Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 263#include <linux/swap.h>
 264#include <linux/cache.h>
 265#include <linux/err.h>
 266#include <linux/time.h>
 267#include <linux/slab.h>
 268#include <linux/errqueue.h>
 269#include <linux/static_key.h>
 
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 277#include <net/sock.h>
 278
 279#include <linux/uaccess.h>
 280#include <asm/ioctls.h>
 281#include <net/busy_poll.h>
 282
 283struct percpu_counter tcp_orphan_count;
 284EXPORT_SYMBOL_GPL(tcp_orphan_count);
 
 
 
 
 
 
 285
 286long sysctl_tcp_mem[3] __read_mostly;
 287EXPORT_SYMBOL(sysctl_tcp_mem);
 288
 289atomic_long_t tcp_memory_allocated;	/* Current allocated memory. */
 290EXPORT_SYMBOL(tcp_memory_allocated);
 
 
 291
 292#if IS_ENABLED(CONFIG_SMC)
 293DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 294EXPORT_SYMBOL(tcp_have_smc);
 295#endif
 296
 297/*
 298 * Current number of TCP sockets.
 299 */
 300struct percpu_counter tcp_sockets_allocated;
 301EXPORT_SYMBOL(tcp_sockets_allocated);
 302
 303/*
 304 * TCP splice context
 305 */
 306struct tcp_splice_state {
 307	struct pipe_inode_info *pipe;
 308	size_t len;
 309	unsigned int flags;
 310};
 311
 312/*
 313 * Pressure flag: try to collapse.
 314 * Technical note: it is used by multiple contexts non atomically.
 315 * All the __sk_mem_schedule() is of this nature: accounting
 316 * is strict, actions are advisory and have some latency.
 317 */
 318unsigned long tcp_memory_pressure __read_mostly;
 319EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 320
 321DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
 322EXPORT_SYMBOL(tcp_rx_skb_cache_key);
 323
 324DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
 325
 326void tcp_enter_memory_pressure(struct sock *sk)
 327{
 328	unsigned long val;
 329
 330	if (READ_ONCE(tcp_memory_pressure))
 331		return;
 332	val = jiffies;
 333
 334	if (!val)
 335		val--;
 336	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 337		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 338}
 339EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 340
 341void tcp_leave_memory_pressure(struct sock *sk)
 342{
 343	unsigned long val;
 344
 345	if (!READ_ONCE(tcp_memory_pressure))
 346		return;
 347	val = xchg(&tcp_memory_pressure, 0);
 348	if (val)
 349		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 350			      jiffies_to_msecs(jiffies - val));
 351}
 352EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 353
 354/* Convert seconds to retransmits based on initial and max timeout */
 355static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 356{
 357	u8 res = 0;
 358
 359	if (seconds > 0) {
 360		int period = timeout;
 361
 362		res = 1;
 363		while (seconds > period && res < 255) {
 364			res++;
 365			timeout <<= 1;
 366			if (timeout > rto_max)
 367				timeout = rto_max;
 368			period += timeout;
 369		}
 370	}
 371	return res;
 372}
 373
 374/* Convert retransmits to seconds based on initial and max timeout */
 375static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 376{
 377	int period = 0;
 378
 379	if (retrans > 0) {
 380		period = timeout;
 381		while (--retrans) {
 382			timeout <<= 1;
 383			if (timeout > rto_max)
 384				timeout = rto_max;
 385			period += timeout;
 386		}
 387	}
 388	return period;
 389}
 390
 391static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 392{
 393	u32 rate = READ_ONCE(tp->rate_delivered);
 394	u32 intv = READ_ONCE(tp->rate_interval_us);
 395	u64 rate64 = 0;
 396
 397	if (rate && intv) {
 398		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 399		do_div(rate64, intv);
 400	}
 401	return rate64;
 402}
 403
 404/* Address-family independent initialization for a tcp_sock.
 405 *
 406 * NOTE: A lot of things set to zero explicitly by call to
 407 *       sk_alloc() so need not be done here.
 408 */
 409void tcp_init_sock(struct sock *sk)
 410{
 411	struct inet_connection_sock *icsk = inet_csk(sk);
 412	struct tcp_sock *tp = tcp_sk(sk);
 413
 414	tp->out_of_order_queue = RB_ROOT;
 415	sk->tcp_rtx_queue = RB_ROOT;
 416	tcp_init_xmit_timers(sk);
 417	INIT_LIST_HEAD(&tp->tsq_node);
 418	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 419
 420	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 
 
 421	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 422	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 423
 424	/* So many TCP implementations out there (incorrectly) count the
 425	 * initial SYN frame in their delayed-ACK and congestion control
 426	 * algorithms that we must have the following bandaid to talk
 427	 * efficiently to them.  -DaveM
 428	 */
 429	tp->snd_cwnd = TCP_INIT_CWND;
 430
 431	/* There's a bubble in the pipe until at least the first ACK. */
 432	tp->app_limited = ~0U;
 
 433
 434	/* See draft-stevens-tcpca-spec-01 for discussion of the
 435	 * initialization of these values.
 436	 */
 437	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 438	tp->snd_cwnd_clamp = ~0;
 439	tp->mss_cache = TCP_MSS_DEFAULT;
 440
 441	tp->reordering = sock_net(sk)->ipv4.sysctl_tcp_reordering;
 442	tcp_assign_congestion_control(sk);
 443
 444	tp->tsoffset = 0;
 445	tp->rack.reo_wnd_steps = 1;
 446
 447	sk->sk_write_space = sk_stream_write_space;
 448	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 449
 450	icsk->icsk_sync_mss = tcp_sync_mss;
 451
 452	WRITE_ONCE(sk->sk_sndbuf, sock_net(sk)->ipv4.sysctl_tcp_wmem[1]);
 453	WRITE_ONCE(sk->sk_rcvbuf, sock_net(sk)->ipv4.sysctl_tcp_rmem[1]);
 
 454
 
 455	sk_sockets_allocated_inc(sk);
 456	sk->sk_route_forced_caps = NETIF_F_GSO;
 457}
 458EXPORT_SYMBOL(tcp_init_sock);
 459
 460static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 461{
 462	struct sk_buff *skb = tcp_write_queue_tail(sk);
 463
 464	if (tsflags && skb) {
 465		struct skb_shared_info *shinfo = skb_shinfo(skb);
 466		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 467
 468		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 469		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 470			tcb->txstamp_ack = 1;
 471		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 472			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 473	}
 474}
 475
 476static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
 477					  int target, struct sock *sk)
 478{
 479	int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
 480
 481	if (avail > 0) {
 482		if (avail >= target)
 483			return true;
 484		if (tcp_rmem_pressure(sk))
 485			return true;
 486	}
 487	if (sk->sk_prot->stream_memory_read)
 488		return sk->sk_prot->stream_memory_read(sk);
 489	return false;
 490}
 491
 492/*
 493 *	Wait for a TCP event.
 494 *
 495 *	Note that we don't need to lock the socket, as the upper poll layers
 496 *	take care of normal races (between the test and the event) and we don't
 497 *	go look at any of the socket buffers directly.
 498 */
 499__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 500{
 501	__poll_t mask;
 502	struct sock *sk = sock->sk;
 503	const struct tcp_sock *tp = tcp_sk(sk);
 
 504	int state;
 505
 506	sock_poll_wait(file, sock, wait);
 507
 508	state = inet_sk_state_load(sk);
 509	if (state == TCP_LISTEN)
 510		return inet_csk_listen_poll(sk);
 511
 512	/* Socket is not locked. We are protected from async events
 513	 * by poll logic and correct handling of state changes
 514	 * made by other threads is impossible in any case.
 515	 */
 516
 517	mask = 0;
 518
 519	/*
 520	 * EPOLLHUP is certainly not done right. But poll() doesn't
 521	 * have a notion of HUP in just one direction, and for a
 522	 * socket the read side is more interesting.
 523	 *
 524	 * Some poll() documentation says that EPOLLHUP is incompatible
 525	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 526	 * all. But careful, it tends to be safer to return too many
 527	 * bits than too few, and you can easily break real applications
 528	 * if you don't tell them that something has hung up!
 529	 *
 530	 * Check-me.
 531	 *
 532	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 533	 * our fs/select.c). It means that after we received EOF,
 534	 * poll always returns immediately, making impossible poll() on write()
 535	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 536	 * if and only if shutdown has been made in both directions.
 537	 * Actually, it is interesting to look how Solaris and DUX
 538	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 539	 * then we could set it on SND_SHUTDOWN. BTW examples given
 540	 * in Stevens' books assume exactly this behaviour, it explains
 541	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 542	 *
 543	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 544	 * blocking on fresh not-connected or disconnected socket. --ANK
 545	 */
 546	if (sk->sk_shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 
 547		mask |= EPOLLHUP;
 548	if (sk->sk_shutdown & RCV_SHUTDOWN)
 549		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 550
 551	/* Connected or passive Fast Open socket? */
 552	if (state != TCP_SYN_SENT &&
 553	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 554		int target = sock_rcvlowat(sk, 0, INT_MAX);
 
 555
 556		if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 557		    !sock_flag(sk, SOCK_URGINLINE) &&
 558		    tp->urg_data)
 559			target++;
 560
 561		if (tcp_stream_is_readable(tp, target, sk))
 562			mask |= EPOLLIN | EPOLLRDNORM;
 563
 564		if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
 565			if (sk_stream_is_writeable(sk)) {
 566				mask |= EPOLLOUT | EPOLLWRNORM;
 567			} else {  /* send SIGIO later */
 568				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 569				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 570
 571				/* Race breaker. If space is freed after
 572				 * wspace test but before the flags are set,
 573				 * IO signal will be lost. Memory barrier
 574				 * pairs with the input side.
 575				 */
 576				smp_mb__after_atomic();
 577				if (sk_stream_is_writeable(sk))
 578					mask |= EPOLLOUT | EPOLLWRNORM;
 579			}
 580		} else
 581			mask |= EPOLLOUT | EPOLLWRNORM;
 582
 583		if (tp->urg_data & TCP_URG_VALID)
 584			mask |= EPOLLPRI;
 585	} else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
 
 586		/* Active TCP fastopen socket with defer_connect
 587		 * Return EPOLLOUT so application can call write()
 588		 * in order for kernel to generate SYN+data
 589		 */
 590		mask |= EPOLLOUT | EPOLLWRNORM;
 591	}
 592	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 593	smp_rmb();
 594	if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
 
 595		mask |= EPOLLERR;
 596
 597	return mask;
 598}
 599EXPORT_SYMBOL(tcp_poll);
 600
 601int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
 602{
 603	struct tcp_sock *tp = tcp_sk(sk);
 604	int answ;
 605	bool slow;
 606
 607	switch (cmd) {
 608	case SIOCINQ:
 609		if (sk->sk_state == TCP_LISTEN)
 610			return -EINVAL;
 611
 612		slow = lock_sock_fast(sk);
 613		answ = tcp_inq(sk);
 614		unlock_sock_fast(sk, slow);
 615		break;
 616	case SIOCATMARK:
 617		answ = tp->urg_data &&
 618		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 619		break;
 620	case SIOCOUTQ:
 621		if (sk->sk_state == TCP_LISTEN)
 622			return -EINVAL;
 623
 624		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 625			answ = 0;
 626		else
 627			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 628		break;
 629	case SIOCOUTQNSD:
 630		if (sk->sk_state == TCP_LISTEN)
 631			return -EINVAL;
 632
 633		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 634			answ = 0;
 635		else
 636			answ = READ_ONCE(tp->write_seq) -
 637			       READ_ONCE(tp->snd_nxt);
 638		break;
 639	default:
 640		return -ENOIOCTLCMD;
 641	}
 642
 643	return put_user(answ, (int __user *)arg);
 
 644}
 645EXPORT_SYMBOL(tcp_ioctl);
 646
 647static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 648{
 649	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 650	tp->pushed_seq = tp->write_seq;
 651}
 652
 653static inline bool forced_push(const struct tcp_sock *tp)
 654{
 655	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 656}
 657
 658static void skb_entail(struct sock *sk, struct sk_buff *skb)
 659{
 660	struct tcp_sock *tp = tcp_sk(sk);
 661	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 662
 663	skb->csum    = 0;
 664	tcb->seq     = tcb->end_seq = tp->write_seq;
 665	tcb->tcp_flags = TCPHDR_ACK;
 666	tcb->sacked  = 0;
 667	__skb_header_release(skb);
 668	tcp_add_write_queue_tail(sk, skb);
 669	sk_wmem_queued_add(sk, skb->truesize);
 670	sk_mem_charge(sk, skb->truesize);
 671	if (tp->nonagle & TCP_NAGLE_PUSH)
 672		tp->nonagle &= ~TCP_NAGLE_PUSH;
 673
 674	tcp_slow_start_after_idle_check(sk);
 675}
 676
 677static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 678{
 679	if (flags & MSG_OOB)
 680		tp->snd_up = tp->write_seq;
 681}
 682
 683/* If a not yet filled skb is pushed, do not send it if
 684 * we have data packets in Qdisc or NIC queues :
 685 * Because TX completion will happen shortly, it gives a chance
 686 * to coalesce future sendmsg() payload into this skb, without
 687 * need for a timer, and with no latency trade off.
 688 * As packets containing data payload have a bigger truesize
 689 * than pure acks (dataless) packets, the last checks prevent
 690 * autocorking if we only have an ACK in Qdisc/NIC queues,
 691 * or if TX completion was delayed after we processed ACK packet.
 692 */
 693static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 694				int size_goal)
 695{
 696	return skb->len < size_goal &&
 697	       sock_net(sk)->ipv4.sysctl_tcp_autocorking &&
 698	       !tcp_rtx_queue_empty(sk) &&
 699	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
 
 700}
 701
 702void tcp_push(struct sock *sk, int flags, int mss_now,
 703	      int nonagle, int size_goal)
 704{
 705	struct tcp_sock *tp = tcp_sk(sk);
 706	struct sk_buff *skb;
 707
 708	skb = tcp_write_queue_tail(sk);
 709	if (!skb)
 710		return;
 711	if (!(flags & MSG_MORE) || forced_push(tp))
 712		tcp_mark_push(tp, skb);
 713
 714	tcp_mark_urg(tp, flags);
 715
 716	if (tcp_should_autocork(sk, skb, size_goal)) {
 717
 718		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 719		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 720			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 721			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 
 722		}
 723		/* It is possible TX completion already happened
 724		 * before we set TSQ_THROTTLED.
 725		 */
 726		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 727			return;
 728	}
 729
 730	if (flags & MSG_MORE)
 731		nonagle = TCP_NAGLE_CORK;
 732
 733	__tcp_push_pending_frames(sk, mss_now, nonagle);
 734}
 735
 736static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 737				unsigned int offset, size_t len)
 738{
 739	struct tcp_splice_state *tss = rd_desc->arg.data;
 740	int ret;
 741
 742	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 743			      min(rd_desc->count, len), tss->flags);
 744	if (ret > 0)
 745		rd_desc->count -= ret;
 746	return ret;
 747}
 748
 749static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 750{
 751	/* Store TCP splice context information in read_descriptor_t. */
 752	read_descriptor_t rd_desc = {
 753		.arg.data = tss,
 754		.count	  = tss->len,
 755	};
 756
 757	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 758}
 759
 760/**
 761 *  tcp_splice_read - splice data from TCP socket to a pipe
 762 * @sock:	socket to splice from
 763 * @ppos:	position (not valid)
 764 * @pipe:	pipe to splice to
 765 * @len:	number of bytes to splice
 766 * @flags:	splice modifier flags
 767 *
 768 * Description:
 769 *    Will read pages from given socket and fill them into a pipe.
 770 *
 771 **/
 772ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 773			struct pipe_inode_info *pipe, size_t len,
 774			unsigned int flags)
 775{
 776	struct sock *sk = sock->sk;
 777	struct tcp_splice_state tss = {
 778		.pipe = pipe,
 779		.len = len,
 780		.flags = flags,
 781	};
 782	long timeo;
 783	ssize_t spliced;
 784	int ret;
 785
 786	sock_rps_record_flow(sk);
 787	/*
 788	 * We can't seek on a socket input
 789	 */
 790	if (unlikely(*ppos))
 791		return -ESPIPE;
 792
 793	ret = spliced = 0;
 794
 795	lock_sock(sk);
 796
 797	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 798	while (tss.len) {
 799		ret = __tcp_splice_read(sk, &tss);
 800		if (ret < 0)
 801			break;
 802		else if (!ret) {
 803			if (spliced)
 804				break;
 805			if (sock_flag(sk, SOCK_DONE))
 806				break;
 807			if (sk->sk_err) {
 808				ret = sock_error(sk);
 809				break;
 810			}
 811			if (sk->sk_shutdown & RCV_SHUTDOWN)
 812				break;
 813			if (sk->sk_state == TCP_CLOSE) {
 814				/*
 815				 * This occurs when user tries to read
 816				 * from never connected socket.
 817				 */
 818				ret = -ENOTCONN;
 819				break;
 820			}
 821			if (!timeo) {
 822				ret = -EAGAIN;
 823				break;
 824			}
 825			/* if __tcp_splice_read() got nothing while we have
 826			 * an skb in receive queue, we do not want to loop.
 827			 * This might happen with URG data.
 828			 */
 829			if (!skb_queue_empty(&sk->sk_receive_queue))
 830				break;
 831			sk_wait_data(sk, &timeo, NULL);
 
 
 832			if (signal_pending(current)) {
 833				ret = sock_intr_errno(timeo);
 834				break;
 835			}
 836			continue;
 837		}
 838		tss.len -= ret;
 839		spliced += ret;
 840
 841		if (!timeo)
 842			break;
 843		release_sock(sk);
 844		lock_sock(sk);
 845
 846		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 847		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 848		    signal_pending(current))
 849			break;
 850	}
 851
 852	release_sock(sk);
 853
 854	if (spliced)
 855		return spliced;
 856
 857	return ret;
 858}
 859EXPORT_SYMBOL(tcp_splice_read);
 860
 861struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
 862				    bool force_schedule)
 863{
 864	struct sk_buff *skb;
 865
 866	if (likely(!size)) {
 867		skb = sk->sk_tx_skb_cache;
 868		if (skb) {
 869			skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 870			sk->sk_tx_skb_cache = NULL;
 871			pskb_trim(skb, 0);
 872			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 873			skb_shinfo(skb)->tx_flags = 0;
 874			memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
 875			return skb;
 876		}
 877	}
 878	/* The TCP header must be at least 32-bit aligned.  */
 879	size = ALIGN(size, 4);
 880
 881	if (unlikely(tcp_under_memory_pressure(sk)))
 882		sk_mem_reclaim_partial(sk);
 883
 884	skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
 885	if (likely(skb)) {
 886		bool mem_scheduled;
 887
 
 888		if (force_schedule) {
 889			mem_scheduled = true;
 890			sk_forced_mem_schedule(sk, skb->truesize);
 891		} else {
 892			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 893		}
 894		if (likely(mem_scheduled)) {
 895			skb_reserve(skb, sk->sk_prot->max_header);
 896			/*
 897			 * Make sure that we have exactly size bytes
 898			 * available to the caller, no more, no less.
 899			 */
 900			skb->reserved_tailroom = skb->end - skb->tail - size;
 901			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 902			return skb;
 903		}
 904		__kfree_skb(skb);
 905	} else {
 906		sk->sk_prot->enter_memory_pressure(sk);
 907		sk_stream_moderate_sndbuf(sk);
 908	}
 909	return NULL;
 910}
 911
 912static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 913				       int large_allowed)
 914{
 915	struct tcp_sock *tp = tcp_sk(sk);
 916	u32 new_size_goal, size_goal;
 917
 918	if (!large_allowed)
 919		return mss_now;
 920
 921	/* Note : tcp_tso_autosize() will eventually split this later */
 922	new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
 923	new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
 924
 925	/* We try hard to avoid divides here */
 926	size_goal = tp->gso_segs * mss_now;
 927	if (unlikely(new_size_goal < size_goal ||
 928		     new_size_goal >= size_goal + mss_now)) {
 929		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 930				     sk->sk_gso_max_segs);
 931		size_goal = tp->gso_segs * mss_now;
 932	}
 933
 934	return max(size_goal, mss_now);
 935}
 936
 937int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 938{
 939	int mss_now;
 940
 941	mss_now = tcp_current_mss(sk);
 942	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 943
 944	return mss_now;
 945}
 946
 947/* In some cases, both sendpage() and sendmsg() could have added
 948 * an skb to the write queue, but failed adding payload on it.
 949 * We need to remove it to consume less memory, but more
 950 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
 951 * users.
 952 */
 953static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
 954{
 955	if (skb && !skb->len) {
 
 
 956		tcp_unlink_write_queue(skb, sk);
 957		if (tcp_write_queue_empty(sk))
 958			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 959		sk_wmem_free_skb(sk, skb);
 960	}
 961}
 962
 963ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
 964			 size_t size, int flags)
 965{
 966	struct tcp_sock *tp = tcp_sk(sk);
 967	int mss_now, size_goal;
 968	int err;
 969	ssize_t copied;
 970	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 971
 972	if (IS_ENABLED(CONFIG_DEBUG_VM) &&
 973	    WARN_ONCE(!sendpage_ok(page),
 974		      "page must not be a Slab one and have page_count > 0"))
 975		return -EINVAL;
 976
 977	/* Wait for a connection to finish. One exception is TCP Fast Open
 978	 * (passive side) where data is allowed to be sent before a connection
 979	 * is fully established.
 980	 */
 981	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
 982	    !tcp_passive_fastopen(sk)) {
 983		err = sk_stream_wait_connect(sk, &timeo);
 984		if (err != 0)
 985			goto out_err;
 986	}
 987
 988	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 989
 990	mss_now = tcp_send_mss(sk, &size_goal, flags);
 991	copied = 0;
 992
 993	err = -EPIPE;
 994	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
 995		goto out_err;
 996
 997	while (size > 0) {
 998		struct sk_buff *skb = tcp_write_queue_tail(sk);
 999		int copy, i;
1000		bool can_coalesce;
1001
1002		if (!skb || (copy = size_goal - skb->len) <= 0 ||
1003		    !tcp_skb_can_collapse_to(skb)) {
1004new_segment:
1005			if (!sk_stream_memory_free(sk))
1006				goto wait_for_sndbuf;
1007
1008			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1009					tcp_rtx_and_write_queues_empty(sk));
1010			if (!skb)
1011				goto wait_for_memory;
1012
1013#ifdef CONFIG_TLS_DEVICE
1014			skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1015#endif
1016			skb_entail(sk, skb);
1017			copy = size_goal;
1018		}
1019
1020		if (copy > size)
1021			copy = size;
1022
1023		i = skb_shinfo(skb)->nr_frags;
1024		can_coalesce = skb_can_coalesce(skb, i, page, offset);
1025		if (!can_coalesce && i >= sysctl_max_skb_frags) {
1026			tcp_mark_push(tp, skb);
1027			goto new_segment;
1028		}
1029		if (!sk_wmem_schedule(sk, copy))
1030			goto wait_for_memory;
1031
1032		if (can_coalesce) {
1033			skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1034		} else {
1035			get_page(page);
1036			skb_fill_page_desc(skb, i, page, offset, copy);
1037		}
1038
1039		if (!(flags & MSG_NO_SHARED_FRAGS))
1040			skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1041
1042		skb->len += copy;
1043		skb->data_len += copy;
1044		skb->truesize += copy;
1045		sk_wmem_queued_add(sk, copy);
1046		sk_mem_charge(sk, copy);
1047		skb->ip_summed = CHECKSUM_PARTIAL;
1048		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1049		TCP_SKB_CB(skb)->end_seq += copy;
1050		tcp_skb_pcount_set(skb, 0);
1051
1052		if (!copied)
1053			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1054
1055		copied += copy;
1056		offset += copy;
1057		size -= copy;
1058		if (!size)
1059			goto out;
1060
1061		if (skb->len < size_goal || (flags & MSG_OOB))
1062			continue;
1063
1064		if (forced_push(tp)) {
1065			tcp_mark_push(tp, skb);
1066			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1067		} else if (skb == tcp_send_head(sk))
1068			tcp_push_one(sk, mss_now);
1069		continue;
1070
1071wait_for_sndbuf:
1072		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1073wait_for_memory:
1074		tcp_push(sk, flags & ~MSG_MORE, mss_now,
1075			 TCP_NAGLE_PUSH, size_goal);
1076
1077		err = sk_stream_wait_memory(sk, &timeo);
1078		if (err != 0)
1079			goto do_error;
1080
1081		mss_now = tcp_send_mss(sk, &size_goal, flags);
1082	}
1083
1084out:
1085	if (copied) {
1086		tcp_tx_timestamp(sk, sk->sk_tsflags);
1087		if (!(flags & MSG_SENDPAGE_NOTLAST))
1088			tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1089	}
1090	return copied;
1091
1092do_error:
1093	tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1094	if (copied)
1095		goto out;
1096out_err:
1097	/* make sure we wake any epoll edge trigger waiter */
1098	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1099		sk->sk_write_space(sk);
1100		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1101	}
1102	return sk_stream_error(sk, flags, err);
1103}
1104EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1105
1106int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1107			size_t size, int flags)
1108{
1109	if (!(sk->sk_route_caps & NETIF_F_SG))
1110		return sock_no_sendpage_locked(sk, page, offset, size, flags);
1111
1112	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1113
1114	return do_tcp_sendpages(sk, page, offset, size, flags);
1115}
1116EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1117
1118int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1119		 size_t size, int flags)
1120{
1121	int ret;
1122
1123	lock_sock(sk);
1124	ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1125	release_sock(sk);
1126
1127	return ret;
 
 
 
 
 
 
 
1128}
1129EXPORT_SYMBOL(tcp_sendpage);
1130
1131void tcp_free_fastopen_req(struct tcp_sock *tp)
1132{
1133	if (tp->fastopen_req) {
1134		kfree(tp->fastopen_req);
1135		tp->fastopen_req = NULL;
1136	}
1137}
1138
1139static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1140				int *copied, size_t size,
1141				struct ubuf_info *uarg)
1142{
1143	struct tcp_sock *tp = tcp_sk(sk);
1144	struct inet_sock *inet = inet_sk(sk);
1145	struct sockaddr *uaddr = msg->msg_name;
1146	int err, flags;
1147
1148	if (!(sock_net(sk)->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) ||
 
1149	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1150	     uaddr->sa_family == AF_UNSPEC))
1151		return -EOPNOTSUPP;
1152	if (tp->fastopen_req)
1153		return -EALREADY; /* Another Fast Open is in progress */
1154
1155	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1156				   sk->sk_allocation);
1157	if (unlikely(!tp->fastopen_req))
1158		return -ENOBUFS;
1159	tp->fastopen_req->data = msg;
1160	tp->fastopen_req->size = size;
1161	tp->fastopen_req->uarg = uarg;
1162
1163	if (inet->defer_connect) {
1164		err = tcp_connect(sk);
1165		/* Same failure procedure as in tcp_v4/6_connect */
1166		if (err) {
1167			tcp_set_state(sk, TCP_CLOSE);
1168			inet->inet_dport = 0;
1169			sk->sk_route_caps = 0;
1170		}
1171	}
1172	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1173	err = __inet_stream_connect(sk->sk_socket, uaddr,
1174				    msg->msg_namelen, flags, 1);
1175	/* fastopen_req could already be freed in __inet_stream_connect
1176	 * if the connection times out or gets rst
1177	 */
1178	if (tp->fastopen_req) {
1179		*copied = tp->fastopen_req->copied;
1180		tcp_free_fastopen_req(tp);
1181		inet->defer_connect = 0;
1182	}
1183	return err;
1184}
1185
1186int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1187{
1188	struct tcp_sock *tp = tcp_sk(sk);
1189	struct ubuf_info *uarg = NULL;
1190	struct sk_buff *skb;
1191	struct sockcm_cookie sockc;
1192	int flags, err, copied = 0;
1193	int mss_now = 0, size_goal, copied_syn = 0;
1194	int process_backlog = 0;
1195	bool zc = false;
1196	long timeo;
1197
1198	flags = msg->msg_flags;
1199
1200	if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1201		skb = tcp_write_queue_tail(sk);
1202		uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1203		if (!uarg) {
1204			err = -ENOBUFS;
1205			goto out_err;
 
 
 
 
 
 
 
 
 
 
1206		}
1207
1208		zc = sk->sk_route_caps & NETIF_F_SG;
1209		if (!zc)
1210			uarg->zerocopy = 0;
1211	}
1212
1213	if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
 
1214	    !tp->repair) {
1215		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1216		if (err == -EINPROGRESS && copied_syn > 0)
1217			goto out;
1218		else if (err)
1219			goto out_err;
1220	}
1221
1222	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1223
1224	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1225
1226	/* Wait for a connection to finish. One exception is TCP Fast Open
1227	 * (passive side) where data is allowed to be sent before a connection
1228	 * is fully established.
1229	 */
1230	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1231	    !tcp_passive_fastopen(sk)) {
1232		err = sk_stream_wait_connect(sk, &timeo);
1233		if (err != 0)
1234			goto do_error;
1235	}
1236
1237	if (unlikely(tp->repair)) {
1238		if (tp->repair_queue == TCP_RECV_QUEUE) {
1239			copied = tcp_send_rcvq(sk, msg, size);
1240			goto out_nopush;
1241		}
1242
1243		err = -EINVAL;
1244		if (tp->repair_queue == TCP_NO_QUEUE)
1245			goto out_err;
1246
1247		/* 'common' sending to sendq */
1248	}
1249
1250	sockcm_init(&sockc, sk);
1251	if (msg->msg_controllen) {
1252		err = sock_cmsg_send(sk, msg, &sockc);
1253		if (unlikely(err)) {
1254			err = -EINVAL;
1255			goto out_err;
1256		}
1257	}
1258
1259	/* This should be in poll */
1260	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1261
1262	/* Ok commence sending. */
1263	copied = 0;
1264
1265restart:
1266	mss_now = tcp_send_mss(sk, &size_goal, flags);
1267
1268	err = -EPIPE;
1269	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1270		goto do_error;
1271
1272	while (msg_data_left(msg)) {
1273		int copy = 0;
1274
1275		skb = tcp_write_queue_tail(sk);
1276		if (skb)
1277			copy = size_goal - skb->len;
1278
1279		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1280			bool first_skb;
1281
1282new_segment:
1283			if (!sk_stream_memory_free(sk))
1284				goto wait_for_sndbuf;
1285
1286			if (unlikely(process_backlog >= 16)) {
1287				process_backlog = 0;
1288				if (sk_flush_backlog(sk))
1289					goto restart;
1290			}
1291			first_skb = tcp_rtx_and_write_queues_empty(sk);
1292			skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1293						  first_skb);
1294			if (!skb)
1295				goto wait_for_memory;
1296
1297			process_backlog++;
1298			skb->ip_summed = CHECKSUM_PARTIAL;
1299
1300			skb_entail(sk, skb);
1301			copy = size_goal;
1302
1303			/* All packets are restored as if they have
1304			 * already been sent. skb_mstamp_ns isn't set to
1305			 * avoid wrong rtt estimation.
1306			 */
1307			if (tp->repair)
1308				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1309		}
1310
1311		/* Try to append data to the end of skb. */
1312		if (copy > msg_data_left(msg))
1313			copy = msg_data_left(msg);
1314
1315		/* Where to copy to? */
1316		if (skb_availroom(skb) > 0 && !zc) {
1317			/* We have some space in skb head. Superb! */
1318			copy = min_t(int, copy, skb_availroom(skb));
1319			err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1320			if (err)
1321				goto do_fault;
1322		} else if (!zc) {
1323			bool merge = true;
1324			int i = skb_shinfo(skb)->nr_frags;
1325			struct page_frag *pfrag = sk_page_frag(sk);
1326
1327			if (!sk_page_frag_refill(sk, pfrag))
1328				goto wait_for_memory;
1329
1330			if (!skb_can_coalesce(skb, i, pfrag->page,
1331					      pfrag->offset)) {
1332				if (i >= sysctl_max_skb_frags) {
1333					tcp_mark_push(tp, skb);
1334					goto new_segment;
1335				}
1336				merge = false;
1337			}
1338
1339			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1340
1341			if (!sk_wmem_schedule(sk, copy))
1342				goto wait_for_memory;
 
 
 
 
 
 
 
1343
1344			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1345						       pfrag->page,
1346						       pfrag->offset,
1347						       copy);
1348			if (err)
1349				goto do_error;
1350
1351			/* Update the skb. */
1352			if (merge) {
1353				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1354			} else {
1355				skb_fill_page_desc(skb, i, pfrag->page,
1356						   pfrag->offset, copy);
1357				page_ref_inc(pfrag->page);
1358			}
1359			pfrag->offset += copy;
1360		} else {
 
 
 
 
 
 
 
 
 
 
 
 
1361			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1362			if (err == -EMSGSIZE || err == -EEXIST) {
1363				tcp_mark_push(tp, skb);
1364				goto new_segment;
1365			}
1366			if (err < 0)
1367				goto do_error;
1368			copy = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369		}
1370
1371		if (!copied)
1372			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1373
1374		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1375		TCP_SKB_CB(skb)->end_seq += copy;
1376		tcp_skb_pcount_set(skb, 0);
1377
1378		copied += copy;
1379		if (!msg_data_left(msg)) {
1380			if (unlikely(flags & MSG_EOR))
1381				TCP_SKB_CB(skb)->eor = 1;
1382			goto out;
1383		}
1384
1385		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1386			continue;
1387
1388		if (forced_push(tp)) {
1389			tcp_mark_push(tp, skb);
1390			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1391		} else if (skb == tcp_send_head(sk))
1392			tcp_push_one(sk, mss_now);
1393		continue;
1394
1395wait_for_sndbuf:
1396		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1397wait_for_memory:
1398		if (copied)
1399			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1400				 TCP_NAGLE_PUSH, size_goal);
1401
1402		err = sk_stream_wait_memory(sk, &timeo);
1403		if (err != 0)
1404			goto do_error;
1405
1406		mss_now = tcp_send_mss(sk, &size_goal, flags);
1407	}
1408
1409out:
1410	if (copied) {
1411		tcp_tx_timestamp(sk, sockc.tsflags);
1412		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1413	}
1414out_nopush:
1415	sock_zerocopy_put(uarg);
 
 
1416	return copied + copied_syn;
1417
1418do_error:
1419	skb = tcp_write_queue_tail(sk);
1420do_fault:
1421	tcp_remove_empty_skb(sk, skb);
1422
1423	if (copied + copied_syn)
1424		goto out;
1425out_err:
1426	sock_zerocopy_put_abort(uarg, true);
 
 
1427	err = sk_stream_error(sk, flags, err);
1428	/* make sure we wake any epoll edge trigger waiter */
1429	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1430		sk->sk_write_space(sk);
1431		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1432	}
1433	return err;
1434}
1435EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1436
1437int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1438{
1439	int ret;
1440
1441	lock_sock(sk);
1442	ret = tcp_sendmsg_locked(sk, msg, size);
1443	release_sock(sk);
1444
1445	return ret;
1446}
1447EXPORT_SYMBOL(tcp_sendmsg);
1448
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1449/*
1450 *	Handle reading urgent data. BSD has very simple semantics for
1451 *	this, no blocking and very strange errors 8)
1452 */
1453
1454static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1455{
1456	struct tcp_sock *tp = tcp_sk(sk);
1457
1458	/* No URG data to read. */
1459	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1460	    tp->urg_data == TCP_URG_READ)
1461		return -EINVAL;	/* Yes this is right ! */
1462
1463	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1464		return -ENOTCONN;
1465
1466	if (tp->urg_data & TCP_URG_VALID) {
1467		int err = 0;
1468		char c = tp->urg_data;
1469
1470		if (!(flags & MSG_PEEK))
1471			tp->urg_data = TCP_URG_READ;
1472
1473		/* Read urgent data. */
1474		msg->msg_flags |= MSG_OOB;
1475
1476		if (len > 0) {
1477			if (!(flags & MSG_TRUNC))
1478				err = memcpy_to_msg(msg, &c, 1);
1479			len = 1;
1480		} else
1481			msg->msg_flags |= MSG_TRUNC;
1482
1483		return err ? -EFAULT : len;
1484	}
1485
1486	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1487		return 0;
1488
1489	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1490	 * the available implementations agree in this case:
1491	 * this call should never block, independent of the
1492	 * blocking state of the socket.
1493	 * Mike <pall@rz.uni-karlsruhe.de>
1494	 */
1495	return -EAGAIN;
1496}
1497
1498static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1499{
1500	struct sk_buff *skb;
1501	int copied = 0, err = 0;
1502
1503	/* XXX -- need to support SO_PEEK_OFF */
1504
1505	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1506		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1507		if (err)
1508			return err;
1509		copied += skb->len;
1510	}
1511
1512	skb_queue_walk(&sk->sk_write_queue, skb) {
1513		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1514		if (err)
1515			break;
1516
1517		copied += skb->len;
1518	}
1519
1520	return err ?: copied;
1521}
1522
1523/* Clean up the receive buffer for full frames taken by the user,
1524 * then send an ACK if necessary.  COPIED is the number of bytes
1525 * tcp_recvmsg has given to the user so far, it speeds up the
1526 * calculation of whether or not we must ACK for the sake of
1527 * a window update.
1528 */
1529static void tcp_cleanup_rbuf(struct sock *sk, int copied)
1530{
1531	struct tcp_sock *tp = tcp_sk(sk);
1532	bool time_to_ack = false;
1533
1534	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1535
1536	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1537	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1538	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1539
1540	if (inet_csk_ack_scheduled(sk)) {
1541		const struct inet_connection_sock *icsk = inet_csk(sk);
1542		   /* Delayed ACKs frequently hit locked sockets during bulk
1543		    * receive. */
1544		if (icsk->icsk_ack.blocked ||
1545		    /* Once-per-two-segments ACK was not sent by tcp_input.c */
1546		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1547		    /*
1548		     * If this read emptied read buffer, we send ACK, if
1549		     * connection is not bidirectional, user drained
1550		     * receive buffer and there was a small segment
1551		     * in queue.
1552		     */
1553		    (copied > 0 &&
1554		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1555		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1556		       !inet_csk_in_pingpong_mode(sk))) &&
1557		      !atomic_read(&sk->sk_rmem_alloc)))
1558			time_to_ack = true;
1559	}
1560
1561	/* We send an ACK if we can now advertise a non-zero window
1562	 * which has been raised "significantly".
1563	 *
1564	 * Even if window raised up to infinity, do not send window open ACK
1565	 * in states, where we will not receive more. It is useless.
1566	 */
1567	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1568		__u32 rcv_window_now = tcp_receive_window(tp);
1569
1570		/* Optimize, __tcp_select_window() is not cheap. */
1571		if (2*rcv_window_now <= tp->window_clamp) {
1572			__u32 new_window = __tcp_select_window(sk);
1573
1574			/* Send ACK now, if this read freed lots of space
1575			 * in our buffer. Certainly, new_window is new window.
1576			 * We can advertise it now, if it is not less than current one.
1577			 * "Lots" means "at least twice" here.
1578			 */
1579			if (new_window && new_window >= 2 * rcv_window_now)
1580				time_to_ack = true;
1581		}
1582	}
1583	if (time_to_ack)
1584		tcp_send_ack(sk);
1585}
1586
1587static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1588{
1589	struct sk_buff *skb;
1590	u32 offset;
1591
1592	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1593		offset = seq - TCP_SKB_CB(skb)->seq;
1594		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1595			pr_err_once("%s: found a SYN, please report !\n", __func__);
1596			offset--;
1597		}
1598		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1599			*off = offset;
1600			return skb;
1601		}
1602		/* This looks weird, but this can happen if TCP collapsing
1603		 * splitted a fat GRO packet, while we released socket lock
1604		 * in skb_splice_bits()
1605		 */
1606		sk_eat_skb(sk, skb);
1607	}
1608	return NULL;
1609}
 
1610
1611/*
1612 * This routine provides an alternative to tcp_recvmsg() for routines
1613 * that would like to handle copying from skbuffs directly in 'sendfile'
1614 * fashion.
1615 * Note:
1616 *	- It is assumed that the socket was locked by the caller.
1617 *	- The routine does not block.
1618 *	- At present, there is no support for reading OOB data
1619 *	  or for 'peeking' the socket using this routine
1620 *	  (although both would be easy to implement).
1621 */
1622int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1623		  sk_read_actor_t recv_actor)
1624{
1625	struct sk_buff *skb;
1626	struct tcp_sock *tp = tcp_sk(sk);
1627	u32 seq = tp->copied_seq;
1628	u32 offset;
1629	int copied = 0;
1630
1631	if (sk->sk_state == TCP_LISTEN)
1632		return -ENOTCONN;
1633	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1634		if (offset < skb->len) {
1635			int used;
1636			size_t len;
1637
1638			len = skb->len - offset;
1639			/* Stop reading if we hit a patch of urgent data */
1640			if (tp->urg_data) {
1641				u32 urg_offset = tp->urg_seq - seq;
1642				if (urg_offset < len)
1643					len = urg_offset;
1644				if (!len)
1645					break;
1646			}
1647			used = recv_actor(desc, skb, offset, len);
1648			if (used <= 0) {
1649				if (!copied)
1650					copied = used;
1651				break;
1652			} else if (used <= len) {
1653				seq += used;
1654				copied += used;
1655				offset += used;
1656			}
 
 
 
 
 
 
1657			/* If recv_actor drops the lock (e.g. TCP splice
1658			 * receive) the skb pointer might be invalid when
1659			 * getting here: tcp_collapse might have deleted it
1660			 * while aggregating skbs from the socket queue.
1661			 */
1662			skb = tcp_recv_skb(sk, seq - 1, &offset);
1663			if (!skb)
1664				break;
1665			/* TCP coalescing might have appended data to the skb.
1666			 * Try to splice more frags
1667			 */
1668			if (offset + 1 != skb->len)
1669				continue;
1670		}
1671		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1672			sk_eat_skb(sk, skb);
1673			++seq;
1674			break;
1675		}
1676		sk_eat_skb(sk, skb);
1677		if (!desc->count)
1678			break;
1679		WRITE_ONCE(tp->copied_seq, seq);
1680	}
1681	WRITE_ONCE(tp->copied_seq, seq);
1682
1683	tcp_rcv_space_adjust(sk);
1684
1685	/* Clean up data we have read: This will do ACK frames. */
1686	if (copied > 0) {
1687		tcp_recv_skb(sk, seq, &offset);
1688		tcp_cleanup_rbuf(sk, copied);
1689	}
1690	return copied;
1691}
1692EXPORT_SYMBOL(tcp_read_sock);
1693
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1694int tcp_peek_len(struct socket *sock)
1695{
1696	return tcp_inq(sock->sk);
1697}
1698EXPORT_SYMBOL(tcp_peek_len);
1699
1700/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1701int tcp_set_rcvlowat(struct sock *sk, int val)
1702{
1703	int cap;
1704
1705	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1706		cap = sk->sk_rcvbuf >> 1;
1707	else
1708		cap = sock_net(sk)->ipv4.sysctl_tcp_rmem[2] >> 1;
1709	val = min(val, cap);
1710	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1711
1712	/* Check if we need to signal EPOLLIN right now */
1713	tcp_data_ready(sk);
1714
1715	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1716		return 0;
1717
1718	val <<= 1;
1719	if (val > sk->sk_rcvbuf) {
1720		WRITE_ONCE(sk->sk_rcvbuf, val);
1721		tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1722	}
1723	return 0;
1724}
1725EXPORT_SYMBOL(tcp_set_rcvlowat);
1726
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1727#ifdef CONFIG_MMU
1728static const struct vm_operations_struct tcp_vm_ops = {
1729};
1730
1731int tcp_mmap(struct file *file, struct socket *sock,
1732	     struct vm_area_struct *vma)
1733{
1734	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1735		return -EPERM;
1736	vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1737
1738	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1739	vma->vm_flags |= VM_MIXEDMAP;
1740
1741	vma->vm_ops = &tcp_vm_ops;
1742	return 0;
1743}
1744EXPORT_SYMBOL(tcp_mmap);
1745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1746static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1747					struct page **pages,
1748					unsigned long pages_to_map,
1749					unsigned long *insert_addr,
1750					u32 *length_with_pending,
1751					u32 *seq,
1752					struct tcp_zerocopy_receive *zc)
 
1753{
1754	unsigned long pages_remaining = pages_to_map;
1755	int bytes_mapped;
1756	int ret;
 
1757
1758	ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1759	bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
 
1760	/* Even if vm_insert_pages fails, it may have partially succeeded in
1761	 * mapping (some but not all of the pages).
1762	 */
1763	*seq += bytes_mapped;
1764	*insert_addr += bytes_mapped;
1765	if (ret) {
1766		/* But if vm_insert_pages did fail, we have to unroll some state
1767		 * we speculatively touched before.
1768		 */
1769		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1770		*length_with_pending -= bytes_not_mapped;
1771		zc->recv_skip_hint += bytes_not_mapped;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1772	}
1773	return ret;
1774}
1775
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1776static int tcp_zerocopy_receive(struct sock *sk,
1777				struct tcp_zerocopy_receive *zc)
 
1778{
 
1779	unsigned long address = (unsigned long)zc->address;
1780	u32 length = 0, seq, offset, zap_len;
1781	#define PAGE_BATCH_SIZE 8
1782	struct page *pages[PAGE_BATCH_SIZE];
1783	const skb_frag_t *frags = NULL;
 
1784	struct vm_area_struct *vma;
1785	struct sk_buff *skb = NULL;
1786	unsigned long pg_idx = 0;
1787	unsigned long curr_addr;
1788	struct tcp_sock *tp;
1789	int inq;
1790	int ret;
1791
 
 
 
1792	if (address & (PAGE_SIZE - 1) || address != zc->address)
1793		return -EINVAL;
1794
1795	if (sk->sk_state == TCP_LISTEN)
1796		return -ENOTCONN;
1797
1798	sock_rps_record_flow(sk);
1799
1800	tp = tcp_sk(sk);
 
1801
1802	mmap_read_lock(current->mm);
 
 
 
 
 
 
1803
1804	vma = find_vma(current->mm, address);
1805	if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1806		mmap_read_unlock(current->mm);
1807		return -EINVAL;
1808	}
1809	zc->length = min_t(unsigned long, zc->length, vma->vm_end - address);
1810
1811	seq = tp->copied_seq;
1812	inq = tcp_inq(sk);
1813	zc->length = min_t(u32, zc->length, inq);
1814	zap_len = zc->length & ~(PAGE_SIZE - 1);
1815	if (zap_len) {
1816		zap_page_range(vma, address, zap_len);
 
 
1817		zc->recv_skip_hint = 0;
1818	} else {
1819		zc->recv_skip_hint = zc->length;
 
1820	}
1821	ret = 0;
1822	curr_addr = address;
1823	while (length + PAGE_SIZE <= zc->length) {
 
 
 
1824		if (zc->recv_skip_hint < PAGE_SIZE) {
1825			/* If we're here, finish the current batch. */
1826			if (pg_idx) {
1827				ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1828								   pg_idx,
1829								   &curr_addr,
1830								   &length,
1831								   &seq, zc);
1832				if (ret)
1833					goto out;
1834				pg_idx = 0;
1835			}
1836			if (skb) {
1837				if (zc->recv_skip_hint > 0)
1838					break;
1839				skb = skb->next;
1840				offset = seq - TCP_SKB_CB(skb)->seq;
1841			} else {
1842				skb = tcp_recv_skb(sk, seq, &offset);
1843			}
 
 
 
 
 
1844			zc->recv_skip_hint = skb->len - offset;
1845			offset -= skb_headlen(skb);
1846			if ((int)offset < 0 || skb_has_frag_list(skb))
1847				break;
1848			frags = skb_shinfo(skb)->frags;
1849			while (offset) {
1850				if (skb_frag_size(frags) > offset)
1851					goto out;
1852				offset -= skb_frag_size(frags);
1853				frags++;
1854			}
1855		}
1856		if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1857			int remaining = zc->recv_skip_hint;
1858
1859			while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1860					     skb_frag_off(frags))) {
1861				remaining -= skb_frag_size(frags);
1862				frags++;
1863			}
1864			zc->recv_skip_hint -= remaining;
1865			break;
1866		}
1867		pages[pg_idx] = skb_frag_page(frags);
1868		pg_idx++;
 
1869		length += PAGE_SIZE;
1870		zc->recv_skip_hint -= PAGE_SIZE;
1871		frags++;
1872		if (pg_idx == PAGE_BATCH_SIZE) {
1873			ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1874							   &curr_addr, &length,
1875							   &seq, zc);
 
 
 
 
 
 
1876			if (ret)
1877				goto out;
1878			pg_idx = 0;
1879		}
1880	}
1881	if (pg_idx) {
1882		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1883						   &curr_addr, &length, &seq,
1884						   zc);
1885	}
1886out:
1887	mmap_read_unlock(current->mm);
1888	if (length) {
 
 
 
 
 
 
 
1889		WRITE_ONCE(tp->copied_seq, seq);
1890		tcp_rcv_space_adjust(sk);
1891
1892		/* Clean up data we have read: This will do ACK frames. */
1893		tcp_recv_skb(sk, seq, &offset);
1894		tcp_cleanup_rbuf(sk, length);
1895		ret = 0;
1896		if (length == zc->length)
1897			zc->recv_skip_hint = 0;
1898	} else {
1899		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1900			ret = -EIO;
1901	}
1902	zc->length = length;
1903	return ret;
1904}
1905#endif
1906
1907static void tcp_update_recv_tstamps(struct sk_buff *skb,
1908				    struct scm_timestamping_internal *tss)
1909{
1910	if (skb->tstamp)
1911		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1912	else
1913		tss->ts[0] = (struct timespec64) {0};
1914
1915	if (skb_hwtstamps(skb)->hwtstamp)
1916		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1917	else
1918		tss->ts[2] = (struct timespec64) {0};
1919}
1920
1921/* Similar to __sock_recv_timestamp, but does not require an skb */
1922static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
1923			       struct scm_timestamping_internal *tss)
1924{
1925	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
1926	bool has_timestamping = false;
1927
1928	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
1929		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
1930			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
1931				if (new_tstamp) {
1932					struct __kernel_timespec kts = {
1933						.tv_sec = tss->ts[0].tv_sec,
1934						.tv_nsec = tss->ts[0].tv_nsec,
1935					};
1936					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
1937						 sizeof(kts), &kts);
1938				} else {
1939					struct __kernel_old_timespec ts_old = {
1940						.tv_sec = tss->ts[0].tv_sec,
1941						.tv_nsec = tss->ts[0].tv_nsec,
1942					};
1943					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
1944						 sizeof(ts_old), &ts_old);
1945				}
1946			} else {
1947				if (new_tstamp) {
1948					struct __kernel_sock_timeval stv = {
1949						.tv_sec = tss->ts[0].tv_sec,
1950						.tv_usec = tss->ts[0].tv_nsec / 1000,
1951					};
1952					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
1953						 sizeof(stv), &stv);
1954				} else {
1955					struct __kernel_old_timeval tv = {
1956						.tv_sec = tss->ts[0].tv_sec,
1957						.tv_usec = tss->ts[0].tv_nsec / 1000,
1958					};
1959					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
1960						 sizeof(tv), &tv);
1961				}
1962			}
1963		}
1964
1965		if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
1966			has_timestamping = true;
1967		else
1968			tss->ts[0] = (struct timespec64) {0};
1969	}
1970
1971	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
1972		if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
1973			has_timestamping = true;
1974		else
1975			tss->ts[2] = (struct timespec64) {0};
1976	}
1977
1978	if (has_timestamping) {
1979		tss->ts[1] = (struct timespec64) {0};
1980		if (sock_flag(sk, SOCK_TSTAMP_NEW))
1981			put_cmsg_scm_timestamping64(msg, tss);
1982		else
1983			put_cmsg_scm_timestamping(msg, tss);
1984	}
1985}
1986
1987static int tcp_inq_hint(struct sock *sk)
1988{
1989	const struct tcp_sock *tp = tcp_sk(sk);
1990	u32 copied_seq = READ_ONCE(tp->copied_seq);
1991	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
1992	int inq;
1993
1994	inq = rcv_nxt - copied_seq;
1995	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
1996		lock_sock(sk);
1997		inq = tp->rcv_nxt - tp->copied_seq;
1998		release_sock(sk);
1999	}
2000	/* After receiving a FIN, tell the user-space to continue reading
2001	 * by returning a non-zero inq.
2002	 */
2003	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2004		inq = 1;
2005	return inq;
2006}
2007
2008/*
2009 *	This routine copies from a sock struct into the user buffer.
2010 *
2011 *	Technical note: in 2.3 we work on _locked_ socket, so that
2012 *	tricks with *seq access order and skb->users are not required.
2013 *	Probably, code can be easily improved even more.
2014 */
2015
2016int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2017		int flags, int *addr_len)
 
2018{
2019	struct tcp_sock *tp = tcp_sk(sk);
2020	int copied = 0;
2021	u32 peek_seq;
2022	u32 *seq;
2023	unsigned long used;
2024	int err, inq;
2025	int target;		/* Read at least this many bytes */
2026	long timeo;
2027	struct sk_buff *skb, *last;
2028	u32 urg_hole = 0;
2029	struct scm_timestamping_internal tss;
2030	int cmsg_flags;
2031
2032	if (unlikely(flags & MSG_ERRQUEUE))
2033		return inet_recv_error(sk, msg, len, addr_len);
2034
2035	if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2036	    (sk->sk_state == TCP_ESTABLISHED))
2037		sk_busy_loop(sk, nonblock);
2038
2039	lock_sock(sk);
2040
2041	err = -ENOTCONN;
2042	if (sk->sk_state == TCP_LISTEN)
2043		goto out;
2044
2045	cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2046	timeo = sock_rcvtimeo(sk, nonblock);
 
 
 
2047
2048	/* Urgent data needs to be handled specially. */
2049	if (flags & MSG_OOB)
2050		goto recv_urg;
2051
2052	if (unlikely(tp->repair)) {
2053		err = -EPERM;
2054		if (!(flags & MSG_PEEK))
2055			goto out;
2056
2057		if (tp->repair_queue == TCP_SEND_QUEUE)
2058			goto recv_sndq;
2059
2060		err = -EINVAL;
2061		if (tp->repair_queue == TCP_NO_QUEUE)
2062			goto out;
2063
2064		/* 'common' recv queue MSG_PEEK-ing */
2065	}
2066
2067	seq = &tp->copied_seq;
2068	if (flags & MSG_PEEK) {
2069		peek_seq = tp->copied_seq;
2070		seq = &peek_seq;
2071	}
2072
2073	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2074
2075	do {
2076		u32 offset;
2077
2078		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2079		if (tp->urg_data && tp->urg_seq == *seq) {
2080			if (copied)
2081				break;
2082			if (signal_pending(current)) {
2083				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2084				break;
2085			}
2086		}
2087
2088		/* Next get a buffer. */
2089
2090		last = skb_peek_tail(&sk->sk_receive_queue);
2091		skb_queue_walk(&sk->sk_receive_queue, skb) {
2092			last = skb;
2093			/* Now that we have two receive queues this
2094			 * shouldn't happen.
2095			 */
2096			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2097				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2098				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2099				 flags))
2100				break;
2101
2102			offset = *seq - TCP_SKB_CB(skb)->seq;
2103			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2104				pr_err_once("%s: found a SYN, please report !\n", __func__);
2105				offset--;
2106			}
2107			if (offset < skb->len)
2108				goto found_ok_skb;
2109			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2110				goto found_fin_ok;
2111			WARN(!(flags & MSG_PEEK),
2112			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2113			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2114		}
2115
2116		/* Well, if we have backlog, try to process it now yet. */
2117
2118		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2119			break;
2120
2121		if (copied) {
2122			if (sk->sk_err ||
 
2123			    sk->sk_state == TCP_CLOSE ||
2124			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
2125			    !timeo ||
2126			    signal_pending(current))
2127				break;
2128		} else {
2129			if (sock_flag(sk, SOCK_DONE))
2130				break;
2131
2132			if (sk->sk_err) {
2133				copied = sock_error(sk);
2134				break;
2135			}
2136
2137			if (sk->sk_shutdown & RCV_SHUTDOWN)
2138				break;
2139
2140			if (sk->sk_state == TCP_CLOSE) {
2141				/* This occurs when user tries to read
2142				 * from never connected socket.
2143				 */
2144				copied = -ENOTCONN;
2145				break;
2146			}
2147
2148			if (!timeo) {
2149				copied = -EAGAIN;
2150				break;
2151			}
2152
2153			if (signal_pending(current)) {
2154				copied = sock_intr_errno(timeo);
2155				break;
2156			}
2157		}
2158
2159		tcp_cleanup_rbuf(sk, copied);
2160
2161		if (copied >= target) {
2162			/* Do not sleep, just process backlog. */
2163			release_sock(sk);
2164			lock_sock(sk);
2165		} else {
2166			sk_wait_data(sk, &timeo, last);
 
 
 
 
 
2167		}
2168
2169		if ((flags & MSG_PEEK) &&
2170		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2171			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2172					    current->comm,
2173					    task_pid_nr(current));
2174			peek_seq = tp->copied_seq;
2175		}
2176		continue;
2177
2178found_ok_skb:
2179		/* Ok so how much can we use? */
2180		used = skb->len - offset;
2181		if (len < used)
2182			used = len;
2183
2184		/* Do we have urgent data here? */
2185		if (tp->urg_data) {
2186			u32 urg_offset = tp->urg_seq - *seq;
2187			if (urg_offset < used) {
2188				if (!urg_offset) {
2189					if (!sock_flag(sk, SOCK_URGINLINE)) {
2190						WRITE_ONCE(*seq, *seq + 1);
2191						urg_hole++;
2192						offset++;
2193						used--;
2194						if (!used)
2195							goto skip_copy;
2196					}
2197				} else
2198					used = urg_offset;
2199			}
2200		}
2201
2202		if (!(flags & MSG_TRUNC)) {
2203			err = skb_copy_datagram_msg(skb, offset, msg, used);
2204			if (err) {
2205				/* Exception. Bailout! */
2206				if (!copied)
2207					copied = -EFAULT;
2208				break;
2209			}
2210		}
2211
2212		WRITE_ONCE(*seq, *seq + used);
2213		copied += used;
2214		len -= used;
2215
2216		tcp_rcv_space_adjust(sk);
2217
2218skip_copy:
2219		if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2220			tp->urg_data = 0;
2221			tcp_fast_path_check(sk);
2222		}
2223
2224		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2225			tcp_update_recv_tstamps(skb, &tss);
2226			cmsg_flags |= 2;
2227		}
2228
2229		if (used + offset < skb->len)
2230			continue;
2231
2232		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2233			goto found_fin_ok;
2234		if (!(flags & MSG_PEEK))
2235			sk_eat_skb(sk, skb);
2236		continue;
2237
2238found_fin_ok:
2239		/* Process the FIN. */
2240		WRITE_ONCE(*seq, *seq + 1);
2241		if (!(flags & MSG_PEEK))
2242			sk_eat_skb(sk, skb);
2243		break;
2244	} while (len > 0);
2245
2246	/* According to UNIX98, msg_name/msg_namelen are ignored
2247	 * on connected socket. I was just happy when found this 8) --ANK
2248	 */
2249
2250	/* Clean up data we have read: This will do ACK frames. */
2251	tcp_cleanup_rbuf(sk, copied);
2252
2253	release_sock(sk);
2254
2255	if (cmsg_flags) {
2256		if (cmsg_flags & 2)
2257			tcp_recv_timestamp(msg, sk, &tss);
2258		if (cmsg_flags & 1) {
2259			inq = tcp_inq_hint(sk);
2260			put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2261		}
2262	}
2263
2264	return copied;
2265
2266out:
2267	release_sock(sk);
2268	return err;
2269
2270recv_urg:
2271	err = tcp_recv_urg(sk, msg, len, flags);
2272	goto out;
2273
2274recv_sndq:
2275	err = tcp_peek_sndq(sk, msg, len);
2276	goto out;
2277}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2278EXPORT_SYMBOL(tcp_recvmsg);
2279
2280void tcp_set_state(struct sock *sk, int state)
2281{
2282	int oldstate = sk->sk_state;
2283
2284	/* We defined a new enum for TCP states that are exported in BPF
2285	 * so as not force the internal TCP states to be frozen. The
2286	 * following checks will detect if an internal state value ever
2287	 * differs from the BPF value. If this ever happens, then we will
2288	 * need to remap the internal value to the BPF value before calling
2289	 * tcp_call_bpf_2arg.
2290	 */
2291	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2292	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2293	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2294	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2295	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2296	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2297	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2298	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2299	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2300	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2301	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2302	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
 
2303	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2304
 
 
 
 
 
 
 
 
 
 
 
2305	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2306		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2307
2308	switch (state) {
2309	case TCP_ESTABLISHED:
2310		if (oldstate != TCP_ESTABLISHED)
2311			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2312		break;
2313
2314	case TCP_CLOSE:
2315		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2316			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2317
2318		sk->sk_prot->unhash(sk);
2319		if (inet_csk(sk)->icsk_bind_hash &&
2320		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2321			inet_put_port(sk);
2322		fallthrough;
2323	default:
2324		if (oldstate == TCP_ESTABLISHED)
2325			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2326	}
2327
2328	/* Change state AFTER socket is unhashed to avoid closed
2329	 * socket sitting in hash tables.
2330	 */
2331	inet_sk_state_store(sk, state);
2332}
2333EXPORT_SYMBOL_GPL(tcp_set_state);
2334
2335/*
2336 *	State processing on a close. This implements the state shift for
2337 *	sending our FIN frame. Note that we only send a FIN for some
2338 *	states. A shutdown() may have already sent the FIN, or we may be
2339 *	closed.
2340 */
2341
2342static const unsigned char new_state[16] = {
2343  /* current state:        new state:      action:	*/
2344  [0 /* (Invalid) */]	= TCP_CLOSE,
2345  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2346  [TCP_SYN_SENT]	= TCP_CLOSE,
2347  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2348  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2349  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2350  [TCP_TIME_WAIT]	= TCP_CLOSE,
2351  [TCP_CLOSE]		= TCP_CLOSE,
2352  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2353  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2354  [TCP_LISTEN]		= TCP_CLOSE,
2355  [TCP_CLOSING]		= TCP_CLOSING,
2356  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2357};
2358
2359static int tcp_close_state(struct sock *sk)
2360{
2361	int next = (int)new_state[sk->sk_state];
2362	int ns = next & TCP_STATE_MASK;
2363
2364	tcp_set_state(sk, ns);
2365
2366	return next & TCP_ACTION_FIN;
2367}
2368
2369/*
2370 *	Shutdown the sending side of a connection. Much like close except
2371 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2372 */
2373
2374void tcp_shutdown(struct sock *sk, int how)
2375{
2376	/*	We need to grab some memory, and put together a FIN,
2377	 *	and then put it into the queue to be sent.
2378	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2379	 */
2380	if (!(how & SEND_SHUTDOWN))
2381		return;
2382
2383	/* If we've already sent a FIN, or it's a closed state, skip this. */
2384	if ((1 << sk->sk_state) &
2385	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2386	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2387		/* Clear out any half completed packets.  FIN if needed. */
2388		if (tcp_close_state(sk))
2389			tcp_send_fin(sk);
2390	}
2391}
2392EXPORT_SYMBOL(tcp_shutdown);
2393
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2394bool tcp_check_oom(struct sock *sk, int shift)
2395{
2396	bool too_many_orphans, out_of_socket_memory;
2397
2398	too_many_orphans = tcp_too_many_orphans(sk, shift);
2399	out_of_socket_memory = tcp_out_of_memory(sk);
2400
2401	if (too_many_orphans)
2402		net_info_ratelimited("too many orphaned sockets\n");
2403	if (out_of_socket_memory)
2404		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2405	return too_many_orphans || out_of_socket_memory;
2406}
2407
2408void tcp_close(struct sock *sk, long timeout)
2409{
2410	struct sk_buff *skb;
2411	int data_was_unread = 0;
2412	int state;
2413
2414	lock_sock(sk);
2415	sk->sk_shutdown = SHUTDOWN_MASK;
2416
2417	if (sk->sk_state == TCP_LISTEN) {
2418		tcp_set_state(sk, TCP_CLOSE);
2419
2420		/* Special case. */
2421		inet_csk_listen_stop(sk);
2422
2423		goto adjudge_to_death;
2424	}
2425
2426	/*  We need to flush the recv. buffs.  We do this only on the
2427	 *  descriptor close, not protocol-sourced closes, because the
2428	 *  reader process may not have drained the data yet!
2429	 */
2430	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2431		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2432
2433		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2434			len--;
2435		data_was_unread += len;
2436		__kfree_skb(skb);
2437	}
2438
2439	sk_mem_reclaim(sk);
2440
2441	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2442	if (sk->sk_state == TCP_CLOSE)
2443		goto adjudge_to_death;
2444
2445	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2446	 * data was lost. To witness the awful effects of the old behavior of
2447	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2448	 * GET in an FTP client, suspend the process, wait for the client to
2449	 * advertise a zero window, then kill -9 the FTP client, wheee...
2450	 * Note: timeout is always zero in such a case.
2451	 */
2452	if (unlikely(tcp_sk(sk)->repair)) {
2453		sk->sk_prot->disconnect(sk, 0);
2454	} else if (data_was_unread) {
2455		/* Unread data was tossed, zap the connection. */
2456		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2457		tcp_set_state(sk, TCP_CLOSE);
2458		tcp_send_active_reset(sk, sk->sk_allocation);
2459	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2460		/* Check zero linger _after_ checking for unread data. */
2461		sk->sk_prot->disconnect(sk, 0);
2462		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2463	} else if (tcp_close_state(sk)) {
2464		/* We FIN if the application ate all the data before
2465		 * zapping the connection.
2466		 */
2467
2468		/* RED-PEN. Formally speaking, we have broken TCP state
2469		 * machine. State transitions:
2470		 *
2471		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2472		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2473		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2474		 *
2475		 * are legal only when FIN has been sent (i.e. in window),
2476		 * rather than queued out of window. Purists blame.
2477		 *
2478		 * F.e. "RFC state" is ESTABLISHED,
2479		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2480		 *
2481		 * The visible declinations are that sometimes
2482		 * we enter time-wait state, when it is not required really
2483		 * (harmless), do not send active resets, when they are
2484		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2485		 * they look as CLOSING or LAST_ACK for Linux)
2486		 * Probably, I missed some more holelets.
2487		 * 						--ANK
2488		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2489		 * in a single packet! (May consider it later but will
2490		 * probably need API support or TCP_CORK SYN-ACK until
2491		 * data is written and socket is closed.)
2492		 */
2493		tcp_send_fin(sk);
2494	}
2495
2496	sk_stream_wait_close(sk, timeout);
2497
2498adjudge_to_death:
2499	state = sk->sk_state;
2500	sock_hold(sk);
2501	sock_orphan(sk);
2502
2503	local_bh_disable();
2504	bh_lock_sock(sk);
2505	/* remove backlog if any, without releasing ownership. */
2506	__release_sock(sk);
2507
2508	percpu_counter_inc(sk->sk_prot->orphan_count);
2509
2510	/* Have we already been destroyed by a softirq or backlog? */
2511	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2512		goto out;
2513
2514	/*	This is a (useful) BSD violating of the RFC. There is a
2515	 *	problem with TCP as specified in that the other end could
2516	 *	keep a socket open forever with no application left this end.
2517	 *	We use a 1 minute timeout (about the same as BSD) then kill
2518	 *	our end. If they send after that then tough - BUT: long enough
2519	 *	that we won't make the old 4*rto = almost no time - whoops
2520	 *	reset mistake.
2521	 *
2522	 *	Nope, it was not mistake. It is really desired behaviour
2523	 *	f.e. on http servers, when such sockets are useless, but
2524	 *	consume significant resources. Let's do it with special
2525	 *	linger2	option.					--ANK
2526	 */
2527
2528	if (sk->sk_state == TCP_FIN_WAIT2) {
2529		struct tcp_sock *tp = tcp_sk(sk);
2530		if (tp->linger2 < 0) {
2531			tcp_set_state(sk, TCP_CLOSE);
2532			tcp_send_active_reset(sk, GFP_ATOMIC);
2533			__NET_INC_STATS(sock_net(sk),
2534					LINUX_MIB_TCPABORTONLINGER);
2535		} else {
2536			const int tmo = tcp_fin_time(sk);
2537
2538			if (tmo > TCP_TIMEWAIT_LEN) {
2539				inet_csk_reset_keepalive_timer(sk,
2540						tmo - TCP_TIMEWAIT_LEN);
2541			} else {
2542				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2543				goto out;
2544			}
2545		}
2546	}
2547	if (sk->sk_state != TCP_CLOSE) {
2548		sk_mem_reclaim(sk);
2549		if (tcp_check_oom(sk, 0)) {
2550			tcp_set_state(sk, TCP_CLOSE);
2551			tcp_send_active_reset(sk, GFP_ATOMIC);
2552			__NET_INC_STATS(sock_net(sk),
2553					LINUX_MIB_TCPABORTONMEMORY);
2554		} else if (!check_net(sock_net(sk))) {
2555			/* Not possible to send reset; just close */
2556			tcp_set_state(sk, TCP_CLOSE);
2557		}
2558	}
2559
2560	if (sk->sk_state == TCP_CLOSE) {
2561		struct request_sock *req;
2562
2563		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2564						lockdep_sock_is_held(sk));
2565		/* We could get here with a non-NULL req if the socket is
2566		 * aborted (e.g., closed with unread data) before 3WHS
2567		 * finishes.
2568		 */
2569		if (req)
2570			reqsk_fastopen_remove(sk, req, false);
2571		inet_csk_destroy_sock(sk);
2572	}
2573	/* Otherwise, socket is reprieved until protocol close. */
2574
2575out:
2576	bh_unlock_sock(sk);
2577	local_bh_enable();
 
 
 
 
 
 
2578	release_sock(sk);
2579	sock_put(sk);
2580}
2581EXPORT_SYMBOL(tcp_close);
2582
2583/* These states need RST on ABORT according to RFC793 */
2584
2585static inline bool tcp_need_reset(int state)
2586{
2587	return (1 << state) &
2588	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2589		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2590}
2591
2592static void tcp_rtx_queue_purge(struct sock *sk)
2593{
2594	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2595
2596	tcp_sk(sk)->highest_sack = NULL;
2597	while (p) {
2598		struct sk_buff *skb = rb_to_skb(p);
2599
2600		p = rb_next(p);
2601		/* Since we are deleting whole queue, no need to
2602		 * list_del(&skb->tcp_tsorted_anchor)
2603		 */
2604		tcp_rtx_queue_unlink(skb, sk);
2605		sk_wmem_free_skb(sk, skb);
2606	}
2607}
2608
2609void tcp_write_queue_purge(struct sock *sk)
2610{
2611	struct sk_buff *skb;
2612
2613	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2614	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2615		tcp_skb_tsorted_anchor_cleanup(skb);
2616		sk_wmem_free_skb(sk, skb);
2617	}
2618	tcp_rtx_queue_purge(sk);
2619	skb = sk->sk_tx_skb_cache;
2620	if (skb) {
2621		__kfree_skb(skb);
2622		sk->sk_tx_skb_cache = NULL;
2623	}
2624	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2625	sk_mem_reclaim(sk);
2626	tcp_clear_all_retrans_hints(tcp_sk(sk));
2627	tcp_sk(sk)->packets_out = 0;
2628	inet_csk(sk)->icsk_backoff = 0;
2629}
2630
2631int tcp_disconnect(struct sock *sk, int flags)
2632{
2633	struct inet_sock *inet = inet_sk(sk);
2634	struct inet_connection_sock *icsk = inet_csk(sk);
2635	struct tcp_sock *tp = tcp_sk(sk);
2636	int old_state = sk->sk_state;
2637	u32 seq;
2638
2639	if (old_state != TCP_CLOSE)
2640		tcp_set_state(sk, TCP_CLOSE);
2641
2642	/* ABORT function of RFC793 */
2643	if (old_state == TCP_LISTEN) {
2644		inet_csk_listen_stop(sk);
2645	} else if (unlikely(tp->repair)) {
2646		sk->sk_err = ECONNABORTED;
2647	} else if (tcp_need_reset(old_state) ||
2648		   (tp->snd_nxt != tp->write_seq &&
2649		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2650		/* The last check adjusts for discrepancy of Linux wrt. RFC
2651		 * states
2652		 */
2653		tcp_send_active_reset(sk, gfp_any());
2654		sk->sk_err = ECONNRESET;
2655	} else if (old_state == TCP_SYN_SENT)
2656		sk->sk_err = ECONNRESET;
2657
2658	tcp_clear_xmit_timers(sk);
2659	__skb_queue_purge(&sk->sk_receive_queue);
2660	if (sk->sk_rx_skb_cache) {
2661		__kfree_skb(sk->sk_rx_skb_cache);
2662		sk->sk_rx_skb_cache = NULL;
2663	}
2664	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2665	tp->urg_data = 0;
2666	tcp_write_queue_purge(sk);
2667	tcp_fastopen_active_disable_ofo_check(sk);
2668	skb_rbtree_purge(&tp->out_of_order_queue);
2669
2670	inet->inet_dport = 0;
2671
2672	if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2673		inet_reset_saddr(sk);
2674
2675	sk->sk_shutdown = 0;
2676	sock_reset_flag(sk, SOCK_DONE);
2677	tp->srtt_us = 0;
2678	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2679	tp->rcv_rtt_last_tsecr = 0;
2680
2681	seq = tp->write_seq + tp->max_window + 2;
2682	if (!seq)
2683		seq = 1;
2684	WRITE_ONCE(tp->write_seq, seq);
2685
2686	icsk->icsk_backoff = 0;
2687	icsk->icsk_probes_out = 0;
 
2688	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 
 
2689	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2690	tp->snd_cwnd = TCP_INIT_CWND;
2691	tp->snd_cwnd_cnt = 0;
 
 
2692	tp->window_clamp = 0;
2693	tp->delivered = 0;
2694	tp->delivered_ce = 0;
2695	if (icsk->icsk_ca_ops->release)
2696		icsk->icsk_ca_ops->release(sk);
2697	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
 
2698	tcp_set_ca_state(sk, TCP_CA_Open);
2699	tp->is_sack_reneg = 0;
2700	tcp_clear_retrans(tp);
2701	tp->total_retrans = 0;
2702	inet_csk_delack_init(sk);
2703	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2704	 * issue in __tcp_select_window()
2705	 */
2706	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2707	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2708	__sk_dst_reset(sk);
2709	dst_release(sk->sk_rx_dst);
2710	sk->sk_rx_dst = NULL;
2711	tcp_saved_syn_free(tp);
2712	tp->compressed_ack = 0;
2713	tp->segs_in = 0;
2714	tp->segs_out = 0;
2715	tp->bytes_sent = 0;
2716	tp->bytes_acked = 0;
2717	tp->bytes_received = 0;
2718	tp->bytes_retrans = 0;
2719	tp->data_segs_in = 0;
2720	tp->data_segs_out = 0;
2721	tp->duplicate_sack[0].start_seq = 0;
2722	tp->duplicate_sack[0].end_seq = 0;
2723	tp->dsack_dups = 0;
2724	tp->reord_seen = 0;
2725	tp->retrans_out = 0;
2726	tp->sacked_out = 0;
2727	tp->tlp_high_seq = 0;
2728	tp->last_oow_ack_time = 0;
 
2729	/* There's a bubble in the pipe until at least the first ACK. */
2730	tp->app_limited = ~0U;
 
2731	tp->rack.mstamp = 0;
2732	tp->rack.advanced = 0;
2733	tp->rack.reo_wnd_steps = 1;
2734	tp->rack.last_delivered = 0;
2735	tp->rack.reo_wnd_persist = 0;
2736	tp->rack.dsack_seen = 0;
2737	tp->syn_data_acked = 0;
2738	tp->rx_opt.saw_tstamp = 0;
2739	tp->rx_opt.dsack = 0;
2740	tp->rx_opt.num_sacks = 0;
2741	tp->rcv_ooopack = 0;
2742
2743
2744	/* Clean up fastopen related fields */
2745	tcp_free_fastopen_req(tp);
2746	inet->defer_connect = 0;
2747	tp->fastopen_client_fail = 0;
2748
2749	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2750
2751	if (sk->sk_frag.page) {
2752		put_page(sk->sk_frag.page);
2753		sk->sk_frag.page = NULL;
2754		sk->sk_frag.offset = 0;
2755	}
2756
2757	sk->sk_error_report(sk);
2758	return 0;
2759}
2760EXPORT_SYMBOL(tcp_disconnect);
2761
2762static inline bool tcp_can_repair_sock(const struct sock *sk)
2763{
2764	return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2765		(sk->sk_state != TCP_LISTEN);
2766}
2767
2768static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2769{
2770	struct tcp_repair_window opt;
2771
2772	if (!tp->repair)
2773		return -EPERM;
2774
2775	if (len != sizeof(opt))
2776		return -EINVAL;
2777
2778	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2779		return -EFAULT;
2780
2781	if (opt.max_window < opt.snd_wnd)
2782		return -EINVAL;
2783
2784	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2785		return -EINVAL;
2786
2787	if (after(opt.rcv_wup, tp->rcv_nxt))
2788		return -EINVAL;
2789
2790	tp->snd_wl1	= opt.snd_wl1;
2791	tp->snd_wnd	= opt.snd_wnd;
2792	tp->max_window	= opt.max_window;
2793
2794	tp->rcv_wnd	= opt.rcv_wnd;
2795	tp->rcv_wup	= opt.rcv_wup;
2796
2797	return 0;
2798}
2799
2800static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2801		unsigned int len)
2802{
2803	struct tcp_sock *tp = tcp_sk(sk);
2804	struct tcp_repair_opt opt;
2805	size_t offset = 0;
2806
2807	while (len >= sizeof(opt)) {
2808		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2809			return -EFAULT;
2810
2811		offset += sizeof(opt);
2812		len -= sizeof(opt);
2813
2814		switch (opt.opt_code) {
2815		case TCPOPT_MSS:
2816			tp->rx_opt.mss_clamp = opt.opt_val;
2817			tcp_mtup_init(sk);
2818			break;
2819		case TCPOPT_WINDOW:
2820			{
2821				u16 snd_wscale = opt.opt_val & 0xFFFF;
2822				u16 rcv_wscale = opt.opt_val >> 16;
2823
2824				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2825					return -EFBIG;
2826
2827				tp->rx_opt.snd_wscale = snd_wscale;
2828				tp->rx_opt.rcv_wscale = rcv_wscale;
2829				tp->rx_opt.wscale_ok = 1;
2830			}
2831			break;
2832		case TCPOPT_SACK_PERM:
2833			if (opt.opt_val != 0)
2834				return -EINVAL;
2835
2836			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2837			break;
2838		case TCPOPT_TIMESTAMP:
2839			if (opt.opt_val != 0)
2840				return -EINVAL;
2841
2842			tp->rx_opt.tstamp_ok = 1;
2843			break;
2844		}
2845	}
2846
2847	return 0;
2848}
2849
2850DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2851EXPORT_SYMBOL(tcp_tx_delay_enabled);
2852
2853static void tcp_enable_tx_delay(void)
2854{
2855	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2856		static int __tcp_tx_delay_enabled = 0;
2857
2858		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
2859			static_branch_enable(&tcp_tx_delay_enabled);
2860			pr_info("TCP_TX_DELAY enabled\n");
2861		}
2862	}
2863}
2864
2865/* When set indicates to always queue non-full frames.  Later the user clears
2866 * this option and we transmit any pending partial frames in the queue.  This is
2867 * meant to be used alongside sendfile() to get properly filled frames when the
2868 * user (for example) must write out headers with a write() call first and then
2869 * use sendfile to send out the data parts.
2870 *
2871 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
2872 * TCP_NODELAY.
2873 */
2874static void __tcp_sock_set_cork(struct sock *sk, bool on)
2875{
2876	struct tcp_sock *tp = tcp_sk(sk);
2877
2878	if (on) {
2879		tp->nonagle |= TCP_NAGLE_CORK;
2880	} else {
2881		tp->nonagle &= ~TCP_NAGLE_CORK;
2882		if (tp->nonagle & TCP_NAGLE_OFF)
2883			tp->nonagle |= TCP_NAGLE_PUSH;
2884		tcp_push_pending_frames(sk);
2885	}
2886}
2887
2888void tcp_sock_set_cork(struct sock *sk, bool on)
2889{
2890	lock_sock(sk);
2891	__tcp_sock_set_cork(sk, on);
2892	release_sock(sk);
2893}
2894EXPORT_SYMBOL(tcp_sock_set_cork);
2895
2896/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
2897 * remembered, but it is not activated until cork is cleared.
2898 *
2899 * However, when TCP_NODELAY is set we make an explicit push, which overrides
2900 * even TCP_CORK for currently queued segments.
2901 */
2902static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
2903{
2904	if (on) {
2905		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
2906		tcp_push_pending_frames(sk);
2907	} else {
2908		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
2909	}
2910}
2911
2912void tcp_sock_set_nodelay(struct sock *sk)
2913{
2914	lock_sock(sk);
2915	__tcp_sock_set_nodelay(sk, true);
2916	release_sock(sk);
2917}
2918EXPORT_SYMBOL(tcp_sock_set_nodelay);
2919
2920static void __tcp_sock_set_quickack(struct sock *sk, int val)
2921{
2922	if (!val) {
2923		inet_csk_enter_pingpong_mode(sk);
2924		return;
2925	}
2926
2927	inet_csk_exit_pingpong_mode(sk);
2928	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
2929	    inet_csk_ack_scheduled(sk)) {
2930		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
2931		tcp_cleanup_rbuf(sk, 1);
2932		if (!(val & 1))
2933			inet_csk_enter_pingpong_mode(sk);
2934	}
2935}
2936
2937void tcp_sock_set_quickack(struct sock *sk, int val)
2938{
2939	lock_sock(sk);
2940	__tcp_sock_set_quickack(sk, val);
2941	release_sock(sk);
2942}
2943EXPORT_SYMBOL(tcp_sock_set_quickack);
2944
2945int tcp_sock_set_syncnt(struct sock *sk, int val)
2946{
2947	if (val < 1 || val > MAX_TCP_SYNCNT)
2948		return -EINVAL;
2949
2950	lock_sock(sk);
2951	inet_csk(sk)->icsk_syn_retries = val;
2952	release_sock(sk);
2953	return 0;
2954}
2955EXPORT_SYMBOL(tcp_sock_set_syncnt);
2956
2957void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
2958{
2959	lock_sock(sk);
2960	inet_csk(sk)->icsk_user_timeout = val;
2961	release_sock(sk);
 
 
 
 
 
2962}
2963EXPORT_SYMBOL(tcp_sock_set_user_timeout);
2964
2965int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
2966{
2967	struct tcp_sock *tp = tcp_sk(sk);
2968
2969	if (val < 1 || val > MAX_TCP_KEEPIDLE)
2970		return -EINVAL;
2971
2972	tp->keepalive_time = val * HZ;
 
2973	if (sock_flag(sk, SOCK_KEEPOPEN) &&
2974	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
2975		u32 elapsed = keepalive_time_elapsed(tp);
2976
2977		if (tp->keepalive_time > elapsed)
2978			elapsed = tp->keepalive_time - elapsed;
2979		else
2980			elapsed = 0;
2981		inet_csk_reset_keepalive_timer(sk, elapsed);
2982	}
2983
2984	return 0;
2985}
2986
2987int tcp_sock_set_keepidle(struct sock *sk, int val)
2988{
2989	int err;
2990
2991	lock_sock(sk);
2992	err = tcp_sock_set_keepidle_locked(sk, val);
2993	release_sock(sk);
2994	return err;
2995}
2996EXPORT_SYMBOL(tcp_sock_set_keepidle);
2997
2998int tcp_sock_set_keepintvl(struct sock *sk, int val)
2999{
3000	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3001		return -EINVAL;
3002
3003	lock_sock(sk);
3004	tcp_sk(sk)->keepalive_intvl = val * HZ;
3005	release_sock(sk);
3006	return 0;
3007}
3008EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3009
3010int tcp_sock_set_keepcnt(struct sock *sk, int val)
3011{
3012	if (val < 1 || val > MAX_TCP_KEEPCNT)
3013		return -EINVAL;
3014
3015	lock_sock(sk);
3016	tcp_sk(sk)->keepalive_probes = val;
3017	release_sock(sk);
3018	return 0;
3019}
3020EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3022/*
3023 *	Socket option code for TCP.
3024 */
3025static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3026		sockptr_t optval, unsigned int optlen)
3027{
3028	struct tcp_sock *tp = tcp_sk(sk);
3029	struct inet_connection_sock *icsk = inet_csk(sk);
3030	struct net *net = sock_net(sk);
3031	int val;
3032	int err = 0;
3033
3034	/* These are data/string values, all the others are ints */
3035	switch (optname) {
3036	case TCP_CONGESTION: {
3037		char name[TCP_CA_NAME_MAX];
3038
3039		if (optlen < 1)
3040			return -EINVAL;
3041
3042		val = strncpy_from_sockptr(name, optval,
3043					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3044		if (val < 0)
3045			return -EFAULT;
3046		name[val] = 0;
3047
3048		lock_sock(sk);
3049		err = tcp_set_congestion_control(sk, name, true, true,
3050						 ns_capable(sock_net(sk)->user_ns,
3051							    CAP_NET_ADMIN));
3052		release_sock(sk);
3053		return err;
3054	}
3055	case TCP_ULP: {
3056		char name[TCP_ULP_NAME_MAX];
3057
3058		if (optlen < 1)
3059			return -EINVAL;
3060
3061		val = strncpy_from_sockptr(name, optval,
3062					min_t(long, TCP_ULP_NAME_MAX - 1,
3063					      optlen));
3064		if (val < 0)
3065			return -EFAULT;
3066		name[val] = 0;
3067
3068		lock_sock(sk);
3069		err = tcp_set_ulp(sk, name);
3070		release_sock(sk);
3071		return err;
3072	}
3073	case TCP_FASTOPEN_KEY: {
3074		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3075		__u8 *backup_key = NULL;
3076
3077		/* Allow a backup key as well to facilitate key rotation
3078		 * First key is the active one.
3079		 */
3080		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3081		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3082			return -EINVAL;
3083
3084		if (copy_from_sockptr(key, optval, optlen))
3085			return -EFAULT;
3086
3087		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3088			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3089
3090		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3091	}
3092	default:
3093		/* fallthru */
3094		break;
3095	}
3096
3097	if (optlen < sizeof(int))
3098		return -EINVAL;
3099
3100	if (copy_from_sockptr(&val, optval, sizeof(val)))
3101		return -EFAULT;
3102
3103	lock_sock(sk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3104
3105	switch (optname) {
3106	case TCP_MAXSEG:
3107		/* Values greater than interface MTU won't take effect. However
3108		 * at the point when this call is done we typically don't yet
3109		 * know which interface is going to be used
3110		 */
3111		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3112			err = -EINVAL;
3113			break;
3114		}
3115		tp->rx_opt.user_mss = val;
3116		break;
3117
3118	case TCP_NODELAY:
3119		__tcp_sock_set_nodelay(sk, val);
3120		break;
3121
3122	case TCP_THIN_LINEAR_TIMEOUTS:
3123		if (val < 0 || val > 1)
3124			err = -EINVAL;
3125		else
3126			tp->thin_lto = val;
3127		break;
3128
3129	case TCP_THIN_DUPACK:
3130		if (val < 0 || val > 1)
3131			err = -EINVAL;
3132		break;
3133
3134	case TCP_REPAIR:
3135		if (!tcp_can_repair_sock(sk))
3136			err = -EPERM;
3137		else if (val == TCP_REPAIR_ON) {
3138			tp->repair = 1;
3139			sk->sk_reuse = SK_FORCE_REUSE;
3140			tp->repair_queue = TCP_NO_QUEUE;
3141		} else if (val == TCP_REPAIR_OFF) {
3142			tp->repair = 0;
3143			sk->sk_reuse = SK_NO_REUSE;
3144			tcp_send_window_probe(sk);
3145		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3146			tp->repair = 0;
3147			sk->sk_reuse = SK_NO_REUSE;
3148		} else
3149			err = -EINVAL;
3150
3151		break;
3152
3153	case TCP_REPAIR_QUEUE:
3154		if (!tp->repair)
3155			err = -EPERM;
3156		else if ((unsigned int)val < TCP_QUEUES_NR)
3157			tp->repair_queue = val;
3158		else
3159			err = -EINVAL;
3160		break;
3161
3162	case TCP_QUEUE_SEQ:
3163		if (sk->sk_state != TCP_CLOSE)
3164			err = -EPERM;
3165		else if (tp->repair_queue == TCP_SEND_QUEUE)
3166			WRITE_ONCE(tp->write_seq, val);
3167		else if (tp->repair_queue == TCP_RECV_QUEUE) {
3168			WRITE_ONCE(tp->rcv_nxt, val);
3169			WRITE_ONCE(tp->copied_seq, val);
3170		}
3171		else
 
 
 
 
 
 
3172			err = -EINVAL;
 
3173		break;
3174
3175	case TCP_REPAIR_OPTIONS:
3176		if (!tp->repair)
3177			err = -EINVAL;
3178		else if (sk->sk_state == TCP_ESTABLISHED)
3179			err = tcp_repair_options_est(sk, optval, optlen);
3180		else
3181			err = -EPERM;
3182		break;
3183
3184	case TCP_CORK:
3185		__tcp_sock_set_cork(sk, val);
3186		break;
3187
3188	case TCP_KEEPIDLE:
3189		err = tcp_sock_set_keepidle_locked(sk, val);
3190		break;
3191	case TCP_KEEPINTVL:
3192		if (val < 1 || val > MAX_TCP_KEEPINTVL)
3193			err = -EINVAL;
3194		else
3195			tp->keepalive_intvl = val * HZ;
3196		break;
3197	case TCP_KEEPCNT:
3198		if (val < 1 || val > MAX_TCP_KEEPCNT)
3199			err = -EINVAL;
3200		else
3201			tp->keepalive_probes = val;
3202		break;
3203	case TCP_SYNCNT:
3204		if (val < 1 || val > MAX_TCP_SYNCNT)
3205			err = -EINVAL;
3206		else
3207			icsk->icsk_syn_retries = val;
3208		break;
3209
3210	case TCP_SAVE_SYN:
3211		if (val < 0 || val > 1)
 
3212			err = -EINVAL;
3213		else
3214			tp->save_syn = val;
3215		break;
3216
3217	case TCP_LINGER2:
3218		if (val < 0)
3219			tp->linger2 = -1;
3220		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3221			tp->linger2 = TCP_FIN_TIMEOUT_MAX;
3222		else
3223			tp->linger2 = val * HZ;
3224		break;
3225
3226	case TCP_DEFER_ACCEPT:
3227		/* Translate value in seconds to number of retransmits */
3228		icsk->icsk_accept_queue.rskq_defer_accept =
3229			secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3230					TCP_RTO_MAX / HZ);
3231		break;
3232
3233	case TCP_WINDOW_CLAMP:
3234		if (!val) {
3235			if (sk->sk_state != TCP_CLOSE) {
3236				err = -EINVAL;
3237				break;
3238			}
3239			tp->window_clamp = 0;
3240		} else
3241			tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3242						SOCK_MIN_RCVBUF / 2 : val;
3243		break;
3244
3245	case TCP_QUICKACK:
3246		__tcp_sock_set_quickack(sk, val);
3247		break;
3248
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3249#ifdef CONFIG_TCP_MD5SIG
3250	case TCP_MD5SIG:
3251	case TCP_MD5SIG_EXT:
3252		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3253		break;
3254#endif
3255	case TCP_USER_TIMEOUT:
3256		/* Cap the max time in ms TCP will retry or probe the window
3257		 * before giving up and aborting (ETIMEDOUT) a connection.
3258		 */
3259		if (val < 0)
3260			err = -EINVAL;
3261		else
3262			icsk->icsk_user_timeout = val;
3263		break;
3264
3265	case TCP_FASTOPEN:
3266		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3267		    TCPF_LISTEN))) {
3268			tcp_fastopen_init_key_once(net);
3269
3270			fastopen_queue_tune(sk, val);
3271		} else {
3272			err = -EINVAL;
3273		}
3274		break;
3275	case TCP_FASTOPEN_CONNECT:
3276		if (val > 1 || val < 0) {
3277			err = -EINVAL;
3278		} else if (net->ipv4.sysctl_tcp_fastopen & TFO_CLIENT_ENABLE) {
 
3279			if (sk->sk_state == TCP_CLOSE)
3280				tp->fastopen_connect = val;
3281			else
3282				err = -EINVAL;
3283		} else {
3284			err = -EOPNOTSUPP;
3285		}
3286		break;
3287	case TCP_FASTOPEN_NO_COOKIE:
3288		if (val > 1 || val < 0)
3289			err = -EINVAL;
3290		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3291			err = -EINVAL;
3292		else
3293			tp->fastopen_no_cookie = val;
3294		break;
3295	case TCP_TIMESTAMP:
3296		if (!tp->repair)
3297			err = -EPERM;
3298		else
3299			tp->tsoffset = val - tcp_time_stamp_raw();
 
 
 
 
 
 
3300		break;
3301	case TCP_REPAIR_WINDOW:
3302		err = tcp_repair_set_window(tp, optval, optlen);
3303		break;
3304	case TCP_NOTSENT_LOWAT:
3305		tp->notsent_lowat = val;
3306		sk->sk_write_space(sk);
3307		break;
3308	case TCP_INQ:
3309		if (val > 1 || val < 0)
3310			err = -EINVAL;
3311		else
3312			tp->recvmsg_inq = val;
3313		break;
3314	case TCP_TX_DELAY:
3315		if (val)
3316			tcp_enable_tx_delay();
3317		tp->tcp_tx_delay = val;
3318		break;
3319	default:
3320		err = -ENOPROTOOPT;
3321		break;
3322	}
3323
3324	release_sock(sk);
3325	return err;
3326}
3327
3328int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3329		   unsigned int optlen)
3330{
3331	const struct inet_connection_sock *icsk = inet_csk(sk);
3332
3333	if (level != SOL_TCP)
3334		return icsk->icsk_af_ops->setsockopt(sk, level, optname,
3335						     optval, optlen);
 
3336	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3337}
3338EXPORT_SYMBOL(tcp_setsockopt);
3339
3340static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3341				      struct tcp_info *info)
3342{
3343	u64 stats[__TCP_CHRONO_MAX], total = 0;
3344	enum tcp_chrono i;
3345
3346	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3347		stats[i] = tp->chrono_stat[i - 1];
3348		if (i == tp->chrono_type)
3349			stats[i] += tcp_jiffies32 - tp->chrono_start;
3350		stats[i] *= USEC_PER_SEC / HZ;
3351		total += stats[i];
3352	}
3353
3354	info->tcpi_busy_time = total;
3355	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3356	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3357}
3358
3359/* Return information about state of tcp endpoint in API format. */
3360void tcp_get_info(struct sock *sk, struct tcp_info *info)
3361{
3362	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3363	const struct inet_connection_sock *icsk = inet_csk(sk);
3364	unsigned long rate;
3365	u32 now;
3366	u64 rate64;
3367	bool slow;
3368
3369	memset(info, 0, sizeof(*info));
3370	if (sk->sk_type != SOCK_STREAM)
3371		return;
3372
3373	info->tcpi_state = inet_sk_state_load(sk);
3374
3375	/* Report meaningful fields for all TCP states, including listeners */
3376	rate = READ_ONCE(sk->sk_pacing_rate);
3377	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3378	info->tcpi_pacing_rate = rate64;
3379
3380	rate = READ_ONCE(sk->sk_max_pacing_rate);
3381	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3382	info->tcpi_max_pacing_rate = rate64;
3383
3384	info->tcpi_reordering = tp->reordering;
3385	info->tcpi_snd_cwnd = tp->snd_cwnd;
3386
3387	if (info->tcpi_state == TCP_LISTEN) {
3388		/* listeners aliased fields :
3389		 * tcpi_unacked -> Number of children ready for accept()
3390		 * tcpi_sacked  -> max backlog
3391		 */
3392		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3393		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3394		return;
3395	}
3396
3397	slow = lock_sock_fast(sk);
3398
3399	info->tcpi_ca_state = icsk->icsk_ca_state;
3400	info->tcpi_retransmits = icsk->icsk_retransmits;
3401	info->tcpi_probes = icsk->icsk_probes_out;
3402	info->tcpi_backoff = icsk->icsk_backoff;
3403
3404	if (tp->rx_opt.tstamp_ok)
3405		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3406	if (tcp_is_sack(tp))
3407		info->tcpi_options |= TCPI_OPT_SACK;
3408	if (tp->rx_opt.wscale_ok) {
3409		info->tcpi_options |= TCPI_OPT_WSCALE;
3410		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3411		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3412	}
3413
3414	if (tp->ecn_flags & TCP_ECN_OK)
3415		info->tcpi_options |= TCPI_OPT_ECN;
3416	if (tp->ecn_flags & TCP_ECN_SEEN)
3417		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3418	if (tp->syn_data_acked)
3419		info->tcpi_options |= TCPI_OPT_SYN_DATA;
 
 
3420
3421	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3422	info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
 
3423	info->tcpi_snd_mss = tp->mss_cache;
3424	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3425
3426	info->tcpi_unacked = tp->packets_out;
3427	info->tcpi_sacked = tp->sacked_out;
3428
3429	info->tcpi_lost = tp->lost_out;
3430	info->tcpi_retrans = tp->retrans_out;
3431
3432	now = tcp_jiffies32;
3433	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3434	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3435	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3436
3437	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3438	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3439	info->tcpi_rtt = tp->srtt_us >> 3;
3440	info->tcpi_rttvar = tp->mdev_us >> 2;
3441	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3442	info->tcpi_advmss = tp->advmss;
3443
3444	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3445	info->tcpi_rcv_space = tp->rcvq_space.space;
3446
3447	info->tcpi_total_retrans = tp->total_retrans;
3448
3449	info->tcpi_bytes_acked = tp->bytes_acked;
3450	info->tcpi_bytes_received = tp->bytes_received;
3451	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3452	tcp_get_info_chrono_stats(tp, info);
3453
3454	info->tcpi_segs_out = tp->segs_out;
3455	info->tcpi_segs_in = tp->segs_in;
 
 
 
3456
3457	info->tcpi_min_rtt = tcp_min_rtt(tp);
3458	info->tcpi_data_segs_in = tp->data_segs_in;
3459	info->tcpi_data_segs_out = tp->data_segs_out;
3460
3461	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3462	rate64 = tcp_compute_delivery_rate(tp);
3463	if (rate64)
3464		info->tcpi_delivery_rate = rate64;
3465	info->tcpi_delivered = tp->delivered;
3466	info->tcpi_delivered_ce = tp->delivered_ce;
3467	info->tcpi_bytes_sent = tp->bytes_sent;
3468	info->tcpi_bytes_retrans = tp->bytes_retrans;
3469	info->tcpi_dsack_dups = tp->dsack_dups;
3470	info->tcpi_reord_seen = tp->reord_seen;
3471	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3472	info->tcpi_snd_wnd = tp->snd_wnd;
 
 
3473	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
 
 
 
 
 
 
 
3474	unlock_sock_fast(sk, slow);
3475}
3476EXPORT_SYMBOL_GPL(tcp_get_info);
3477
3478static size_t tcp_opt_stats_get_size(void)
3479{
3480	return
3481		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3482		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3483		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3484		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3485		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3486		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3487		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3488		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3489		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3490		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3491		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3492		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3493		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3494		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3495		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3496		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3497		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3498		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3499		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3500		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3501		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3502		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3503		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3504		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3505		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
 
 
3506		0;
3507}
3508
 
 
 
 
 
 
 
 
 
 
 
3509struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3510					       const struct sk_buff *orig_skb)
 
3511{
3512	const struct tcp_sock *tp = tcp_sk(sk);
3513	struct sk_buff *stats;
3514	struct tcp_info info;
3515	unsigned long rate;
3516	u64 rate64;
3517
3518	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3519	if (!stats)
3520		return NULL;
3521
3522	tcp_get_info_chrono_stats(tp, &info);
3523	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3524			  info.tcpi_busy_time, TCP_NLA_PAD);
3525	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3526			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3527	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3528			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3529	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3530			  tp->data_segs_out, TCP_NLA_PAD);
3531	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3532			  tp->total_retrans, TCP_NLA_PAD);
3533
3534	rate = READ_ONCE(sk->sk_pacing_rate);
3535	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3536	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3537
3538	rate64 = tcp_compute_delivery_rate(tp);
3539	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3540
3541	nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3542	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3543	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3544
3545	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3546	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3547	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3548	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3549	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3550
3551	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3552	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3553
3554	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3555			  TCP_NLA_PAD);
3556	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3557			  TCP_NLA_PAD);
3558	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3559	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3560	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3561	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3562	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3563		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3564	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3565			  TCP_NLA_PAD);
 
 
 
3566
 
3567	return stats;
3568}
3569
3570static int do_tcp_getsockopt(struct sock *sk, int level,
3571		int optname, char __user *optval, int __user *optlen)
3572{
3573	struct inet_connection_sock *icsk = inet_csk(sk);
3574	struct tcp_sock *tp = tcp_sk(sk);
3575	struct net *net = sock_net(sk);
3576	int val, len;
3577
3578	if (get_user(len, optlen))
3579		return -EFAULT;
3580
3581	len = min_t(unsigned int, len, sizeof(int));
3582
3583	if (len < 0)
3584		return -EINVAL;
3585
3586	switch (optname) {
3587	case TCP_MAXSEG:
3588		val = tp->mss_cache;
3589		if (!val && ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
 
3590			val = tp->rx_opt.user_mss;
3591		if (tp->repair)
3592			val = tp->rx_opt.mss_clamp;
3593		break;
3594	case TCP_NODELAY:
3595		val = !!(tp->nonagle&TCP_NAGLE_OFF);
3596		break;
3597	case TCP_CORK:
3598		val = !!(tp->nonagle&TCP_NAGLE_CORK);
3599		break;
3600	case TCP_KEEPIDLE:
3601		val = keepalive_time_when(tp) / HZ;
3602		break;
3603	case TCP_KEEPINTVL:
3604		val = keepalive_intvl_when(tp) / HZ;
3605		break;
3606	case TCP_KEEPCNT:
3607		val = keepalive_probes(tp);
3608		break;
3609	case TCP_SYNCNT:
3610		val = icsk->icsk_syn_retries ? : net->ipv4.sysctl_tcp_syn_retries;
 
3611		break;
3612	case TCP_LINGER2:
3613		val = tp->linger2;
3614		if (val >= 0)
3615			val = (val ? : net->ipv4.sysctl_tcp_fin_timeout) / HZ;
3616		break;
3617	case TCP_DEFER_ACCEPT:
3618		val = retrans_to_secs(icsk->icsk_accept_queue.rskq_defer_accept,
3619				      TCP_TIMEOUT_INIT / HZ, TCP_RTO_MAX / HZ);
 
3620		break;
3621	case TCP_WINDOW_CLAMP:
3622		val = tp->window_clamp;
3623		break;
3624	case TCP_INFO: {
3625		struct tcp_info info;
3626
3627		if (get_user(len, optlen))
3628			return -EFAULT;
3629
3630		tcp_get_info(sk, &info);
3631
3632		len = min_t(unsigned int, len, sizeof(info));
3633		if (put_user(len, optlen))
3634			return -EFAULT;
3635		if (copy_to_user(optval, &info, len))
3636			return -EFAULT;
3637		return 0;
3638	}
3639	case TCP_CC_INFO: {
3640		const struct tcp_congestion_ops *ca_ops;
3641		union tcp_cc_info info;
3642		size_t sz = 0;
3643		int attr;
3644
3645		if (get_user(len, optlen))
3646			return -EFAULT;
3647
3648		ca_ops = icsk->icsk_ca_ops;
3649		if (ca_ops && ca_ops->get_info)
3650			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3651
3652		len = min_t(unsigned int, len, sz);
3653		if (put_user(len, optlen))
3654			return -EFAULT;
3655		if (copy_to_user(optval, &info, len))
3656			return -EFAULT;
3657		return 0;
3658	}
3659	case TCP_QUICKACK:
3660		val = !inet_csk_in_pingpong_mode(sk);
3661		break;
3662
3663	case TCP_CONGESTION:
3664		if (get_user(len, optlen))
3665			return -EFAULT;
3666		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3667		if (put_user(len, optlen))
3668			return -EFAULT;
3669		if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3670			return -EFAULT;
3671		return 0;
3672
3673	case TCP_ULP:
3674		if (get_user(len, optlen))
3675			return -EFAULT;
3676		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3677		if (!icsk->icsk_ulp_ops) {
3678			if (put_user(0, optlen))
 
3679				return -EFAULT;
3680			return 0;
3681		}
3682		if (put_user(len, optlen))
3683			return -EFAULT;
3684		if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3685			return -EFAULT;
3686		return 0;
3687
3688	case TCP_FASTOPEN_KEY: {
3689		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3690		unsigned int key_len;
3691
3692		if (get_user(len, optlen))
3693			return -EFAULT;
3694
3695		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3696				TCP_FASTOPEN_KEY_LENGTH;
3697		len = min_t(unsigned int, len, key_len);
3698		if (put_user(len, optlen))
3699			return -EFAULT;
3700		if (copy_to_user(optval, key, len))
3701			return -EFAULT;
3702		return 0;
3703	}
3704	case TCP_THIN_LINEAR_TIMEOUTS:
3705		val = tp->thin_lto;
3706		break;
3707
3708	case TCP_THIN_DUPACK:
3709		val = 0;
3710		break;
3711
3712	case TCP_REPAIR:
3713		val = tp->repair;
3714		break;
3715
3716	case TCP_REPAIR_QUEUE:
3717		if (tp->repair)
3718			val = tp->repair_queue;
3719		else
3720			return -EINVAL;
3721		break;
3722
3723	case TCP_REPAIR_WINDOW: {
3724		struct tcp_repair_window opt;
3725
3726		if (get_user(len, optlen))
3727			return -EFAULT;
3728
3729		if (len != sizeof(opt))
3730			return -EINVAL;
3731
3732		if (!tp->repair)
3733			return -EPERM;
3734
3735		opt.snd_wl1	= tp->snd_wl1;
3736		opt.snd_wnd	= tp->snd_wnd;
3737		opt.max_window	= tp->max_window;
3738		opt.rcv_wnd	= tp->rcv_wnd;
3739		opt.rcv_wup	= tp->rcv_wup;
3740
3741		if (copy_to_user(optval, &opt, len))
3742			return -EFAULT;
3743		return 0;
3744	}
3745	case TCP_QUEUE_SEQ:
3746		if (tp->repair_queue == TCP_SEND_QUEUE)
3747			val = tp->write_seq;
3748		else if (tp->repair_queue == TCP_RECV_QUEUE)
3749			val = tp->rcv_nxt;
3750		else
3751			return -EINVAL;
3752		break;
3753
3754	case TCP_USER_TIMEOUT:
3755		val = icsk->icsk_user_timeout;
3756		break;
3757
3758	case TCP_FASTOPEN:
3759		val = icsk->icsk_accept_queue.fastopenq.max_qlen;
3760		break;
3761
3762	case TCP_FASTOPEN_CONNECT:
3763		val = tp->fastopen_connect;
3764		break;
3765
3766	case TCP_FASTOPEN_NO_COOKIE:
3767		val = tp->fastopen_no_cookie;
3768		break;
3769
3770	case TCP_TX_DELAY:
3771		val = tp->tcp_tx_delay;
3772		break;
3773
3774	case TCP_TIMESTAMP:
3775		val = tcp_time_stamp_raw() + tp->tsoffset;
 
 
 
 
3776		break;
3777	case TCP_NOTSENT_LOWAT:
3778		val = tp->notsent_lowat;
3779		break;
3780	case TCP_INQ:
3781		val = tp->recvmsg_inq;
3782		break;
3783	case TCP_SAVE_SYN:
3784		val = tp->save_syn;
3785		break;
3786	case TCP_SAVED_SYN: {
3787		if (get_user(len, optlen))
3788			return -EFAULT;
3789
3790		lock_sock(sk);
3791		if (tp->saved_syn) {
3792			if (len < tp->saved_syn[0]) {
3793				if (put_user(tp->saved_syn[0], optlen)) {
3794					release_sock(sk);
 
3795					return -EFAULT;
3796				}
3797				release_sock(sk);
3798				return -EINVAL;
3799			}
3800			len = tp->saved_syn[0];
3801			if (put_user(len, optlen)) {
3802				release_sock(sk);
3803				return -EFAULT;
3804			}
3805			if (copy_to_user(optval, tp->saved_syn + 1, len)) {
3806				release_sock(sk);
3807				return -EFAULT;
3808			}
3809			tcp_saved_syn_free(tp);
3810			release_sock(sk);
3811		} else {
3812			release_sock(sk);
3813			len = 0;
3814			if (put_user(len, optlen))
3815				return -EFAULT;
3816		}
3817		return 0;
3818	}
3819#ifdef CONFIG_MMU
3820	case TCP_ZEROCOPY_RECEIVE: {
3821		struct tcp_zerocopy_receive zc;
 
3822		int err;
3823
3824		if (get_user(len, optlen))
3825			return -EFAULT;
3826		if (len < offsetofend(struct tcp_zerocopy_receive, length))
 
3827			return -EINVAL;
3828		if (len > sizeof(zc)) {
 
 
 
 
3829			len = sizeof(zc);
3830			if (put_user(len, optlen))
3831				return -EFAULT;
3832		}
3833		if (copy_from_user(&zc, optval, len))
3834			return -EFAULT;
3835		lock_sock(sk);
3836		err = tcp_zerocopy_receive(sk, &zc);
3837		release_sock(sk);
3838		if (len == sizeof(zc))
3839			goto zerocopy_rcv_sk_err;
 
 
 
 
 
 
3840		switch (len) {
 
 
 
 
 
 
 
3841		case offsetofend(struct tcp_zerocopy_receive, err):
3842			goto zerocopy_rcv_sk_err;
3843		case offsetofend(struct tcp_zerocopy_receive, inq):
3844			goto zerocopy_rcv_inq;
3845		case offsetofend(struct tcp_zerocopy_receive, length):
3846		default:
3847			goto zerocopy_rcv_out;
3848		}
 
 
 
 
 
3849zerocopy_rcv_sk_err:
3850		if (!err)
3851			zc.err = sock_error(sk);
3852zerocopy_rcv_inq:
3853		zc.inq = tcp_inq_hint(sk);
3854zerocopy_rcv_out:
3855		if (!err && copy_to_user(optval, &zc, len))
3856			err = -EFAULT;
3857		return err;
3858	}
3859#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3860	default:
3861		return -ENOPROTOOPT;
3862	}
3863
3864	if (put_user(len, optlen))
3865		return -EFAULT;
3866	if (copy_to_user(optval, &val, len))
3867		return -EFAULT;
3868	return 0;
3869}
3870
 
 
 
 
 
 
 
 
 
 
 
 
3871int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
3872		   int __user *optlen)
3873{
3874	struct inet_connection_sock *icsk = inet_csk(sk);
3875
3876	if (level != SOL_TCP)
3877		return icsk->icsk_af_ops->getsockopt(sk, level, optname,
3878						     optval, optlen);
3879	return do_tcp_getsockopt(sk, level, optname, optval, optlen);
 
 
3880}
3881EXPORT_SYMBOL(tcp_getsockopt);
3882
3883#ifdef CONFIG_TCP_MD5SIG
3884static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
3885static DEFINE_MUTEX(tcp_md5sig_mutex);
3886static bool tcp_md5sig_pool_populated = false;
3887
3888static void __tcp_alloc_md5sig_pool(void)
3889{
3890	struct crypto_ahash *hash;
3891	int cpu;
3892
3893	hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
3894	if (IS_ERR(hash))
3895		return;
3896
3897	for_each_possible_cpu(cpu) {
3898		void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
3899		struct ahash_request *req;
3900
3901		if (!scratch) {
3902			scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
3903					       sizeof(struct tcphdr),
3904					       GFP_KERNEL,
3905					       cpu_to_node(cpu));
3906			if (!scratch)
3907				return;
3908			per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
3909		}
3910		if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
3911			continue;
3912
3913		req = ahash_request_alloc(hash, GFP_KERNEL);
3914		if (!req)
3915			return;
3916
3917		ahash_request_set_callback(req, 0, NULL, NULL);
3918
3919		per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
 
 
 
 
 
 
 
 
 
 
3920	}
3921	/* before setting tcp_md5sig_pool_populated, we must commit all writes
3922	 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
3923	 */
3924	smp_wmb();
3925	tcp_md5sig_pool_populated = true;
3926}
3927
3928bool tcp_alloc_md5sig_pool(void)
3929{
3930	if (unlikely(!tcp_md5sig_pool_populated)) {
3931		mutex_lock(&tcp_md5sig_mutex);
3932
3933		if (!tcp_md5sig_pool_populated) {
3934			__tcp_alloc_md5sig_pool();
3935			if (tcp_md5sig_pool_populated)
3936				static_branch_inc(&tcp_md5_needed);
3937		}
3938
3939		mutex_unlock(&tcp_md5sig_mutex);
3940	}
3941	return tcp_md5sig_pool_populated;
3942}
3943EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
3944
3945
3946/**
3947 *	tcp_get_md5sig_pool - get md5sig_pool for this user
3948 *
3949 *	We use percpu structure, so if we succeed, we exit with preemption
3950 *	and BH disabled, to make sure another thread or softirq handling
3951 *	wont try to get same context.
3952 */
3953struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
3954{
3955	local_bh_disable();
3956
3957	if (tcp_md5sig_pool_populated) {
3958		/* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
3959		smp_rmb();
3960		return this_cpu_ptr(&tcp_md5sig_pool);
3961	}
3962	local_bh_enable();
3963	return NULL;
3964}
3965EXPORT_SYMBOL(tcp_get_md5sig_pool);
3966
3967int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
3968			  const struct sk_buff *skb, unsigned int header_len)
3969{
3970	struct scatterlist sg;
3971	const struct tcphdr *tp = tcp_hdr(skb);
3972	struct ahash_request *req = hp->md5_req;
3973	unsigned int i;
3974	const unsigned int head_data_len = skb_headlen(skb) > header_len ?
3975					   skb_headlen(skb) - header_len : 0;
3976	const struct skb_shared_info *shi = skb_shinfo(skb);
3977	struct sk_buff *frag_iter;
3978
3979	sg_init_table(&sg, 1);
3980
3981	sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
3982	ahash_request_set_crypt(req, &sg, NULL, head_data_len);
3983	if (crypto_ahash_update(req))
3984		return 1;
3985
3986	for (i = 0; i < shi->nr_frags; ++i) {
3987		const skb_frag_t *f = &shi->frags[i];
3988		unsigned int offset = skb_frag_off(f);
3989		struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
3990
3991		sg_set_page(&sg, page, skb_frag_size(f),
3992			    offset_in_page(offset));
3993		ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
3994		if (crypto_ahash_update(req))
3995			return 1;
3996	}
3997
3998	skb_walk_frags(skb, frag_iter)
3999		if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4000			return 1;
4001
4002	return 0;
4003}
4004EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4005
4006int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4007{
4008	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4009	struct scatterlist sg;
4010
4011	sg_init_one(&sg, key->key, keylen);
4012	ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4013
4014	/* We use data_race() because tcp_md5_do_add() might change key->key under us */
4015	return data_race(crypto_ahash_update(hp->md5_req));
 
 
4016}
4017EXPORT_SYMBOL(tcp_md5_hash_key);
4018
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4019#endif
4020
4021void tcp_done(struct sock *sk)
4022{
4023	struct request_sock *req;
4024
4025	/* We might be called with a new socket, after
4026	 * inet_csk_prepare_forced_close() has been called
4027	 * so we can not use lockdep_sock_is_held(sk)
4028	 */
4029	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4030
4031	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4032		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4033
4034	tcp_set_state(sk, TCP_CLOSE);
4035	tcp_clear_xmit_timers(sk);
4036	if (req)
4037		reqsk_fastopen_remove(sk, req, false);
4038
4039	sk->sk_shutdown = SHUTDOWN_MASK;
4040
4041	if (!sock_flag(sk, SOCK_DEAD))
4042		sk->sk_state_change(sk);
4043	else
4044		inet_csk_destroy_sock(sk);
4045}
4046EXPORT_SYMBOL_GPL(tcp_done);
4047
4048int tcp_abort(struct sock *sk, int err)
4049{
4050	if (!sk_fullsock(sk)) {
4051		if (sk->sk_state == TCP_NEW_SYN_RECV) {
4052			struct request_sock *req = inet_reqsk(sk);
4053
4054			local_bh_disable();
4055			inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4056			local_bh_enable();
4057			return 0;
4058		}
4059		return -EOPNOTSUPP;
4060	}
 
 
4061
4062	/* Don't race with userspace socket closes such as tcp_close. */
4063	lock_sock(sk);
 
 
 
 
 
 
 
 
 
4064
4065	if (sk->sk_state == TCP_LISTEN) {
4066		tcp_set_state(sk, TCP_CLOSE);
4067		inet_csk_listen_stop(sk);
4068	}
4069
4070	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4071	local_bh_disable();
4072	bh_lock_sock(sk);
4073
4074	if (!sock_flag(sk, SOCK_DEAD)) {
4075		sk->sk_err = err;
4076		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4077		smp_wmb();
4078		sk->sk_error_report(sk);
4079		if (tcp_need_reset(sk->sk_state))
4080			tcp_send_active_reset(sk, GFP_ATOMIC);
4081		tcp_done(sk);
4082	}
4083
4084	bh_unlock_sock(sk);
4085	local_bh_enable();
4086	tcp_write_queue_purge(sk);
4087	release_sock(sk);
 
4088	return 0;
4089}
4090EXPORT_SYMBOL_GPL(tcp_abort);
4091
4092extern struct tcp_congestion_ops tcp_reno;
4093
4094static __initdata unsigned long thash_entries;
4095static int __init set_thash_entries(char *str)
4096{
4097	ssize_t ret;
4098
4099	if (!str)
4100		return 0;
4101
4102	ret = kstrtoul(str, 0, &thash_entries);
4103	if (ret)
4104		return 0;
4105
4106	return 1;
4107}
4108__setup("thash_entries=", set_thash_entries);
4109
4110static void __init tcp_init_mem(void)
4111{
4112	unsigned long limit = nr_free_buffer_pages() / 16;
4113
4114	limit = max(limit, 128UL);
4115	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4116	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4117	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4118}
4119
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4120void __init tcp_init(void)
4121{
4122	int max_rshare, max_wshare, cnt;
4123	unsigned long limit;
4124	unsigned int i;
4125
4126	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4127	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4128		     sizeof_field(struct sk_buff, cb));
4129
 
 
4130	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4131	percpu_counter_init(&tcp_orphan_count, 0, GFP_KERNEL);
4132	inet_hashinfo_init(&tcp_hashinfo);
 
 
4133	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4134			    thash_entries, 21,  /* one slot per 2 MB*/
4135			    0, 64 * 1024);
4136	tcp_hashinfo.bind_bucket_cachep =
4137		kmem_cache_create("tcp_bind_bucket",
4138				  sizeof(struct inet_bind_bucket), 0,
4139				  SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
 
 
 
 
 
 
 
 
4140
4141	/* Size and allocate the main established and bind bucket
4142	 * hash tables.
4143	 *
4144	 * The methodology is similar to that of the buffer cache.
4145	 */
4146	tcp_hashinfo.ehash =
4147		alloc_large_system_hash("TCP established",
4148					sizeof(struct inet_ehash_bucket),
4149					thash_entries,
4150					17, /* one slot per 128 KB of memory */
4151					0,
4152					NULL,
4153					&tcp_hashinfo.ehash_mask,
4154					0,
4155					thash_entries ? 0 : 512 * 1024);
4156	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4157		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4158
4159	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4160		panic("TCP: failed to alloc ehash_locks");
4161	tcp_hashinfo.bhash =
4162		alloc_large_system_hash("TCP bind",
4163					sizeof(struct inet_bind_hashbucket),
4164					tcp_hashinfo.ehash_mask + 1,
4165					17, /* one slot per 128 KB of memory */
4166					0,
4167					&tcp_hashinfo.bhash_size,
4168					NULL,
4169					0,
4170					64 * 1024);
4171	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
 
4172	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4173		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4174		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
 
 
4175	}
4176
 
4177
4178	cnt = tcp_hashinfo.ehash_mask + 1;
4179	sysctl_tcp_max_orphans = cnt / 2;
4180
4181	tcp_init_mem();
4182	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4183	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4184	max_wshare = min(4UL*1024*1024, limit);
4185	max_rshare = min(6UL*1024*1024, limit);
4186
4187	init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4188	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4189	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4190
4191	init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4192	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4193	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4194
4195	pr_info("Hash tables configured (established %u bind %u)\n",
4196		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4197
4198	tcp_v4_init();
4199	tcp_metrics_init();
4200	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4201	tcp_tasklet_init();
4202	mptcp_init();
4203}
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
   4 *		operating system.  INET is implemented using the  BSD Socket
   5 *		interface as the means of communication with the user level.
   6 *
   7 *		Implementation of the Transmission Control Protocol(TCP).
   8 *
   9 * Authors:	Ross Biro
  10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
  12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
  13 *		Florian La Roche, <flla@stud.uni-sb.de>
  14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
  16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
  17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
  18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  19 *		Jorge Cwik, <jorge@laser.satlink.net>
  20 *
  21 * Fixes:
  22 *		Alan Cox	:	Numerous verify_area() calls
  23 *		Alan Cox	:	Set the ACK bit on a reset
  24 *		Alan Cox	:	Stopped it crashing if it closed while
  25 *					sk->inuse=1 and was trying to connect
  26 *					(tcp_err()).
  27 *		Alan Cox	:	All icmp error handling was broken
  28 *					pointers passed where wrong and the
  29 *					socket was looked up backwards. Nobody
  30 *					tested any icmp error code obviously.
  31 *		Alan Cox	:	tcp_err() now handled properly. It
  32 *					wakes people on errors. poll
  33 *					behaves and the icmp error race
  34 *					has gone by moving it into sock.c
  35 *		Alan Cox	:	tcp_send_reset() fixed to work for
  36 *					everything not just packets for
  37 *					unknown sockets.
  38 *		Alan Cox	:	tcp option processing.
  39 *		Alan Cox	:	Reset tweaked (still not 100%) [Had
  40 *					syn rule wrong]
  41 *		Herp Rosmanith  :	More reset fixes
  42 *		Alan Cox	:	No longer acks invalid rst frames.
  43 *					Acking any kind of RST is right out.
  44 *		Alan Cox	:	Sets an ignore me flag on an rst
  45 *					receive otherwise odd bits of prattle
  46 *					escape still
  47 *		Alan Cox	:	Fixed another acking RST frame bug.
  48 *					Should stop LAN workplace lockups.
  49 *		Alan Cox	: 	Some tidyups using the new skb list
  50 *					facilities
  51 *		Alan Cox	:	sk->keepopen now seems to work
  52 *		Alan Cox	:	Pulls options out correctly on accepts
  53 *		Alan Cox	:	Fixed assorted sk->rqueue->next errors
  54 *		Alan Cox	:	PSH doesn't end a TCP read. Switched a
  55 *					bit to skb ops.
  56 *		Alan Cox	:	Tidied tcp_data to avoid a potential
  57 *					nasty.
  58 *		Alan Cox	:	Added some better commenting, as the
  59 *					tcp is hard to follow
  60 *		Alan Cox	:	Removed incorrect check for 20 * psh
  61 *	Michael O'Reilly	:	ack < copied bug fix.
  62 *	Johannes Stille		:	Misc tcp fixes (not all in yet).
  63 *		Alan Cox	:	FIN with no memory -> CRASH
  64 *		Alan Cox	:	Added socket option proto entries.
  65 *					Also added awareness of them to accept.
  66 *		Alan Cox	:	Added TCP options (SOL_TCP)
  67 *		Alan Cox	:	Switched wakeup calls to callbacks,
  68 *					so the kernel can layer network
  69 *					sockets.
  70 *		Alan Cox	:	Use ip_tos/ip_ttl settings.
  71 *		Alan Cox	:	Handle FIN (more) properly (we hope).
  72 *		Alan Cox	:	RST frames sent on unsynchronised
  73 *					state ack error.
  74 *		Alan Cox	:	Put in missing check for SYN bit.
  75 *		Alan Cox	:	Added tcp_select_window() aka NET2E
  76 *					window non shrink trick.
  77 *		Alan Cox	:	Added a couple of small NET2E timer
  78 *					fixes
  79 *		Charles Hedrick :	TCP fixes
  80 *		Toomas Tamm	:	TCP window fixes
  81 *		Alan Cox	:	Small URG fix to rlogin ^C ack fight
  82 *		Charles Hedrick	:	Rewrote most of it to actually work
  83 *		Linus		:	Rewrote tcp_read() and URG handling
  84 *					completely
  85 *		Gerhard Koerting:	Fixed some missing timer handling
  86 *		Matthew Dillon  :	Reworked TCP machine states as per RFC
  87 *		Gerhard Koerting:	PC/TCP workarounds
  88 *		Adam Caldwell	:	Assorted timer/timing errors
  89 *		Matthew Dillon	:	Fixed another RST bug
  90 *		Alan Cox	:	Move to kernel side addressing changes.
  91 *		Alan Cox	:	Beginning work on TCP fastpathing
  92 *					(not yet usable)
  93 *		Arnt Gulbrandsen:	Turbocharged tcp_check() routine.
  94 *		Alan Cox	:	TCP fast path debugging
  95 *		Alan Cox	:	Window clamping
  96 *		Michael Riepe	:	Bug in tcp_check()
  97 *		Matt Dillon	:	More TCP improvements and RST bug fixes
  98 *		Matt Dillon	:	Yet more small nasties remove from the
  99 *					TCP code (Be very nice to this man if
 100 *					tcp finally works 100%) 8)
 101 *		Alan Cox	:	BSD accept semantics.
 102 *		Alan Cox	:	Reset on closedown bug.
 103 *	Peter De Schrijver	:	ENOTCONN check missing in tcp_sendto().
 104 *		Michael Pall	:	Handle poll() after URG properly in
 105 *					all cases.
 106 *		Michael Pall	:	Undo the last fix in tcp_read_urg()
 107 *					(multi URG PUSH broke rlogin).
 108 *		Michael Pall	:	Fix the multi URG PUSH problem in
 109 *					tcp_readable(), poll() after URG
 110 *					works now.
 111 *		Michael Pall	:	recv(...,MSG_OOB) never blocks in the
 112 *					BSD api.
 113 *		Alan Cox	:	Changed the semantics of sk->socket to
 114 *					fix a race and a signal problem with
 115 *					accept() and async I/O.
 116 *		Alan Cox	:	Relaxed the rules on tcp_sendto().
 117 *		Yury Shevchuk	:	Really fixed accept() blocking problem.
 118 *		Craig I. Hagan  :	Allow for BSD compatible TIME_WAIT for
 119 *					clients/servers which listen in on
 120 *					fixed ports.
 121 *		Alan Cox	:	Cleaned the above up and shrank it to
 122 *					a sensible code size.
 123 *		Alan Cox	:	Self connect lockup fix.
 124 *		Alan Cox	:	No connect to multicast.
 125 *		Ross Biro	:	Close unaccepted children on master
 126 *					socket close.
 127 *		Alan Cox	:	Reset tracing code.
 128 *		Alan Cox	:	Spurious resets on shutdown.
 129 *		Alan Cox	:	Giant 15 minute/60 second timer error
 130 *		Alan Cox	:	Small whoops in polling before an
 131 *					accept.
 132 *		Alan Cox	:	Kept the state trace facility since
 133 *					it's handy for debugging.
 134 *		Alan Cox	:	More reset handler fixes.
 135 *		Alan Cox	:	Started rewriting the code based on
 136 *					the RFC's for other useful protocol
 137 *					references see: Comer, KA9Q NOS, and
 138 *					for a reference on the difference
 139 *					between specifications and how BSD
 140 *					works see the 4.4lite source.
 141 *		A.N.Kuznetsov	:	Don't time wait on completion of tidy
 142 *					close.
 143 *		Linus Torvalds	:	Fin/Shutdown & copied_seq changes.
 144 *		Linus Torvalds	:	Fixed BSD port reuse to work first syn
 145 *		Alan Cox	:	Reimplemented timers as per the RFC
 146 *					and using multiple timers for sanity.
 147 *		Alan Cox	:	Small bug fixes, and a lot of new
 148 *					comments.
 149 *		Alan Cox	:	Fixed dual reader crash by locking
 150 *					the buffers (much like datagram.c)
 151 *		Alan Cox	:	Fixed stuck sockets in probe. A probe
 152 *					now gets fed up of retrying without
 153 *					(even a no space) answer.
 154 *		Alan Cox	:	Extracted closing code better
 155 *		Alan Cox	:	Fixed the closing state machine to
 156 *					resemble the RFC.
 157 *		Alan Cox	:	More 'per spec' fixes.
 158 *		Jorge Cwik	:	Even faster checksumming.
 159 *		Alan Cox	:	tcp_data() doesn't ack illegal PSH
 160 *					only frames. At least one pc tcp stack
 161 *					generates them.
 162 *		Alan Cox	:	Cache last socket.
 163 *		Alan Cox	:	Per route irtt.
 164 *		Matt Day	:	poll()->select() match BSD precisely on error
 165 *		Alan Cox	:	New buffers
 166 *		Marc Tamsky	:	Various sk->prot->retransmits and
 167 *					sk->retransmits misupdating fixed.
 168 *					Fixed tcp_write_timeout: stuck close,
 169 *					and TCP syn retries gets used now.
 170 *		Mark Yarvis	:	In tcp_read_wakeup(), don't send an
 171 *					ack if state is TCP_CLOSED.
 172 *		Alan Cox	:	Look up device on a retransmit - routes may
 173 *					change. Doesn't yet cope with MSS shrink right
 174 *					but it's a start!
 175 *		Marc Tamsky	:	Closing in closing fixes.
 176 *		Mike Shaver	:	RFC1122 verifications.
 177 *		Alan Cox	:	rcv_saddr errors.
 178 *		Alan Cox	:	Block double connect().
 179 *		Alan Cox	:	Small hooks for enSKIP.
 180 *		Alexey Kuznetsov:	Path MTU discovery.
 181 *		Alan Cox	:	Support soft errors.
 182 *		Alan Cox	:	Fix MTU discovery pathological case
 183 *					when the remote claims no mtu!
 184 *		Marc Tamsky	:	TCP_CLOSE fix.
 185 *		Colin (G3TNE)	:	Send a reset on syn ack replies in
 186 *					window but wrong (fixes NT lpd problems)
 187 *		Pedro Roque	:	Better TCP window handling, delayed ack.
 188 *		Joerg Reuter	:	No modification of locked buffers in
 189 *					tcp_do_retransmit()
 190 *		Eric Schenk	:	Changed receiver side silly window
 191 *					avoidance algorithm to BSD style
 192 *					algorithm. This doubles throughput
 193 *					against machines running Solaris,
 194 *					and seems to result in general
 195 *					improvement.
 196 *	Stefan Magdalinski	:	adjusted tcp_readable() to fix FIONREAD
 197 *	Willy Konynenberg	:	Transparent proxying support.
 198 *	Mike McLagan		:	Routing by source
 199 *		Keith Owens	:	Do proper merging with partial SKB's in
 200 *					tcp_do_sendmsg to avoid burstiness.
 201 *		Eric Schenk	:	Fix fast close down bug with
 202 *					shutdown() followed by close().
 203 *		Andi Kleen 	:	Make poll agree with SIGIO
 204 *	Salvatore Sanfilippo	:	Support SO_LINGER with linger == 1 and
 205 *					lingertime == 0 (RFC 793 ABORT Call)
 206 *	Hirokazu Takahashi	:	Use copy_from_user() instead of
 207 *					csum_and_copy_from_user() if possible.
 208 *
 209 * Description of States:
 210 *
 211 *	TCP_SYN_SENT		sent a connection request, waiting for ack
 212 *
 213 *	TCP_SYN_RECV		received a connection request, sent ack,
 214 *				waiting for final ack in three-way handshake.
 215 *
 216 *	TCP_ESTABLISHED		connection established
 217 *
 218 *	TCP_FIN_WAIT1		our side has shutdown, waiting to complete
 219 *				transmission of remaining buffered data
 220 *
 221 *	TCP_FIN_WAIT2		all buffered data sent, waiting for remote
 222 *				to shutdown
 223 *
 224 *	TCP_CLOSING		both sides have shutdown but we still have
 225 *				data we have to finish sending
 226 *
 227 *	TCP_TIME_WAIT		timeout to catch resent junk before entering
 228 *				closed, can only be entered from FIN_WAIT2
 229 *				or CLOSING.  Required because the other end
 230 *				may not have gotten our last ACK causing it
 231 *				to retransmit the data packet (which we ignore)
 232 *
 233 *	TCP_CLOSE_WAIT		remote side has shutdown and is waiting for
 234 *				us to finish writing our data and to shutdown
 235 *				(we have to close() to move on to LAST_ACK)
 236 *
 237 *	TCP_LAST_ACK		out side has shutdown after remote has
 238 *				shutdown.  There may still be data in our
 239 *				buffer that we have to finish sending
 240 *
 241 *	TCP_CLOSE		socket is finished
 242 */
 243
 244#define pr_fmt(fmt) "TCP: " fmt
 245
 246#include <crypto/hash.h>
 247#include <linux/kernel.h>
 248#include <linux/module.h>
 249#include <linux/types.h>
 250#include <linux/fcntl.h>
 251#include <linux/poll.h>
 252#include <linux/inet_diag.h>
 253#include <linux/init.h>
 254#include <linux/fs.h>
 255#include <linux/skbuff.h>
 256#include <linux/scatterlist.h>
 257#include <linux/splice.h>
 258#include <linux/net.h>
 259#include <linux/socket.h>
 260#include <linux/random.h>
 261#include <linux/memblock.h>
 262#include <linux/highmem.h>
 
 263#include <linux/cache.h>
 264#include <linux/err.h>
 265#include <linux/time.h>
 266#include <linux/slab.h>
 267#include <linux/errqueue.h>
 268#include <linux/static_key.h>
 269#include <linux/btf.h>
 270
 271#include <net/icmp.h>
 272#include <net/inet_common.h>
 273#include <net/tcp.h>
 274#include <net/mptcp.h>
 275#include <net/xfrm.h>
 276#include <net/ip.h>
 277#include <net/sock.h>
 278
 279#include <linux/uaccess.h>
 280#include <asm/ioctls.h>
 281#include <net/busy_poll.h>
 282
 283/* Track pending CMSGs. */
 284enum {
 285	TCP_CMSG_INQ = 1,
 286	TCP_CMSG_TS = 2
 287};
 288
 289DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
 290EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
 291
 292long sysctl_tcp_mem[3] __read_mostly;
 293EXPORT_SYMBOL(sysctl_tcp_mem);
 294
 295atomic_long_t tcp_memory_allocated ____cacheline_aligned_in_smp;	/* Current allocated memory. */
 296EXPORT_SYMBOL(tcp_memory_allocated);
 297DEFINE_PER_CPU(int, tcp_memory_per_cpu_fw_alloc);
 298EXPORT_PER_CPU_SYMBOL_GPL(tcp_memory_per_cpu_fw_alloc);
 299
 300#if IS_ENABLED(CONFIG_SMC)
 301DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
 302EXPORT_SYMBOL(tcp_have_smc);
 303#endif
 304
 305/*
 306 * Current number of TCP sockets.
 307 */
 308struct percpu_counter tcp_sockets_allocated ____cacheline_aligned_in_smp;
 309EXPORT_SYMBOL(tcp_sockets_allocated);
 310
 311/*
 312 * TCP splice context
 313 */
 314struct tcp_splice_state {
 315	struct pipe_inode_info *pipe;
 316	size_t len;
 317	unsigned int flags;
 318};
 319
 320/*
 321 * Pressure flag: try to collapse.
 322 * Technical note: it is used by multiple contexts non atomically.
 323 * All the __sk_mem_schedule() is of this nature: accounting
 324 * is strict, actions are advisory and have some latency.
 325 */
 326unsigned long tcp_memory_pressure __read_mostly;
 327EXPORT_SYMBOL_GPL(tcp_memory_pressure);
 328
 
 
 
 
 
 329void tcp_enter_memory_pressure(struct sock *sk)
 330{
 331	unsigned long val;
 332
 333	if (READ_ONCE(tcp_memory_pressure))
 334		return;
 335	val = jiffies;
 336
 337	if (!val)
 338		val--;
 339	if (!cmpxchg(&tcp_memory_pressure, 0, val))
 340		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
 341}
 342EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
 343
 344void tcp_leave_memory_pressure(struct sock *sk)
 345{
 346	unsigned long val;
 347
 348	if (!READ_ONCE(tcp_memory_pressure))
 349		return;
 350	val = xchg(&tcp_memory_pressure, 0);
 351	if (val)
 352		NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
 353			      jiffies_to_msecs(jiffies - val));
 354}
 355EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
 356
 357/* Convert seconds to retransmits based on initial and max timeout */
 358static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
 359{
 360	u8 res = 0;
 361
 362	if (seconds > 0) {
 363		int period = timeout;
 364
 365		res = 1;
 366		while (seconds > period && res < 255) {
 367			res++;
 368			timeout <<= 1;
 369			if (timeout > rto_max)
 370				timeout = rto_max;
 371			period += timeout;
 372		}
 373	}
 374	return res;
 375}
 376
 377/* Convert retransmits to seconds based on initial and max timeout */
 378static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
 379{
 380	int period = 0;
 381
 382	if (retrans > 0) {
 383		period = timeout;
 384		while (--retrans) {
 385			timeout <<= 1;
 386			if (timeout > rto_max)
 387				timeout = rto_max;
 388			period += timeout;
 389		}
 390	}
 391	return period;
 392}
 393
 394static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
 395{
 396	u32 rate = READ_ONCE(tp->rate_delivered);
 397	u32 intv = READ_ONCE(tp->rate_interval_us);
 398	u64 rate64 = 0;
 399
 400	if (rate && intv) {
 401		rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
 402		do_div(rate64, intv);
 403	}
 404	return rate64;
 405}
 406
 407/* Address-family independent initialization for a tcp_sock.
 408 *
 409 * NOTE: A lot of things set to zero explicitly by call to
 410 *       sk_alloc() so need not be done here.
 411 */
 412void tcp_init_sock(struct sock *sk)
 413{
 414	struct inet_connection_sock *icsk = inet_csk(sk);
 415	struct tcp_sock *tp = tcp_sk(sk);
 416
 417	tp->out_of_order_queue = RB_ROOT;
 418	sk->tcp_rtx_queue = RB_ROOT;
 419	tcp_init_xmit_timers(sk);
 420	INIT_LIST_HEAD(&tp->tsq_node);
 421	INIT_LIST_HEAD(&tp->tsorted_sent_queue);
 422
 423	icsk->icsk_rto = TCP_TIMEOUT_INIT;
 424	icsk->icsk_rto_min = TCP_RTO_MIN;
 425	icsk->icsk_delack_max = TCP_DELACK_MAX;
 426	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
 427	minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
 428
 429	/* So many TCP implementations out there (incorrectly) count the
 430	 * initial SYN frame in their delayed-ACK and congestion control
 431	 * algorithms that we must have the following bandaid to talk
 432	 * efficiently to them.  -DaveM
 433	 */
 434	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
 435
 436	/* There's a bubble in the pipe until at least the first ACK. */
 437	tp->app_limited = ~0U;
 438	tp->rate_app_limited = 1;
 439
 440	/* See draft-stevens-tcpca-spec-01 for discussion of the
 441	 * initialization of these values.
 442	 */
 443	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
 444	tp->snd_cwnd_clamp = ~0;
 445	tp->mss_cache = TCP_MSS_DEFAULT;
 446
 447	tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
 448	tcp_assign_congestion_control(sk);
 449
 450	tp->tsoffset = 0;
 451	tp->rack.reo_wnd_steps = 1;
 452
 453	sk->sk_write_space = sk_stream_write_space;
 454	sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
 455
 456	icsk->icsk_sync_mss = tcp_sync_mss;
 457
 458	WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
 459	WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
 460	tcp_scaling_ratio_init(sk);
 461
 462	set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
 463	sk_sockets_allocated_inc(sk);
 
 464}
 465EXPORT_SYMBOL(tcp_init_sock);
 466
 467static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
 468{
 469	struct sk_buff *skb = tcp_write_queue_tail(sk);
 470
 471	if (tsflags && skb) {
 472		struct skb_shared_info *shinfo = skb_shinfo(skb);
 473		struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 474
 475		sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
 476		if (tsflags & SOF_TIMESTAMPING_TX_ACK)
 477			tcb->txstamp_ack = 1;
 478		if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
 479			shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
 480	}
 481}
 482
 483static bool tcp_stream_is_readable(struct sock *sk, int target)
 
 484{
 485	if (tcp_epollin_ready(sk, target))
 486		return true;
 487	return sk_is_readable(sk);
 
 
 
 
 
 
 
 
 488}
 489
 490/*
 491 *	Wait for a TCP event.
 492 *
 493 *	Note that we don't need to lock the socket, as the upper poll layers
 494 *	take care of normal races (between the test and the event) and we don't
 495 *	go look at any of the socket buffers directly.
 496 */
 497__poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
 498{
 499	__poll_t mask;
 500	struct sock *sk = sock->sk;
 501	const struct tcp_sock *tp = tcp_sk(sk);
 502	u8 shutdown;
 503	int state;
 504
 505	sock_poll_wait(file, sock, wait);
 506
 507	state = inet_sk_state_load(sk);
 508	if (state == TCP_LISTEN)
 509		return inet_csk_listen_poll(sk);
 510
 511	/* Socket is not locked. We are protected from async events
 512	 * by poll logic and correct handling of state changes
 513	 * made by other threads is impossible in any case.
 514	 */
 515
 516	mask = 0;
 517
 518	/*
 519	 * EPOLLHUP is certainly not done right. But poll() doesn't
 520	 * have a notion of HUP in just one direction, and for a
 521	 * socket the read side is more interesting.
 522	 *
 523	 * Some poll() documentation says that EPOLLHUP is incompatible
 524	 * with the EPOLLOUT/POLLWR flags, so somebody should check this
 525	 * all. But careful, it tends to be safer to return too many
 526	 * bits than too few, and you can easily break real applications
 527	 * if you don't tell them that something has hung up!
 528	 *
 529	 * Check-me.
 530	 *
 531	 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
 532	 * our fs/select.c). It means that after we received EOF,
 533	 * poll always returns immediately, making impossible poll() on write()
 534	 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
 535	 * if and only if shutdown has been made in both directions.
 536	 * Actually, it is interesting to look how Solaris and DUX
 537	 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
 538	 * then we could set it on SND_SHUTDOWN. BTW examples given
 539	 * in Stevens' books assume exactly this behaviour, it explains
 540	 * why EPOLLHUP is incompatible with EPOLLOUT.	--ANK
 541	 *
 542	 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
 543	 * blocking on fresh not-connected or disconnected socket. --ANK
 544	 */
 545	shutdown = READ_ONCE(sk->sk_shutdown);
 546	if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
 547		mask |= EPOLLHUP;
 548	if (shutdown & RCV_SHUTDOWN)
 549		mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
 550
 551	/* Connected or passive Fast Open socket? */
 552	if (state != TCP_SYN_SENT &&
 553	    (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
 554		int target = sock_rcvlowat(sk, 0, INT_MAX);
 555		u16 urg_data = READ_ONCE(tp->urg_data);
 556
 557		if (unlikely(urg_data) &&
 558		    READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
 559		    !sock_flag(sk, SOCK_URGINLINE))
 560			target++;
 561
 562		if (tcp_stream_is_readable(sk, target))
 563			mask |= EPOLLIN | EPOLLRDNORM;
 564
 565		if (!(shutdown & SEND_SHUTDOWN)) {
 566			if (__sk_stream_is_writeable(sk, 1)) {
 567				mask |= EPOLLOUT | EPOLLWRNORM;
 568			} else {  /* send SIGIO later */
 569				sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
 570				set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
 571
 572				/* Race breaker. If space is freed after
 573				 * wspace test but before the flags are set,
 574				 * IO signal will be lost. Memory barrier
 575				 * pairs with the input side.
 576				 */
 577				smp_mb__after_atomic();
 578				if (__sk_stream_is_writeable(sk, 1))
 579					mask |= EPOLLOUT | EPOLLWRNORM;
 580			}
 581		} else
 582			mask |= EPOLLOUT | EPOLLWRNORM;
 583
 584		if (urg_data & TCP_URG_VALID)
 585			mask |= EPOLLPRI;
 586	} else if (state == TCP_SYN_SENT &&
 587		   inet_test_bit(DEFER_CONNECT, sk)) {
 588		/* Active TCP fastopen socket with defer_connect
 589		 * Return EPOLLOUT so application can call write()
 590		 * in order for kernel to generate SYN+data
 591		 */
 592		mask |= EPOLLOUT | EPOLLWRNORM;
 593	}
 594	/* This barrier is coupled with smp_wmb() in tcp_reset() */
 595	smp_rmb();
 596	if (READ_ONCE(sk->sk_err) ||
 597	    !skb_queue_empty_lockless(&sk->sk_error_queue))
 598		mask |= EPOLLERR;
 599
 600	return mask;
 601}
 602EXPORT_SYMBOL(tcp_poll);
 603
 604int tcp_ioctl(struct sock *sk, int cmd, int *karg)
 605{
 606	struct tcp_sock *tp = tcp_sk(sk);
 607	int answ;
 608	bool slow;
 609
 610	switch (cmd) {
 611	case SIOCINQ:
 612		if (sk->sk_state == TCP_LISTEN)
 613			return -EINVAL;
 614
 615		slow = lock_sock_fast(sk);
 616		answ = tcp_inq(sk);
 617		unlock_sock_fast(sk, slow);
 618		break;
 619	case SIOCATMARK:
 620		answ = READ_ONCE(tp->urg_data) &&
 621		       READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
 622		break;
 623	case SIOCOUTQ:
 624		if (sk->sk_state == TCP_LISTEN)
 625			return -EINVAL;
 626
 627		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 628			answ = 0;
 629		else
 630			answ = READ_ONCE(tp->write_seq) - tp->snd_una;
 631		break;
 632	case SIOCOUTQNSD:
 633		if (sk->sk_state == TCP_LISTEN)
 634			return -EINVAL;
 635
 636		if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
 637			answ = 0;
 638		else
 639			answ = READ_ONCE(tp->write_seq) -
 640			       READ_ONCE(tp->snd_nxt);
 641		break;
 642	default:
 643		return -ENOIOCTLCMD;
 644	}
 645
 646	*karg = answ;
 647	return 0;
 648}
 649EXPORT_SYMBOL(tcp_ioctl);
 650
 651void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
 652{
 653	TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
 654	tp->pushed_seq = tp->write_seq;
 655}
 656
 657static inline bool forced_push(const struct tcp_sock *tp)
 658{
 659	return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
 660}
 661
 662void tcp_skb_entail(struct sock *sk, struct sk_buff *skb)
 663{
 664	struct tcp_sock *tp = tcp_sk(sk);
 665	struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
 666
 
 667	tcb->seq     = tcb->end_seq = tp->write_seq;
 668	tcb->tcp_flags = TCPHDR_ACK;
 
 669	__skb_header_release(skb);
 670	tcp_add_write_queue_tail(sk, skb);
 671	sk_wmem_queued_add(sk, skb->truesize);
 672	sk_mem_charge(sk, skb->truesize);
 673	if (tp->nonagle & TCP_NAGLE_PUSH)
 674		tp->nonagle &= ~TCP_NAGLE_PUSH;
 675
 676	tcp_slow_start_after_idle_check(sk);
 677}
 678
 679static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
 680{
 681	if (flags & MSG_OOB)
 682		tp->snd_up = tp->write_seq;
 683}
 684
 685/* If a not yet filled skb is pushed, do not send it if
 686 * we have data packets in Qdisc or NIC queues :
 687 * Because TX completion will happen shortly, it gives a chance
 688 * to coalesce future sendmsg() payload into this skb, without
 689 * need for a timer, and with no latency trade off.
 690 * As packets containing data payload have a bigger truesize
 691 * than pure acks (dataless) packets, the last checks prevent
 692 * autocorking if we only have an ACK in Qdisc/NIC queues,
 693 * or if TX completion was delayed after we processed ACK packet.
 694 */
 695static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
 696				int size_goal)
 697{
 698	return skb->len < size_goal &&
 699	       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
 700	       !tcp_rtx_queue_empty(sk) &&
 701	       refcount_read(&sk->sk_wmem_alloc) > skb->truesize &&
 702	       tcp_skb_can_collapse_to(skb);
 703}
 704
 705void tcp_push(struct sock *sk, int flags, int mss_now,
 706	      int nonagle, int size_goal)
 707{
 708	struct tcp_sock *tp = tcp_sk(sk);
 709	struct sk_buff *skb;
 710
 711	skb = tcp_write_queue_tail(sk);
 712	if (!skb)
 713		return;
 714	if (!(flags & MSG_MORE) || forced_push(tp))
 715		tcp_mark_push(tp, skb);
 716
 717	tcp_mark_urg(tp, flags);
 718
 719	if (tcp_should_autocork(sk, skb, size_goal)) {
 720
 721		/* avoid atomic op if TSQ_THROTTLED bit is already set */
 722		if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
 723			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
 724			set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
 725			smp_mb__after_atomic();
 726		}
 727		/* It is possible TX completion already happened
 728		 * before we set TSQ_THROTTLED.
 729		 */
 730		if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
 731			return;
 732	}
 733
 734	if (flags & MSG_MORE)
 735		nonagle = TCP_NAGLE_CORK;
 736
 737	__tcp_push_pending_frames(sk, mss_now, nonagle);
 738}
 739
 740static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
 741				unsigned int offset, size_t len)
 742{
 743	struct tcp_splice_state *tss = rd_desc->arg.data;
 744	int ret;
 745
 746	ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
 747			      min(rd_desc->count, len), tss->flags);
 748	if (ret > 0)
 749		rd_desc->count -= ret;
 750	return ret;
 751}
 752
 753static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
 754{
 755	/* Store TCP splice context information in read_descriptor_t. */
 756	read_descriptor_t rd_desc = {
 757		.arg.data = tss,
 758		.count	  = tss->len,
 759	};
 760
 761	return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
 762}
 763
 764/**
 765 *  tcp_splice_read - splice data from TCP socket to a pipe
 766 * @sock:	socket to splice from
 767 * @ppos:	position (not valid)
 768 * @pipe:	pipe to splice to
 769 * @len:	number of bytes to splice
 770 * @flags:	splice modifier flags
 771 *
 772 * Description:
 773 *    Will read pages from given socket and fill them into a pipe.
 774 *
 775 **/
 776ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
 777			struct pipe_inode_info *pipe, size_t len,
 778			unsigned int flags)
 779{
 780	struct sock *sk = sock->sk;
 781	struct tcp_splice_state tss = {
 782		.pipe = pipe,
 783		.len = len,
 784		.flags = flags,
 785	};
 786	long timeo;
 787	ssize_t spliced;
 788	int ret;
 789
 790	sock_rps_record_flow(sk);
 791	/*
 792	 * We can't seek on a socket input
 793	 */
 794	if (unlikely(*ppos))
 795		return -ESPIPE;
 796
 797	ret = spliced = 0;
 798
 799	lock_sock(sk);
 800
 801	timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
 802	while (tss.len) {
 803		ret = __tcp_splice_read(sk, &tss);
 804		if (ret < 0)
 805			break;
 806		else if (!ret) {
 807			if (spliced)
 808				break;
 809			if (sock_flag(sk, SOCK_DONE))
 810				break;
 811			if (sk->sk_err) {
 812				ret = sock_error(sk);
 813				break;
 814			}
 815			if (sk->sk_shutdown & RCV_SHUTDOWN)
 816				break;
 817			if (sk->sk_state == TCP_CLOSE) {
 818				/*
 819				 * This occurs when user tries to read
 820				 * from never connected socket.
 821				 */
 822				ret = -ENOTCONN;
 823				break;
 824			}
 825			if (!timeo) {
 826				ret = -EAGAIN;
 827				break;
 828			}
 829			/* if __tcp_splice_read() got nothing while we have
 830			 * an skb in receive queue, we do not want to loop.
 831			 * This might happen with URG data.
 832			 */
 833			if (!skb_queue_empty(&sk->sk_receive_queue))
 834				break;
 835			ret = sk_wait_data(sk, &timeo, NULL);
 836			if (ret < 0)
 837				break;
 838			if (signal_pending(current)) {
 839				ret = sock_intr_errno(timeo);
 840				break;
 841			}
 842			continue;
 843		}
 844		tss.len -= ret;
 845		spliced += ret;
 846
 847		if (!tss.len || !timeo)
 848			break;
 849		release_sock(sk);
 850		lock_sock(sk);
 851
 852		if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
 853		    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 854		    signal_pending(current))
 855			break;
 856	}
 857
 858	release_sock(sk);
 859
 860	if (spliced)
 861		return spliced;
 862
 863	return ret;
 864}
 865EXPORT_SYMBOL(tcp_splice_read);
 866
 867struct sk_buff *tcp_stream_alloc_skb(struct sock *sk, gfp_t gfp,
 868				     bool force_schedule)
 869{
 870	struct sk_buff *skb;
 871
 872	skb = alloc_skb_fclone(MAX_TCP_HEADER, gfp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873	if (likely(skb)) {
 874		bool mem_scheduled;
 875
 876		skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
 877		if (force_schedule) {
 878			mem_scheduled = true;
 879			sk_forced_mem_schedule(sk, skb->truesize);
 880		} else {
 881			mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
 882		}
 883		if (likely(mem_scheduled)) {
 884			skb_reserve(skb, MAX_TCP_HEADER);
 885			skb->ip_summed = CHECKSUM_PARTIAL;
 
 
 
 
 886			INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
 887			return skb;
 888		}
 889		__kfree_skb(skb);
 890	} else {
 891		sk->sk_prot->enter_memory_pressure(sk);
 892		sk_stream_moderate_sndbuf(sk);
 893	}
 894	return NULL;
 895}
 896
 897static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
 898				       int large_allowed)
 899{
 900	struct tcp_sock *tp = tcp_sk(sk);
 901	u32 new_size_goal, size_goal;
 902
 903	if (!large_allowed)
 904		return mss_now;
 905
 906	/* Note : tcp_tso_autosize() will eventually split this later */
 907	new_size_goal = tcp_bound_to_half_wnd(tp, sk->sk_gso_max_size);
 
 908
 909	/* We try hard to avoid divides here */
 910	size_goal = tp->gso_segs * mss_now;
 911	if (unlikely(new_size_goal < size_goal ||
 912		     new_size_goal >= size_goal + mss_now)) {
 913		tp->gso_segs = min_t(u16, new_size_goal / mss_now,
 914				     sk->sk_gso_max_segs);
 915		size_goal = tp->gso_segs * mss_now;
 916	}
 917
 918	return max(size_goal, mss_now);
 919}
 920
 921int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
 922{
 923	int mss_now;
 924
 925	mss_now = tcp_current_mss(sk);
 926	*size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
 927
 928	return mss_now;
 929}
 930
 931/* In some cases, sendmsg() could have added an skb to the write queue,
 932 * but failed adding payload on it. We need to remove it to consume less
 933 * memory, but more importantly be able to generate EPOLLOUT for Edge Trigger
 934 * epoll() users. Another reason is that tcp_write_xmit() does not like
 935 * finding an empty skb in the write queue.
 936 */
 937void tcp_remove_empty_skb(struct sock *sk)
 938{
 939	struct sk_buff *skb = tcp_write_queue_tail(sk);
 940
 941	if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
 942		tcp_unlink_write_queue(skb, sk);
 943		if (tcp_write_queue_empty(sk))
 944			tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
 945		tcp_wmem_free_skb(sk, skb);
 946	}
 947}
 948
 949/* skb changing from pure zc to mixed, must charge zc */
 950static int tcp_downgrade_zcopy_pure(struct sock *sk, struct sk_buff *skb)
 951{
 952	if (unlikely(skb_zcopy_pure(skb))) {
 953		u32 extra = skb->truesize -
 954			    SKB_TRUESIZE(skb_end_offset(skb));
 
 
 955
 956		if (!sk_wmem_schedule(sk, extra))
 957			return -ENOMEM;
 
 
 958
 959		sk_mem_charge(sk, extra);
 960		skb_shinfo(skb)->flags &= ~SKBFL_PURE_ZEROCOPY;
 
 
 
 
 
 
 
 961	}
 962	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 963}
 
 
 
 
 
 
 
 964
 
 
 
 
 
 965
 966int tcp_wmem_schedule(struct sock *sk, int copy)
 
 967{
 968	int left;
 969
 970	if (likely(sk_wmem_schedule(sk, copy)))
 971		return copy;
 
 972
 973	/* We could be in trouble if we have nothing queued.
 974	 * Use whatever is left in sk->sk_forward_alloc and tcp_wmem[0]
 975	 * to guarantee some progress.
 976	 */
 977	left = sock_net(sk)->ipv4.sysctl_tcp_wmem[0] - sk->sk_wmem_queued;
 978	if (left > 0)
 979		sk_forced_mem_schedule(sk, min(left, copy));
 980	return min(copy, sk->sk_forward_alloc);
 981}
 
 982
 983void tcp_free_fastopen_req(struct tcp_sock *tp)
 984{
 985	if (tp->fastopen_req) {
 986		kfree(tp->fastopen_req);
 987		tp->fastopen_req = NULL;
 988	}
 989}
 990
 991int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg, int *copied,
 992			 size_t size, struct ubuf_info *uarg)
 
 993{
 994	struct tcp_sock *tp = tcp_sk(sk);
 995	struct inet_sock *inet = inet_sk(sk);
 996	struct sockaddr *uaddr = msg->msg_name;
 997	int err, flags;
 998
 999	if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1000	      TFO_CLIENT_ENABLE) ||
1001	    (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1002	     uaddr->sa_family == AF_UNSPEC))
1003		return -EOPNOTSUPP;
1004	if (tp->fastopen_req)
1005		return -EALREADY; /* Another Fast Open is in progress */
1006
1007	tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1008				   sk->sk_allocation);
1009	if (unlikely(!tp->fastopen_req))
1010		return -ENOBUFS;
1011	tp->fastopen_req->data = msg;
1012	tp->fastopen_req->size = size;
1013	tp->fastopen_req->uarg = uarg;
1014
1015	if (inet_test_bit(DEFER_CONNECT, sk)) {
1016		err = tcp_connect(sk);
1017		/* Same failure procedure as in tcp_v4/6_connect */
1018		if (err) {
1019			tcp_set_state(sk, TCP_CLOSE);
1020			inet->inet_dport = 0;
1021			sk->sk_route_caps = 0;
1022		}
1023	}
1024	flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1025	err = __inet_stream_connect(sk->sk_socket, uaddr,
1026				    msg->msg_namelen, flags, 1);
1027	/* fastopen_req could already be freed in __inet_stream_connect
1028	 * if the connection times out or gets rst
1029	 */
1030	if (tp->fastopen_req) {
1031		*copied = tp->fastopen_req->copied;
1032		tcp_free_fastopen_req(tp);
1033		inet_clear_bit(DEFER_CONNECT, sk);
1034	}
1035	return err;
1036}
1037
1038int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1039{
1040	struct tcp_sock *tp = tcp_sk(sk);
1041	struct ubuf_info *uarg = NULL;
1042	struct sk_buff *skb;
1043	struct sockcm_cookie sockc;
1044	int flags, err, copied = 0;
1045	int mss_now = 0, size_goal, copied_syn = 0;
1046	int process_backlog = 0;
1047	int zc = 0;
1048	long timeo;
1049
1050	flags = msg->msg_flags;
1051
1052	if ((flags & MSG_ZEROCOPY) && size) {
1053		if (msg->msg_ubuf) {
1054			uarg = msg->msg_ubuf;
1055			if (sk->sk_route_caps & NETIF_F_SG)
1056				zc = MSG_ZEROCOPY;
1057		} else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1058			skb = tcp_write_queue_tail(sk);
1059			uarg = msg_zerocopy_realloc(sk, size, skb_zcopy(skb));
1060			if (!uarg) {
1061				err = -ENOBUFS;
1062				goto out_err;
1063			}
1064			if (sk->sk_route_caps & NETIF_F_SG)
1065				zc = MSG_ZEROCOPY;
1066			else
1067				uarg_to_msgzc(uarg)->zerocopy = 0;
1068		}
1069	} else if (unlikely(msg->msg_flags & MSG_SPLICE_PAGES) && size) {
1070		if (sk->sk_route_caps & NETIF_F_SG)
1071			zc = MSG_SPLICE_PAGES;
 
1072	}
1073
1074	if (unlikely(flags & MSG_FASTOPEN ||
1075		     inet_test_bit(DEFER_CONNECT, sk)) &&
1076	    !tp->repair) {
1077		err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1078		if (err == -EINPROGRESS && copied_syn > 0)
1079			goto out;
1080		else if (err)
1081			goto out_err;
1082	}
1083
1084	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1085
1086	tcp_rate_check_app_limited(sk);  /* is sending application-limited? */
1087
1088	/* Wait for a connection to finish. One exception is TCP Fast Open
1089	 * (passive side) where data is allowed to be sent before a connection
1090	 * is fully established.
1091	 */
1092	if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1093	    !tcp_passive_fastopen(sk)) {
1094		err = sk_stream_wait_connect(sk, &timeo);
1095		if (err != 0)
1096			goto do_error;
1097	}
1098
1099	if (unlikely(tp->repair)) {
1100		if (tp->repair_queue == TCP_RECV_QUEUE) {
1101			copied = tcp_send_rcvq(sk, msg, size);
1102			goto out_nopush;
1103		}
1104
1105		err = -EINVAL;
1106		if (tp->repair_queue == TCP_NO_QUEUE)
1107			goto out_err;
1108
1109		/* 'common' sending to sendq */
1110	}
1111
1112	sockcm_init(&sockc, sk);
1113	if (msg->msg_controllen) {
1114		err = sock_cmsg_send(sk, msg, &sockc);
1115		if (unlikely(err)) {
1116			err = -EINVAL;
1117			goto out_err;
1118		}
1119	}
1120
1121	/* This should be in poll */
1122	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1123
1124	/* Ok commence sending. */
1125	copied = 0;
1126
1127restart:
1128	mss_now = tcp_send_mss(sk, &size_goal, flags);
1129
1130	err = -EPIPE;
1131	if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1132		goto do_error;
1133
1134	while (msg_data_left(msg)) {
1135		ssize_t copy = 0;
1136
1137		skb = tcp_write_queue_tail(sk);
1138		if (skb)
1139			copy = size_goal - skb->len;
1140
1141		if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1142			bool first_skb;
1143
1144new_segment:
1145			if (!sk_stream_memory_free(sk))
1146				goto wait_for_space;
1147
1148			if (unlikely(process_backlog >= 16)) {
1149				process_backlog = 0;
1150				if (sk_flush_backlog(sk))
1151					goto restart;
1152			}
1153			first_skb = tcp_rtx_and_write_queues_empty(sk);
1154			skb = tcp_stream_alloc_skb(sk, sk->sk_allocation,
1155						   first_skb);
1156			if (!skb)
1157				goto wait_for_space;
1158
1159			process_backlog++;
 
1160
1161			tcp_skb_entail(sk, skb);
1162			copy = size_goal;
1163
1164			/* All packets are restored as if they have
1165			 * already been sent. skb_mstamp_ns isn't set to
1166			 * avoid wrong rtt estimation.
1167			 */
1168			if (tp->repair)
1169				TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1170		}
1171
1172		/* Try to append data to the end of skb. */
1173		if (copy > msg_data_left(msg))
1174			copy = msg_data_left(msg);
1175
1176		if (zc == 0) {
 
 
 
 
 
 
 
1177			bool merge = true;
1178			int i = skb_shinfo(skb)->nr_frags;
1179			struct page_frag *pfrag = sk_page_frag(sk);
1180
1181			if (!sk_page_frag_refill(sk, pfrag))
1182				goto wait_for_space;
1183
1184			if (!skb_can_coalesce(skb, i, pfrag->page,
1185					      pfrag->offset)) {
1186				if (i >= READ_ONCE(sysctl_max_skb_frags)) {
1187					tcp_mark_push(tp, skb);
1188					goto new_segment;
1189				}
1190				merge = false;
1191			}
1192
1193			copy = min_t(int, copy, pfrag->size - pfrag->offset);
1194
1195			if (unlikely(skb_zcopy_pure(skb) || skb_zcopy_managed(skb))) {
1196				if (tcp_downgrade_zcopy_pure(sk, skb))
1197					goto wait_for_space;
1198				skb_zcopy_downgrade_managed(skb);
1199			}
1200
1201			copy = tcp_wmem_schedule(sk, copy);
1202			if (!copy)
1203				goto wait_for_space;
1204
1205			err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1206						       pfrag->page,
1207						       pfrag->offset,
1208						       copy);
1209			if (err)
1210				goto do_error;
1211
1212			/* Update the skb. */
1213			if (merge) {
1214				skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1215			} else {
1216				skb_fill_page_desc(skb, i, pfrag->page,
1217						   pfrag->offset, copy);
1218				page_ref_inc(pfrag->page);
1219			}
1220			pfrag->offset += copy;
1221		} else if (zc == MSG_ZEROCOPY)  {
1222			/* First append to a fragless skb builds initial
1223			 * pure zerocopy skb
1224			 */
1225			if (!skb->len)
1226				skb_shinfo(skb)->flags |= SKBFL_PURE_ZEROCOPY;
1227
1228			if (!skb_zcopy_pure(skb)) {
1229				copy = tcp_wmem_schedule(sk, copy);
1230				if (!copy)
1231					goto wait_for_space;
1232			}
1233
1234			err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1235			if (err == -EMSGSIZE || err == -EEXIST) {
1236				tcp_mark_push(tp, skb);
1237				goto new_segment;
1238			}
1239			if (err < 0)
1240				goto do_error;
1241			copy = err;
1242		} else if (zc == MSG_SPLICE_PAGES) {
1243			/* Splice in data if we can; copy if we can't. */
1244			if (tcp_downgrade_zcopy_pure(sk, skb))
1245				goto wait_for_space;
1246			copy = tcp_wmem_schedule(sk, copy);
1247			if (!copy)
1248				goto wait_for_space;
1249
1250			err = skb_splice_from_iter(skb, &msg->msg_iter, copy,
1251						   sk->sk_allocation);
1252			if (err < 0) {
1253				if (err == -EMSGSIZE) {
1254					tcp_mark_push(tp, skb);
1255					goto new_segment;
1256				}
1257				goto do_error;
1258			}
1259			copy = err;
1260
1261			if (!(flags & MSG_NO_SHARED_FRAGS))
1262				skb_shinfo(skb)->flags |= SKBFL_SHARED_FRAG;
1263
1264			sk_wmem_queued_add(sk, copy);
1265			sk_mem_charge(sk, copy);
1266		}
1267
1268		if (!copied)
1269			TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1270
1271		WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1272		TCP_SKB_CB(skb)->end_seq += copy;
1273		tcp_skb_pcount_set(skb, 0);
1274
1275		copied += copy;
1276		if (!msg_data_left(msg)) {
1277			if (unlikely(flags & MSG_EOR))
1278				TCP_SKB_CB(skb)->eor = 1;
1279			goto out;
1280		}
1281
1282		if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1283			continue;
1284
1285		if (forced_push(tp)) {
1286			tcp_mark_push(tp, skb);
1287			__tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1288		} else if (skb == tcp_send_head(sk))
1289			tcp_push_one(sk, mss_now);
1290		continue;
1291
1292wait_for_space:
1293		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1294		tcp_remove_empty_skb(sk);
1295		if (copied)
1296			tcp_push(sk, flags & ~MSG_MORE, mss_now,
1297				 TCP_NAGLE_PUSH, size_goal);
1298
1299		err = sk_stream_wait_memory(sk, &timeo);
1300		if (err != 0)
1301			goto do_error;
1302
1303		mss_now = tcp_send_mss(sk, &size_goal, flags);
1304	}
1305
1306out:
1307	if (copied) {
1308		tcp_tx_timestamp(sk, sockc.tsflags);
1309		tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1310	}
1311out_nopush:
1312	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1313	if (uarg && !msg->msg_ubuf)
1314		net_zcopy_put(uarg);
1315	return copied + copied_syn;
1316
1317do_error:
1318	tcp_remove_empty_skb(sk);
 
 
1319
1320	if (copied + copied_syn)
1321		goto out;
1322out_err:
1323	/* msg->msg_ubuf is pinned by the caller so we don't take extra refs */
1324	if (uarg && !msg->msg_ubuf)
1325		net_zcopy_put_abort(uarg, true);
1326	err = sk_stream_error(sk, flags, err);
1327	/* make sure we wake any epoll edge trigger waiter */
1328	if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1329		sk->sk_write_space(sk);
1330		tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1331	}
1332	return err;
1333}
1334EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1335
1336int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1337{
1338	int ret;
1339
1340	lock_sock(sk);
1341	ret = tcp_sendmsg_locked(sk, msg, size);
1342	release_sock(sk);
1343
1344	return ret;
1345}
1346EXPORT_SYMBOL(tcp_sendmsg);
1347
1348void tcp_splice_eof(struct socket *sock)
1349{
1350	struct sock *sk = sock->sk;
1351	struct tcp_sock *tp = tcp_sk(sk);
1352	int mss_now, size_goal;
1353
1354	if (!tcp_write_queue_tail(sk))
1355		return;
1356
1357	lock_sock(sk);
1358	mss_now = tcp_send_mss(sk, &size_goal, 0);
1359	tcp_push(sk, 0, mss_now, tp->nonagle, size_goal);
1360	release_sock(sk);
1361}
1362EXPORT_SYMBOL_GPL(tcp_splice_eof);
1363
1364/*
1365 *	Handle reading urgent data. BSD has very simple semantics for
1366 *	this, no blocking and very strange errors 8)
1367 */
1368
1369static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1370{
1371	struct tcp_sock *tp = tcp_sk(sk);
1372
1373	/* No URG data to read. */
1374	if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1375	    tp->urg_data == TCP_URG_READ)
1376		return -EINVAL;	/* Yes this is right ! */
1377
1378	if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1379		return -ENOTCONN;
1380
1381	if (tp->urg_data & TCP_URG_VALID) {
1382		int err = 0;
1383		char c = tp->urg_data;
1384
1385		if (!(flags & MSG_PEEK))
1386			WRITE_ONCE(tp->urg_data, TCP_URG_READ);
1387
1388		/* Read urgent data. */
1389		msg->msg_flags |= MSG_OOB;
1390
1391		if (len > 0) {
1392			if (!(flags & MSG_TRUNC))
1393				err = memcpy_to_msg(msg, &c, 1);
1394			len = 1;
1395		} else
1396			msg->msg_flags |= MSG_TRUNC;
1397
1398		return err ? -EFAULT : len;
1399	}
1400
1401	if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1402		return 0;
1403
1404	/* Fixed the recv(..., MSG_OOB) behaviour.  BSD docs and
1405	 * the available implementations agree in this case:
1406	 * this call should never block, independent of the
1407	 * blocking state of the socket.
1408	 * Mike <pall@rz.uni-karlsruhe.de>
1409	 */
1410	return -EAGAIN;
1411}
1412
1413static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1414{
1415	struct sk_buff *skb;
1416	int copied = 0, err = 0;
1417
1418	/* XXX -- need to support SO_PEEK_OFF */
1419
1420	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1421		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1422		if (err)
1423			return err;
1424		copied += skb->len;
1425	}
1426
1427	skb_queue_walk(&sk->sk_write_queue, skb) {
1428		err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1429		if (err)
1430			break;
1431
1432		copied += skb->len;
1433	}
1434
1435	return err ?: copied;
1436}
1437
1438/* Clean up the receive buffer for full frames taken by the user,
1439 * then send an ACK if necessary.  COPIED is the number of bytes
1440 * tcp_recvmsg has given to the user so far, it speeds up the
1441 * calculation of whether or not we must ACK for the sake of
1442 * a window update.
1443 */
1444void __tcp_cleanup_rbuf(struct sock *sk, int copied)
1445{
1446	struct tcp_sock *tp = tcp_sk(sk);
1447	bool time_to_ack = false;
1448
 
 
 
 
 
 
1449	if (inet_csk_ack_scheduled(sk)) {
1450		const struct inet_connection_sock *icsk = inet_csk(sk);
1451
1452		if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
 
 
1453		    tp->rcv_nxt - tp->rcv_wup > icsk->icsk_ack.rcv_mss ||
1454		    /*
1455		     * If this read emptied read buffer, we send ACK, if
1456		     * connection is not bidirectional, user drained
1457		     * receive buffer and there was a small segment
1458		     * in queue.
1459		     */
1460		    (copied > 0 &&
1461		     ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1462		      ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1463		       !inet_csk_in_pingpong_mode(sk))) &&
1464		      !atomic_read(&sk->sk_rmem_alloc)))
1465			time_to_ack = true;
1466	}
1467
1468	/* We send an ACK if we can now advertise a non-zero window
1469	 * which has been raised "significantly".
1470	 *
1471	 * Even if window raised up to infinity, do not send window open ACK
1472	 * in states, where we will not receive more. It is useless.
1473	 */
1474	if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1475		__u32 rcv_window_now = tcp_receive_window(tp);
1476
1477		/* Optimize, __tcp_select_window() is not cheap. */
1478		if (2*rcv_window_now <= tp->window_clamp) {
1479			__u32 new_window = __tcp_select_window(sk);
1480
1481			/* Send ACK now, if this read freed lots of space
1482			 * in our buffer. Certainly, new_window is new window.
1483			 * We can advertise it now, if it is not less than current one.
1484			 * "Lots" means "at least twice" here.
1485			 */
1486			if (new_window && new_window >= 2 * rcv_window_now)
1487				time_to_ack = true;
1488		}
1489	}
1490	if (time_to_ack)
1491		tcp_send_ack(sk);
1492}
1493
1494void tcp_cleanup_rbuf(struct sock *sk, int copied)
1495{
1496	struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1497	struct tcp_sock *tp = tcp_sk(sk);
1498
1499	WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1500	     "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1501	     tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1502	__tcp_cleanup_rbuf(sk, copied);
1503}
1504
1505static void tcp_eat_recv_skb(struct sock *sk, struct sk_buff *skb)
1506{
1507	__skb_unlink(skb, &sk->sk_receive_queue);
1508	if (likely(skb->destructor == sock_rfree)) {
1509		sock_rfree(skb);
1510		skb->destructor = NULL;
1511		skb->sk = NULL;
1512		return skb_attempt_defer_free(skb);
1513	}
1514	__kfree_skb(skb);
1515}
1516
1517struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1518{
1519	struct sk_buff *skb;
1520	u32 offset;
1521
1522	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1523		offset = seq - TCP_SKB_CB(skb)->seq;
1524		if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1525			pr_err_once("%s: found a SYN, please report !\n", __func__);
1526			offset--;
1527		}
1528		if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1529			*off = offset;
1530			return skb;
1531		}
1532		/* This looks weird, but this can happen if TCP collapsing
1533		 * splitted a fat GRO packet, while we released socket lock
1534		 * in skb_splice_bits()
1535		 */
1536		tcp_eat_recv_skb(sk, skb);
1537	}
1538	return NULL;
1539}
1540EXPORT_SYMBOL(tcp_recv_skb);
1541
1542/*
1543 * This routine provides an alternative to tcp_recvmsg() for routines
1544 * that would like to handle copying from skbuffs directly in 'sendfile'
1545 * fashion.
1546 * Note:
1547 *	- It is assumed that the socket was locked by the caller.
1548 *	- The routine does not block.
1549 *	- At present, there is no support for reading OOB data
1550 *	  or for 'peeking' the socket using this routine
1551 *	  (although both would be easy to implement).
1552 */
1553int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1554		  sk_read_actor_t recv_actor)
1555{
1556	struct sk_buff *skb;
1557	struct tcp_sock *tp = tcp_sk(sk);
1558	u32 seq = tp->copied_seq;
1559	u32 offset;
1560	int copied = 0;
1561
1562	if (sk->sk_state == TCP_LISTEN)
1563		return -ENOTCONN;
1564	while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1565		if (offset < skb->len) {
1566			int used;
1567			size_t len;
1568
1569			len = skb->len - offset;
1570			/* Stop reading if we hit a patch of urgent data */
1571			if (unlikely(tp->urg_data)) {
1572				u32 urg_offset = tp->urg_seq - seq;
1573				if (urg_offset < len)
1574					len = urg_offset;
1575				if (!len)
1576					break;
1577			}
1578			used = recv_actor(desc, skb, offset, len);
1579			if (used <= 0) {
1580				if (!copied)
1581					copied = used;
1582				break;
 
 
 
 
1583			}
1584			if (WARN_ON_ONCE(used > len))
1585				used = len;
1586			seq += used;
1587			copied += used;
1588			offset += used;
1589
1590			/* If recv_actor drops the lock (e.g. TCP splice
1591			 * receive) the skb pointer might be invalid when
1592			 * getting here: tcp_collapse might have deleted it
1593			 * while aggregating skbs from the socket queue.
1594			 */
1595			skb = tcp_recv_skb(sk, seq - 1, &offset);
1596			if (!skb)
1597				break;
1598			/* TCP coalescing might have appended data to the skb.
1599			 * Try to splice more frags
1600			 */
1601			if (offset + 1 != skb->len)
1602				continue;
1603		}
1604		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1605			tcp_eat_recv_skb(sk, skb);
1606			++seq;
1607			break;
1608		}
1609		tcp_eat_recv_skb(sk, skb);
1610		if (!desc->count)
1611			break;
1612		WRITE_ONCE(tp->copied_seq, seq);
1613	}
1614	WRITE_ONCE(tp->copied_seq, seq);
1615
1616	tcp_rcv_space_adjust(sk);
1617
1618	/* Clean up data we have read: This will do ACK frames. */
1619	if (copied > 0) {
1620		tcp_recv_skb(sk, seq, &offset);
1621		tcp_cleanup_rbuf(sk, copied);
1622	}
1623	return copied;
1624}
1625EXPORT_SYMBOL(tcp_read_sock);
1626
1627int tcp_read_skb(struct sock *sk, skb_read_actor_t recv_actor)
1628{
1629	struct sk_buff *skb;
1630	int copied = 0;
1631
1632	if (sk->sk_state == TCP_LISTEN)
1633		return -ENOTCONN;
1634
1635	while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1636		u8 tcp_flags;
1637		int used;
1638
1639		__skb_unlink(skb, &sk->sk_receive_queue);
1640		WARN_ON_ONCE(!skb_set_owner_sk_safe(skb, sk));
1641		tcp_flags = TCP_SKB_CB(skb)->tcp_flags;
1642		used = recv_actor(sk, skb);
1643		if (used < 0) {
1644			if (!copied)
1645				copied = used;
1646			break;
1647		}
1648		copied += used;
1649
1650		if (tcp_flags & TCPHDR_FIN)
1651			break;
1652	}
1653	return copied;
1654}
1655EXPORT_SYMBOL(tcp_read_skb);
1656
1657void tcp_read_done(struct sock *sk, size_t len)
1658{
1659	struct tcp_sock *tp = tcp_sk(sk);
1660	u32 seq = tp->copied_seq;
1661	struct sk_buff *skb;
1662	size_t left;
1663	u32 offset;
1664
1665	if (sk->sk_state == TCP_LISTEN)
1666		return;
1667
1668	left = len;
1669	while (left && (skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1670		int used;
1671
1672		used = min_t(size_t, skb->len - offset, left);
1673		seq += used;
1674		left -= used;
1675
1676		if (skb->len > offset + used)
1677			break;
1678
1679		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1680			tcp_eat_recv_skb(sk, skb);
1681			++seq;
1682			break;
1683		}
1684		tcp_eat_recv_skb(sk, skb);
1685	}
1686	WRITE_ONCE(tp->copied_seq, seq);
1687
1688	tcp_rcv_space_adjust(sk);
1689
1690	/* Clean up data we have read: This will do ACK frames. */
1691	if (left != len)
1692		tcp_cleanup_rbuf(sk, len - left);
1693}
1694EXPORT_SYMBOL(tcp_read_done);
1695
1696int tcp_peek_len(struct socket *sock)
1697{
1698	return tcp_inq(sock->sk);
1699}
1700EXPORT_SYMBOL(tcp_peek_len);
1701
1702/* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
1703int tcp_set_rcvlowat(struct sock *sk, int val)
1704{
1705	int space, cap;
1706
1707	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1708		cap = sk->sk_rcvbuf >> 1;
1709	else
1710		cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1711	val = min(val, cap);
1712	WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1713
1714	/* Check if we need to signal EPOLLIN right now */
1715	tcp_data_ready(sk);
1716
1717	if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1718		return 0;
1719
1720	space = tcp_space_from_win(sk, val);
1721	if (space > sk->sk_rcvbuf) {
1722		WRITE_ONCE(sk->sk_rcvbuf, space);
1723		tcp_sk(sk)->window_clamp = val;
1724	}
1725	return 0;
1726}
1727EXPORT_SYMBOL(tcp_set_rcvlowat);
1728
1729void tcp_update_recv_tstamps(struct sk_buff *skb,
1730			     struct scm_timestamping_internal *tss)
1731{
1732	if (skb->tstamp)
1733		tss->ts[0] = ktime_to_timespec64(skb->tstamp);
1734	else
1735		tss->ts[0] = (struct timespec64) {0};
1736
1737	if (skb_hwtstamps(skb)->hwtstamp)
1738		tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
1739	else
1740		tss->ts[2] = (struct timespec64) {0};
1741}
1742
1743#ifdef CONFIG_MMU
1744static const struct vm_operations_struct tcp_vm_ops = {
1745};
1746
1747int tcp_mmap(struct file *file, struct socket *sock,
1748	     struct vm_area_struct *vma)
1749{
1750	if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1751		return -EPERM;
1752	vm_flags_clear(vma, VM_MAYWRITE | VM_MAYEXEC);
1753
1754	/* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1755	vm_flags_set(vma, VM_MIXEDMAP);
1756
1757	vma->vm_ops = &tcp_vm_ops;
1758	return 0;
1759}
1760EXPORT_SYMBOL(tcp_mmap);
1761
1762static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1763				       u32 *offset_frag)
1764{
1765	skb_frag_t *frag;
1766
1767	if (unlikely(offset_skb >= skb->len))
1768		return NULL;
1769
1770	offset_skb -= skb_headlen(skb);
1771	if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1772		return NULL;
1773
1774	frag = skb_shinfo(skb)->frags;
1775	while (offset_skb) {
1776		if (skb_frag_size(frag) > offset_skb) {
1777			*offset_frag = offset_skb;
1778			return frag;
1779		}
1780		offset_skb -= skb_frag_size(frag);
1781		++frag;
1782	}
1783	*offset_frag = 0;
1784	return frag;
1785}
1786
1787static bool can_map_frag(const skb_frag_t *frag)
1788{
1789	struct page *page;
1790
1791	if (skb_frag_size(frag) != PAGE_SIZE || skb_frag_off(frag))
1792		return false;
1793
1794	page = skb_frag_page(frag);
1795
1796	if (PageCompound(page) || page->mapping)
1797		return false;
1798
1799	return true;
1800}
1801
1802static int find_next_mappable_frag(const skb_frag_t *frag,
1803				   int remaining_in_skb)
1804{
1805	int offset = 0;
1806
1807	if (likely(can_map_frag(frag)))
1808		return 0;
1809
1810	while (offset < remaining_in_skb && !can_map_frag(frag)) {
1811		offset += skb_frag_size(frag);
1812		++frag;
1813	}
1814	return offset;
1815}
1816
1817static void tcp_zerocopy_set_hint_for_skb(struct sock *sk,
1818					  struct tcp_zerocopy_receive *zc,
1819					  struct sk_buff *skb, u32 offset)
1820{
1821	u32 frag_offset, partial_frag_remainder = 0;
1822	int mappable_offset;
1823	skb_frag_t *frag;
1824
1825	/* worst case: skip to next skb. try to improve on this case below */
1826	zc->recv_skip_hint = skb->len - offset;
1827
1828	/* Find the frag containing this offset (and how far into that frag) */
1829	frag = skb_advance_to_frag(skb, offset, &frag_offset);
1830	if (!frag)
1831		return;
1832
1833	if (frag_offset) {
1834		struct skb_shared_info *info = skb_shinfo(skb);
1835
1836		/* We read part of the last frag, must recvmsg() rest of skb. */
1837		if (frag == &info->frags[info->nr_frags - 1])
1838			return;
1839
1840		/* Else, we must at least read the remainder in this frag. */
1841		partial_frag_remainder = skb_frag_size(frag) - frag_offset;
1842		zc->recv_skip_hint -= partial_frag_remainder;
1843		++frag;
1844	}
1845
1846	/* partial_frag_remainder: If part way through a frag, must read rest.
1847	 * mappable_offset: Bytes till next mappable frag, *not* counting bytes
1848	 * in partial_frag_remainder.
1849	 */
1850	mappable_offset = find_next_mappable_frag(frag, zc->recv_skip_hint);
1851	zc->recv_skip_hint = mappable_offset + partial_frag_remainder;
1852}
1853
1854static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
1855			      int flags, struct scm_timestamping_internal *tss,
1856			      int *cmsg_flags);
1857static int receive_fallback_to_copy(struct sock *sk,
1858				    struct tcp_zerocopy_receive *zc, int inq,
1859				    struct scm_timestamping_internal *tss)
1860{
1861	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1862	struct msghdr msg = {};
1863	int err;
1864
1865	zc->length = 0;
1866	zc->recv_skip_hint = 0;
1867
1868	if (copy_address != zc->copybuf_address)
1869		return -EINVAL;
1870
1871	err = import_ubuf(ITER_DEST, (void __user *)copy_address, inq,
1872			  &msg.msg_iter);
1873	if (err)
1874		return err;
1875
1876	err = tcp_recvmsg_locked(sk, &msg, inq, MSG_DONTWAIT,
1877				 tss, &zc->msg_flags);
1878	if (err < 0)
1879		return err;
1880
1881	zc->copybuf_len = err;
1882	if (likely(zc->copybuf_len)) {
1883		struct sk_buff *skb;
1884		u32 offset;
1885
1886		skb = tcp_recv_skb(sk, tcp_sk(sk)->copied_seq, &offset);
1887		if (skb)
1888			tcp_zerocopy_set_hint_for_skb(sk, zc, skb, offset);
1889	}
1890	return 0;
1891}
1892
1893static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1894				   struct sk_buff *skb, u32 copylen,
1895				   u32 *offset, u32 *seq)
1896{
1897	unsigned long copy_address = (unsigned long)zc->copybuf_address;
1898	struct msghdr msg = {};
1899	int err;
1900
1901	if (copy_address != zc->copybuf_address)
1902		return -EINVAL;
1903
1904	err = import_ubuf(ITER_DEST, (void __user *)copy_address, copylen,
1905			  &msg.msg_iter);
1906	if (err)
1907		return err;
1908	err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1909	if (err)
1910		return err;
1911	zc->recv_skip_hint -= copylen;
1912	*offset += copylen;
1913	*seq += copylen;
1914	return (__s32)copylen;
1915}
1916
1917static int tcp_zc_handle_leftover(struct tcp_zerocopy_receive *zc,
1918				  struct sock *sk,
1919				  struct sk_buff *skb,
1920				  u32 *seq,
1921				  s32 copybuf_len,
1922				  struct scm_timestamping_internal *tss)
1923{
1924	u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1925
1926	if (!copylen)
1927		return 0;
1928	/* skb is null if inq < PAGE_SIZE. */
1929	if (skb) {
1930		offset = *seq - TCP_SKB_CB(skb)->seq;
1931	} else {
1932		skb = tcp_recv_skb(sk, *seq, &offset);
1933		if (TCP_SKB_CB(skb)->has_rxtstamp) {
1934			tcp_update_recv_tstamps(skb, tss);
1935			zc->msg_flags |= TCP_CMSG_TS;
1936		}
1937	}
1938
1939	zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1940						  seq);
1941	return zc->copybuf_len < 0 ? 0 : copylen;
1942}
1943
1944static int tcp_zerocopy_vm_insert_batch_error(struct vm_area_struct *vma,
1945					      struct page **pending_pages,
1946					      unsigned long pages_remaining,
1947					      unsigned long *address,
1948					      u32 *length,
1949					      u32 *seq,
1950					      struct tcp_zerocopy_receive *zc,
1951					      u32 total_bytes_to_map,
1952					      int err)
1953{
1954	/* At least one page did not map. Try zapping if we skipped earlier. */
1955	if (err == -EBUSY &&
1956	    zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT) {
1957		u32 maybe_zap_len;
1958
1959		maybe_zap_len = total_bytes_to_map -  /* All bytes to map */
1960				*length + /* Mapped or pending */
1961				(pages_remaining * PAGE_SIZE); /* Failed map. */
1962		zap_page_range_single(vma, *address, maybe_zap_len, NULL);
1963		err = 0;
1964	}
1965
1966	if (!err) {
1967		unsigned long leftover_pages = pages_remaining;
1968		int bytes_mapped;
1969
1970		/* We called zap_page_range_single, try to reinsert. */
1971		err = vm_insert_pages(vma, *address,
1972				      pending_pages,
1973				      &pages_remaining);
1974		bytes_mapped = PAGE_SIZE * (leftover_pages - pages_remaining);
1975		*seq += bytes_mapped;
1976		*address += bytes_mapped;
1977	}
1978	if (err) {
1979		/* Either we were unable to zap, OR we zapped, retried an
1980		 * insert, and still had an issue. Either ways, pages_remaining
1981		 * is the number of pages we were unable to map, and we unroll
1982		 * some state we speculatively touched before.
1983		 */
1984		const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1985
1986		*length -= bytes_not_mapped;
1987		zc->recv_skip_hint += bytes_not_mapped;
1988	}
1989	return err;
1990}
1991
1992static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1993					struct page **pages,
1994					unsigned int pages_to_map,
1995					unsigned long *address,
1996					u32 *length,
1997					u32 *seq,
1998					struct tcp_zerocopy_receive *zc,
1999					u32 total_bytes_to_map)
2000{
2001	unsigned long pages_remaining = pages_to_map;
2002	unsigned int pages_mapped;
2003	unsigned int bytes_mapped;
2004	int err;
2005
2006	err = vm_insert_pages(vma, *address, pages, &pages_remaining);
2007	pages_mapped = pages_to_map - (unsigned int)pages_remaining;
2008	bytes_mapped = PAGE_SIZE * pages_mapped;
2009	/* Even if vm_insert_pages fails, it may have partially succeeded in
2010	 * mapping (some but not all of the pages).
2011	 */
2012	*seq += bytes_mapped;
2013	*address += bytes_mapped;
2014
2015	if (likely(!err))
2016		return 0;
2017
2018	/* Error: maybe zap and retry + rollback state for failed inserts. */
2019	return tcp_zerocopy_vm_insert_batch_error(vma, pages + pages_mapped,
2020		pages_remaining, address, length, seq, zc, total_bytes_to_map,
2021		err);
2022}
2023
2024#define TCP_VALID_ZC_MSG_FLAGS   (TCP_CMSG_TS)
2025static void tcp_zc_finalize_rx_tstamp(struct sock *sk,
2026				      struct tcp_zerocopy_receive *zc,
2027				      struct scm_timestamping_internal *tss)
2028{
2029	unsigned long msg_control_addr;
2030	struct msghdr cmsg_dummy;
2031
2032	msg_control_addr = (unsigned long)zc->msg_control;
2033	cmsg_dummy.msg_control_user = (void __user *)msg_control_addr;
2034	cmsg_dummy.msg_controllen =
2035		(__kernel_size_t)zc->msg_controllen;
2036	cmsg_dummy.msg_flags = in_compat_syscall()
2037		? MSG_CMSG_COMPAT : 0;
2038	cmsg_dummy.msg_control_is_user = true;
2039	zc->msg_flags = 0;
2040	if (zc->msg_control == msg_control_addr &&
2041	    zc->msg_controllen == cmsg_dummy.msg_controllen) {
2042		tcp_recv_timestamp(&cmsg_dummy, sk, tss);
2043		zc->msg_control = (__u64)
2044			((uintptr_t)cmsg_dummy.msg_control_user);
2045		zc->msg_controllen =
2046			(__u64)cmsg_dummy.msg_controllen;
2047		zc->msg_flags = (__u32)cmsg_dummy.msg_flags;
2048	}
 
2049}
2050
2051static struct vm_area_struct *find_tcp_vma(struct mm_struct *mm,
2052					   unsigned long address,
2053					   bool *mmap_locked)
2054{
2055	struct vm_area_struct *vma = lock_vma_under_rcu(mm, address);
2056
2057	if (vma) {
2058		if (vma->vm_ops != &tcp_vm_ops) {
2059			vma_end_read(vma);
2060			return NULL;
2061		}
2062		*mmap_locked = false;
2063		return vma;
2064	}
2065
2066	mmap_read_lock(mm);
2067	vma = vma_lookup(mm, address);
2068	if (!vma || vma->vm_ops != &tcp_vm_ops) {
2069		mmap_read_unlock(mm);
2070		return NULL;
2071	}
2072	*mmap_locked = true;
2073	return vma;
2074}
2075
2076#define TCP_ZEROCOPY_PAGE_BATCH_SIZE 32
2077static int tcp_zerocopy_receive(struct sock *sk,
2078				struct tcp_zerocopy_receive *zc,
2079				struct scm_timestamping_internal *tss)
2080{
2081	u32 length = 0, offset, vma_len, avail_len, copylen = 0;
2082	unsigned long address = (unsigned long)zc->address;
2083	struct page *pages[TCP_ZEROCOPY_PAGE_BATCH_SIZE];
2084	s32 copybuf_len = zc->copybuf_len;
2085	struct tcp_sock *tp = tcp_sk(sk);
2086	const skb_frag_t *frags = NULL;
2087	unsigned int pages_to_map = 0;
2088	struct vm_area_struct *vma;
2089	struct sk_buff *skb = NULL;
2090	u32 seq = tp->copied_seq;
2091	u32 total_bytes_to_map;
2092	int inq = tcp_inq(sk);
2093	bool mmap_locked;
2094	int ret;
2095
2096	zc->copybuf_len = 0;
2097	zc->msg_flags = 0;
2098
2099	if (address & (PAGE_SIZE - 1) || address != zc->address)
2100		return -EINVAL;
2101
2102	if (sk->sk_state == TCP_LISTEN)
2103		return -ENOTCONN;
2104
2105	sock_rps_record_flow(sk);
2106
2107	if (inq && inq <= copybuf_len)
2108		return receive_fallback_to_copy(sk, zc, inq, tss);
2109
2110	if (inq < PAGE_SIZE) {
2111		zc->length = 0;
2112		zc->recv_skip_hint = inq;
2113		if (!inq && sock_flag(sk, SOCK_DONE))
2114			return -EIO;
2115		return 0;
2116	}
2117
2118	vma = find_tcp_vma(current->mm, address, &mmap_locked);
2119	if (!vma)
 
2120		return -EINVAL;
 
 
2121
2122	vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
2123	avail_len = min_t(u32, vma_len, inq);
2124	total_bytes_to_map = avail_len & ~(PAGE_SIZE - 1);
2125	if (total_bytes_to_map) {
2126		if (!(zc->flags & TCP_RECEIVE_ZEROCOPY_FLAG_TLB_CLEAN_HINT))
2127			zap_page_range_single(vma, address, total_bytes_to_map,
2128					      NULL);
2129		zc->length = total_bytes_to_map;
2130		zc->recv_skip_hint = 0;
2131	} else {
2132		zc->length = avail_len;
2133		zc->recv_skip_hint = avail_len;
2134	}
2135	ret = 0;
 
2136	while (length + PAGE_SIZE <= zc->length) {
2137		int mappable_offset;
2138		struct page *page;
2139
2140		if (zc->recv_skip_hint < PAGE_SIZE) {
2141			u32 offset_frag;
2142
 
 
 
 
 
 
 
 
 
2143			if (skb) {
2144				if (zc->recv_skip_hint > 0)
2145					break;
2146				skb = skb->next;
2147				offset = seq - TCP_SKB_CB(skb)->seq;
2148			} else {
2149				skb = tcp_recv_skb(sk, seq, &offset);
2150			}
2151
2152			if (TCP_SKB_CB(skb)->has_rxtstamp) {
2153				tcp_update_recv_tstamps(skb, tss);
2154				zc->msg_flags |= TCP_CMSG_TS;
2155			}
2156			zc->recv_skip_hint = skb->len - offset;
2157			frags = skb_advance_to_frag(skb, offset, &offset_frag);
2158			if (!frags || offset_frag)
2159				break;
2160		}
2161
2162		mappable_offset = find_next_mappable_frag(frags,
2163							  zc->recv_skip_hint);
2164		if (mappable_offset) {
2165			zc->recv_skip_hint = mappable_offset;
 
 
 
 
 
 
 
 
 
 
 
2166			break;
2167		}
2168		page = skb_frag_page(frags);
2169		prefetchw(page);
2170		pages[pages_to_map++] = page;
2171		length += PAGE_SIZE;
2172		zc->recv_skip_hint -= PAGE_SIZE;
2173		frags++;
2174		if (pages_to_map == TCP_ZEROCOPY_PAGE_BATCH_SIZE ||
2175		    zc->recv_skip_hint < PAGE_SIZE) {
2176			/* Either full batch, or we're about to go to next skb
2177			 * (and we cannot unroll failed ops across skbs).
2178			 */
2179			ret = tcp_zerocopy_vm_insert_batch(vma, pages,
2180							   pages_to_map,
2181							   &address, &length,
2182							   &seq, zc,
2183							   total_bytes_to_map);
2184			if (ret)
2185				goto out;
2186			pages_to_map = 0;
2187		}
2188	}
2189	if (pages_to_map) {
2190		ret = tcp_zerocopy_vm_insert_batch(vma, pages, pages_to_map,
2191						   &address, &length, &seq,
2192						   zc, total_bytes_to_map);
2193	}
2194out:
2195	if (mmap_locked)
2196		mmap_read_unlock(current->mm);
2197	else
2198		vma_end_read(vma);
2199	/* Try to copy straggler data. */
2200	if (!ret)
2201		copylen = tcp_zc_handle_leftover(zc, sk, skb, &seq, copybuf_len, tss);
2202
2203	if (length + copylen) {
2204		WRITE_ONCE(tp->copied_seq, seq);
2205		tcp_rcv_space_adjust(sk);
2206
2207		/* Clean up data we have read: This will do ACK frames. */
2208		tcp_recv_skb(sk, seq, &offset);
2209		tcp_cleanup_rbuf(sk, length + copylen);
2210		ret = 0;
2211		if (length == zc->length)
2212			zc->recv_skip_hint = 0;
2213	} else {
2214		if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
2215			ret = -EIO;
2216	}
2217	zc->length = length;
2218	return ret;
2219}
2220#endif
2221
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2222/* Similar to __sock_recv_timestamp, but does not require an skb */
2223void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2224			struct scm_timestamping_internal *tss)
2225{
2226	int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2227	bool has_timestamping = false;
2228
2229	if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2230		if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2231			if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2232				if (new_tstamp) {
2233					struct __kernel_timespec kts = {
2234						.tv_sec = tss->ts[0].tv_sec,
2235						.tv_nsec = tss->ts[0].tv_nsec,
2236					};
2237					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2238						 sizeof(kts), &kts);
2239				} else {
2240					struct __kernel_old_timespec ts_old = {
2241						.tv_sec = tss->ts[0].tv_sec,
2242						.tv_nsec = tss->ts[0].tv_nsec,
2243					};
2244					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2245						 sizeof(ts_old), &ts_old);
2246				}
2247			} else {
2248				if (new_tstamp) {
2249					struct __kernel_sock_timeval stv = {
2250						.tv_sec = tss->ts[0].tv_sec,
2251						.tv_usec = tss->ts[0].tv_nsec / 1000,
2252					};
2253					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2254						 sizeof(stv), &stv);
2255				} else {
2256					struct __kernel_old_timeval tv = {
2257						.tv_sec = tss->ts[0].tv_sec,
2258						.tv_usec = tss->ts[0].tv_nsec / 1000,
2259					};
2260					put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2261						 sizeof(tv), &tv);
2262				}
2263			}
2264		}
2265
2266		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_SOFTWARE)
2267			has_timestamping = true;
2268		else
2269			tss->ts[0] = (struct timespec64) {0};
2270	}
2271
2272	if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2273		if (READ_ONCE(sk->sk_tsflags) & SOF_TIMESTAMPING_RAW_HARDWARE)
2274			has_timestamping = true;
2275		else
2276			tss->ts[2] = (struct timespec64) {0};
2277	}
2278
2279	if (has_timestamping) {
2280		tss->ts[1] = (struct timespec64) {0};
2281		if (sock_flag(sk, SOCK_TSTAMP_NEW))
2282			put_cmsg_scm_timestamping64(msg, tss);
2283		else
2284			put_cmsg_scm_timestamping(msg, tss);
2285	}
2286}
2287
2288static int tcp_inq_hint(struct sock *sk)
2289{
2290	const struct tcp_sock *tp = tcp_sk(sk);
2291	u32 copied_seq = READ_ONCE(tp->copied_seq);
2292	u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2293	int inq;
2294
2295	inq = rcv_nxt - copied_seq;
2296	if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2297		lock_sock(sk);
2298		inq = tp->rcv_nxt - tp->copied_seq;
2299		release_sock(sk);
2300	}
2301	/* After receiving a FIN, tell the user-space to continue reading
2302	 * by returning a non-zero inq.
2303	 */
2304	if (inq == 0 && sock_flag(sk, SOCK_DONE))
2305		inq = 1;
2306	return inq;
2307}
2308
2309/*
2310 *	This routine copies from a sock struct into the user buffer.
2311 *
2312 *	Technical note: in 2.3 we work on _locked_ socket, so that
2313 *	tricks with *seq access order and skb->users are not required.
2314 *	Probably, code can be easily improved even more.
2315 */
2316
2317static int tcp_recvmsg_locked(struct sock *sk, struct msghdr *msg, size_t len,
2318			      int flags, struct scm_timestamping_internal *tss,
2319			      int *cmsg_flags)
2320{
2321	struct tcp_sock *tp = tcp_sk(sk);
2322	int copied = 0;
2323	u32 peek_seq;
2324	u32 *seq;
2325	unsigned long used;
2326	int err;
2327	int target;		/* Read at least this many bytes */
2328	long timeo;
2329	struct sk_buff *skb, *last;
2330	u32 urg_hole = 0;
 
 
 
 
 
 
 
 
 
 
 
2331
2332	err = -ENOTCONN;
2333	if (sk->sk_state == TCP_LISTEN)
2334		goto out;
2335
2336	if (tp->recvmsg_inq) {
2337		*cmsg_flags = TCP_CMSG_INQ;
2338		msg->msg_get_inq = 1;
2339	}
2340	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2341
2342	/* Urgent data needs to be handled specially. */
2343	if (flags & MSG_OOB)
2344		goto recv_urg;
2345
2346	if (unlikely(tp->repair)) {
2347		err = -EPERM;
2348		if (!(flags & MSG_PEEK))
2349			goto out;
2350
2351		if (tp->repair_queue == TCP_SEND_QUEUE)
2352			goto recv_sndq;
2353
2354		err = -EINVAL;
2355		if (tp->repair_queue == TCP_NO_QUEUE)
2356			goto out;
2357
2358		/* 'common' recv queue MSG_PEEK-ing */
2359	}
2360
2361	seq = &tp->copied_seq;
2362	if (flags & MSG_PEEK) {
2363		peek_seq = tp->copied_seq;
2364		seq = &peek_seq;
2365	}
2366
2367	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2368
2369	do {
2370		u32 offset;
2371
2372		/* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2373		if (unlikely(tp->urg_data) && tp->urg_seq == *seq) {
2374			if (copied)
2375				break;
2376			if (signal_pending(current)) {
2377				copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2378				break;
2379			}
2380		}
2381
2382		/* Next get a buffer. */
2383
2384		last = skb_peek_tail(&sk->sk_receive_queue);
2385		skb_queue_walk(&sk->sk_receive_queue, skb) {
2386			last = skb;
2387			/* Now that we have two receive queues this
2388			 * shouldn't happen.
2389			 */
2390			if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2391				 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2392				 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2393				 flags))
2394				break;
2395
2396			offset = *seq - TCP_SKB_CB(skb)->seq;
2397			if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2398				pr_err_once("%s: found a SYN, please report !\n", __func__);
2399				offset--;
2400			}
2401			if (offset < skb->len)
2402				goto found_ok_skb;
2403			if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2404				goto found_fin_ok;
2405			WARN(!(flags & MSG_PEEK),
2406			     "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2407			     *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2408		}
2409
2410		/* Well, if we have backlog, try to process it now yet. */
2411
2412		if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2413			break;
2414
2415		if (copied) {
2416			if (!timeo ||
2417			    sk->sk_err ||
2418			    sk->sk_state == TCP_CLOSE ||
2419			    (sk->sk_shutdown & RCV_SHUTDOWN) ||
 
2420			    signal_pending(current))
2421				break;
2422		} else {
2423			if (sock_flag(sk, SOCK_DONE))
2424				break;
2425
2426			if (sk->sk_err) {
2427				copied = sock_error(sk);
2428				break;
2429			}
2430
2431			if (sk->sk_shutdown & RCV_SHUTDOWN)
2432				break;
2433
2434			if (sk->sk_state == TCP_CLOSE) {
2435				/* This occurs when user tries to read
2436				 * from never connected socket.
2437				 */
2438				copied = -ENOTCONN;
2439				break;
2440			}
2441
2442			if (!timeo) {
2443				copied = -EAGAIN;
2444				break;
2445			}
2446
2447			if (signal_pending(current)) {
2448				copied = sock_intr_errno(timeo);
2449				break;
2450			}
2451		}
2452
 
 
2453		if (copied >= target) {
2454			/* Do not sleep, just process backlog. */
2455			__sk_flush_backlog(sk);
 
2456		} else {
2457			tcp_cleanup_rbuf(sk, copied);
2458			err = sk_wait_data(sk, &timeo, last);
2459			if (err < 0) {
2460				err = copied ? : err;
2461				goto out;
2462			}
2463		}
2464
2465		if ((flags & MSG_PEEK) &&
2466		    (peek_seq - copied - urg_hole != tp->copied_seq)) {
2467			net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2468					    current->comm,
2469					    task_pid_nr(current));
2470			peek_seq = tp->copied_seq;
2471		}
2472		continue;
2473
2474found_ok_skb:
2475		/* Ok so how much can we use? */
2476		used = skb->len - offset;
2477		if (len < used)
2478			used = len;
2479
2480		/* Do we have urgent data here? */
2481		if (unlikely(tp->urg_data)) {
2482			u32 urg_offset = tp->urg_seq - *seq;
2483			if (urg_offset < used) {
2484				if (!urg_offset) {
2485					if (!sock_flag(sk, SOCK_URGINLINE)) {
2486						WRITE_ONCE(*seq, *seq + 1);
2487						urg_hole++;
2488						offset++;
2489						used--;
2490						if (!used)
2491							goto skip_copy;
2492					}
2493				} else
2494					used = urg_offset;
2495			}
2496		}
2497
2498		if (!(flags & MSG_TRUNC)) {
2499			err = skb_copy_datagram_msg(skb, offset, msg, used);
2500			if (err) {
2501				/* Exception. Bailout! */
2502				if (!copied)
2503					copied = -EFAULT;
2504				break;
2505			}
2506		}
2507
2508		WRITE_ONCE(*seq, *seq + used);
2509		copied += used;
2510		len -= used;
2511
2512		tcp_rcv_space_adjust(sk);
2513
2514skip_copy:
2515		if (unlikely(tp->urg_data) && after(tp->copied_seq, tp->urg_seq)) {
2516			WRITE_ONCE(tp->urg_data, 0);
2517			tcp_fast_path_check(sk);
2518		}
2519
2520		if (TCP_SKB_CB(skb)->has_rxtstamp) {
2521			tcp_update_recv_tstamps(skb, tss);
2522			*cmsg_flags |= TCP_CMSG_TS;
2523		}
2524
2525		if (used + offset < skb->len)
2526			continue;
2527
2528		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2529			goto found_fin_ok;
2530		if (!(flags & MSG_PEEK))
2531			tcp_eat_recv_skb(sk, skb);
2532		continue;
2533
2534found_fin_ok:
2535		/* Process the FIN. */
2536		WRITE_ONCE(*seq, *seq + 1);
2537		if (!(flags & MSG_PEEK))
2538			tcp_eat_recv_skb(sk, skb);
2539		break;
2540	} while (len > 0);
2541
2542	/* According to UNIX98, msg_name/msg_namelen are ignored
2543	 * on connected socket. I was just happy when found this 8) --ANK
2544	 */
2545
2546	/* Clean up data we have read: This will do ACK frames. */
2547	tcp_cleanup_rbuf(sk, copied);
 
 
 
 
 
 
 
 
 
 
 
 
2548	return copied;
2549
2550out:
 
2551	return err;
2552
2553recv_urg:
2554	err = tcp_recv_urg(sk, msg, len, flags);
2555	goto out;
2556
2557recv_sndq:
2558	err = tcp_peek_sndq(sk, msg, len);
2559	goto out;
2560}
2561
2562int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int flags,
2563		int *addr_len)
2564{
2565	int cmsg_flags = 0, ret;
2566	struct scm_timestamping_internal tss;
2567
2568	if (unlikely(flags & MSG_ERRQUEUE))
2569		return inet_recv_error(sk, msg, len, addr_len);
2570
2571	if (sk_can_busy_loop(sk) &&
2572	    skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2573	    sk->sk_state == TCP_ESTABLISHED)
2574		sk_busy_loop(sk, flags & MSG_DONTWAIT);
2575
2576	lock_sock(sk);
2577	ret = tcp_recvmsg_locked(sk, msg, len, flags, &tss, &cmsg_flags);
2578	release_sock(sk);
2579
2580	if ((cmsg_flags || msg->msg_get_inq) && ret >= 0) {
2581		if (cmsg_flags & TCP_CMSG_TS)
2582			tcp_recv_timestamp(msg, sk, &tss);
2583		if (msg->msg_get_inq) {
2584			msg->msg_inq = tcp_inq_hint(sk);
2585			if (cmsg_flags & TCP_CMSG_INQ)
2586				put_cmsg(msg, SOL_TCP, TCP_CM_INQ,
2587					 sizeof(msg->msg_inq), &msg->msg_inq);
2588		}
2589	}
2590	return ret;
2591}
2592EXPORT_SYMBOL(tcp_recvmsg);
2593
2594void tcp_set_state(struct sock *sk, int state)
2595{
2596	int oldstate = sk->sk_state;
2597
2598	/* We defined a new enum for TCP states that are exported in BPF
2599	 * so as not force the internal TCP states to be frozen. The
2600	 * following checks will detect if an internal state value ever
2601	 * differs from the BPF value. If this ever happens, then we will
2602	 * need to remap the internal value to the BPF value before calling
2603	 * tcp_call_bpf_2arg.
2604	 */
2605	BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2606	BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2607	BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2608	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2609	BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2610	BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2611	BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2612	BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2613	BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2614	BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2615	BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2616	BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2617	BUILD_BUG_ON((int)BPF_TCP_BOUND_INACTIVE != (int)TCP_BOUND_INACTIVE);
2618	BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2619
2620	/* bpf uapi header bpf.h defines an anonymous enum with values
2621	 * BPF_TCP_* used by bpf programs. Currently gcc built vmlinux
2622	 * is able to emit this enum in DWARF due to the above BUILD_BUG_ON.
2623	 * But clang built vmlinux does not have this enum in DWARF
2624	 * since clang removes the above code before generating IR/debuginfo.
2625	 * Let us explicitly emit the type debuginfo to ensure the
2626	 * above-mentioned anonymous enum in the vmlinux DWARF and hence BTF
2627	 * regardless of which compiler is used.
2628	 */
2629	BTF_TYPE_EMIT_ENUM(BPF_TCP_ESTABLISHED);
2630
2631	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2632		tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2633
2634	switch (state) {
2635	case TCP_ESTABLISHED:
2636		if (oldstate != TCP_ESTABLISHED)
2637			TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2638		break;
2639
2640	case TCP_CLOSE:
2641		if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2642			TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2643
2644		sk->sk_prot->unhash(sk);
2645		if (inet_csk(sk)->icsk_bind_hash &&
2646		    !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2647			inet_put_port(sk);
2648		fallthrough;
2649	default:
2650		if (oldstate == TCP_ESTABLISHED)
2651			TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2652	}
2653
2654	/* Change state AFTER socket is unhashed to avoid closed
2655	 * socket sitting in hash tables.
2656	 */
2657	inet_sk_state_store(sk, state);
2658}
2659EXPORT_SYMBOL_GPL(tcp_set_state);
2660
2661/*
2662 *	State processing on a close. This implements the state shift for
2663 *	sending our FIN frame. Note that we only send a FIN for some
2664 *	states. A shutdown() may have already sent the FIN, or we may be
2665 *	closed.
2666 */
2667
2668static const unsigned char new_state[16] = {
2669  /* current state:        new state:      action:	*/
2670  [0 /* (Invalid) */]	= TCP_CLOSE,
2671  [TCP_ESTABLISHED]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2672  [TCP_SYN_SENT]	= TCP_CLOSE,
2673  [TCP_SYN_RECV]	= TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2674  [TCP_FIN_WAIT1]	= TCP_FIN_WAIT1,
2675  [TCP_FIN_WAIT2]	= TCP_FIN_WAIT2,
2676  [TCP_TIME_WAIT]	= TCP_CLOSE,
2677  [TCP_CLOSE]		= TCP_CLOSE,
2678  [TCP_CLOSE_WAIT]	= TCP_LAST_ACK  | TCP_ACTION_FIN,
2679  [TCP_LAST_ACK]	= TCP_LAST_ACK,
2680  [TCP_LISTEN]		= TCP_CLOSE,
2681  [TCP_CLOSING]		= TCP_CLOSING,
2682  [TCP_NEW_SYN_RECV]	= TCP_CLOSE,	/* should not happen ! */
2683};
2684
2685static int tcp_close_state(struct sock *sk)
2686{
2687	int next = (int)new_state[sk->sk_state];
2688	int ns = next & TCP_STATE_MASK;
2689
2690	tcp_set_state(sk, ns);
2691
2692	return next & TCP_ACTION_FIN;
2693}
2694
2695/*
2696 *	Shutdown the sending side of a connection. Much like close except
2697 *	that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2698 */
2699
2700void tcp_shutdown(struct sock *sk, int how)
2701{
2702	/*	We need to grab some memory, and put together a FIN,
2703	 *	and then put it into the queue to be sent.
2704	 *		Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2705	 */
2706	if (!(how & SEND_SHUTDOWN))
2707		return;
2708
2709	/* If we've already sent a FIN, or it's a closed state, skip this. */
2710	if ((1 << sk->sk_state) &
2711	    (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2712	     TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2713		/* Clear out any half completed packets.  FIN if needed. */
2714		if (tcp_close_state(sk))
2715			tcp_send_fin(sk);
2716	}
2717}
2718EXPORT_SYMBOL(tcp_shutdown);
2719
2720int tcp_orphan_count_sum(void)
2721{
2722	int i, total = 0;
2723
2724	for_each_possible_cpu(i)
2725		total += per_cpu(tcp_orphan_count, i);
2726
2727	return max(total, 0);
2728}
2729
2730static int tcp_orphan_cache;
2731static struct timer_list tcp_orphan_timer;
2732#define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2733
2734static void tcp_orphan_update(struct timer_list *unused)
2735{
2736	WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2737	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2738}
2739
2740static bool tcp_too_many_orphans(int shift)
2741{
2742	return READ_ONCE(tcp_orphan_cache) << shift >
2743		READ_ONCE(sysctl_tcp_max_orphans);
2744}
2745
2746bool tcp_check_oom(struct sock *sk, int shift)
2747{
2748	bool too_many_orphans, out_of_socket_memory;
2749
2750	too_many_orphans = tcp_too_many_orphans(shift);
2751	out_of_socket_memory = tcp_out_of_memory(sk);
2752
2753	if (too_many_orphans)
2754		net_info_ratelimited("too many orphaned sockets\n");
2755	if (out_of_socket_memory)
2756		net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2757	return too_many_orphans || out_of_socket_memory;
2758}
2759
2760void __tcp_close(struct sock *sk, long timeout)
2761{
2762	struct sk_buff *skb;
2763	int data_was_unread = 0;
2764	int state;
2765
2766	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
 
2767
2768	if (sk->sk_state == TCP_LISTEN) {
2769		tcp_set_state(sk, TCP_CLOSE);
2770
2771		/* Special case. */
2772		inet_csk_listen_stop(sk);
2773
2774		goto adjudge_to_death;
2775	}
2776
2777	/*  We need to flush the recv. buffs.  We do this only on the
2778	 *  descriptor close, not protocol-sourced closes, because the
2779	 *  reader process may not have drained the data yet!
2780	 */
2781	while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2782		u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2783
2784		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2785			len--;
2786		data_was_unread += len;
2787		__kfree_skb(skb);
2788	}
2789
 
 
2790	/* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2791	if (sk->sk_state == TCP_CLOSE)
2792		goto adjudge_to_death;
2793
2794	/* As outlined in RFC 2525, section 2.17, we send a RST here because
2795	 * data was lost. To witness the awful effects of the old behavior of
2796	 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2797	 * GET in an FTP client, suspend the process, wait for the client to
2798	 * advertise a zero window, then kill -9 the FTP client, wheee...
2799	 * Note: timeout is always zero in such a case.
2800	 */
2801	if (unlikely(tcp_sk(sk)->repair)) {
2802		sk->sk_prot->disconnect(sk, 0);
2803	} else if (data_was_unread) {
2804		/* Unread data was tossed, zap the connection. */
2805		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2806		tcp_set_state(sk, TCP_CLOSE);
2807		tcp_send_active_reset(sk, sk->sk_allocation);
2808	} else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2809		/* Check zero linger _after_ checking for unread data. */
2810		sk->sk_prot->disconnect(sk, 0);
2811		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2812	} else if (tcp_close_state(sk)) {
2813		/* We FIN if the application ate all the data before
2814		 * zapping the connection.
2815		 */
2816
2817		/* RED-PEN. Formally speaking, we have broken TCP state
2818		 * machine. State transitions:
2819		 *
2820		 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2821		 * TCP_SYN_RECV	-> TCP_FIN_WAIT1 (forget it, it's impossible)
2822		 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2823		 *
2824		 * are legal only when FIN has been sent (i.e. in window),
2825		 * rather than queued out of window. Purists blame.
2826		 *
2827		 * F.e. "RFC state" is ESTABLISHED,
2828		 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2829		 *
2830		 * The visible declinations are that sometimes
2831		 * we enter time-wait state, when it is not required really
2832		 * (harmless), do not send active resets, when they are
2833		 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2834		 * they look as CLOSING or LAST_ACK for Linux)
2835		 * Probably, I missed some more holelets.
2836		 * 						--ANK
2837		 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2838		 * in a single packet! (May consider it later but will
2839		 * probably need API support or TCP_CORK SYN-ACK until
2840		 * data is written and socket is closed.)
2841		 */
2842		tcp_send_fin(sk);
2843	}
2844
2845	sk_stream_wait_close(sk, timeout);
2846
2847adjudge_to_death:
2848	state = sk->sk_state;
2849	sock_hold(sk);
2850	sock_orphan(sk);
2851
2852	local_bh_disable();
2853	bh_lock_sock(sk);
2854	/* remove backlog if any, without releasing ownership. */
2855	__release_sock(sk);
2856
2857	this_cpu_inc(tcp_orphan_count);
2858
2859	/* Have we already been destroyed by a softirq or backlog? */
2860	if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2861		goto out;
2862
2863	/*	This is a (useful) BSD violating of the RFC. There is a
2864	 *	problem with TCP as specified in that the other end could
2865	 *	keep a socket open forever with no application left this end.
2866	 *	We use a 1 minute timeout (about the same as BSD) then kill
2867	 *	our end. If they send after that then tough - BUT: long enough
2868	 *	that we won't make the old 4*rto = almost no time - whoops
2869	 *	reset mistake.
2870	 *
2871	 *	Nope, it was not mistake. It is really desired behaviour
2872	 *	f.e. on http servers, when such sockets are useless, but
2873	 *	consume significant resources. Let's do it with special
2874	 *	linger2	option.					--ANK
2875	 */
2876
2877	if (sk->sk_state == TCP_FIN_WAIT2) {
2878		struct tcp_sock *tp = tcp_sk(sk);
2879		if (READ_ONCE(tp->linger2) < 0) {
2880			tcp_set_state(sk, TCP_CLOSE);
2881			tcp_send_active_reset(sk, GFP_ATOMIC);
2882			__NET_INC_STATS(sock_net(sk),
2883					LINUX_MIB_TCPABORTONLINGER);
2884		} else {
2885			const int tmo = tcp_fin_time(sk);
2886
2887			if (tmo > TCP_TIMEWAIT_LEN) {
2888				inet_csk_reset_keepalive_timer(sk,
2889						tmo - TCP_TIMEWAIT_LEN);
2890			} else {
2891				tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2892				goto out;
2893			}
2894		}
2895	}
2896	if (sk->sk_state != TCP_CLOSE) {
 
2897		if (tcp_check_oom(sk, 0)) {
2898			tcp_set_state(sk, TCP_CLOSE);
2899			tcp_send_active_reset(sk, GFP_ATOMIC);
2900			__NET_INC_STATS(sock_net(sk),
2901					LINUX_MIB_TCPABORTONMEMORY);
2902		} else if (!check_net(sock_net(sk))) {
2903			/* Not possible to send reset; just close */
2904			tcp_set_state(sk, TCP_CLOSE);
2905		}
2906	}
2907
2908	if (sk->sk_state == TCP_CLOSE) {
2909		struct request_sock *req;
2910
2911		req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2912						lockdep_sock_is_held(sk));
2913		/* We could get here with a non-NULL req if the socket is
2914		 * aborted (e.g., closed with unread data) before 3WHS
2915		 * finishes.
2916		 */
2917		if (req)
2918			reqsk_fastopen_remove(sk, req, false);
2919		inet_csk_destroy_sock(sk);
2920	}
2921	/* Otherwise, socket is reprieved until protocol close. */
2922
2923out:
2924	bh_unlock_sock(sk);
2925	local_bh_enable();
2926}
2927
2928void tcp_close(struct sock *sk, long timeout)
2929{
2930	lock_sock(sk);
2931	__tcp_close(sk, timeout);
2932	release_sock(sk);
2933	sock_put(sk);
2934}
2935EXPORT_SYMBOL(tcp_close);
2936
2937/* These states need RST on ABORT according to RFC793 */
2938
2939static inline bool tcp_need_reset(int state)
2940{
2941	return (1 << state) &
2942	       (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2943		TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2944}
2945
2946static void tcp_rtx_queue_purge(struct sock *sk)
2947{
2948	struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2949
2950	tcp_sk(sk)->highest_sack = NULL;
2951	while (p) {
2952		struct sk_buff *skb = rb_to_skb(p);
2953
2954		p = rb_next(p);
2955		/* Since we are deleting whole queue, no need to
2956		 * list_del(&skb->tcp_tsorted_anchor)
2957		 */
2958		tcp_rtx_queue_unlink(skb, sk);
2959		tcp_wmem_free_skb(sk, skb);
2960	}
2961}
2962
2963void tcp_write_queue_purge(struct sock *sk)
2964{
2965	struct sk_buff *skb;
2966
2967	tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2968	while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2969		tcp_skb_tsorted_anchor_cleanup(skb);
2970		tcp_wmem_free_skb(sk, skb);
2971	}
2972	tcp_rtx_queue_purge(sk);
 
 
 
 
 
2973	INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
 
2974	tcp_clear_all_retrans_hints(tcp_sk(sk));
2975	tcp_sk(sk)->packets_out = 0;
2976	inet_csk(sk)->icsk_backoff = 0;
2977}
2978
2979int tcp_disconnect(struct sock *sk, int flags)
2980{
2981	struct inet_sock *inet = inet_sk(sk);
2982	struct inet_connection_sock *icsk = inet_csk(sk);
2983	struct tcp_sock *tp = tcp_sk(sk);
2984	int old_state = sk->sk_state;
2985	u32 seq;
2986
2987	if (old_state != TCP_CLOSE)
2988		tcp_set_state(sk, TCP_CLOSE);
2989
2990	/* ABORT function of RFC793 */
2991	if (old_state == TCP_LISTEN) {
2992		inet_csk_listen_stop(sk);
2993	} else if (unlikely(tp->repair)) {
2994		WRITE_ONCE(sk->sk_err, ECONNABORTED);
2995	} else if (tcp_need_reset(old_state) ||
2996		   (tp->snd_nxt != tp->write_seq &&
2997		    (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2998		/* The last check adjusts for discrepancy of Linux wrt. RFC
2999		 * states
3000		 */
3001		tcp_send_active_reset(sk, gfp_any());
3002		WRITE_ONCE(sk->sk_err, ECONNRESET);
3003	} else if (old_state == TCP_SYN_SENT)
3004		WRITE_ONCE(sk->sk_err, ECONNRESET);
3005
3006	tcp_clear_xmit_timers(sk);
3007	__skb_queue_purge(&sk->sk_receive_queue);
 
 
 
 
3008	WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
3009	WRITE_ONCE(tp->urg_data, 0);
3010	tcp_write_queue_purge(sk);
3011	tcp_fastopen_active_disable_ofo_check(sk);
3012	skb_rbtree_purge(&tp->out_of_order_queue);
3013
3014	inet->inet_dport = 0;
3015
3016	inet_bhash2_reset_saddr(sk);
 
3017
3018	WRITE_ONCE(sk->sk_shutdown, 0);
3019	sock_reset_flag(sk, SOCK_DONE);
3020	tp->srtt_us = 0;
3021	tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
3022	tp->rcv_rtt_last_tsecr = 0;
3023
3024	seq = tp->write_seq + tp->max_window + 2;
3025	if (!seq)
3026		seq = 1;
3027	WRITE_ONCE(tp->write_seq, seq);
3028
3029	icsk->icsk_backoff = 0;
3030	icsk->icsk_probes_out = 0;
3031	icsk->icsk_probes_tstamp = 0;
3032	icsk->icsk_rto = TCP_TIMEOUT_INIT;
3033	icsk->icsk_rto_min = TCP_RTO_MIN;
3034	icsk->icsk_delack_max = TCP_DELACK_MAX;
3035	tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
3036	tcp_snd_cwnd_set(tp, TCP_INIT_CWND);
3037	tp->snd_cwnd_cnt = 0;
3038	tp->is_cwnd_limited = 0;
3039	tp->max_packets_out = 0;
3040	tp->window_clamp = 0;
3041	tp->delivered = 0;
3042	tp->delivered_ce = 0;
3043	if (icsk->icsk_ca_ops->release)
3044		icsk->icsk_ca_ops->release(sk);
3045	memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
3046	icsk->icsk_ca_initialized = 0;
3047	tcp_set_ca_state(sk, TCP_CA_Open);
3048	tp->is_sack_reneg = 0;
3049	tcp_clear_retrans(tp);
3050	tp->total_retrans = 0;
3051	inet_csk_delack_init(sk);
3052	/* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
3053	 * issue in __tcp_select_window()
3054	 */
3055	icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
3056	memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
3057	__sk_dst_reset(sk);
3058	dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
 
3059	tcp_saved_syn_free(tp);
3060	tp->compressed_ack = 0;
3061	tp->segs_in = 0;
3062	tp->segs_out = 0;
3063	tp->bytes_sent = 0;
3064	tp->bytes_acked = 0;
3065	tp->bytes_received = 0;
3066	tp->bytes_retrans = 0;
3067	tp->data_segs_in = 0;
3068	tp->data_segs_out = 0;
3069	tp->duplicate_sack[0].start_seq = 0;
3070	tp->duplicate_sack[0].end_seq = 0;
3071	tp->dsack_dups = 0;
3072	tp->reord_seen = 0;
3073	tp->retrans_out = 0;
3074	tp->sacked_out = 0;
3075	tp->tlp_high_seq = 0;
3076	tp->last_oow_ack_time = 0;
3077	tp->plb_rehash = 0;
3078	/* There's a bubble in the pipe until at least the first ACK. */
3079	tp->app_limited = ~0U;
3080	tp->rate_app_limited = 1;
3081	tp->rack.mstamp = 0;
3082	tp->rack.advanced = 0;
3083	tp->rack.reo_wnd_steps = 1;
3084	tp->rack.last_delivered = 0;
3085	tp->rack.reo_wnd_persist = 0;
3086	tp->rack.dsack_seen = 0;
3087	tp->syn_data_acked = 0;
3088	tp->rx_opt.saw_tstamp = 0;
3089	tp->rx_opt.dsack = 0;
3090	tp->rx_opt.num_sacks = 0;
3091	tp->rcv_ooopack = 0;
3092
3093
3094	/* Clean up fastopen related fields */
3095	tcp_free_fastopen_req(tp);
3096	inet_clear_bit(DEFER_CONNECT, sk);
3097	tp->fastopen_client_fail = 0;
3098
3099	WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
3100
3101	if (sk->sk_frag.page) {
3102		put_page(sk->sk_frag.page);
3103		sk->sk_frag.page = NULL;
3104		sk->sk_frag.offset = 0;
3105	}
3106	sk_error_report(sk);
 
3107	return 0;
3108}
3109EXPORT_SYMBOL(tcp_disconnect);
3110
3111static inline bool tcp_can_repair_sock(const struct sock *sk)
3112{
3113	return sockopt_ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
3114		(sk->sk_state != TCP_LISTEN);
3115}
3116
3117static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
3118{
3119	struct tcp_repair_window opt;
3120
3121	if (!tp->repair)
3122		return -EPERM;
3123
3124	if (len != sizeof(opt))
3125		return -EINVAL;
3126
3127	if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
3128		return -EFAULT;
3129
3130	if (opt.max_window < opt.snd_wnd)
3131		return -EINVAL;
3132
3133	if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
3134		return -EINVAL;
3135
3136	if (after(opt.rcv_wup, tp->rcv_nxt))
3137		return -EINVAL;
3138
3139	tp->snd_wl1	= opt.snd_wl1;
3140	tp->snd_wnd	= opt.snd_wnd;
3141	tp->max_window	= opt.max_window;
3142
3143	tp->rcv_wnd	= opt.rcv_wnd;
3144	tp->rcv_wup	= opt.rcv_wup;
3145
3146	return 0;
3147}
3148
3149static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
3150		unsigned int len)
3151{
3152	struct tcp_sock *tp = tcp_sk(sk);
3153	struct tcp_repair_opt opt;
3154	size_t offset = 0;
3155
3156	while (len >= sizeof(opt)) {
3157		if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
3158			return -EFAULT;
3159
3160		offset += sizeof(opt);
3161		len -= sizeof(opt);
3162
3163		switch (opt.opt_code) {
3164		case TCPOPT_MSS:
3165			tp->rx_opt.mss_clamp = opt.opt_val;
3166			tcp_mtup_init(sk);
3167			break;
3168		case TCPOPT_WINDOW:
3169			{
3170				u16 snd_wscale = opt.opt_val & 0xFFFF;
3171				u16 rcv_wscale = opt.opt_val >> 16;
3172
3173				if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
3174					return -EFBIG;
3175
3176				tp->rx_opt.snd_wscale = snd_wscale;
3177				tp->rx_opt.rcv_wscale = rcv_wscale;
3178				tp->rx_opt.wscale_ok = 1;
3179			}
3180			break;
3181		case TCPOPT_SACK_PERM:
3182			if (opt.opt_val != 0)
3183				return -EINVAL;
3184
3185			tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
3186			break;
3187		case TCPOPT_TIMESTAMP:
3188			if (opt.opt_val != 0)
3189				return -EINVAL;
3190
3191			tp->rx_opt.tstamp_ok = 1;
3192			break;
3193		}
3194	}
3195
3196	return 0;
3197}
3198
3199DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
3200EXPORT_SYMBOL(tcp_tx_delay_enabled);
3201
3202static void tcp_enable_tx_delay(void)
3203{
3204	if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
3205		static int __tcp_tx_delay_enabled = 0;
3206
3207		if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3208			static_branch_enable(&tcp_tx_delay_enabled);
3209			pr_info("TCP_TX_DELAY enabled\n");
3210		}
3211	}
3212}
3213
3214/* When set indicates to always queue non-full frames.  Later the user clears
3215 * this option and we transmit any pending partial frames in the queue.  This is
3216 * meant to be used alongside sendfile() to get properly filled frames when the
3217 * user (for example) must write out headers with a write() call first and then
3218 * use sendfile to send out the data parts.
3219 *
3220 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3221 * TCP_NODELAY.
3222 */
3223void __tcp_sock_set_cork(struct sock *sk, bool on)
3224{
3225	struct tcp_sock *tp = tcp_sk(sk);
3226
3227	if (on) {
3228		tp->nonagle |= TCP_NAGLE_CORK;
3229	} else {
3230		tp->nonagle &= ~TCP_NAGLE_CORK;
3231		if (tp->nonagle & TCP_NAGLE_OFF)
3232			tp->nonagle |= TCP_NAGLE_PUSH;
3233		tcp_push_pending_frames(sk);
3234	}
3235}
3236
3237void tcp_sock_set_cork(struct sock *sk, bool on)
3238{
3239	lock_sock(sk);
3240	__tcp_sock_set_cork(sk, on);
3241	release_sock(sk);
3242}
3243EXPORT_SYMBOL(tcp_sock_set_cork);
3244
3245/* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3246 * remembered, but it is not activated until cork is cleared.
3247 *
3248 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3249 * even TCP_CORK for currently queued segments.
3250 */
3251void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3252{
3253	if (on) {
3254		tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3255		tcp_push_pending_frames(sk);
3256	} else {
3257		tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3258	}
3259}
3260
3261void tcp_sock_set_nodelay(struct sock *sk)
3262{
3263	lock_sock(sk);
3264	__tcp_sock_set_nodelay(sk, true);
3265	release_sock(sk);
3266}
3267EXPORT_SYMBOL(tcp_sock_set_nodelay);
3268
3269static void __tcp_sock_set_quickack(struct sock *sk, int val)
3270{
3271	if (!val) {
3272		inet_csk_enter_pingpong_mode(sk);
3273		return;
3274	}
3275
3276	inet_csk_exit_pingpong_mode(sk);
3277	if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3278	    inet_csk_ack_scheduled(sk)) {
3279		inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3280		tcp_cleanup_rbuf(sk, 1);
3281		if (!(val & 1))
3282			inet_csk_enter_pingpong_mode(sk);
3283	}
3284}
3285
3286void tcp_sock_set_quickack(struct sock *sk, int val)
3287{
3288	lock_sock(sk);
3289	__tcp_sock_set_quickack(sk, val);
3290	release_sock(sk);
3291}
3292EXPORT_SYMBOL(tcp_sock_set_quickack);
3293
3294int tcp_sock_set_syncnt(struct sock *sk, int val)
3295{
3296	if (val < 1 || val > MAX_TCP_SYNCNT)
3297		return -EINVAL;
3298
3299	WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
 
 
3300	return 0;
3301}
3302EXPORT_SYMBOL(tcp_sock_set_syncnt);
3303
3304int tcp_sock_set_user_timeout(struct sock *sk, int val)
3305{
3306	/* Cap the max time in ms TCP will retry or probe the window
3307	 * before giving up and aborting (ETIMEDOUT) a connection.
3308	 */
3309	if (val < 0)
3310		return -EINVAL;
3311
3312	WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3313	return 0;
3314}
3315EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3316
3317int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3318{
3319	struct tcp_sock *tp = tcp_sk(sk);
3320
3321	if (val < 1 || val > MAX_TCP_KEEPIDLE)
3322		return -EINVAL;
3323
3324	/* Paired with WRITE_ONCE() in keepalive_time_when() */
3325	WRITE_ONCE(tp->keepalive_time, val * HZ);
3326	if (sock_flag(sk, SOCK_KEEPOPEN) &&
3327	    !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3328		u32 elapsed = keepalive_time_elapsed(tp);
3329
3330		if (tp->keepalive_time > elapsed)
3331			elapsed = tp->keepalive_time - elapsed;
3332		else
3333			elapsed = 0;
3334		inet_csk_reset_keepalive_timer(sk, elapsed);
3335	}
3336
3337	return 0;
3338}
3339
3340int tcp_sock_set_keepidle(struct sock *sk, int val)
3341{
3342	int err;
3343
3344	lock_sock(sk);
3345	err = tcp_sock_set_keepidle_locked(sk, val);
3346	release_sock(sk);
3347	return err;
3348}
3349EXPORT_SYMBOL(tcp_sock_set_keepidle);
3350
3351int tcp_sock_set_keepintvl(struct sock *sk, int val)
3352{
3353	if (val < 1 || val > MAX_TCP_KEEPINTVL)
3354		return -EINVAL;
3355
3356	WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
 
 
3357	return 0;
3358}
3359EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3360
3361int tcp_sock_set_keepcnt(struct sock *sk, int val)
3362{
3363	if (val < 1 || val > MAX_TCP_KEEPCNT)
3364		return -EINVAL;
3365
3366	/* Paired with READ_ONCE() in keepalive_probes() */
3367	WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
 
3368	return 0;
3369}
3370EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3371
3372int tcp_set_window_clamp(struct sock *sk, int val)
3373{
3374	struct tcp_sock *tp = tcp_sk(sk);
3375
3376	if (!val) {
3377		if (sk->sk_state != TCP_CLOSE)
3378			return -EINVAL;
3379		tp->window_clamp = 0;
3380	} else {
3381		u32 new_rcv_ssthresh, old_window_clamp = tp->window_clamp;
3382		u32 new_window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3383						SOCK_MIN_RCVBUF / 2 : val;
3384
3385		if (new_window_clamp == old_window_clamp)
3386			return 0;
3387
3388		tp->window_clamp = new_window_clamp;
3389		if (new_window_clamp < old_window_clamp) {
3390			/* need to apply the reserved mem provisioning only
3391			 * when shrinking the window clamp
3392			 */
3393			__tcp_adjust_rcv_ssthresh(sk, tp->window_clamp);
3394
3395		} else {
3396			new_rcv_ssthresh = min(tp->rcv_wnd, tp->window_clamp);
3397			tp->rcv_ssthresh = max(new_rcv_ssthresh,
3398					       tp->rcv_ssthresh);
3399		}
3400	}
3401	return 0;
3402}
3403
3404/*
3405 *	Socket option code for TCP.
3406 */
3407int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3408		      sockptr_t optval, unsigned int optlen)
3409{
3410	struct tcp_sock *tp = tcp_sk(sk);
3411	struct inet_connection_sock *icsk = inet_csk(sk);
3412	struct net *net = sock_net(sk);
3413	int val;
3414	int err = 0;
3415
3416	/* These are data/string values, all the others are ints */
3417	switch (optname) {
3418	case TCP_CONGESTION: {
3419		char name[TCP_CA_NAME_MAX];
3420
3421		if (optlen < 1)
3422			return -EINVAL;
3423
3424		val = strncpy_from_sockptr(name, optval,
3425					min_t(long, TCP_CA_NAME_MAX-1, optlen));
3426		if (val < 0)
3427			return -EFAULT;
3428		name[val] = 0;
3429
3430		sockopt_lock_sock(sk);
3431		err = tcp_set_congestion_control(sk, name, !has_current_bpf_ctx(),
3432						 sockopt_ns_capable(sock_net(sk)->user_ns,
3433								    CAP_NET_ADMIN));
3434		sockopt_release_sock(sk);
3435		return err;
3436	}
3437	case TCP_ULP: {
3438		char name[TCP_ULP_NAME_MAX];
3439
3440		if (optlen < 1)
3441			return -EINVAL;
3442
3443		val = strncpy_from_sockptr(name, optval,
3444					min_t(long, TCP_ULP_NAME_MAX - 1,
3445					      optlen));
3446		if (val < 0)
3447			return -EFAULT;
3448		name[val] = 0;
3449
3450		sockopt_lock_sock(sk);
3451		err = tcp_set_ulp(sk, name);
3452		sockopt_release_sock(sk);
3453		return err;
3454	}
3455	case TCP_FASTOPEN_KEY: {
3456		__u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3457		__u8 *backup_key = NULL;
3458
3459		/* Allow a backup key as well to facilitate key rotation
3460		 * First key is the active one.
3461		 */
3462		if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3463		    optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3464			return -EINVAL;
3465
3466		if (copy_from_sockptr(key, optval, optlen))
3467			return -EFAULT;
3468
3469		if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3470			backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3471
3472		return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3473	}
3474	default:
3475		/* fallthru */
3476		break;
3477	}
3478
3479	if (optlen < sizeof(int))
3480		return -EINVAL;
3481
3482	if (copy_from_sockptr(&val, optval, sizeof(val)))
3483		return -EFAULT;
3484
3485	/* Handle options that can be set without locking the socket. */
3486	switch (optname) {
3487	case TCP_SYNCNT:
3488		return tcp_sock_set_syncnt(sk, val);
3489	case TCP_USER_TIMEOUT:
3490		return tcp_sock_set_user_timeout(sk, val);
3491	case TCP_KEEPINTVL:
3492		return tcp_sock_set_keepintvl(sk, val);
3493	case TCP_KEEPCNT:
3494		return tcp_sock_set_keepcnt(sk, val);
3495	case TCP_LINGER2:
3496		if (val < 0)
3497			WRITE_ONCE(tp->linger2, -1);
3498		else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3499			WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3500		else
3501			WRITE_ONCE(tp->linger2, val * HZ);
3502		return 0;
3503	case TCP_DEFER_ACCEPT:
3504		/* Translate value in seconds to number of retransmits */
3505		WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3506			   secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3507					   TCP_RTO_MAX / HZ));
3508		return 0;
3509	}
3510
3511	sockopt_lock_sock(sk);
3512
3513	switch (optname) {
3514	case TCP_MAXSEG:
3515		/* Values greater than interface MTU won't take effect. However
3516		 * at the point when this call is done we typically don't yet
3517		 * know which interface is going to be used
3518		 */
3519		if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3520			err = -EINVAL;
3521			break;
3522		}
3523		tp->rx_opt.user_mss = val;
3524		break;
3525
3526	case TCP_NODELAY:
3527		__tcp_sock_set_nodelay(sk, val);
3528		break;
3529
3530	case TCP_THIN_LINEAR_TIMEOUTS:
3531		if (val < 0 || val > 1)
3532			err = -EINVAL;
3533		else
3534			tp->thin_lto = val;
3535		break;
3536
3537	case TCP_THIN_DUPACK:
3538		if (val < 0 || val > 1)
3539			err = -EINVAL;
3540		break;
3541
3542	case TCP_REPAIR:
3543		if (!tcp_can_repair_sock(sk))
3544			err = -EPERM;
3545		else if (val == TCP_REPAIR_ON) {
3546			tp->repair = 1;
3547			sk->sk_reuse = SK_FORCE_REUSE;
3548			tp->repair_queue = TCP_NO_QUEUE;
3549		} else if (val == TCP_REPAIR_OFF) {
3550			tp->repair = 0;
3551			sk->sk_reuse = SK_NO_REUSE;
3552			tcp_send_window_probe(sk);
3553		} else if (val == TCP_REPAIR_OFF_NO_WP) {
3554			tp->repair = 0;
3555			sk->sk_reuse = SK_NO_REUSE;
3556		} else
3557			err = -EINVAL;
3558
3559		break;
3560
3561	case TCP_REPAIR_QUEUE:
3562		if (!tp->repair)
3563			err = -EPERM;
3564		else if ((unsigned int)val < TCP_QUEUES_NR)
3565			tp->repair_queue = val;
3566		else
3567			err = -EINVAL;
3568		break;
3569
3570	case TCP_QUEUE_SEQ:
3571		if (sk->sk_state != TCP_CLOSE) {
3572			err = -EPERM;
3573		} else if (tp->repair_queue == TCP_SEND_QUEUE) {
3574			if (!tcp_rtx_queue_empty(sk))
3575				err = -EPERM;
3576			else
3577				WRITE_ONCE(tp->write_seq, val);
3578		} else if (tp->repair_queue == TCP_RECV_QUEUE) {
3579			if (tp->rcv_nxt != tp->copied_seq) {
3580				err = -EPERM;
3581			} else {
3582				WRITE_ONCE(tp->rcv_nxt, val);
3583				WRITE_ONCE(tp->copied_seq, val);
3584			}
3585		} else {
3586			err = -EINVAL;
3587		}
3588		break;
3589
3590	case TCP_REPAIR_OPTIONS:
3591		if (!tp->repair)
3592			err = -EINVAL;
3593		else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3594			err = tcp_repair_options_est(sk, optval, optlen);
3595		else
3596			err = -EPERM;
3597		break;
3598
3599	case TCP_CORK:
3600		__tcp_sock_set_cork(sk, val);
3601		break;
3602
3603	case TCP_KEEPIDLE:
3604		err = tcp_sock_set_keepidle_locked(sk, val);
3605		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3606	case TCP_SAVE_SYN:
3607		/* 0: disable, 1: enable, 2: start from ether_header */
3608		if (val < 0 || val > 2)
3609			err = -EINVAL;
3610		else
3611			tp->save_syn = val;
3612		break;
3613
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3614	case TCP_WINDOW_CLAMP:
3615		err = tcp_set_window_clamp(sk, val);
 
 
 
 
 
 
 
 
3616		break;
3617
3618	case TCP_QUICKACK:
3619		__tcp_sock_set_quickack(sk, val);
3620		break;
3621
3622	case TCP_AO_REPAIR:
3623		if (!tcp_can_repair_sock(sk)) {
3624			err = -EPERM;
3625			break;
3626		}
3627		err = tcp_ao_set_repair(sk, optval, optlen);
3628		break;
3629#ifdef CONFIG_TCP_AO
3630	case TCP_AO_ADD_KEY:
3631	case TCP_AO_DEL_KEY:
3632	case TCP_AO_INFO: {
3633		/* If this is the first TCP-AO setsockopt() on the socket,
3634		 * sk_state has to be LISTEN or CLOSE. Allow TCP_REPAIR
3635		 * in any state.
3636		 */
3637		if ((1 << sk->sk_state) & (TCPF_LISTEN | TCPF_CLOSE))
3638			goto ao_parse;
3639		if (rcu_dereference_protected(tcp_sk(sk)->ao_info,
3640					      lockdep_sock_is_held(sk)))
3641			goto ao_parse;
3642		if (tp->repair)
3643			goto ao_parse;
3644		err = -EISCONN;
3645		break;
3646ao_parse:
3647		err = tp->af_specific->ao_parse(sk, optname, optval, optlen);
3648		break;
3649	}
3650#endif
3651#ifdef CONFIG_TCP_MD5SIG
3652	case TCP_MD5SIG:
3653	case TCP_MD5SIG_EXT:
3654		err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3655		break;
3656#endif
 
 
 
 
 
 
 
 
 
 
3657	case TCP_FASTOPEN:
3658		if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3659		    TCPF_LISTEN))) {
3660			tcp_fastopen_init_key_once(net);
3661
3662			fastopen_queue_tune(sk, val);
3663		} else {
3664			err = -EINVAL;
3665		}
3666		break;
3667	case TCP_FASTOPEN_CONNECT:
3668		if (val > 1 || val < 0) {
3669			err = -EINVAL;
3670		} else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3671			   TFO_CLIENT_ENABLE) {
3672			if (sk->sk_state == TCP_CLOSE)
3673				tp->fastopen_connect = val;
3674			else
3675				err = -EINVAL;
3676		} else {
3677			err = -EOPNOTSUPP;
3678		}
3679		break;
3680	case TCP_FASTOPEN_NO_COOKIE:
3681		if (val > 1 || val < 0)
3682			err = -EINVAL;
3683		else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3684			err = -EINVAL;
3685		else
3686			tp->fastopen_no_cookie = val;
3687		break;
3688	case TCP_TIMESTAMP:
3689		if (!tp->repair) {
3690			err = -EPERM;
3691			break;
3692		}
3693		/* val is an opaque field,
3694		 * and low order bit contains usec_ts enable bit.
3695		 * Its a best effort, and we do not care if user makes an error.
3696		 */
3697		tp->tcp_usec_ts = val & 1;
3698		WRITE_ONCE(tp->tsoffset, val - tcp_clock_ts(tp->tcp_usec_ts));
3699		break;
3700	case TCP_REPAIR_WINDOW:
3701		err = tcp_repair_set_window(tp, optval, optlen);
3702		break;
3703	case TCP_NOTSENT_LOWAT:
3704		WRITE_ONCE(tp->notsent_lowat, val);
3705		sk->sk_write_space(sk);
3706		break;
3707	case TCP_INQ:
3708		if (val > 1 || val < 0)
3709			err = -EINVAL;
3710		else
3711			tp->recvmsg_inq = val;
3712		break;
3713	case TCP_TX_DELAY:
3714		if (val)
3715			tcp_enable_tx_delay();
3716		WRITE_ONCE(tp->tcp_tx_delay, val);
3717		break;
3718	default:
3719		err = -ENOPROTOOPT;
3720		break;
3721	}
3722
3723	sockopt_release_sock(sk);
3724	return err;
3725}
3726
3727int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3728		   unsigned int optlen)
3729{
3730	const struct inet_connection_sock *icsk = inet_csk(sk);
3731
3732	if (level != SOL_TCP)
3733		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3734		return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3735								optval, optlen);
3736	return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3737}
3738EXPORT_SYMBOL(tcp_setsockopt);
3739
3740static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3741				      struct tcp_info *info)
3742{
3743	u64 stats[__TCP_CHRONO_MAX], total = 0;
3744	enum tcp_chrono i;
3745
3746	for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3747		stats[i] = tp->chrono_stat[i - 1];
3748		if (i == tp->chrono_type)
3749			stats[i] += tcp_jiffies32 - tp->chrono_start;
3750		stats[i] *= USEC_PER_SEC / HZ;
3751		total += stats[i];
3752	}
3753
3754	info->tcpi_busy_time = total;
3755	info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3756	info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3757}
3758
3759/* Return information about state of tcp endpoint in API format. */
3760void tcp_get_info(struct sock *sk, struct tcp_info *info)
3761{
3762	const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3763	const struct inet_connection_sock *icsk = inet_csk(sk);
3764	unsigned long rate;
3765	u32 now;
3766	u64 rate64;
3767	bool slow;
3768
3769	memset(info, 0, sizeof(*info));
3770	if (sk->sk_type != SOCK_STREAM)
3771		return;
3772
3773	info->tcpi_state = inet_sk_state_load(sk);
3774
3775	/* Report meaningful fields for all TCP states, including listeners */
3776	rate = READ_ONCE(sk->sk_pacing_rate);
3777	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3778	info->tcpi_pacing_rate = rate64;
3779
3780	rate = READ_ONCE(sk->sk_max_pacing_rate);
3781	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3782	info->tcpi_max_pacing_rate = rate64;
3783
3784	info->tcpi_reordering = tp->reordering;
3785	info->tcpi_snd_cwnd = tcp_snd_cwnd(tp);
3786
3787	if (info->tcpi_state == TCP_LISTEN) {
3788		/* listeners aliased fields :
3789		 * tcpi_unacked -> Number of children ready for accept()
3790		 * tcpi_sacked  -> max backlog
3791		 */
3792		info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3793		info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3794		return;
3795	}
3796
3797	slow = lock_sock_fast(sk);
3798
3799	info->tcpi_ca_state = icsk->icsk_ca_state;
3800	info->tcpi_retransmits = icsk->icsk_retransmits;
3801	info->tcpi_probes = icsk->icsk_probes_out;
3802	info->tcpi_backoff = icsk->icsk_backoff;
3803
3804	if (tp->rx_opt.tstamp_ok)
3805		info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3806	if (tcp_is_sack(tp))
3807		info->tcpi_options |= TCPI_OPT_SACK;
3808	if (tp->rx_opt.wscale_ok) {
3809		info->tcpi_options |= TCPI_OPT_WSCALE;
3810		info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3811		info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3812	}
3813
3814	if (tp->ecn_flags & TCP_ECN_OK)
3815		info->tcpi_options |= TCPI_OPT_ECN;
3816	if (tp->ecn_flags & TCP_ECN_SEEN)
3817		info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3818	if (tp->syn_data_acked)
3819		info->tcpi_options |= TCPI_OPT_SYN_DATA;
3820	if (tp->tcp_usec_ts)
3821		info->tcpi_options |= TCPI_OPT_USEC_TS;
3822
3823	info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3824	info->tcpi_ato = jiffies_to_usecs(min_t(u32, icsk->icsk_ack.ato,
3825						tcp_delack_max(sk)));
3826	info->tcpi_snd_mss = tp->mss_cache;
3827	info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3828
3829	info->tcpi_unacked = tp->packets_out;
3830	info->tcpi_sacked = tp->sacked_out;
3831
3832	info->tcpi_lost = tp->lost_out;
3833	info->tcpi_retrans = tp->retrans_out;
3834
3835	now = tcp_jiffies32;
3836	info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3837	info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3838	info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3839
3840	info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3841	info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3842	info->tcpi_rtt = tp->srtt_us >> 3;
3843	info->tcpi_rttvar = tp->mdev_us >> 2;
3844	info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3845	info->tcpi_advmss = tp->advmss;
3846
3847	info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3848	info->tcpi_rcv_space = tp->rcvq_space.space;
3849
3850	info->tcpi_total_retrans = tp->total_retrans;
3851
3852	info->tcpi_bytes_acked = tp->bytes_acked;
3853	info->tcpi_bytes_received = tp->bytes_received;
3854	info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3855	tcp_get_info_chrono_stats(tp, info);
3856
3857	info->tcpi_segs_out = tp->segs_out;
3858
3859	/* segs_in and data_segs_in can be updated from tcp_segs_in() from BH */
3860	info->tcpi_segs_in = READ_ONCE(tp->segs_in);
3861	info->tcpi_data_segs_in = READ_ONCE(tp->data_segs_in);
3862
3863	info->tcpi_min_rtt = tcp_min_rtt(tp);
 
3864	info->tcpi_data_segs_out = tp->data_segs_out;
3865
3866	info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3867	rate64 = tcp_compute_delivery_rate(tp);
3868	if (rate64)
3869		info->tcpi_delivery_rate = rate64;
3870	info->tcpi_delivered = tp->delivered;
3871	info->tcpi_delivered_ce = tp->delivered_ce;
3872	info->tcpi_bytes_sent = tp->bytes_sent;
3873	info->tcpi_bytes_retrans = tp->bytes_retrans;
3874	info->tcpi_dsack_dups = tp->dsack_dups;
3875	info->tcpi_reord_seen = tp->reord_seen;
3876	info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3877	info->tcpi_snd_wnd = tp->snd_wnd;
3878	info->tcpi_rcv_wnd = tp->rcv_wnd;
3879	info->tcpi_rehash = tp->plb_rehash + tp->timeout_rehash;
3880	info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3881
3882	info->tcpi_total_rto = tp->total_rto;
3883	info->tcpi_total_rto_recoveries = tp->total_rto_recoveries;
3884	info->tcpi_total_rto_time = tp->total_rto_time;
3885	if (tp->rto_stamp)
3886		info->tcpi_total_rto_time += tcp_clock_ms() - tp->rto_stamp;
3887
3888	unlock_sock_fast(sk, slow);
3889}
3890EXPORT_SYMBOL_GPL(tcp_get_info);
3891
3892static size_t tcp_opt_stats_get_size(void)
3893{
3894	return
3895		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3896		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3897		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3898		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3899		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3900		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3901		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3902		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3903		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3904		nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3905		nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3906		nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3907		nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3908		nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3909		nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3910		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3911		nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3912		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3913		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3914		nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3915		nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3916		nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3917		nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3918		nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3919		nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3920		nla_total_size(sizeof(u8)) + /* TCP_NLA_TTL */
3921		nla_total_size(sizeof(u32)) + /* TCP_NLA_REHASH */
3922		0;
3923}
3924
3925/* Returns TTL or hop limit of an incoming packet from skb. */
3926static u8 tcp_skb_ttl_or_hop_limit(const struct sk_buff *skb)
3927{
3928	if (skb->protocol == htons(ETH_P_IP))
3929		return ip_hdr(skb)->ttl;
3930	else if (skb->protocol == htons(ETH_P_IPV6))
3931		return ipv6_hdr(skb)->hop_limit;
3932	else
3933		return 0;
3934}
3935
3936struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3937					       const struct sk_buff *orig_skb,
3938					       const struct sk_buff *ack_skb)
3939{
3940	const struct tcp_sock *tp = tcp_sk(sk);
3941	struct sk_buff *stats;
3942	struct tcp_info info;
3943	unsigned long rate;
3944	u64 rate64;
3945
3946	stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3947	if (!stats)
3948		return NULL;
3949
3950	tcp_get_info_chrono_stats(tp, &info);
3951	nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3952			  info.tcpi_busy_time, TCP_NLA_PAD);
3953	nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3954			  info.tcpi_rwnd_limited, TCP_NLA_PAD);
3955	nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3956			  info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3957	nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3958			  tp->data_segs_out, TCP_NLA_PAD);
3959	nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3960			  tp->total_retrans, TCP_NLA_PAD);
3961
3962	rate = READ_ONCE(sk->sk_pacing_rate);
3963	rate64 = (rate != ~0UL) ? rate : ~0ULL;
3964	nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3965
3966	rate64 = tcp_compute_delivery_rate(tp);
3967	nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3968
3969	nla_put_u32(stats, TCP_NLA_SND_CWND, tcp_snd_cwnd(tp));
3970	nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3971	nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3972
3973	nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3974	nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3975	nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3976	nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3977	nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3978
3979	nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3980	nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3981
3982	nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3983			  TCP_NLA_PAD);
3984	nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3985			  TCP_NLA_PAD);
3986	nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3987	nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3988	nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3989	nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3990	nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3991		    max_t(int, 0, tp->write_seq - tp->snd_nxt));
3992	nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3993			  TCP_NLA_PAD);
3994	if (ack_skb)
3995		nla_put_u8(stats, TCP_NLA_TTL,
3996			   tcp_skb_ttl_or_hop_limit(ack_skb));
3997
3998	nla_put_u32(stats, TCP_NLA_REHASH, tp->plb_rehash + tp->timeout_rehash);
3999	return stats;
4000}
4001
4002int do_tcp_getsockopt(struct sock *sk, int level,
4003		      int optname, sockptr_t optval, sockptr_t optlen)
4004{
4005	struct inet_connection_sock *icsk = inet_csk(sk);
4006	struct tcp_sock *tp = tcp_sk(sk);
4007	struct net *net = sock_net(sk);
4008	int val, len;
4009
4010	if (copy_from_sockptr(&len, optlen, sizeof(int)))
4011		return -EFAULT;
4012
4013	len = min_t(unsigned int, len, sizeof(int));
4014
4015	if (len < 0)
4016		return -EINVAL;
4017
4018	switch (optname) {
4019	case TCP_MAXSEG:
4020		val = tp->mss_cache;
4021		if (tp->rx_opt.user_mss &&
4022		    ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
4023			val = tp->rx_opt.user_mss;
4024		if (tp->repair)
4025			val = tp->rx_opt.mss_clamp;
4026		break;
4027	case TCP_NODELAY:
4028		val = !!(tp->nonagle&TCP_NAGLE_OFF);
4029		break;
4030	case TCP_CORK:
4031		val = !!(tp->nonagle&TCP_NAGLE_CORK);
4032		break;
4033	case TCP_KEEPIDLE:
4034		val = keepalive_time_when(tp) / HZ;
4035		break;
4036	case TCP_KEEPINTVL:
4037		val = keepalive_intvl_when(tp) / HZ;
4038		break;
4039	case TCP_KEEPCNT:
4040		val = keepalive_probes(tp);
4041		break;
4042	case TCP_SYNCNT:
4043		val = READ_ONCE(icsk->icsk_syn_retries) ? :
4044			READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
4045		break;
4046	case TCP_LINGER2:
4047		val = READ_ONCE(tp->linger2);
4048		if (val >= 0)
4049			val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
4050		break;
4051	case TCP_DEFER_ACCEPT:
4052		val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
4053		val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
4054				      TCP_RTO_MAX / HZ);
4055		break;
4056	case TCP_WINDOW_CLAMP:
4057		val = tp->window_clamp;
4058		break;
4059	case TCP_INFO: {
4060		struct tcp_info info;
4061
4062		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4063			return -EFAULT;
4064
4065		tcp_get_info(sk, &info);
4066
4067		len = min_t(unsigned int, len, sizeof(info));
4068		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4069			return -EFAULT;
4070		if (copy_to_sockptr(optval, &info, len))
4071			return -EFAULT;
4072		return 0;
4073	}
4074	case TCP_CC_INFO: {
4075		const struct tcp_congestion_ops *ca_ops;
4076		union tcp_cc_info info;
4077		size_t sz = 0;
4078		int attr;
4079
4080		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4081			return -EFAULT;
4082
4083		ca_ops = icsk->icsk_ca_ops;
4084		if (ca_ops && ca_ops->get_info)
4085			sz = ca_ops->get_info(sk, ~0U, &attr, &info);
4086
4087		len = min_t(unsigned int, len, sz);
4088		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4089			return -EFAULT;
4090		if (copy_to_sockptr(optval, &info, len))
4091			return -EFAULT;
4092		return 0;
4093	}
4094	case TCP_QUICKACK:
4095		val = !inet_csk_in_pingpong_mode(sk);
4096		break;
4097
4098	case TCP_CONGESTION:
4099		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4100			return -EFAULT;
4101		len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
4102		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4103			return -EFAULT;
4104		if (copy_to_sockptr(optval, icsk->icsk_ca_ops->name, len))
4105			return -EFAULT;
4106		return 0;
4107
4108	case TCP_ULP:
4109		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4110			return -EFAULT;
4111		len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
4112		if (!icsk->icsk_ulp_ops) {
4113			len = 0;
4114			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4115				return -EFAULT;
4116			return 0;
4117		}
4118		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4119			return -EFAULT;
4120		if (copy_to_sockptr(optval, icsk->icsk_ulp_ops->name, len))
4121			return -EFAULT;
4122		return 0;
4123
4124	case TCP_FASTOPEN_KEY: {
4125		u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
4126		unsigned int key_len;
4127
4128		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4129			return -EFAULT;
4130
4131		key_len = tcp_fastopen_get_cipher(net, icsk, key) *
4132				TCP_FASTOPEN_KEY_LENGTH;
4133		len = min_t(unsigned int, len, key_len);
4134		if (copy_to_sockptr(optlen, &len, sizeof(int)))
4135			return -EFAULT;
4136		if (copy_to_sockptr(optval, key, len))
4137			return -EFAULT;
4138		return 0;
4139	}
4140	case TCP_THIN_LINEAR_TIMEOUTS:
4141		val = tp->thin_lto;
4142		break;
4143
4144	case TCP_THIN_DUPACK:
4145		val = 0;
4146		break;
4147
4148	case TCP_REPAIR:
4149		val = tp->repair;
4150		break;
4151
4152	case TCP_REPAIR_QUEUE:
4153		if (tp->repair)
4154			val = tp->repair_queue;
4155		else
4156			return -EINVAL;
4157		break;
4158
4159	case TCP_REPAIR_WINDOW: {
4160		struct tcp_repair_window opt;
4161
4162		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4163			return -EFAULT;
4164
4165		if (len != sizeof(opt))
4166			return -EINVAL;
4167
4168		if (!tp->repair)
4169			return -EPERM;
4170
4171		opt.snd_wl1	= tp->snd_wl1;
4172		opt.snd_wnd	= tp->snd_wnd;
4173		opt.max_window	= tp->max_window;
4174		opt.rcv_wnd	= tp->rcv_wnd;
4175		opt.rcv_wup	= tp->rcv_wup;
4176
4177		if (copy_to_sockptr(optval, &opt, len))
4178			return -EFAULT;
4179		return 0;
4180	}
4181	case TCP_QUEUE_SEQ:
4182		if (tp->repair_queue == TCP_SEND_QUEUE)
4183			val = tp->write_seq;
4184		else if (tp->repair_queue == TCP_RECV_QUEUE)
4185			val = tp->rcv_nxt;
4186		else
4187			return -EINVAL;
4188		break;
4189
4190	case TCP_USER_TIMEOUT:
4191		val = READ_ONCE(icsk->icsk_user_timeout);
4192		break;
4193
4194	case TCP_FASTOPEN:
4195		val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
4196		break;
4197
4198	case TCP_FASTOPEN_CONNECT:
4199		val = tp->fastopen_connect;
4200		break;
4201
4202	case TCP_FASTOPEN_NO_COOKIE:
4203		val = tp->fastopen_no_cookie;
4204		break;
4205
4206	case TCP_TX_DELAY:
4207		val = READ_ONCE(tp->tcp_tx_delay);
4208		break;
4209
4210	case TCP_TIMESTAMP:
4211		val = tcp_clock_ts(tp->tcp_usec_ts) + READ_ONCE(tp->tsoffset);
4212		if (tp->tcp_usec_ts)
4213			val |= 1;
4214		else
4215			val &= ~1;
4216		break;
4217	case TCP_NOTSENT_LOWAT:
4218		val = READ_ONCE(tp->notsent_lowat);
4219		break;
4220	case TCP_INQ:
4221		val = tp->recvmsg_inq;
4222		break;
4223	case TCP_SAVE_SYN:
4224		val = tp->save_syn;
4225		break;
4226	case TCP_SAVED_SYN: {
4227		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4228			return -EFAULT;
4229
4230		sockopt_lock_sock(sk);
4231		if (tp->saved_syn) {
4232			if (len < tcp_saved_syn_len(tp->saved_syn)) {
4233				len = tcp_saved_syn_len(tp->saved_syn);
4234				if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4235					sockopt_release_sock(sk);
4236					return -EFAULT;
4237				}
4238				sockopt_release_sock(sk);
4239				return -EINVAL;
4240			}
4241			len = tcp_saved_syn_len(tp->saved_syn);
4242			if (copy_to_sockptr(optlen, &len, sizeof(int))) {
4243				sockopt_release_sock(sk);
4244				return -EFAULT;
4245			}
4246			if (copy_to_sockptr(optval, tp->saved_syn->data, len)) {
4247				sockopt_release_sock(sk);
4248				return -EFAULT;
4249			}
4250			tcp_saved_syn_free(tp);
4251			sockopt_release_sock(sk);
4252		} else {
4253			sockopt_release_sock(sk);
4254			len = 0;
4255			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4256				return -EFAULT;
4257		}
4258		return 0;
4259	}
4260#ifdef CONFIG_MMU
4261	case TCP_ZEROCOPY_RECEIVE: {
4262		struct scm_timestamping_internal tss;
4263		struct tcp_zerocopy_receive zc = {};
4264		int err;
4265
4266		if (copy_from_sockptr(&len, optlen, sizeof(int)))
4267			return -EFAULT;
4268		if (len < 0 ||
4269		    len < offsetofend(struct tcp_zerocopy_receive, length))
4270			return -EINVAL;
4271		if (unlikely(len > sizeof(zc))) {
4272			err = check_zeroed_sockptr(optval, sizeof(zc),
4273						   len - sizeof(zc));
4274			if (err < 1)
4275				return err == 0 ? -EINVAL : err;
4276			len = sizeof(zc);
4277			if (copy_to_sockptr(optlen, &len, sizeof(int)))
4278				return -EFAULT;
4279		}
4280		if (copy_from_sockptr(&zc, optval, len))
4281			return -EFAULT;
4282		if (zc.reserved)
4283			return -EINVAL;
4284		if (zc.msg_flags &  ~(TCP_VALID_ZC_MSG_FLAGS))
4285			return -EINVAL;
4286		sockopt_lock_sock(sk);
4287		err = tcp_zerocopy_receive(sk, &zc, &tss);
4288		err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4289							  &zc, &len, err);
4290		sockopt_release_sock(sk);
4291		if (len >= offsetofend(struct tcp_zerocopy_receive, msg_flags))
4292			goto zerocopy_rcv_cmsg;
4293		switch (len) {
4294		case offsetofend(struct tcp_zerocopy_receive, msg_flags):
4295			goto zerocopy_rcv_cmsg;
4296		case offsetofend(struct tcp_zerocopy_receive, msg_controllen):
4297		case offsetofend(struct tcp_zerocopy_receive, msg_control):
4298		case offsetofend(struct tcp_zerocopy_receive, flags):
4299		case offsetofend(struct tcp_zerocopy_receive, copybuf_len):
4300		case offsetofend(struct tcp_zerocopy_receive, copybuf_address):
4301		case offsetofend(struct tcp_zerocopy_receive, err):
4302			goto zerocopy_rcv_sk_err;
4303		case offsetofend(struct tcp_zerocopy_receive, inq):
4304			goto zerocopy_rcv_inq;
4305		case offsetofend(struct tcp_zerocopy_receive, length):
4306		default:
4307			goto zerocopy_rcv_out;
4308		}
4309zerocopy_rcv_cmsg:
4310		if (zc.msg_flags & TCP_CMSG_TS)
4311			tcp_zc_finalize_rx_tstamp(sk, &zc, &tss);
4312		else
4313			zc.msg_flags = 0;
4314zerocopy_rcv_sk_err:
4315		if (!err)
4316			zc.err = sock_error(sk);
4317zerocopy_rcv_inq:
4318		zc.inq = tcp_inq_hint(sk);
4319zerocopy_rcv_out:
4320		if (!err && copy_to_sockptr(optval, &zc, len))
4321			err = -EFAULT;
4322		return err;
4323	}
4324#endif
4325	case TCP_AO_REPAIR:
4326		if (!tcp_can_repair_sock(sk))
4327			return -EPERM;
4328		return tcp_ao_get_repair(sk, optval, optlen);
4329	case TCP_AO_GET_KEYS:
4330	case TCP_AO_INFO: {
4331		int err;
4332
4333		sockopt_lock_sock(sk);
4334		if (optname == TCP_AO_GET_KEYS)
4335			err = tcp_ao_get_mkts(sk, optval, optlen);
4336		else
4337			err = tcp_ao_get_sock_info(sk, optval, optlen);
4338		sockopt_release_sock(sk);
4339
4340		return err;
4341	}
4342	default:
4343		return -ENOPROTOOPT;
4344	}
4345
4346	if (copy_to_sockptr(optlen, &len, sizeof(int)))
4347		return -EFAULT;
4348	if (copy_to_sockptr(optval, &val, len))
4349		return -EFAULT;
4350	return 0;
4351}
4352
4353bool tcp_bpf_bypass_getsockopt(int level, int optname)
4354{
4355	/* TCP do_tcp_getsockopt has optimized getsockopt implementation
4356	 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4357	 */
4358	if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4359		return true;
4360
4361	return false;
4362}
4363EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4364
4365int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4366		   int __user *optlen)
4367{
4368	struct inet_connection_sock *icsk = inet_csk(sk);
4369
4370	if (level != SOL_TCP)
4371		/* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4372		return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4373								optval, optlen);
4374	return do_tcp_getsockopt(sk, level, optname, USER_SOCKPTR(optval),
4375				 USER_SOCKPTR(optlen));
4376}
4377EXPORT_SYMBOL(tcp_getsockopt);
4378
4379#ifdef CONFIG_TCP_MD5SIG
4380int tcp_md5_sigpool_id = -1;
4381EXPORT_SYMBOL_GPL(tcp_md5_sigpool_id);
 
4382
4383int tcp_md5_alloc_sigpool(void)
4384{
4385	size_t scratch_size;
4386	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4387
4388	scratch_size = sizeof(union tcp_md5sum_block) + sizeof(struct tcphdr);
4389	ret = tcp_sigpool_alloc_ahash("md5", scratch_size);
4390	if (ret >= 0) {
4391		/* As long as any md5 sigpool was allocated, the return
4392		 * id would stay the same. Re-write the id only for the case
4393		 * when previously all MD5 keys were deleted and this call
4394		 * allocates the first MD5 key, which may return a different
4395		 * sigpool id than was used previously.
4396		 */
4397		WRITE_ONCE(tcp_md5_sigpool_id, ret); /* Avoids the compiler potentially being smart here */
4398		return 0;
4399	}
4400	return ret;
 
 
 
 
4401}
4402
4403void tcp_md5_release_sigpool(void)
4404{
4405	tcp_sigpool_release(READ_ONCE(tcp_md5_sigpool_id));
 
 
 
 
 
 
 
 
 
 
 
4406}
 
 
4407
4408void tcp_md5_add_sigpool(void)
 
 
 
 
 
 
 
4409{
4410	tcp_sigpool_get(READ_ONCE(tcp_md5_sigpool_id));
 
 
 
 
 
 
 
 
4411}
 
4412
4413int tcp_md5_hash_key(struct tcp_sigpool *hp,
4414		     const struct tcp_md5sig_key *key)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4415{
4416	u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4417	struct scatterlist sg;
4418
4419	sg_init_one(&sg, key->key, keylen);
4420	ahash_request_set_crypt(hp->req, &sg, NULL, keylen);
4421
4422	/* We use data_race() because tcp_md5_do_add() might change
4423	 * key->key under us
4424	 */
4425	return data_race(crypto_ahash_update(hp->req));
4426}
4427EXPORT_SYMBOL(tcp_md5_hash_key);
4428
4429/* Called with rcu_read_lock() */
4430enum skb_drop_reason
4431tcp_inbound_md5_hash(const struct sock *sk, const struct sk_buff *skb,
4432		     const void *saddr, const void *daddr,
4433		     int family, int l3index, const __u8 *hash_location)
4434{
4435	/* This gets called for each TCP segment that has TCP-MD5 option.
4436	 * We have 3 drop cases:
4437	 * o No MD5 hash and one expected.
4438	 * o MD5 hash and we're not expecting one.
4439	 * o MD5 hash and its wrong.
4440	 */
4441	const struct tcp_sock *tp = tcp_sk(sk);
4442	struct tcp_md5sig_key *key;
4443	u8 newhash[16];
4444	int genhash;
4445
4446	key = tcp_md5_do_lookup(sk, l3index, saddr, family);
4447
4448	if (!key && hash_location) {
4449		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5UNEXPECTED);
4450		tcp_hash_fail("Unexpected MD5 Hash found", family, skb, "");
4451		return SKB_DROP_REASON_TCP_MD5UNEXPECTED;
4452	}
4453
4454	/* Check the signature.
4455	 * To support dual stack listeners, we need to handle
4456	 * IPv4-mapped case.
4457	 */
4458	if (family == AF_INET)
4459		genhash = tcp_v4_md5_hash_skb(newhash, key, NULL, skb);
4460	else
4461		genhash = tp->af_specific->calc_md5_hash(newhash, key,
4462							 NULL, skb);
4463	if (genhash || memcmp(hash_location, newhash, 16) != 0) {
4464		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMD5FAILURE);
4465		if (family == AF_INET) {
4466			tcp_hash_fail("MD5 Hash failed", AF_INET, skb, "%s L3 index %d",
4467				      genhash ? "tcp_v4_calc_md5_hash failed"
4468				      : "", l3index);
4469		} else {
4470			if (genhash) {
4471				tcp_hash_fail("MD5 Hash failed",
4472					      AF_INET6, skb, "L3 index %d",
4473					      l3index);
4474			} else {
4475				tcp_hash_fail("MD5 Hash mismatch",
4476					      AF_INET6, skb, "L3 index %d",
4477					      l3index);
4478			}
4479		}
4480		return SKB_DROP_REASON_TCP_MD5FAILURE;
4481	}
4482	return SKB_NOT_DROPPED_YET;
4483}
4484EXPORT_SYMBOL(tcp_inbound_md5_hash);
4485
4486#endif
4487
4488void tcp_done(struct sock *sk)
4489{
4490	struct request_sock *req;
4491
4492	/* We might be called with a new socket, after
4493	 * inet_csk_prepare_forced_close() has been called
4494	 * so we can not use lockdep_sock_is_held(sk)
4495	 */
4496	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4497
4498	if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4499		TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4500
4501	tcp_set_state(sk, TCP_CLOSE);
4502	tcp_clear_xmit_timers(sk);
4503	if (req)
4504		reqsk_fastopen_remove(sk, req, false);
4505
4506	WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4507
4508	if (!sock_flag(sk, SOCK_DEAD))
4509		sk->sk_state_change(sk);
4510	else
4511		inet_csk_destroy_sock(sk);
4512}
4513EXPORT_SYMBOL_GPL(tcp_done);
4514
4515int tcp_abort(struct sock *sk, int err)
4516{
4517	int state = inet_sk_state_load(sk);
4518
4519	if (state == TCP_NEW_SYN_RECV) {
4520		struct request_sock *req = inet_reqsk(sk);
4521
4522		local_bh_disable();
4523		inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4524		local_bh_enable();
4525		return 0;
 
4526	}
4527	if (state == TCP_TIME_WAIT) {
4528		struct inet_timewait_sock *tw = inet_twsk(sk);
4529
4530		refcount_inc(&tw->tw_refcnt);
4531		local_bh_disable();
4532		inet_twsk_deschedule_put(tw);
4533		local_bh_enable();
4534		return 0;
4535	}
4536
4537	/* BPF context ensures sock locking. */
4538	if (!has_current_bpf_ctx())
4539		/* Don't race with userspace socket closes such as tcp_close. */
4540		lock_sock(sk);
4541
4542	if (sk->sk_state == TCP_LISTEN) {
4543		tcp_set_state(sk, TCP_CLOSE);
4544		inet_csk_listen_stop(sk);
4545	}
4546
4547	/* Don't race with BH socket closes such as inet_csk_listen_stop. */
4548	local_bh_disable();
4549	bh_lock_sock(sk);
4550
4551	if (!sock_flag(sk, SOCK_DEAD)) {
4552		WRITE_ONCE(sk->sk_err, err);
4553		/* This barrier is coupled with smp_rmb() in tcp_poll() */
4554		smp_wmb();
4555		sk_error_report(sk);
4556		if (tcp_need_reset(sk->sk_state))
4557			tcp_send_active_reset(sk, GFP_ATOMIC);
4558		tcp_done(sk);
4559	}
4560
4561	bh_unlock_sock(sk);
4562	local_bh_enable();
4563	tcp_write_queue_purge(sk);
4564	if (!has_current_bpf_ctx())
4565		release_sock(sk);
4566	return 0;
4567}
4568EXPORT_SYMBOL_GPL(tcp_abort);
4569
4570extern struct tcp_congestion_ops tcp_reno;
4571
4572static __initdata unsigned long thash_entries;
4573static int __init set_thash_entries(char *str)
4574{
4575	ssize_t ret;
4576
4577	if (!str)
4578		return 0;
4579
4580	ret = kstrtoul(str, 0, &thash_entries);
4581	if (ret)
4582		return 0;
4583
4584	return 1;
4585}
4586__setup("thash_entries=", set_thash_entries);
4587
4588static void __init tcp_init_mem(void)
4589{
4590	unsigned long limit = nr_free_buffer_pages() / 16;
4591
4592	limit = max(limit, 128UL);
4593	sysctl_tcp_mem[0] = limit / 4 * 3;		/* 4.68 % */
4594	sysctl_tcp_mem[1] = limit;			/* 6.25 % */
4595	sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2;	/* 9.37 % */
4596}
4597
4598static void __init tcp_struct_check(void)
4599{
4600	/* TX read-mostly hotpath cache lines */
4601	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, max_window);
4602	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, rcv_ssthresh);
4603	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, reordering);
4604	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, notsent_lowat);
4605	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, gso_segs);
4606	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, lost_skb_hint);
4607	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_tx, retransmit_skb_hint);
4608	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_tx, 40);
4609
4610	/* TXRX read-mostly hotpath cache lines */
4611	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, tsoffset);
4612	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_wnd);
4613	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, mss_cache);
4614	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, snd_cwnd);
4615	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, prr_out);
4616	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, lost_out);
4617	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, sacked_out);
4618	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_txrx, scaling_ratio);
4619	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_txrx, 32);
4620
4621	/* RX read-mostly hotpath cache lines */
4622	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, copied_seq);
4623	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rcv_tstamp);
4624	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_wl1);
4625	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, tlp_high_seq);
4626	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rttvar_us);
4627	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, retrans_out);
4628	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, advmss);
4629	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, urg_data);
4630	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, lost);
4631	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, rtt_min);
4632	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, out_of_order_queue);
4633	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_read_rx, snd_ssthresh);
4634	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_read_rx, 69);
4635
4636	/* TX read-write hotpath cache lines */
4637	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, segs_out);
4638	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, data_segs_out);
4639	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, bytes_sent);
4640	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, snd_sml);
4641	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_start);
4642	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, chrono_stat);
4643	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, write_seq);
4644	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, pushed_seq);
4645	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, lsndtime);
4646	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, mdev_us);
4647	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_wstamp_ns);
4648	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_clock_cache);
4649	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tcp_mstamp);
4650	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, rtt_seq);
4651	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, tsorted_sent_queue);
4652	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, highest_sack);
4653	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_tx, ecn_flags);
4654	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_tx, 113);
4655
4656	/* TXRX read-write hotpath cache lines */
4657	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, pred_flags);
4658	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_nxt);
4659	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_nxt);
4660	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_una);
4661	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, window_clamp);
4662	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, srtt_us);
4663	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, packets_out);
4664	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, snd_up);
4665	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered);
4666	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, delivered_ce);
4667	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, app_limited);
4668	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rcv_wnd);
4669	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_txrx, rx_opt);
4670	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_txrx, 76);
4671
4672	/* RX read-write hotpath cache lines */
4673	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_received);
4674	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, segs_in);
4675	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, data_segs_in);
4676	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_wup);
4677	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, max_packets_out);
4678	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, cwnd_usage_seq);
4679	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_delivered);
4680	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rate_interval_us);
4681	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_last_tsecr);
4682	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, first_tx_mstamp);
4683	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, delivered_mstamp);
4684	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, bytes_acked);
4685	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcv_rtt_est);
4686	CACHELINE_ASSERT_GROUP_MEMBER(struct tcp_sock, tcp_sock_write_rx, rcvq_space);
4687	CACHELINE_ASSERT_GROUP_SIZE(struct tcp_sock, tcp_sock_write_rx, 99);
4688}
4689
4690void __init tcp_init(void)
4691{
4692	int max_rshare, max_wshare, cnt;
4693	unsigned long limit;
4694	unsigned int i;
4695
4696	BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4697	BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4698		     sizeof_field(struct sk_buff, cb));
4699
4700	tcp_struct_check();
4701
4702	percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4703
4704	timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4705	mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4706
4707	inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4708			    thash_entries, 21,  /* one slot per 2 MB*/
4709			    0, 64 * 1024);
4710	tcp_hashinfo.bind_bucket_cachep =
4711		kmem_cache_create("tcp_bind_bucket",
4712				  sizeof(struct inet_bind_bucket), 0,
4713				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4714				  SLAB_ACCOUNT,
4715				  NULL);
4716	tcp_hashinfo.bind2_bucket_cachep =
4717		kmem_cache_create("tcp_bind2_bucket",
4718				  sizeof(struct inet_bind2_bucket), 0,
4719				  SLAB_HWCACHE_ALIGN | SLAB_PANIC |
4720				  SLAB_ACCOUNT,
4721				  NULL);
4722
4723	/* Size and allocate the main established and bind bucket
4724	 * hash tables.
4725	 *
4726	 * The methodology is similar to that of the buffer cache.
4727	 */
4728	tcp_hashinfo.ehash =
4729		alloc_large_system_hash("TCP established",
4730					sizeof(struct inet_ehash_bucket),
4731					thash_entries,
4732					17, /* one slot per 128 KB of memory */
4733					0,
4734					NULL,
4735					&tcp_hashinfo.ehash_mask,
4736					0,
4737					thash_entries ? 0 : 512 * 1024);
4738	for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4739		INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4740
4741	if (inet_ehash_locks_alloc(&tcp_hashinfo))
4742		panic("TCP: failed to alloc ehash_locks");
4743	tcp_hashinfo.bhash =
4744		alloc_large_system_hash("TCP bind",
4745					2 * sizeof(struct inet_bind_hashbucket),
4746					tcp_hashinfo.ehash_mask + 1,
4747					17, /* one slot per 128 KB of memory */
4748					0,
4749					&tcp_hashinfo.bhash_size,
4750					NULL,
4751					0,
4752					64 * 1024);
4753	tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4754	tcp_hashinfo.bhash2 = tcp_hashinfo.bhash + tcp_hashinfo.bhash_size;
4755	for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4756		spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4757		INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4758		spin_lock_init(&tcp_hashinfo.bhash2[i].lock);
4759		INIT_HLIST_HEAD(&tcp_hashinfo.bhash2[i].chain);
4760	}
4761
4762	tcp_hashinfo.pernet = false;
4763
4764	cnt = tcp_hashinfo.ehash_mask + 1;
4765	sysctl_tcp_max_orphans = cnt / 2;
4766
4767	tcp_init_mem();
4768	/* Set per-socket limits to no more than 1/128 the pressure threshold */
4769	limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4770	max_wshare = min(4UL*1024*1024, limit);
4771	max_rshare = min(6UL*1024*1024, limit);
4772
4773	init_net.ipv4.sysctl_tcp_wmem[0] = PAGE_SIZE;
4774	init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4775	init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4776
4777	init_net.ipv4.sysctl_tcp_rmem[0] = PAGE_SIZE;
4778	init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4779	init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4780
4781	pr_info("Hash tables configured (established %u bind %u)\n",
4782		tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4783
4784	tcp_v4_init();
4785	tcp_metrics_init();
4786	BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4787	tcp_tasklet_init();
4788	mptcp_init();
4789}