Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Feb 10-13, 2025
Register
Loading...
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  4 *		operating system.  INET is implemented using the  BSD Socket
  5 *		interface as the means of communication with the user level.
  6 *
  7 *		Implementation of the Transmission Control Protocol(TCP).
  8 *
  9 * Authors:	Ross Biro
 10 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 11 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 12 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 13 *		Florian La Roche, <flla@stud.uni-sb.de>
 14 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 15 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 16 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 17 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 18 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 19 *		Jorge Cwik, <jorge@laser.satlink.net>
 20 */
 21
 22#include <linux/mm.h>
 23#include <linux/module.h>
 24#include <linux/slab.h>
 25#include <linux/sysctl.h>
 26#include <linux/workqueue.h>
 27#include <linux/static_key.h>
 28#include <net/tcp.h>
 29#include <net/inet_common.h>
 30#include <net/xfrm.h>
 31#include <net/busy_poll.h>
 
 
 
 
 
 
 
 32
 33static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 34{
 35	if (seq == s_win)
 36		return true;
 37	if (after(end_seq, s_win) && before(seq, e_win))
 38		return true;
 39	return seq == e_win && seq == end_seq;
 40}
 41
 42static enum tcp_tw_status
 43tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 44				  const struct sk_buff *skb, int mib_idx)
 45{
 46	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 47
 48	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 49				  &tcptw->tw_last_oow_ack_time)) {
 50		/* Send ACK. Note, we do not put the bucket,
 51		 * it will be released by caller.
 52		 */
 53		return TCP_TW_ACK;
 54	}
 55
 56	/* We are rate-limiting, so just release the tw sock and drop skb. */
 57	inet_twsk_put(tw);
 58	return TCP_TW_SUCCESS;
 59}
 60
 61/*
 62 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 63 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 64 *   (and, probably, tail of data) and one or more our ACKs are lost.
 65 * * What is TIME-WAIT timeout? It is associated with maximal packet
 66 *   lifetime in the internet, which results in wrong conclusion, that
 67 *   it is set to catch "old duplicate segments" wandering out of their path.
 68 *   It is not quite correct. This timeout is calculated so that it exceeds
 69 *   maximal retransmission timeout enough to allow to lose one (or more)
 70 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 71 * * When TIME-WAIT socket receives RST, it means that another end
 72 *   finally closed and we are allowed to kill TIME-WAIT too.
 73 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 74 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 75 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 76 * * If we invented some more clever way to catch duplicates
 77 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 78 *
 79 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 80 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 81 * from the very beginning.
 82 *
 83 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 84 * is _not_ stateless. It means, that strictly speaking we must
 85 * spinlock it. I do not want! Well, probability of misbehaviour
 86 * is ridiculously low and, seems, we could use some mb() tricks
 87 * to avoid misread sequence numbers, states etc.  --ANK
 88 *
 89 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 90 */
 91enum tcp_tw_status
 92tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 93			   const struct tcphdr *th)
 94{
 95	struct tcp_options_received tmp_opt;
 96	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 97	bool paws_reject = false;
 98
 99	tmp_opt.saw_tstamp = 0;
100	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
101		tcp_parse_options(twsk_net(tw), skb, &tmp_opt, 0, NULL);
102
103		if (tmp_opt.saw_tstamp) {
104			if (tmp_opt.rcv_tsecr)
105				tmp_opt.rcv_tsecr -= tcptw->tw_ts_offset;
106			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
107			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
108			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
109		}
110	}
111
112	if (tw->tw_substate == TCP_FIN_WAIT2) {
113		/* Just repeat all the checks of tcp_rcv_state_process() */
114
115		/* Out of window, send ACK */
116		if (paws_reject ||
117		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
118				   tcptw->tw_rcv_nxt,
119				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
120			return tcp_timewait_check_oow_rate_limit(
121				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
122
123		if (th->rst)
124			goto kill;
125
126		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
127			return TCP_TW_RST;
128
129		/* Dup ACK? */
130		if (!th->ack ||
131		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
132		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
133			inet_twsk_put(tw);
134			return TCP_TW_SUCCESS;
135		}
136
137		/* New data or FIN. If new data arrive after half-duplex close,
138		 * reset.
139		 */
140		if (!th->fin ||
141		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
142			return TCP_TW_RST;
143
144		/* FIN arrived, enter true time-wait state. */
145		tw->tw_substate	  = TCP_TIME_WAIT;
146		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
147		if (tmp_opt.saw_tstamp) {
148			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
149			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
150		}
151
152		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
 
 
 
 
 
153		return TCP_TW_ACK;
154	}
155
156	/*
157	 *	Now real TIME-WAIT state.
158	 *
159	 *	RFC 1122:
160	 *	"When a connection is [...] on TIME-WAIT state [...]
161	 *	[a TCP] MAY accept a new SYN from the remote TCP to
162	 *	reopen the connection directly, if it:
163	 *
164	 *	(1)  assigns its initial sequence number for the new
165	 *	connection to be larger than the largest sequence
166	 *	number it used on the previous connection incarnation,
167	 *	and
168	 *
169	 *	(2)  returns to TIME-WAIT state if the SYN turns out
170	 *	to be an old duplicate".
171	 */
172
173	if (!paws_reject &&
174	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
175	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
176		/* In window segment, it may be only reset or bare ack. */
177
178		if (th->rst) {
179			/* This is TIME_WAIT assassination, in two flavors.
180			 * Oh well... nobody has a sufficient solution to this
181			 * protocol bug yet.
182			 */
183			if (twsk_net(tw)->ipv4.sysctl_tcp_rfc1337 == 0) {
184kill:
185				inet_twsk_deschedule_put(tw);
186				return TCP_TW_SUCCESS;
187			}
188		} else {
189			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
190		}
 
191
192		if (tmp_opt.saw_tstamp) {
193			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
194			tcptw->tw_ts_recent_stamp = ktime_get_seconds();
195		}
196
197		inet_twsk_put(tw);
198		return TCP_TW_SUCCESS;
199	}
200
201	/* Out of window segment.
202
203	   All the segments are ACKed immediately.
204
205	   The only exception is new SYN. We accept it, if it is
206	   not old duplicate and we are not in danger to be killed
207	   by delayed old duplicates. RFC check is that it has
208	   newer sequence number works at rates <40Mbit/sec.
209	   However, if paws works, it is reliable AND even more,
210	   we even may relax silly seq space cutoff.
211
212	   RED-PEN: we violate main RFC requirement, if this SYN will appear
213	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
214	   we must return socket to time-wait state. It is not good,
215	   but not fatal yet.
216	 */
217
218	if (th->syn && !th->rst && !th->ack && !paws_reject &&
219	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
220	     (tmp_opt.saw_tstamp &&
221	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
222		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
223		if (isn == 0)
224			isn++;
225		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
226		return TCP_TW_SYN;
227	}
228
229	if (paws_reject)
230		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
231
232	if (!th->rst) {
233		/* In this case we must reset the TIMEWAIT timer.
234		 *
235		 * If it is ACKless SYN it may be both old duplicate
236		 * and new good SYN with random sequence number <rcv_nxt.
237		 * Do not reschedule in the last case.
238		 */
239		if (paws_reject || th->ack)
240			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
241
242		return tcp_timewait_check_oow_rate_limit(
243			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
244	}
245	inet_twsk_put(tw);
246	return TCP_TW_SUCCESS;
247}
248EXPORT_SYMBOL(tcp_timewait_state_process);
249
250/*
251 * Move a socket to time-wait or dead fin-wait-2 state.
252 */
253void tcp_time_wait(struct sock *sk, int state, int timeo)
254{
255	const struct inet_connection_sock *icsk = inet_csk(sk);
256	const struct tcp_sock *tp = tcp_sk(sk);
257	struct inet_timewait_sock *tw;
258	struct inet_timewait_death_row *tcp_death_row = &sock_net(sk)->ipv4.tcp_death_row;
 
 
 
259
260	tw = inet_twsk_alloc(sk, tcp_death_row, state);
261
262	if (tw) {
263		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
264		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
265		struct inet_sock *inet = inet_sk(sk);
266
267		tw->tw_transparent	= inet->transparent;
268		tw->tw_mark		= sk->sk_mark;
269		tw->tw_priority		= sk->sk_priority;
270		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
271		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
272		tcptw->tw_snd_nxt	= tp->snd_nxt;
273		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
274		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
275		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
276		tcptw->tw_ts_offset	= tp->tsoffset;
277		tcptw->tw_last_oow_ack_time = 0;
278		tcptw->tw_tx_delay	= tp->tcp_tx_delay;
279#if IS_ENABLED(CONFIG_IPV6)
280		if (tw->tw_family == PF_INET6) {
281			struct ipv6_pinfo *np = inet6_sk(sk);
282
283			tw->tw_v6_daddr = sk->sk_v6_daddr;
284			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
285			tw->tw_tclass = np->tclass;
286			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
287			tw->tw_txhash = sk->sk_txhash;
288			tw->tw_ipv6only = sk->sk_ipv6only;
289		}
290#endif
291
292#ifdef CONFIG_TCP_MD5SIG
293		/*
294		 * The timewait bucket does not have the key DB from the
295		 * sock structure. We just make a quick copy of the
296		 * md5 key being used (if indeed we are using one)
297		 * so the timewait ack generating code has the key.
298		 */
299		do {
 
300			tcptw->tw_md5_key = NULL;
301			if (static_branch_unlikely(&tcp_md5_needed)) {
302				struct tcp_md5sig_key *key;
303
304				key = tp->af_specific->md5_lookup(sk, sk);
305				if (key) {
306					tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
307					BUG_ON(tcptw->tw_md5_key && !tcp_alloc_md5sig_pool());
308				}
309			}
310		} while (0);
311#endif
312
313		/* Get the TIME_WAIT timeout firing. */
314		if (timeo < rto)
315			timeo = rto;
316
317		if (state == TCP_TIME_WAIT)
318			timeo = TCP_TIMEWAIT_LEN;
 
 
 
 
 
319
320		/* tw_timer is pinned, so we need to make sure BH are disabled
321		 * in following section, otherwise timer handler could run before
322		 * we complete the initialization.
323		 */
324		local_bh_disable();
325		inet_twsk_schedule(tw, timeo);
326		/* Linkage updates.
327		 * Note that access to tw after this point is illegal.
328		 */
329		inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
330		local_bh_enable();
331	} else {
332		/* Sorry, if we're out of memory, just CLOSE this
333		 * socket up.  We've got bigger problems than
334		 * non-graceful socket closings.
335		 */
336		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
337	}
338
339	tcp_update_metrics(sk);
340	tcp_done(sk);
341}
342EXPORT_SYMBOL(tcp_time_wait);
343
344void tcp_twsk_destructor(struct sock *sk)
345{
346#ifdef CONFIG_TCP_MD5SIG
347	if (static_branch_unlikely(&tcp_md5_needed)) {
348		struct tcp_timewait_sock *twsk = tcp_twsk(sk);
349
350		if (twsk->tw_md5_key)
351			kfree_rcu(twsk->tw_md5_key, rcu);
352	}
353#endif
354}
355EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
356
357/* Warning : This function is called without sk_listener being locked.
358 * Be sure to read socket fields once, as their value could change under us.
359 */
360void tcp_openreq_init_rwin(struct request_sock *req,
361			   const struct sock *sk_listener,
362			   const struct dst_entry *dst)
363{
364	struct inet_request_sock *ireq = inet_rsk(req);
365	const struct tcp_sock *tp = tcp_sk(sk_listener);
 
366	int full_space = tcp_full_space(sk_listener);
 
367	u32 window_clamp;
368	__u8 rcv_wscale;
369	u32 rcv_wnd;
370	int mss;
371
372	mss = tcp_mss_clamp(tp, dst_metric_advmss(dst));
 
 
373	window_clamp = READ_ONCE(tp->window_clamp);
374	/* Set this up on the first call only */
375	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
376
377	/* limit the window selection if the user enforce a smaller rx buffer */
378	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
379	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
380		req->rsk_window_clamp = full_space;
381
382	rcv_wnd = tcp_rwnd_init_bpf((struct sock *)req);
383	if (rcv_wnd == 0)
384		rcv_wnd = dst_metric(dst, RTAX_INITRWND);
385	else if (full_space < rcv_wnd * mss)
386		full_space = rcv_wnd * mss;
387
388	/* tcp_full_space because it is guaranteed to be the first packet */
389	tcp_select_initial_window(sk_listener, full_space,
390		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
391		&req->rsk_rcv_wnd,
392		&req->rsk_window_clamp,
393		ireq->wscale_ok,
394		&rcv_wscale,
395		rcv_wnd);
396	ireq->rcv_wscale = rcv_wscale;
397}
398EXPORT_SYMBOL(tcp_openreq_init_rwin);
399
400static void tcp_ecn_openreq_child(struct tcp_sock *tp,
401				  const struct request_sock *req)
402{
403	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
404}
405
406void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
407{
408	struct inet_connection_sock *icsk = inet_csk(sk);
409	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
410	bool ca_got_dst = false;
411
412	if (ca_key != TCP_CA_UNSPEC) {
413		const struct tcp_congestion_ops *ca;
414
415		rcu_read_lock();
416		ca = tcp_ca_find_key(ca_key);
417		if (likely(ca && bpf_try_module_get(ca, ca->owner))) {
418			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
419			icsk->icsk_ca_ops = ca;
420			ca_got_dst = true;
421		}
422		rcu_read_unlock();
423	}
424
425	/* If no valid choice made yet, assign current system default ca. */
426	if (!ca_got_dst &&
427	    (!icsk->icsk_ca_setsockopt ||
428	     !bpf_try_module_get(icsk->icsk_ca_ops, icsk->icsk_ca_ops->owner)))
429		tcp_assign_congestion_control(sk);
430
431	tcp_set_ca_state(sk, TCP_CA_Open);
432}
433EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
434
435static void smc_check_reset_syn_req(struct tcp_sock *oldtp,
436				    struct request_sock *req,
437				    struct tcp_sock *newtp)
438{
439#if IS_ENABLED(CONFIG_SMC)
440	struct inet_request_sock *ireq;
441
442	if (static_branch_unlikely(&tcp_have_smc)) {
443		ireq = inet_rsk(req);
444		if (oldtp->syn_smc && !ireq->smc_ok)
445			newtp->syn_smc = 0;
446	}
447#endif
448}
449
450/* This is not only more efficient than what we used to do, it eliminates
451 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
452 *
453 * Actually, we could lots of memory writes here. tp of listening
454 * socket contains all necessary default parameters.
455 */
456struct sock *tcp_create_openreq_child(const struct sock *sk,
457				      struct request_sock *req,
458				      struct sk_buff *skb)
459{
460	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
461	const struct inet_request_sock *ireq = inet_rsk(req);
462	struct tcp_request_sock *treq = tcp_rsk(req);
463	struct inet_connection_sock *newicsk;
464	struct tcp_sock *oldtp, *newtp;
465	u32 seq;
466
467	if (!newsk)
468		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469
470	newicsk = inet_csk(newsk);
471	newtp = tcp_sk(newsk);
472	oldtp = tcp_sk(sk);
473
474	smc_check_reset_syn_req(oldtp, req, newtp);
475
476	/* Now setup tcp_sock */
477	newtp->pred_flags = 0;
478
479	seq = treq->rcv_isn + 1;
480	newtp->rcv_wup = seq;
481	WRITE_ONCE(newtp->copied_seq, seq);
482	WRITE_ONCE(newtp->rcv_nxt, seq);
483	newtp->segs_in = 1;
484
485	seq = treq->snt_isn + 1;
486	newtp->snd_sml = newtp->snd_una = seq;
487	WRITE_ONCE(newtp->snd_nxt, seq);
488	newtp->snd_up = seq;
489
490	INIT_LIST_HEAD(&newtp->tsq_node);
491	INIT_LIST_HEAD(&newtp->tsorted_sent_queue);
492
493	tcp_init_wl(newtp, treq->rcv_isn);
494
495	minmax_reset(&newtp->rtt_min, tcp_jiffies32, ~0U);
496	newicsk->icsk_ack.lrcvtime = tcp_jiffies32;
497
498	newtp->lsndtime = tcp_jiffies32;
499	newsk->sk_txhash = treq->txhash;
500	newtp->total_retrans = req->num_retrans;
501
502	tcp_init_xmit_timers(newsk);
503	WRITE_ONCE(newtp->write_seq, newtp->pushed_seq = treq->snt_isn + 1);
504
505	if (sock_flag(newsk, SOCK_KEEPOPEN))
506		inet_csk_reset_keepalive_timer(newsk,
507					       keepalive_time_when(newtp));
508
509	newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
510	newtp->rx_opt.sack_ok = ireq->sack_ok;
511	newtp->window_clamp = req->rsk_window_clamp;
512	newtp->rcv_ssthresh = req->rsk_rcv_wnd;
513	newtp->rcv_wnd = req->rsk_rcv_wnd;
514	newtp->rx_opt.wscale_ok = ireq->wscale_ok;
515	if (newtp->rx_opt.wscale_ok) {
516		newtp->rx_opt.snd_wscale = ireq->snd_wscale;
517		newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
518	} else {
519		newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
520		newtp->window_clamp = min(newtp->window_clamp, 65535U);
521	}
522	newtp->snd_wnd = ntohs(tcp_hdr(skb)->window) << newtp->rx_opt.snd_wscale;
523	newtp->max_window = newtp->snd_wnd;
524
525	if (newtp->rx_opt.tstamp_ok) {
526		newtp->rx_opt.ts_recent = req->ts_recent;
527		newtp->rx_opt.ts_recent_stamp = ktime_get_seconds();
528		newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
529	} else {
530		newtp->rx_opt.ts_recent_stamp = 0;
531		newtp->tcp_header_len = sizeof(struct tcphdr);
532	}
533	if (req->num_timeout) {
534		newtp->undo_marker = treq->snt_isn;
535		newtp->retrans_stamp = div_u64(treq->snt_synack,
536					       USEC_PER_SEC / TCP_TS_HZ);
537	}
538	newtp->tsoffset = treq->ts_off;
539#ifdef CONFIG_TCP_MD5SIG
540	newtp->md5sig_info = NULL;	/*XXX*/
541	if (newtp->af_specific->md5_lookup(sk, newsk))
542		newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
543#endif
544	if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
545		newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
546	newtp->rx_opt.mss_clamp = req->mss;
547	tcp_ecn_openreq_child(newtp, req);
548	newtp->fastopen_req = NULL;
549	RCU_INIT_POINTER(newtp->fastopen_rsk, NULL);
550
551	tcp_bpf_clone(sk, newsk);
552
553	__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
 
554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
555	return newsk;
556}
557EXPORT_SYMBOL(tcp_create_openreq_child);
558
559/*
560 * Process an incoming packet for SYN_RECV sockets represented as a
561 * request_sock. Normally sk is the listener socket but for TFO it
562 * points to the child socket.
563 *
564 * XXX (TFO) - The current impl contains a special check for ack
565 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
566 *
567 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
568 */
569
570struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
571			   struct request_sock *req,
572			   bool fastopen, bool *req_stolen)
573{
574	struct tcp_options_received tmp_opt;
575	struct sock *child;
576	const struct tcphdr *th = tcp_hdr(skb);
577	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
578	bool paws_reject = false;
579	bool own_req;
580
581	tmp_opt.saw_tstamp = 0;
582	if (th->doff > (sizeof(struct tcphdr)>>2)) {
583		tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0, NULL);
584
585		if (tmp_opt.saw_tstamp) {
586			tmp_opt.ts_recent = req->ts_recent;
587			if (tmp_opt.rcv_tsecr)
588				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
589			/* We do not store true stamp, but it is not required,
590			 * it can be estimated (approximately)
591			 * from another data.
592			 */
593			tmp_opt.ts_recent_stamp = ktime_get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
594			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
595		}
596	}
597
598	/* Check for pure retransmitted SYN. */
599	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
600	    flg == TCP_FLAG_SYN &&
601	    !paws_reject) {
602		/*
603		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
604		 * this case on figure 6 and figure 8, but formal
605		 * protocol description says NOTHING.
606		 * To be more exact, it says that we should send ACK,
607		 * because this segment (at least, if it has no data)
608		 * is out of window.
609		 *
610		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
611		 *  describe SYN-RECV state. All the description
612		 *  is wrong, we cannot believe to it and should
613		 *  rely only on common sense and implementation
614		 *  experience.
615		 *
616		 * Enforce "SYN-ACK" according to figure 8, figure 6
617		 * of RFC793, fixed by RFC1122.
618		 *
619		 * Note that even if there is new data in the SYN packet
620		 * they will be thrown away too.
621		 *
622		 * Reset timer after retransmitting SYNACK, similar to
623		 * the idea of fast retransmit in recovery.
624		 */
625		if (!tcp_oow_rate_limited(sock_net(sk), skb,
626					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
627					  &tcp_rsk(req)->last_oow_ack_time) &&
628
629		    !inet_rtx_syn_ack(sk, req)) {
630			unsigned long expires = jiffies;
631
632			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
633				       TCP_RTO_MAX);
634			if (!fastopen)
635				mod_timer_pending(&req->rsk_timer, expires);
636			else
637				req->rsk_timer.expires = expires;
638		}
639		return NULL;
640	}
641
642	/* Further reproduces section "SEGMENT ARRIVES"
643	   for state SYN-RECEIVED of RFC793.
644	   It is broken, however, it does not work only
645	   when SYNs are crossed.
646
647	   You would think that SYN crossing is impossible here, since
648	   we should have a SYN_SENT socket (from connect()) on our end,
649	   but this is not true if the crossed SYNs were sent to both
650	   ends by a malicious third party.  We must defend against this,
651	   and to do that we first verify the ACK (as per RFC793, page
652	   36) and reset if it is invalid.  Is this a true full defense?
653	   To convince ourselves, let us consider a way in which the ACK
654	   test can still pass in this 'malicious crossed SYNs' case.
655	   Malicious sender sends identical SYNs (and thus identical sequence
656	   numbers) to both A and B:
657
658		A: gets SYN, seq=7
659		B: gets SYN, seq=7
660
661	   By our good fortune, both A and B select the same initial
662	   send sequence number of seven :-)
663
664		A: sends SYN|ACK, seq=7, ack_seq=8
665		B: sends SYN|ACK, seq=7, ack_seq=8
666
667	   So we are now A eating this SYN|ACK, ACK test passes.  So
668	   does sequence test, SYN is truncated, and thus we consider
669	   it a bare ACK.
670
671	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
672	   bare ACK.  Otherwise, we create an established connection.  Both
673	   ends (listening sockets) accept the new incoming connection and try
674	   to talk to each other. 8-)
675
676	   Note: This case is both harmless, and rare.  Possibility is about the
677	   same as us discovering intelligent life on another plant tomorrow.
678
679	   But generally, we should (RFC lies!) to accept ACK
680	   from SYNACK both here and in tcp_rcv_state_process().
681	   tcp_rcv_state_process() does not, hence, we do not too.
682
683	   Note that the case is absolutely generic:
684	   we cannot optimize anything here without
685	   violating protocol. All the checks must be made
686	   before attempt to create socket.
687	 */
688
689	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
690	 *                  and the incoming segment acknowledges something not yet
691	 *                  sent (the segment carries an unacceptable ACK) ...
692	 *                  a reset is sent."
693	 *
694	 * Invalid ACK: reset will be sent by listening socket.
695	 * Note that the ACK validity check for a Fast Open socket is done
696	 * elsewhere and is checked directly against the child socket rather
697	 * than req because user data may have been sent out.
698	 */
699	if ((flg & TCP_FLAG_ACK) && !fastopen &&
700	    (TCP_SKB_CB(skb)->ack_seq !=
701	     tcp_rsk(req)->snt_isn + 1))
702		return sk;
703
704	/* Also, it would be not so bad idea to check rcv_tsecr, which
705	 * is essentially ACK extension and too early or too late values
706	 * should cause reset in unsynchronized states.
707	 */
708
709	/* RFC793: "first check sequence number". */
710
711	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
712					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
713		/* Out of window: send ACK and drop. */
714		if (!(flg & TCP_FLAG_RST) &&
715		    !tcp_oow_rate_limited(sock_net(sk), skb,
716					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
717					  &tcp_rsk(req)->last_oow_ack_time))
718			req->rsk_ops->send_ack(sk, skb, req);
719		if (paws_reject)
720			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
721		return NULL;
722	}
723
724	/* In sequence, PAWS is OK. */
725
726	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
727		req->ts_recent = tmp_opt.rcv_tsval;
728
729	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
730		/* Truncate SYN, it is out of window starting
731		   at tcp_rsk(req)->rcv_isn + 1. */
732		flg &= ~TCP_FLAG_SYN;
733	}
734
735	/* RFC793: "second check the RST bit" and
736	 *	   "fourth, check the SYN bit"
737	 */
738	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
739		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
740		goto embryonic_reset;
741	}
742
743	/* ACK sequence verified above, just make sure ACK is
744	 * set.  If ACK not set, just silently drop the packet.
745	 *
746	 * XXX (TFO) - if we ever allow "data after SYN", the
747	 * following check needs to be removed.
748	 */
749	if (!(flg & TCP_FLAG_ACK))
750		return NULL;
751
752	/* For Fast Open no more processing is needed (sk is the
753	 * child socket).
754	 */
755	if (fastopen)
756		return sk;
757
758	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
759	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
760	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
761		inet_rsk(req)->acked = 1;
762		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
763		return NULL;
764	}
765
766	/* OK, ACK is valid, create big socket and
767	 * feed this segment to it. It will repeat all
768	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
769	 * ESTABLISHED STATE. If it will be dropped after
770	 * socket is created, wait for troubles.
771	 */
772	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
773							 req, &own_req);
774	if (!child)
775		goto listen_overflow;
776
777	if (own_req && rsk_drop_req(req)) {
778		reqsk_queue_removed(&inet_csk(sk)->icsk_accept_queue, req);
779		inet_csk_reqsk_queue_drop_and_put(sk, req);
780		return child;
781	}
782
783	sock_rps_save_rxhash(child, skb);
784	tcp_synack_rtt_meas(child, req);
785	*req_stolen = !own_req;
786	return inet_csk_complete_hashdance(sk, child, req, own_req);
787
788listen_overflow:
789	if (!sock_net(sk)->ipv4.sysctl_tcp_abort_on_overflow) {
790		inet_rsk(req)->acked = 1;
791		return NULL;
792	}
793
794embryonic_reset:
795	if (!(flg & TCP_FLAG_RST)) {
796		/* Received a bad SYN pkt - for TFO We try not to reset
797		 * the local connection unless it's really necessary to
798		 * avoid becoming vulnerable to outside attack aiming at
799		 * resetting legit local connections.
800		 */
801		req->rsk_ops->send_reset(sk, skb);
802	} else if (fastopen) { /* received a valid RST pkt */
803		reqsk_fastopen_remove(sk, req, true);
804		tcp_reset(sk);
805	}
806	if (!fastopen) {
807		inet_csk_reqsk_queue_drop(sk, req);
808		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
809	}
810	return NULL;
811}
812EXPORT_SYMBOL(tcp_check_req);
813
814/*
815 * Queue segment on the new socket if the new socket is active,
816 * otherwise we just shortcircuit this and continue with
817 * the new socket.
818 *
819 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
820 * when entering. But other states are possible due to a race condition
821 * where after __inet_lookup_established() fails but before the listener
822 * locked is obtained, other packets cause the same connection to
823 * be created.
824 */
825
826int tcp_child_process(struct sock *parent, struct sock *child,
827		      struct sk_buff *skb)
828	__releases(&((child)->sk_lock.slock))
829{
830	int ret = 0;
831	int state = child->sk_state;
832
833	/* record NAPI ID of child */
834	sk_mark_napi_id(child, skb);
835
836	tcp_segs_in(tcp_sk(child), skb);
837	if (!sock_owned_by_user(child)) {
838		ret = tcp_rcv_state_process(child, skb);
839		/* Wakeup parent, send SIGIO */
840		if (state == TCP_SYN_RECV && child->sk_state != state)
841			parent->sk_data_ready(parent);
842	} else {
843		/* Alas, it is possible again, because we do lookup
844		 * in main socket hash table and lock on listening
845		 * socket does not protect us more.
846		 */
847		__sk_add_backlog(child, skb);
848	}
849
850	bh_unlock_sock(child);
851	sock_put(child);
852	return ret;
853}
854EXPORT_SYMBOL(tcp_child_process);
v4.10.11
 
  1/*
  2 * INET		An implementation of the TCP/IP protocol suite for the LINUX
  3 *		operating system.  INET is implemented using the  BSD Socket
  4 *		interface as the means of communication with the user level.
  5 *
  6 *		Implementation of the Transmission Control Protocol(TCP).
  7 *
  8 * Authors:	Ross Biro
  9 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
 10 *		Mark Evans, <evansmp@uhura.aston.ac.uk>
 11 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
 12 *		Florian La Roche, <flla@stud.uni-sb.de>
 13 *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
 14 *		Linus Torvalds, <torvalds@cs.helsinki.fi>
 15 *		Alan Cox, <gw4pts@gw4pts.ampr.org>
 16 *		Matthew Dillon, <dillon@apollo.west.oic.com>
 17 *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
 18 *		Jorge Cwik, <jorge@laser.satlink.net>
 19 */
 20
 21#include <linux/mm.h>
 22#include <linux/module.h>
 23#include <linux/slab.h>
 24#include <linux/sysctl.h>
 25#include <linux/workqueue.h>
 
 26#include <net/tcp.h>
 27#include <net/inet_common.h>
 28#include <net/xfrm.h>
 29
 30int sysctl_tcp_abort_on_overflow __read_mostly;
 31
 32struct inet_timewait_death_row tcp_death_row = {
 33	.sysctl_max_tw_buckets = NR_FILE * 2,
 34	.hashinfo	= &tcp_hashinfo,
 35};
 36EXPORT_SYMBOL_GPL(tcp_death_row);
 37
 38static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
 39{
 40	if (seq == s_win)
 41		return true;
 42	if (after(end_seq, s_win) && before(seq, e_win))
 43		return true;
 44	return seq == e_win && seq == end_seq;
 45}
 46
 47static enum tcp_tw_status
 48tcp_timewait_check_oow_rate_limit(struct inet_timewait_sock *tw,
 49				  const struct sk_buff *skb, int mib_idx)
 50{
 51	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
 52
 53	if (!tcp_oow_rate_limited(twsk_net(tw), skb, mib_idx,
 54				  &tcptw->tw_last_oow_ack_time)) {
 55		/* Send ACK. Note, we do not put the bucket,
 56		 * it will be released by caller.
 57		 */
 58		return TCP_TW_ACK;
 59	}
 60
 61	/* We are rate-limiting, so just release the tw sock and drop skb. */
 62	inet_twsk_put(tw);
 63	return TCP_TW_SUCCESS;
 64}
 65
 66/*
 67 * * Main purpose of TIME-WAIT state is to close connection gracefully,
 68 *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
 69 *   (and, probably, tail of data) and one or more our ACKs are lost.
 70 * * What is TIME-WAIT timeout? It is associated with maximal packet
 71 *   lifetime in the internet, which results in wrong conclusion, that
 72 *   it is set to catch "old duplicate segments" wandering out of their path.
 73 *   It is not quite correct. This timeout is calculated so that it exceeds
 74 *   maximal retransmission timeout enough to allow to lose one (or more)
 75 *   segments sent by peer and our ACKs. This time may be calculated from RTO.
 76 * * When TIME-WAIT socket receives RST, it means that another end
 77 *   finally closed and we are allowed to kill TIME-WAIT too.
 78 * * Second purpose of TIME-WAIT is catching old duplicate segments.
 79 *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
 80 *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
 81 * * If we invented some more clever way to catch duplicates
 82 *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
 83 *
 84 * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
 85 * When you compare it to RFCs, please, read section SEGMENT ARRIVES
 86 * from the very beginning.
 87 *
 88 * NOTE. With recycling (and later with fin-wait-2) TW bucket
 89 * is _not_ stateless. It means, that strictly speaking we must
 90 * spinlock it. I do not want! Well, probability of misbehaviour
 91 * is ridiculously low and, seems, we could use some mb() tricks
 92 * to avoid misread sequence numbers, states etc.  --ANK
 93 *
 94 * We don't need to initialize tmp_out.sack_ok as we don't use the results
 95 */
 96enum tcp_tw_status
 97tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
 98			   const struct tcphdr *th)
 99{
100	struct tcp_options_received tmp_opt;
101	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
102	bool paws_reject = false;
103
104	tmp_opt.saw_tstamp = 0;
105	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
106		tcp_parse_options(skb, &tmp_opt, 0, NULL);
107
108		if (tmp_opt.saw_tstamp) {
109			tmp_opt.rcv_tsecr	-= tcptw->tw_ts_offset;
 
110			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
111			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
112			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
113		}
114	}
115
116	if (tw->tw_substate == TCP_FIN_WAIT2) {
117		/* Just repeat all the checks of tcp_rcv_state_process() */
118
119		/* Out of window, send ACK */
120		if (paws_reject ||
121		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
122				   tcptw->tw_rcv_nxt,
123				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
124			return tcp_timewait_check_oow_rate_limit(
125				tw, skb, LINUX_MIB_TCPACKSKIPPEDFINWAIT2);
126
127		if (th->rst)
128			goto kill;
129
130		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
131			return TCP_TW_RST;
132
133		/* Dup ACK? */
134		if (!th->ack ||
135		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
136		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
137			inet_twsk_put(tw);
138			return TCP_TW_SUCCESS;
139		}
140
141		/* New data or FIN. If new data arrive after half-duplex close,
142		 * reset.
143		 */
144		if (!th->fin ||
145		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1)
146			return TCP_TW_RST;
147
148		/* FIN arrived, enter true time-wait state. */
149		tw->tw_substate	  = TCP_TIME_WAIT;
150		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
151		if (tmp_opt.saw_tstamp) {
152			tcptw->tw_ts_recent_stamp = get_seconds();
153			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
154		}
155
156		if (tcp_death_row.sysctl_tw_recycle &&
157		    tcptw->tw_ts_recent_stamp &&
158		    tcp_tw_remember_stamp(tw))
159			inet_twsk_reschedule(tw, tw->tw_timeout);
160		else
161			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
162		return TCP_TW_ACK;
163	}
164
165	/*
166	 *	Now real TIME-WAIT state.
167	 *
168	 *	RFC 1122:
169	 *	"When a connection is [...] on TIME-WAIT state [...]
170	 *	[a TCP] MAY accept a new SYN from the remote TCP to
171	 *	reopen the connection directly, if it:
172	 *
173	 *	(1)  assigns its initial sequence number for the new
174	 *	connection to be larger than the largest sequence
175	 *	number it used on the previous connection incarnation,
176	 *	and
177	 *
178	 *	(2)  returns to TIME-WAIT state if the SYN turns out
179	 *	to be an old duplicate".
180	 */
181
182	if (!paws_reject &&
183	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185		/* In window segment, it may be only reset or bare ack. */
186
187		if (th->rst) {
188			/* This is TIME_WAIT assassination, in two flavors.
189			 * Oh well... nobody has a sufficient solution to this
190			 * protocol bug yet.
191			 */
192			if (sysctl_tcp_rfc1337 == 0) {
193kill:
194				inet_twsk_deschedule_put(tw);
195				return TCP_TW_SUCCESS;
196			}
 
 
197		}
198		inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
199
200		if (tmp_opt.saw_tstamp) {
201			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
202			tcptw->tw_ts_recent_stamp = get_seconds();
203		}
204
205		inet_twsk_put(tw);
206		return TCP_TW_SUCCESS;
207	}
208
209	/* Out of window segment.
210
211	   All the segments are ACKed immediately.
212
213	   The only exception is new SYN. We accept it, if it is
214	   not old duplicate and we are not in danger to be killed
215	   by delayed old duplicates. RFC check is that it has
216	   newer sequence number works at rates <40Mbit/sec.
217	   However, if paws works, it is reliable AND even more,
218	   we even may relax silly seq space cutoff.
219
220	   RED-PEN: we violate main RFC requirement, if this SYN will appear
221	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
222	   we must return socket to time-wait state. It is not good,
223	   but not fatal yet.
224	 */
225
226	if (th->syn && !th->rst && !th->ack && !paws_reject &&
227	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
228	     (tmp_opt.saw_tstamp &&
229	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
230		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
231		if (isn == 0)
232			isn++;
233		TCP_SKB_CB(skb)->tcp_tw_isn = isn;
234		return TCP_TW_SYN;
235	}
236
237	if (paws_reject)
238		__NET_INC_STATS(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
239
240	if (!th->rst) {
241		/* In this case we must reset the TIMEWAIT timer.
242		 *
243		 * If it is ACKless SYN it may be both old duplicate
244		 * and new good SYN with random sequence number <rcv_nxt.
245		 * Do not reschedule in the last case.
246		 */
247		if (paws_reject || th->ack)
248			inet_twsk_reschedule(tw, TCP_TIMEWAIT_LEN);
249
250		return tcp_timewait_check_oow_rate_limit(
251			tw, skb, LINUX_MIB_TCPACKSKIPPEDTIMEWAIT);
252	}
253	inet_twsk_put(tw);
254	return TCP_TW_SUCCESS;
255}
256EXPORT_SYMBOL(tcp_timewait_state_process);
257
258/*
259 * Move a socket to time-wait or dead fin-wait-2 state.
260 */
261void tcp_time_wait(struct sock *sk, int state, int timeo)
262{
263	const struct inet_connection_sock *icsk = inet_csk(sk);
264	const struct tcp_sock *tp = tcp_sk(sk);
265	struct inet_timewait_sock *tw;
266	bool recycle_ok = false;
267
268	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
269		recycle_ok = tcp_remember_stamp(sk);
270
271	tw = inet_twsk_alloc(sk, &tcp_death_row, state);
272
273	if (tw) {
274		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
275		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
276		struct inet_sock *inet = inet_sk(sk);
277
278		tw->tw_transparent	= inet->transparent;
 
 
279		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
280		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
281		tcptw->tw_snd_nxt	= tp->snd_nxt;
282		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
283		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
284		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
285		tcptw->tw_ts_offset	= tp->tsoffset;
286		tcptw->tw_last_oow_ack_time = 0;
287
288#if IS_ENABLED(CONFIG_IPV6)
289		if (tw->tw_family == PF_INET6) {
290			struct ipv6_pinfo *np = inet6_sk(sk);
291
292			tw->tw_v6_daddr = sk->sk_v6_daddr;
293			tw->tw_v6_rcv_saddr = sk->sk_v6_rcv_saddr;
294			tw->tw_tclass = np->tclass;
295			tw->tw_flowlabel = be32_to_cpu(np->flow_label & IPV6_FLOWLABEL_MASK);
 
296			tw->tw_ipv6only = sk->sk_ipv6only;
297		}
298#endif
299
300#ifdef CONFIG_TCP_MD5SIG
301		/*
302		 * The timewait bucket does not have the key DB from the
303		 * sock structure. We just make a quick copy of the
304		 * md5 key being used (if indeed we are using one)
305		 * so the timewait ack generating code has the key.
306		 */
307		do {
308			struct tcp_md5sig_key *key;
309			tcptw->tw_md5_key = NULL;
310			key = tp->af_specific->md5_lookup(sk, sk);
311			if (key) {
312				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
313				if (tcptw->tw_md5_key && !tcp_alloc_md5sig_pool())
314					BUG();
 
 
 
315			}
316		} while (0);
317#endif
318
319		/* Get the TIME_WAIT timeout firing. */
320		if (timeo < rto)
321			timeo = rto;
322
323		if (recycle_ok) {
324			tw->tw_timeout = rto;
325		} else {
326			tw->tw_timeout = TCP_TIMEWAIT_LEN;
327			if (state == TCP_TIME_WAIT)
328				timeo = TCP_TIMEWAIT_LEN;
329		}
330
 
 
 
 
 
331		inet_twsk_schedule(tw, timeo);
332		/* Linkage updates. */
333		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
334		inet_twsk_put(tw);
 
 
335	} else {
336		/* Sorry, if we're out of memory, just CLOSE this
337		 * socket up.  We've got bigger problems than
338		 * non-graceful socket closings.
339		 */
340		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
341	}
342
343	tcp_update_metrics(sk);
344	tcp_done(sk);
345}
 
346
347void tcp_twsk_destructor(struct sock *sk)
348{
349#ifdef CONFIG_TCP_MD5SIG
350	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
 
351
352	if (twsk->tw_md5_key)
353		kfree_rcu(twsk->tw_md5_key, rcu);
 
354#endif
355}
356EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
357
358/* Warning : This function is called without sk_listener being locked.
359 * Be sure to read socket fields once, as their value could change under us.
360 */
361void tcp_openreq_init_rwin(struct request_sock *req,
362			   const struct sock *sk_listener,
363			   const struct dst_entry *dst)
364{
365	struct inet_request_sock *ireq = inet_rsk(req);
366	const struct tcp_sock *tp = tcp_sk(sk_listener);
367	u16 user_mss = READ_ONCE(tp->rx_opt.user_mss);
368	int full_space = tcp_full_space(sk_listener);
369	int mss = dst_metric_advmss(dst);
370	u32 window_clamp;
371	__u8 rcv_wscale;
 
 
372
373	if (user_mss && user_mss < mss)
374		mss = user_mss;
375
376	window_clamp = READ_ONCE(tp->window_clamp);
377	/* Set this up on the first call only */
378	req->rsk_window_clamp = window_clamp ? : dst_metric(dst, RTAX_WINDOW);
379
380	/* limit the window selection if the user enforce a smaller rx buffer */
381	if (sk_listener->sk_userlocks & SOCK_RCVBUF_LOCK &&
382	    (req->rsk_window_clamp > full_space || req->rsk_window_clamp == 0))
383		req->rsk_window_clamp = full_space;
384
 
 
 
 
 
 
385	/* tcp_full_space because it is guaranteed to be the first packet */
386	tcp_select_initial_window(full_space,
387		mss - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0),
388		&req->rsk_rcv_wnd,
389		&req->rsk_window_clamp,
390		ireq->wscale_ok,
391		&rcv_wscale,
392		dst_metric(dst, RTAX_INITRWND));
393	ireq->rcv_wscale = rcv_wscale;
394}
395EXPORT_SYMBOL(tcp_openreq_init_rwin);
396
397static void tcp_ecn_openreq_child(struct tcp_sock *tp,
398				  const struct request_sock *req)
399{
400	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
401}
402
403void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst)
404{
405	struct inet_connection_sock *icsk = inet_csk(sk);
406	u32 ca_key = dst_metric(dst, RTAX_CC_ALGO);
407	bool ca_got_dst = false;
408
409	if (ca_key != TCP_CA_UNSPEC) {
410		const struct tcp_congestion_ops *ca;
411
412		rcu_read_lock();
413		ca = tcp_ca_find_key(ca_key);
414		if (likely(ca && try_module_get(ca->owner))) {
415			icsk->icsk_ca_dst_locked = tcp_ca_dst_locked(dst);
416			icsk->icsk_ca_ops = ca;
417			ca_got_dst = true;
418		}
419		rcu_read_unlock();
420	}
421
422	/* If no valid choice made yet, assign current system default ca. */
423	if (!ca_got_dst &&
424	    (!icsk->icsk_ca_setsockopt ||
425	     !try_module_get(icsk->icsk_ca_ops->owner)))
426		tcp_assign_congestion_control(sk);
427
428	tcp_set_ca_state(sk, TCP_CA_Open);
429}
430EXPORT_SYMBOL_GPL(tcp_ca_openreq_child);
431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
432/* This is not only more efficient than what we used to do, it eliminates
433 * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
434 *
435 * Actually, we could lots of memory writes here. tp of listening
436 * socket contains all necessary default parameters.
437 */
438struct sock *tcp_create_openreq_child(const struct sock *sk,
439				      struct request_sock *req,
440				      struct sk_buff *skb)
441{
442	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
 
 
 
 
 
443
444	if (newsk) {
445		const struct inet_request_sock *ireq = inet_rsk(req);
446		struct tcp_request_sock *treq = tcp_rsk(req);
447		struct inet_connection_sock *newicsk = inet_csk(newsk);
448		struct tcp_sock *newtp = tcp_sk(newsk);
449
450		/* Now setup tcp_sock */
451		newtp->pred_flags = 0;
452
453		newtp->rcv_wup = newtp->copied_seq =
454		newtp->rcv_nxt = treq->rcv_isn + 1;
455		newtp->segs_in = 1;
456
457		newtp->snd_sml = newtp->snd_una =
458		newtp->snd_nxt = newtp->snd_up = treq->snt_isn + 1;
459
460		tcp_prequeue_init(newtp);
461		INIT_LIST_HEAD(&newtp->tsq_node);
462
463		tcp_init_wl(newtp, treq->rcv_isn);
464
465		newtp->srtt_us = 0;
466		newtp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
467		minmax_reset(&newtp->rtt_min, tcp_time_stamp, ~0U);
468		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
469		newicsk->icsk_ack.lrcvtime = tcp_time_stamp;
470
471		newtp->packets_out = 0;
472		newtp->retrans_out = 0;
473		newtp->sacked_out = 0;
474		newtp->fackets_out = 0;
475		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
476		tcp_enable_early_retrans(newtp);
477		newtp->tlp_high_seq = 0;
478		newtp->lsndtime = treq->snt_synack.stamp_jiffies;
479		newsk->sk_txhash = treq->txhash;
480		newtp->last_oow_ack_time = 0;
481		newtp->total_retrans = req->num_retrans;
482
483		/* So many TCP implementations out there (incorrectly) count the
484		 * initial SYN frame in their delayed-ACK and congestion control
485		 * algorithms that we must have the following bandaid to talk
486		 * efficiently to them.  -DaveM
487		 */
488		newtp->snd_cwnd = TCP_INIT_CWND;
489		newtp->snd_cwnd_cnt = 0;
490
491		/* There's a bubble in the pipe until at least the first ACK. */
492		newtp->app_limited = ~0U;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
493
494		tcp_init_xmit_timers(newsk);
495		newtp->write_seq = newtp->pushed_seq = treq->snt_isn + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
496
497		newtp->rx_opt.saw_tstamp = 0;
498
499		newtp->rx_opt.dsack = 0;
500		newtp->rx_opt.num_sacks = 0;
501
502		newtp->urg_data = 0;
503
504		if (sock_flag(newsk, SOCK_KEEPOPEN))
505			inet_csk_reset_keepalive_timer(newsk,
506						       keepalive_time_when(newtp));
507
508		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
509		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
510			if (sysctl_tcp_fack)
511				tcp_enable_fack(newtp);
512		}
513		newtp->window_clamp = req->rsk_window_clamp;
514		newtp->rcv_ssthresh = req->rsk_rcv_wnd;
515		newtp->rcv_wnd = req->rsk_rcv_wnd;
516		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
517		if (newtp->rx_opt.wscale_ok) {
518			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
519			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
520		} else {
521			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
522			newtp->window_clamp = min(newtp->window_clamp, 65535U);
523		}
524		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
525				  newtp->rx_opt.snd_wscale);
526		newtp->max_window = newtp->snd_wnd;
527
528		if (newtp->rx_opt.tstamp_ok) {
529			newtp->rx_opt.ts_recent = req->ts_recent;
530			newtp->rx_opt.ts_recent_stamp = get_seconds();
531			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
532		} else {
533			newtp->rx_opt.ts_recent_stamp = 0;
534			newtp->tcp_header_len = sizeof(struct tcphdr);
535		}
536		newtp->tsoffset = treq->ts_off;
537#ifdef CONFIG_TCP_MD5SIG
538		newtp->md5sig_info = NULL;	/*XXX*/
539		if (newtp->af_specific->md5_lookup(sk, newsk))
540			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
541#endif
542		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
543			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
544		newtp->rx_opt.mss_clamp = req->mss;
545		tcp_ecn_openreq_child(newtp, req);
546		newtp->fastopen_rsk = NULL;
547		newtp->syn_data_acked = 0;
548		newtp->rack.mstamp.v64 = 0;
549		newtp->rack.advanced = 0;
550
551		__TCP_INC_STATS(sock_net(sk), TCP_MIB_PASSIVEOPENS);
552	}
553	return newsk;
554}
555EXPORT_SYMBOL(tcp_create_openreq_child);
556
557/*
558 * Process an incoming packet for SYN_RECV sockets represented as a
559 * request_sock. Normally sk is the listener socket but for TFO it
560 * points to the child socket.
561 *
562 * XXX (TFO) - The current impl contains a special check for ack
563 * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
564 *
565 * We don't need to initialize tmp_opt.sack_ok as we don't use the results
566 */
567
568struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
569			   struct request_sock *req,
570			   bool fastopen)
571{
572	struct tcp_options_received tmp_opt;
573	struct sock *child;
574	const struct tcphdr *th = tcp_hdr(skb);
575	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
576	bool paws_reject = false;
577	bool own_req;
578
579	tmp_opt.saw_tstamp = 0;
580	if (th->doff > (sizeof(struct tcphdr)>>2)) {
581		tcp_parse_options(skb, &tmp_opt, 0, NULL);
582
583		if (tmp_opt.saw_tstamp) {
584			tmp_opt.ts_recent = req->ts_recent;
585			if (tmp_opt.rcv_tsecr)
586				tmp_opt.rcv_tsecr -= tcp_rsk(req)->ts_off;
587			/* We do not store true stamp, but it is not required,
588			 * it can be estimated (approximately)
589			 * from another data.
590			 */
591			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->num_timeout);
592			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
593		}
594	}
595
596	/* Check for pure retransmitted SYN. */
597	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
598	    flg == TCP_FLAG_SYN &&
599	    !paws_reject) {
600		/*
601		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
602		 * this case on figure 6 and figure 8, but formal
603		 * protocol description says NOTHING.
604		 * To be more exact, it says that we should send ACK,
605		 * because this segment (at least, if it has no data)
606		 * is out of window.
607		 *
608		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
609		 *  describe SYN-RECV state. All the description
610		 *  is wrong, we cannot believe to it and should
611		 *  rely only on common sense and implementation
612		 *  experience.
613		 *
614		 * Enforce "SYN-ACK" according to figure 8, figure 6
615		 * of RFC793, fixed by RFC1122.
616		 *
617		 * Note that even if there is new data in the SYN packet
618		 * they will be thrown away too.
619		 *
620		 * Reset timer after retransmitting SYNACK, similar to
621		 * the idea of fast retransmit in recovery.
622		 */
623		if (!tcp_oow_rate_limited(sock_net(sk), skb,
624					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
625					  &tcp_rsk(req)->last_oow_ack_time) &&
626
627		    !inet_rtx_syn_ack(sk, req)) {
628			unsigned long expires = jiffies;
629
630			expires += min(TCP_TIMEOUT_INIT << req->num_timeout,
631				       TCP_RTO_MAX);
632			if (!fastopen)
633				mod_timer_pending(&req->rsk_timer, expires);
634			else
635				req->rsk_timer.expires = expires;
636		}
637		return NULL;
638	}
639
640	/* Further reproduces section "SEGMENT ARRIVES"
641	   for state SYN-RECEIVED of RFC793.
642	   It is broken, however, it does not work only
643	   when SYNs are crossed.
644
645	   You would think that SYN crossing is impossible here, since
646	   we should have a SYN_SENT socket (from connect()) on our end,
647	   but this is not true if the crossed SYNs were sent to both
648	   ends by a malicious third party.  We must defend against this,
649	   and to do that we first verify the ACK (as per RFC793, page
650	   36) and reset if it is invalid.  Is this a true full defense?
651	   To convince ourselves, let us consider a way in which the ACK
652	   test can still pass in this 'malicious crossed SYNs' case.
653	   Malicious sender sends identical SYNs (and thus identical sequence
654	   numbers) to both A and B:
655
656		A: gets SYN, seq=7
657		B: gets SYN, seq=7
658
659	   By our good fortune, both A and B select the same initial
660	   send sequence number of seven :-)
661
662		A: sends SYN|ACK, seq=7, ack_seq=8
663		B: sends SYN|ACK, seq=7, ack_seq=8
664
665	   So we are now A eating this SYN|ACK, ACK test passes.  So
666	   does sequence test, SYN is truncated, and thus we consider
667	   it a bare ACK.
668
669	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
670	   bare ACK.  Otherwise, we create an established connection.  Both
671	   ends (listening sockets) accept the new incoming connection and try
672	   to talk to each other. 8-)
673
674	   Note: This case is both harmless, and rare.  Possibility is about the
675	   same as us discovering intelligent life on another plant tomorrow.
676
677	   But generally, we should (RFC lies!) to accept ACK
678	   from SYNACK both here and in tcp_rcv_state_process().
679	   tcp_rcv_state_process() does not, hence, we do not too.
680
681	   Note that the case is absolutely generic:
682	   we cannot optimize anything here without
683	   violating protocol. All the checks must be made
684	   before attempt to create socket.
685	 */
686
687	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
688	 *                  and the incoming segment acknowledges something not yet
689	 *                  sent (the segment carries an unacceptable ACK) ...
690	 *                  a reset is sent."
691	 *
692	 * Invalid ACK: reset will be sent by listening socket.
693	 * Note that the ACK validity check for a Fast Open socket is done
694	 * elsewhere and is checked directly against the child socket rather
695	 * than req because user data may have been sent out.
696	 */
697	if ((flg & TCP_FLAG_ACK) && !fastopen &&
698	    (TCP_SKB_CB(skb)->ack_seq !=
699	     tcp_rsk(req)->snt_isn + 1))
700		return sk;
701
702	/* Also, it would be not so bad idea to check rcv_tsecr, which
703	 * is essentially ACK extension and too early or too late values
704	 * should cause reset in unsynchronized states.
705	 */
706
707	/* RFC793: "first check sequence number". */
708
709	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
710					  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rsk_rcv_wnd)) {
711		/* Out of window: send ACK and drop. */
712		if (!(flg & TCP_FLAG_RST) &&
713		    !tcp_oow_rate_limited(sock_net(sk), skb,
714					  LINUX_MIB_TCPACKSKIPPEDSYNRECV,
715					  &tcp_rsk(req)->last_oow_ack_time))
716			req->rsk_ops->send_ack(sk, skb, req);
717		if (paws_reject)
718			__NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
719		return NULL;
720	}
721
722	/* In sequence, PAWS is OK. */
723
724	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
725		req->ts_recent = tmp_opt.rcv_tsval;
726
727	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
728		/* Truncate SYN, it is out of window starting
729		   at tcp_rsk(req)->rcv_isn + 1. */
730		flg &= ~TCP_FLAG_SYN;
731	}
732
733	/* RFC793: "second check the RST bit" and
734	 *	   "fourth, check the SYN bit"
735	 */
736	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
737		__TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
738		goto embryonic_reset;
739	}
740
741	/* ACK sequence verified above, just make sure ACK is
742	 * set.  If ACK not set, just silently drop the packet.
743	 *
744	 * XXX (TFO) - if we ever allow "data after SYN", the
745	 * following check needs to be removed.
746	 */
747	if (!(flg & TCP_FLAG_ACK))
748		return NULL;
749
750	/* For Fast Open no more processing is needed (sk is the
751	 * child socket).
752	 */
753	if (fastopen)
754		return sk;
755
756	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
757	if (req->num_timeout < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
758	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
759		inet_rsk(req)->acked = 1;
760		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
761		return NULL;
762	}
763
764	/* OK, ACK is valid, create big socket and
765	 * feed this segment to it. It will repeat all
766	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
767	 * ESTABLISHED STATE. If it will be dropped after
768	 * socket is created, wait for troubles.
769	 */
770	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL,
771							 req, &own_req);
772	if (!child)
773		goto listen_overflow;
774
 
 
 
 
 
 
775	sock_rps_save_rxhash(child, skb);
776	tcp_synack_rtt_meas(child, req);
 
777	return inet_csk_complete_hashdance(sk, child, req, own_req);
778
779listen_overflow:
780	if (!sysctl_tcp_abort_on_overflow) {
781		inet_rsk(req)->acked = 1;
782		return NULL;
783	}
784
785embryonic_reset:
786	if (!(flg & TCP_FLAG_RST)) {
787		/* Received a bad SYN pkt - for TFO We try not to reset
788		 * the local connection unless it's really necessary to
789		 * avoid becoming vulnerable to outside attack aiming at
790		 * resetting legit local connections.
791		 */
792		req->rsk_ops->send_reset(sk, skb);
793	} else if (fastopen) { /* received a valid RST pkt */
794		reqsk_fastopen_remove(sk, req, true);
795		tcp_reset(sk);
796	}
797	if (!fastopen) {
798		inet_csk_reqsk_queue_drop(sk, req);
799		__NET_INC_STATS(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
800	}
801	return NULL;
802}
803EXPORT_SYMBOL(tcp_check_req);
804
805/*
806 * Queue segment on the new socket if the new socket is active,
807 * otherwise we just shortcircuit this and continue with
808 * the new socket.
809 *
810 * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
811 * when entering. But other states are possible due to a race condition
812 * where after __inet_lookup_established() fails but before the listener
813 * locked is obtained, other packets cause the same connection to
814 * be created.
815 */
816
817int tcp_child_process(struct sock *parent, struct sock *child,
818		      struct sk_buff *skb)
 
819{
820	int ret = 0;
821	int state = child->sk_state;
 
 
 
822
823	tcp_segs_in(tcp_sk(child), skb);
824	if (!sock_owned_by_user(child)) {
825		ret = tcp_rcv_state_process(child, skb);
826		/* Wakeup parent, send SIGIO */
827		if (state == TCP_SYN_RECV && child->sk_state != state)
828			parent->sk_data_ready(parent);
829	} else {
830		/* Alas, it is possible again, because we do lookup
831		 * in main socket hash table and lock on listening
832		 * socket does not protect us more.
833		 */
834		__sk_add_backlog(child, skb);
835	}
836
837	bh_unlock_sock(child);
838	sock_put(child);
839	return ret;
840}
841EXPORT_SYMBOL(tcp_child_process);