Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "ctree.h"
12#include "transaction.h"
13#include "btrfs_inode.h"
14#include "extent_io.h"
15#include "disk-io.h"
16#include "compression.h"
17#include "delalloc-space.h"
18#include "qgroup.h"
19
20static struct kmem_cache *btrfs_ordered_extent_cache;
21
22static u64 entry_end(struct btrfs_ordered_extent *entry)
23{
24 if (entry->file_offset + entry->num_bytes < entry->file_offset)
25 return (u64)-1;
26 return entry->file_offset + entry->num_bytes;
27}
28
29/* returns NULL if the insertion worked, or it returns the node it did find
30 * in the tree
31 */
32static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33 struct rb_node *node)
34{
35 struct rb_node **p = &root->rb_node;
36 struct rb_node *parent = NULL;
37 struct btrfs_ordered_extent *entry;
38
39 while (*p) {
40 parent = *p;
41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43 if (file_offset < entry->file_offset)
44 p = &(*p)->rb_left;
45 else if (file_offset >= entry_end(entry))
46 p = &(*p)->rb_right;
47 else
48 return parent;
49 }
50
51 rb_link_node(node, parent, p);
52 rb_insert_color(node, root);
53 return NULL;
54}
55
56/*
57 * look for a given offset in the tree, and if it can't be found return the
58 * first lesser offset
59 */
60static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61 struct rb_node **prev_ret)
62{
63 struct rb_node *n = root->rb_node;
64 struct rb_node *prev = NULL;
65 struct rb_node *test;
66 struct btrfs_ordered_extent *entry;
67 struct btrfs_ordered_extent *prev_entry = NULL;
68
69 while (n) {
70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71 prev = n;
72 prev_entry = entry;
73
74 if (file_offset < entry->file_offset)
75 n = n->rb_left;
76 else if (file_offset >= entry_end(entry))
77 n = n->rb_right;
78 else
79 return n;
80 }
81 if (!prev_ret)
82 return NULL;
83
84 while (prev && file_offset >= entry_end(prev_entry)) {
85 test = rb_next(prev);
86 if (!test)
87 break;
88 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89 rb_node);
90 if (file_offset < entry_end(prev_entry))
91 break;
92
93 prev = test;
94 }
95 if (prev)
96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97 rb_node);
98 while (prev && file_offset < entry_end(prev_entry)) {
99 test = rb_prev(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 prev = test;
105 }
106 *prev_ret = prev;
107 return NULL;
108}
109
110/*
111 * helper to check if a given offset is inside a given entry
112 */
113static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114{
115 if (file_offset < entry->file_offset ||
116 entry->file_offset + entry->num_bytes <= file_offset)
117 return 0;
118 return 1;
119}
120
121static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122 u64 len)
123{
124 if (file_offset + len <= entry->file_offset ||
125 entry->file_offset + entry->num_bytes <= file_offset)
126 return 0;
127 return 1;
128}
129
130/*
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
133 */
134static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135 u64 file_offset)
136{
137 struct rb_root *root = &tree->tree;
138 struct rb_node *prev = NULL;
139 struct rb_node *ret;
140 struct btrfs_ordered_extent *entry;
141
142 if (tree->last) {
143 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144 rb_node);
145 if (offset_in_entry(entry, file_offset))
146 return tree->last;
147 }
148 ret = __tree_search(root, file_offset, &prev);
149 if (!ret)
150 ret = prev;
151 if (ret)
152 tree->last = ret;
153 return ret;
154}
155
156/*
157 * Allocate and add a new ordered_extent into the per-inode tree.
158 *
159 * The tree is given a single reference on the ordered extent that was
160 * inserted.
161 */
162static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163 u64 disk_bytenr, u64 num_bytes,
164 u64 disk_num_bytes, int type, int dio,
165 int compress_type)
166{
167 struct btrfs_root *root = inode->root;
168 struct btrfs_fs_info *fs_info = root->fs_info;
169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170 struct rb_node *node;
171 struct btrfs_ordered_extent *entry;
172 int ret;
173
174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175 /* For nocow write, we can release the qgroup rsv right now */
176 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177 if (ret < 0)
178 return ret;
179 ret = 0;
180 } else {
181 /*
182 * The ordered extent has reserved qgroup space, release now
183 * and pass the reserved number for qgroup_record to free.
184 */
185 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186 if (ret < 0)
187 return ret;
188 }
189 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190 if (!entry)
191 return -ENOMEM;
192
193 entry->file_offset = file_offset;
194 entry->disk_bytenr = disk_bytenr;
195 entry->num_bytes = num_bytes;
196 entry->disk_num_bytes = disk_num_bytes;
197 entry->bytes_left = num_bytes;
198 entry->inode = igrab(&inode->vfs_inode);
199 entry->compress_type = compress_type;
200 entry->truncated_len = (u64)-1;
201 entry->qgroup_rsv = ret;
202 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
203 set_bit(type, &entry->flags);
204
205 if (dio) {
206 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
207 fs_info->delalloc_batch);
208 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
209 }
210
211 /* one ref for the tree */
212 refcount_set(&entry->refs, 1);
213 init_waitqueue_head(&entry->wait);
214 INIT_LIST_HEAD(&entry->list);
215 INIT_LIST_HEAD(&entry->root_extent_list);
216 INIT_LIST_HEAD(&entry->work_list);
217 init_completion(&entry->completion);
218
219 trace_btrfs_ordered_extent_add(&inode->vfs_inode, entry);
220
221 spin_lock_irq(&tree->lock);
222 node = tree_insert(&tree->tree, file_offset,
223 &entry->rb_node);
224 if (node)
225 btrfs_panic(fs_info, -EEXIST,
226 "inconsistency in ordered tree at offset %llu",
227 file_offset);
228 spin_unlock_irq(&tree->lock);
229
230 spin_lock(&root->ordered_extent_lock);
231 list_add_tail(&entry->root_extent_list,
232 &root->ordered_extents);
233 root->nr_ordered_extents++;
234 if (root->nr_ordered_extents == 1) {
235 spin_lock(&fs_info->ordered_root_lock);
236 BUG_ON(!list_empty(&root->ordered_root));
237 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
238 spin_unlock(&fs_info->ordered_root_lock);
239 }
240 spin_unlock(&root->ordered_extent_lock);
241
242 /*
243 * We don't need the count_max_extents here, we can assume that all of
244 * that work has been done at higher layers, so this is truly the
245 * smallest the extent is going to get.
246 */
247 spin_lock(&inode->lock);
248 btrfs_mod_outstanding_extents(inode, 1);
249 spin_unlock(&inode->lock);
250
251 return 0;
252}
253
254int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
255 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
256 int type)
257{
258 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
259 num_bytes, disk_num_bytes, type, 0,
260 BTRFS_COMPRESS_NONE);
261}
262
263int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
264 u64 disk_bytenr, u64 num_bytes,
265 u64 disk_num_bytes, int type)
266{
267 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
268 num_bytes, disk_num_bytes, type, 1,
269 BTRFS_COMPRESS_NONE);
270}
271
272int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
273 u64 disk_bytenr, u64 num_bytes,
274 u64 disk_num_bytes, int type,
275 int compress_type)
276{
277 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
278 num_bytes, disk_num_bytes, type, 0,
279 compress_type);
280}
281
282/*
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished. If the list covers more than one
285 * ordered extent, it is split across multiples.
286 */
287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 struct btrfs_ordered_sum *sum)
289{
290 struct btrfs_ordered_inode_tree *tree;
291
292 tree = &BTRFS_I(entry->inode)->ordered_tree;
293 spin_lock_irq(&tree->lock);
294 list_add_tail(&sum->list, &entry->list);
295 spin_unlock_irq(&tree->lock);
296}
297
298/*
299 * this is used to account for finished IO across a given range
300 * of the file. The IO may span ordered extents. If
301 * a given ordered_extent is completely done, 1 is returned, otherwise
302 * 0.
303 *
304 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
305 * to make sure this function only returns 1 once for a given ordered extent.
306 *
307 * file_offset is updated to one byte past the range that is recorded as
308 * complete. This allows you to walk forward in the file.
309 */
310int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
311 struct btrfs_ordered_extent **cached,
312 u64 *file_offset, u64 io_size, int uptodate)
313{
314 struct btrfs_fs_info *fs_info = inode->root->fs_info;
315 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
316 struct rb_node *node;
317 struct btrfs_ordered_extent *entry = NULL;
318 int ret;
319 unsigned long flags;
320 u64 dec_end;
321 u64 dec_start;
322 u64 to_dec;
323
324 spin_lock_irqsave(&tree->lock, flags);
325 node = tree_search(tree, *file_offset);
326 if (!node) {
327 ret = 1;
328 goto out;
329 }
330
331 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
332 if (!offset_in_entry(entry, *file_offset)) {
333 ret = 1;
334 goto out;
335 }
336
337 dec_start = max(*file_offset, entry->file_offset);
338 dec_end = min(*file_offset + io_size,
339 entry->file_offset + entry->num_bytes);
340 *file_offset = dec_end;
341 if (dec_start > dec_end) {
342 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
343 dec_start, dec_end);
344 }
345 to_dec = dec_end - dec_start;
346 if (to_dec > entry->bytes_left) {
347 btrfs_crit(fs_info,
348 "bad ordered accounting left %llu size %llu",
349 entry->bytes_left, to_dec);
350 }
351 entry->bytes_left -= to_dec;
352 if (!uptodate)
353 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
354
355 if (entry->bytes_left == 0) {
356 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
357 /* test_and_set_bit implies a barrier */
358 cond_wake_up_nomb(&entry->wait);
359 } else {
360 ret = 1;
361 }
362out:
363 if (!ret && cached && entry) {
364 *cached = entry;
365 refcount_inc(&entry->refs);
366 }
367 spin_unlock_irqrestore(&tree->lock, flags);
368 return ret == 0;
369}
370
371/*
372 * this is used to account for finished IO across a given range
373 * of the file. The IO should not span ordered extents. If
374 * a given ordered_extent is completely done, 1 is returned, otherwise
375 * 0.
376 *
377 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
378 * to make sure this function only returns 1 once for a given ordered extent.
379 */
380int btrfs_dec_test_ordered_pending(struct inode *inode,
381 struct btrfs_ordered_extent **cached,
382 u64 file_offset, u64 io_size, int uptodate)
383{
384 struct btrfs_ordered_inode_tree *tree;
385 struct rb_node *node;
386 struct btrfs_ordered_extent *entry = NULL;
387 unsigned long flags;
388 int ret;
389
390 tree = &BTRFS_I(inode)->ordered_tree;
391 spin_lock_irqsave(&tree->lock, flags);
392 if (cached && *cached) {
393 entry = *cached;
394 goto have_entry;
395 }
396
397 node = tree_search(tree, file_offset);
398 if (!node) {
399 ret = 1;
400 goto out;
401 }
402
403 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
404have_entry:
405 if (!offset_in_entry(entry, file_offset)) {
406 ret = 1;
407 goto out;
408 }
409
410 if (io_size > entry->bytes_left) {
411 btrfs_crit(BTRFS_I(inode)->root->fs_info,
412 "bad ordered accounting left %llu size %llu",
413 entry->bytes_left, io_size);
414 }
415 entry->bytes_left -= io_size;
416 if (!uptodate)
417 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
418
419 if (entry->bytes_left == 0) {
420 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
421 /* test_and_set_bit implies a barrier */
422 cond_wake_up_nomb(&entry->wait);
423 } else {
424 ret = 1;
425 }
426out:
427 if (!ret && cached && entry) {
428 *cached = entry;
429 refcount_inc(&entry->refs);
430 }
431 spin_unlock_irqrestore(&tree->lock, flags);
432 return ret == 0;
433}
434
435/*
436 * used to drop a reference on an ordered extent. This will free
437 * the extent if the last reference is dropped
438 */
439void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
440{
441 struct list_head *cur;
442 struct btrfs_ordered_sum *sum;
443
444 trace_btrfs_ordered_extent_put(entry->inode, entry);
445
446 if (refcount_dec_and_test(&entry->refs)) {
447 ASSERT(list_empty(&entry->root_extent_list));
448 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
449 if (entry->inode)
450 btrfs_add_delayed_iput(entry->inode);
451 while (!list_empty(&entry->list)) {
452 cur = entry->list.next;
453 sum = list_entry(cur, struct btrfs_ordered_sum, list);
454 list_del(&sum->list);
455 kvfree(sum);
456 }
457 kmem_cache_free(btrfs_ordered_extent_cache, entry);
458 }
459}
460
461/*
462 * remove an ordered extent from the tree. No references are dropped
463 * and waiters are woken up.
464 */
465void btrfs_remove_ordered_extent(struct inode *inode,
466 struct btrfs_ordered_extent *entry)
467{
468 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
469 struct btrfs_ordered_inode_tree *tree;
470 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
471 struct btrfs_root *root = btrfs_inode->root;
472 struct rb_node *node;
473
474 /* This is paired with btrfs_add_ordered_extent. */
475 spin_lock(&btrfs_inode->lock);
476 btrfs_mod_outstanding_extents(btrfs_inode, -1);
477 spin_unlock(&btrfs_inode->lock);
478 if (root != fs_info->tree_root)
479 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
480 false);
481
482 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
483 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
484 fs_info->delalloc_batch);
485
486 tree = &btrfs_inode->ordered_tree;
487 spin_lock_irq(&tree->lock);
488 node = &entry->rb_node;
489 rb_erase(node, &tree->tree);
490 RB_CLEAR_NODE(node);
491 if (tree->last == node)
492 tree->last = NULL;
493 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
494 spin_unlock_irq(&tree->lock);
495
496 spin_lock(&root->ordered_extent_lock);
497 list_del_init(&entry->root_extent_list);
498 root->nr_ordered_extents--;
499
500 trace_btrfs_ordered_extent_remove(inode, entry);
501
502 if (!root->nr_ordered_extents) {
503 spin_lock(&fs_info->ordered_root_lock);
504 BUG_ON(list_empty(&root->ordered_root));
505 list_del_init(&root->ordered_root);
506 spin_unlock(&fs_info->ordered_root_lock);
507 }
508 spin_unlock(&root->ordered_extent_lock);
509 wake_up(&entry->wait);
510}
511
512static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
513{
514 struct btrfs_ordered_extent *ordered;
515
516 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
517 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
518 complete(&ordered->completion);
519}
520
521/*
522 * wait for all the ordered extents in a root. This is done when balancing
523 * space between drives.
524 */
525u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
526 const u64 range_start, const u64 range_len)
527{
528 struct btrfs_fs_info *fs_info = root->fs_info;
529 LIST_HEAD(splice);
530 LIST_HEAD(skipped);
531 LIST_HEAD(works);
532 struct btrfs_ordered_extent *ordered, *next;
533 u64 count = 0;
534 const u64 range_end = range_start + range_len;
535
536 mutex_lock(&root->ordered_extent_mutex);
537 spin_lock(&root->ordered_extent_lock);
538 list_splice_init(&root->ordered_extents, &splice);
539 while (!list_empty(&splice) && nr) {
540 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
541 root_extent_list);
542
543 if (range_end <= ordered->disk_bytenr ||
544 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
545 list_move_tail(&ordered->root_extent_list, &skipped);
546 cond_resched_lock(&root->ordered_extent_lock);
547 continue;
548 }
549
550 list_move_tail(&ordered->root_extent_list,
551 &root->ordered_extents);
552 refcount_inc(&ordered->refs);
553 spin_unlock(&root->ordered_extent_lock);
554
555 btrfs_init_work(&ordered->flush_work,
556 btrfs_run_ordered_extent_work, NULL, NULL);
557 list_add_tail(&ordered->work_list, &works);
558 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
559
560 cond_resched();
561 spin_lock(&root->ordered_extent_lock);
562 if (nr != U64_MAX)
563 nr--;
564 count++;
565 }
566 list_splice_tail(&skipped, &root->ordered_extents);
567 list_splice_tail(&splice, &root->ordered_extents);
568 spin_unlock(&root->ordered_extent_lock);
569
570 list_for_each_entry_safe(ordered, next, &works, work_list) {
571 list_del_init(&ordered->work_list);
572 wait_for_completion(&ordered->completion);
573 btrfs_put_ordered_extent(ordered);
574 cond_resched();
575 }
576 mutex_unlock(&root->ordered_extent_mutex);
577
578 return count;
579}
580
581void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
582 const u64 range_start, const u64 range_len)
583{
584 struct btrfs_root *root;
585 struct list_head splice;
586 u64 done;
587
588 INIT_LIST_HEAD(&splice);
589
590 mutex_lock(&fs_info->ordered_operations_mutex);
591 spin_lock(&fs_info->ordered_root_lock);
592 list_splice_init(&fs_info->ordered_roots, &splice);
593 while (!list_empty(&splice) && nr) {
594 root = list_first_entry(&splice, struct btrfs_root,
595 ordered_root);
596 root = btrfs_grab_root(root);
597 BUG_ON(!root);
598 list_move_tail(&root->ordered_root,
599 &fs_info->ordered_roots);
600 spin_unlock(&fs_info->ordered_root_lock);
601
602 done = btrfs_wait_ordered_extents(root, nr,
603 range_start, range_len);
604 btrfs_put_root(root);
605
606 spin_lock(&fs_info->ordered_root_lock);
607 if (nr != U64_MAX) {
608 nr -= done;
609 }
610 }
611 list_splice_tail(&splice, &fs_info->ordered_roots);
612 spin_unlock(&fs_info->ordered_root_lock);
613 mutex_unlock(&fs_info->ordered_operations_mutex);
614}
615
616/*
617 * Used to start IO or wait for a given ordered extent to finish.
618 *
619 * If wait is one, this effectively waits on page writeback for all the pages
620 * in the extent, and it waits on the io completion code to insert
621 * metadata into the btree corresponding to the extent
622 */
623void btrfs_start_ordered_extent(struct inode *inode,
624 struct btrfs_ordered_extent *entry,
625 int wait)
626{
627 u64 start = entry->file_offset;
628 u64 end = start + entry->num_bytes - 1;
629
630 trace_btrfs_ordered_extent_start(inode, entry);
631
632 /*
633 * pages in the range can be dirty, clean or writeback. We
634 * start IO on any dirty ones so the wait doesn't stall waiting
635 * for the flusher thread to find them
636 */
637 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
638 filemap_fdatawrite_range(inode->i_mapping, start, end);
639 if (wait) {
640 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
641 &entry->flags));
642 }
643}
644
645/*
646 * Used to wait on ordered extents across a large range of bytes.
647 */
648int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
649{
650 int ret = 0;
651 int ret_wb = 0;
652 u64 end;
653 u64 orig_end;
654 struct btrfs_ordered_extent *ordered;
655
656 if (start + len < start) {
657 orig_end = INT_LIMIT(loff_t);
658 } else {
659 orig_end = start + len - 1;
660 if (orig_end > INT_LIMIT(loff_t))
661 orig_end = INT_LIMIT(loff_t);
662 }
663
664 /* start IO across the range first to instantiate any delalloc
665 * extents
666 */
667 ret = btrfs_fdatawrite_range(inode, start, orig_end);
668 if (ret)
669 return ret;
670
671 /*
672 * If we have a writeback error don't return immediately. Wait first
673 * for any ordered extents that haven't completed yet. This is to make
674 * sure no one can dirty the same page ranges and call writepages()
675 * before the ordered extents complete - to avoid failures (-EEXIST)
676 * when adding the new ordered extents to the ordered tree.
677 */
678 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
679
680 end = orig_end;
681 while (1) {
682 ordered = btrfs_lookup_first_ordered_extent(inode, end);
683 if (!ordered)
684 break;
685 if (ordered->file_offset > orig_end) {
686 btrfs_put_ordered_extent(ordered);
687 break;
688 }
689 if (ordered->file_offset + ordered->num_bytes <= start) {
690 btrfs_put_ordered_extent(ordered);
691 break;
692 }
693 btrfs_start_ordered_extent(inode, ordered, 1);
694 end = ordered->file_offset;
695 /*
696 * If the ordered extent had an error save the error but don't
697 * exit without waiting first for all other ordered extents in
698 * the range to complete.
699 */
700 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
701 ret = -EIO;
702 btrfs_put_ordered_extent(ordered);
703 if (end == 0 || end == start)
704 break;
705 end--;
706 }
707 return ret_wb ? ret_wb : ret;
708}
709
710/*
711 * find an ordered extent corresponding to file_offset. return NULL if
712 * nothing is found, otherwise take a reference on the extent and return it
713 */
714struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
715 u64 file_offset)
716{
717 struct btrfs_ordered_inode_tree *tree;
718 struct rb_node *node;
719 struct btrfs_ordered_extent *entry = NULL;
720
721 tree = &inode->ordered_tree;
722 spin_lock_irq(&tree->lock);
723 node = tree_search(tree, file_offset);
724 if (!node)
725 goto out;
726
727 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
728 if (!offset_in_entry(entry, file_offset))
729 entry = NULL;
730 if (entry)
731 refcount_inc(&entry->refs);
732out:
733 spin_unlock_irq(&tree->lock);
734 return entry;
735}
736
737/* Since the DIO code tries to lock a wide area we need to look for any ordered
738 * extents that exist in the range, rather than just the start of the range.
739 */
740struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
741 struct btrfs_inode *inode, u64 file_offset, u64 len)
742{
743 struct btrfs_ordered_inode_tree *tree;
744 struct rb_node *node;
745 struct btrfs_ordered_extent *entry = NULL;
746
747 tree = &inode->ordered_tree;
748 spin_lock_irq(&tree->lock);
749 node = tree_search(tree, file_offset);
750 if (!node) {
751 node = tree_search(tree, file_offset + len);
752 if (!node)
753 goto out;
754 }
755
756 while (1) {
757 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
758 if (range_overlaps(entry, file_offset, len))
759 break;
760
761 if (entry->file_offset >= file_offset + len) {
762 entry = NULL;
763 break;
764 }
765 entry = NULL;
766 node = rb_next(node);
767 if (!node)
768 break;
769 }
770out:
771 if (entry)
772 refcount_inc(&entry->refs);
773 spin_unlock_irq(&tree->lock);
774 return entry;
775}
776
777/*
778 * lookup and return any extent before 'file_offset'. NULL is returned
779 * if none is found
780 */
781struct btrfs_ordered_extent *
782btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
783{
784 struct btrfs_ordered_inode_tree *tree;
785 struct rb_node *node;
786 struct btrfs_ordered_extent *entry = NULL;
787
788 tree = &BTRFS_I(inode)->ordered_tree;
789 spin_lock_irq(&tree->lock);
790 node = tree_search(tree, file_offset);
791 if (!node)
792 goto out;
793
794 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
795 refcount_inc(&entry->refs);
796out:
797 spin_unlock_irq(&tree->lock);
798 return entry;
799}
800
801/*
802 * search the ordered extents for one corresponding to 'offset' and
803 * try to find a checksum. This is used because we allow pages to
804 * be reclaimed before their checksum is actually put into the btree
805 */
806int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
807 u8 *sum, int len)
808{
809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
810 struct btrfs_ordered_sum *ordered_sum;
811 struct btrfs_ordered_extent *ordered;
812 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
813 unsigned long num_sectors;
814 unsigned long i;
815 u32 sectorsize = btrfs_inode_sectorsize(inode);
816 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
817 int index = 0;
818
819 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset);
820 if (!ordered)
821 return 0;
822
823 spin_lock_irq(&tree->lock);
824 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
825 if (disk_bytenr >= ordered_sum->bytenr &&
826 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
827 i = (disk_bytenr - ordered_sum->bytenr) >>
828 inode->i_sb->s_blocksize_bits;
829 num_sectors = ordered_sum->len >>
830 inode->i_sb->s_blocksize_bits;
831 num_sectors = min_t(int, len - index, num_sectors - i);
832 memcpy(sum + index, ordered_sum->sums + i * csum_size,
833 num_sectors * csum_size);
834
835 index += (int)num_sectors * csum_size;
836 if (index == len)
837 goto out;
838 disk_bytenr += num_sectors * sectorsize;
839 }
840 }
841out:
842 spin_unlock_irq(&tree->lock);
843 btrfs_put_ordered_extent(ordered);
844 return index;
845}
846
847/*
848 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
849 * ordered extents in it are run to completion.
850 *
851 * @inode: Inode whose ordered tree is to be searched
852 * @start: Beginning of range to flush
853 * @end: Last byte of range to lock
854 * @cached_state: If passed, will return the extent state responsible for the
855 * locked range. It's the caller's responsibility to free the cached state.
856 *
857 * This function always returns with the given range locked, ensuring after it's
858 * called no order extent can be pending.
859 */
860void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
861 u64 end,
862 struct extent_state **cached_state)
863{
864 struct btrfs_ordered_extent *ordered;
865 struct extent_state *cache = NULL;
866 struct extent_state **cachedp = &cache;
867
868 if (cached_state)
869 cachedp = cached_state;
870
871 while (1) {
872 lock_extent_bits(&inode->io_tree, start, end, cachedp);
873 ordered = btrfs_lookup_ordered_range(inode, start,
874 end - start + 1);
875 if (!ordered) {
876 /*
877 * If no external cached_state has been passed then
878 * decrement the extra ref taken for cachedp since we
879 * aren't exposing it outside of this function
880 */
881 if (!cached_state)
882 refcount_dec(&cache->refs);
883 break;
884 }
885 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
886 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
887 btrfs_put_ordered_extent(ordered);
888 }
889}
890
891int __init ordered_data_init(void)
892{
893 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
894 sizeof(struct btrfs_ordered_extent), 0,
895 SLAB_MEM_SPREAD,
896 NULL);
897 if (!btrfs_ordered_extent_cache)
898 return -ENOMEM;
899
900 return 0;
901}
902
903void __cold ordered_data_exit(void)
904{
905 kmem_cache_destroy(btrfs_ordered_extent_cache);
906}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/pagevec.h>
10#include "ctree.h"
11#include "transaction.h"
12#include "btrfs_inode.h"
13#include "extent_io.h"
14#include "disk-io.h"
15#include "compression.h"
16
17static struct kmem_cache *btrfs_ordered_extent_cache;
18
19static u64 entry_end(struct btrfs_ordered_extent *entry)
20{
21 if (entry->file_offset + entry->len < entry->file_offset)
22 return (u64)-1;
23 return entry->file_offset + entry->len;
24}
25
26/* returns NULL if the insertion worked, or it returns the node it did find
27 * in the tree
28 */
29static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
30 struct rb_node *node)
31{
32 struct rb_node **p = &root->rb_node;
33 struct rb_node *parent = NULL;
34 struct btrfs_ordered_extent *entry;
35
36 while (*p) {
37 parent = *p;
38 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
39
40 if (file_offset < entry->file_offset)
41 p = &(*p)->rb_left;
42 else if (file_offset >= entry_end(entry))
43 p = &(*p)->rb_right;
44 else
45 return parent;
46 }
47
48 rb_link_node(node, parent, p);
49 rb_insert_color(node, root);
50 return NULL;
51}
52
53static void ordered_data_tree_panic(struct inode *inode, int errno,
54 u64 offset)
55{
56 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
57 btrfs_panic(fs_info, errno,
58 "Inconsistency in ordered tree at offset %llu", offset);
59}
60
61/*
62 * look for a given offset in the tree, and if it can't be found return the
63 * first lesser offset
64 */
65static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
66 struct rb_node **prev_ret)
67{
68 struct rb_node *n = root->rb_node;
69 struct rb_node *prev = NULL;
70 struct rb_node *test;
71 struct btrfs_ordered_extent *entry;
72 struct btrfs_ordered_extent *prev_entry = NULL;
73
74 while (n) {
75 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
76 prev = n;
77 prev_entry = entry;
78
79 if (file_offset < entry->file_offset)
80 n = n->rb_left;
81 else if (file_offset >= entry_end(entry))
82 n = n->rb_right;
83 else
84 return n;
85 }
86 if (!prev_ret)
87 return NULL;
88
89 while (prev && file_offset >= entry_end(prev_entry)) {
90 test = rb_next(prev);
91 if (!test)
92 break;
93 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
94 rb_node);
95 if (file_offset < entry_end(prev_entry))
96 break;
97
98 prev = test;
99 }
100 if (prev)
101 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
102 rb_node);
103 while (prev && file_offset < entry_end(prev_entry)) {
104 test = rb_prev(prev);
105 if (!test)
106 break;
107 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
108 rb_node);
109 prev = test;
110 }
111 *prev_ret = prev;
112 return NULL;
113}
114
115/*
116 * helper to check if a given offset is inside a given entry
117 */
118static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
119{
120 if (file_offset < entry->file_offset ||
121 entry->file_offset + entry->len <= file_offset)
122 return 0;
123 return 1;
124}
125
126static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
127 u64 len)
128{
129 if (file_offset + len <= entry->file_offset ||
130 entry->file_offset + entry->len <= file_offset)
131 return 0;
132 return 1;
133}
134
135/*
136 * look find the first ordered struct that has this offset, otherwise
137 * the first one less than this offset
138 */
139static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
140 u64 file_offset)
141{
142 struct rb_root *root = &tree->tree;
143 struct rb_node *prev = NULL;
144 struct rb_node *ret;
145 struct btrfs_ordered_extent *entry;
146
147 if (tree->last) {
148 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
149 rb_node);
150 if (offset_in_entry(entry, file_offset))
151 return tree->last;
152 }
153 ret = __tree_search(root, file_offset, &prev);
154 if (!ret)
155 ret = prev;
156 if (ret)
157 tree->last = ret;
158 return ret;
159}
160
161/* allocate and add a new ordered_extent into the per-inode tree.
162 * file_offset is the logical offset in the file
163 *
164 * start is the disk block number of an extent already reserved in the
165 * extent allocation tree
166 *
167 * len is the length of the extent
168 *
169 * The tree is given a single reference on the ordered extent that was
170 * inserted.
171 */
172static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
173 u64 start, u64 len, u64 disk_len,
174 int type, int dio, int compress_type)
175{
176 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
177 struct btrfs_root *root = BTRFS_I(inode)->root;
178 struct btrfs_ordered_inode_tree *tree;
179 struct rb_node *node;
180 struct btrfs_ordered_extent *entry;
181
182 tree = &BTRFS_I(inode)->ordered_tree;
183 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
184 if (!entry)
185 return -ENOMEM;
186
187 entry->file_offset = file_offset;
188 entry->start = start;
189 entry->len = len;
190 entry->disk_len = disk_len;
191 entry->bytes_left = len;
192 entry->inode = igrab(inode);
193 entry->compress_type = compress_type;
194 entry->truncated_len = (u64)-1;
195 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
196 set_bit(type, &entry->flags);
197
198 if (dio)
199 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
200
201 /* one ref for the tree */
202 refcount_set(&entry->refs, 1);
203 init_waitqueue_head(&entry->wait);
204 INIT_LIST_HEAD(&entry->list);
205 INIT_LIST_HEAD(&entry->root_extent_list);
206 INIT_LIST_HEAD(&entry->work_list);
207 init_completion(&entry->completion);
208 INIT_LIST_HEAD(&entry->log_list);
209 INIT_LIST_HEAD(&entry->trans_list);
210
211 trace_btrfs_ordered_extent_add(inode, entry);
212
213 spin_lock_irq(&tree->lock);
214 node = tree_insert(&tree->tree, file_offset,
215 &entry->rb_node);
216 if (node)
217 ordered_data_tree_panic(inode, -EEXIST, file_offset);
218 spin_unlock_irq(&tree->lock);
219
220 spin_lock(&root->ordered_extent_lock);
221 list_add_tail(&entry->root_extent_list,
222 &root->ordered_extents);
223 root->nr_ordered_extents++;
224 if (root->nr_ordered_extents == 1) {
225 spin_lock(&fs_info->ordered_root_lock);
226 BUG_ON(!list_empty(&root->ordered_root));
227 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
228 spin_unlock(&fs_info->ordered_root_lock);
229 }
230 spin_unlock(&root->ordered_extent_lock);
231
232 /*
233 * We don't need the count_max_extents here, we can assume that all of
234 * that work has been done at higher layers, so this is truly the
235 * smallest the extent is going to get.
236 */
237 spin_lock(&BTRFS_I(inode)->lock);
238 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
239 spin_unlock(&BTRFS_I(inode)->lock);
240
241 return 0;
242}
243
244int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
245 u64 start, u64 len, u64 disk_len, int type)
246{
247 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
248 disk_len, type, 0,
249 BTRFS_COMPRESS_NONE);
250}
251
252int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
253 u64 start, u64 len, u64 disk_len, int type)
254{
255 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
256 disk_len, type, 1,
257 BTRFS_COMPRESS_NONE);
258}
259
260int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
261 u64 start, u64 len, u64 disk_len,
262 int type, int compress_type)
263{
264 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
265 disk_len, type, 0,
266 compress_type);
267}
268
269/*
270 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
271 * when an ordered extent is finished. If the list covers more than one
272 * ordered extent, it is split across multiples.
273 */
274void btrfs_add_ordered_sum(struct inode *inode,
275 struct btrfs_ordered_extent *entry,
276 struct btrfs_ordered_sum *sum)
277{
278 struct btrfs_ordered_inode_tree *tree;
279
280 tree = &BTRFS_I(inode)->ordered_tree;
281 spin_lock_irq(&tree->lock);
282 list_add_tail(&sum->list, &entry->list);
283 spin_unlock_irq(&tree->lock);
284}
285
286/*
287 * this is used to account for finished IO across a given range
288 * of the file. The IO may span ordered extents. If
289 * a given ordered_extent is completely done, 1 is returned, otherwise
290 * 0.
291 *
292 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
293 * to make sure this function only returns 1 once for a given ordered extent.
294 *
295 * file_offset is updated to one byte past the range that is recorded as
296 * complete. This allows you to walk forward in the file.
297 */
298int btrfs_dec_test_first_ordered_pending(struct inode *inode,
299 struct btrfs_ordered_extent **cached,
300 u64 *file_offset, u64 io_size, int uptodate)
301{
302 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
303 struct btrfs_ordered_inode_tree *tree;
304 struct rb_node *node;
305 struct btrfs_ordered_extent *entry = NULL;
306 int ret;
307 unsigned long flags;
308 u64 dec_end;
309 u64 dec_start;
310 u64 to_dec;
311
312 tree = &BTRFS_I(inode)->ordered_tree;
313 spin_lock_irqsave(&tree->lock, flags);
314 node = tree_search(tree, *file_offset);
315 if (!node) {
316 ret = 1;
317 goto out;
318 }
319
320 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
321 if (!offset_in_entry(entry, *file_offset)) {
322 ret = 1;
323 goto out;
324 }
325
326 dec_start = max(*file_offset, entry->file_offset);
327 dec_end = min(*file_offset + io_size, entry->file_offset +
328 entry->len);
329 *file_offset = dec_end;
330 if (dec_start > dec_end) {
331 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
332 dec_start, dec_end);
333 }
334 to_dec = dec_end - dec_start;
335 if (to_dec > entry->bytes_left) {
336 btrfs_crit(fs_info,
337 "bad ordered accounting left %llu size %llu",
338 entry->bytes_left, to_dec);
339 }
340 entry->bytes_left -= to_dec;
341 if (!uptodate)
342 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
343
344 if (entry->bytes_left == 0) {
345 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
346 /*
347 * Implicit memory barrier after test_and_set_bit
348 */
349 if (waitqueue_active(&entry->wait))
350 wake_up(&entry->wait);
351 } else {
352 ret = 1;
353 }
354out:
355 if (!ret && cached && entry) {
356 *cached = entry;
357 refcount_inc(&entry->refs);
358 }
359 spin_unlock_irqrestore(&tree->lock, flags);
360 return ret == 0;
361}
362
363/*
364 * this is used to account for finished IO across a given range
365 * of the file. The IO should not span ordered extents. If
366 * a given ordered_extent is completely done, 1 is returned, otherwise
367 * 0.
368 *
369 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
370 * to make sure this function only returns 1 once for a given ordered extent.
371 */
372int btrfs_dec_test_ordered_pending(struct inode *inode,
373 struct btrfs_ordered_extent **cached,
374 u64 file_offset, u64 io_size, int uptodate)
375{
376 struct btrfs_ordered_inode_tree *tree;
377 struct rb_node *node;
378 struct btrfs_ordered_extent *entry = NULL;
379 unsigned long flags;
380 int ret;
381
382 tree = &BTRFS_I(inode)->ordered_tree;
383 spin_lock_irqsave(&tree->lock, flags);
384 if (cached && *cached) {
385 entry = *cached;
386 goto have_entry;
387 }
388
389 node = tree_search(tree, file_offset);
390 if (!node) {
391 ret = 1;
392 goto out;
393 }
394
395 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
396have_entry:
397 if (!offset_in_entry(entry, file_offset)) {
398 ret = 1;
399 goto out;
400 }
401
402 if (io_size > entry->bytes_left) {
403 btrfs_crit(BTRFS_I(inode)->root->fs_info,
404 "bad ordered accounting left %llu size %llu",
405 entry->bytes_left, io_size);
406 }
407 entry->bytes_left -= io_size;
408 if (!uptodate)
409 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
410
411 if (entry->bytes_left == 0) {
412 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
413 /*
414 * Implicit memory barrier after test_and_set_bit
415 */
416 if (waitqueue_active(&entry->wait))
417 wake_up(&entry->wait);
418 } else {
419 ret = 1;
420 }
421out:
422 if (!ret && cached && entry) {
423 *cached = entry;
424 refcount_inc(&entry->refs);
425 }
426 spin_unlock_irqrestore(&tree->lock, flags);
427 return ret == 0;
428}
429
430/* Needs to either be called under a log transaction or the log_mutex */
431void btrfs_get_logged_extents(struct btrfs_inode *inode,
432 struct list_head *logged_list,
433 const loff_t start,
434 const loff_t end)
435{
436 struct btrfs_ordered_inode_tree *tree;
437 struct btrfs_ordered_extent *ordered;
438 struct rb_node *n;
439 struct rb_node *prev;
440
441 tree = &inode->ordered_tree;
442 spin_lock_irq(&tree->lock);
443 n = __tree_search(&tree->tree, end, &prev);
444 if (!n)
445 n = prev;
446 for (; n; n = rb_prev(n)) {
447 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
448 if (ordered->file_offset > end)
449 continue;
450 if (entry_end(ordered) <= start)
451 break;
452 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
453 continue;
454 list_add(&ordered->log_list, logged_list);
455 refcount_inc(&ordered->refs);
456 }
457 spin_unlock_irq(&tree->lock);
458}
459
460void btrfs_put_logged_extents(struct list_head *logged_list)
461{
462 struct btrfs_ordered_extent *ordered;
463
464 while (!list_empty(logged_list)) {
465 ordered = list_first_entry(logged_list,
466 struct btrfs_ordered_extent,
467 log_list);
468 list_del_init(&ordered->log_list);
469 btrfs_put_ordered_extent(ordered);
470 }
471}
472
473void btrfs_submit_logged_extents(struct list_head *logged_list,
474 struct btrfs_root *log)
475{
476 int index = log->log_transid % 2;
477
478 spin_lock_irq(&log->log_extents_lock[index]);
479 list_splice_tail(logged_list, &log->logged_list[index]);
480 spin_unlock_irq(&log->log_extents_lock[index]);
481}
482
483void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
484 struct btrfs_root *log, u64 transid)
485{
486 struct btrfs_ordered_extent *ordered;
487 int index = transid % 2;
488
489 spin_lock_irq(&log->log_extents_lock[index]);
490 while (!list_empty(&log->logged_list[index])) {
491 struct inode *inode;
492 ordered = list_first_entry(&log->logged_list[index],
493 struct btrfs_ordered_extent,
494 log_list);
495 list_del_init(&ordered->log_list);
496 inode = ordered->inode;
497 spin_unlock_irq(&log->log_extents_lock[index]);
498
499 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
500 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
501 u64 start = ordered->file_offset;
502 u64 end = ordered->file_offset + ordered->len - 1;
503
504 WARN_ON(!inode);
505 filemap_fdatawrite_range(inode->i_mapping, start, end);
506 }
507 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
508 &ordered->flags));
509
510 /*
511 * In order to keep us from losing our ordered extent
512 * information when committing the transaction we have to make
513 * sure that any logged extents are completed when we go to
514 * commit the transaction. To do this we simply increase the
515 * current transactions pending_ordered counter and decrement it
516 * when the ordered extent completes.
517 */
518 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
519 struct btrfs_ordered_inode_tree *tree;
520
521 tree = &BTRFS_I(inode)->ordered_tree;
522 spin_lock_irq(&tree->lock);
523 if (!test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) {
524 set_bit(BTRFS_ORDERED_PENDING, &ordered->flags);
525 atomic_inc(&trans->transaction->pending_ordered);
526 }
527 spin_unlock_irq(&tree->lock);
528 }
529 btrfs_put_ordered_extent(ordered);
530 spin_lock_irq(&log->log_extents_lock[index]);
531 }
532 spin_unlock_irq(&log->log_extents_lock[index]);
533}
534
535void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
536{
537 struct btrfs_ordered_extent *ordered;
538 int index = transid % 2;
539
540 spin_lock_irq(&log->log_extents_lock[index]);
541 while (!list_empty(&log->logged_list[index])) {
542 ordered = list_first_entry(&log->logged_list[index],
543 struct btrfs_ordered_extent,
544 log_list);
545 list_del_init(&ordered->log_list);
546 spin_unlock_irq(&log->log_extents_lock[index]);
547 btrfs_put_ordered_extent(ordered);
548 spin_lock_irq(&log->log_extents_lock[index]);
549 }
550 spin_unlock_irq(&log->log_extents_lock[index]);
551}
552
553/*
554 * used to drop a reference on an ordered extent. This will free
555 * the extent if the last reference is dropped
556 */
557void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
558{
559 struct list_head *cur;
560 struct btrfs_ordered_sum *sum;
561
562 trace_btrfs_ordered_extent_put(entry->inode, entry);
563
564 if (refcount_dec_and_test(&entry->refs)) {
565 ASSERT(list_empty(&entry->log_list));
566 ASSERT(list_empty(&entry->trans_list));
567 ASSERT(list_empty(&entry->root_extent_list));
568 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
569 if (entry->inode)
570 btrfs_add_delayed_iput(entry->inode);
571 while (!list_empty(&entry->list)) {
572 cur = entry->list.next;
573 sum = list_entry(cur, struct btrfs_ordered_sum, list);
574 list_del(&sum->list);
575 kfree(sum);
576 }
577 kmem_cache_free(btrfs_ordered_extent_cache, entry);
578 }
579}
580
581/*
582 * remove an ordered extent from the tree. No references are dropped
583 * and waiters are woken up.
584 */
585void btrfs_remove_ordered_extent(struct inode *inode,
586 struct btrfs_ordered_extent *entry)
587{
588 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
589 struct btrfs_ordered_inode_tree *tree;
590 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
591 struct btrfs_root *root = btrfs_inode->root;
592 struct rb_node *node;
593 bool dec_pending_ordered = false;
594
595 /* This is paired with btrfs_add_ordered_extent. */
596 spin_lock(&btrfs_inode->lock);
597 btrfs_mod_outstanding_extents(btrfs_inode, -1);
598 spin_unlock(&btrfs_inode->lock);
599 if (root != fs_info->tree_root)
600 btrfs_delalloc_release_metadata(btrfs_inode, entry->len, false);
601
602 tree = &btrfs_inode->ordered_tree;
603 spin_lock_irq(&tree->lock);
604 node = &entry->rb_node;
605 rb_erase(node, &tree->tree);
606 RB_CLEAR_NODE(node);
607 if (tree->last == node)
608 tree->last = NULL;
609 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
610 if (test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags))
611 dec_pending_ordered = true;
612 spin_unlock_irq(&tree->lock);
613
614 /*
615 * The current running transaction is waiting on us, we need to let it
616 * know that we're complete and wake it up.
617 */
618 if (dec_pending_ordered) {
619 struct btrfs_transaction *trans;
620
621 /*
622 * The checks for trans are just a formality, it should be set,
623 * but if it isn't we don't want to deref/assert under the spin
624 * lock, so be nice and check if trans is set, but ASSERT() so
625 * if it isn't set a developer will notice.
626 */
627 spin_lock(&fs_info->trans_lock);
628 trans = fs_info->running_transaction;
629 if (trans)
630 refcount_inc(&trans->use_count);
631 spin_unlock(&fs_info->trans_lock);
632
633 ASSERT(trans);
634 if (trans) {
635 if (atomic_dec_and_test(&trans->pending_ordered))
636 wake_up(&trans->pending_wait);
637 btrfs_put_transaction(trans);
638 }
639 }
640
641 spin_lock(&root->ordered_extent_lock);
642 list_del_init(&entry->root_extent_list);
643 root->nr_ordered_extents--;
644
645 trace_btrfs_ordered_extent_remove(inode, entry);
646
647 if (!root->nr_ordered_extents) {
648 spin_lock(&fs_info->ordered_root_lock);
649 BUG_ON(list_empty(&root->ordered_root));
650 list_del_init(&root->ordered_root);
651 spin_unlock(&fs_info->ordered_root_lock);
652 }
653 spin_unlock(&root->ordered_extent_lock);
654 wake_up(&entry->wait);
655}
656
657static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
658{
659 struct btrfs_ordered_extent *ordered;
660
661 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
662 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
663 complete(&ordered->completion);
664}
665
666/*
667 * wait for all the ordered extents in a root. This is done when balancing
668 * space between drives.
669 */
670u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
671 const u64 range_start, const u64 range_len)
672{
673 struct btrfs_fs_info *fs_info = root->fs_info;
674 LIST_HEAD(splice);
675 LIST_HEAD(skipped);
676 LIST_HEAD(works);
677 struct btrfs_ordered_extent *ordered, *next;
678 u64 count = 0;
679 const u64 range_end = range_start + range_len;
680
681 mutex_lock(&root->ordered_extent_mutex);
682 spin_lock(&root->ordered_extent_lock);
683 list_splice_init(&root->ordered_extents, &splice);
684 while (!list_empty(&splice) && nr) {
685 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
686 root_extent_list);
687
688 if (range_end <= ordered->start ||
689 ordered->start + ordered->disk_len <= range_start) {
690 list_move_tail(&ordered->root_extent_list, &skipped);
691 cond_resched_lock(&root->ordered_extent_lock);
692 continue;
693 }
694
695 list_move_tail(&ordered->root_extent_list,
696 &root->ordered_extents);
697 refcount_inc(&ordered->refs);
698 spin_unlock(&root->ordered_extent_lock);
699
700 btrfs_init_work(&ordered->flush_work,
701 btrfs_flush_delalloc_helper,
702 btrfs_run_ordered_extent_work, NULL, NULL);
703 list_add_tail(&ordered->work_list, &works);
704 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
705
706 cond_resched();
707 spin_lock(&root->ordered_extent_lock);
708 if (nr != U64_MAX)
709 nr--;
710 count++;
711 }
712 list_splice_tail(&skipped, &root->ordered_extents);
713 list_splice_tail(&splice, &root->ordered_extents);
714 spin_unlock(&root->ordered_extent_lock);
715
716 list_for_each_entry_safe(ordered, next, &works, work_list) {
717 list_del_init(&ordered->work_list);
718 wait_for_completion(&ordered->completion);
719 btrfs_put_ordered_extent(ordered);
720 cond_resched();
721 }
722 mutex_unlock(&root->ordered_extent_mutex);
723
724 return count;
725}
726
727u64 btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
728 const u64 range_start, const u64 range_len)
729{
730 struct btrfs_root *root;
731 struct list_head splice;
732 u64 total_done = 0;
733 u64 done;
734
735 INIT_LIST_HEAD(&splice);
736
737 mutex_lock(&fs_info->ordered_operations_mutex);
738 spin_lock(&fs_info->ordered_root_lock);
739 list_splice_init(&fs_info->ordered_roots, &splice);
740 while (!list_empty(&splice) && nr) {
741 root = list_first_entry(&splice, struct btrfs_root,
742 ordered_root);
743 root = btrfs_grab_fs_root(root);
744 BUG_ON(!root);
745 list_move_tail(&root->ordered_root,
746 &fs_info->ordered_roots);
747 spin_unlock(&fs_info->ordered_root_lock);
748
749 done = btrfs_wait_ordered_extents(root, nr,
750 range_start, range_len);
751 btrfs_put_fs_root(root);
752 total_done += done;
753
754 spin_lock(&fs_info->ordered_root_lock);
755 if (nr != U64_MAX) {
756 nr -= done;
757 }
758 }
759 list_splice_tail(&splice, &fs_info->ordered_roots);
760 spin_unlock(&fs_info->ordered_root_lock);
761 mutex_unlock(&fs_info->ordered_operations_mutex);
762
763 return total_done;
764}
765
766/*
767 * Used to start IO or wait for a given ordered extent to finish.
768 *
769 * If wait is one, this effectively waits on page writeback for all the pages
770 * in the extent, and it waits on the io completion code to insert
771 * metadata into the btree corresponding to the extent
772 */
773void btrfs_start_ordered_extent(struct inode *inode,
774 struct btrfs_ordered_extent *entry,
775 int wait)
776{
777 u64 start = entry->file_offset;
778 u64 end = start + entry->len - 1;
779
780 trace_btrfs_ordered_extent_start(inode, entry);
781
782 /*
783 * pages in the range can be dirty, clean or writeback. We
784 * start IO on any dirty ones so the wait doesn't stall waiting
785 * for the flusher thread to find them
786 */
787 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
788 filemap_fdatawrite_range(inode->i_mapping, start, end);
789 if (wait) {
790 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
791 &entry->flags));
792 }
793}
794
795/*
796 * Used to wait on ordered extents across a large range of bytes.
797 */
798int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
799{
800 int ret = 0;
801 int ret_wb = 0;
802 u64 end;
803 u64 orig_end;
804 struct btrfs_ordered_extent *ordered;
805
806 if (start + len < start) {
807 orig_end = INT_LIMIT(loff_t);
808 } else {
809 orig_end = start + len - 1;
810 if (orig_end > INT_LIMIT(loff_t))
811 orig_end = INT_LIMIT(loff_t);
812 }
813
814 /* start IO across the range first to instantiate any delalloc
815 * extents
816 */
817 ret = btrfs_fdatawrite_range(inode, start, orig_end);
818 if (ret)
819 return ret;
820
821 /*
822 * If we have a writeback error don't return immediately. Wait first
823 * for any ordered extents that haven't completed yet. This is to make
824 * sure no one can dirty the same page ranges and call writepages()
825 * before the ordered extents complete - to avoid failures (-EEXIST)
826 * when adding the new ordered extents to the ordered tree.
827 */
828 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
829
830 end = orig_end;
831 while (1) {
832 ordered = btrfs_lookup_first_ordered_extent(inode, end);
833 if (!ordered)
834 break;
835 if (ordered->file_offset > orig_end) {
836 btrfs_put_ordered_extent(ordered);
837 break;
838 }
839 if (ordered->file_offset + ordered->len <= start) {
840 btrfs_put_ordered_extent(ordered);
841 break;
842 }
843 btrfs_start_ordered_extent(inode, ordered, 1);
844 end = ordered->file_offset;
845 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
846 ret = -EIO;
847 btrfs_put_ordered_extent(ordered);
848 if (ret || end == 0 || end == start)
849 break;
850 end--;
851 }
852 return ret_wb ? ret_wb : ret;
853}
854
855/*
856 * find an ordered extent corresponding to file_offset. return NULL if
857 * nothing is found, otherwise take a reference on the extent and return it
858 */
859struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
860 u64 file_offset)
861{
862 struct btrfs_ordered_inode_tree *tree;
863 struct rb_node *node;
864 struct btrfs_ordered_extent *entry = NULL;
865
866 tree = &BTRFS_I(inode)->ordered_tree;
867 spin_lock_irq(&tree->lock);
868 node = tree_search(tree, file_offset);
869 if (!node)
870 goto out;
871
872 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
873 if (!offset_in_entry(entry, file_offset))
874 entry = NULL;
875 if (entry)
876 refcount_inc(&entry->refs);
877out:
878 spin_unlock_irq(&tree->lock);
879 return entry;
880}
881
882/* Since the DIO code tries to lock a wide area we need to look for any ordered
883 * extents that exist in the range, rather than just the start of the range.
884 */
885struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
886 struct btrfs_inode *inode, u64 file_offset, u64 len)
887{
888 struct btrfs_ordered_inode_tree *tree;
889 struct rb_node *node;
890 struct btrfs_ordered_extent *entry = NULL;
891
892 tree = &inode->ordered_tree;
893 spin_lock_irq(&tree->lock);
894 node = tree_search(tree, file_offset);
895 if (!node) {
896 node = tree_search(tree, file_offset + len);
897 if (!node)
898 goto out;
899 }
900
901 while (1) {
902 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
903 if (range_overlaps(entry, file_offset, len))
904 break;
905
906 if (entry->file_offset >= file_offset + len) {
907 entry = NULL;
908 break;
909 }
910 entry = NULL;
911 node = rb_next(node);
912 if (!node)
913 break;
914 }
915out:
916 if (entry)
917 refcount_inc(&entry->refs);
918 spin_unlock_irq(&tree->lock);
919 return entry;
920}
921
922bool btrfs_have_ordered_extents_in_range(struct inode *inode,
923 u64 file_offset,
924 u64 len)
925{
926 struct btrfs_ordered_extent *oe;
927
928 oe = btrfs_lookup_ordered_range(BTRFS_I(inode), file_offset, len);
929 if (oe) {
930 btrfs_put_ordered_extent(oe);
931 return true;
932 }
933 return false;
934}
935
936/*
937 * lookup and return any extent before 'file_offset'. NULL is returned
938 * if none is found
939 */
940struct btrfs_ordered_extent *
941btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
942{
943 struct btrfs_ordered_inode_tree *tree;
944 struct rb_node *node;
945 struct btrfs_ordered_extent *entry = NULL;
946
947 tree = &BTRFS_I(inode)->ordered_tree;
948 spin_lock_irq(&tree->lock);
949 node = tree_search(tree, file_offset);
950 if (!node)
951 goto out;
952
953 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
954 refcount_inc(&entry->refs);
955out:
956 spin_unlock_irq(&tree->lock);
957 return entry;
958}
959
960/*
961 * After an extent is done, call this to conditionally update the on disk
962 * i_size. i_size is updated to cover any fully written part of the file.
963 */
964int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
965 struct btrfs_ordered_extent *ordered)
966{
967 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
968 u64 disk_i_size;
969 u64 new_i_size;
970 u64 i_size = i_size_read(inode);
971 struct rb_node *node;
972 struct rb_node *prev = NULL;
973 struct btrfs_ordered_extent *test;
974 int ret = 1;
975 u64 orig_offset = offset;
976
977 spin_lock_irq(&tree->lock);
978 if (ordered) {
979 offset = entry_end(ordered);
980 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
981 offset = min(offset,
982 ordered->file_offset +
983 ordered->truncated_len);
984 } else {
985 offset = ALIGN(offset, btrfs_inode_sectorsize(inode));
986 }
987 disk_i_size = BTRFS_I(inode)->disk_i_size;
988
989 /*
990 * truncate file.
991 * If ordered is not NULL, then this is called from endio and
992 * disk_i_size will be updated by either truncate itself or any
993 * in-flight IOs which are inside the disk_i_size.
994 *
995 * Because btrfs_setsize() may set i_size with disk_i_size if truncate
996 * fails somehow, we need to make sure we have a precise disk_i_size by
997 * updating it as usual.
998 *
999 */
1000 if (!ordered && disk_i_size > i_size) {
1001 BTRFS_I(inode)->disk_i_size = orig_offset;
1002 ret = 0;
1003 goto out;
1004 }
1005
1006 /*
1007 * if the disk i_size is already at the inode->i_size, or
1008 * this ordered extent is inside the disk i_size, we're done
1009 */
1010 if (disk_i_size == i_size)
1011 goto out;
1012
1013 /*
1014 * We still need to update disk_i_size if outstanding_isize is greater
1015 * than disk_i_size.
1016 */
1017 if (offset <= disk_i_size &&
1018 (!ordered || ordered->outstanding_isize <= disk_i_size))
1019 goto out;
1020
1021 /*
1022 * walk backward from this ordered extent to disk_i_size.
1023 * if we find an ordered extent then we can't update disk i_size
1024 * yet
1025 */
1026 if (ordered) {
1027 node = rb_prev(&ordered->rb_node);
1028 } else {
1029 prev = tree_search(tree, offset);
1030 /*
1031 * we insert file extents without involving ordered struct,
1032 * so there should be no ordered struct cover this offset
1033 */
1034 if (prev) {
1035 test = rb_entry(prev, struct btrfs_ordered_extent,
1036 rb_node);
1037 BUG_ON(offset_in_entry(test, offset));
1038 }
1039 node = prev;
1040 }
1041 for (; node; node = rb_prev(node)) {
1042 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1043
1044 /* We treat this entry as if it doesn't exist */
1045 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1046 continue;
1047
1048 if (entry_end(test) <= disk_i_size)
1049 break;
1050 if (test->file_offset >= i_size)
1051 break;
1052
1053 /*
1054 * We don't update disk_i_size now, so record this undealt
1055 * i_size. Or we will not know the real i_size.
1056 */
1057 if (test->outstanding_isize < offset)
1058 test->outstanding_isize = offset;
1059 if (ordered &&
1060 ordered->outstanding_isize > test->outstanding_isize)
1061 test->outstanding_isize = ordered->outstanding_isize;
1062 goto out;
1063 }
1064 new_i_size = min_t(u64, offset, i_size);
1065
1066 /*
1067 * Some ordered extents may completed before the current one, and
1068 * we hold the real i_size in ->outstanding_isize.
1069 */
1070 if (ordered && ordered->outstanding_isize > new_i_size)
1071 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1072 BTRFS_I(inode)->disk_i_size = new_i_size;
1073 ret = 0;
1074out:
1075 /*
1076 * We need to do this because we can't remove ordered extents until
1077 * after the i_disk_size has been updated and then the inode has been
1078 * updated to reflect the change, so we need to tell anybody who finds
1079 * this ordered extent that we've already done all the real work, we
1080 * just haven't completed all the other work.
1081 */
1082 if (ordered)
1083 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1084 spin_unlock_irq(&tree->lock);
1085 return ret;
1086}
1087
1088/*
1089 * search the ordered extents for one corresponding to 'offset' and
1090 * try to find a checksum. This is used because we allow pages to
1091 * be reclaimed before their checksum is actually put into the btree
1092 */
1093int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1094 u32 *sum, int len)
1095{
1096 struct btrfs_ordered_sum *ordered_sum;
1097 struct btrfs_ordered_extent *ordered;
1098 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1099 unsigned long num_sectors;
1100 unsigned long i;
1101 u32 sectorsize = btrfs_inode_sectorsize(inode);
1102 int index = 0;
1103
1104 ordered = btrfs_lookup_ordered_extent(inode, offset);
1105 if (!ordered)
1106 return 0;
1107
1108 spin_lock_irq(&tree->lock);
1109 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1110 if (disk_bytenr >= ordered_sum->bytenr &&
1111 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1112 i = (disk_bytenr - ordered_sum->bytenr) >>
1113 inode->i_sb->s_blocksize_bits;
1114 num_sectors = ordered_sum->len >>
1115 inode->i_sb->s_blocksize_bits;
1116 num_sectors = min_t(int, len - index, num_sectors - i);
1117 memcpy(sum + index, ordered_sum->sums + i,
1118 num_sectors);
1119
1120 index += (int)num_sectors;
1121 if (index == len)
1122 goto out;
1123 disk_bytenr += num_sectors * sectorsize;
1124 }
1125 }
1126out:
1127 spin_unlock_irq(&tree->lock);
1128 btrfs_put_ordered_extent(ordered);
1129 return index;
1130}
1131
1132int __init ordered_data_init(void)
1133{
1134 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1135 sizeof(struct btrfs_ordered_extent), 0,
1136 SLAB_MEM_SPREAD,
1137 NULL);
1138 if (!btrfs_ordered_extent_cache)
1139 return -ENOMEM;
1140
1141 return 0;
1142}
1143
1144void __cold ordered_data_exit(void)
1145{
1146 kmem_cache_destroy(btrfs_ordered_extent_cache);
1147}