Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
 
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include <linux/psi.h>
  26#include "internal.h"
  27
  28#ifdef CONFIG_COMPACTION
  29static inline void count_compact_event(enum vm_event_item item)
  30{
  31	count_vm_event(item);
  32}
  33
  34static inline void count_compact_events(enum vm_event_item item, long delta)
  35{
  36	count_vm_events(item, delta);
  37}
  38#else
  39#define count_compact_event(item) do { } while (0)
  40#define count_compact_events(item, delta) do { } while (0)
  41#endif
  42
  43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  44
  45#define CREATE_TRACE_POINTS
  46#include <trace/events/compaction.h>
  47
  48#define block_start_pfn(pfn, order)	round_down(pfn, 1UL << (order))
  49#define block_end_pfn(pfn, order)	ALIGN((pfn) + 1, 1UL << (order))
  50#define pageblock_start_pfn(pfn)	block_start_pfn(pfn, pageblock_order)
  51#define pageblock_end_pfn(pfn)		block_end_pfn(pfn, pageblock_order)
  52
  53/*
  54 * Fragmentation score check interval for proactive compaction purposes.
  55 */
  56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
  57
  58/*
  59 * Page order with-respect-to which proactive compaction
  60 * calculates external fragmentation, which is used as
  61 * the "fragmentation score" of a node/zone.
  62 */
  63#if defined CONFIG_TRANSPARENT_HUGEPAGE
  64#define COMPACTION_HPAGE_ORDER	HPAGE_PMD_ORDER
  65#elif defined CONFIG_HUGETLBFS
  66#define COMPACTION_HPAGE_ORDER	HUGETLB_PAGE_ORDER
  67#else
  68#define COMPACTION_HPAGE_ORDER	(PMD_SHIFT - PAGE_SHIFT)
  69#endif
  70
  71static unsigned long release_freepages(struct list_head *freelist)
  72{
  73	struct page *page, *next;
  74	unsigned long high_pfn = 0;
  75
  76	list_for_each_entry_safe(page, next, freelist, lru) {
  77		unsigned long pfn = page_to_pfn(page);
  78		list_del(&page->lru);
  79		__free_page(page);
  80		if (pfn > high_pfn)
  81			high_pfn = pfn;
  82	}
  83
  84	return high_pfn;
  85}
  86
  87static void split_map_pages(struct list_head *list)
  88{
  89	unsigned int i, order, nr_pages;
  90	struct page *page, *next;
  91	LIST_HEAD(tmp_list);
  92
  93	list_for_each_entry_safe(page, next, list, lru) {
  94		list_del(&page->lru);
  95
  96		order = page_private(page);
  97		nr_pages = 1 << order;
  98
  99		post_alloc_hook(page, order, __GFP_MOVABLE);
 100		if (order)
 101			split_page(page, order);
 102
 103		for (i = 0; i < nr_pages; i++) {
 104			list_add(&page->lru, &tmp_list);
 105			page++;
 106		}
 107	}
 108
 109	list_splice(&tmp_list, list);
 110}
 111
 112#ifdef CONFIG_COMPACTION
 113
 114int PageMovable(struct page *page)
 115{
 116	struct address_space *mapping;
 117
 118	VM_BUG_ON_PAGE(!PageLocked(page), page);
 119	if (!__PageMovable(page))
 120		return 0;
 121
 122	mapping = page_mapping(page);
 123	if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 124		return 1;
 125
 126	return 0;
 127}
 128EXPORT_SYMBOL(PageMovable);
 129
 130void __SetPageMovable(struct page *page, struct address_space *mapping)
 131{
 132	VM_BUG_ON_PAGE(!PageLocked(page), page);
 133	VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 134	page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 135}
 136EXPORT_SYMBOL(__SetPageMovable);
 137
 138void __ClearPageMovable(struct page *page)
 139{
 140	VM_BUG_ON_PAGE(!PageLocked(page), page);
 141	VM_BUG_ON_PAGE(!PageMovable(page), page);
 142	/*
 143	 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 144	 * flag so that VM can catch up released page by driver after isolation.
 145	 * With it, VM migration doesn't try to put it back.
 146	 */
 147	page->mapping = (void *)((unsigned long)page->mapping &
 148				PAGE_MAPPING_MOVABLE);
 149}
 150EXPORT_SYMBOL(__ClearPageMovable);
 151
 152/* Do not skip compaction more than 64 times */
 153#define COMPACT_MAX_DEFER_SHIFT 6
 154
 155/*
 156 * Compaction is deferred when compaction fails to result in a page
 157 * allocation success. 1 << compact_defer_shift, compactions are skipped up
 158 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 159 */
 160void defer_compaction(struct zone *zone, int order)
 161{
 162	zone->compact_considered = 0;
 163	zone->compact_defer_shift++;
 164
 165	if (order < zone->compact_order_failed)
 166		zone->compact_order_failed = order;
 167
 168	if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 169		zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 170
 171	trace_mm_compaction_defer_compaction(zone, order);
 172}
 173
 174/* Returns true if compaction should be skipped this time */
 175bool compaction_deferred(struct zone *zone, int order)
 176{
 177	unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 178
 179	if (order < zone->compact_order_failed)
 180		return false;
 181
 182	/* Avoid possible overflow */
 183	if (++zone->compact_considered > defer_limit)
 184		zone->compact_considered = defer_limit;
 185
 186	if (zone->compact_considered >= defer_limit)
 187		return false;
 188
 189	trace_mm_compaction_deferred(zone, order);
 190
 191	return true;
 192}
 193
 194/*
 195 * Update defer tracking counters after successful compaction of given order,
 196 * which means an allocation either succeeded (alloc_success == true) or is
 197 * expected to succeed.
 198 */
 199void compaction_defer_reset(struct zone *zone, int order,
 200		bool alloc_success)
 201{
 202	if (alloc_success) {
 203		zone->compact_considered = 0;
 204		zone->compact_defer_shift = 0;
 205	}
 206	if (order >= zone->compact_order_failed)
 207		zone->compact_order_failed = order + 1;
 208
 209	trace_mm_compaction_defer_reset(zone, order);
 210}
 211
 212/* Returns true if restarting compaction after many failures */
 213bool compaction_restarting(struct zone *zone, int order)
 214{
 215	if (order < zone->compact_order_failed)
 216		return false;
 217
 218	return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 219		zone->compact_considered >= 1UL << zone->compact_defer_shift;
 220}
 221
 
 222/* Returns true if the pageblock should be scanned for pages to isolate. */
 223static inline bool isolation_suitable(struct compact_control *cc,
 224					struct page *page)
 225{
 226	if (cc->ignore_skip_hint)
 227		return true;
 228
 229	return !get_pageblock_skip(page);
 230}
 231
 232static void reset_cached_positions(struct zone *zone)
 233{
 234	zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 235	zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 236	zone->compact_cached_free_pfn =
 237				pageblock_start_pfn(zone_end_pfn(zone) - 1);
 238}
 239
 240/*
 241 * Compound pages of >= pageblock_order should consistenly be skipped until
 242 * released. It is always pointless to compact pages of such order (if they are
 243 * migratable), and the pageblocks they occupy cannot contain any free pages.
 244 */
 245static bool pageblock_skip_persistent(struct page *page)
 246{
 247	if (!PageCompound(page))
 248		return false;
 249
 250	page = compound_head(page);
 251
 252	if (compound_order(page) >= pageblock_order)
 253		return true;
 254
 255	return false;
 256}
 257
 258static bool
 259__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
 260							bool check_target)
 261{
 262	struct page *page = pfn_to_online_page(pfn);
 263	struct page *block_page;
 264	struct page *end_page;
 265	unsigned long block_pfn;
 266
 267	if (!page)
 268		return false;
 269	if (zone != page_zone(page))
 270		return false;
 271	if (pageblock_skip_persistent(page))
 272		return false;
 273
 274	/*
 275	 * If skip is already cleared do no further checking once the
 276	 * restart points have been set.
 277	 */
 278	if (check_source && check_target && !get_pageblock_skip(page))
 279		return true;
 280
 281	/*
 282	 * If clearing skip for the target scanner, do not select a
 283	 * non-movable pageblock as the starting point.
 284	 */
 285	if (!check_source && check_target &&
 286	    get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
 287		return false;
 288
 289	/* Ensure the start of the pageblock or zone is online and valid */
 290	block_pfn = pageblock_start_pfn(pfn);
 291	block_pfn = max(block_pfn, zone->zone_start_pfn);
 292	block_page = pfn_to_online_page(block_pfn);
 293	if (block_page) {
 294		page = block_page;
 295		pfn = block_pfn;
 296	}
 297
 298	/* Ensure the end of the pageblock or zone is online and valid */
 299	block_pfn = pageblock_end_pfn(pfn) - 1;
 300	block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
 301	end_page = pfn_to_online_page(block_pfn);
 302	if (!end_page)
 303		return false;
 304
 305	/*
 306	 * Only clear the hint if a sample indicates there is either a
 307	 * free page or an LRU page in the block. One or other condition
 308	 * is necessary for the block to be a migration source/target.
 309	 */
 310	do {
 311		if (pfn_valid_within(pfn)) {
 312			if (check_source && PageLRU(page)) {
 313				clear_pageblock_skip(page);
 314				return true;
 315			}
 316
 317			if (check_target && PageBuddy(page)) {
 318				clear_pageblock_skip(page);
 319				return true;
 320			}
 321		}
 322
 323		page += (1 << PAGE_ALLOC_COSTLY_ORDER);
 324		pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
 325	} while (page <= end_page);
 326
 327	return false;
 328}
 329
 330/*
 331 * This function is called to clear all cached information on pageblocks that
 332 * should be skipped for page isolation when the migrate and free page scanner
 333 * meet.
 334 */
 335static void __reset_isolation_suitable(struct zone *zone)
 336{
 337	unsigned long migrate_pfn = zone->zone_start_pfn;
 338	unsigned long free_pfn = zone_end_pfn(zone) - 1;
 339	unsigned long reset_migrate = free_pfn;
 340	unsigned long reset_free = migrate_pfn;
 341	bool source_set = false;
 342	bool free_set = false;
 343
 344	if (!zone->compact_blockskip_flush)
 345		return;
 346
 
 
 347	zone->compact_blockskip_flush = false;
 348
 349	/*
 350	 * Walk the zone and update pageblock skip information. Source looks
 351	 * for PageLRU while target looks for PageBuddy. When the scanner
 352	 * is found, both PageBuddy and PageLRU are checked as the pageblock
 353	 * is suitable as both source and target.
 354	 */
 355	for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
 356					free_pfn -= pageblock_nr_pages) {
 357		cond_resched();
 358
 359		/* Update the migrate PFN */
 360		if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
 361		    migrate_pfn < reset_migrate) {
 362			source_set = true;
 363			reset_migrate = migrate_pfn;
 364			zone->compact_init_migrate_pfn = reset_migrate;
 365			zone->compact_cached_migrate_pfn[0] = reset_migrate;
 366			zone->compact_cached_migrate_pfn[1] = reset_migrate;
 367		}
 368
 369		/* Update the free PFN */
 370		if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
 371		    free_pfn > reset_free) {
 372			free_set = true;
 373			reset_free = free_pfn;
 374			zone->compact_init_free_pfn = reset_free;
 375			zone->compact_cached_free_pfn = reset_free;
 376		}
 377	}
 378
 379	/* Leave no distance if no suitable block was reset */
 380	if (reset_migrate >= reset_free) {
 381		zone->compact_cached_migrate_pfn[0] = migrate_pfn;
 382		zone->compact_cached_migrate_pfn[1] = migrate_pfn;
 383		zone->compact_cached_free_pfn = free_pfn;
 384	}
 385}
 386
 387void reset_isolation_suitable(pg_data_t *pgdat)
 388{
 389	int zoneid;
 390
 391	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 392		struct zone *zone = &pgdat->node_zones[zoneid];
 393		if (!populated_zone(zone))
 394			continue;
 395
 396		/* Only flush if a full compaction finished recently */
 397		if (zone->compact_blockskip_flush)
 398			__reset_isolation_suitable(zone);
 399	}
 400}
 401
 402/*
 403 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
 404 * locks are not required for read/writers. Returns true if it was already set.
 405 */
 406static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 407							unsigned long pfn)
 408{
 409	bool skip;
 410
 411	/* Do no update if skip hint is being ignored */
 412	if (cc->ignore_skip_hint)
 413		return false;
 414
 415	if (!IS_ALIGNED(pfn, pageblock_nr_pages))
 416		return false;
 417
 418	skip = get_pageblock_skip(page);
 419	if (!skip && !cc->no_set_skip_hint)
 420		set_pageblock_skip(page);
 421
 422	return skip;
 423}
 424
 425static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 426{
 427	struct zone *zone = cc->zone;
 428
 429	pfn = pageblock_end_pfn(pfn);
 430
 431	/* Set for isolation rather than compaction */
 432	if (cc->no_set_skip_hint)
 433		return;
 434
 435	if (pfn > zone->compact_cached_migrate_pfn[0])
 436		zone->compact_cached_migrate_pfn[0] = pfn;
 437	if (cc->mode != MIGRATE_ASYNC &&
 438	    pfn > zone->compact_cached_migrate_pfn[1])
 439		zone->compact_cached_migrate_pfn[1] = pfn;
 440}
 441
 442/*
 443 * If no pages were isolated then mark this pageblock to be skipped in the
 444 * future. The information is later cleared by __reset_isolation_suitable().
 445 */
 446static void update_pageblock_skip(struct compact_control *cc,
 447			struct page *page, unsigned long pfn)
 
 448{
 449	struct zone *zone = cc->zone;
 450
 451	if (cc->no_set_skip_hint)
 452		return;
 453
 454	if (!page)
 455		return;
 456
 457	set_pageblock_skip(page);
 
 
 458
 459	/* Update where async and sync compaction should restart */
 460	if (pfn < zone->compact_cached_free_pfn)
 461		zone->compact_cached_free_pfn = pfn;
 
 
 
 
 
 
 
 
 462}
 463#else
 464static inline bool isolation_suitable(struct compact_control *cc,
 465					struct page *page)
 466{
 467	return true;
 468}
 469
 470static inline bool pageblock_skip_persistent(struct page *page)
 471{
 472	return false;
 473}
 474
 475static inline void update_pageblock_skip(struct compact_control *cc,
 476			struct page *page, unsigned long pfn)
 477{
 478}
 479
 480static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
 481{
 482}
 
 483
 484static bool test_and_set_skip(struct compact_control *cc, struct page *page,
 485							unsigned long pfn)
 486{
 487	return false;
 488}
 489#endif /* CONFIG_COMPACTION */
 490
 491/*
 492 * Compaction requires the taking of some coarse locks that are potentially
 493 * very heavily contended. For async compaction, trylock and record if the
 494 * lock is contended. The lock will still be acquired but compaction will
 495 * abort when the current block is finished regardless of success rate.
 496 * Sync compaction acquires the lock.
 497 *
 498 * Always returns true which makes it easier to track lock state in callers.
 
 499 */
 500static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
 501						struct compact_control *cc)
 502	__acquires(lock)
 503{
 504	/* Track if the lock is contended in async mode */
 505	if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
 506		if (spin_trylock_irqsave(lock, *flags))
 507			return true;
 
 
 
 
 
 
 
 508
 509		cc->contended = true;
 510	}
 511
 512	spin_lock_irqsave(lock, *flags);
 
 513	return true;
 514}
 515
 516/*
 517 * Compaction requires the taking of some coarse locks that are potentially
 518 * very heavily contended. The lock should be periodically unlocked to avoid
 519 * having disabled IRQs for a long time, even when there is nobody waiting on
 520 * the lock. It might also be that allowing the IRQs will result in
 521 * need_resched() becoming true. If scheduling is needed, async compaction
 522 * aborts. Sync compaction schedules.
 523 * Either compaction type will also abort if a fatal signal is pending.
 524 * In either case if the lock was locked, it is dropped and not regained.
 525 *
 526 * Returns true if compaction should abort due to fatal signal pending, or
 527 *		async compaction due to need_resched()
 528 * Returns false when compaction can continue (sync compaction might have
 529 *		scheduled)
 530 */
 531static bool compact_unlock_should_abort(spinlock_t *lock,
 532		unsigned long flags, bool *locked, struct compact_control *cc)
 533{
 534	if (*locked) {
 535		spin_unlock_irqrestore(lock, flags);
 536		*locked = false;
 537	}
 538
 539	if (fatal_signal_pending(current)) {
 540		cc->contended = true;
 541		return true;
 542	}
 
 
 543
 544	cond_resched();
 
 
 545
 
 546	return false;
 547}
 548
 549/*
 550 * Isolate free pages onto a private freelist. If @strict is true, will abort
 551 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 552 * (even though it may still end up isolating some pages).
 553 */
 554static unsigned long isolate_freepages_block(struct compact_control *cc,
 555				unsigned long *start_pfn,
 556				unsigned long end_pfn,
 557				struct list_head *freelist,
 558				unsigned int stride,
 559				bool strict)
 560{
 561	int nr_scanned = 0, total_isolated = 0;
 562	struct page *cursor;
 563	unsigned long flags = 0;
 564	bool locked = false;
 565	unsigned long blockpfn = *start_pfn;
 566	unsigned int order;
 567
 568	/* Strict mode is for isolation, speed is secondary */
 569	if (strict)
 570		stride = 1;
 571
 572	cursor = pfn_to_page(blockpfn);
 573
 574	/* Isolate free pages. */
 575	for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
 576		int isolated;
 577		struct page *page = cursor;
 578
 579		/*
 580		 * Periodically drop the lock (if held) regardless of its
 581		 * contention, to give chance to IRQs. Abort if fatal signal
 582		 * pending or async compaction detects need_resched()
 583		 */
 584		if (!(blockpfn % SWAP_CLUSTER_MAX)
 585		    && compact_unlock_should_abort(&cc->zone->lock, flags,
 586								&locked, cc))
 587			break;
 588
 589		nr_scanned++;
 590		if (!pfn_valid_within(blockpfn))
 591			goto isolate_fail;
 592
 593		/*
 594		 * For compound pages such as THP and hugetlbfs, we can save
 595		 * potentially a lot of iterations if we skip them at once.
 596		 * The check is racy, but we can consider only valid values
 597		 * and the only danger is skipping too much.
 598		 */
 599		if (PageCompound(page)) {
 600			const unsigned int order = compound_order(page);
 601
 602			if (likely(order < MAX_ORDER)) {
 603				blockpfn += (1UL << order) - 1;
 604				cursor += (1UL << order) - 1;
 605			}
 606			goto isolate_fail;
 607		}
 608
 609		if (!PageBuddy(page))
 610			goto isolate_fail;
 611
 612		/*
 613		 * If we already hold the lock, we can skip some rechecking.
 614		 * Note that if we hold the lock now, checked_pageblock was
 615		 * already set in some previous iteration (or strict is true),
 616		 * so it is correct to skip the suitable migration target
 617		 * recheck as well.
 618		 */
 619		if (!locked) {
 620			locked = compact_lock_irqsave(&cc->zone->lock,
 621								&flags, cc);
 622
 623			/* Recheck this is a buddy page under lock */
 624			if (!PageBuddy(page))
 625				goto isolate_fail;
 
 
 
 
 
 
 
 
 
 626		}
 627
 628		/* Found a free page, will break it into order-0 pages */
 629		order = page_order(page);
 630		isolated = __isolate_free_page(page, order);
 631		if (!isolated)
 632			break;
 633		set_page_private(page, order);
 634
 
 
 635		total_isolated += isolated;
 636		cc->nr_freepages += isolated;
 637		list_add_tail(&page->lru, freelist);
 
 
 638
 639		if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 640			blockpfn += isolated;
 641			break;
 
 
 642		}
 643		/* Advance to the end of split page */
 644		blockpfn += isolated - 1;
 645		cursor += isolated - 1;
 646		continue;
 647
 648isolate_fail:
 649		if (strict)
 650			break;
 651		else
 652			continue;
 653
 654	}
 655
 656	if (locked)
 657		spin_unlock_irqrestore(&cc->zone->lock, flags);
 658
 659	/*
 660	 * There is a tiny chance that we have read bogus compound_order(),
 661	 * so be careful to not go outside of the pageblock.
 662	 */
 663	if (unlikely(blockpfn > end_pfn))
 664		blockpfn = end_pfn;
 665
 666	trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 667					nr_scanned, total_isolated);
 668
 669	/* Record how far we have got within the block */
 670	*start_pfn = blockpfn;
 671
 672	/*
 673	 * If strict isolation is requested by CMA then check that all the
 674	 * pages requested were isolated. If there were any failures, 0 is
 675	 * returned and CMA will fail.
 676	 */
 677	if (strict && blockpfn < end_pfn)
 678		total_isolated = 0;
 679
 680	cc->total_free_scanned += nr_scanned;
 
 
 
 
 
 
 
 681	if (total_isolated)
 682		count_compact_events(COMPACTISOLATED, total_isolated);
 683	return total_isolated;
 684}
 685
 686/**
 687 * isolate_freepages_range() - isolate free pages.
 688 * @cc:        Compaction control structure.
 689 * @start_pfn: The first PFN to start isolating.
 690 * @end_pfn:   The one-past-last PFN.
 691 *
 692 * Non-free pages, invalid PFNs, or zone boundaries within the
 693 * [start_pfn, end_pfn) range are considered errors, cause function to
 694 * undo its actions and return zero.
 695 *
 696 * Otherwise, function returns one-past-the-last PFN of isolated page
 697 * (which may be greater then end_pfn if end fell in a middle of
 698 * a free page).
 699 */
 700unsigned long
 701isolate_freepages_range(struct compact_control *cc,
 702			unsigned long start_pfn, unsigned long end_pfn)
 703{
 704	unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 705	LIST_HEAD(freelist);
 706
 707	pfn = start_pfn;
 708	block_start_pfn = pageblock_start_pfn(pfn);
 709	if (block_start_pfn < cc->zone->zone_start_pfn)
 710		block_start_pfn = cc->zone->zone_start_pfn;
 711	block_end_pfn = pageblock_end_pfn(pfn);
 712
 713	for (; pfn < end_pfn; pfn += isolated,
 714				block_start_pfn = block_end_pfn,
 715				block_end_pfn += pageblock_nr_pages) {
 716		/* Protect pfn from changing by isolate_freepages_block */
 717		unsigned long isolate_start_pfn = pfn;
 718
 719		block_end_pfn = min(block_end_pfn, end_pfn);
 720
 721		/*
 722		 * pfn could pass the block_end_pfn if isolated freepage
 723		 * is more than pageblock order. In this case, we adjust
 724		 * scanning range to right one.
 725		 */
 726		if (pfn >= block_end_pfn) {
 727			block_start_pfn = pageblock_start_pfn(pfn);
 728			block_end_pfn = pageblock_end_pfn(pfn);
 729			block_end_pfn = min(block_end_pfn, end_pfn);
 730		}
 731
 732		if (!pageblock_pfn_to_page(block_start_pfn,
 733					block_end_pfn, cc->zone))
 734			break;
 735
 736		isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 737					block_end_pfn, &freelist, 0, true);
 738
 739		/*
 740		 * In strict mode, isolate_freepages_block() returns 0 if
 741		 * there are any holes in the block (ie. invalid PFNs or
 742		 * non-free pages).
 743		 */
 744		if (!isolated)
 745			break;
 746
 747		/*
 748		 * If we managed to isolate pages, it is always (1 << n) *
 749		 * pageblock_nr_pages for some non-negative n.  (Max order
 750		 * page may span two pageblocks).
 751		 */
 752	}
 753
 754	/* __isolate_free_page() does not map the pages */
 755	split_map_pages(&freelist);
 756
 757	if (pfn < end_pfn) {
 758		/* Loop terminated early, cleanup. */
 759		release_freepages(&freelist);
 760		return 0;
 761	}
 762
 763	/* We don't use freelists for anything. */
 764	return pfn;
 765}
 766
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 767/* Similar to reclaim, but different enough that they don't share logic */
 768static bool too_many_isolated(pg_data_t *pgdat)
 769{
 770	unsigned long active, inactive, isolated;
 771
 772	inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
 773			node_page_state(pgdat, NR_INACTIVE_ANON);
 774	active = node_page_state(pgdat, NR_ACTIVE_FILE) +
 775			node_page_state(pgdat, NR_ACTIVE_ANON);
 776	isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
 777			node_page_state(pgdat, NR_ISOLATED_ANON);
 778
 779	return isolated > (inactive + active) / 2;
 780}
 781
 782/**
 783 * isolate_migratepages_block() - isolate all migrate-able pages within
 784 *				  a single pageblock
 785 * @cc:		Compaction control structure.
 786 * @low_pfn:	The first PFN to isolate
 787 * @end_pfn:	The one-past-the-last PFN to isolate, within same pageblock
 788 * @isolate_mode: Isolation mode to be used.
 789 *
 790 * Isolate all pages that can be migrated from the range specified by
 791 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 792 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 793 * first page that was not scanned (which may be both less, equal to or more
 794 * than end_pfn).
 
 
 795 *
 796 * The pages are isolated on cc->migratepages list (not required to be empty),
 797 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 798 * is neither read nor updated.
 799 */
 800static unsigned long
 801isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 802			unsigned long end_pfn, isolate_mode_t isolate_mode)
 803{
 804	pg_data_t *pgdat = cc->zone->zone_pgdat;
 805	unsigned long nr_scanned = 0, nr_isolated = 0;
 
 806	struct lruvec *lruvec;
 807	unsigned long flags = 0;
 808	bool locked = false;
 809	struct page *page = NULL, *valid_page = NULL;
 810	unsigned long start_pfn = low_pfn;
 811	bool skip_on_failure = false;
 812	unsigned long next_skip_pfn = 0;
 813	bool skip_updated = false;
 814
 815	/*
 816	 * Ensure that there are not too many pages isolated from the LRU
 817	 * list by either parallel reclaimers or compaction. If there are,
 818	 * delay for some time until fewer pages are isolated
 819	 */
 820	while (unlikely(too_many_isolated(pgdat))) {
 821		/* async migration should just abort */
 822		if (cc->mode == MIGRATE_ASYNC)
 823			return 0;
 824
 825		congestion_wait(BLK_RW_ASYNC, HZ/10);
 826
 827		if (fatal_signal_pending(current))
 828			return 0;
 829	}
 830
 831	cond_resched();
 832
 833	if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 834		skip_on_failure = true;
 835		next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 836	}
 837
 838	/* Time to isolate some pages for migration */
 
 839	for (; low_pfn < end_pfn; low_pfn++) {
 840
 841		if (skip_on_failure && low_pfn >= next_skip_pfn) {
 842			/*
 843			 * We have isolated all migration candidates in the
 844			 * previous order-aligned block, and did not skip it due
 845			 * to failure. We should migrate the pages now and
 846			 * hopefully succeed compaction.
 847			 */
 848			if (nr_isolated)
 849				break;
 850
 851			/*
 852			 * We failed to isolate in the previous order-aligned
 853			 * block. Set the new boundary to the end of the
 854			 * current block. Note we can't simply increase
 855			 * next_skip_pfn by 1 << order, as low_pfn might have
 856			 * been incremented by a higher number due to skipping
 857			 * a compound or a high-order buddy page in the
 858			 * previous loop iteration.
 859			 */
 860			next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 861		}
 862
 863		/*
 864		 * Periodically drop the lock (if held) regardless of its
 865		 * contention, to give chance to IRQs. Abort completely if
 866		 * a fatal signal is pending.
 867		 */
 868		if (!(low_pfn % SWAP_CLUSTER_MAX)
 869		    && compact_unlock_should_abort(&pgdat->lru_lock,
 870					    flags, &locked, cc)) {
 871			low_pfn = 0;
 872			goto fatal_pending;
 
 873		}
 874
 875		if (!pfn_valid_within(low_pfn))
 876			goto isolate_fail;
 877		nr_scanned++;
 878
 879		page = pfn_to_page(low_pfn);
 880
 881		/*
 882		 * Check if the pageblock has already been marked skipped.
 883		 * Only the aligned PFN is checked as the caller isolates
 884		 * COMPACT_CLUSTER_MAX at a time so the second call must
 885		 * not falsely conclude that the block should be skipped.
 886		 */
 887		if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
 888			if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
 889				low_pfn = end_pfn;
 890				goto isolate_abort;
 891			}
 892			valid_page = page;
 893		}
 894
 895		/*
 896		 * Skip if free. We read page order here without zone lock
 897		 * which is generally unsafe, but the race window is small and
 898		 * the worst thing that can happen is that we skip some
 899		 * potential isolation targets.
 900		 */
 901		if (PageBuddy(page)) {
 902			unsigned long freepage_order = page_order_unsafe(page);
 903
 904			/*
 905			 * Without lock, we cannot be sure that what we got is
 906			 * a valid page order. Consider only values in the
 907			 * valid order range to prevent low_pfn overflow.
 908			 */
 909			if (freepage_order > 0 && freepage_order < MAX_ORDER)
 910				low_pfn += (1UL << freepage_order) - 1;
 911			continue;
 
 
 
 912		}
 913
 914		/*
 915		 * Regardless of being on LRU, compound pages such as THP and
 916		 * hugetlbfs are not to be compacted unless we are attempting
 917		 * an allocation much larger than the huge page size (eg CMA).
 918		 * We can potentially save a lot of iterations if we skip them
 919		 * at once. The check is racy, but we can consider only valid
 920		 * values and the only danger is skipping too much.
 921		 */
 922		if (PageCompound(page) && !cc->alloc_contig) {
 923			const unsigned int order = compound_order(page);
 924
 925			if (likely(order < MAX_ORDER))
 926				low_pfn += (1UL << order) - 1;
 927			goto isolate_fail;
 928		}
 929
 930		/*
 931		 * Check may be lockless but that's ok as we recheck later.
 932		 * It's possible to migrate LRU and non-lru movable pages.
 933		 * Skip any other type of page
 934		 */
 935		if (!PageLRU(page)) {
 936			/*
 937			 * __PageMovable can return false positive so we need
 938			 * to verify it under page_lock.
 939			 */
 940			if (unlikely(__PageMovable(page)) &&
 941					!PageIsolated(page)) {
 942				if (locked) {
 943					spin_unlock_irqrestore(&pgdat->lru_lock,
 944									flags);
 945					locked = false;
 946				}
 947
 948				if (!isolate_movable_page(page, isolate_mode))
 949					goto isolate_success;
 
 950			}
 
 
 951
 952			goto isolate_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 953		}
 954
 955		/*
 956		 * Migration will fail if an anonymous page is pinned in memory,
 957		 * so avoid taking lru_lock and isolating it unnecessarily in an
 958		 * admittedly racy check.
 959		 */
 960		if (!page_mapping(page) &&
 961		    page_count(page) > page_mapcount(page))
 962			goto isolate_fail;
 963
 964		/*
 965		 * Only allow to migrate anonymous pages in GFP_NOFS context
 966		 * because those do not depend on fs locks.
 967		 */
 968		if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 969			goto isolate_fail;
 970
 971		/* If we already hold the lock, we can skip some rechecking */
 972		if (!locked) {
 973			locked = compact_lock_irqsave(&pgdat->lru_lock,
 974								&flags, cc);
 975
 976			/* Try get exclusive access under lock */
 977			if (!skip_updated) {
 978				skip_updated = true;
 979				if (test_and_set_skip(cc, page, low_pfn))
 980					goto isolate_abort;
 981			}
 982
 983			/* Recheck PageLRU and PageCompound under lock */
 984			if (!PageLRU(page))
 985				goto isolate_fail;
 
 
 986
 987			/*
 988			 * Page become compound since the non-locked check,
 989			 * and it's on LRU. It can only be a THP so the order
 990			 * is safe to read and it's 0 for tail pages.
 991			 */
 992			if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
 993				low_pfn += compound_nr(page) - 1;
 994				goto isolate_fail;
 995			}
 996		}
 997
 998		lruvec = mem_cgroup_page_lruvec(page, pgdat);
 999
1000		/* Try isolate the page */
1001		if (__isolate_lru_page(page, isolate_mode) != 0)
1002			goto isolate_fail;
1003
1004		/* The whole page is taken off the LRU; skip the tail pages. */
1005		if (PageCompound(page))
1006			low_pfn += compound_nr(page) - 1;
1007
1008		/* Successfully isolated */
1009		del_page_from_lru_list(page, lruvec, page_lru(page));
1010		mod_node_page_state(page_pgdat(page),
1011				NR_ISOLATED_ANON + page_is_file_lru(page),
1012				thp_nr_pages(page));
1013
1014isolate_success:
1015		list_add(&page->lru, &cc->migratepages);
 
1016		cc->nr_migratepages++;
1017		nr_isolated++;
1018
1019		/*
1020		 * Avoid isolating too much unless this block is being
1021		 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1022		 * or a lock is contended. For contention, isolate quickly to
1023		 * potentially remove one source of contention.
1024		 */
1025		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX &&
1026		    !cc->rescan && !cc->contended) {
1027			++low_pfn;
1028			break;
1029		}
1030
1031		continue;
1032isolate_fail:
1033		if (!skip_on_failure)
1034			continue;
1035
1036		/*
1037		 * We have isolated some pages, but then failed. Release them
1038		 * instead of migrating, as we cannot form the cc->order buddy
1039		 * page anyway.
1040		 */
1041		if (nr_isolated) {
1042			if (locked) {
1043				spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1044				locked = false;
1045			}
1046			putback_movable_pages(&cc->migratepages);
1047			cc->nr_migratepages = 0;
1048			nr_isolated = 0;
1049		}
1050
1051		if (low_pfn < next_skip_pfn) {
1052			low_pfn = next_skip_pfn - 1;
1053			/*
1054			 * The check near the loop beginning would have updated
1055			 * next_skip_pfn too, but this is a bit simpler.
1056			 */
1057			next_skip_pfn += 1UL << cc->order;
1058		}
1059	}
1060
1061	/*
1062	 * The PageBuddy() check could have potentially brought us outside
1063	 * the range to be scanned.
1064	 */
1065	if (unlikely(low_pfn > end_pfn))
1066		low_pfn = end_pfn;
1067
1068isolate_abort:
1069	if (locked)
1070		spin_unlock_irqrestore(&pgdat->lru_lock, flags);
1071
1072	/*
1073	 * Updated the cached scanner pfn once the pageblock has been scanned
1074	 * Pages will either be migrated in which case there is no point
1075	 * scanning in the near future or migration failed in which case the
1076	 * failure reason may persist. The block is marked for skipping if
1077	 * there were no pages isolated in the block or if the block is
1078	 * rescanned twice in a row.
1079	 */
1080	if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
1081		if (valid_page && !skip_updated)
1082			set_pageblock_skip(valid_page);
1083		update_cached_migrate(cc, low_pfn);
1084	}
1085
1086	trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1087						nr_scanned, nr_isolated);
1088
1089fatal_pending:
1090	cc->total_migrate_scanned += nr_scanned;
1091	if (nr_isolated)
1092		count_compact_events(COMPACTISOLATED, nr_isolated);
1093
1094	return low_pfn;
1095}
1096
1097/**
1098 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1099 * @cc:        Compaction control structure.
1100 * @start_pfn: The first PFN to start isolating.
1101 * @end_pfn:   The one-past-last PFN.
1102 *
1103 * Returns zero if isolation fails fatally due to e.g. pending signal.
1104 * Otherwise, function returns one-past-the-last PFN of isolated page
1105 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1106 */
1107unsigned long
1108isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1109							unsigned long end_pfn)
1110{
1111	unsigned long pfn, block_start_pfn, block_end_pfn;
1112
1113	/* Scan block by block. First and last block may be incomplete */
1114	pfn = start_pfn;
1115	block_start_pfn = pageblock_start_pfn(pfn);
1116	if (block_start_pfn < cc->zone->zone_start_pfn)
1117		block_start_pfn = cc->zone->zone_start_pfn;
1118	block_end_pfn = pageblock_end_pfn(pfn);
1119
1120	for (; pfn < end_pfn; pfn = block_end_pfn,
1121				block_start_pfn = block_end_pfn,
1122				block_end_pfn += pageblock_nr_pages) {
1123
1124		block_end_pfn = min(block_end_pfn, end_pfn);
1125
1126		if (!pageblock_pfn_to_page(block_start_pfn,
1127					block_end_pfn, cc->zone))
1128			continue;
1129
1130		pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1131							ISOLATE_UNEVICTABLE);
1132
1133		if (!pfn)
1134			break;
1135
1136		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1137			break;
1138	}
1139
1140	return pfn;
1141}
1142
1143#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1144#ifdef CONFIG_COMPACTION
1145
1146static bool suitable_migration_source(struct compact_control *cc,
1147							struct page *page)
1148{
1149	int block_mt;
1150
1151	if (pageblock_skip_persistent(page))
1152		return false;
1153
1154	if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1155		return true;
1156
1157	block_mt = get_pageblock_migratetype(page);
1158
1159	if (cc->migratetype == MIGRATE_MOVABLE)
1160		return is_migrate_movable(block_mt);
1161	else
1162		return block_mt == cc->migratetype;
1163}
1164
1165/* Returns true if the page is within a block suitable for migration to */
1166static bool suitable_migration_target(struct compact_control *cc,
1167							struct page *page)
1168{
1169	/* If the page is a large free page, then disallow migration */
1170	if (PageBuddy(page)) {
1171		/*
1172		 * We are checking page_order without zone->lock taken. But
1173		 * the only small danger is that we skip a potentially suitable
1174		 * pageblock, so it's not worth to check order for valid range.
1175		 */
1176		if (page_order_unsafe(page) >= pageblock_order)
1177			return false;
1178	}
1179
1180	if (cc->ignore_block_suitable)
1181		return true;
1182
1183	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1184	if (is_migrate_movable(get_pageblock_migratetype(page)))
1185		return true;
1186
1187	/* Otherwise skip the block */
1188	return false;
1189}
1190
1191static inline unsigned int
1192freelist_scan_limit(struct compact_control *cc)
1193{
1194	unsigned short shift = BITS_PER_LONG - 1;
1195
1196	return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1197}
1198
1199/*
1200 * Test whether the free scanner has reached the same or lower pageblock than
1201 * the migration scanner, and compaction should thus terminate.
1202 */
1203static inline bool compact_scanners_met(struct compact_control *cc)
1204{
1205	return (cc->free_pfn >> pageblock_order)
1206		<= (cc->migrate_pfn >> pageblock_order);
1207}
1208
1209/*
1210 * Used when scanning for a suitable migration target which scans freelists
1211 * in reverse. Reorders the list such as the unscanned pages are scanned
1212 * first on the next iteration of the free scanner
1213 */
1214static void
1215move_freelist_head(struct list_head *freelist, struct page *freepage)
1216{
1217	LIST_HEAD(sublist);
1218
1219	if (!list_is_last(freelist, &freepage->lru)) {
1220		list_cut_before(&sublist, freelist, &freepage->lru);
1221		if (!list_empty(&sublist))
1222			list_splice_tail(&sublist, freelist);
1223	}
1224}
1225
1226/*
1227 * Similar to move_freelist_head except used by the migration scanner
1228 * when scanning forward. It's possible for these list operations to
1229 * move against each other if they search the free list exactly in
1230 * lockstep.
1231 */
1232static void
1233move_freelist_tail(struct list_head *freelist, struct page *freepage)
1234{
1235	LIST_HEAD(sublist);
1236
1237	if (!list_is_first(freelist, &freepage->lru)) {
1238		list_cut_position(&sublist, freelist, &freepage->lru);
1239		if (!list_empty(&sublist))
1240			list_splice_tail(&sublist, freelist);
1241	}
1242}
1243
1244static void
1245fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1246{
1247	unsigned long start_pfn, end_pfn;
1248	struct page *page = pfn_to_page(pfn);
1249
1250	/* Do not search around if there are enough pages already */
1251	if (cc->nr_freepages >= cc->nr_migratepages)
1252		return;
1253
1254	/* Minimise scanning during async compaction */
1255	if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1256		return;
1257
1258	/* Pageblock boundaries */
1259	start_pfn = pageblock_start_pfn(pfn);
1260	end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
1261
1262	/* Scan before */
1263	if (start_pfn != pfn) {
1264		isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
1265		if (cc->nr_freepages >= cc->nr_migratepages)
1266			return;
1267	}
1268
1269	/* Scan after */
1270	start_pfn = pfn + nr_isolated;
1271	if (start_pfn < end_pfn)
1272		isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1273
1274	/* Skip this pageblock in the future as it's full or nearly full */
1275	if (cc->nr_freepages < cc->nr_migratepages)
1276		set_pageblock_skip(page);
1277}
1278
1279/* Search orders in round-robin fashion */
1280static int next_search_order(struct compact_control *cc, int order)
1281{
1282	order--;
1283	if (order < 0)
1284		order = cc->order - 1;
1285
1286	/* Search wrapped around? */
1287	if (order == cc->search_order) {
1288		cc->search_order--;
1289		if (cc->search_order < 0)
1290			cc->search_order = cc->order - 1;
1291		return -1;
1292	}
1293
1294	return order;
1295}
1296
1297static unsigned long
1298fast_isolate_freepages(struct compact_control *cc)
1299{
1300	unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1301	unsigned int nr_scanned = 0;
1302	unsigned long low_pfn, min_pfn, high_pfn = 0, highest = 0;
1303	unsigned long nr_isolated = 0;
1304	unsigned long distance;
1305	struct page *page = NULL;
1306	bool scan_start = false;
1307	int order;
1308
1309	/* Full compaction passes in a negative order */
1310	if (cc->order <= 0)
1311		return cc->free_pfn;
1312
1313	/*
1314	 * If starting the scan, use a deeper search and use the highest
1315	 * PFN found if a suitable one is not found.
1316	 */
1317	if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1318		limit = pageblock_nr_pages >> 1;
1319		scan_start = true;
1320	}
1321
1322	/*
1323	 * Preferred point is in the top quarter of the scan space but take
1324	 * a pfn from the top half if the search is problematic.
1325	 */
1326	distance = (cc->free_pfn - cc->migrate_pfn);
1327	low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1328	min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1329
1330	if (WARN_ON_ONCE(min_pfn > low_pfn))
1331		low_pfn = min_pfn;
1332
1333	/*
1334	 * Search starts from the last successful isolation order or the next
1335	 * order to search after a previous failure
1336	 */
1337	cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1338
1339	for (order = cc->search_order;
1340	     !page && order >= 0;
1341	     order = next_search_order(cc, order)) {
1342		struct free_area *area = &cc->zone->free_area[order];
1343		struct list_head *freelist;
1344		struct page *freepage;
1345		unsigned long flags;
1346		unsigned int order_scanned = 0;
1347
1348		if (!area->nr_free)
1349			continue;
1350
1351		spin_lock_irqsave(&cc->zone->lock, flags);
1352		freelist = &area->free_list[MIGRATE_MOVABLE];
1353		list_for_each_entry_reverse(freepage, freelist, lru) {
1354			unsigned long pfn;
1355
1356			order_scanned++;
1357			nr_scanned++;
1358			pfn = page_to_pfn(freepage);
1359
1360			if (pfn >= highest)
1361				highest = pageblock_start_pfn(pfn);
1362
1363			if (pfn >= low_pfn) {
1364				cc->fast_search_fail = 0;
1365				cc->search_order = order;
1366				page = freepage;
1367				break;
1368			}
1369
1370			if (pfn >= min_pfn && pfn > high_pfn) {
1371				high_pfn = pfn;
1372
1373				/* Shorten the scan if a candidate is found */
1374				limit >>= 1;
1375			}
1376
1377			if (order_scanned >= limit)
1378				break;
1379		}
1380
1381		/* Use a minimum pfn if a preferred one was not found */
1382		if (!page && high_pfn) {
1383			page = pfn_to_page(high_pfn);
1384
1385			/* Update freepage for the list reorder below */
1386			freepage = page;
1387		}
1388
1389		/* Reorder to so a future search skips recent pages */
1390		move_freelist_head(freelist, freepage);
1391
1392		/* Isolate the page if available */
1393		if (page) {
1394			if (__isolate_free_page(page, order)) {
1395				set_page_private(page, order);
1396				nr_isolated = 1 << order;
1397				cc->nr_freepages += nr_isolated;
1398				list_add_tail(&page->lru, &cc->freepages);
1399				count_compact_events(COMPACTISOLATED, nr_isolated);
1400			} else {
1401				/* If isolation fails, abort the search */
1402				order = cc->search_order + 1;
1403				page = NULL;
1404			}
1405		}
1406
1407		spin_unlock_irqrestore(&cc->zone->lock, flags);
1408
1409		/*
1410		 * Smaller scan on next order so the total scan ig related
1411		 * to freelist_scan_limit.
1412		 */
1413		if (order_scanned >= limit)
1414			limit = min(1U, limit >> 1);
1415	}
1416
1417	if (!page) {
1418		cc->fast_search_fail++;
1419		if (scan_start) {
1420			/*
1421			 * Use the highest PFN found above min. If one was
1422			 * not found, be pessimistic for direct compaction
1423			 * and use the min mark.
1424			 */
1425			if (highest) {
1426				page = pfn_to_page(highest);
1427				cc->free_pfn = highest;
1428			} else {
1429				if (cc->direct_compaction && pfn_valid(min_pfn)) {
1430					page = pageblock_pfn_to_page(min_pfn,
1431						pageblock_end_pfn(min_pfn),
1432						cc->zone);
1433					cc->free_pfn = min_pfn;
1434				}
1435			}
1436		}
1437	}
1438
1439	if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1440		highest -= pageblock_nr_pages;
1441		cc->zone->compact_cached_free_pfn = highest;
1442	}
1443
1444	cc->total_free_scanned += nr_scanned;
1445	if (!page)
1446		return cc->free_pfn;
1447
1448	low_pfn = page_to_pfn(page);
1449	fast_isolate_around(cc, low_pfn, nr_isolated);
1450	return low_pfn;
1451}
1452
1453/*
1454 * Based on information in the current compact_control, find blocks
1455 * suitable for isolating free pages from and then isolate them.
1456 */
1457static void isolate_freepages(struct compact_control *cc)
 
1458{
1459	struct zone *zone = cc->zone;
1460	struct page *page;
1461	unsigned long block_start_pfn;	/* start of current pageblock */
1462	unsigned long isolate_start_pfn; /* exact pfn we start at */
1463	unsigned long block_end_pfn;	/* end of current pageblock */
1464	unsigned long low_pfn;	     /* lowest pfn scanner is able to scan */
1465	struct list_head *freelist = &cc->freepages;
1466	unsigned int stride;
1467
1468	/* Try a small search of the free lists for a candidate */
1469	isolate_start_pfn = fast_isolate_freepages(cc);
1470	if (cc->nr_freepages)
1471		goto splitmap;
1472
1473	/*
1474	 * Initialise the free scanner. The starting point is where we last
1475	 * successfully isolated from, zone-cached value, or the end of the
1476	 * zone when isolating for the first time. For looping we also need
1477	 * this pfn aligned down to the pageblock boundary, because we do
1478	 * block_start_pfn -= pageblock_nr_pages in the for loop.
1479	 * For ending point, take care when isolating in last pageblock of a
1480	 * zone which ends in the middle of a pageblock.
1481	 * The low boundary is the end of the pageblock the migration scanner
1482	 * is using.
1483	 */
1484	isolate_start_pfn = cc->free_pfn;
1485	block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1486	block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1487						zone_end_pfn(zone));
1488	low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1489	stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
 
 
 
 
 
1490
1491	/*
1492	 * Isolate free pages until enough are available to migrate the
1493	 * pages on cc->migratepages. We stop searching if the migrate
1494	 * and free page scanners meet or enough free pages are isolated.
1495	 */
1496	for (; block_start_pfn >= low_pfn;
1497				block_end_pfn = block_start_pfn,
1498				block_start_pfn -= pageblock_nr_pages,
1499				isolate_start_pfn = block_start_pfn) {
1500		unsigned long nr_isolated;
1501
1502		/*
1503		 * This can iterate a massively long zone without finding any
1504		 * suitable migration targets, so periodically check resched.
 
1505		 */
1506		if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1507			cond_resched();
 
 
1508
1509		page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1510									zone);
1511		if (!page)
 
 
 
 
 
 
1512			continue;
1513
1514		/* Check the block is suitable for migration */
1515		if (!suitable_migration_target(cc, page))
1516			continue;
1517
1518		/* If isolation recently failed, do not retry */
1519		if (!isolation_suitable(cc, page))
1520			continue;
1521
1522		/* Found a block suitable for isolating free pages from. */
1523		nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1524					block_end_pfn, freelist, stride, false);
1525
1526		/* Update the skip hint if the full pageblock was scanned */
1527		if (isolate_start_pfn == block_end_pfn)
1528			update_pageblock_skip(cc, page, block_start_pfn);
1529
1530		/* Are enough freepages isolated? */
1531		if (cc->nr_freepages >= cc->nr_migratepages) {
1532			if (isolate_start_pfn >= block_end_pfn) {
1533				/*
1534				 * Restart at previous pageblock if more
1535				 * freepages can be isolated next time.
1536				 */
1537				isolate_start_pfn =
1538					block_start_pfn - pageblock_nr_pages;
1539			}
1540			break;
1541		} else if (isolate_start_pfn < block_end_pfn) {
1542			/*
1543			 * If isolation failed early, do not continue
1544			 * needlessly.
1545			 */
1546			break;
1547		}
1548
1549		/* Adjust stride depending on isolation */
1550		if (nr_isolated) {
1551			stride = 1;
1552			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
1553		}
1554		stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1555	}
1556
 
 
 
1557	/*
1558	 * Record where the free scanner will restart next time. Either we
1559	 * broke from the loop and set isolate_start_pfn based on the last
1560	 * call to isolate_freepages_block(), or we met the migration scanner
1561	 * and the loop terminated due to isolate_start_pfn < low_pfn
1562	 */
1563	cc->free_pfn = isolate_start_pfn;
1564
1565splitmap:
1566	/* __isolate_free_page() does not map the pages */
1567	split_map_pages(freelist);
1568}
1569
1570/*
1571 * This is a migrate-callback that "allocates" freepages by taking pages
1572 * from the isolated freelists in the block we are migrating to.
1573 */
1574static struct page *compaction_alloc(struct page *migratepage,
1575					unsigned long data)
 
1576{
1577	struct compact_control *cc = (struct compact_control *)data;
1578	struct page *freepage;
1579
 
1580	if (list_empty(&cc->freepages)) {
1581		isolate_freepages(cc);
1582
1583		if (list_empty(&cc->freepages))
1584			return NULL;
1585	}
1586
1587	freepage = list_entry(cc->freepages.next, struct page, lru);
1588	list_del(&freepage->lru);
1589	cc->nr_freepages--;
1590
1591	return freepage;
1592}
1593
1594/*
1595 * This is a migrate-callback that "frees" freepages back to the isolated
1596 * freelist.  All pages on the freelist are from the same zone, so there is no
1597 * special handling needed for NUMA.
1598 */
1599static void compaction_free(struct page *page, unsigned long data)
1600{
1601	struct compact_control *cc = (struct compact_control *)data;
 
 
1602
1603	list_add(&page->lru, &cc->freepages);
1604	cc->nr_freepages++;
 
 
 
 
 
1605}
1606
1607/* possible outcome of isolate_migratepages */
1608typedef enum {
1609	ISOLATE_ABORT,		/* Abort compaction now */
1610	ISOLATE_NONE,		/* No pages isolated, continue scanning */
1611	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
1612} isolate_migrate_t;
1613
1614/*
1615 * Allow userspace to control policy on scanning the unevictable LRU for
1616 * compactable pages.
1617 */
1618#ifdef CONFIG_PREEMPT_RT
1619int sysctl_compact_unevictable_allowed __read_mostly = 0;
1620#else
1621int sysctl_compact_unevictable_allowed __read_mostly = 1;
1622#endif
1623
1624static inline void
1625update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1626{
1627	if (cc->fast_start_pfn == ULONG_MAX)
1628		return;
1629
1630	if (!cc->fast_start_pfn)
1631		cc->fast_start_pfn = pfn;
1632
1633	cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1634}
1635
1636static inline unsigned long
1637reinit_migrate_pfn(struct compact_control *cc)
1638{
1639	if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1640		return cc->migrate_pfn;
1641
1642	cc->migrate_pfn = cc->fast_start_pfn;
1643	cc->fast_start_pfn = ULONG_MAX;
1644
1645	return cc->migrate_pfn;
1646}
1647
1648/*
1649 * Briefly search the free lists for a migration source that already has
1650 * some free pages to reduce the number of pages that need migration
1651 * before a pageblock is free.
1652 */
1653static unsigned long fast_find_migrateblock(struct compact_control *cc)
 
1654{
1655	unsigned int limit = freelist_scan_limit(cc);
1656	unsigned int nr_scanned = 0;
1657	unsigned long distance;
1658	unsigned long pfn = cc->migrate_pfn;
1659	unsigned long high_pfn;
1660	int order;
1661
1662	/* Skip hints are relied on to avoid repeats on the fast search */
1663	if (cc->ignore_skip_hint)
1664		return pfn;
1665
1666	/*
1667	 * If the migrate_pfn is not at the start of a zone or the start
1668	 * of a pageblock then assume this is a continuation of a previous
1669	 * scan restarted due to COMPACT_CLUSTER_MAX.
1670	 */
1671	if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1672		return pfn;
1673
1674	/*
1675	 * For smaller orders, just linearly scan as the number of pages
1676	 * to migrate should be relatively small and does not necessarily
1677	 * justify freeing up a large block for a small allocation.
1678	 */
1679	if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1680		return pfn;
1681
1682	/*
1683	 * Only allow kcompactd and direct requests for movable pages to
1684	 * quickly clear out a MOVABLE pageblock for allocation. This
1685	 * reduces the risk that a large movable pageblock is freed for
1686	 * an unmovable/reclaimable small allocation.
1687	 */
1688	if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1689		return pfn;
1690
1691	/*
1692	 * When starting the migration scanner, pick any pageblock within the
1693	 * first half of the search space. Otherwise try and pick a pageblock
1694	 * within the first eighth to reduce the chances that a migration
1695	 * target later becomes a source.
1696	 */
1697	distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1698	if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1699		distance >>= 2;
1700	high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1701
1702	for (order = cc->order - 1;
1703	     order >= PAGE_ALLOC_COSTLY_ORDER && pfn == cc->migrate_pfn && nr_scanned < limit;
1704	     order--) {
1705		struct free_area *area = &cc->zone->free_area[order];
1706		struct list_head *freelist;
1707		unsigned long flags;
1708		struct page *freepage;
1709
1710		if (!area->nr_free)
1711			continue;
1712
1713		spin_lock_irqsave(&cc->zone->lock, flags);
1714		freelist = &area->free_list[MIGRATE_MOVABLE];
1715		list_for_each_entry(freepage, freelist, lru) {
1716			unsigned long free_pfn;
1717
1718			nr_scanned++;
1719			free_pfn = page_to_pfn(freepage);
1720			if (free_pfn < high_pfn) {
1721				/*
1722				 * Avoid if skipped recently. Ideally it would
1723				 * move to the tail but even safe iteration of
1724				 * the list assumes an entry is deleted, not
1725				 * reordered.
1726				 */
1727				if (get_pageblock_skip(freepage)) {
1728					if (list_is_last(freelist, &freepage->lru))
1729						break;
1730
1731					continue;
1732				}
1733
1734				/* Reorder to so a future search skips recent pages */
1735				move_freelist_tail(freelist, freepage);
1736
1737				update_fast_start_pfn(cc, free_pfn);
1738				pfn = pageblock_start_pfn(free_pfn);
1739				cc->fast_search_fail = 0;
1740				set_pageblock_skip(freepage);
1741				break;
1742			}
1743
1744			if (nr_scanned >= limit) {
1745				cc->fast_search_fail++;
1746				move_freelist_tail(freelist, freepage);
1747				break;
1748			}
1749		}
1750		spin_unlock_irqrestore(&cc->zone->lock, flags);
1751	}
1752
1753	cc->total_migrate_scanned += nr_scanned;
1754
1755	/*
1756	 * If fast scanning failed then use a cached entry for a page block
1757	 * that had free pages as the basis for starting a linear scan.
1758	 */
1759	if (pfn == cc->migrate_pfn)
1760		pfn = reinit_migrate_pfn(cc);
1761
1762	return pfn;
1763}
1764
1765/*
1766 * Isolate all pages that can be migrated from the first suitable block,
1767 * starting at the block pointed to by the migrate scanner pfn within
1768 * compact_control.
1769 */
1770static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1771{
1772	unsigned long block_start_pfn;
1773	unsigned long block_end_pfn;
1774	unsigned long low_pfn;
1775	struct page *page;
1776	const isolate_mode_t isolate_mode =
1777		(sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1778		(cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1779	bool fast_find_block;
1780
1781	/*
1782	 * Start at where we last stopped, or beginning of the zone as
1783	 * initialized by compact_zone(). The first failure will use
1784	 * the lowest PFN as the starting point for linear scanning.
1785	 */
1786	low_pfn = fast_find_migrateblock(cc);
1787	block_start_pfn = pageblock_start_pfn(low_pfn);
1788	if (block_start_pfn < cc->zone->zone_start_pfn)
1789		block_start_pfn = cc->zone->zone_start_pfn;
1790
1791	/*
1792	 * fast_find_migrateblock marks a pageblock skipped so to avoid
1793	 * the isolation_suitable check below, check whether the fast
1794	 * search was successful.
1795	 */
1796	fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1797
1798	/* Only scan within a pageblock boundary */
1799	block_end_pfn = pageblock_end_pfn(low_pfn);
1800
1801	/*
1802	 * Iterate over whole pageblocks until we find the first suitable.
1803	 * Do not cross the free scanner.
1804	 */
1805	for (; block_end_pfn <= cc->free_pfn;
1806			fast_find_block = false,
1807			low_pfn = block_end_pfn,
1808			block_start_pfn = block_end_pfn,
1809			block_end_pfn += pageblock_nr_pages) {
1810
1811		/*
1812		 * This can potentially iterate a massively long zone with
1813		 * many pageblocks unsuitable, so periodically check if we
1814		 * need to schedule.
1815		 */
1816		if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
1817			cond_resched();
1818
1819		page = pageblock_pfn_to_page(block_start_pfn,
1820						block_end_pfn, cc->zone);
1821		if (!page)
1822			continue;
1823
1824		/*
1825		 * If isolation recently failed, do not retry. Only check the
1826		 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1827		 * to be visited multiple times. Assume skip was checked
1828		 * before making it "skip" so other compaction instances do
1829		 * not scan the same block.
1830		 */
1831		if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1832		    !fast_find_block && !isolation_suitable(cc, page))
1833			continue;
1834
1835		/*
1836		 * For async compaction, also only scan in MOVABLE blocks
1837		 * without huge pages. Async compaction is optimistic to see
1838		 * if the minimum amount of work satisfies the allocation.
1839		 * The cached PFN is updated as it's possible that all
1840		 * remaining blocks between source and target are unsuitable
1841		 * and the compaction scanners fail to meet.
1842		 */
1843		if (!suitable_migration_source(cc, page)) {
1844			update_cached_migrate(cc, block_end_pfn);
1845			continue;
1846		}
1847
1848		/* Perform the isolation */
1849		low_pfn = isolate_migratepages_block(cc, low_pfn,
1850						block_end_pfn, isolate_mode);
1851
1852		if (!low_pfn)
1853			return ISOLATE_ABORT;
1854
1855		/*
1856		 * Either we isolated something and proceed with migration. Or
1857		 * we failed and compact_zone should decide if we should
1858		 * continue or not.
1859		 */
1860		break;
1861	}
1862
1863	/* Record where migration scanner will be restarted. */
1864	cc->migrate_pfn = low_pfn;
1865
1866	return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1867}
1868
1869/*
1870 * order == -1 is expected when compacting via
1871 * /proc/sys/vm/compact_memory
1872 */
1873static inline bool is_via_compact_memory(int order)
1874{
1875	return order == -1;
1876}
1877
1878static bool kswapd_is_running(pg_data_t *pgdat)
1879{
1880	return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1881}
1882
1883/*
1884 * A zone's fragmentation score is the external fragmentation wrt to the
1885 * COMPACTION_HPAGE_ORDER scaled by the zone's size. It returns a value
1886 * in the range [0, 100].
1887 *
1888 * The scaling factor ensures that proactive compaction focuses on larger
1889 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1890 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1891 * and thus never exceeds the high threshold for proactive compaction.
1892 */
1893static unsigned int fragmentation_score_zone(struct zone *zone)
1894{
1895	unsigned long score;
1896
1897	score = zone->present_pages *
1898			extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1899	return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1900}
1901
1902/*
1903 * The per-node proactive (background) compaction process is started by its
1904 * corresponding kcompactd thread when the node's fragmentation score
1905 * exceeds the high threshold. The compaction process remains active till
1906 * the node's score falls below the low threshold, or one of the back-off
1907 * conditions is met.
1908 */
1909static unsigned int fragmentation_score_node(pg_data_t *pgdat)
1910{
1911	unsigned int score = 0;
1912	int zoneid;
1913
1914	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1915		struct zone *zone;
1916
1917		zone = &pgdat->node_zones[zoneid];
1918		score += fragmentation_score_zone(zone);
1919	}
1920
1921	return score;
1922}
1923
1924static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
1925{
1926	unsigned int wmark_low;
1927
1928	/*
1929	 * Cap the low watermak to avoid excessive compaction
1930	 * activity in case a user sets the proactivess tunable
1931	 * close to 100 (maximum).
1932	 */
1933	wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1934	return low ? wmark_low : min(wmark_low + 10, 100U);
1935}
1936
1937static bool should_proactive_compact_node(pg_data_t *pgdat)
1938{
1939	int wmark_high;
1940
1941	if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1942		return false;
1943
1944	wmark_high = fragmentation_score_wmark(pgdat, false);
1945	return fragmentation_score_node(pgdat) > wmark_high;
1946}
1947
1948static enum compact_result __compact_finished(struct compact_control *cc)
 
1949{
1950	unsigned int order;
1951	const int migratetype = cc->migratetype;
1952	int ret;
 
 
1953
1954	/* Compaction run completes if the migrate and free scanner meet */
1955	if (compact_scanners_met(cc)) {
1956		/* Let the next compaction start anew. */
1957		reset_cached_positions(cc->zone);
 
1958
1959		/*
1960		 * Mark that the PG_migrate_skip information should be cleared
1961		 * by kswapd when it goes to sleep. kcompactd does not set the
1962		 * flag itself as the decision to be clear should be directly
1963		 * based on an allocation request.
1964		 */
1965		if (cc->direct_compaction)
1966			cc->zone->compact_blockskip_flush = true;
1967
1968		if (cc->whole_zone)
1969			return COMPACT_COMPLETE;
1970		else
1971			return COMPACT_PARTIAL_SKIPPED;
1972	}
1973
1974	if (cc->proactive_compaction) {
1975		int score, wmark_low;
1976		pg_data_t *pgdat;
1977
1978		pgdat = cc->zone->zone_pgdat;
1979		if (kswapd_is_running(pgdat))
1980			return COMPACT_PARTIAL_SKIPPED;
1981
1982		score = fragmentation_score_zone(cc->zone);
1983		wmark_low = fragmentation_score_wmark(pgdat, true);
1984
1985		if (score > wmark_low)
1986			ret = COMPACT_CONTINUE;
1987		else
1988			ret = COMPACT_SUCCESS;
1989
1990		goto out;
1991	}
1992
1993	if (is_via_compact_memory(cc->order))
1994		return COMPACT_CONTINUE;
1995
1996	/*
1997	 * Always finish scanning a pageblock to reduce the possibility of
1998	 * fallbacks in the future. This is particularly important when
1999	 * migration source is unmovable/reclaimable but it's not worth
2000	 * special casing.
2001	 */
2002	if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
 
 
 
 
 
 
 
2003		return COMPACT_CONTINUE;
2004
2005	/* Direct compactor: Is a suitable page free? */
2006	ret = COMPACT_NO_SUITABLE_PAGE;
2007	for (order = cc->order; order < MAX_ORDER; order++) {
2008		struct free_area *area = &cc->zone->free_area[order];
2009		bool can_steal;
2010
2011		/* Job done if page is free of the right migratetype */
2012		if (!free_area_empty(area, migratetype))
2013			return COMPACT_SUCCESS;
2014
2015#ifdef CONFIG_CMA
2016		/* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2017		if (migratetype == MIGRATE_MOVABLE &&
2018			!free_area_empty(area, MIGRATE_CMA))
2019			return COMPACT_SUCCESS;
2020#endif
2021		/*
2022		 * Job done if allocation would steal freepages from
2023		 * other migratetype buddy lists.
2024		 */
2025		if (find_suitable_fallback(area, order, migratetype,
2026						true, &can_steal) != -1) {
2027
2028			/* movable pages are OK in any pageblock */
2029			if (migratetype == MIGRATE_MOVABLE)
2030				return COMPACT_SUCCESS;
2031
2032			/*
2033			 * We are stealing for a non-movable allocation. Make
2034			 * sure we finish compacting the current pageblock
2035			 * first so it is as free as possible and we won't
2036			 * have to steal another one soon. This only applies
2037			 * to sync compaction, as async compaction operates
2038			 * on pageblocks of the same migratetype.
2039			 */
2040			if (cc->mode == MIGRATE_ASYNC ||
2041					IS_ALIGNED(cc->migrate_pfn,
2042							pageblock_nr_pages)) {
2043				return COMPACT_SUCCESS;
2044			}
2045
2046			ret = COMPACT_CONTINUE;
2047			break;
2048		}
2049	}
2050
2051out:
2052	if (cc->contended || fatal_signal_pending(current))
2053		ret = COMPACT_CONTENDED;
2054
2055	return ret;
2056}
2057
2058static enum compact_result compact_finished(struct compact_control *cc)
2059{
2060	int ret;
2061
2062	ret = __compact_finished(cc);
2063	trace_mm_compaction_finished(cc->zone, cc->order, ret);
2064	if (ret == COMPACT_NO_SUITABLE_PAGE)
2065		ret = COMPACT_CONTINUE;
2066
2067	return ret;
2068}
2069
2070/*
2071 * compaction_suitable: Is this suitable to run compaction on this zone now?
2072 * Returns
2073 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
2074 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
2075 *   COMPACT_CONTINUE - If compaction should run now
2076 */
2077static enum compact_result __compaction_suitable(struct zone *zone, int order,
2078					unsigned int alloc_flags,
2079					int highest_zoneidx,
2080					unsigned long wmark_target)
2081{
 
2082	unsigned long watermark;
2083
2084	if (is_via_compact_memory(order))
2085		return COMPACT_CONTINUE;
2086
2087	watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2088	/*
2089	 * If watermarks for high-order allocation are already met, there
2090	 * should be no need for compaction at all.
2091	 */
2092	if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2093								alloc_flags))
2094		return COMPACT_SUCCESS;
2095
2096	/*
2097	 * Watermarks for order-0 must be met for compaction to be able to
2098	 * isolate free pages for migration targets. This means that the
2099	 * watermark and alloc_flags have to match, or be more pessimistic than
2100	 * the check in __isolate_free_page(). We don't use the direct
2101	 * compactor's alloc_flags, as they are not relevant for freepage
2102	 * isolation. We however do use the direct compactor's highest_zoneidx
2103	 * to skip over zones where lowmem reserves would prevent allocation
2104	 * even if compaction succeeds.
2105	 * For costly orders, we require low watermark instead of min for
2106	 * compaction to proceed to increase its chances.
2107	 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2108	 * suitable migration targets
2109	 */
2110	watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2111				low_wmark_pages(zone) : min_wmark_pages(zone);
2112	watermark += compact_gap(order);
2113	if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2114						ALLOC_CMA, wmark_target))
2115		return COMPACT_SKIPPED;
2116
2117	return COMPACT_CONTINUE;
2118}
2119
2120enum compact_result compaction_suitable(struct zone *zone, int order,
2121					unsigned int alloc_flags,
2122					int highest_zoneidx)
2123{
2124	enum compact_result ret;
2125	int fragindex;
2126
2127	ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
2128				    zone_page_state(zone, NR_FREE_PAGES));
2129	/*
2130	 * fragmentation index determines if allocation failures are due to
2131	 * low memory or external fragmentation
2132	 *
2133	 * index of -1000 would imply allocations might succeed depending on
2134	 * watermarks, but we already failed the high-order watermark check
2135	 * index towards 0 implies failure is due to lack of memory
2136	 * index towards 1000 implies failure is due to fragmentation
2137	 *
2138	 * Only compact if a failure would be due to fragmentation. Also
2139	 * ignore fragindex for non-costly orders where the alternative to
2140	 * a successful reclaim/compaction is OOM. Fragindex and the
2141	 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2142	 * excessive compaction for costly orders, but it should not be at the
2143	 * expense of system stability.
2144	 */
2145	if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
2146		fragindex = fragmentation_index(zone, order);
2147		if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2148			ret = COMPACT_NOT_SUITABLE_ZONE;
2149	}
2150
2151	trace_mm_compaction_suitable(zone, order, ret);
2152	if (ret == COMPACT_NOT_SUITABLE_ZONE)
2153		ret = COMPACT_SKIPPED;
2154
2155	return ret;
2156}
2157
2158bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2159		int alloc_flags)
2160{
2161	struct zone *zone;
2162	struct zoneref *z;
2163
2164	/*
2165	 * Make sure at least one zone would pass __compaction_suitable if we continue
2166	 * retrying the reclaim.
2167	 */
2168	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2169				ac->highest_zoneidx, ac->nodemask) {
2170		unsigned long available;
2171		enum compact_result compact_result;
2172
2173		/*
2174		 * Do not consider all the reclaimable memory because we do not
2175		 * want to trash just for a single high order allocation which
2176		 * is even not guaranteed to appear even if __compaction_suitable
2177		 * is happy about the watermark check.
2178		 */
2179		available = zone_reclaimable_pages(zone) / order;
2180		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2181		compact_result = __compaction_suitable(zone, order, alloc_flags,
2182				ac->highest_zoneidx, available);
2183		if (compact_result != COMPACT_SKIPPED)
2184			return true;
2185	}
2186
2187	return false;
2188}
2189
2190static enum compact_result
2191compact_zone(struct compact_control *cc, struct capture_control *capc)
2192{
2193	enum compact_result ret;
2194	unsigned long start_pfn = cc->zone->zone_start_pfn;
2195	unsigned long end_pfn = zone_end_pfn(cc->zone);
2196	unsigned long last_migrated_pfn;
2197	const bool sync = cc->mode != MIGRATE_ASYNC;
2198	bool update_cached;
2199
2200	/*
2201	 * These counters track activities during zone compaction.  Initialize
2202	 * them before compacting a new zone.
2203	 */
2204	cc->total_migrate_scanned = 0;
2205	cc->total_free_scanned = 0;
2206	cc->nr_migratepages = 0;
2207	cc->nr_freepages = 0;
2208	INIT_LIST_HEAD(&cc->freepages);
2209	INIT_LIST_HEAD(&cc->migratepages);
2210
2211	cc->migratetype = gfp_migratetype(cc->gfp_mask);
2212	ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
2213							cc->highest_zoneidx);
2214	/* Compaction is likely to fail */
2215	if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
2216		return ret;
2217
2218	/* huh, compaction_suitable is returning something unexpected */
2219	VM_BUG_ON(ret != COMPACT_CONTINUE);
 
2220
2221	/*
2222	 * Clear pageblock skip if there were failures recently and compaction
2223	 * is about to be retried after being deferred.
 
2224	 */
2225	if (compaction_restarting(cc->zone, cc->order))
2226		__reset_isolation_suitable(cc->zone);
2227
2228	/*
2229	 * Setup to move all movable pages to the end of the zone. Used cached
2230	 * information on where the scanners should start (unless we explicitly
2231	 * want to compact the whole zone), but check that it is initialised
2232	 * by ensuring the values are within zone boundaries.
2233	 */
2234	cc->fast_start_pfn = 0;
2235	if (cc->whole_zone) {
 
 
 
 
 
2236		cc->migrate_pfn = start_pfn;
2237		cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2238	} else {
2239		cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2240		cc->free_pfn = cc->zone->compact_cached_free_pfn;
2241		if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2242			cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2243			cc->zone->compact_cached_free_pfn = cc->free_pfn;
2244		}
2245		if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2246			cc->migrate_pfn = start_pfn;
2247			cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2248			cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2249		}
2250
2251		if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2252			cc->whole_zone = true;
2253	}
2254
2255	last_migrated_pfn = 0;
2256
2257	/*
2258	 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2259	 * the basis that some migrations will fail in ASYNC mode. However,
2260	 * if the cached PFNs match and pageblocks are skipped due to having
2261	 * no isolation candidates, then the sync state does not matter.
2262	 * Until a pageblock with isolation candidates is found, keep the
2263	 * cached PFNs in sync to avoid revisiting the same blocks.
2264	 */
2265	update_cached = !sync &&
2266		cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2267
2268	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2269				cc->free_pfn, end_pfn, sync);
2270
2271	migrate_prep_local();
2272
2273	while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
 
2274		int err;
2275		unsigned long start_pfn = cc->migrate_pfn;
2276
2277		/*
2278		 * Avoid multiple rescans which can happen if a page cannot be
2279		 * isolated (dirty/writeback in async mode) or if the migrated
2280		 * pages are being allocated before the pageblock is cleared.
2281		 * The first rescan will capture the entire pageblock for
2282		 * migration. If it fails, it'll be marked skip and scanning
2283		 * will proceed as normal.
2284		 */
2285		cc->rescan = false;
2286		if (pageblock_start_pfn(last_migrated_pfn) ==
2287		    pageblock_start_pfn(start_pfn)) {
2288			cc->rescan = true;
2289		}
2290
2291		switch (isolate_migratepages(cc)) {
2292		case ISOLATE_ABORT:
2293			ret = COMPACT_CONTENDED;
2294			putback_movable_pages(&cc->migratepages);
2295			cc->nr_migratepages = 0;
2296			goto out;
2297		case ISOLATE_NONE:
2298			if (update_cached) {
2299				cc->zone->compact_cached_migrate_pfn[1] =
2300					cc->zone->compact_cached_migrate_pfn[0];
2301			}
2302
2303			/*
2304			 * We haven't isolated and migrated anything, but
2305			 * there might still be unflushed migrations from
2306			 * previous cc->order aligned block.
2307			 */
2308			goto check_drain;
2309		case ISOLATE_SUCCESS:
2310			update_cached = false;
2311			last_migrated_pfn = start_pfn;
2312			;
2313		}
2314
 
2315		err = migrate_pages(&cc->migratepages, compaction_alloc,
2316				compaction_free, (unsigned long)cc, cc->mode,
 
2317				MR_COMPACTION);
 
 
2318
2319		trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2320							&cc->migratepages);
2321
2322		/* All pages were either migrated or will be released */
2323		cc->nr_migratepages = 0;
2324		if (err) {
2325			putback_movable_pages(&cc->migratepages);
 
2326			/*
2327			 * migrate_pages() may return -ENOMEM when scanners meet
2328			 * and we want compact_finished() to detect it
2329			 */
2330			if (err == -ENOMEM && !compact_scanners_met(cc)) {
2331				ret = COMPACT_CONTENDED;
2332				goto out;
2333			}
2334			/*
2335			 * We failed to migrate at least one page in the current
2336			 * order-aligned block, so skip the rest of it.
2337			 */
2338			if (cc->direct_compaction &&
2339						(cc->mode == MIGRATE_ASYNC)) {
2340				cc->migrate_pfn = block_end_pfn(
2341						cc->migrate_pfn - 1, cc->order);
2342				/* Draining pcplists is useless in this case */
2343				last_migrated_pfn = 0;
2344			}
2345		}
2346
2347check_drain:
2348		/*
2349		 * Has the migration scanner moved away from the previous
2350		 * cc->order aligned block where we migrated from? If yes,
2351		 * flush the pages that were freed, so that they can merge and
2352		 * compact_finished() can detect immediately if allocation
2353		 * would succeed.
2354		 */
2355		if (cc->order > 0 && last_migrated_pfn) {
2356			unsigned long current_block_start =
2357				block_start_pfn(cc->migrate_pfn, cc->order);
2358
2359			if (last_migrated_pfn < current_block_start) {
2360				lru_add_drain_cpu_zone(cc->zone);
2361				/* No more flushing until we migrate again */
2362				last_migrated_pfn = 0;
2363			}
2364		}
2365
2366		/* Stop if a page has been captured */
2367		if (capc && capc->page) {
2368			ret = COMPACT_SUCCESS;
2369			break;
2370		}
2371	}
2372
2373out:
2374	/*
2375	 * Release free pages and update where the free scanner should restart,
2376	 * so we don't leave any returned pages behind in the next attempt.
2377	 */
2378	if (cc->nr_freepages > 0) {
2379		unsigned long free_pfn = release_freepages(&cc->freepages);
2380
2381		cc->nr_freepages = 0;
2382		VM_BUG_ON(free_pfn == 0);
2383		/* The cached pfn is always the first in a pageblock */
2384		free_pfn = pageblock_start_pfn(free_pfn);
2385		/*
2386		 * Only go back, not forward. The cached pfn might have been
2387		 * already reset to zone end in compact_finished()
2388		 */
2389		if (free_pfn > cc->zone->compact_cached_free_pfn)
2390			cc->zone->compact_cached_free_pfn = free_pfn;
2391	}
2392
2393	count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2394	count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2395
2396	trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2397				cc->free_pfn, end_pfn, sync, ret);
2398
2399	return ret;
2400}
2401
2402static enum compact_result compact_zone_order(struct zone *zone, int order,
2403		gfp_t gfp_mask, enum compact_priority prio,
2404		unsigned int alloc_flags, int highest_zoneidx,
2405		struct page **capture)
2406{
2407	enum compact_result ret;
2408	struct compact_control cc = {
 
 
2409		.order = order,
2410		.search_order = order,
2411		.gfp_mask = gfp_mask,
2412		.zone = zone,
2413		.mode = (prio == COMPACT_PRIO_ASYNC) ?
2414					MIGRATE_ASYNC :	MIGRATE_SYNC_LIGHT,
2415		.alloc_flags = alloc_flags,
2416		.highest_zoneidx = highest_zoneidx,
2417		.direct_compaction = true,
2418		.whole_zone = (prio == MIN_COMPACT_PRIORITY),
2419		.ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2420		.ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2421	};
2422	struct capture_control capc = {
2423		.cc = &cc,
2424		.page = NULL,
2425	};
 
 
2426
2427	/*
2428	 * Make sure the structs are really initialized before we expose the
2429	 * capture control, in case we are interrupted and the interrupt handler
2430	 * frees a page.
2431	 */
2432	barrier();
2433	WRITE_ONCE(current->capture_control, &capc);
2434
2435	ret = compact_zone(&cc, &capc);
2436
2437	VM_BUG_ON(!list_empty(&cc.freepages));
2438	VM_BUG_ON(!list_empty(&cc.migratepages));
2439
2440	/*
2441	 * Make sure we hide capture control first before we read the captured
2442	 * page pointer, otherwise an interrupt could free and capture a page
2443	 * and we would leak it.
2444	 */
2445	WRITE_ONCE(current->capture_control, NULL);
2446	*capture = READ_ONCE(capc.page);
2447
2448	return ret;
2449}
2450
2451int sysctl_extfrag_threshold = 500;
2452
2453/**
2454 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2455 * @gfp_mask: The GFP mask of the current allocation
2456 * @order: The order of the current allocation
2457 * @alloc_flags: The allocation flags of the current allocation
2458 * @ac: The context of current allocation
2459 * @prio: Determines how hard direct compaction should try to succeed
2460 * @capture: Pointer to free page created by compaction will be stored here
 
2461 *
2462 * This is the main entry point for direct page compaction.
2463 */
2464enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2465		unsigned int alloc_flags, const struct alloc_context *ac,
2466		enum compact_priority prio, struct page **capture)
2467{
 
 
2468	int may_perform_io = gfp_mask & __GFP_IO;
2469	struct zoneref *z;
2470	struct zone *zone;
2471	enum compact_result rc = COMPACT_SKIPPED;
 
2472
2473	/*
2474	 * Check if the GFP flags allow compaction - GFP_NOIO is really
2475	 * tricky context because the migration might require IO
2476	 */
2477	if (!may_perform_io)
2478		return COMPACT_SKIPPED;
2479
2480	trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2481
 
 
 
 
2482	/* Compact each zone in the list */
2483	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2484					ac->highest_zoneidx, ac->nodemask) {
2485		enum compact_result status;
2486
2487		if (prio > MIN_COMPACT_PRIORITY
2488					&& compaction_deferred(zone, order)) {
2489			rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2490			continue;
2491		}
2492
2493		status = compact_zone_order(zone, order, gfp_mask, prio,
2494				alloc_flags, ac->highest_zoneidx, capture);
2495		rc = max(status, rc);
2496
2497		/* The allocation should succeed, stop compacting */
2498		if (status == COMPACT_SUCCESS) {
2499			/*
2500			 * We think the allocation will succeed in this zone,
2501			 * but it is not certain, hence the false. The caller
2502			 * will repeat this with true if allocation indeed
2503			 * succeeds in this zone.
2504			 */
2505			compaction_defer_reset(zone, order, false);
2506
2507			break;
2508		}
2509
2510		if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2511					status == COMPACT_PARTIAL_SKIPPED))
2512			/*
2513			 * We think that allocation won't succeed in this zone
2514			 * so we defer compaction there. If it ends up
2515			 * succeeding after all, it will be reset.
2516			 */
2517			defer_compaction(zone, order);
2518
2519		/*
2520		 * We might have stopped compacting due to need_resched() in
2521		 * async compaction, or due to a fatal signal detected. In that
2522		 * case do not try further zones
2523		 */
2524		if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2525					|| fatal_signal_pending(current))
2526			break;
2527	}
2528
2529	return rc;
2530}
2531
2532/*
2533 * Compact all zones within a node till each zone's fragmentation score
2534 * reaches within proactive compaction thresholds (as determined by the
2535 * proactiveness tunable).
2536 *
2537 * It is possible that the function returns before reaching score targets
2538 * due to various back-off conditions, such as, contention on per-node or
2539 * per-zone locks.
2540 */
2541static void proactive_compact_node(pg_data_t *pgdat)
2542{
2543	int zoneid;
2544	struct zone *zone;
2545	struct compact_control cc = {
2546		.order = -1,
2547		.mode = MIGRATE_SYNC_LIGHT,
2548		.ignore_skip_hint = true,
2549		.whole_zone = true,
2550		.gfp_mask = GFP_KERNEL,
2551		.proactive_compaction = true,
2552	};
2553
2554	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 
2555		zone = &pgdat->node_zones[zoneid];
2556		if (!populated_zone(zone))
2557			continue;
2558
2559		cc.zone = zone;
 
 
 
 
2560
2561		compact_zone(&cc, NULL);
 
2562
2563		VM_BUG_ON(!list_empty(&cc.freepages));
2564		VM_BUG_ON(!list_empty(&cc.migratepages));
 
 
 
 
 
 
 
 
 
2565	}
2566}
2567
2568/* Compact all zones within a node */
2569static void compact_node(int nid)
2570{
2571	pg_data_t *pgdat = NODE_DATA(nid);
2572	int zoneid;
2573	struct zone *zone;
2574	struct compact_control cc = {
2575		.order = -1,
2576		.mode = MIGRATE_SYNC,
2577		.ignore_skip_hint = true,
2578		.whole_zone = true,
2579		.gfp_mask = GFP_KERNEL,
2580	};
2581
 
 
2582
2583	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2584
2585		zone = &pgdat->node_zones[zoneid];
2586		if (!populated_zone(zone))
2587			continue;
2588
2589		cc.zone = zone;
2590
2591		compact_zone(&cc, NULL);
 
 
 
 
 
 
2592
2593		VM_BUG_ON(!list_empty(&cc.freepages));
2594		VM_BUG_ON(!list_empty(&cc.migratepages));
2595	}
2596}
2597
2598/* Compact all nodes in the system */
2599static void compact_nodes(void)
2600{
2601	int nid;
2602
2603	/* Flush pending updates to the LRU lists */
2604	lru_add_drain_all();
2605
2606	for_each_online_node(nid)
2607		compact_node(nid);
2608}
2609
2610/* The written value is actually unused, all memory is compacted */
2611int sysctl_compact_memory;
2612
2613/*
2614 * Tunable for proactive compaction. It determines how
2615 * aggressively the kernel should compact memory in the
2616 * background. It takes values in the range [0, 100].
2617 */
2618unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
2619
2620/*
2621 * This is the entry point for compacting all nodes via
2622 * /proc/sys/vm/compact_memory
2623 */
2624int sysctl_compaction_handler(struct ctl_table *table, int write,
2625			void *buffer, size_t *length, loff_t *ppos)
2626{
2627	if (write)
2628		compact_nodes();
2629
2630	return 0;
2631}
2632
 
 
 
 
 
 
 
 
2633#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2634static ssize_t sysfs_compact_node(struct device *dev,
2635			struct device_attribute *attr,
2636			const char *buf, size_t count)
2637{
2638	int nid = dev->id;
2639
2640	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2641		/* Flush pending updates to the LRU lists */
2642		lru_add_drain_all();
2643
2644		compact_node(nid);
2645	}
2646
2647	return count;
2648}
2649static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
2650
2651int compaction_register_node(struct node *node)
2652{
2653	return device_create_file(&node->dev, &dev_attr_compact);
2654}
2655
2656void compaction_unregister_node(struct node *node)
2657{
2658	return device_remove_file(&node->dev, &dev_attr_compact);
2659}
2660#endif /* CONFIG_SYSFS && CONFIG_NUMA */
2661
2662static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2663{
2664	return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
2665}
2666
2667static bool kcompactd_node_suitable(pg_data_t *pgdat)
2668{
2669	int zoneid;
2670	struct zone *zone;
2671	enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2672
2673	for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2674		zone = &pgdat->node_zones[zoneid];
2675
2676		if (!populated_zone(zone))
2677			continue;
2678
2679		if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
2680					highest_zoneidx) == COMPACT_CONTINUE)
2681			return true;
2682	}
2683
2684	return false;
2685}
2686
2687static void kcompactd_do_work(pg_data_t *pgdat)
2688{
2689	/*
2690	 * With no special task, compact all zones so that a page of requested
2691	 * order is allocatable.
2692	 */
2693	int zoneid;
2694	struct zone *zone;
2695	struct compact_control cc = {
2696		.order = pgdat->kcompactd_max_order,
2697		.search_order = pgdat->kcompactd_max_order,
2698		.highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2699		.mode = MIGRATE_SYNC_LIGHT,
2700		.ignore_skip_hint = false,
2701		.gfp_mask = GFP_KERNEL,
2702	};
2703	trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2704							cc.highest_zoneidx);
2705	count_compact_event(KCOMPACTD_WAKE);
2706
2707	for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2708		int status;
2709
2710		zone = &pgdat->node_zones[zoneid];
2711		if (!populated_zone(zone))
2712			continue;
2713
2714		if (compaction_deferred(zone, cc.order))
2715			continue;
2716
2717		if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2718							COMPACT_CONTINUE)
2719			continue;
2720
2721		if (kthread_should_stop())
2722			return;
2723
2724		cc.zone = zone;
2725		status = compact_zone(&cc, NULL);
2726
2727		if (status == COMPACT_SUCCESS) {
2728			compaction_defer_reset(zone, cc.order, false);
2729		} else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
2730			/*
2731			 * Buddy pages may become stranded on pcps that could
2732			 * otherwise coalesce on the zone's free area for
2733			 * order >= cc.order.  This is ratelimited by the
2734			 * upcoming deferral.
2735			 */
2736			drain_all_pages(zone);
2737
2738			/*
2739			 * We use sync migration mode here, so we defer like
2740			 * sync direct compaction does.
2741			 */
2742			defer_compaction(zone, cc.order);
2743		}
2744
2745		count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2746				     cc.total_migrate_scanned);
2747		count_compact_events(KCOMPACTD_FREE_SCANNED,
2748				     cc.total_free_scanned);
2749
2750		VM_BUG_ON(!list_empty(&cc.freepages));
2751		VM_BUG_ON(!list_empty(&cc.migratepages));
2752	}
2753
2754	/*
2755	 * Regardless of success, we are done until woken up next. But remember
2756	 * the requested order/highest_zoneidx in case it was higher/tighter
2757	 * than our current ones
2758	 */
2759	if (pgdat->kcompactd_max_order <= cc.order)
2760		pgdat->kcompactd_max_order = 0;
2761	if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2762		pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2763}
2764
2765void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
2766{
2767	if (!order)
2768		return;
2769
2770	if (pgdat->kcompactd_max_order < order)
2771		pgdat->kcompactd_max_order = order;
2772
2773	if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2774		pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
2775
2776	/*
2777	 * Pairs with implicit barrier in wait_event_freezable()
2778	 * such that wakeups are not missed.
2779	 */
2780	if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2781		return;
2782
2783	if (!kcompactd_node_suitable(pgdat))
2784		return;
2785
2786	trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2787							highest_zoneidx);
2788	wake_up_interruptible(&pgdat->kcompactd_wait);
2789}
2790
2791/*
2792 * The background compaction daemon, started as a kernel thread
2793 * from the init process.
2794 */
2795static int kcompactd(void *p)
2796{
2797	pg_data_t *pgdat = (pg_data_t*)p;
2798	struct task_struct *tsk = current;
2799	unsigned int proactive_defer = 0;
2800
2801	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2802
2803	if (!cpumask_empty(cpumask))
2804		set_cpus_allowed_ptr(tsk, cpumask);
2805
2806	set_freezable();
2807
2808	pgdat->kcompactd_max_order = 0;
2809	pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
2810
2811	while (!kthread_should_stop()) {
2812		unsigned long pflags;
2813
2814		trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2815		if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2816			kcompactd_work_requested(pgdat),
2817			msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2818
2819			psi_memstall_enter(&pflags);
2820			kcompactd_do_work(pgdat);
2821			psi_memstall_leave(&pflags);
2822			continue;
2823		}
2824
2825		/* kcompactd wait timeout */
2826		if (should_proactive_compact_node(pgdat)) {
2827			unsigned int prev_score, score;
2828
2829			if (proactive_defer) {
2830				proactive_defer--;
2831				continue;
2832			}
2833			prev_score = fragmentation_score_node(pgdat);
2834			proactive_compact_node(pgdat);
2835			score = fragmentation_score_node(pgdat);
2836			/*
2837			 * Defer proactive compaction if the fragmentation
2838			 * score did not go down i.e. no progress made.
2839			 */
2840			proactive_defer = score < prev_score ?
2841					0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2842		}
2843	}
2844
2845	return 0;
2846}
2847
2848/*
2849 * This kcompactd start function will be called by init and node-hot-add.
2850 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2851 */
2852int kcompactd_run(int nid)
2853{
2854	pg_data_t *pgdat = NODE_DATA(nid);
2855	int ret = 0;
2856
2857	if (pgdat->kcompactd)
2858		return 0;
2859
2860	pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2861	if (IS_ERR(pgdat->kcompactd)) {
2862		pr_err("Failed to start kcompactd on node %d\n", nid);
2863		ret = PTR_ERR(pgdat->kcompactd);
2864		pgdat->kcompactd = NULL;
2865	}
2866	return ret;
2867}
2868
2869/*
2870 * Called by memory hotplug when all memory in a node is offlined. Caller must
2871 * hold mem_hotplug_begin/end().
2872 */
2873void kcompactd_stop(int nid)
2874{
2875	struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2876
2877	if (kcompactd) {
2878		kthread_stop(kcompactd);
2879		NODE_DATA(nid)->kcompactd = NULL;
2880	}
2881}
2882
2883/*
2884 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2885 * not required for correctness. So if the last cpu in a node goes
2886 * away, we get changed to run anywhere: as the first one comes back,
2887 * restore their cpu bindings.
2888 */
2889static int kcompactd_cpu_online(unsigned int cpu)
2890{
2891	int nid;
2892
2893	for_each_node_state(nid, N_MEMORY) {
2894		pg_data_t *pgdat = NODE_DATA(nid);
2895		const struct cpumask *mask;
2896
2897		mask = cpumask_of_node(pgdat->node_id);
2898
2899		if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2900			/* One of our CPUs online: restore mask */
2901			set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2902	}
2903	return 0;
2904}
2905
2906static int __init kcompactd_init(void)
2907{
2908	int nid;
2909	int ret;
2910
2911	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2912					"mm/compaction:online",
2913					kcompactd_cpu_online, NULL);
2914	if (ret < 0) {
2915		pr_err("kcompactd: failed to register hotplug callbacks.\n");
2916		return ret;
2917	}
2918
2919	for_each_node_state(nid, N_MEMORY)
2920		kcompactd_run(nid);
2921	return 0;
2922}
2923subsys_initcall(kcompactd_init)
2924
2925#endif /* CONFIG_COMPACTION */
v3.15
 
   1/*
   2 * linux/mm/compaction.c
   3 *
   4 * Memory compaction for the reduction of external fragmentation. Note that
   5 * this heavily depends upon page migration to do all the real heavy
   6 * lifting
   7 *
   8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
   9 */
 
  10#include <linux/swap.h>
  11#include <linux/migrate.h>
  12#include <linux/compaction.h>
  13#include <linux/mm_inline.h>
 
  14#include <linux/backing-dev.h>
  15#include <linux/sysctl.h>
  16#include <linux/sysfs.h>
  17#include <linux/balloon_compaction.h>
  18#include <linux/page-isolation.h>
 
 
 
 
 
  19#include "internal.h"
  20
  21#ifdef CONFIG_COMPACTION
  22static inline void count_compact_event(enum vm_event_item item)
  23{
  24	count_vm_event(item);
  25}
  26
  27static inline void count_compact_events(enum vm_event_item item, long delta)
  28{
  29	count_vm_events(item, delta);
  30}
  31#else
  32#define count_compact_event(item) do { } while (0)
  33#define count_compact_events(item, delta) do { } while (0)
  34#endif
  35
  36#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/compaction.h>
  40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41static unsigned long release_freepages(struct list_head *freelist)
  42{
  43	struct page *page, *next;
  44	unsigned long count = 0;
  45
  46	list_for_each_entry_safe(page, next, freelist, lru) {
 
  47		list_del(&page->lru);
  48		__free_page(page);
  49		count++;
 
  50	}
  51
  52	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  53}
  54
  55static void map_pages(struct list_head *list)
 
  56{
  57	struct page *page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  58
  59	list_for_each_entry(page, list, lru) {
  60		arch_alloc_page(page, 0);
  61		kernel_map_pages(page, 1, 1);
 
 
 
 
 
 
 
 
  62	}
 
 
 
 
  63}
  64
  65static inline bool migrate_async_suitable(int migratetype)
 
  66{
  67	return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
 
 
 
 
  68}
  69
  70#ifdef CONFIG_COMPACTION
  71/* Returns true if the pageblock should be scanned for pages to isolate. */
  72static inline bool isolation_suitable(struct compact_control *cc,
  73					struct page *page)
  74{
  75	if (cc->ignore_skip_hint)
  76		return true;
  77
  78	return !get_pageblock_skip(page);
  79}
  80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81/*
  82 * This function is called to clear all cached information on pageblocks that
  83 * should be skipped for page isolation when the migrate and free page scanner
  84 * meet.
  85 */
  86static void __reset_isolation_suitable(struct zone *zone)
  87{
  88	unsigned long start_pfn = zone->zone_start_pfn;
  89	unsigned long end_pfn = zone_end_pfn(zone);
  90	unsigned long pfn;
 
 
 
 
 
 
  91
  92	zone->compact_cached_migrate_pfn = start_pfn;
  93	zone->compact_cached_free_pfn = end_pfn;
  94	zone->compact_blockskip_flush = false;
  95
  96	/* Walk the zone and mark every pageblock as suitable for isolation */
  97	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  98		struct page *page;
  99
 
 
 
 
 100		cond_resched();
 101
 102		if (!pfn_valid(pfn))
 103			continue;
 
 
 
 
 
 
 
 104
 105		page = pfn_to_page(pfn);
 106		if (zone != page_zone(page))
 107			continue;
 
 
 
 
 
 
 108
 109		clear_pageblock_skip(page);
 
 
 
 
 110	}
 111}
 112
 113void reset_isolation_suitable(pg_data_t *pgdat)
 114{
 115	int zoneid;
 116
 117	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 118		struct zone *zone = &pgdat->node_zones[zoneid];
 119		if (!populated_zone(zone))
 120			continue;
 121
 122		/* Only flush if a full compaction finished recently */
 123		if (zone->compact_blockskip_flush)
 124			__reset_isolation_suitable(zone);
 125	}
 126}
 127
 128/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 129 * If no pages were isolated then mark this pageblock to be skipped in the
 130 * future. The information is later cleared by __reset_isolation_suitable().
 131 */
 132static void update_pageblock_skip(struct compact_control *cc,
 133			struct page *page, unsigned long nr_isolated,
 134			bool migrate_scanner)
 135{
 136	struct zone *zone = cc->zone;
 137
 138	if (cc->ignore_skip_hint)
 139		return;
 140
 141	if (!page)
 142		return;
 143
 144	if (!nr_isolated) {
 145		unsigned long pfn = page_to_pfn(page);
 146		set_pageblock_skip(page);
 147
 148		/* Update where compaction should restart */
 149		if (migrate_scanner) {
 150			if (!cc->finished_update_migrate &&
 151			    pfn > zone->compact_cached_migrate_pfn)
 152				zone->compact_cached_migrate_pfn = pfn;
 153		} else {
 154			if (!cc->finished_update_free &&
 155			    pfn < zone->compact_cached_free_pfn)
 156				zone->compact_cached_free_pfn = pfn;
 157		}
 158	}
 159}
 160#else
 161static inline bool isolation_suitable(struct compact_control *cc,
 162					struct page *page)
 163{
 164	return true;
 165}
 166
 167static void update_pageblock_skip(struct compact_control *cc,
 168			struct page *page, unsigned long nr_isolated,
 169			bool migrate_scanner)
 
 
 
 
 
 
 
 
 170{
 171}
 172#endif /* CONFIG_COMPACTION */
 173
 174static inline bool should_release_lock(spinlock_t *lock)
 
 175{
 176	return need_resched() || spin_is_contended(lock);
 177}
 
 178
 179/*
 180 * Compaction requires the taking of some coarse locks that are potentially
 181 * very heavily contended. Check if the process needs to be scheduled or
 182 * if the lock is contended. For async compaction, back out in the event
 183 * if contention is severe. For sync compaction, schedule.
 
 184 *
 185 * Returns true if the lock is held.
 186 * Returns false if the lock is released and compaction should abort
 187 */
 188static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
 189				      bool locked, struct compact_control *cc)
 
 190{
 191	if (should_release_lock(lock)) {
 192		if (locked) {
 193			spin_unlock_irqrestore(lock, *flags);
 194			locked = false;
 195		}
 196
 197		/* async aborts if taking too long or contended */
 198		if (!cc->sync) {
 199			cc->contended = true;
 200			return false;
 201		}
 202
 203		cond_resched();
 204	}
 205
 206	if (!locked)
 207		spin_lock_irqsave(lock, *flags);
 208	return true;
 209}
 210
 211static inline bool compact_trylock_irqsave(spinlock_t *lock,
 212			unsigned long *flags, struct compact_control *cc)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213{
 214	return compact_checklock_irqsave(lock, flags, false, cc);
 215}
 
 
 216
 217/* Returns true if the page is within a block suitable for migration to */
 218static bool suitable_migration_target(struct page *page)
 219{
 220	/* If the page is a large free page, then disallow migration */
 221	if (PageBuddy(page) && page_order(page) >= pageblock_order)
 222		return false;
 223
 224	/* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
 225	if (migrate_async_suitable(get_pageblock_migratetype(page)))
 226		return true;
 227
 228	/* Otherwise skip the block */
 229	return false;
 230}
 231
 232/*
 233 * Isolate free pages onto a private freelist. If @strict is true, will abort
 234 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 235 * (even though it may still end up isolating some pages).
 236 */
 237static unsigned long isolate_freepages_block(struct compact_control *cc,
 238				unsigned long blockpfn,
 239				unsigned long end_pfn,
 240				struct list_head *freelist,
 
 241				bool strict)
 242{
 243	int nr_scanned = 0, total_isolated = 0;
 244	struct page *cursor, *valid_page = NULL;
 245	unsigned long flags;
 246	bool locked = false;
 247	bool checked_pageblock = false;
 
 
 
 
 
 248
 249	cursor = pfn_to_page(blockpfn);
 250
 251	/* Isolate free pages. */
 252	for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 253		int isolated, i;
 254		struct page *page = cursor;
 255
 
 
 
 
 
 
 
 
 
 
 256		nr_scanned++;
 257		if (!pfn_valid_within(blockpfn))
 258			goto isolate_fail;
 259
 260		if (!valid_page)
 261			valid_page = page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262		if (!PageBuddy(page))
 263			goto isolate_fail;
 264
 265		/*
 266		 * The zone lock must be held to isolate freepages.
 267		 * Unfortunately this is a very coarse lock and can be
 268		 * heavily contended if there are parallel allocations
 269		 * or parallel compactions. For async compaction do not
 270		 * spin on the lock and we acquire the lock as late as
 271		 * possible.
 272		 */
 273		locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
 274								locked, cc);
 275		if (!locked)
 276			break;
 277
 278		/* Recheck this is a suitable migration target under lock */
 279		if (!strict && !checked_pageblock) {
 280			/*
 281			 * We need to check suitability of pageblock only once
 282			 * and this isolate_freepages_block() is called with
 283			 * pageblock range, so just check once is sufficient.
 284			 */
 285			checked_pageblock = true;
 286			if (!suitable_migration_target(page))
 287				break;
 288		}
 289
 290		/* Recheck this is a buddy page under lock */
 291		if (!PageBuddy(page))
 292			goto isolate_fail;
 
 
 
 293
 294		/* Found a free page, break it into order-0 pages */
 295		isolated = split_free_page(page);
 296		total_isolated += isolated;
 297		for (i = 0; i < isolated; i++) {
 298			list_add(&page->lru, freelist);
 299			page++;
 300		}
 301
 302		/* If a page was split, advance to the end of it */
 303		if (isolated) {
 304			blockpfn += isolated - 1;
 305			cursor += isolated - 1;
 306			continue;
 307		}
 
 
 
 
 308
 309isolate_fail:
 310		if (strict)
 311			break;
 312		else
 313			continue;
 314
 315	}
 316
 317	trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 318
 319	/*
 320	 * If strict isolation is requested by CMA then check that all the
 321	 * pages requested were isolated. If there were any failures, 0 is
 322	 * returned and CMA will fail.
 323	 */
 324	if (strict && blockpfn < end_pfn)
 325		total_isolated = 0;
 326
 327	if (locked)
 328		spin_unlock_irqrestore(&cc->zone->lock, flags);
 329
 330	/* Update the pageblock-skip if the whole pageblock was scanned */
 331	if (blockpfn == end_pfn)
 332		update_pageblock_skip(cc, valid_page, total_isolated, false);
 333
 334	count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
 335	if (total_isolated)
 336		count_compact_events(COMPACTISOLATED, total_isolated);
 337	return total_isolated;
 338}
 339
 340/**
 341 * isolate_freepages_range() - isolate free pages.
 
 342 * @start_pfn: The first PFN to start isolating.
 343 * @end_pfn:   The one-past-last PFN.
 344 *
 345 * Non-free pages, invalid PFNs, or zone boundaries within the
 346 * [start_pfn, end_pfn) range are considered errors, cause function to
 347 * undo its actions and return zero.
 348 *
 349 * Otherwise, function returns one-past-the-last PFN of isolated page
 350 * (which may be greater then end_pfn if end fell in a middle of
 351 * a free page).
 352 */
 353unsigned long
 354isolate_freepages_range(struct compact_control *cc,
 355			unsigned long start_pfn, unsigned long end_pfn)
 356{
 357	unsigned long isolated, pfn, block_end_pfn;
 358	LIST_HEAD(freelist);
 359
 360	for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
 361		if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
 362			break;
 
 
 
 
 
 
 
 
 
 
 363
 364		/*
 365		 * On subsequent iterations ALIGN() is actually not needed,
 366		 * but we keep it that we not to complicate the code.
 
 367		 */
 368		block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
 369		block_end_pfn = min(block_end_pfn, end_pfn);
 
 
 
 
 
 
 
 370
 371		isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
 372						   &freelist, true);
 373
 374		/*
 375		 * In strict mode, isolate_freepages_block() returns 0 if
 376		 * there are any holes in the block (ie. invalid PFNs or
 377		 * non-free pages).
 378		 */
 379		if (!isolated)
 380			break;
 381
 382		/*
 383		 * If we managed to isolate pages, it is always (1 << n) *
 384		 * pageblock_nr_pages for some non-negative n.  (Max order
 385		 * page may span two pageblocks).
 386		 */
 387	}
 388
 389	/* split_free_page does not map the pages */
 390	map_pages(&freelist);
 391
 392	if (pfn < end_pfn) {
 393		/* Loop terminated early, cleanup. */
 394		release_freepages(&freelist);
 395		return 0;
 396	}
 397
 398	/* We don't use freelists for anything. */
 399	return pfn;
 400}
 401
 402/* Update the number of anon and file isolated pages in the zone */
 403static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
 404{
 405	struct page *page;
 406	unsigned int count[2] = { 0, };
 407
 408	list_for_each_entry(page, &cc->migratepages, lru)
 409		count[!!page_is_file_cache(page)]++;
 410
 411	/* If locked we can use the interrupt unsafe versions */
 412	if (locked) {
 413		__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 414		__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 415	} else {
 416		mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
 417		mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
 418	}
 419}
 420
 421/* Similar to reclaim, but different enough that they don't share logic */
 422static bool too_many_isolated(struct zone *zone)
 423{
 424	unsigned long active, inactive, isolated;
 425
 426	inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
 427					zone_page_state(zone, NR_INACTIVE_ANON);
 428	active = zone_page_state(zone, NR_ACTIVE_FILE) +
 429					zone_page_state(zone, NR_ACTIVE_ANON);
 430	isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
 431					zone_page_state(zone, NR_ISOLATED_ANON);
 432
 433	return isolated > (inactive + active) / 2;
 434}
 435
 436/**
 437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
 438 * @zone:	Zone pages are in.
 439 * @cc:		Compaction control structure.
 440 * @low_pfn:	The first PFN of the range.
 441 * @end_pfn:	The one-past-the-last PFN of the range.
 442 * @unevictable: true if it allows to isolate unevictable pages
 443 *
 444 * Isolate all pages that can be migrated from the range specified by
 445 * [low_pfn, end_pfn).  Returns zero if there is a fatal signal
 446 * pending), otherwise PFN of the first page that was not scanned
 447 * (which may be both less, equal to or more then end_pfn).
 448 *
 449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
 450 * zero.
 451 *
 452 * Apart from cc->migratepages and cc->nr_migratetypes this function
 453 * does not modify any cc's fields, in particular it does not modify
 454 * (or read for that matter) cc->migrate_pfn.
 455 */
 456unsigned long
 457isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
 458		unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
 459{
 460	unsigned long last_pageblock_nr = 0, pageblock_nr;
 461	unsigned long nr_scanned = 0, nr_isolated = 0;
 462	struct list_head *migratelist = &cc->migratepages;
 463	struct lruvec *lruvec;
 464	unsigned long flags;
 465	bool locked = false;
 466	struct page *page = NULL, *valid_page = NULL;
 467	bool skipped_async_unsuitable = false;
 468	const isolate_mode_t mode = (!cc->sync ? ISOLATE_ASYNC_MIGRATE : 0) |
 469				    (unevictable ? ISOLATE_UNEVICTABLE : 0);
 
 470
 471	/*
 472	 * Ensure that there are not too many pages isolated from the LRU
 473	 * list by either parallel reclaimers or compaction. If there are,
 474	 * delay for some time until fewer pages are isolated
 475	 */
 476	while (unlikely(too_many_isolated(zone))) {
 477		/* async migration should just abort */
 478		if (!cc->sync)
 479			return 0;
 480
 481		congestion_wait(BLK_RW_ASYNC, HZ/10);
 482
 483		if (fatal_signal_pending(current))
 484			return 0;
 485	}
 486
 
 
 
 
 
 
 
 487	/* Time to isolate some pages for migration */
 488	cond_resched();
 489	for (; low_pfn < end_pfn; low_pfn++) {
 490		/* give a chance to irqs before checking need_resched() */
 491		if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
 492			if (should_release_lock(&zone->lru_lock)) {
 493				spin_unlock_irqrestore(&zone->lru_lock, flags);
 494				locked = false;
 495			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496		}
 497
 498		/*
 499		 * migrate_pfn does not necessarily start aligned to a
 500		 * pageblock. Ensure that pfn_valid is called when moving
 501		 * into a new MAX_ORDER_NR_PAGES range in case of large
 502		 * memory holes within the zone
 503		 */
 504		if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
 505			if (!pfn_valid(low_pfn)) {
 506				low_pfn += MAX_ORDER_NR_PAGES - 1;
 507				continue;
 508			}
 509		}
 510
 511		if (!pfn_valid_within(low_pfn))
 512			continue;
 513		nr_scanned++;
 514
 
 
 515		/*
 516		 * Get the page and ensure the page is within the same zone.
 517		 * See the comment in isolate_freepages about overlapping
 518		 * nodes. It is deliberate that the new zone lock is not taken
 519		 * as memory compaction should not move pages between nodes.
 520		 */
 521		page = pfn_to_page(low_pfn);
 522		if (page_zone(page) != zone)
 523			continue;
 524
 525		if (!valid_page)
 526			valid_page = page;
 
 527
 528		/* If isolation recently failed, do not retry */
 529		pageblock_nr = low_pfn >> pageblock_order;
 530		if (last_pageblock_nr != pageblock_nr) {
 531			int mt;
 532
 533			last_pageblock_nr = pageblock_nr;
 534			if (!isolation_suitable(cc, page))
 535				goto next_pageblock;
 536
 537			/*
 538			 * For async migration, also only scan in MOVABLE
 539			 * blocks. Async migration is optimistic to see if
 540			 * the minimum amount of work satisfies the allocation
 541			 */
 542			mt = get_pageblock_migratetype(page);
 543			if (!cc->sync && !migrate_async_suitable(mt)) {
 544				cc->finished_update_migrate = true;
 545				skipped_async_unsuitable = true;
 546				goto next_pageblock;
 547			}
 548		}
 549
 550		/*
 551		 * Skip if free. page_order cannot be used without zone->lock
 552		 * as nothing prevents parallel allocations or buddy merging.
 
 
 
 
 553		 */
 554		if (PageBuddy(page))
 555			continue;
 
 
 
 
 
 556
 557		/*
 558		 * Check may be lockless but that's ok as we recheck later.
 559		 * It's possible to migrate LRU pages and balloon pages
 560		 * Skip any other type of page
 561		 */
 562		if (!PageLRU(page)) {
 563			if (unlikely(balloon_page_movable(page))) {
 564				if (locked && balloon_page_isolate(page)) {
 565					/* Successfully isolated */
 
 
 
 
 
 
 
 
 
 
 566					goto isolate_success;
 567				}
 568			}
 569			continue;
 570		}
 571
 572		/*
 573		 * PageLRU is set. lru_lock normally excludes isolation
 574		 * splitting and collapsing (collapsing has already happened
 575		 * if PageLRU is set) but the lock is not necessarily taken
 576		 * here and it is wasteful to take it just to check transhuge.
 577		 * Check TransHuge without lock and skip the whole pageblock if
 578		 * it's either a transhuge or hugetlbfs page, as calling
 579		 * compound_order() without preventing THP from splitting the
 580		 * page underneath us may return surprising results.
 581		 */
 582		if (PageTransHuge(page)) {
 583			if (!locked)
 584				goto next_pageblock;
 585			low_pfn += (1 << compound_order(page)) - 1;
 586			continue;
 587		}
 588
 589		/*
 590		 * Migration will fail if an anonymous page is pinned in memory,
 591		 * so avoid taking lru_lock and isolating it unnecessarily in an
 592		 * admittedly racy check.
 593		 */
 594		if (!page_mapping(page) &&
 595		    page_count(page) > page_mapcount(page))
 596			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597
 598		/* Check if it is ok to still hold the lock */
 599		locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
 600								locked, cc);
 601		if (!locked || fatal_signal_pending(current))
 602			break;
 603
 604		/* Recheck PageLRU and PageTransHuge under lock */
 605		if (!PageLRU(page))
 606			continue;
 607		if (PageTransHuge(page)) {
 608			low_pfn += (1 << compound_order(page)) - 1;
 609			continue;
 
 
 
 610		}
 611
 612		lruvec = mem_cgroup_page_lruvec(page, zone);
 613
 614		/* Try isolate the page */
 615		if (__isolate_lru_page(page, mode) != 0)
 616			continue;
 617
 618		VM_BUG_ON_PAGE(PageTransCompound(page), page);
 
 
 619
 620		/* Successfully isolated */
 621		del_page_from_lru_list(page, lruvec, page_lru(page));
 
 
 
 622
 623isolate_success:
 624		cc->finished_update_migrate = true;
 625		list_add(&page->lru, migratelist);
 626		cc->nr_migratepages++;
 627		nr_isolated++;
 628
 629		/* Avoid isolating too much */
 630		if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 
 
 
 
 
 
 631			++low_pfn;
 632			break;
 633		}
 634
 635		continue;
 
 
 
 636
 637next_pageblock:
 638		low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 639	}
 640
 641	acct_isolated(zone, locked, cc);
 
 
 
 
 
 642
 
 643	if (locked)
 644		spin_unlock_irqrestore(&zone->lru_lock, flags);
 645
 646	/*
 647	 * Update the pageblock-skip information and cached scanner pfn,
 648	 * if the whole pageblock was scanned without isolating any page.
 649	 * This is not done when pageblock was skipped due to being unsuitable
 650	 * for async compaction, so that eventual sync compaction can try.
 
 
 651	 */
 652	if (low_pfn == end_pfn && !skipped_async_unsuitable)
 653		update_pageblock_skip(cc, valid_page, nr_isolated, true);
 
 
 
 654
 655	trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
 
 656
 657	count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
 
 658	if (nr_isolated)
 659		count_compact_events(COMPACTISOLATED, nr_isolated);
 660
 661	return low_pfn;
 662}
 663
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664#endif /* CONFIG_COMPACTION || CONFIG_CMA */
 665#ifdef CONFIG_COMPACTION
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 666/*
 667 * Based on information in the current compact_control, find blocks
 668 * suitable for isolating free pages from and then isolate them.
 669 */
 670static void isolate_freepages(struct zone *zone,
 671				struct compact_control *cc)
 672{
 
 673	struct page *page;
 674	unsigned long high_pfn, low_pfn, pfn, z_end_pfn;
 675	int nr_freepages = cc->nr_freepages;
 
 
 676	struct list_head *freelist = &cc->freepages;
 
 
 
 
 
 
 677
 678	/*
 679	 * Initialise the free scanner. The starting point is where we last
 680	 * successfully isolated from, zone-cached value, or the end of the
 681	 * zone when isolating for the first time. We need this aligned to
 682	 * the pageblock boundary, because we do pfn -= pageblock_nr_pages
 683	 * in the for loop.
 
 
 684	 * The low boundary is the end of the pageblock the migration scanner
 685	 * is using.
 686	 */
 687	pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
 688	low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
 689
 690	/*
 691	 * Take care that if the migration scanner is at the end of the zone
 692	 * that the free scanner does not accidentally move to the next zone
 693	 * in the next isolation cycle.
 694	 */
 695	high_pfn = min(low_pfn, pfn);
 696
 697	z_end_pfn = zone_end_pfn(zone);
 698
 699	/*
 700	 * Isolate free pages until enough are available to migrate the
 701	 * pages on cc->migratepages. We stop searching if the migrate
 702	 * and free page scanners meet or enough free pages are isolated.
 703	 */
 704	for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
 705					pfn -= pageblock_nr_pages) {
 706		unsigned long isolated;
 707		unsigned long end_pfn;
 
 708
 709		/*
 710		 * This can iterate a massively long zone without finding any
 711		 * suitable migration targets, so periodically check if we need
 712		 * to schedule.
 713		 */
 714		cond_resched();
 715
 716		if (!pfn_valid(pfn))
 717			continue;
 718
 719		/*
 720		 * Check for overlapping nodes/zones. It's possible on some
 721		 * configurations to have a setup like
 722		 * node0 node1 node0
 723		 * i.e. it's possible that all pages within a zones range of
 724		 * pages do not belong to a single zone.
 725		 */
 726		page = pfn_to_page(pfn);
 727		if (page_zone(page) != zone)
 728			continue;
 729
 730		/* Check the block is suitable for migration */
 731		if (!suitable_migration_target(page))
 732			continue;
 733
 734		/* If isolation recently failed, do not retry */
 735		if (!isolation_suitable(cc, page))
 736			continue;
 737
 738		/* Found a block suitable for isolating free pages from */
 739		isolated = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741		/*
 742		 * Take care when isolating in last pageblock of a zone which
 743		 * ends in the middle of a pageblock.
 744		 */
 745		end_pfn = min(pfn + pageblock_nr_pages, z_end_pfn);
 746		isolated = isolate_freepages_block(cc, pfn, end_pfn,
 747						   freelist, false);
 748		nr_freepages += isolated;
 749
 750		/*
 751		 * Record the highest PFN we isolated pages from. When next
 752		 * looking for free pages, the search will restart here as
 753		 * page migration may have returned some pages to the allocator
 754		 */
 755		if (isolated) {
 756			cc->finished_update_free = true;
 757			high_pfn = max(high_pfn, pfn);
 758		}
 
 759	}
 760
 761	/* split_free_page does not map the pages */
 762	map_pages(freelist);
 763
 764	/*
 765	 * If we crossed the migrate scanner, we want to keep it that way
 766	 * so that compact_finished() may detect this
 
 
 767	 */
 768	if (pfn < low_pfn)
 769		cc->free_pfn = max(pfn, zone->zone_start_pfn);
 770	else
 771		cc->free_pfn = high_pfn;
 772	cc->nr_freepages = nr_freepages;
 773}
 774
 775/*
 776 * This is a migrate-callback that "allocates" freepages by taking pages
 777 * from the isolated freelists in the block we are migrating to.
 778 */
 779static struct page *compaction_alloc(struct page *migratepage,
 780					unsigned long data,
 781					int **result)
 782{
 783	struct compact_control *cc = (struct compact_control *)data;
 784	struct page *freepage;
 785
 786	/* Isolate free pages if necessary */
 787	if (list_empty(&cc->freepages)) {
 788		isolate_freepages(cc->zone, cc);
 789
 790		if (list_empty(&cc->freepages))
 791			return NULL;
 792	}
 793
 794	freepage = list_entry(cc->freepages.next, struct page, lru);
 795	list_del(&freepage->lru);
 796	cc->nr_freepages--;
 797
 798	return freepage;
 799}
 800
 801/*
 802 * We cannot control nr_migratepages and nr_freepages fully when migration is
 803 * running as migrate_pages() has no knowledge of compact_control. When
 804 * migration is complete, we count the number of pages on the lists by hand.
 805 */
 806static void update_nr_listpages(struct compact_control *cc)
 807{
 808	int nr_migratepages = 0;
 809	int nr_freepages = 0;
 810	struct page *page;
 811
 812	list_for_each_entry(page, &cc->migratepages, lru)
 813		nr_migratepages++;
 814	list_for_each_entry(page, &cc->freepages, lru)
 815		nr_freepages++;
 816
 817	cc->nr_migratepages = nr_migratepages;
 818	cc->nr_freepages = nr_freepages;
 819}
 820
 821/* possible outcome of isolate_migratepages */
 822typedef enum {
 823	ISOLATE_ABORT,		/* Abort compaction now */
 824	ISOLATE_NONE,		/* No pages isolated, continue scanning */
 825	ISOLATE_SUCCESS,	/* Pages isolated, migrate */
 826} isolate_migrate_t;
 827
 828/*
 829 * Isolate all pages that can be migrated from the block pointed to by
 830 * the migrate scanner within compact_control.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 831 */
 832static isolate_migrate_t isolate_migratepages(struct zone *zone,
 833					struct compact_control *cc)
 834{
 835	unsigned long low_pfn, end_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836
 837	/* Do not scan outside zone boundaries */
 838	low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 839
 840	/* Only scan within a pageblock boundary */
 841	end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
 842
 843	/* Do not cross the free scanner or scan within a memory hole */
 844	if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
 845		cc->migrate_pfn = end_pfn;
 846		return ISOLATE_NONE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847	}
 848
 849	/* Perform the isolation */
 850	low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
 851	if (!low_pfn || cc->contended)
 852		return ISOLATE_ABORT;
 
 853
 854	cc->migrate_pfn = low_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 855
 856	return ISOLATE_SUCCESS;
 
 857}
 858
 859static int compact_finished(struct zone *zone,
 860			    struct compact_control *cc)
 861{
 862	unsigned int order;
 863	unsigned long watermark;
 864
 865	if (fatal_signal_pending(current))
 866		return COMPACT_PARTIAL;
 867
 868	/* Compaction run completes if the migrate and free scanner meet */
 869	if (cc->free_pfn <= cc->migrate_pfn) {
 870		/* Let the next compaction start anew. */
 871		zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
 872		zone->compact_cached_free_pfn = zone_end_pfn(zone);
 873
 874		/*
 875		 * Mark that the PG_migrate_skip information should be cleared
 876		 * by kswapd when it goes to sleep. kswapd does not set the
 877		 * flag itself as the decision to be clear should be directly
 878		 * based on an allocation request.
 879		 */
 880		if (!current_is_kswapd())
 881			zone->compact_blockskip_flush = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 882
 883		return COMPACT_COMPLETE;
 
 
 
 
 
 884	}
 885
 
 
 
 886	/*
 887	 * order == -1 is expected when compacting via
 888	 * /proc/sys/vm/compact_memory
 
 
 889	 */
 890	if (cc->order == -1)
 891		return COMPACT_CONTINUE;
 892
 893	/* Compaction run is not finished if the watermark is not met */
 894	watermark = low_wmark_pages(zone);
 895	watermark += (1 << cc->order);
 896
 897	if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
 898		return COMPACT_CONTINUE;
 899
 900	/* Direct compactor: Is a suitable page free? */
 
 901	for (order = cc->order; order < MAX_ORDER; order++) {
 902		struct free_area *area = &zone->free_area[order];
 
 903
 904		/* Job done if page is free of the right migratetype */
 905		if (!list_empty(&area->free_list[cc->migratetype]))
 906			return COMPACT_PARTIAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 907
 908		/* Job done if allocation would set block type */
 909		if (cc->order >= pageblock_order && area->nr_free)
 910			return COMPACT_PARTIAL;
 911	}
 912
 913	return COMPACT_CONTINUE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914}
 915
 916/*
 917 * compaction_suitable: Is this suitable to run compaction on this zone now?
 918 * Returns
 919 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
 920 *   COMPACT_PARTIAL  - If the allocation would succeed without compaction
 921 *   COMPACT_CONTINUE - If compaction should run now
 922 */
 923unsigned long compaction_suitable(struct zone *zone, int order)
 
 
 
 924{
 925	int fragindex;
 926	unsigned long watermark;
 927
 
 
 
 
 928	/*
 929	 * order == -1 is expected when compacting via
 930	 * /proc/sys/vm/compact_memory
 931	 */
 932	if (order == -1)
 933		return COMPACT_CONTINUE;
 
 934
 935	/*
 936	 * Watermarks for order-0 must be met for compaction. Note the 2UL.
 937	 * This is because during migration, copies of pages need to be
 938	 * allocated and for a short time, the footprint is higher
 
 
 
 
 
 
 
 
 
 939	 */
 940	watermark = low_wmark_pages(zone) + (2UL << order);
 941	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
 
 
 
 942		return COMPACT_SKIPPED;
 943
 
 
 
 
 
 
 
 
 
 
 
 
 944	/*
 945	 * fragmentation index determines if allocation failures are due to
 946	 * low memory or external fragmentation
 947	 *
 948	 * index of -1000 implies allocations might succeed depending on
 949	 * watermarks
 950	 * index towards 0 implies failure is due to lack of memory
 951	 * index towards 1000 implies failure is due to fragmentation
 952	 *
 953	 * Only compact if a failure would be due to fragmentation.
 
 
 
 
 
 954	 */
 955	fragindex = fragmentation_index(zone, order);
 956	if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
 957		return COMPACT_SKIPPED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 958
 959	if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
 960	    0, 0))
 961		return COMPACT_PARTIAL;
 
 
 
 
 
 
 
 
 
 
 962
 963	return COMPACT_CONTINUE;
 964}
 965
 966static int compact_zone(struct zone *zone, struct compact_control *cc)
 
 967{
 968	int ret;
 969	unsigned long start_pfn = zone->zone_start_pfn;
 970	unsigned long end_pfn = zone_end_pfn(zone);
 
 
 
 971
 972	ret = compaction_suitable(zone, cc->order);
 973	switch (ret) {
 974	case COMPACT_PARTIAL:
 975	case COMPACT_SKIPPED:
 976		/* Compaction is likely to fail */
 
 
 
 
 
 
 
 
 
 
 
 977		return ret;
 978	case COMPACT_CONTINUE:
 979		/* Fall through to compaction */
 980		;
 981	}
 982
 983	/*
 984	 * Clear pageblock skip if there were failures recently and compaction
 985	 * is about to be retried after being deferred. kswapd does not do
 986	 * this reset as it'll reset the cached information when going to sleep.
 987	 */
 988	if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
 989		__reset_isolation_suitable(zone);
 990
 991	/*
 992	 * Setup to move all movable pages to the end of the zone. Used cached
 993	 * information on where the scanners should start but check that it
 994	 * is initialised by ensuring the values are within zone boundaries.
 
 995	 */
 996	cc->migrate_pfn = zone->compact_cached_migrate_pfn;
 997	cc->free_pfn = zone->compact_cached_free_pfn;
 998	if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
 999		cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1000		zone->compact_cached_free_pfn = cc->free_pfn;
1001	}
1002	if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1003		cc->migrate_pfn = start_pfn;
1004		zone->compact_cached_migrate_pfn = cc->migrate_pfn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005	}
1006
1007	trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008
1009	migrate_prep_local();
1010
1011	while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1012		unsigned long nr_migrate, nr_remaining;
1013		int err;
 
1014
1015		switch (isolate_migratepages(zone, cc)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1016		case ISOLATE_ABORT:
1017			ret = COMPACT_PARTIAL;
1018			putback_movable_pages(&cc->migratepages);
1019			cc->nr_migratepages = 0;
1020			goto out;
1021		case ISOLATE_NONE:
1022			continue;
 
 
 
 
 
 
 
 
 
 
1023		case ISOLATE_SUCCESS:
 
 
1024			;
1025		}
1026
1027		nr_migrate = cc->nr_migratepages;
1028		err = migrate_pages(&cc->migratepages, compaction_alloc,
1029				(unsigned long)cc,
1030				cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1031				MR_COMPACTION);
1032		update_nr_listpages(cc);
1033		nr_remaining = cc->nr_migratepages;
1034
1035		trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1036						nr_remaining);
1037
1038		/* Release isolated pages not migrated */
 
1039		if (err) {
1040			putback_movable_pages(&cc->migratepages);
1041			cc->nr_migratepages = 0;
1042			/*
1043			 * migrate_pages() may return -ENOMEM when scanners meet
1044			 * and we want compact_finished() to detect it
1045			 */
1046			if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1047				ret = COMPACT_PARTIAL;
1048				goto out;
1049			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050		}
1051	}
1052
1053out:
1054	/* Release free pages and check accounting */
1055	cc->nr_freepages -= release_freepages(&cc->freepages);
1056	VM_BUG_ON(cc->nr_freepages != 0);
 
 
 
1057
1058	trace_mm_compaction_end(ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1059
1060	return ret;
1061}
1062
1063static unsigned long compact_zone_order(struct zone *zone,
1064				 int order, gfp_t gfp_mask,
1065				 bool sync, bool *contended)
 
1066{
1067	unsigned long ret;
1068	struct compact_control cc = {
1069		.nr_freepages = 0,
1070		.nr_migratepages = 0,
1071		.order = order,
1072		.migratetype = allocflags_to_migratetype(gfp_mask),
 
1073		.zone = zone,
1074		.sync = sync,
 
 
 
 
 
 
 
 
 
 
 
1075	};
1076	INIT_LIST_HEAD(&cc.freepages);
1077	INIT_LIST_HEAD(&cc.migratepages);
1078
1079	ret = compact_zone(zone, &cc);
 
 
 
 
 
 
 
 
1080
1081	VM_BUG_ON(!list_empty(&cc.freepages));
1082	VM_BUG_ON(!list_empty(&cc.migratepages));
1083
1084	*contended = cc.contended;
 
 
 
 
 
 
 
1085	return ret;
1086}
1087
1088int sysctl_extfrag_threshold = 500;
1089
1090/**
1091 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1092 * @zonelist: The zonelist used for the current allocation
1093 * @order: The order of the current allocation
1094 * @gfp_mask: The GFP mask of the current allocation
1095 * @nodemask: The allowed nodes to allocate from
1096 * @sync: Whether migration is synchronous or not
1097 * @contended: Return value that is true if compaction was aborted due to lock contention
1098 * @page: Optionally capture a free page of the requested order during compaction
1099 *
1100 * This is the main entry point for direct page compaction.
1101 */
1102unsigned long try_to_compact_pages(struct zonelist *zonelist,
1103			int order, gfp_t gfp_mask, nodemask_t *nodemask,
1104			bool sync, bool *contended)
1105{
1106	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1107	int may_enter_fs = gfp_mask & __GFP_FS;
1108	int may_perform_io = gfp_mask & __GFP_IO;
1109	struct zoneref *z;
1110	struct zone *zone;
1111	int rc = COMPACT_SKIPPED;
1112	int alloc_flags = 0;
1113
1114	/* Check if the GFP flags allow compaction */
1115	if (!order || !may_enter_fs || !may_perform_io)
1116		return rc;
 
 
 
1117
1118	count_compact_event(COMPACTSTALL);
1119
1120#ifdef CONFIG_CMA
1121	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1122		alloc_flags |= ALLOC_CMA;
1123#endif
1124	/* Compact each zone in the list */
1125	for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1126								nodemask) {
1127		int status;
 
 
 
 
 
 
1128
1129		status = compact_zone_order(zone, order, gfp_mask, sync,
1130						contended);
1131		rc = max(status, rc);
1132
1133		/* If a normal allocation would succeed, stop compacting */
1134		if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1135				      alloc_flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136			break;
1137	}
1138
1139	return rc;
1140}
1141
1142
1143/* Compact all zones within a node */
1144static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
 
 
 
 
 
 
 
1145{
1146	int zoneid;
1147	struct zone *zone;
 
 
 
 
 
 
 
 
1148
1149	for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1150
1151		zone = &pgdat->node_zones[zoneid];
1152		if (!populated_zone(zone))
1153			continue;
1154
1155		cc->nr_freepages = 0;
1156		cc->nr_migratepages = 0;
1157		cc->zone = zone;
1158		INIT_LIST_HEAD(&cc->freepages);
1159		INIT_LIST_HEAD(&cc->migratepages);
1160
1161		if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1162			compact_zone(zone, cc);
1163
1164		if (cc->order > 0) {
1165			if (zone_watermark_ok(zone, cc->order,
1166						low_wmark_pages(zone), 0, 0))
1167				compaction_defer_reset(zone, cc->order, false);
1168			/* Currently async compaction is never deferred. */
1169			else if (cc->sync)
1170				defer_compaction(zone, cc->order);
1171		}
1172
1173		VM_BUG_ON(!list_empty(&cc->freepages));
1174		VM_BUG_ON(!list_empty(&cc->migratepages));
1175	}
1176}
1177
1178void compact_pgdat(pg_data_t *pgdat, int order)
 
1179{
 
 
 
1180	struct compact_control cc = {
1181		.order = order,
1182		.sync = false,
 
 
 
1183	};
1184
1185	if (!order)
1186		return;
1187
1188	__compact_pgdat(pgdat, &cc);
1189}
 
 
 
 
 
1190
1191static void compact_node(int nid)
1192{
1193	struct compact_control cc = {
1194		.order = -1,
1195		.sync = true,
1196		.ignore_skip_hint = true,
1197	};
1198
1199	__compact_pgdat(NODE_DATA(nid), &cc);
 
 
1200}
1201
1202/* Compact all nodes in the system */
1203static void compact_nodes(void)
1204{
1205	int nid;
1206
1207	/* Flush pending updates to the LRU lists */
1208	lru_add_drain_all();
1209
1210	for_each_online_node(nid)
1211		compact_node(nid);
1212}
1213
1214/* The written value is actually unused, all memory is compacted */
1215int sysctl_compact_memory;
1216
1217/* This is the entry point for compacting all nodes via /proc/sys/vm */
 
 
 
 
 
 
 
 
 
 
1218int sysctl_compaction_handler(struct ctl_table *table, int write,
1219			void __user *buffer, size_t *length, loff_t *ppos)
1220{
1221	if (write)
1222		compact_nodes();
1223
1224	return 0;
1225}
1226
1227int sysctl_extfrag_handler(struct ctl_table *table, int write,
1228			void __user *buffer, size_t *length, loff_t *ppos)
1229{
1230	proc_dointvec_minmax(table, write, buffer, length, ppos);
1231
1232	return 0;
1233}
1234
1235#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1236static ssize_t sysfs_compact_node(struct device *dev,
1237			struct device_attribute *attr,
1238			const char *buf, size_t count)
1239{
1240	int nid = dev->id;
1241
1242	if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1243		/* Flush pending updates to the LRU lists */
1244		lru_add_drain_all();
1245
1246		compact_node(nid);
1247	}
1248
1249	return count;
1250}
1251static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1252
1253int compaction_register_node(struct node *node)
1254{
1255	return device_create_file(&node->dev, &dev_attr_compact);
1256}
1257
1258void compaction_unregister_node(struct node *node)
1259{
1260	return device_remove_file(&node->dev, &dev_attr_compact);
1261}
1262#endif /* CONFIG_SYSFS && CONFIG_NUMA */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1263
1264#endif /* CONFIG_COMPACTION */