Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#include <linux/slab.h>
  7#include <linux/blkdev.h>
  8#include <linux/writeback.h>
  9#include <linux/sched/mm.h>
 
 10#include "misc.h"
 11#include "ctree.h"
 12#include "transaction.h"
 13#include "btrfs_inode.h"
 14#include "extent_io.h"
 15#include "disk-io.h"
 16#include "compression.h"
 17#include "delalloc-space.h"
 18#include "qgroup.h"
 
 
 19
 20static struct kmem_cache *btrfs_ordered_extent_cache;
 21
 22static u64 entry_end(struct btrfs_ordered_extent *entry)
 23{
 24	if (entry->file_offset + entry->num_bytes < entry->file_offset)
 25		return (u64)-1;
 26	return entry->file_offset + entry->num_bytes;
 27}
 28
 29/* returns NULL if the insertion worked, or it returns the node it did find
 30 * in the tree
 31 */
 32static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
 33				   struct rb_node *node)
 34{
 35	struct rb_node **p = &root->rb_node;
 36	struct rb_node *parent = NULL;
 37	struct btrfs_ordered_extent *entry;
 38
 39	while (*p) {
 40		parent = *p;
 41		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
 42
 43		if (file_offset < entry->file_offset)
 44			p = &(*p)->rb_left;
 45		else if (file_offset >= entry_end(entry))
 46			p = &(*p)->rb_right;
 47		else
 48			return parent;
 49	}
 50
 51	rb_link_node(node, parent, p);
 52	rb_insert_color(node, root);
 53	return NULL;
 54}
 55
 56/*
 57 * look for a given offset in the tree, and if it can't be found return the
 58 * first lesser offset
 59 */
 60static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
 61				     struct rb_node **prev_ret)
 62{
 63	struct rb_node *n = root->rb_node;
 64	struct rb_node *prev = NULL;
 65	struct rb_node *test;
 66	struct btrfs_ordered_extent *entry;
 67	struct btrfs_ordered_extent *prev_entry = NULL;
 68
 69	while (n) {
 70		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 71		prev = n;
 72		prev_entry = entry;
 73
 74		if (file_offset < entry->file_offset)
 75			n = n->rb_left;
 76		else if (file_offset >= entry_end(entry))
 77			n = n->rb_right;
 78		else
 79			return n;
 80	}
 81	if (!prev_ret)
 82		return NULL;
 83
 84	while (prev && file_offset >= entry_end(prev_entry)) {
 85		test = rb_next(prev);
 86		if (!test)
 87			break;
 88		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 89				      rb_node);
 90		if (file_offset < entry_end(prev_entry))
 91			break;
 92
 93		prev = test;
 94	}
 95	if (prev)
 96		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 97				      rb_node);
 98	while (prev && file_offset < entry_end(prev_entry)) {
 99		test = rb_prev(prev);
100		if (!test)
101			break;
102		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103				      rb_node);
104		prev = test;
105	}
106	*prev_ret = prev;
107	return NULL;
108}
109
110/*
111 * helper to check if a given offset is inside a given entry
112 */
113static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114{
115	if (file_offset < entry->file_offset ||
116	    entry->file_offset + entry->num_bytes <= file_offset)
117		return 0;
118	return 1;
119}
120
121static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122			  u64 len)
123{
124	if (file_offset + len <= entry->file_offset ||
125	    entry->file_offset + entry->num_bytes <= file_offset)
126		return 0;
127	return 1;
128}
129
130/*
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
133 */
134static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135					  u64 file_offset)
136{
137	struct rb_root *root = &tree->tree;
138	struct rb_node *prev = NULL;
139	struct rb_node *ret;
140	struct btrfs_ordered_extent *entry;
141
142	if (tree->last) {
143		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144				 rb_node);
145		if (offset_in_entry(entry, file_offset))
146			return tree->last;
147	}
148	ret = __tree_search(root, file_offset, &prev);
149	if (!ret)
150		ret = prev;
151	if (ret)
152		tree->last = ret;
153	return ret;
154}
155
156/*
157 * Allocate and add a new ordered_extent into the per-inode tree.
158 *
159 * The tree is given a single reference on the ordered extent that was
160 * inserted.
161 */
162static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163				      u64 disk_bytenr, u64 num_bytes,
164				      u64 disk_num_bytes, int type, int dio,
165				      int compress_type)
166{
167	struct btrfs_root *root = inode->root;
168	struct btrfs_fs_info *fs_info = root->fs_info;
169	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170	struct rb_node *node;
171	struct btrfs_ordered_extent *entry;
172	int ret;
 
173
174	if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
 
175		/* For nocow write, we can release the qgroup rsv right now */
176		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177		if (ret < 0)
178			return ret;
179		ret = 0;
180	} else {
181		/*
182		 * The ordered extent has reserved qgroup space, release now
183		 * and pass the reserved number for qgroup_record to free.
184		 */
185		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186		if (ret < 0)
187			return ret;
188	}
189	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190	if (!entry)
191		return -ENOMEM;
192
193	entry->file_offset = file_offset;
194	entry->disk_bytenr = disk_bytenr;
195	entry->num_bytes = num_bytes;
 
 
196	entry->disk_num_bytes = disk_num_bytes;
 
197	entry->bytes_left = num_bytes;
198	entry->inode = igrab(&inode->vfs_inode);
199	entry->compress_type = compress_type;
200	entry->truncated_len = (u64)-1;
201	entry->qgroup_rsv = ret;
202	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
203		set_bit(type, &entry->flags);
204
205	if (dio) {
206		percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
207					 fs_info->delalloc_batch);
208		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
209	}
210
211	/* one ref for the tree */
212	refcount_set(&entry->refs, 1);
213	init_waitqueue_head(&entry->wait);
214	INIT_LIST_HEAD(&entry->list);
 
215	INIT_LIST_HEAD(&entry->root_extent_list);
216	INIT_LIST_HEAD(&entry->work_list);
 
217	init_completion(&entry->completion);
218
219	trace_btrfs_ordered_extent_add(&inode->vfs_inode, entry);
 
 
 
 
 
 
 
 
 
 
220
221	spin_lock_irq(&tree->lock);
222	node = tree_insert(&tree->tree, file_offset,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223			   &entry->rb_node);
224	if (node)
225		btrfs_panic(fs_info, -EEXIST,
226				"inconsistency in ordered tree at offset %llu",
227				file_offset);
228	spin_unlock_irq(&tree->lock);
229
230	spin_lock(&root->ordered_extent_lock);
231	list_add_tail(&entry->root_extent_list,
232		      &root->ordered_extents);
233	root->nr_ordered_extents++;
234	if (root->nr_ordered_extents == 1) {
235		spin_lock(&fs_info->ordered_root_lock);
236		BUG_ON(!list_empty(&root->ordered_root));
237		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
238		spin_unlock(&fs_info->ordered_root_lock);
239	}
240	spin_unlock(&root->ordered_extent_lock);
241
242	/*
243	 * We don't need the count_max_extents here, we can assume that all of
244	 * that work has been done at higher layers, so this is truly the
245	 * smallest the extent is going to get.
246	 */
247	spin_lock(&inode->lock);
248	btrfs_mod_outstanding_extents(inode, 1);
249	spin_unlock(&inode->lock);
250
251	return 0;
252}
253
254int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
255			     u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
256			     int type)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
257{
258	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
259					  num_bytes, disk_num_bytes, type, 0,
260					  BTRFS_COMPRESS_NONE);
261}
262
263int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
264				 u64 disk_bytenr, u64 num_bytes,
265				 u64 disk_num_bytes, int type)
266{
267	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
268					  num_bytes, disk_num_bytes, type, 1,
269					  BTRFS_COMPRESS_NONE);
270}
271
272int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
273				      u64 disk_bytenr, u64 num_bytes,
274				      u64 disk_num_bytes, int type,
275				      int compress_type)
276{
277	return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
278					  num_bytes, disk_num_bytes, type, 0,
279					  compress_type);
280}
281
282/*
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished.  If the list covers more than one
285 * ordered extent, it is split across multiples.
286 */
287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288			   struct btrfs_ordered_sum *sum)
289{
290	struct btrfs_ordered_inode_tree *tree;
291
292	tree = &BTRFS_I(entry->inode)->ordered_tree;
293	spin_lock_irq(&tree->lock);
294	list_add_tail(&sum->list, &entry->list);
295	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
296}
297
298/*
299 * this is used to account for finished IO across a given range
300 * of the file.  The IO may span ordered extents.  If
301 * a given ordered_extent is completely done, 1 is returned, otherwise
302 * 0.
303 *
304 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
305 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
306 *
307 * file_offset is updated to one byte past the range that is recorded as
308 * complete.  This allows you to walk forward in the file.
309 */
310int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
311				   struct btrfs_ordered_extent **cached,
312				   u64 *file_offset, u64 io_size, int uptodate)
313{
314	struct btrfs_fs_info *fs_info = inode->root->fs_info;
315	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
316	struct rb_node *node;
317	struct btrfs_ordered_extent *entry = NULL;
318	int ret;
319	unsigned long flags;
320	u64 dec_end;
321	u64 dec_start;
322	u64 to_dec;
323
324	spin_lock_irqsave(&tree->lock, flags);
325	node = tree_search(tree, *file_offset);
326	if (!node) {
327		ret = 1;
328		goto out;
329	}
 
 
 
330
331	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
332	if (!offset_in_entry(entry, *file_offset)) {
333		ret = 1;
334		goto out;
335	}
336
337	dec_start = max(*file_offset, entry->file_offset);
338	dec_end = min(*file_offset + io_size,
339		      entry->file_offset + entry->num_bytes);
340	*file_offset = dec_end;
341	if (dec_start > dec_end) {
342		btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
343			   dec_start, dec_end);
344	}
345	to_dec = dec_end - dec_start;
346	if (to_dec > entry->bytes_left) {
347		btrfs_crit(fs_info,
348			   "bad ordered accounting left %llu size %llu",
349			   entry->bytes_left, to_dec);
350	}
351	entry->bytes_left -= to_dec;
352	if (!uptodate)
353		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
354
355	if (entry->bytes_left == 0) {
356		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
357		/* test_and_set_bit implies a barrier */
358		cond_wake_up_nomb(&entry->wait);
359	} else {
360		ret = 1;
361	}
362out:
363	if (!ret && cached && entry) {
364		*cached = entry;
365		refcount_inc(&entry->refs);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
366	}
367	spin_unlock_irqrestore(&tree->lock, flags);
368	return ret == 0;
369}
370
371/*
372 * this is used to account for finished IO across a given range
373 * of the file.  The IO should not span ordered extents.  If
374 * a given ordered_extent is completely done, 1 is returned, otherwise
375 * 0.
376 *
377 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
378 * to make sure this function only returns 1 once for a given ordered extent.
 
 
 
 
 
 
 
 
 
 
379 */
380int btrfs_dec_test_ordered_pending(struct inode *inode,
381				   struct btrfs_ordered_extent **cached,
382				   u64 file_offset, u64 io_size, int uptodate)
383{
384	struct btrfs_ordered_inode_tree *tree;
385	struct rb_node *node;
386	struct btrfs_ordered_extent *entry = NULL;
387	unsigned long flags;
388	int ret;
389
390	tree = &BTRFS_I(inode)->ordered_tree;
391	spin_lock_irqsave(&tree->lock, flags);
392	if (cached && *cached) {
393		entry = *cached;
394		goto have_entry;
395	}
396
397	node = tree_search(tree, file_offset);
398	if (!node) {
399		ret = 1;
400		goto out;
401	}
402
403	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
404have_entry:
405	if (!offset_in_entry(entry, file_offset)) {
406		ret = 1;
407		goto out;
408	}
409
410	if (io_size > entry->bytes_left) {
411		btrfs_crit(BTRFS_I(inode)->root->fs_info,
412			   "bad ordered accounting left %llu size %llu",
413		       entry->bytes_left, io_size);
414	}
415	entry->bytes_left -= io_size;
416	if (!uptodate)
417		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
418
419	if (entry->bytes_left == 0) {
420		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 
 
 
 
421		/* test_and_set_bit implies a barrier */
422		cond_wake_up_nomb(&entry->wait);
423	} else {
424		ret = 1;
425	}
426out:
427	if (!ret && cached && entry) {
428		*cached = entry;
429		refcount_inc(&entry->refs);
 
430	}
431	spin_unlock_irqrestore(&tree->lock, flags);
432	return ret == 0;
433}
434
435/*
436 * used to drop a reference on an ordered extent.  This will free
437 * the extent if the last reference is dropped
438 */
439void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
440{
441	struct list_head *cur;
442	struct btrfs_ordered_sum *sum;
443
444	trace_btrfs_ordered_extent_put(entry->inode, entry);
445
446	if (refcount_dec_and_test(&entry->refs)) {
447		ASSERT(list_empty(&entry->root_extent_list));
 
448		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
449		if (entry->inode)
450			btrfs_add_delayed_iput(entry->inode);
451		while (!list_empty(&entry->list)) {
452			cur = entry->list.next;
453			sum = list_entry(cur, struct btrfs_ordered_sum, list);
454			list_del(&sum->list);
455			kvfree(sum);
456		}
457		kmem_cache_free(btrfs_ordered_extent_cache, entry);
458	}
459}
460
461/*
462 * remove an ordered extent from the tree.  No references are dropped
463 * and waiters are woken up.
464 */
465void btrfs_remove_ordered_extent(struct inode *inode,
466				 struct btrfs_ordered_extent *entry)
467{
468	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
469	struct btrfs_ordered_inode_tree *tree;
470	struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
471	struct btrfs_root *root = btrfs_inode->root;
 
472	struct rb_node *node;
 
 
 
 
 
 
 
 
473
474	/* This is paired with btrfs_add_ordered_extent. */
 
475	spin_lock(&btrfs_inode->lock);
476	btrfs_mod_outstanding_extents(btrfs_inode, -1);
477	spin_unlock(&btrfs_inode->lock);
478	if (root != fs_info->tree_root)
479		btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
480						false);
481
482	if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
483		percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
484					 fs_info->delalloc_batch);
 
 
 
 
485
486	tree = &btrfs_inode->ordered_tree;
487	spin_lock_irq(&tree->lock);
 
 
488	node = &entry->rb_node;
489	rb_erase(node, &tree->tree);
490	RB_CLEAR_NODE(node);
491	if (tree->last == node)
492		tree->last = NULL;
493	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
494	spin_unlock_irq(&tree->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
495
496	spin_lock(&root->ordered_extent_lock);
497	list_del_init(&entry->root_extent_list);
498	root->nr_ordered_extents--;
499
500	trace_btrfs_ordered_extent_remove(inode, entry);
501
502	if (!root->nr_ordered_extents) {
503		spin_lock(&fs_info->ordered_root_lock);
504		BUG_ON(list_empty(&root->ordered_root));
505		list_del_init(&root->ordered_root);
506		spin_unlock(&fs_info->ordered_root_lock);
507	}
508	spin_unlock(&root->ordered_extent_lock);
509	wake_up(&entry->wait);
 
 
510}
511
512static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
513{
514	struct btrfs_ordered_extent *ordered;
515
516	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
517	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
518	complete(&ordered->completion);
519}
520
521/*
522 * wait for all the ordered extents in a root.  This is done when balancing
523 * space between drives.
524 */
525u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
526			       const u64 range_start, const u64 range_len)
527{
528	struct btrfs_fs_info *fs_info = root->fs_info;
529	LIST_HEAD(splice);
530	LIST_HEAD(skipped);
531	LIST_HEAD(works);
532	struct btrfs_ordered_extent *ordered, *next;
533	u64 count = 0;
534	const u64 range_end = range_start + range_len;
535
536	mutex_lock(&root->ordered_extent_mutex);
537	spin_lock(&root->ordered_extent_lock);
538	list_splice_init(&root->ordered_extents, &splice);
539	while (!list_empty(&splice) && nr) {
540		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
541					   root_extent_list);
542
543		if (range_end <= ordered->disk_bytenr ||
544		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
545			list_move_tail(&ordered->root_extent_list, &skipped);
546			cond_resched_lock(&root->ordered_extent_lock);
547			continue;
548		}
549
550		list_move_tail(&ordered->root_extent_list,
551			       &root->ordered_extents);
552		refcount_inc(&ordered->refs);
553		spin_unlock(&root->ordered_extent_lock);
554
555		btrfs_init_work(&ordered->flush_work,
556				btrfs_run_ordered_extent_work, NULL, NULL);
557		list_add_tail(&ordered->work_list, &works);
558		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
559
560		cond_resched();
561		spin_lock(&root->ordered_extent_lock);
562		if (nr != U64_MAX)
563			nr--;
564		count++;
565	}
566	list_splice_tail(&skipped, &root->ordered_extents);
567	list_splice_tail(&splice, &root->ordered_extents);
568	spin_unlock(&root->ordered_extent_lock);
569
570	list_for_each_entry_safe(ordered, next, &works, work_list) {
571		list_del_init(&ordered->work_list);
572		wait_for_completion(&ordered->completion);
573		btrfs_put_ordered_extent(ordered);
574		cond_resched();
575	}
576	mutex_unlock(&root->ordered_extent_mutex);
577
578	return count;
579}
580
581void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
582			     const u64 range_start, const u64 range_len)
583{
584	struct btrfs_root *root;
585	struct list_head splice;
586	u64 done;
587
588	INIT_LIST_HEAD(&splice);
589
590	mutex_lock(&fs_info->ordered_operations_mutex);
591	spin_lock(&fs_info->ordered_root_lock);
592	list_splice_init(&fs_info->ordered_roots, &splice);
593	while (!list_empty(&splice) && nr) {
594		root = list_first_entry(&splice, struct btrfs_root,
595					ordered_root);
596		root = btrfs_grab_root(root);
597		BUG_ON(!root);
598		list_move_tail(&root->ordered_root,
599			       &fs_info->ordered_roots);
600		spin_unlock(&fs_info->ordered_root_lock);
601
602		done = btrfs_wait_ordered_extents(root, nr,
603						  range_start, range_len);
604		btrfs_put_root(root);
605
606		spin_lock(&fs_info->ordered_root_lock);
607		if (nr != U64_MAX) {
608			nr -= done;
609		}
610	}
611	list_splice_tail(&splice, &fs_info->ordered_roots);
612	spin_unlock(&fs_info->ordered_root_lock);
613	mutex_unlock(&fs_info->ordered_operations_mutex);
614}
615
616/*
617 * Used to start IO or wait for a given ordered extent to finish.
618 *
619 * If wait is one, this effectively waits on page writeback for all the pages
620 * in the extent, and it waits on the io completion code to insert
621 * metadata into the btree corresponding to the extent
622 */
623void btrfs_start_ordered_extent(struct inode *inode,
624				       struct btrfs_ordered_extent *entry,
625				       int wait)
626{
627	u64 start = entry->file_offset;
628	u64 end = start + entry->num_bytes - 1;
 
 
629
630	trace_btrfs_ordered_extent_start(inode, entry);
631
632	/*
 
 
 
 
 
 
633	 * pages in the range can be dirty, clean or writeback.  We
634	 * start IO on any dirty ones so the wait doesn't stall waiting
635	 * for the flusher thread to find them
636	 */
637	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
638		filemap_fdatawrite_range(inode->i_mapping, start, end);
639	if (wait) {
640		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
641						 &entry->flags));
642	}
643}
644
645/*
646 * Used to wait on ordered extents across a large range of bytes.
647 */
648int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
649{
650	int ret = 0;
651	int ret_wb = 0;
652	u64 end;
653	u64 orig_end;
654	struct btrfs_ordered_extent *ordered;
655
656	if (start + len < start) {
657		orig_end = INT_LIMIT(loff_t);
658	} else {
659		orig_end = start + len - 1;
660		if (orig_end > INT_LIMIT(loff_t))
661			orig_end = INT_LIMIT(loff_t);
662	}
663
664	/* start IO across the range first to instantiate any delalloc
665	 * extents
666	 */
667	ret = btrfs_fdatawrite_range(inode, start, orig_end);
668	if (ret)
669		return ret;
670
671	/*
672	 * If we have a writeback error don't return immediately. Wait first
673	 * for any ordered extents that haven't completed yet. This is to make
674	 * sure no one can dirty the same page ranges and call writepages()
675	 * before the ordered extents complete - to avoid failures (-EEXIST)
676	 * when adding the new ordered extents to the ordered tree.
677	 */
678	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
679
680	end = orig_end;
681	while (1) {
682		ordered = btrfs_lookup_first_ordered_extent(inode, end);
683		if (!ordered)
684			break;
685		if (ordered->file_offset > orig_end) {
686			btrfs_put_ordered_extent(ordered);
687			break;
688		}
689		if (ordered->file_offset + ordered->num_bytes <= start) {
690			btrfs_put_ordered_extent(ordered);
691			break;
692		}
693		btrfs_start_ordered_extent(inode, ordered, 1);
694		end = ordered->file_offset;
695		/*
696		 * If the ordered extent had an error save the error but don't
697		 * exit without waiting first for all other ordered extents in
698		 * the range to complete.
699		 */
700		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
701			ret = -EIO;
702		btrfs_put_ordered_extent(ordered);
703		if (end == 0 || end == start)
704			break;
705		end--;
706	}
707	return ret_wb ? ret_wb : ret;
708}
709
710/*
711 * find an ordered extent corresponding to file_offset.  return NULL if
712 * nothing is found, otherwise take a reference on the extent and return it
713 */
714struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
715							 u64 file_offset)
716{
717	struct btrfs_ordered_inode_tree *tree;
718	struct rb_node *node;
719	struct btrfs_ordered_extent *entry = NULL;
 
720
721	tree = &inode->ordered_tree;
722	spin_lock_irq(&tree->lock);
723	node = tree_search(tree, file_offset);
724	if (!node)
725		goto out;
726
727	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
728	if (!offset_in_entry(entry, file_offset))
729		entry = NULL;
730	if (entry)
731		refcount_inc(&entry->refs);
 
 
732out:
733	spin_unlock_irq(&tree->lock);
734	return entry;
735}
736
737/* Since the DIO code tries to lock a wide area we need to look for any ordered
738 * extents that exist in the range, rather than just the start of the range.
739 */
740struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
741		struct btrfs_inode *inode, u64 file_offset, u64 len)
742{
743	struct btrfs_ordered_inode_tree *tree;
744	struct rb_node *node;
745	struct btrfs_ordered_extent *entry = NULL;
746
747	tree = &inode->ordered_tree;
748	spin_lock_irq(&tree->lock);
749	node = tree_search(tree, file_offset);
750	if (!node) {
751		node = tree_search(tree, file_offset + len);
752		if (!node)
753			goto out;
754	}
755
756	while (1) {
757		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
758		if (range_overlaps(entry, file_offset, len))
759			break;
760
761		if (entry->file_offset >= file_offset + len) {
762			entry = NULL;
763			break;
764		}
765		entry = NULL;
766		node = rb_next(node);
767		if (!node)
768			break;
769	}
770out:
771	if (entry)
772		refcount_inc(&entry->refs);
773	spin_unlock_irq(&tree->lock);
 
 
774	return entry;
775}
776
777/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778 * lookup and return any extent before 'file_offset'.  NULL is returned
779 * if none is found
780 */
781struct btrfs_ordered_extent *
782btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
783{
784	struct btrfs_ordered_inode_tree *tree;
785	struct rb_node *node;
786	struct btrfs_ordered_extent *entry = NULL;
787
788	tree = &BTRFS_I(inode)->ordered_tree;
789	spin_lock_irq(&tree->lock);
790	node = tree_search(tree, file_offset);
791	if (!node)
792		goto out;
793
794	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
795	refcount_inc(&entry->refs);
 
796out:
797	spin_unlock_irq(&tree->lock);
798	return entry;
799}
800
801/*
802 * search the ordered extents for one corresponding to 'offset' and
803 * try to find a checksum.  This is used because we allow pages to
804 * be reclaimed before their checksum is actually put into the btree
 
 
 
 
805 */
806int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
807			   u8 *sum, int len)
808{
809	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
810	struct btrfs_ordered_sum *ordered_sum;
811	struct btrfs_ordered_extent *ordered;
812	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
813	unsigned long num_sectors;
814	unsigned long i;
815	u32 sectorsize = btrfs_inode_sectorsize(inode);
816	const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
817	int index = 0;
818
819	ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset);
820	if (!ordered)
821		return 0;
 
 
 
 
 
 
 
822
823	spin_lock_irq(&tree->lock);
824	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
825		if (disk_bytenr >= ordered_sum->bytenr &&
826		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
827			i = (disk_bytenr - ordered_sum->bytenr) >>
828			    inode->i_sb->s_blocksize_bits;
829			num_sectors = ordered_sum->len >>
830				      inode->i_sb->s_blocksize_bits;
831			num_sectors = min_t(int, len - index, num_sectors - i);
832			memcpy(sum + index, ordered_sum->sums + i * csum_size,
833			       num_sectors * csum_size);
834
835			index += (int)num_sectors * csum_size;
836			if (index == len)
837				goto out;
838			disk_bytenr += num_sectors * sectorsize;
839		}
840	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
841out:
842	spin_unlock_irq(&tree->lock);
843	btrfs_put_ordered_extent(ordered);
844	return index;
 
 
 
 
845}
846
847/*
848 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
849 * ordered extents in it are run to completion.
850 *
851 * @inode:        Inode whose ordered tree is to be searched
852 * @start:        Beginning of range to flush
853 * @end:          Last byte of range to lock
854 * @cached_state: If passed, will return the extent state responsible for the
855 * locked range. It's the caller's responsibility to free the cached state.
 
856 *
857 * This function always returns with the given range locked, ensuring after it's
858 * called no order extent can be pending.
859 */
860void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
861					u64 end,
862					struct extent_state **cached_state)
863{
864	struct btrfs_ordered_extent *ordered;
865	struct extent_state *cache = NULL;
866	struct extent_state **cachedp = &cache;
867
868	if (cached_state)
869		cachedp = cached_state;
870
871	while (1) {
872		lock_extent_bits(&inode->io_tree, start, end, cachedp);
873		ordered = btrfs_lookup_ordered_range(inode, start,
874						     end - start + 1);
875		if (!ordered) {
876			/*
877			 * If no external cached_state has been passed then
878			 * decrement the extra ref taken for cachedp since we
879			 * aren't exposing it outside of this function
880			 */
881			if (!cached_state)
882				refcount_dec(&cache->refs);
883			break;
884		}
885		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
886		btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
887		btrfs_put_ordered_extent(ordered);
888	}
889}
890
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
891int __init ordered_data_init(void)
892{
893	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
894				     sizeof(struct btrfs_ordered_extent), 0,
895				     SLAB_MEM_SPREAD,
896				     NULL);
897	if (!btrfs_ordered_extent_cache)
898		return -ENOMEM;
899
900	return 0;
901}
902
903void __cold ordered_data_exit(void)
904{
905	kmem_cache_destroy(btrfs_ordered_extent_cache);
906}
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#include <linux/slab.h>
   7#include <linux/blkdev.h>
   8#include <linux/writeback.h>
   9#include <linux/sched/mm.h>
  10#include "messages.h"
  11#include "misc.h"
  12#include "ctree.h"
  13#include "transaction.h"
  14#include "btrfs_inode.h"
  15#include "extent_io.h"
  16#include "disk-io.h"
  17#include "compression.h"
  18#include "delalloc-space.h"
  19#include "qgroup.h"
  20#include "subpage.h"
  21#include "file.h"
  22
  23static struct kmem_cache *btrfs_ordered_extent_cache;
  24
  25static u64 entry_end(struct btrfs_ordered_extent *entry)
  26{
  27	if (entry->file_offset + entry->num_bytes < entry->file_offset)
  28		return (u64)-1;
  29	return entry->file_offset + entry->num_bytes;
  30}
  31
  32/* returns NULL if the insertion worked, or it returns the node it did find
  33 * in the tree
  34 */
  35static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  36				   struct rb_node *node)
  37{
  38	struct rb_node **p = &root->rb_node;
  39	struct rb_node *parent = NULL;
  40	struct btrfs_ordered_extent *entry;
  41
  42	while (*p) {
  43		parent = *p;
  44		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  45
  46		if (file_offset < entry->file_offset)
  47			p = &(*p)->rb_left;
  48		else if (file_offset >= entry_end(entry))
  49			p = &(*p)->rb_right;
  50		else
  51			return parent;
  52	}
  53
  54	rb_link_node(node, parent, p);
  55	rb_insert_color(node, root);
  56	return NULL;
  57}
  58
  59/*
  60 * look for a given offset in the tree, and if it can't be found return the
  61 * first lesser offset
  62 */
  63static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  64				     struct rb_node **prev_ret)
  65{
  66	struct rb_node *n = root->rb_node;
  67	struct rb_node *prev = NULL;
  68	struct rb_node *test;
  69	struct btrfs_ordered_extent *entry;
  70	struct btrfs_ordered_extent *prev_entry = NULL;
  71
  72	while (n) {
  73		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  74		prev = n;
  75		prev_entry = entry;
  76
  77		if (file_offset < entry->file_offset)
  78			n = n->rb_left;
  79		else if (file_offset >= entry_end(entry))
  80			n = n->rb_right;
  81		else
  82			return n;
  83	}
  84	if (!prev_ret)
  85		return NULL;
  86
  87	while (prev && file_offset >= entry_end(prev_entry)) {
  88		test = rb_next(prev);
  89		if (!test)
  90			break;
  91		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  92				      rb_node);
  93		if (file_offset < entry_end(prev_entry))
  94			break;
  95
  96		prev = test;
  97	}
  98	if (prev)
  99		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
 100				      rb_node);
 101	while (prev && file_offset < entry_end(prev_entry)) {
 102		test = rb_prev(prev);
 103		if (!test)
 104			break;
 105		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
 106				      rb_node);
 107		prev = test;
 108	}
 109	*prev_ret = prev;
 110	return NULL;
 111}
 112
 
 
 
 
 
 
 
 
 
 
 
 113static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
 114			  u64 len)
 115{
 116	if (file_offset + len <= entry->file_offset ||
 117	    entry->file_offset + entry->num_bytes <= file_offset)
 118		return 0;
 119	return 1;
 120}
 121
 122/*
 123 * look find the first ordered struct that has this offset, otherwise
 124 * the first one less than this offset
 125 */
 126static inline struct rb_node *ordered_tree_search(struct btrfs_inode *inode,
 127						  u64 file_offset)
 128{
 
 129	struct rb_node *prev = NULL;
 130	struct rb_node *ret;
 131	struct btrfs_ordered_extent *entry;
 132
 133	if (inode->ordered_tree_last) {
 134		entry = rb_entry(inode->ordered_tree_last, struct btrfs_ordered_extent,
 135				 rb_node);
 136		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
 137			return inode->ordered_tree_last;
 138	}
 139	ret = __tree_search(&inode->ordered_tree, file_offset, &prev);
 140	if (!ret)
 141		ret = prev;
 142	if (ret)
 143		inode->ordered_tree_last = ret;
 144	return ret;
 145}
 146
 147static struct btrfs_ordered_extent *alloc_ordered_extent(
 148			struct btrfs_inode *inode, u64 file_offset, u64 num_bytes,
 149			u64 ram_bytes, u64 disk_bytenr, u64 disk_num_bytes,
 150			u64 offset, unsigned long flags, int compress_type)
 
 
 
 
 
 
 151{
 
 
 
 
 152	struct btrfs_ordered_extent *entry;
 153	int ret;
 154	u64 qgroup_rsv = 0;
 155
 156	if (flags &
 157	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
 158		/* For nocow write, we can release the qgroup rsv right now */
 159		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes, &qgroup_rsv);
 160		if (ret < 0)
 161			return ERR_PTR(ret);
 
 162	} else {
 163		/*
 164		 * The ordered extent has reserved qgroup space, release now
 165		 * and pass the reserved number for qgroup_record to free.
 166		 */
 167		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes, &qgroup_rsv);
 168		if (ret < 0)
 169			return ERR_PTR(ret);
 170	}
 171	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
 172	if (!entry)
 173		return ERR_PTR(-ENOMEM);
 174
 175	entry->file_offset = file_offset;
 
 176	entry->num_bytes = num_bytes;
 177	entry->ram_bytes = ram_bytes;
 178	entry->disk_bytenr = disk_bytenr;
 179	entry->disk_num_bytes = disk_num_bytes;
 180	entry->offset = offset;
 181	entry->bytes_left = num_bytes;
 182	entry->inode = igrab(&inode->vfs_inode);
 183	entry->compress_type = compress_type;
 184	entry->truncated_len = (u64)-1;
 185	entry->qgroup_rsv = qgroup_rsv;
 186	entry->flags = flags;
 
 
 
 
 
 
 
 
 
 187	refcount_set(&entry->refs, 1);
 188	init_waitqueue_head(&entry->wait);
 189	INIT_LIST_HEAD(&entry->list);
 190	INIT_LIST_HEAD(&entry->log_list);
 191	INIT_LIST_HEAD(&entry->root_extent_list);
 192	INIT_LIST_HEAD(&entry->work_list);
 193	INIT_LIST_HEAD(&entry->bioc_list);
 194	init_completion(&entry->completion);
 195
 196	/*
 197	 * We don't need the count_max_extents here, we can assume that all of
 198	 * that work has been done at higher layers, so this is truly the
 199	 * smallest the extent is going to get.
 200	 */
 201	spin_lock(&inode->lock);
 202	btrfs_mod_outstanding_extents(inode, 1);
 203	spin_unlock(&inode->lock);
 204
 205	return entry;
 206}
 207
 208static void insert_ordered_extent(struct btrfs_ordered_extent *entry)
 209{
 210	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 211	struct btrfs_root *root = inode->root;
 212	struct btrfs_fs_info *fs_info = root->fs_info;
 213	struct rb_node *node;
 214
 215	trace_btrfs_ordered_extent_add(inode, entry);
 216
 217	percpu_counter_add_batch(&fs_info->ordered_bytes, entry->num_bytes,
 218				 fs_info->delalloc_batch);
 219
 220	/* One ref for the tree. */
 221	refcount_inc(&entry->refs);
 222
 223	spin_lock_irq(&inode->ordered_tree_lock);
 224	node = tree_insert(&inode->ordered_tree, entry->file_offset,
 225			   &entry->rb_node);
 226	if (node)
 227		btrfs_panic(fs_info, -EEXIST,
 228				"inconsistency in ordered tree at offset %llu",
 229				entry->file_offset);
 230	spin_unlock_irq(&inode->ordered_tree_lock);
 231
 232	spin_lock(&root->ordered_extent_lock);
 233	list_add_tail(&entry->root_extent_list,
 234		      &root->ordered_extents);
 235	root->nr_ordered_extents++;
 236	if (root->nr_ordered_extents == 1) {
 237		spin_lock(&fs_info->ordered_root_lock);
 238		BUG_ON(!list_empty(&root->ordered_root));
 239		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
 240		spin_unlock(&fs_info->ordered_root_lock);
 241	}
 242	spin_unlock(&root->ordered_extent_lock);
 
 
 
 
 
 
 
 
 
 
 
 243}
 244
 245/*
 246 * Add an ordered extent to the per-inode tree.
 247 *
 248 * @inode:           Inode that this extent is for.
 249 * @file_offset:     Logical offset in file where the extent starts.
 250 * @num_bytes:       Logical length of extent in file.
 251 * @ram_bytes:       Full length of unencoded data.
 252 * @disk_bytenr:     Offset of extent on disk.
 253 * @disk_num_bytes:  Size of extent on disk.
 254 * @offset:          Offset into unencoded data where file data starts.
 255 * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
 256 * @compress_type:   Compression algorithm used for data.
 257 *
 258 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
 259 * tree is given a single reference on the ordered extent that was inserted, and
 260 * the returned pointer is given a second reference.
 261 *
 262 * Return: the new ordered extent or error pointer.
 263 */
 264struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
 265			struct btrfs_inode *inode, u64 file_offset,
 266			u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
 267			u64 disk_num_bytes, u64 offset, unsigned long flags,
 268			int compress_type)
 269{
 270	struct btrfs_ordered_extent *entry;
 
 
 
 271
 272	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
 
 
 
 
 
 
 
 273
 274	entry = alloc_ordered_extent(inode, file_offset, num_bytes, ram_bytes,
 275				     disk_bytenr, disk_num_bytes, offset, flags,
 276				     compress_type);
 277	if (!IS_ERR(entry))
 278		insert_ordered_extent(entry);
 279	return entry;
 
 
 280}
 281
 282/*
 283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
 284 * when an ordered extent is finished.  If the list covers more than one
 285 * ordered extent, it is split across multiples.
 286 */
 287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
 288			   struct btrfs_ordered_sum *sum)
 289{
 290	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 291
 292	spin_lock_irq(&inode->ordered_tree_lock);
 
 293	list_add_tail(&sum->list, &entry->list);
 294	spin_unlock_irq(&inode->ordered_tree_lock);
 295}
 296
 297static void finish_ordered_fn(struct btrfs_work *work)
 298{
 299	struct btrfs_ordered_extent *ordered_extent;
 300
 301	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
 302	btrfs_finish_ordered_io(ordered_extent);
 303}
 304
 305static bool can_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 306				      struct page *page, u64 file_offset,
 307				      u64 len, bool uptodate)
 308{
 309	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 310	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 311
 312	lockdep_assert_held(&inode->ordered_tree_lock);
 313
 314	if (page) {
 315		ASSERT(page->mapping);
 316		ASSERT(page_offset(page) <= file_offset);
 317		ASSERT(file_offset + len <= page_offset(page) + PAGE_SIZE);
 318
 319		/*
 320		 * Ordered (Private2) bit indicates whether we still have
 321		 * pending io unfinished for the ordered extent.
 322		 *
 323		 * If there's no such bit, we need to skip to next range.
 324		 */
 325		if (!btrfs_folio_test_ordered(fs_info, page_folio(page),
 326					      file_offset, len))
 327			return false;
 328		btrfs_folio_clear_ordered(fs_info, page_folio(page), file_offset, len);
 329	}
 330
 331	/* Now we're fine to update the accounting. */
 332	if (WARN_ON_ONCE(len > ordered->bytes_left)) {
 333		btrfs_crit(fs_info,
 334"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%llu left=%llu",
 335			   inode->root->root_key.objectid, btrfs_ino(inode),
 336			   ordered->file_offset, ordered->num_bytes,
 337			   len, ordered->bytes_left);
 338		ordered->bytes_left = 0;
 339	} else {
 340		ordered->bytes_left -= len;
 341	}
 342
 343	if (!uptodate)
 344		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
 345
 346	if (ordered->bytes_left)
 347		return false;
 348
 349	/*
 350	 * All the IO of the ordered extent is finished, we need to queue
 351	 * the finish_func to be executed.
 352	 */
 353	set_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags);
 354	cond_wake_up(&ordered->wait);
 355	refcount_inc(&ordered->refs);
 356	trace_btrfs_ordered_extent_mark_finished(inode, ordered);
 357	return true;
 358}
 359
 360static void btrfs_queue_ordered_fn(struct btrfs_ordered_extent *ordered)
 361{
 362	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 363	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 364	struct btrfs_workqueue *wq = btrfs_is_free_space_inode(inode) ?
 365		fs_info->endio_freespace_worker : fs_info->endio_write_workers;
 366
 367	btrfs_init_work(&ordered->work, finish_ordered_fn, NULL);
 368	btrfs_queue_work(wq, &ordered->work);
 369}
 370
 371bool btrfs_finish_ordered_extent(struct btrfs_ordered_extent *ordered,
 372				 struct page *page, u64 file_offset, u64 len,
 373				 bool uptodate)
 374{
 375	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
 376	unsigned long flags;
 377	bool ret;
 378
 379	trace_btrfs_finish_ordered_extent(inode, file_offset, len, uptodate);
 380
 381	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 382	ret = can_finish_ordered_extent(ordered, page, file_offset, len, uptodate);
 383	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 384
 385	if (ret)
 386		btrfs_queue_ordered_fn(ordered);
 387	return ret;
 388}
 389
 390/*
 391 * Mark all ordered extents io inside the specified range finished.
 
 
 
 392 *
 393 * @page:	 The involved page for the operation.
 394 *		 For uncompressed buffered IO, the page status also needs to be
 395 *		 updated to indicate whether the pending ordered io is finished.
 396 *		 Can be NULL for direct IO and compressed write.
 397 *		 For these cases, callers are ensured they won't execute the
 398 *		 endio function twice.
 399 *
 400 * This function is called for endio, thus the range must have ordered
 401 * extent(s) covering it.
 402 */
 403void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
 404				    struct page *page, u64 file_offset,
 405				    u64 num_bytes, bool uptodate)
 406{
 
 
 407	struct rb_node *node;
 408	struct btrfs_ordered_extent *entry = NULL;
 
 409	unsigned long flags;
 410	u64 cur = file_offset;
 
 
 411
 412	trace_btrfs_writepage_end_io_hook(inode, file_offset,
 413					  file_offset + num_bytes - 1,
 414					  uptodate);
 415
 416	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 417	while (cur < file_offset + num_bytes) {
 418		u64 entry_end;
 419		u64 end;
 420		u32 len;
 421
 422		node = ordered_tree_search(inode, cur);
 423		/* No ordered extents at all */
 424		if (!node)
 425			break;
 
 426
 427		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 428		entry_end = entry->file_offset + entry->num_bytes;
 429		/*
 430		 * |<-- OE --->|  |
 431		 *		  cur
 432		 * Go to next OE.
 433		 */
 434		if (cur >= entry_end) {
 435			node = rb_next(node);
 436			/* No more ordered extents, exit */
 437			if (!node)
 438				break;
 439			entry = rb_entry(node, struct btrfs_ordered_extent,
 440					 rb_node);
 
 
 
 441
 442			/* Go to next ordered extent and continue */
 443			cur = entry->file_offset;
 444			continue;
 445		}
 446		/*
 447		 * |	|<--- OE --->|
 448		 * cur
 449		 * Go to the start of OE.
 450		 */
 451		if (cur < entry->file_offset) {
 452			cur = entry->file_offset;
 453			continue;
 454		}
 455
 456		/*
 457		 * Now we are definitely inside one ordered extent.
 458		 *
 459		 * |<--- OE --->|
 460		 *	|
 461		 *	cur
 462		 */
 463		end = min(entry->file_offset + entry->num_bytes,
 464			  file_offset + num_bytes) - 1;
 465		ASSERT(end + 1 - cur < U32_MAX);
 466		len = end + 1 - cur;
 467
 468		if (can_finish_ordered_extent(entry, page, cur, len, uptodate)) {
 469			spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 470			btrfs_queue_ordered_fn(entry);
 471			spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 472		}
 473		cur += len;
 474	}
 475	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 
 476}
 477
 478/*
 479 * Finish IO for one ordered extent across a given range.  The range can only
 480 * contain one ordered extent.
 
 
 481 *
 482 * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
 483 *               search and use the ordered extent directly.
 484 * 		 Will be also used to store the finished ordered extent.
 485 * @file_offset: File offset for the finished IO
 486 * @io_size:	 Length of the finish IO range
 487 *
 488 * Return true if the ordered extent is finished in the range, and update
 489 * @cached.
 490 * Return false otherwise.
 491 *
 492 * NOTE: The range can NOT cross multiple ordered extents.
 493 * Thus caller should ensure the range doesn't cross ordered extents.
 494 */
 495bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
 496				    struct btrfs_ordered_extent **cached,
 497				    u64 file_offset, u64 io_size)
 498{
 
 499	struct rb_node *node;
 500	struct btrfs_ordered_extent *entry = NULL;
 501	unsigned long flags;
 502	bool finished = false;
 503
 504	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 
 505	if (cached && *cached) {
 506		entry = *cached;
 507		goto have_entry;
 508	}
 509
 510	node = ordered_tree_search(inode, file_offset);
 511	if (!node)
 
 512		goto out;
 
 513
 514	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 515have_entry:
 516	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 
 517		goto out;
 
 518
 519	if (io_size > entry->bytes_left)
 520		btrfs_crit(inode->root->fs_info,
 521			   "bad ordered accounting left %llu size %llu",
 522		       entry->bytes_left, io_size);
 523
 524	entry->bytes_left -= io_size;
 
 
 525
 526	if (entry->bytes_left == 0) {
 527		/*
 528		 * Ensure only one caller can set the flag and finished_ret
 529		 * accordingly
 530		 */
 531		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
 532		/* test_and_set_bit implies a barrier */
 533		cond_wake_up_nomb(&entry->wait);
 
 
 534	}
 535out:
 536	if (finished && cached && entry) {
 537		*cached = entry;
 538		refcount_inc(&entry->refs);
 539		trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
 540	}
 541	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 542	return finished;
 543}
 544
 545/*
 546 * used to drop a reference on an ordered extent.  This will free
 547 * the extent if the last reference is dropped
 548 */
 549void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
 550{
 551	struct list_head *cur;
 552	struct btrfs_ordered_sum *sum;
 553
 554	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
 555
 556	if (refcount_dec_and_test(&entry->refs)) {
 557		ASSERT(list_empty(&entry->root_extent_list));
 558		ASSERT(list_empty(&entry->log_list));
 559		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
 560		if (entry->inode)
 561			btrfs_add_delayed_iput(BTRFS_I(entry->inode));
 562		while (!list_empty(&entry->list)) {
 563			cur = entry->list.next;
 564			sum = list_entry(cur, struct btrfs_ordered_sum, list);
 565			list_del(&sum->list);
 566			kvfree(sum);
 567		}
 568		kmem_cache_free(btrfs_ordered_extent_cache, entry);
 569	}
 570}
 571
 572/*
 573 * remove an ordered extent from the tree.  No references are dropped
 574 * and waiters are woken up.
 575 */
 576void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
 577				 struct btrfs_ordered_extent *entry)
 578{
 
 
 
 579	struct btrfs_root *root = btrfs_inode->root;
 580	struct btrfs_fs_info *fs_info = root->fs_info;
 581	struct rb_node *node;
 582	bool pending;
 583	bool freespace_inode;
 584
 585	/*
 586	 * If this is a free space inode the thread has not acquired the ordered
 587	 * extents lockdep map.
 588	 */
 589	freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
 590
 591	btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
 592	/* This is paired with btrfs_alloc_ordered_extent. */
 593	spin_lock(&btrfs_inode->lock);
 594	btrfs_mod_outstanding_extents(btrfs_inode, -1);
 595	spin_unlock(&btrfs_inode->lock);
 596	if (root != fs_info->tree_root) {
 597		u64 release;
 598
 599		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
 600			release = entry->disk_num_bytes;
 601		else
 602			release = entry->num_bytes;
 603		btrfs_delalloc_release_metadata(btrfs_inode, release,
 604						test_bit(BTRFS_ORDERED_IOERR,
 605							 &entry->flags));
 606	}
 607
 608	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
 609				 fs_info->delalloc_batch);
 610
 611	spin_lock_irq(&btrfs_inode->ordered_tree_lock);
 612	node = &entry->rb_node;
 613	rb_erase(node, &btrfs_inode->ordered_tree);
 614	RB_CLEAR_NODE(node);
 615	if (btrfs_inode->ordered_tree_last == node)
 616		btrfs_inode->ordered_tree_last = NULL;
 617	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
 618	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
 619	spin_unlock_irq(&btrfs_inode->ordered_tree_lock);
 620
 621	/*
 622	 * The current running transaction is waiting on us, we need to let it
 623	 * know that we're complete and wake it up.
 624	 */
 625	if (pending) {
 626		struct btrfs_transaction *trans;
 627
 628		/*
 629		 * The checks for trans are just a formality, it should be set,
 630		 * but if it isn't we don't want to deref/assert under the spin
 631		 * lock, so be nice and check if trans is set, but ASSERT() so
 632		 * if it isn't set a developer will notice.
 633		 */
 634		spin_lock(&fs_info->trans_lock);
 635		trans = fs_info->running_transaction;
 636		if (trans)
 637			refcount_inc(&trans->use_count);
 638		spin_unlock(&fs_info->trans_lock);
 639
 640		ASSERT(trans || BTRFS_FS_ERROR(fs_info));
 641		if (trans) {
 642			if (atomic_dec_and_test(&trans->pending_ordered))
 643				wake_up(&trans->pending_wait);
 644			btrfs_put_transaction(trans);
 645		}
 646	}
 647
 648	btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
 649
 650	spin_lock(&root->ordered_extent_lock);
 651	list_del_init(&entry->root_extent_list);
 652	root->nr_ordered_extents--;
 653
 654	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
 655
 656	if (!root->nr_ordered_extents) {
 657		spin_lock(&fs_info->ordered_root_lock);
 658		BUG_ON(list_empty(&root->ordered_root));
 659		list_del_init(&root->ordered_root);
 660		spin_unlock(&fs_info->ordered_root_lock);
 661	}
 662	spin_unlock(&root->ordered_extent_lock);
 663	wake_up(&entry->wait);
 664	if (!freespace_inode)
 665		btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
 666}
 667
 668static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
 669{
 670	struct btrfs_ordered_extent *ordered;
 671
 672	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
 673	btrfs_start_ordered_extent(ordered);
 674	complete(&ordered->completion);
 675}
 676
 677/*
 678 * wait for all the ordered extents in a root.  This is done when balancing
 679 * space between drives.
 680 */
 681u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
 682			       const u64 range_start, const u64 range_len)
 683{
 684	struct btrfs_fs_info *fs_info = root->fs_info;
 685	LIST_HEAD(splice);
 686	LIST_HEAD(skipped);
 687	LIST_HEAD(works);
 688	struct btrfs_ordered_extent *ordered, *next;
 689	u64 count = 0;
 690	const u64 range_end = range_start + range_len;
 691
 692	mutex_lock(&root->ordered_extent_mutex);
 693	spin_lock(&root->ordered_extent_lock);
 694	list_splice_init(&root->ordered_extents, &splice);
 695	while (!list_empty(&splice) && nr) {
 696		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
 697					   root_extent_list);
 698
 699		if (range_end <= ordered->disk_bytenr ||
 700		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
 701			list_move_tail(&ordered->root_extent_list, &skipped);
 702			cond_resched_lock(&root->ordered_extent_lock);
 703			continue;
 704		}
 705
 706		list_move_tail(&ordered->root_extent_list,
 707			       &root->ordered_extents);
 708		refcount_inc(&ordered->refs);
 709		spin_unlock(&root->ordered_extent_lock);
 710
 711		btrfs_init_work(&ordered->flush_work,
 712				btrfs_run_ordered_extent_work, NULL);
 713		list_add_tail(&ordered->work_list, &works);
 714		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
 715
 716		cond_resched();
 717		spin_lock(&root->ordered_extent_lock);
 718		if (nr != U64_MAX)
 719			nr--;
 720		count++;
 721	}
 722	list_splice_tail(&skipped, &root->ordered_extents);
 723	list_splice_tail(&splice, &root->ordered_extents);
 724	spin_unlock(&root->ordered_extent_lock);
 725
 726	list_for_each_entry_safe(ordered, next, &works, work_list) {
 727		list_del_init(&ordered->work_list);
 728		wait_for_completion(&ordered->completion);
 729		btrfs_put_ordered_extent(ordered);
 730		cond_resched();
 731	}
 732	mutex_unlock(&root->ordered_extent_mutex);
 733
 734	return count;
 735}
 736
 737void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
 738			     const u64 range_start, const u64 range_len)
 739{
 740	struct btrfs_root *root;
 741	LIST_HEAD(splice);
 742	u64 done;
 743
 
 
 744	mutex_lock(&fs_info->ordered_operations_mutex);
 745	spin_lock(&fs_info->ordered_root_lock);
 746	list_splice_init(&fs_info->ordered_roots, &splice);
 747	while (!list_empty(&splice) && nr) {
 748		root = list_first_entry(&splice, struct btrfs_root,
 749					ordered_root);
 750		root = btrfs_grab_root(root);
 751		BUG_ON(!root);
 752		list_move_tail(&root->ordered_root,
 753			       &fs_info->ordered_roots);
 754		spin_unlock(&fs_info->ordered_root_lock);
 755
 756		done = btrfs_wait_ordered_extents(root, nr,
 757						  range_start, range_len);
 758		btrfs_put_root(root);
 759
 760		spin_lock(&fs_info->ordered_root_lock);
 761		if (nr != U64_MAX) {
 762			nr -= done;
 763		}
 764	}
 765	list_splice_tail(&splice, &fs_info->ordered_roots);
 766	spin_unlock(&fs_info->ordered_root_lock);
 767	mutex_unlock(&fs_info->ordered_operations_mutex);
 768}
 769
 770/*
 771 * Start IO and wait for a given ordered extent to finish.
 772 *
 773 * Wait on page writeback for all the pages in the extent and the IO completion
 774 * code to insert metadata into the btree corresponding to the extent.
 775 */
 776void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
 
 
 
 777{
 778	u64 start = entry->file_offset;
 779	u64 end = start + entry->num_bytes - 1;
 780	struct btrfs_inode *inode = BTRFS_I(entry->inode);
 781	bool freespace_inode;
 782
 783	trace_btrfs_ordered_extent_start(inode, entry);
 784
 785	/*
 786	 * If this is a free space inode do not take the ordered extents lockdep
 787	 * map.
 788	 */
 789	freespace_inode = btrfs_is_free_space_inode(inode);
 790
 791	/*
 792	 * pages in the range can be dirty, clean or writeback.  We
 793	 * start IO on any dirty ones so the wait doesn't stall waiting
 794	 * for the flusher thread to find them
 795	 */
 796	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
 797		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
 798
 799	if (!freespace_inode)
 800		btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
 801	wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
 802}
 803
 804/*
 805 * Used to wait on ordered extents across a large range of bytes.
 806 */
 807int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
 808{
 809	int ret = 0;
 810	int ret_wb = 0;
 811	u64 end;
 812	u64 orig_end;
 813	struct btrfs_ordered_extent *ordered;
 814
 815	if (start + len < start) {
 816		orig_end = OFFSET_MAX;
 817	} else {
 818		orig_end = start + len - 1;
 819		if (orig_end > OFFSET_MAX)
 820			orig_end = OFFSET_MAX;
 821	}
 822
 823	/* start IO across the range first to instantiate any delalloc
 824	 * extents
 825	 */
 826	ret = btrfs_fdatawrite_range(inode, start, orig_end);
 827	if (ret)
 828		return ret;
 829
 830	/*
 831	 * If we have a writeback error don't return immediately. Wait first
 832	 * for any ordered extents that haven't completed yet. This is to make
 833	 * sure no one can dirty the same page ranges and call writepages()
 834	 * before the ordered extents complete - to avoid failures (-EEXIST)
 835	 * when adding the new ordered extents to the ordered tree.
 836	 */
 837	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
 838
 839	end = orig_end;
 840	while (1) {
 841		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
 842		if (!ordered)
 843			break;
 844		if (ordered->file_offset > orig_end) {
 845			btrfs_put_ordered_extent(ordered);
 846			break;
 847		}
 848		if (ordered->file_offset + ordered->num_bytes <= start) {
 849			btrfs_put_ordered_extent(ordered);
 850			break;
 851		}
 852		btrfs_start_ordered_extent(ordered);
 853		end = ordered->file_offset;
 854		/*
 855		 * If the ordered extent had an error save the error but don't
 856		 * exit without waiting first for all other ordered extents in
 857		 * the range to complete.
 858		 */
 859		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
 860			ret = -EIO;
 861		btrfs_put_ordered_extent(ordered);
 862		if (end == 0 || end == start)
 863			break;
 864		end--;
 865	}
 866	return ret_wb ? ret_wb : ret;
 867}
 868
 869/*
 870 * find an ordered extent corresponding to file_offset.  return NULL if
 871 * nothing is found, otherwise take a reference on the extent and return it
 872 */
 873struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
 874							 u64 file_offset)
 875{
 
 876	struct rb_node *node;
 877	struct btrfs_ordered_extent *entry = NULL;
 878	unsigned long flags;
 879
 880	spin_lock_irqsave(&inode->ordered_tree_lock, flags);
 881	node = ordered_tree_search(inode, file_offset);
 
 882	if (!node)
 883		goto out;
 884
 885	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 886	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
 887		entry = NULL;
 888	if (entry) {
 889		refcount_inc(&entry->refs);
 890		trace_btrfs_ordered_extent_lookup(inode, entry);
 891	}
 892out:
 893	spin_unlock_irqrestore(&inode->ordered_tree_lock, flags);
 894	return entry;
 895}
 896
 897/* Since the DIO code tries to lock a wide area we need to look for any ordered
 898 * extents that exist in the range, rather than just the start of the range.
 899 */
 900struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
 901		struct btrfs_inode *inode, u64 file_offset, u64 len)
 902{
 
 903	struct rb_node *node;
 904	struct btrfs_ordered_extent *entry = NULL;
 905
 906	spin_lock_irq(&inode->ordered_tree_lock);
 907	node = ordered_tree_search(inode, file_offset);
 
 908	if (!node) {
 909		node = ordered_tree_search(inode, file_offset + len);
 910		if (!node)
 911			goto out;
 912	}
 913
 914	while (1) {
 915		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 916		if (range_overlaps(entry, file_offset, len))
 917			break;
 918
 919		if (entry->file_offset >= file_offset + len) {
 920			entry = NULL;
 921			break;
 922		}
 923		entry = NULL;
 924		node = rb_next(node);
 925		if (!node)
 926			break;
 927	}
 928out:
 929	if (entry) {
 930		refcount_inc(&entry->refs);
 931		trace_btrfs_ordered_extent_lookup_range(inode, entry);
 932	}
 933	spin_unlock_irq(&inode->ordered_tree_lock);
 934	return entry;
 935}
 936
 937/*
 938 * Adds all ordered extents to the given list. The list ends up sorted by the
 939 * file_offset of the ordered extents.
 940 */
 941void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
 942					   struct list_head *list)
 943{
 944	struct rb_node *n;
 945
 946	ASSERT(inode_is_locked(&inode->vfs_inode));
 947
 948	spin_lock_irq(&inode->ordered_tree_lock);
 949	for (n = rb_first(&inode->ordered_tree); n; n = rb_next(n)) {
 950		struct btrfs_ordered_extent *ordered;
 951
 952		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
 953
 954		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
 955			continue;
 956
 957		ASSERT(list_empty(&ordered->log_list));
 958		list_add_tail(&ordered->log_list, list);
 959		refcount_inc(&ordered->refs);
 960		trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
 961	}
 962	spin_unlock_irq(&inode->ordered_tree_lock);
 963}
 964
 965/*
 966 * lookup and return any extent before 'file_offset'.  NULL is returned
 967 * if none is found
 968 */
 969struct btrfs_ordered_extent *
 970btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
 971{
 
 972	struct rb_node *node;
 973	struct btrfs_ordered_extent *entry = NULL;
 974
 975	spin_lock_irq(&inode->ordered_tree_lock);
 976	node = ordered_tree_search(inode, file_offset);
 
 977	if (!node)
 978		goto out;
 979
 980	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
 981	refcount_inc(&entry->refs);
 982	trace_btrfs_ordered_extent_lookup_first(inode, entry);
 983out:
 984	spin_unlock_irq(&inode->ordered_tree_lock);
 985	return entry;
 986}
 987
 988/*
 989 * Lookup the first ordered extent that overlaps the range
 990 * [@file_offset, @file_offset + @len).
 991 *
 992 * The difference between this and btrfs_lookup_first_ordered_extent() is
 993 * that this one won't return any ordered extent that does not overlap the range.
 994 * And the difference against btrfs_lookup_ordered_extent() is, this function
 995 * ensures the first ordered extent gets returned.
 996 */
 997struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
 998			struct btrfs_inode *inode, u64 file_offset, u64 len)
 999{
1000	struct rb_node *node;
1001	struct rb_node *cur;
1002	struct rb_node *prev;
1003	struct rb_node *next;
1004	struct btrfs_ordered_extent *entry = NULL;
 
 
 
 
1005
1006	spin_lock_irq(&inode->ordered_tree_lock);
1007	node = inode->ordered_tree.rb_node;
1008	/*
1009	 * Here we don't want to use tree_search() which will use tree->last
1010	 * and screw up the search order.
1011	 * And __tree_search() can't return the adjacent ordered extents
1012	 * either, thus here we do our own search.
1013	 */
1014	while (node) {
1015		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1016
1017		if (file_offset < entry->file_offset) {
1018			node = node->rb_left;
1019		} else if (file_offset >= entry_end(entry)) {
1020			node = node->rb_right;
1021		} else {
1022			/*
1023			 * Direct hit, got an ordered extent that starts at
1024			 * @file_offset
1025			 */
1026			goto out;
 
 
 
 
 
 
1027		}
1028	}
1029	if (!entry) {
1030		/* Empty tree */
1031		goto out;
1032	}
1033
1034	cur = &entry->rb_node;
1035	/* We got an entry around @file_offset, check adjacent entries */
1036	if (entry->file_offset < file_offset) {
1037		prev = cur;
1038		next = rb_next(cur);
1039	} else {
1040		prev = rb_prev(cur);
1041		next = cur;
1042	}
1043	if (prev) {
1044		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1045		if (range_overlaps(entry, file_offset, len))
1046			goto out;
1047	}
1048	if (next) {
1049		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1050		if (range_overlaps(entry, file_offset, len))
1051			goto out;
1052	}
1053	/* No ordered extent in the range */
1054	entry = NULL;
1055out:
1056	if (entry) {
1057		refcount_inc(&entry->refs);
1058		trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1059	}
1060
1061	spin_unlock_irq(&inode->ordered_tree_lock);
1062	return entry;
1063}
1064
1065/*
1066 * Lock the passed range and ensures all pending ordered extents in it are run
1067 * to completion.
1068 *
1069 * @inode:        Inode whose ordered tree is to be searched
1070 * @start:        Beginning of range to flush
1071 * @end:          Last byte of range to lock
1072 * @cached_state: If passed, will return the extent state responsible for the
1073 *                locked range. It's the caller's responsibility to free the
1074 *                cached state.
1075 *
1076 * Always return with the given range locked, ensuring after it's called no
1077 * order extent can be pending.
1078 */
1079void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1080					u64 end,
1081					struct extent_state **cached_state)
1082{
1083	struct btrfs_ordered_extent *ordered;
1084	struct extent_state *cache = NULL;
1085	struct extent_state **cachedp = &cache;
1086
1087	if (cached_state)
1088		cachedp = cached_state;
1089
1090	while (1) {
1091		lock_extent(&inode->io_tree, start, end, cachedp);
1092		ordered = btrfs_lookup_ordered_range(inode, start,
1093						     end - start + 1);
1094		if (!ordered) {
1095			/*
1096			 * If no external cached_state has been passed then
1097			 * decrement the extra ref taken for cachedp since we
1098			 * aren't exposing it outside of this function
1099			 */
1100			if (!cached_state)
1101				refcount_dec(&cache->refs);
1102			break;
1103		}
1104		unlock_extent(&inode->io_tree, start, end, cachedp);
1105		btrfs_start_ordered_extent(ordered);
1106		btrfs_put_ordered_extent(ordered);
1107	}
1108}
1109
1110/*
1111 * Lock the passed range and ensure all pending ordered extents in it are run
1112 * to completion in nowait mode.
1113 *
1114 * Return true if btrfs_lock_ordered_range does not return any extents,
1115 * otherwise false.
1116 */
1117bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1118				  struct extent_state **cached_state)
1119{
1120	struct btrfs_ordered_extent *ordered;
1121
1122	if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1123		return false;
1124
1125	ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1126	if (!ordered)
1127		return true;
1128
1129	btrfs_put_ordered_extent(ordered);
1130	unlock_extent(&inode->io_tree, start, end, cached_state);
1131
1132	return false;
1133}
1134
1135/* Split out a new ordered extent for this first @len bytes of @ordered. */
1136struct btrfs_ordered_extent *btrfs_split_ordered_extent(
1137			struct btrfs_ordered_extent *ordered, u64 len)
1138{
1139	struct btrfs_inode *inode = BTRFS_I(ordered->inode);
1140	struct btrfs_root *root = inode->root;
1141	struct btrfs_fs_info *fs_info = root->fs_info;
1142	u64 file_offset = ordered->file_offset;
1143	u64 disk_bytenr = ordered->disk_bytenr;
1144	unsigned long flags = ordered->flags;
1145	struct btrfs_ordered_sum *sum, *tmpsum;
1146	struct btrfs_ordered_extent *new;
1147	struct rb_node *node;
1148	u64 offset = 0;
1149
1150	trace_btrfs_ordered_extent_split(inode, ordered);
1151
1152	ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1153
1154	/*
1155	 * The entire bio must be covered by the ordered extent, but we can't
1156	 * reduce the original extent to a zero length either.
1157	 */
1158	if (WARN_ON_ONCE(len >= ordered->num_bytes))
1159		return ERR_PTR(-EINVAL);
1160	/* We cannot split partially completed ordered extents. */
1161	if (ordered->bytes_left) {
1162		ASSERT(!(flags & ~BTRFS_ORDERED_TYPE_FLAGS));
1163		if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1164			return ERR_PTR(-EINVAL);
1165	}
1166	/* We cannot split a compressed ordered extent. */
1167	if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1168		return ERR_PTR(-EINVAL);
1169
1170	new = alloc_ordered_extent(inode, file_offset, len, len, disk_bytenr,
1171				   len, 0, flags, ordered->compress_type);
1172	if (IS_ERR(new))
1173		return new;
1174
1175	/* One ref for the tree. */
1176	refcount_inc(&new->refs);
1177
1178	spin_lock_irq(&root->ordered_extent_lock);
1179	spin_lock(&inode->ordered_tree_lock);
1180	/* Remove from tree once */
1181	node = &ordered->rb_node;
1182	rb_erase(node, &inode->ordered_tree);
1183	RB_CLEAR_NODE(node);
1184	if (inode->ordered_tree_last == node)
1185		inode->ordered_tree_last = NULL;
1186
1187	ordered->file_offset += len;
1188	ordered->disk_bytenr += len;
1189	ordered->num_bytes -= len;
1190	ordered->disk_num_bytes -= len;
1191	ordered->ram_bytes -= len;
1192
1193	if (test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags)) {
1194		ASSERT(ordered->bytes_left == 0);
1195		new->bytes_left = 0;
1196	} else {
1197		ordered->bytes_left -= len;
1198	}
1199
1200	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) {
1201		if (ordered->truncated_len > len) {
1202			ordered->truncated_len -= len;
1203		} else {
1204			new->truncated_len = ordered->truncated_len;
1205			ordered->truncated_len = 0;
1206		}
1207	}
1208
1209	list_for_each_entry_safe(sum, tmpsum, &ordered->list, list) {
1210		if (offset == len)
1211			break;
1212		list_move_tail(&sum->list, &new->list);
1213		offset += sum->len;
1214	}
1215
1216	/* Re-insert the node */
1217	node = tree_insert(&inode->ordered_tree, ordered->file_offset,
1218			   &ordered->rb_node);
1219	if (node)
1220		btrfs_panic(fs_info, -EEXIST,
1221			"zoned: inconsistency in ordered tree at offset %llu",
1222			ordered->file_offset);
1223
1224	node = tree_insert(&inode->ordered_tree, new->file_offset, &new->rb_node);
1225	if (node)
1226		btrfs_panic(fs_info, -EEXIST,
1227			"zoned: inconsistency in ordered tree at offset %llu",
1228			new->file_offset);
1229	spin_unlock(&inode->ordered_tree_lock);
1230
1231	list_add_tail(&new->root_extent_list, &root->ordered_extents);
1232	root->nr_ordered_extents++;
1233	spin_unlock_irq(&root->ordered_extent_lock);
1234	return new;
1235}
1236
1237int __init ordered_data_init(void)
1238{
1239	btrfs_ordered_extent_cache = KMEM_CACHE(btrfs_ordered_extent, 0);
 
 
 
1240	if (!btrfs_ordered_extent_cache)
1241		return -ENOMEM;
1242
1243	return 0;
1244}
1245
1246void __cold ordered_data_exit(void)
1247{
1248	kmem_cache_destroy(btrfs_ordered_extent_cache);
1249}