Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "misc.h"
11#include "ctree.h"
12#include "transaction.h"
13#include "btrfs_inode.h"
14#include "extent_io.h"
15#include "disk-io.h"
16#include "compression.h"
17#include "delalloc-space.h"
18#include "qgroup.h"
19
20static struct kmem_cache *btrfs_ordered_extent_cache;
21
22static u64 entry_end(struct btrfs_ordered_extent *entry)
23{
24 if (entry->file_offset + entry->num_bytes < entry->file_offset)
25 return (u64)-1;
26 return entry->file_offset + entry->num_bytes;
27}
28
29/* returns NULL if the insertion worked, or it returns the node it did find
30 * in the tree
31 */
32static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
33 struct rb_node *node)
34{
35 struct rb_node **p = &root->rb_node;
36 struct rb_node *parent = NULL;
37 struct btrfs_ordered_extent *entry;
38
39 while (*p) {
40 parent = *p;
41 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
42
43 if (file_offset < entry->file_offset)
44 p = &(*p)->rb_left;
45 else if (file_offset >= entry_end(entry))
46 p = &(*p)->rb_right;
47 else
48 return parent;
49 }
50
51 rb_link_node(node, parent, p);
52 rb_insert_color(node, root);
53 return NULL;
54}
55
56/*
57 * look for a given offset in the tree, and if it can't be found return the
58 * first lesser offset
59 */
60static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
61 struct rb_node **prev_ret)
62{
63 struct rb_node *n = root->rb_node;
64 struct rb_node *prev = NULL;
65 struct rb_node *test;
66 struct btrfs_ordered_extent *entry;
67 struct btrfs_ordered_extent *prev_entry = NULL;
68
69 while (n) {
70 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
71 prev = n;
72 prev_entry = entry;
73
74 if (file_offset < entry->file_offset)
75 n = n->rb_left;
76 else if (file_offset >= entry_end(entry))
77 n = n->rb_right;
78 else
79 return n;
80 }
81 if (!prev_ret)
82 return NULL;
83
84 while (prev && file_offset >= entry_end(prev_entry)) {
85 test = rb_next(prev);
86 if (!test)
87 break;
88 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
89 rb_node);
90 if (file_offset < entry_end(prev_entry))
91 break;
92
93 prev = test;
94 }
95 if (prev)
96 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
97 rb_node);
98 while (prev && file_offset < entry_end(prev_entry)) {
99 test = rb_prev(prev);
100 if (!test)
101 break;
102 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
103 rb_node);
104 prev = test;
105 }
106 *prev_ret = prev;
107 return NULL;
108}
109
110/*
111 * helper to check if a given offset is inside a given entry
112 */
113static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
114{
115 if (file_offset < entry->file_offset ||
116 entry->file_offset + entry->num_bytes <= file_offset)
117 return 0;
118 return 1;
119}
120
121static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
122 u64 len)
123{
124 if (file_offset + len <= entry->file_offset ||
125 entry->file_offset + entry->num_bytes <= file_offset)
126 return 0;
127 return 1;
128}
129
130/*
131 * look find the first ordered struct that has this offset, otherwise
132 * the first one less than this offset
133 */
134static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
135 u64 file_offset)
136{
137 struct rb_root *root = &tree->tree;
138 struct rb_node *prev = NULL;
139 struct rb_node *ret;
140 struct btrfs_ordered_extent *entry;
141
142 if (tree->last) {
143 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
144 rb_node);
145 if (offset_in_entry(entry, file_offset))
146 return tree->last;
147 }
148 ret = __tree_search(root, file_offset, &prev);
149 if (!ret)
150 ret = prev;
151 if (ret)
152 tree->last = ret;
153 return ret;
154}
155
156/*
157 * Allocate and add a new ordered_extent into the per-inode tree.
158 *
159 * The tree is given a single reference on the ordered extent that was
160 * inserted.
161 */
162static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
163 u64 disk_bytenr, u64 num_bytes,
164 u64 disk_num_bytes, int type, int dio,
165 int compress_type)
166{
167 struct btrfs_root *root = inode->root;
168 struct btrfs_fs_info *fs_info = root->fs_info;
169 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
170 struct rb_node *node;
171 struct btrfs_ordered_extent *entry;
172 int ret;
173
174 if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
175 /* For nocow write, we can release the qgroup rsv right now */
176 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
177 if (ret < 0)
178 return ret;
179 ret = 0;
180 } else {
181 /*
182 * The ordered extent has reserved qgroup space, release now
183 * and pass the reserved number for qgroup_record to free.
184 */
185 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
186 if (ret < 0)
187 return ret;
188 }
189 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
190 if (!entry)
191 return -ENOMEM;
192
193 entry->file_offset = file_offset;
194 entry->disk_bytenr = disk_bytenr;
195 entry->num_bytes = num_bytes;
196 entry->disk_num_bytes = disk_num_bytes;
197 entry->bytes_left = num_bytes;
198 entry->inode = igrab(&inode->vfs_inode);
199 entry->compress_type = compress_type;
200 entry->truncated_len = (u64)-1;
201 entry->qgroup_rsv = ret;
202 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
203 set_bit(type, &entry->flags);
204
205 if (dio) {
206 percpu_counter_add_batch(&fs_info->dio_bytes, num_bytes,
207 fs_info->delalloc_batch);
208 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
209 }
210
211 /* one ref for the tree */
212 refcount_set(&entry->refs, 1);
213 init_waitqueue_head(&entry->wait);
214 INIT_LIST_HEAD(&entry->list);
215 INIT_LIST_HEAD(&entry->root_extent_list);
216 INIT_LIST_HEAD(&entry->work_list);
217 init_completion(&entry->completion);
218
219 trace_btrfs_ordered_extent_add(&inode->vfs_inode, entry);
220
221 spin_lock_irq(&tree->lock);
222 node = tree_insert(&tree->tree, file_offset,
223 &entry->rb_node);
224 if (node)
225 btrfs_panic(fs_info, -EEXIST,
226 "inconsistency in ordered tree at offset %llu",
227 file_offset);
228 spin_unlock_irq(&tree->lock);
229
230 spin_lock(&root->ordered_extent_lock);
231 list_add_tail(&entry->root_extent_list,
232 &root->ordered_extents);
233 root->nr_ordered_extents++;
234 if (root->nr_ordered_extents == 1) {
235 spin_lock(&fs_info->ordered_root_lock);
236 BUG_ON(!list_empty(&root->ordered_root));
237 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
238 spin_unlock(&fs_info->ordered_root_lock);
239 }
240 spin_unlock(&root->ordered_extent_lock);
241
242 /*
243 * We don't need the count_max_extents here, we can assume that all of
244 * that work has been done at higher layers, so this is truly the
245 * smallest the extent is going to get.
246 */
247 spin_lock(&inode->lock);
248 btrfs_mod_outstanding_extents(inode, 1);
249 spin_unlock(&inode->lock);
250
251 return 0;
252}
253
254int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
255 u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
256 int type)
257{
258 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
259 num_bytes, disk_num_bytes, type, 0,
260 BTRFS_COMPRESS_NONE);
261}
262
263int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
264 u64 disk_bytenr, u64 num_bytes,
265 u64 disk_num_bytes, int type)
266{
267 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
268 num_bytes, disk_num_bytes, type, 1,
269 BTRFS_COMPRESS_NONE);
270}
271
272int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
273 u64 disk_bytenr, u64 num_bytes,
274 u64 disk_num_bytes, int type,
275 int compress_type)
276{
277 return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
278 num_bytes, disk_num_bytes, type, 0,
279 compress_type);
280}
281
282/*
283 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
284 * when an ordered extent is finished. If the list covers more than one
285 * ordered extent, it is split across multiples.
286 */
287void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
288 struct btrfs_ordered_sum *sum)
289{
290 struct btrfs_ordered_inode_tree *tree;
291
292 tree = &BTRFS_I(entry->inode)->ordered_tree;
293 spin_lock_irq(&tree->lock);
294 list_add_tail(&sum->list, &entry->list);
295 spin_unlock_irq(&tree->lock);
296}
297
298/*
299 * this is used to account for finished IO across a given range
300 * of the file. The IO may span ordered extents. If
301 * a given ordered_extent is completely done, 1 is returned, otherwise
302 * 0.
303 *
304 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
305 * to make sure this function only returns 1 once for a given ordered extent.
306 *
307 * file_offset is updated to one byte past the range that is recorded as
308 * complete. This allows you to walk forward in the file.
309 */
310int btrfs_dec_test_first_ordered_pending(struct btrfs_inode *inode,
311 struct btrfs_ordered_extent **cached,
312 u64 *file_offset, u64 io_size, int uptodate)
313{
314 struct btrfs_fs_info *fs_info = inode->root->fs_info;
315 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
316 struct rb_node *node;
317 struct btrfs_ordered_extent *entry = NULL;
318 int ret;
319 unsigned long flags;
320 u64 dec_end;
321 u64 dec_start;
322 u64 to_dec;
323
324 spin_lock_irqsave(&tree->lock, flags);
325 node = tree_search(tree, *file_offset);
326 if (!node) {
327 ret = 1;
328 goto out;
329 }
330
331 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
332 if (!offset_in_entry(entry, *file_offset)) {
333 ret = 1;
334 goto out;
335 }
336
337 dec_start = max(*file_offset, entry->file_offset);
338 dec_end = min(*file_offset + io_size,
339 entry->file_offset + entry->num_bytes);
340 *file_offset = dec_end;
341 if (dec_start > dec_end) {
342 btrfs_crit(fs_info, "bad ordering dec_start %llu end %llu",
343 dec_start, dec_end);
344 }
345 to_dec = dec_end - dec_start;
346 if (to_dec > entry->bytes_left) {
347 btrfs_crit(fs_info,
348 "bad ordered accounting left %llu size %llu",
349 entry->bytes_left, to_dec);
350 }
351 entry->bytes_left -= to_dec;
352 if (!uptodate)
353 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
354
355 if (entry->bytes_left == 0) {
356 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
357 /* test_and_set_bit implies a barrier */
358 cond_wake_up_nomb(&entry->wait);
359 } else {
360 ret = 1;
361 }
362out:
363 if (!ret && cached && entry) {
364 *cached = entry;
365 refcount_inc(&entry->refs);
366 }
367 spin_unlock_irqrestore(&tree->lock, flags);
368 return ret == 0;
369}
370
371/*
372 * this is used to account for finished IO across a given range
373 * of the file. The IO should not span ordered extents. If
374 * a given ordered_extent is completely done, 1 is returned, otherwise
375 * 0.
376 *
377 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
378 * to make sure this function only returns 1 once for a given ordered extent.
379 */
380int btrfs_dec_test_ordered_pending(struct inode *inode,
381 struct btrfs_ordered_extent **cached,
382 u64 file_offset, u64 io_size, int uptodate)
383{
384 struct btrfs_ordered_inode_tree *tree;
385 struct rb_node *node;
386 struct btrfs_ordered_extent *entry = NULL;
387 unsigned long flags;
388 int ret;
389
390 tree = &BTRFS_I(inode)->ordered_tree;
391 spin_lock_irqsave(&tree->lock, flags);
392 if (cached && *cached) {
393 entry = *cached;
394 goto have_entry;
395 }
396
397 node = tree_search(tree, file_offset);
398 if (!node) {
399 ret = 1;
400 goto out;
401 }
402
403 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
404have_entry:
405 if (!offset_in_entry(entry, file_offset)) {
406 ret = 1;
407 goto out;
408 }
409
410 if (io_size > entry->bytes_left) {
411 btrfs_crit(BTRFS_I(inode)->root->fs_info,
412 "bad ordered accounting left %llu size %llu",
413 entry->bytes_left, io_size);
414 }
415 entry->bytes_left -= io_size;
416 if (!uptodate)
417 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
418
419 if (entry->bytes_left == 0) {
420 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
421 /* test_and_set_bit implies a barrier */
422 cond_wake_up_nomb(&entry->wait);
423 } else {
424 ret = 1;
425 }
426out:
427 if (!ret && cached && entry) {
428 *cached = entry;
429 refcount_inc(&entry->refs);
430 }
431 spin_unlock_irqrestore(&tree->lock, flags);
432 return ret == 0;
433}
434
435/*
436 * used to drop a reference on an ordered extent. This will free
437 * the extent if the last reference is dropped
438 */
439void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
440{
441 struct list_head *cur;
442 struct btrfs_ordered_sum *sum;
443
444 trace_btrfs_ordered_extent_put(entry->inode, entry);
445
446 if (refcount_dec_and_test(&entry->refs)) {
447 ASSERT(list_empty(&entry->root_extent_list));
448 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
449 if (entry->inode)
450 btrfs_add_delayed_iput(entry->inode);
451 while (!list_empty(&entry->list)) {
452 cur = entry->list.next;
453 sum = list_entry(cur, struct btrfs_ordered_sum, list);
454 list_del(&sum->list);
455 kvfree(sum);
456 }
457 kmem_cache_free(btrfs_ordered_extent_cache, entry);
458 }
459}
460
461/*
462 * remove an ordered extent from the tree. No references are dropped
463 * and waiters are woken up.
464 */
465void btrfs_remove_ordered_extent(struct inode *inode,
466 struct btrfs_ordered_extent *entry)
467{
468 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
469 struct btrfs_ordered_inode_tree *tree;
470 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
471 struct btrfs_root *root = btrfs_inode->root;
472 struct rb_node *node;
473
474 /* This is paired with btrfs_add_ordered_extent. */
475 spin_lock(&btrfs_inode->lock);
476 btrfs_mod_outstanding_extents(btrfs_inode, -1);
477 spin_unlock(&btrfs_inode->lock);
478 if (root != fs_info->tree_root)
479 btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
480 false);
481
482 if (test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
483 percpu_counter_add_batch(&fs_info->dio_bytes, -entry->num_bytes,
484 fs_info->delalloc_batch);
485
486 tree = &btrfs_inode->ordered_tree;
487 spin_lock_irq(&tree->lock);
488 node = &entry->rb_node;
489 rb_erase(node, &tree->tree);
490 RB_CLEAR_NODE(node);
491 if (tree->last == node)
492 tree->last = NULL;
493 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
494 spin_unlock_irq(&tree->lock);
495
496 spin_lock(&root->ordered_extent_lock);
497 list_del_init(&entry->root_extent_list);
498 root->nr_ordered_extents--;
499
500 trace_btrfs_ordered_extent_remove(inode, entry);
501
502 if (!root->nr_ordered_extents) {
503 spin_lock(&fs_info->ordered_root_lock);
504 BUG_ON(list_empty(&root->ordered_root));
505 list_del_init(&root->ordered_root);
506 spin_unlock(&fs_info->ordered_root_lock);
507 }
508 spin_unlock(&root->ordered_extent_lock);
509 wake_up(&entry->wait);
510}
511
512static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
513{
514 struct btrfs_ordered_extent *ordered;
515
516 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
517 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
518 complete(&ordered->completion);
519}
520
521/*
522 * wait for all the ordered extents in a root. This is done when balancing
523 * space between drives.
524 */
525u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
526 const u64 range_start, const u64 range_len)
527{
528 struct btrfs_fs_info *fs_info = root->fs_info;
529 LIST_HEAD(splice);
530 LIST_HEAD(skipped);
531 LIST_HEAD(works);
532 struct btrfs_ordered_extent *ordered, *next;
533 u64 count = 0;
534 const u64 range_end = range_start + range_len;
535
536 mutex_lock(&root->ordered_extent_mutex);
537 spin_lock(&root->ordered_extent_lock);
538 list_splice_init(&root->ordered_extents, &splice);
539 while (!list_empty(&splice) && nr) {
540 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
541 root_extent_list);
542
543 if (range_end <= ordered->disk_bytenr ||
544 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
545 list_move_tail(&ordered->root_extent_list, &skipped);
546 cond_resched_lock(&root->ordered_extent_lock);
547 continue;
548 }
549
550 list_move_tail(&ordered->root_extent_list,
551 &root->ordered_extents);
552 refcount_inc(&ordered->refs);
553 spin_unlock(&root->ordered_extent_lock);
554
555 btrfs_init_work(&ordered->flush_work,
556 btrfs_run_ordered_extent_work, NULL, NULL);
557 list_add_tail(&ordered->work_list, &works);
558 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
559
560 cond_resched();
561 spin_lock(&root->ordered_extent_lock);
562 if (nr != U64_MAX)
563 nr--;
564 count++;
565 }
566 list_splice_tail(&skipped, &root->ordered_extents);
567 list_splice_tail(&splice, &root->ordered_extents);
568 spin_unlock(&root->ordered_extent_lock);
569
570 list_for_each_entry_safe(ordered, next, &works, work_list) {
571 list_del_init(&ordered->work_list);
572 wait_for_completion(&ordered->completion);
573 btrfs_put_ordered_extent(ordered);
574 cond_resched();
575 }
576 mutex_unlock(&root->ordered_extent_mutex);
577
578 return count;
579}
580
581void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
582 const u64 range_start, const u64 range_len)
583{
584 struct btrfs_root *root;
585 struct list_head splice;
586 u64 done;
587
588 INIT_LIST_HEAD(&splice);
589
590 mutex_lock(&fs_info->ordered_operations_mutex);
591 spin_lock(&fs_info->ordered_root_lock);
592 list_splice_init(&fs_info->ordered_roots, &splice);
593 while (!list_empty(&splice) && nr) {
594 root = list_first_entry(&splice, struct btrfs_root,
595 ordered_root);
596 root = btrfs_grab_root(root);
597 BUG_ON(!root);
598 list_move_tail(&root->ordered_root,
599 &fs_info->ordered_roots);
600 spin_unlock(&fs_info->ordered_root_lock);
601
602 done = btrfs_wait_ordered_extents(root, nr,
603 range_start, range_len);
604 btrfs_put_root(root);
605
606 spin_lock(&fs_info->ordered_root_lock);
607 if (nr != U64_MAX) {
608 nr -= done;
609 }
610 }
611 list_splice_tail(&splice, &fs_info->ordered_roots);
612 spin_unlock(&fs_info->ordered_root_lock);
613 mutex_unlock(&fs_info->ordered_operations_mutex);
614}
615
616/*
617 * Used to start IO or wait for a given ordered extent to finish.
618 *
619 * If wait is one, this effectively waits on page writeback for all the pages
620 * in the extent, and it waits on the io completion code to insert
621 * metadata into the btree corresponding to the extent
622 */
623void btrfs_start_ordered_extent(struct inode *inode,
624 struct btrfs_ordered_extent *entry,
625 int wait)
626{
627 u64 start = entry->file_offset;
628 u64 end = start + entry->num_bytes - 1;
629
630 trace_btrfs_ordered_extent_start(inode, entry);
631
632 /*
633 * pages in the range can be dirty, clean or writeback. We
634 * start IO on any dirty ones so the wait doesn't stall waiting
635 * for the flusher thread to find them
636 */
637 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
638 filemap_fdatawrite_range(inode->i_mapping, start, end);
639 if (wait) {
640 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
641 &entry->flags));
642 }
643}
644
645/*
646 * Used to wait on ordered extents across a large range of bytes.
647 */
648int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
649{
650 int ret = 0;
651 int ret_wb = 0;
652 u64 end;
653 u64 orig_end;
654 struct btrfs_ordered_extent *ordered;
655
656 if (start + len < start) {
657 orig_end = INT_LIMIT(loff_t);
658 } else {
659 orig_end = start + len - 1;
660 if (orig_end > INT_LIMIT(loff_t))
661 orig_end = INT_LIMIT(loff_t);
662 }
663
664 /* start IO across the range first to instantiate any delalloc
665 * extents
666 */
667 ret = btrfs_fdatawrite_range(inode, start, orig_end);
668 if (ret)
669 return ret;
670
671 /*
672 * If we have a writeback error don't return immediately. Wait first
673 * for any ordered extents that haven't completed yet. This is to make
674 * sure no one can dirty the same page ranges and call writepages()
675 * before the ordered extents complete - to avoid failures (-EEXIST)
676 * when adding the new ordered extents to the ordered tree.
677 */
678 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
679
680 end = orig_end;
681 while (1) {
682 ordered = btrfs_lookup_first_ordered_extent(inode, end);
683 if (!ordered)
684 break;
685 if (ordered->file_offset > orig_end) {
686 btrfs_put_ordered_extent(ordered);
687 break;
688 }
689 if (ordered->file_offset + ordered->num_bytes <= start) {
690 btrfs_put_ordered_extent(ordered);
691 break;
692 }
693 btrfs_start_ordered_extent(inode, ordered, 1);
694 end = ordered->file_offset;
695 /*
696 * If the ordered extent had an error save the error but don't
697 * exit without waiting first for all other ordered extents in
698 * the range to complete.
699 */
700 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
701 ret = -EIO;
702 btrfs_put_ordered_extent(ordered);
703 if (end == 0 || end == start)
704 break;
705 end--;
706 }
707 return ret_wb ? ret_wb : ret;
708}
709
710/*
711 * find an ordered extent corresponding to file_offset. return NULL if
712 * nothing is found, otherwise take a reference on the extent and return it
713 */
714struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
715 u64 file_offset)
716{
717 struct btrfs_ordered_inode_tree *tree;
718 struct rb_node *node;
719 struct btrfs_ordered_extent *entry = NULL;
720
721 tree = &inode->ordered_tree;
722 spin_lock_irq(&tree->lock);
723 node = tree_search(tree, file_offset);
724 if (!node)
725 goto out;
726
727 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
728 if (!offset_in_entry(entry, file_offset))
729 entry = NULL;
730 if (entry)
731 refcount_inc(&entry->refs);
732out:
733 spin_unlock_irq(&tree->lock);
734 return entry;
735}
736
737/* Since the DIO code tries to lock a wide area we need to look for any ordered
738 * extents that exist in the range, rather than just the start of the range.
739 */
740struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
741 struct btrfs_inode *inode, u64 file_offset, u64 len)
742{
743 struct btrfs_ordered_inode_tree *tree;
744 struct rb_node *node;
745 struct btrfs_ordered_extent *entry = NULL;
746
747 tree = &inode->ordered_tree;
748 spin_lock_irq(&tree->lock);
749 node = tree_search(tree, file_offset);
750 if (!node) {
751 node = tree_search(tree, file_offset + len);
752 if (!node)
753 goto out;
754 }
755
756 while (1) {
757 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
758 if (range_overlaps(entry, file_offset, len))
759 break;
760
761 if (entry->file_offset >= file_offset + len) {
762 entry = NULL;
763 break;
764 }
765 entry = NULL;
766 node = rb_next(node);
767 if (!node)
768 break;
769 }
770out:
771 if (entry)
772 refcount_inc(&entry->refs);
773 spin_unlock_irq(&tree->lock);
774 return entry;
775}
776
777/*
778 * lookup and return any extent before 'file_offset'. NULL is returned
779 * if none is found
780 */
781struct btrfs_ordered_extent *
782btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
783{
784 struct btrfs_ordered_inode_tree *tree;
785 struct rb_node *node;
786 struct btrfs_ordered_extent *entry = NULL;
787
788 tree = &BTRFS_I(inode)->ordered_tree;
789 spin_lock_irq(&tree->lock);
790 node = tree_search(tree, file_offset);
791 if (!node)
792 goto out;
793
794 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
795 refcount_inc(&entry->refs);
796out:
797 spin_unlock_irq(&tree->lock);
798 return entry;
799}
800
801/*
802 * search the ordered extents for one corresponding to 'offset' and
803 * try to find a checksum. This is used because we allow pages to
804 * be reclaimed before their checksum is actually put into the btree
805 */
806int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
807 u8 *sum, int len)
808{
809 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
810 struct btrfs_ordered_sum *ordered_sum;
811 struct btrfs_ordered_extent *ordered;
812 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
813 unsigned long num_sectors;
814 unsigned long i;
815 u32 sectorsize = btrfs_inode_sectorsize(inode);
816 const u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
817 int index = 0;
818
819 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), offset);
820 if (!ordered)
821 return 0;
822
823 spin_lock_irq(&tree->lock);
824 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
825 if (disk_bytenr >= ordered_sum->bytenr &&
826 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
827 i = (disk_bytenr - ordered_sum->bytenr) >>
828 inode->i_sb->s_blocksize_bits;
829 num_sectors = ordered_sum->len >>
830 inode->i_sb->s_blocksize_bits;
831 num_sectors = min_t(int, len - index, num_sectors - i);
832 memcpy(sum + index, ordered_sum->sums + i * csum_size,
833 num_sectors * csum_size);
834
835 index += (int)num_sectors * csum_size;
836 if (index == len)
837 goto out;
838 disk_bytenr += num_sectors * sectorsize;
839 }
840 }
841out:
842 spin_unlock_irq(&tree->lock);
843 btrfs_put_ordered_extent(ordered);
844 return index;
845}
846
847/*
848 * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
849 * ordered extents in it are run to completion.
850 *
851 * @inode: Inode whose ordered tree is to be searched
852 * @start: Beginning of range to flush
853 * @end: Last byte of range to lock
854 * @cached_state: If passed, will return the extent state responsible for the
855 * locked range. It's the caller's responsibility to free the cached state.
856 *
857 * This function always returns with the given range locked, ensuring after it's
858 * called no order extent can be pending.
859 */
860void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
861 u64 end,
862 struct extent_state **cached_state)
863{
864 struct btrfs_ordered_extent *ordered;
865 struct extent_state *cache = NULL;
866 struct extent_state **cachedp = &cache;
867
868 if (cached_state)
869 cachedp = cached_state;
870
871 while (1) {
872 lock_extent_bits(&inode->io_tree, start, end, cachedp);
873 ordered = btrfs_lookup_ordered_range(inode, start,
874 end - start + 1);
875 if (!ordered) {
876 /*
877 * If no external cached_state has been passed then
878 * decrement the extra ref taken for cachedp since we
879 * aren't exposing it outside of this function
880 */
881 if (!cached_state)
882 refcount_dec(&cache->refs);
883 break;
884 }
885 unlock_extent_cached(&inode->io_tree, start, end, cachedp);
886 btrfs_start_ordered_extent(&inode->vfs_inode, ordered, 1);
887 btrfs_put_ordered_extent(ordered);
888 }
889}
890
891int __init ordered_data_init(void)
892{
893 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
894 sizeof(struct btrfs_ordered_extent), 0,
895 SLAB_MEM_SPREAD,
896 NULL);
897 if (!btrfs_ordered_extent_cache)
898 return -ENOMEM;
899
900 return 0;
901}
902
903void __cold ordered_data_exit(void)
904{
905 kmem_cache_destroy(btrfs_ordered_extent_cache);
906}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27#include "disk-io.h"
28
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
31static u64 entry_end(struct btrfs_ordered_extent *entry)
32{
33 if (entry->file_offset + entry->len < entry->file_offset)
34 return (u64)-1;
35 return entry->file_offset + entry->len;
36}
37
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 struct rb_node *node)
43{
44 struct rb_node **p = &root->rb_node;
45 struct rb_node *parent = NULL;
46 struct btrfs_ordered_extent *entry;
47
48 while (*p) {
49 parent = *p;
50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52 if (file_offset < entry->file_offset)
53 p = &(*p)->rb_left;
54 else if (file_offset >= entry_end(entry))
55 p = &(*p)->rb_right;
56 else
57 return parent;
58 }
59
60 rb_link_node(node, parent, p);
61 rb_insert_color(node, root);
62 return NULL;
63}
64
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66 u64 offset)
67{
68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 "%llu\n", offset);
71}
72
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 struct rb_node **prev_ret)
79{
80 struct rb_node *n = root->rb_node;
81 struct rb_node *prev = NULL;
82 struct rb_node *test;
83 struct btrfs_ordered_extent *entry;
84 struct btrfs_ordered_extent *prev_entry = NULL;
85
86 while (n) {
87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 prev = n;
89 prev_entry = entry;
90
91 if (file_offset < entry->file_offset)
92 n = n->rb_left;
93 else if (file_offset >= entry_end(entry))
94 n = n->rb_right;
95 else
96 return n;
97 }
98 if (!prev_ret)
99 return NULL;
100
101 while (prev && file_offset >= entry_end(prev_entry)) {
102 test = rb_next(prev);
103 if (!test)
104 break;
105 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 rb_node);
107 if (file_offset < entry_end(prev_entry))
108 break;
109
110 prev = test;
111 }
112 if (prev)
113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 rb_node);
115 while (prev && file_offset < entry_end(prev_entry)) {
116 test = rb_prev(prev);
117 if (!test)
118 break;
119 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 rb_node);
121 prev = test;
122 }
123 *prev_ret = prev;
124 return NULL;
125}
126
127/*
128 * helper to check if a given offset is inside a given entry
129 */
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132 if (file_offset < entry->file_offset ||
133 entry->file_offset + entry->len <= file_offset)
134 return 0;
135 return 1;
136}
137
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 u64 len)
140{
141 if (file_offset + len <= entry->file_offset ||
142 entry->file_offset + entry->len <= file_offset)
143 return 0;
144 return 1;
145}
146
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 u64 file_offset)
153{
154 struct rb_root *root = &tree->tree;
155 struct rb_node *prev = NULL;
156 struct rb_node *ret;
157 struct btrfs_ordered_extent *entry;
158
159 if (tree->last) {
160 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 rb_node);
162 if (offset_in_entry(entry, file_offset))
163 return tree->last;
164 }
165 ret = __tree_search(root, file_offset, &prev);
166 if (!ret)
167 ret = prev;
168 if (ret)
169 tree->last = ret;
170 return ret;
171}
172
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 u64 start, u64 len, u64 disk_len,
186 int type, int dio, int compress_type)
187{
188 struct btrfs_root *root = BTRFS_I(inode)->root;
189 struct btrfs_ordered_inode_tree *tree;
190 struct rb_node *node;
191 struct btrfs_ordered_extent *entry;
192
193 tree = &BTRFS_I(inode)->ordered_tree;
194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 if (!entry)
196 return -ENOMEM;
197
198 entry->file_offset = file_offset;
199 entry->start = start;
200 entry->len = len;
201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 !(type == BTRFS_ORDERED_NOCOW))
203 entry->csum_bytes_left = disk_len;
204 entry->disk_len = disk_len;
205 entry->bytes_left = len;
206 entry->inode = igrab(inode);
207 entry->compress_type = compress_type;
208 entry->truncated_len = (u64)-1;
209 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210 set_bit(type, &entry->flags);
211
212 if (dio)
213 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215 /* one ref for the tree */
216 atomic_set(&entry->refs, 1);
217 init_waitqueue_head(&entry->wait);
218 INIT_LIST_HEAD(&entry->list);
219 INIT_LIST_HEAD(&entry->root_extent_list);
220 INIT_LIST_HEAD(&entry->work_list);
221 init_completion(&entry->completion);
222 INIT_LIST_HEAD(&entry->log_list);
223
224 trace_btrfs_ordered_extent_add(inode, entry);
225
226 spin_lock_irq(&tree->lock);
227 node = tree_insert(&tree->tree, file_offset,
228 &entry->rb_node);
229 if (node)
230 ordered_data_tree_panic(inode, -EEXIST, file_offset);
231 spin_unlock_irq(&tree->lock);
232
233 spin_lock(&root->ordered_extent_lock);
234 list_add_tail(&entry->root_extent_list,
235 &root->ordered_extents);
236 root->nr_ordered_extents++;
237 if (root->nr_ordered_extents == 1) {
238 spin_lock(&root->fs_info->ordered_root_lock);
239 BUG_ON(!list_empty(&root->ordered_root));
240 list_add_tail(&root->ordered_root,
241 &root->fs_info->ordered_roots);
242 spin_unlock(&root->fs_info->ordered_root_lock);
243 }
244 spin_unlock(&root->ordered_extent_lock);
245
246 return 0;
247}
248
249int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
250 u64 start, u64 len, u64 disk_len, int type)
251{
252 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
253 disk_len, type, 0,
254 BTRFS_COMPRESS_NONE);
255}
256
257int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
258 u64 start, u64 len, u64 disk_len, int type)
259{
260 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
261 disk_len, type, 1,
262 BTRFS_COMPRESS_NONE);
263}
264
265int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
266 u64 start, u64 len, u64 disk_len,
267 int type, int compress_type)
268{
269 return __btrfs_add_ordered_extent(inode, file_offset, start, len,
270 disk_len, type, 0,
271 compress_type);
272}
273
274/*
275 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
276 * when an ordered extent is finished. If the list covers more than one
277 * ordered extent, it is split across multiples.
278 */
279void btrfs_add_ordered_sum(struct inode *inode,
280 struct btrfs_ordered_extent *entry,
281 struct btrfs_ordered_sum *sum)
282{
283 struct btrfs_ordered_inode_tree *tree;
284
285 tree = &BTRFS_I(inode)->ordered_tree;
286 spin_lock_irq(&tree->lock);
287 list_add_tail(&sum->list, &entry->list);
288 WARN_ON(entry->csum_bytes_left < sum->len);
289 entry->csum_bytes_left -= sum->len;
290 if (entry->csum_bytes_left == 0)
291 wake_up(&entry->wait);
292 spin_unlock_irq(&tree->lock);
293}
294
295/*
296 * this is used to account for finished IO across a given range
297 * of the file. The IO may span ordered extents. If
298 * a given ordered_extent is completely done, 1 is returned, otherwise
299 * 0.
300 *
301 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
302 * to make sure this function only returns 1 once for a given ordered extent.
303 *
304 * file_offset is updated to one byte past the range that is recorded as
305 * complete. This allows you to walk forward in the file.
306 */
307int btrfs_dec_test_first_ordered_pending(struct inode *inode,
308 struct btrfs_ordered_extent **cached,
309 u64 *file_offset, u64 io_size, int uptodate)
310{
311 struct btrfs_ordered_inode_tree *tree;
312 struct rb_node *node;
313 struct btrfs_ordered_extent *entry = NULL;
314 int ret;
315 unsigned long flags;
316 u64 dec_end;
317 u64 dec_start;
318 u64 to_dec;
319
320 tree = &BTRFS_I(inode)->ordered_tree;
321 spin_lock_irqsave(&tree->lock, flags);
322 node = tree_search(tree, *file_offset);
323 if (!node) {
324 ret = 1;
325 goto out;
326 }
327
328 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
329 if (!offset_in_entry(entry, *file_offset)) {
330 ret = 1;
331 goto out;
332 }
333
334 dec_start = max(*file_offset, entry->file_offset);
335 dec_end = min(*file_offset + io_size, entry->file_offset +
336 entry->len);
337 *file_offset = dec_end;
338 if (dec_start > dec_end) {
339 btrfs_crit(BTRFS_I(inode)->root->fs_info,
340 "bad ordering dec_start %llu end %llu", dec_start, dec_end);
341 }
342 to_dec = dec_end - dec_start;
343 if (to_dec > entry->bytes_left) {
344 btrfs_crit(BTRFS_I(inode)->root->fs_info,
345 "bad ordered accounting left %llu size %llu",
346 entry->bytes_left, to_dec);
347 }
348 entry->bytes_left -= to_dec;
349 if (!uptodate)
350 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
351
352 if (entry->bytes_left == 0) {
353 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
354 if (waitqueue_active(&entry->wait))
355 wake_up(&entry->wait);
356 } else {
357 ret = 1;
358 }
359out:
360 if (!ret && cached && entry) {
361 *cached = entry;
362 atomic_inc(&entry->refs);
363 }
364 spin_unlock_irqrestore(&tree->lock, flags);
365 return ret == 0;
366}
367
368/*
369 * this is used to account for finished IO across a given range
370 * of the file. The IO should not span ordered extents. If
371 * a given ordered_extent is completely done, 1 is returned, otherwise
372 * 0.
373 *
374 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
375 * to make sure this function only returns 1 once for a given ordered extent.
376 */
377int btrfs_dec_test_ordered_pending(struct inode *inode,
378 struct btrfs_ordered_extent **cached,
379 u64 file_offset, u64 io_size, int uptodate)
380{
381 struct btrfs_ordered_inode_tree *tree;
382 struct rb_node *node;
383 struct btrfs_ordered_extent *entry = NULL;
384 unsigned long flags;
385 int ret;
386
387 tree = &BTRFS_I(inode)->ordered_tree;
388 spin_lock_irqsave(&tree->lock, flags);
389 if (cached && *cached) {
390 entry = *cached;
391 goto have_entry;
392 }
393
394 node = tree_search(tree, file_offset);
395 if (!node) {
396 ret = 1;
397 goto out;
398 }
399
400 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
401have_entry:
402 if (!offset_in_entry(entry, file_offset)) {
403 ret = 1;
404 goto out;
405 }
406
407 if (io_size > entry->bytes_left) {
408 btrfs_crit(BTRFS_I(inode)->root->fs_info,
409 "bad ordered accounting left %llu size %llu",
410 entry->bytes_left, io_size);
411 }
412 entry->bytes_left -= io_size;
413 if (!uptodate)
414 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
415
416 if (entry->bytes_left == 0) {
417 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
418 if (waitqueue_active(&entry->wait))
419 wake_up(&entry->wait);
420 } else {
421 ret = 1;
422 }
423out:
424 if (!ret && cached && entry) {
425 *cached = entry;
426 atomic_inc(&entry->refs);
427 }
428 spin_unlock_irqrestore(&tree->lock, flags);
429 return ret == 0;
430}
431
432/* Needs to either be called under a log transaction or the log_mutex */
433void btrfs_get_logged_extents(struct inode *inode,
434 struct list_head *logged_list)
435{
436 struct btrfs_ordered_inode_tree *tree;
437 struct btrfs_ordered_extent *ordered;
438 struct rb_node *n;
439
440 tree = &BTRFS_I(inode)->ordered_tree;
441 spin_lock_irq(&tree->lock);
442 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
443 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
444 if (!list_empty(&ordered->log_list))
445 continue;
446 list_add_tail(&ordered->log_list, logged_list);
447 atomic_inc(&ordered->refs);
448 }
449 spin_unlock_irq(&tree->lock);
450}
451
452void btrfs_put_logged_extents(struct list_head *logged_list)
453{
454 struct btrfs_ordered_extent *ordered;
455
456 while (!list_empty(logged_list)) {
457 ordered = list_first_entry(logged_list,
458 struct btrfs_ordered_extent,
459 log_list);
460 list_del_init(&ordered->log_list);
461 btrfs_put_ordered_extent(ordered);
462 }
463}
464
465void btrfs_submit_logged_extents(struct list_head *logged_list,
466 struct btrfs_root *log)
467{
468 int index = log->log_transid % 2;
469
470 spin_lock_irq(&log->log_extents_lock[index]);
471 list_splice_tail(logged_list, &log->logged_list[index]);
472 spin_unlock_irq(&log->log_extents_lock[index]);
473}
474
475void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
476{
477 struct btrfs_ordered_extent *ordered;
478 int index = transid % 2;
479
480 spin_lock_irq(&log->log_extents_lock[index]);
481 while (!list_empty(&log->logged_list[index])) {
482 ordered = list_first_entry(&log->logged_list[index],
483 struct btrfs_ordered_extent,
484 log_list);
485 list_del_init(&ordered->log_list);
486 spin_unlock_irq(&log->log_extents_lock[index]);
487 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
488 &ordered->flags));
489 btrfs_put_ordered_extent(ordered);
490 spin_lock_irq(&log->log_extents_lock[index]);
491 }
492 spin_unlock_irq(&log->log_extents_lock[index]);
493}
494
495void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
496{
497 struct btrfs_ordered_extent *ordered;
498 int index = transid % 2;
499
500 spin_lock_irq(&log->log_extents_lock[index]);
501 while (!list_empty(&log->logged_list[index])) {
502 ordered = list_first_entry(&log->logged_list[index],
503 struct btrfs_ordered_extent,
504 log_list);
505 list_del_init(&ordered->log_list);
506 spin_unlock_irq(&log->log_extents_lock[index]);
507 btrfs_put_ordered_extent(ordered);
508 spin_lock_irq(&log->log_extents_lock[index]);
509 }
510 spin_unlock_irq(&log->log_extents_lock[index]);
511}
512
513/*
514 * used to drop a reference on an ordered extent. This will free
515 * the extent if the last reference is dropped
516 */
517void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
518{
519 struct list_head *cur;
520 struct btrfs_ordered_sum *sum;
521
522 trace_btrfs_ordered_extent_put(entry->inode, entry);
523
524 if (atomic_dec_and_test(&entry->refs)) {
525 if (entry->inode)
526 btrfs_add_delayed_iput(entry->inode);
527 while (!list_empty(&entry->list)) {
528 cur = entry->list.next;
529 sum = list_entry(cur, struct btrfs_ordered_sum, list);
530 list_del(&sum->list);
531 kfree(sum);
532 }
533 kmem_cache_free(btrfs_ordered_extent_cache, entry);
534 }
535}
536
537/*
538 * remove an ordered extent from the tree. No references are dropped
539 * and waiters are woken up.
540 */
541void btrfs_remove_ordered_extent(struct inode *inode,
542 struct btrfs_ordered_extent *entry)
543{
544 struct btrfs_ordered_inode_tree *tree;
545 struct btrfs_root *root = BTRFS_I(inode)->root;
546 struct rb_node *node;
547
548 tree = &BTRFS_I(inode)->ordered_tree;
549 spin_lock_irq(&tree->lock);
550 node = &entry->rb_node;
551 rb_erase(node, &tree->tree);
552 if (tree->last == node)
553 tree->last = NULL;
554 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
555 spin_unlock_irq(&tree->lock);
556
557 spin_lock(&root->ordered_extent_lock);
558 list_del_init(&entry->root_extent_list);
559 root->nr_ordered_extents--;
560
561 trace_btrfs_ordered_extent_remove(inode, entry);
562
563 /*
564 * we have no more ordered extents for this inode and
565 * no dirty pages. We can safely remove it from the
566 * list of ordered extents
567 */
568 if (RB_EMPTY_ROOT(&tree->tree) &&
569 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
570 spin_lock(&root->fs_info->ordered_root_lock);
571 list_del_init(&BTRFS_I(inode)->ordered_operations);
572 spin_unlock(&root->fs_info->ordered_root_lock);
573 }
574
575 if (!root->nr_ordered_extents) {
576 spin_lock(&root->fs_info->ordered_root_lock);
577 BUG_ON(list_empty(&root->ordered_root));
578 list_del_init(&root->ordered_root);
579 spin_unlock(&root->fs_info->ordered_root_lock);
580 }
581 spin_unlock(&root->ordered_extent_lock);
582 wake_up(&entry->wait);
583}
584
585static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
586{
587 struct btrfs_ordered_extent *ordered;
588
589 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
590 btrfs_start_ordered_extent(ordered->inode, ordered, 1);
591 complete(&ordered->completion);
592}
593
594/*
595 * wait for all the ordered extents in a root. This is done when balancing
596 * space between drives.
597 */
598int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
599{
600 struct list_head splice, works;
601 struct btrfs_ordered_extent *ordered, *next;
602 int count = 0;
603
604 INIT_LIST_HEAD(&splice);
605 INIT_LIST_HEAD(&works);
606
607 mutex_lock(&root->ordered_extent_mutex);
608 spin_lock(&root->ordered_extent_lock);
609 list_splice_init(&root->ordered_extents, &splice);
610 while (!list_empty(&splice) && nr) {
611 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
612 root_extent_list);
613 list_move_tail(&ordered->root_extent_list,
614 &root->ordered_extents);
615 atomic_inc(&ordered->refs);
616 spin_unlock(&root->ordered_extent_lock);
617
618 btrfs_init_work(&ordered->flush_work,
619 btrfs_run_ordered_extent_work, NULL, NULL);
620 list_add_tail(&ordered->work_list, &works);
621 btrfs_queue_work(root->fs_info->flush_workers,
622 &ordered->flush_work);
623
624 cond_resched();
625 spin_lock(&root->ordered_extent_lock);
626 if (nr != -1)
627 nr--;
628 count++;
629 }
630 list_splice_tail(&splice, &root->ordered_extents);
631 spin_unlock(&root->ordered_extent_lock);
632
633 list_for_each_entry_safe(ordered, next, &works, work_list) {
634 list_del_init(&ordered->work_list);
635 wait_for_completion(&ordered->completion);
636 btrfs_put_ordered_extent(ordered);
637 cond_resched();
638 }
639 mutex_unlock(&root->ordered_extent_mutex);
640
641 return count;
642}
643
644void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
645{
646 struct btrfs_root *root;
647 struct list_head splice;
648 int done;
649
650 INIT_LIST_HEAD(&splice);
651
652 mutex_lock(&fs_info->ordered_operations_mutex);
653 spin_lock(&fs_info->ordered_root_lock);
654 list_splice_init(&fs_info->ordered_roots, &splice);
655 while (!list_empty(&splice) && nr) {
656 root = list_first_entry(&splice, struct btrfs_root,
657 ordered_root);
658 root = btrfs_grab_fs_root(root);
659 BUG_ON(!root);
660 list_move_tail(&root->ordered_root,
661 &fs_info->ordered_roots);
662 spin_unlock(&fs_info->ordered_root_lock);
663
664 done = btrfs_wait_ordered_extents(root, nr);
665 btrfs_put_fs_root(root);
666
667 spin_lock(&fs_info->ordered_root_lock);
668 if (nr != -1) {
669 nr -= done;
670 WARN_ON(nr < 0);
671 }
672 }
673 list_splice_tail(&splice, &fs_info->ordered_roots);
674 spin_unlock(&fs_info->ordered_root_lock);
675 mutex_unlock(&fs_info->ordered_operations_mutex);
676}
677
678/*
679 * this is used during transaction commit to write all the inodes
680 * added to the ordered operation list. These files must be fully on
681 * disk before the transaction commits.
682 *
683 * we have two modes here, one is to just start the IO via filemap_flush
684 * and the other is to wait for all the io. When we wait, we have an
685 * extra check to make sure the ordered operation list really is empty
686 * before we return
687 */
688int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
689 struct btrfs_root *root, int wait)
690{
691 struct btrfs_inode *btrfs_inode;
692 struct inode *inode;
693 struct btrfs_transaction *cur_trans = trans->transaction;
694 struct list_head splice;
695 struct list_head works;
696 struct btrfs_delalloc_work *work, *next;
697 int ret = 0;
698
699 INIT_LIST_HEAD(&splice);
700 INIT_LIST_HEAD(&works);
701
702 mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
703 spin_lock(&root->fs_info->ordered_root_lock);
704 list_splice_init(&cur_trans->ordered_operations, &splice);
705 while (!list_empty(&splice)) {
706 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
707 ordered_operations);
708 inode = &btrfs_inode->vfs_inode;
709
710 list_del_init(&btrfs_inode->ordered_operations);
711
712 /*
713 * the inode may be getting freed (in sys_unlink path).
714 */
715 inode = igrab(inode);
716 if (!inode)
717 continue;
718
719 if (!wait)
720 list_add_tail(&BTRFS_I(inode)->ordered_operations,
721 &cur_trans->ordered_operations);
722 spin_unlock(&root->fs_info->ordered_root_lock);
723
724 work = btrfs_alloc_delalloc_work(inode, wait, 1);
725 if (!work) {
726 spin_lock(&root->fs_info->ordered_root_lock);
727 if (list_empty(&BTRFS_I(inode)->ordered_operations))
728 list_add_tail(&btrfs_inode->ordered_operations,
729 &splice);
730 list_splice_tail(&splice,
731 &cur_trans->ordered_operations);
732 spin_unlock(&root->fs_info->ordered_root_lock);
733 ret = -ENOMEM;
734 goto out;
735 }
736 list_add_tail(&work->list, &works);
737 btrfs_queue_work(root->fs_info->flush_workers,
738 &work->work);
739
740 cond_resched();
741 spin_lock(&root->fs_info->ordered_root_lock);
742 }
743 spin_unlock(&root->fs_info->ordered_root_lock);
744out:
745 list_for_each_entry_safe(work, next, &works, list) {
746 list_del_init(&work->list);
747 btrfs_wait_and_free_delalloc_work(work);
748 }
749 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
750 return ret;
751}
752
753/*
754 * Used to start IO or wait for a given ordered extent to finish.
755 *
756 * If wait is one, this effectively waits on page writeback for all the pages
757 * in the extent, and it waits on the io completion code to insert
758 * metadata into the btree corresponding to the extent
759 */
760void btrfs_start_ordered_extent(struct inode *inode,
761 struct btrfs_ordered_extent *entry,
762 int wait)
763{
764 u64 start = entry->file_offset;
765 u64 end = start + entry->len - 1;
766
767 trace_btrfs_ordered_extent_start(inode, entry);
768
769 /*
770 * pages in the range can be dirty, clean or writeback. We
771 * start IO on any dirty ones so the wait doesn't stall waiting
772 * for the flusher thread to find them
773 */
774 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
775 filemap_fdatawrite_range(inode->i_mapping, start, end);
776 if (wait) {
777 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
778 &entry->flags));
779 }
780}
781
782/*
783 * Used to wait on ordered extents across a large range of bytes.
784 */
785int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
786{
787 int ret = 0;
788 u64 end;
789 u64 orig_end;
790 struct btrfs_ordered_extent *ordered;
791
792 if (start + len < start) {
793 orig_end = INT_LIMIT(loff_t);
794 } else {
795 orig_end = start + len - 1;
796 if (orig_end > INT_LIMIT(loff_t))
797 orig_end = INT_LIMIT(loff_t);
798 }
799
800 /* start IO across the range first to instantiate any delalloc
801 * extents
802 */
803 ret = filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
804 if (ret)
805 return ret;
806 /*
807 * So with compression we will find and lock a dirty page and clear the
808 * first one as dirty, setup an async extent, and immediately return
809 * with the entire range locked but with nobody actually marked with
810 * writeback. So we can't just filemap_write_and_wait_range() and
811 * expect it to work since it will just kick off a thread to do the
812 * actual work. So we need to call filemap_fdatawrite_range _again_
813 * since it will wait on the page lock, which won't be unlocked until
814 * after the pages have been marked as writeback and so we're good to go
815 * from there. We have to do this otherwise we'll miss the ordered
816 * extents and that results in badness. Please Josef, do not think you
817 * know better and pull this out at some point in the future, it is
818 * right and you are wrong.
819 */
820 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
821 &BTRFS_I(inode)->runtime_flags)) {
822 ret = filemap_fdatawrite_range(inode->i_mapping, start,
823 orig_end);
824 if (ret)
825 return ret;
826 }
827 ret = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
828 if (ret)
829 return ret;
830
831 end = orig_end;
832 while (1) {
833 ordered = btrfs_lookup_first_ordered_extent(inode, end);
834 if (!ordered)
835 break;
836 if (ordered->file_offset > orig_end) {
837 btrfs_put_ordered_extent(ordered);
838 break;
839 }
840 if (ordered->file_offset + ordered->len <= start) {
841 btrfs_put_ordered_extent(ordered);
842 break;
843 }
844 btrfs_start_ordered_extent(inode, ordered, 1);
845 end = ordered->file_offset;
846 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
847 ret = -EIO;
848 btrfs_put_ordered_extent(ordered);
849 if (ret || end == 0 || end == start)
850 break;
851 end--;
852 }
853 return ret;
854}
855
856/*
857 * find an ordered extent corresponding to file_offset. return NULL if
858 * nothing is found, otherwise take a reference on the extent and return it
859 */
860struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
861 u64 file_offset)
862{
863 struct btrfs_ordered_inode_tree *tree;
864 struct rb_node *node;
865 struct btrfs_ordered_extent *entry = NULL;
866
867 tree = &BTRFS_I(inode)->ordered_tree;
868 spin_lock_irq(&tree->lock);
869 node = tree_search(tree, file_offset);
870 if (!node)
871 goto out;
872
873 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
874 if (!offset_in_entry(entry, file_offset))
875 entry = NULL;
876 if (entry)
877 atomic_inc(&entry->refs);
878out:
879 spin_unlock_irq(&tree->lock);
880 return entry;
881}
882
883/* Since the DIO code tries to lock a wide area we need to look for any ordered
884 * extents that exist in the range, rather than just the start of the range.
885 */
886struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
887 u64 file_offset,
888 u64 len)
889{
890 struct btrfs_ordered_inode_tree *tree;
891 struct rb_node *node;
892 struct btrfs_ordered_extent *entry = NULL;
893
894 tree = &BTRFS_I(inode)->ordered_tree;
895 spin_lock_irq(&tree->lock);
896 node = tree_search(tree, file_offset);
897 if (!node) {
898 node = tree_search(tree, file_offset + len);
899 if (!node)
900 goto out;
901 }
902
903 while (1) {
904 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
905 if (range_overlaps(entry, file_offset, len))
906 break;
907
908 if (entry->file_offset >= file_offset + len) {
909 entry = NULL;
910 break;
911 }
912 entry = NULL;
913 node = rb_next(node);
914 if (!node)
915 break;
916 }
917out:
918 if (entry)
919 atomic_inc(&entry->refs);
920 spin_unlock_irq(&tree->lock);
921 return entry;
922}
923
924/*
925 * lookup and return any extent before 'file_offset'. NULL is returned
926 * if none is found
927 */
928struct btrfs_ordered_extent *
929btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
930{
931 struct btrfs_ordered_inode_tree *tree;
932 struct rb_node *node;
933 struct btrfs_ordered_extent *entry = NULL;
934
935 tree = &BTRFS_I(inode)->ordered_tree;
936 spin_lock_irq(&tree->lock);
937 node = tree_search(tree, file_offset);
938 if (!node)
939 goto out;
940
941 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
942 atomic_inc(&entry->refs);
943out:
944 spin_unlock_irq(&tree->lock);
945 return entry;
946}
947
948/*
949 * After an extent is done, call this to conditionally update the on disk
950 * i_size. i_size is updated to cover any fully written part of the file.
951 */
952int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
953 struct btrfs_ordered_extent *ordered)
954{
955 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
956 u64 disk_i_size;
957 u64 new_i_size;
958 u64 i_size = i_size_read(inode);
959 struct rb_node *node;
960 struct rb_node *prev = NULL;
961 struct btrfs_ordered_extent *test;
962 int ret = 1;
963
964 spin_lock_irq(&tree->lock);
965 if (ordered) {
966 offset = entry_end(ordered);
967 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
968 offset = min(offset,
969 ordered->file_offset +
970 ordered->truncated_len);
971 } else {
972 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
973 }
974 disk_i_size = BTRFS_I(inode)->disk_i_size;
975
976 /* truncate file */
977 if (disk_i_size > i_size) {
978 BTRFS_I(inode)->disk_i_size = i_size;
979 ret = 0;
980 goto out;
981 }
982
983 /*
984 * if the disk i_size is already at the inode->i_size, or
985 * this ordered extent is inside the disk i_size, we're done
986 */
987 if (disk_i_size == i_size)
988 goto out;
989
990 /*
991 * We still need to update disk_i_size if outstanding_isize is greater
992 * than disk_i_size.
993 */
994 if (offset <= disk_i_size &&
995 (!ordered || ordered->outstanding_isize <= disk_i_size))
996 goto out;
997
998 /*
999 * walk backward from this ordered extent to disk_i_size.
1000 * if we find an ordered extent then we can't update disk i_size
1001 * yet
1002 */
1003 if (ordered) {
1004 node = rb_prev(&ordered->rb_node);
1005 } else {
1006 prev = tree_search(tree, offset);
1007 /*
1008 * we insert file extents without involving ordered struct,
1009 * so there should be no ordered struct cover this offset
1010 */
1011 if (prev) {
1012 test = rb_entry(prev, struct btrfs_ordered_extent,
1013 rb_node);
1014 BUG_ON(offset_in_entry(test, offset));
1015 }
1016 node = prev;
1017 }
1018 for (; node; node = rb_prev(node)) {
1019 test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1020
1021 /* We treat this entry as if it doesnt exist */
1022 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
1023 continue;
1024 if (test->file_offset + test->len <= disk_i_size)
1025 break;
1026 if (test->file_offset >= i_size)
1027 break;
1028 if (entry_end(test) > disk_i_size) {
1029 /*
1030 * we don't update disk_i_size now, so record this
1031 * undealt i_size. Or we will not know the real
1032 * i_size.
1033 */
1034 if (test->outstanding_isize < offset)
1035 test->outstanding_isize = offset;
1036 if (ordered &&
1037 ordered->outstanding_isize >
1038 test->outstanding_isize)
1039 test->outstanding_isize =
1040 ordered->outstanding_isize;
1041 goto out;
1042 }
1043 }
1044 new_i_size = min_t(u64, offset, i_size);
1045
1046 /*
1047 * Some ordered extents may completed before the current one, and
1048 * we hold the real i_size in ->outstanding_isize.
1049 */
1050 if (ordered && ordered->outstanding_isize > new_i_size)
1051 new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1052 BTRFS_I(inode)->disk_i_size = new_i_size;
1053 ret = 0;
1054out:
1055 /*
1056 * We need to do this because we can't remove ordered extents until
1057 * after the i_disk_size has been updated and then the inode has been
1058 * updated to reflect the change, so we need to tell anybody who finds
1059 * this ordered extent that we've already done all the real work, we
1060 * just haven't completed all the other work.
1061 */
1062 if (ordered)
1063 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1064 spin_unlock_irq(&tree->lock);
1065 return ret;
1066}
1067
1068/*
1069 * search the ordered extents for one corresponding to 'offset' and
1070 * try to find a checksum. This is used because we allow pages to
1071 * be reclaimed before their checksum is actually put into the btree
1072 */
1073int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1074 u32 *sum, int len)
1075{
1076 struct btrfs_ordered_sum *ordered_sum;
1077 struct btrfs_ordered_extent *ordered;
1078 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1079 unsigned long num_sectors;
1080 unsigned long i;
1081 u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1082 int index = 0;
1083
1084 ordered = btrfs_lookup_ordered_extent(inode, offset);
1085 if (!ordered)
1086 return 0;
1087
1088 spin_lock_irq(&tree->lock);
1089 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1090 if (disk_bytenr >= ordered_sum->bytenr &&
1091 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1092 i = (disk_bytenr - ordered_sum->bytenr) >>
1093 inode->i_sb->s_blocksize_bits;
1094 num_sectors = ordered_sum->len >>
1095 inode->i_sb->s_blocksize_bits;
1096 num_sectors = min_t(int, len - index, num_sectors - i);
1097 memcpy(sum + index, ordered_sum->sums + i,
1098 num_sectors);
1099
1100 index += (int)num_sectors;
1101 if (index == len)
1102 goto out;
1103 disk_bytenr += num_sectors * sectorsize;
1104 }
1105 }
1106out:
1107 spin_unlock_irq(&tree->lock);
1108 btrfs_put_ordered_extent(ordered);
1109 return index;
1110}
1111
1112
1113/*
1114 * add a given inode to the list of inodes that must be fully on
1115 * disk before a transaction commit finishes.
1116 *
1117 * This basically gives us the ext3 style data=ordered mode, and it is mostly
1118 * used to make sure renamed files are fully on disk.
1119 *
1120 * It is a noop if the inode is already fully on disk.
1121 *
1122 * If trans is not null, we'll do a friendly check for a transaction that
1123 * is already flushing things and force the IO down ourselves.
1124 */
1125void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1126 struct btrfs_root *root, struct inode *inode)
1127{
1128 struct btrfs_transaction *cur_trans = trans->transaction;
1129 u64 last_mod;
1130
1131 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1132
1133 /*
1134 * if this file hasn't been changed since the last transaction
1135 * commit, we can safely return without doing anything
1136 */
1137 if (last_mod <= root->fs_info->last_trans_committed)
1138 return;
1139
1140 spin_lock(&root->fs_info->ordered_root_lock);
1141 if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1142 list_add_tail(&BTRFS_I(inode)->ordered_operations,
1143 &cur_trans->ordered_operations);
1144 }
1145 spin_unlock(&root->fs_info->ordered_root_lock);
1146}
1147
1148int __init ordered_data_init(void)
1149{
1150 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1151 sizeof(struct btrfs_ordered_extent), 0,
1152 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1153 NULL);
1154 if (!btrfs_ordered_extent_cache)
1155 return -ENOMEM;
1156
1157 return 0;
1158}
1159
1160void ordered_data_exit(void)
1161{
1162 if (btrfs_ordered_extent_cache)
1163 kmem_cache_destroy(btrfs_ordered_extent_cache);
1164}