fs_info->sectorsize < PAGE_SIZE)
4119		return ret;
4120
4121	num_pages = num_extent_pages(eb);
4122	for (i = 0; i < num_pages; i++) {
4123		struct page *p = eb->pages[i];
4124
4125		if (!trylock_page(p)) {
4126			if (!flush) {
4127				int err;
4128
4129				err = flush_write_bio(epd);
4130				if (err < 0) {
4131					ret = err;
4132					failed_page_nr = i;
4133					goto err_unlock;
4134				}
4135				flush = 1;
4136			}
4137			lock_page(p);
4138		}
4139	}
4140
4141	return ret;
4142err_unlock:
4143	/* Unlock already locked pages */
4144	for (i = 0; i < failed_page_nr; i++)
4145		unlock_page(eb->pages[i]);
4146	/*
4147	 * Clear EXTENT_BUFFER_WRITEBACK and wake up anyone waiting on it.
4148	 * Also set back EXTENT_BUFFER_DIRTY so future attempts to this eb can
4149	 * be made and undo everything done before.
4150	 */
4151	btrfs_tree_lock(eb);
4152	spin_lock(&eb->refs_lock);
4153	set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4154	end_extent_buffer_writeback(eb);
4155	spin_unlock(&eb->refs_lock);
4156	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes, eb->len,
4157				 fs_info->dirty_metadata_batch);
4158	btrfs_clear_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
4159	btrfs_tree_unlock(eb);
4160	return ret;
4161}
4162
4163static void set_btree_ioerr(struct page *page, struct extent_buffer *eb)
4164{
4165	struct btrfs_fs_info *fs_info = eb->fs_info;
4166
4167	btrfs_page_set_error(fs_info, page, eb->start, eb->len);
4168	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
4169		return;
 
 
 
 
4170
4171	/*
4172	 * If we error out, we should add back the dirty_metadata_bytes
4173	 * to make it consistent.
 
 
4174	 */
4175	percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4176				 eb->len, fs_info->dirty_metadata_batch);
4177
4178	/*
4179	 * If writeback for a btree extent that doesn't belong to a log tree
4180	 * failed, increment the counter transaction->eb_write_errors.
4181	 * We do this because while the transaction is running and before it's
4182	 * committing (when we call filemap_fdata[write|wait]_range against
4183	 * the btree inode), we might have
4184	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
4185	 * returns an error or an error happens during writeback, when we're
4186	 * committing the transaction we wouldn't know about it, since the pages
4187	 * can be no longer dirty nor marked anymore for writeback (if a
4188	 * subsequent modification to the extent buffer didn't happen before the
4189	 * transaction commit), which makes filemap_fdata[write|wait]_range not
4190	 * able to find the pages tagged with SetPageError at transaction
4191	 * commit time. So if this happens we must abort the transaction,
4192	 * otherwise we commit a super block with btree roots that point to
4193	 * btree nodes/leafs whose content on disk is invalid - either garbage
4194	 * or the content of some node/leaf from a past generation that got
4195	 * cowed or deleted and is no longer valid.
4196	 *
4197	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
4198	 * not be enough - we need to distinguish between log tree extents vs
4199	 * non-log tree extents, and the next filemap_fdatawait_range() call
4200	 * will catch and clear such errors in the mapping - and that call might
4201	 * be from a log sync and not from a transaction commit. Also, checking
4202	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
4203	 * not done and would not be reliable - the eb might have been released
4204	 * from memory and reading it back again means that flag would not be
4205	 * set (since it's a runtime flag, not persisted on disk).
4206	 *
4207	 * Using the flags below in the btree inode also makes us achieve the
4208	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
4209	 * writeback for all dirty pages and before filemap_fdatawait_range()
4210	 * is called, the writeback for all dirty pages had already finished
4211	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
4212	 * filemap_fdatawait_range() would return success, as it could not know
4213	 * that writeback errors happened (the pages were no longer tagged for
4214	 * writeback).
4215	 */
4216	switch (eb->log_index) {
4217	case -1:
4218		set_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags);
4219		break;
4220	case 0:
4221		set_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
4222		break;
4223	case 1:
4224		set_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
4225		break;
4226	default:
4227		BUG(); /* unexpected, logic error */
4228	}
4229}
4230
4231/*
4232 * The endio specific version which won't touch any unsafe spinlock in endio
4233 * context.
4234 */
4235static struct extent_buffer *find_extent_buffer_nolock(
4236		struct btrfs_fs_info *fs_info, u64 start)
4237{
4238	struct extent_buffer *eb;
4239
4240	rcu_read_lock();
4241	eb = radix_tree_lookup(&fs_info->buffer_radix,
4242			       start >> fs_info->sectorsize_bits);
4243	if (eb && atomic_inc_not_zero(&eb->refs)) {
4244		rcu_read_unlock();
4245		return eb;
4246	}
4247	rcu_read_unlock();
4248	return NULL;
4249}
4250
4251/*
4252 * The endio function for subpage extent buffer write.
4253 *
4254 * Unlike end_bio_extent_buffer_writepage(), we only call end_page_writeback()
4255 * after all extent buffers in the page has finished their writeback.
4256 */
4257static void end_bio_subpage_eb_writepage(struct bio *bio)
4258{
4259	struct btrfs_fs_info *fs_info;
4260	struct bio_vec *bvec;
4261	struct bvec_iter_all iter_all;
 
 
4262
4263	fs_info = btrfs_sb(bio_first_page_all(bio)->mapping->host->i_sb);
4264	ASSERT(fs_info->sectorsize < PAGE_SIZE);
4265
4266	ASSERT(!bio_flagged(bio, BIO_CLONED));
4267	bio_for_each_segment_all(bvec, bio, iter_all) {
4268		struct page *page = bvec->bv_page;
4269		u64 bvec_start = page_offset(page) + bvec->bv_offset;
4270		u64 bvec_end = bvec_start + bvec->bv_len - 1;
4271		u64 cur_bytenr = bvec_start;
4272
4273		ASSERT(IS_ALIGNED(bvec->bv_len, fs_info->nodesize));
4274
4275		/* Iterate through all extent buffers in the range */
4276		while (cur_bytenr <= bvec_end) {
4277			struct extent_buffer *eb;
4278			int done;
4279
4280			/*
4281			 * Here we can't use find_extent_buffer(), as it may
4282			 * try to lock eb->refs_lock, which is not safe in endio
4283			 * context.
4284			 */
4285			eb = find_extent_buffer_nolock(fs_info, cur_bytenr);
4286			ASSERT(eb);
4287
4288			cur_bytenr = eb->start + eb->len;
4289
4290			ASSERT(test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags));
4291			done = atomic_dec_and_test(&eb->io_pages);
4292			ASSERT(done);
4293
4294			if (bio->bi_status ||
4295			    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4296				ClearPageUptodate(page);
4297				set_btree_ioerr(page, eb);
4298			}
4299
4300			btrfs_subpage_clear_writeback(fs_info, page, eb->start,
4301						      eb->len);
4302			end_extent_buffer_writeback(eb);
4303			/*
4304			 * free_extent_buffer() will grab spinlock which is not
4305			 * safe in endio context. Thus here we manually dec
4306			 * the ref.
4307			 */
4308			atomic_dec(&eb->refs);
4309		}
4310	}
4311	bio_put(bio);
4312}
4313
4314static void end_bio_extent_buffer_writepage(struct bio *bio)
4315{
4316	struct bio_vec *bvec;
4317	struct extent_buffer *eb;
4318	int done;
4319	struct bvec_iter_all iter_all;
4320
4321	ASSERT(!bio_flagged(bio, BIO_CLONED));
4322	bio_for_each_segment_all(bvec, bio, iter_all) {
4323		struct page *page = bvec->bv_page;
4324
4325		eb = (struct extent_buffer *)page->private;
4326		BUG_ON(!eb);
4327		done = atomic_dec_and_test(&eb->io_pages);
4328
4329		if (bio->bi_status ||
4330		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
4331			ClearPageUptodate(page);
4332			set_btree_ioerr(page, eb);
4333		}
4334
4335		end_page_writeback(page);
4336
4337		if (!done)
4338			continue;
4339
4340		end_extent_buffer_writeback(eb);
4341	}
4342
4343	bio_put(bio);
4344}
4345
4346static void prepare_eb_write(struct extent_buffer *eb)
4347{
4348	u32 nritems;
4349	unsigned long start;
4350	unsigned long end;
4351
4352	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
4353	atomic_set(&eb->io_pages, num_extent_pages(eb));
4354
4355	/* Set btree blocks beyond nritems with 0 to avoid stale content */
4356	nritems = btrfs_header_nritems(eb);
4357	if (btrfs_header_level(eb) > 0) {
4358		end = btrfs_node_key_ptr_offset(nritems);
4359		memzero_extent_buffer(eb, end, eb->len - end);
4360	} else {
4361		/*
4362		 * Leaf:
4363		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
4364		 */
4365		start = btrfs_item_nr_offset(nritems);
4366		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(eb);
 
 
 
 
4367		memzero_extent_buffer(eb, start, end - start);
4368	}
4369}
4370
4371/*
4372 * Unlike the work in write_one_eb(), we rely completely on extent locking.
4373 * Page locking is only utilized at minimum to keep the VMM code happy.
4374 */
4375static int write_one_subpage_eb(struct extent_buffer *eb,
4376				struct writeback_control *wbc,
4377				struct extent_page_data *epd)
4378{
4379	struct btrfs_fs_info *fs_info = eb->fs_info;
4380	struct page *page = eb->pages[0];
4381	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4382	bool no_dirty_ebs = false;
4383	int ret;
4384
4385	prepare_eb_write(eb);
4386
4387	/* clear_page_dirty_for_io() in subpage helper needs page locked */
4388	lock_page(page);
4389	btrfs_subpage_set_writeback(fs_info, page, eb->start, eb->len);
4390
4391	/* Check if this is the last dirty bit to update nr_written */
4392	no_dirty_ebs = btrfs_subpage_clear_and_test_dirty(fs_info, page,
4393							  eb->start, eb->len);
4394	if (no_dirty_ebs)
4395		clear_page_dirty_for_io(page);
4396
4397	ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4398			&epd->bio_ctrl, page, eb->start, eb->len,
4399			eb->start - page_offset(page),
4400			end_bio_subpage_eb_writepage, 0, 0, false);
4401	if (ret) {
4402		btrfs_subpage_clear_writeback(fs_info, page, eb->start, eb->len);
4403		set_btree_ioerr(page, eb);
4404		unlock_page(page);
4405
4406		if (atomic_dec_and_test(&eb->io_pages))
4407			end_extent_buffer_writeback(eb);
4408		return -EIO;
4409	}
4410	unlock_page(page);
4411	/*
4412	 * Submission finished without problem, if no range of the page is
4413	 * dirty anymore, we have submitted a page.  Update nr_written in wbc.
4414	 */
4415	if (no_dirty_ebs)
4416		update_nr_written(wbc, 1);
4417	return ret;
4418}
4419
4420static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
4421			struct writeback_control *wbc,
4422			struct extent_page_data *epd)
4423{
4424	u64 disk_bytenr = eb->start;
4425	int i, num_pages;
4426	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
4427	int ret = 0;
4428
4429	prepare_eb_write(eb);
4430
4431	num_pages = num_extent_pages(eb);
4432	for (i = 0; i < num_pages; i++) {
4433		struct page *p = eb->pages[i];
4434
4435		clear_page_dirty_for_io(p);
4436		set_page_writeback(p);
4437		ret = submit_extent_page(REQ_OP_WRITE | write_flags, wbc,
4438					 &epd->bio_ctrl, p, disk_bytenr,
4439					 PAGE_SIZE, 0,
4440					 end_bio_extent_buffer_writepage,
4441					 0, 0, false);
4442		if (ret) {
4443			set_btree_ioerr(p, eb);
4444			if (PageWriteback(p))
4445				end_page_writeback(p);
4446			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
4447				end_extent_buffer_writeback(eb);
4448			ret = -EIO;
4449			break;
4450		}
4451		disk_bytenr += PAGE_SIZE;
4452		update_nr_written(wbc, 1);
4453		unlock_page(p);
4454	}
4455
4456	if (unlikely(ret)) {
4457		for (; i < num_pages; i++) {
4458			struct page *p = eb->pages[i];
4459			clear_page_dirty_for_io(p);
4460			unlock_page(p);
4461		}
4462	}
4463
4464	return ret;
4465}
4466
4467/*
4468 * Submit one subpage btree page.
4469 *
4470 * The main difference to submit_eb_page() is:
4471 * - Page locking
4472 *   For subpage, we don't rely on page locking at all.
4473 *
4474 * - Flush write bio
4475 *   We only flush bio if we may be unable to fit current extent buffers into
4476 *   current bio.
4477 *
4478 * Return >=0 for the number of submitted extent buffers.
4479 * Return <0 for fatal error.
4480 */
4481static int submit_eb_subpage(struct page *page,
4482			     struct writeback_control *wbc,
4483			     struct extent_page_data *epd)
4484{
4485	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
4486	int submitted = 0;
4487	u64 page_start = page_offset(page);
4488	int bit_start = 0;
4489	const int nbits = BTRFS_SUBPAGE_BITMAP_SIZE;
4490	int sectors_per_node = fs_info->nodesize >> fs_info->sectorsize_bits;
4491	int ret;
4492
4493	/* Lock and write each dirty extent buffers in the range */
4494	while (bit_start < nbits) {
4495		struct btrfs_subpage *subpage = (struct btrfs_subpage *)page->private;
4496		struct extent_buffer *eb;
4497		unsigned long flags;
4498		u64 start;
4499
4500		/*
4501		 * Take private lock to ensure the subpage won't be detached
4502		 * in the meantime.
4503		 */
4504		spin_lock(&page->mapping->private_lock);
4505		if (!PagePrivate(page)) {
4506			spin_unlock(&page->mapping->private_lock);
4507			break;
4508		}
4509		spin_lock_irqsave(&subpage->lock, flags);
4510		if (!((1 << bit_start) & subpage->dirty_bitmap)) {
 
4511			spin_unlock_irqrestore(&subpage->lock, flags);
4512			spin_unlock(&page->mapping->private_lock);
4513			bit_start++;
4514			continue;
4515		}
4516
4517		start = page_start + bit_start * fs_info->sectorsize;
4518		bit_start += sectors_per_node;
4519
4520		/*
4521		 * Here we just want to grab the eb without touching extra
4522		 * spin locks, so call find_extent_buffer_nolock().
4523		 */
4524		eb = find_extent_buffer_nolock(fs_info, start);
4525		spin_unlock_irqrestore(&subpage->lock, flags);
4526		spin_unlock(&page->mapping->private_lock);
4527
4528		/*
4529		 * The eb has already reached 0 refs thus find_extent_buffer()
4530		 * doesn't return it. We don't need to write back such eb
4531		 * anyway.
4532		 */
4533		if (!eb)
4534			continue;
4535
4536		ret = lock_extent_buffer_for_io(eb, epd);
4537		if (ret == 0) {
4538			free_extent_buffer(eb);
4539			continue;
4540		}
4541		if (ret < 0) {
4542			free_extent_buffer(eb);
4543			goto cleanup;
4544		}
4545		ret = write_one_subpage_eb(eb, wbc, epd);
4546		free_extent_buffer(eb);
4547		if (ret < 0)
4548			goto cleanup;
4549		submitted++;
4550	}
4551	return submitted;
4552
4553cleanup:
4554	/* We hit error, end bio for the submitted extent buffers */
4555	end_write_bio(epd, ret);
4556	return ret;
4557}
4558
4559/*
4560 * Submit all page(s) of one extent buffer.
4561 *
4562 * @page:	the page of one extent buffer
4563 * @eb_context:	to determine if we need to submit this page, if current page
4564 *		belongs to this eb, we don't need to submit
4565 *
4566 * The caller should pass each page in their bytenr order, and here we use
4567 * @eb_context to determine if we have submitted pages of one extent buffer.
4568 *
4569 * If we have, we just skip until we hit a new page that doesn't belong to
4570 * current @eb_context.
4571 *
4572 * If not, we submit all the page(s) of the extent buffer.
4573 *
4574 * Return >0 if we have submitted the extent buffer successfully.
4575 * Return 0 if we don't need to submit the page, as it's already submitted by
4576 * previous call.
4577 * Return <0 for fatal error.
4578 */
4579static int submit_eb_page(struct page *page, struct writeback_control *wbc,
4580			  struct extent_page_data *epd,
4581			  struct extent_buffer **eb_context)
4582{
4583	struct address_space *mapping = page->mapping;
4584	struct btrfs_block_group *cache = NULL;
4585	struct extent_buffer *eb;
4586	int ret;
4587
4588	if (!PagePrivate(page))
4589		return 0;
4590
4591	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
4592		return submit_eb_subpage(page, wbc, epd);
4593
4594	spin_lock(&mapping->private_lock);
4595	if (!PagePrivate(page)) {
4596		spin_unlock(&mapping->private_lock);
4597		return 0;
4598	}
4599
4600	eb = (struct extent_buffer *)page->private;
4601
4602	/*
4603	 * Shouldn't happen and normally this would be a BUG_ON but no point
4604	 * crashing the machine for something we can survive anyway.
4605	 */
4606	if (WARN_ON(!eb)) {
4607		spin_unlock(&mapping->private_lock);
4608		return 0;
4609	}
4610
4611	if (eb == *eb_context) {
4612		spin_unlock(&mapping->private_lock);
4613		return 0;
4614	}
4615	ret = atomic_inc_not_zero(&eb->refs);
4616	spin_unlock(&mapping->private_lock);
4617	if (!ret)
4618		return 0;
4619
4620	if (!btrfs_check_meta_write_pointer(eb->fs_info, eb, &cache)) {
4621		/*
4622		 * If for_sync, this hole will be filled with
4623		 * trasnsaction commit.
4624		 */
4625		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4626			ret = -EAGAIN;
4627		else
4628			ret = 0;
4629		free_extent_buffer(eb);
4630		return ret;
4631	}
4632
4633	*eb_context = eb;
4634
4635	ret = lock_extent_buffer_for_io(eb, epd);
4636	if (ret <= 0) {
4637		btrfs_revert_meta_write_pointer(cache, eb);
4638		if (cache)
4639			btrfs_put_block_group(cache);
4640		free_extent_buffer(eb);
4641		return ret;
 
 
 
 
 
 
4642	}
4643	if (cache)
4644		btrfs_put_block_group(cache);
4645	ret = write_one_eb(eb, wbc, epd);
4646	free_extent_buffer(eb);
4647	if (ret < 0)
4648		return ret;
4649	return 1;
4650}
4651
4652int btree_write_cache_pages(struct address_space *mapping,
4653				   struct writeback_control *wbc)
4654{
4655	struct extent_buffer *eb_context = NULL;
4656	struct extent_page_data epd = {
4657		.bio_ctrl = { 0 },
4658		.extent_locked = 0,
4659		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4660	};
4661	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
4662	int ret = 0;
4663	int done = 0;
4664	int nr_to_write_done = 0;
4665	struct pagevec pvec;
4666	int nr_pages;
4667	pgoff_t index;
4668	pgoff_t end;		/* Inclusive */
4669	int scanned = 0;
4670	xa_mark_t tag;
4671
4672	pagevec_init(&pvec);
4673	if (wbc->range_cyclic) {
4674		index = mapping->writeback_index; /* Start from prev offset */
4675		end = -1;
4676		/*
4677		 * Start from the beginning does not need to cycle over the
4678		 * range, mark it as scanned.
4679		 */
4680		scanned = (index == 0);
4681	} else {
4682		index = wbc->range_start >> PAGE_SHIFT;
4683		end = wbc->range_end >> PAGE_SHIFT;
4684		scanned = 1;
4685	}
4686	if (wbc->sync_mode == WB_SYNC_ALL)
4687		tag = PAGECACHE_TAG_TOWRITE;
4688	else
4689		tag = PAGECACHE_TAG_DIRTY;
4690	btrfs_zoned_meta_io_lock(fs_info);
4691retry:
4692	if (wbc->sync_mode == WB_SYNC_ALL)
4693		tag_pages_for_writeback(mapping, index, end);
4694	while (!done && !nr_to_write_done && (index <= end) &&
4695	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
4696			tag))) {
4697		unsigned i;
4698
4699		for (i = 0; i < nr_pages; i++) {
4700			struct page *page = pvec.pages[i];
4701
4702			ret = submit_eb_page(page, wbc, &epd, &eb_context);
4703			if (ret == 0)
4704				continue;
4705			if (ret < 0) {
4706				done = 1;
4707				break;
4708			}
4709
4710			/*
4711			 * the filesystem may choose to bump up nr_to_write.
4712			 * We have to make sure to honor the new nr_to_write
4713			 * at any time
4714			 */
4715			nr_to_write_done = wbc->nr_to_write <= 0;
4716		}
4717		pagevec_release(&pvec);
4718		cond_resched();
4719	}
4720	if (!scanned && !done) {
4721		/*
4722		 * We hit the last page and there is more work to be done: wrap
4723		 * back to the start of the file
4724		 */
4725		scanned = 1;
4726		index = 0;
4727		goto retry;
4728	}
4729	if (ret < 0) {
4730		end_write_bio(&epd, ret);
4731		goto out;
4732	}
4733	/*
4734	 * If something went wrong, don't allow any metadata write bio to be
4735	 * submitted.
4736	 *
4737	 * This would prevent use-after-free if we had dirty pages not
4738	 * cleaned up, which can still happen by fuzzed images.
4739	 *
4740	 * - Bad extent tree
4741	 *   Allowing existing tree block to be allocated for other trees.
4742	 *
4743	 * - Log tree operations
4744	 *   Exiting tree blocks get allocated to log tree, bumps its
4745	 *   generation, then get cleaned in tree re-balance.
4746	 *   Such tree block will not be written back, since it's clean,
4747	 *   thus no WRITTEN flag set.
4748	 *   And after log writes back, this tree block is not traced by
4749	 *   any dirty extent_io_tree.
4750	 *
4751	 * - Offending tree block gets re-dirtied from its original owner
4752	 *   Since it has bumped generation, no WRITTEN flag, it can be
4753	 *   reused without COWing. This tree block will not be traced
4754	 *   by btrfs_transaction::dirty_pages.
4755	 *
4756	 *   Now such dirty tree block will not be cleaned by any dirty
4757	 *   extent io tree. Thus we don't want to submit such wild eb
4758	 *   if the fs already has error.
 
 
 
4759	 */
4760	if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
4761		ret = flush_write_bio(&epd);
4762	} else {
4763		ret = -EROFS;
4764		end_write_bio(&epd, ret);
4765	}
4766out:
4767	btrfs_zoned_meta_io_unlock(fs_info);
4768	return ret;
4769}
4770
4771/**
4772 * Walk the list of dirty pages of the given address space and write all of them.
4773 *
4774 * @mapping: address space structure to write
4775 * @wbc:     subtract the number of written pages from *@wbc->nr_to_write
4776 * @epd:     holds context for the write, namely the bio
4777 *
4778 * If a page is already under I/O, write_cache_pages() skips it, even
4779 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
4780 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
4781 * and msync() need to guarantee that all the data which was dirty at the time
4782 * the call was made get new I/O started against them.  If wbc->sync_mode is
4783 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4784 * existing IO to complete.
4785 */
4786static int extent_write_cache_pages(struct address_space *mapping,
4787			     struct writeback_control *wbc,
4788			     struct extent_page_data *epd)
4789{
 
4790	struct inode *inode = mapping->host;
4791	int ret = 0;
4792	int done = 0;
4793	int nr_to_write_done = 0;
4794	struct pagevec pvec;
4795	int nr_pages;
4796	pgoff_t index;
4797	pgoff_t end;		/* Inclusive */
4798	pgoff_t done_index;
4799	int range_whole = 0;
4800	int scanned = 0;
4801	xa_mark_t tag;
4802
4803	/*
4804	 * We have to hold onto the inode so that ordered extents can do their
4805	 * work when the IO finishes.  The alternative to this is failing to add
4806	 * an ordered extent if the igrab() fails there and that is a huge pain
4807	 * to deal with, so instead just hold onto the inode throughout the
4808	 * writepages operation.  If it fails here we are freeing up the inode
4809	 * anyway and we'd rather not waste our time writing out stuff that is
4810	 * going to be truncated anyway.
4811	 */
4812	if (!igrab(inode))
4813		return 0;
4814
4815	pagevec_init(&pvec);
4816	if (wbc->range_cyclic) {
4817		index = mapping->writeback_index; /* Start from prev offset */
4818		end = -1;
4819		/*
4820		 * Start from the beginning does not need to cycle over the
4821		 * range, mark it as scanned.
4822		 */
4823		scanned = (index == 0);
4824	} else {
4825		index = wbc->range_start >> PAGE_SHIFT;
4826		end = wbc->range_end >> PAGE_SHIFT;
4827		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
4828			range_whole = 1;
4829		scanned = 1;
4830	}
4831
4832	/*
4833	 * We do the tagged writepage as long as the snapshot flush bit is set
4834	 * and we are the first one who do the filemap_flush() on this inode.
4835	 *
4836	 * The nr_to_write == LONG_MAX is needed to make sure other flushers do
4837	 * not race in and drop the bit.
4838	 */
4839	if (range_whole && wbc->nr_to_write == LONG_MAX &&
4840	    test_and_clear_bit(BTRFS_INODE_SNAPSHOT_FLUSH,
4841			       &BTRFS_I(inode)->runtime_flags))
4842		wbc->tagged_writepages = 1;
4843
4844	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4845		tag = PAGECACHE_TAG_TOWRITE;
4846	else
4847		tag = PAGECACHE_TAG_DIRTY;
4848retry:
4849	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
4850		tag_pages_for_writeback(mapping, index, end);
4851	done_index = index;
4852	while (!done && !nr_to_write_done && (index <= end) &&
4853			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
4854						&index, end, tag))) {
4855		unsigned i;
4856
4857		for (i = 0; i < nr_pages; i++) {
4858			struct page *page = pvec.pages[i];
4859
4860			done_index = page->index + 1;
4861			/*
4862			 * At this point we hold neither the i_pages lock nor
4863			 * the page lock: the page may be truncated or
4864			 * invalidated (changing page->mapping to NULL),
4865			 * or even swizzled back from swapper_space to
4866			 * tmpfs file mapping
4867			 */
4868			if (!trylock_page(page)) {
4869				ret = flush_write_bio(epd);
4870				BUG_ON(ret < 0);
4871				lock_page(page);
 
 
 
 
4872			}
4873
4874			if (unlikely(page->mapping != mapping)) {
4875				unlock_page(page);
 
4876				continue;
4877			}
4878
4879			if (wbc->sync_mode != WB_SYNC_NONE) {
4880				if (PageWriteback(page)) {
4881					ret = flush_write_bio(epd);
4882					BUG_ON(ret < 0);
4883				}
4884				wait_on_page_writeback(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4885			}
4886
4887			if (PageWriteback(page) ||
4888			    !clear_page_dirty_for_io(page)) {
4889				unlock_page(page);
4890				continue;
4891			}
4892
4893			ret = __extent_writepage(page, wbc, epd);
4894			if (ret < 0) {
4895				done = 1;
4896				break;
4897			}
4898
4899			/*
4900			 * the filesystem may choose to bump up nr_to_write.
4901			 * We have to make sure to honor the new nr_to_write
4902			 * at any time
4903			 */
4904			nr_to_write_done = wbc->nr_to_write <= 0;
 
4905		}
4906		pagevec_release(&pvec);
4907		cond_resched();
4908	}
4909	if (!scanned && !done) {
4910		/*
4911		 * We hit the last page and there is more work to be done: wrap
4912		 * back to the start of the file
4913		 */
4914		scanned = 1;
4915		index = 0;
4916
4917		/*
4918		 * If we're looping we could run into a page that is locked by a
4919		 * writer and that writer could be waiting on writeback for a
4920		 * page in our current bio, and thus deadlock, so flush the
4921		 * write bio here.
4922		 */
4923		ret = flush_write_bio(epd);
4924		if (!ret)
4925			goto retry;
4926	}
4927
4928	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4929		mapping->writeback_index = done_index;
4930
4931	btrfs_add_delayed_iput(inode);
4932	return ret;
4933}
4934
4935int extent_write_full_page(struct page *page, struct writeback_control *wbc)
 
 
 
 
 
 
 
4936{
4937	int ret;
4938	struct extent_page_data epd = {
4939		.bio_ctrl = { 0 },
4940		.extent_locked = 0,
4941		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
 
 
 
 
 
4942	};
4943
4944	ret = __extent_writepage(page, wbc, &epd);
4945	ASSERT(ret <= 0);
4946	if (ret < 0) {
4947		end_write_bio(&epd, ret);
4948		return ret;
4949	}
4950
4951	ret = flush_write_bio(&epd);
4952	ASSERT(ret <= 0);
4953	return ret;
4954}
4955
4956int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4957			      int mode)
4958{
4959	int ret = 0;
4960	struct address_space *mapping = inode->i_mapping;
4961	struct page *page;
4962	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4963		PAGE_SHIFT;
4964
4965	struct extent_page_data epd = {
4966		.bio_ctrl = { 0 },
4967		.extent_locked = 1,
4968		.sync_io = mode == WB_SYNC_ALL,
4969	};
4970	struct writeback_control wbc_writepages = {
4971		.sync_mode	= mode,
4972		.nr_to_write	= nr_pages * 2,
4973		.range_start	= start,
4974		.range_end	= end + 1,
4975		/* We're called from an async helper function */
4976		.punt_to_cgroup	= 1,
4977		.no_cgroup_owner = 1,
4978	};
4979
4980	wbc_attach_fdatawrite_inode(&wbc_writepages, inode);
4981	while (start <= end) {
4982		page = find_get_page(mapping, start >> PAGE_SHIFT);
4983		if (clear_page_dirty_for_io(page))
4984			ret = __extent_writepage(page, &wbc_writepages, &epd);
4985		else {
4986			btrfs_writepage_endio_finish_ordered(BTRFS_I(inode),
4987					page, start, start + PAGE_SIZE - 1, 1);
4988			unlock_page(page);
 
4989		}
4990		put_page(page);
4991		start += PAGE_SIZE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4992	}
4993
4994	ASSERT(ret <= 0);
4995	if (ret == 0)
4996		ret = flush_write_bio(&epd);
4997	else
4998		end_write_bio(&epd, ret);
4999
5000	wbc_detach_inode(&wbc_writepages);
5001	return ret;
5002}
5003
5004int extent_writepages(struct address_space *mapping,
5005		      struct writeback_control *wbc)
5006{
 
5007	int ret = 0;
5008	struct extent_page_data epd = {
5009		.bio_ctrl = { 0 },
5010		.extent_locked = 0,
5011		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
5012	};
5013
5014	ret = extent_write_cache_pages(mapping, wbc, &epd);
5015	ASSERT(ret <= 0);
5016	if (ret < 0) {
5017		end_write_bio(&epd, ret);
5018		return ret;
5019	}
5020	ret = flush_write_bio(&epd);
 
5021	return ret;
5022}
5023
5024void extent_readahead(struct readahead_control *rac)
5025{
5026	struct btrfs_bio_ctrl bio_ctrl = { 0 };
5027	struct page *pagepool[16];
 
 
 
 
5028	struct extent_map *em_cached = NULL;
5029	u64 prev_em_start = (u64)-1;
5030	int nr;
5031
5032	while ((nr = readahead_page_batch(rac, pagepool))) {
5033		u64 contig_start = readahead_pos(rac);
5034		u64 contig_end = contig_start + readahead_batch_length(rac) - 1;
 
5035
5036		contiguous_readpages(pagepool, nr, contig_start, contig_end,
5037				&em_cached, &bio_ctrl, &prev_em_start);
5038	}
5039
5040	if (em_cached)
5041		free_extent_map(em_cached);
5042
5043	if (bio_ctrl.bio) {
5044		if (submit_one_bio(bio_ctrl.bio, 0, bio_ctrl.bio_flags))
5045			return;
5046	}
5047}
5048
5049/*
5050 * basic invalidatepage code, this waits on any locked or writeback
5051 * ranges corresponding to the page, and then deletes any extent state
5052 * records from the tree
5053 */
5054int extent_invalidatepage(struct extent_io_tree *tree,
5055			  struct page *page, unsigned long offset)
5056{
5057	struct extent_state *cached_state = NULL;
5058	u64 start = page_offset(page);
5059	u64 end = start + PAGE_SIZE - 1;
5060	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
5061
5062	/* This function is only called for the btree inode */
5063	ASSERT(tree->owner == IO_TREE_BTREE_INODE_IO);
5064
5065	start += ALIGN(offset, blocksize);
5066	if (start > end)
5067		return 0;
5068
5069	lock_extent_bits(tree, start, end, &cached_state);
5070	wait_on_page_writeback(page);
5071
5072	/*
5073	 * Currently for btree io tree, only EXTENT_LOCKED is utilized,
5074	 * so here we only need to unlock the extent range to free any
5075	 * existing extent state.
5076	 */
5077	unlock_extent_cached(tree, start, end, &cached_state);
5078	return 0;
5079}
5080
5081/*
5082 * a helper for releasepage, this tests for areas of the page that
5083 * are locked or under IO and drops the related state bits if it is safe
5084 * to drop the page.
5085 */
5086static int try_release_extent_state(struct extent_io_tree *tree,
5087				    struct page *page, gfp_t mask)
5088{
5089	u64 start = page_offset(page);
5090	u64 end = start + PAGE_SIZE - 1;
5091	int ret = 1;
5092
5093	if (test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) {
5094		ret = 0;
5095	} else {
 
 
 
 
 
5096		/*
5097		 * At this point we can safely clear everything except the
5098		 * locked bit, the nodatasum bit and the delalloc new bit.
5099		 * The delalloc new bit will be cleared by ordered extent
5100		 * completion.
5101		 */
5102		ret = __clear_extent_bit(tree, start, end,
5103			 ~(EXTENT_LOCKED | EXTENT_NODATASUM | EXTENT_DELALLOC_NEW),
5104			 0, 0, NULL, mask, NULL);
5105
5106		/* if clear_extent_bit failed for enomem reasons,
5107		 * we can't allow the release to continue.
5108		 */
5109		if (ret < 0)
5110			ret = 0;
5111		else
5112			ret = 1;
5113	}
5114	return ret;
5115}
5116
5117/*
5118 * a helper for releasepage.  As long as there are no locked extents
5119 * in the range corresponding to the page, both state records and extent
5120 * map records are removed
5121 */
5122int try_release_extent_mapping(struct page *page, gfp_t mask)
5123{
5124	struct extent_map *em;
5125	u64 start = page_offset(page);
5126	u64 end = start + PAGE_SIZE - 1;
5127	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
5128	struct extent_io_tree *tree = &btrfs_inode->io_tree;
5129	struct extent_map_tree *map = &btrfs_inode->extent_tree;
5130
5131	if (gfpflags_allow_blocking(mask) &&
5132	    page->mapping->host->i_size > SZ_16M) {
5133		u64 len;
5134		while (start <= end) {
5135			struct btrfs_fs_info *fs_info;
5136			u64 cur_gen;
5137
5138			len = end - start + 1;
5139			write_lock(&map->lock);
5140			em = lookup_extent_mapping(map, start, len);
5141			if (!em) {
5142				write_unlock(&map->lock);
5143				break;
5144			}
5145			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
5146			    em->start != start) {
5147				write_unlock(&map->lock);
5148				free_extent_map(em);
5149				break;
5150			}
5151			if (test_range_bit(tree, em->start,
5152					   extent_map_end(em) - 1,
5153					   EXTENT_LOCKED, 0, NULL))
5154				goto next;
5155			/*
5156			 * If it's not in the list of modified extents, used
5157			 * by a fast fsync, we can remove it. If it's being
5158			 * logged we can safely remove it since fsync took an
5159			 * extra reference on the em.
5160			 */
5161			if (list_empty(&em->list) ||
5162			    test_bit(EXTENT_FLAG_LOGGING, &em->flags))
5163				goto remove_em;
5164			/*
5165			 * If it's in the list of modified extents, remove it
5166			 * only if its generation is older then the current one,
5167			 * in which case we don't need it for a fast fsync.
5168			 * Otherwise don't remove it, we could be racing with an
5169			 * ongoing fast fsync that could miss the new extent.
5170			 */
5171			fs_info = btrfs_inode->root->fs_info;
5172			spin_lock(&fs_info->trans_lock);
5173			cur_gen = fs_info->generation;
5174			spin_unlock(&fs_info->trans_lock);
5175			if (em->generation >= cur_gen)
5176				goto next;
5177remove_em:
5178			/*
5179			 * We only remove extent maps that are not in the list of
5180			 * modified extents or that are in the list but with a
5181			 * generation lower then the current generation, so there
5182			 * is no need to set the full fsync flag on the inode (it
5183			 * hurts the fsync performance for workloads with a data
5184			 * size that exceeds or is close to the system's memory).
5185			 */
5186			remove_extent_mapping(map, em);
5187			/* once for the rb tree */
5188			free_extent_map(em);
5189next:
5190			start = extent_map_end(em);
5191			write_unlock(&map->lock);
5192
5193			/* once for us */
5194			free_extent_map(em);
 
 
 
5195
5196			cond_resched(); /* Allow large-extent preemption. */
 
 
 
 
5197		}
5198	}
5199	return try_release_extent_state(tree, page, mask);
5200}
5201
5202/*
5203 * helper function for fiemap, which doesn't want to see any holes.
5204 * This maps until we find something past 'last'
5205 */
5206static struct extent_map *get_extent_skip_holes(struct btrfs_inode *inode,
5207						u64 offset, u64 last)
5208{
5209	u64 sectorsize = btrfs_inode_sectorsize(inode);
5210	struct extent_map *em;
5211	u64 len;
5212
5213	if (offset >= last)
5214		return NULL;
5215
5216	while (1) {
5217		len = last - offset;
5218		if (len == 0)
5219			break;
5220		len = ALIGN(len, sectorsize);
5221		em = btrfs_get_extent_fiemap(inode, offset, len);
5222		if (IS_ERR_OR_NULL(em))
5223			return em;
5224
5225		/* if this isn't a hole return it */
5226		if (em->block_start != EXTENT_MAP_HOLE)
5227			return em;
5228
5229		/* this is a hole, advance to the next extent */
5230		offset = extent_map_end(em);
5231		free_extent_map(em);
5232		if (offset >= last)
5233			break;
5234	}
5235	return NULL;
5236}
5237
5238/*
5239 * To cache previous fiemap extent
5240 *
5241 * Will be used for merging fiemap extent
5242 */
5243struct fiemap_cache {
5244	u64 offset;
5245	u64 phys;
5246	u64 len;
5247	u32 flags;
5248	bool cached;
5249};
5250
5251/*
5252 * Helper to submit fiemap extent.
5253 *
5254 * Will try to merge current fiemap extent specified by @offset, @phys,
5255 * @len and @flags with cached one.
5256 * And only when we fails to merge, cached one will be submitted as
5257 * fiemap extent.
5258 *
5259 * Return value is the same as fiemap_fill_next_extent().
5260 */
5261static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
5262				struct fiemap_cache *cache,
5263				u64 offset, u64 phys, u64 len, u32 flags)
5264{
5265	int ret = 0;
5266
5267	if (!cache->cached)
5268		goto assign;
5269
5270	/*
5271	 * Sanity check, extent_fiemap() should have ensured that new
5272	 * fiemap extent won't overlap with cached one.
5273	 * Not recoverable.
5274	 *
5275	 * NOTE: Physical address can overlap, due to compression
5276	 */
5277	if (cache->offset + cache->len > offset) {
5278		WARN_ON(1);
5279		return -EINVAL;
5280	}
5281
5282	/*
5283	 * Only merges fiemap extents if
5284	 * 1) Their logical addresses are continuous
5285	 *
5286	 * 2) Their physical addresses are continuous
5287	 *    So truly compressed (physical size smaller than logical size)
5288	 *    extents won't get merged with each other
5289	 *
5290	 * 3) Share same flags except FIEMAP_EXTENT_LAST
5291	 *    So regular extent won't get merged with prealloc extent
5292	 */
5293	if (cache->offset + cache->len  == offset &&
5294	    cache->phys + cache->len == phys  &&
5295	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
5296			(flags & ~FIEMAP_EXTENT_LAST)) {
5297		cache->len += len;
5298		cache->flags |= flags;
5299		goto try_submit_last;
5300	}
5301
5302	/* Not mergeable, need to submit cached one */
5303	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5304				      cache->len, cache->flags);
5305	cache->cached = false;
5306	if (ret)
5307		return ret;
5308assign:
5309	cache->cached = true;
5310	cache->offset = offset;
5311	cache->phys = phys;
5312	cache->len = len;
5313	cache->flags = flags;
5314try_submit_last:
5315	if (cache->flags & FIEMAP_EXTENT_LAST) {
5316		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
5317				cache->phys, cache->len, cache->flags);
5318		cache->cached = false;
5319	}
5320	return ret;
5321}
5322
5323/*
5324 * Emit last fiemap cache
5325 *
5326 * The last fiemap cache may still be cached in the following case:
5327 * 0		      4k		    8k
5328 * |<- Fiemap range ->|
5329 * |<------------  First extent ----------->|
5330 *
5331 * In this case, the first extent range will be cached but not emitted.
5332 * So we must emit it before ending extent_fiemap().
5333 */
5334static int emit_last_fiemap_cache(struct fiemap_extent_info *fieinfo,
5335				  struct fiemap_cache *cache)
5336{
5337	int ret;
5338
5339	if (!cache->cached)
5340		return 0;
5341
5342	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
5343				      cache->len, cache->flags);
5344	cache->cached = false;
5345	if (ret > 0)
5346		ret = 0;
5347	return ret;
5348}
5349
5350int extent_fiemap(struct btrfs_inode *inode, struct fiemap_extent_info *fieinfo,
5351		  u64 start, u64 len)
5352{
5353	int ret = 0;
5354	u64 off;
5355	u64 max = start + len;
5356	u32 flags = 0;
5357	u32 found_type;
5358	u64 last;
5359	u64 last_for_get_extent = 0;
5360	u64 disko = 0;
5361	u64 isize = i_size_read(&inode->vfs_inode);
5362	struct btrfs_key found_key;
5363	struct extent_map *em = NULL;
5364	struct extent_state *cached_state = NULL;
5365	struct btrfs_path *path;
5366	struct btrfs_root *root = inode->root;
5367	struct fiemap_cache cache = { 0 };
5368	struct ulist *roots;
5369	struct ulist *tmp_ulist;
5370	int end = 0;
5371	u64 em_start = 0;
5372	u64 em_len = 0;
5373	u64 em_end = 0;
5374
5375	if (len == 0)
5376		return -EINVAL;
5377
5378	path = btrfs_alloc_path();
5379	if (!path)
5380		return -ENOMEM;
5381
5382	roots = ulist_alloc(GFP_KERNEL);
5383	tmp_ulist = ulist_alloc(GFP_KERNEL);
5384	if (!roots || !tmp_ulist) {
5385		ret = -ENOMEM;
5386		goto out_free_ulist;
5387	}
5388
5389	/*
5390	 * We can't initialize that to 'start' as this could miss extents due
5391	 * to extent item merging
5392	 */
5393	off = 0;
5394	start = round_down(start, btrfs_inode_sectorsize(inode));
5395	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
5396
5397	/*
5398	 * lookup the last file extent.  We're not using i_size here
5399	 * because there might be preallocation past i_size
5400	 */
5401	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
5402				       0);
5403	if (ret < 0) {
5404		goto out_free_ulist;
5405	} else {
5406		WARN_ON(!ret);
5407		if (ret == 1)
5408			ret = 0;
5409	}
5410
5411	path->slots[0]--;
5412	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
5413	found_type = found_key.type;
5414
5415	/* No extents, but there might be delalloc bits */
5416	if (found_key.objectid != btrfs_ino(inode) ||
5417	    found_type != BTRFS_EXTENT_DATA_KEY) {
5418		/* have to trust i_size as the end */
5419		last = (u64)-1;
5420		last_for_get_extent = isize;
5421	} else {
5422		/*
5423		 * remember the start of the last extent.  There are a
5424		 * bunch of different factors that go into the length of the
5425		 * extent, so its much less complex to remember where it started
 
 
 
 
 
 
 
 
 
5426		 */
5427		last = found_key.offset;
5428		last_for_get_extent = last + 1;
5429	}
5430	btrfs_release_path(path);
5431
5432	/*
5433	 * we might have some extents allocated but more delalloc past those
5434	 * extents.  so, we trust isize unless the start of the last extent is
5435	 * beyond isize
5436	 */
5437	if (last < isize) {
5438		last = (u64)-1;
5439		last_for_get_extent = isize;
5440	}
5441
5442	lock_extent_bits(&inode->io_tree, start, start + len - 1,
5443			 &cached_state);
5444
5445	em = get_extent_skip_holes(inode, start, last_for_get_extent);
5446	if (!em)
5447		goto out;
5448	if (IS_ERR(em)) {
5449		ret = PTR_ERR(em);
5450		goto out;
5451	}
5452
5453	while (!end) {
5454		u64 offset_in_extent = 0;
5455
5456		/* break if the extent we found is outside the range */
5457		if (em->start >= max || extent_map_end(em) < off)
5458			break;
5459
5460		/*
5461		 * get_extent may return an extent that starts before our
5462		 * requested range.  We have to make sure the ranges
5463		 * we return to fiemap always move forward and don't
5464		 * overlap, so adjust the offsets here
 
 
5465		 */
5466		em_start = max(em->start, off);
 
 
 
 
 
5467
5468		/*
5469		 * record the offset from the start of the extent
5470		 * for adjusting the disk offset below.  Only do this if the
5471		 * extent isn't compressed since our in ram offset may be past
5472		 * what we have actually allocated on disk.
5473		 */
5474		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5475			offset_in_extent = em_start - em->start;
5476		em_end = extent_map_end(em);
5477		em_len = em_end - em_start;
5478		flags = 0;
5479		if (em->block_start < EXTENT_MAP_LAST_BYTE)
5480			disko = em->block_start + offset_in_extent;
5481		else
5482			disko = 0;
5483
5484		/*
5485		 * bump off for our next call to get_extent
5486		 */
5487		off = extent_map_end(em);
5488		if (off >= max)
5489			end = 1;
5490
5491		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
5492			end = 1;
5493			flags |= FIEMAP_EXTENT_LAST;
5494		} else if (em->block_start == EXTENT_MAP_INLINE) {
5495			flags |= (FIEMAP_EXTENT_DATA_INLINE |
5496				  FIEMAP_EXTENT_NOT_ALIGNED);
5497		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
5498			flags |= (FIEMAP_EXTENT_DELALLOC |
5499				  FIEMAP_EXTENT_UNKNOWN);
5500		} else if (fieinfo->fi_extents_max) {
5501			u64 bytenr = em->block_start -
5502				(em->start - em->orig_start);
5503
 
5504			/*
5505			 * As btrfs supports shared space, this information
5506			 * can be exported to userspace tools via
5507			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
5508			 * then we're just getting a count and we can skip the
5509			 * lookup stuff.
5510			 */
5511			ret = btrfs_check_shared(root, btrfs_ino(inode),
5512						 bytenr, roots, tmp_ulist);
5513			if (ret < 0)
5514				goto out_free;
5515			if (ret)
5516				flags |= FIEMAP_EXTENT_SHARED;
5517			ret = 0;
5518		}
5519		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
5520			flags |= FIEMAP_EXTENT_ENCODED;
5521		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5522			flags |= FIEMAP_EXTENT_UNWRITTEN;
5523
5524		free_extent_map(em);
5525		em = NULL;
5526		if ((em_start >= last) || em_len == (u64)-1 ||
5527		   (last == (u64)-1 && isize <= em_end)) {
5528			flags |= FIEMAP_EXTENT_LAST;
5529			end = 1;
5530		}
5531
5532		/* now scan forward to see if this is really the last extent. */
5533		em = get_extent_skip_holes(inode, off, last_for_get_extent);
5534		if (IS_ERR(em)) {
5535			ret = PTR_ERR(em);
5536			goto out;
5537		}
5538		if (!em) {
5539			flags |= FIEMAP_EXTENT_LAST;
5540			end = 1;
5541		}
5542		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
5543					   em_len, flags);
5544		if (ret) {
5545			if (ret == 1)
5546				ret = 0;
5547			goto out_free;
5548		}
5549	}
5550out_free:
5551	if (!ret)
5552		ret = emit_last_fiemap_cache(fieinfo, &cache);
5553	free_extent_map(em);
5554out:
5555	unlock_extent_cached(&inode->io_tree, start, start + len - 1,
5556			     &cached_state);
5557
5558out_free_ulist:
5559	btrfs_free_path(path);
5560	ulist_free(roots);
5561	ulist_free(tmp_ulist);
5562	return ret;
5563}
5564
5565static void __free_extent_buffer(struct extent_buffer *eb)
5566{
5567	kmem_cache_free(extent_buffer_cache, eb);
5568}
5569
5570int extent_buffer_under_io(const struct extent_buffer *eb)
5571{
5572	return (atomic_read(&eb->io_pages) ||
5573		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
5574		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5575}
5576
5577static bool page_range_has_eb(struct btrfs_fs_info *fs_info, struct page *page)
5578{
5579	struct btrfs_subpage *subpage;
5580
5581	lockdep_assert_held(&page->mapping->private_lock);
5582
5583	if (PagePrivate(page)) {
5584		subpage = (struct btrfs_subpage *)page->private;
5585		if (atomic_read(&subpage->eb_refs))
5586			return true;
5587		/*
5588		 * Even there is no eb refs here, we may still have
5589		 * end_page_read() call relying on page::private.
5590		 */
5591		if (atomic_read(&subpage->readers))
5592			return true;
5593	}
5594	return false;
5595}
5596
5597static void detach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
5598{
5599	struct btrfs_fs_info *fs_info = eb->fs_info;
5600	const bool mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5601
5602	/*
5603	 * For mapped eb, we're going to change the page private, which should
5604	 * be done under the private_lock.
5605	 */
5606	if (mapped)
5607		spin_lock(&page->mapping->private_lock);
5608
5609	if (!PagePrivate(page)) {
5610		if (mapped)
5611			spin_unlock(&page->mapping->private_lock);
5612		return;
5613	}
5614
5615	if (fs_info->sectorsize == PAGE_SIZE) {
5616		/*
5617		 * We do this since we'll remove the pages after we've
5618		 * removed the eb from the radix tree, so we could race
5619		 * and have this page now attached to the new eb.  So
5620		 * only clear page_private if it's still connected to
5621		 * this eb.
5622		 */
5623		if (PagePrivate(page) &&
5624		    page->private == (unsigned long)eb) {
5625			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
5626			BUG_ON(PageDirty(page));
5627			BUG_ON(PageWriteback(page));
5628			/*
5629			 * We need to make sure we haven't be attached
5630			 * to a new eb.
5631			 */
5632			detach_page_private(page);
5633		}
5634		if (mapped)
5635			spin_unlock(&page->mapping->private_lock);
5636		return;
5637	}
5638
5639	/*
5640	 * For subpage, we can have dummy eb with page private.  In this case,
5641	 * we can directly detach the private as such page is only attached to
5642	 * one dummy eb, no sharing.
5643	 */
5644	if (!mapped) {
5645		btrfs_detach_subpage(fs_info, page);
5646		return;
5647	}
5648
5649	btrfs_page_dec_eb_refs(fs_info, page);
5650
5651	/*
5652	 * We can only detach the page private if there are no other ebs in the
5653	 * page range and no unfinished IO.
5654	 */
5655	if (!page_range_has_eb(fs_info, page))
5656		btrfs_detach_subpage(fs_info, page);
5657
5658	spin_unlock(&page->mapping->private_lock);
5659}
5660
5661/* Release all pages attached to the extent buffer */
5662static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
5663{
5664	int i;
5665	int num_pages;
5666
5667	ASSERT(!extent_buffer_under_io(eb));
5668
5669	num_pages = num_extent_pages(eb);
5670	for (i = 0; i < num_pages; i++) {
5671		struct page *page = eb->pages[i];
5672
5673		if (!page)
5674			continue;
5675
5676		detach_extent_buffer_page(eb, page);
5677
5678		/* One for when we allocated the page */
5679		put_page(page);
5680	}
5681}
5682
5683/*
5684 * Helper for releasing the extent buffer.
5685 */
5686static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
5687{
5688	btrfs_release_extent_buffer_pages(eb);
5689	btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
5690	__free_extent_buffer(eb);
5691}
5692
5693static struct extent_buffer *
5694__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
5695		      unsigned long len)
5696{
5697	struct extent_buffer *eb = NULL;
5698
5699	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
5700	eb->start = start;
5701	eb->len = len;
5702	eb->fs_info = fs_info;
5703	eb->bflags = 0;
5704	init_rwsem(&eb->lock);
5705
5706	btrfs_leak_debug_add(&fs_info->eb_leak_lock, &eb->leak_list,
5707			     &fs_info->allocated_ebs);
5708	INIT_LIST_HEAD(&eb->release_list);
5709
5710	spin_lock_init(&eb->refs_lock);
5711	atomic_set(&eb->refs, 1);
5712	atomic_set(&eb->io_pages, 0);
5713
5714	ASSERT(len <= BTRFS_MAX_METADATA_BLOCKSIZE);
5715
5716	return eb;
5717}
5718
5719struct extent_buffer *btrfs_clone_extent_buffer(const struct extent_buffer *src)
5720{
5721	int i;
5722	struct page *p;
5723	struct extent_buffer *new;
5724	int num_pages = num_extent_pages(src);
 
5725
5726	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
5727	if (new == NULL)
5728		return NULL;
5729
5730	/*
5731	 * Set UNMAPPED before calling btrfs_release_extent_buffer(), as
5732	 * btrfs_release_extent_buffer() have different behavior for
5733	 * UNMAPPED subpage extent buffer.
5734	 */
5735	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
5736
5737	for (i = 0; i < num_pages; i++) {
5738		int ret;
 
 
 
 
 
 
5739
5740		p = alloc_page(GFP_NOFS);
5741		if (!p) {
5742			btrfs_release_extent_buffer(new);
5743			return NULL;
5744		}
5745		ret = attach_extent_buffer_page(new, p, NULL);
5746		if (ret < 0) {
5747			put_page(p);
5748			btrfs_release_extent_buffer(new);
5749			return NULL;
5750		}
5751		WARN_ON(PageDirty(p));
5752		new->pages[i] = p;
5753		copy_page(page_address(p), page_address(src->pages[i]));
5754	}
 
5755	set_extent_buffer_uptodate(new);
5756
5757	return new;
5758}
5759
5760struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5761						  u64 start, unsigned long len)
5762{
5763	struct extent_buffer *eb;
5764	int num_pages;
5765	int i;
5766
5767	eb = __alloc_extent_buffer(fs_info, start, len);
5768	if (!eb)
5769		return NULL;
5770
5771	num_pages = num_extent_pages(eb);
5772	for (i = 0; i < num_pages; i++) {
5773		int ret;
5774
5775		eb->pages[i] = alloc_page(GFP_NOFS);
5776		if (!eb->pages[i])
5777			goto err;
5778		ret = attach_extent_buffer_page(eb, eb->pages[i], NULL);
5779		if (ret < 0)
5780			goto err;
5781	}
 
5782	set_extent_buffer_uptodate(eb);
5783	btrfs_set_header_nritems(eb, 0);
5784	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
5785
5786	return eb;
5787err:
5788	for (; i > 0; i--) {
5789		detach_extent_buffer_page(eb, eb->pages[i - 1]);
5790		__free_page(eb->pages[i - 1]);
 
 
5791	}
5792	__free_extent_buffer(eb);
5793	return NULL;
5794}
5795
5796struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
5797						u64 start)
5798{
5799	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
5800}
5801
5802static void check_buffer_tree_ref(struct extent_buffer *eb)
5803{
5804	int refs;
5805	/*
5806	 * The TREE_REF bit is first set when the extent_buffer is added
5807	 * to the radix tree. It is also reset, if unset, when a new reference
5808	 * is created by find_extent_buffer.
5809	 *
5810	 * It is only cleared in two cases: freeing the last non-tree
5811	 * reference to the extent_buffer when its STALE bit is set or
5812	 * calling releasepage when the tree reference is the only reference.
5813	 *
5814	 * In both cases, care is taken to ensure that the extent_buffer's
5815	 * pages are not under io. However, releasepage can be concurrently
5816	 * called with creating new references, which is prone to race
5817	 * conditions between the calls to check_buffer_tree_ref in those
5818	 * codepaths and clearing TREE_REF in try_release_extent_buffer.
5819	 *
5820	 * The actual lifetime of the extent_buffer in the radix tree is
5821	 * adequately protected by the refcount, but the TREE_REF bit and
5822	 * its corresponding reference are not. To protect against this
5823	 * class of races, we call check_buffer_tree_ref from the codepaths
5824	 * which trigger io after they set eb->io_pages. Note that once io is
5825	 * initiated, TREE_REF can no longer be cleared, so that is the
5826	 * moment at which any such race is best fixed.
5827	 */
5828	refs = atomic_read(&eb->refs);
5829	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5830		return;
5831
5832	spin_lock(&eb->refs_lock);
5833	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5834		atomic_inc(&eb->refs);
5835	spin_unlock(&eb->refs_lock);
5836}
5837
5838static void mark_extent_buffer_accessed(struct extent_buffer *eb,
5839		struct page *accessed)
5840{
5841	int num_pages, i;
5842
5843	check_buffer_tree_ref(eb);
5844
5845	num_pages = num_extent_pages(eb);
5846	for (i = 0; i < num_pages; i++) {
5847		struct page *p = eb->pages[i];
5848
5849		if (p != accessed)
5850			mark_page_accessed(p);
5851	}
5852}
5853
5854struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
5855					 u64 start)
5856{
5857	struct extent_buffer *eb;
5858
5859	eb = find_extent_buffer_nolock(fs_info, start);
5860	if (!eb)
5861		return NULL;
5862	/*
5863	 * Lock our eb's refs_lock to avoid races with free_extent_buffer().
5864	 * When we get our eb it might be flagged with EXTENT_BUFFER_STALE and
5865	 * another task running free_extent_buffer() might have seen that flag
5866	 * set, eb->refs == 2, that the buffer isn't under IO (dirty and
5867	 * writeback flags not set) and it's still in the tree (flag
5868	 * EXTENT_BUFFER_TREE_REF set), therefore being in the process of
5869	 * decrementing the extent buffer's reference count twice.  So here we
5870	 * could race and increment the eb's reference count, clear its stale
5871	 * flag, mark it as dirty and drop our reference before the other task
5872	 * finishes executing free_extent_buffer, which would later result in
5873	 * an attempt to free an extent buffer that is dirty.
5874	 */
5875	if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
5876		spin_lock(&eb->refs_lock);
5877		spin_unlock(&eb->refs_lock);
5878	}
5879	mark_extent_buffer_accessed(eb, NULL);
5880	return eb;
5881}
5882
5883#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5884struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
5885					u64 start)
5886{
5887	struct extent_buffer *eb, *exists = NULL;
5888	int ret;
5889
5890	eb = find_extent_buffer(fs_info, start);
5891	if (eb)
5892		return eb;
5893	eb = alloc_dummy_extent_buffer(fs_info, start);
5894	if (!eb)
5895		return ERR_PTR(-ENOMEM);
5896	eb->fs_info = fs_info;
5897again:
5898	ret = radix_tree_preload(GFP_NOFS);
5899	if (ret) {
5900		exists = ERR_PTR(ret);
5901		goto free_eb;
5902	}
5903	spin_lock(&fs_info->buffer_lock);
5904	ret = radix_tree_insert(&fs_info->buffer_radix,
5905				start >> fs_info->sectorsize_bits, eb);
5906	spin_unlock(&fs_info->buffer_lock);
5907	radix_tree_preload_end();
5908	if (ret == -EEXIST) {
5909		exists = find_extent_buffer(fs_info, start);
5910		if (exists)
5911			goto free_eb;
5912		else
5913			goto again;
5914	}
5915	check_buffer_tree_ref(eb);
5916	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5917
5918	return eb;
5919free_eb:
5920	btrfs_release_extent_buffer(eb);
5921	return exists;
5922}
5923#endif
5924
5925static struct extent_buffer *grab_extent_buffer(
5926		struct btrfs_fs_info *fs_info, struct page *page)
5927{
 
5928	struct extent_buffer *exists;
5929
 
 
5930	/*
5931	 * For subpage case, we completely rely on radix tree to ensure we
5932	 * don't try to insert two ebs for the same bytenr.  So here we always
5933	 * return NULL and just continue.
5934	 */
5935	if (fs_info->sectorsize < PAGE_SIZE)
5936		return NULL;
5937
5938	/* Page not yet attached to an extent buffer */
5939	if (!PagePrivate(page))
5940		return NULL;
5941
5942	/*
5943	 * We could have already allocated an eb for this page and attached one
5944	 * so lets see if we can get a ref on the existing eb, and if we can we
5945	 * know it's good and we can just return that one, else we know we can
5946	 * just overwrite page->private.
5947	 */
5948	exists = (struct extent_buffer *)page->private;
5949	if (atomic_inc_not_zero(&exists->refs))
5950		return exists;
5951
5952	WARN_ON(PageDirty(page));
5953	detach_page_private(page);
5954	return NULL;
5955}
5956
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5957struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
5958					  u64 start, u64 owner_root, int level)
5959{
5960	unsigned long len = fs_info->nodesize;
5961	int num_pages;
5962	int i;
5963	unsigned long index = start >> PAGE_SHIFT;
5964	struct extent_buffer *eb;
5965	struct extent_buffer *exists = NULL;
5966	struct page *p;
5967	struct address_space *mapping = fs_info->btree_inode->i_mapping;
 
5968	int uptodate = 1;
5969	int ret;
5970
5971	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
5972		btrfs_err(fs_info, "bad tree block start %llu", start);
5973		return ERR_PTR(-EINVAL);
5974	}
5975
5976#if BITS_PER_LONG == 32
5977	if (start >= MAX_LFS_FILESIZE) {
5978		btrfs_err_rl(fs_info,
5979		"extent buffer %llu is beyond 32bit page cache limit", start);
5980		btrfs_err_32bit_limit(fs_info);
5981		return ERR_PTR(-EOVERFLOW);
5982	}
5983	if (start >= BTRFS_32BIT_EARLY_WARN_THRESHOLD)
5984		btrfs_warn_32bit_limit(fs_info);
5985#endif
5986
5987	if (fs_info->sectorsize < PAGE_SIZE &&
5988	    offset_in_page(start) + len > PAGE_SIZE) {
5989		btrfs_err(fs_info,
5990		"tree block crosses page boundary, start %llu nodesize %lu",
5991			  start, len);
5992		return ERR_PTR(-EINVAL);
5993	}
5994
5995	eb = find_extent_buffer(fs_info, start);
5996	if (eb)
5997		return eb;
5998
5999	eb = __alloc_extent_buffer(fs_info, start, len);
6000	if (!eb)
6001		return ERR_PTR(-ENOMEM);
6002	btrfs_set_buffer_lockdep_class(owner_root, eb, level);
6003
6004	num_pages = num_extent_pages(eb);
6005	for (i = 0; i < num_pages; i++, index++) {
6006		struct btrfs_subpage *prealloc = NULL;
6007
6008		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
6009		if (!p) {
6010			exists = ERR_PTR(-ENOMEM);
6011			goto free_eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6012		}
6013
6014		/*
6015		 * Preallocate page->private for subpage case, so that we won't
6016		 * allocate memory with private_lock hold.  The memory will be
6017		 * freed by attach_extent_buffer_page() or freed manually if
6018		 * we exit earlier.
 
 
6019		 *
6020		 * Although we have ensured one subpage eb can only have one
6021		 * page, but it may change in the future for 16K page size
6022		 * support, so we still preallocate the memory in the loop.
 
 
 
 
 
 
 
6023		 */
6024		ret = btrfs_alloc_subpage(fs_info, &prealloc,
6025					  BTRFS_SUBPAGE_METADATA);
6026		if (ret < 0) {
6027			unlock_page(p);
6028			put_page(p);
6029			exists = ERR_PTR(ret);
6030			goto free_eb;
6031		}
 
 
 
 
 
 
 
 
 
6032
6033		spin_lock(&mapping->private_lock);
6034		exists = grab_extent_buffer(fs_info, p);
6035		if (exists) {
6036			spin_unlock(&mapping->private_lock);
6037			unlock_page(p);
6038			put_page(p);
6039			mark_extent_buffer_accessed(exists, p);
6040			btrfs_free_subpage(prealloc);
6041			goto free_eb;
6042		}
6043		/* Should not fail, as we have preallocated the memory */
6044		ret = attach_extent_buffer_page(eb, p, prealloc);
6045		ASSERT(!ret);
6046		/*
6047		 * To inform we have extra eb under allocation, so that
6048		 * detach_extent_buffer_page() won't release the page private
6049		 * when the eb hasn't yet been inserted into radix tree.
6050		 *
6051		 * The ref will be decreased when the eb released the page, in
6052		 * detach_extent_buffer_page().
6053		 * Thus needs no special handling in error path.
6054		 */
6055		btrfs_page_inc_eb_refs(fs_info, p);
6056		spin_unlock(&mapping->private_lock);
6057
6058		WARN_ON(btrfs_page_test_dirty(fs_info, p, eb->start, eb->len));
6059		eb->pages[i] = p;
6060		if (!PageUptodate(p))
6061			uptodate = 0;
6062
6063		/*
6064		 * We can't unlock the pages just yet since the extent buffer
6065		 * hasn't been properly inserted in the radix tree, this
6066		 * opens a race with btree_releasepage which can free a page
6067		 * while we are still filling in all pages for the buffer and
6068		 * we could crash.
6069		 */
6070	}
6071	if (uptodate)
6072		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
 
 
 
6073again:
6074	ret = radix_tree_preload(GFP_NOFS);
6075	if (ret) {
6076		exists = ERR_PTR(ret);
6077		goto free_eb;
6078	}
6079
6080	spin_lock(&fs_info->buffer_lock);
6081	ret = radix_tree_insert(&fs_info->buffer_radix,
6082				start >> fs_info->sectorsize_bits, eb);
6083	spin_unlock(&fs_info->buffer_lock);
6084	radix_tree_preload_end();
6085	if (ret == -EEXIST) {
6086		exists = find_extent_buffer(fs_info, start);
6087		if (exists)
6088			goto free_eb;
 
6089		else
6090			goto again;
6091	}
6092	/* add one reference for the tree */
6093	check_buffer_tree_ref(eb);
6094	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
6095
6096	/*
6097	 * Now it's safe to unlock the pages because any calls to
6098	 * btree_releasepage will correctly detect that a page belongs to a
6099	 * live buffer and won't free them prematurely.
6100	 */
6101	for (i = 0; i < num_pages; i++)
6102		unlock_page(eb->pages[i]);
6103	return eb;
6104
6105free_eb:
6106	WARN_ON(!atomic_dec_and_test(&eb->refs));
6107	for (i = 0; i < num_pages; i++) {
6108		if (eb->pages[i])
6109			unlock_page(eb->pages[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6110	}
 
 
 
 
 
6111
6112	btrfs_release_extent_buffer(eb);
6113	return exists;
 
 
 
6114}
6115
6116static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
6117{
6118	struct extent_buffer *eb =
6119			container_of(head, struct extent_buffer, rcu_head);
6120
6121	__free_extent_buffer(eb);
6122}
6123
6124static int release_extent_buffer(struct extent_buffer *eb)
6125	__releases(&eb->refs_lock)
6126{
6127	lockdep_assert_held(&eb->refs_lock);
6128
6129	WARN_ON(atomic_read(&eb->refs) == 0);
6130	if (atomic_dec_and_test(&eb->refs)) {
6131		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
6132			struct btrfs_fs_info *fs_info = eb->fs_info;
6133
6134			spin_unlock(&eb->refs_lock);
6135
6136			spin_lock(&fs_info->buffer_lock);
6137			radix_tree_delete(&fs_info->buffer_radix,
6138					  eb->start >> fs_info->sectorsize_bits);
6139			spin_unlock(&fs_info->buffer_lock);
6140		} else {
6141			spin_unlock(&eb->refs_lock);
6142		}
6143
6144		btrfs_leak_debug_del(&eb->fs_info->eb_leak_lock, &eb->leak_list);
6145		/* Should be safe to release our pages at this point */
6146		btrfs_release_extent_buffer_pages(eb);
6147#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
6148		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
6149			__free_extent_buffer(eb);
6150			return 1;
6151		}
6152#endif
6153		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
6154		return 1;
6155	}
6156	spin_unlock(&eb->refs_lock);
6157
6158	return 0;
6159}
6160
6161void free_extent_buffer(struct extent_buffer *eb)
6162{
6163	int refs;
6164	int old;
6165	if (!eb)
6166		return;
6167
 
6168	while (1) {
6169		refs = atomic_read(&eb->refs);
6170		if ((!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) && refs <= 3)
6171		    || (test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags) &&
6172			refs == 1))
6173			break;
6174		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
6175		if (old == refs)
6176			return;
6177	}
6178
6179	spin_lock(&eb->refs_lock);
6180	if (atomic_read(&eb->refs) == 2 &&
6181	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
6182	    !extent_buffer_under_io(eb) &&
6183	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6184		atomic_dec(&eb->refs);
6185
6186	/*
6187	 * I know this is terrible, but it's temporary until we stop tracking
6188	 * the uptodate bits and such for the extent buffers.
6189	 */
6190	release_extent_buffer(eb);
6191}
6192
6193void free_extent_buffer_stale(struct extent_buffer *eb)
6194{
6195	if (!eb)
6196		return;
6197
6198	spin_lock(&eb->refs_lock);
6199	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
6200
6201	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
6202	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
6203		atomic_dec(&eb->refs);
6204	release_extent_buffer(eb);
6205}
6206
6207static void btree_clear_page_dirty(struct page *page)
6208{
6209	ASSERT(PageDirty(page));
6210	ASSERT(PageLocked(page));
6211	clear_page_dirty_for_io(page);
6212	xa_lock_irq(&page->mapping->i_pages);
6213	if (!PageDirty(page))
6214		__xa_clear_mark(&page->mapping->i_pages,
6215				page_index(page), PAGECACHE_TAG_DIRTY);
6216	xa_unlock_irq(&page->mapping->i_pages);
6217}
6218
6219static void clear_subpage_extent_buffer_dirty(const struct extent_buffer *eb)
6220{
6221	struct btrfs_fs_info *fs_info = eb->fs_info;
6222	struct page *page = eb->pages[0];
6223	bool last;
6224
6225	/* btree_clear_page_dirty() needs page locked */
6226	lock_page(page);
6227	last = btrfs_subpage_clear_and_test_dirty(fs_info, page, eb->start,
6228						  eb->len);
6229	if (last)
6230		btree_clear_page_dirty(page);
6231	unlock_page(page);
6232	WARN_ON(atomic_read(&eb->refs) == 0);
6233}
6234
6235void clear_extent_buffer_dirty(const struct extent_buffer *eb)
 
6236{
6237	int i;
6238	int num_pages;
6239	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6240
6241	if (eb->fs_info->sectorsize < PAGE_SIZE)
6242		return clear_subpage_extent_buffer_dirty(eb);
6243
6244	num_pages = num_extent_pages(eb);
 
 
6245
6246	for (i = 0; i < num_pages; i++) {
6247		page = eb->pages[i];
6248		if (!PageDirty(page))
6249			continue;
6250		lock_page(page);
6251		btree_clear_page_dirty(page);
6252		ClearPageError(page);
6253		unlock_page(page);
6254	}
6255	WARN_ON(atomic_read(&eb->refs) == 0);
6256}
6257
6258bool set_extent_buffer_dirty(struct extent_buffer *eb)
6259{
6260	int i;
6261	int num_pages;
6262	bool was_dirty;
6263
6264	check_buffer_tree_ref(eb);
6265
6266	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
6267
6268	num_pages = num_extent_pages(eb);
6269	WARN_ON(atomic_read(&eb->refs) == 0);
6270	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
 
6271
6272	if (!was_dirty) {
6273		bool subpage = eb->fs_info->sectorsize < PAGE_SIZE;
6274
6275		/*
6276		 * For subpage case, we can have other extent buffers in the
6277		 * same page, and in clear_subpage_extent_buffer_dirty() we
6278		 * have to clear page dirty without subpage lock held.
6279		 * This can cause race where our page gets dirty cleared after
6280		 * we just set it.
6281		 *
6282		 * Thankfully, clear_subpage_extent_buffer_dirty() has locked
6283		 * its page for other reasons, we can use page lock to prevent
6284		 * the above race.
6285		 */
6286		if (subpage)
6287			lock_page(eb->pages[0]);
6288		for (i = 0; i < num_pages; i++)
6289			btrfs_page_set_dirty(eb->fs_info, eb->pages[i],
6290					     eb->start, eb->len);
6291		if (subpage)
6292			unlock_page(eb->pages[0]);
 
 
 
6293	}
6294#ifdef CONFIG_BTRFS_DEBUG
6295	for (i = 0; i < num_pages; i++)
6296		ASSERT(PageDirty(eb->pages[i]));
6297#endif
6298
6299	return was_dirty;
6300}
6301
6302void clear_extent_buffer_uptodate(struct extent_buffer *eb)
6303{
6304	struct btrfs_fs_info *fs_info = eb->fs_info;
6305	struct page *page;
6306	int num_pages;
6307	int i;
6308
6309	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6310	num_pages = num_extent_pages(eb);
6311	for (i = 0; i < num_pages; i++) {
6312		page = eb->pages[i];
6313		if (page)
6314			btrfs_page_clear_uptodate(fs_info, page,
6315						  eb->start, eb->len);
 
 
 
 
 
 
 
 
 
6316	}
6317}
6318
6319void set_extent_buffer_uptodate(struct extent_buffer *eb)
6320{
6321	struct btrfs_fs_info *fs_info = eb->fs_info;
6322	struct page *page;
6323	int num_pages;
6324	int i;
6325
6326	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6327	num_pages = num_extent_pages(eb);
6328	for (i = 0; i < num_pages; i++) {
6329		page = eb->pages[i];
6330		btrfs_page_set_uptodate(fs_info, page, eb->start, eb->len);
 
 
 
 
 
 
 
 
6331	}
6332}
6333
6334static int read_extent_buffer_subpage(struct extent_buffer *eb, int wait,
6335				      int mirror_num)
 
 
 
 
 
 
6336{
 
6337	struct btrfs_fs_info *fs_info = eb->fs_info;
6338	struct extent_io_tree *io_tree;
6339	struct page *page = eb->pages[0];
6340	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6341	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
6342
6343	ASSERT(!test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags));
6344	ASSERT(PagePrivate(page));
6345	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
6346
6347	if (wait == WAIT_NONE) {
6348		if (!try_lock_extent(io_tree, eb->start, eb->start + eb->len - 1))
6349			return -EAGAIN;
6350	} else {
6351		ret = lock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6352		if (ret < 0)
6353			return ret;
6354	}
6355
6356	ret = 0;
6357	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags) ||
6358	    PageUptodate(page) ||
6359	    btrfs_subpage_test_uptodate(fs_info, page, eb->start, eb->len)) {
6360		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6361		unlock_extent(io_tree, eb->start, eb->start + eb->len - 1);
6362		return ret;
6363	}
6364
6365	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6366	eb->read_mirror = 0;
6367	atomic_set(&eb->io_pages, 1);
6368	check_buffer_tree_ref(eb);
6369	btrfs_subpage_clear_error(fs_info, page, eb->start, eb->len);
6370
6371	btrfs_subpage_start_reader(fs_info, page, eb->start, eb->len);
6372	ret = submit_extent_page(REQ_OP_READ | REQ_META, NULL, &bio_ctrl,
6373				 page, eb->start, eb->len,
6374				 eb->start - page_offset(page),
6375				 end_bio_extent_readpage, mirror_num, 0,
6376				 true);
6377	if (ret) {
6378		/*
6379		 * In the endio function, if we hit something wrong we will
6380		 * increase the io_pages, so here we need to decrease it for
6381		 * error path.
6382		 */
6383		atomic_dec(&eb->io_pages);
6384	}
6385	if (bio_ctrl.bio) {
6386		int tmp;
6387
6388		tmp = submit_one_bio(bio_ctrl.bio, mirror_num, 0);
6389		bio_ctrl.bio = NULL;
6390		if (tmp < 0)
6391			return tmp;
6392	}
6393	if (ret || wait != WAIT_COMPLETE)
6394		return ret;
6395
6396	wait_extent_bit(io_tree, eb->start, eb->start + eb->len - 1, EXTENT_LOCKED);
6397	if (!test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6398		ret = -EIO;
6399	return ret;
6400}
6401
6402int read_extent_buffer_pages(struct extent_buffer *eb, int wait, int mirror_num)
 
6403{
6404	int i;
6405	struct page *page;
6406	int err;
6407	int ret = 0;
6408	int locked_pages = 0;
6409	int all_uptodate = 1;
6410	int num_pages;
6411	unsigned long num_reads = 0;
6412	struct btrfs_bio_ctrl bio_ctrl = { 0 };
6413
6414	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
6415		return 0;
6416
6417	if (eb->fs_info->sectorsize < PAGE_SIZE)
6418		return read_extent_buffer_subpage(eb, wait, mirror_num);
 
 
 
 
 
 
 
 
 
6419
6420	num_pages = num_extent_pages(eb);
6421	for (i = 0; i < num_pages; i++) {
6422		page = eb->pages[i];
6423		if (wait == WAIT_NONE) {
6424			/*
6425			 * WAIT_NONE is only utilized by readahead. If we can't
6426			 * acquire the lock atomically it means either the eb
6427			 * is being read out or under modification.
6428			 * Either way the eb will be or has been cached,
6429			 * readahead can exit safely.
6430			 */
6431			if (!trylock_page(page))
6432				goto unlock_exit;
6433		} else {
6434			lock_page(page);
6435		}
6436		locked_pages++;
6437	}
6438	/*
6439	 * We need to firstly lock all pages to make sure that
6440	 * the uptodate bit of our pages won't be affected by
6441	 * clear_extent_buffer_uptodate().
 
6442	 */
6443	for (i = 0; i < num_pages; i++) {
6444		page = eb->pages[i];
6445		if (!PageUptodate(page)) {
6446			num_reads++;
6447			all_uptodate = 0;
6448		}
6449	}
6450
6451	if (all_uptodate) {
6452		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
6453		goto unlock_exit;
6454	}
6455
6456	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
6457	eb->read_mirror = 0;
6458	atomic_set(&eb->io_pages, num_reads);
6459	/*
6460	 * It is possible for releasepage to clear the TREE_REF bit before we
6461	 * set io_pages. See check_buffer_tree_ref for a more detailed comment.
6462	 */
6463	check_buffer_tree_ref(eb);
6464	for (i = 0; i < num_pages; i++) {
6465		page = eb->pages[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
6466
6467		if (!PageUptodate(page)) {
6468			if (ret) {
6469				atomic_dec(&eb->io_pages);
6470				unlock_page(page);
6471				continue;
6472			}
6473
6474			ClearPageError(page);
6475			err = submit_extent_page(REQ_OP_READ | REQ_META, NULL,
6476					 &bio_ctrl, page, page_offset(page),
6477					 PAGE_SIZE, 0, end_bio_extent_readpage,
6478					 mirror_num, 0, false);
6479			if (err) {
6480				/*
6481				 * We failed to submit the bio so it's the
6482				 * caller's responsibility to perform cleanup
6483				 * i.e unlock page/set error bit.
6484				 */
6485				ret = err;
6486				SetPageError(page);
6487				unlock_page(page);
6488				atomic_dec(&eb->io_pages);
6489			}
6490		} else {
6491			unlock_page(page);
6492		}
6493	}
 
6494
6495	if (bio_ctrl.bio) {
6496		err = submit_one_bio(bio_ctrl.bio, mirror_num, bio_ctrl.bio_flags);
6497		bio_ctrl.bio = NULL;
6498		if (err)
6499			return err;
6500	}
6501
6502	if (ret || wait != WAIT_COMPLETE)
6503		return ret;
6504
6505	for (i = 0; i < num_pages; i++) {
6506		page = eb->pages[i];
6507		wait_on_page_locked(page);
6508		if (!PageUptodate(page))
6509			ret = -EIO;
6510	}
6511
6512	return ret;
6513
6514unlock_exit:
6515	while (locked_pages > 0) {
6516		locked_pages--;
6517		page = eb->pages[locked_pages];
6518		unlock_page(page);
6519	}
6520	return ret;
6521}
6522
6523static bool report_eb_range(const struct extent_buffer *eb, unsigned long start,
6524			    unsigned long len)
6525{
6526	btrfs_warn(eb->fs_info,
6527		"access to eb bytenr %llu len %lu out of range start %lu len %lu",
6528		eb->start, eb->len, start, len);
6529	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
6530
6531	return true;
6532}
6533
6534/*
6535 * Check if the [start, start + len) range is valid before reading/writing
6536 * the eb.
6537 * NOTE: @start and @len are offset inside the eb, not logical address.
6538 *
6539 * Caller should not touch the dst/src memory if this function returns error.
6540 */
6541static inline int check_eb_range(const struct extent_buffer *eb,
6542				 unsigned long start, unsigned long len)
6543{
6544	unsigned long offset;
6545
6546	/* start, start + len should not go beyond eb->len nor overflow */
6547	if (unlikely(check_add_overflow(start, len, &offset) || offset > eb->len))
6548		return report_eb_range(eb, start, len);
6549
6550	return false;
6551}
6552
6553void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
6554			unsigned long start, unsigned long len)
6555{
 
6556	size_t cur;
6557	size_t offset;
6558	struct page *page;
6559	char *kaddr;
6560	char *dst = (char *)dstv;
6561	unsigned long i = get_eb_page_index(start);
6562
6563	if (check_eb_range(eb, start, len))
 
 
 
 
 
 
 
 
 
 
6564		return;
 
6565
6566	offset = get_eb_offset_in_page(eb, start);
6567
6568	while (len > 0) {
6569		page = eb->pages[i];
6570
6571		cur = min(len, (PAGE_SIZE - offset));
6572		kaddr = page_address(page);
6573		memcpy(dst, kaddr + offset, cur);
6574
6575		dst += cur;
6576		len -= cur;
6577		offset = 0;
6578		i++;
6579	}
6580}
6581
6582int read_extent_buffer_to_user_nofault(const struct extent_buffer *eb,
6583				       void __user *dstv,
6584				       unsigned long start, unsigned long len)
6585{
 
6586	size_t cur;
6587	size_t offset;
6588	struct page *page;
6589	char *kaddr;
6590	char __user *dst = (char __user *)dstv;
6591	unsigned long i = get_eb_page_index(start);
6592	int ret = 0;
6593
6594	WARN_ON(start > eb->len);
6595	WARN_ON(start + len > eb->start + eb->len);
6596
6597	offset = get_eb_offset_in_page(eb, start);
 
 
 
 
 
 
6598
6599	while (len > 0) {
6600		page = eb->pages[i];
6601
6602		cur = min(len, (PAGE_SIZE - offset));
6603		kaddr = page_address(page);
6604		if (copy_to_user_nofault(dst, kaddr + offset, cur)) {
6605			ret = -EFAULT;
6606			break;
6607		}
6608
6609		dst += cur;
6610		len -= cur;
6611		offset = 0;
6612		i++;
6613	}
6614
6615	return ret;
6616}
6617
6618int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
6619			 unsigned long start, unsigned long len)
6620{
 
6621	size_t cur;
6622	size_t offset;
6623	struct page *page;
6624	char *kaddr;
6625	char *ptr = (char *)ptrv;
6626	unsigned long i = get_eb_page_index(start);
6627	int ret = 0;
6628
6629	if (check_eb_range(eb, start, len))
6630		return -EINVAL;
6631
6632	offset = get_eb_offset_in_page(eb, start);
 
 
 
6633
6634	while (len > 0) {
6635		page = eb->pages[i];
6636
6637		cur = min(len, (PAGE_SIZE - offset));
6638
6639		kaddr = page_address(page);
6640		ret = memcmp(ptr, kaddr + offset, cur);
6641		if (ret)
6642			break;
6643
6644		ptr += cur;
6645		len -= cur;
6646		offset = 0;
6647		i++;
6648	}
6649	return ret;
6650}
6651
6652/*
6653 * Check that the extent buffer is uptodate.
6654 *
6655 * For regular sector size == PAGE_SIZE case, check if @page is uptodate.
6656 * For subpage case, check if the range covered by the eb has EXTENT_UPTODATE.
6657 */
6658static void assert_eb_page_uptodate(const struct extent_buffer *eb,
6659				    struct page *page)
6660{
6661	struct btrfs_fs_info *fs_info = eb->fs_info;
 
6662
6663	if (fs_info->sectorsize < PAGE_SIZE) {
6664		bool uptodate;
6665
6666		uptodate = btrfs_subpage_test_uptodate(fs_info, page,
6667						       eb->start, eb->len);
6668		WARN_ON(!uptodate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6669	} else {
6670		WARN_ON(!PageUptodate(page));
6671	}
6672}
6673
6674void write_extent_buffer_chunk_tree_uuid(const struct extent_buffer *eb,
6675		const void *srcv)
6676{
6677	char *kaddr;
6678
6679	assert_eb_page_uptodate(eb, eb->pages[0]);
6680	kaddr = page_address(eb->pages[0]) +
6681		get_eb_offset_in_page(eb, offsetof(struct btrfs_header,
6682						   chunk_tree_uuid));
6683	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6684}
6685
6686void write_extent_buffer_fsid(const struct extent_buffer *eb, const void *srcv)
6687{
6688	char *kaddr;
6689
6690	assert_eb_page_uptodate(eb, eb->pages[0]);
6691	kaddr = page_address(eb->pages[0]) +
6692		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, fsid));
6693	memcpy(kaddr, srcv, BTRFS_FSID_SIZE);
6694}
6695
6696void write_extent_buffer(const struct extent_buffer *eb, const void *srcv,
6697			 unsigned long start, unsigned long len)
6698{
 
6699	size_t cur;
6700	size_t offset;
6701	struct page *page;
6702	char *kaddr;
6703	char *src = (char *)srcv;
6704	unsigned long i = get_eb_page_index(start);
 
 
6705
6706	WARN_ON(test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags));
 
6707
6708	if (check_eb_range(eb, start, len))
 
 
 
 
6709		return;
 
6710
6711	offset = get_eb_offset_in_page(eb, start);
6712
6713	while (len > 0) {
6714		page = eb->pages[i];
6715		assert_eb_page_uptodate(eb, page);
6716
6717		cur = min(len, PAGE_SIZE - offset);
6718		kaddr = page_address(page);
6719		memcpy(kaddr + offset, src, cur);
 
 
 
6720
6721		src += cur;
6722		len -= cur;
6723		offset = 0;
6724		i++;
6725	}
6726}
6727
6728void memzero_extent_buffer(const struct extent_buffer *eb, unsigned long start,
6729		unsigned long len)
 
 
 
 
 
 
6730{
6731	size_t cur;
6732	size_t offset;
6733	struct page *page;
6734	char *kaddr;
6735	unsigned long i = get_eb_page_index(start);
6736
6737	if (check_eb_range(eb, start, len))
 
6738		return;
 
6739
6740	offset = get_eb_offset_in_page(eb, start);
 
 
 
6741
6742	while (len > 0) {
6743		page = eb->pages[i];
6744		assert_eb_page_uptodate(eb, page);
6745
6746		cur = min(len, PAGE_SIZE - offset);
6747		kaddr = page_address(page);
6748		memset(kaddr + offset, 0, cur);
6749
6750		len -= cur;
6751		offset = 0;
6752		i++;
6753	}
 
 
6754}
6755
6756void copy_extent_buffer_full(const struct extent_buffer *dst,
6757			     const struct extent_buffer *src)
6758{
6759	int i;
6760	int num_pages;
6761
6762	ASSERT(dst->len == src->len);
6763
6764	if (dst->fs_info->sectorsize == PAGE_SIZE) {
6765		num_pages = num_extent_pages(dst);
6766		for (i = 0; i < num_pages; i++)
6767			copy_page(page_address(dst->pages[i]),
6768				  page_address(src->pages[i]));
6769	} else {
6770		size_t src_offset = get_eb_offset_in_page(src, 0);
6771		size_t dst_offset = get_eb_offset_in_page(dst, 0);
6772
6773		ASSERT(src->fs_info->sectorsize < PAGE_SIZE);
6774		memcpy(page_address(dst->pages[0]) + dst_offset,
6775		       page_address(src->pages[0]) + src_offset,
6776		       src->len);
6777	}
6778}
6779
6780void copy_extent_buffer(const struct extent_buffer *dst,
6781			const struct extent_buffer *src,
6782			unsigned long dst_offset, unsigned long src_offset,
6783			unsigned long len)
6784{
 
6785	u64 dst_len = dst->len;
6786	size_t cur;
6787	size_t offset;
6788	struct page *page;
6789	char *kaddr;
6790	unsigned long i = get_eb_page_index(dst_offset);
6791
6792	if (check_eb_range(dst, dst_offset, len) ||
6793	    check_eb_range(src, src_offset, len))
6794		return;
6795
6796	WARN_ON(src->len != dst_len);
6797
6798	offset = get_eb_offset_in_page(dst, dst_offset);
6799
6800	while (len > 0) {
6801		page = dst->pages[i];
6802		assert_eb_page_uptodate(dst, page);
6803
6804		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
6805
6806		kaddr = page_address(page);
6807		read_extent_buffer(src, kaddr + offset, src_offset, cur);
6808
6809		src_offset += cur;
6810		len -= cur;
6811		offset = 0;
6812		i++;
6813	}
6814}
6815
6816/*
6817 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
6818 * given bit number
6819 * @eb: the extent buffer
6820 * @start: offset of the bitmap item in the extent buffer
6821 * @nr: bit number
6822 * @page_index: return index of the page in the extent buffer that contains the
6823 * given bit number
6824 * @page_offset: return offset into the page given by page_index
6825 *
6826 * This helper hides the ugliness of finding the byte in an extent buffer which
6827 * contains a given bit.
6828 */
6829static inline void eb_bitmap_offset(const struct extent_buffer *eb,
6830				    unsigned long start, unsigned long nr,
6831				    unsigned long *page_index,
6832				    size_t *page_offset)
6833{
6834	size_t byte_offset = BIT_BYTE(nr);
6835	size_t offset;
6836
6837	/*
6838	 * The byte we want is the offset of the extent buffer + the offset of
6839	 * the bitmap item in the extent buffer + the offset of the byte in the
6840	 * bitmap item.
6841	 */
6842	offset = start + offset_in_page(eb->start) + byte_offset;
6843
6844	*page_index = offset >> PAGE_SHIFT;
6845	*page_offset = offset_in_page(offset);
6846}
6847
6848/**
6849 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
6850 * @eb: the extent buffer
6851 * @start: offset of the bitmap item in the extent buffer
6852 * @nr: bit number to test
 
6853 */
6854int extent_buffer_test_bit(const struct extent_buffer *eb, unsigned long start,
6855			   unsigned long nr)
6856{
6857	u8 *kaddr;
6858	struct page *page;
6859	unsigned long i;
6860	size_t offset;
 
6861
6862	eb_bitmap_offset(eb, start, nr, &i, &offset);
6863	page = eb->pages[i];
6864	assert_eb_page_uptodate(eb, page);
6865	kaddr = page_address(page);
6866	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
6867}
6868
6869/**
6870 * extent_buffer_bitmap_set - set an area of a bitmap
6871 * @eb: the extent buffer
6872 * @start: offset of the bitmap item in the extent buffer
6873 * @pos: bit number of the first bit
6874 * @len: number of bits to set
 
 
 
 
 
 
 
 
 
 
6875 */
6876void extent_buffer_bitmap_set(const struct extent_buffer *eb, unsigned long start,
6877			      unsigned long pos, unsigned long len)
6878{
 
 
 
 
6879	u8 *kaddr;
6880	struct page *page;
6881	unsigned long i;
6882	size_t offset;
6883	const unsigned int size = pos + len;
6884	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6885	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
6886
6887	eb_bitmap_offset(eb, start, pos, &i, &offset);
6888	page = eb->pages[i];
6889	assert_eb_page_uptodate(eb, page);
6890	kaddr = page_address(page);
6891
6892	while (len >= bits_to_set) {
6893		kaddr[offset] |= mask_to_set;
6894		len -= bits_to_set;
6895		bits_to_set = BITS_PER_BYTE;
6896		mask_to_set = ~0;
6897		if (++offset >= PAGE_SIZE && len > 0) {
6898			offset = 0;
6899			page = eb->pages[++i];
6900			assert_eb_page_uptodate(eb, page);
6901			kaddr = page_address(page);
6902		}
6903	}
6904	if (len) {
6905		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
6906		kaddr[offset] |= mask_to_set;
6907	}
6908}
6909
6910
6911/**
6912 * extent_buffer_bitmap_clear - clear an area of a bitmap
6913 * @eb: the extent buffer
6914 * @start: offset of the bitmap item in the extent buffer
6915 * @pos: bit number of the first bit
6916 * @len: number of bits to clear
 
6917 */
6918void extent_buffer_bitmap_clear(const struct extent_buffer *eb,
6919				unsigned long start, unsigned long pos,
6920				unsigned long len)
6921{
 
 
 
 
6922	u8 *kaddr;
6923	struct page *page;
6924	unsigned long i;
6925	size_t offset;
6926	const unsigned int size = pos + len;
6927	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
6928	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
6929
6930	eb_bitmap_offset(eb, start, pos, &i, &offset);
6931	page = eb->pages[i];
6932	assert_eb_page_uptodate(eb, page);
6933	kaddr = page_address(page);
6934
6935	while (len >= bits_to_clear) {
6936		kaddr[offset] &= ~mask_to_clear;
6937		len -= bits_to_clear;
6938		bits_to_clear = BITS_PER_BYTE;
6939		mask_to_clear = ~0;
6940		if (++offset >= PAGE_SIZE && len > 0) {
6941			offset = 0;
6942			page = eb->pages[++i];
6943			assert_eb_page_uptodate(eb, page);
6944			kaddr = page_address(page);
6945		}
6946	}
6947	if (len) {
6948		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
6949		kaddr[offset] &= ~mask_to_clear;
6950	}
6951}
6952
6953static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
6954{
6955	unsigned long distance = (src > dst) ? src - dst : dst - src;
6956	return distance < len;
6957}
6958
6959static void copy_pages(struct page *dst_page, struct page *src_page,
6960		       unsigned long dst_off, unsigned long src_off,
6961		       unsigned long len)
6962{
6963	char *dst_kaddr = page_address(dst_page);
6964	char *src_kaddr;
6965	int must_memmove = 0;
6966
6967	if (dst_page != src_page) {
6968		src_kaddr = page_address(src_page);
6969	} else {
6970		src_kaddr = dst_kaddr;
6971		if (areas_overlap(src_off, dst_off, len))
6972			must_memmove = 1;
6973	}
6974
6975	if (must_memmove)
6976		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
6977	else
6978		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
6979}
6980
6981void memcpy_extent_buffer(const struct extent_buffer *dst,
6982			  unsigned long dst_offset, unsigned long src_offset,
6983			  unsigned long len)
6984{
6985	size_t cur;
6986	size_t dst_off_in_page;
6987	size_t src_off_in_page;
6988	unsigned long dst_i;
6989	unsigned long src_i;
6990
6991	if (check_eb_range(dst, dst_offset, len) ||
6992	    check_eb_range(dst, src_offset, len))
6993		return;
6994
6995	while (len > 0) {
6996		dst_off_in_page = get_eb_offset_in_page(dst, dst_offset);
6997		src_off_in_page = get_eb_offset_in_page(dst, src_offset);
6998
6999		dst_i = get_eb_page_index(dst_offset);
7000		src_i = get_eb_page_index(src_offset);
7001
7002		cur = min(len, (unsigned long)(PAGE_SIZE -
7003					       src_off_in_page));
7004		cur = min_t(unsigned long, cur,
7005			(unsigned long)(PAGE_SIZE - dst_off_in_page));
7006
7007		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7008			   dst_off_in_page, src_off_in_page, cur);
7009
7010		src_offset += cur;
7011		dst_offset += cur;
7012		len -= cur;
 
 
 
 
 
 
 
7013	}
7014}
7015
7016void memmove_extent_buffer(const struct extent_buffer *dst,
7017			   unsigned long dst_offset, unsigned long src_offset,
7018			   unsigned long len)
7019{
7020	size_t cur;
7021	size_t dst_off_in_page;
7022	size_t src_off_in_page;
7023	unsigned long dst_end = dst_offset + len - 1;
7024	unsigned long src_end = src_offset + len - 1;
7025	unsigned long dst_i;
7026	unsigned long src_i;
7027
7028	if (check_eb_range(dst, dst_offset, len) ||
7029	    check_eb_range(dst, src_offset, len))
7030		return;
 
7031	if (dst_offset < src_offset) {
7032		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
7033		return;
7034	}
 
 
 
 
 
 
7035	while (len > 0) {
7036		dst_i = get_eb_page_index(dst_end);
7037		src_i = get_eb_page_index(src_end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7038
7039		dst_off_in_page = get_eb_offset_in_page(dst, dst_end);
7040		src_off_in_page = get_eb_offset_in_page(dst, src_end);
7041
7042		cur = min_t(unsigned long, len, src_off_in_page + 1);
7043		cur = min(cur, dst_off_in_page + 1);
7044		copy_pages(dst->pages[dst_i], dst->pages[src_i],
7045			   dst_off_in_page - cur + 1,
7046			   src_off_in_page - cur + 1, cur);
7047
7048		dst_end -= cur;
7049		src_end -= cur;
7050		len -= cur;
7051	}
7052}
7053
 
7054static struct extent_buffer *get_next_extent_buffer(
7055		struct btrfs_fs_info *fs_info, struct page *page, u64 bytenr)
7056{
7057	struct extent_buffer *gang[BTRFS_SUBPAGE_BITMAP_SIZE];
7058	struct extent_buffer *found = NULL;
7059	u64 page_start = page_offset(page);
7060	int ret;
7061	int i;
7062
7063	ASSERT(in_range(bytenr, page_start, PAGE_SIZE));
7064	ASSERT(PAGE_SIZE / fs_info->nodesize <= BTRFS_SUBPAGE_BITMAP_SIZE);
7065	lockdep_assert_held(&fs_info->buffer_lock);
7066
7067	ret = radix_tree_gang_lookup(&fs_info->buffer_radix, (void **)gang,
7068			bytenr >> fs_info->sectorsize_bits,
7069			PAGE_SIZE / fs_info->nodesize);
7070	for (i = 0; i < ret; i++) {
7071		/* Already beyond page end */
7072		if (gang[i]->start >= page_start + PAGE_SIZE)
7073			break;
7074		/* Found one */
7075		if (gang[i]->start >= bytenr) {
7076			found = gang[i];
7077			break;
 
 
 
 
 
 
 
 
7078		}
 
7079	}
 
7080	return found;
7081}
7082
7083static int try_release_subpage_extent_buffer(struct page *page)
7084{
7085	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
7086	u64 cur = page_offset(page);
7087	const u64 end = page_offset(page) + PAGE_SIZE;
7088	int ret;
7089
7090	while (cur < end) {
7091		struct extent_buffer *eb = NULL;
7092
7093		/*
7094		 * Unlike try_release_extent_buffer() which uses page->private
7095		 * to grab buffer, for subpage case we rely on radix tree, thus
7096		 * we need to ensure radix tree consistency.
7097		 *
7098		 * We also want an atomic snapshot of the radix tree, thus go
7099		 * with spinlock rather than RCU.
7100		 */
7101		spin_lock(&fs_info->buffer_lock);
7102		eb = get_next_extent_buffer(fs_info, page, cur);
7103		if (!eb) {
7104			/* No more eb in the page range after or at cur */
7105			spin_unlock(&fs_info->buffer_lock);
7106			break;
7107		}
7108		cur = eb->start + eb->len;
7109
7110		/*
7111		 * The same as try_release_extent_buffer(), to ensure the eb
7112		 * won't disappear out from under us.
7113		 */
7114		spin_lock(&eb->refs_lock);
7115		if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7116			spin_unlock(&eb->refs_lock);
7117			spin_unlock(&fs_info->buffer_lock);
7118			break;
7119		}
7120		spin_unlock(&fs_info->buffer_lock);
7121
7122		/*
7123		 * If tree ref isn't set then we know the ref on this eb is a
7124		 * real ref, so just return, this eb will likely be freed soon
7125		 * anyway.
7126		 */
7127		if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7128			spin_unlock(&eb->refs_lock);
7129			break;
7130		}
7131
7132		/*
7133		 * Here we don't care about the return value, we will always
7134		 * check the page private at the end.  And
7135		 * release_extent_buffer() will release the refs_lock.
7136		 */
7137		release_extent_buffer(eb);
7138	}
7139	/*
7140	 * Finally to check if we have cleared page private, as if we have
7141	 * released all ebs in the page, the page private should be cleared now.
7142	 */
7143	spin_lock(&page->mapping->private_lock);
7144	if (!PagePrivate(page))
7145		ret = 1;
7146	else
7147		ret = 0;
7148	spin_unlock(&page->mapping->private_lock);
7149	return ret;
7150
7151}
7152
7153int try_release_extent_buffer(struct page *page)
7154{
7155	struct extent_buffer *eb;
7156
7157	if (btrfs_sb(page->mapping->host->i_sb)->sectorsize < PAGE_SIZE)
7158		return try_release_subpage_extent_buffer(page);
7159
7160	/*
7161	 * We need to make sure nobody is changing page->private, as we rely on
7162	 * page->private as the pointer to extent buffer.
7163	 */
7164	spin_lock(&page->mapping->private_lock);
7165	if (!PagePrivate(page)) {
7166		spin_unlock(&page->mapping->private_lock);
7167		return 1;
7168	}
7169
7170	eb = (struct extent_buffer *)page->private;
7171	BUG_ON(!eb);
7172
7173	/*
7174	 * This is a little awful but should be ok, we need to make sure that
7175	 * the eb doesn't disappear out from under us while we're looking at
7176	 * this page.
7177	 */
7178	spin_lock(&eb->refs_lock);
7179	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
7180		spin_unlock(&eb->refs_lock);
7181		spin_unlock(&page->mapping->private_lock);
7182		return 0;
7183	}
7184	spin_unlock(&page->mapping->private_lock);
7185
7186	/*
7187	 * If tree ref isn't set then we know the ref on this eb is a real ref,
7188	 * so just return, this page will likely be freed soon anyway.
7189	 */
7190	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
7191		spin_unlock(&eb->refs_lock);
7192		return 0;
7193	}
7194
7195	return release_extent_buffer(eb);
7196}
7197
7198/*
7199 * btrfs_readahead_tree_block - attempt to readahead a child block
 
7200 * @fs_info:	the fs_info
7201 * @bytenr:	bytenr to read
7202 * @owner_root: objectid of the root that owns this eb
7203 * @gen:	generation for the uptodate check, can be 0
7204 * @level:	level for the eb
7205 *
7206 * Attempt to readahead a tree block at @bytenr.  If @gen is 0 then we do a
7207 * normal uptodate check of the eb, without checking the generation.  If we have
7208 * to read the block we will not block on anything.
7209 */
7210void btrfs_readahead_tree_block(struct btrfs_fs_info *fs_info,
7211				u64 bytenr, u64 owner_root, u64 gen, int level)
7212{
 
 
 
 
7213	struct extent_buffer *eb;
7214	int ret;
7215
7216	eb = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
7217	if (IS_ERR(eb))
7218		return;
7219
7220	if (btrfs_buffer_uptodate(eb, gen, 1)) {
7221		free_extent_buffer(eb);
7222		return;
7223	}
7224
7225	ret = read_extent_buffer_pages(eb, WAIT_NONE, 0);
7226	if (ret < 0)
7227		free_extent_buffer_stale(eb);
7228	else
7229		free_extent_buffer(eb);
7230}
7231
7232/*
7233 * btrfs_readahead_node_child - readahead a node's child block
 
7234 * @node:	parent node we're reading from
7235 * @slot:	slot in the parent node for the child we want to read
7236 *
7237 * A helper for btrfs_readahead_tree_block, we simply read the bytenr pointed at
7238 * the slot in the node provided.
7239 */
7240void btrfs_readahead_node_child(struct extent_buffer *node, int slot)
7241{
7242	btrfs_readahead_tree_block(node->fs_info,
7243				   btrfs_node_blockptr(node, slot),
7244				   btrfs_header_owner(node),
7245				   btrfs_node_ptr_generation(node, slot),
7246				   btrfs_header_level(node) - 1);
7247}