Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
 
 
 
 
 
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31	count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36	count_vm_events(item, delta);
  37}
 
 
 
 
 
 
 
 
 
 
 
 
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
 
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
 
  73	struct page *page, *next;
  74	unsigned long high_pfn = 0;
  75
  76	list_for_each_entry_safe(page, next, freelist, lru) {
  77		unsigned long pfn = page_to_pfn(page);
  78		list_del(&page->lru);
  79		__free_page(page);
  80		if (pfn > high_pfn)
  81			high_pfn = pfn;
  82	}
  83
  84	return high_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  85}
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89	unsigned int i, order, nr_pages;
  90	struct page *page, *next;
  91	LIST_HEAD(tmp_list);
  92
  93	list_for_each_entry_safe(page, next, list, lru) {
  94		list_del(&page->lru);
  95
  96		order = page_private(page);
  97		nr_pages = 1 << order;
  98
  99		post_alloc_hook(page, order, __GFP_MOVABLE);
 100		if (order)
 101			split_page(page, order);
 102
 103		for (i = 0; i < nr_pages; i++) {
 104			list_add(&page->lru, &tmp_list);
 105			page++;
 
 
 
 
 
 
 106		}
 107	}
 108
 109	list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116	struct address_space *mapping;
 117
 118	VM_BUG_ON_PAGE(!PageLocked(page), page);
 119	if (!__PageMovable(page))
 120		return 0;
 121
 122	mapping = page_mapping(page);
 123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124		return 1;
 125
 126	return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132	VM_BUG_ON_PAGE(!PageLocked(page), page);
 133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 140	VM_BUG_ON_PAGE(!PageLocked(page), page);
 141	VM_BUG_ON_PAGE(!PageMovable(page), page);
 142	/*
 143	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 144	 * flag so that VM can catch up released page by driver after isolation.
 145	 * With it, VM migration doesn't try to put it back.
 146	 */
 147	page->mapping = (void *)((unsigned long)page->mapping &
 148				PAGE_MAPPING_MOVABLE);
 149}
 150EXPORT_SYMBOL(__ClearPageMovable);
 151
 152/* Do not skip compaction more than 64 times */
 153#define COMPACT_MAX_DEFER_SHIFT 6
 154
 155/*
 156 * Compaction is deferred when compaction fails to result in a page
 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 159 */
 160void defer_compaction(struct zone *zone, int order)
 161{
 162	zone->compact_considered = 0;
 163	zone->compact_defer_shift++;
 164
 165	if (order < zone->compact_order_failed)
 166		zone->compact_order_failed = order;
 167
 168	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 169		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 170
 171	trace_mm_compaction_defer_compaction(zone, order);
 172}
 173
 174/* Returns true if compaction should be skipped this time */
 175bool compaction_deferred(struct zone *zone, int order)
 176{
 177	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 178
 179	if (order < zone->compact_order_failed)
 180		return false;
 181
 182	/* Avoid possible overflow */
 183	if (++zone->compact_considered > defer_limit)
 184		zone->compact_considered = defer_limit;
 185
 186	if (zone->compact_considered >= defer_limit)
 187		return false;
 
 188
 189	trace_mm_compaction_deferred(zone, order);
 190
 191	return true;
 192}
 193
 194/*
 195 * Update defer tracking counters after successful compaction of given order,
 196 * which means an allocation either succeeded (alloc_success == true) or is
 197 * expected to succeed.
 198 */
 199void compaction_defer_reset(struct zone *zone, int order,
 200		bool alloc_success)
 201{
 202	if (alloc_success) {
 203		zone->compact_considered = 0;
 204		zone->compact_defer_shift = 0;
 205	}
 206	if (order >= zone->compact_order_failed)
 207		zone->compact_order_failed = order + 1;
 208
 209	trace_mm_compaction_defer_reset(zone, order);
 210}
 211
 212/* Returns true if restarting compaction after many failures */
 213bool compaction_restarting(struct zone *zone, int order)
 214{
 215	if (order < zone->compact_order_failed)
 216		return false;
 217
 218	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 219		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 220}
 221
 222/* Returns true if the pageblock should be scanned for pages to isolate. */
 223static inline bool isolation_suitable(struct compact_control *cc,
 224					struct page *page)
 225{
 226	if (cc->ignore_skip_hint)
 227		return true;
 228
 229	return !get_pageblock_skip(page);
 230}
 231
 232static void reset_cached_positions(struct zone *zone)
 233{
 234	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 235	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 236	zone->compact_cached_free_pfn =
 237				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 238}
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/*
 241 * Compound pages of >= pageblock_order should consistenly be skipped until
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242 * released. It is always pointless to compact pages of such order (if they are
 243 * migratable), and the pageblocks they occupy cannot contain any free pages.
 244 */
 245static bool pageblock_skip_persistent(struct page *page)
 246{
 247	if (!PageCompound(page))
 248		return false;
 249
 250	page = compound_head(page);
 251
 252	if (compound_order(page) >= pageblock_order)
 253		return true;
 254
 255	return false;
 256}
 257
 258static bool
 259__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 260							bool check_target)
 261{
 262	struct page *page = pfn_to_online_page(pfn);
 263	struct page *block_page;
 264	struct page *end_page;
 265	unsigned long block_pfn;
 266
 267	if (!page)
 268		return false;
 269	if (zone != page_zone(page))
 270		return false;
 271	if (pageblock_skip_persistent(page))
 272		return false;
 273
 274	/*
 275	 * If skip is already cleared do no further checking once the
 276	 * restart points have been set.
 277	 */
 278	if (check_source && check_target && !get_pageblock_skip(page))
 279		return true;
 280
 281	/*
 282	 * If clearing skip for the target scanner, do not select a
 283	 * non-movable pageblock as the starting point.
 284	 */
 285	if (!check_source && check_target &&
 286	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 287		return false;
 288
 289	/* Ensure the start of the pageblock or zone is online and valid */
 290	block_pfn = pageblock_start_pfn(pfn);
 291	block_pfn = max(block_pfn, zone->zone_start_pfn);
 292	block_page = pfn_to_online_page(block_pfn);
 293	if (block_page) {
 294		page = block_page;
 295		pfn = block_pfn;
 296	}
 297
 298	/* Ensure the end of the pageblock or zone is online and valid */
 299	block_pfn = pageblock_end_pfn(pfn) - 1;
 300	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 301	end_page = pfn_to_online_page(block_pfn);
 302	if (!end_page)
 303		return false;
 304
 305	/*
 306	 * Only clear the hint if a sample indicates there is either a
 307	 * free page or an LRU page in the block. One or other condition
 308	 * is necessary for the block to be a migration source/target.
 309	 */
 310	do {
 311		if (pfn_valid_within(pfn)) {
 312			if (check_source && PageLRU(page)) {
 313				clear_pageblock_skip(page);
 314				return true;
 315			}
 316
 317			if (check_target && PageBuddy(page)) {
 318				clear_pageblock_skip(page);
 319				return true;
 320			}
 321		}
 322
 323		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 324		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 325	} while (page <= end_page);
 326
 327	return false;
 328}
 329
 330/*
 331 * This function is called to clear all cached information on pageblocks that
 332 * should be skipped for page isolation when the migrate and free page scanner
 333 * meet.
 334 */
 335static void __reset_isolation_suitable(struct zone *zone)
 336{
 337	unsigned long migrate_pfn = zone->zone_start_pfn;
 338	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 339	unsigned long reset_migrate = free_pfn;
 340	unsigned long reset_free = migrate_pfn;
 341	bool source_set = false;
 342	bool free_set = false;
 343
 
 344	if (!zone->compact_blockskip_flush)
 345		return;
 346
 347	zone->compact_blockskip_flush = false;
 348
 349	/*
 350	 * Walk the zone and update pageblock skip information. Source looks
 351	 * for PageLRU while target looks for PageBuddy. When the scanner
 352	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 353	 * is suitable as both source and target.
 354	 */
 355	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 356					free_pfn -= pageblock_nr_pages) {
 357		cond_resched();
 358
 359		/* Update the migrate PFN */
 360		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 361		    migrate_pfn < reset_migrate) {
 362			source_set = true;
 363			reset_migrate = migrate_pfn;
 364			zone->compact_init_migrate_pfn = reset_migrate;
 365			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 366			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 367		}
 368
 369		/* Update the free PFN */
 370		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 371		    free_pfn > reset_free) {
 372			free_set = true;
 373			reset_free = free_pfn;
 374			zone->compact_init_free_pfn = reset_free;
 375			zone->compact_cached_free_pfn = reset_free;
 376		}
 377	}
 378
 379	/* Leave no distance if no suitable block was reset */
 380	if (reset_migrate >= reset_free) {
 381		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 382		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 383		zone->compact_cached_free_pfn = free_pfn;
 384	}
 385}
 386
 387void reset_isolation_suitable(pg_data_t *pgdat)
 388{
 389	int zoneid;
 390
 391	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 392		struct zone *zone = &pgdat->node_zones[zoneid];
 393		if (!populated_zone(zone))
 394			continue;
 395
 396		/* Only flush if a full compaction finished recently */
 397		if (zone->compact_blockskip_flush)
 398			__reset_isolation_suitable(zone);
 399	}
 400}
 401
 402/*
 403 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 404 * locks are not required for read/writers. Returns true if it was already set.
 405 */
 406static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 407							unsigned long pfn)
 408{
 409	bool skip;
 410
 411	/* Do no update if skip hint is being ignored */
 412	if (cc->ignore_skip_hint)
 413		return false;
 414
 415	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 416		return false;
 417
 418	skip = get_pageblock_skip(page);
 419	if (!skip && !cc->no_set_skip_hint)
 420		set_pageblock_skip(page);
 421
 422	return skip;
 423}
 424
 425static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 426{
 427	struct zone *zone = cc->zone;
 428
 429	pfn = pageblock_end_pfn(pfn);
 430
 431	/* Set for isolation rather than compaction */
 432	if (cc->no_set_skip_hint)
 433		return;
 434
 
 
 
 435	if (pfn > zone->compact_cached_migrate_pfn[0])
 436		zone->compact_cached_migrate_pfn[0] = pfn;
 437	if (cc->mode != MIGRATE_ASYNC &&
 438	    pfn > zone->compact_cached_migrate_pfn[1])
 439		zone->compact_cached_migrate_pfn[1] = pfn;
 440}
 441
 442/*
 443 * If no pages were isolated then mark this pageblock to be skipped in the
 444 * future. The information is later cleared by __reset_isolation_suitable().
 445 */
 446static void update_pageblock_skip(struct compact_control *cc,
 447			struct page *page, unsigned long pfn)
 448{
 449	struct zone *zone = cc->zone;
 450
 451	if (cc->no_set_skip_hint)
 452		return;
 453
 454	if (!page)
 455		return;
 456
 457	set_pageblock_skip(page);
 458
 459	/* Update where async and sync compaction should restart */
 460	if (pfn < zone->compact_cached_free_pfn)
 461		zone->compact_cached_free_pfn = pfn;
 462}
 463#else
 464static inline bool isolation_suitable(struct compact_control *cc,
 465					struct page *page)
 466{
 467	return true;
 468}
 469
 470static inline bool pageblock_skip_persistent(struct page *page)
 471{
 472	return false;
 473}
 474
 475static inline void update_pageblock_skip(struct compact_control *cc,
 476			struct page *page, unsigned long pfn)
 477{
 478}
 479
 480static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 481{
 482}
 483
 484static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 485							unsigned long pfn)
 486{
 487	return false;
 488}
 489#endif /* CONFIG_COMPACTION */
 490
 491/*
 492 * Compaction requires the taking of some coarse locks that are potentially
 493 * very heavily contended. For async compaction, trylock and record if the
 494 * lock is contended. The lock will still be acquired but compaction will
 495 * abort when the current block is finished regardless of success rate.
 496 * Sync compaction acquires the lock.
 497 *
 498 * Always returns true which makes it easier to track lock state in callers.
 499 */
 500static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 501						struct compact_control *cc)
 502	__acquires(lock)
 503{
 504	/* Track if the lock is contended in async mode */
 505	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 506		if (spin_trylock_irqsave(lock, *flags))
 507			return true;
 508
 509		cc->contended = true;
 510	}
 511
 512	spin_lock_irqsave(lock, *flags);
 513	return true;
 514}
 515
 516/*
 517 * Compaction requires the taking of some coarse locks that are potentially
 518 * very heavily contended. The lock should be periodically unlocked to avoid
 519 * having disabled IRQs for a long time, even when there is nobody waiting on
 520 * the lock. It might also be that allowing the IRQs will result in
 521 * need_resched() becoming true. If scheduling is needed, async compaction
 522 * aborts. Sync compaction schedules.
 523 * Either compaction type will also abort if a fatal signal is pending.
 524 * In either case if the lock was locked, it is dropped and not regained.
 525 *
 526 * Returns true if compaction should abort due to fatal signal pending, or
 527 *		async compaction due to need_resched()
 528 * Returns false when compaction can continue (sync compaction might have
 529 *		scheduled)
 530 */
 531static bool compact_unlock_should_abort(spinlock_t *lock,
 532		unsigned long flags, bool *locked, struct compact_control *cc)
 533{
 534	if (*locked) {
 535		spin_unlock_irqrestore(lock, flags);
 536		*locked = false;
 537	}
 538
 539	if (fatal_signal_pending(current)) {
 540		cc->contended = true;
 541		return true;
 542	}
 543
 544	cond_resched();
 545
 546	return false;
 547}
 548
 549/*
 550 * Isolate free pages onto a private freelist. If @strict is true, will abort
 551 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 552 * (even though it may still end up isolating some pages).
 553 */
 554static unsigned long isolate_freepages_block(struct compact_control *cc,
 555				unsigned long *start_pfn,
 556				unsigned long end_pfn,
 557				struct list_head *freelist,
 558				unsigned int stride,
 559				bool strict)
 560{
 561	int nr_scanned = 0, total_isolated = 0;
 562	struct page *cursor;
 563	unsigned long flags = 0;
 564	bool locked = false;
 565	unsigned long blockpfn = *start_pfn;
 566	unsigned int order;
 567
 568	/* Strict mode is for isolation, speed is secondary */
 569	if (strict)
 570		stride = 1;
 571
 572	cursor = pfn_to_page(blockpfn);
 573
 574	/* Isolate free pages. */
 575	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 576		int isolated;
 577		struct page *page = cursor;
 578
 579		/*
 580		 * Periodically drop the lock (if held) regardless of its
 581		 * contention, to give chance to IRQs. Abort if fatal signal
 582		 * pending or async compaction detects need_resched()
 583		 */
 584		if (!(blockpfn % SWAP_CLUSTER_MAX)
 585		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 586								&locked, cc))
 587			break;
 588
 589		nr_scanned++;
 590		if (!pfn_valid_within(blockpfn))
 591			goto isolate_fail;
 592
 593		/*
 594		 * For compound pages such as THP and hugetlbfs, we can save
 595		 * potentially a lot of iterations if we skip them at once.
 596		 * The check is racy, but we can consider only valid values
 597		 * and the only danger is skipping too much.
 598		 */
 599		if (PageCompound(page)) {
 600			const unsigned int order = compound_order(page);
 601
 602			if (likely(order < MAX_ORDER)) {
 603				blockpfn += (1UL << order) - 1;
 604				cursor += (1UL << order) - 1;
 
 605			}
 
 606			goto isolate_fail;
 607		}
 608
 609		if (!PageBuddy(page))
 610			goto isolate_fail;
 611
 612		/*
 613		 * If we already hold the lock, we can skip some rechecking.
 614		 * Note that if we hold the lock now, checked_pageblock was
 615		 * already set in some previous iteration (or strict is true),
 616		 * so it is correct to skip the suitable migration target
 617		 * recheck as well.
 618		 */
 619		if (!locked) {
 620			locked = compact_lock_irqsave(&cc->zone->lock,
 621								&flags, cc);
 622
 623			/* Recheck this is a buddy page under lock */
 624			if (!PageBuddy(page))
 625				goto isolate_fail;
 626		}
 627
 628		/* Found a free page, will break it into order-0 pages */
 629		order = page_order(page);
 630		isolated = __isolate_free_page(page, order);
 631		if (!isolated)
 632			break;
 633		set_page_private(page, order);
 634
 
 635		total_isolated += isolated;
 636		cc->nr_freepages += isolated;
 637		list_add_tail(&page->lru, freelist);
 638
 639		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 640			blockpfn += isolated;
 641			break;
 642		}
 643		/* Advance to the end of split page */
 644		blockpfn += isolated - 1;
 645		cursor += isolated - 1;
 646		continue;
 647
 648isolate_fail:
 649		if (strict)
 650			break;
 651		else
 652			continue;
 653
 654	}
 655
 656	if (locked)
 657		spin_unlock_irqrestore(&cc->zone->lock, flags);
 658
 659	/*
 660	 * There is a tiny chance that we have read bogus compound_order(),
 661	 * so be careful to not go outside of the pageblock.
 662	 */
 663	if (unlikely(blockpfn > end_pfn))
 664		blockpfn = end_pfn;
 665
 666	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 667					nr_scanned, total_isolated);
 668
 669	/* Record how far we have got within the block */
 670	*start_pfn = blockpfn;
 671
 672	/*
 673	 * If strict isolation is requested by CMA then check that all the
 674	 * pages requested were isolated. If there were any failures, 0 is
 675	 * returned and CMA will fail.
 676	 */
 677	if (strict && blockpfn < end_pfn)
 678		total_isolated = 0;
 679
 680	cc->total_free_scanned += nr_scanned;
 681	if (total_isolated)
 682		count_compact_events(COMPACTISOLATED, total_isolated);
 683	return total_isolated;
 684}
 685
 686/**
 687 * isolate_freepages_range() - isolate free pages.
 688 * @cc:        Compaction control structure.
 689 * @start_pfn: The first PFN to start isolating.
 690 * @end_pfn:   The one-past-last PFN.
 691 *
 692 * Non-free pages, invalid PFNs, or zone boundaries within the
 693 * [start_pfn, end_pfn) range are considered errors, cause function to
 694 * undo its actions and return zero.
 695 *
 696 * Otherwise, function returns one-past-the-last PFN of isolated page
 697 * (which may be greater then end_pfn if end fell in a middle of
 698 * a free page).
 699 */
 700unsigned long
 701isolate_freepages_range(struct compact_control *cc,
 702			unsigned long start_pfn, unsigned long end_pfn)
 703{
 704	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 705	LIST_HEAD(freelist);
 
 
 
 
 706
 707	pfn = start_pfn;
 708	block_start_pfn = pageblock_start_pfn(pfn);
 709	if (block_start_pfn < cc->zone->zone_start_pfn)
 710		block_start_pfn = cc->zone->zone_start_pfn;
 711	block_end_pfn = pageblock_end_pfn(pfn);
 712
 713	for (; pfn < end_pfn; pfn += isolated,
 714				block_start_pfn = block_end_pfn,
 715				block_end_pfn += pageblock_nr_pages) {
 716		/* Protect pfn from changing by isolate_freepages_block */
 717		unsigned long isolate_start_pfn = pfn;
 718
 719		block_end_pfn = min(block_end_pfn, end_pfn);
 720
 721		/*
 722		 * pfn could pass the block_end_pfn if isolated freepage
 723		 * is more than pageblock order. In this case, we adjust
 724		 * scanning range to right one.
 725		 */
 726		if (pfn >= block_end_pfn) {
 727			block_start_pfn = pageblock_start_pfn(pfn);
 728			block_end_pfn = pageblock_end_pfn(pfn);
 729			block_end_pfn = min(block_end_pfn, end_pfn);
 730		}
 731
 
 
 732		if (!pageblock_pfn_to_page(block_start_pfn,
 733					block_end_pfn, cc->zone))
 734			break;
 735
 736		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 737					block_end_pfn, &freelist, 0, true);
 738
 739		/*
 740		 * In strict mode, isolate_freepages_block() returns 0 if
 741		 * there are any holes in the block (ie. invalid PFNs or
 742		 * non-free pages).
 743		 */
 744		if (!isolated)
 745			break;
 746
 747		/*
 748		 * If we managed to isolate pages, it is always (1 << n) *
 749		 * pageblock_nr_pages for some non-negative n.  (Max order
 750		 * page may span two pageblocks).
 751		 */
 752	}
 753
 754	/* __isolate_free_page() does not map the pages */
 755	split_map_pages(&freelist);
 756
 757	if (pfn < end_pfn) {
 758		/* Loop terminated early, cleanup. */
 759		release_freepages(&freelist);
 760		return 0;
 761	}
 762
 
 
 
 763	/* We don't use freelists for anything. */
 764	return pfn;
 765}
 766
 767/* Similar to reclaim, but different enough that they don't share logic */
 768static bool too_many_isolated(pg_data_t *pgdat)
 769{
 
 
 
 770	unsigned long active, inactive, isolated;
 771
 772	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 773			node_page_state(pgdat, NR_INACTIVE_ANON);
 774	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 775			node_page_state(pgdat, NR_ACTIVE_ANON);
 776	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 777			node_page_state(pgdat, NR_ISOLATED_ANON);
 778
 779	return isolated > (inactive + active) / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780}
 781
 782/**
 783 * isolate_migratepages_block() - isolate all migrate-able pages within
 784 *				  a single pageblock
 785 * @cc:		Compaction control structure.
 786 * @low_pfn:	The first PFN to isolate
 787 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 788 * @isolate_mode: Isolation mode to be used.
 789 *
 790 * Isolate all pages that can be migrated from the range specified by
 791 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 792 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 793 * first page that was not scanned (which may be both less, equal to or more
 794 * than end_pfn).
 795 *
 796 * The pages are isolated on cc->migratepages list (not required to be empty),
 797 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 798 * is neither read nor updated.
 799 */
 800static unsigned long
 801isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 802			unsigned long end_pfn, isolate_mode_t isolate_mode)
 803{
 804	pg_data_t *pgdat = cc->zone->zone_pgdat;
 805	unsigned long nr_scanned = 0, nr_isolated = 0;
 806	struct lruvec *lruvec;
 807	unsigned long flags = 0;
 808	bool locked = false;
 
 809	struct page *page = NULL, *valid_page = NULL;
 
 810	unsigned long start_pfn = low_pfn;
 811	bool skip_on_failure = false;
 812	unsigned long next_skip_pfn = 0;
 813	bool skip_updated = false;
 
 
 
 814
 815	/*
 816	 * Ensure that there are not too many pages isolated from the LRU
 817	 * list by either parallel reclaimers or compaction. If there are,
 818	 * delay for some time until fewer pages are isolated
 819	 */
 820	while (unlikely(too_many_isolated(pgdat))) {
 
 
 
 
 821		/* async migration should just abort */
 822		if (cc->mode == MIGRATE_ASYNC)
 823			return 0;
 824
 825		congestion_wait(BLK_RW_ASYNC, HZ/10);
 826
 827		if (fatal_signal_pending(current))
 828			return 0;
 829	}
 830
 831	cond_resched();
 832
 833	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 834		skip_on_failure = true;
 835		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 836	}
 837
 838	/* Time to isolate some pages for migration */
 839	for (; low_pfn < end_pfn; low_pfn++) {
 
 840
 841		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 842			/*
 843			 * We have isolated all migration candidates in the
 844			 * previous order-aligned block, and did not skip it due
 845			 * to failure. We should migrate the pages now and
 846			 * hopefully succeed compaction.
 847			 */
 848			if (nr_isolated)
 849				break;
 850
 851			/*
 852			 * We failed to isolate in the previous order-aligned
 853			 * block. Set the new boundary to the end of the
 854			 * current block. Note we can't simply increase
 855			 * next_skip_pfn by 1 << order, as low_pfn might have
 856			 * been incremented by a higher number due to skipping
 857			 * a compound or a high-order buddy page in the
 858			 * previous loop iteration.
 859			 */
 860			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 861		}
 862
 863		/*
 864		 * Periodically drop the lock (if held) regardless of its
 865		 * contention, to give chance to IRQs. Abort completely if
 866		 * a fatal signal is pending.
 867		 */
 868		if (!(low_pfn % SWAP_CLUSTER_MAX)
 869		    && compact_unlock_should_abort(&pgdat->lru_lock,
 870					    flags, &locked, cc)) {
 871			low_pfn = 0;
 872			goto fatal_pending;
 
 
 
 
 
 
 
 
 
 873		}
 874
 875		if (!pfn_valid_within(low_pfn))
 876			goto isolate_fail;
 877		nr_scanned++;
 878
 879		page = pfn_to_page(low_pfn);
 880
 881		/*
 882		 * Check if the pageblock has already been marked skipped.
 883		 * Only the aligned PFN is checked as the caller isolates
 884		 * COMPACT_CLUSTER_MAX at a time so the second call must
 885		 * not falsely conclude that the block should be skipped.
 886		 */
 887		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 888			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 
 889				low_pfn = end_pfn;
 
 890				goto isolate_abort;
 891			}
 892			valid_page = page;
 893		}
 894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895		/*
 896		 * Skip if free. We read page order here without zone lock
 897		 * which is generally unsafe, but the race window is small and
 898		 * the worst thing that can happen is that we skip some
 899		 * potential isolation targets.
 900		 */
 901		if (PageBuddy(page)) {
 902			unsigned long freepage_order = page_order_unsafe(page);
 903
 904			/*
 905			 * Without lock, we cannot be sure that what we got is
 906			 * a valid page order. Consider only values in the
 907			 * valid order range to prevent low_pfn overflow.
 908			 */
 909			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 910				low_pfn += (1UL << freepage_order) - 1;
 
 
 911			continue;
 912		}
 913
 914		/*
 915		 * Regardless of being on LRU, compound pages such as THP and
 916		 * hugetlbfs are not to be compacted unless we are attempting
 917		 * an allocation much larger than the huge page size (eg CMA).
 918		 * We can potentially save a lot of iterations if we skip them
 919		 * at once. The check is racy, but we can consider only valid
 920		 * values and the only danger is skipping too much.
 921		 */
 922		if (PageCompound(page) && !cc->alloc_contig) {
 923			const unsigned int order = compound_order(page);
 924
 925			if (likely(order < MAX_ORDER))
 926				low_pfn += (1UL << order) - 1;
 927			goto isolate_fail;
 
 
 
 
 
 928		}
 929
 930		/*
 931		 * Check may be lockless but that's ok as we recheck later.
 932		 * It's possible to migrate LRU and non-lru movable pages.
 933		 * Skip any other type of page
 934		 */
 935		if (!PageLRU(page)) {
 936			/*
 937			 * __PageMovable can return false positive so we need
 938			 * to verify it under page_lock.
 939			 */
 940			if (unlikely(__PageMovable(page)) &&
 941					!PageIsolated(page)) {
 942				if (locked) {
 943					spin_unlock_irqrestore(&pgdat->lru_lock,
 944									flags);
 945					locked = false;
 946				}
 947
 948				if (!isolate_movable_page(page, isolate_mode))
 
 949					goto isolate_success;
 
 950			}
 951
 952			goto isolate_fail;
 953		}
 954
 955		/*
 
 
 
 
 
 
 
 
 
 956		 * Migration will fail if an anonymous page is pinned in memory,
 957		 * so avoid taking lru_lock and isolating it unnecessarily in an
 958		 * admittedly racy check.
 959		 */
 960		if (!page_mapping(page) &&
 961		    page_count(page) > page_mapcount(page))
 962			goto isolate_fail;
 963
 964		/*
 965		 * Only allow to migrate anonymous pages in GFP_NOFS context
 966		 * because those do not depend on fs locks.
 967		 */
 968		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 969			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970
 971		/* If we already hold the lock, we can skip some rechecking */
 972		if (!locked) {
 973			locked = compact_lock_irqsave(&pgdat->lru_lock,
 974								&flags, cc);
 
 
 
 975
 976			/* Try get exclusive access under lock */
 977			if (!skip_updated) {
 
 
 
 
 
 
 978				skip_updated = true;
 979				if (test_and_set_skip(cc, page, low_pfn))
 
 
 980					goto isolate_abort;
 
 981			}
 982
 983			/* Recheck PageLRU and PageCompound under lock */
 984			if (!PageLRU(page))
 985				goto isolate_fail;
 986
 987			/*
 988			 * Page become compound since the non-locked check,
 989			 * and it's on LRU. It can only be a THP so the order
 990			 * is safe to read and it's 0 for tail pages.
 991			 */
 992			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
 993				low_pfn += compound_nr(page) - 1;
 994				goto isolate_fail;
 
 
 
 
 995			}
 996		}
 997
 998		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 999
1000		/* Try isolate the page */
1001		if (__isolate_lru_page(page, isolate_mode) != 0)
1002			goto isolate_fail;
1003
1004		/* The whole page is taken off the LRU; skip the tail pages. */
1005		if (PageCompound(page))
1006			low_pfn += compound_nr(page) - 1;
1007
1008		/* Successfully isolated */
1009		del_page_from_lru_list(page, lruvec, page_lru(page));
1010		mod_node_page_state(page_pgdat(page),
1011				NR_ISOLATED_ANON + page_is_file_lru(page),
1012				thp_nr_pages(page));
1013
1014isolate_success:
1015		list_add(&page->lru, &cc->migratepages);
1016		cc->nr_migratepages++;
1017		nr_isolated++;
 
 
1018
1019		/*
1020		 * Avoid isolating too much unless this block is being
1021		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1022		 * or a lock is contended. For contention, isolate quickly to
1023		 * potentially remove one source of contention.
1024		 */
1025		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1026		    !cc->rescan && !cc->contended) {
1027			++low_pfn;
1028			break;
1029		}
1030
1031		continue;
 
 
 
 
 
 
 
 
 
1032isolate_fail:
1033		if (!skip_on_failure)
1034			continue;
1035
1036		/*
1037		 * We have isolated some pages, but then failed. Release them
1038		 * instead of migrating, as we cannot form the cc->order buddy
1039		 * page anyway.
1040		 */
1041		if (nr_isolated) {
1042			if (locked) {
1043				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1044				locked = false;
1045			}
1046			putback_movable_pages(&cc->migratepages);
1047			cc->nr_migratepages = 0;
1048			nr_isolated = 0;
1049		}
1050
1051		if (low_pfn < next_skip_pfn) {
1052			low_pfn = next_skip_pfn - 1;
1053			/*
1054			 * The check near the loop beginning would have updated
1055			 * next_skip_pfn too, but this is a bit simpler.
1056			 */
1057			next_skip_pfn += 1UL << cc->order;
1058		}
 
 
 
1059	}
1060
1061	/*
1062	 * The PageBuddy() check could have potentially brought us outside
1063	 * the range to be scanned.
1064	 */
1065	if (unlikely(low_pfn > end_pfn))
1066		low_pfn = end_pfn;
1067
 
 
1068isolate_abort:
1069	if (locked)
1070		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 
 
 
 
1071
1072	/*
1073	 * Updated the cached scanner pfn once the pageblock has been scanned
1074	 * Pages will either be migrated in which case there is no point
1075	 * scanning in the near future or migration failed in which case the
1076	 * failure reason may persist. The block is marked for skipping if
1077	 * there were no pages isolated in the block or if the block is
1078	 * rescanned twice in a row.
1079	 */
1080	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1081		if (valid_page && !skip_updated)
1082			set_pageblock_skip(valid_page);
1083		update_cached_migrate(cc, low_pfn);
1084	}
1085
1086	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1087						nr_scanned, nr_isolated);
1088
1089fatal_pending:
1090	cc->total_migrate_scanned += nr_scanned;
1091	if (nr_isolated)
1092		count_compact_events(COMPACTISOLATED, nr_isolated);
1093
1094	return low_pfn;
 
 
1095}
1096
1097/**
1098 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1099 * @cc:        Compaction control structure.
1100 * @start_pfn: The first PFN to start isolating.
1101 * @end_pfn:   The one-past-last PFN.
1102 *
1103 * Returns zero if isolation fails fatally due to e.g. pending signal.
1104 * Otherwise, function returns one-past-the-last PFN of isolated page
1105 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1106 */
1107unsigned long
1108isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1109							unsigned long end_pfn)
1110{
1111	unsigned long pfn, block_start_pfn, block_end_pfn;
 
1112
1113	/* Scan block by block. First and last block may be incomplete */
1114	pfn = start_pfn;
1115	block_start_pfn = pageblock_start_pfn(pfn);
1116	if (block_start_pfn < cc->zone->zone_start_pfn)
1117		block_start_pfn = cc->zone->zone_start_pfn;
1118	block_end_pfn = pageblock_end_pfn(pfn);
1119
1120	for (; pfn < end_pfn; pfn = block_end_pfn,
1121				block_start_pfn = block_end_pfn,
1122				block_end_pfn += pageblock_nr_pages) {
1123
1124		block_end_pfn = min(block_end_pfn, end_pfn);
1125
1126		if (!pageblock_pfn_to_page(block_start_pfn,
1127					block_end_pfn, cc->zone))
1128			continue;
1129
1130		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1131							ISOLATE_UNEVICTABLE);
1132
1133		if (!pfn)
1134			break;
1135
1136		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1137			break;
1138	}
1139
1140	return pfn;
1141}
1142
1143#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1144#ifdef CONFIG_COMPACTION
1145
1146static bool suitable_migration_source(struct compact_control *cc,
1147							struct page *page)
1148{
1149	int block_mt;
1150
1151	if (pageblock_skip_persistent(page))
1152		return false;
1153
1154	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1155		return true;
1156
1157	block_mt = get_pageblock_migratetype(page);
1158
1159	if (cc->migratetype == MIGRATE_MOVABLE)
1160		return is_migrate_movable(block_mt);
1161	else
1162		return block_mt == cc->migratetype;
1163}
1164
1165/* Returns true if the page is within a block suitable for migration to */
1166static bool suitable_migration_target(struct compact_control *cc,
1167							struct page *page)
1168{
1169	/* If the page is a large free page, then disallow migration */
1170	if (PageBuddy(page)) {
 
 
1171		/*
1172		 * We are checking page_order without zone->lock taken. But
1173		 * the only small danger is that we skip a potentially suitable
1174		 * pageblock, so it's not worth to check order for valid range.
1175		 */
1176		if (page_order_unsafe(page) >= pageblock_order)
1177			return false;
1178	}
1179
1180	if (cc->ignore_block_suitable)
1181		return true;
1182
1183	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1184	if (is_migrate_movable(get_pageblock_migratetype(page)))
1185		return true;
1186
1187	/* Otherwise skip the block */
1188	return false;
1189}
1190
1191static inline unsigned int
1192freelist_scan_limit(struct compact_control *cc)
1193{
1194	unsigned short shift = BITS_PER_LONG - 1;
1195
1196	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1197}
1198
1199/*
1200 * Test whether the free scanner has reached the same or lower pageblock than
1201 * the migration scanner, and compaction should thus terminate.
1202 */
1203static inline bool compact_scanners_met(struct compact_control *cc)
1204{
1205	return (cc->free_pfn >> pageblock_order)
1206		<= (cc->migrate_pfn >> pageblock_order);
1207}
1208
1209/*
1210 * Used when scanning for a suitable migration target which scans freelists
1211 * in reverse. Reorders the list such as the unscanned pages are scanned
1212 * first on the next iteration of the free scanner
1213 */
1214static void
1215move_freelist_head(struct list_head *freelist, struct page *freepage)
1216{
1217	LIST_HEAD(sublist);
1218
1219	if (!list_is_last(freelist, &freepage->lru)) {
1220		list_cut_before(&sublist, freelist, &freepage->lru);
1221		if (!list_empty(&sublist))
1222			list_splice_tail(&sublist, freelist);
1223	}
1224}
1225
1226/*
1227 * Similar to move_freelist_head except used by the migration scanner
1228 * when scanning forward. It's possible for these list operations to
1229 * move against each other if they search the free list exactly in
1230 * lockstep.
1231 */
1232static void
1233move_freelist_tail(struct list_head *freelist, struct page *freepage)
1234{
1235	LIST_HEAD(sublist);
1236
1237	if (!list_is_first(freelist, &freepage->lru)) {
1238		list_cut_position(&sublist, freelist, &freepage->lru);
1239		if (!list_empty(&sublist))
1240			list_splice_tail(&sublist, freelist);
1241	}
1242}
1243
1244static void
1245fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1246{
1247	unsigned long start_pfn, end_pfn;
1248	struct page *page = pfn_to_page(pfn);
1249
1250	/* Do not search around if there are enough pages already */
1251	if (cc->nr_freepages >= cc->nr_migratepages)
1252		return;
1253
1254	/* Minimise scanning during async compaction */
1255	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1256		return;
1257
1258	/* Pageblock boundaries */
1259	start_pfn = pageblock_start_pfn(pfn);
1260	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1261
1262	/* Scan before */
1263	if (start_pfn != pfn) {
1264		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1265		if (cc->nr_freepages >= cc->nr_migratepages)
1266			return;
1267	}
1268
1269	/* Scan after */
1270	start_pfn = pfn + nr_isolated;
1271	if (start_pfn < end_pfn)
1272		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1273
1274	/* Skip this pageblock in the future as it's full or nearly full */
1275	if (cc->nr_freepages < cc->nr_migratepages)
1276		set_pageblock_skip(page);
1277}
1278
1279/* Search orders in round-robin fashion */
1280static int next_search_order(struct compact_control *cc, int order)
1281{
1282	order--;
1283	if (order < 0)
1284		order = cc->order - 1;
1285
1286	/* Search wrapped around? */
1287	if (order == cc->search_order) {
1288		cc->search_order--;
1289		if (cc->search_order < 0)
1290			cc->search_order = cc->order - 1;
1291		return -1;
1292	}
1293
1294	return order;
1295}
1296
1297static unsigned long
1298fast_isolate_freepages(struct compact_control *cc)
1299{
1300	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1301	unsigned int nr_scanned = 0;
1302	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1303	unsigned long nr_isolated = 0;
1304	unsigned long distance;
1305	struct page *page = NULL;
1306	bool scan_start = false;
1307	int order;
1308
1309	/* Full compaction passes in a negative order */
1310	if (cc->order <= 0)
1311		return cc->free_pfn;
1312
1313	/*
1314	 * If starting the scan, use a deeper search and use the highest
1315	 * PFN found if a suitable one is not found.
1316	 */
1317	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1318		limit = pageblock_nr_pages >> 1;
1319		scan_start = true;
1320	}
1321
1322	/*
1323	 * Preferred point is in the top quarter of the scan space but take
1324	 * a pfn from the top half if the search is problematic.
1325	 */
1326	distance = (cc->free_pfn - cc->migrate_pfn);
1327	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1328	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1329
1330	if (WARN_ON_ONCE(min_pfn > low_pfn))
1331		low_pfn = min_pfn;
1332
1333	/*
1334	 * Search starts from the last successful isolation order or the next
1335	 * order to search after a previous failure
1336	 */
1337	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1338
1339	for (order = cc->search_order;
1340	     !page && order >= 0;
1341	     order = next_search_order(cc, order)) {
1342		struct free_area *area = &cc->zone->free_area[order];
1343		struct list_head *freelist;
1344		struct page *freepage;
1345		unsigned long flags;
1346		unsigned int order_scanned = 0;
 
1347
1348		if (!area->nr_free)
1349			continue;
1350
1351		spin_lock_irqsave(&cc->zone->lock, flags);
1352		freelist = &area->free_list[MIGRATE_MOVABLE];
1353		list_for_each_entry_reverse(freepage, freelist, lru) {
1354			unsigned long pfn;
1355
1356			order_scanned++;
1357			nr_scanned++;
1358			pfn = page_to_pfn(freepage);
1359
1360			if (pfn >= highest)
1361				highest = pageblock_start_pfn(pfn);
 
1362
1363			if (pfn >= low_pfn) {
1364				cc->fast_search_fail = 0;
1365				cc->search_order = order;
1366				page = freepage;
1367				break;
1368			}
1369
1370			if (pfn >= min_pfn && pfn > high_pfn) {
1371				high_pfn = pfn;
1372
1373				/* Shorten the scan if a candidate is found */
1374				limit >>= 1;
1375			}
1376
1377			if (order_scanned >= limit)
1378				break;
1379		}
1380
1381		/* Use a minimum pfn if a preferred one was not found */
1382		if (!page && high_pfn) {
1383			page = pfn_to_page(high_pfn);
1384
1385			/* Update freepage for the list reorder below */
1386			freepage = page;
1387		}
1388
1389		/* Reorder to so a future search skips recent pages */
1390		move_freelist_head(freelist, freepage);
1391
1392		/* Isolate the page if available */
1393		if (page) {
1394			if (__isolate_free_page(page, order)) {
1395				set_page_private(page, order);
1396				nr_isolated = 1 << order;
 
 
1397				cc->nr_freepages += nr_isolated;
1398				list_add_tail(&page->lru, &cc->freepages);
1399				count_compact_events(COMPACTISOLATED, nr_isolated);
1400			} else {
1401				/* If isolation fails, abort the search */
1402				order = cc->search_order + 1;
1403				page = NULL;
1404			}
1405		}
1406
1407		spin_unlock_irqrestore(&cc->zone->lock, flags);
1408
 
 
 
 
1409		/*
1410		 * Smaller scan on next order so the total scan ig related
1411		 * to freelist_scan_limit.
1412		 */
1413		if (order_scanned >= limit)
1414			limit = min(1U, limit >> 1);
1415	}
1416
 
 
 
1417	if (!page) {
1418		cc->fast_search_fail++;
1419		if (scan_start) {
1420			/*
1421			 * Use the highest PFN found above min. If one was
1422			 * not found, be pessimistic for direct compaction
1423			 * and use the min mark.
1424			 */
1425			if (highest) {
1426				page = pfn_to_page(highest);
1427				cc->free_pfn = highest;
1428			} else {
1429				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1430					page = pageblock_pfn_to_page(min_pfn,
1431						pageblock_end_pfn(min_pfn),
 
1432						cc->zone);
 
 
 
1433					cc->free_pfn = min_pfn;
1434				}
1435			}
1436		}
1437	}
1438
1439	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1440		highest -= pageblock_nr_pages;
1441		cc->zone->compact_cached_free_pfn = highest;
1442	}
1443
1444	cc->total_free_scanned += nr_scanned;
1445	if (!page)
1446		return cc->free_pfn;
1447
1448	low_pfn = page_to_pfn(page);
1449	fast_isolate_around(cc, low_pfn, nr_isolated);
1450	return low_pfn;
1451}
1452
1453/*
1454 * Based on information in the current compact_control, find blocks
1455 * suitable for isolating free pages from and then isolate them.
1456 */
1457static void isolate_freepages(struct compact_control *cc)
1458{
1459	struct zone *zone = cc->zone;
1460	struct page *page;
1461	unsigned long block_start_pfn;	/* start of current pageblock */
1462	unsigned long isolate_start_pfn; /* exact pfn we start at */
1463	unsigned long block_end_pfn;	/* end of current pageblock */
1464	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1465	struct list_head *freelist = &cc->freepages;
1466	unsigned int stride;
1467
1468	/* Try a small search of the free lists for a candidate */
1469	isolate_start_pfn = fast_isolate_freepages(cc);
1470	if (cc->nr_freepages)
1471		goto splitmap;
1472
1473	/*
1474	 * Initialise the free scanner. The starting point is where we last
1475	 * successfully isolated from, zone-cached value, or the end of the
1476	 * zone when isolating for the first time. For looping we also need
1477	 * this pfn aligned down to the pageblock boundary, because we do
1478	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1479	 * For ending point, take care when isolating in last pageblock of a
1480	 * zone which ends in the middle of a pageblock.
1481	 * The low boundary is the end of the pageblock the migration scanner
1482	 * is using.
1483	 */
1484	isolate_start_pfn = cc->free_pfn;
1485	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1486	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1487						zone_end_pfn(zone));
1488	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1489	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1490
1491	/*
1492	 * Isolate free pages until enough are available to migrate the
1493	 * pages on cc->migratepages. We stop searching if the migrate
1494	 * and free page scanners meet or enough free pages are isolated.
1495	 */
1496	for (; block_start_pfn >= low_pfn;
1497				block_end_pfn = block_start_pfn,
1498				block_start_pfn -= pageblock_nr_pages,
1499				isolate_start_pfn = block_start_pfn) {
1500		unsigned long nr_isolated;
1501
1502		/*
1503		 * This can iterate a massively long zone without finding any
1504		 * suitable migration targets, so periodically check resched.
1505		 */
1506		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1507			cond_resched();
1508
1509		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1510									zone);
1511		if (!page)
 
 
 
 
 
 
1512			continue;
 
1513
1514		/* Check the block is suitable for migration */
1515		if (!suitable_migration_target(cc, page))
1516			continue;
1517
1518		/* If isolation recently failed, do not retry */
1519		if (!isolation_suitable(cc, page))
1520			continue;
1521
1522		/* Found a block suitable for isolating free pages from. */
1523		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1524					block_end_pfn, freelist, stride, false);
1525
1526		/* Update the skip hint if the full pageblock was scanned */
1527		if (isolate_start_pfn == block_end_pfn)
1528			update_pageblock_skip(cc, page, block_start_pfn);
 
1529
1530		/* Are enough freepages isolated? */
1531		if (cc->nr_freepages >= cc->nr_migratepages) {
1532			if (isolate_start_pfn >= block_end_pfn) {
1533				/*
1534				 * Restart at previous pageblock if more
1535				 * freepages can be isolated next time.
1536				 */
1537				isolate_start_pfn =
1538					block_start_pfn - pageblock_nr_pages;
1539			}
1540			break;
1541		} else if (isolate_start_pfn < block_end_pfn) {
1542			/*
1543			 * If isolation failed early, do not continue
1544			 * needlessly.
1545			 */
1546			break;
1547		}
1548
1549		/* Adjust stride depending on isolation */
1550		if (nr_isolated) {
1551			stride = 1;
1552			continue;
1553		}
1554		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1555	}
1556
1557	/*
1558	 * Record where the free scanner will restart next time. Either we
1559	 * broke from the loop and set isolate_start_pfn based on the last
1560	 * call to isolate_freepages_block(), or we met the migration scanner
1561	 * and the loop terminated due to isolate_start_pfn < low_pfn
1562	 */
1563	cc->free_pfn = isolate_start_pfn;
1564
1565splitmap:
1566	/* __isolate_free_page() does not map the pages */
1567	split_map_pages(freelist);
1568}
1569
1570/*
1571 * This is a migrate-callback that "allocates" freepages by taking pages
1572 * from the isolated freelists in the block we are migrating to.
1573 */
1574static struct page *compaction_alloc(struct page *migratepage,
1575					unsigned long data)
1576{
1577	struct compact_control *cc = (struct compact_control *)data;
 
 
 
 
1578	struct page *freepage;
 
1579
1580	if (list_empty(&cc->freepages)) {
1581		isolate_freepages(cc);
 
 
1582
1583		if (list_empty(&cc->freepages))
 
 
1584			return NULL;
 
 
 
1585	}
1586
1587	freepage = list_entry(cc->freepages.next, struct page, lru);
 
 
 
1588	list_del(&freepage->lru);
1589	cc->nr_freepages--;
1590
1591	return freepage;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1592}
1593
1594/*
1595 * This is a migrate-callback that "frees" freepages back to the isolated
1596 * freelist.  All pages on the freelist are from the same zone, so there is no
1597 * special handling needed for NUMA.
1598 */
1599static void compaction_free(struct page *page, unsigned long data)
1600{
1601	struct compact_control *cc = (struct compact_control *)data;
 
 
1602
1603	list_add(&page->lru, &cc->freepages);
1604	cc->nr_freepages++;
 
 
 
 
 
 
 
 
1605}
1606
1607/* possible outcome of isolate_migratepages */
1608typedef enum {
1609	ISOLATE_ABORT,		/* Abort compaction now */
1610	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1611	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1612} isolate_migrate_t;
1613
1614/*
1615 * Allow userspace to control policy on scanning the unevictable LRU for
1616 * compactable pages.
1617 */
1618#ifdef CONFIG_PREEMPT_RT
1619int sysctl_compact_unevictable_allowed __read_mostly = 0;
1620#else
1621int sysctl_compact_unevictable_allowed __read_mostly = 1;
1622#endif
 
 
 
 
1623
1624static inline void
1625update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1626{
1627	if (cc->fast_start_pfn == ULONG_MAX)
1628		return;
1629
1630	if (!cc->fast_start_pfn)
1631		cc->fast_start_pfn = pfn;
1632
1633	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1634}
1635
1636static inline unsigned long
1637reinit_migrate_pfn(struct compact_control *cc)
1638{
1639	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1640		return cc->migrate_pfn;
1641
1642	cc->migrate_pfn = cc->fast_start_pfn;
1643	cc->fast_start_pfn = ULONG_MAX;
1644
1645	return cc->migrate_pfn;
1646}
1647
1648/*
1649 * Briefly search the free lists for a migration source that already has
1650 * some free pages to reduce the number of pages that need migration
1651 * before a pageblock is free.
1652 */
1653static unsigned long fast_find_migrateblock(struct compact_control *cc)
1654{
1655	unsigned int limit = freelist_scan_limit(cc);
1656	unsigned int nr_scanned = 0;
1657	unsigned long distance;
1658	unsigned long pfn = cc->migrate_pfn;
1659	unsigned long high_pfn;
1660	int order;
 
1661
1662	/* Skip hints are relied on to avoid repeats on the fast search */
1663	if (cc->ignore_skip_hint)
1664		return pfn;
1665
1666	/*
 
 
 
 
 
 
 
1667	 * If the migrate_pfn is not at the start of a zone or the start
1668	 * of a pageblock then assume this is a continuation of a previous
1669	 * scan restarted due to COMPACT_CLUSTER_MAX.
1670	 */
1671	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1672		return pfn;
1673
1674	/*
1675	 * For smaller orders, just linearly scan as the number of pages
1676	 * to migrate should be relatively small and does not necessarily
1677	 * justify freeing up a large block for a small allocation.
1678	 */
1679	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1680		return pfn;
1681
1682	/*
1683	 * Only allow kcompactd and direct requests for movable pages to
1684	 * quickly clear out a MOVABLE pageblock for allocation. This
1685	 * reduces the risk that a large movable pageblock is freed for
1686	 * an unmovable/reclaimable small allocation.
1687	 */
1688	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1689		return pfn;
1690
1691	/*
1692	 * When starting the migration scanner, pick any pageblock within the
1693	 * first half of the search space. Otherwise try and pick a pageblock
1694	 * within the first eighth to reduce the chances that a migration
1695	 * target later becomes a source.
1696	 */
1697	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1698	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1699		distance >>= 2;
1700	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1701
1702	for (order = cc->order - 1;
1703	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1704	     order--) {
1705		struct free_area *area = &cc->zone->free_area[order];
1706		struct list_head *freelist;
1707		unsigned long flags;
1708		struct page *freepage;
1709
1710		if (!area->nr_free)
1711			continue;
1712
1713		spin_lock_irqsave(&cc->zone->lock, flags);
1714		freelist = &area->free_list[MIGRATE_MOVABLE];
1715		list_for_each_entry(freepage, freelist, lru) {
1716			unsigned long free_pfn;
1717
1718			nr_scanned++;
 
 
 
 
1719			free_pfn = page_to_pfn(freepage);
1720			if (free_pfn < high_pfn) {
1721				/*
1722				 * Avoid if skipped recently. Ideally it would
1723				 * move to the tail but even safe iteration of
1724				 * the list assumes an entry is deleted, not
1725				 * reordered.
1726				 */
1727				if (get_pageblock_skip(freepage)) {
1728					if (list_is_last(freelist, &freepage->lru))
1729						break;
1730
1731					continue;
1732				}
1733
1734				/* Reorder to so a future search skips recent pages */
1735				move_freelist_tail(freelist, freepage);
1736
1737				update_fast_start_pfn(cc, free_pfn);
1738				pfn = pageblock_start_pfn(free_pfn);
 
 
1739				cc->fast_search_fail = 0;
1740				set_pageblock_skip(freepage);
1741				break;
1742			}
1743
1744			if (nr_scanned >= limit) {
1745				cc->fast_search_fail++;
1746				move_freelist_tail(freelist, freepage);
1747				break;
1748			}
1749		}
1750		spin_unlock_irqrestore(&cc->zone->lock, flags);
1751	}
1752
1753	cc->total_migrate_scanned += nr_scanned;
1754
1755	/*
1756	 * If fast scanning failed then use a cached entry for a page block
1757	 * that had free pages as the basis for starting a linear scan.
1758	 */
1759	if (pfn == cc->migrate_pfn)
 
1760		pfn = reinit_migrate_pfn(cc);
1761
1762	return pfn;
1763}
1764
1765/*
1766 * Isolate all pages that can be migrated from the first suitable block,
1767 * starting at the block pointed to by the migrate scanner pfn within
1768 * compact_control.
1769 */
1770static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1771{
1772	unsigned long block_start_pfn;
1773	unsigned long block_end_pfn;
1774	unsigned long low_pfn;
1775	struct page *page;
1776	const isolate_mode_t isolate_mode =
1777		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1778		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1779	bool fast_find_block;
1780
1781	/*
1782	 * Start at where we last stopped, or beginning of the zone as
1783	 * initialized by compact_zone(). The first failure will use
1784	 * the lowest PFN as the starting point for linear scanning.
1785	 */
1786	low_pfn = fast_find_migrateblock(cc);
1787	block_start_pfn = pageblock_start_pfn(low_pfn);
1788	if (block_start_pfn < cc->zone->zone_start_pfn)
1789		block_start_pfn = cc->zone->zone_start_pfn;
1790
1791	/*
1792	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1793	 * the isolation_suitable check below, check whether the fast
1794	 * search was successful.
1795	 */
1796	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1797
1798	/* Only scan within a pageblock boundary */
1799	block_end_pfn = pageblock_end_pfn(low_pfn);
1800
1801	/*
1802	 * Iterate over whole pageblocks until we find the first suitable.
1803	 * Do not cross the free scanner.
1804	 */
1805	for (; block_end_pfn <= cc->free_pfn;
1806			fast_find_block = false,
1807			low_pfn = block_end_pfn,
1808			block_start_pfn = block_end_pfn,
1809			block_end_pfn += pageblock_nr_pages) {
1810
1811		/*
1812		 * This can potentially iterate a massively long zone with
1813		 * many pageblocks unsuitable, so periodically check if we
1814		 * need to schedule.
1815		 */
1816		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1817			cond_resched();
1818
1819		page = pageblock_pfn_to_page(block_start_pfn,
1820						block_end_pfn, cc->zone);
1821		if (!page)
 
 
 
 
 
1822			continue;
 
1823
1824		/*
1825		 * If isolation recently failed, do not retry. Only check the
1826		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1827		 * to be visited multiple times. Assume skip was checked
1828		 * before making it "skip" so other compaction instances do
1829		 * not scan the same block.
1830		 */
1831		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
 
1832		    !fast_find_block && !isolation_suitable(cc, page))
1833			continue;
1834
1835		/*
1836		 * For async compaction, also only scan in MOVABLE blocks
1837		 * without huge pages. Async compaction is optimistic to see
1838		 * if the minimum amount of work satisfies the allocation.
1839		 * The cached PFN is updated as it's possible that all
1840		 * remaining blocks between source and target are unsuitable
1841		 * and the compaction scanners fail to meet.
1842		 */
1843		if (!suitable_migration_source(cc, page)) {
1844			update_cached_migrate(cc, block_end_pfn);
1845			continue;
1846		}
1847
1848		/* Perform the isolation */
1849		low_pfn = isolate_migratepages_block(cc, low_pfn,
1850						block_end_pfn, isolate_mode);
1851
1852		if (!low_pfn)
1853			return ISOLATE_ABORT;
1854
1855		/*
1856		 * Either we isolated something and proceed with migration. Or
1857		 * we failed and compact_zone should decide if we should
1858		 * continue or not.
1859		 */
1860		break;
1861	}
1862
1863	/* Record where migration scanner will be restarted. */
1864	cc->migrate_pfn = low_pfn;
1865
1866	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1867}
1868
1869/*
1870 * order == -1 is expected when compacting via
1871 * /proc/sys/vm/compact_memory
 
 
1872 */
1873static inline bool is_via_compact_memory(int order)
1874{
1875	return order == -1;
 
 
 
 
 
 
1876}
1877
1878static bool kswapd_is_running(pg_data_t *pgdat)
 
 
 
 
1879{
1880	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1881}
1882
1883/*
1884 * A zone's fragmentation score is the external fragmentation wrt to the
1885 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1886 * in the range [0, 100].
1887 *
1888 * The scaling factor ensures that proactive compaction focuses on larger
1889 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1890 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1891 * and thus never exceeds the high threshold for proactive compaction.
1892 */
1893static unsigned int fragmentation_score_zone(struct zone *zone)
1894{
1895	unsigned long score;
1896
1897	score = zone->present_pages *
1898			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1899	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1900}
1901
1902/*
1903 * The per-node proactive (background) compaction process is started by its
1904 * corresponding kcompactd thread when the node's fragmentation score
1905 * exceeds the high threshold. The compaction process remains active till
1906 * the node's score falls below the low threshold, or one of the back-off
1907 * conditions is met.
1908 */
1909static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1910{
1911	unsigned int score = 0;
1912	int zoneid;
1913
1914	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1915		struct zone *zone;
1916
1917		zone = &pgdat->node_zones[zoneid];
1918		score += fragmentation_score_zone(zone);
 
 
1919	}
1920
1921	return score;
1922}
1923
1924static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1925{
1926	unsigned int wmark_low;
1927
1928	/*
1929	 * Cap the low watermak to avoid excessive compaction
1930	 * activity in case a user sets the proactivess tunable
1931	 * close to 100 (maximum).
1932	 */
1933	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1934	return low ? wmark_low : min(wmark_low + 10, 100U);
1935}
1936
1937static bool should_proactive_compact_node(pg_data_t *pgdat)
1938{
1939	int wmark_high;
1940
1941	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1942		return false;
1943
1944	wmark_high = fragmentation_score_wmark(pgdat, false);
1945	return fragmentation_score_node(pgdat) > wmark_high;
1946}
1947
1948static enum compact_result __compact_finished(struct compact_control *cc)
1949{
1950	unsigned int order;
1951	const int migratetype = cc->migratetype;
1952	int ret;
1953
1954	/* Compaction run completes if the migrate and free scanner meet */
1955	if (compact_scanners_met(cc)) {
1956		/* Let the next compaction start anew. */
1957		reset_cached_positions(cc->zone);
1958
1959		/*
1960		 * Mark that the PG_migrate_skip information should be cleared
1961		 * by kswapd when it goes to sleep. kcompactd does not set the
1962		 * flag itself as the decision to be clear should be directly
1963		 * based on an allocation request.
1964		 */
1965		if (cc->direct_compaction)
1966			cc->zone->compact_blockskip_flush = true;
1967
1968		if (cc->whole_zone)
1969			return COMPACT_COMPLETE;
1970		else
1971			return COMPACT_PARTIAL_SKIPPED;
1972	}
1973
1974	if (cc->proactive_compaction) {
1975		int score, wmark_low;
1976		pg_data_t *pgdat;
1977
1978		pgdat = cc->zone->zone_pgdat;
1979		if (kswapd_is_running(pgdat))
1980			return COMPACT_PARTIAL_SKIPPED;
1981
1982		score = fragmentation_score_zone(cc->zone);
1983		wmark_low = fragmentation_score_wmark(pgdat, true);
1984
1985		if (score > wmark_low)
1986			ret = COMPACT_CONTINUE;
1987		else
1988			ret = COMPACT_SUCCESS;
1989
1990		goto out;
1991	}
1992
1993	if (is_via_compact_memory(cc->order))
1994		return COMPACT_CONTINUE;
1995
1996	/*
1997	 * Always finish scanning a pageblock to reduce the possibility of
1998	 * fallbacks in the future. This is particularly important when
1999	 * migration source is unmovable/reclaimable but it's not worth
2000	 * special casing.
2001	 */
2002	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2003		return COMPACT_CONTINUE;
2004
2005	/* Direct compactor: Is a suitable page free? */
2006	ret = COMPACT_NO_SUITABLE_PAGE;
2007	for (order = cc->order; order < MAX_ORDER; order++) {
2008		struct free_area *area = &cc->zone->free_area[order];
2009		bool can_steal;
2010
2011		/* Job done if page is free of the right migratetype */
2012		if (!free_area_empty(area, migratetype))
2013			return COMPACT_SUCCESS;
2014
2015#ifdef CONFIG_CMA
2016		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2017		if (migratetype == MIGRATE_MOVABLE &&
2018			!free_area_empty(area, MIGRATE_CMA))
2019			return COMPACT_SUCCESS;
2020#endif
2021		/*
2022		 * Job done if allocation would steal freepages from
2023		 * other migratetype buddy lists.
2024		 */
2025		if (find_suitable_fallback(area, order, migratetype,
2026						true, &can_steal) != -1) {
2027
2028			/* movable pages are OK in any pageblock */
2029			if (migratetype == MIGRATE_MOVABLE)
2030				return COMPACT_SUCCESS;
2031
2032			/*
2033			 * We are stealing for a non-movable allocation. Make
2034			 * sure we finish compacting the current pageblock
2035			 * first so it is as free as possible and we won't
2036			 * have to steal another one soon. This only applies
2037			 * to sync compaction, as async compaction operates
2038			 * on pageblocks of the same migratetype.
2039			 */
2040			if (cc->mode == MIGRATE_ASYNC ||
2041					IS_ALIGNED(cc->migrate_pfn,
2042							pageblock_nr_pages)) {
2043				return COMPACT_SUCCESS;
2044			}
2045
2046			ret = COMPACT_CONTINUE;
2047			break;
2048		}
2049	}
2050
2051out:
2052	if (cc->contended || fatal_signal_pending(current))
2053		ret = COMPACT_CONTENDED;
2054
2055	return ret;
2056}
2057
2058static enum compact_result compact_finished(struct compact_control *cc)
2059{
2060	int ret;
2061
2062	ret = __compact_finished(cc);
2063	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2064	if (ret == COMPACT_NO_SUITABLE_PAGE)
2065		ret = COMPACT_CONTINUE;
2066
2067	return ret;
2068}
2069
2070/*
2071 * compaction_suitable: Is this suitable to run compaction on this zone now?
2072 * Returns
2073 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2074 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2075 *   COMPACT_CONTINUE - If compaction should run now
2076 */
2077static enum compact_result __compaction_suitable(struct zone *zone, int order,
2078					unsigned int alloc_flags,
2079					int highest_zoneidx,
2080					unsigned long wmark_target)
2081{
2082	unsigned long watermark;
2083
2084	if (is_via_compact_memory(order))
2085		return COMPACT_CONTINUE;
2086
2087	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2088	/*
2089	 * If watermarks for high-order allocation are already met, there
2090	 * should be no need for compaction at all.
2091	 */
2092	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2093								alloc_flags))
2094		return COMPACT_SUCCESS;
2095
2096	/*
2097	 * Watermarks for order-0 must be met for compaction to be able to
2098	 * isolate free pages for migration targets. This means that the
2099	 * watermark and alloc_flags have to match, or be more pessimistic than
2100	 * the check in __isolate_free_page(). We don't use the direct
2101	 * compactor's alloc_flags, as they are not relevant for freepage
2102	 * isolation. We however do use the direct compactor's highest_zoneidx
2103	 * to skip over zones where lowmem reserves would prevent allocation
2104	 * even if compaction succeeds.
2105	 * For costly orders, we require low watermark instead of min for
2106	 * compaction to proceed to increase its chances.
2107	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2108	 * suitable migration targets
2109	 */
2110	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2111				low_wmark_pages(zone) : min_wmark_pages(zone);
2112	watermark += compact_gap(order);
2113	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2114						ALLOC_CMA, wmark_target))
2115		return COMPACT_SKIPPED;
2116
2117	return COMPACT_CONTINUE;
2118}
2119
2120enum compact_result compaction_suitable(struct zone *zone, int order,
2121					unsigned int alloc_flags,
2122					int highest_zoneidx)
 
2123{
2124	enum compact_result ret;
2125	int fragindex;
2126
2127	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2128				    zone_page_state(zone, NR_FREE_PAGES));
2129	/*
2130	 * fragmentation index determines if allocation failures are due to
2131	 * low memory or external fragmentation
2132	 *
2133	 * index of -1000 would imply allocations might succeed depending on
2134	 * watermarks, but we already failed the high-order watermark check
2135	 * index towards 0 implies failure is due to lack of memory
2136	 * index towards 1000 implies failure is due to fragmentation
2137	 *
2138	 * Only compact if a failure would be due to fragmentation. Also
2139	 * ignore fragindex for non-costly orders where the alternative to
2140	 * a successful reclaim/compaction is OOM. Fragindex and the
2141	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2142	 * excessive compaction for costly orders, but it should not be at the
2143	 * expense of system stability.
2144	 */
2145	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2146		fragindex = fragmentation_index(zone, order);
2147		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2148			ret = COMPACT_NOT_SUITABLE_ZONE;
 
 
 
 
 
 
 
 
 
2149	}
2150
2151	trace_mm_compaction_suitable(zone, order, ret);
2152	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2153		ret = COMPACT_SKIPPED;
2154
2155	return ret;
2156}
2157
2158bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2159		int alloc_flags)
2160{
2161	struct zone *zone;
2162	struct zoneref *z;
2163
2164	/*
2165	 * Make sure at least one zone would pass __compaction_suitable if we continue
2166	 * retrying the reclaim.
2167	 */
2168	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2169				ac->highest_zoneidx, ac->nodemask) {
2170		unsigned long available;
2171		enum compact_result compact_result;
2172
2173		/*
2174		 * Do not consider all the reclaimable memory because we do not
2175		 * want to trash just for a single high order allocation which
2176		 * is even not guaranteed to appear even if __compaction_suitable
2177		 * is happy about the watermark check.
2178		 */
2179		available = zone_reclaimable_pages(zone) / order;
2180		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2181		compact_result = __compaction_suitable(zone, order, alloc_flags,
2182				ac->highest_zoneidx, available);
2183		if (compact_result != COMPACT_SKIPPED)
2184			return true;
2185	}
2186
2187	return false;
2188}
2189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190static enum compact_result
2191compact_zone(struct compact_control *cc, struct capture_control *capc)
2192{
2193	enum compact_result ret;
2194	unsigned long start_pfn = cc->zone->zone_start_pfn;
2195	unsigned long end_pfn = zone_end_pfn(cc->zone);
2196	unsigned long last_migrated_pfn;
2197	const bool sync = cc->mode != MIGRATE_ASYNC;
2198	bool update_cached;
 
 
2199
2200	/*
2201	 * These counters track activities during zone compaction.  Initialize
2202	 * them before compacting a new zone.
2203	 */
2204	cc->total_migrate_scanned = 0;
2205	cc->total_free_scanned = 0;
2206	cc->nr_migratepages = 0;
2207	cc->nr_freepages = 0;
2208	INIT_LIST_HEAD(&cc->freepages);
 
2209	INIT_LIST_HEAD(&cc->migratepages);
2210
2211	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2212	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2213							cc->highest_zoneidx);
2214	/* Compaction is likely to fail */
2215	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2216		return ret;
2217
2218	/* huh, compaction_suitable is returning something unexpected */
2219	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
 
 
 
 
2220
2221	/*
2222	 * Clear pageblock skip if there were failures recently and compaction
2223	 * is about to be retried after being deferred.
2224	 */
2225	if (compaction_restarting(cc->zone, cc->order))
2226		__reset_isolation_suitable(cc->zone);
2227
2228	/*
2229	 * Setup to move all movable pages to the end of the zone. Used cached
2230	 * information on where the scanners should start (unless we explicitly
2231	 * want to compact the whole zone), but check that it is initialised
2232	 * by ensuring the values are within zone boundaries.
2233	 */
2234	cc->fast_start_pfn = 0;
2235	if (cc->whole_zone) {
2236		cc->migrate_pfn = start_pfn;
2237		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2238	} else {
2239		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2240		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2241		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2242			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2243			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2244		}
2245		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2246			cc->migrate_pfn = start_pfn;
2247			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2248			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2249		}
2250
2251		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2252			cc->whole_zone = true;
2253	}
2254
2255	last_migrated_pfn = 0;
2256
2257	/*
2258	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2259	 * the basis that some migrations will fail in ASYNC mode. However,
2260	 * if the cached PFNs match and pageblocks are skipped due to having
2261	 * no isolation candidates, then the sync state does not matter.
2262	 * Until a pageblock with isolation candidates is found, keep the
2263	 * cached PFNs in sync to avoid revisiting the same blocks.
2264	 */
2265	update_cached = !sync &&
2266		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2267
2268	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2269				cc->free_pfn, end_pfn, sync);
2270
2271	migrate_prep_local();
 
2272
2273	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2274		int err;
2275		unsigned long start_pfn = cc->migrate_pfn;
2276
2277		/*
2278		 * Avoid multiple rescans which can happen if a page cannot be
2279		 * isolated (dirty/writeback in async mode) or if the migrated
2280		 * pages are being allocated before the pageblock is cleared.
2281		 * The first rescan will capture the entire pageblock for
2282		 * migration. If it fails, it'll be marked skip and scanning
2283		 * will proceed as normal.
2284		 */
2285		cc->rescan = false;
2286		if (pageblock_start_pfn(last_migrated_pfn) ==
2287		    pageblock_start_pfn(start_pfn)) {
2288			cc->rescan = true;
2289		}
2290
 
2291		switch (isolate_migratepages(cc)) {
2292		case ISOLATE_ABORT:
2293			ret = COMPACT_CONTENDED;
2294			putback_movable_pages(&cc->migratepages);
2295			cc->nr_migratepages = 0;
2296			goto out;
2297		case ISOLATE_NONE:
2298			if (update_cached) {
2299				cc->zone->compact_cached_migrate_pfn[1] =
2300					cc->zone->compact_cached_migrate_pfn[0];
2301			}
2302
2303			/*
2304			 * We haven't isolated and migrated anything, but
2305			 * there might still be unflushed migrations from
2306			 * previous cc->order aligned block.
2307			 */
2308			goto check_drain;
2309		case ISOLATE_SUCCESS:
2310			update_cached = false;
2311			last_migrated_pfn = start_pfn;
2312			;
2313		}
2314
 
 
 
 
 
 
2315		err = migrate_pages(&cc->migratepages, compaction_alloc,
2316				compaction_free, (unsigned long)cc, cc->mode,
2317				MR_COMPACTION);
2318
2319		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2320							&cc->migratepages);
2321
2322		/* All pages were either migrated or will be released */
2323		cc->nr_migratepages = 0;
2324		if (err) {
2325			putback_movable_pages(&cc->migratepages);
2326			/*
2327			 * migrate_pages() may return -ENOMEM when scanners meet
2328			 * and we want compact_finished() to detect it
2329			 */
2330			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2331				ret = COMPACT_CONTENDED;
2332				goto out;
2333			}
2334			/*
2335			 * We failed to migrate at least one page in the current
2336			 * order-aligned block, so skip the rest of it.
 
 
 
 
 
 
 
2337			 */
2338			if (cc->direct_compaction &&
2339						(cc->mode == MIGRATE_ASYNC)) {
2340				cc->migrate_pfn = block_end_pfn(
2341						cc->migrate_pfn - 1, cc->order);
2342				/* Draining pcplists is useless in this case */
2343				last_migrated_pfn = 0;
 
 
 
 
 
 
 
 
2344			}
2345		}
2346
 
 
 
 
 
 
2347check_drain:
2348		/*
2349		 * Has the migration scanner moved away from the previous
2350		 * cc->order aligned block where we migrated from? If yes,
2351		 * flush the pages that were freed, so that they can merge and
2352		 * compact_finished() can detect immediately if allocation
2353		 * would succeed.
2354		 */
2355		if (cc->order > 0 && last_migrated_pfn) {
2356			unsigned long current_block_start =
2357				block_start_pfn(cc->migrate_pfn, cc->order);
2358
2359			if (last_migrated_pfn < current_block_start) {
2360				lru_add_drain_cpu_zone(cc->zone);
2361				/* No more flushing until we migrate again */
2362				last_migrated_pfn = 0;
2363			}
2364		}
2365
2366		/* Stop if a page has been captured */
2367		if (capc && capc->page) {
2368			ret = COMPACT_SUCCESS;
2369			break;
2370		}
2371	}
2372
2373out:
2374	/*
2375	 * Release free pages and update where the free scanner should restart,
2376	 * so we don't leave any returned pages behind in the next attempt.
2377	 */
2378	if (cc->nr_freepages > 0) {
2379		unsigned long free_pfn = release_freepages(&cc->freepages);
2380
2381		cc->nr_freepages = 0;
2382		VM_BUG_ON(free_pfn == 0);
2383		/* The cached pfn is always the first in a pageblock */
2384		free_pfn = pageblock_start_pfn(free_pfn);
2385		/*
2386		 * Only go back, not forward. The cached pfn might have been
2387		 * already reset to zone end in compact_finished()
2388		 */
2389		if (free_pfn > cc->zone->compact_cached_free_pfn)
2390			cc->zone->compact_cached_free_pfn = free_pfn;
2391	}
2392
2393	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2394	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2395
2396	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2397				cc->free_pfn, end_pfn, sync, ret);
 
2398
2399	return ret;
2400}
2401
2402static enum compact_result compact_zone_order(struct zone *zone, int order,
2403		gfp_t gfp_mask, enum compact_priority prio,
2404		unsigned int alloc_flags, int highest_zoneidx,
2405		struct page **capture)
2406{
2407	enum compact_result ret;
2408	struct compact_control cc = {
2409		.order = order,
2410		.search_order = order,
2411		.gfp_mask = gfp_mask,
2412		.zone = zone,
2413		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2414					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2415		.alloc_flags = alloc_flags,
2416		.highest_zoneidx = highest_zoneidx,
2417		.direct_compaction = true,
2418		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2419		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2420		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2421	};
2422	struct capture_control capc = {
2423		.cc = &cc,
2424		.page = NULL,
2425	};
2426
2427	/*
2428	 * Make sure the structs are really initialized before we expose the
2429	 * capture control, in case we are interrupted and the interrupt handler
2430	 * frees a page.
2431	 */
2432	barrier();
2433	WRITE_ONCE(current->capture_control, &capc);
2434
2435	ret = compact_zone(&cc, &capc);
2436
2437	VM_BUG_ON(!list_empty(&cc.freepages));
2438	VM_BUG_ON(!list_empty(&cc.migratepages));
2439
2440	/*
2441	 * Make sure we hide capture control first before we read the captured
2442	 * page pointer, otherwise an interrupt could free and capture a page
2443	 * and we would leak it.
2444	 */
2445	WRITE_ONCE(current->capture_control, NULL);
2446	*capture = READ_ONCE(capc.page);
 
 
 
 
 
 
 
 
2447
2448	return ret;
2449}
2450
2451int sysctl_extfrag_threshold = 500;
2452
2453/**
2454 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2455 * @gfp_mask: The GFP mask of the current allocation
2456 * @order: The order of the current allocation
2457 * @alloc_flags: The allocation flags of the current allocation
2458 * @ac: The context of current allocation
2459 * @prio: Determines how hard direct compaction should try to succeed
2460 * @capture: Pointer to free page created by compaction will be stored here
2461 *
2462 * This is the main entry point for direct page compaction.
2463 */
2464enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2465		unsigned int alloc_flags, const struct alloc_context *ac,
2466		enum compact_priority prio, struct page **capture)
2467{
2468	int may_perform_io = gfp_mask & __GFP_IO;
2469	struct zoneref *z;
2470	struct zone *zone;
2471	enum compact_result rc = COMPACT_SKIPPED;
2472
2473	/*
2474	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2475	 * tricky context because the migration might require IO
2476	 */
2477	if (!may_perform_io)
2478		return COMPACT_SKIPPED;
2479
2480	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2481
2482	/* Compact each zone in the list */
2483	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2484					ac->highest_zoneidx, ac->nodemask) {
2485		enum compact_result status;
2486
2487		if (prio > MIN_COMPACT_PRIORITY
2488					&& compaction_deferred(zone, order)) {
2489			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2490			continue;
2491		}
2492
2493		status = compact_zone_order(zone, order, gfp_mask, prio,
2494				alloc_flags, ac->highest_zoneidx, capture);
2495		rc = max(status, rc);
2496
2497		/* The allocation should succeed, stop compacting */
2498		if (status == COMPACT_SUCCESS) {
2499			/*
2500			 * We think the allocation will succeed in this zone,
2501			 * but it is not certain, hence the false. The caller
2502			 * will repeat this with true if allocation indeed
2503			 * succeeds in this zone.
2504			 */
2505			compaction_defer_reset(zone, order, false);
2506
2507			break;
2508		}
2509
2510		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2511					status == COMPACT_PARTIAL_SKIPPED))
2512			/*
2513			 * We think that allocation won't succeed in this zone
2514			 * so we defer compaction there. If it ends up
2515			 * succeeding after all, it will be reset.
2516			 */
2517			defer_compaction(zone, order);
2518
2519		/*
2520		 * We might have stopped compacting due to need_resched() in
2521		 * async compaction, or due to a fatal signal detected. In that
2522		 * case do not try further zones
2523		 */
2524		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2525					|| fatal_signal_pending(current))
2526			break;
2527	}
2528
2529	return rc;
2530}
2531
2532/*
2533 * Compact all zones within a node till each zone's fragmentation score
2534 * reaches within proactive compaction thresholds (as determined by the
2535 * proactiveness tunable).
2536 *
2537 * It is possible that the function returns before reaching score targets
2538 * due to various back-off conditions, such as, contention on per-node or
2539 * per-zone locks.
 
 
2540 */
2541static void proactive_compact_node(pg_data_t *pgdat)
2542{
2543	int zoneid;
2544	struct zone *zone;
2545	struct compact_control cc = {
2546		.order = -1,
2547		.mode = MIGRATE_SYNC_LIGHT,
2548		.ignore_skip_hint = true,
2549		.whole_zone = true,
2550		.gfp_mask = GFP_KERNEL,
2551		.proactive_compaction = true,
2552	};
2553
2554	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2555		zone = &pgdat->node_zones[zoneid];
2556		if (!populated_zone(zone))
2557			continue;
2558
 
 
 
2559		cc.zone = zone;
2560
2561		compact_zone(&cc, NULL);
2562
2563		VM_BUG_ON(!list_empty(&cc.freepages));
2564		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
 
 
2565	}
 
 
2566}
2567
2568/* Compact all zones within a node */
2569static void compact_node(int nid)
2570{
2571	pg_data_t *pgdat = NODE_DATA(nid);
2572	int zoneid;
2573	struct zone *zone;
2574	struct compact_control cc = {
2575		.order = -1,
2576		.mode = MIGRATE_SYNC,
2577		.ignore_skip_hint = true,
2578		.whole_zone = true,
2579		.gfp_mask = GFP_KERNEL,
2580	};
2581
2582
2583	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2584
2585		zone = &pgdat->node_zones[zoneid];
2586		if (!populated_zone(zone))
2587			continue;
2588
2589		cc.zone = zone;
2590
2591		compact_zone(&cc, NULL);
2592
2593		VM_BUG_ON(!list_empty(&cc.freepages));
2594		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
2595	}
 
 
2596}
2597
2598/* Compact all nodes in the system */
2599static void compact_nodes(void)
2600{
2601	int nid;
2602
2603	/* Flush pending updates to the LRU lists */
2604	lru_add_drain_all();
 
2605
2606	for_each_online_node(nid)
2607		compact_node(nid);
2608}
2609
2610/* The written value is actually unused, all memory is compacted */
2611int sysctl_compact_memory;
2612
2613/*
2614 * Tunable for proactive compaction. It determines how
2615 * aggressively the kernel should compact memory in the
2616 * background. It takes values in the range [0, 100].
2617 */
2618unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
 
 
 
2619
2620/*
2621 * This is the entry point for compacting all nodes via
2622 * /proc/sys/vm/compact_memory
2623 */
2624int sysctl_compaction_handler(struct ctl_table *table, int write,
2625			void *buffer, size_t *length, loff_t *ppos)
2626{
 
 
 
 
 
 
 
 
 
2627	if (write)
2628		compact_nodes();
2629
2630	return 0;
2631}
2632
2633#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2634static ssize_t sysfs_compact_node(struct device *dev,
2635			struct device_attribute *attr,
2636			const char *buf, size_t count)
2637{
2638	int nid = dev->id;
2639
2640	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2641		/* Flush pending updates to the LRU lists */
2642		lru_add_drain_all();
2643
2644		compact_node(nid);
2645	}
2646
2647	return count;
2648}
2649static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2650
2651int compaction_register_node(struct node *node)
2652{
2653	return device_create_file(&node->dev, &dev_attr_compact);
2654}
2655
2656void compaction_unregister_node(struct node *node)
2657{
2658	return device_remove_file(&node->dev, &dev_attr_compact);
2659}
2660#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2661
2662static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2663{
2664	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
 
2665}
2666
2667static bool kcompactd_node_suitable(pg_data_t *pgdat)
2668{
2669	int zoneid;
2670	struct zone *zone;
2671	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
 
2672
2673	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2674		zone = &pgdat->node_zones[zoneid];
2675
2676		if (!populated_zone(zone))
2677			continue;
2678
2679		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2680					highest_zoneidx) == COMPACT_CONTINUE)
 
 
2681			return true;
2682	}
2683
2684	return false;
2685}
2686
2687static void kcompactd_do_work(pg_data_t *pgdat)
2688{
2689	/*
2690	 * With no special task, compact all zones so that a page of requested
2691	 * order is allocatable.
2692	 */
2693	int zoneid;
2694	struct zone *zone;
2695	struct compact_control cc = {
2696		.order = pgdat->kcompactd_max_order,
2697		.search_order = pgdat->kcompactd_max_order,
2698		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2699		.mode = MIGRATE_SYNC_LIGHT,
2700		.ignore_skip_hint = false,
2701		.gfp_mask = GFP_KERNEL,
2702	};
 
 
2703	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2704							cc.highest_zoneidx);
2705	count_compact_event(KCOMPACTD_WAKE);
2706
2707	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2708		int status;
2709
2710		zone = &pgdat->node_zones[zoneid];
2711		if (!populated_zone(zone))
2712			continue;
2713
2714		if (compaction_deferred(zone, cc.order))
2715			continue;
2716
2717		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2718							COMPACT_CONTINUE)
 
2719			continue;
2720
2721		if (kthread_should_stop())
2722			return;
2723
2724		cc.zone = zone;
2725		status = compact_zone(&cc, NULL);
2726
2727		if (status == COMPACT_SUCCESS) {
2728			compaction_defer_reset(zone, cc.order, false);
2729		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2730			/*
2731			 * Buddy pages may become stranded on pcps that could
2732			 * otherwise coalesce on the zone's free area for
2733			 * order >= cc.order.  This is ratelimited by the
2734			 * upcoming deferral.
2735			 */
2736			drain_all_pages(zone);
2737
2738			/*
2739			 * We use sync migration mode here, so we defer like
2740			 * sync direct compaction does.
2741			 */
2742			defer_compaction(zone, cc.order);
2743		}
2744
2745		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2746				     cc.total_migrate_scanned);
2747		count_compact_events(KCOMPACTD_FREE_SCANNED,
2748				     cc.total_free_scanned);
2749
2750		VM_BUG_ON(!list_empty(&cc.freepages));
2751		VM_BUG_ON(!list_empty(&cc.migratepages));
2752	}
2753
2754	/*
2755	 * Regardless of success, we are done until woken up next. But remember
2756	 * the requested order/highest_zoneidx in case it was higher/tighter
2757	 * than our current ones
2758	 */
2759	if (pgdat->kcompactd_max_order <= cc.order)
2760		pgdat->kcompactd_max_order = 0;
2761	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2762		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2763}
2764
2765void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2766{
2767	if (!order)
2768		return;
2769
2770	if (pgdat->kcompactd_max_order < order)
2771		pgdat->kcompactd_max_order = order;
2772
2773	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2774		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2775
2776	/*
2777	 * Pairs with implicit barrier in wait_event_freezable()
2778	 * such that wakeups are not missed.
2779	 */
2780	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2781		return;
2782
2783	if (!kcompactd_node_suitable(pgdat))
2784		return;
2785
2786	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2787							highest_zoneidx);
2788	wake_up_interruptible(&pgdat->kcompactd_wait);
2789}
2790
2791/*
2792 * The background compaction daemon, started as a kernel thread
2793 * from the init process.
2794 */
2795static int kcompactd(void *p)
2796{
2797	pg_data_t *pgdat = (pg_data_t*)p;
2798	struct task_struct *tsk = current;
2799	unsigned int proactive_defer = 0;
 
2800
2801	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2802
2803	if (!cpumask_empty(cpumask))
2804		set_cpus_allowed_ptr(tsk, cpumask);
2805
2806	set_freezable();
2807
2808	pgdat->kcompactd_max_order = 0;
2809	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2810
2811	while (!kthread_should_stop()) {
2812		unsigned long pflags;
2813
 
 
 
 
 
 
2814		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2815		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2816			kcompactd_work_requested(pgdat),
2817			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2818
2819			psi_memstall_enter(&pflags);
2820			kcompactd_do_work(pgdat);
2821			psi_memstall_leave(&pflags);
 
 
 
 
 
 
 
 
2822			continue;
2823		}
2824
2825		/* kcompactd wait timeout */
 
 
 
 
2826		if (should_proactive_compact_node(pgdat)) {
2827			unsigned int prev_score, score;
2828
2829			if (proactive_defer) {
2830				proactive_defer--;
2831				continue;
2832			}
2833			prev_score = fragmentation_score_node(pgdat);
2834			proactive_compact_node(pgdat);
2835			score = fragmentation_score_node(pgdat);
2836			/*
2837			 * Defer proactive compaction if the fragmentation
2838			 * score did not go down i.e. no progress made.
2839			 */
2840			proactive_defer = score < prev_score ?
2841					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
 
2842		}
 
 
2843	}
2844
2845	return 0;
2846}
2847
2848/*
2849 * This kcompactd start function will be called by init and node-hot-add.
2850 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2851 */
2852int kcompactd_run(int nid)
2853{
2854	pg_data_t *pgdat = NODE_DATA(nid);
2855	int ret = 0;
2856
2857	if (pgdat->kcompactd)
2858		return 0;
2859
2860	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2861	if (IS_ERR(pgdat->kcompactd)) {
2862		pr_err("Failed to start kcompactd on node %d\n", nid);
2863		ret = PTR_ERR(pgdat->kcompactd);
2864		pgdat->kcompactd = NULL;
2865	}
2866	return ret;
2867}
2868
2869/*
2870 * Called by memory hotplug when all memory in a node is offlined. Caller must
2871 * hold mem_hotplug_begin/end().
2872 */
2873void kcompactd_stop(int nid)
2874{
2875	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2876
2877	if (kcompactd) {
2878		kthread_stop(kcompactd);
2879		NODE_DATA(nid)->kcompactd = NULL;
2880	}
2881}
2882
2883/*
2884 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2885 * not required for correctness. So if the last cpu in a node goes
2886 * away, we get changed to run anywhere: as the first one comes back,
2887 * restore their cpu bindings.
2888 */
2889static int kcompactd_cpu_online(unsigned int cpu)
2890{
2891	int nid;
2892
2893	for_each_node_state(nid, N_MEMORY) {
2894		pg_data_t *pgdat = NODE_DATA(nid);
2895		const struct cpumask *mask;
2896
2897		mask = cpumask_of_node(pgdat->node_id);
2898
2899		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2900			/* One of our CPUs online: restore mask */
2901			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 
2902	}
2903	return 0;
2904}
2905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906static int __init kcompactd_init(void)
2907{
2908	int nid;
2909	int ret;
2910
2911	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2912					"mm/compaction:online",
2913					kcompactd_cpu_online, NULL);
2914	if (ret < 0) {
2915		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2916		return ret;
2917	}
2918
2919	for_each_node_state(nid, N_MEMORY)
2920		kcompactd_run(nid);
 
2921	return 0;
2922}
2923subsys_initcall(kcompactd_init)
2924
2925#endif /* CONFIG_COMPACTION */
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29/*
  30 * Fragmentation score check interval for proactive compaction purposes.
  31 */
  32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  33
  34static inline void count_compact_event(enum vm_event_item item)
  35{
  36	count_vm_event(item);
  37}
  38
  39static inline void count_compact_events(enum vm_event_item item, long delta)
  40{
  41	count_vm_events(item, delta);
  42}
  43
  44/*
  45 * order == -1 is expected when compacting proactively via
  46 * 1. /proc/sys/vm/compact_memory
  47 * 2. /sys/devices/system/node/nodex/compact
  48 * 3. /proc/sys/vm/compaction_proactiveness
  49 */
  50static inline bool is_via_compact_memory(int order)
  51{
  52	return order == -1;
  53}
  54
  55#else
  56#define count_compact_event(item) do { } while (0)
  57#define count_compact_events(item, delta) do { } while (0)
  58static inline bool is_via_compact_memory(int order) { return false; }
  59#endif
  60
  61#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/compaction.h>
  65
  66#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  67#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
 
 
 
 
 
 
 
  68
  69/*
  70 * Page order with-respect-to which proactive compaction
  71 * calculates external fragmentation, which is used as
  72 * the "fragmentation score" of a node/zone.
  73 */
  74#if defined CONFIG_TRANSPARENT_HUGEPAGE
  75#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  76#elif defined CONFIG_HUGETLBFS
  77#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  78#else
  79#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  80#endif
  81
  82static void split_map_pages(struct list_head *freepages)
  83{
  84	unsigned int i, order;
  85	struct page *page, *next;
  86	LIST_HEAD(tmp_list);
  87
  88	for (order = 0; order < NR_PAGE_ORDERS; order++) {
  89		list_for_each_entry_safe(page, next, &freepages[order], lru) {
  90			unsigned int nr_pages;
 
 
 
 
  91
  92			list_del(&page->lru);
  93
  94			nr_pages = 1 << order;
  95
  96			post_alloc_hook(page, order, __GFP_MOVABLE);
  97			if (order)
  98				split_page(page, order);
  99
 100			for (i = 0; i < nr_pages; i++) {
 101				list_add(&page->lru, &tmp_list);
 102				page++;
 103			}
 104		}
 105		list_splice_init(&tmp_list, &freepages[0]);
 106	}
 107}
 108
 109static unsigned long release_free_list(struct list_head *freepages)
 110{
 111	int order;
 112	unsigned long high_pfn = 0;
 
 
 
 
 113
 114	for (order = 0; order < NR_PAGE_ORDERS; order++) {
 115		struct page *page, *next;
 116
 117		list_for_each_entry_safe(page, next, &freepages[order], lru) {
 118			unsigned long pfn = page_to_pfn(page);
 
 119
 120			list_del(&page->lru);
 121			/*
 122			 * Convert free pages into post allocation pages, so
 123			 * that we can free them via __free_page.
 124			 */
 125			post_alloc_hook(page, order, __GFP_MOVABLE);
 126			__free_pages(page, order);
 127			if (pfn > high_pfn)
 128				high_pfn = pfn;
 129		}
 130	}
 131	return high_pfn;
 
 132}
 133
 134#ifdef CONFIG_COMPACTION
 135bool PageMovable(struct page *page)
 
 136{
 137	const struct movable_operations *mops;
 138
 139	VM_BUG_ON_PAGE(!PageLocked(page), page);
 140	if (!__PageMovable(page))
 141		return false;
 142
 143	mops = page_movable_ops(page);
 144	if (mops)
 145		return true;
 146
 147	return false;
 148}
 
 149
 150void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 151{
 152	VM_BUG_ON_PAGE(!PageLocked(page), page);
 153	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 154	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 155}
 156EXPORT_SYMBOL(__SetPageMovable);
 157
 158void __ClearPageMovable(struct page *page)
 159{
 
 160	VM_BUG_ON_PAGE(!PageMovable(page), page);
 161	/*
 162	 * This page still has the type of a movable page, but it's
 163	 * actually not movable any more.
 
 164	 */
 165	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 
 166}
 167EXPORT_SYMBOL(__ClearPageMovable);
 168
 169/* Do not skip compaction more than 64 times */
 170#define COMPACT_MAX_DEFER_SHIFT 6
 171
 172/*
 173 * Compaction is deferred when compaction fails to result in a page
 174 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 175 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 176 */
 177static void defer_compaction(struct zone *zone, int order)
 178{
 179	zone->compact_considered = 0;
 180	zone->compact_defer_shift++;
 181
 182	if (order < zone->compact_order_failed)
 183		zone->compact_order_failed = order;
 184
 185	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 186		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 187
 188	trace_mm_compaction_defer_compaction(zone, order);
 189}
 190
 191/* Returns true if compaction should be skipped this time */
 192static bool compaction_deferred(struct zone *zone, int order)
 193{
 194	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 195
 196	if (order < zone->compact_order_failed)
 197		return false;
 198
 199	/* Avoid possible overflow */
 200	if (++zone->compact_considered >= defer_limit) {
 201		zone->compact_considered = defer_limit;
 
 
 202		return false;
 203	}
 204
 205	trace_mm_compaction_deferred(zone, order);
 206
 207	return true;
 208}
 209
 210/*
 211 * Update defer tracking counters after successful compaction of given order,
 212 * which means an allocation either succeeded (alloc_success == true) or is
 213 * expected to succeed.
 214 */
 215void compaction_defer_reset(struct zone *zone, int order,
 216		bool alloc_success)
 217{
 218	if (alloc_success) {
 219		zone->compact_considered = 0;
 220		zone->compact_defer_shift = 0;
 221	}
 222	if (order >= zone->compact_order_failed)
 223		zone->compact_order_failed = order + 1;
 224
 225	trace_mm_compaction_defer_reset(zone, order);
 226}
 227
 228/* Returns true if restarting compaction after many failures */
 229static bool compaction_restarting(struct zone *zone, int order)
 230{
 231	if (order < zone->compact_order_failed)
 232		return false;
 233
 234	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 235		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 236}
 237
 238/* Returns true if the pageblock should be scanned for pages to isolate. */
 239static inline bool isolation_suitable(struct compact_control *cc,
 240					struct page *page)
 241{
 242	if (cc->ignore_skip_hint)
 243		return true;
 244
 245	return !get_pageblock_skip(page);
 246}
 247
 248static void reset_cached_positions(struct zone *zone)
 249{
 250	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 251	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 252	zone->compact_cached_free_pfn =
 253				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 254}
 255
 256#ifdef CONFIG_SPARSEMEM
 257/*
 258 * If the PFN falls into an offline section, return the start PFN of the
 259 * next online section. If the PFN falls into an online section or if
 260 * there is no next online section, return 0.
 261 */
 262static unsigned long skip_offline_sections(unsigned long start_pfn)
 263{
 264	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 265
 266	if (online_section_nr(start_nr))
 267		return 0;
 268
 269	while (++start_nr <= __highest_present_section_nr) {
 270		if (online_section_nr(start_nr))
 271			return section_nr_to_pfn(start_nr);
 272	}
 273
 274	return 0;
 275}
 276
 277/*
 278 * If the PFN falls into an offline section, return the end PFN of the
 279 * next online section in reverse. If the PFN falls into an online section
 280 * or if there is no next online section in reverse, return 0.
 281 */
 282static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 283{
 284	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 285
 286	if (!start_nr || online_section_nr(start_nr))
 287		return 0;
 288
 289	while (start_nr-- > 0) {
 290		if (online_section_nr(start_nr))
 291			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 292	}
 293
 294	return 0;
 295}
 296#else
 297static unsigned long skip_offline_sections(unsigned long start_pfn)
 298{
 299	return 0;
 300}
 301
 302static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 303{
 304	return 0;
 305}
 306#endif
 307
 308/*
 309 * Compound pages of >= pageblock_order should consistently be skipped until
 310 * released. It is always pointless to compact pages of such order (if they are
 311 * migratable), and the pageblocks they occupy cannot contain any free pages.
 312 */
 313static bool pageblock_skip_persistent(struct page *page)
 314{
 315	if (!PageCompound(page))
 316		return false;
 317
 318	page = compound_head(page);
 319
 320	if (compound_order(page) >= pageblock_order)
 321		return true;
 322
 323	return false;
 324}
 325
 326static bool
 327__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 328							bool check_target)
 329{
 330	struct page *page = pfn_to_online_page(pfn);
 331	struct page *block_page;
 332	struct page *end_page;
 333	unsigned long block_pfn;
 334
 335	if (!page)
 336		return false;
 337	if (zone != page_zone(page))
 338		return false;
 339	if (pageblock_skip_persistent(page))
 340		return false;
 341
 342	/*
 343	 * If skip is already cleared do no further checking once the
 344	 * restart points have been set.
 345	 */
 346	if (check_source && check_target && !get_pageblock_skip(page))
 347		return true;
 348
 349	/*
 350	 * If clearing skip for the target scanner, do not select a
 351	 * non-movable pageblock as the starting point.
 352	 */
 353	if (!check_source && check_target &&
 354	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 355		return false;
 356
 357	/* Ensure the start of the pageblock or zone is online and valid */
 358	block_pfn = pageblock_start_pfn(pfn);
 359	block_pfn = max(block_pfn, zone->zone_start_pfn);
 360	block_page = pfn_to_online_page(block_pfn);
 361	if (block_page) {
 362		page = block_page;
 363		pfn = block_pfn;
 364	}
 365
 366	/* Ensure the end of the pageblock or zone is online and valid */
 367	block_pfn = pageblock_end_pfn(pfn) - 1;
 368	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 369	end_page = pfn_to_online_page(block_pfn);
 370	if (!end_page)
 371		return false;
 372
 373	/*
 374	 * Only clear the hint if a sample indicates there is either a
 375	 * free page or an LRU page in the block. One or other condition
 376	 * is necessary for the block to be a migration source/target.
 377	 */
 378	do {
 379		if (check_source && PageLRU(page)) {
 380			clear_pageblock_skip(page);
 381			return true;
 382		}
 
 383
 384		if (check_target && PageBuddy(page)) {
 385			clear_pageblock_skip(page);
 386			return true;
 
 387		}
 388
 389		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 
 390	} while (page <= end_page);
 391
 392	return false;
 393}
 394
 395/*
 396 * This function is called to clear all cached information on pageblocks that
 397 * should be skipped for page isolation when the migrate and free page scanner
 398 * meet.
 399 */
 400static void __reset_isolation_suitable(struct zone *zone)
 401{
 402	unsigned long migrate_pfn = zone->zone_start_pfn;
 403	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 404	unsigned long reset_migrate = free_pfn;
 405	unsigned long reset_free = migrate_pfn;
 406	bool source_set = false;
 407	bool free_set = false;
 408
 409	/* Only flush if a full compaction finished recently */
 410	if (!zone->compact_blockskip_flush)
 411		return;
 412
 413	zone->compact_blockskip_flush = false;
 414
 415	/*
 416	 * Walk the zone and update pageblock skip information. Source looks
 417	 * for PageLRU while target looks for PageBuddy. When the scanner
 418	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 419	 * is suitable as both source and target.
 420	 */
 421	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 422					free_pfn -= pageblock_nr_pages) {
 423		cond_resched();
 424
 425		/* Update the migrate PFN */
 426		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 427		    migrate_pfn < reset_migrate) {
 428			source_set = true;
 429			reset_migrate = migrate_pfn;
 430			zone->compact_init_migrate_pfn = reset_migrate;
 431			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 432			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 433		}
 434
 435		/* Update the free PFN */
 436		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 437		    free_pfn > reset_free) {
 438			free_set = true;
 439			reset_free = free_pfn;
 440			zone->compact_init_free_pfn = reset_free;
 441			zone->compact_cached_free_pfn = reset_free;
 442		}
 443	}
 444
 445	/* Leave no distance if no suitable block was reset */
 446	if (reset_migrate >= reset_free) {
 447		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 448		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 449		zone->compact_cached_free_pfn = free_pfn;
 450	}
 451}
 452
 453void reset_isolation_suitable(pg_data_t *pgdat)
 454{
 455	int zoneid;
 456
 457	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 458		struct zone *zone = &pgdat->node_zones[zoneid];
 459		if (!populated_zone(zone))
 460			continue;
 461
 462		__reset_isolation_suitable(zone);
 
 
 463	}
 464}
 465
 466/*
 467 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 468 * locks are not required for read/writers. Returns true if it was already set.
 469 */
 470static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 471{
 472	bool skip;
 473
 474	/* Do not update if skip hint is being ignored */
 475	if (cc->ignore_skip_hint)
 476		return false;
 477
 
 
 
 478	skip = get_pageblock_skip(page);
 479	if (!skip && !cc->no_set_skip_hint)
 480		set_pageblock_skip(page);
 481
 482	return skip;
 483}
 484
 485static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 486{
 487	struct zone *zone = cc->zone;
 488
 
 
 489	/* Set for isolation rather than compaction */
 490	if (cc->no_set_skip_hint)
 491		return;
 492
 493	pfn = pageblock_end_pfn(pfn);
 494
 495	/* Update where async and sync compaction should restart */
 496	if (pfn > zone->compact_cached_migrate_pfn[0])
 497		zone->compact_cached_migrate_pfn[0] = pfn;
 498	if (cc->mode != MIGRATE_ASYNC &&
 499	    pfn > zone->compact_cached_migrate_pfn[1])
 500		zone->compact_cached_migrate_pfn[1] = pfn;
 501}
 502
 503/*
 504 * If no pages were isolated then mark this pageblock to be skipped in the
 505 * future. The information is later cleared by __reset_isolation_suitable().
 506 */
 507static void update_pageblock_skip(struct compact_control *cc,
 508			struct page *page, unsigned long pfn)
 509{
 510	struct zone *zone = cc->zone;
 511
 512	if (cc->no_set_skip_hint)
 513		return;
 514
 
 
 
 515	set_pageblock_skip(page);
 516
 
 517	if (pfn < zone->compact_cached_free_pfn)
 518		zone->compact_cached_free_pfn = pfn;
 519}
 520#else
 521static inline bool isolation_suitable(struct compact_control *cc,
 522					struct page *page)
 523{
 524	return true;
 525}
 526
 527static inline bool pageblock_skip_persistent(struct page *page)
 528{
 529	return false;
 530}
 531
 532static inline void update_pageblock_skip(struct compact_control *cc,
 533			struct page *page, unsigned long pfn)
 534{
 535}
 536
 537static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 538{
 539}
 540
 541static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 542{
 543	return false;
 544}
 545#endif /* CONFIG_COMPACTION */
 546
 547/*
 548 * Compaction requires the taking of some coarse locks that are potentially
 549 * very heavily contended. For async compaction, trylock and record if the
 550 * lock is contended. The lock will still be acquired but compaction will
 551 * abort when the current block is finished regardless of success rate.
 552 * Sync compaction acquires the lock.
 553 *
 554 * Always returns true which makes it easier to track lock state in callers.
 555 */
 556static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 557						struct compact_control *cc)
 558	__acquires(lock)
 559{
 560	/* Track if the lock is contended in async mode */
 561	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 562		if (spin_trylock_irqsave(lock, *flags))
 563			return true;
 564
 565		cc->contended = true;
 566	}
 567
 568	spin_lock_irqsave(lock, *flags);
 569	return true;
 570}
 571
 572/*
 573 * Compaction requires the taking of some coarse locks that are potentially
 574 * very heavily contended. The lock should be periodically unlocked to avoid
 575 * having disabled IRQs for a long time, even when there is nobody waiting on
 576 * the lock. It might also be that allowing the IRQs will result in
 577 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 
 578 * Either compaction type will also abort if a fatal signal is pending.
 579 * In either case if the lock was locked, it is dropped and not regained.
 580 *
 581 * Returns true if compaction should abort due to fatal signal pending.
 582 * Returns false when compaction can continue.
 
 
 583 */
 584static bool compact_unlock_should_abort(spinlock_t *lock,
 585		unsigned long flags, bool *locked, struct compact_control *cc)
 586{
 587	if (*locked) {
 588		spin_unlock_irqrestore(lock, flags);
 589		*locked = false;
 590	}
 591
 592	if (fatal_signal_pending(current)) {
 593		cc->contended = true;
 594		return true;
 595	}
 596
 597	cond_resched();
 598
 599	return false;
 600}
 601
 602/*
 603 * Isolate free pages onto a private freelist. If @strict is true, will abort
 604 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 605 * (even though it may still end up isolating some pages).
 606 */
 607static unsigned long isolate_freepages_block(struct compact_control *cc,
 608				unsigned long *start_pfn,
 609				unsigned long end_pfn,
 610				struct list_head *freelist,
 611				unsigned int stride,
 612				bool strict)
 613{
 614	int nr_scanned = 0, total_isolated = 0;
 615	struct page *page;
 616	unsigned long flags = 0;
 617	bool locked = false;
 618	unsigned long blockpfn = *start_pfn;
 619	unsigned int order;
 620
 621	/* Strict mode is for isolation, speed is secondary */
 622	if (strict)
 623		stride = 1;
 624
 625	page = pfn_to_page(blockpfn);
 626
 627	/* Isolate free pages. */
 628	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 629		int isolated;
 
 630
 631		/*
 632		 * Periodically drop the lock (if held) regardless of its
 633		 * contention, to give chance to IRQs. Abort if fatal signal
 634		 * pending.
 635		 */
 636		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 637		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 638								&locked, cc))
 639			break;
 640
 641		nr_scanned++;
 
 
 642
 643		/*
 644		 * For compound pages such as THP and hugetlbfs, we can save
 645		 * potentially a lot of iterations if we skip them at once.
 646		 * The check is racy, but we can consider only valid values
 647		 * and the only danger is skipping too much.
 648		 */
 649		if (PageCompound(page)) {
 650			const unsigned int order = compound_order(page);
 651
 652			if (blockpfn + (1UL << order) <= end_pfn) {
 653				blockpfn += (1UL << order) - 1;
 654				page += (1UL << order) - 1;
 655				nr_scanned += (1UL << order) - 1;
 656			}
 657
 658			goto isolate_fail;
 659		}
 660
 661		if (!PageBuddy(page))
 662			goto isolate_fail;
 663
 664		/* If we already hold the lock, we can skip some rechecking. */
 
 
 
 
 
 
 665		if (!locked) {
 666			locked = compact_lock_irqsave(&cc->zone->lock,
 667								&flags, cc);
 668
 669			/* Recheck this is a buddy page under lock */
 670			if (!PageBuddy(page))
 671				goto isolate_fail;
 672		}
 673
 674		/* Found a free page, will break it into order-0 pages */
 675		order = buddy_order(page);
 676		isolated = __isolate_free_page(page, order);
 677		if (!isolated)
 678			break;
 679		set_page_private(page, order);
 680
 681		nr_scanned += isolated - 1;
 682		total_isolated += isolated;
 683		cc->nr_freepages += isolated;
 684		list_add_tail(&page->lru, &freelist[order]);
 685
 686		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 687			blockpfn += isolated;
 688			break;
 689		}
 690		/* Advance to the end of split page */
 691		blockpfn += isolated - 1;
 692		page += isolated - 1;
 693		continue;
 694
 695isolate_fail:
 696		if (strict)
 697			break;
 
 
 698
 699	}
 700
 701	if (locked)
 702		spin_unlock_irqrestore(&cc->zone->lock, flags);
 703
 704	/*
 705	 * Be careful to not go outside of the pageblock.
 
 706	 */
 707	if (unlikely(blockpfn > end_pfn))
 708		blockpfn = end_pfn;
 709
 710	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 711					nr_scanned, total_isolated);
 712
 713	/* Record how far we have got within the block */
 714	*start_pfn = blockpfn;
 715
 716	/*
 717	 * If strict isolation is requested by CMA then check that all the
 718	 * pages requested were isolated. If there were any failures, 0 is
 719	 * returned and CMA will fail.
 720	 */
 721	if (strict && blockpfn < end_pfn)
 722		total_isolated = 0;
 723
 724	cc->total_free_scanned += nr_scanned;
 725	if (total_isolated)
 726		count_compact_events(COMPACTISOLATED, total_isolated);
 727	return total_isolated;
 728}
 729
 730/**
 731 * isolate_freepages_range() - isolate free pages.
 732 * @cc:        Compaction control structure.
 733 * @start_pfn: The first PFN to start isolating.
 734 * @end_pfn:   The one-past-last PFN.
 735 *
 736 * Non-free pages, invalid PFNs, or zone boundaries within the
 737 * [start_pfn, end_pfn) range are considered errors, cause function to
 738 * undo its actions and return zero.
 739 *
 740 * Otherwise, function returns one-past-the-last PFN of isolated page
 741 * (which may be greater then end_pfn if end fell in a middle of
 742 * a free page).
 743 */
 744unsigned long
 745isolate_freepages_range(struct compact_control *cc,
 746			unsigned long start_pfn, unsigned long end_pfn)
 747{
 748	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 749	int order;
 750	struct list_head tmp_freepages[NR_PAGE_ORDERS];
 751
 752	for (order = 0; order < NR_PAGE_ORDERS; order++)
 753		INIT_LIST_HEAD(&tmp_freepages[order]);
 754
 755	pfn = start_pfn;
 756	block_start_pfn = pageblock_start_pfn(pfn);
 757	if (block_start_pfn < cc->zone->zone_start_pfn)
 758		block_start_pfn = cc->zone->zone_start_pfn;
 759	block_end_pfn = pageblock_end_pfn(pfn);
 760
 761	for (; pfn < end_pfn; pfn += isolated,
 762				block_start_pfn = block_end_pfn,
 763				block_end_pfn += pageblock_nr_pages) {
 764		/* Protect pfn from changing by isolate_freepages_block */
 765		unsigned long isolate_start_pfn = pfn;
 766
 
 
 767		/*
 768		 * pfn could pass the block_end_pfn if isolated freepage
 769		 * is more than pageblock order. In this case, we adjust
 770		 * scanning range to right one.
 771		 */
 772		if (pfn >= block_end_pfn) {
 773			block_start_pfn = pageblock_start_pfn(pfn);
 774			block_end_pfn = pageblock_end_pfn(pfn);
 
 775		}
 776
 777		block_end_pfn = min(block_end_pfn, end_pfn);
 778
 779		if (!pageblock_pfn_to_page(block_start_pfn,
 780					block_end_pfn, cc->zone))
 781			break;
 782
 783		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 784					block_end_pfn, tmp_freepages, 0, true);
 785
 786		/*
 787		 * In strict mode, isolate_freepages_block() returns 0 if
 788		 * there are any holes in the block (ie. invalid PFNs or
 789		 * non-free pages).
 790		 */
 791		if (!isolated)
 792			break;
 793
 794		/*
 795		 * If we managed to isolate pages, it is always (1 << n) *
 796		 * pageblock_nr_pages for some non-negative n.  (Max order
 797		 * page may span two pageblocks).
 798		 */
 799	}
 800
 
 
 
 801	if (pfn < end_pfn) {
 802		/* Loop terminated early, cleanup. */
 803		release_free_list(tmp_freepages);
 804		return 0;
 805	}
 806
 807	/* __isolate_free_page() does not map the pages */
 808	split_map_pages(tmp_freepages);
 809
 810	/* We don't use freelists for anything. */
 811	return pfn;
 812}
 813
 814/* Similar to reclaim, but different enough that they don't share logic */
 815static bool too_many_isolated(struct compact_control *cc)
 816{
 817	pg_data_t *pgdat = cc->zone->zone_pgdat;
 818	bool too_many;
 819
 820	unsigned long active, inactive, isolated;
 821
 822	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 823			node_page_state(pgdat, NR_INACTIVE_ANON);
 824	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 825			node_page_state(pgdat, NR_ACTIVE_ANON);
 826	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 827			node_page_state(pgdat, NR_ISOLATED_ANON);
 828
 829	/*
 830	 * Allow GFP_NOFS to isolate past the limit set for regular
 831	 * compaction runs. This prevents an ABBA deadlock when other
 832	 * compactors have already isolated to the limit, but are
 833	 * blocked on filesystem locks held by the GFP_NOFS thread.
 834	 */
 835	if (cc->gfp_mask & __GFP_FS) {
 836		inactive >>= 3;
 837		active >>= 3;
 838	}
 839
 840	too_many = isolated > (inactive + active) / 2;
 841	if (!too_many)
 842		wake_throttle_isolated(pgdat);
 843
 844	return too_many;
 845}
 846
 847/**
 848 * skip_isolation_on_order() - determine when to skip folio isolation based on
 849 *			       folio order and compaction target order
 850 * @order:		to-be-isolated folio order
 851 * @target_order:	compaction target order
 852 *
 853 * This avoids unnecessary folio isolations during compaction.
 854 */
 855static bool skip_isolation_on_order(int order, int target_order)
 856{
 857	/*
 858	 * Unless we are performing global compaction (i.e.,
 859	 * is_via_compact_memory), skip any folios that are larger than the
 860	 * target order: we wouldn't be here if we'd have a free folio with
 861	 * the desired target_order, so migrating this folio would likely fail
 862	 * later.
 863	 */
 864	if (!is_via_compact_memory(target_order) && order >= target_order)
 865		return true;
 866	/*
 867	 * We limit memory compaction to pageblocks and won't try
 868	 * creating free blocks of memory that are larger than that.
 869	 */
 870	return order >= pageblock_order;
 871}
 872
 873/**
 874 * isolate_migratepages_block() - isolate all migrate-able pages within
 875 *				  a single pageblock
 876 * @cc:		Compaction control structure.
 877 * @low_pfn:	The first PFN to isolate
 878 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 879 * @mode:	Isolation mode to be used.
 880 *
 881 * Isolate all pages that can be migrated from the range specified by
 882 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 883 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 884 * -ENOMEM in case we could not allocate a page, or 0.
 885 * cc->migrate_pfn will contain the next pfn to scan.
 886 *
 887 * The pages are isolated on cc->migratepages list (not required to be empty),
 888 * and cc->nr_migratepages is updated accordingly.
 
 889 */
 890static int
 891isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 892			unsigned long end_pfn, isolate_mode_t mode)
 893{
 894	pg_data_t *pgdat = cc->zone->zone_pgdat;
 895	unsigned long nr_scanned = 0, nr_isolated = 0;
 896	struct lruvec *lruvec;
 897	unsigned long flags = 0;
 898	struct lruvec *locked = NULL;
 899	struct folio *folio = NULL;
 900	struct page *page = NULL, *valid_page = NULL;
 901	struct address_space *mapping;
 902	unsigned long start_pfn = low_pfn;
 903	bool skip_on_failure = false;
 904	unsigned long next_skip_pfn = 0;
 905	bool skip_updated = false;
 906	int ret = 0;
 907
 908	cc->migrate_pfn = low_pfn;
 909
 910	/*
 911	 * Ensure that there are not too many pages isolated from the LRU
 912	 * list by either parallel reclaimers or compaction. If there are,
 913	 * delay for some time until fewer pages are isolated
 914	 */
 915	while (unlikely(too_many_isolated(cc))) {
 916		/* stop isolation if there are still pages not migrated */
 917		if (cc->nr_migratepages)
 918			return -EAGAIN;
 919
 920		/* async migration should just abort */
 921		if (cc->mode == MIGRATE_ASYNC)
 922			return -EAGAIN;
 923
 924		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 925
 926		if (fatal_signal_pending(current))
 927			return -EINTR;
 928	}
 929
 930	cond_resched();
 931
 932	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 933		skip_on_failure = true;
 934		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 935	}
 936
 937	/* Time to isolate some pages for migration */
 938	for (; low_pfn < end_pfn; low_pfn++) {
 939		bool is_dirty, is_unevictable;
 940
 941		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 942			/*
 943			 * We have isolated all migration candidates in the
 944			 * previous order-aligned block, and did not skip it due
 945			 * to failure. We should migrate the pages now and
 946			 * hopefully succeed compaction.
 947			 */
 948			if (nr_isolated)
 949				break;
 950
 951			/*
 952			 * We failed to isolate in the previous order-aligned
 953			 * block. Set the new boundary to the end of the
 954			 * current block. Note we can't simply increase
 955			 * next_skip_pfn by 1 << order, as low_pfn might have
 956			 * been incremented by a higher number due to skipping
 957			 * a compound or a high-order buddy page in the
 958			 * previous loop iteration.
 959			 */
 960			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 961		}
 962
 963		/*
 964		 * Periodically drop the lock (if held) regardless of its
 965		 * contention, to give chance to IRQs. Abort completely if
 966		 * a fatal signal is pending.
 967		 */
 968		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 969			if (locked) {
 970				unlock_page_lruvec_irqrestore(locked, flags);
 971				locked = NULL;
 972			}
 973
 974			if (fatal_signal_pending(current)) {
 975				cc->contended = true;
 976				ret = -EINTR;
 977
 978				goto fatal_pending;
 979			}
 980
 981			cond_resched();
 982		}
 983
 
 
 984		nr_scanned++;
 985
 986		page = pfn_to_page(low_pfn);
 987
 988		/*
 989		 * Check if the pageblock has already been marked skipped.
 990		 * Only the first PFN is checked as the caller isolates
 991		 * COMPACT_CLUSTER_MAX at a time so the second call must
 992		 * not falsely conclude that the block should be skipped.
 993		 */
 994		if (!valid_page && (pageblock_aligned(low_pfn) ||
 995				    low_pfn == cc->zone->zone_start_pfn)) {
 996			if (!isolation_suitable(cc, page)) {
 997				low_pfn = end_pfn;
 998				folio = NULL;
 999				goto isolate_abort;
1000			}
1001			valid_page = page;
1002		}
1003
1004		if (PageHuge(page)) {
1005			/*
1006			 * skip hugetlbfs if we are not compacting for pages
1007			 * bigger than its order. THPs and other compound pages
1008			 * are handled below.
1009			 */
1010			if (!cc->alloc_contig) {
1011				const unsigned int order = compound_order(page);
1012
1013				if (order <= MAX_PAGE_ORDER) {
1014					low_pfn += (1UL << order) - 1;
1015					nr_scanned += (1UL << order) - 1;
1016				}
1017				goto isolate_fail;
1018			}
1019			/* for alloc_contig case */
1020			if (locked) {
1021				unlock_page_lruvec_irqrestore(locked, flags);
1022				locked = NULL;
1023			}
1024
1025			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
1026
1027			/*
1028			 * Fail isolation in case isolate_or_dissolve_huge_page()
1029			 * reports an error. In case of -ENOMEM, abort right away.
1030			 */
1031			if (ret < 0) {
1032				 /* Do not report -EBUSY down the chain */
1033				if (ret == -EBUSY)
1034					ret = 0;
1035				low_pfn += compound_nr(page) - 1;
1036				nr_scanned += compound_nr(page) - 1;
1037				goto isolate_fail;
1038			}
1039
1040			if (PageHuge(page)) {
1041				/*
1042				 * Hugepage was successfully isolated and placed
1043				 * on the cc->migratepages list.
1044				 */
1045				folio = page_folio(page);
1046				low_pfn += folio_nr_pages(folio) - 1;
1047				goto isolate_success_no_list;
1048			}
1049
1050			/*
1051			 * Ok, the hugepage was dissolved. Now these pages are
1052			 * Buddy and cannot be re-allocated because they are
1053			 * isolated. Fall-through as the check below handles
1054			 * Buddy pages.
1055			 */
1056		}
1057
1058		/*
1059		 * Skip if free. We read page order here without zone lock
1060		 * which is generally unsafe, but the race window is small and
1061		 * the worst thing that can happen is that we skip some
1062		 * potential isolation targets.
1063		 */
1064		if (PageBuddy(page)) {
1065			unsigned long freepage_order = buddy_order_unsafe(page);
1066
1067			/*
1068			 * Without lock, we cannot be sure that what we got is
1069			 * a valid page order. Consider only values in the
1070			 * valid order range to prevent low_pfn overflow.
1071			 */
1072			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1073				low_pfn += (1UL << freepage_order) - 1;
1074				nr_scanned += (1UL << freepage_order) - 1;
1075			}
1076			continue;
1077		}
1078
1079		/*
1080		 * Regardless of being on LRU, compound pages such as THP
1081		 * (hugetlbfs is handled above) are not to be compacted unless
1082		 * we are attempting an allocation larger than the compound
1083		 * page size. We can potentially save a lot of iterations if we
1084		 * skip them at once. The check is racy, but we can consider
1085		 * only valid values and the only danger is skipping too much.
1086		 */
1087		if (PageCompound(page) && !cc->alloc_contig) {
1088			const unsigned int order = compound_order(page);
1089
1090			/* Skip based on page order and compaction target order. */
1091			if (skip_isolation_on_order(order, cc->order)) {
1092				if (order <= MAX_PAGE_ORDER) {
1093					low_pfn += (1UL << order) - 1;
1094					nr_scanned += (1UL << order) - 1;
1095				}
1096				goto isolate_fail;
1097			}
1098		}
1099
1100		/*
1101		 * Check may be lockless but that's ok as we recheck later.
1102		 * It's possible to migrate LRU and non-lru movable pages.
1103		 * Skip any other type of page
1104		 */
1105		if (!PageLRU(page)) {
1106			/*
1107			 * __PageMovable can return false positive so we need
1108			 * to verify it under page_lock.
1109			 */
1110			if (unlikely(__PageMovable(page)) &&
1111					!PageIsolated(page)) {
1112				if (locked) {
1113					unlock_page_lruvec_irqrestore(locked, flags);
1114					locked = NULL;
 
1115				}
1116
1117				if (isolate_movable_page(page, mode)) {
1118					folio = page_folio(page);
1119					goto isolate_success;
1120				}
1121			}
1122
1123			goto isolate_fail;
1124		}
1125
1126		/*
1127		 * Be careful not to clear PageLRU until after we're
1128		 * sure the page is not being freed elsewhere -- the
1129		 * page release code relies on it.
1130		 */
1131		folio = folio_get_nontail_page(page);
1132		if (unlikely(!folio))
1133			goto isolate_fail;
1134
1135		/*
1136		 * Migration will fail if an anonymous page is pinned in memory,
1137		 * so avoid taking lru_lock and isolating it unnecessarily in an
1138		 * admittedly racy check.
1139		 */
1140		mapping = folio_mapping(folio);
1141		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1142			goto isolate_fail_put;
1143
1144		/*
1145		 * Only allow to migrate anonymous pages in GFP_NOFS context
1146		 * because those do not depend on fs locks.
1147		 */
1148		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1149			goto isolate_fail_put;
1150
1151		/* Only take pages on LRU: a check now makes later tests safe */
1152		if (!folio_test_lru(folio))
1153			goto isolate_fail_put;
1154
1155		is_unevictable = folio_test_unevictable(folio);
1156
1157		/* Compaction might skip unevictable pages but CMA takes them */
1158		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1159			goto isolate_fail_put;
1160
1161		/*
1162		 * To minimise LRU disruption, the caller can indicate with
1163		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1164		 * it will be able to migrate without blocking - clean pages
1165		 * for the most part.  PageWriteback would require blocking.
1166		 */
1167		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1168			goto isolate_fail_put;
1169
1170		is_dirty = folio_test_dirty(folio);
1171
1172		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1173		    (mapping && is_unevictable)) {
1174			bool migrate_dirty = true;
1175			bool is_unmovable;
1176
1177			/*
1178			 * Only folios without mappings or that have
1179			 * a ->migrate_folio callback are possible to migrate
1180			 * without blocking.
1181			 *
1182			 * Folios from unmovable mappings are not migratable.
1183			 *
1184			 * However, we can be racing with truncation, which can
1185			 * free the mapping that we need to check. Truncation
1186			 * holds the folio lock until after the folio is removed
1187			 * from the page so holding it ourselves is sufficient.
1188			 *
1189			 * To avoid locking the folio just to check unmovable,
1190			 * assume every unmovable folio is also unevictable,
1191			 * which is a cheaper test.  If our assumption goes
1192			 * wrong, it's not a correctness bug, just potentially
1193			 * wasted cycles.
1194			 */
1195			if (!folio_trylock(folio))
1196				goto isolate_fail_put;
1197
1198			mapping = folio_mapping(folio);
1199			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1200				migrate_dirty = !mapping ||
1201						mapping->a_ops->migrate_folio;
1202			}
1203			is_unmovable = mapping && mapping_unmovable(mapping);
1204			folio_unlock(folio);
1205			if (!migrate_dirty || is_unmovable)
1206				goto isolate_fail_put;
1207		}
1208
1209		/* Try isolate the folio */
1210		if (!folio_test_clear_lru(folio))
1211			goto isolate_fail_put;
1212
1213		lruvec = folio_lruvec(folio);
1214
1215		/* If we already hold the lock, we can skip some rechecking */
1216		if (lruvec != locked) {
1217			if (locked)
1218				unlock_page_lruvec_irqrestore(locked, flags);
1219
1220			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1221			locked = lruvec;
1222
1223			lruvec_memcg_debug(lruvec, folio);
1224
1225			/*
1226			 * Try get exclusive access under lock. If marked for
1227			 * skip, the scan is aborted unless the current context
1228			 * is a rescan to reach the end of the pageblock.
1229			 */
1230			if (!skip_updated && valid_page) {
1231				skip_updated = true;
1232				if (test_and_set_skip(cc, valid_page) &&
1233				    !cc->finish_pageblock) {
1234					low_pfn = end_pfn;
1235					goto isolate_abort;
1236				}
1237			}
1238
 
 
 
 
1239			/*
1240			 * Check LRU folio order under the lock
 
 
1241			 */
1242			if (unlikely(skip_isolation_on_order(folio_order(folio),
1243							     cc->order) &&
1244				     !cc->alloc_contig)) {
1245				low_pfn += folio_nr_pages(folio) - 1;
1246				nr_scanned += folio_nr_pages(folio) - 1;
1247				folio_set_lru(folio);
1248				goto isolate_fail_put;
1249			}
1250		}
1251
1252		/* The folio is taken off the LRU */
1253		if (folio_test_large(folio))
1254			low_pfn += folio_nr_pages(folio) - 1;
 
 
 
 
 
 
1255
1256		/* Successfully isolated */
1257		lruvec_del_folio(lruvec, folio);
1258		node_stat_mod_folio(folio,
1259				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1260				folio_nr_pages(folio));
1261
1262isolate_success:
1263		list_add(&folio->lru, &cc->migratepages);
1264isolate_success_no_list:
1265		cc->nr_migratepages += folio_nr_pages(folio);
1266		nr_isolated += folio_nr_pages(folio);
1267		nr_scanned += folio_nr_pages(folio) - 1;
1268
1269		/*
1270		 * Avoid isolating too much unless this block is being
1271		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1272		 * or a lock is contended. For contention, isolate quickly to
1273		 * potentially remove one source of contention.
1274		 */
1275		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1276		    !cc->finish_pageblock && !cc->contended) {
1277			++low_pfn;
1278			break;
1279		}
1280
1281		continue;
1282
1283isolate_fail_put:
1284		/* Avoid potential deadlock in freeing page under lru_lock */
1285		if (locked) {
1286			unlock_page_lruvec_irqrestore(locked, flags);
1287			locked = NULL;
1288		}
1289		folio_put(folio);
1290
1291isolate_fail:
1292		if (!skip_on_failure && ret != -ENOMEM)
1293			continue;
1294
1295		/*
1296		 * We have isolated some pages, but then failed. Release them
1297		 * instead of migrating, as we cannot form the cc->order buddy
1298		 * page anyway.
1299		 */
1300		if (nr_isolated) {
1301			if (locked) {
1302				unlock_page_lruvec_irqrestore(locked, flags);
1303				locked = NULL;
1304			}
1305			putback_movable_pages(&cc->migratepages);
1306			cc->nr_migratepages = 0;
1307			nr_isolated = 0;
1308		}
1309
1310		if (low_pfn < next_skip_pfn) {
1311			low_pfn = next_skip_pfn - 1;
1312			/*
1313			 * The check near the loop beginning would have updated
1314			 * next_skip_pfn too, but this is a bit simpler.
1315			 */
1316			next_skip_pfn += 1UL << cc->order;
1317		}
1318
1319		if (ret == -ENOMEM)
1320			break;
1321	}
1322
1323	/*
1324	 * The PageBuddy() check could have potentially brought us outside
1325	 * the range to be scanned.
1326	 */
1327	if (unlikely(low_pfn > end_pfn))
1328		low_pfn = end_pfn;
1329
1330	folio = NULL;
1331
1332isolate_abort:
1333	if (locked)
1334		unlock_page_lruvec_irqrestore(locked, flags);
1335	if (folio) {
1336		folio_set_lru(folio);
1337		folio_put(folio);
1338	}
1339
1340	/*
1341	 * Update the cached scanner pfn once the pageblock has been scanned.
1342	 * Pages will either be migrated in which case there is no point
1343	 * scanning in the near future or migration failed in which case the
1344	 * failure reason may persist. The block is marked for skipping if
1345	 * there were no pages isolated in the block or if the block is
1346	 * rescanned twice in a row.
1347	 */
1348	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1349		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1350			set_pageblock_skip(valid_page);
1351		update_cached_migrate(cc, low_pfn);
1352	}
1353
1354	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1355						nr_scanned, nr_isolated);
1356
1357fatal_pending:
1358	cc->total_migrate_scanned += nr_scanned;
1359	if (nr_isolated)
1360		count_compact_events(COMPACTISOLATED, nr_isolated);
1361
1362	cc->migrate_pfn = low_pfn;
1363
1364	return ret;
1365}
1366
1367/**
1368 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1369 * @cc:        Compaction control structure.
1370 * @start_pfn: The first PFN to start isolating.
1371 * @end_pfn:   The one-past-last PFN.
1372 *
1373 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1374 * in case we could not allocate a page, or 0.
 
1375 */
1376int
1377isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1378							unsigned long end_pfn)
1379{
1380	unsigned long pfn, block_start_pfn, block_end_pfn;
1381	int ret = 0;
1382
1383	/* Scan block by block. First and last block may be incomplete */
1384	pfn = start_pfn;
1385	block_start_pfn = pageblock_start_pfn(pfn);
1386	if (block_start_pfn < cc->zone->zone_start_pfn)
1387		block_start_pfn = cc->zone->zone_start_pfn;
1388	block_end_pfn = pageblock_end_pfn(pfn);
1389
1390	for (; pfn < end_pfn; pfn = block_end_pfn,
1391				block_start_pfn = block_end_pfn,
1392				block_end_pfn += pageblock_nr_pages) {
1393
1394		block_end_pfn = min(block_end_pfn, end_pfn);
1395
1396		if (!pageblock_pfn_to_page(block_start_pfn,
1397					block_end_pfn, cc->zone))
1398			continue;
1399
1400		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1401						 ISOLATE_UNEVICTABLE);
1402
1403		if (ret)
1404			break;
1405
1406		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1407			break;
1408	}
1409
1410	return ret;
1411}
1412
1413#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1414#ifdef CONFIG_COMPACTION
1415
1416static bool suitable_migration_source(struct compact_control *cc,
1417							struct page *page)
1418{
1419	int block_mt;
1420
1421	if (pageblock_skip_persistent(page))
1422		return false;
1423
1424	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1425		return true;
1426
1427	block_mt = get_pageblock_migratetype(page);
1428
1429	if (cc->migratetype == MIGRATE_MOVABLE)
1430		return is_migrate_movable(block_mt);
1431	else
1432		return block_mt == cc->migratetype;
1433}
1434
1435/* Returns true if the page is within a block suitable for migration to */
1436static bool suitable_migration_target(struct compact_control *cc,
1437							struct page *page)
1438{
1439	/* If the page is a large free page, then disallow migration */
1440	if (PageBuddy(page)) {
1441		int order = cc->order > 0 ? cc->order : pageblock_order;
1442
1443		/*
1444		 * We are checking page_order without zone->lock taken. But
1445		 * the only small danger is that we skip a potentially suitable
1446		 * pageblock, so it's not worth to check order for valid range.
1447		 */
1448		if (buddy_order_unsafe(page) >= order)
1449			return false;
1450	}
1451
1452	if (cc->ignore_block_suitable)
1453		return true;
1454
1455	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1456	if (is_migrate_movable(get_pageblock_migratetype(page)))
1457		return true;
1458
1459	/* Otherwise skip the block */
1460	return false;
1461}
1462
1463static inline unsigned int
1464freelist_scan_limit(struct compact_control *cc)
1465{
1466	unsigned short shift = BITS_PER_LONG - 1;
1467
1468	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1469}
1470
1471/*
1472 * Test whether the free scanner has reached the same or lower pageblock than
1473 * the migration scanner, and compaction should thus terminate.
1474 */
1475static inline bool compact_scanners_met(struct compact_control *cc)
1476{
1477	return (cc->free_pfn >> pageblock_order)
1478		<= (cc->migrate_pfn >> pageblock_order);
1479}
1480
1481/*
1482 * Used when scanning for a suitable migration target which scans freelists
1483 * in reverse. Reorders the list such as the unscanned pages are scanned
1484 * first on the next iteration of the free scanner
1485 */
1486static void
1487move_freelist_head(struct list_head *freelist, struct page *freepage)
1488{
1489	LIST_HEAD(sublist);
1490
1491	if (!list_is_first(&freepage->buddy_list, freelist)) {
1492		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1493		list_splice_tail(&sublist, freelist);
 
1494	}
1495}
1496
1497/*
1498 * Similar to move_freelist_head except used by the migration scanner
1499 * when scanning forward. It's possible for these list operations to
1500 * move against each other if they search the free list exactly in
1501 * lockstep.
1502 */
1503static void
1504move_freelist_tail(struct list_head *freelist, struct page *freepage)
1505{
1506	LIST_HEAD(sublist);
1507
1508	if (!list_is_last(&freepage->buddy_list, freelist)) {
1509		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1510		list_splice_tail(&sublist, freelist);
 
1511	}
1512}
1513
1514static void
1515fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1516{
1517	unsigned long start_pfn, end_pfn;
1518	struct page *page;
1519
1520	/* Do not search around if there are enough pages already */
1521	if (cc->nr_freepages >= cc->nr_migratepages)
1522		return;
1523
1524	/* Minimise scanning during async compaction */
1525	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1526		return;
1527
1528	/* Pageblock boundaries */
1529	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1530	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1531
1532	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1533	if (!page)
1534		return;
 
 
 
1535
1536	isolate_freepages_block(cc, &start_pfn, end_pfn, cc->freepages, 1, false);
 
 
 
1537
1538	/* Skip this pageblock in the future as it's full or nearly full */
1539	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1540		set_pageblock_skip(page);
1541}
1542
1543/* Search orders in round-robin fashion */
1544static int next_search_order(struct compact_control *cc, int order)
1545{
1546	order--;
1547	if (order < 0)
1548		order = cc->order - 1;
1549
1550	/* Search wrapped around? */
1551	if (order == cc->search_order) {
1552		cc->search_order--;
1553		if (cc->search_order < 0)
1554			cc->search_order = cc->order - 1;
1555		return -1;
1556	}
1557
1558	return order;
1559}
1560
1561static void fast_isolate_freepages(struct compact_control *cc)
 
1562{
1563	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1564	unsigned int nr_scanned = 0, total_isolated = 0;
1565	unsigned long low_pfn, min_pfn, highest = 0;
1566	unsigned long nr_isolated = 0;
1567	unsigned long distance;
1568	struct page *page = NULL;
1569	bool scan_start = false;
1570	int order;
1571
1572	/* Full compaction passes in a negative order */
1573	if (cc->order <= 0)
1574		return;
1575
1576	/*
1577	 * If starting the scan, use a deeper search and use the highest
1578	 * PFN found if a suitable one is not found.
1579	 */
1580	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1581		limit = pageblock_nr_pages >> 1;
1582		scan_start = true;
1583	}
1584
1585	/*
1586	 * Preferred point is in the top quarter of the scan space but take
1587	 * a pfn from the top half if the search is problematic.
1588	 */
1589	distance = (cc->free_pfn - cc->migrate_pfn);
1590	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1591	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1592
1593	if (WARN_ON_ONCE(min_pfn > low_pfn))
1594		low_pfn = min_pfn;
1595
1596	/*
1597	 * Search starts from the last successful isolation order or the next
1598	 * order to search after a previous failure
1599	 */
1600	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1601
1602	for (order = cc->search_order;
1603	     !page && order >= 0;
1604	     order = next_search_order(cc, order)) {
1605		struct free_area *area = &cc->zone->free_area[order];
1606		struct list_head *freelist;
1607		struct page *freepage;
1608		unsigned long flags;
1609		unsigned int order_scanned = 0;
1610		unsigned long high_pfn = 0;
1611
1612		if (!area->nr_free)
1613			continue;
1614
1615		spin_lock_irqsave(&cc->zone->lock, flags);
1616		freelist = &area->free_list[MIGRATE_MOVABLE];
1617		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1618			unsigned long pfn;
1619
1620			order_scanned++;
1621			nr_scanned++;
1622			pfn = page_to_pfn(freepage);
1623
1624			if (pfn >= highest)
1625				highest = max(pageblock_start_pfn(pfn),
1626					      cc->zone->zone_start_pfn);
1627
1628			if (pfn >= low_pfn) {
1629				cc->fast_search_fail = 0;
1630				cc->search_order = order;
1631				page = freepage;
1632				break;
1633			}
1634
1635			if (pfn >= min_pfn && pfn > high_pfn) {
1636				high_pfn = pfn;
1637
1638				/* Shorten the scan if a candidate is found */
1639				limit >>= 1;
1640			}
1641
1642			if (order_scanned >= limit)
1643				break;
1644		}
1645
1646		/* Use a maximum candidate pfn if a preferred one was not found */
1647		if (!page && high_pfn) {
1648			page = pfn_to_page(high_pfn);
1649
1650			/* Update freepage for the list reorder below */
1651			freepage = page;
1652		}
1653
1654		/* Reorder to so a future search skips recent pages */
1655		move_freelist_head(freelist, freepage);
1656
1657		/* Isolate the page if available */
1658		if (page) {
1659			if (__isolate_free_page(page, order)) {
1660				set_page_private(page, order);
1661				nr_isolated = 1 << order;
1662				nr_scanned += nr_isolated - 1;
1663				total_isolated += nr_isolated;
1664				cc->nr_freepages += nr_isolated;
1665				list_add_tail(&page->lru, &cc->freepages[order]);
1666				count_compact_events(COMPACTISOLATED, nr_isolated);
1667			} else {
1668				/* If isolation fails, abort the search */
1669				order = cc->search_order + 1;
1670				page = NULL;
1671			}
1672		}
1673
1674		spin_unlock_irqrestore(&cc->zone->lock, flags);
1675
1676		/* Skip fast search if enough freepages isolated */
1677		if (cc->nr_freepages >= cc->nr_migratepages)
1678			break;
1679
1680		/*
1681		 * Smaller scan on next order so the total scan is related
1682		 * to freelist_scan_limit.
1683		 */
1684		if (order_scanned >= limit)
1685			limit = max(1U, limit >> 1);
1686	}
1687
1688	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1689						   nr_scanned, total_isolated);
1690
1691	if (!page) {
1692		cc->fast_search_fail++;
1693		if (scan_start) {
1694			/*
1695			 * Use the highest PFN found above min. If one was
1696			 * not found, be pessimistic for direct compaction
1697			 * and use the min mark.
1698			 */
1699			if (highest >= min_pfn) {
1700				page = pfn_to_page(highest);
1701				cc->free_pfn = highest;
1702			} else {
1703				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1704					page = pageblock_pfn_to_page(min_pfn,
1705						min(pageblock_end_pfn(min_pfn),
1706						    zone_end_pfn(cc->zone)),
1707						cc->zone);
1708					if (page && !suitable_migration_target(cc, page))
1709						page = NULL;
1710
1711					cc->free_pfn = min_pfn;
1712				}
1713			}
1714		}
1715	}
1716
1717	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1718		highest -= pageblock_nr_pages;
1719		cc->zone->compact_cached_free_pfn = highest;
1720	}
1721
1722	cc->total_free_scanned += nr_scanned;
1723	if (!page)
1724		return;
1725
1726	low_pfn = page_to_pfn(page);
1727	fast_isolate_around(cc, low_pfn);
 
1728}
1729
1730/*
1731 * Based on information in the current compact_control, find blocks
1732 * suitable for isolating free pages from and then isolate them.
1733 */
1734static void isolate_freepages(struct compact_control *cc)
1735{
1736	struct zone *zone = cc->zone;
1737	struct page *page;
1738	unsigned long block_start_pfn;	/* start of current pageblock */
1739	unsigned long isolate_start_pfn; /* exact pfn we start at */
1740	unsigned long block_end_pfn;	/* end of current pageblock */
1741	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
 
1742	unsigned int stride;
1743
1744	/* Try a small search of the free lists for a candidate */
1745	fast_isolate_freepages(cc);
1746	if (cc->nr_freepages)
1747		return;
1748
1749	/*
1750	 * Initialise the free scanner. The starting point is where we last
1751	 * successfully isolated from, zone-cached value, or the end of the
1752	 * zone when isolating for the first time. For looping we also need
1753	 * this pfn aligned down to the pageblock boundary, because we do
1754	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1755	 * For ending point, take care when isolating in last pageblock of a
1756	 * zone which ends in the middle of a pageblock.
1757	 * The low boundary is the end of the pageblock the migration scanner
1758	 * is using.
1759	 */
1760	isolate_start_pfn = cc->free_pfn;
1761	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1762	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1763						zone_end_pfn(zone));
1764	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1765	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1766
1767	/*
1768	 * Isolate free pages until enough are available to migrate the
1769	 * pages on cc->migratepages. We stop searching if the migrate
1770	 * and free page scanners meet or enough free pages are isolated.
1771	 */
1772	for (; block_start_pfn >= low_pfn;
1773				block_end_pfn = block_start_pfn,
1774				block_start_pfn -= pageblock_nr_pages,
1775				isolate_start_pfn = block_start_pfn) {
1776		unsigned long nr_isolated;
1777
1778		/*
1779		 * This can iterate a massively long zone without finding any
1780		 * suitable migration targets, so periodically check resched.
1781		 */
1782		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1783			cond_resched();
1784
1785		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1786									zone);
1787		if (!page) {
1788			unsigned long next_pfn;
1789
1790			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1791			if (next_pfn)
1792				block_start_pfn = max(next_pfn, low_pfn);
1793
1794			continue;
1795		}
1796
1797		/* Check the block is suitable for migration */
1798		if (!suitable_migration_target(cc, page))
1799			continue;
1800
1801		/* If isolation recently failed, do not retry */
1802		if (!isolation_suitable(cc, page))
1803			continue;
1804
1805		/* Found a block suitable for isolating free pages from. */
1806		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1807					block_end_pfn, cc->freepages, stride, false);
1808
1809		/* Update the skip hint if the full pageblock was scanned */
1810		if (isolate_start_pfn == block_end_pfn)
1811			update_pageblock_skip(cc, page, block_start_pfn -
1812					      pageblock_nr_pages);
1813
1814		/* Are enough freepages isolated? */
1815		if (cc->nr_freepages >= cc->nr_migratepages) {
1816			if (isolate_start_pfn >= block_end_pfn) {
1817				/*
1818				 * Restart at previous pageblock if more
1819				 * freepages can be isolated next time.
1820				 */
1821				isolate_start_pfn =
1822					block_start_pfn - pageblock_nr_pages;
1823			}
1824			break;
1825		} else if (isolate_start_pfn < block_end_pfn) {
1826			/*
1827			 * If isolation failed early, do not continue
1828			 * needlessly.
1829			 */
1830			break;
1831		}
1832
1833		/* Adjust stride depending on isolation */
1834		if (nr_isolated) {
1835			stride = 1;
1836			continue;
1837		}
1838		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1839	}
1840
1841	/*
1842	 * Record where the free scanner will restart next time. Either we
1843	 * broke from the loop and set isolate_start_pfn based on the last
1844	 * call to isolate_freepages_block(), or we met the migration scanner
1845	 * and the loop terminated due to isolate_start_pfn < low_pfn
1846	 */
1847	cc->free_pfn = isolate_start_pfn;
 
 
 
 
1848}
1849
1850/*
1851 * This is a migrate-callback that "allocates" freepages by taking pages
1852 * from the isolated freelists in the block we are migrating to.
1853 */
1854static struct folio *compaction_alloc(struct folio *src, unsigned long data)
 
1855{
1856	struct compact_control *cc = (struct compact_control *)data;
1857	struct folio *dst;
1858	int order = folio_order(src);
1859	bool has_isolated_pages = false;
1860	int start_order;
1861	struct page *freepage;
1862	unsigned long size;
1863
1864again:
1865	for (start_order = order; start_order < NR_PAGE_ORDERS; start_order++)
1866		if (!list_empty(&cc->freepages[start_order]))
1867			break;
1868
1869	/* no free pages in the list */
1870	if (start_order == NR_PAGE_ORDERS) {
1871		if (has_isolated_pages)
1872			return NULL;
1873		isolate_freepages(cc);
1874		has_isolated_pages = true;
1875		goto again;
1876	}
1877
1878	freepage = list_first_entry(&cc->freepages[start_order], struct page,
1879				lru);
1880	size = 1 << start_order;
1881
1882	list_del(&freepage->lru);
 
1883
1884	while (start_order > order) {
1885		start_order--;
1886		size >>= 1;
1887
1888		list_add(&freepage[size].lru, &cc->freepages[start_order]);
1889		set_page_private(&freepage[size], start_order);
1890	}
1891	dst = (struct folio *)freepage;
1892
1893	post_alloc_hook(&dst->page, order, __GFP_MOVABLE);
1894	if (order)
1895		prep_compound_page(&dst->page, order);
1896	cc->nr_freepages -= 1 << order;
1897	cc->nr_migratepages -= 1 << order;
1898	return page_rmappable_folio(&dst->page);
1899}
1900
1901/*
1902 * This is a migrate-callback that "frees" freepages back to the isolated
1903 * freelist.  All pages on the freelist are from the same zone, so there is no
1904 * special handling needed for NUMA.
1905 */
1906static void compaction_free(struct folio *dst, unsigned long data)
1907{
1908	struct compact_control *cc = (struct compact_control *)data;
1909	int order = folio_order(dst);
1910	struct page *page = &dst->page;
1911
1912	if (folio_put_testzero(dst)) {
1913		free_pages_prepare(page, order);
1914		list_add(&dst->lru, &cc->freepages[order]);
1915		cc->nr_freepages += 1 << order;
1916	}
1917	cc->nr_migratepages += 1 << order;
1918	/*
1919	 * someone else has referenced the page, we cannot take it back to our
1920	 * free list.
1921	 */
1922}
1923
1924/* possible outcome of isolate_migratepages */
1925typedef enum {
1926	ISOLATE_ABORT,		/* Abort compaction now */
1927	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1928	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1929} isolate_migrate_t;
1930
1931/*
1932 * Allow userspace to control policy on scanning the unevictable LRU for
1933 * compactable pages.
1934 */
1935static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1936/*
1937 * Tunable for proactive compaction. It determines how
1938 * aggressively the kernel should compact memory in the
1939 * background. It takes values in the range [0, 100].
1940 */
1941static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1942static int sysctl_extfrag_threshold = 500;
1943static int __read_mostly sysctl_compact_memory;
1944
1945static inline void
1946update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1947{
1948	if (cc->fast_start_pfn == ULONG_MAX)
1949		return;
1950
1951	if (!cc->fast_start_pfn)
1952		cc->fast_start_pfn = pfn;
1953
1954	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1955}
1956
1957static inline unsigned long
1958reinit_migrate_pfn(struct compact_control *cc)
1959{
1960	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1961		return cc->migrate_pfn;
1962
1963	cc->migrate_pfn = cc->fast_start_pfn;
1964	cc->fast_start_pfn = ULONG_MAX;
1965
1966	return cc->migrate_pfn;
1967}
1968
1969/*
1970 * Briefly search the free lists for a migration source that already has
1971 * some free pages to reduce the number of pages that need migration
1972 * before a pageblock is free.
1973 */
1974static unsigned long fast_find_migrateblock(struct compact_control *cc)
1975{
1976	unsigned int limit = freelist_scan_limit(cc);
1977	unsigned int nr_scanned = 0;
1978	unsigned long distance;
1979	unsigned long pfn = cc->migrate_pfn;
1980	unsigned long high_pfn;
1981	int order;
1982	bool found_block = false;
1983
1984	/* Skip hints are relied on to avoid repeats on the fast search */
1985	if (cc->ignore_skip_hint)
1986		return pfn;
1987
1988	/*
1989	 * If the pageblock should be finished then do not select a different
1990	 * pageblock.
1991	 */
1992	if (cc->finish_pageblock)
1993		return pfn;
1994
1995	/*
1996	 * If the migrate_pfn is not at the start of a zone or the start
1997	 * of a pageblock then assume this is a continuation of a previous
1998	 * scan restarted due to COMPACT_CLUSTER_MAX.
1999	 */
2000	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
2001		return pfn;
2002
2003	/*
2004	 * For smaller orders, just linearly scan as the number of pages
2005	 * to migrate should be relatively small and does not necessarily
2006	 * justify freeing up a large block for a small allocation.
2007	 */
2008	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
2009		return pfn;
2010
2011	/*
2012	 * Only allow kcompactd and direct requests for movable pages to
2013	 * quickly clear out a MOVABLE pageblock for allocation. This
2014	 * reduces the risk that a large movable pageblock is freed for
2015	 * an unmovable/reclaimable small allocation.
2016	 */
2017	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
2018		return pfn;
2019
2020	/*
2021	 * When starting the migration scanner, pick any pageblock within the
2022	 * first half of the search space. Otherwise try and pick a pageblock
2023	 * within the first eighth to reduce the chances that a migration
2024	 * target later becomes a source.
2025	 */
2026	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
2027	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
2028		distance >>= 2;
2029	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
2030
2031	for (order = cc->order - 1;
2032	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
2033	     order--) {
2034		struct free_area *area = &cc->zone->free_area[order];
2035		struct list_head *freelist;
2036		unsigned long flags;
2037		struct page *freepage;
2038
2039		if (!area->nr_free)
2040			continue;
2041
2042		spin_lock_irqsave(&cc->zone->lock, flags);
2043		freelist = &area->free_list[MIGRATE_MOVABLE];
2044		list_for_each_entry(freepage, freelist, buddy_list) {
2045			unsigned long free_pfn;
2046
2047			if (nr_scanned++ >= limit) {
2048				move_freelist_tail(freelist, freepage);
2049				break;
2050			}
2051
2052			free_pfn = page_to_pfn(freepage);
2053			if (free_pfn < high_pfn) {
2054				/*
2055				 * Avoid if skipped recently. Ideally it would
2056				 * move to the tail but even safe iteration of
2057				 * the list assumes an entry is deleted, not
2058				 * reordered.
2059				 */
2060				if (get_pageblock_skip(freepage))
 
 
 
2061					continue;
 
2062
2063				/* Reorder to so a future search skips recent pages */
2064				move_freelist_tail(freelist, freepage);
2065
2066				update_fast_start_pfn(cc, free_pfn);
2067				pfn = pageblock_start_pfn(free_pfn);
2068				if (pfn < cc->zone->zone_start_pfn)
2069					pfn = cc->zone->zone_start_pfn;
2070				cc->fast_search_fail = 0;
2071				found_block = true;
 
 
 
 
 
 
2072				break;
2073			}
2074		}
2075		spin_unlock_irqrestore(&cc->zone->lock, flags);
2076	}
2077
2078	cc->total_migrate_scanned += nr_scanned;
2079
2080	/*
2081	 * If fast scanning failed then use a cached entry for a page block
2082	 * that had free pages as the basis for starting a linear scan.
2083	 */
2084	if (!found_block) {
2085		cc->fast_search_fail++;
2086		pfn = reinit_migrate_pfn(cc);
2087	}
2088	return pfn;
2089}
2090
2091/*
2092 * Isolate all pages that can be migrated from the first suitable block,
2093 * starting at the block pointed to by the migrate scanner pfn within
2094 * compact_control.
2095 */
2096static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
2097{
2098	unsigned long block_start_pfn;
2099	unsigned long block_end_pfn;
2100	unsigned long low_pfn;
2101	struct page *page;
2102	const isolate_mode_t isolate_mode =
2103		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
2104		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
2105	bool fast_find_block;
2106
2107	/*
2108	 * Start at where we last stopped, or beginning of the zone as
2109	 * initialized by compact_zone(). The first failure will use
2110	 * the lowest PFN as the starting point for linear scanning.
2111	 */
2112	low_pfn = fast_find_migrateblock(cc);
2113	block_start_pfn = pageblock_start_pfn(low_pfn);
2114	if (block_start_pfn < cc->zone->zone_start_pfn)
2115		block_start_pfn = cc->zone->zone_start_pfn;
2116
2117	/*
2118	 * fast_find_migrateblock() has already ensured the pageblock is not
2119	 * set with a skipped flag, so to avoid the isolation_suitable check
2120	 * below again, check whether the fast search was successful.
2121	 */
2122	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2123
2124	/* Only scan within a pageblock boundary */
2125	block_end_pfn = pageblock_end_pfn(low_pfn);
2126
2127	/*
2128	 * Iterate over whole pageblocks until we find the first suitable.
2129	 * Do not cross the free scanner.
2130	 */
2131	for (; block_end_pfn <= cc->free_pfn;
2132			fast_find_block = false,
2133			cc->migrate_pfn = low_pfn = block_end_pfn,
2134			block_start_pfn = block_end_pfn,
2135			block_end_pfn += pageblock_nr_pages) {
2136
2137		/*
2138		 * This can potentially iterate a massively long zone with
2139		 * many pageblocks unsuitable, so periodically check if we
2140		 * need to schedule.
2141		 */
2142		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2143			cond_resched();
2144
2145		page = pageblock_pfn_to_page(block_start_pfn,
2146						block_end_pfn, cc->zone);
2147		if (!page) {
2148			unsigned long next_pfn;
2149
2150			next_pfn = skip_offline_sections(block_start_pfn);
2151			if (next_pfn)
2152				block_end_pfn = min(next_pfn, cc->free_pfn);
2153			continue;
2154		}
2155
2156		/*
2157		 * If isolation recently failed, do not retry. Only check the
2158		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2159		 * to be visited multiple times. Assume skip was checked
2160		 * before making it "skip" so other compaction instances do
2161		 * not scan the same block.
2162		 */
2163		if ((pageblock_aligned(low_pfn) ||
2164		     low_pfn == cc->zone->zone_start_pfn) &&
2165		    !fast_find_block && !isolation_suitable(cc, page))
2166			continue;
2167
2168		/*
2169		 * For async direct compaction, only scan the pageblocks of the
2170		 * same migratetype without huge pages. Async direct compaction
2171		 * is optimistic to see if the minimum amount of work satisfies
2172		 * the allocation. The cached PFN is updated as it's possible
2173		 * that all remaining blocks between source and target are
2174		 * unsuitable and the compaction scanners fail to meet.
2175		 */
2176		if (!suitable_migration_source(cc, page)) {
2177			update_cached_migrate(cc, block_end_pfn);
2178			continue;
2179		}
2180
2181		/* Perform the isolation */
2182		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2183						isolate_mode))
 
 
2184			return ISOLATE_ABORT;
2185
2186		/*
2187		 * Either we isolated something and proceed with migration. Or
2188		 * we failed and compact_zone should decide if we should
2189		 * continue or not.
2190		 */
2191		break;
2192	}
2193
 
 
 
2194	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2195}
2196
2197/*
2198 * Determine whether kswapd is (or recently was!) running on this node.
2199 *
2200 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2201 * zero it.
2202 */
2203static bool kswapd_is_running(pg_data_t *pgdat)
2204{
2205	bool running;
2206
2207	pgdat_kswapd_lock(pgdat);
2208	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2209	pgdat_kswapd_unlock(pgdat);
2210
2211	return running;
2212}
2213
2214/*
2215 * A zone's fragmentation score is the external fragmentation wrt to the
2216 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2217 */
2218static unsigned int fragmentation_score_zone(struct zone *zone)
2219{
2220	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2221}
2222
2223/*
2224 * A weighted zone's fragmentation score is the external fragmentation
2225 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2226 * returns a value in the range [0, 100].
2227 *
2228 * The scaling factor ensures that proactive compaction focuses on larger
2229 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2230 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2231 * and thus never exceeds the high threshold for proactive compaction.
2232 */
2233static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2234{
2235	unsigned long score;
2236
2237	score = zone->present_pages * fragmentation_score_zone(zone);
 
2238	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2239}
2240
2241/*
2242 * The per-node proactive (background) compaction process is started by its
2243 * corresponding kcompactd thread when the node's fragmentation score
2244 * exceeds the high threshold. The compaction process remains active till
2245 * the node's score falls below the low threshold, or one of the back-off
2246 * conditions is met.
2247 */
2248static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2249{
2250	unsigned int score = 0;
2251	int zoneid;
2252
2253	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2254		struct zone *zone;
2255
2256		zone = &pgdat->node_zones[zoneid];
2257		if (!populated_zone(zone))
2258			continue;
2259		score += fragmentation_score_zone_weighted(zone);
2260	}
2261
2262	return score;
2263}
2264
2265static unsigned int fragmentation_score_wmark(bool low)
2266{
2267	unsigned int wmark_low;
2268
2269	/*
2270	 * Cap the low watermark to avoid excessive compaction
2271	 * activity in case a user sets the proactiveness tunable
2272	 * close to 100 (maximum).
2273	 */
2274	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2275	return low ? wmark_low : min(wmark_low + 10, 100U);
2276}
2277
2278static bool should_proactive_compact_node(pg_data_t *pgdat)
2279{
2280	int wmark_high;
2281
2282	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2283		return false;
2284
2285	wmark_high = fragmentation_score_wmark(false);
2286	return fragmentation_score_node(pgdat) > wmark_high;
2287}
2288
2289static enum compact_result __compact_finished(struct compact_control *cc)
2290{
2291	unsigned int order;
2292	const int migratetype = cc->migratetype;
2293	int ret;
2294
2295	/* Compaction run completes if the migrate and free scanner meet */
2296	if (compact_scanners_met(cc)) {
2297		/* Let the next compaction start anew. */
2298		reset_cached_positions(cc->zone);
2299
2300		/*
2301		 * Mark that the PG_migrate_skip information should be cleared
2302		 * by kswapd when it goes to sleep. kcompactd does not set the
2303		 * flag itself as the decision to be clear should be directly
2304		 * based on an allocation request.
2305		 */
2306		if (cc->direct_compaction)
2307			cc->zone->compact_blockskip_flush = true;
2308
2309		if (cc->whole_zone)
2310			return COMPACT_COMPLETE;
2311		else
2312			return COMPACT_PARTIAL_SKIPPED;
2313	}
2314
2315	if (cc->proactive_compaction) {
2316		int score, wmark_low;
2317		pg_data_t *pgdat;
2318
2319		pgdat = cc->zone->zone_pgdat;
2320		if (kswapd_is_running(pgdat))
2321			return COMPACT_PARTIAL_SKIPPED;
2322
2323		score = fragmentation_score_zone(cc->zone);
2324		wmark_low = fragmentation_score_wmark(true);
2325
2326		if (score > wmark_low)
2327			ret = COMPACT_CONTINUE;
2328		else
2329			ret = COMPACT_SUCCESS;
2330
2331		goto out;
2332	}
2333
2334	if (is_via_compact_memory(cc->order))
2335		return COMPACT_CONTINUE;
2336
2337	/*
2338	 * Always finish scanning a pageblock to reduce the possibility of
2339	 * fallbacks in the future. This is particularly important when
2340	 * migration source is unmovable/reclaimable but it's not worth
2341	 * special casing.
2342	 */
2343	if (!pageblock_aligned(cc->migrate_pfn))
2344		return COMPACT_CONTINUE;
2345
2346	/* Direct compactor: Is a suitable page free? */
2347	ret = COMPACT_NO_SUITABLE_PAGE;
2348	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2349		struct free_area *area = &cc->zone->free_area[order];
2350		bool can_steal;
2351
2352		/* Job done if page is free of the right migratetype */
2353		if (!free_area_empty(area, migratetype))
2354			return COMPACT_SUCCESS;
2355
2356#ifdef CONFIG_CMA
2357		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2358		if (migratetype == MIGRATE_MOVABLE &&
2359			!free_area_empty(area, MIGRATE_CMA))
2360			return COMPACT_SUCCESS;
2361#endif
2362		/*
2363		 * Job done if allocation would steal freepages from
2364		 * other migratetype buddy lists.
2365		 */
2366		if (find_suitable_fallback(area, order, migratetype,
2367						true, &can_steal) != -1)
2368			/*
2369			 * Movable pages are OK in any pageblock. If we are
2370			 * stealing for a non-movable allocation, make sure
2371			 * we finish compacting the current pageblock first
2372			 * (which is assured by the above migrate_pfn align
2373			 * check) so it is as free as possible and we won't
2374			 * have to steal another one soon.
2375			 */
2376			return COMPACT_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
2377	}
2378
2379out:
2380	if (cc->contended || fatal_signal_pending(current))
2381		ret = COMPACT_CONTENDED;
2382
2383	return ret;
2384}
2385
2386static enum compact_result compact_finished(struct compact_control *cc)
2387{
2388	int ret;
2389
2390	ret = __compact_finished(cc);
2391	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2392	if (ret == COMPACT_NO_SUITABLE_PAGE)
2393		ret = COMPACT_CONTINUE;
2394
2395	return ret;
2396}
2397
2398static bool __compaction_suitable(struct zone *zone, int order,
2399				  int highest_zoneidx,
2400				  unsigned long wmark_target)
 
 
 
 
 
 
 
 
2401{
2402	unsigned long watermark;
 
 
 
 
 
 
 
 
 
 
 
 
 
2403	/*
2404	 * Watermarks for order-0 must be met for compaction to be able to
2405	 * isolate free pages for migration targets. This means that the
2406	 * watermark and alloc_flags have to match, or be more pessimistic than
2407	 * the check in __isolate_free_page(). We don't use the direct
2408	 * compactor's alloc_flags, as they are not relevant for freepage
2409	 * isolation. We however do use the direct compactor's highest_zoneidx
2410	 * to skip over zones where lowmem reserves would prevent allocation
2411	 * even if compaction succeeds.
2412	 * For costly orders, we require low watermark instead of min for
2413	 * compaction to proceed to increase its chances.
2414	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2415	 * suitable migration targets
2416	 */
2417	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2418				low_wmark_pages(zone) : min_wmark_pages(zone);
2419	watermark += compact_gap(order);
2420	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2421				   ALLOC_CMA, wmark_target);
 
 
 
2422}
2423
2424/*
2425 * compaction_suitable: Is this suitable to run compaction on this zone now?
2426 */
2427bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2428{
2429	enum compact_result compact_result;
2430	bool suitable;
2431
2432	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2433					 zone_page_state(zone, NR_FREE_PAGES));
2434	/*
2435	 * fragmentation index determines if allocation failures are due to
2436	 * low memory or external fragmentation
2437	 *
2438	 * index of -1000 would imply allocations might succeed depending on
2439	 * watermarks, but we already failed the high-order watermark check
2440	 * index towards 0 implies failure is due to lack of memory
2441	 * index towards 1000 implies failure is due to fragmentation
2442	 *
2443	 * Only compact if a failure would be due to fragmentation. Also
2444	 * ignore fragindex for non-costly orders where the alternative to
2445	 * a successful reclaim/compaction is OOM. Fragindex and the
2446	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2447	 * excessive compaction for costly orders, but it should not be at the
2448	 * expense of system stability.
2449	 */
2450	if (suitable) {
2451		compact_result = COMPACT_CONTINUE;
2452		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2453			int fragindex = fragmentation_index(zone, order);
2454
2455			if (fragindex >= 0 &&
2456			    fragindex <= sysctl_extfrag_threshold) {
2457				suitable = false;
2458				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2459			}
2460		}
2461	} else {
2462		compact_result = COMPACT_SKIPPED;
2463	}
2464
2465	trace_mm_compaction_suitable(zone, order, compact_result);
 
 
2466
2467	return suitable;
2468}
2469
2470bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2471		int alloc_flags)
2472{
2473	struct zone *zone;
2474	struct zoneref *z;
2475
2476	/*
2477	 * Make sure at least one zone would pass __compaction_suitable if we continue
2478	 * retrying the reclaim.
2479	 */
2480	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2481				ac->highest_zoneidx, ac->nodemask) {
2482		unsigned long available;
 
2483
2484		/*
2485		 * Do not consider all the reclaimable memory because we do not
2486		 * want to trash just for a single high order allocation which
2487		 * is even not guaranteed to appear even if __compaction_suitable
2488		 * is happy about the watermark check.
2489		 */
2490		available = zone_reclaimable_pages(zone) / order;
2491		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2492		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2493					  available))
 
2494			return true;
2495	}
2496
2497	return false;
2498}
2499
2500/*
2501 * Should we do compaction for target allocation order.
2502 * Return COMPACT_SUCCESS if allocation for target order can be already
2503 * satisfied
2504 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2505 * Return COMPACT_CONTINUE if compaction for target order should be ran
2506 */
2507static enum compact_result
2508compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2509				 int highest_zoneidx, unsigned int alloc_flags)
2510{
2511	unsigned long watermark;
2512
2513	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2514	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2515			      alloc_flags))
2516		return COMPACT_SUCCESS;
2517
2518	if (!compaction_suitable(zone, order, highest_zoneidx))
2519		return COMPACT_SKIPPED;
2520
2521	return COMPACT_CONTINUE;
2522}
2523
2524static enum compact_result
2525compact_zone(struct compact_control *cc, struct capture_control *capc)
2526{
2527	enum compact_result ret;
2528	unsigned long start_pfn = cc->zone->zone_start_pfn;
2529	unsigned long end_pfn = zone_end_pfn(cc->zone);
2530	unsigned long last_migrated_pfn;
2531	const bool sync = cc->mode != MIGRATE_ASYNC;
2532	bool update_cached;
2533	unsigned int nr_succeeded = 0, nr_migratepages;
2534	int order;
2535
2536	/*
2537	 * These counters track activities during zone compaction.  Initialize
2538	 * them before compacting a new zone.
2539	 */
2540	cc->total_migrate_scanned = 0;
2541	cc->total_free_scanned = 0;
2542	cc->nr_migratepages = 0;
2543	cc->nr_freepages = 0;
2544	for (order = 0; order < NR_PAGE_ORDERS; order++)
2545		INIT_LIST_HEAD(&cc->freepages[order]);
2546	INIT_LIST_HEAD(&cc->migratepages);
2547
2548	cc->migratetype = gfp_migratetype(cc->gfp_mask);
 
 
 
 
 
2549
2550	if (!is_via_compact_memory(cc->order)) {
2551		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2552						       cc->highest_zoneidx,
2553						       cc->alloc_flags);
2554		if (ret != COMPACT_CONTINUE)
2555			return ret;
2556	}
2557
2558	/*
2559	 * Clear pageblock skip if there were failures recently and compaction
2560	 * is about to be retried after being deferred.
2561	 */
2562	if (compaction_restarting(cc->zone, cc->order))
2563		__reset_isolation_suitable(cc->zone);
2564
2565	/*
2566	 * Setup to move all movable pages to the end of the zone. Used cached
2567	 * information on where the scanners should start (unless we explicitly
2568	 * want to compact the whole zone), but check that it is initialised
2569	 * by ensuring the values are within zone boundaries.
2570	 */
2571	cc->fast_start_pfn = 0;
2572	if (cc->whole_zone) {
2573		cc->migrate_pfn = start_pfn;
2574		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2575	} else {
2576		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2577		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2578		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2579			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2580			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2581		}
2582		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2583			cc->migrate_pfn = start_pfn;
2584			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2585			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2586		}
2587
2588		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2589			cc->whole_zone = true;
2590	}
2591
2592	last_migrated_pfn = 0;
2593
2594	/*
2595	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2596	 * the basis that some migrations will fail in ASYNC mode. However,
2597	 * if the cached PFNs match and pageblocks are skipped due to having
2598	 * no isolation candidates, then the sync state does not matter.
2599	 * Until a pageblock with isolation candidates is found, keep the
2600	 * cached PFNs in sync to avoid revisiting the same blocks.
2601	 */
2602	update_cached = !sync &&
2603		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2604
2605	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
 
2606
2607	/* lru_add_drain_all could be expensive with involving other CPUs */
2608	lru_add_drain();
2609
2610	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2611		int err;
2612		unsigned long iteration_start_pfn = cc->migrate_pfn;
2613
2614		/*
2615		 * Avoid multiple rescans of the same pageblock which can
2616		 * happen if a page cannot be isolated (dirty/writeback in
2617		 * async mode) or if the migrated pages are being allocated
2618		 * before the pageblock is cleared.  The first rescan will
2619		 * capture the entire pageblock for migration. If it fails,
2620		 * it'll be marked skip and scanning will proceed as normal.
2621		 */
2622		cc->finish_pageblock = false;
2623		if (pageblock_start_pfn(last_migrated_pfn) ==
2624		    pageblock_start_pfn(iteration_start_pfn)) {
2625			cc->finish_pageblock = true;
2626		}
2627
2628rescan:
2629		switch (isolate_migratepages(cc)) {
2630		case ISOLATE_ABORT:
2631			ret = COMPACT_CONTENDED;
2632			putback_movable_pages(&cc->migratepages);
2633			cc->nr_migratepages = 0;
2634			goto out;
2635		case ISOLATE_NONE:
2636			if (update_cached) {
2637				cc->zone->compact_cached_migrate_pfn[1] =
2638					cc->zone->compact_cached_migrate_pfn[0];
2639			}
2640
2641			/*
2642			 * We haven't isolated and migrated anything, but
2643			 * there might still be unflushed migrations from
2644			 * previous cc->order aligned block.
2645			 */
2646			goto check_drain;
2647		case ISOLATE_SUCCESS:
2648			update_cached = false;
2649			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2650				pageblock_start_pfn(cc->migrate_pfn - 1));
2651		}
2652
2653		/*
2654		 * Record the number of pages to migrate since the
2655		 * compaction_alloc/free() will update cc->nr_migratepages
2656		 * properly.
2657		 */
2658		nr_migratepages = cc->nr_migratepages;
2659		err = migrate_pages(&cc->migratepages, compaction_alloc,
2660				compaction_free, (unsigned long)cc, cc->mode,
2661				MR_COMPACTION, &nr_succeeded);
2662
2663		trace_mm_compaction_migratepages(nr_migratepages, nr_succeeded);
 
2664
2665		/* All pages were either migrated or will be released */
2666		cc->nr_migratepages = 0;
2667		if (err) {
2668			putback_movable_pages(&cc->migratepages);
2669			/*
2670			 * migrate_pages() may return -ENOMEM when scanners meet
2671			 * and we want compact_finished() to detect it
2672			 */
2673			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2674				ret = COMPACT_CONTENDED;
2675				goto out;
2676			}
2677			/*
2678			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2679			 * within the pageblock_order-aligned block and
2680			 * fast_find_migrateblock may be used then scan the
2681			 * remainder of the pageblock. This will mark the
2682			 * pageblock "skip" to avoid rescanning in the near
2683			 * future. This will isolate more pages than necessary
2684			 * for the request but avoid loops due to
2685			 * fast_find_migrateblock revisiting blocks that were
2686			 * recently partially scanned.
2687			 */
2688			if (!pageblock_aligned(cc->migrate_pfn) &&
2689			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2690			    (cc->mode < MIGRATE_SYNC)) {
2691				cc->finish_pageblock = true;
2692
2693				/*
2694				 * Draining pcplists does not help THP if
2695				 * any page failed to migrate. Even after
2696				 * drain, the pageblock will not be free.
2697				 */
2698				if (cc->order == COMPACTION_HPAGE_ORDER)
2699					last_migrated_pfn = 0;
2700
2701				goto rescan;
2702			}
2703		}
2704
2705		/* Stop if a page has been captured */
2706		if (capc && capc->page) {
2707			ret = COMPACT_SUCCESS;
2708			break;
2709		}
2710
2711check_drain:
2712		/*
2713		 * Has the migration scanner moved away from the previous
2714		 * cc->order aligned block where we migrated from? If yes,
2715		 * flush the pages that were freed, so that they can merge and
2716		 * compact_finished() can detect immediately if allocation
2717		 * would succeed.
2718		 */
2719		if (cc->order > 0 && last_migrated_pfn) {
2720			unsigned long current_block_start =
2721				block_start_pfn(cc->migrate_pfn, cc->order);
2722
2723			if (last_migrated_pfn < current_block_start) {
2724				lru_add_drain_cpu_zone(cc->zone);
2725				/* No more flushing until we migrate again */
2726				last_migrated_pfn = 0;
2727			}
2728		}
 
 
 
 
 
 
2729	}
2730
2731out:
2732	/*
2733	 * Release free pages and update where the free scanner should restart,
2734	 * so we don't leave any returned pages behind in the next attempt.
2735	 */
2736	if (cc->nr_freepages > 0) {
2737		unsigned long free_pfn = release_free_list(cc->freepages);
2738
2739		cc->nr_freepages = 0;
2740		VM_BUG_ON(free_pfn == 0);
2741		/* The cached pfn is always the first in a pageblock */
2742		free_pfn = pageblock_start_pfn(free_pfn);
2743		/*
2744		 * Only go back, not forward. The cached pfn might have been
2745		 * already reset to zone end in compact_finished()
2746		 */
2747		if (free_pfn > cc->zone->compact_cached_free_pfn)
2748			cc->zone->compact_cached_free_pfn = free_pfn;
2749	}
2750
2751	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2752	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2753
2754	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2755
2756	VM_BUG_ON(!list_empty(&cc->migratepages));
2757
2758	return ret;
2759}
2760
2761static enum compact_result compact_zone_order(struct zone *zone, int order,
2762		gfp_t gfp_mask, enum compact_priority prio,
2763		unsigned int alloc_flags, int highest_zoneidx,
2764		struct page **capture)
2765{
2766	enum compact_result ret;
2767	struct compact_control cc = {
2768		.order = order,
2769		.search_order = order,
2770		.gfp_mask = gfp_mask,
2771		.zone = zone,
2772		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2773					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2774		.alloc_flags = alloc_flags,
2775		.highest_zoneidx = highest_zoneidx,
2776		.direct_compaction = true,
2777		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2778		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2779		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2780	};
2781	struct capture_control capc = {
2782		.cc = &cc,
2783		.page = NULL,
2784	};
2785
2786	/*
2787	 * Make sure the structs are really initialized before we expose the
2788	 * capture control, in case we are interrupted and the interrupt handler
2789	 * frees a page.
2790	 */
2791	barrier();
2792	WRITE_ONCE(current->capture_control, &capc);
2793
2794	ret = compact_zone(&cc, &capc);
2795
 
 
 
2796	/*
2797	 * Make sure we hide capture control first before we read the captured
2798	 * page pointer, otherwise an interrupt could free and capture a page
2799	 * and we would leak it.
2800	 */
2801	WRITE_ONCE(current->capture_control, NULL);
2802	*capture = READ_ONCE(capc.page);
2803	/*
2804	 * Technically, it is also possible that compaction is skipped but
2805	 * the page is still captured out of luck(IRQ came and freed the page).
2806	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2807	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2808	 */
2809	if (*capture)
2810		ret = COMPACT_SUCCESS;
2811
2812	return ret;
2813}
2814
 
 
2815/**
2816 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2817 * @gfp_mask: The GFP mask of the current allocation
2818 * @order: The order of the current allocation
2819 * @alloc_flags: The allocation flags of the current allocation
2820 * @ac: The context of current allocation
2821 * @prio: Determines how hard direct compaction should try to succeed
2822 * @capture: Pointer to free page created by compaction will be stored here
2823 *
2824 * This is the main entry point for direct page compaction.
2825 */
2826enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2827		unsigned int alloc_flags, const struct alloc_context *ac,
2828		enum compact_priority prio, struct page **capture)
2829{
 
2830	struct zoneref *z;
2831	struct zone *zone;
2832	enum compact_result rc = COMPACT_SKIPPED;
2833
2834	if (!gfp_compaction_allowed(gfp_mask))
 
 
 
 
2835		return COMPACT_SKIPPED;
2836
2837	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2838
2839	/* Compact each zone in the list */
2840	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2841					ac->highest_zoneidx, ac->nodemask) {
2842		enum compact_result status;
2843
2844		if (prio > MIN_COMPACT_PRIORITY
2845					&& compaction_deferred(zone, order)) {
2846			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2847			continue;
2848		}
2849
2850		status = compact_zone_order(zone, order, gfp_mask, prio,
2851				alloc_flags, ac->highest_zoneidx, capture);
2852		rc = max(status, rc);
2853
2854		/* The allocation should succeed, stop compacting */
2855		if (status == COMPACT_SUCCESS) {
2856			/*
2857			 * We think the allocation will succeed in this zone,
2858			 * but it is not certain, hence the false. The caller
2859			 * will repeat this with true if allocation indeed
2860			 * succeeds in this zone.
2861			 */
2862			compaction_defer_reset(zone, order, false);
2863
2864			break;
2865		}
2866
2867		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2868					status == COMPACT_PARTIAL_SKIPPED))
2869			/*
2870			 * We think that allocation won't succeed in this zone
2871			 * so we defer compaction there. If it ends up
2872			 * succeeding after all, it will be reset.
2873			 */
2874			defer_compaction(zone, order);
2875
2876		/*
2877		 * We might have stopped compacting due to need_resched() in
2878		 * async compaction, or due to a fatal signal detected. In that
2879		 * case do not try further zones
2880		 */
2881		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2882					|| fatal_signal_pending(current))
2883			break;
2884	}
2885
2886	return rc;
2887}
2888
2889/*
2890 * compact_node() - compact all zones within a node
2891 * @pgdat: The node page data
2892 * @proactive: Whether the compaction is proactive
2893 *
2894 * For proactive compaction, compact till each zone's fragmentation score
2895 * reaches within proactive compaction thresholds (as determined by the
2896 * proactiveness tunable), it is possible that the function returns before
2897 * reaching score targets due to various back-off conditions, such as,
2898 * contention on per-node or per-zone locks.
2899 */
2900static int compact_node(pg_data_t *pgdat, bool proactive)
2901{
2902	int zoneid;
2903	struct zone *zone;
2904	struct compact_control cc = {
2905		.order = -1,
2906		.mode = proactive ? MIGRATE_SYNC_LIGHT : MIGRATE_SYNC,
2907		.ignore_skip_hint = true,
2908		.whole_zone = true,
2909		.gfp_mask = GFP_KERNEL,
2910		.proactive_compaction = proactive,
2911	};
2912
2913	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2914		zone = &pgdat->node_zones[zoneid];
2915		if (!populated_zone(zone))
2916			continue;
2917
2918		if (fatal_signal_pending(current))
2919			return -EINTR;
2920
2921		cc.zone = zone;
2922
2923		compact_zone(&cc, NULL);
2924
2925		if (proactive) {
2926			count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2927					     cc.total_migrate_scanned);
2928			count_compact_events(KCOMPACTD_FREE_SCANNED,
2929					     cc.total_free_scanned);
2930		}
2931	}
2932
2933	return 0;
2934}
2935
2936/* Compact all zones of all nodes in the system */
2937static int compact_nodes(void)
2938{
2939	int ret, nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940
2941	/* Flush pending updates to the LRU lists */
2942	lru_add_drain_all();
 
2943
2944	for_each_online_node(nid) {
2945		ret = compact_node(NODE_DATA(nid), false);
2946		if (ret)
2947			return ret;
2948	}
2949
2950	return 0;
2951}
2952
2953static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2954		void *buffer, size_t *length, loff_t *ppos)
2955{
2956	int rc, nid;
2957
2958	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2959	if (rc)
2960		return rc;
2961
2962	if (write && sysctl_compaction_proactiveness) {
2963		for_each_online_node(nid) {
2964			pg_data_t *pgdat = NODE_DATA(nid);
2965
2966			if (pgdat->proactive_compact_trigger)
2967				continue;
2968
2969			pgdat->proactive_compact_trigger = true;
2970			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2971							     pgdat->nr_zones - 1);
2972			wake_up_interruptible(&pgdat->kcompactd_wait);
2973		}
2974	}
2975
2976	return 0;
2977}
2978
2979/*
2980 * This is the entry point for compacting all nodes via
2981 * /proc/sys/vm/compact_memory
2982 */
2983static int sysctl_compaction_handler(struct ctl_table *table, int write,
2984			void *buffer, size_t *length, loff_t *ppos)
2985{
2986	int ret;
2987
2988	ret = proc_dointvec(table, write, buffer, length, ppos);
2989	if (ret)
2990		return ret;
2991
2992	if (sysctl_compact_memory != 1)
2993		return -EINVAL;
2994
2995	if (write)
2996		ret = compact_nodes();
2997
2998	return ret;
2999}
3000
3001#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
3002static ssize_t compact_store(struct device *dev,
3003			     struct device_attribute *attr,
3004			     const char *buf, size_t count)
3005{
3006	int nid = dev->id;
3007
3008	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
3009		/* Flush pending updates to the LRU lists */
3010		lru_add_drain_all();
3011
3012		compact_node(NODE_DATA(nid), false);
3013	}
3014
3015	return count;
3016}
3017static DEVICE_ATTR_WO(compact);
3018
3019int compaction_register_node(struct node *node)
3020{
3021	return device_create_file(&node->dev, &dev_attr_compact);
3022}
3023
3024void compaction_unregister_node(struct node *node)
3025{
3026	device_remove_file(&node->dev, &dev_attr_compact);
3027}
3028#endif /* CONFIG_SYSFS && CONFIG_NUMA */
3029
3030static inline bool kcompactd_work_requested(pg_data_t *pgdat)
3031{
3032	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
3033		pgdat->proactive_compact_trigger;
3034}
3035
3036static bool kcompactd_node_suitable(pg_data_t *pgdat)
3037{
3038	int zoneid;
3039	struct zone *zone;
3040	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
3041	enum compact_result ret;
3042
3043	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
3044		zone = &pgdat->node_zones[zoneid];
3045
3046		if (!populated_zone(zone))
3047			continue;
3048
3049		ret = compaction_suit_allocation_order(zone,
3050				pgdat->kcompactd_max_order,
3051				highest_zoneidx, ALLOC_WMARK_MIN);
3052		if (ret == COMPACT_CONTINUE)
3053			return true;
3054	}
3055
3056	return false;
3057}
3058
3059static void kcompactd_do_work(pg_data_t *pgdat)
3060{
3061	/*
3062	 * With no special task, compact all zones so that a page of requested
3063	 * order is allocatable.
3064	 */
3065	int zoneid;
3066	struct zone *zone;
3067	struct compact_control cc = {
3068		.order = pgdat->kcompactd_max_order,
3069		.search_order = pgdat->kcompactd_max_order,
3070		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
3071		.mode = MIGRATE_SYNC_LIGHT,
3072		.ignore_skip_hint = false,
3073		.gfp_mask = GFP_KERNEL,
3074	};
3075	enum compact_result ret;
3076
3077	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
3078							cc.highest_zoneidx);
3079	count_compact_event(KCOMPACTD_WAKE);
3080
3081	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
3082		int status;
3083
3084		zone = &pgdat->node_zones[zoneid];
3085		if (!populated_zone(zone))
3086			continue;
3087
3088		if (compaction_deferred(zone, cc.order))
3089			continue;
3090
3091		ret = compaction_suit_allocation_order(zone,
3092				cc.order, zoneid, ALLOC_WMARK_MIN);
3093		if (ret != COMPACT_CONTINUE)
3094			continue;
3095
3096		if (kthread_should_stop())
3097			return;
3098
3099		cc.zone = zone;
3100		status = compact_zone(&cc, NULL);
3101
3102		if (status == COMPACT_SUCCESS) {
3103			compaction_defer_reset(zone, cc.order, false);
3104		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3105			/*
3106			 * Buddy pages may become stranded on pcps that could
3107			 * otherwise coalesce on the zone's free area for
3108			 * order >= cc.order.  This is ratelimited by the
3109			 * upcoming deferral.
3110			 */
3111			drain_all_pages(zone);
3112
3113			/*
3114			 * We use sync migration mode here, so we defer like
3115			 * sync direct compaction does.
3116			 */
3117			defer_compaction(zone, cc.order);
3118		}
3119
3120		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3121				     cc.total_migrate_scanned);
3122		count_compact_events(KCOMPACTD_FREE_SCANNED,
3123				     cc.total_free_scanned);
 
 
 
3124	}
3125
3126	/*
3127	 * Regardless of success, we are done until woken up next. But remember
3128	 * the requested order/highest_zoneidx in case it was higher/tighter
3129	 * than our current ones
3130	 */
3131	if (pgdat->kcompactd_max_order <= cc.order)
3132		pgdat->kcompactd_max_order = 0;
3133	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3134		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3135}
3136
3137void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3138{
3139	if (!order)
3140		return;
3141
3142	if (pgdat->kcompactd_max_order < order)
3143		pgdat->kcompactd_max_order = order;
3144
3145	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3146		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3147
3148	/*
3149	 * Pairs with implicit barrier in wait_event_freezable()
3150	 * such that wakeups are not missed.
3151	 */
3152	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3153		return;
3154
3155	if (!kcompactd_node_suitable(pgdat))
3156		return;
3157
3158	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3159							highest_zoneidx);
3160	wake_up_interruptible(&pgdat->kcompactd_wait);
3161}
3162
3163/*
3164 * The background compaction daemon, started as a kernel thread
3165 * from the init process.
3166 */
3167static int kcompactd(void *p)
3168{
3169	pg_data_t *pgdat = (pg_data_t *)p;
3170	struct task_struct *tsk = current;
3171	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3172	long timeout = default_timeout;
3173
3174	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3175
3176	if (!cpumask_empty(cpumask))
3177		set_cpus_allowed_ptr(tsk, cpumask);
3178
3179	set_freezable();
3180
3181	pgdat->kcompactd_max_order = 0;
3182	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3183
3184	while (!kthread_should_stop()) {
3185		unsigned long pflags;
3186
3187		/*
3188		 * Avoid the unnecessary wakeup for proactive compaction
3189		 * when it is disabled.
3190		 */
3191		if (!sysctl_compaction_proactiveness)
3192			timeout = MAX_SCHEDULE_TIMEOUT;
3193		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3194		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3195			kcompactd_work_requested(pgdat), timeout) &&
3196			!pgdat->proactive_compact_trigger) {
3197
3198			psi_memstall_enter(&pflags);
3199			kcompactd_do_work(pgdat);
3200			psi_memstall_leave(&pflags);
3201			/*
3202			 * Reset the timeout value. The defer timeout from
3203			 * proactive compaction is lost here but that is fine
3204			 * as the condition of the zone changing substantionally
3205			 * then carrying on with the previous defer interval is
3206			 * not useful.
3207			 */
3208			timeout = default_timeout;
3209			continue;
3210		}
3211
3212		/*
3213		 * Start the proactive work with default timeout. Based
3214		 * on the fragmentation score, this timeout is updated.
3215		 */
3216		timeout = default_timeout;
3217		if (should_proactive_compact_node(pgdat)) {
3218			unsigned int prev_score, score;
3219
 
 
 
 
3220			prev_score = fragmentation_score_node(pgdat);
3221			compact_node(pgdat, true);
3222			score = fragmentation_score_node(pgdat);
3223			/*
3224			 * Defer proactive compaction if the fragmentation
3225			 * score did not go down i.e. no progress made.
3226			 */
3227			if (unlikely(score >= prev_score))
3228				timeout =
3229				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3230		}
3231		if (unlikely(pgdat->proactive_compact_trigger))
3232			pgdat->proactive_compact_trigger = false;
3233	}
3234
3235	return 0;
3236}
3237
3238/*
3239 * This kcompactd start function will be called by init and node-hot-add.
3240 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3241 */
3242void __meminit kcompactd_run(int nid)
3243{
3244	pg_data_t *pgdat = NODE_DATA(nid);
 
3245
3246	if (pgdat->kcompactd)
3247		return;
3248
3249	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3250	if (IS_ERR(pgdat->kcompactd)) {
3251		pr_err("Failed to start kcompactd on node %d\n", nid);
 
3252		pgdat->kcompactd = NULL;
3253	}
 
3254}
3255
3256/*
3257 * Called by memory hotplug when all memory in a node is offlined. Caller must
3258 * be holding mem_hotplug_begin/done().
3259 */
3260void __meminit kcompactd_stop(int nid)
3261{
3262	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3263
3264	if (kcompactd) {
3265		kthread_stop(kcompactd);
3266		NODE_DATA(nid)->kcompactd = NULL;
3267	}
3268}
3269
3270/*
3271 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3272 * not required for correctness. So if the last cpu in a node goes
3273 * away, we get changed to run anywhere: as the first one comes back,
3274 * restore their cpu bindings.
3275 */
3276static int kcompactd_cpu_online(unsigned int cpu)
3277{
3278	int nid;
3279
3280	for_each_node_state(nid, N_MEMORY) {
3281		pg_data_t *pgdat = NODE_DATA(nid);
3282		const struct cpumask *mask;
3283
3284		mask = cpumask_of_node(pgdat->node_id);
3285
3286		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3287			/* One of our CPUs online: restore mask */
3288			if (pgdat->kcompactd)
3289				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3290	}
3291	return 0;
3292}
3293
3294static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3295		int write, void *buffer, size_t *lenp, loff_t *ppos)
3296{
3297	int ret, old;
3298
3299	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3300		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3301
3302	old = *(int *)table->data;
3303	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3304	if (ret)
3305		return ret;
3306	if (old != *(int *)table->data)
3307		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3308			     table->procname, current->comm,
3309			     task_pid_nr(current));
3310	return ret;
3311}
3312
3313static struct ctl_table vm_compaction[] = {
3314	{
3315		.procname	= "compact_memory",
3316		.data		= &sysctl_compact_memory,
3317		.maxlen		= sizeof(int),
3318		.mode		= 0200,
3319		.proc_handler	= sysctl_compaction_handler,
3320	},
3321	{
3322		.procname	= "compaction_proactiveness",
3323		.data		= &sysctl_compaction_proactiveness,
3324		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3325		.mode		= 0644,
3326		.proc_handler	= compaction_proactiveness_sysctl_handler,
3327		.extra1		= SYSCTL_ZERO,
3328		.extra2		= SYSCTL_ONE_HUNDRED,
3329	},
3330	{
3331		.procname	= "extfrag_threshold",
3332		.data		= &sysctl_extfrag_threshold,
3333		.maxlen		= sizeof(int),
3334		.mode		= 0644,
3335		.proc_handler	= proc_dointvec_minmax,
3336		.extra1		= SYSCTL_ZERO,
3337		.extra2		= SYSCTL_ONE_THOUSAND,
3338	},
3339	{
3340		.procname	= "compact_unevictable_allowed",
3341		.data		= &sysctl_compact_unevictable_allowed,
3342		.maxlen		= sizeof(int),
3343		.mode		= 0644,
3344		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3345		.extra1		= SYSCTL_ZERO,
3346		.extra2		= SYSCTL_ONE,
3347	},
3348	{ }
3349};
3350
3351static int __init kcompactd_init(void)
3352{
3353	int nid;
3354	int ret;
3355
3356	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3357					"mm/compaction:online",
3358					kcompactd_cpu_online, NULL);
3359	if (ret < 0) {
3360		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3361		return ret;
3362	}
3363
3364	for_each_node_state(nid, N_MEMORY)
3365		kcompactd_run(nid);
3366	register_sysctl_init("vm", vm_compaction);
3367	return 0;
3368}
3369subsys_initcall(kcompactd_init)
3370
3371#endif /* CONFIG_COMPACTION */