Linux Audio

Check our new training course

Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/slab.h>
 25#include <linux/sysctl.h>
 26#include <linux/workqueue.h>
 27#include <linux/static_key.h>
 28#include <net/tcp.h>
 29#include <net/inet_common.h>
 30#include <net/xfrm.h>
 31#include <net/busy_poll.h>
 32
 33static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 34{
 35	if (seq == s_win)
 36		return true;
 37	if (after(end_seq, s_win) && before(seq, e_win))
 38		return true;
 39	return seq == e_win && seq == end_seq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 40}
 41
 42static enum tcp_tw_status
 43tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 44				  const struct sk_buff *skb, int mib_idx)
 45{
 46	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 
 47
 48	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 49				  &tcptw->tw_last_oow_ack_time)) {
 50		/* Send ACK. Note, we do not put the bucket,
 51		 * it will be released by caller.
 52		 */
 53		return TCP_TW_ACK;
 
 
 
 
 
 
 54	}
 
 
 55
 56	/* We are rate-limiting, so just release the tw sock and drop skb. */
 57	inet_twsk_put(tw);
 58	return TCP_TW_SUCCESS;
 
 
 
 
 59}
 60
 61/*
 62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 64 *   (and, probably, tail of data) and one or more our ACKs are lost.
 65 * * What is TIME-WAIT timeout? It is associated with maximal packet
 66 *   lifetime in the internet, which results in wrong conclusion, that
 67 *   it is set to catch "old duplicate segments" wandering out of their path.
 68 *   It is not quite correct. This timeout is calculated so that it exceeds
 69 *   maximal retransmission timeout enough to allow to lose one (or more)
 70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 71 * * When TIME-WAIT socket receives RST, it means that another end
 72 *   finally closed and we are allowed to kill TIME-WAIT too.
 73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 76 * * If we invented some more clever way to catch duplicates
 77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 78 *
 79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 81 * from the very beginning.
 82 *
 83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 84 * is _not_ stateless. It means, that strictly speaking we must
 85 * spinlock it. I do not want! Well, probability of misbehaviour
 86 * is ridiculously low and, seems, we could use some mb() tricks
 87 * to avoid misread sequence numbers, states etc.  --ANK
 88 *
 89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 90 */
 91enum tcp_tw_status
 92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 93			   const struct tcphdr *th)
 94{
 95	struct tcp_options_received tmp_opt;
 
 96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 97	bool paws_reject = false;
 98
 99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			if (tmp_opt.rcv_tsecr)
105				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109		}
110	}
111
112	if (tw->tw_substate == TCP_FIN_WAIT2) {
113		/* Just repeat all the checks of tcp_rcv_state_process() */
114
115		/* Out of window, send ACK */
116		if (paws_reject ||
117		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118				   tcptw->tw_rcv_nxt,
119				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120			return tcp_timewait_check_oow_rate_limit(
121				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122
123		if (th->rst)
124			goto kill;
125
126		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127			return TCP_TW_RST;
128
129		/* Dup ACK? */
130		if (!th->ack ||
131		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133			inet_twsk_put(tw);
134			return TCP_TW_SUCCESS;
135		}
136
137		/* New data or FIN. If new data arrive after half-duplex close,
138		 * reset.
139		 */
140		if (!th->fin ||
141		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
 
 
 
142			return TCP_TW_RST;
 
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150		}
151
152		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
 
 
153		return TCP_TW_ACK;
154	}
155
156	/*
157	 *	Now real TIME-WAIT state.
158	 *
159	 *	RFC 1122:
160	 *	"When a connection is [...] on TIME-WAIT state [...]
161	 *	[a TCP] MAY accept a new SYN from the remote TCP to
162	 *	reopen the connection directly, if it:
163	 *
164	 *	(1)  assigns its initial sequence number for the new
165	 *	connection to be larger than the largest sequence
166	 *	number it used on the previous connection incarnation,
167	 *	and
168	 *
169	 *	(2)  returns to TIME-WAIT state if the SYN turns out
170	 *	to be an old duplicate".
171	 */
172
173	if (!paws_reject &&
174	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176		/* In window segment, it may be only reset or bare ack. */
177
178		if (th->rst) {
179			/* This is TIME_WAIT assassination, in two flavors.
180			 * Oh well... nobody has a sufficient solution to this
181			 * protocol bug yet.
182			 */
183			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
184kill:
185				inet_twsk_deschedule_put(tw);
 
186				return TCP_TW_SUCCESS;
187			}
188		} else {
189			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190		}
 
 
191
192		if (tmp_opt.saw_tstamp) {
193			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
194			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
195		}
196
197		inet_twsk_put(tw);
198		return TCP_TW_SUCCESS;
199	}
200
201	/* Out of window segment.
202
203	   All the segments are ACKed immediately.
204
205	   The only exception is new SYN. We accept it, if it is
206	   not old duplicate and we are not in danger to be killed
207	   by delayed old duplicates. RFC check is that it has
208	   newer sequence number works at rates <40Mbit/sec.
209	   However, if paws works, it is reliable AND even more,
210	   we even may relax silly seq space cutoff.
211
212	   RED-PEN: we violate main RFC requirement, if this SYN will appear
213	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
214	   we must return socket to time-wait state. It is not good,
215	   but not fatal yet.
216	 */
217
218	if (th->syn && !th->rst && !th->ack && !paws_reject &&
219	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
220	     (tmp_opt.saw_tstamp &&
221	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
222		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
223		if (isn == 0)
224			isn++;
225		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
226		return TCP_TW_SYN;
227	}
228
229	if (paws_reject)
230		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
231
232	if (!th->rst) {
233		/* In this case we must reset the TIMEWAIT timer.
234		 *
235		 * If it is ACKless SYN it may be both old duplicate
236		 * and new good SYN with random sequence number <rcv_nxt.
237		 * Do not reschedule in the last case.
238		 */
239		if (paws_reject || th->ack)
240			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
241
242		return tcp_timewait_check_oow_rate_limit(
243			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
 
 
244	}
245	inet_twsk_put(tw);
246	return TCP_TW_SUCCESS;
247}
248EXPORT_SYMBOL(tcp_timewait_state_process);
249
250/*
251 * Move a socket to time-wait or dead fin-wait-2 state.
252 */
253void tcp_time_wait(struct sock *sk, int state, int timeo)
254{
 
255	const struct inet_connection_sock *icsk = inet_csk(sk);
256	const struct tcp_sock *tp = tcp_sk(sk);
257	struct inet_timewait_sock *tw;
258	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 
 
259
260	tw = inet_twsk_alloc(sk, tcp_death_row, state);
 
261
262	if (tw) {
263		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
264		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
265		struct inet_sock *inet = inet_sk(sk);
266
267		tw->tw_transparent	= inet->transparent;
268		tw->tw_mark		= sk->sk_mark;
269		tw->tw_priority		= sk->sk_priority;
270		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
271		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
272		tcptw->tw_snd_nxt	= tp->snd_nxt;
273		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
274		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
275		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
276		tcptw->tw_ts_offset	= tp->tsoffset;
277		tcptw->tw_last_oow_ack_time = 0;
278		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
279#if IS_ENABLED(CONFIG_IPV6)
280		if (tw->tw_family == PF_INET6) {
281			struct ipv6_pinfo *np = inet6_sk(sk);
 
282
283			tw->tw_v6_daddr = sk->sk_v6_daddr;
284			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
285			tw->tw_tclass = np->tclass;
286			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
287			tw->tw_txhash = sk->sk_txhash;
288			tw->tw_ipv6only = sk->sk_ipv6only;
289		}
290#endif
291
292#ifdef CONFIG_TCP_MD5SIG
293		/*
294		 * The timewait bucket does not have the key DB from the
295		 * sock structure. We just make a quick copy of the
296		 * md5 key being used (if indeed we are using one)
297		 * so the timewait ack generating code has the key.
298		 */
299		do {
300			tcptw->tw_md5_key = NULL;
301			if (static_branch_unlikely(&tcp_md5_needed)) {
302				struct tcp_md5sig_key *key;
303
304				key = tp->af_specific->md5_lookup(sk, sk);
305				if (key) {
306					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
307					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
308				}
309			}
310		} while (0);
311#endif
312
 
 
 
313		/* Get the TIME_WAIT timeout firing. */
314		if (timeo < rto)
315			timeo = rto;
316
317		if (state == TCP_TIME_WAIT)
318			timeo = TCP_TIMEWAIT_LEN;
 
 
 
 
 
319
320		/* tw_timer is pinned, so we need to make sure BH are disabled
321		 * in following section, otherwise timer handler could run before
322		 * we complete the initialization.
323		 */
324		local_bh_disable();
325		inet_twsk_schedule(tw, timeo);
326		/* Linkage updates.
327		 * Note that access to tw after this point is illegal.
328		 */
329		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
330		local_bh_enable();
331	} else {
332		/* Sorry, if we're out of memory, just CLOSE this
333		 * socket up.  We've got bigger problems than
334		 * non-graceful socket closings.
335		 */
336		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
337	}
338
339	tcp_update_metrics(sk);
340	tcp_done(sk);
341}
342EXPORT_SYMBOL(tcp_time_wait);
343
344void tcp_twsk_destructor(struct sock *sk)
345{
346#ifdef CONFIG_TCP_MD5SIG
347	if (static_branch_unlikely(&tcp_md5_needed)) {
348		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
349
350		if (twsk->tw_md5_key)
351			kfree_rcu(twsk->tw_md5_key, rcu);
352	}
353#endif
354}
355EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
356
357/* Warning : This function is called without sk_listener being locked.
358 * Be sure to read socket fields once, as their value could change under us.
359 */
360void tcp_openreq_init_rwin(struct request_sock *req,
361			   const struct sock *sk_listener,
362			   const struct dst_entry *dst)
363{
364	struct inet_request_sock *ireq = inet_rsk(req);
365	const struct tcp_sock *tp = tcp_sk(sk_listener);
366	int full_space = tcp_full_space(sk_listener);
367	u32 window_clamp;
368	__u8 rcv_wscale;
369	u32 rcv_wnd;
370	int mss;
371
372	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
373	window_clamp = READ_ONCE(tp->window_clamp);
374	/* Set this up on the first call only */
375	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
376
377	/* limit the window selection if the user enforce a smaller rx buffer */
378	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
379	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
380		req->rsk_window_clamp = full_space;
381
382	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
383	if (rcv_wnd == 0)
384		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
385	else if (full_space < rcv_wnd * mss)
386		full_space = rcv_wnd * mss;
387
388	/* tcp_full_space because it is guaranteed to be the first packet */
389	tcp_select_initial_window(sk_listener, full_space,
390		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
391		&req->rsk_rcv_wnd,
392		&req->rsk_window_clamp,
393		ireq->wscale_ok,
394		&rcv_wscale,
395		rcv_wnd);
396	ireq->rcv_wscale = rcv_wscale;
397}
398EXPORT_SYMBOL(tcp_openreq_init_rwin);
399
400static void tcp_ecn_openreq_child(struct tcp_sock *tp,
401				  const struct request_sock *req)
402{
403	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
404}
405
406void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
407{
408	struct inet_connection_sock *icsk = inet_csk(sk);
409	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
410	bool ca_got_dst = false;
411
412	if (ca_key != TCP_CA_UNSPEC) {
413		const struct tcp_congestion_ops *ca;
414
415		rcu_read_lock();
416		ca = tcp_ca_find_key(ca_key);
417		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
418			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
419			icsk->icsk_ca_ops = ca;
420			ca_got_dst = true;
421		}
422		rcu_read_unlock();
423	}
424
425	/* If no valid choice made yet, assign current system default ca. */
426	if (!ca_got_dst &&
427	    (!icsk->icsk_ca_setsockopt ||
428	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
429		tcp_assign_congestion_control(sk);
430
431	tcp_set_ca_state(sk, TCP_CA_Open);
432}
433EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
434
435static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
436				    struct request_sock *req,
437				    struct tcp_sock *newtp)
438{
439#if IS_ENABLED(CONFIG_SMC)
440	struct inet_request_sock *ireq;
441
442	if (static_branch_unlikely(&tcp_have_smc)) {
443		ireq = inet_rsk(req);
444		if (oldtp->syn_smc && !ireq->smc_ok)
445			newtp->syn_smc = 0;
446	}
447#endif
448}
449
450/* This is not only more efficient than what we used to do, it eliminates
451 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
452 *
453 * Actually, we could lots of memory writes here. tp of listening
454 * socket contains all necessary default parameters.
455 */
456struct sock *tcp_create_openreq_child(const struct sock *sk,
457				      struct request_sock *req,
458				      struct sk_buff *skb)
459{
460	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
461	const struct inet_request_sock *ireq = inet_rsk(req);
462	struct tcp_request_sock *treq = tcp_rsk(req);
463	struct inet_connection_sock *newicsk;
464	struct tcp_sock *oldtp, *newtp;
465	u32 seq;
466
467	if (!newsk)
468		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469
470	newicsk = inet_csk(newsk);
471	newtp = tcp_sk(newsk);
472	oldtp = tcp_sk(sk);
473
474	smc_check_reset_syn_req(oldtp, req, newtp);
475
476	/* Now setup tcp_sock */
477	newtp->pred_flags = 0;
478
479	seq = treq->rcv_isn + 1;
480	newtp->rcv_wup = seq;
481	WRITE_ONCE(newtp->copied_seq, seq);
482	WRITE_ONCE(newtp->rcv_nxt, seq);
483	newtp->segs_in = 1;
484
485	seq = treq->snt_isn + 1;
486	newtp->snd_sml = newtp->snd_una = seq;
487	WRITE_ONCE(newtp->snd_nxt, seq);
488	newtp->snd_up = seq;
489
490	INIT_LIST_HEAD(&newtp->tsq_node);
491	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
492
493	tcp_init_wl(newtp, treq->rcv_isn);
494
495	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
496	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
497
498	newtp->lsndtime = tcp_jiffies32;
499	newsk->sk_txhash = treq->txhash;
500	newtp->total_retrans = req->num_retrans;
501
502	tcp_init_xmit_timers(newsk);
503	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
504
505	if (sock_flag(newsk, SOCK_KEEPOPEN))
506		inet_csk_reset_keepalive_timer(newsk,
507					       keepalive_time_when(newtp));
508
509	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
510	newtp->rx_opt.sack_ok = ireq->sack_ok;
511	newtp->window_clamp = req->rsk_window_clamp;
512	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
513	newtp->rcv_wnd = req->rsk_rcv_wnd;
514	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
515	if (newtp->rx_opt.wscale_ok) {
516		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
517		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
518	} else {
519		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
520		newtp->window_clamp = min(newtp->window_clamp, 65535U);
521	}
522	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
523	newtp->max_window = newtp->snd_wnd;
524
525	if (newtp->rx_opt.tstamp_ok) {
526		newtp->rx_opt.ts_recent = req->ts_recent;
527		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
528		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529	} else {
530		newtp->rx_opt.ts_recent_stamp = 0;
531		newtp->tcp_header_len = sizeof(struct tcphdr);
532	}
533	if (req->num_timeout) {
534		newtp->undo_marker = treq->snt_isn;
535		newtp->retrans_stamp = div_u64(treq->snt_synack,
536					       USEC_PER_SEC / TCP_TS_HZ);
537	}
538	newtp->tsoffset = treq->ts_off;
539#ifdef CONFIG_TCP_MD5SIG
540	newtp->md5sig_info = NULL;	/*XXX*/
541	if (newtp->af_specific->md5_lookup(sk, newsk))
542		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
543#endif
544	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
545		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
546	newtp->rx_opt.mss_clamp = req->mss;
547	tcp_ecn_openreq_child(newtp, req);
548	newtp->fastopen_req = NULL;
549	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
550
551	tcp_bpf_clone(sk, newsk);
 
552
553	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555	return newsk;
556}
557EXPORT_SYMBOL(tcp_create_openreq_child);
558
559/*
560 * Process an incoming packet for SYN_RECV sockets represented as a
561 * request_sock. Normally sk is the listener socket but for TFO it
562 * points to the child socket.
563 *
564 * XXX (TFO) - The current impl contains a special check for ack
565 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
566 *
567 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
568 */
569
570struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
571			   struct request_sock *req,
572			   bool fastopen, bool *req_stolen)
573{
574	struct tcp_options_received tmp_opt;
 
575	struct sock *child;
576	const struct tcphdr *th = tcp_hdr(skb);
577	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578	bool paws_reject = false;
579	bool own_req;
580
581	tmp_opt.saw_tstamp = 0;
582	if (th->doff > (sizeof(struct tcphdr)>>2)) {
583		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
584
585		if (tmp_opt.saw_tstamp) {
586			tmp_opt.ts_recent = req->ts_recent;
587			if (tmp_opt.rcv_tsecr)
588				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
589			/* We do not store true stamp, but it is not required,
590			 * it can be estimated (approximately)
591			 * from another data.
592			 */
593			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
594			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
595		}
596	}
597
598	/* Check for pure retransmitted SYN. */
599	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
600	    flg == TCP_FLAG_SYN &&
601	    !paws_reject) {
602		/*
603		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
604		 * this case on figure 6 and figure 8, but formal
605		 * protocol description says NOTHING.
606		 * To be more exact, it says that we should send ACK,
607		 * because this segment (at least, if it has no data)
608		 * is out of window.
609		 *
610		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
611		 *  describe SYN-RECV state. All the description
612		 *  is wrong, we cannot believe to it and should
613		 *  rely only on common sense and implementation
614		 *  experience.
615		 *
616		 * Enforce "SYN-ACK" according to figure 8, figure 6
617		 * of RFC793, fixed by RFC1122.
618		 *
619		 * Note that even if there is new data in the SYN packet
620		 * they will be thrown away too.
621		 *
622		 * Reset timer after retransmitting SYNACK, similar to
623		 * the idea of fast retransmit in recovery.
624		 */
625		if (!tcp_oow_rate_limited(sock_net(sk), skb,
626					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
627					  &tcp_rsk(req)->last_oow_ack_time) &&
628
629		    !inet_rtx_syn_ack(sk, req)) {
630			unsigned long expires = jiffies;
631
632			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
633				       TCP_RTO_MAX);
634			if (!fastopen)
635				mod_timer_pending(&req->rsk_timer, expires);
636			else
637				req->rsk_timer.expires = expires;
638		}
639		return NULL;
640	}
641
642	/* Further reproduces section "SEGMENT ARRIVES"
643	   for state SYN-RECEIVED of RFC793.
644	   It is broken, however, it does not work only
645	   when SYNs are crossed.
646
647	   You would think that SYN crossing is impossible here, since
648	   we should have a SYN_SENT socket (from connect()) on our end,
649	   but this is not true if the crossed SYNs were sent to both
650	   ends by a malicious third party.  We must defend against this,
651	   and to do that we first verify the ACK (as per RFC793, page
652	   36) and reset if it is invalid.  Is this a true full defense?
653	   To convince ourselves, let us consider a way in which the ACK
654	   test can still pass in this 'malicious crossed SYNs' case.
655	   Malicious sender sends identical SYNs (and thus identical sequence
656	   numbers) to both A and B:
657
658		A: gets SYN, seq=7
659		B: gets SYN, seq=7
660
661	   By our good fortune, both A and B select the same initial
662	   send sequence number of seven :-)
663
664		A: sends SYN|ACK, seq=7, ack_seq=8
665		B: sends SYN|ACK, seq=7, ack_seq=8
666
667	   So we are now A eating this SYN|ACK, ACK test passes.  So
668	   does sequence test, SYN is truncated, and thus we consider
669	   it a bare ACK.
670
671	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
672	   bare ACK.  Otherwise, we create an established connection.  Both
673	   ends (listening sockets) accept the new incoming connection and try
674	   to talk to each other. 8-)
675
676	   Note: This case is both harmless, and rare.  Possibility is about the
677	   same as us discovering intelligent life on another plant tomorrow.
678
679	   But generally, we should (RFC lies!) to accept ACK
680	   from SYNACK both here and in tcp_rcv_state_process().
681	   tcp_rcv_state_process() does not, hence, we do not too.
682
683	   Note that the case is absolutely generic:
684	   we cannot optimize anything here without
685	   violating protocol. All the checks must be made
686	   before attempt to create socket.
687	 */
688
689	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
690	 *                  and the incoming segment acknowledges something not yet
691	 *                  sent (the segment carries an unacceptable ACK) ...
692	 *                  a reset is sent."
693	 *
694	 * Invalid ACK: reset will be sent by listening socket.
695	 * Note that the ACK validity check for a Fast Open socket is done
696	 * elsewhere and is checked directly against the child socket rather
697	 * than req because user data may have been sent out.
698	 */
699	if ((flg & TCP_FLAG_ACK) && !fastopen &&
700	    (TCP_SKB_CB(skb)->ack_seq !=
701	     tcp_rsk(req)->snt_isn + 1))
702		return sk;
703
704	/* Also, it would be not so bad idea to check rcv_tsecr, which
705	 * is essentially ACK extension and too early or too late values
706	 * should cause reset in unsynchronized states.
707	 */
708
709	/* RFC793: "first check sequence number". */
710
711	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
712					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
713		/* Out of window: send ACK and drop. */
714		if (!(flg & TCP_FLAG_RST) &&
715		    !tcp_oow_rate_limited(sock_net(sk), skb,
716					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
717					  &tcp_rsk(req)->last_oow_ack_time))
718			req->rsk_ops->send_ack(sk, skb, req);
719		if (paws_reject)
720			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
721		return NULL;
722	}
723
724	/* In sequence, PAWS is OK. */
725
726	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
727		req->ts_recent = tmp_opt.rcv_tsval;
728
729	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
730		/* Truncate SYN, it is out of window starting
731		   at tcp_rsk(req)->rcv_isn + 1. */
732		flg &= ~TCP_FLAG_SYN;
733	}
734
735	/* RFC793: "second check the RST bit" and
736	 *	   "fourth, check the SYN bit"
737	 */
738	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
739		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
740		goto embryonic_reset;
741	}
742
743	/* ACK sequence verified above, just make sure ACK is
744	 * set.  If ACK not set, just silently drop the packet.
745	 *
746	 * XXX (TFO) - if we ever allow "data after SYN", the
747	 * following check needs to be removed.
748	 */
749	if (!(flg & TCP_FLAG_ACK))
750		return NULL;
751
752	/* For Fast Open no more processing is needed (sk is the
753	 * child socket).
754	 */
755	if (fastopen)
756		return sk;
757
758	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
759	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
760	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
761		inet_rsk(req)->acked = 1;
762		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
763		return NULL;
764	}
 
 
 
 
765
766	/* OK, ACK is valid, create big socket and
767	 * feed this segment to it. It will repeat all
768	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
769	 * ESTABLISHED STATE. If it will be dropped after
770	 * socket is created, wait for troubles.
771	 */
772	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
773							 req, &own_req);
774	if (!child)
775		goto listen_overflow;
776
777	if (own_req && rsk_drop_req(req)) {
778		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
779		inet_csk_reqsk_queue_drop_and_put(sk, req);
780		return child;
781	}
782
783	sock_rps_save_rxhash(child, skb);
784	tcp_synack_rtt_meas(child, req);
785	*req_stolen = !own_req;
786	return inet_csk_complete_hashdance(sk, child, req, own_req);
787
788listen_overflow:
789	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
790		inet_rsk(req)->acked = 1;
791		return NULL;
792	}
793
794embryonic_reset:
795	if (!(flg & TCP_FLAG_RST)) {
796		/* Received a bad SYN pkt - for TFO We try not to reset
797		 * the local connection unless it's really necessary to
798		 * avoid becoming vulnerable to outside attack aiming at
799		 * resetting legit local connections.
800		 */
801		req->rsk_ops->send_reset(sk, skb);
802	} else if (fastopen) { /* received a valid RST pkt */
803		reqsk_fastopen_remove(sk, req, true);
804		tcp_reset(sk);
805	}
806	if (!fastopen) {
807		inet_csk_reqsk_queue_drop(sk, req);
808		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
809	}
810	return NULL;
811}
812EXPORT_SYMBOL(tcp_check_req);
813
814/*
815 * Queue segment on the new socket if the new socket is active,
816 * otherwise we just shortcircuit this and continue with
817 * the new socket.
818 *
819 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
820 * when entering. But other states are possible due to a race condition
821 * where after __inet_lookup_established() fails but before the listener
822 * locked is obtained, other packets cause the same connection to
823 * be created.
824 */
825
826int tcp_child_process(struct sock *parent, struct sock *child,
827		      struct sk_buff *skb)
828	__releases(&((child)->sk_lock.slock))
829{
830	int ret = 0;
831	int state = child->sk_state;
832
833	/* record NAPI ID of child */
834	sk_mark_napi_id(child, skb);
835
836	tcp_segs_in(tcp_sk(child), skb);
837	if (!sock_owned_by_user(child)) {
838		ret = tcp_rcv_state_process(child, skb);
 
839		/* Wakeup parent, send SIGIO */
840		if (state == TCP_SYN_RECV && child->sk_state != state)
841			parent->sk_data_ready(parent);
842	} else {
843		/* Alas, it is possible again, because we do lookup
844		 * in main socket hash table and lock on listening
845		 * socket does not protect us more.
846		 */
847		__sk_add_backlog(child, skb);
848	}
849
850	bh_unlock_sock(child);
851	sock_put(child);
852	return ret;
853}
854EXPORT_SYMBOL(tcp_child_process);
v3.1
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 
 29
 30int sysctl_tcp_syncookies __read_mostly = 1;
 31EXPORT_SYMBOL(sysctl_tcp_syncookies);
 32
 33int sysctl_tcp_abort_on_overflow __read_mostly;
 34
 35struct inet_timewait_death_row tcp_death_row = {
 36	.sysctl_max_tw_buckets = NR_FILE * 2,
 37	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
 38	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
 39	.hashinfo	= &tcp_hashinfo,
 40	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
 41					    (unsigned long)&tcp_death_row),
 42	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
 43					     inet_twdr_twkill_work),
 44/* Short-time timewait calendar */
 45
 46	.twcal_hand	= -1,
 47	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
 48					    (unsigned long)&tcp_death_row),
 49};
 50EXPORT_SYMBOL_GPL(tcp_death_row);
 51
 52/* VJ's idea. Save last timestamp seen from this destination
 53 * and hold it at least for normal timewait interval to use for duplicate
 54 * segment detection in subsequent connections, before they enter synchronized
 55 * state.
 56 */
 57
 58static int tcp_remember_stamp(struct sock *sk)
 59{
 60	const struct inet_connection_sock *icsk = inet_csk(sk);
 61	struct tcp_sock *tp = tcp_sk(sk);
 62	struct inet_peer *peer;
 63	bool release_it;
 64
 65	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
 66	if (peer) {
 67		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
 68		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 69		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
 70			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
 71			peer->tcp_ts = tp->rx_opt.ts_recent;
 72		}
 73		if (release_it)
 74			inet_putpeer(peer);
 75		return 1;
 76	}
 77
 78	return 0;
 79}
 80
 81static int tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
 
 
 82{
 83	struct sock *sk = (struct sock *) tw;
 84	struct inet_peer *peer;
 85
 86	peer = twsk_getpeer(sk);
 87	if (peer) {
 88		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
 89
 90		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
 91		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
 92		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
 93			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
 94			peer->tcp_ts	   = tcptw->tw_ts_recent;
 95		}
 96		inet_putpeer(peer);
 97		return 1;
 98	}
 99	return 0;
100}
101
102static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
103{
104	if (seq == s_win)
105		return 1;
106	if (after(end_seq, s_win) && before(seq, e_win))
107		return 1;
108	return seq == e_win && seq == end_seq;
109}
110
111/*
112 * * Main purpose of TIME-WAIT state is to close connection gracefully,
113 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
114 *   (and, probably, tail of data) and one or more our ACKs are lost.
115 * * What is TIME-WAIT timeout? It is associated with maximal packet
116 *   lifetime in the internet, which results in wrong conclusion, that
117 *   it is set to catch "old duplicate segments" wandering out of their path.
118 *   It is not quite correct. This timeout is calculated so that it exceeds
119 *   maximal retransmission timeout enough to allow to lose one (or more)
120 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
121 * * When TIME-WAIT socket receives RST, it means that another end
122 *   finally closed and we are allowed to kill TIME-WAIT too.
123 * * Second purpose of TIME-WAIT is catching old duplicate segments.
124 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
125 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
126 * * If we invented some more clever way to catch duplicates
127 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
128 *
129 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
130 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
131 * from the very beginning.
132 *
133 * NOTE. With recycling (and later with fin-wait-2) TW bucket
134 * is _not_ stateless. It means, that strictly speaking we must
135 * spinlock it. I do not want! Well, probability of misbehaviour
136 * is ridiculously low and, seems, we could use some mb() tricks
137 * to avoid misread sequence numbers, states etc.  --ANK
 
 
138 */
139enum tcp_tw_status
140tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
141			   const struct tcphdr *th)
142{
143	struct tcp_options_received tmp_opt;
144	u8 *hash_location;
145	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
146	int paws_reject = 0;
147
148	tmp_opt.saw_tstamp = 0;
149	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
150		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
151
152		if (tmp_opt.saw_tstamp) {
 
 
153			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
154			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
155			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
156		}
157	}
158
159	if (tw->tw_substate == TCP_FIN_WAIT2) {
160		/* Just repeat all the checks of tcp_rcv_state_process() */
161
162		/* Out of window, send ACK */
163		if (paws_reject ||
164		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
165				   tcptw->tw_rcv_nxt,
166				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
167			return TCP_TW_ACK;
 
168
169		if (th->rst)
170			goto kill;
171
172		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
173			goto kill_with_rst;
174
175		/* Dup ACK? */
176		if (!th->ack ||
177		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
178		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
179			inet_twsk_put(tw);
180			return TCP_TW_SUCCESS;
181		}
182
183		/* New data or FIN. If new data arrive after half-duplex close,
184		 * reset.
185		 */
186		if (!th->fin ||
187		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
188kill_with_rst:
189			inet_twsk_deschedule(tw, &tcp_death_row);
190			inet_twsk_put(tw);
191			return TCP_TW_RST;
192		}
193
194		/* FIN arrived, enter true time-wait state. */
195		tw->tw_substate	  = TCP_TIME_WAIT;
196		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
197		if (tmp_opt.saw_tstamp) {
198			tcptw->tw_ts_recent_stamp = get_seconds();
199			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
200		}
201
202		if (tcp_death_row.sysctl_tw_recycle &&
203		    tcptw->tw_ts_recent_stamp &&
204		    tcp_tw_remember_stamp(tw))
205			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
206					   TCP_TIMEWAIT_LEN);
207		else
208			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
209					   TCP_TIMEWAIT_LEN);
210		return TCP_TW_ACK;
211	}
212
213	/*
214	 *	Now real TIME-WAIT state.
215	 *
216	 *	RFC 1122:
217	 *	"When a connection is [...] on TIME-WAIT state [...]
218	 *	[a TCP] MAY accept a new SYN from the remote TCP to
219	 *	reopen the connection directly, if it:
220	 *
221	 *	(1)  assigns its initial sequence number for the new
222	 *	connection to be larger than the largest sequence
223	 *	number it used on the previous connection incarnation,
224	 *	and
225	 *
226	 *	(2)  returns to TIME-WAIT state if the SYN turns out
227	 *	to be an old duplicate".
228	 */
229
230	if (!paws_reject &&
231	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
232	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
233		/* In window segment, it may be only reset or bare ack. */
234
235		if (th->rst) {
236			/* This is TIME_WAIT assassination, in two flavors.
237			 * Oh well... nobody has a sufficient solution to this
238			 * protocol bug yet.
239			 */
240			if (sysctl_tcp_rfc1337 == 0) {
241kill:
242				inet_twsk_deschedule(tw, &tcp_death_row);
243				inet_twsk_put(tw);
244				return TCP_TW_SUCCESS;
245			}
 
 
246		}
247		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
248				   TCP_TIMEWAIT_LEN);
249
250		if (tmp_opt.saw_tstamp) {
251			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
252			tcptw->tw_ts_recent_stamp = get_seconds();
253		}
254
255		inet_twsk_put(tw);
256		return TCP_TW_SUCCESS;
257	}
258
259	/* Out of window segment.
260
261	   All the segments are ACKed immediately.
262
263	   The only exception is new SYN. We accept it, if it is
264	   not old duplicate and we are not in danger to be killed
265	   by delayed old duplicates. RFC check is that it has
266	   newer sequence number works at rates <40Mbit/sec.
267	   However, if paws works, it is reliable AND even more,
268	   we even may relax silly seq space cutoff.
269
270	   RED-PEN: we violate main RFC requirement, if this SYN will appear
271	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
272	   we must return socket to time-wait state. It is not good,
273	   but not fatal yet.
274	 */
275
276	if (th->syn && !th->rst && !th->ack && !paws_reject &&
277	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
278	     (tmp_opt.saw_tstamp &&
279	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
280		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
281		if (isn == 0)
282			isn++;
283		TCP_SKB_CB(skb)->when = isn;
284		return TCP_TW_SYN;
285	}
286
287	if (paws_reject)
288		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
289
290	if (!th->rst) {
291		/* In this case we must reset the TIMEWAIT timer.
292		 *
293		 * If it is ACKless SYN it may be both old duplicate
294		 * and new good SYN with random sequence number <rcv_nxt.
295		 * Do not reschedule in the last case.
296		 */
297		if (paws_reject || th->ack)
298			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
299					   TCP_TIMEWAIT_LEN);
300
301		/* Send ACK. Note, we do not put the bucket,
302		 * it will be released by caller.
303		 */
304		return TCP_TW_ACK;
305	}
306	inet_twsk_put(tw);
307	return TCP_TW_SUCCESS;
308}
309EXPORT_SYMBOL(tcp_timewait_state_process);
310
311/*
312 * Move a socket to time-wait or dead fin-wait-2 state.
313 */
314void tcp_time_wait(struct sock *sk, int state, int timeo)
315{
316	struct inet_timewait_sock *tw = NULL;
317	const struct inet_connection_sock *icsk = inet_csk(sk);
318	const struct tcp_sock *tp = tcp_sk(sk);
319	int recycle_ok = 0;
320
321	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
322		recycle_ok = tcp_remember_stamp(sk);
323
324	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
325		tw = inet_twsk_alloc(sk, state);
326
327	if (tw != NULL) {
328		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
329		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
 
330
331		tw->tw_transparent	= inet_sk(sk)->transparent;
 
 
332		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
333		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
334		tcptw->tw_snd_nxt	= tp->snd_nxt;
335		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
336		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
337		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
338
339#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
 
 
340		if (tw->tw_family == PF_INET6) {
341			struct ipv6_pinfo *np = inet6_sk(sk);
342			struct inet6_timewait_sock *tw6;
343
344			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
345			tw6 = inet6_twsk((struct sock *)tw);
346			ipv6_addr_copy(&tw6->tw_v6_daddr, &np->daddr);
347			ipv6_addr_copy(&tw6->tw_v6_rcv_saddr, &np->rcv_saddr);
348			tw->tw_ipv6only = np->ipv6only;
 
349		}
350#endif
351
352#ifdef CONFIG_TCP_MD5SIG
353		/*
354		 * The timewait bucket does not have the key DB from the
355		 * sock structure. We just make a quick copy of the
356		 * md5 key being used (if indeed we are using one)
357		 * so the timewait ack generating code has the key.
358		 */
359		do {
360			struct tcp_md5sig_key *key;
361			memset(tcptw->tw_md5_key, 0, sizeof(tcptw->tw_md5_key));
362			tcptw->tw_md5_keylen = 0;
363			key = tp->af_specific->md5_lookup(sk, sk);
364			if (key != NULL) {
365				memcpy(&tcptw->tw_md5_key, key->key, key->keylen);
366				tcptw->tw_md5_keylen = key->keylen;
367				if (tcp_alloc_md5sig_pool(sk) == NULL)
368					BUG();
369			}
370		} while (0);
371#endif
372
373		/* Linkage updates. */
374		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
375
376		/* Get the TIME_WAIT timeout firing. */
377		if (timeo < rto)
378			timeo = rto;
379
380		if (recycle_ok) {
381			tw->tw_timeout = rto;
382		} else {
383			tw->tw_timeout = TCP_TIMEWAIT_LEN;
384			if (state == TCP_TIME_WAIT)
385				timeo = TCP_TIMEWAIT_LEN;
386		}
387
388		inet_twsk_schedule(tw, &tcp_death_row, timeo,
389				   TCP_TIMEWAIT_LEN);
390		inet_twsk_put(tw);
 
 
 
 
 
 
 
 
391	} else {
392		/* Sorry, if we're out of memory, just CLOSE this
393		 * socket up.  We've got bigger problems than
394		 * non-graceful socket closings.
395		 */
396		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
397	}
398
399	tcp_update_metrics(sk);
400	tcp_done(sk);
401}
 
402
403void tcp_twsk_destructor(struct sock *sk)
404{
405#ifdef CONFIG_TCP_MD5SIG
406	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
407	if (twsk->tw_md5_keylen)
408		tcp_free_md5sig_pool();
 
 
 
409#endif
410}
411EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
412
413static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
414					 struct request_sock *req)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
415{
416	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
417}
418
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
419/* This is not only more efficient than what we used to do, it eliminates
420 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
421 *
422 * Actually, we could lots of memory writes here. tp of listening
423 * socket contains all necessary default parameters.
424 */
425struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
 
 
426{
427	struct sock *newsk = inet_csk_clone(sk, req, GFP_ATOMIC);
 
 
 
 
 
428
429	if (newsk != NULL) {
430		const struct inet_request_sock *ireq = inet_rsk(req);
431		struct tcp_request_sock *treq = tcp_rsk(req);
432		struct inet_connection_sock *newicsk = inet_csk(newsk);
433		struct tcp_sock *newtp = tcp_sk(newsk);
434		struct tcp_sock *oldtp = tcp_sk(sk);
435		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
436
437		/* TCP Cookie Transactions require space for the cookie pair,
438		 * as it differs for each connection.  There is no need to
439		 * copy any s_data_payload stored at the original socket.
440		 * Failure will prevent resuming the connection.
441		 *
442		 * Presumed copied, in order of appearance:
443		 *	cookie_in_always, cookie_out_never
444		 */
445		if (oldcvp != NULL) {
446			struct tcp_cookie_values *newcvp =
447				kzalloc(sizeof(*newtp->cookie_values),
448					GFP_ATOMIC);
449
450			if (newcvp != NULL) {
451				kref_init(&newcvp->kref);
452				newcvp->cookie_desired =
453						oldcvp->cookie_desired;
454				newtp->cookie_values = newcvp;
455			} else {
456				/* Not Yet Implemented */
457				newtp->cookie_values = NULL;
458			}
459		}
460
461		/* Now setup tcp_sock */
462		newtp->pred_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
463
464		newtp->rcv_wup = newtp->copied_seq =
465		newtp->rcv_nxt = treq->rcv_isn + 1;
466
467		newtp->snd_sml = newtp->snd_una =
468		newtp->snd_nxt = newtp->snd_up =
469			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
470
471		tcp_prequeue_init(newtp);
472
473		tcp_init_wl(newtp, treq->rcv_isn);
474
475		newtp->srtt = 0;
476		newtp->mdev = TCP_TIMEOUT_INIT;
477		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
478
479		newtp->packets_out = 0;
480		newtp->retrans_out = 0;
481		newtp->sacked_out = 0;
482		newtp->fackets_out = 0;
483		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
484
485		/* So many TCP implementations out there (incorrectly) count the
486		 * initial SYN frame in their delayed-ACK and congestion control
487		 * algorithms that we must have the following bandaid to talk
488		 * efficiently to them.  -DaveM
489		 */
490		newtp->snd_cwnd = TCP_INIT_CWND;
491		newtp->snd_cwnd_cnt = 0;
492		newtp->bytes_acked = 0;
493
494		newtp->frto_counter = 0;
495		newtp->frto_highmark = 0;
496
497		newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
498
499		tcp_set_ca_state(newsk, TCP_CA_Open);
500		tcp_init_xmit_timers(newsk);
501		skb_queue_head_init(&newtp->out_of_order_queue);
502		newtp->write_seq = newtp->pushed_seq =
503			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
504
505		newtp->rx_opt.saw_tstamp = 0;
506
507		newtp->rx_opt.dsack = 0;
508		newtp->rx_opt.num_sacks = 0;
509
510		newtp->urg_data = 0;
511
512		if (sock_flag(newsk, SOCK_KEEPOPEN))
513			inet_csk_reset_keepalive_timer(newsk,
514						       keepalive_time_when(newtp));
515
516		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
517		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
518			if (sysctl_tcp_fack)
519				tcp_enable_fack(newtp);
520		}
521		newtp->window_clamp = req->window_clamp;
522		newtp->rcv_ssthresh = req->rcv_wnd;
523		newtp->rcv_wnd = req->rcv_wnd;
524		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
525		if (newtp->rx_opt.wscale_ok) {
526			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
527			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
528		} else {
529			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
530			newtp->window_clamp = min(newtp->window_clamp, 65535U);
531		}
532		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
533				  newtp->rx_opt.snd_wscale);
534		newtp->max_window = newtp->snd_wnd;
535
536		if (newtp->rx_opt.tstamp_ok) {
537			newtp->rx_opt.ts_recent = req->ts_recent;
538			newtp->rx_opt.ts_recent_stamp = get_seconds();
539			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
540		} else {
541			newtp->rx_opt.ts_recent_stamp = 0;
542			newtp->tcp_header_len = sizeof(struct tcphdr);
543		}
544#ifdef CONFIG_TCP_MD5SIG
545		newtp->md5sig_info = NULL;	/*XXX*/
546		if (newtp->af_specific->md5_lookup(sk, newsk))
547			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
548#endif
549		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
550			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
551		newtp->rx_opt.mss_clamp = req->mss;
552		TCP_ECN_openreq_child(newtp, req);
553
554		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
555	}
556	return newsk;
557}
558EXPORT_SYMBOL(tcp_create_openreq_child);
559
560/*
561 *	Process an incoming packet for SYN_RECV sockets represented
562 *	as a request_sock.
 
 
 
 
 
 
563 */
564
565struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
566			   struct request_sock *req,
567			   struct request_sock **prev)
568{
569	struct tcp_options_received tmp_opt;
570	u8 *hash_location;
571	struct sock *child;
572	const struct tcphdr *th = tcp_hdr(skb);
573	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
574	int paws_reject = 0;
 
575
576	tmp_opt.saw_tstamp = 0;
577	if (th->doff > (sizeof(struct tcphdr)>>2)) {
578		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
579
580		if (tmp_opt.saw_tstamp) {
581			tmp_opt.ts_recent = req->ts_recent;
 
 
582			/* We do not store true stamp, but it is not required,
583			 * it can be estimated (approximately)
584			 * from another data.
585			 */
586			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
587			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
588		}
589	}
590
591	/* Check for pure retransmitted SYN. */
592	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
593	    flg == TCP_FLAG_SYN &&
594	    !paws_reject) {
595		/*
596		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
597		 * this case on figure 6 and figure 8, but formal
598		 * protocol description says NOTHING.
599		 * To be more exact, it says that we should send ACK,
600		 * because this segment (at least, if it has no data)
601		 * is out of window.
602		 *
603		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
604		 *  describe SYN-RECV state. All the description
605		 *  is wrong, we cannot believe to it and should
606		 *  rely only on common sense and implementation
607		 *  experience.
608		 *
609		 * Enforce "SYN-ACK" according to figure 8, figure 6
610		 * of RFC793, fixed by RFC1122.
 
 
 
 
 
 
611		 */
612		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
613		return NULL;
614	}
615
616	/* Further reproduces section "SEGMENT ARRIVES"
617	   for state SYN-RECEIVED of RFC793.
618	   It is broken, however, it does not work only
619	   when SYNs are crossed.
620
621	   You would think that SYN crossing is impossible here, since
622	   we should have a SYN_SENT socket (from connect()) on our end,
623	   but this is not true if the crossed SYNs were sent to both
624	   ends by a malicious third party.  We must defend against this,
625	   and to do that we first verify the ACK (as per RFC793, page
626	   36) and reset if it is invalid.  Is this a true full defense?
627	   To convince ourselves, let us consider a way in which the ACK
628	   test can still pass in this 'malicious crossed SYNs' case.
629	   Malicious sender sends identical SYNs (and thus identical sequence
630	   numbers) to both A and B:
631
632		A: gets SYN, seq=7
633		B: gets SYN, seq=7
634
635	   By our good fortune, both A and B select the same initial
636	   send sequence number of seven :-)
637
638		A: sends SYN|ACK, seq=7, ack_seq=8
639		B: sends SYN|ACK, seq=7, ack_seq=8
640
641	   So we are now A eating this SYN|ACK, ACK test passes.  So
642	   does sequence test, SYN is truncated, and thus we consider
643	   it a bare ACK.
644
645	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
646	   bare ACK.  Otherwise, we create an established connection.  Both
647	   ends (listening sockets) accept the new incoming connection and try
648	   to talk to each other. 8-)
649
650	   Note: This case is both harmless, and rare.  Possibility is about the
651	   same as us discovering intelligent life on another plant tomorrow.
652
653	   But generally, we should (RFC lies!) to accept ACK
654	   from SYNACK both here and in tcp_rcv_state_process().
655	   tcp_rcv_state_process() does not, hence, we do not too.
656
657	   Note that the case is absolutely generic:
658	   we cannot optimize anything here without
659	   violating protocol. All the checks must be made
660	   before attempt to create socket.
661	 */
662
663	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
664	 *                  and the incoming segment acknowledges something not yet
665	 *                  sent (the segment carries an unacceptable ACK) ...
666	 *                  a reset is sent."
667	 *
668	 * Invalid ACK: reset will be sent by listening socket
 
 
 
669	 */
670	if ((flg & TCP_FLAG_ACK) &&
671	    (TCP_SKB_CB(skb)->ack_seq !=
672	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
673		return sk;
674
675	/* Also, it would be not so bad idea to check rcv_tsecr, which
676	 * is essentially ACK extension and too early or too late values
677	 * should cause reset in unsynchronized states.
678	 */
679
680	/* RFC793: "first check sequence number". */
681
682	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
683					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
684		/* Out of window: send ACK and drop. */
685		if (!(flg & TCP_FLAG_RST))
 
 
 
686			req->rsk_ops->send_ack(sk, skb, req);
687		if (paws_reject)
688			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
689		return NULL;
690	}
691
692	/* In sequence, PAWS is OK. */
693
694	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
695		req->ts_recent = tmp_opt.rcv_tsval;
696
697	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
698		/* Truncate SYN, it is out of window starting
699		   at tcp_rsk(req)->rcv_isn + 1. */
700		flg &= ~TCP_FLAG_SYN;
701	}
702
703	/* RFC793: "second check the RST bit" and
704	 *	   "fourth, check the SYN bit"
705	 */
706	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
707		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
708		goto embryonic_reset;
709	}
710
711	/* ACK sequence verified above, just make sure ACK is
712	 * set.  If ACK not set, just silently drop the packet.
 
 
 
713	 */
714	if (!(flg & TCP_FLAG_ACK))
715		return NULL;
716
 
 
 
 
 
 
717	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
718	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
719	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
720		inet_rsk(req)->acked = 1;
721		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
722		return NULL;
723	}
724	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
725		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
726	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
727		tcp_rsk(req)->snt_synack = 0;
728
729	/* OK, ACK is valid, create big socket and
730	 * feed this segment to it. It will repeat all
731	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
732	 * ESTABLISHED STATE. If it will be dropped after
733	 * socket is created, wait for troubles.
734	 */
735	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
736	if (child == NULL)
 
737		goto listen_overflow;
738
739	inet_csk_reqsk_queue_unlink(sk, req, prev);
740	inet_csk_reqsk_queue_removed(sk, req);
 
 
 
741
742	inet_csk_reqsk_queue_add(sk, req, child);
743	return child;
 
 
744
745listen_overflow:
746	if (!sysctl_tcp_abort_on_overflow) {
747		inet_rsk(req)->acked = 1;
748		return NULL;
749	}
750
751embryonic_reset:
752	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
753	if (!(flg & TCP_FLAG_RST))
 
 
 
 
754		req->rsk_ops->send_reset(sk, skb);
755
756	inet_csk_reqsk_queue_drop(sk, req, prev);
 
 
 
 
 
 
757	return NULL;
758}
759EXPORT_SYMBOL(tcp_check_req);
760
761/*
762 * Queue segment on the new socket if the new socket is active,
763 * otherwise we just shortcircuit this and continue with
764 * the new socket.
 
 
 
 
 
 
765 */
766
767int tcp_child_process(struct sock *parent, struct sock *child,
768		      struct sk_buff *skb)
 
769{
770	int ret = 0;
771	int state = child->sk_state;
772
 
 
 
 
773	if (!sock_owned_by_user(child)) {
774		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
775					    skb->len);
776		/* Wakeup parent, send SIGIO */
777		if (state == TCP_SYN_RECV && child->sk_state != state)
778			parent->sk_data_ready(parent, 0);
779	} else {
780		/* Alas, it is possible again, because we do lookup
781		 * in main socket hash table and lock on listening
782		 * socket does not protect us more.
783		 */
784		__sk_add_backlog(child, skb);
785	}
786
787	bh_unlock_sock(child);
788	sock_put(child);
789	return ret;
790}
791EXPORT_SYMBOL(tcp_child_process);