Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
 
 
 
 
 
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31	count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36	count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
  73	struct page *page, *next;
  74	unsigned long high_pfn = 0;
  75
  76	list_for_each_entry_safe(page, next, freelist, lru) {
  77		unsigned long pfn = page_to_pfn(page);
  78		list_del(&page->lru);
  79		__free_page(page);
  80		if (pfn > high_pfn)
  81			high_pfn = pfn;
  82	}
  83
  84	return high_pfn;
  85}
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89	unsigned int i, order, nr_pages;
  90	struct page *page, *next;
  91	LIST_HEAD(tmp_list);
  92
  93	list_for_each_entry_safe(page, next, list, lru) {
  94		list_del(&page->lru);
  95
  96		order = page_private(page);
  97		nr_pages = 1 << order;
  98
  99		post_alloc_hook(page, order, __GFP_MOVABLE);
 100		if (order)
 101			split_page(page, order);
 102
 103		for (i = 0; i < nr_pages; i++) {
 104			list_add(&page->lru, &tmp_list);
 105			page++;
 106		}
 107	}
 108
 109	list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116	struct address_space *mapping;
 117
 118	VM_BUG_ON_PAGE(!PageLocked(page), page);
 119	if (!__PageMovable(page))
 120		return 0;
 121
 122	mapping = page_mapping(page);
 123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124		return 1;
 125
 126	return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132	VM_BUG_ON_PAGE(!PageLocked(page), page);
 133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 140	VM_BUG_ON_PAGE(!PageLocked(page), page);
 141	VM_BUG_ON_PAGE(!PageMovable(page), page);
 142	/*
 143	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 144	 * flag so that VM can catch up released page by driver after isolation.
 145	 * With it, VM migration doesn't try to put it back.
 146	 */
 147	page->mapping = (void *)((unsigned long)page->mapping &
 148				PAGE_MAPPING_MOVABLE);
 149}
 150EXPORT_SYMBOL(__ClearPageMovable);
 151
 152/* Do not skip compaction more than 64 times */
 153#define COMPACT_MAX_DEFER_SHIFT 6
 154
 155/*
 156 * Compaction is deferred when compaction fails to result in a page
 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 159 */
 160void defer_compaction(struct zone *zone, int order)
 161{
 162	zone->compact_considered = 0;
 163	zone->compact_defer_shift++;
 164
 165	if (order < zone->compact_order_failed)
 166		zone->compact_order_failed = order;
 167
 168	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 169		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 170
 171	trace_mm_compaction_defer_compaction(zone, order);
 172}
 173
 174/* Returns true if compaction should be skipped this time */
 175bool compaction_deferred(struct zone *zone, int order)
 176{
 177	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 178
 179	if (order < zone->compact_order_failed)
 180		return false;
 181
 182	/* Avoid possible overflow */
 183	if (++zone->compact_considered > defer_limit)
 184		zone->compact_considered = defer_limit;
 185
 186	if (zone->compact_considered >= defer_limit)
 187		return false;
 
 188
 189	trace_mm_compaction_deferred(zone, order);
 190
 191	return true;
 192}
 193
 194/*
 195 * Update defer tracking counters after successful compaction of given order,
 196 * which means an allocation either succeeded (alloc_success == true) or is
 197 * expected to succeed.
 198 */
 199void compaction_defer_reset(struct zone *zone, int order,
 200		bool alloc_success)
 201{
 202	if (alloc_success) {
 203		zone->compact_considered = 0;
 204		zone->compact_defer_shift = 0;
 205	}
 206	if (order >= zone->compact_order_failed)
 207		zone->compact_order_failed = order + 1;
 208
 209	trace_mm_compaction_defer_reset(zone, order);
 210}
 211
 212/* Returns true if restarting compaction after many failures */
 213bool compaction_restarting(struct zone *zone, int order)
 214{
 215	if (order < zone->compact_order_failed)
 216		return false;
 217
 218	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 219		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 220}
 221
 222/* Returns true if the pageblock should be scanned for pages to isolate. */
 223static inline bool isolation_suitable(struct compact_control *cc,
 224					struct page *page)
 225{
 226	if (cc->ignore_skip_hint)
 227		return true;
 228
 229	return !get_pageblock_skip(page);
 230}
 231
 232static void reset_cached_positions(struct zone *zone)
 233{
 234	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 235	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 236	zone->compact_cached_free_pfn =
 237				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 238}
 239
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 240/*
 241 * Compound pages of >= pageblock_order should consistenly be skipped until
 242 * released. It is always pointless to compact pages of such order (if they are
 243 * migratable), and the pageblocks they occupy cannot contain any free pages.
 244 */
 245static bool pageblock_skip_persistent(struct page *page)
 246{
 247	if (!PageCompound(page))
 248		return false;
 249
 250	page = compound_head(page);
 251
 252	if (compound_order(page) >= pageblock_order)
 253		return true;
 254
 255	return false;
 256}
 257
 258static bool
 259__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 260							bool check_target)
 261{
 262	struct page *page = pfn_to_online_page(pfn);
 263	struct page *block_page;
 264	struct page *end_page;
 265	unsigned long block_pfn;
 266
 267	if (!page)
 268		return false;
 269	if (zone != page_zone(page))
 270		return false;
 271	if (pageblock_skip_persistent(page))
 272		return false;
 273
 274	/*
 275	 * If skip is already cleared do no further checking once the
 276	 * restart points have been set.
 277	 */
 278	if (check_source && check_target && !get_pageblock_skip(page))
 279		return true;
 280
 281	/*
 282	 * If clearing skip for the target scanner, do not select a
 283	 * non-movable pageblock as the starting point.
 284	 */
 285	if (!check_source && check_target &&
 286	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 287		return false;
 288
 289	/* Ensure the start of the pageblock or zone is online and valid */
 290	block_pfn = pageblock_start_pfn(pfn);
 291	block_pfn = max(block_pfn, zone->zone_start_pfn);
 292	block_page = pfn_to_online_page(block_pfn);
 293	if (block_page) {
 294		page = block_page;
 295		pfn = block_pfn;
 296	}
 297
 298	/* Ensure the end of the pageblock or zone is online and valid */
 299	block_pfn = pageblock_end_pfn(pfn) - 1;
 300	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 301	end_page = pfn_to_online_page(block_pfn);
 302	if (!end_page)
 303		return false;
 304
 305	/*
 306	 * Only clear the hint if a sample indicates there is either a
 307	 * free page or an LRU page in the block. One or other condition
 308	 * is necessary for the block to be a migration source/target.
 309	 */
 310	do {
 311		if (pfn_valid_within(pfn)) {
 312			if (check_source && PageLRU(page)) {
 313				clear_pageblock_skip(page);
 314				return true;
 315			}
 316
 317			if (check_target && PageBuddy(page)) {
 318				clear_pageblock_skip(page);
 319				return true;
 320			}
 321		}
 322
 323		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 324		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 325	} while (page <= end_page);
 326
 327	return false;
 328}
 329
 330/*
 331 * This function is called to clear all cached information on pageblocks that
 332 * should be skipped for page isolation when the migrate and free page scanner
 333 * meet.
 334 */
 335static void __reset_isolation_suitable(struct zone *zone)
 336{
 337	unsigned long migrate_pfn = zone->zone_start_pfn;
 338	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 339	unsigned long reset_migrate = free_pfn;
 340	unsigned long reset_free = migrate_pfn;
 341	bool source_set = false;
 342	bool free_set = false;
 343
 
 344	if (!zone->compact_blockskip_flush)
 345		return;
 346
 347	zone->compact_blockskip_flush = false;
 348
 349	/*
 350	 * Walk the zone and update pageblock skip information. Source looks
 351	 * for PageLRU while target looks for PageBuddy. When the scanner
 352	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 353	 * is suitable as both source and target.
 354	 */
 355	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 356					free_pfn -= pageblock_nr_pages) {
 357		cond_resched();
 358
 359		/* Update the migrate PFN */
 360		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 361		    migrate_pfn < reset_migrate) {
 362			source_set = true;
 363			reset_migrate = migrate_pfn;
 364			zone->compact_init_migrate_pfn = reset_migrate;
 365			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 366			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 367		}
 368
 369		/* Update the free PFN */
 370		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 371		    free_pfn > reset_free) {
 372			free_set = true;
 373			reset_free = free_pfn;
 374			zone->compact_init_free_pfn = reset_free;
 375			zone->compact_cached_free_pfn = reset_free;
 376		}
 377	}
 378
 379	/* Leave no distance if no suitable block was reset */
 380	if (reset_migrate >= reset_free) {
 381		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 382		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 383		zone->compact_cached_free_pfn = free_pfn;
 384	}
 385}
 386
 387void reset_isolation_suitable(pg_data_t *pgdat)
 388{
 389	int zoneid;
 390
 391	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 392		struct zone *zone = &pgdat->node_zones[zoneid];
 393		if (!populated_zone(zone))
 394			continue;
 395
 396		/* Only flush if a full compaction finished recently */
 397		if (zone->compact_blockskip_flush)
 398			__reset_isolation_suitable(zone);
 399	}
 400}
 401
 402/*
 403 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 404 * locks are not required for read/writers. Returns true if it was already set.
 405 */
 406static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 407							unsigned long pfn)
 408{
 409	bool skip;
 410
 411	/* Do no update if skip hint is being ignored */
 412	if (cc->ignore_skip_hint)
 413		return false;
 414
 415	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 416		return false;
 417
 418	skip = get_pageblock_skip(page);
 419	if (!skip && !cc->no_set_skip_hint)
 420		set_pageblock_skip(page);
 421
 422	return skip;
 423}
 424
 425static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 426{
 427	struct zone *zone = cc->zone;
 428
 429	pfn = pageblock_end_pfn(pfn);
 430
 431	/* Set for isolation rather than compaction */
 432	if (cc->no_set_skip_hint)
 433		return;
 434
 
 
 
 435	if (pfn > zone->compact_cached_migrate_pfn[0])
 436		zone->compact_cached_migrate_pfn[0] = pfn;
 437	if (cc->mode != MIGRATE_ASYNC &&
 438	    pfn > zone->compact_cached_migrate_pfn[1])
 439		zone->compact_cached_migrate_pfn[1] = pfn;
 440}
 441
 442/*
 443 * If no pages were isolated then mark this pageblock to be skipped in the
 444 * future. The information is later cleared by __reset_isolation_suitable().
 445 */
 446static void update_pageblock_skip(struct compact_control *cc,
 447			struct page *page, unsigned long pfn)
 448{
 449	struct zone *zone = cc->zone;
 450
 451	if (cc->no_set_skip_hint)
 452		return;
 453
 454	if (!page)
 455		return;
 456
 457	set_pageblock_skip(page);
 458
 459	/* Update where async and sync compaction should restart */
 460	if (pfn < zone->compact_cached_free_pfn)
 461		zone->compact_cached_free_pfn = pfn;
 462}
 463#else
 464static inline bool isolation_suitable(struct compact_control *cc,
 465					struct page *page)
 466{
 467	return true;
 468}
 469
 470static inline bool pageblock_skip_persistent(struct page *page)
 471{
 472	return false;
 473}
 474
 475static inline void update_pageblock_skip(struct compact_control *cc,
 476			struct page *page, unsigned long pfn)
 477{
 478}
 479
 480static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 481{
 482}
 483
 484static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 485							unsigned long pfn)
 486{
 487	return false;
 488}
 489#endif /* CONFIG_COMPACTION */
 490
 491/*
 492 * Compaction requires the taking of some coarse locks that are potentially
 493 * very heavily contended. For async compaction, trylock and record if the
 494 * lock is contended. The lock will still be acquired but compaction will
 495 * abort when the current block is finished regardless of success rate.
 496 * Sync compaction acquires the lock.
 497 *
 498 * Always returns true which makes it easier to track lock state in callers.
 499 */
 500static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 501						struct compact_control *cc)
 502	__acquires(lock)
 503{
 504	/* Track if the lock is contended in async mode */
 505	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 506		if (spin_trylock_irqsave(lock, *flags))
 507			return true;
 508
 509		cc->contended = true;
 510	}
 511
 512	spin_lock_irqsave(lock, *flags);
 513	return true;
 514}
 515
 516/*
 517 * Compaction requires the taking of some coarse locks that are potentially
 518 * very heavily contended. The lock should be periodically unlocked to avoid
 519 * having disabled IRQs for a long time, even when there is nobody waiting on
 520 * the lock. It might also be that allowing the IRQs will result in
 521 * need_resched() becoming true. If scheduling is needed, async compaction
 522 * aborts. Sync compaction schedules.
 523 * Either compaction type will also abort if a fatal signal is pending.
 524 * In either case if the lock was locked, it is dropped and not regained.
 525 *
 526 * Returns true if compaction should abort due to fatal signal pending, or
 527 *		async compaction due to need_resched()
 528 * Returns false when compaction can continue (sync compaction might have
 529 *		scheduled)
 530 */
 531static bool compact_unlock_should_abort(spinlock_t *lock,
 532		unsigned long flags, bool *locked, struct compact_control *cc)
 533{
 534	if (*locked) {
 535		spin_unlock_irqrestore(lock, flags);
 536		*locked = false;
 537	}
 538
 539	if (fatal_signal_pending(current)) {
 540		cc->contended = true;
 541		return true;
 542	}
 543
 544	cond_resched();
 545
 546	return false;
 547}
 548
 549/*
 550 * Isolate free pages onto a private freelist. If @strict is true, will abort
 551 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 552 * (even though it may still end up isolating some pages).
 553 */
 554static unsigned long isolate_freepages_block(struct compact_control *cc,
 555				unsigned long *start_pfn,
 556				unsigned long end_pfn,
 557				struct list_head *freelist,
 558				unsigned int stride,
 559				bool strict)
 560{
 561	int nr_scanned = 0, total_isolated = 0;
 562	struct page *cursor;
 563	unsigned long flags = 0;
 564	bool locked = false;
 565	unsigned long blockpfn = *start_pfn;
 566	unsigned int order;
 567
 568	/* Strict mode is for isolation, speed is secondary */
 569	if (strict)
 570		stride = 1;
 571
 572	cursor = pfn_to_page(blockpfn);
 573
 574	/* Isolate free pages. */
 575	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 576		int isolated;
 577		struct page *page = cursor;
 578
 579		/*
 580		 * Periodically drop the lock (if held) regardless of its
 581		 * contention, to give chance to IRQs. Abort if fatal signal
 582		 * pending or async compaction detects need_resched()
 583		 */
 584		if (!(blockpfn % SWAP_CLUSTER_MAX)
 585		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 586								&locked, cc))
 587			break;
 588
 589		nr_scanned++;
 590		if (!pfn_valid_within(blockpfn))
 591			goto isolate_fail;
 592
 593		/*
 594		 * For compound pages such as THP and hugetlbfs, we can save
 595		 * potentially a lot of iterations if we skip them at once.
 596		 * The check is racy, but we can consider only valid values
 597		 * and the only danger is skipping too much.
 598		 */
 599		if (PageCompound(page)) {
 600			const unsigned int order = compound_order(page);
 601
 602			if (likely(order < MAX_ORDER)) {
 603				blockpfn += (1UL << order) - 1;
 604				cursor += (1UL << order) - 1;
 
 605			}
 
 606			goto isolate_fail;
 607		}
 608
 609		if (!PageBuddy(page))
 610			goto isolate_fail;
 611
 612		/*
 613		 * If we already hold the lock, we can skip some rechecking.
 614		 * Note that if we hold the lock now, checked_pageblock was
 615		 * already set in some previous iteration (or strict is true),
 616		 * so it is correct to skip the suitable migration target
 617		 * recheck as well.
 618		 */
 619		if (!locked) {
 620			locked = compact_lock_irqsave(&cc->zone->lock,
 621								&flags, cc);
 622
 623			/* Recheck this is a buddy page under lock */
 624			if (!PageBuddy(page))
 625				goto isolate_fail;
 626		}
 627
 628		/* Found a free page, will break it into order-0 pages */
 629		order = page_order(page);
 630		isolated = __isolate_free_page(page, order);
 631		if (!isolated)
 632			break;
 633		set_page_private(page, order);
 634
 
 635		total_isolated += isolated;
 636		cc->nr_freepages += isolated;
 637		list_add_tail(&page->lru, freelist);
 638
 639		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 640			blockpfn += isolated;
 641			break;
 642		}
 643		/* Advance to the end of split page */
 644		blockpfn += isolated - 1;
 645		cursor += isolated - 1;
 646		continue;
 647
 648isolate_fail:
 649		if (strict)
 650			break;
 651		else
 652			continue;
 653
 654	}
 655
 656	if (locked)
 657		spin_unlock_irqrestore(&cc->zone->lock, flags);
 658
 659	/*
 660	 * There is a tiny chance that we have read bogus compound_order(),
 661	 * so be careful to not go outside of the pageblock.
 662	 */
 663	if (unlikely(blockpfn > end_pfn))
 664		blockpfn = end_pfn;
 665
 666	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 667					nr_scanned, total_isolated);
 668
 669	/* Record how far we have got within the block */
 670	*start_pfn = blockpfn;
 671
 672	/*
 673	 * If strict isolation is requested by CMA then check that all the
 674	 * pages requested were isolated. If there were any failures, 0 is
 675	 * returned and CMA will fail.
 676	 */
 677	if (strict && blockpfn < end_pfn)
 678		total_isolated = 0;
 679
 680	cc->total_free_scanned += nr_scanned;
 681	if (total_isolated)
 682		count_compact_events(COMPACTISOLATED, total_isolated);
 683	return total_isolated;
 684}
 685
 686/**
 687 * isolate_freepages_range() - isolate free pages.
 688 * @cc:        Compaction control structure.
 689 * @start_pfn: The first PFN to start isolating.
 690 * @end_pfn:   The one-past-last PFN.
 691 *
 692 * Non-free pages, invalid PFNs, or zone boundaries within the
 693 * [start_pfn, end_pfn) range are considered errors, cause function to
 694 * undo its actions and return zero.
 695 *
 696 * Otherwise, function returns one-past-the-last PFN of isolated page
 697 * (which may be greater then end_pfn if end fell in a middle of
 698 * a free page).
 699 */
 700unsigned long
 701isolate_freepages_range(struct compact_control *cc,
 702			unsigned long start_pfn, unsigned long end_pfn)
 703{
 704	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 705	LIST_HEAD(freelist);
 706
 707	pfn = start_pfn;
 708	block_start_pfn = pageblock_start_pfn(pfn);
 709	if (block_start_pfn < cc->zone->zone_start_pfn)
 710		block_start_pfn = cc->zone->zone_start_pfn;
 711	block_end_pfn = pageblock_end_pfn(pfn);
 712
 713	for (; pfn < end_pfn; pfn += isolated,
 714				block_start_pfn = block_end_pfn,
 715				block_end_pfn += pageblock_nr_pages) {
 716		/* Protect pfn from changing by isolate_freepages_block */
 717		unsigned long isolate_start_pfn = pfn;
 718
 719		block_end_pfn = min(block_end_pfn, end_pfn);
 720
 721		/*
 722		 * pfn could pass the block_end_pfn if isolated freepage
 723		 * is more than pageblock order. In this case, we adjust
 724		 * scanning range to right one.
 725		 */
 726		if (pfn >= block_end_pfn) {
 727			block_start_pfn = pageblock_start_pfn(pfn);
 728			block_end_pfn = pageblock_end_pfn(pfn);
 729			block_end_pfn = min(block_end_pfn, end_pfn);
 730		}
 731
 
 
 732		if (!pageblock_pfn_to_page(block_start_pfn,
 733					block_end_pfn, cc->zone))
 734			break;
 735
 736		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 737					block_end_pfn, &freelist, 0, true);
 738
 739		/*
 740		 * In strict mode, isolate_freepages_block() returns 0 if
 741		 * there are any holes in the block (ie. invalid PFNs or
 742		 * non-free pages).
 743		 */
 744		if (!isolated)
 745			break;
 746
 747		/*
 748		 * If we managed to isolate pages, it is always (1 << n) *
 749		 * pageblock_nr_pages for some non-negative n.  (Max order
 750		 * page may span two pageblocks).
 751		 */
 752	}
 753
 754	/* __isolate_free_page() does not map the pages */
 755	split_map_pages(&freelist);
 756
 757	if (pfn < end_pfn) {
 758		/* Loop terminated early, cleanup. */
 759		release_freepages(&freelist);
 760		return 0;
 761	}
 762
 763	/* We don't use freelists for anything. */
 764	return pfn;
 765}
 766
 767/* Similar to reclaim, but different enough that they don't share logic */
 768static bool too_many_isolated(pg_data_t *pgdat)
 769{
 
 
 
 770	unsigned long active, inactive, isolated;
 771
 772	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 773			node_page_state(pgdat, NR_INACTIVE_ANON);
 774	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 775			node_page_state(pgdat, NR_ACTIVE_ANON);
 776	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 777			node_page_state(pgdat, NR_ISOLATED_ANON);
 778
 779	return isolated > (inactive + active) / 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 780}
 781
 782/**
 783 * isolate_migratepages_block() - isolate all migrate-able pages within
 784 *				  a single pageblock
 785 * @cc:		Compaction control structure.
 786 * @low_pfn:	The first PFN to isolate
 787 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 788 * @isolate_mode: Isolation mode to be used.
 789 *
 790 * Isolate all pages that can be migrated from the range specified by
 791 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 792 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 793 * first page that was not scanned (which may be both less, equal to or more
 794 * than end_pfn).
 795 *
 796 * The pages are isolated on cc->migratepages list (not required to be empty),
 797 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 798 * is neither read nor updated.
 799 */
 800static unsigned long
 801isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 802			unsigned long end_pfn, isolate_mode_t isolate_mode)
 803{
 804	pg_data_t *pgdat = cc->zone->zone_pgdat;
 805	unsigned long nr_scanned = 0, nr_isolated = 0;
 806	struct lruvec *lruvec;
 807	unsigned long flags = 0;
 808	bool locked = false;
 
 809	struct page *page = NULL, *valid_page = NULL;
 
 810	unsigned long start_pfn = low_pfn;
 811	bool skip_on_failure = false;
 812	unsigned long next_skip_pfn = 0;
 813	bool skip_updated = false;
 
 
 
 814
 815	/*
 816	 * Ensure that there are not too many pages isolated from the LRU
 817	 * list by either parallel reclaimers or compaction. If there are,
 818	 * delay for some time until fewer pages are isolated
 819	 */
 820	while (unlikely(too_many_isolated(pgdat))) {
 
 
 
 
 821		/* async migration should just abort */
 822		if (cc->mode == MIGRATE_ASYNC)
 823			return 0;
 824
 825		congestion_wait(BLK_RW_ASYNC, HZ/10);
 826
 827		if (fatal_signal_pending(current))
 828			return 0;
 829	}
 830
 831	cond_resched();
 832
 833	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 834		skip_on_failure = true;
 835		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 836	}
 837
 838	/* Time to isolate some pages for migration */
 839	for (; low_pfn < end_pfn; low_pfn++) {
 
 840
 841		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 842			/*
 843			 * We have isolated all migration candidates in the
 844			 * previous order-aligned block, and did not skip it due
 845			 * to failure. We should migrate the pages now and
 846			 * hopefully succeed compaction.
 847			 */
 848			if (nr_isolated)
 849				break;
 850
 851			/*
 852			 * We failed to isolate in the previous order-aligned
 853			 * block. Set the new boundary to the end of the
 854			 * current block. Note we can't simply increase
 855			 * next_skip_pfn by 1 << order, as low_pfn might have
 856			 * been incremented by a higher number due to skipping
 857			 * a compound or a high-order buddy page in the
 858			 * previous loop iteration.
 859			 */
 860			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 861		}
 862
 863		/*
 864		 * Periodically drop the lock (if held) regardless of its
 865		 * contention, to give chance to IRQs. Abort completely if
 866		 * a fatal signal is pending.
 867		 */
 868		if (!(low_pfn % SWAP_CLUSTER_MAX)
 869		    && compact_unlock_should_abort(&pgdat->lru_lock,
 870					    flags, &locked, cc)) {
 871			low_pfn = 0;
 872			goto fatal_pending;
 
 
 
 
 
 
 
 
 
 873		}
 874
 875		if (!pfn_valid_within(low_pfn))
 876			goto isolate_fail;
 877		nr_scanned++;
 878
 879		page = pfn_to_page(low_pfn);
 880
 881		/*
 882		 * Check if the pageblock has already been marked skipped.
 883		 * Only the aligned PFN is checked as the caller isolates
 884		 * COMPACT_CLUSTER_MAX at a time so the second call must
 885		 * not falsely conclude that the block should be skipped.
 886		 */
 887		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 888			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 
 889				low_pfn = end_pfn;
 
 890				goto isolate_abort;
 891			}
 892			valid_page = page;
 893		}
 894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895		/*
 896		 * Skip if free. We read page order here without zone lock
 897		 * which is generally unsafe, but the race window is small and
 898		 * the worst thing that can happen is that we skip some
 899		 * potential isolation targets.
 900		 */
 901		if (PageBuddy(page)) {
 902			unsigned long freepage_order = page_order_unsafe(page);
 903
 904			/*
 905			 * Without lock, we cannot be sure that what we got is
 906			 * a valid page order. Consider only values in the
 907			 * valid order range to prevent low_pfn overflow.
 908			 */
 909			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 910				low_pfn += (1UL << freepage_order) - 1;
 
 
 911			continue;
 912		}
 913
 914		/*
 915		 * Regardless of being on LRU, compound pages such as THP and
 916		 * hugetlbfs are not to be compacted unless we are attempting
 917		 * an allocation much larger than the huge page size (eg CMA).
 918		 * We can potentially save a lot of iterations if we skip them
 919		 * at once. The check is racy, but we can consider only valid
 920		 * values and the only danger is skipping too much.
 921		 */
 922		if (PageCompound(page) && !cc->alloc_contig) {
 923			const unsigned int order = compound_order(page);
 924
 925			if (likely(order < MAX_ORDER))
 926				low_pfn += (1UL << order) - 1;
 
 
 927			goto isolate_fail;
 928		}
 929
 930		/*
 931		 * Check may be lockless but that's ok as we recheck later.
 932		 * It's possible to migrate LRU and non-lru movable pages.
 933		 * Skip any other type of page
 934		 */
 935		if (!PageLRU(page)) {
 936			/*
 937			 * __PageMovable can return false positive so we need
 938			 * to verify it under page_lock.
 939			 */
 940			if (unlikely(__PageMovable(page)) &&
 941					!PageIsolated(page)) {
 942				if (locked) {
 943					spin_unlock_irqrestore(&pgdat->lru_lock,
 944									flags);
 945					locked = false;
 946				}
 947
 948				if (!isolate_movable_page(page, isolate_mode))
 
 949					goto isolate_success;
 
 950			}
 951
 952			goto isolate_fail;
 953		}
 954
 955		/*
 
 
 
 
 
 
 
 
 
 956		 * Migration will fail if an anonymous page is pinned in memory,
 957		 * so avoid taking lru_lock and isolating it unnecessarily in an
 958		 * admittedly racy check.
 959		 */
 960		if (!page_mapping(page) &&
 961		    page_count(page) > page_mapcount(page))
 962			goto isolate_fail;
 963
 964		/*
 965		 * Only allow to migrate anonymous pages in GFP_NOFS context
 966		 * because those do not depend on fs locks.
 967		 */
 968		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 969			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970
 971		/* If we already hold the lock, we can skip some rechecking */
 972		if (!locked) {
 973			locked = compact_lock_irqsave(&pgdat->lru_lock,
 974								&flags, cc);
 
 
 
 975
 976			/* Try get exclusive access under lock */
 977			if (!skip_updated) {
 
 
 
 
 
 
 978				skip_updated = true;
 979				if (test_and_set_skip(cc, page, low_pfn))
 
 
 980					goto isolate_abort;
 
 981			}
 982
 983			/* Recheck PageLRU and PageCompound under lock */
 984			if (!PageLRU(page))
 985				goto isolate_fail;
 986
 987			/*
 988			 * Page become compound since the non-locked check,
 989			 * and it's on LRU. It can only be a THP so the order
 990			 * is safe to read and it's 0 for tail pages.
 991			 */
 992			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
 993				low_pfn += compound_nr(page) - 1;
 994				goto isolate_fail;
 
 
 995			}
 996		}
 997
 998		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 999
1000		/* Try isolate the page */
1001		if (__isolate_lru_page(page, isolate_mode) != 0)
1002			goto isolate_fail;
1003
1004		/* The whole page is taken off the LRU; skip the tail pages. */
1005		if (PageCompound(page))
1006			low_pfn += compound_nr(page) - 1;
1007
1008		/* Successfully isolated */
1009		del_page_from_lru_list(page, lruvec, page_lru(page));
1010		mod_node_page_state(page_pgdat(page),
1011				NR_ISOLATED_ANON + page_is_file_lru(page),
1012				thp_nr_pages(page));
1013
1014isolate_success:
1015		list_add(&page->lru, &cc->migratepages);
1016		cc->nr_migratepages++;
1017		nr_isolated++;
 
 
1018
1019		/*
1020		 * Avoid isolating too much unless this block is being
1021		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1022		 * or a lock is contended. For contention, isolate quickly to
1023		 * potentially remove one source of contention.
1024		 */
1025		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1026		    !cc->rescan && !cc->contended) {
1027			++low_pfn;
1028			break;
1029		}
1030
1031		continue;
 
 
 
 
 
 
 
 
 
1032isolate_fail:
1033		if (!skip_on_failure)
1034			continue;
1035
1036		/*
1037		 * We have isolated some pages, but then failed. Release them
1038		 * instead of migrating, as we cannot form the cc->order buddy
1039		 * page anyway.
1040		 */
1041		if (nr_isolated) {
1042			if (locked) {
1043				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1044				locked = false;
1045			}
1046			putback_movable_pages(&cc->migratepages);
1047			cc->nr_migratepages = 0;
1048			nr_isolated = 0;
1049		}
1050
1051		if (low_pfn < next_skip_pfn) {
1052			low_pfn = next_skip_pfn - 1;
1053			/*
1054			 * The check near the loop beginning would have updated
1055			 * next_skip_pfn too, but this is a bit simpler.
1056			 */
1057			next_skip_pfn += 1UL << cc->order;
1058		}
 
 
 
1059	}
1060
1061	/*
1062	 * The PageBuddy() check could have potentially brought us outside
1063	 * the range to be scanned.
1064	 */
1065	if (unlikely(low_pfn > end_pfn))
1066		low_pfn = end_pfn;
1067
 
 
1068isolate_abort:
1069	if (locked)
1070		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
 
 
 
 
1071
1072	/*
1073	 * Updated the cached scanner pfn once the pageblock has been scanned
1074	 * Pages will either be migrated in which case there is no point
1075	 * scanning in the near future or migration failed in which case the
1076	 * failure reason may persist. The block is marked for skipping if
1077	 * there were no pages isolated in the block or if the block is
1078	 * rescanned twice in a row.
1079	 */
1080	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1081		if (valid_page && !skip_updated)
1082			set_pageblock_skip(valid_page);
1083		update_cached_migrate(cc, low_pfn);
1084	}
1085
1086	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1087						nr_scanned, nr_isolated);
1088
1089fatal_pending:
1090	cc->total_migrate_scanned += nr_scanned;
1091	if (nr_isolated)
1092		count_compact_events(COMPACTISOLATED, nr_isolated);
1093
1094	return low_pfn;
 
 
1095}
1096
1097/**
1098 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1099 * @cc:        Compaction control structure.
1100 * @start_pfn: The first PFN to start isolating.
1101 * @end_pfn:   The one-past-last PFN.
1102 *
1103 * Returns zero if isolation fails fatally due to e.g. pending signal.
1104 * Otherwise, function returns one-past-the-last PFN of isolated page
1105 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1106 */
1107unsigned long
1108isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1109							unsigned long end_pfn)
1110{
1111	unsigned long pfn, block_start_pfn, block_end_pfn;
 
1112
1113	/* Scan block by block. First and last block may be incomplete */
1114	pfn = start_pfn;
1115	block_start_pfn = pageblock_start_pfn(pfn);
1116	if (block_start_pfn < cc->zone->zone_start_pfn)
1117		block_start_pfn = cc->zone->zone_start_pfn;
1118	block_end_pfn = pageblock_end_pfn(pfn);
1119
1120	for (; pfn < end_pfn; pfn = block_end_pfn,
1121				block_start_pfn = block_end_pfn,
1122				block_end_pfn += pageblock_nr_pages) {
1123
1124		block_end_pfn = min(block_end_pfn, end_pfn);
1125
1126		if (!pageblock_pfn_to_page(block_start_pfn,
1127					block_end_pfn, cc->zone))
1128			continue;
1129
1130		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1131							ISOLATE_UNEVICTABLE);
1132
1133		if (!pfn)
1134			break;
1135
1136		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1137			break;
1138	}
1139
1140	return pfn;
1141}
1142
1143#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1144#ifdef CONFIG_COMPACTION
1145
1146static bool suitable_migration_source(struct compact_control *cc,
1147							struct page *page)
1148{
1149	int block_mt;
1150
1151	if (pageblock_skip_persistent(page))
1152		return false;
1153
1154	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1155		return true;
1156
1157	block_mt = get_pageblock_migratetype(page);
1158
1159	if (cc->migratetype == MIGRATE_MOVABLE)
1160		return is_migrate_movable(block_mt);
1161	else
1162		return block_mt == cc->migratetype;
1163}
1164
1165/* Returns true if the page is within a block suitable for migration to */
1166static bool suitable_migration_target(struct compact_control *cc,
1167							struct page *page)
1168{
1169	/* If the page is a large free page, then disallow migration */
1170	if (PageBuddy(page)) {
1171		/*
1172		 * We are checking page_order without zone->lock taken. But
1173		 * the only small danger is that we skip a potentially suitable
1174		 * pageblock, so it's not worth to check order for valid range.
1175		 */
1176		if (page_order_unsafe(page) >= pageblock_order)
1177			return false;
1178	}
1179
1180	if (cc->ignore_block_suitable)
1181		return true;
1182
1183	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1184	if (is_migrate_movable(get_pageblock_migratetype(page)))
1185		return true;
1186
1187	/* Otherwise skip the block */
1188	return false;
1189}
1190
1191static inline unsigned int
1192freelist_scan_limit(struct compact_control *cc)
1193{
1194	unsigned short shift = BITS_PER_LONG - 1;
1195
1196	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1197}
1198
1199/*
1200 * Test whether the free scanner has reached the same or lower pageblock than
1201 * the migration scanner, and compaction should thus terminate.
1202 */
1203static inline bool compact_scanners_met(struct compact_control *cc)
1204{
1205	return (cc->free_pfn >> pageblock_order)
1206		<= (cc->migrate_pfn >> pageblock_order);
1207}
1208
1209/*
1210 * Used when scanning for a suitable migration target which scans freelists
1211 * in reverse. Reorders the list such as the unscanned pages are scanned
1212 * first on the next iteration of the free scanner
1213 */
1214static void
1215move_freelist_head(struct list_head *freelist, struct page *freepage)
1216{
1217	LIST_HEAD(sublist);
1218
1219	if (!list_is_last(freelist, &freepage->lru)) {
1220		list_cut_before(&sublist, freelist, &freepage->lru);
1221		if (!list_empty(&sublist))
1222			list_splice_tail(&sublist, freelist);
1223	}
1224}
1225
1226/*
1227 * Similar to move_freelist_head except used by the migration scanner
1228 * when scanning forward. It's possible for these list operations to
1229 * move against each other if they search the free list exactly in
1230 * lockstep.
1231 */
1232static void
1233move_freelist_tail(struct list_head *freelist, struct page *freepage)
1234{
1235	LIST_HEAD(sublist);
1236
1237	if (!list_is_first(freelist, &freepage->lru)) {
1238		list_cut_position(&sublist, freelist, &freepage->lru);
1239		if (!list_empty(&sublist))
1240			list_splice_tail(&sublist, freelist);
1241	}
1242}
1243
1244static void
1245fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1246{
1247	unsigned long start_pfn, end_pfn;
1248	struct page *page = pfn_to_page(pfn);
1249
1250	/* Do not search around if there are enough pages already */
1251	if (cc->nr_freepages >= cc->nr_migratepages)
1252		return;
1253
1254	/* Minimise scanning during async compaction */
1255	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1256		return;
1257
1258	/* Pageblock boundaries */
1259	start_pfn = pageblock_start_pfn(pfn);
1260	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1261
1262	/* Scan before */
1263	if (start_pfn != pfn) {
1264		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1265		if (cc->nr_freepages >= cc->nr_migratepages)
1266			return;
1267	}
1268
1269	/* Scan after */
1270	start_pfn = pfn + nr_isolated;
1271	if (start_pfn < end_pfn)
1272		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1273
1274	/* Skip this pageblock in the future as it's full or nearly full */
1275	if (cc->nr_freepages < cc->nr_migratepages)
1276		set_pageblock_skip(page);
1277}
1278
1279/* Search orders in round-robin fashion */
1280static int next_search_order(struct compact_control *cc, int order)
1281{
1282	order--;
1283	if (order < 0)
1284		order = cc->order - 1;
1285
1286	/* Search wrapped around? */
1287	if (order == cc->search_order) {
1288		cc->search_order--;
1289		if (cc->search_order < 0)
1290			cc->search_order = cc->order - 1;
1291		return -1;
1292	}
1293
1294	return order;
1295}
1296
1297static unsigned long
1298fast_isolate_freepages(struct compact_control *cc)
1299{
1300	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1301	unsigned int nr_scanned = 0;
1302	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1303	unsigned long nr_isolated = 0;
1304	unsigned long distance;
1305	struct page *page = NULL;
1306	bool scan_start = false;
1307	int order;
1308
1309	/* Full compaction passes in a negative order */
1310	if (cc->order <= 0)
1311		return cc->free_pfn;
1312
1313	/*
1314	 * If starting the scan, use a deeper search and use the highest
1315	 * PFN found if a suitable one is not found.
1316	 */
1317	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1318		limit = pageblock_nr_pages >> 1;
1319		scan_start = true;
1320	}
1321
1322	/*
1323	 * Preferred point is in the top quarter of the scan space but take
1324	 * a pfn from the top half if the search is problematic.
1325	 */
1326	distance = (cc->free_pfn - cc->migrate_pfn);
1327	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1328	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1329
1330	if (WARN_ON_ONCE(min_pfn > low_pfn))
1331		low_pfn = min_pfn;
1332
1333	/*
1334	 * Search starts from the last successful isolation order or the next
1335	 * order to search after a previous failure
1336	 */
1337	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1338
1339	for (order = cc->search_order;
1340	     !page && order >= 0;
1341	     order = next_search_order(cc, order)) {
1342		struct free_area *area = &cc->zone->free_area[order];
1343		struct list_head *freelist;
1344		struct page *freepage;
1345		unsigned long flags;
1346		unsigned int order_scanned = 0;
 
1347
1348		if (!area->nr_free)
1349			continue;
1350
1351		spin_lock_irqsave(&cc->zone->lock, flags);
1352		freelist = &area->free_list[MIGRATE_MOVABLE];
1353		list_for_each_entry_reverse(freepage, freelist, lru) {
1354			unsigned long pfn;
1355
1356			order_scanned++;
1357			nr_scanned++;
1358			pfn = page_to_pfn(freepage);
1359
1360			if (pfn >= highest)
1361				highest = pageblock_start_pfn(pfn);
 
1362
1363			if (pfn >= low_pfn) {
1364				cc->fast_search_fail = 0;
1365				cc->search_order = order;
1366				page = freepage;
1367				break;
1368			}
1369
1370			if (pfn >= min_pfn && pfn > high_pfn) {
1371				high_pfn = pfn;
1372
1373				/* Shorten the scan if a candidate is found */
1374				limit >>= 1;
1375			}
1376
1377			if (order_scanned >= limit)
1378				break;
1379		}
1380
1381		/* Use a minimum pfn if a preferred one was not found */
1382		if (!page && high_pfn) {
1383			page = pfn_to_page(high_pfn);
1384
1385			/* Update freepage for the list reorder below */
1386			freepage = page;
1387		}
1388
1389		/* Reorder to so a future search skips recent pages */
1390		move_freelist_head(freelist, freepage);
1391
1392		/* Isolate the page if available */
1393		if (page) {
1394			if (__isolate_free_page(page, order)) {
1395				set_page_private(page, order);
1396				nr_isolated = 1 << order;
 
 
1397				cc->nr_freepages += nr_isolated;
1398				list_add_tail(&page->lru, &cc->freepages);
1399				count_compact_events(COMPACTISOLATED, nr_isolated);
1400			} else {
1401				/* If isolation fails, abort the search */
1402				order = cc->search_order + 1;
1403				page = NULL;
1404			}
1405		}
1406
1407		spin_unlock_irqrestore(&cc->zone->lock, flags);
1408
 
 
 
 
1409		/*
1410		 * Smaller scan on next order so the total scan ig related
1411		 * to freelist_scan_limit.
1412		 */
1413		if (order_scanned >= limit)
1414			limit = min(1U, limit >> 1);
1415	}
1416
 
 
 
1417	if (!page) {
1418		cc->fast_search_fail++;
1419		if (scan_start) {
1420			/*
1421			 * Use the highest PFN found above min. If one was
1422			 * not found, be pessimistic for direct compaction
1423			 * and use the min mark.
1424			 */
1425			if (highest) {
1426				page = pfn_to_page(highest);
1427				cc->free_pfn = highest;
1428			} else {
1429				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1430					page = pageblock_pfn_to_page(min_pfn,
1431						pageblock_end_pfn(min_pfn),
 
1432						cc->zone);
 
 
 
1433					cc->free_pfn = min_pfn;
1434				}
1435			}
1436		}
1437	}
1438
1439	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1440		highest -= pageblock_nr_pages;
1441		cc->zone->compact_cached_free_pfn = highest;
1442	}
1443
1444	cc->total_free_scanned += nr_scanned;
1445	if (!page)
1446		return cc->free_pfn;
1447
1448	low_pfn = page_to_pfn(page);
1449	fast_isolate_around(cc, low_pfn, nr_isolated);
1450	return low_pfn;
1451}
1452
1453/*
1454 * Based on information in the current compact_control, find blocks
1455 * suitable for isolating free pages from and then isolate them.
1456 */
1457static void isolate_freepages(struct compact_control *cc)
1458{
1459	struct zone *zone = cc->zone;
1460	struct page *page;
1461	unsigned long block_start_pfn;	/* start of current pageblock */
1462	unsigned long isolate_start_pfn; /* exact pfn we start at */
1463	unsigned long block_end_pfn;	/* end of current pageblock */
1464	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1465	struct list_head *freelist = &cc->freepages;
1466	unsigned int stride;
1467
1468	/* Try a small search of the free lists for a candidate */
1469	isolate_start_pfn = fast_isolate_freepages(cc);
1470	if (cc->nr_freepages)
1471		goto splitmap;
1472
1473	/*
1474	 * Initialise the free scanner. The starting point is where we last
1475	 * successfully isolated from, zone-cached value, or the end of the
1476	 * zone when isolating for the first time. For looping we also need
1477	 * this pfn aligned down to the pageblock boundary, because we do
1478	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1479	 * For ending point, take care when isolating in last pageblock of a
1480	 * zone which ends in the middle of a pageblock.
1481	 * The low boundary is the end of the pageblock the migration scanner
1482	 * is using.
1483	 */
1484	isolate_start_pfn = cc->free_pfn;
1485	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1486	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1487						zone_end_pfn(zone));
1488	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1489	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1490
1491	/*
1492	 * Isolate free pages until enough are available to migrate the
1493	 * pages on cc->migratepages. We stop searching if the migrate
1494	 * and free page scanners meet or enough free pages are isolated.
1495	 */
1496	for (; block_start_pfn >= low_pfn;
1497				block_end_pfn = block_start_pfn,
1498				block_start_pfn -= pageblock_nr_pages,
1499				isolate_start_pfn = block_start_pfn) {
1500		unsigned long nr_isolated;
1501
1502		/*
1503		 * This can iterate a massively long zone without finding any
1504		 * suitable migration targets, so periodically check resched.
1505		 */
1506		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1507			cond_resched();
1508
1509		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1510									zone);
1511		if (!page)
 
 
 
 
 
 
1512			continue;
 
1513
1514		/* Check the block is suitable for migration */
1515		if (!suitable_migration_target(cc, page))
1516			continue;
1517
1518		/* If isolation recently failed, do not retry */
1519		if (!isolation_suitable(cc, page))
1520			continue;
1521
1522		/* Found a block suitable for isolating free pages from. */
1523		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1524					block_end_pfn, freelist, stride, false);
1525
1526		/* Update the skip hint if the full pageblock was scanned */
1527		if (isolate_start_pfn == block_end_pfn)
1528			update_pageblock_skip(cc, page, block_start_pfn);
 
1529
1530		/* Are enough freepages isolated? */
1531		if (cc->nr_freepages >= cc->nr_migratepages) {
1532			if (isolate_start_pfn >= block_end_pfn) {
1533				/*
1534				 * Restart at previous pageblock if more
1535				 * freepages can be isolated next time.
1536				 */
1537				isolate_start_pfn =
1538					block_start_pfn - pageblock_nr_pages;
1539			}
1540			break;
1541		} else if (isolate_start_pfn < block_end_pfn) {
1542			/*
1543			 * If isolation failed early, do not continue
1544			 * needlessly.
1545			 */
1546			break;
1547		}
1548
1549		/* Adjust stride depending on isolation */
1550		if (nr_isolated) {
1551			stride = 1;
1552			continue;
1553		}
1554		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1555	}
1556
1557	/*
1558	 * Record where the free scanner will restart next time. Either we
1559	 * broke from the loop and set isolate_start_pfn based on the last
1560	 * call to isolate_freepages_block(), or we met the migration scanner
1561	 * and the loop terminated due to isolate_start_pfn < low_pfn
1562	 */
1563	cc->free_pfn = isolate_start_pfn;
1564
1565splitmap:
1566	/* __isolate_free_page() does not map the pages */
1567	split_map_pages(freelist);
1568}
1569
1570/*
1571 * This is a migrate-callback that "allocates" freepages by taking pages
1572 * from the isolated freelists in the block we are migrating to.
1573 */
1574static struct page *compaction_alloc(struct page *migratepage,
1575					unsigned long data)
1576{
1577	struct compact_control *cc = (struct compact_control *)data;
1578	struct page *freepage;
1579
1580	if (list_empty(&cc->freepages)) {
1581		isolate_freepages(cc);
1582
1583		if (list_empty(&cc->freepages))
1584			return NULL;
1585	}
1586
1587	freepage = list_entry(cc->freepages.next, struct page, lru);
1588	list_del(&freepage->lru);
1589	cc->nr_freepages--;
1590
1591	return freepage;
1592}
1593
1594/*
1595 * This is a migrate-callback that "frees" freepages back to the isolated
1596 * freelist.  All pages on the freelist are from the same zone, so there is no
1597 * special handling needed for NUMA.
1598 */
1599static void compaction_free(struct page *page, unsigned long data)
1600{
1601	struct compact_control *cc = (struct compact_control *)data;
1602
1603	list_add(&page->lru, &cc->freepages);
1604	cc->nr_freepages++;
1605}
1606
1607/* possible outcome of isolate_migratepages */
1608typedef enum {
1609	ISOLATE_ABORT,		/* Abort compaction now */
1610	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1611	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1612} isolate_migrate_t;
1613
1614/*
1615 * Allow userspace to control policy on scanning the unevictable LRU for
1616 * compactable pages.
1617 */
1618#ifdef CONFIG_PREEMPT_RT
1619int sysctl_compact_unevictable_allowed __read_mostly = 0;
1620#else
1621int sysctl_compact_unevictable_allowed __read_mostly = 1;
1622#endif
 
 
 
 
1623
1624static inline void
1625update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1626{
1627	if (cc->fast_start_pfn == ULONG_MAX)
1628		return;
1629
1630	if (!cc->fast_start_pfn)
1631		cc->fast_start_pfn = pfn;
1632
1633	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1634}
1635
1636static inline unsigned long
1637reinit_migrate_pfn(struct compact_control *cc)
1638{
1639	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1640		return cc->migrate_pfn;
1641
1642	cc->migrate_pfn = cc->fast_start_pfn;
1643	cc->fast_start_pfn = ULONG_MAX;
1644
1645	return cc->migrate_pfn;
1646}
1647
1648/*
1649 * Briefly search the free lists for a migration source that already has
1650 * some free pages to reduce the number of pages that need migration
1651 * before a pageblock is free.
1652 */
1653static unsigned long fast_find_migrateblock(struct compact_control *cc)
1654{
1655	unsigned int limit = freelist_scan_limit(cc);
1656	unsigned int nr_scanned = 0;
1657	unsigned long distance;
1658	unsigned long pfn = cc->migrate_pfn;
1659	unsigned long high_pfn;
1660	int order;
 
1661
1662	/* Skip hints are relied on to avoid repeats on the fast search */
1663	if (cc->ignore_skip_hint)
1664		return pfn;
1665
1666	/*
 
 
 
 
 
 
 
1667	 * If the migrate_pfn is not at the start of a zone or the start
1668	 * of a pageblock then assume this is a continuation of a previous
1669	 * scan restarted due to COMPACT_CLUSTER_MAX.
1670	 */
1671	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1672		return pfn;
1673
1674	/*
1675	 * For smaller orders, just linearly scan as the number of pages
1676	 * to migrate should be relatively small and does not necessarily
1677	 * justify freeing up a large block for a small allocation.
1678	 */
1679	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1680		return pfn;
1681
1682	/*
1683	 * Only allow kcompactd and direct requests for movable pages to
1684	 * quickly clear out a MOVABLE pageblock for allocation. This
1685	 * reduces the risk that a large movable pageblock is freed for
1686	 * an unmovable/reclaimable small allocation.
1687	 */
1688	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1689		return pfn;
1690
1691	/*
1692	 * When starting the migration scanner, pick any pageblock within the
1693	 * first half of the search space. Otherwise try and pick a pageblock
1694	 * within the first eighth to reduce the chances that a migration
1695	 * target later becomes a source.
1696	 */
1697	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1698	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1699		distance >>= 2;
1700	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1701
1702	for (order = cc->order - 1;
1703	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1704	     order--) {
1705		struct free_area *area = &cc->zone->free_area[order];
1706		struct list_head *freelist;
1707		unsigned long flags;
1708		struct page *freepage;
1709
1710		if (!area->nr_free)
1711			continue;
1712
1713		spin_lock_irqsave(&cc->zone->lock, flags);
1714		freelist = &area->free_list[MIGRATE_MOVABLE];
1715		list_for_each_entry(freepage, freelist, lru) {
1716			unsigned long free_pfn;
1717
1718			nr_scanned++;
 
 
 
 
1719			free_pfn = page_to_pfn(freepage);
1720			if (free_pfn < high_pfn) {
1721				/*
1722				 * Avoid if skipped recently. Ideally it would
1723				 * move to the tail but even safe iteration of
1724				 * the list assumes an entry is deleted, not
1725				 * reordered.
1726				 */
1727				if (get_pageblock_skip(freepage)) {
1728					if (list_is_last(freelist, &freepage->lru))
1729						break;
1730
1731					continue;
1732				}
1733
1734				/* Reorder to so a future search skips recent pages */
1735				move_freelist_tail(freelist, freepage);
1736
1737				update_fast_start_pfn(cc, free_pfn);
1738				pfn = pageblock_start_pfn(free_pfn);
 
 
1739				cc->fast_search_fail = 0;
1740				set_pageblock_skip(freepage);
1741				break;
1742			}
1743
1744			if (nr_scanned >= limit) {
1745				cc->fast_search_fail++;
1746				move_freelist_tail(freelist, freepage);
1747				break;
1748			}
1749		}
1750		spin_unlock_irqrestore(&cc->zone->lock, flags);
1751	}
1752
1753	cc->total_migrate_scanned += nr_scanned;
1754
1755	/*
1756	 * If fast scanning failed then use a cached entry for a page block
1757	 * that had free pages as the basis for starting a linear scan.
1758	 */
1759	if (pfn == cc->migrate_pfn)
 
1760		pfn = reinit_migrate_pfn(cc);
1761
1762	return pfn;
1763}
1764
1765/*
1766 * Isolate all pages that can be migrated from the first suitable block,
1767 * starting at the block pointed to by the migrate scanner pfn within
1768 * compact_control.
1769 */
1770static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1771{
1772	unsigned long block_start_pfn;
1773	unsigned long block_end_pfn;
1774	unsigned long low_pfn;
1775	struct page *page;
1776	const isolate_mode_t isolate_mode =
1777		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1778		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1779	bool fast_find_block;
1780
1781	/*
1782	 * Start at where we last stopped, or beginning of the zone as
1783	 * initialized by compact_zone(). The first failure will use
1784	 * the lowest PFN as the starting point for linear scanning.
1785	 */
1786	low_pfn = fast_find_migrateblock(cc);
1787	block_start_pfn = pageblock_start_pfn(low_pfn);
1788	if (block_start_pfn < cc->zone->zone_start_pfn)
1789		block_start_pfn = cc->zone->zone_start_pfn;
1790
1791	/*
1792	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1793	 * the isolation_suitable check below, check whether the fast
1794	 * search was successful.
1795	 */
1796	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1797
1798	/* Only scan within a pageblock boundary */
1799	block_end_pfn = pageblock_end_pfn(low_pfn);
1800
1801	/*
1802	 * Iterate over whole pageblocks until we find the first suitable.
1803	 * Do not cross the free scanner.
1804	 */
1805	for (; block_end_pfn <= cc->free_pfn;
1806			fast_find_block = false,
1807			low_pfn = block_end_pfn,
1808			block_start_pfn = block_end_pfn,
1809			block_end_pfn += pageblock_nr_pages) {
1810
1811		/*
1812		 * This can potentially iterate a massively long zone with
1813		 * many pageblocks unsuitable, so periodically check if we
1814		 * need to schedule.
1815		 */
1816		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1817			cond_resched();
1818
1819		page = pageblock_pfn_to_page(block_start_pfn,
1820						block_end_pfn, cc->zone);
1821		if (!page)
 
 
 
 
 
1822			continue;
 
1823
1824		/*
1825		 * If isolation recently failed, do not retry. Only check the
1826		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1827		 * to be visited multiple times. Assume skip was checked
1828		 * before making it "skip" so other compaction instances do
1829		 * not scan the same block.
1830		 */
1831		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
 
1832		    !fast_find_block && !isolation_suitable(cc, page))
1833			continue;
1834
1835		/*
1836		 * For async compaction, also only scan in MOVABLE blocks
1837		 * without huge pages. Async compaction is optimistic to see
1838		 * if the minimum amount of work satisfies the allocation.
1839		 * The cached PFN is updated as it's possible that all
1840		 * remaining blocks between source and target are unsuitable
1841		 * and the compaction scanners fail to meet.
1842		 */
1843		if (!suitable_migration_source(cc, page)) {
1844			update_cached_migrate(cc, block_end_pfn);
1845			continue;
1846		}
1847
1848		/* Perform the isolation */
1849		low_pfn = isolate_migratepages_block(cc, low_pfn,
1850						block_end_pfn, isolate_mode);
1851
1852		if (!low_pfn)
1853			return ISOLATE_ABORT;
1854
1855		/*
1856		 * Either we isolated something and proceed with migration. Or
1857		 * we failed and compact_zone should decide if we should
1858		 * continue or not.
1859		 */
1860		break;
1861	}
1862
1863	/* Record where migration scanner will be restarted. */
1864	cc->migrate_pfn = low_pfn;
1865
1866	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1867}
1868
1869/*
1870 * order == -1 is expected when compacting via
1871 * /proc/sys/vm/compact_memory
 
 
1872 */
1873static inline bool is_via_compact_memory(int order)
1874{
1875	return order == -1;
1876}
1877
 
 
 
 
 
 
1878static bool kswapd_is_running(pg_data_t *pgdat)
1879{
1880	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
 
 
 
 
 
 
1881}
1882
1883/*
1884 * A zone's fragmentation score is the external fragmentation wrt to the
1885 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1886 * in the range [0, 100].
 
 
 
 
 
 
 
 
 
1887 *
1888 * The scaling factor ensures that proactive compaction focuses on larger
1889 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1890 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1891 * and thus never exceeds the high threshold for proactive compaction.
1892 */
1893static unsigned int fragmentation_score_zone(struct zone *zone)
1894{
1895	unsigned long score;
1896
1897	score = zone->present_pages *
1898			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1899	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1900}
1901
1902/*
1903 * The per-node proactive (background) compaction process is started by its
1904 * corresponding kcompactd thread when the node's fragmentation score
1905 * exceeds the high threshold. The compaction process remains active till
1906 * the node's score falls below the low threshold, or one of the back-off
1907 * conditions is met.
1908 */
1909static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1910{
1911	unsigned int score = 0;
1912	int zoneid;
1913
1914	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1915		struct zone *zone;
1916
1917		zone = &pgdat->node_zones[zoneid];
1918		score += fragmentation_score_zone(zone);
 
 
1919	}
1920
1921	return score;
1922}
1923
1924static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1925{
1926	unsigned int wmark_low;
1927
1928	/*
1929	 * Cap the low watermak to avoid excessive compaction
1930	 * activity in case a user sets the proactivess tunable
1931	 * close to 100 (maximum).
1932	 */
1933	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1934	return low ? wmark_low : min(wmark_low + 10, 100U);
1935}
1936
1937static bool should_proactive_compact_node(pg_data_t *pgdat)
1938{
1939	int wmark_high;
1940
1941	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1942		return false;
1943
1944	wmark_high = fragmentation_score_wmark(pgdat, false);
1945	return fragmentation_score_node(pgdat) > wmark_high;
1946}
1947
1948static enum compact_result __compact_finished(struct compact_control *cc)
1949{
1950	unsigned int order;
1951	const int migratetype = cc->migratetype;
1952	int ret;
1953
1954	/* Compaction run completes if the migrate and free scanner meet */
1955	if (compact_scanners_met(cc)) {
1956		/* Let the next compaction start anew. */
1957		reset_cached_positions(cc->zone);
1958
1959		/*
1960		 * Mark that the PG_migrate_skip information should be cleared
1961		 * by kswapd when it goes to sleep. kcompactd does not set the
1962		 * flag itself as the decision to be clear should be directly
1963		 * based on an allocation request.
1964		 */
1965		if (cc->direct_compaction)
1966			cc->zone->compact_blockskip_flush = true;
1967
1968		if (cc->whole_zone)
1969			return COMPACT_COMPLETE;
1970		else
1971			return COMPACT_PARTIAL_SKIPPED;
1972	}
1973
1974	if (cc->proactive_compaction) {
1975		int score, wmark_low;
1976		pg_data_t *pgdat;
1977
1978		pgdat = cc->zone->zone_pgdat;
1979		if (kswapd_is_running(pgdat))
1980			return COMPACT_PARTIAL_SKIPPED;
1981
1982		score = fragmentation_score_zone(cc->zone);
1983		wmark_low = fragmentation_score_wmark(pgdat, true);
1984
1985		if (score > wmark_low)
1986			ret = COMPACT_CONTINUE;
1987		else
1988			ret = COMPACT_SUCCESS;
1989
1990		goto out;
1991	}
1992
1993	if (is_via_compact_memory(cc->order))
1994		return COMPACT_CONTINUE;
1995
1996	/*
1997	 * Always finish scanning a pageblock to reduce the possibility of
1998	 * fallbacks in the future. This is particularly important when
1999	 * migration source is unmovable/reclaimable but it's not worth
2000	 * special casing.
2001	 */
2002	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2003		return COMPACT_CONTINUE;
2004
2005	/* Direct compactor: Is a suitable page free? */
2006	ret = COMPACT_NO_SUITABLE_PAGE;
2007	for (order = cc->order; order < MAX_ORDER; order++) {
2008		struct free_area *area = &cc->zone->free_area[order];
2009		bool can_steal;
2010
2011		/* Job done if page is free of the right migratetype */
2012		if (!free_area_empty(area, migratetype))
2013			return COMPACT_SUCCESS;
2014
2015#ifdef CONFIG_CMA
2016		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2017		if (migratetype == MIGRATE_MOVABLE &&
2018			!free_area_empty(area, MIGRATE_CMA))
2019			return COMPACT_SUCCESS;
2020#endif
2021		/*
2022		 * Job done if allocation would steal freepages from
2023		 * other migratetype buddy lists.
2024		 */
2025		if (find_suitable_fallback(area, order, migratetype,
2026						true, &can_steal) != -1) {
2027
2028			/* movable pages are OK in any pageblock */
2029			if (migratetype == MIGRATE_MOVABLE)
2030				return COMPACT_SUCCESS;
2031
2032			/*
2033			 * We are stealing for a non-movable allocation. Make
2034			 * sure we finish compacting the current pageblock
2035			 * first so it is as free as possible and we won't
2036			 * have to steal another one soon. This only applies
2037			 * to sync compaction, as async compaction operates
2038			 * on pageblocks of the same migratetype.
2039			 */
2040			if (cc->mode == MIGRATE_ASYNC ||
2041					IS_ALIGNED(cc->migrate_pfn,
2042							pageblock_nr_pages)) {
2043				return COMPACT_SUCCESS;
2044			}
2045
2046			ret = COMPACT_CONTINUE;
2047			break;
2048		}
2049	}
2050
2051out:
2052	if (cc->contended || fatal_signal_pending(current))
2053		ret = COMPACT_CONTENDED;
2054
2055	return ret;
2056}
2057
2058static enum compact_result compact_finished(struct compact_control *cc)
2059{
2060	int ret;
2061
2062	ret = __compact_finished(cc);
2063	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2064	if (ret == COMPACT_NO_SUITABLE_PAGE)
2065		ret = COMPACT_CONTINUE;
2066
2067	return ret;
2068}
2069
2070/*
2071 * compaction_suitable: Is this suitable to run compaction on this zone now?
2072 * Returns
2073 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2074 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2075 *   COMPACT_CONTINUE - If compaction should run now
2076 */
2077static enum compact_result __compaction_suitable(struct zone *zone, int order,
2078					unsigned int alloc_flags,
2079					int highest_zoneidx,
2080					unsigned long wmark_target)
2081{
2082	unsigned long watermark;
2083
2084	if (is_via_compact_memory(order))
2085		return COMPACT_CONTINUE;
2086
2087	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2088	/*
2089	 * If watermarks for high-order allocation are already met, there
2090	 * should be no need for compaction at all.
2091	 */
2092	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2093								alloc_flags))
2094		return COMPACT_SUCCESS;
2095
2096	/*
2097	 * Watermarks for order-0 must be met for compaction to be able to
2098	 * isolate free pages for migration targets. This means that the
2099	 * watermark and alloc_flags have to match, or be more pessimistic than
2100	 * the check in __isolate_free_page(). We don't use the direct
2101	 * compactor's alloc_flags, as they are not relevant for freepage
2102	 * isolation. We however do use the direct compactor's highest_zoneidx
2103	 * to skip over zones where lowmem reserves would prevent allocation
2104	 * even if compaction succeeds.
2105	 * For costly orders, we require low watermark instead of min for
2106	 * compaction to proceed to increase its chances.
2107	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2108	 * suitable migration targets
2109	 */
2110	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2111				low_wmark_pages(zone) : min_wmark_pages(zone);
2112	watermark += compact_gap(order);
2113	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2114						ALLOC_CMA, wmark_target))
2115		return COMPACT_SKIPPED;
2116
2117	return COMPACT_CONTINUE;
2118}
2119
2120enum compact_result compaction_suitable(struct zone *zone, int order,
2121					unsigned int alloc_flags,
2122					int highest_zoneidx)
 
2123{
2124	enum compact_result ret;
2125	int fragindex;
2126
2127	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2128				    zone_page_state(zone, NR_FREE_PAGES));
2129	/*
2130	 * fragmentation index determines if allocation failures are due to
2131	 * low memory or external fragmentation
2132	 *
2133	 * index of -1000 would imply allocations might succeed depending on
2134	 * watermarks, but we already failed the high-order watermark check
2135	 * index towards 0 implies failure is due to lack of memory
2136	 * index towards 1000 implies failure is due to fragmentation
2137	 *
2138	 * Only compact if a failure would be due to fragmentation. Also
2139	 * ignore fragindex for non-costly orders where the alternative to
2140	 * a successful reclaim/compaction is OOM. Fragindex and the
2141	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2142	 * excessive compaction for costly orders, but it should not be at the
2143	 * expense of system stability.
2144	 */
2145	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2146		fragindex = fragmentation_index(zone, order);
2147		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2148			ret = COMPACT_NOT_SUITABLE_ZONE;
 
 
 
 
 
 
 
 
 
2149	}
2150
2151	trace_mm_compaction_suitable(zone, order, ret);
2152	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2153		ret = COMPACT_SKIPPED;
2154
2155	return ret;
2156}
2157
2158bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2159		int alloc_flags)
2160{
2161	struct zone *zone;
2162	struct zoneref *z;
2163
2164	/*
2165	 * Make sure at least one zone would pass __compaction_suitable if we continue
2166	 * retrying the reclaim.
2167	 */
2168	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2169				ac->highest_zoneidx, ac->nodemask) {
2170		unsigned long available;
2171		enum compact_result compact_result;
2172
2173		/*
2174		 * Do not consider all the reclaimable memory because we do not
2175		 * want to trash just for a single high order allocation which
2176		 * is even not guaranteed to appear even if __compaction_suitable
2177		 * is happy about the watermark check.
2178		 */
2179		available = zone_reclaimable_pages(zone) / order;
2180		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2181		compact_result = __compaction_suitable(zone, order, alloc_flags,
2182				ac->highest_zoneidx, available);
2183		if (compact_result != COMPACT_SKIPPED)
2184			return true;
2185	}
2186
2187	return false;
2188}
2189
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2190static enum compact_result
2191compact_zone(struct compact_control *cc, struct capture_control *capc)
2192{
2193	enum compact_result ret;
2194	unsigned long start_pfn = cc->zone->zone_start_pfn;
2195	unsigned long end_pfn = zone_end_pfn(cc->zone);
2196	unsigned long last_migrated_pfn;
2197	const bool sync = cc->mode != MIGRATE_ASYNC;
2198	bool update_cached;
 
2199
2200	/*
2201	 * These counters track activities during zone compaction.  Initialize
2202	 * them before compacting a new zone.
2203	 */
2204	cc->total_migrate_scanned = 0;
2205	cc->total_free_scanned = 0;
2206	cc->nr_migratepages = 0;
2207	cc->nr_freepages = 0;
2208	INIT_LIST_HEAD(&cc->freepages);
2209	INIT_LIST_HEAD(&cc->migratepages);
2210
2211	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2212	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2213							cc->highest_zoneidx);
2214	/* Compaction is likely to fail */
2215	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2216		return ret;
2217
2218	/* huh, compaction_suitable is returning something unexpected */
2219	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
 
 
 
 
2220
2221	/*
2222	 * Clear pageblock skip if there were failures recently and compaction
2223	 * is about to be retried after being deferred.
2224	 */
2225	if (compaction_restarting(cc->zone, cc->order))
2226		__reset_isolation_suitable(cc->zone);
2227
2228	/*
2229	 * Setup to move all movable pages to the end of the zone. Used cached
2230	 * information on where the scanners should start (unless we explicitly
2231	 * want to compact the whole zone), but check that it is initialised
2232	 * by ensuring the values are within zone boundaries.
2233	 */
2234	cc->fast_start_pfn = 0;
2235	if (cc->whole_zone) {
2236		cc->migrate_pfn = start_pfn;
2237		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2238	} else {
2239		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2240		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2241		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2242			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2243			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2244		}
2245		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2246			cc->migrate_pfn = start_pfn;
2247			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2248			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2249		}
2250
2251		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2252			cc->whole_zone = true;
2253	}
2254
2255	last_migrated_pfn = 0;
2256
2257	/*
2258	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2259	 * the basis that some migrations will fail in ASYNC mode. However,
2260	 * if the cached PFNs match and pageblocks are skipped due to having
2261	 * no isolation candidates, then the sync state does not matter.
2262	 * Until a pageblock with isolation candidates is found, keep the
2263	 * cached PFNs in sync to avoid revisiting the same blocks.
2264	 */
2265	update_cached = !sync &&
2266		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2267
2268	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2269				cc->free_pfn, end_pfn, sync);
2270
2271	migrate_prep_local();
 
2272
2273	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2274		int err;
2275		unsigned long start_pfn = cc->migrate_pfn;
2276
2277		/*
2278		 * Avoid multiple rescans which can happen if a page cannot be
2279		 * isolated (dirty/writeback in async mode) or if the migrated
2280		 * pages are being allocated before the pageblock is cleared.
2281		 * The first rescan will capture the entire pageblock for
2282		 * migration. If it fails, it'll be marked skip and scanning
2283		 * will proceed as normal.
2284		 */
2285		cc->rescan = false;
2286		if (pageblock_start_pfn(last_migrated_pfn) ==
2287		    pageblock_start_pfn(start_pfn)) {
2288			cc->rescan = true;
2289		}
2290
 
2291		switch (isolate_migratepages(cc)) {
2292		case ISOLATE_ABORT:
2293			ret = COMPACT_CONTENDED;
2294			putback_movable_pages(&cc->migratepages);
2295			cc->nr_migratepages = 0;
2296			goto out;
2297		case ISOLATE_NONE:
2298			if (update_cached) {
2299				cc->zone->compact_cached_migrate_pfn[1] =
2300					cc->zone->compact_cached_migrate_pfn[0];
2301			}
2302
2303			/*
2304			 * We haven't isolated and migrated anything, but
2305			 * there might still be unflushed migrations from
2306			 * previous cc->order aligned block.
2307			 */
2308			goto check_drain;
2309		case ISOLATE_SUCCESS:
2310			update_cached = false;
2311			last_migrated_pfn = start_pfn;
2312			;
2313		}
2314
2315		err = migrate_pages(&cc->migratepages, compaction_alloc,
2316				compaction_free, (unsigned long)cc, cc->mode,
2317				MR_COMPACTION);
2318
2319		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2320							&cc->migratepages);
2321
2322		/* All pages were either migrated or will be released */
2323		cc->nr_migratepages = 0;
2324		if (err) {
2325			putback_movable_pages(&cc->migratepages);
2326			/*
2327			 * migrate_pages() may return -ENOMEM when scanners meet
2328			 * and we want compact_finished() to detect it
2329			 */
2330			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2331				ret = COMPACT_CONTENDED;
2332				goto out;
2333			}
2334			/*
2335			 * We failed to migrate at least one page in the current
2336			 * order-aligned block, so skip the rest of it.
 
 
 
 
 
 
 
2337			 */
2338			if (cc->direct_compaction &&
2339						(cc->mode == MIGRATE_ASYNC)) {
2340				cc->migrate_pfn = block_end_pfn(
2341						cc->migrate_pfn - 1, cc->order);
2342				/* Draining pcplists is useless in this case */
2343				last_migrated_pfn = 0;
 
 
 
 
 
 
 
 
2344			}
2345		}
2346
 
 
 
 
 
 
2347check_drain:
2348		/*
2349		 * Has the migration scanner moved away from the previous
2350		 * cc->order aligned block where we migrated from? If yes,
2351		 * flush the pages that were freed, so that they can merge and
2352		 * compact_finished() can detect immediately if allocation
2353		 * would succeed.
2354		 */
2355		if (cc->order > 0 && last_migrated_pfn) {
2356			unsigned long current_block_start =
2357				block_start_pfn(cc->migrate_pfn, cc->order);
2358
2359			if (last_migrated_pfn < current_block_start) {
2360				lru_add_drain_cpu_zone(cc->zone);
2361				/* No more flushing until we migrate again */
2362				last_migrated_pfn = 0;
2363			}
2364		}
2365
2366		/* Stop if a page has been captured */
2367		if (capc && capc->page) {
2368			ret = COMPACT_SUCCESS;
2369			break;
2370		}
2371	}
2372
2373out:
2374	/*
2375	 * Release free pages and update where the free scanner should restart,
2376	 * so we don't leave any returned pages behind in the next attempt.
2377	 */
2378	if (cc->nr_freepages > 0) {
2379		unsigned long free_pfn = release_freepages(&cc->freepages);
2380
2381		cc->nr_freepages = 0;
2382		VM_BUG_ON(free_pfn == 0);
2383		/* The cached pfn is always the first in a pageblock */
2384		free_pfn = pageblock_start_pfn(free_pfn);
2385		/*
2386		 * Only go back, not forward. The cached pfn might have been
2387		 * already reset to zone end in compact_finished()
2388		 */
2389		if (free_pfn > cc->zone->compact_cached_free_pfn)
2390			cc->zone->compact_cached_free_pfn = free_pfn;
2391	}
2392
2393	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2394	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2395
2396	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2397				cc->free_pfn, end_pfn, sync, ret);
 
 
2398
2399	return ret;
2400}
2401
2402static enum compact_result compact_zone_order(struct zone *zone, int order,
2403		gfp_t gfp_mask, enum compact_priority prio,
2404		unsigned int alloc_flags, int highest_zoneidx,
2405		struct page **capture)
2406{
2407	enum compact_result ret;
2408	struct compact_control cc = {
2409		.order = order,
2410		.search_order = order,
2411		.gfp_mask = gfp_mask,
2412		.zone = zone,
2413		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2414					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2415		.alloc_flags = alloc_flags,
2416		.highest_zoneidx = highest_zoneidx,
2417		.direct_compaction = true,
2418		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2419		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2420		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2421	};
2422	struct capture_control capc = {
2423		.cc = &cc,
2424		.page = NULL,
2425	};
2426
2427	/*
2428	 * Make sure the structs are really initialized before we expose the
2429	 * capture control, in case we are interrupted and the interrupt handler
2430	 * frees a page.
2431	 */
2432	barrier();
2433	WRITE_ONCE(current->capture_control, &capc);
2434
2435	ret = compact_zone(&cc, &capc);
2436
2437	VM_BUG_ON(!list_empty(&cc.freepages));
2438	VM_BUG_ON(!list_empty(&cc.migratepages));
2439
2440	/*
2441	 * Make sure we hide capture control first before we read the captured
2442	 * page pointer, otherwise an interrupt could free and capture a page
2443	 * and we would leak it.
2444	 */
2445	WRITE_ONCE(current->capture_control, NULL);
2446	*capture = READ_ONCE(capc.page);
 
 
 
 
 
 
 
 
2447
2448	return ret;
2449}
2450
2451int sysctl_extfrag_threshold = 500;
2452
2453/**
2454 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2455 * @gfp_mask: The GFP mask of the current allocation
2456 * @order: The order of the current allocation
2457 * @alloc_flags: The allocation flags of the current allocation
2458 * @ac: The context of current allocation
2459 * @prio: Determines how hard direct compaction should try to succeed
2460 * @capture: Pointer to free page created by compaction will be stored here
2461 *
2462 * This is the main entry point for direct page compaction.
2463 */
2464enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2465		unsigned int alloc_flags, const struct alloc_context *ac,
2466		enum compact_priority prio, struct page **capture)
2467{
2468	int may_perform_io = gfp_mask & __GFP_IO;
2469	struct zoneref *z;
2470	struct zone *zone;
2471	enum compact_result rc = COMPACT_SKIPPED;
2472
2473	/*
2474	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2475	 * tricky context because the migration might require IO
2476	 */
2477	if (!may_perform_io)
2478		return COMPACT_SKIPPED;
2479
2480	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2481
2482	/* Compact each zone in the list */
2483	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2484					ac->highest_zoneidx, ac->nodemask) {
2485		enum compact_result status;
2486
2487		if (prio > MIN_COMPACT_PRIORITY
2488					&& compaction_deferred(zone, order)) {
2489			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2490			continue;
2491		}
2492
2493		status = compact_zone_order(zone, order, gfp_mask, prio,
2494				alloc_flags, ac->highest_zoneidx, capture);
2495		rc = max(status, rc);
2496
2497		/* The allocation should succeed, stop compacting */
2498		if (status == COMPACT_SUCCESS) {
2499			/*
2500			 * We think the allocation will succeed in this zone,
2501			 * but it is not certain, hence the false. The caller
2502			 * will repeat this with true if allocation indeed
2503			 * succeeds in this zone.
2504			 */
2505			compaction_defer_reset(zone, order, false);
2506
2507			break;
2508		}
2509
2510		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2511					status == COMPACT_PARTIAL_SKIPPED))
2512			/*
2513			 * We think that allocation won't succeed in this zone
2514			 * so we defer compaction there. If it ends up
2515			 * succeeding after all, it will be reset.
2516			 */
2517			defer_compaction(zone, order);
2518
2519		/*
2520		 * We might have stopped compacting due to need_resched() in
2521		 * async compaction, or due to a fatal signal detected. In that
2522		 * case do not try further zones
2523		 */
2524		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2525					|| fatal_signal_pending(current))
2526			break;
2527	}
2528
2529	return rc;
2530}
2531
2532/*
2533 * Compact all zones within a node till each zone's fragmentation score
2534 * reaches within proactive compaction thresholds (as determined by the
2535 * proactiveness tunable).
2536 *
2537 * It is possible that the function returns before reaching score targets
2538 * due to various back-off conditions, such as, contention on per-node or
2539 * per-zone locks.
2540 */
2541static void proactive_compact_node(pg_data_t *pgdat)
2542{
2543	int zoneid;
2544	struct zone *zone;
2545	struct compact_control cc = {
2546		.order = -1,
2547		.mode = MIGRATE_SYNC_LIGHT,
2548		.ignore_skip_hint = true,
2549		.whole_zone = true,
2550		.gfp_mask = GFP_KERNEL,
2551		.proactive_compaction = true,
2552	};
2553
2554	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2555		zone = &pgdat->node_zones[zoneid];
2556		if (!populated_zone(zone))
2557			continue;
2558
2559		cc.zone = zone;
2560
2561		compact_zone(&cc, NULL);
2562
2563		VM_BUG_ON(!list_empty(&cc.freepages));
2564		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
2565	}
2566}
2567
2568/* Compact all zones within a node */
2569static void compact_node(int nid)
2570{
2571	pg_data_t *pgdat = NODE_DATA(nid);
2572	int zoneid;
2573	struct zone *zone;
2574	struct compact_control cc = {
2575		.order = -1,
2576		.mode = MIGRATE_SYNC,
2577		.ignore_skip_hint = true,
2578		.whole_zone = true,
2579		.gfp_mask = GFP_KERNEL,
2580	};
2581
2582
2583	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2584
2585		zone = &pgdat->node_zones[zoneid];
2586		if (!populated_zone(zone))
2587			continue;
2588
2589		cc.zone = zone;
2590
2591		compact_zone(&cc, NULL);
2592
2593		VM_BUG_ON(!list_empty(&cc.freepages));
2594		VM_BUG_ON(!list_empty(&cc.migratepages));
2595	}
2596}
2597
2598/* Compact all nodes in the system */
2599static void compact_nodes(void)
2600{
2601	int nid;
2602
2603	/* Flush pending updates to the LRU lists */
2604	lru_add_drain_all();
2605
2606	for_each_online_node(nid)
2607		compact_node(nid);
2608}
2609
2610/* The written value is actually unused, all memory is compacted */
2611int sysctl_compact_memory;
 
 
2612
2613/*
2614 * Tunable for proactive compaction. It determines how
2615 * aggressively the kernel should compact memory in the
2616 * background. It takes values in the range [0, 100].
2617 */
2618unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2619
2620/*
2621 * This is the entry point for compacting all nodes via
2622 * /proc/sys/vm/compact_memory
2623 */
2624int sysctl_compaction_handler(struct ctl_table *table, int write,
2625			void *buffer, size_t *length, loff_t *ppos)
2626{
 
 
 
 
 
 
 
 
 
2627	if (write)
2628		compact_nodes();
2629
2630	return 0;
2631}
2632
2633#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2634static ssize_t sysfs_compact_node(struct device *dev,
2635			struct device_attribute *attr,
2636			const char *buf, size_t count)
2637{
2638	int nid = dev->id;
2639
2640	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2641		/* Flush pending updates to the LRU lists */
2642		lru_add_drain_all();
2643
2644		compact_node(nid);
2645	}
2646
2647	return count;
2648}
2649static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2650
2651int compaction_register_node(struct node *node)
2652{
2653	return device_create_file(&node->dev, &dev_attr_compact);
2654}
2655
2656void compaction_unregister_node(struct node *node)
2657{
2658	return device_remove_file(&node->dev, &dev_attr_compact);
2659}
2660#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2661
2662static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2663{
2664	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
 
2665}
2666
2667static bool kcompactd_node_suitable(pg_data_t *pgdat)
2668{
2669	int zoneid;
2670	struct zone *zone;
2671	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
 
2672
2673	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2674		zone = &pgdat->node_zones[zoneid];
2675
2676		if (!populated_zone(zone))
2677			continue;
2678
2679		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2680					highest_zoneidx) == COMPACT_CONTINUE)
 
 
2681			return true;
2682	}
2683
2684	return false;
2685}
2686
2687static void kcompactd_do_work(pg_data_t *pgdat)
2688{
2689	/*
2690	 * With no special task, compact all zones so that a page of requested
2691	 * order is allocatable.
2692	 */
2693	int zoneid;
2694	struct zone *zone;
2695	struct compact_control cc = {
2696		.order = pgdat->kcompactd_max_order,
2697		.search_order = pgdat->kcompactd_max_order,
2698		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2699		.mode = MIGRATE_SYNC_LIGHT,
2700		.ignore_skip_hint = false,
2701		.gfp_mask = GFP_KERNEL,
2702	};
 
 
2703	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2704							cc.highest_zoneidx);
2705	count_compact_event(KCOMPACTD_WAKE);
2706
2707	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2708		int status;
2709
2710		zone = &pgdat->node_zones[zoneid];
2711		if (!populated_zone(zone))
2712			continue;
2713
2714		if (compaction_deferred(zone, cc.order))
2715			continue;
2716
2717		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2718							COMPACT_CONTINUE)
 
2719			continue;
2720
2721		if (kthread_should_stop())
2722			return;
2723
2724		cc.zone = zone;
2725		status = compact_zone(&cc, NULL);
2726
2727		if (status == COMPACT_SUCCESS) {
2728			compaction_defer_reset(zone, cc.order, false);
2729		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2730			/*
2731			 * Buddy pages may become stranded on pcps that could
2732			 * otherwise coalesce on the zone's free area for
2733			 * order >= cc.order.  This is ratelimited by the
2734			 * upcoming deferral.
2735			 */
2736			drain_all_pages(zone);
2737
2738			/*
2739			 * We use sync migration mode here, so we defer like
2740			 * sync direct compaction does.
2741			 */
2742			defer_compaction(zone, cc.order);
2743		}
2744
2745		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2746				     cc.total_migrate_scanned);
2747		count_compact_events(KCOMPACTD_FREE_SCANNED,
2748				     cc.total_free_scanned);
2749
2750		VM_BUG_ON(!list_empty(&cc.freepages));
2751		VM_BUG_ON(!list_empty(&cc.migratepages));
2752	}
2753
2754	/*
2755	 * Regardless of success, we are done until woken up next. But remember
2756	 * the requested order/highest_zoneidx in case it was higher/tighter
2757	 * than our current ones
2758	 */
2759	if (pgdat->kcompactd_max_order <= cc.order)
2760		pgdat->kcompactd_max_order = 0;
2761	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2762		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2763}
2764
2765void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2766{
2767	if (!order)
2768		return;
2769
2770	if (pgdat->kcompactd_max_order < order)
2771		pgdat->kcompactd_max_order = order;
2772
2773	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2774		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2775
2776	/*
2777	 * Pairs with implicit barrier in wait_event_freezable()
2778	 * such that wakeups are not missed.
2779	 */
2780	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2781		return;
2782
2783	if (!kcompactd_node_suitable(pgdat))
2784		return;
2785
2786	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2787							highest_zoneidx);
2788	wake_up_interruptible(&pgdat->kcompactd_wait);
2789}
2790
2791/*
2792 * The background compaction daemon, started as a kernel thread
2793 * from the init process.
2794 */
2795static int kcompactd(void *p)
2796{
2797	pg_data_t *pgdat = (pg_data_t*)p;
2798	struct task_struct *tsk = current;
2799	unsigned int proactive_defer = 0;
 
2800
2801	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2802
2803	if (!cpumask_empty(cpumask))
2804		set_cpus_allowed_ptr(tsk, cpumask);
2805
2806	set_freezable();
2807
2808	pgdat->kcompactd_max_order = 0;
2809	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2810
2811	while (!kthread_should_stop()) {
2812		unsigned long pflags;
2813
 
 
 
 
 
 
2814		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2815		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2816			kcompactd_work_requested(pgdat),
2817			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2818
2819			psi_memstall_enter(&pflags);
2820			kcompactd_do_work(pgdat);
2821			psi_memstall_leave(&pflags);
 
 
 
 
 
 
 
 
2822			continue;
2823		}
2824
2825		/* kcompactd wait timeout */
 
 
 
 
2826		if (should_proactive_compact_node(pgdat)) {
2827			unsigned int prev_score, score;
2828
2829			if (proactive_defer) {
2830				proactive_defer--;
2831				continue;
2832			}
2833			prev_score = fragmentation_score_node(pgdat);
2834			proactive_compact_node(pgdat);
2835			score = fragmentation_score_node(pgdat);
2836			/*
2837			 * Defer proactive compaction if the fragmentation
2838			 * score did not go down i.e. no progress made.
2839			 */
2840			proactive_defer = score < prev_score ?
2841					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
 
2842		}
 
 
2843	}
2844
2845	return 0;
2846}
2847
2848/*
2849 * This kcompactd start function will be called by init and node-hot-add.
2850 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2851 */
2852int kcompactd_run(int nid)
2853{
2854	pg_data_t *pgdat = NODE_DATA(nid);
2855	int ret = 0;
2856
2857	if (pgdat->kcompactd)
2858		return 0;
2859
2860	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2861	if (IS_ERR(pgdat->kcompactd)) {
2862		pr_err("Failed to start kcompactd on node %d\n", nid);
2863		ret = PTR_ERR(pgdat->kcompactd);
2864		pgdat->kcompactd = NULL;
2865	}
2866	return ret;
2867}
2868
2869/*
2870 * Called by memory hotplug when all memory in a node is offlined. Caller must
2871 * hold mem_hotplug_begin/end().
2872 */
2873void kcompactd_stop(int nid)
2874{
2875	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2876
2877	if (kcompactd) {
2878		kthread_stop(kcompactd);
2879		NODE_DATA(nid)->kcompactd = NULL;
2880	}
2881}
2882
2883/*
2884 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2885 * not required for correctness. So if the last cpu in a node goes
2886 * away, we get changed to run anywhere: as the first one comes back,
2887 * restore their cpu bindings.
2888 */
2889static int kcompactd_cpu_online(unsigned int cpu)
2890{
2891	int nid;
2892
2893	for_each_node_state(nid, N_MEMORY) {
2894		pg_data_t *pgdat = NODE_DATA(nid);
2895		const struct cpumask *mask;
2896
2897		mask = cpumask_of_node(pgdat->node_id);
2898
2899		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2900			/* One of our CPUs online: restore mask */
2901			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
 
2902	}
2903	return 0;
2904}
2905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2906static int __init kcompactd_init(void)
2907{
2908	int nid;
2909	int ret;
2910
2911	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2912					"mm/compaction:online",
2913					kcompactd_cpu_online, NULL);
2914	if (ret < 0) {
2915		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2916		return ret;
2917	}
2918
2919	for_each_node_state(nid, N_MEMORY)
2920		kcompactd_run(nid);
 
2921	return 0;
2922}
2923subsys_initcall(kcompactd_init)
2924
2925#endif /* CONFIG_COMPACTION */
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29/*
  30 * Fragmentation score check interval for proactive compaction purposes.
  31 */
  32#define HPAGE_FRAG_CHECK_INTERVAL_MSEC	(500)
  33
  34static inline void count_compact_event(enum vm_event_item item)
  35{
  36	count_vm_event(item);
  37}
  38
  39static inline void count_compact_events(enum vm_event_item item, long delta)
  40{
  41	count_vm_events(item, delta);
  42}
  43#else
  44#define count_compact_event(item) do { } while (0)
  45#define count_compact_events(item, delta) do { } while (0)
  46#endif
  47
  48#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  49
  50#define CREATE_TRACE_POINTS
  51#include <trace/events/compaction.h>
  52
  53#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  54#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
 
 
 
 
 
 
 
  55
  56/*
  57 * Page order with-respect-to which proactive compaction
  58 * calculates external fragmentation, which is used as
  59 * the "fragmentation score" of a node/zone.
  60 */
  61#if defined CONFIG_TRANSPARENT_HUGEPAGE
  62#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  63#elif defined CONFIG_HUGETLBFS
  64#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  65#else
  66#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  67#endif
  68
  69static unsigned long release_freepages(struct list_head *freelist)
  70{
  71	struct page *page, *next;
  72	unsigned long high_pfn = 0;
  73
  74	list_for_each_entry_safe(page, next, freelist, lru) {
  75		unsigned long pfn = page_to_pfn(page);
  76		list_del(&page->lru);
  77		__free_page(page);
  78		if (pfn > high_pfn)
  79			high_pfn = pfn;
  80	}
  81
  82	return high_pfn;
  83}
  84
  85static void split_map_pages(struct list_head *list)
  86{
  87	unsigned int i, order, nr_pages;
  88	struct page *page, *next;
  89	LIST_HEAD(tmp_list);
  90
  91	list_for_each_entry_safe(page, next, list, lru) {
  92		list_del(&page->lru);
  93
  94		order = page_private(page);
  95		nr_pages = 1 << order;
  96
  97		post_alloc_hook(page, order, __GFP_MOVABLE);
  98		if (order)
  99			split_page(page, order);
 100
 101		for (i = 0; i < nr_pages; i++) {
 102			list_add(&page->lru, &tmp_list);
 103			page++;
 104		}
 105	}
 106
 107	list_splice(&tmp_list, list);
 108}
 109
 110#ifdef CONFIG_COMPACTION
 111bool PageMovable(struct page *page)
 
 112{
 113	const struct movable_operations *mops;
 114
 115	VM_BUG_ON_PAGE(!PageLocked(page), page);
 116	if (!__PageMovable(page))
 117		return false;
 118
 119	mops = page_movable_ops(page);
 120	if (mops)
 121		return true;
 122
 123	return false;
 124}
 
 125
 126void __SetPageMovable(struct page *page, const struct movable_operations *mops)
 127{
 128	VM_BUG_ON_PAGE(!PageLocked(page), page);
 129	VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
 130	page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
 131}
 132EXPORT_SYMBOL(__SetPageMovable);
 133
 134void __ClearPageMovable(struct page *page)
 135{
 
 136	VM_BUG_ON_PAGE(!PageMovable(page), page);
 137	/*
 138	 * This page still has the type of a movable page, but it's
 139	 * actually not movable any more.
 
 140	 */
 141	page->mapping = (void *)PAGE_MAPPING_MOVABLE;
 
 142}
 143EXPORT_SYMBOL(__ClearPageMovable);
 144
 145/* Do not skip compaction more than 64 times */
 146#define COMPACT_MAX_DEFER_SHIFT 6
 147
 148/*
 149 * Compaction is deferred when compaction fails to result in a page
 150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 152 */
 153static void defer_compaction(struct zone *zone, int order)
 154{
 155	zone->compact_considered = 0;
 156	zone->compact_defer_shift++;
 157
 158	if (order < zone->compact_order_failed)
 159		zone->compact_order_failed = order;
 160
 161	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 162		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 163
 164	trace_mm_compaction_defer_compaction(zone, order);
 165}
 166
 167/* Returns true if compaction should be skipped this time */
 168static bool compaction_deferred(struct zone *zone, int order)
 169{
 170	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 171
 172	if (order < zone->compact_order_failed)
 173		return false;
 174
 175	/* Avoid possible overflow */
 176	if (++zone->compact_considered >= defer_limit) {
 177		zone->compact_considered = defer_limit;
 
 
 178		return false;
 179	}
 180
 181	trace_mm_compaction_deferred(zone, order);
 182
 183	return true;
 184}
 185
 186/*
 187 * Update defer tracking counters after successful compaction of given order,
 188 * which means an allocation either succeeded (alloc_success == true) or is
 189 * expected to succeed.
 190 */
 191void compaction_defer_reset(struct zone *zone, int order,
 192		bool alloc_success)
 193{
 194	if (alloc_success) {
 195		zone->compact_considered = 0;
 196		zone->compact_defer_shift = 0;
 197	}
 198	if (order >= zone->compact_order_failed)
 199		zone->compact_order_failed = order + 1;
 200
 201	trace_mm_compaction_defer_reset(zone, order);
 202}
 203
 204/* Returns true if restarting compaction after many failures */
 205static bool compaction_restarting(struct zone *zone, int order)
 206{
 207	if (order < zone->compact_order_failed)
 208		return false;
 209
 210	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 211		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 212}
 213
 214/* Returns true if the pageblock should be scanned for pages to isolate. */
 215static inline bool isolation_suitable(struct compact_control *cc,
 216					struct page *page)
 217{
 218	if (cc->ignore_skip_hint)
 219		return true;
 220
 221	return !get_pageblock_skip(page);
 222}
 223
 224static void reset_cached_positions(struct zone *zone)
 225{
 226	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 227	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 228	zone->compact_cached_free_pfn =
 229				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 230}
 231
 232#ifdef CONFIG_SPARSEMEM
 233/*
 234 * If the PFN falls into an offline section, return the start PFN of the
 235 * next online section. If the PFN falls into an online section or if
 236 * there is no next online section, return 0.
 237 */
 238static unsigned long skip_offline_sections(unsigned long start_pfn)
 239{
 240	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 241
 242	if (online_section_nr(start_nr))
 243		return 0;
 244
 245	while (++start_nr <= __highest_present_section_nr) {
 246		if (online_section_nr(start_nr))
 247			return section_nr_to_pfn(start_nr);
 248	}
 249
 250	return 0;
 251}
 252
 253/*
 254 * If the PFN falls into an offline section, return the end PFN of the
 255 * next online section in reverse. If the PFN falls into an online section
 256 * or if there is no next online section in reverse, return 0.
 257 */
 258static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 259{
 260	unsigned long start_nr = pfn_to_section_nr(start_pfn);
 261
 262	if (!start_nr || online_section_nr(start_nr))
 263		return 0;
 264
 265	while (start_nr-- > 0) {
 266		if (online_section_nr(start_nr))
 267			return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
 268	}
 269
 270	return 0;
 271}
 272#else
 273static unsigned long skip_offline_sections(unsigned long start_pfn)
 274{
 275	return 0;
 276}
 277
 278static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
 279{
 280	return 0;
 281}
 282#endif
 283
 284/*
 285 * Compound pages of >= pageblock_order should consistently be skipped until
 286 * released. It is always pointless to compact pages of such order (if they are
 287 * migratable), and the pageblocks they occupy cannot contain any free pages.
 288 */
 289static bool pageblock_skip_persistent(struct page *page)
 290{
 291	if (!PageCompound(page))
 292		return false;
 293
 294	page = compound_head(page);
 295
 296	if (compound_order(page) >= pageblock_order)
 297		return true;
 298
 299	return false;
 300}
 301
 302static bool
 303__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 304							bool check_target)
 305{
 306	struct page *page = pfn_to_online_page(pfn);
 307	struct page *block_page;
 308	struct page *end_page;
 309	unsigned long block_pfn;
 310
 311	if (!page)
 312		return false;
 313	if (zone != page_zone(page))
 314		return false;
 315	if (pageblock_skip_persistent(page))
 316		return false;
 317
 318	/*
 319	 * If skip is already cleared do no further checking once the
 320	 * restart points have been set.
 321	 */
 322	if (check_source && check_target && !get_pageblock_skip(page))
 323		return true;
 324
 325	/*
 326	 * If clearing skip for the target scanner, do not select a
 327	 * non-movable pageblock as the starting point.
 328	 */
 329	if (!check_source && check_target &&
 330	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 331		return false;
 332
 333	/* Ensure the start of the pageblock or zone is online and valid */
 334	block_pfn = pageblock_start_pfn(pfn);
 335	block_pfn = max(block_pfn, zone->zone_start_pfn);
 336	block_page = pfn_to_online_page(block_pfn);
 337	if (block_page) {
 338		page = block_page;
 339		pfn = block_pfn;
 340	}
 341
 342	/* Ensure the end of the pageblock or zone is online and valid */
 343	block_pfn = pageblock_end_pfn(pfn) - 1;
 344	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 345	end_page = pfn_to_online_page(block_pfn);
 346	if (!end_page)
 347		return false;
 348
 349	/*
 350	 * Only clear the hint if a sample indicates there is either a
 351	 * free page or an LRU page in the block. One or other condition
 352	 * is necessary for the block to be a migration source/target.
 353	 */
 354	do {
 355		if (check_source && PageLRU(page)) {
 356			clear_pageblock_skip(page);
 357			return true;
 358		}
 
 359
 360		if (check_target && PageBuddy(page)) {
 361			clear_pageblock_skip(page);
 362			return true;
 
 363		}
 364
 365		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 
 366	} while (page <= end_page);
 367
 368	return false;
 369}
 370
 371/*
 372 * This function is called to clear all cached information on pageblocks that
 373 * should be skipped for page isolation when the migrate and free page scanner
 374 * meet.
 375 */
 376static void __reset_isolation_suitable(struct zone *zone)
 377{
 378	unsigned long migrate_pfn = zone->zone_start_pfn;
 379	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 380	unsigned long reset_migrate = free_pfn;
 381	unsigned long reset_free = migrate_pfn;
 382	bool source_set = false;
 383	bool free_set = false;
 384
 385	/* Only flush if a full compaction finished recently */
 386	if (!zone->compact_blockskip_flush)
 387		return;
 388
 389	zone->compact_blockskip_flush = false;
 390
 391	/*
 392	 * Walk the zone and update pageblock skip information. Source looks
 393	 * for PageLRU while target looks for PageBuddy. When the scanner
 394	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 395	 * is suitable as both source and target.
 396	 */
 397	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 398					free_pfn -= pageblock_nr_pages) {
 399		cond_resched();
 400
 401		/* Update the migrate PFN */
 402		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 403		    migrate_pfn < reset_migrate) {
 404			source_set = true;
 405			reset_migrate = migrate_pfn;
 406			zone->compact_init_migrate_pfn = reset_migrate;
 407			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 408			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 409		}
 410
 411		/* Update the free PFN */
 412		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 413		    free_pfn > reset_free) {
 414			free_set = true;
 415			reset_free = free_pfn;
 416			zone->compact_init_free_pfn = reset_free;
 417			zone->compact_cached_free_pfn = reset_free;
 418		}
 419	}
 420
 421	/* Leave no distance if no suitable block was reset */
 422	if (reset_migrate >= reset_free) {
 423		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 424		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 425		zone->compact_cached_free_pfn = free_pfn;
 426	}
 427}
 428
 429void reset_isolation_suitable(pg_data_t *pgdat)
 430{
 431	int zoneid;
 432
 433	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 434		struct zone *zone = &pgdat->node_zones[zoneid];
 435		if (!populated_zone(zone))
 436			continue;
 437
 438		__reset_isolation_suitable(zone);
 
 
 439	}
 440}
 441
 442/*
 443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 444 * locks are not required for read/writers. Returns true if it was already set.
 445 */
 446static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 447{
 448	bool skip;
 449
 450	/* Do not update if skip hint is being ignored */
 451	if (cc->ignore_skip_hint)
 452		return false;
 453
 
 
 
 454	skip = get_pageblock_skip(page);
 455	if (!skip && !cc->no_set_skip_hint)
 456		set_pageblock_skip(page);
 457
 458	return skip;
 459}
 460
 461static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 462{
 463	struct zone *zone = cc->zone;
 464
 
 
 465	/* Set for isolation rather than compaction */
 466	if (cc->no_set_skip_hint)
 467		return;
 468
 469	pfn = pageblock_end_pfn(pfn);
 470
 471	/* Update where async and sync compaction should restart */
 472	if (pfn > zone->compact_cached_migrate_pfn[0])
 473		zone->compact_cached_migrate_pfn[0] = pfn;
 474	if (cc->mode != MIGRATE_ASYNC &&
 475	    pfn > zone->compact_cached_migrate_pfn[1])
 476		zone->compact_cached_migrate_pfn[1] = pfn;
 477}
 478
 479/*
 480 * If no pages were isolated then mark this pageblock to be skipped in the
 481 * future. The information is later cleared by __reset_isolation_suitable().
 482 */
 483static void update_pageblock_skip(struct compact_control *cc,
 484			struct page *page, unsigned long pfn)
 485{
 486	struct zone *zone = cc->zone;
 487
 488	if (cc->no_set_skip_hint)
 489		return;
 490
 
 
 
 491	set_pageblock_skip(page);
 492
 
 493	if (pfn < zone->compact_cached_free_pfn)
 494		zone->compact_cached_free_pfn = pfn;
 495}
 496#else
 497static inline bool isolation_suitable(struct compact_control *cc,
 498					struct page *page)
 499{
 500	return true;
 501}
 502
 503static inline bool pageblock_skip_persistent(struct page *page)
 504{
 505	return false;
 506}
 507
 508static inline void update_pageblock_skip(struct compact_control *cc,
 509			struct page *page, unsigned long pfn)
 510{
 511}
 512
 513static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 514{
 515}
 516
 517static bool test_and_set_skip(struct compact_control *cc, struct page *page)
 
 518{
 519	return false;
 520}
 521#endif /* CONFIG_COMPACTION */
 522
 523/*
 524 * Compaction requires the taking of some coarse locks that are potentially
 525 * very heavily contended. For async compaction, trylock and record if the
 526 * lock is contended. The lock will still be acquired but compaction will
 527 * abort when the current block is finished regardless of success rate.
 528 * Sync compaction acquires the lock.
 529 *
 530 * Always returns true which makes it easier to track lock state in callers.
 531 */
 532static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 533						struct compact_control *cc)
 534	__acquires(lock)
 535{
 536	/* Track if the lock is contended in async mode */
 537	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 538		if (spin_trylock_irqsave(lock, *flags))
 539			return true;
 540
 541		cc->contended = true;
 542	}
 543
 544	spin_lock_irqsave(lock, *flags);
 545	return true;
 546}
 547
 548/*
 549 * Compaction requires the taking of some coarse locks that are potentially
 550 * very heavily contended. The lock should be periodically unlocked to avoid
 551 * having disabled IRQs for a long time, even when there is nobody waiting on
 552 * the lock. It might also be that allowing the IRQs will result in
 553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
 
 554 * Either compaction type will also abort if a fatal signal is pending.
 555 * In either case if the lock was locked, it is dropped and not regained.
 556 *
 557 * Returns true if compaction should abort due to fatal signal pending.
 558 * Returns false when compaction can continue.
 
 
 559 */
 560static bool compact_unlock_should_abort(spinlock_t *lock,
 561		unsigned long flags, bool *locked, struct compact_control *cc)
 562{
 563	if (*locked) {
 564		spin_unlock_irqrestore(lock, flags);
 565		*locked = false;
 566	}
 567
 568	if (fatal_signal_pending(current)) {
 569		cc->contended = true;
 570		return true;
 571	}
 572
 573	cond_resched();
 574
 575	return false;
 576}
 577
 578/*
 579 * Isolate free pages onto a private freelist. If @strict is true, will abort
 580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 581 * (even though it may still end up isolating some pages).
 582 */
 583static unsigned long isolate_freepages_block(struct compact_control *cc,
 584				unsigned long *start_pfn,
 585				unsigned long end_pfn,
 586				struct list_head *freelist,
 587				unsigned int stride,
 588				bool strict)
 589{
 590	int nr_scanned = 0, total_isolated = 0;
 591	struct page *page;
 592	unsigned long flags = 0;
 593	bool locked = false;
 594	unsigned long blockpfn = *start_pfn;
 595	unsigned int order;
 596
 597	/* Strict mode is for isolation, speed is secondary */
 598	if (strict)
 599		stride = 1;
 600
 601	page = pfn_to_page(blockpfn);
 602
 603	/* Isolate free pages. */
 604	for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
 605		int isolated;
 
 606
 607		/*
 608		 * Periodically drop the lock (if held) regardless of its
 609		 * contention, to give chance to IRQs. Abort if fatal signal
 610		 * pending.
 611		 */
 612		if (!(blockpfn % COMPACT_CLUSTER_MAX)
 613		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 614								&locked, cc))
 615			break;
 616
 617		nr_scanned++;
 
 
 618
 619		/*
 620		 * For compound pages such as THP and hugetlbfs, we can save
 621		 * potentially a lot of iterations if we skip them at once.
 622		 * The check is racy, but we can consider only valid values
 623		 * and the only danger is skipping too much.
 624		 */
 625		if (PageCompound(page)) {
 626			const unsigned int order = compound_order(page);
 627
 628			if (blockpfn + (1UL << order) <= end_pfn) {
 629				blockpfn += (1UL << order) - 1;
 630				page += (1UL << order) - 1;
 631				nr_scanned += (1UL << order) - 1;
 632			}
 633
 634			goto isolate_fail;
 635		}
 636
 637		if (!PageBuddy(page))
 638			goto isolate_fail;
 639
 640		/* If we already hold the lock, we can skip some rechecking. */
 
 
 
 
 
 
 641		if (!locked) {
 642			locked = compact_lock_irqsave(&cc->zone->lock,
 643								&flags, cc);
 644
 645			/* Recheck this is a buddy page under lock */
 646			if (!PageBuddy(page))
 647				goto isolate_fail;
 648		}
 649
 650		/* Found a free page, will break it into order-0 pages */
 651		order = buddy_order(page);
 652		isolated = __isolate_free_page(page, order);
 653		if (!isolated)
 654			break;
 655		set_page_private(page, order);
 656
 657		nr_scanned += isolated - 1;
 658		total_isolated += isolated;
 659		cc->nr_freepages += isolated;
 660		list_add_tail(&page->lru, freelist);
 661
 662		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 663			blockpfn += isolated;
 664			break;
 665		}
 666		/* Advance to the end of split page */
 667		blockpfn += isolated - 1;
 668		page += isolated - 1;
 669		continue;
 670
 671isolate_fail:
 672		if (strict)
 673			break;
 
 
 674
 675	}
 676
 677	if (locked)
 678		spin_unlock_irqrestore(&cc->zone->lock, flags);
 679
 680	/*
 681	 * Be careful to not go outside of the pageblock.
 
 682	 */
 683	if (unlikely(blockpfn > end_pfn))
 684		blockpfn = end_pfn;
 685
 686	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 687					nr_scanned, total_isolated);
 688
 689	/* Record how far we have got within the block */
 690	*start_pfn = blockpfn;
 691
 692	/*
 693	 * If strict isolation is requested by CMA then check that all the
 694	 * pages requested were isolated. If there were any failures, 0 is
 695	 * returned and CMA will fail.
 696	 */
 697	if (strict && blockpfn < end_pfn)
 698		total_isolated = 0;
 699
 700	cc->total_free_scanned += nr_scanned;
 701	if (total_isolated)
 702		count_compact_events(COMPACTISOLATED, total_isolated);
 703	return total_isolated;
 704}
 705
 706/**
 707 * isolate_freepages_range() - isolate free pages.
 708 * @cc:        Compaction control structure.
 709 * @start_pfn: The first PFN to start isolating.
 710 * @end_pfn:   The one-past-last PFN.
 711 *
 712 * Non-free pages, invalid PFNs, or zone boundaries within the
 713 * [start_pfn, end_pfn) range are considered errors, cause function to
 714 * undo its actions and return zero.
 715 *
 716 * Otherwise, function returns one-past-the-last PFN of isolated page
 717 * (which may be greater then end_pfn if end fell in a middle of
 718 * a free page).
 719 */
 720unsigned long
 721isolate_freepages_range(struct compact_control *cc,
 722			unsigned long start_pfn, unsigned long end_pfn)
 723{
 724	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 725	LIST_HEAD(freelist);
 726
 727	pfn = start_pfn;
 728	block_start_pfn = pageblock_start_pfn(pfn);
 729	if (block_start_pfn < cc->zone->zone_start_pfn)
 730		block_start_pfn = cc->zone->zone_start_pfn;
 731	block_end_pfn = pageblock_end_pfn(pfn);
 732
 733	for (; pfn < end_pfn; pfn += isolated,
 734				block_start_pfn = block_end_pfn,
 735				block_end_pfn += pageblock_nr_pages) {
 736		/* Protect pfn from changing by isolate_freepages_block */
 737		unsigned long isolate_start_pfn = pfn;
 738
 
 
 739		/*
 740		 * pfn could pass the block_end_pfn if isolated freepage
 741		 * is more than pageblock order. In this case, we adjust
 742		 * scanning range to right one.
 743		 */
 744		if (pfn >= block_end_pfn) {
 745			block_start_pfn = pageblock_start_pfn(pfn);
 746			block_end_pfn = pageblock_end_pfn(pfn);
 
 747		}
 748
 749		block_end_pfn = min(block_end_pfn, end_pfn);
 750
 751		if (!pageblock_pfn_to_page(block_start_pfn,
 752					block_end_pfn, cc->zone))
 753			break;
 754
 755		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 756					block_end_pfn, &freelist, 0, true);
 757
 758		/*
 759		 * In strict mode, isolate_freepages_block() returns 0 if
 760		 * there are any holes in the block (ie. invalid PFNs or
 761		 * non-free pages).
 762		 */
 763		if (!isolated)
 764			break;
 765
 766		/*
 767		 * If we managed to isolate pages, it is always (1 << n) *
 768		 * pageblock_nr_pages for some non-negative n.  (Max order
 769		 * page may span two pageblocks).
 770		 */
 771	}
 772
 773	/* __isolate_free_page() does not map the pages */
 774	split_map_pages(&freelist);
 775
 776	if (pfn < end_pfn) {
 777		/* Loop terminated early, cleanup. */
 778		release_freepages(&freelist);
 779		return 0;
 780	}
 781
 782	/* We don't use freelists for anything. */
 783	return pfn;
 784}
 785
 786/* Similar to reclaim, but different enough that they don't share logic */
 787static bool too_many_isolated(struct compact_control *cc)
 788{
 789	pg_data_t *pgdat = cc->zone->zone_pgdat;
 790	bool too_many;
 791
 792	unsigned long active, inactive, isolated;
 793
 794	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 795			node_page_state(pgdat, NR_INACTIVE_ANON);
 796	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 797			node_page_state(pgdat, NR_ACTIVE_ANON);
 798	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 799			node_page_state(pgdat, NR_ISOLATED_ANON);
 800
 801	/*
 802	 * Allow GFP_NOFS to isolate past the limit set for regular
 803	 * compaction runs. This prevents an ABBA deadlock when other
 804	 * compactors have already isolated to the limit, but are
 805	 * blocked on filesystem locks held by the GFP_NOFS thread.
 806	 */
 807	if (cc->gfp_mask & __GFP_FS) {
 808		inactive >>= 3;
 809		active >>= 3;
 810	}
 811
 812	too_many = isolated > (inactive + active) / 2;
 813	if (!too_many)
 814		wake_throttle_isolated(pgdat);
 815
 816	return too_many;
 817}
 818
 819/**
 820 * isolate_migratepages_block() - isolate all migrate-able pages within
 821 *				  a single pageblock
 822 * @cc:		Compaction control structure.
 823 * @low_pfn:	The first PFN to isolate
 824 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 825 * @mode:	Isolation mode to be used.
 826 *
 827 * Isolate all pages that can be migrated from the range specified by
 828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
 830 * -ENOMEM in case we could not allocate a page, or 0.
 831 * cc->migrate_pfn will contain the next pfn to scan.
 832 *
 833 * The pages are isolated on cc->migratepages list (not required to be empty),
 834 * and cc->nr_migratepages is updated accordingly.
 
 835 */
 836static int
 837isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 838			unsigned long end_pfn, isolate_mode_t mode)
 839{
 840	pg_data_t *pgdat = cc->zone->zone_pgdat;
 841	unsigned long nr_scanned = 0, nr_isolated = 0;
 842	struct lruvec *lruvec;
 843	unsigned long flags = 0;
 844	struct lruvec *locked = NULL;
 845	struct folio *folio = NULL;
 846	struct page *page = NULL, *valid_page = NULL;
 847	struct address_space *mapping;
 848	unsigned long start_pfn = low_pfn;
 849	bool skip_on_failure = false;
 850	unsigned long next_skip_pfn = 0;
 851	bool skip_updated = false;
 852	int ret = 0;
 853
 854	cc->migrate_pfn = low_pfn;
 855
 856	/*
 857	 * Ensure that there are not too many pages isolated from the LRU
 858	 * list by either parallel reclaimers or compaction. If there are,
 859	 * delay for some time until fewer pages are isolated
 860	 */
 861	while (unlikely(too_many_isolated(cc))) {
 862		/* stop isolation if there are still pages not migrated */
 863		if (cc->nr_migratepages)
 864			return -EAGAIN;
 865
 866		/* async migration should just abort */
 867		if (cc->mode == MIGRATE_ASYNC)
 868			return -EAGAIN;
 869
 870		reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
 871
 872		if (fatal_signal_pending(current))
 873			return -EINTR;
 874	}
 875
 876	cond_resched();
 877
 878	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 879		skip_on_failure = true;
 880		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 881	}
 882
 883	/* Time to isolate some pages for migration */
 884	for (; low_pfn < end_pfn; low_pfn++) {
 885		bool is_dirty, is_unevictable;
 886
 887		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 888			/*
 889			 * We have isolated all migration candidates in the
 890			 * previous order-aligned block, and did not skip it due
 891			 * to failure. We should migrate the pages now and
 892			 * hopefully succeed compaction.
 893			 */
 894			if (nr_isolated)
 895				break;
 896
 897			/*
 898			 * We failed to isolate in the previous order-aligned
 899			 * block. Set the new boundary to the end of the
 900			 * current block. Note we can't simply increase
 901			 * next_skip_pfn by 1 << order, as low_pfn might have
 902			 * been incremented by a higher number due to skipping
 903			 * a compound or a high-order buddy page in the
 904			 * previous loop iteration.
 905			 */
 906			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 907		}
 908
 909		/*
 910		 * Periodically drop the lock (if held) regardless of its
 911		 * contention, to give chance to IRQs. Abort completely if
 912		 * a fatal signal is pending.
 913		 */
 914		if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
 915			if (locked) {
 916				unlock_page_lruvec_irqrestore(locked, flags);
 917				locked = NULL;
 918			}
 919
 920			if (fatal_signal_pending(current)) {
 921				cc->contended = true;
 922				ret = -EINTR;
 923
 924				goto fatal_pending;
 925			}
 926
 927			cond_resched();
 928		}
 929
 
 
 930		nr_scanned++;
 931
 932		page = pfn_to_page(low_pfn);
 933
 934		/*
 935		 * Check if the pageblock has already been marked skipped.
 936		 * Only the first PFN is checked as the caller isolates
 937		 * COMPACT_CLUSTER_MAX at a time so the second call must
 938		 * not falsely conclude that the block should be skipped.
 939		 */
 940		if (!valid_page && (pageblock_aligned(low_pfn) ||
 941				    low_pfn == cc->zone->zone_start_pfn)) {
 942			if (!isolation_suitable(cc, page)) {
 943				low_pfn = end_pfn;
 944				folio = NULL;
 945				goto isolate_abort;
 946			}
 947			valid_page = page;
 948		}
 949
 950		if (PageHuge(page) && cc->alloc_contig) {
 951			if (locked) {
 952				unlock_page_lruvec_irqrestore(locked, flags);
 953				locked = NULL;
 954			}
 955
 956			ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
 957
 958			/*
 959			 * Fail isolation in case isolate_or_dissolve_huge_page()
 960			 * reports an error. In case of -ENOMEM, abort right away.
 961			 */
 962			if (ret < 0) {
 963				 /* Do not report -EBUSY down the chain */
 964				if (ret == -EBUSY)
 965					ret = 0;
 966				low_pfn += compound_nr(page) - 1;
 967				nr_scanned += compound_nr(page) - 1;
 968				goto isolate_fail;
 969			}
 970
 971			if (PageHuge(page)) {
 972				/*
 973				 * Hugepage was successfully isolated and placed
 974				 * on the cc->migratepages list.
 975				 */
 976				folio = page_folio(page);
 977				low_pfn += folio_nr_pages(folio) - 1;
 978				goto isolate_success_no_list;
 979			}
 980
 981			/*
 982			 * Ok, the hugepage was dissolved. Now these pages are
 983			 * Buddy and cannot be re-allocated because they are
 984			 * isolated. Fall-through as the check below handles
 985			 * Buddy pages.
 986			 */
 987		}
 988
 989		/*
 990		 * Skip if free. We read page order here without zone lock
 991		 * which is generally unsafe, but the race window is small and
 992		 * the worst thing that can happen is that we skip some
 993		 * potential isolation targets.
 994		 */
 995		if (PageBuddy(page)) {
 996			unsigned long freepage_order = buddy_order_unsafe(page);
 997
 998			/*
 999			 * Without lock, we cannot be sure that what we got is
1000			 * a valid page order. Consider only values in the
1001			 * valid order range to prevent low_pfn overflow.
1002			 */
1003			if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004				low_pfn += (1UL << freepage_order) - 1;
1005				nr_scanned += (1UL << freepage_order) - 1;
1006			}
1007			continue;
1008		}
1009
1010		/*
1011		 * Regardless of being on LRU, compound pages such as THP and
1012		 * hugetlbfs are not to be compacted unless we are attempting
1013		 * an allocation much larger than the huge page size (eg CMA).
1014		 * We can potentially save a lot of iterations if we skip them
1015		 * at once. The check is racy, but we can consider only valid
1016		 * values and the only danger is skipping too much.
1017		 */
1018		if (PageCompound(page) && !cc->alloc_contig) {
1019			const unsigned int order = compound_order(page);
1020
1021			if (likely(order <= MAX_PAGE_ORDER)) {
1022				low_pfn += (1UL << order) - 1;
1023				nr_scanned += (1UL << order) - 1;
1024			}
1025			goto isolate_fail;
1026		}
1027
1028		/*
1029		 * Check may be lockless but that's ok as we recheck later.
1030		 * It's possible to migrate LRU and non-lru movable pages.
1031		 * Skip any other type of page
1032		 */
1033		if (!PageLRU(page)) {
1034			/*
1035			 * __PageMovable can return false positive so we need
1036			 * to verify it under page_lock.
1037			 */
1038			if (unlikely(__PageMovable(page)) &&
1039					!PageIsolated(page)) {
1040				if (locked) {
1041					unlock_page_lruvec_irqrestore(locked, flags);
1042					locked = NULL;
 
1043				}
1044
1045				if (isolate_movable_page(page, mode)) {
1046					folio = page_folio(page);
1047					goto isolate_success;
1048				}
1049			}
1050
1051			goto isolate_fail;
1052		}
1053
1054		/*
1055		 * Be careful not to clear PageLRU until after we're
1056		 * sure the page is not being freed elsewhere -- the
1057		 * page release code relies on it.
1058		 */
1059		folio = folio_get_nontail_page(page);
1060		if (unlikely(!folio))
1061			goto isolate_fail;
1062
1063		/*
1064		 * Migration will fail if an anonymous page is pinned in memory,
1065		 * so avoid taking lru_lock and isolating it unnecessarily in an
1066		 * admittedly racy check.
1067		 */
1068		mapping = folio_mapping(folio);
1069		if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070			goto isolate_fail_put;
1071
1072		/*
1073		 * Only allow to migrate anonymous pages in GFP_NOFS context
1074		 * because those do not depend on fs locks.
1075		 */
1076		if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077			goto isolate_fail_put;
1078
1079		/* Only take pages on LRU: a check now makes later tests safe */
1080		if (!folio_test_lru(folio))
1081			goto isolate_fail_put;
1082
1083		is_unevictable = folio_test_unevictable(folio);
1084
1085		/* Compaction might skip unevictable pages but CMA takes them */
1086		if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087			goto isolate_fail_put;
1088
1089		/*
1090		 * To minimise LRU disruption, the caller can indicate with
1091		 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092		 * it will be able to migrate without blocking - clean pages
1093		 * for the most part.  PageWriteback would require blocking.
1094		 */
1095		if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096			goto isolate_fail_put;
1097
1098		is_dirty = folio_test_dirty(folio);
1099
1100		if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101		    (mapping && is_unevictable)) {
1102			bool migrate_dirty = true;
1103			bool is_unmovable;
1104
1105			/*
1106			 * Only folios without mappings or that have
1107			 * a ->migrate_folio callback are possible to migrate
1108			 * without blocking.
1109			 *
1110			 * Folios from unmovable mappings are not migratable.
1111			 *
1112			 * However, we can be racing with truncation, which can
1113			 * free the mapping that we need to check. Truncation
1114			 * holds the folio lock until after the folio is removed
1115			 * from the page so holding it ourselves is sufficient.
1116			 *
1117			 * To avoid locking the folio just to check unmovable,
1118			 * assume every unmovable folio is also unevictable,
1119			 * which is a cheaper test.  If our assumption goes
1120			 * wrong, it's not a correctness bug, just potentially
1121			 * wasted cycles.
1122			 */
1123			if (!folio_trylock(folio))
1124				goto isolate_fail_put;
1125
1126			mapping = folio_mapping(folio);
1127			if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128				migrate_dirty = !mapping ||
1129						mapping->a_ops->migrate_folio;
1130			}
1131			is_unmovable = mapping && mapping_unmovable(mapping);
1132			folio_unlock(folio);
1133			if (!migrate_dirty || is_unmovable)
1134				goto isolate_fail_put;
1135		}
1136
1137		/* Try isolate the folio */
1138		if (!folio_test_clear_lru(folio))
1139			goto isolate_fail_put;
1140
1141		lruvec = folio_lruvec(folio);
1142
1143		/* If we already hold the lock, we can skip some rechecking */
1144		if (lruvec != locked) {
1145			if (locked)
1146				unlock_page_lruvec_irqrestore(locked, flags);
1147
1148			compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1149			locked = lruvec;
1150
1151			lruvec_memcg_debug(lruvec, folio);
1152
1153			/*
1154			 * Try get exclusive access under lock. If marked for
1155			 * skip, the scan is aborted unless the current context
1156			 * is a rescan to reach the end of the pageblock.
1157			 */
1158			if (!skip_updated && valid_page) {
1159				skip_updated = true;
1160				if (test_and_set_skip(cc, valid_page) &&
1161				    !cc->finish_pageblock) {
1162					low_pfn = end_pfn;
1163					goto isolate_abort;
1164				}
1165			}
1166
 
 
 
 
1167			/*
1168			 * folio become large since the non-locked check,
1169			 * and it's on LRU.
 
1170			 */
1171			if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172				low_pfn += folio_nr_pages(folio) - 1;
1173				nr_scanned += folio_nr_pages(folio) - 1;
1174				folio_set_lru(folio);
1175				goto isolate_fail_put;
1176			}
1177		}
1178
1179		/* The folio is taken off the LRU */
1180		if (folio_test_large(folio))
1181			low_pfn += folio_nr_pages(folio) - 1;
 
 
 
 
 
 
1182
1183		/* Successfully isolated */
1184		lruvec_del_folio(lruvec, folio);
1185		node_stat_mod_folio(folio,
1186				NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187				folio_nr_pages(folio));
1188
1189isolate_success:
1190		list_add(&folio->lru, &cc->migratepages);
1191isolate_success_no_list:
1192		cc->nr_migratepages += folio_nr_pages(folio);
1193		nr_isolated += folio_nr_pages(folio);
1194		nr_scanned += folio_nr_pages(folio) - 1;
1195
1196		/*
1197		 * Avoid isolating too much unless this block is being
1198		 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199		 * or a lock is contended. For contention, isolate quickly to
1200		 * potentially remove one source of contention.
1201		 */
1202		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203		    !cc->finish_pageblock && !cc->contended) {
1204			++low_pfn;
1205			break;
1206		}
1207
1208		continue;
1209
1210isolate_fail_put:
1211		/* Avoid potential deadlock in freeing page under lru_lock */
1212		if (locked) {
1213			unlock_page_lruvec_irqrestore(locked, flags);
1214			locked = NULL;
1215		}
1216		folio_put(folio);
1217
1218isolate_fail:
1219		if (!skip_on_failure && ret != -ENOMEM)
1220			continue;
1221
1222		/*
1223		 * We have isolated some pages, but then failed. Release them
1224		 * instead of migrating, as we cannot form the cc->order buddy
1225		 * page anyway.
1226		 */
1227		if (nr_isolated) {
1228			if (locked) {
1229				unlock_page_lruvec_irqrestore(locked, flags);
1230				locked = NULL;
1231			}
1232			putback_movable_pages(&cc->migratepages);
1233			cc->nr_migratepages = 0;
1234			nr_isolated = 0;
1235		}
1236
1237		if (low_pfn < next_skip_pfn) {
1238			low_pfn = next_skip_pfn - 1;
1239			/*
1240			 * The check near the loop beginning would have updated
1241			 * next_skip_pfn too, but this is a bit simpler.
1242			 */
1243			next_skip_pfn += 1UL << cc->order;
1244		}
1245
1246		if (ret == -ENOMEM)
1247			break;
1248	}
1249
1250	/*
1251	 * The PageBuddy() check could have potentially brought us outside
1252	 * the range to be scanned.
1253	 */
1254	if (unlikely(low_pfn > end_pfn))
1255		low_pfn = end_pfn;
1256
1257	folio = NULL;
1258
1259isolate_abort:
1260	if (locked)
1261		unlock_page_lruvec_irqrestore(locked, flags);
1262	if (folio) {
1263		folio_set_lru(folio);
1264		folio_put(folio);
1265	}
1266
1267	/*
1268	 * Update the cached scanner pfn once the pageblock has been scanned.
1269	 * Pages will either be migrated in which case there is no point
1270	 * scanning in the near future or migration failed in which case the
1271	 * failure reason may persist. The block is marked for skipping if
1272	 * there were no pages isolated in the block or if the block is
1273	 * rescanned twice in a row.
1274	 */
1275	if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276		if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277			set_pageblock_skip(valid_page);
1278		update_cached_migrate(cc, low_pfn);
1279	}
1280
1281	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282						nr_scanned, nr_isolated);
1283
1284fatal_pending:
1285	cc->total_migrate_scanned += nr_scanned;
1286	if (nr_isolated)
1287		count_compact_events(COMPACTISOLATED, nr_isolated);
1288
1289	cc->migrate_pfn = low_pfn;
1290
1291	return ret;
1292}
1293
1294/**
1295 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296 * @cc:        Compaction control structure.
1297 * @start_pfn: The first PFN to start isolating.
1298 * @end_pfn:   The one-past-last PFN.
1299 *
1300 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301 * in case we could not allocate a page, or 0.
 
1302 */
1303int
1304isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305							unsigned long end_pfn)
1306{
1307	unsigned long pfn, block_start_pfn, block_end_pfn;
1308	int ret = 0;
1309
1310	/* Scan block by block. First and last block may be incomplete */
1311	pfn = start_pfn;
1312	block_start_pfn = pageblock_start_pfn(pfn);
1313	if (block_start_pfn < cc->zone->zone_start_pfn)
1314		block_start_pfn = cc->zone->zone_start_pfn;
1315	block_end_pfn = pageblock_end_pfn(pfn);
1316
1317	for (; pfn < end_pfn; pfn = block_end_pfn,
1318				block_start_pfn = block_end_pfn,
1319				block_end_pfn += pageblock_nr_pages) {
1320
1321		block_end_pfn = min(block_end_pfn, end_pfn);
1322
1323		if (!pageblock_pfn_to_page(block_start_pfn,
1324					block_end_pfn, cc->zone))
1325			continue;
1326
1327		ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328						 ISOLATE_UNEVICTABLE);
1329
1330		if (ret)
1331			break;
1332
1333		if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1334			break;
1335	}
1336
1337	return ret;
1338}
1339
1340#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341#ifdef CONFIG_COMPACTION
1342
1343static bool suitable_migration_source(struct compact_control *cc,
1344							struct page *page)
1345{
1346	int block_mt;
1347
1348	if (pageblock_skip_persistent(page))
1349		return false;
1350
1351	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1352		return true;
1353
1354	block_mt = get_pageblock_migratetype(page);
1355
1356	if (cc->migratetype == MIGRATE_MOVABLE)
1357		return is_migrate_movable(block_mt);
1358	else
1359		return block_mt == cc->migratetype;
1360}
1361
1362/* Returns true if the page is within a block suitable for migration to */
1363static bool suitable_migration_target(struct compact_control *cc,
1364							struct page *page)
1365{
1366	/* If the page is a large free page, then disallow migration */
1367	if (PageBuddy(page)) {
1368		/*
1369		 * We are checking page_order without zone->lock taken. But
1370		 * the only small danger is that we skip a potentially suitable
1371		 * pageblock, so it's not worth to check order for valid range.
1372		 */
1373		if (buddy_order_unsafe(page) >= pageblock_order)
1374			return false;
1375	}
1376
1377	if (cc->ignore_block_suitable)
1378		return true;
1379
1380	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381	if (is_migrate_movable(get_pageblock_migratetype(page)))
1382		return true;
1383
1384	/* Otherwise skip the block */
1385	return false;
1386}
1387
1388static inline unsigned int
1389freelist_scan_limit(struct compact_control *cc)
1390{
1391	unsigned short shift = BITS_PER_LONG - 1;
1392
1393	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1394}
1395
1396/*
1397 * Test whether the free scanner has reached the same or lower pageblock than
1398 * the migration scanner, and compaction should thus terminate.
1399 */
1400static inline bool compact_scanners_met(struct compact_control *cc)
1401{
1402	return (cc->free_pfn >> pageblock_order)
1403		<= (cc->migrate_pfn >> pageblock_order);
1404}
1405
1406/*
1407 * Used when scanning for a suitable migration target which scans freelists
1408 * in reverse. Reorders the list such as the unscanned pages are scanned
1409 * first on the next iteration of the free scanner
1410 */
1411static void
1412move_freelist_head(struct list_head *freelist, struct page *freepage)
1413{
1414	LIST_HEAD(sublist);
1415
1416	if (!list_is_first(&freepage->buddy_list, freelist)) {
1417		list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418		list_splice_tail(&sublist, freelist);
 
1419	}
1420}
1421
1422/*
1423 * Similar to move_freelist_head except used by the migration scanner
1424 * when scanning forward. It's possible for these list operations to
1425 * move against each other if they search the free list exactly in
1426 * lockstep.
1427 */
1428static void
1429move_freelist_tail(struct list_head *freelist, struct page *freepage)
1430{
1431	LIST_HEAD(sublist);
1432
1433	if (!list_is_last(&freepage->buddy_list, freelist)) {
1434		list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435		list_splice_tail(&sublist, freelist);
 
1436	}
1437}
1438
1439static void
1440fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1441{
1442	unsigned long start_pfn, end_pfn;
1443	struct page *page;
1444
1445	/* Do not search around if there are enough pages already */
1446	if (cc->nr_freepages >= cc->nr_migratepages)
1447		return;
1448
1449	/* Minimise scanning during async compaction */
1450	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1451		return;
1452
1453	/* Pageblock boundaries */
1454	start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1456
1457	page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1458	if (!page)
1459		return;
 
 
 
1460
1461	isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
 
 
 
1462
1463	/* Skip this pageblock in the future as it's full or nearly full */
1464	if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465		set_pageblock_skip(page);
1466}
1467
1468/* Search orders in round-robin fashion */
1469static int next_search_order(struct compact_control *cc, int order)
1470{
1471	order--;
1472	if (order < 0)
1473		order = cc->order - 1;
1474
1475	/* Search wrapped around? */
1476	if (order == cc->search_order) {
1477		cc->search_order--;
1478		if (cc->search_order < 0)
1479			cc->search_order = cc->order - 1;
1480		return -1;
1481	}
1482
1483	return order;
1484}
1485
1486static void fast_isolate_freepages(struct compact_control *cc)
 
1487{
1488	unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489	unsigned int nr_scanned = 0, total_isolated = 0;
1490	unsigned long low_pfn, min_pfn, highest = 0;
1491	unsigned long nr_isolated = 0;
1492	unsigned long distance;
1493	struct page *page = NULL;
1494	bool scan_start = false;
1495	int order;
1496
1497	/* Full compaction passes in a negative order */
1498	if (cc->order <= 0)
1499		return;
1500
1501	/*
1502	 * If starting the scan, use a deeper search and use the highest
1503	 * PFN found if a suitable one is not found.
1504	 */
1505	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506		limit = pageblock_nr_pages >> 1;
1507		scan_start = true;
1508	}
1509
1510	/*
1511	 * Preferred point is in the top quarter of the scan space but take
1512	 * a pfn from the top half if the search is problematic.
1513	 */
1514	distance = (cc->free_pfn - cc->migrate_pfn);
1515	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1517
1518	if (WARN_ON_ONCE(min_pfn > low_pfn))
1519		low_pfn = min_pfn;
1520
1521	/*
1522	 * Search starts from the last successful isolation order or the next
1523	 * order to search after a previous failure
1524	 */
1525	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1526
1527	for (order = cc->search_order;
1528	     !page && order >= 0;
1529	     order = next_search_order(cc, order)) {
1530		struct free_area *area = &cc->zone->free_area[order];
1531		struct list_head *freelist;
1532		struct page *freepage;
1533		unsigned long flags;
1534		unsigned int order_scanned = 0;
1535		unsigned long high_pfn = 0;
1536
1537		if (!area->nr_free)
1538			continue;
1539
1540		spin_lock_irqsave(&cc->zone->lock, flags);
1541		freelist = &area->free_list[MIGRATE_MOVABLE];
1542		list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1543			unsigned long pfn;
1544
1545			order_scanned++;
1546			nr_scanned++;
1547			pfn = page_to_pfn(freepage);
1548
1549			if (pfn >= highest)
1550				highest = max(pageblock_start_pfn(pfn),
1551					      cc->zone->zone_start_pfn);
1552
1553			if (pfn >= low_pfn) {
1554				cc->fast_search_fail = 0;
1555				cc->search_order = order;
1556				page = freepage;
1557				break;
1558			}
1559
1560			if (pfn >= min_pfn && pfn > high_pfn) {
1561				high_pfn = pfn;
1562
1563				/* Shorten the scan if a candidate is found */
1564				limit >>= 1;
1565			}
1566
1567			if (order_scanned >= limit)
1568				break;
1569		}
1570
1571		/* Use a maximum candidate pfn if a preferred one was not found */
1572		if (!page && high_pfn) {
1573			page = pfn_to_page(high_pfn);
1574
1575			/* Update freepage for the list reorder below */
1576			freepage = page;
1577		}
1578
1579		/* Reorder to so a future search skips recent pages */
1580		move_freelist_head(freelist, freepage);
1581
1582		/* Isolate the page if available */
1583		if (page) {
1584			if (__isolate_free_page(page, order)) {
1585				set_page_private(page, order);
1586				nr_isolated = 1 << order;
1587				nr_scanned += nr_isolated - 1;
1588				total_isolated += nr_isolated;
1589				cc->nr_freepages += nr_isolated;
1590				list_add_tail(&page->lru, &cc->freepages);
1591				count_compact_events(COMPACTISOLATED, nr_isolated);
1592			} else {
1593				/* If isolation fails, abort the search */
1594				order = cc->search_order + 1;
1595				page = NULL;
1596			}
1597		}
1598
1599		spin_unlock_irqrestore(&cc->zone->lock, flags);
1600
1601		/* Skip fast search if enough freepages isolated */
1602		if (cc->nr_freepages >= cc->nr_migratepages)
1603			break;
1604
1605		/*
1606		 * Smaller scan on next order so the total scan is related
1607		 * to freelist_scan_limit.
1608		 */
1609		if (order_scanned >= limit)
1610			limit = max(1U, limit >> 1);
1611	}
1612
1613	trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614						   nr_scanned, total_isolated);
1615
1616	if (!page) {
1617		cc->fast_search_fail++;
1618		if (scan_start) {
1619			/*
1620			 * Use the highest PFN found above min. If one was
1621			 * not found, be pessimistic for direct compaction
1622			 * and use the min mark.
1623			 */
1624			if (highest >= min_pfn) {
1625				page = pfn_to_page(highest);
1626				cc->free_pfn = highest;
1627			} else {
1628				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629					page = pageblock_pfn_to_page(min_pfn,
1630						min(pageblock_end_pfn(min_pfn),
1631						    zone_end_pfn(cc->zone)),
1632						cc->zone);
1633					if (page && !suitable_migration_target(cc, page))
1634						page = NULL;
1635
1636					cc->free_pfn = min_pfn;
1637				}
1638			}
1639		}
1640	}
1641
1642	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643		highest -= pageblock_nr_pages;
1644		cc->zone->compact_cached_free_pfn = highest;
1645	}
1646
1647	cc->total_free_scanned += nr_scanned;
1648	if (!page)
1649		return;
1650
1651	low_pfn = page_to_pfn(page);
1652	fast_isolate_around(cc, low_pfn);
 
1653}
1654
1655/*
1656 * Based on information in the current compact_control, find blocks
1657 * suitable for isolating free pages from and then isolate them.
1658 */
1659static void isolate_freepages(struct compact_control *cc)
1660{
1661	struct zone *zone = cc->zone;
1662	struct page *page;
1663	unsigned long block_start_pfn;	/* start of current pageblock */
1664	unsigned long isolate_start_pfn; /* exact pfn we start at */
1665	unsigned long block_end_pfn;	/* end of current pageblock */
1666	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1667	struct list_head *freelist = &cc->freepages;
1668	unsigned int stride;
1669
1670	/* Try a small search of the free lists for a candidate */
1671	fast_isolate_freepages(cc);
1672	if (cc->nr_freepages)
1673		goto splitmap;
1674
1675	/*
1676	 * Initialise the free scanner. The starting point is where we last
1677	 * successfully isolated from, zone-cached value, or the end of the
1678	 * zone when isolating for the first time. For looping we also need
1679	 * this pfn aligned down to the pageblock boundary, because we do
1680	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1681	 * For ending point, take care when isolating in last pageblock of a
1682	 * zone which ends in the middle of a pageblock.
1683	 * The low boundary is the end of the pageblock the migration scanner
1684	 * is using.
1685	 */
1686	isolate_start_pfn = cc->free_pfn;
1687	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689						zone_end_pfn(zone));
1690	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1692
1693	/*
1694	 * Isolate free pages until enough are available to migrate the
1695	 * pages on cc->migratepages. We stop searching if the migrate
1696	 * and free page scanners meet or enough free pages are isolated.
1697	 */
1698	for (; block_start_pfn >= low_pfn;
1699				block_end_pfn = block_start_pfn,
1700				block_start_pfn -= pageblock_nr_pages,
1701				isolate_start_pfn = block_start_pfn) {
1702		unsigned long nr_isolated;
1703
1704		/*
1705		 * This can iterate a massively long zone without finding any
1706		 * suitable migration targets, so periodically check resched.
1707		 */
1708		if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1709			cond_resched();
1710
1711		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1712									zone);
1713		if (!page) {
1714			unsigned long next_pfn;
1715
1716			next_pfn = skip_offline_sections_reverse(block_start_pfn);
1717			if (next_pfn)
1718				block_start_pfn = max(next_pfn, low_pfn);
1719
1720			continue;
1721		}
1722
1723		/* Check the block is suitable for migration */
1724		if (!suitable_migration_target(cc, page))
1725			continue;
1726
1727		/* If isolation recently failed, do not retry */
1728		if (!isolation_suitable(cc, page))
1729			continue;
1730
1731		/* Found a block suitable for isolating free pages from. */
1732		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733					block_end_pfn, freelist, stride, false);
1734
1735		/* Update the skip hint if the full pageblock was scanned */
1736		if (isolate_start_pfn == block_end_pfn)
1737			update_pageblock_skip(cc, page, block_start_pfn -
1738					      pageblock_nr_pages);
1739
1740		/* Are enough freepages isolated? */
1741		if (cc->nr_freepages >= cc->nr_migratepages) {
1742			if (isolate_start_pfn >= block_end_pfn) {
1743				/*
1744				 * Restart at previous pageblock if more
1745				 * freepages can be isolated next time.
1746				 */
1747				isolate_start_pfn =
1748					block_start_pfn - pageblock_nr_pages;
1749			}
1750			break;
1751		} else if (isolate_start_pfn < block_end_pfn) {
1752			/*
1753			 * If isolation failed early, do not continue
1754			 * needlessly.
1755			 */
1756			break;
1757		}
1758
1759		/* Adjust stride depending on isolation */
1760		if (nr_isolated) {
1761			stride = 1;
1762			continue;
1763		}
1764		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1765	}
1766
1767	/*
1768	 * Record where the free scanner will restart next time. Either we
1769	 * broke from the loop and set isolate_start_pfn based on the last
1770	 * call to isolate_freepages_block(), or we met the migration scanner
1771	 * and the loop terminated due to isolate_start_pfn < low_pfn
1772	 */
1773	cc->free_pfn = isolate_start_pfn;
1774
1775splitmap:
1776	/* __isolate_free_page() does not map the pages */
1777	split_map_pages(freelist);
1778}
1779
1780/*
1781 * This is a migrate-callback that "allocates" freepages by taking pages
1782 * from the isolated freelists in the block we are migrating to.
1783 */
1784static struct folio *compaction_alloc(struct folio *src, unsigned long data)
 
1785{
1786	struct compact_control *cc = (struct compact_control *)data;
1787	struct folio *dst;
1788
1789	if (list_empty(&cc->freepages)) {
1790		isolate_freepages(cc);
1791
1792		if (list_empty(&cc->freepages))
1793			return NULL;
1794	}
1795
1796	dst = list_entry(cc->freepages.next, struct folio, lru);
1797	list_del(&dst->lru);
1798	cc->nr_freepages--;
1799
1800	return dst;
1801}
1802
1803/*
1804 * This is a migrate-callback that "frees" freepages back to the isolated
1805 * freelist.  All pages on the freelist are from the same zone, so there is no
1806 * special handling needed for NUMA.
1807 */
1808static void compaction_free(struct folio *dst, unsigned long data)
1809{
1810	struct compact_control *cc = (struct compact_control *)data;
1811
1812	list_add(&dst->lru, &cc->freepages);
1813	cc->nr_freepages++;
1814}
1815
1816/* possible outcome of isolate_migratepages */
1817typedef enum {
1818	ISOLATE_ABORT,		/* Abort compaction now */
1819	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1820	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1821} isolate_migrate_t;
1822
1823/*
1824 * Allow userspace to control policy on scanning the unevictable LRU for
1825 * compactable pages.
1826 */
1827static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1828/*
1829 * Tunable for proactive compaction. It determines how
1830 * aggressively the kernel should compact memory in the
1831 * background. It takes values in the range [0, 100].
1832 */
1833static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1834static int sysctl_extfrag_threshold = 500;
1835static int __read_mostly sysctl_compact_memory;
1836
1837static inline void
1838update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1839{
1840	if (cc->fast_start_pfn == ULONG_MAX)
1841		return;
1842
1843	if (!cc->fast_start_pfn)
1844		cc->fast_start_pfn = pfn;
1845
1846	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1847}
1848
1849static inline unsigned long
1850reinit_migrate_pfn(struct compact_control *cc)
1851{
1852	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1853		return cc->migrate_pfn;
1854
1855	cc->migrate_pfn = cc->fast_start_pfn;
1856	cc->fast_start_pfn = ULONG_MAX;
1857
1858	return cc->migrate_pfn;
1859}
1860
1861/*
1862 * Briefly search the free lists for a migration source that already has
1863 * some free pages to reduce the number of pages that need migration
1864 * before a pageblock is free.
1865 */
1866static unsigned long fast_find_migrateblock(struct compact_control *cc)
1867{
1868	unsigned int limit = freelist_scan_limit(cc);
1869	unsigned int nr_scanned = 0;
1870	unsigned long distance;
1871	unsigned long pfn = cc->migrate_pfn;
1872	unsigned long high_pfn;
1873	int order;
1874	bool found_block = false;
1875
1876	/* Skip hints are relied on to avoid repeats on the fast search */
1877	if (cc->ignore_skip_hint)
1878		return pfn;
1879
1880	/*
1881	 * If the pageblock should be finished then do not select a different
1882	 * pageblock.
1883	 */
1884	if (cc->finish_pageblock)
1885		return pfn;
1886
1887	/*
1888	 * If the migrate_pfn is not at the start of a zone or the start
1889	 * of a pageblock then assume this is a continuation of a previous
1890	 * scan restarted due to COMPACT_CLUSTER_MAX.
1891	 */
1892	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1893		return pfn;
1894
1895	/*
1896	 * For smaller orders, just linearly scan as the number of pages
1897	 * to migrate should be relatively small and does not necessarily
1898	 * justify freeing up a large block for a small allocation.
1899	 */
1900	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1901		return pfn;
1902
1903	/*
1904	 * Only allow kcompactd and direct requests for movable pages to
1905	 * quickly clear out a MOVABLE pageblock for allocation. This
1906	 * reduces the risk that a large movable pageblock is freed for
1907	 * an unmovable/reclaimable small allocation.
1908	 */
1909	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1910		return pfn;
1911
1912	/*
1913	 * When starting the migration scanner, pick any pageblock within the
1914	 * first half of the search space. Otherwise try and pick a pageblock
1915	 * within the first eighth to reduce the chances that a migration
1916	 * target later becomes a source.
1917	 */
1918	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1919	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1920		distance >>= 2;
1921	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1922
1923	for (order = cc->order - 1;
1924	     order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1925	     order--) {
1926		struct free_area *area = &cc->zone->free_area[order];
1927		struct list_head *freelist;
1928		unsigned long flags;
1929		struct page *freepage;
1930
1931		if (!area->nr_free)
1932			continue;
1933
1934		spin_lock_irqsave(&cc->zone->lock, flags);
1935		freelist = &area->free_list[MIGRATE_MOVABLE];
1936		list_for_each_entry(freepage, freelist, buddy_list) {
1937			unsigned long free_pfn;
1938
1939			if (nr_scanned++ >= limit) {
1940				move_freelist_tail(freelist, freepage);
1941				break;
1942			}
1943
1944			free_pfn = page_to_pfn(freepage);
1945			if (free_pfn < high_pfn) {
1946				/*
1947				 * Avoid if skipped recently. Ideally it would
1948				 * move to the tail but even safe iteration of
1949				 * the list assumes an entry is deleted, not
1950				 * reordered.
1951				 */
1952				if (get_pageblock_skip(freepage))
 
 
 
1953					continue;
 
1954
1955				/* Reorder to so a future search skips recent pages */
1956				move_freelist_tail(freelist, freepage);
1957
1958				update_fast_start_pfn(cc, free_pfn);
1959				pfn = pageblock_start_pfn(free_pfn);
1960				if (pfn < cc->zone->zone_start_pfn)
1961					pfn = cc->zone->zone_start_pfn;
1962				cc->fast_search_fail = 0;
1963				found_block = true;
 
 
 
 
 
 
1964				break;
1965			}
1966		}
1967		spin_unlock_irqrestore(&cc->zone->lock, flags);
1968	}
1969
1970	cc->total_migrate_scanned += nr_scanned;
1971
1972	/*
1973	 * If fast scanning failed then use a cached entry for a page block
1974	 * that had free pages as the basis for starting a linear scan.
1975	 */
1976	if (!found_block) {
1977		cc->fast_search_fail++;
1978		pfn = reinit_migrate_pfn(cc);
1979	}
1980	return pfn;
1981}
1982
1983/*
1984 * Isolate all pages that can be migrated from the first suitable block,
1985 * starting at the block pointed to by the migrate scanner pfn within
1986 * compact_control.
1987 */
1988static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1989{
1990	unsigned long block_start_pfn;
1991	unsigned long block_end_pfn;
1992	unsigned long low_pfn;
1993	struct page *page;
1994	const isolate_mode_t isolate_mode =
1995		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1996		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1997	bool fast_find_block;
1998
1999	/*
2000	 * Start at where we last stopped, or beginning of the zone as
2001	 * initialized by compact_zone(). The first failure will use
2002	 * the lowest PFN as the starting point for linear scanning.
2003	 */
2004	low_pfn = fast_find_migrateblock(cc);
2005	block_start_pfn = pageblock_start_pfn(low_pfn);
2006	if (block_start_pfn < cc->zone->zone_start_pfn)
2007		block_start_pfn = cc->zone->zone_start_pfn;
2008
2009	/*
2010	 * fast_find_migrateblock() has already ensured the pageblock is not
2011	 * set with a skipped flag, so to avoid the isolation_suitable check
2012	 * below again, check whether the fast search was successful.
2013	 */
2014	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2015
2016	/* Only scan within a pageblock boundary */
2017	block_end_pfn = pageblock_end_pfn(low_pfn);
2018
2019	/*
2020	 * Iterate over whole pageblocks until we find the first suitable.
2021	 * Do not cross the free scanner.
2022	 */
2023	for (; block_end_pfn <= cc->free_pfn;
2024			fast_find_block = false,
2025			cc->migrate_pfn = low_pfn = block_end_pfn,
2026			block_start_pfn = block_end_pfn,
2027			block_end_pfn += pageblock_nr_pages) {
2028
2029		/*
2030		 * This can potentially iterate a massively long zone with
2031		 * many pageblocks unsuitable, so periodically check if we
2032		 * need to schedule.
2033		 */
2034		if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2035			cond_resched();
2036
2037		page = pageblock_pfn_to_page(block_start_pfn,
2038						block_end_pfn, cc->zone);
2039		if (!page) {
2040			unsigned long next_pfn;
2041
2042			next_pfn = skip_offline_sections(block_start_pfn);
2043			if (next_pfn)
2044				block_end_pfn = min(next_pfn, cc->free_pfn);
2045			continue;
2046		}
2047
2048		/*
2049		 * If isolation recently failed, do not retry. Only check the
2050		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2051		 * to be visited multiple times. Assume skip was checked
2052		 * before making it "skip" so other compaction instances do
2053		 * not scan the same block.
2054		 */
2055		if ((pageblock_aligned(low_pfn) ||
2056		     low_pfn == cc->zone->zone_start_pfn) &&
2057		    !fast_find_block && !isolation_suitable(cc, page))
2058			continue;
2059
2060		/*
2061		 * For async direct compaction, only scan the pageblocks of the
2062		 * same migratetype without huge pages. Async direct compaction
2063		 * is optimistic to see if the minimum amount of work satisfies
2064		 * the allocation. The cached PFN is updated as it's possible
2065		 * that all remaining blocks between source and target are
2066		 * unsuitable and the compaction scanners fail to meet.
2067		 */
2068		if (!suitable_migration_source(cc, page)) {
2069			update_cached_migrate(cc, block_end_pfn);
2070			continue;
2071		}
2072
2073		/* Perform the isolation */
2074		if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2075						isolate_mode))
 
 
2076			return ISOLATE_ABORT;
2077
2078		/*
2079		 * Either we isolated something and proceed with migration. Or
2080		 * we failed and compact_zone should decide if we should
2081		 * continue or not.
2082		 */
2083		break;
2084	}
2085
 
 
 
2086	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2087}
2088
2089/*
2090 * order == -1 is expected when compacting proactively via
2091 * 1. /proc/sys/vm/compact_memory
2092 * 2. /sys/devices/system/node/nodex/compact
2093 * 3. /proc/sys/vm/compaction_proactiveness
2094 */
2095static inline bool is_via_compact_memory(int order)
2096{
2097	return order == -1;
2098}
2099
2100/*
2101 * Determine whether kswapd is (or recently was!) running on this node.
2102 *
2103 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2104 * zero it.
2105 */
2106static bool kswapd_is_running(pg_data_t *pgdat)
2107{
2108	bool running;
2109
2110	pgdat_kswapd_lock(pgdat);
2111	running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2112	pgdat_kswapd_unlock(pgdat);
2113
2114	return running;
2115}
2116
2117/*
2118 * A zone's fragmentation score is the external fragmentation wrt to the
2119 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2120 */
2121static unsigned int fragmentation_score_zone(struct zone *zone)
2122{
2123	return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2124}
2125
2126/*
2127 * A weighted zone's fragmentation score is the external fragmentation
2128 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2129 * returns a value in the range [0, 100].
2130 *
2131 * The scaling factor ensures that proactive compaction focuses on larger
2132 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2133 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2134 * and thus never exceeds the high threshold for proactive compaction.
2135 */
2136static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2137{
2138	unsigned long score;
2139
2140	score = zone->present_pages * fragmentation_score_zone(zone);
 
2141	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2142}
2143
2144/*
2145 * The per-node proactive (background) compaction process is started by its
2146 * corresponding kcompactd thread when the node's fragmentation score
2147 * exceeds the high threshold. The compaction process remains active till
2148 * the node's score falls below the low threshold, or one of the back-off
2149 * conditions is met.
2150 */
2151static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2152{
2153	unsigned int score = 0;
2154	int zoneid;
2155
2156	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2157		struct zone *zone;
2158
2159		zone = &pgdat->node_zones[zoneid];
2160		if (!populated_zone(zone))
2161			continue;
2162		score += fragmentation_score_zone_weighted(zone);
2163	}
2164
2165	return score;
2166}
2167
2168static unsigned int fragmentation_score_wmark(bool low)
2169{
2170	unsigned int wmark_low;
2171
2172	/*
2173	 * Cap the low watermark to avoid excessive compaction
2174	 * activity in case a user sets the proactiveness tunable
2175	 * close to 100 (maximum).
2176	 */
2177	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2178	return low ? wmark_low : min(wmark_low + 10, 100U);
2179}
2180
2181static bool should_proactive_compact_node(pg_data_t *pgdat)
2182{
2183	int wmark_high;
2184
2185	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2186		return false;
2187
2188	wmark_high = fragmentation_score_wmark(false);
2189	return fragmentation_score_node(pgdat) > wmark_high;
2190}
2191
2192static enum compact_result __compact_finished(struct compact_control *cc)
2193{
2194	unsigned int order;
2195	const int migratetype = cc->migratetype;
2196	int ret;
2197
2198	/* Compaction run completes if the migrate and free scanner meet */
2199	if (compact_scanners_met(cc)) {
2200		/* Let the next compaction start anew. */
2201		reset_cached_positions(cc->zone);
2202
2203		/*
2204		 * Mark that the PG_migrate_skip information should be cleared
2205		 * by kswapd when it goes to sleep. kcompactd does not set the
2206		 * flag itself as the decision to be clear should be directly
2207		 * based on an allocation request.
2208		 */
2209		if (cc->direct_compaction)
2210			cc->zone->compact_blockskip_flush = true;
2211
2212		if (cc->whole_zone)
2213			return COMPACT_COMPLETE;
2214		else
2215			return COMPACT_PARTIAL_SKIPPED;
2216	}
2217
2218	if (cc->proactive_compaction) {
2219		int score, wmark_low;
2220		pg_data_t *pgdat;
2221
2222		pgdat = cc->zone->zone_pgdat;
2223		if (kswapd_is_running(pgdat))
2224			return COMPACT_PARTIAL_SKIPPED;
2225
2226		score = fragmentation_score_zone(cc->zone);
2227		wmark_low = fragmentation_score_wmark(true);
2228
2229		if (score > wmark_low)
2230			ret = COMPACT_CONTINUE;
2231		else
2232			ret = COMPACT_SUCCESS;
2233
2234		goto out;
2235	}
2236
2237	if (is_via_compact_memory(cc->order))
2238		return COMPACT_CONTINUE;
2239
2240	/*
2241	 * Always finish scanning a pageblock to reduce the possibility of
2242	 * fallbacks in the future. This is particularly important when
2243	 * migration source is unmovable/reclaimable but it's not worth
2244	 * special casing.
2245	 */
2246	if (!pageblock_aligned(cc->migrate_pfn))
2247		return COMPACT_CONTINUE;
2248
2249	/* Direct compactor: Is a suitable page free? */
2250	ret = COMPACT_NO_SUITABLE_PAGE;
2251	for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2252		struct free_area *area = &cc->zone->free_area[order];
2253		bool can_steal;
2254
2255		/* Job done if page is free of the right migratetype */
2256		if (!free_area_empty(area, migratetype))
2257			return COMPACT_SUCCESS;
2258
2259#ifdef CONFIG_CMA
2260		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2261		if (migratetype == MIGRATE_MOVABLE &&
2262			!free_area_empty(area, MIGRATE_CMA))
2263			return COMPACT_SUCCESS;
2264#endif
2265		/*
2266		 * Job done if allocation would steal freepages from
2267		 * other migratetype buddy lists.
2268		 */
2269		if (find_suitable_fallback(area, order, migratetype,
2270						true, &can_steal) != -1)
2271			/*
2272			 * Movable pages are OK in any pageblock. If we are
2273			 * stealing for a non-movable allocation, make sure
2274			 * we finish compacting the current pageblock first
2275			 * (which is assured by the above migrate_pfn align
2276			 * check) so it is as free as possible and we won't
2277			 * have to steal another one soon.
2278			 */
2279			return COMPACT_SUCCESS;
 
 
 
 
 
 
 
 
 
 
 
 
 
2280	}
2281
2282out:
2283	if (cc->contended || fatal_signal_pending(current))
2284		ret = COMPACT_CONTENDED;
2285
2286	return ret;
2287}
2288
2289static enum compact_result compact_finished(struct compact_control *cc)
2290{
2291	int ret;
2292
2293	ret = __compact_finished(cc);
2294	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2295	if (ret == COMPACT_NO_SUITABLE_PAGE)
2296		ret = COMPACT_CONTINUE;
2297
2298	return ret;
2299}
2300
2301static bool __compaction_suitable(struct zone *zone, int order,
2302				  int highest_zoneidx,
2303				  unsigned long wmark_target)
 
 
 
 
 
 
 
 
2304{
2305	unsigned long watermark;
 
 
 
 
 
 
 
 
 
 
 
 
 
2306	/*
2307	 * Watermarks for order-0 must be met for compaction to be able to
2308	 * isolate free pages for migration targets. This means that the
2309	 * watermark and alloc_flags have to match, or be more pessimistic than
2310	 * the check in __isolate_free_page(). We don't use the direct
2311	 * compactor's alloc_flags, as they are not relevant for freepage
2312	 * isolation. We however do use the direct compactor's highest_zoneidx
2313	 * to skip over zones where lowmem reserves would prevent allocation
2314	 * even if compaction succeeds.
2315	 * For costly orders, we require low watermark instead of min for
2316	 * compaction to proceed to increase its chances.
2317	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2318	 * suitable migration targets
2319	 */
2320	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2321				low_wmark_pages(zone) : min_wmark_pages(zone);
2322	watermark += compact_gap(order);
2323	return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2324				   ALLOC_CMA, wmark_target);
 
 
 
2325}
2326
2327/*
2328 * compaction_suitable: Is this suitable to run compaction on this zone now?
2329 */
2330bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2331{
2332	enum compact_result compact_result;
2333	bool suitable;
2334
2335	suitable = __compaction_suitable(zone, order, highest_zoneidx,
2336					 zone_page_state(zone, NR_FREE_PAGES));
2337	/*
2338	 * fragmentation index determines if allocation failures are due to
2339	 * low memory or external fragmentation
2340	 *
2341	 * index of -1000 would imply allocations might succeed depending on
2342	 * watermarks, but we already failed the high-order watermark check
2343	 * index towards 0 implies failure is due to lack of memory
2344	 * index towards 1000 implies failure is due to fragmentation
2345	 *
2346	 * Only compact if a failure would be due to fragmentation. Also
2347	 * ignore fragindex for non-costly orders where the alternative to
2348	 * a successful reclaim/compaction is OOM. Fragindex and the
2349	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2350	 * excessive compaction for costly orders, but it should not be at the
2351	 * expense of system stability.
2352	 */
2353	if (suitable) {
2354		compact_result = COMPACT_CONTINUE;
2355		if (order > PAGE_ALLOC_COSTLY_ORDER) {
2356			int fragindex = fragmentation_index(zone, order);
2357
2358			if (fragindex >= 0 &&
2359			    fragindex <= sysctl_extfrag_threshold) {
2360				suitable = false;
2361				compact_result = COMPACT_NOT_SUITABLE_ZONE;
2362			}
2363		}
2364	} else {
2365		compact_result = COMPACT_SKIPPED;
2366	}
2367
2368	trace_mm_compaction_suitable(zone, order, compact_result);
 
 
2369
2370	return suitable;
2371}
2372
2373bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2374		int alloc_flags)
2375{
2376	struct zone *zone;
2377	struct zoneref *z;
2378
2379	/*
2380	 * Make sure at least one zone would pass __compaction_suitable if we continue
2381	 * retrying the reclaim.
2382	 */
2383	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2384				ac->highest_zoneidx, ac->nodemask) {
2385		unsigned long available;
 
2386
2387		/*
2388		 * Do not consider all the reclaimable memory because we do not
2389		 * want to trash just for a single high order allocation which
2390		 * is even not guaranteed to appear even if __compaction_suitable
2391		 * is happy about the watermark check.
2392		 */
2393		available = zone_reclaimable_pages(zone) / order;
2394		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2395		if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2396					  available))
 
2397			return true;
2398	}
2399
2400	return false;
2401}
2402
2403/*
2404 * Should we do compaction for target allocation order.
2405 * Return COMPACT_SUCCESS if allocation for target order can be already
2406 * satisfied
2407 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2408 * Return COMPACT_CONTINUE if compaction for target order should be ran
2409 */
2410static enum compact_result
2411compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2412				 int highest_zoneidx, unsigned int alloc_flags)
2413{
2414	unsigned long watermark;
2415
2416	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2417	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2418			      alloc_flags))
2419		return COMPACT_SUCCESS;
2420
2421	if (!compaction_suitable(zone, order, highest_zoneidx))
2422		return COMPACT_SKIPPED;
2423
2424	return COMPACT_CONTINUE;
2425}
2426
2427static enum compact_result
2428compact_zone(struct compact_control *cc, struct capture_control *capc)
2429{
2430	enum compact_result ret;
2431	unsigned long start_pfn = cc->zone->zone_start_pfn;
2432	unsigned long end_pfn = zone_end_pfn(cc->zone);
2433	unsigned long last_migrated_pfn;
2434	const bool sync = cc->mode != MIGRATE_ASYNC;
2435	bool update_cached;
2436	unsigned int nr_succeeded = 0;
2437
2438	/*
2439	 * These counters track activities during zone compaction.  Initialize
2440	 * them before compacting a new zone.
2441	 */
2442	cc->total_migrate_scanned = 0;
2443	cc->total_free_scanned = 0;
2444	cc->nr_migratepages = 0;
2445	cc->nr_freepages = 0;
2446	INIT_LIST_HEAD(&cc->freepages);
2447	INIT_LIST_HEAD(&cc->migratepages);
2448
2449	cc->migratetype = gfp_migratetype(cc->gfp_mask);
 
 
 
 
 
2450
2451	if (!is_via_compact_memory(cc->order)) {
2452		ret = compaction_suit_allocation_order(cc->zone, cc->order,
2453						       cc->highest_zoneidx,
2454						       cc->alloc_flags);
2455		if (ret != COMPACT_CONTINUE)
2456			return ret;
2457	}
2458
2459	/*
2460	 * Clear pageblock skip if there were failures recently and compaction
2461	 * is about to be retried after being deferred.
2462	 */
2463	if (compaction_restarting(cc->zone, cc->order))
2464		__reset_isolation_suitable(cc->zone);
2465
2466	/*
2467	 * Setup to move all movable pages to the end of the zone. Used cached
2468	 * information on where the scanners should start (unless we explicitly
2469	 * want to compact the whole zone), but check that it is initialised
2470	 * by ensuring the values are within zone boundaries.
2471	 */
2472	cc->fast_start_pfn = 0;
2473	if (cc->whole_zone) {
2474		cc->migrate_pfn = start_pfn;
2475		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2476	} else {
2477		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2478		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2479		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2480			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2481			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2482		}
2483		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2484			cc->migrate_pfn = start_pfn;
2485			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2486			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2487		}
2488
2489		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2490			cc->whole_zone = true;
2491	}
2492
2493	last_migrated_pfn = 0;
2494
2495	/*
2496	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2497	 * the basis that some migrations will fail in ASYNC mode. However,
2498	 * if the cached PFNs match and pageblocks are skipped due to having
2499	 * no isolation candidates, then the sync state does not matter.
2500	 * Until a pageblock with isolation candidates is found, keep the
2501	 * cached PFNs in sync to avoid revisiting the same blocks.
2502	 */
2503	update_cached = !sync &&
2504		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2505
2506	trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
 
2507
2508	/* lru_add_drain_all could be expensive with involving other CPUs */
2509	lru_add_drain();
2510
2511	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2512		int err;
2513		unsigned long iteration_start_pfn = cc->migrate_pfn;
2514
2515		/*
2516		 * Avoid multiple rescans of the same pageblock which can
2517		 * happen if a page cannot be isolated (dirty/writeback in
2518		 * async mode) or if the migrated pages are being allocated
2519		 * before the pageblock is cleared.  The first rescan will
2520		 * capture the entire pageblock for migration. If it fails,
2521		 * it'll be marked skip and scanning will proceed as normal.
2522		 */
2523		cc->finish_pageblock = false;
2524		if (pageblock_start_pfn(last_migrated_pfn) ==
2525		    pageblock_start_pfn(iteration_start_pfn)) {
2526			cc->finish_pageblock = true;
2527		}
2528
2529rescan:
2530		switch (isolate_migratepages(cc)) {
2531		case ISOLATE_ABORT:
2532			ret = COMPACT_CONTENDED;
2533			putback_movable_pages(&cc->migratepages);
2534			cc->nr_migratepages = 0;
2535			goto out;
2536		case ISOLATE_NONE:
2537			if (update_cached) {
2538				cc->zone->compact_cached_migrate_pfn[1] =
2539					cc->zone->compact_cached_migrate_pfn[0];
2540			}
2541
2542			/*
2543			 * We haven't isolated and migrated anything, but
2544			 * there might still be unflushed migrations from
2545			 * previous cc->order aligned block.
2546			 */
2547			goto check_drain;
2548		case ISOLATE_SUCCESS:
2549			update_cached = false;
2550			last_migrated_pfn = max(cc->zone->zone_start_pfn,
2551				pageblock_start_pfn(cc->migrate_pfn - 1));
2552		}
2553
2554		err = migrate_pages(&cc->migratepages, compaction_alloc,
2555				compaction_free, (unsigned long)cc, cc->mode,
2556				MR_COMPACTION, &nr_succeeded);
2557
2558		trace_mm_compaction_migratepages(cc, nr_succeeded);
 
2559
2560		/* All pages were either migrated or will be released */
2561		cc->nr_migratepages = 0;
2562		if (err) {
2563			putback_movable_pages(&cc->migratepages);
2564			/*
2565			 * migrate_pages() may return -ENOMEM when scanners meet
2566			 * and we want compact_finished() to detect it
2567			 */
2568			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2569				ret = COMPACT_CONTENDED;
2570				goto out;
2571			}
2572			/*
2573			 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2574			 * within the pageblock_order-aligned block and
2575			 * fast_find_migrateblock may be used then scan the
2576			 * remainder of the pageblock. This will mark the
2577			 * pageblock "skip" to avoid rescanning in the near
2578			 * future. This will isolate more pages than necessary
2579			 * for the request but avoid loops due to
2580			 * fast_find_migrateblock revisiting blocks that were
2581			 * recently partially scanned.
2582			 */
2583			if (!pageblock_aligned(cc->migrate_pfn) &&
2584			    !cc->ignore_skip_hint && !cc->finish_pageblock &&
2585			    (cc->mode < MIGRATE_SYNC)) {
2586				cc->finish_pageblock = true;
2587
2588				/*
2589				 * Draining pcplists does not help THP if
2590				 * any page failed to migrate. Even after
2591				 * drain, the pageblock will not be free.
2592				 */
2593				if (cc->order == COMPACTION_HPAGE_ORDER)
2594					last_migrated_pfn = 0;
2595
2596				goto rescan;
2597			}
2598		}
2599
2600		/* Stop if a page has been captured */
2601		if (capc && capc->page) {
2602			ret = COMPACT_SUCCESS;
2603			break;
2604		}
2605
2606check_drain:
2607		/*
2608		 * Has the migration scanner moved away from the previous
2609		 * cc->order aligned block where we migrated from? If yes,
2610		 * flush the pages that were freed, so that they can merge and
2611		 * compact_finished() can detect immediately if allocation
2612		 * would succeed.
2613		 */
2614		if (cc->order > 0 && last_migrated_pfn) {
2615			unsigned long current_block_start =
2616				block_start_pfn(cc->migrate_pfn, cc->order);
2617
2618			if (last_migrated_pfn < current_block_start) {
2619				lru_add_drain_cpu_zone(cc->zone);
2620				/* No more flushing until we migrate again */
2621				last_migrated_pfn = 0;
2622			}
2623		}
 
 
 
 
 
 
2624	}
2625
2626out:
2627	/*
2628	 * Release free pages and update where the free scanner should restart,
2629	 * so we don't leave any returned pages behind in the next attempt.
2630	 */
2631	if (cc->nr_freepages > 0) {
2632		unsigned long free_pfn = release_freepages(&cc->freepages);
2633
2634		cc->nr_freepages = 0;
2635		VM_BUG_ON(free_pfn == 0);
2636		/* The cached pfn is always the first in a pageblock */
2637		free_pfn = pageblock_start_pfn(free_pfn);
2638		/*
2639		 * Only go back, not forward. The cached pfn might have been
2640		 * already reset to zone end in compact_finished()
2641		 */
2642		if (free_pfn > cc->zone->compact_cached_free_pfn)
2643			cc->zone->compact_cached_free_pfn = free_pfn;
2644	}
2645
2646	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2647	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2648
2649	trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2650
2651	VM_BUG_ON(!list_empty(&cc->freepages));
2652	VM_BUG_ON(!list_empty(&cc->migratepages));
2653
2654	return ret;
2655}
2656
2657static enum compact_result compact_zone_order(struct zone *zone, int order,
2658		gfp_t gfp_mask, enum compact_priority prio,
2659		unsigned int alloc_flags, int highest_zoneidx,
2660		struct page **capture)
2661{
2662	enum compact_result ret;
2663	struct compact_control cc = {
2664		.order = order,
2665		.search_order = order,
2666		.gfp_mask = gfp_mask,
2667		.zone = zone,
2668		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2669					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2670		.alloc_flags = alloc_flags,
2671		.highest_zoneidx = highest_zoneidx,
2672		.direct_compaction = true,
2673		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2674		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2675		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2676	};
2677	struct capture_control capc = {
2678		.cc = &cc,
2679		.page = NULL,
2680	};
2681
2682	/*
2683	 * Make sure the structs are really initialized before we expose the
2684	 * capture control, in case we are interrupted and the interrupt handler
2685	 * frees a page.
2686	 */
2687	barrier();
2688	WRITE_ONCE(current->capture_control, &capc);
2689
2690	ret = compact_zone(&cc, &capc);
2691
 
 
 
2692	/*
2693	 * Make sure we hide capture control first before we read the captured
2694	 * page pointer, otherwise an interrupt could free and capture a page
2695	 * and we would leak it.
2696	 */
2697	WRITE_ONCE(current->capture_control, NULL);
2698	*capture = READ_ONCE(capc.page);
2699	/*
2700	 * Technically, it is also possible that compaction is skipped but
2701	 * the page is still captured out of luck(IRQ came and freed the page).
2702	 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2703	 * the COMPACT[STALL|FAIL] when compaction is skipped.
2704	 */
2705	if (*capture)
2706		ret = COMPACT_SUCCESS;
2707
2708	return ret;
2709}
2710
 
 
2711/**
2712 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2713 * @gfp_mask: The GFP mask of the current allocation
2714 * @order: The order of the current allocation
2715 * @alloc_flags: The allocation flags of the current allocation
2716 * @ac: The context of current allocation
2717 * @prio: Determines how hard direct compaction should try to succeed
2718 * @capture: Pointer to free page created by compaction will be stored here
2719 *
2720 * This is the main entry point for direct page compaction.
2721 */
2722enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2723		unsigned int alloc_flags, const struct alloc_context *ac,
2724		enum compact_priority prio, struct page **capture)
2725{
 
2726	struct zoneref *z;
2727	struct zone *zone;
2728	enum compact_result rc = COMPACT_SKIPPED;
2729
2730	if (!gfp_compaction_allowed(gfp_mask))
 
 
 
 
2731		return COMPACT_SKIPPED;
2732
2733	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2734
2735	/* Compact each zone in the list */
2736	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2737					ac->highest_zoneidx, ac->nodemask) {
2738		enum compact_result status;
2739
2740		if (prio > MIN_COMPACT_PRIORITY
2741					&& compaction_deferred(zone, order)) {
2742			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2743			continue;
2744		}
2745
2746		status = compact_zone_order(zone, order, gfp_mask, prio,
2747				alloc_flags, ac->highest_zoneidx, capture);
2748		rc = max(status, rc);
2749
2750		/* The allocation should succeed, stop compacting */
2751		if (status == COMPACT_SUCCESS) {
2752			/*
2753			 * We think the allocation will succeed in this zone,
2754			 * but it is not certain, hence the false. The caller
2755			 * will repeat this with true if allocation indeed
2756			 * succeeds in this zone.
2757			 */
2758			compaction_defer_reset(zone, order, false);
2759
2760			break;
2761		}
2762
2763		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2764					status == COMPACT_PARTIAL_SKIPPED))
2765			/*
2766			 * We think that allocation won't succeed in this zone
2767			 * so we defer compaction there. If it ends up
2768			 * succeeding after all, it will be reset.
2769			 */
2770			defer_compaction(zone, order);
2771
2772		/*
2773		 * We might have stopped compacting due to need_resched() in
2774		 * async compaction, or due to a fatal signal detected. In that
2775		 * case do not try further zones
2776		 */
2777		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2778					|| fatal_signal_pending(current))
2779			break;
2780	}
2781
2782	return rc;
2783}
2784
2785/*
2786 * Compact all zones within a node till each zone's fragmentation score
2787 * reaches within proactive compaction thresholds (as determined by the
2788 * proactiveness tunable).
2789 *
2790 * It is possible that the function returns before reaching score targets
2791 * due to various back-off conditions, such as, contention on per-node or
2792 * per-zone locks.
2793 */
2794static void proactive_compact_node(pg_data_t *pgdat)
2795{
2796	int zoneid;
2797	struct zone *zone;
2798	struct compact_control cc = {
2799		.order = -1,
2800		.mode = MIGRATE_SYNC_LIGHT,
2801		.ignore_skip_hint = true,
2802		.whole_zone = true,
2803		.gfp_mask = GFP_KERNEL,
2804		.proactive_compaction = true,
2805	};
2806
2807	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2808		zone = &pgdat->node_zones[zoneid];
2809		if (!populated_zone(zone))
2810			continue;
2811
2812		cc.zone = zone;
2813
2814		compact_zone(&cc, NULL);
2815
2816		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2817				     cc.total_migrate_scanned);
2818		count_compact_events(KCOMPACTD_FREE_SCANNED,
2819				     cc.total_free_scanned);
2820	}
2821}
2822
2823/* Compact all zones within a node */
2824static void compact_node(int nid)
2825{
2826	pg_data_t *pgdat = NODE_DATA(nid);
2827	int zoneid;
2828	struct zone *zone;
2829	struct compact_control cc = {
2830		.order = -1,
2831		.mode = MIGRATE_SYNC,
2832		.ignore_skip_hint = true,
2833		.whole_zone = true,
2834		.gfp_mask = GFP_KERNEL,
2835	};
2836
2837
2838	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2839
2840		zone = &pgdat->node_zones[zoneid];
2841		if (!populated_zone(zone))
2842			continue;
2843
2844		cc.zone = zone;
2845
2846		compact_zone(&cc, NULL);
 
 
 
2847	}
2848}
2849
2850/* Compact all nodes in the system */
2851static void compact_nodes(void)
2852{
2853	int nid;
2854
2855	/* Flush pending updates to the LRU lists */
2856	lru_add_drain_all();
2857
2858	for_each_online_node(nid)
2859		compact_node(nid);
2860}
2861
2862static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2863		void *buffer, size_t *length, loff_t *ppos)
2864{
2865	int rc, nid;
2866
2867	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2868	if (rc)
2869		return rc;
2870
2871	if (write && sysctl_compaction_proactiveness) {
2872		for_each_online_node(nid) {
2873			pg_data_t *pgdat = NODE_DATA(nid);
2874
2875			if (pgdat->proactive_compact_trigger)
2876				continue;
2877
2878			pgdat->proactive_compact_trigger = true;
2879			trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2880							     pgdat->nr_zones - 1);
2881			wake_up_interruptible(&pgdat->kcompactd_wait);
2882		}
2883	}
2884
2885	return 0;
2886}
2887
2888/*
2889 * This is the entry point for compacting all nodes via
2890 * /proc/sys/vm/compact_memory
2891 */
2892static int sysctl_compaction_handler(struct ctl_table *table, int write,
2893			void *buffer, size_t *length, loff_t *ppos)
2894{
2895	int ret;
2896
2897	ret = proc_dointvec(table, write, buffer, length, ppos);
2898	if (ret)
2899		return ret;
2900
2901	if (sysctl_compact_memory != 1)
2902		return -EINVAL;
2903
2904	if (write)
2905		compact_nodes();
2906
2907	return 0;
2908}
2909
2910#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2911static ssize_t compact_store(struct device *dev,
2912			     struct device_attribute *attr,
2913			     const char *buf, size_t count)
2914{
2915	int nid = dev->id;
2916
2917	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2918		/* Flush pending updates to the LRU lists */
2919		lru_add_drain_all();
2920
2921		compact_node(nid);
2922	}
2923
2924	return count;
2925}
2926static DEVICE_ATTR_WO(compact);
2927
2928int compaction_register_node(struct node *node)
2929{
2930	return device_create_file(&node->dev, &dev_attr_compact);
2931}
2932
2933void compaction_unregister_node(struct node *node)
2934{
2935	device_remove_file(&node->dev, &dev_attr_compact);
2936}
2937#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2938
2939static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2940{
2941	return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2942		pgdat->proactive_compact_trigger;
2943}
2944
2945static bool kcompactd_node_suitable(pg_data_t *pgdat)
2946{
2947	int zoneid;
2948	struct zone *zone;
2949	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2950	enum compact_result ret;
2951
2952	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2953		zone = &pgdat->node_zones[zoneid];
2954
2955		if (!populated_zone(zone))
2956			continue;
2957
2958		ret = compaction_suit_allocation_order(zone,
2959				pgdat->kcompactd_max_order,
2960				highest_zoneidx, ALLOC_WMARK_MIN);
2961		if (ret == COMPACT_CONTINUE)
2962			return true;
2963	}
2964
2965	return false;
2966}
2967
2968static void kcompactd_do_work(pg_data_t *pgdat)
2969{
2970	/*
2971	 * With no special task, compact all zones so that a page of requested
2972	 * order is allocatable.
2973	 */
2974	int zoneid;
2975	struct zone *zone;
2976	struct compact_control cc = {
2977		.order = pgdat->kcompactd_max_order,
2978		.search_order = pgdat->kcompactd_max_order,
2979		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2980		.mode = MIGRATE_SYNC_LIGHT,
2981		.ignore_skip_hint = false,
2982		.gfp_mask = GFP_KERNEL,
2983	};
2984	enum compact_result ret;
2985
2986	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2987							cc.highest_zoneidx);
2988	count_compact_event(KCOMPACTD_WAKE);
2989
2990	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2991		int status;
2992
2993		zone = &pgdat->node_zones[zoneid];
2994		if (!populated_zone(zone))
2995			continue;
2996
2997		if (compaction_deferred(zone, cc.order))
2998			continue;
2999
3000		ret = compaction_suit_allocation_order(zone,
3001				cc.order, zoneid, ALLOC_WMARK_MIN);
3002		if (ret != COMPACT_CONTINUE)
3003			continue;
3004
3005		if (kthread_should_stop())
3006			return;
3007
3008		cc.zone = zone;
3009		status = compact_zone(&cc, NULL);
3010
3011		if (status == COMPACT_SUCCESS) {
3012			compaction_defer_reset(zone, cc.order, false);
3013		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3014			/*
3015			 * Buddy pages may become stranded on pcps that could
3016			 * otherwise coalesce on the zone's free area for
3017			 * order >= cc.order.  This is ratelimited by the
3018			 * upcoming deferral.
3019			 */
3020			drain_all_pages(zone);
3021
3022			/*
3023			 * We use sync migration mode here, so we defer like
3024			 * sync direct compaction does.
3025			 */
3026			defer_compaction(zone, cc.order);
3027		}
3028
3029		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3030				     cc.total_migrate_scanned);
3031		count_compact_events(KCOMPACTD_FREE_SCANNED,
3032				     cc.total_free_scanned);
 
 
 
3033	}
3034
3035	/*
3036	 * Regardless of success, we are done until woken up next. But remember
3037	 * the requested order/highest_zoneidx in case it was higher/tighter
3038	 * than our current ones
3039	 */
3040	if (pgdat->kcompactd_max_order <= cc.order)
3041		pgdat->kcompactd_max_order = 0;
3042	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3043		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3044}
3045
3046void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3047{
3048	if (!order)
3049		return;
3050
3051	if (pgdat->kcompactd_max_order < order)
3052		pgdat->kcompactd_max_order = order;
3053
3054	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3055		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3056
3057	/*
3058	 * Pairs with implicit barrier in wait_event_freezable()
3059	 * such that wakeups are not missed.
3060	 */
3061	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3062		return;
3063
3064	if (!kcompactd_node_suitable(pgdat))
3065		return;
3066
3067	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3068							highest_zoneidx);
3069	wake_up_interruptible(&pgdat->kcompactd_wait);
3070}
3071
3072/*
3073 * The background compaction daemon, started as a kernel thread
3074 * from the init process.
3075 */
3076static int kcompactd(void *p)
3077{
3078	pg_data_t *pgdat = (pg_data_t *)p;
3079	struct task_struct *tsk = current;
3080	long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3081	long timeout = default_timeout;
3082
3083	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3084
3085	if (!cpumask_empty(cpumask))
3086		set_cpus_allowed_ptr(tsk, cpumask);
3087
3088	set_freezable();
3089
3090	pgdat->kcompactd_max_order = 0;
3091	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3092
3093	while (!kthread_should_stop()) {
3094		unsigned long pflags;
3095
3096		/*
3097		 * Avoid the unnecessary wakeup for proactive compaction
3098		 * when it is disabled.
3099		 */
3100		if (!sysctl_compaction_proactiveness)
3101			timeout = MAX_SCHEDULE_TIMEOUT;
3102		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3103		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3104			kcompactd_work_requested(pgdat), timeout) &&
3105			!pgdat->proactive_compact_trigger) {
3106
3107			psi_memstall_enter(&pflags);
3108			kcompactd_do_work(pgdat);
3109			psi_memstall_leave(&pflags);
3110			/*
3111			 * Reset the timeout value. The defer timeout from
3112			 * proactive compaction is lost here but that is fine
3113			 * as the condition of the zone changing substantionally
3114			 * then carrying on with the previous defer interval is
3115			 * not useful.
3116			 */
3117			timeout = default_timeout;
3118			continue;
3119		}
3120
3121		/*
3122		 * Start the proactive work with default timeout. Based
3123		 * on the fragmentation score, this timeout is updated.
3124		 */
3125		timeout = default_timeout;
3126		if (should_proactive_compact_node(pgdat)) {
3127			unsigned int prev_score, score;
3128
 
 
 
 
3129			prev_score = fragmentation_score_node(pgdat);
3130			proactive_compact_node(pgdat);
3131			score = fragmentation_score_node(pgdat);
3132			/*
3133			 * Defer proactive compaction if the fragmentation
3134			 * score did not go down i.e. no progress made.
3135			 */
3136			if (unlikely(score >= prev_score))
3137				timeout =
3138				   default_timeout << COMPACT_MAX_DEFER_SHIFT;
3139		}
3140		if (unlikely(pgdat->proactive_compact_trigger))
3141			pgdat->proactive_compact_trigger = false;
3142	}
3143
3144	return 0;
3145}
3146
3147/*
3148 * This kcompactd start function will be called by init and node-hot-add.
3149 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3150 */
3151void __meminit kcompactd_run(int nid)
3152{
3153	pg_data_t *pgdat = NODE_DATA(nid);
 
3154
3155	if (pgdat->kcompactd)
3156		return;
3157
3158	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3159	if (IS_ERR(pgdat->kcompactd)) {
3160		pr_err("Failed to start kcompactd on node %d\n", nid);
 
3161		pgdat->kcompactd = NULL;
3162	}
 
3163}
3164
3165/*
3166 * Called by memory hotplug when all memory in a node is offlined. Caller must
3167 * be holding mem_hotplug_begin/done().
3168 */
3169void __meminit kcompactd_stop(int nid)
3170{
3171	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3172
3173	if (kcompactd) {
3174		kthread_stop(kcompactd);
3175		NODE_DATA(nid)->kcompactd = NULL;
3176	}
3177}
3178
3179/*
3180 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3181 * not required for correctness. So if the last cpu in a node goes
3182 * away, we get changed to run anywhere: as the first one comes back,
3183 * restore their cpu bindings.
3184 */
3185static int kcompactd_cpu_online(unsigned int cpu)
3186{
3187	int nid;
3188
3189	for_each_node_state(nid, N_MEMORY) {
3190		pg_data_t *pgdat = NODE_DATA(nid);
3191		const struct cpumask *mask;
3192
3193		mask = cpumask_of_node(pgdat->node_id);
3194
3195		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3196			/* One of our CPUs online: restore mask */
3197			if (pgdat->kcompactd)
3198				set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3199	}
3200	return 0;
3201}
3202
3203static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3204		int write, void *buffer, size_t *lenp, loff_t *ppos)
3205{
3206	int ret, old;
3207
3208	if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3209		return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3210
3211	old = *(int *)table->data;
3212	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3213	if (ret)
3214		return ret;
3215	if (old != *(int *)table->data)
3216		pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3217			     table->procname, current->comm,
3218			     task_pid_nr(current));
3219	return ret;
3220}
3221
3222static struct ctl_table vm_compaction[] = {
3223	{
3224		.procname	= "compact_memory",
3225		.data		= &sysctl_compact_memory,
3226		.maxlen		= sizeof(int),
3227		.mode		= 0200,
3228		.proc_handler	= sysctl_compaction_handler,
3229	},
3230	{
3231		.procname	= "compaction_proactiveness",
3232		.data		= &sysctl_compaction_proactiveness,
3233		.maxlen		= sizeof(sysctl_compaction_proactiveness),
3234		.mode		= 0644,
3235		.proc_handler	= compaction_proactiveness_sysctl_handler,
3236		.extra1		= SYSCTL_ZERO,
3237		.extra2		= SYSCTL_ONE_HUNDRED,
3238	},
3239	{
3240		.procname	= "extfrag_threshold",
3241		.data		= &sysctl_extfrag_threshold,
3242		.maxlen		= sizeof(int),
3243		.mode		= 0644,
3244		.proc_handler	= proc_dointvec_minmax,
3245		.extra1		= SYSCTL_ZERO,
3246		.extra2		= SYSCTL_ONE_THOUSAND,
3247	},
3248	{
3249		.procname	= "compact_unevictable_allowed",
3250		.data		= &sysctl_compact_unevictable_allowed,
3251		.maxlen		= sizeof(int),
3252		.mode		= 0644,
3253		.proc_handler	= proc_dointvec_minmax_warn_RT_change,
3254		.extra1		= SYSCTL_ZERO,
3255		.extra2		= SYSCTL_ONE,
3256	},
3257	{ }
3258};
3259
3260static int __init kcompactd_init(void)
3261{
3262	int nid;
3263	int ret;
3264
3265	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3266					"mm/compaction:online",
3267					kcompactd_cpu_online, NULL);
3268	if (ret < 0) {
3269		pr_err("kcompactd: failed to register hotplug callbacks.\n");
3270		return ret;
3271	}
3272
3273	for_each_node_state(nid, N_MEMORY)
3274		kcompactd_run(nid);
3275	register_sysctl_init("vm", vm_compaction);
3276	return 0;
3277}
3278subsys_initcall(kcompactd_init)
3279
3280#endif /* CONFIG_COMPACTION */