Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22#include <linux/mm.h>
23#include <linux/module.h>
24#include <linux/slab.h>
25#include <linux/sysctl.h>
26#include <linux/workqueue.h>
27#include <linux/static_key.h>
28#include <net/tcp.h>
29#include <net/inet_common.h>
30#include <net/xfrm.h>
31#include <net/busy_poll.h>
32
33static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
34{
35 if (seq == s_win)
36 return true;
37 if (after(end_seq, s_win) && before(seq, e_win))
38 return true;
39 return seq == e_win && seq == end_seq;
40}
41
42static enum tcp_tw_status
43tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
44 const struct sk_buff *skb, int mib_idx)
45{
46 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
47
48 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
49 &tcptw->tw_last_oow_ack_time)) {
50 /* Send ACK. Note, we do not put the bucket,
51 * it will be released by caller.
52 */
53 return TCP_TW_ACK;
54 }
55
56 /* We are rate-limiting, so just release the tw sock and drop skb. */
57 inet_twsk_put(tw);
58 return TCP_TW_SUCCESS;
59}
60
61/*
62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
63 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64 * (and, probably, tail of data) and one or more our ACKs are lost.
65 * * What is TIME-WAIT timeout? It is associated with maximal packet
66 * lifetime in the internet, which results in wrong conclusion, that
67 * it is set to catch "old duplicate segments" wandering out of their path.
68 * It is not quite correct. This timeout is calculated so that it exceeds
69 * maximal retransmission timeout enough to allow to lose one (or more)
70 * segments sent by peer and our ACKs. This time may be calculated from RTO.
71 * * When TIME-WAIT socket receives RST, it means that another end
72 * finally closed and we are allowed to kill TIME-WAIT too.
73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
74 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
75 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76 * * If we invented some more clever way to catch duplicates
77 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78 *
79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81 * from the very beginning.
82 *
83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
84 * is _not_ stateless. It means, that strictly speaking we must
85 * spinlock it. I do not want! Well, probability of misbehaviour
86 * is ridiculously low and, seems, we could use some mb() tricks
87 * to avoid misread sequence numbers, states etc. --ANK
88 *
89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
90 */
91enum tcp_tw_status
92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
93 const struct tcphdr *th)
94{
95 struct tcp_options_received tmp_opt;
96 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
97 bool paws_reject = false;
98
99 tmp_opt.saw_tstamp = 0;
100 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102
103 if (tmp_opt.saw_tstamp) {
104 if (tmp_opt.rcv_tsecr)
105 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106 tmp_opt.ts_recent = tcptw->tw_ts_recent;
107 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
108 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109 }
110 }
111
112 if (tw->tw_substate == TCP_FIN_WAIT2) {
113 /* Just repeat all the checks of tcp_rcv_state_process() */
114
115 /* Out of window, send ACK */
116 if (paws_reject ||
117 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118 tcptw->tw_rcv_nxt,
119 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120 return tcp_timewait_check_oow_rate_limit(
121 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122
123 if (th->rst)
124 goto kill;
125
126 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127 return TCP_TW_RST;
128
129 /* Dup ACK? */
130 if (!th->ack ||
131 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133 inet_twsk_put(tw);
134 return TCP_TW_SUCCESS;
135 }
136
137 /* New data or FIN. If new data arrive after half-duplex close,
138 * reset.
139 */
140 if (!th->fin ||
141 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142 return TCP_TW_RST;
143
144 /* FIN arrived, enter true time-wait state. */
145 tw->tw_substate = TCP_TIME_WAIT;
146 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147 if (tmp_opt.saw_tstamp) {
148 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
149 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
150 }
151
152 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
153 return TCP_TW_ACK;
154 }
155
156 /*
157 * Now real TIME-WAIT state.
158 *
159 * RFC 1122:
160 * "When a connection is [...] on TIME-WAIT state [...]
161 * [a TCP] MAY accept a new SYN from the remote TCP to
162 * reopen the connection directly, if it:
163 *
164 * (1) assigns its initial sequence number for the new
165 * connection to be larger than the largest sequence
166 * number it used on the previous connection incarnation,
167 * and
168 *
169 * (2) returns to TIME-WAIT state if the SYN turns out
170 * to be an old duplicate".
171 */
172
173 if (!paws_reject &&
174 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176 /* In window segment, it may be only reset or bare ack. */
177
178 if (th->rst) {
179 /* This is TIME_WAIT assassination, in two flavors.
180 * Oh well... nobody has a sufficient solution to this
181 * protocol bug yet.
182 */
183 if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
184kill:
185 inet_twsk_deschedule_put(tw);
186 return TCP_TW_SUCCESS;
187 }
188 } else {
189 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190 }
191
192 if (tmp_opt.saw_tstamp) {
193 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
194 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
195 }
196
197 inet_twsk_put(tw);
198 return TCP_TW_SUCCESS;
199 }
200
201 /* Out of window segment.
202
203 All the segments are ACKed immediately.
204
205 The only exception is new SYN. We accept it, if it is
206 not old duplicate and we are not in danger to be killed
207 by delayed old duplicates. RFC check is that it has
208 newer sequence number works at rates <40Mbit/sec.
209 However, if paws works, it is reliable AND even more,
210 we even may relax silly seq space cutoff.
211
212 RED-PEN: we violate main RFC requirement, if this SYN will appear
213 old duplicate (i.e. we receive RST in reply to SYN-ACK),
214 we must return socket to time-wait state. It is not good,
215 but not fatal yet.
216 */
217
218 if (th->syn && !th->rst && !th->ack && !paws_reject &&
219 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
220 (tmp_opt.saw_tstamp &&
221 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
222 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
223 if (isn == 0)
224 isn++;
225 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
226 return TCP_TW_SYN;
227 }
228
229 if (paws_reject)
230 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
231
232 if (!th->rst) {
233 /* In this case we must reset the TIMEWAIT timer.
234 *
235 * If it is ACKless SYN it may be both old duplicate
236 * and new good SYN with random sequence number <rcv_nxt.
237 * Do not reschedule in the last case.
238 */
239 if (paws_reject || th->ack)
240 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
241
242 return tcp_timewait_check_oow_rate_limit(
243 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
244 }
245 inet_twsk_put(tw);
246 return TCP_TW_SUCCESS;
247}
248EXPORT_SYMBOL(tcp_timewait_state_process);
249
250/*
251 * Move a socket to time-wait or dead fin-wait-2 state.
252 */
253void tcp_time_wait(struct sock *sk, int state, int timeo)
254{
255 const struct inet_connection_sock *icsk = inet_csk(sk);
256 const struct tcp_sock *tp = tcp_sk(sk);
257 struct inet_timewait_sock *tw;
258 struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
259
260 tw = inet_twsk_alloc(sk, tcp_death_row, state);
261
262 if (tw) {
263 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
264 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
265 struct inet_sock *inet = inet_sk(sk);
266
267 tw->tw_transparent = inet->transparent;
268 tw->tw_mark = sk->sk_mark;
269 tw->tw_priority = sk->sk_priority;
270 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
271 tcptw->tw_rcv_nxt = tp->rcv_nxt;
272 tcptw->tw_snd_nxt = tp->snd_nxt;
273 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
274 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
275 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
276 tcptw->tw_ts_offset = tp->tsoffset;
277 tcptw->tw_last_oow_ack_time = 0;
278 tcptw->tw_tx_delay = tp->tcp_tx_delay;
279#if IS_ENABLED(CONFIG_IPV6)
280 if (tw->tw_family == PF_INET6) {
281 struct ipv6_pinfo *np = inet6_sk(sk);
282
283 tw->tw_v6_daddr = sk->sk_v6_daddr;
284 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
285 tw->tw_tclass = np->tclass;
286 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
287 tw->tw_txhash = sk->sk_txhash;
288 tw->tw_ipv6only = sk->sk_ipv6only;
289 }
290#endif
291
292#ifdef CONFIG_TCP_MD5SIG
293 /*
294 * The timewait bucket does not have the key DB from the
295 * sock structure. We just make a quick copy of the
296 * md5 key being used (if indeed we are using one)
297 * so the timewait ack generating code has the key.
298 */
299 do {
300 tcptw->tw_md5_key = NULL;
301 if (static_branch_unlikely(&tcp_md5_needed)) {
302 struct tcp_md5sig_key *key;
303
304 key = tp->af_specific->md5_lookup(sk, sk);
305 if (key) {
306 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
307 BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
308 }
309 }
310 } while (0);
311#endif
312
313 /* Get the TIME_WAIT timeout firing. */
314 if (timeo < rto)
315 timeo = rto;
316
317 if (state == TCP_TIME_WAIT)
318 timeo = TCP_TIMEWAIT_LEN;
319
320 /* tw_timer is pinned, so we need to make sure BH are disabled
321 * in following section, otherwise timer handler could run before
322 * we complete the initialization.
323 */
324 local_bh_disable();
325 inet_twsk_schedule(tw, timeo);
326 /* Linkage updates.
327 * Note that access to tw after this point is illegal.
328 */
329 inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
330 local_bh_enable();
331 } else {
332 /* Sorry, if we're out of memory, just CLOSE this
333 * socket up. We've got bigger problems than
334 * non-graceful socket closings.
335 */
336 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
337 }
338
339 tcp_update_metrics(sk);
340 tcp_done(sk);
341}
342EXPORT_SYMBOL(tcp_time_wait);
343
344void tcp_twsk_destructor(struct sock *sk)
345{
346#ifdef CONFIG_TCP_MD5SIG
347 if (static_branch_unlikely(&tcp_md5_needed)) {
348 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
349
350 if (twsk->tw_md5_key)
351 kfree_rcu(twsk->tw_md5_key, rcu);
352 }
353#endif
354}
355EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
356
357/* Warning : This function is called without sk_listener being locked.
358 * Be sure to read socket fields once, as their value could change under us.
359 */
360void tcp_openreq_init_rwin(struct request_sock *req,
361 const struct sock *sk_listener,
362 const struct dst_entry *dst)
363{
364 struct inet_request_sock *ireq = inet_rsk(req);
365 const struct tcp_sock *tp = tcp_sk(sk_listener);
366 int full_space = tcp_full_space(sk_listener);
367 u32 window_clamp;
368 __u8 rcv_wscale;
369 u32 rcv_wnd;
370 int mss;
371
372 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
373 window_clamp = READ_ONCE(tp->window_clamp);
374 /* Set this up on the first call only */
375 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
376
377 /* limit the window selection if the user enforce a smaller rx buffer */
378 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
379 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
380 req->rsk_window_clamp = full_space;
381
382 rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
383 if (rcv_wnd == 0)
384 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
385 else if (full_space < rcv_wnd * mss)
386 full_space = rcv_wnd * mss;
387
388 /* tcp_full_space because it is guaranteed to be the first packet */
389 tcp_select_initial_window(sk_listener, full_space,
390 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
391 &req->rsk_rcv_wnd,
392 &req->rsk_window_clamp,
393 ireq->wscale_ok,
394 &rcv_wscale,
395 rcv_wnd);
396 ireq->rcv_wscale = rcv_wscale;
397}
398EXPORT_SYMBOL(tcp_openreq_init_rwin);
399
400static void tcp_ecn_openreq_child(struct tcp_sock *tp,
401 const struct request_sock *req)
402{
403 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
404}
405
406void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
407{
408 struct inet_connection_sock *icsk = inet_csk(sk);
409 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
410 bool ca_got_dst = false;
411
412 if (ca_key != TCP_CA_UNSPEC) {
413 const struct tcp_congestion_ops *ca;
414
415 rcu_read_lock();
416 ca = tcp_ca_find_key(ca_key);
417 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
418 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
419 icsk->icsk_ca_ops = ca;
420 ca_got_dst = true;
421 }
422 rcu_read_unlock();
423 }
424
425 /* If no valid choice made yet, assign current system default ca. */
426 if (!ca_got_dst &&
427 (!icsk->icsk_ca_setsockopt ||
428 !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
429 tcp_assign_congestion_control(sk);
430
431 tcp_set_ca_state(sk, TCP_CA_Open);
432}
433EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
434
435static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
436 struct request_sock *req,
437 struct tcp_sock *newtp)
438{
439#if IS_ENABLED(CONFIG_SMC)
440 struct inet_request_sock *ireq;
441
442 if (static_branch_unlikely(&tcp_have_smc)) {
443 ireq = inet_rsk(req);
444 if (oldtp->syn_smc && !ireq->smc_ok)
445 newtp->syn_smc = 0;
446 }
447#endif
448}
449
450/* This is not only more efficient than what we used to do, it eliminates
451 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
452 *
453 * Actually, we could lots of memory writes here. tp of listening
454 * socket contains all necessary default parameters.
455 */
456struct sock *tcp_create_openreq_child(const struct sock *sk,
457 struct request_sock *req,
458 struct sk_buff *skb)
459{
460 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
461 const struct inet_request_sock *ireq = inet_rsk(req);
462 struct tcp_request_sock *treq = tcp_rsk(req);
463 struct inet_connection_sock *newicsk;
464 struct tcp_sock *oldtp, *newtp;
465 u32 seq;
466
467 if (!newsk)
468 return NULL;
469
470 newicsk = inet_csk(newsk);
471 newtp = tcp_sk(newsk);
472 oldtp = tcp_sk(sk);
473
474 smc_check_reset_syn_req(oldtp, req, newtp);
475
476 /* Now setup tcp_sock */
477 newtp->pred_flags = 0;
478
479 seq = treq->rcv_isn + 1;
480 newtp->rcv_wup = seq;
481 WRITE_ONCE(newtp->copied_seq, seq);
482 WRITE_ONCE(newtp->rcv_nxt, seq);
483 newtp->segs_in = 1;
484
485 seq = treq->snt_isn + 1;
486 newtp->snd_sml = newtp->snd_una = seq;
487 WRITE_ONCE(newtp->snd_nxt, seq);
488 newtp->snd_up = seq;
489
490 INIT_LIST_HEAD(&newtp->tsq_node);
491 INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
492
493 tcp_init_wl(newtp, treq->rcv_isn);
494
495 minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
496 newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
497
498 newtp->lsndtime = tcp_jiffies32;
499 newsk->sk_txhash = treq->txhash;
500 newtp->total_retrans = req->num_retrans;
501
502 tcp_init_xmit_timers(newsk);
503 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
504
505 if (sock_flag(newsk, SOCK_KEEPOPEN))
506 inet_csk_reset_keepalive_timer(newsk,
507 keepalive_time_when(newtp));
508
509 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
510 newtp->rx_opt.sack_ok = ireq->sack_ok;
511 newtp->window_clamp = req->rsk_window_clamp;
512 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
513 newtp->rcv_wnd = req->rsk_rcv_wnd;
514 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
515 if (newtp->rx_opt.wscale_ok) {
516 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
517 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
518 } else {
519 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
520 newtp->window_clamp = min(newtp->window_clamp, 65535U);
521 }
522 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
523 newtp->max_window = newtp->snd_wnd;
524
525 if (newtp->rx_opt.tstamp_ok) {
526 newtp->rx_opt.ts_recent = req->ts_recent;
527 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
528 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529 } else {
530 newtp->rx_opt.ts_recent_stamp = 0;
531 newtp->tcp_header_len = sizeof(struct tcphdr);
532 }
533 if (req->num_timeout) {
534 newtp->undo_marker = treq->snt_isn;
535 newtp->retrans_stamp = div_u64(treq->snt_synack,
536 USEC_PER_SEC / TCP_TS_HZ);
537 }
538 newtp->tsoffset = treq->ts_off;
539#ifdef CONFIG_TCP_MD5SIG
540 newtp->md5sig_info = NULL; /*XXX*/
541 if (newtp->af_specific->md5_lookup(sk, newsk))
542 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
543#endif
544 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
545 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
546 newtp->rx_opt.mss_clamp = req->mss;
547 tcp_ecn_openreq_child(newtp, req);
548 newtp->fastopen_req = NULL;
549 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
550
551 tcp_bpf_clone(sk, newsk);
552
553 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
554
555 return newsk;
556}
557EXPORT_SYMBOL(tcp_create_openreq_child);
558
559/*
560 * Process an incoming packet for SYN_RECV sockets represented as a
561 * request_sock. Normally sk is the listener socket but for TFO it
562 * points to the child socket.
563 *
564 * XXX (TFO) - The current impl contains a special check for ack
565 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
566 *
567 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
568 */
569
570struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
571 struct request_sock *req,
572 bool fastopen, bool *req_stolen)
573{
574 struct tcp_options_received tmp_opt;
575 struct sock *child;
576 const struct tcphdr *th = tcp_hdr(skb);
577 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578 bool paws_reject = false;
579 bool own_req;
580
581 tmp_opt.saw_tstamp = 0;
582 if (th->doff > (sizeof(struct tcphdr)>>2)) {
583 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
584
585 if (tmp_opt.saw_tstamp) {
586 tmp_opt.ts_recent = req->ts_recent;
587 if (tmp_opt.rcv_tsecr)
588 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
589 /* We do not store true stamp, but it is not required,
590 * it can be estimated (approximately)
591 * from another data.
592 */
593 tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
594 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
595 }
596 }
597
598 /* Check for pure retransmitted SYN. */
599 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
600 flg == TCP_FLAG_SYN &&
601 !paws_reject) {
602 /*
603 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
604 * this case on figure 6 and figure 8, but formal
605 * protocol description says NOTHING.
606 * To be more exact, it says that we should send ACK,
607 * because this segment (at least, if it has no data)
608 * is out of window.
609 *
610 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
611 * describe SYN-RECV state. All the description
612 * is wrong, we cannot believe to it and should
613 * rely only on common sense and implementation
614 * experience.
615 *
616 * Enforce "SYN-ACK" according to figure 8, figure 6
617 * of RFC793, fixed by RFC1122.
618 *
619 * Note that even if there is new data in the SYN packet
620 * they will be thrown away too.
621 *
622 * Reset timer after retransmitting SYNACK, similar to
623 * the idea of fast retransmit in recovery.
624 */
625 if (!tcp_oow_rate_limited(sock_net(sk), skb,
626 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
627 &tcp_rsk(req)->last_oow_ack_time) &&
628
629 !inet_rtx_syn_ack(sk, req)) {
630 unsigned long expires = jiffies;
631
632 expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
633 TCP_RTO_MAX);
634 if (!fastopen)
635 mod_timer_pending(&req->rsk_timer, expires);
636 else
637 req->rsk_timer.expires = expires;
638 }
639 return NULL;
640 }
641
642 /* Further reproduces section "SEGMENT ARRIVES"
643 for state SYN-RECEIVED of RFC793.
644 It is broken, however, it does not work only
645 when SYNs are crossed.
646
647 You would think that SYN crossing is impossible here, since
648 we should have a SYN_SENT socket (from connect()) on our end,
649 but this is not true if the crossed SYNs were sent to both
650 ends by a malicious third party. We must defend against this,
651 and to do that we first verify the ACK (as per RFC793, page
652 36) and reset if it is invalid. Is this a true full defense?
653 To convince ourselves, let us consider a way in which the ACK
654 test can still pass in this 'malicious crossed SYNs' case.
655 Malicious sender sends identical SYNs (and thus identical sequence
656 numbers) to both A and B:
657
658 A: gets SYN, seq=7
659 B: gets SYN, seq=7
660
661 By our good fortune, both A and B select the same initial
662 send sequence number of seven :-)
663
664 A: sends SYN|ACK, seq=7, ack_seq=8
665 B: sends SYN|ACK, seq=7, ack_seq=8
666
667 So we are now A eating this SYN|ACK, ACK test passes. So
668 does sequence test, SYN is truncated, and thus we consider
669 it a bare ACK.
670
671 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
672 bare ACK. Otherwise, we create an established connection. Both
673 ends (listening sockets) accept the new incoming connection and try
674 to talk to each other. 8-)
675
676 Note: This case is both harmless, and rare. Possibility is about the
677 same as us discovering intelligent life on another plant tomorrow.
678
679 But generally, we should (RFC lies!) to accept ACK
680 from SYNACK both here and in tcp_rcv_state_process().
681 tcp_rcv_state_process() does not, hence, we do not too.
682
683 Note that the case is absolutely generic:
684 we cannot optimize anything here without
685 violating protocol. All the checks must be made
686 before attempt to create socket.
687 */
688
689 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
690 * and the incoming segment acknowledges something not yet
691 * sent (the segment carries an unacceptable ACK) ...
692 * a reset is sent."
693 *
694 * Invalid ACK: reset will be sent by listening socket.
695 * Note that the ACK validity check for a Fast Open socket is done
696 * elsewhere and is checked directly against the child socket rather
697 * than req because user data may have been sent out.
698 */
699 if ((flg & TCP_FLAG_ACK) && !fastopen &&
700 (TCP_SKB_CB(skb)->ack_seq !=
701 tcp_rsk(req)->snt_isn + 1))
702 return sk;
703
704 /* Also, it would be not so bad idea to check rcv_tsecr, which
705 * is essentially ACK extension and too early or too late values
706 * should cause reset in unsynchronized states.
707 */
708
709 /* RFC793: "first check sequence number". */
710
711 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
712 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
713 /* Out of window: send ACK and drop. */
714 if (!(flg & TCP_FLAG_RST) &&
715 !tcp_oow_rate_limited(sock_net(sk), skb,
716 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
717 &tcp_rsk(req)->last_oow_ack_time))
718 req->rsk_ops->send_ack(sk, skb, req);
719 if (paws_reject)
720 __NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
721 return NULL;
722 }
723
724 /* In sequence, PAWS is OK. */
725
726 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
727 req->ts_recent = tmp_opt.rcv_tsval;
728
729 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
730 /* Truncate SYN, it is out of window starting
731 at tcp_rsk(req)->rcv_isn + 1. */
732 flg &= ~TCP_FLAG_SYN;
733 }
734
735 /* RFC793: "second check the RST bit" and
736 * "fourth, check the SYN bit"
737 */
738 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
739 __TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
740 goto embryonic_reset;
741 }
742
743 /* ACK sequence verified above, just make sure ACK is
744 * set. If ACK not set, just silently drop the packet.
745 *
746 * XXX (TFO) - if we ever allow "data after SYN", the
747 * following check needs to be removed.
748 */
749 if (!(flg & TCP_FLAG_ACK))
750 return NULL;
751
752 /* For Fast Open no more processing is needed (sk is the
753 * child socket).
754 */
755 if (fastopen)
756 return sk;
757
758 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
759 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
760 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
761 inet_rsk(req)->acked = 1;
762 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
763 return NULL;
764 }
765
766 /* OK, ACK is valid, create big socket and
767 * feed this segment to it. It will repeat all
768 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
769 * ESTABLISHED STATE. If it will be dropped after
770 * socket is created, wait for troubles.
771 */
772 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
773 req, &own_req);
774 if (!child)
775 goto listen_overflow;
776
777 if (own_req && rsk_drop_req(req)) {
778 reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
779 inet_csk_reqsk_queue_drop_and_put(sk, req);
780 return child;
781 }
782
783 sock_rps_save_rxhash(child, skb);
784 tcp_synack_rtt_meas(child, req);
785 *req_stolen = !own_req;
786 return inet_csk_complete_hashdance(sk, child, req, own_req);
787
788listen_overflow:
789 if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
790 inet_rsk(req)->acked = 1;
791 return NULL;
792 }
793
794embryonic_reset:
795 if (!(flg & TCP_FLAG_RST)) {
796 /* Received a bad SYN pkt - for TFO We try not to reset
797 * the local connection unless it's really necessary to
798 * avoid becoming vulnerable to outside attack aiming at
799 * resetting legit local connections.
800 */
801 req->rsk_ops->send_reset(sk, skb);
802 } else if (fastopen) { /* received a valid RST pkt */
803 reqsk_fastopen_remove(sk, req, true);
804 tcp_reset(sk);
805 }
806 if (!fastopen) {
807 inet_csk_reqsk_queue_drop(sk, req);
808 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
809 }
810 return NULL;
811}
812EXPORT_SYMBOL(tcp_check_req);
813
814/*
815 * Queue segment on the new socket if the new socket is active,
816 * otherwise we just shortcircuit this and continue with
817 * the new socket.
818 *
819 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
820 * when entering. But other states are possible due to a race condition
821 * where after __inet_lookup_established() fails but before the listener
822 * locked is obtained, other packets cause the same connection to
823 * be created.
824 */
825
826int tcp_child_process(struct sock *parent, struct sock *child,
827 struct sk_buff *skb)
828 __releases(&((child)->sk_lock.slock))
829{
830 int ret = 0;
831 int state = child->sk_state;
832
833 /* record NAPI ID of child */
834 sk_mark_napi_id(child, skb);
835
836 tcp_segs_in(tcp_sk(child), skb);
837 if (!sock_owned_by_user(child)) {
838 ret = tcp_rcv_state_process(child, skb);
839 /* Wakeup parent, send SIGIO */
840 if (state == TCP_SYN_RECV && child->sk_state != state)
841 parent->sk_data_ready(parent);
842 } else {
843 /* Alas, it is possible again, because we do lookup
844 * in main socket hash table and lock on listening
845 * socket does not protect us more.
846 */
847 __sk_add_backlog(child, skb);
848 }
849
850 bh_unlock_sock(child);
851 sock_put(child);
852 return ret;
853}
854EXPORT_SYMBOL(tcp_child_process);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22#include <net/tcp.h>
23#include <net/xfrm.h>
24#include <net/busy_poll.h>
25
26static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
27{
28 if (seq == s_win)
29 return true;
30 if (after(end_seq, s_win) && before(seq, e_win))
31 return true;
32 return seq == e_win && seq == end_seq;
33}
34
35static enum tcp_tw_status
36tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
37 const struct sk_buff *skb, int mib_idx)
38{
39 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
40
41 if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
42 &tcptw->tw_last_oow_ack_time)) {
43 /* Send ACK. Note, we do not put the bucket,
44 * it will be released by caller.
45 */
46 return TCP_TW_ACK;
47 }
48
49 /* We are rate-limiting, so just release the tw sock and drop skb. */
50 inet_twsk_put(tw);
51 return TCP_TW_SUCCESS;
52}
53
54/*
55 * * Main purpose of TIME-WAIT state is to close connection gracefully,
56 * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
57 * (and, probably, tail of data) and one or more our ACKs are lost.
58 * * What is TIME-WAIT timeout? It is associated with maximal packet
59 * lifetime in the internet, which results in wrong conclusion, that
60 * it is set to catch "old duplicate segments" wandering out of their path.
61 * It is not quite correct. This timeout is calculated so that it exceeds
62 * maximal retransmission timeout enough to allow to lose one (or more)
63 * segments sent by peer and our ACKs. This time may be calculated from RTO.
64 * * When TIME-WAIT socket receives RST, it means that another end
65 * finally closed and we are allowed to kill TIME-WAIT too.
66 * * Second purpose of TIME-WAIT is catching old duplicate segments.
67 * Well, certainly it is pure paranoia, but if we load TIME-WAIT
68 * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
69 * * If we invented some more clever way to catch duplicates
70 * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
71 *
72 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
73 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
74 * from the very beginning.
75 *
76 * NOTE. With recycling (and later with fin-wait-2) TW bucket
77 * is _not_ stateless. It means, that strictly speaking we must
78 * spinlock it. I do not want! Well, probability of misbehaviour
79 * is ridiculously low and, seems, we could use some mb() tricks
80 * to avoid misread sequence numbers, states etc. --ANK
81 *
82 * We don't need to initialize tmp_out.sack_ok as we don't use the results
83 */
84enum tcp_tw_status
85tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
86 const struct tcphdr *th)
87{
88 struct tcp_options_received tmp_opt;
89 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
90 bool paws_reject = false;
91
92 tmp_opt.saw_tstamp = 0;
93 if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
94 tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
95
96 if (tmp_opt.saw_tstamp) {
97 if (tmp_opt.rcv_tsecr)
98 tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
99 tmp_opt.ts_recent = tcptw->tw_ts_recent;
100 tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
101 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
102 }
103 }
104
105 if (tw->tw_substate == TCP_FIN_WAIT2) {
106 /* Just repeat all the checks of tcp_rcv_state_process() */
107
108 /* Out of window, send ACK */
109 if (paws_reject ||
110 !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
111 tcptw->tw_rcv_nxt,
112 tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
113 return tcp_timewait_check_oow_rate_limit(
114 tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
115
116 if (th->rst)
117 goto kill;
118
119 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
120 return TCP_TW_RST;
121
122 /* Dup ACK? */
123 if (!th->ack ||
124 !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
125 TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
126 inet_twsk_put(tw);
127 return TCP_TW_SUCCESS;
128 }
129
130 /* New data or FIN. If new data arrive after half-duplex close,
131 * reset.
132 */
133 if (!th->fin ||
134 TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
135 return TCP_TW_RST;
136
137 /* FIN arrived, enter true time-wait state. */
138 tw->tw_substate = TCP_TIME_WAIT;
139 tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
140 if (tmp_opt.saw_tstamp) {
141 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
142 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
143 }
144
145 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
146 return TCP_TW_ACK;
147 }
148
149 /*
150 * Now real TIME-WAIT state.
151 *
152 * RFC 1122:
153 * "When a connection is [...] on TIME-WAIT state [...]
154 * [a TCP] MAY accept a new SYN from the remote TCP to
155 * reopen the connection directly, if it:
156 *
157 * (1) assigns its initial sequence number for the new
158 * connection to be larger than the largest sequence
159 * number it used on the previous connection incarnation,
160 * and
161 *
162 * (2) returns to TIME-WAIT state if the SYN turns out
163 * to be an old duplicate".
164 */
165
166 if (!paws_reject &&
167 (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
168 (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
169 /* In window segment, it may be only reset or bare ack. */
170
171 if (th->rst) {
172 /* This is TIME_WAIT assassination, in two flavors.
173 * Oh well... nobody has a sufficient solution to this
174 * protocol bug yet.
175 */
176 if (!READ_ONCE(twsk_net(tw)->ipv4.sysctl_tcp_rfc1337)) {
177kill:
178 inet_twsk_deschedule_put(tw);
179 return TCP_TW_SUCCESS;
180 }
181 } else {
182 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
183 }
184
185 if (tmp_opt.saw_tstamp) {
186 tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
187 tcptw->tw_ts_recent_stamp = ktime_get_seconds();
188 }
189
190 inet_twsk_put(tw);
191 return TCP_TW_SUCCESS;
192 }
193
194 /* Out of window segment.
195
196 All the segments are ACKed immediately.
197
198 The only exception is new SYN. We accept it, if it is
199 not old duplicate and we are not in danger to be killed
200 by delayed old duplicates. RFC check is that it has
201 newer sequence number works at rates <40Mbit/sec.
202 However, if paws works, it is reliable AND even more,
203 we even may relax silly seq space cutoff.
204
205 RED-PEN: we violate main RFC requirement, if this SYN will appear
206 old duplicate (i.e. we receive RST in reply to SYN-ACK),
207 we must return socket to time-wait state. It is not good,
208 but not fatal yet.
209 */
210
211 if (th->syn && !th->rst && !th->ack && !paws_reject &&
212 (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
213 (tmp_opt.saw_tstamp &&
214 (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
215 u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
216 if (isn == 0)
217 isn++;
218 TCP_SKB_CB(skb)->tcp_tw_isn = isn;
219 return TCP_TW_SYN;
220 }
221
222 if (paws_reject)
223 __NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
224
225 if (!th->rst) {
226 /* In this case we must reset the TIMEWAIT timer.
227 *
228 * If it is ACKless SYN it may be both old duplicate
229 * and new good SYN with random sequence number <rcv_nxt.
230 * Do not reschedule in the last case.
231 */
232 if (paws_reject || th->ack)
233 inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
234
235 return tcp_timewait_check_oow_rate_limit(
236 tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
237 }
238 inet_twsk_put(tw);
239 return TCP_TW_SUCCESS;
240}
241EXPORT_SYMBOL(tcp_timewait_state_process);
242
243static void tcp_time_wait_init(struct sock *sk, struct tcp_timewait_sock *tcptw)
244{
245#ifdef CONFIG_TCP_MD5SIG
246 const struct tcp_sock *tp = tcp_sk(sk);
247 struct tcp_md5sig_key *key;
248
249 /*
250 * The timewait bucket does not have the key DB from the
251 * sock structure. We just make a quick copy of the
252 * md5 key being used (if indeed we are using one)
253 * so the timewait ack generating code has the key.
254 */
255 tcptw->tw_md5_key = NULL;
256 if (!static_branch_unlikely(&tcp_md5_needed.key))
257 return;
258
259 key = tp->af_specific->md5_lookup(sk, sk);
260 if (key) {
261 tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
262 if (!tcptw->tw_md5_key)
263 return;
264 if (!tcp_alloc_md5sig_pool())
265 goto out_free;
266 if (!static_key_fast_inc_not_disabled(&tcp_md5_needed.key.key))
267 goto out_free;
268 }
269 return;
270out_free:
271 WARN_ON_ONCE(1);
272 kfree(tcptw->tw_md5_key);
273 tcptw->tw_md5_key = NULL;
274#endif
275}
276
277/*
278 * Move a socket to time-wait or dead fin-wait-2 state.
279 */
280void tcp_time_wait(struct sock *sk, int state, int timeo)
281{
282 const struct inet_connection_sock *icsk = inet_csk(sk);
283 const struct tcp_sock *tp = tcp_sk(sk);
284 struct net *net = sock_net(sk);
285 struct inet_timewait_sock *tw;
286
287 tw = inet_twsk_alloc(sk, &net->ipv4.tcp_death_row, state);
288
289 if (tw) {
290 struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
291 const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
292 struct inet_sock *inet = inet_sk(sk);
293
294 tw->tw_transparent = inet->transparent;
295 tw->tw_mark = sk->sk_mark;
296 tw->tw_priority = sk->sk_priority;
297 tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
298 tcptw->tw_rcv_nxt = tp->rcv_nxt;
299 tcptw->tw_snd_nxt = tp->snd_nxt;
300 tcptw->tw_rcv_wnd = tcp_receive_window(tp);
301 tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
302 tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
303 tcptw->tw_ts_offset = tp->tsoffset;
304 tcptw->tw_last_oow_ack_time = 0;
305 tcptw->tw_tx_delay = tp->tcp_tx_delay;
306#if IS_ENABLED(CONFIG_IPV6)
307 if (tw->tw_family == PF_INET6) {
308 struct ipv6_pinfo *np = inet6_sk(sk);
309
310 tw->tw_v6_daddr = sk->sk_v6_daddr;
311 tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
312 tw->tw_tclass = np->tclass;
313 tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
314 tw->tw_txhash = sk->sk_txhash;
315 tw->tw_ipv6only = sk->sk_ipv6only;
316 }
317#endif
318
319 tcp_time_wait_init(sk, tcptw);
320
321 /* Get the TIME_WAIT timeout firing. */
322 if (timeo < rto)
323 timeo = rto;
324
325 if (state == TCP_TIME_WAIT)
326 timeo = TCP_TIMEWAIT_LEN;
327
328 /* tw_timer is pinned, so we need to make sure BH are disabled
329 * in following section, otherwise timer handler could run before
330 * we complete the initialization.
331 */
332 local_bh_disable();
333 inet_twsk_schedule(tw, timeo);
334 /* Linkage updates.
335 * Note that access to tw after this point is illegal.
336 */
337 inet_twsk_hashdance(tw, sk, net->ipv4.tcp_death_row.hashinfo);
338 local_bh_enable();
339 } else {
340 /* Sorry, if we're out of memory, just CLOSE this
341 * socket up. We've got bigger problems than
342 * non-graceful socket closings.
343 */
344 NET_INC_STATS(net, LINUX_MIB_TCPTIMEWAITOVERFLOW);
345 }
346
347 tcp_update_metrics(sk);
348 tcp_done(sk);
349}
350EXPORT_SYMBOL(tcp_time_wait);
351
352void tcp_twsk_destructor(struct sock *sk)
353{
354#ifdef CONFIG_TCP_MD5SIG
355 if (static_branch_unlikely(&tcp_md5_needed.key)) {
356 struct tcp_timewait_sock *twsk = tcp_twsk(sk);
357
358 if (twsk->tw_md5_key) {
359 kfree_rcu(twsk->tw_md5_key, rcu);
360 static_branch_slow_dec_deferred(&tcp_md5_needed);
361 }
362 }
363#endif
364}
365EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
366
367void tcp_twsk_purge(struct list_head *net_exit_list, int family)
368{
369 bool purged_once = false;
370 struct net *net;
371
372 list_for_each_entry(net, net_exit_list, exit_list) {
373 if (net->ipv4.tcp_death_row.hashinfo->pernet) {
374 /* Even if tw_refcount == 1, we must clean up kernel reqsk */
375 inet_twsk_purge(net->ipv4.tcp_death_row.hashinfo, family);
376 } else if (!purged_once) {
377 /* The last refcount is decremented in tcp_sk_exit_batch() */
378 if (refcount_read(&net->ipv4.tcp_death_row.tw_refcount) == 1)
379 continue;
380
381 inet_twsk_purge(&tcp_hashinfo, family);
382 purged_once = true;
383 }
384 }
385}
386EXPORT_SYMBOL_GPL(tcp_twsk_purge);
387
388/* Warning : This function is called without sk_listener being locked.
389 * Be sure to read socket fields once, as their value could change under us.
390 */
391void tcp_openreq_init_rwin(struct request_sock *req,
392 const struct sock *sk_listener,
393 const struct dst_entry *dst)
394{
395 struct inet_request_sock *ireq = inet_rsk(req);
396 const struct tcp_sock *tp = tcp_sk(sk_listener);
397 int full_space = tcp_full_space(sk_listener);
398 u32 window_clamp;
399 __u8 rcv_wscale;
400 u32 rcv_wnd;
401 int mss;
402
403 mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
404 window_clamp = READ_ONCE(tp->window_clamp);
405 /* Set this up on the first call only */
406 req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
407
408 /* limit the window selection if the user enforce a smaller rx buffer */
409 if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
410 (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
411 req->rsk_window_clamp = full_space;
412
413 rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
414 if (rcv_wnd == 0)
415 rcv_wnd = dst_metric(dst, RTAX_INITRWND);
416 else if (full_space < rcv_wnd * mss)
417 full_space = rcv_wnd * mss;
418
419 /* tcp_full_space because it is guaranteed to be the first packet */
420 tcp_select_initial_window(sk_listener, full_space,
421 mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
422 &req->rsk_rcv_wnd,
423 &req->rsk_window_clamp,
424 ireq->wscale_ok,
425 &rcv_wscale,
426 rcv_wnd);
427 ireq->rcv_wscale = rcv_wscale;
428}
429EXPORT_SYMBOL(tcp_openreq_init_rwin);
430
431static void tcp_ecn_openreq_child(struct tcp_sock *tp,
432 const struct request_sock *req)
433{
434 tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
435}
436
437void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
438{
439 struct inet_connection_sock *icsk = inet_csk(sk);
440 u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
441 bool ca_got_dst = false;
442
443 if (ca_key != TCP_CA_UNSPEC) {
444 const struct tcp_congestion_ops *ca;
445
446 rcu_read_lock();
447 ca = tcp_ca_find_key(ca_key);
448 if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
449 icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
450 icsk->icsk_ca_ops = ca;
451 ca_got_dst = true;
452 }
453 rcu_read_unlock();
454 }
455
456 /* If no valid choice made yet, assign current system default ca. */
457 if (!ca_got_dst &&
458 (!icsk->icsk_ca_setsockopt ||
459 !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
460 tcp_assign_congestion_control(sk);
461
462 tcp_set_ca_state(sk, TCP_CA_Open);
463}
464EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
465
466static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
467 struct request_sock *req,
468 struct tcp_sock *newtp)
469{
470#if IS_ENABLED(CONFIG_SMC)
471 struct inet_request_sock *ireq;
472
473 if (static_branch_unlikely(&tcp_have_smc)) {
474 ireq = inet_rsk(req);
475 if (oldtp->syn_smc && !ireq->smc_ok)
476 newtp->syn_smc = 0;
477 }
478#endif
479}
480
481/* This is not only more efficient than what we used to do, it eliminates
482 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
483 *
484 * Actually, we could lots of memory writes here. tp of listening
485 * socket contains all necessary default parameters.
486 */
487struct sock *tcp_create_openreq_child(const struct sock *sk,
488 struct request_sock *req,
489 struct sk_buff *skb)
490{
491 struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
492 const struct inet_request_sock *ireq = inet_rsk(req);
493 struct tcp_request_sock *treq = tcp_rsk(req);
494 struct inet_connection_sock *newicsk;
495 struct tcp_sock *oldtp, *newtp;
496 u32 seq;
497
498 if (!newsk)
499 return NULL;
500
501 newicsk = inet_csk(newsk);
502 newtp = tcp_sk(newsk);
503 oldtp = tcp_sk(sk);
504
505 smc_check_reset_syn_req(oldtp, req, newtp);
506
507 /* Now setup tcp_sock */
508 newtp->pred_flags = 0;
509
510 seq = treq->rcv_isn + 1;
511 newtp->rcv_wup = seq;
512 WRITE_ONCE(newtp->copied_seq, seq);
513 WRITE_ONCE(newtp->rcv_nxt, seq);
514 newtp->segs_in = 1;
515
516 seq = treq->snt_isn + 1;
517 newtp->snd_sml = newtp->snd_una = seq;
518 WRITE_ONCE(newtp->snd_nxt, seq);
519 newtp->snd_up = seq;
520
521 INIT_LIST_HEAD(&newtp->tsq_node);
522 INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
523
524 tcp_init_wl(newtp, treq->rcv_isn);
525
526 minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
527 newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
528
529 newtp->lsndtime = tcp_jiffies32;
530 newsk->sk_txhash = treq->txhash;
531 newtp->total_retrans = req->num_retrans;
532
533 tcp_init_xmit_timers(newsk);
534 WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
535
536 if (sock_flag(newsk, SOCK_KEEPOPEN))
537 inet_csk_reset_keepalive_timer(newsk,
538 keepalive_time_when(newtp));
539
540 newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
541 newtp->rx_opt.sack_ok = ireq->sack_ok;
542 newtp->window_clamp = req->rsk_window_clamp;
543 newtp->rcv_ssthresh = req->rsk_rcv_wnd;
544 newtp->rcv_wnd = req->rsk_rcv_wnd;
545 newtp->rx_opt.wscale_ok = ireq->wscale_ok;
546 if (newtp->rx_opt.wscale_ok) {
547 newtp->rx_opt.snd_wscale = ireq->snd_wscale;
548 newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
549 } else {
550 newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
551 newtp->window_clamp = min(newtp->window_clamp, 65535U);
552 }
553 newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
554 newtp->max_window = newtp->snd_wnd;
555
556 if (newtp->rx_opt.tstamp_ok) {
557 newtp->rx_opt.ts_recent = req->ts_recent;
558 newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
559 newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
560 } else {
561 newtp->rx_opt.ts_recent_stamp = 0;
562 newtp->tcp_header_len = sizeof(struct tcphdr);
563 }
564 if (req->num_timeout) {
565 newtp->undo_marker = treq->snt_isn;
566 newtp->retrans_stamp = div_u64(treq->snt_synack,
567 USEC_PER_SEC / TCP_TS_HZ);
568 }
569 newtp->tsoffset = treq->ts_off;
570#ifdef CONFIG_TCP_MD5SIG
571 newtp->md5sig_info = NULL; /*XXX*/
572 if (treq->af_specific->req_md5_lookup(sk, req_to_sk(req)))
573 newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
574#endif
575 if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
576 newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
577 newtp->rx_opt.mss_clamp = req->mss;
578 tcp_ecn_openreq_child(newtp, req);
579 newtp->fastopen_req = NULL;
580 RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
581
582 newtp->bpf_chg_cc_inprogress = 0;
583 tcp_bpf_clone(sk, newsk);
584
585 __TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
586
587 return newsk;
588}
589EXPORT_SYMBOL(tcp_create_openreq_child);
590
591/*
592 * Process an incoming packet for SYN_RECV sockets represented as a
593 * request_sock. Normally sk is the listener socket but for TFO it
594 * points to the child socket.
595 *
596 * XXX (TFO) - The current impl contains a special check for ack
597 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
598 *
599 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
600 */
601
602struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
603 struct request_sock *req,
604 bool fastopen, bool *req_stolen)
605{
606 struct tcp_options_received tmp_opt;
607 struct sock *child;
608 const struct tcphdr *th = tcp_hdr(skb);
609 __be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
610 bool paws_reject = false;
611 bool own_req;
612
613 tmp_opt.saw_tstamp = 0;
614 if (th->doff > (sizeof(struct tcphdr)>>2)) {
615 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
616
617 if (tmp_opt.saw_tstamp) {
618 tmp_opt.ts_recent = req->ts_recent;
619 if (tmp_opt.rcv_tsecr)
620 tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
621 /* We do not store true stamp, but it is not required,
622 * it can be estimated (approximately)
623 * from another data.
624 */
625 tmp_opt.ts_recent_stamp = ktime_get_seconds() - reqsk_timeout(req, TCP_RTO_MAX) / HZ;
626 paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
627 }
628 }
629
630 /* Check for pure retransmitted SYN. */
631 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
632 flg == TCP_FLAG_SYN &&
633 !paws_reject) {
634 /*
635 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
636 * this case on figure 6 and figure 8, but formal
637 * protocol description says NOTHING.
638 * To be more exact, it says that we should send ACK,
639 * because this segment (at least, if it has no data)
640 * is out of window.
641 *
642 * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
643 * describe SYN-RECV state. All the description
644 * is wrong, we cannot believe to it and should
645 * rely only on common sense and implementation
646 * experience.
647 *
648 * Enforce "SYN-ACK" according to figure 8, figure 6
649 * of RFC793, fixed by RFC1122.
650 *
651 * Note that even if there is new data in the SYN packet
652 * they will be thrown away too.
653 *
654 * Reset timer after retransmitting SYNACK, similar to
655 * the idea of fast retransmit in recovery.
656 */
657 if (!tcp_oow_rate_limited(sock_net(sk), skb,
658 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
659 &tcp_rsk(req)->last_oow_ack_time) &&
660
661 !inet_rtx_syn_ack(sk, req)) {
662 unsigned long expires = jiffies;
663
664 expires += reqsk_timeout(req, TCP_RTO_MAX);
665 if (!fastopen)
666 mod_timer_pending(&req->rsk_timer, expires);
667 else
668 req->rsk_timer.expires = expires;
669 }
670 return NULL;
671 }
672
673 /* Further reproduces section "SEGMENT ARRIVES"
674 for state SYN-RECEIVED of RFC793.
675 It is broken, however, it does not work only
676 when SYNs are crossed.
677
678 You would think that SYN crossing is impossible here, since
679 we should have a SYN_SENT socket (from connect()) on our end,
680 but this is not true if the crossed SYNs were sent to both
681 ends by a malicious third party. We must defend against this,
682 and to do that we first verify the ACK (as per RFC793, page
683 36) and reset if it is invalid. Is this a true full defense?
684 To convince ourselves, let us consider a way in which the ACK
685 test can still pass in this 'malicious crossed SYNs' case.
686 Malicious sender sends identical SYNs (and thus identical sequence
687 numbers) to both A and B:
688
689 A: gets SYN, seq=7
690 B: gets SYN, seq=7
691
692 By our good fortune, both A and B select the same initial
693 send sequence number of seven :-)
694
695 A: sends SYN|ACK, seq=7, ack_seq=8
696 B: sends SYN|ACK, seq=7, ack_seq=8
697
698 So we are now A eating this SYN|ACK, ACK test passes. So
699 does sequence test, SYN is truncated, and thus we consider
700 it a bare ACK.
701
702 If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
703 bare ACK. Otherwise, we create an established connection. Both
704 ends (listening sockets) accept the new incoming connection and try
705 to talk to each other. 8-)
706
707 Note: This case is both harmless, and rare. Possibility is about the
708 same as us discovering intelligent life on another plant tomorrow.
709
710 But generally, we should (RFC lies!) to accept ACK
711 from SYNACK both here and in tcp_rcv_state_process().
712 tcp_rcv_state_process() does not, hence, we do not too.
713
714 Note that the case is absolutely generic:
715 we cannot optimize anything here without
716 violating protocol. All the checks must be made
717 before attempt to create socket.
718 */
719
720 /* RFC793 page 36: "If the connection is in any non-synchronized state ...
721 * and the incoming segment acknowledges something not yet
722 * sent (the segment carries an unacceptable ACK) ...
723 * a reset is sent."
724 *
725 * Invalid ACK: reset will be sent by listening socket.
726 * Note that the ACK validity check for a Fast Open socket is done
727 * elsewhere and is checked directly against the child socket rather
728 * than req because user data may have been sent out.
729 */
730 if ((flg & TCP_FLAG_ACK) && !fastopen &&
731 (TCP_SKB_CB(skb)->ack_seq !=
732 tcp_rsk(req)->snt_isn + 1))
733 return sk;
734
735 /* Also, it would be not so bad idea to check rcv_tsecr, which
736 * is essentially ACK extension and too early or too late values
737 * should cause reset in unsynchronized states.
738 */
739
740 /* RFC793: "first check sequence number". */
741
742 if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
743 tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
744 /* Out of window: send ACK and drop. */
745 if (!(flg & TCP_FLAG_RST) &&
746 !tcp_oow_rate_limited(sock_net(sk), skb,
747 LINUX_MIB_TCPACKSKIPPEDSYNRECV,
748 &tcp_rsk(req)->last_oow_ack_time))
749 req->rsk_ops->send_ack(sk, skb, req);
750 if (paws_reject)
751 __NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
752 return NULL;
753 }
754
755 /* In sequence, PAWS is OK. */
756
757 if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
758 req->ts_recent = tmp_opt.rcv_tsval;
759
760 if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
761 /* Truncate SYN, it is out of window starting
762 at tcp_rsk(req)->rcv_isn + 1. */
763 flg &= ~TCP_FLAG_SYN;
764 }
765
766 /* RFC793: "second check the RST bit" and
767 * "fourth, check the SYN bit"
768 */
769 if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
770 __TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
771 goto embryonic_reset;
772 }
773
774 /* ACK sequence verified above, just make sure ACK is
775 * set. If ACK not set, just silently drop the packet.
776 *
777 * XXX (TFO) - if we ever allow "data after SYN", the
778 * following check needs to be removed.
779 */
780 if (!(flg & TCP_FLAG_ACK))
781 return NULL;
782
783 /* For Fast Open no more processing is needed (sk is the
784 * child socket).
785 */
786 if (fastopen)
787 return sk;
788
789 /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
790 if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
791 TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
792 inet_rsk(req)->acked = 1;
793 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
794 return NULL;
795 }
796
797 /* OK, ACK is valid, create big socket and
798 * feed this segment to it. It will repeat all
799 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
800 * ESTABLISHED STATE. If it will be dropped after
801 * socket is created, wait for troubles.
802 */
803 child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
804 req, &own_req);
805 if (!child)
806 goto listen_overflow;
807
808 if (own_req && rsk_drop_req(req)) {
809 reqsk_queue_removed(&inet_csk(req->rsk_listener)->icsk_accept_queue, req);
810 inet_csk_reqsk_queue_drop_and_put(req->rsk_listener, req);
811 return child;
812 }
813
814 sock_rps_save_rxhash(child, skb);
815 tcp_synack_rtt_meas(child, req);
816 *req_stolen = !own_req;
817 return inet_csk_complete_hashdance(sk, child, req, own_req);
818
819listen_overflow:
820 if (sk != req->rsk_listener)
821 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMIGRATEREQFAILURE);
822
823 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow)) {
824 inet_rsk(req)->acked = 1;
825 return NULL;
826 }
827
828embryonic_reset:
829 if (!(flg & TCP_FLAG_RST)) {
830 /* Received a bad SYN pkt - for TFO We try not to reset
831 * the local connection unless it's really necessary to
832 * avoid becoming vulnerable to outside attack aiming at
833 * resetting legit local connections.
834 */
835 req->rsk_ops->send_reset(sk, skb);
836 } else if (fastopen) { /* received a valid RST pkt */
837 reqsk_fastopen_remove(sk, req, true);
838 tcp_reset(sk, skb);
839 }
840 if (!fastopen) {
841 bool unlinked = inet_csk_reqsk_queue_drop(sk, req);
842
843 if (unlinked)
844 __NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
845 *req_stolen = !unlinked;
846 }
847 return NULL;
848}
849EXPORT_SYMBOL(tcp_check_req);
850
851/*
852 * Queue segment on the new socket if the new socket is active,
853 * otherwise we just shortcircuit this and continue with
854 * the new socket.
855 *
856 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
857 * when entering. But other states are possible due to a race condition
858 * where after __inet_lookup_established() fails but before the listener
859 * locked is obtained, other packets cause the same connection to
860 * be created.
861 */
862
863int tcp_child_process(struct sock *parent, struct sock *child,
864 struct sk_buff *skb)
865 __releases(&((child)->sk_lock.slock))
866{
867 int ret = 0;
868 int state = child->sk_state;
869
870 /* record sk_napi_id and sk_rx_queue_mapping of child. */
871 sk_mark_napi_id_set(child, skb);
872
873 tcp_segs_in(tcp_sk(child), skb);
874 if (!sock_owned_by_user(child)) {
875 ret = tcp_rcv_state_process(child, skb);
876 /* Wakeup parent, send SIGIO */
877 if (state == TCP_SYN_RECV && child->sk_state != state)
878 parent->sk_data_ready(parent);
879 } else {
880 /* Alas, it is possible again, because we do lookup
881 * in main socket hash table and lock on listening
882 * socket does not protect us more.
883 */
884 __sk_add_backlog(child, skb);
885 }
886
887 bh_unlock_sock(child);
888 sock_put(child);
889 return ret;
890}
891EXPORT_SYMBOL(tcp_child_process);