Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include "ice.h"
10#include "ice_base.h"
11#include "ice_lib.h"
12#include "ice_fltr.h"
13#include "ice_dcb_lib.h"
14#include "ice_dcb_nl.h"
15#include "ice_devlink.h"
16
17#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
18static const char ice_driver_string[] = DRV_SUMMARY;
19static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20
21/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
23#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
24
25MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26MODULE_DESCRIPTION(DRV_SUMMARY);
27MODULE_LICENSE("GPL v2");
28MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29
30static int debug = -1;
31module_param(debug, int, 0644);
32#ifndef CONFIG_DYNAMIC_DEBUG
33MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34#else
35MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36#endif /* !CONFIG_DYNAMIC_DEBUG */
37
38static struct workqueue_struct *ice_wq;
39static const struct net_device_ops ice_netdev_safe_mode_ops;
40static const struct net_device_ops ice_netdev_ops;
41static int ice_vsi_open(struct ice_vsi *vsi);
42
43static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44
45static void ice_vsi_release_all(struct ice_pf *pf);
46
47/**
48 * ice_get_tx_pending - returns number of Tx descriptors not processed
49 * @ring: the ring of descriptors
50 */
51static u16 ice_get_tx_pending(struct ice_ring *ring)
52{
53 u16 head, tail;
54
55 head = ring->next_to_clean;
56 tail = ring->next_to_use;
57
58 if (head != tail)
59 return (head < tail) ?
60 tail - head : (tail + ring->count - head);
61 return 0;
62}
63
64/**
65 * ice_check_for_hang_subtask - check for and recover hung queues
66 * @pf: pointer to PF struct
67 */
68static void ice_check_for_hang_subtask(struct ice_pf *pf)
69{
70 struct ice_vsi *vsi = NULL;
71 struct ice_hw *hw;
72 unsigned int i;
73 int packets;
74 u32 v;
75
76 ice_for_each_vsi(pf, v)
77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 vsi = pf->vsi[v];
79 break;
80 }
81
82 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 return;
84
85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 return;
87
88 hw = &vsi->back->hw;
89
90 for (i = 0; i < vsi->num_txq; i++) {
91 struct ice_ring *tx_ring = vsi->tx_rings[i];
92
93 if (tx_ring && tx_ring->desc) {
94 /* If packet counter has not changed the queue is
95 * likely stalled, so force an interrupt for this
96 * queue.
97 *
98 * prev_pkt would be negative if there was no
99 * pending work.
100 */
101 packets = tx_ring->stats.pkts & INT_MAX;
102 if (tx_ring->tx_stats.prev_pkt == packets) {
103 /* Trigger sw interrupt to revive the queue */
104 ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 continue;
106 }
107
108 /* Memory barrier between read of packet count and call
109 * to ice_get_tx_pending()
110 */
111 smp_rmb();
112 tx_ring->tx_stats.prev_pkt =
113 ice_get_tx_pending(tx_ring) ? packets : -1;
114 }
115 }
116}
117
118/**
119 * ice_init_mac_fltr - Set initial MAC filters
120 * @pf: board private structure
121 *
122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
123 * address and broadcast address. If an error is encountered, netdevice will be
124 * unregistered.
125 */
126static int ice_init_mac_fltr(struct ice_pf *pf)
127{
128 enum ice_status status;
129 struct ice_vsi *vsi;
130 u8 *perm_addr;
131
132 vsi = ice_get_main_vsi(pf);
133 if (!vsi)
134 return -EINVAL;
135
136 perm_addr = vsi->port_info->mac.perm_addr;
137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 if (!status)
139 return 0;
140
141 /* We aren't useful with no MAC filters, so unregister if we
142 * had an error
143 */
144 if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 ice_stat_str(status));
147 unregister_netdev(vsi->netdev);
148 free_netdev(vsi->netdev);
149 vsi->netdev = NULL;
150 }
151
152 return -EIO;
153}
154
155/**
156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157 * @netdev: the net device on which the sync is happening
158 * @addr: MAC address to sync
159 *
160 * This is a callback function which is called by the in kernel device sync
161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163 * MAC filters from the hardware.
164 */
165static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166{
167 struct ice_netdev_priv *np = netdev_priv(netdev);
168 struct ice_vsi *vsi = np->vsi;
169
170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 ICE_FWD_TO_VSI))
172 return -EINVAL;
173
174 return 0;
175}
176
177/**
178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179 * @netdev: the net device on which the unsync is happening
180 * @addr: MAC address to unsync
181 *
182 * This is a callback function which is called by the in kernel device unsync
183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185 * delete the MAC filters from the hardware.
186 */
187static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188{
189 struct ice_netdev_priv *np = netdev_priv(netdev);
190 struct ice_vsi *vsi = np->vsi;
191
192 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
193 ICE_FWD_TO_VSI))
194 return -EINVAL;
195
196 return 0;
197}
198
199/**
200 * ice_vsi_fltr_changed - check if filter state changed
201 * @vsi: VSI to be checked
202 *
203 * returns true if filter state has changed, false otherwise.
204 */
205static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
206{
207 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
208 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
209 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
210}
211
212/**
213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
214 * @vsi: the VSI being configured
215 * @promisc_m: mask of promiscuous config bits
216 * @set_promisc: enable or disable promisc flag request
217 *
218 */
219static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
220{
221 struct ice_hw *hw = &vsi->back->hw;
222 enum ice_status status = 0;
223
224 if (vsi->type != ICE_VSI_PF)
225 return 0;
226
227 if (vsi->vlan_ena) {
228 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
229 set_promisc);
230 } else {
231 if (set_promisc)
232 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
233 0);
234 else
235 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
236 0);
237 }
238
239 if (status)
240 return -EIO;
241
242 return 0;
243}
244
245/**
246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
247 * @vsi: ptr to the VSI
248 *
249 * Push any outstanding VSI filter changes through the AdminQ.
250 */
251static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
252{
253 struct device *dev = ice_pf_to_dev(vsi->back);
254 struct net_device *netdev = vsi->netdev;
255 bool promisc_forced_on = false;
256 struct ice_pf *pf = vsi->back;
257 struct ice_hw *hw = &pf->hw;
258 enum ice_status status = 0;
259 u32 changed_flags = 0;
260 u8 promisc_m;
261 int err = 0;
262
263 if (!vsi->netdev)
264 return -EINVAL;
265
266 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
267 usleep_range(1000, 2000);
268
269 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
270 vsi->current_netdev_flags = vsi->netdev->flags;
271
272 INIT_LIST_HEAD(&vsi->tmp_sync_list);
273 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
274
275 if (ice_vsi_fltr_changed(vsi)) {
276 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
277 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
278 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
279
280 /* grab the netdev's addr_list_lock */
281 netif_addr_lock_bh(netdev);
282 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
283 ice_add_mac_to_unsync_list);
284 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
285 ice_add_mac_to_unsync_list);
286 /* our temp lists are populated. release lock */
287 netif_addr_unlock_bh(netdev);
288 }
289
290 /* Remove MAC addresses in the unsync list */
291 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
292 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
293 if (status) {
294 netdev_err(netdev, "Failed to delete MAC filters\n");
295 /* if we failed because of alloc failures, just bail */
296 if (status == ICE_ERR_NO_MEMORY) {
297 err = -ENOMEM;
298 goto out;
299 }
300 }
301
302 /* Add MAC addresses in the sync list */
303 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
304 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
305 /* If filter is added successfully or already exists, do not go into
306 * 'if' condition and report it as error. Instead continue processing
307 * rest of the function.
308 */
309 if (status && status != ICE_ERR_ALREADY_EXISTS) {
310 netdev_err(netdev, "Failed to add MAC filters\n");
311 /* If there is no more space for new umac filters, VSI
312 * should go into promiscuous mode. There should be some
313 * space reserved for promiscuous filters.
314 */
315 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
316 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
317 vsi->state)) {
318 promisc_forced_on = true;
319 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
320 vsi->vsi_num);
321 } else {
322 err = -EIO;
323 goto out;
324 }
325 }
326 /* check for changes in promiscuous modes */
327 if (changed_flags & IFF_ALLMULTI) {
328 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
329 if (vsi->vlan_ena)
330 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
331 else
332 promisc_m = ICE_MCAST_PROMISC_BITS;
333
334 err = ice_cfg_promisc(vsi, promisc_m, true);
335 if (err) {
336 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
337 vsi->vsi_num);
338 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
339 goto out_promisc;
340 }
341 } else {
342 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
343 if (vsi->vlan_ena)
344 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
345 else
346 promisc_m = ICE_MCAST_PROMISC_BITS;
347
348 err = ice_cfg_promisc(vsi, promisc_m, false);
349 if (err) {
350 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
351 vsi->vsi_num);
352 vsi->current_netdev_flags |= IFF_ALLMULTI;
353 goto out_promisc;
354 }
355 }
356 }
357
358 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
359 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
360 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
361 if (vsi->current_netdev_flags & IFF_PROMISC) {
362 /* Apply Rx filter rule to get traffic from wire */
363 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
364 err = ice_set_dflt_vsi(pf->first_sw, vsi);
365 if (err && err != -EEXIST) {
366 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
367 err, vsi->vsi_num);
368 vsi->current_netdev_flags &=
369 ~IFF_PROMISC;
370 goto out_promisc;
371 }
372 ice_cfg_vlan_pruning(vsi, false, false);
373 }
374 } else {
375 /* Clear Rx filter to remove traffic from wire */
376 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
377 err = ice_clear_dflt_vsi(pf->first_sw);
378 if (err) {
379 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
380 err, vsi->vsi_num);
381 vsi->current_netdev_flags |=
382 IFF_PROMISC;
383 goto out_promisc;
384 }
385 if (vsi->num_vlan > 1)
386 ice_cfg_vlan_pruning(vsi, true, false);
387 }
388 }
389 }
390 goto exit;
391
392out_promisc:
393 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
394 goto exit;
395out:
396 /* if something went wrong then set the changed flag so we try again */
397 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
398 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
399exit:
400 clear_bit(__ICE_CFG_BUSY, vsi->state);
401 return err;
402}
403
404/**
405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
406 * @pf: board private structure
407 */
408static void ice_sync_fltr_subtask(struct ice_pf *pf)
409{
410 int v;
411
412 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
413 return;
414
415 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
416
417 ice_for_each_vsi(pf, v)
418 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
419 ice_vsi_sync_fltr(pf->vsi[v])) {
420 /* come back and try again later */
421 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
422 break;
423 }
424}
425
426/**
427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
428 * @pf: the PF
429 * @locked: is the rtnl_lock already held
430 */
431static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
432{
433 int v;
434
435 ice_for_each_vsi(pf, v)
436 if (pf->vsi[v])
437 ice_dis_vsi(pf->vsi[v], locked);
438}
439
440/**
441 * ice_prepare_for_reset - prep for the core to reset
442 * @pf: board private structure
443 *
444 * Inform or close all dependent features in prep for reset.
445 */
446static void
447ice_prepare_for_reset(struct ice_pf *pf)
448{
449 struct ice_hw *hw = &pf->hw;
450 unsigned int i;
451
452 /* already prepared for reset */
453 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
454 return;
455
456 /* Notify VFs of impending reset */
457 if (ice_check_sq_alive(hw, &hw->mailboxq))
458 ice_vc_notify_reset(pf);
459
460 /* Disable VFs until reset is completed */
461 ice_for_each_vf(pf, i)
462 ice_set_vf_state_qs_dis(&pf->vf[i]);
463
464 /* clear SW filtering DB */
465 ice_clear_hw_tbls(hw);
466 /* disable the VSIs and their queues that are not already DOWN */
467 ice_pf_dis_all_vsi(pf, false);
468
469 if (hw->port_info)
470 ice_sched_clear_port(hw->port_info);
471
472 ice_shutdown_all_ctrlq(hw);
473
474 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
475}
476
477/**
478 * ice_do_reset - Initiate one of many types of resets
479 * @pf: board private structure
480 * @reset_type: reset type requested
481 * before this function was called.
482 */
483static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
484{
485 struct device *dev = ice_pf_to_dev(pf);
486 struct ice_hw *hw = &pf->hw;
487
488 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
489 WARN_ON(in_interrupt());
490
491 ice_prepare_for_reset(pf);
492
493 /* trigger the reset */
494 if (ice_reset(hw, reset_type)) {
495 dev_err(dev, "reset %d failed\n", reset_type);
496 set_bit(__ICE_RESET_FAILED, pf->state);
497 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
498 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
499 clear_bit(__ICE_PFR_REQ, pf->state);
500 clear_bit(__ICE_CORER_REQ, pf->state);
501 clear_bit(__ICE_GLOBR_REQ, pf->state);
502 return;
503 }
504
505 /* PFR is a bit of a special case because it doesn't result in an OICR
506 * interrupt. So for PFR, rebuild after the reset and clear the reset-
507 * associated state bits.
508 */
509 if (reset_type == ICE_RESET_PFR) {
510 pf->pfr_count++;
511 ice_rebuild(pf, reset_type);
512 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
513 clear_bit(__ICE_PFR_REQ, pf->state);
514 ice_reset_all_vfs(pf, true);
515 }
516}
517
518/**
519 * ice_reset_subtask - Set up for resetting the device and driver
520 * @pf: board private structure
521 */
522static void ice_reset_subtask(struct ice_pf *pf)
523{
524 enum ice_reset_req reset_type = ICE_RESET_INVAL;
525
526 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
527 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
528 * of reset is pending and sets bits in pf->state indicating the reset
529 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
530 * prepare for pending reset if not already (for PF software-initiated
531 * global resets the software should already be prepared for it as
532 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
533 * by firmware or software on other PFs, that bit is not set so prepare
534 * for the reset now), poll for reset done, rebuild and return.
535 */
536 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
537 /* Perform the largest reset requested */
538 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
539 reset_type = ICE_RESET_CORER;
540 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
541 reset_type = ICE_RESET_GLOBR;
542 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
543 reset_type = ICE_RESET_EMPR;
544 /* return if no valid reset type requested */
545 if (reset_type == ICE_RESET_INVAL)
546 return;
547 ice_prepare_for_reset(pf);
548
549 /* make sure we are ready to rebuild */
550 if (ice_check_reset(&pf->hw)) {
551 set_bit(__ICE_RESET_FAILED, pf->state);
552 } else {
553 /* done with reset. start rebuild */
554 pf->hw.reset_ongoing = false;
555 ice_rebuild(pf, reset_type);
556 /* clear bit to resume normal operations, but
557 * ICE_NEEDS_RESTART bit is set in case rebuild failed
558 */
559 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
560 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
561 clear_bit(__ICE_PFR_REQ, pf->state);
562 clear_bit(__ICE_CORER_REQ, pf->state);
563 clear_bit(__ICE_GLOBR_REQ, pf->state);
564 ice_reset_all_vfs(pf, true);
565 }
566
567 return;
568 }
569
570 /* No pending resets to finish processing. Check for new resets */
571 if (test_bit(__ICE_PFR_REQ, pf->state))
572 reset_type = ICE_RESET_PFR;
573 if (test_bit(__ICE_CORER_REQ, pf->state))
574 reset_type = ICE_RESET_CORER;
575 if (test_bit(__ICE_GLOBR_REQ, pf->state))
576 reset_type = ICE_RESET_GLOBR;
577 /* If no valid reset type requested just return */
578 if (reset_type == ICE_RESET_INVAL)
579 return;
580
581 /* reset if not already down or busy */
582 if (!test_bit(__ICE_DOWN, pf->state) &&
583 !test_bit(__ICE_CFG_BUSY, pf->state)) {
584 ice_do_reset(pf, reset_type);
585 }
586}
587
588/**
589 * ice_print_topo_conflict - print topology conflict message
590 * @vsi: the VSI whose topology status is being checked
591 */
592static void ice_print_topo_conflict(struct ice_vsi *vsi)
593{
594 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
595 case ICE_AQ_LINK_TOPO_CONFLICT:
596 case ICE_AQ_LINK_MEDIA_CONFLICT:
597 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
598 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
599 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
600 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
601 break;
602 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
603 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
604 break;
605 default:
606 break;
607 }
608}
609
610/**
611 * ice_print_link_msg - print link up or down message
612 * @vsi: the VSI whose link status is being queried
613 * @isup: boolean for if the link is now up or down
614 */
615void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
616{
617 struct ice_aqc_get_phy_caps_data *caps;
618 const char *an_advertised;
619 enum ice_status status;
620 const char *fec_req;
621 const char *speed;
622 const char *fec;
623 const char *fc;
624 const char *an;
625
626 if (!vsi)
627 return;
628
629 if (vsi->current_isup == isup)
630 return;
631
632 vsi->current_isup = isup;
633
634 if (!isup) {
635 netdev_info(vsi->netdev, "NIC Link is Down\n");
636 return;
637 }
638
639 switch (vsi->port_info->phy.link_info.link_speed) {
640 case ICE_AQ_LINK_SPEED_100GB:
641 speed = "100 G";
642 break;
643 case ICE_AQ_LINK_SPEED_50GB:
644 speed = "50 G";
645 break;
646 case ICE_AQ_LINK_SPEED_40GB:
647 speed = "40 G";
648 break;
649 case ICE_AQ_LINK_SPEED_25GB:
650 speed = "25 G";
651 break;
652 case ICE_AQ_LINK_SPEED_20GB:
653 speed = "20 G";
654 break;
655 case ICE_AQ_LINK_SPEED_10GB:
656 speed = "10 G";
657 break;
658 case ICE_AQ_LINK_SPEED_5GB:
659 speed = "5 G";
660 break;
661 case ICE_AQ_LINK_SPEED_2500MB:
662 speed = "2.5 G";
663 break;
664 case ICE_AQ_LINK_SPEED_1000MB:
665 speed = "1 G";
666 break;
667 case ICE_AQ_LINK_SPEED_100MB:
668 speed = "100 M";
669 break;
670 default:
671 speed = "Unknown";
672 break;
673 }
674
675 switch (vsi->port_info->fc.current_mode) {
676 case ICE_FC_FULL:
677 fc = "Rx/Tx";
678 break;
679 case ICE_FC_TX_PAUSE:
680 fc = "Tx";
681 break;
682 case ICE_FC_RX_PAUSE:
683 fc = "Rx";
684 break;
685 case ICE_FC_NONE:
686 fc = "None";
687 break;
688 default:
689 fc = "Unknown";
690 break;
691 }
692
693 /* Get FEC mode based on negotiated link info */
694 switch (vsi->port_info->phy.link_info.fec_info) {
695 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
696 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
697 fec = "RS-FEC";
698 break;
699 case ICE_AQ_LINK_25G_KR_FEC_EN:
700 fec = "FC-FEC/BASE-R";
701 break;
702 default:
703 fec = "NONE";
704 break;
705 }
706
707 /* check if autoneg completed, might be false due to not supported */
708 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
709 an = "True";
710 else
711 an = "False";
712
713 /* Get FEC mode requested based on PHY caps last SW configuration */
714 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
715 if (!caps) {
716 fec_req = "Unknown";
717 an_advertised = "Unknown";
718 goto done;
719 }
720
721 status = ice_aq_get_phy_caps(vsi->port_info, false,
722 ICE_AQC_REPORT_SW_CFG, caps, NULL);
723 if (status)
724 netdev_info(vsi->netdev, "Get phy capability failed.\n");
725
726 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
727
728 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
729 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
730 fec_req = "RS-FEC";
731 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
732 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
733 fec_req = "FC-FEC/BASE-R";
734 else
735 fec_req = "NONE";
736
737 kfree(caps);
738
739done:
740 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
741 speed, fec_req, fec, an_advertised, an, fc);
742 ice_print_topo_conflict(vsi);
743}
744
745/**
746 * ice_vsi_link_event - update the VSI's netdev
747 * @vsi: the VSI on which the link event occurred
748 * @link_up: whether or not the VSI needs to be set up or down
749 */
750static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
751{
752 if (!vsi)
753 return;
754
755 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
756 return;
757
758 if (vsi->type == ICE_VSI_PF) {
759 if (link_up == netif_carrier_ok(vsi->netdev))
760 return;
761
762 if (link_up) {
763 netif_carrier_on(vsi->netdev);
764 netif_tx_wake_all_queues(vsi->netdev);
765 } else {
766 netif_carrier_off(vsi->netdev);
767 netif_tx_stop_all_queues(vsi->netdev);
768 }
769 }
770}
771
772/**
773 * ice_set_dflt_mib - send a default config MIB to the FW
774 * @pf: private PF struct
775 *
776 * This function sends a default configuration MIB to the FW.
777 *
778 * If this function errors out at any point, the driver is still able to
779 * function. The main impact is that LFC may not operate as expected.
780 * Therefore an error state in this function should be treated with a DBG
781 * message and continue on with driver rebuild/reenable.
782 */
783static void ice_set_dflt_mib(struct ice_pf *pf)
784{
785 struct device *dev = ice_pf_to_dev(pf);
786 u8 mib_type, *buf, *lldpmib = NULL;
787 u16 len, typelen, offset = 0;
788 struct ice_lldp_org_tlv *tlv;
789 struct ice_hw *hw;
790 u32 ouisubtype;
791
792 if (!pf) {
793 dev_dbg(dev, "%s NULL pf pointer\n", __func__);
794 return;
795 }
796
797 hw = &pf->hw;
798 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
799 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
800 if (!lldpmib) {
801 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
802 __func__);
803 return;
804 }
805
806 /* Add ETS CFG TLV */
807 tlv = (struct ice_lldp_org_tlv *)lldpmib;
808 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
809 ICE_IEEE_ETS_TLV_LEN);
810 tlv->typelen = htons(typelen);
811 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
812 ICE_IEEE_SUBTYPE_ETS_CFG);
813 tlv->ouisubtype = htonl(ouisubtype);
814
815 buf = tlv->tlvinfo;
816 buf[0] = 0;
817
818 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
819 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
820 * Octets 13 - 20 are TSA values - leave as zeros
821 */
822 buf[5] = 0x64;
823 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
824 offset += len + 2;
825 tlv = (struct ice_lldp_org_tlv *)
826 ((char *)tlv + sizeof(tlv->typelen) + len);
827
828 /* Add ETS REC TLV */
829 buf = tlv->tlvinfo;
830 tlv->typelen = htons(typelen);
831
832 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
833 ICE_IEEE_SUBTYPE_ETS_REC);
834 tlv->ouisubtype = htonl(ouisubtype);
835
836 /* First octet of buf is reserved
837 * Octets 1 - 4 map UP to TC - all UPs map to zero
838 * Octets 5 - 12 are BW values - set TC 0 to 100%.
839 * Octets 13 - 20 are TSA value - leave as zeros
840 */
841 buf[5] = 0x64;
842 offset += len + 2;
843 tlv = (struct ice_lldp_org_tlv *)
844 ((char *)tlv + sizeof(tlv->typelen) + len);
845
846 /* Add PFC CFG TLV */
847 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
848 ICE_IEEE_PFC_TLV_LEN);
849 tlv->typelen = htons(typelen);
850
851 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
852 ICE_IEEE_SUBTYPE_PFC_CFG);
853 tlv->ouisubtype = htonl(ouisubtype);
854
855 /* Octet 1 left as all zeros - PFC disabled */
856 buf[0] = 0x08;
857 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
858 offset += len + 2;
859
860 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
861 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
862
863 kfree(lldpmib);
864}
865
866/**
867 * ice_link_event - process the link event
868 * @pf: PF that the link event is associated with
869 * @pi: port_info for the port that the link event is associated with
870 * @link_up: true if the physical link is up and false if it is down
871 * @link_speed: current link speed received from the link event
872 *
873 * Returns 0 on success and negative on failure
874 */
875static int
876ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
877 u16 link_speed)
878{
879 struct device *dev = ice_pf_to_dev(pf);
880 struct ice_phy_info *phy_info;
881 struct ice_vsi *vsi;
882 u16 old_link_speed;
883 bool old_link;
884 int result;
885
886 phy_info = &pi->phy;
887 phy_info->link_info_old = phy_info->link_info;
888
889 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
890 old_link_speed = phy_info->link_info_old.link_speed;
891
892 /* update the link info structures and re-enable link events,
893 * don't bail on failure due to other book keeping needed
894 */
895 result = ice_update_link_info(pi);
896 if (result)
897 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
898 pi->lport);
899
900 /* Check if the link state is up after updating link info, and treat
901 * this event as an UP event since the link is actually UP now.
902 */
903 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
904 link_up = true;
905
906 vsi = ice_get_main_vsi(pf);
907 if (!vsi || !vsi->port_info)
908 return -EINVAL;
909
910 /* turn off PHY if media was removed */
911 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
912 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
913 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
914
915 result = ice_aq_set_link_restart_an(pi, false, NULL);
916 if (result) {
917 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
918 vsi->vsi_num, result);
919 return result;
920 }
921 }
922
923 /* if the old link up/down and speed is the same as the new */
924 if (link_up == old_link && link_speed == old_link_speed)
925 return result;
926
927 if (ice_is_dcb_active(pf)) {
928 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
929 ice_dcb_rebuild(pf);
930 } else {
931 if (link_up)
932 ice_set_dflt_mib(pf);
933 }
934 ice_vsi_link_event(vsi, link_up);
935 ice_print_link_msg(vsi, link_up);
936
937 ice_vc_notify_link_state(pf);
938
939 return result;
940}
941
942/**
943 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
944 * @pf: board private structure
945 */
946static void ice_watchdog_subtask(struct ice_pf *pf)
947{
948 int i;
949
950 /* if interface is down do nothing */
951 if (test_bit(__ICE_DOWN, pf->state) ||
952 test_bit(__ICE_CFG_BUSY, pf->state))
953 return;
954
955 /* make sure we don't do these things too often */
956 if (time_before(jiffies,
957 pf->serv_tmr_prev + pf->serv_tmr_period))
958 return;
959
960 pf->serv_tmr_prev = jiffies;
961
962 /* Update the stats for active netdevs so the network stack
963 * can look at updated numbers whenever it cares to
964 */
965 ice_update_pf_stats(pf);
966 ice_for_each_vsi(pf, i)
967 if (pf->vsi[i] && pf->vsi[i]->netdev)
968 ice_update_vsi_stats(pf->vsi[i]);
969}
970
971/**
972 * ice_init_link_events - enable/initialize link events
973 * @pi: pointer to the port_info instance
974 *
975 * Returns -EIO on failure, 0 on success
976 */
977static int ice_init_link_events(struct ice_port_info *pi)
978{
979 u16 mask;
980
981 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
982 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
983
984 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
985 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
986 pi->lport);
987 return -EIO;
988 }
989
990 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
991 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
992 pi->lport);
993 return -EIO;
994 }
995
996 return 0;
997}
998
999/**
1000 * ice_handle_link_event - handle link event via ARQ
1001 * @pf: PF that the link event is associated with
1002 * @event: event structure containing link status info
1003 */
1004static int
1005ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1006{
1007 struct ice_aqc_get_link_status_data *link_data;
1008 struct ice_port_info *port_info;
1009 int status;
1010
1011 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1012 port_info = pf->hw.port_info;
1013 if (!port_info)
1014 return -EINVAL;
1015
1016 status = ice_link_event(pf, port_info,
1017 !!(link_data->link_info & ICE_AQ_LINK_UP),
1018 le16_to_cpu(link_data->link_speed));
1019 if (status)
1020 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1021 status);
1022
1023 return status;
1024}
1025
1026enum ice_aq_task_state {
1027 ICE_AQ_TASK_WAITING = 0,
1028 ICE_AQ_TASK_COMPLETE,
1029 ICE_AQ_TASK_CANCELED,
1030};
1031
1032struct ice_aq_task {
1033 struct hlist_node entry;
1034
1035 u16 opcode;
1036 struct ice_rq_event_info *event;
1037 enum ice_aq_task_state state;
1038};
1039
1040/**
1041 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1042 * @pf: pointer to the PF private structure
1043 * @opcode: the opcode to wait for
1044 * @timeout: how long to wait, in jiffies
1045 * @event: storage for the event info
1046 *
1047 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1048 * current thread will be put to sleep until the specified event occurs or
1049 * until the given timeout is reached.
1050 *
1051 * To obtain only the descriptor contents, pass an event without an allocated
1052 * msg_buf. If the complete data buffer is desired, allocate the
1053 * event->msg_buf with enough space ahead of time.
1054 *
1055 * Returns: zero on success, or a negative error code on failure.
1056 */
1057int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1058 struct ice_rq_event_info *event)
1059{
1060 struct ice_aq_task *task;
1061 long ret;
1062 int err;
1063
1064 task = kzalloc(sizeof(*task), GFP_KERNEL);
1065 if (!task)
1066 return -ENOMEM;
1067
1068 INIT_HLIST_NODE(&task->entry);
1069 task->opcode = opcode;
1070 task->event = event;
1071 task->state = ICE_AQ_TASK_WAITING;
1072
1073 spin_lock_bh(&pf->aq_wait_lock);
1074 hlist_add_head(&task->entry, &pf->aq_wait_list);
1075 spin_unlock_bh(&pf->aq_wait_lock);
1076
1077 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1078 timeout);
1079 switch (task->state) {
1080 case ICE_AQ_TASK_WAITING:
1081 err = ret < 0 ? ret : -ETIMEDOUT;
1082 break;
1083 case ICE_AQ_TASK_CANCELED:
1084 err = ret < 0 ? ret : -ECANCELED;
1085 break;
1086 case ICE_AQ_TASK_COMPLETE:
1087 err = ret < 0 ? ret : 0;
1088 break;
1089 default:
1090 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1091 err = -EINVAL;
1092 break;
1093 }
1094
1095 spin_lock_bh(&pf->aq_wait_lock);
1096 hlist_del(&task->entry);
1097 spin_unlock_bh(&pf->aq_wait_lock);
1098 kfree(task);
1099
1100 return err;
1101}
1102
1103/**
1104 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1105 * @pf: pointer to the PF private structure
1106 * @opcode: the opcode of the event
1107 * @event: the event to check
1108 *
1109 * Loops over the current list of pending threads waiting for an AdminQ event.
1110 * For each matching task, copy the contents of the event into the task
1111 * structure and wake up the thread.
1112 *
1113 * If multiple threads wait for the same opcode, they will all be woken up.
1114 *
1115 * Note that event->msg_buf will only be duplicated if the event has a buffer
1116 * with enough space already allocated. Otherwise, only the descriptor and
1117 * message length will be copied.
1118 *
1119 * Returns: true if an event was found, false otherwise
1120 */
1121static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1122 struct ice_rq_event_info *event)
1123{
1124 struct ice_aq_task *task;
1125 bool found = false;
1126
1127 spin_lock_bh(&pf->aq_wait_lock);
1128 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1129 if (task->state || task->opcode != opcode)
1130 continue;
1131
1132 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1133 task->event->msg_len = event->msg_len;
1134
1135 /* Only copy the data buffer if a destination was set */
1136 if (task->event->msg_buf &&
1137 task->event->buf_len > event->buf_len) {
1138 memcpy(task->event->msg_buf, event->msg_buf,
1139 event->buf_len);
1140 task->event->buf_len = event->buf_len;
1141 }
1142
1143 task->state = ICE_AQ_TASK_COMPLETE;
1144 found = true;
1145 }
1146 spin_unlock_bh(&pf->aq_wait_lock);
1147
1148 if (found)
1149 wake_up(&pf->aq_wait_queue);
1150}
1151
1152/**
1153 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1154 * @pf: the PF private structure
1155 *
1156 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1157 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1158 */
1159static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1160{
1161 struct ice_aq_task *task;
1162
1163 spin_lock_bh(&pf->aq_wait_lock);
1164 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1165 task->state = ICE_AQ_TASK_CANCELED;
1166 spin_unlock_bh(&pf->aq_wait_lock);
1167
1168 wake_up(&pf->aq_wait_queue);
1169}
1170
1171/**
1172 * __ice_clean_ctrlq - helper function to clean controlq rings
1173 * @pf: ptr to struct ice_pf
1174 * @q_type: specific Control queue type
1175 */
1176static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1177{
1178 struct device *dev = ice_pf_to_dev(pf);
1179 struct ice_rq_event_info event;
1180 struct ice_hw *hw = &pf->hw;
1181 struct ice_ctl_q_info *cq;
1182 u16 pending, i = 0;
1183 const char *qtype;
1184 u32 oldval, val;
1185
1186 /* Do not clean control queue if/when PF reset fails */
1187 if (test_bit(__ICE_RESET_FAILED, pf->state))
1188 return 0;
1189
1190 switch (q_type) {
1191 case ICE_CTL_Q_ADMIN:
1192 cq = &hw->adminq;
1193 qtype = "Admin";
1194 break;
1195 case ICE_CTL_Q_MAILBOX:
1196 cq = &hw->mailboxq;
1197 qtype = "Mailbox";
1198 break;
1199 default:
1200 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1201 return 0;
1202 }
1203
1204 /* check for error indications - PF_xx_AxQLEN register layout for
1205 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1206 */
1207 val = rd32(hw, cq->rq.len);
1208 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1209 PF_FW_ARQLEN_ARQCRIT_M)) {
1210 oldval = val;
1211 if (val & PF_FW_ARQLEN_ARQVFE_M)
1212 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1213 qtype);
1214 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1215 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1216 qtype);
1217 }
1218 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1219 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1220 qtype);
1221 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1222 PF_FW_ARQLEN_ARQCRIT_M);
1223 if (oldval != val)
1224 wr32(hw, cq->rq.len, val);
1225 }
1226
1227 val = rd32(hw, cq->sq.len);
1228 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1229 PF_FW_ATQLEN_ATQCRIT_M)) {
1230 oldval = val;
1231 if (val & PF_FW_ATQLEN_ATQVFE_M)
1232 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1233 qtype);
1234 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1235 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1236 qtype);
1237 }
1238 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1239 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1240 qtype);
1241 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1242 PF_FW_ATQLEN_ATQCRIT_M);
1243 if (oldval != val)
1244 wr32(hw, cq->sq.len, val);
1245 }
1246
1247 event.buf_len = cq->rq_buf_size;
1248 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1249 if (!event.msg_buf)
1250 return 0;
1251
1252 do {
1253 enum ice_status ret;
1254 u16 opcode;
1255
1256 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1257 if (ret == ICE_ERR_AQ_NO_WORK)
1258 break;
1259 if (ret) {
1260 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1261 ice_stat_str(ret));
1262 break;
1263 }
1264
1265 opcode = le16_to_cpu(event.desc.opcode);
1266
1267 /* Notify any thread that might be waiting for this event */
1268 ice_aq_check_events(pf, opcode, &event);
1269
1270 switch (opcode) {
1271 case ice_aqc_opc_get_link_status:
1272 if (ice_handle_link_event(pf, &event))
1273 dev_err(dev, "Could not handle link event\n");
1274 break;
1275 case ice_aqc_opc_event_lan_overflow:
1276 ice_vf_lan_overflow_event(pf, &event);
1277 break;
1278 case ice_mbx_opc_send_msg_to_pf:
1279 ice_vc_process_vf_msg(pf, &event);
1280 break;
1281 case ice_aqc_opc_fw_logging:
1282 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1283 break;
1284 case ice_aqc_opc_lldp_set_mib_change:
1285 ice_dcb_process_lldp_set_mib_change(pf, &event);
1286 break;
1287 default:
1288 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1289 qtype, opcode);
1290 break;
1291 }
1292 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1293
1294 kfree(event.msg_buf);
1295
1296 return pending && (i == ICE_DFLT_IRQ_WORK);
1297}
1298
1299/**
1300 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1301 * @hw: pointer to hardware info
1302 * @cq: control queue information
1303 *
1304 * returns true if there are pending messages in a queue, false if there aren't
1305 */
1306static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1307{
1308 u16 ntu;
1309
1310 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1311 return cq->rq.next_to_clean != ntu;
1312}
1313
1314/**
1315 * ice_clean_adminq_subtask - clean the AdminQ rings
1316 * @pf: board private structure
1317 */
1318static void ice_clean_adminq_subtask(struct ice_pf *pf)
1319{
1320 struct ice_hw *hw = &pf->hw;
1321
1322 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1323 return;
1324
1325 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1326 return;
1327
1328 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1329
1330 /* There might be a situation where new messages arrive to a control
1331 * queue between processing the last message and clearing the
1332 * EVENT_PENDING bit. So before exiting, check queue head again (using
1333 * ice_ctrlq_pending) and process new messages if any.
1334 */
1335 if (ice_ctrlq_pending(hw, &hw->adminq))
1336 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1337
1338 ice_flush(hw);
1339}
1340
1341/**
1342 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1343 * @pf: board private structure
1344 */
1345static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1346{
1347 struct ice_hw *hw = &pf->hw;
1348
1349 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1350 return;
1351
1352 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1353 return;
1354
1355 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1356
1357 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1358 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1359
1360 ice_flush(hw);
1361}
1362
1363/**
1364 * ice_service_task_schedule - schedule the service task to wake up
1365 * @pf: board private structure
1366 *
1367 * If not already scheduled, this puts the task into the work queue.
1368 */
1369void ice_service_task_schedule(struct ice_pf *pf)
1370{
1371 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1372 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1373 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1374 queue_work(ice_wq, &pf->serv_task);
1375}
1376
1377/**
1378 * ice_service_task_complete - finish up the service task
1379 * @pf: board private structure
1380 */
1381static void ice_service_task_complete(struct ice_pf *pf)
1382{
1383 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1384
1385 /* force memory (pf->state) to sync before next service task */
1386 smp_mb__before_atomic();
1387 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1388}
1389
1390/**
1391 * ice_service_task_stop - stop service task and cancel works
1392 * @pf: board private structure
1393 *
1394 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1395 * 1 otherwise.
1396 */
1397static int ice_service_task_stop(struct ice_pf *pf)
1398{
1399 int ret;
1400
1401 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1402
1403 if (pf->serv_tmr.function)
1404 del_timer_sync(&pf->serv_tmr);
1405 if (pf->serv_task.func)
1406 cancel_work_sync(&pf->serv_task);
1407
1408 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1409 return ret;
1410}
1411
1412/**
1413 * ice_service_task_restart - restart service task and schedule works
1414 * @pf: board private structure
1415 *
1416 * This function is needed for suspend and resume works (e.g WoL scenario)
1417 */
1418static void ice_service_task_restart(struct ice_pf *pf)
1419{
1420 clear_bit(__ICE_SERVICE_DIS, pf->state);
1421 ice_service_task_schedule(pf);
1422}
1423
1424/**
1425 * ice_service_timer - timer callback to schedule service task
1426 * @t: pointer to timer_list
1427 */
1428static void ice_service_timer(struct timer_list *t)
1429{
1430 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1431
1432 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1433 ice_service_task_schedule(pf);
1434}
1435
1436/**
1437 * ice_handle_mdd_event - handle malicious driver detect event
1438 * @pf: pointer to the PF structure
1439 *
1440 * Called from service task. OICR interrupt handler indicates MDD event.
1441 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1442 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1443 * disable the queue, the PF can be configured to reset the VF using ethtool
1444 * private flag mdd-auto-reset-vf.
1445 */
1446static void ice_handle_mdd_event(struct ice_pf *pf)
1447{
1448 struct device *dev = ice_pf_to_dev(pf);
1449 struct ice_hw *hw = &pf->hw;
1450 unsigned int i;
1451 u32 reg;
1452
1453 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1454 /* Since the VF MDD event logging is rate limited, check if
1455 * there are pending MDD events.
1456 */
1457 ice_print_vfs_mdd_events(pf);
1458 return;
1459 }
1460
1461 /* find what triggered an MDD event */
1462 reg = rd32(hw, GL_MDET_TX_PQM);
1463 if (reg & GL_MDET_TX_PQM_VALID_M) {
1464 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1465 GL_MDET_TX_PQM_PF_NUM_S;
1466 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1467 GL_MDET_TX_PQM_VF_NUM_S;
1468 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1469 GL_MDET_TX_PQM_MAL_TYPE_S;
1470 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1471 GL_MDET_TX_PQM_QNUM_S);
1472
1473 if (netif_msg_tx_err(pf))
1474 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1475 event, queue, pf_num, vf_num);
1476 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1477 }
1478
1479 reg = rd32(hw, GL_MDET_TX_TCLAN);
1480 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1481 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1482 GL_MDET_TX_TCLAN_PF_NUM_S;
1483 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1484 GL_MDET_TX_TCLAN_VF_NUM_S;
1485 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1486 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1487 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1488 GL_MDET_TX_TCLAN_QNUM_S);
1489
1490 if (netif_msg_tx_err(pf))
1491 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492 event, queue, pf_num, vf_num);
1493 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1494 }
1495
1496 reg = rd32(hw, GL_MDET_RX);
1497 if (reg & GL_MDET_RX_VALID_M) {
1498 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1499 GL_MDET_RX_PF_NUM_S;
1500 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1501 GL_MDET_RX_VF_NUM_S;
1502 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1503 GL_MDET_RX_MAL_TYPE_S;
1504 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1505 GL_MDET_RX_QNUM_S);
1506
1507 if (netif_msg_rx_err(pf))
1508 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1509 event, queue, pf_num, vf_num);
1510 wr32(hw, GL_MDET_RX, 0xffffffff);
1511 }
1512
1513 /* check to see if this PF caused an MDD event */
1514 reg = rd32(hw, PF_MDET_TX_PQM);
1515 if (reg & PF_MDET_TX_PQM_VALID_M) {
1516 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1517 if (netif_msg_tx_err(pf))
1518 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1519 }
1520
1521 reg = rd32(hw, PF_MDET_TX_TCLAN);
1522 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1523 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1524 if (netif_msg_tx_err(pf))
1525 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1526 }
1527
1528 reg = rd32(hw, PF_MDET_RX);
1529 if (reg & PF_MDET_RX_VALID_M) {
1530 wr32(hw, PF_MDET_RX, 0xFFFF);
1531 if (netif_msg_rx_err(pf))
1532 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1533 }
1534
1535 /* Check to see if one of the VFs caused an MDD event, and then
1536 * increment counters and set print pending
1537 */
1538 ice_for_each_vf(pf, i) {
1539 struct ice_vf *vf = &pf->vf[i];
1540
1541 reg = rd32(hw, VP_MDET_TX_PQM(i));
1542 if (reg & VP_MDET_TX_PQM_VALID_M) {
1543 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1544 vf->mdd_tx_events.count++;
1545 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1546 if (netif_msg_tx_err(pf))
1547 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1548 i);
1549 }
1550
1551 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1552 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1553 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1554 vf->mdd_tx_events.count++;
1555 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1556 if (netif_msg_tx_err(pf))
1557 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1558 i);
1559 }
1560
1561 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1562 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1563 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1564 vf->mdd_tx_events.count++;
1565 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1566 if (netif_msg_tx_err(pf))
1567 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1568 i);
1569 }
1570
1571 reg = rd32(hw, VP_MDET_RX(i));
1572 if (reg & VP_MDET_RX_VALID_M) {
1573 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1574 vf->mdd_rx_events.count++;
1575 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1576 if (netif_msg_rx_err(pf))
1577 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1578 i);
1579
1580 /* Since the queue is disabled on VF Rx MDD events, the
1581 * PF can be configured to reset the VF through ethtool
1582 * private flag mdd-auto-reset-vf.
1583 */
1584 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1585 /* VF MDD event counters will be cleared by
1586 * reset, so print the event prior to reset.
1587 */
1588 ice_print_vf_rx_mdd_event(vf);
1589 ice_reset_vf(&pf->vf[i], false);
1590 }
1591 }
1592 }
1593
1594 ice_print_vfs_mdd_events(pf);
1595}
1596
1597/**
1598 * ice_force_phys_link_state - Force the physical link state
1599 * @vsi: VSI to force the physical link state to up/down
1600 * @link_up: true/false indicates to set the physical link to up/down
1601 *
1602 * Force the physical link state by getting the current PHY capabilities from
1603 * hardware and setting the PHY config based on the determined capabilities. If
1604 * link changes a link event will be triggered because both the Enable Automatic
1605 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1606 *
1607 * Returns 0 on success, negative on failure
1608 */
1609static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1610{
1611 struct ice_aqc_get_phy_caps_data *pcaps;
1612 struct ice_aqc_set_phy_cfg_data *cfg;
1613 struct ice_port_info *pi;
1614 struct device *dev;
1615 int retcode;
1616
1617 if (!vsi || !vsi->port_info || !vsi->back)
1618 return -EINVAL;
1619 if (vsi->type != ICE_VSI_PF)
1620 return 0;
1621
1622 dev = ice_pf_to_dev(vsi->back);
1623
1624 pi = vsi->port_info;
1625
1626 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1627 if (!pcaps)
1628 return -ENOMEM;
1629
1630 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1631 NULL);
1632 if (retcode) {
1633 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1634 vsi->vsi_num, retcode);
1635 retcode = -EIO;
1636 goto out;
1637 }
1638
1639 /* No change in link */
1640 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1641 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1642 goto out;
1643
1644 /* Use the current user PHY configuration. The current user PHY
1645 * configuration is initialized during probe from PHY capabilities
1646 * software mode, and updated on set PHY configuration.
1647 */
1648 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1649 if (!cfg) {
1650 retcode = -ENOMEM;
1651 goto out;
1652 }
1653
1654 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1655 if (link_up)
1656 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1657 else
1658 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1659
1660 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1661 if (retcode) {
1662 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1663 vsi->vsi_num, retcode);
1664 retcode = -EIO;
1665 }
1666
1667 kfree(cfg);
1668out:
1669 kfree(pcaps);
1670 return retcode;
1671}
1672
1673/**
1674 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1675 * @pi: port info structure
1676 *
1677 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1678 */
1679static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1680{
1681 struct ice_aqc_get_phy_caps_data *pcaps;
1682 struct ice_pf *pf = pi->hw->back;
1683 enum ice_status status;
1684 int err = 0;
1685
1686 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1687 if (!pcaps)
1688 return -ENOMEM;
1689
1690 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1691 NULL);
1692
1693 if (status) {
1694 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1695 err = -EIO;
1696 goto out;
1697 }
1698
1699 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1700 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1701
1702out:
1703 kfree(pcaps);
1704 return err;
1705}
1706
1707/**
1708 * ice_init_link_dflt_override - Initialize link default override
1709 * @pi: port info structure
1710 *
1711 * Initialize link default override and PHY total port shutdown during probe
1712 */
1713static void ice_init_link_dflt_override(struct ice_port_info *pi)
1714{
1715 struct ice_link_default_override_tlv *ldo;
1716 struct ice_pf *pf = pi->hw->back;
1717
1718 ldo = &pf->link_dflt_override;
1719 if (ice_get_link_default_override(ldo, pi))
1720 return;
1721
1722 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1723 return;
1724
1725 /* Enable Total Port Shutdown (override/replace link-down-on-close
1726 * ethtool private flag) for ports with Port Disable bit set.
1727 */
1728 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1729 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1730}
1731
1732/**
1733 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1734 * @pi: port info structure
1735 *
1736 * If default override is enabled, initialized the user PHY cfg speed and FEC
1737 * settings using the default override mask from the NVM.
1738 *
1739 * The PHY should only be configured with the default override settings the
1740 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1741 * is used to indicate that the user PHY cfg default override is initialized
1742 * and the PHY has not been configured with the default override settings. The
1743 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1744 * configured.
1745 */
1746static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1747{
1748 struct ice_link_default_override_tlv *ldo;
1749 struct ice_aqc_set_phy_cfg_data *cfg;
1750 struct ice_phy_info *phy = &pi->phy;
1751 struct ice_pf *pf = pi->hw->back;
1752
1753 ldo = &pf->link_dflt_override;
1754
1755 /* If link default override is enabled, use to mask NVM PHY capabilities
1756 * for speed and FEC default configuration.
1757 */
1758 cfg = &phy->curr_user_phy_cfg;
1759
1760 if (ldo->phy_type_low || ldo->phy_type_high) {
1761 cfg->phy_type_low = pf->nvm_phy_type_lo &
1762 cpu_to_le64(ldo->phy_type_low);
1763 cfg->phy_type_high = pf->nvm_phy_type_hi &
1764 cpu_to_le64(ldo->phy_type_high);
1765 }
1766 cfg->link_fec_opt = ldo->fec_options;
1767 phy->curr_user_fec_req = ICE_FEC_AUTO;
1768
1769 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1770}
1771
1772/**
1773 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1774 * @pi: port info structure
1775 *
1776 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1777 * mode to default. The PHY defaults are from get PHY capabilities topology
1778 * with media so call when media is first available. An error is returned if
1779 * called when media is not available. The PHY initialization completed state is
1780 * set here.
1781 *
1782 * These configurations are used when setting PHY
1783 * configuration. The user PHY configuration is updated on set PHY
1784 * configuration. Returns 0 on success, negative on failure
1785 */
1786static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1787{
1788 struct ice_aqc_get_phy_caps_data *pcaps;
1789 struct ice_phy_info *phy = &pi->phy;
1790 struct ice_pf *pf = pi->hw->back;
1791 enum ice_status status;
1792 struct ice_vsi *vsi;
1793 int err = 0;
1794
1795 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1796 return -EIO;
1797
1798 vsi = ice_get_main_vsi(pf);
1799 if (!vsi)
1800 return -EINVAL;
1801
1802 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1803 if (!pcaps)
1804 return -ENOMEM;
1805
1806 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1807 NULL);
1808 if (status) {
1809 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1810 err = -EIO;
1811 goto err_out;
1812 }
1813
1814 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1815
1816 /* check if lenient mode is supported and enabled */
1817 if (ice_fw_supports_link_override(&vsi->back->hw) &&
1818 !(pcaps->module_compliance_enforcement &
1819 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1820 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1821
1822 /* if link default override is enabled, initialize user PHY
1823 * configuration with link default override values
1824 */
1825 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1826 ice_init_phy_cfg_dflt_override(pi);
1827 goto out;
1828 }
1829 }
1830
1831 /* if link default override is not enabled, initialize PHY using
1832 * topology with media
1833 */
1834 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1835 pcaps->link_fec_options);
1836 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1837
1838out:
1839 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1840 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1841err_out:
1842 kfree(pcaps);
1843 return err;
1844}
1845
1846/**
1847 * ice_configure_phy - configure PHY
1848 * @vsi: VSI of PHY
1849 *
1850 * Set the PHY configuration. If the current PHY configuration is the same as
1851 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1852 * configure the based get PHY capabilities for topology with media.
1853 */
1854static int ice_configure_phy(struct ice_vsi *vsi)
1855{
1856 struct device *dev = ice_pf_to_dev(vsi->back);
1857 struct ice_aqc_get_phy_caps_data *pcaps;
1858 struct ice_aqc_set_phy_cfg_data *cfg;
1859 struct ice_port_info *pi;
1860 enum ice_status status;
1861 int err = 0;
1862
1863 pi = vsi->port_info;
1864 if (!pi)
1865 return -EINVAL;
1866
1867 /* Ensure we have media as we cannot configure a medialess port */
1868 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1869 return -EPERM;
1870
1871 ice_print_topo_conflict(vsi);
1872
1873 if (vsi->port_info->phy.link_info.topo_media_conflict ==
1874 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1875 return -EPERM;
1876
1877 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1878 return ice_force_phys_link_state(vsi, true);
1879
1880 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1881 if (!pcaps)
1882 return -ENOMEM;
1883
1884 /* Get current PHY config */
1885 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1886 NULL);
1887 if (status) {
1888 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1889 vsi->vsi_num, ice_stat_str(status));
1890 err = -EIO;
1891 goto done;
1892 }
1893
1894 /* If PHY enable link is configured and configuration has not changed,
1895 * there's nothing to do
1896 */
1897 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1898 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1899 goto done;
1900
1901 /* Use PHY topology as baseline for configuration */
1902 memset(pcaps, 0, sizeof(*pcaps));
1903 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1904 NULL);
1905 if (status) {
1906 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1907 vsi->vsi_num, ice_stat_str(status));
1908 err = -EIO;
1909 goto done;
1910 }
1911
1912 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1913 if (!cfg) {
1914 err = -ENOMEM;
1915 goto done;
1916 }
1917
1918 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1919
1920 /* Speed - If default override pending, use curr_user_phy_cfg set in
1921 * ice_init_phy_user_cfg_ldo.
1922 */
1923 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1924 vsi->back->state)) {
1925 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1926 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1927 } else {
1928 u64 phy_low = 0, phy_high = 0;
1929
1930 ice_update_phy_type(&phy_low, &phy_high,
1931 pi->phy.curr_user_speed_req);
1932 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1933 cfg->phy_type_high = pcaps->phy_type_high &
1934 cpu_to_le64(phy_high);
1935 }
1936
1937 /* Can't provide what was requested; use PHY capabilities */
1938 if (!cfg->phy_type_low && !cfg->phy_type_high) {
1939 cfg->phy_type_low = pcaps->phy_type_low;
1940 cfg->phy_type_high = pcaps->phy_type_high;
1941 }
1942
1943 /* FEC */
1944 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1945
1946 /* Can't provide what was requested; use PHY capabilities */
1947 if (cfg->link_fec_opt !=
1948 (cfg->link_fec_opt & pcaps->link_fec_options)) {
1949 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1950 cfg->link_fec_opt = pcaps->link_fec_options;
1951 }
1952
1953 /* Flow Control - always supported; no need to check against
1954 * capabilities
1955 */
1956 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1957
1958 /* Enable link and link update */
1959 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1960
1961 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1962 if (status) {
1963 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1964 vsi->vsi_num, ice_stat_str(status));
1965 err = -EIO;
1966 }
1967
1968 kfree(cfg);
1969done:
1970 kfree(pcaps);
1971 return err;
1972}
1973
1974/**
1975 * ice_check_media_subtask - Check for media
1976 * @pf: pointer to PF struct
1977 *
1978 * If media is available, then initialize PHY user configuration if it is not
1979 * been, and configure the PHY if the interface is up.
1980 */
1981static void ice_check_media_subtask(struct ice_pf *pf)
1982{
1983 struct ice_port_info *pi;
1984 struct ice_vsi *vsi;
1985 int err;
1986
1987 /* No need to check for media if it's already present */
1988 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1989 return;
1990
1991 vsi = ice_get_main_vsi(pf);
1992 if (!vsi)
1993 return;
1994
1995 /* Refresh link info and check if media is present */
1996 pi = vsi->port_info;
1997 err = ice_update_link_info(pi);
1998 if (err)
1999 return;
2000
2001 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2002 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2003 ice_init_phy_user_cfg(pi);
2004
2005 /* PHY settings are reset on media insertion, reconfigure
2006 * PHY to preserve settings.
2007 */
2008 if (test_bit(__ICE_DOWN, vsi->state) &&
2009 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2010 return;
2011
2012 err = ice_configure_phy(vsi);
2013 if (!err)
2014 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2015
2016 /* A Link Status Event will be generated; the event handler
2017 * will complete bringing the interface up
2018 */
2019 }
2020}
2021
2022/**
2023 * ice_service_task - manage and run subtasks
2024 * @work: pointer to work_struct contained by the PF struct
2025 */
2026static void ice_service_task(struct work_struct *work)
2027{
2028 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2029 unsigned long start_time = jiffies;
2030
2031 /* subtasks */
2032
2033 /* process reset requests first */
2034 ice_reset_subtask(pf);
2035
2036 /* bail if a reset/recovery cycle is pending or rebuild failed */
2037 if (ice_is_reset_in_progress(pf->state) ||
2038 test_bit(__ICE_SUSPENDED, pf->state) ||
2039 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2040 ice_service_task_complete(pf);
2041 return;
2042 }
2043
2044 ice_clean_adminq_subtask(pf);
2045 ice_check_media_subtask(pf);
2046 ice_check_for_hang_subtask(pf);
2047 ice_sync_fltr_subtask(pf);
2048 ice_handle_mdd_event(pf);
2049 ice_watchdog_subtask(pf);
2050
2051 if (ice_is_safe_mode(pf)) {
2052 ice_service_task_complete(pf);
2053 return;
2054 }
2055
2056 ice_process_vflr_event(pf);
2057 ice_clean_mailboxq_subtask(pf);
2058 ice_sync_arfs_fltrs(pf);
2059 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2060 ice_service_task_complete(pf);
2061
2062 /* If the tasks have taken longer than one service timer period
2063 * or there is more work to be done, reset the service timer to
2064 * schedule the service task now.
2065 */
2066 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2067 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2068 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2069 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2070 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2071 mod_timer(&pf->serv_tmr, jiffies);
2072}
2073
2074/**
2075 * ice_set_ctrlq_len - helper function to set controlq length
2076 * @hw: pointer to the HW instance
2077 */
2078static void ice_set_ctrlq_len(struct ice_hw *hw)
2079{
2080 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2081 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2082 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2083 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2084 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2085 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2086 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2087 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2088}
2089
2090/**
2091 * ice_schedule_reset - schedule a reset
2092 * @pf: board private structure
2093 * @reset: reset being requested
2094 */
2095int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2096{
2097 struct device *dev = ice_pf_to_dev(pf);
2098
2099 /* bail out if earlier reset has failed */
2100 if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2101 dev_dbg(dev, "earlier reset has failed\n");
2102 return -EIO;
2103 }
2104 /* bail if reset/recovery already in progress */
2105 if (ice_is_reset_in_progress(pf->state)) {
2106 dev_dbg(dev, "Reset already in progress\n");
2107 return -EBUSY;
2108 }
2109
2110 switch (reset) {
2111 case ICE_RESET_PFR:
2112 set_bit(__ICE_PFR_REQ, pf->state);
2113 break;
2114 case ICE_RESET_CORER:
2115 set_bit(__ICE_CORER_REQ, pf->state);
2116 break;
2117 case ICE_RESET_GLOBR:
2118 set_bit(__ICE_GLOBR_REQ, pf->state);
2119 break;
2120 default:
2121 return -EINVAL;
2122 }
2123
2124 ice_service_task_schedule(pf);
2125 return 0;
2126}
2127
2128/**
2129 * ice_irq_affinity_notify - Callback for affinity changes
2130 * @notify: context as to what irq was changed
2131 * @mask: the new affinity mask
2132 *
2133 * This is a callback function used by the irq_set_affinity_notifier function
2134 * so that we may register to receive changes to the irq affinity masks.
2135 */
2136static void
2137ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2138 const cpumask_t *mask)
2139{
2140 struct ice_q_vector *q_vector =
2141 container_of(notify, struct ice_q_vector, affinity_notify);
2142
2143 cpumask_copy(&q_vector->affinity_mask, mask);
2144}
2145
2146/**
2147 * ice_irq_affinity_release - Callback for affinity notifier release
2148 * @ref: internal core kernel usage
2149 *
2150 * This is a callback function used by the irq_set_affinity_notifier function
2151 * to inform the current notification subscriber that they will no longer
2152 * receive notifications.
2153 */
2154static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2155
2156/**
2157 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2158 * @vsi: the VSI being configured
2159 */
2160static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2161{
2162 struct ice_hw *hw = &vsi->back->hw;
2163 int i;
2164
2165 ice_for_each_q_vector(vsi, i)
2166 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2167
2168 ice_flush(hw);
2169 return 0;
2170}
2171
2172/**
2173 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2174 * @vsi: the VSI being configured
2175 * @basename: name for the vector
2176 */
2177static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2178{
2179 int q_vectors = vsi->num_q_vectors;
2180 struct ice_pf *pf = vsi->back;
2181 int base = vsi->base_vector;
2182 struct device *dev;
2183 int rx_int_idx = 0;
2184 int tx_int_idx = 0;
2185 int vector, err;
2186 int irq_num;
2187
2188 dev = ice_pf_to_dev(pf);
2189 for (vector = 0; vector < q_vectors; vector++) {
2190 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2191
2192 irq_num = pf->msix_entries[base + vector].vector;
2193
2194 if (q_vector->tx.ring && q_vector->rx.ring) {
2195 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2196 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2197 tx_int_idx++;
2198 } else if (q_vector->rx.ring) {
2199 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2200 "%s-%s-%d", basename, "rx", rx_int_idx++);
2201 } else if (q_vector->tx.ring) {
2202 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2203 "%s-%s-%d", basename, "tx", tx_int_idx++);
2204 } else {
2205 /* skip this unused q_vector */
2206 continue;
2207 }
2208 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2209 q_vector->name, q_vector);
2210 if (err) {
2211 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2212 err);
2213 goto free_q_irqs;
2214 }
2215
2216 /* register for affinity change notifications */
2217 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2218 struct irq_affinity_notify *affinity_notify;
2219
2220 affinity_notify = &q_vector->affinity_notify;
2221 affinity_notify->notify = ice_irq_affinity_notify;
2222 affinity_notify->release = ice_irq_affinity_release;
2223 irq_set_affinity_notifier(irq_num, affinity_notify);
2224 }
2225
2226 /* assign the mask for this irq */
2227 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2228 }
2229
2230 vsi->irqs_ready = true;
2231 return 0;
2232
2233free_q_irqs:
2234 while (vector) {
2235 vector--;
2236 irq_num = pf->msix_entries[base + vector].vector;
2237 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2238 irq_set_affinity_notifier(irq_num, NULL);
2239 irq_set_affinity_hint(irq_num, NULL);
2240 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2241 }
2242 return err;
2243}
2244
2245/**
2246 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2247 * @vsi: VSI to setup Tx rings used by XDP
2248 *
2249 * Return 0 on success and negative value on error
2250 */
2251static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2252{
2253 struct device *dev = ice_pf_to_dev(vsi->back);
2254 int i;
2255
2256 for (i = 0; i < vsi->num_xdp_txq; i++) {
2257 u16 xdp_q_idx = vsi->alloc_txq + i;
2258 struct ice_ring *xdp_ring;
2259
2260 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2261
2262 if (!xdp_ring)
2263 goto free_xdp_rings;
2264
2265 xdp_ring->q_index = xdp_q_idx;
2266 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2267 xdp_ring->ring_active = false;
2268 xdp_ring->vsi = vsi;
2269 xdp_ring->netdev = NULL;
2270 xdp_ring->dev = dev;
2271 xdp_ring->count = vsi->num_tx_desc;
2272 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2273 if (ice_setup_tx_ring(xdp_ring))
2274 goto free_xdp_rings;
2275 ice_set_ring_xdp(xdp_ring);
2276 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
2277 }
2278
2279 return 0;
2280
2281free_xdp_rings:
2282 for (; i >= 0; i--)
2283 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2284 ice_free_tx_ring(vsi->xdp_rings[i]);
2285 return -ENOMEM;
2286}
2287
2288/**
2289 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2290 * @vsi: VSI to set the bpf prog on
2291 * @prog: the bpf prog pointer
2292 */
2293static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2294{
2295 struct bpf_prog *old_prog;
2296 int i;
2297
2298 old_prog = xchg(&vsi->xdp_prog, prog);
2299 if (old_prog)
2300 bpf_prog_put(old_prog);
2301
2302 ice_for_each_rxq(vsi, i)
2303 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2304}
2305
2306/**
2307 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2308 * @vsi: VSI to bring up Tx rings used by XDP
2309 * @prog: bpf program that will be assigned to VSI
2310 *
2311 * Return 0 on success and negative value on error
2312 */
2313int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2314{
2315 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2316 int xdp_rings_rem = vsi->num_xdp_txq;
2317 struct ice_pf *pf = vsi->back;
2318 struct ice_qs_cfg xdp_qs_cfg = {
2319 .qs_mutex = &pf->avail_q_mutex,
2320 .pf_map = pf->avail_txqs,
2321 .pf_map_size = pf->max_pf_txqs,
2322 .q_count = vsi->num_xdp_txq,
2323 .scatter_count = ICE_MAX_SCATTER_TXQS,
2324 .vsi_map = vsi->txq_map,
2325 .vsi_map_offset = vsi->alloc_txq,
2326 .mapping_mode = ICE_VSI_MAP_CONTIG
2327 };
2328 enum ice_status status;
2329 struct device *dev;
2330 int i, v_idx;
2331
2332 dev = ice_pf_to_dev(pf);
2333 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2334 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2335 if (!vsi->xdp_rings)
2336 return -ENOMEM;
2337
2338 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2339 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2340 goto err_map_xdp;
2341
2342 if (ice_xdp_alloc_setup_rings(vsi))
2343 goto clear_xdp_rings;
2344
2345 /* follow the logic from ice_vsi_map_rings_to_vectors */
2346 ice_for_each_q_vector(vsi, v_idx) {
2347 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2348 int xdp_rings_per_v, q_id, q_base;
2349
2350 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2351 vsi->num_q_vectors - v_idx);
2352 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2353
2354 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2355 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2356
2357 xdp_ring->q_vector = q_vector;
2358 xdp_ring->next = q_vector->tx.ring;
2359 q_vector->tx.ring = xdp_ring;
2360 }
2361 xdp_rings_rem -= xdp_rings_per_v;
2362 }
2363
2364 /* omit the scheduler update if in reset path; XDP queues will be
2365 * taken into account at the end of ice_vsi_rebuild, where
2366 * ice_cfg_vsi_lan is being called
2367 */
2368 if (ice_is_reset_in_progress(pf->state))
2369 return 0;
2370
2371 /* tell the Tx scheduler that right now we have
2372 * additional queues
2373 */
2374 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2375 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2376
2377 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2378 max_txqs);
2379 if (status) {
2380 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2381 ice_stat_str(status));
2382 goto clear_xdp_rings;
2383 }
2384 ice_vsi_assign_bpf_prog(vsi, prog);
2385
2386 return 0;
2387clear_xdp_rings:
2388 for (i = 0; i < vsi->num_xdp_txq; i++)
2389 if (vsi->xdp_rings[i]) {
2390 kfree_rcu(vsi->xdp_rings[i], rcu);
2391 vsi->xdp_rings[i] = NULL;
2392 }
2393
2394err_map_xdp:
2395 mutex_lock(&pf->avail_q_mutex);
2396 for (i = 0; i < vsi->num_xdp_txq; i++) {
2397 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2398 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2399 }
2400 mutex_unlock(&pf->avail_q_mutex);
2401
2402 devm_kfree(dev, vsi->xdp_rings);
2403 return -ENOMEM;
2404}
2405
2406/**
2407 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2408 * @vsi: VSI to remove XDP rings
2409 *
2410 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2411 * resources
2412 */
2413int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2414{
2415 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2416 struct ice_pf *pf = vsi->back;
2417 int i, v_idx;
2418
2419 /* q_vectors are freed in reset path so there's no point in detaching
2420 * rings; in case of rebuild being triggered not from reset reset bits
2421 * in pf->state won't be set, so additionally check first q_vector
2422 * against NULL
2423 */
2424 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2425 goto free_qmap;
2426
2427 ice_for_each_q_vector(vsi, v_idx) {
2428 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2429 struct ice_ring *ring;
2430
2431 ice_for_each_ring(ring, q_vector->tx)
2432 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2433 break;
2434
2435 /* restore the value of last node prior to XDP setup */
2436 q_vector->tx.ring = ring;
2437 }
2438
2439free_qmap:
2440 mutex_lock(&pf->avail_q_mutex);
2441 for (i = 0; i < vsi->num_xdp_txq; i++) {
2442 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2443 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2444 }
2445 mutex_unlock(&pf->avail_q_mutex);
2446
2447 for (i = 0; i < vsi->num_xdp_txq; i++)
2448 if (vsi->xdp_rings[i]) {
2449 if (vsi->xdp_rings[i]->desc)
2450 ice_free_tx_ring(vsi->xdp_rings[i]);
2451 kfree_rcu(vsi->xdp_rings[i], rcu);
2452 vsi->xdp_rings[i] = NULL;
2453 }
2454
2455 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2456 vsi->xdp_rings = NULL;
2457
2458 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2459 return 0;
2460
2461 ice_vsi_assign_bpf_prog(vsi, NULL);
2462
2463 /* notify Tx scheduler that we destroyed XDP queues and bring
2464 * back the old number of child nodes
2465 */
2466 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2467 max_txqs[i] = vsi->num_txq;
2468
2469 /* change number of XDP Tx queues to 0 */
2470 vsi->num_xdp_txq = 0;
2471
2472 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2473 max_txqs);
2474}
2475
2476/**
2477 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2478 * @vsi: VSI to setup XDP for
2479 * @prog: XDP program
2480 * @extack: netlink extended ack
2481 */
2482static int
2483ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2484 struct netlink_ext_ack *extack)
2485{
2486 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2487 bool if_running = netif_running(vsi->netdev);
2488 int ret = 0, xdp_ring_err = 0;
2489
2490 if (frame_size > vsi->rx_buf_len) {
2491 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2492 return -EOPNOTSUPP;
2493 }
2494
2495 /* need to stop netdev while setting up the program for Rx rings */
2496 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2497 ret = ice_down(vsi);
2498 if (ret) {
2499 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2500 return ret;
2501 }
2502 }
2503
2504 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2505 vsi->num_xdp_txq = vsi->alloc_rxq;
2506 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2507 if (xdp_ring_err)
2508 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2509 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2510 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2511 if (xdp_ring_err)
2512 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2513 } else {
2514 ice_vsi_assign_bpf_prog(vsi, prog);
2515 }
2516
2517 if (if_running)
2518 ret = ice_up(vsi);
2519
2520 if (!ret && prog && vsi->xsk_umems) {
2521 int i;
2522
2523 ice_for_each_rxq(vsi, i) {
2524 struct ice_ring *rx_ring = vsi->rx_rings[i];
2525
2526 if (rx_ring->xsk_umem)
2527 napi_schedule(&rx_ring->q_vector->napi);
2528 }
2529 }
2530
2531 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2532}
2533
2534/**
2535 * ice_xdp - implements XDP handler
2536 * @dev: netdevice
2537 * @xdp: XDP command
2538 */
2539static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2540{
2541 struct ice_netdev_priv *np = netdev_priv(dev);
2542 struct ice_vsi *vsi = np->vsi;
2543
2544 if (vsi->type != ICE_VSI_PF) {
2545 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2546 return -EINVAL;
2547 }
2548
2549 switch (xdp->command) {
2550 case XDP_SETUP_PROG:
2551 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2552 case XDP_SETUP_XSK_UMEM:
2553 return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
2554 xdp->xsk.queue_id);
2555 default:
2556 return -EINVAL;
2557 }
2558}
2559
2560/**
2561 * ice_ena_misc_vector - enable the non-queue interrupts
2562 * @pf: board private structure
2563 */
2564static void ice_ena_misc_vector(struct ice_pf *pf)
2565{
2566 struct ice_hw *hw = &pf->hw;
2567 u32 val;
2568
2569 /* Disable anti-spoof detection interrupt to prevent spurious event
2570 * interrupts during a function reset. Anti-spoof functionally is
2571 * still supported.
2572 */
2573 val = rd32(hw, GL_MDCK_TX_TDPU);
2574 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2575 wr32(hw, GL_MDCK_TX_TDPU, val);
2576
2577 /* clear things first */
2578 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2579 rd32(hw, PFINT_OICR); /* read to clear */
2580
2581 val = (PFINT_OICR_ECC_ERR_M |
2582 PFINT_OICR_MAL_DETECT_M |
2583 PFINT_OICR_GRST_M |
2584 PFINT_OICR_PCI_EXCEPTION_M |
2585 PFINT_OICR_VFLR_M |
2586 PFINT_OICR_HMC_ERR_M |
2587 PFINT_OICR_PE_CRITERR_M);
2588
2589 wr32(hw, PFINT_OICR_ENA, val);
2590
2591 /* SW_ITR_IDX = 0, but don't change INTENA */
2592 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2593 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2594}
2595
2596/**
2597 * ice_misc_intr - misc interrupt handler
2598 * @irq: interrupt number
2599 * @data: pointer to a q_vector
2600 */
2601static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2602{
2603 struct ice_pf *pf = (struct ice_pf *)data;
2604 struct ice_hw *hw = &pf->hw;
2605 irqreturn_t ret = IRQ_NONE;
2606 struct device *dev;
2607 u32 oicr, ena_mask;
2608
2609 dev = ice_pf_to_dev(pf);
2610 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2611 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2612
2613 oicr = rd32(hw, PFINT_OICR);
2614 ena_mask = rd32(hw, PFINT_OICR_ENA);
2615
2616 if (oicr & PFINT_OICR_SWINT_M) {
2617 ena_mask &= ~PFINT_OICR_SWINT_M;
2618 pf->sw_int_count++;
2619 }
2620
2621 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2622 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2623 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2624 }
2625 if (oicr & PFINT_OICR_VFLR_M) {
2626 /* disable any further VFLR event notifications */
2627 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2628 u32 reg = rd32(hw, PFINT_OICR_ENA);
2629
2630 reg &= ~PFINT_OICR_VFLR_M;
2631 wr32(hw, PFINT_OICR_ENA, reg);
2632 } else {
2633 ena_mask &= ~PFINT_OICR_VFLR_M;
2634 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2635 }
2636 }
2637
2638 if (oicr & PFINT_OICR_GRST_M) {
2639 u32 reset;
2640
2641 /* we have a reset warning */
2642 ena_mask &= ~PFINT_OICR_GRST_M;
2643 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2644 GLGEN_RSTAT_RESET_TYPE_S;
2645
2646 if (reset == ICE_RESET_CORER)
2647 pf->corer_count++;
2648 else if (reset == ICE_RESET_GLOBR)
2649 pf->globr_count++;
2650 else if (reset == ICE_RESET_EMPR)
2651 pf->empr_count++;
2652 else
2653 dev_dbg(dev, "Invalid reset type %d\n", reset);
2654
2655 /* If a reset cycle isn't already in progress, we set a bit in
2656 * pf->state so that the service task can start a reset/rebuild.
2657 * We also make note of which reset happened so that peer
2658 * devices/drivers can be informed.
2659 */
2660 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2661 if (reset == ICE_RESET_CORER)
2662 set_bit(__ICE_CORER_RECV, pf->state);
2663 else if (reset == ICE_RESET_GLOBR)
2664 set_bit(__ICE_GLOBR_RECV, pf->state);
2665 else
2666 set_bit(__ICE_EMPR_RECV, pf->state);
2667
2668 /* There are couple of different bits at play here.
2669 * hw->reset_ongoing indicates whether the hardware is
2670 * in reset. This is set to true when a reset interrupt
2671 * is received and set back to false after the driver
2672 * has determined that the hardware is out of reset.
2673 *
2674 * __ICE_RESET_OICR_RECV in pf->state indicates
2675 * that a post reset rebuild is required before the
2676 * driver is operational again. This is set above.
2677 *
2678 * As this is the start of the reset/rebuild cycle, set
2679 * both to indicate that.
2680 */
2681 hw->reset_ongoing = true;
2682 }
2683 }
2684
2685 if (oicr & PFINT_OICR_HMC_ERR_M) {
2686 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2687 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2688 rd32(hw, PFHMC_ERRORINFO),
2689 rd32(hw, PFHMC_ERRORDATA));
2690 }
2691
2692 /* Report any remaining unexpected interrupts */
2693 oicr &= ena_mask;
2694 if (oicr) {
2695 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2696 /* If a critical error is pending there is no choice but to
2697 * reset the device.
2698 */
2699 if (oicr & (PFINT_OICR_PE_CRITERR_M |
2700 PFINT_OICR_PCI_EXCEPTION_M |
2701 PFINT_OICR_ECC_ERR_M)) {
2702 set_bit(__ICE_PFR_REQ, pf->state);
2703 ice_service_task_schedule(pf);
2704 }
2705 }
2706 ret = IRQ_HANDLED;
2707
2708 ice_service_task_schedule(pf);
2709 ice_irq_dynamic_ena(hw, NULL, NULL);
2710
2711 return ret;
2712}
2713
2714/**
2715 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2716 * @hw: pointer to HW structure
2717 */
2718static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2719{
2720 /* disable Admin queue Interrupt causes */
2721 wr32(hw, PFINT_FW_CTL,
2722 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2723
2724 /* disable Mailbox queue Interrupt causes */
2725 wr32(hw, PFINT_MBX_CTL,
2726 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2727
2728 /* disable Control queue Interrupt causes */
2729 wr32(hw, PFINT_OICR_CTL,
2730 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2731
2732 ice_flush(hw);
2733}
2734
2735/**
2736 * ice_free_irq_msix_misc - Unroll misc vector setup
2737 * @pf: board private structure
2738 */
2739static void ice_free_irq_msix_misc(struct ice_pf *pf)
2740{
2741 struct ice_hw *hw = &pf->hw;
2742
2743 ice_dis_ctrlq_interrupts(hw);
2744
2745 /* disable OICR interrupt */
2746 wr32(hw, PFINT_OICR_ENA, 0);
2747 ice_flush(hw);
2748
2749 if (pf->msix_entries) {
2750 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2751 devm_free_irq(ice_pf_to_dev(pf),
2752 pf->msix_entries[pf->oicr_idx].vector, pf);
2753 }
2754
2755 pf->num_avail_sw_msix += 1;
2756 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2757}
2758
2759/**
2760 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2761 * @hw: pointer to HW structure
2762 * @reg_idx: HW vector index to associate the control queue interrupts with
2763 */
2764static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2765{
2766 u32 val;
2767
2768 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2769 PFINT_OICR_CTL_CAUSE_ENA_M);
2770 wr32(hw, PFINT_OICR_CTL, val);
2771
2772 /* enable Admin queue Interrupt causes */
2773 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2774 PFINT_FW_CTL_CAUSE_ENA_M);
2775 wr32(hw, PFINT_FW_CTL, val);
2776
2777 /* enable Mailbox queue Interrupt causes */
2778 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2779 PFINT_MBX_CTL_CAUSE_ENA_M);
2780 wr32(hw, PFINT_MBX_CTL, val);
2781
2782 ice_flush(hw);
2783}
2784
2785/**
2786 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2787 * @pf: board private structure
2788 *
2789 * This sets up the handler for MSIX 0, which is used to manage the
2790 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2791 * when in MSI or Legacy interrupt mode.
2792 */
2793static int ice_req_irq_msix_misc(struct ice_pf *pf)
2794{
2795 struct device *dev = ice_pf_to_dev(pf);
2796 struct ice_hw *hw = &pf->hw;
2797 int oicr_idx, err = 0;
2798
2799 if (!pf->int_name[0])
2800 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2801 dev_driver_string(dev), dev_name(dev));
2802
2803 /* Do not request IRQ but do enable OICR interrupt since settings are
2804 * lost during reset. Note that this function is called only during
2805 * rebuild path and not while reset is in progress.
2806 */
2807 if (ice_is_reset_in_progress(pf->state))
2808 goto skip_req_irq;
2809
2810 /* reserve one vector in irq_tracker for misc interrupts */
2811 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2812 if (oicr_idx < 0)
2813 return oicr_idx;
2814
2815 pf->num_avail_sw_msix -= 1;
2816 pf->oicr_idx = (u16)oicr_idx;
2817
2818 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2819 ice_misc_intr, 0, pf->int_name, pf);
2820 if (err) {
2821 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2822 pf->int_name, err);
2823 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2824 pf->num_avail_sw_msix += 1;
2825 return err;
2826 }
2827
2828skip_req_irq:
2829 ice_ena_misc_vector(pf);
2830
2831 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2832 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2833 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2834
2835 ice_flush(hw);
2836 ice_irq_dynamic_ena(hw, NULL, NULL);
2837
2838 return 0;
2839}
2840
2841/**
2842 * ice_napi_add - register NAPI handler for the VSI
2843 * @vsi: VSI for which NAPI handler is to be registered
2844 *
2845 * This function is only called in the driver's load path. Registering the NAPI
2846 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2847 * reset/rebuild, etc.)
2848 */
2849static void ice_napi_add(struct ice_vsi *vsi)
2850{
2851 int v_idx;
2852
2853 if (!vsi->netdev)
2854 return;
2855
2856 ice_for_each_q_vector(vsi, v_idx)
2857 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2858 ice_napi_poll, NAPI_POLL_WEIGHT);
2859}
2860
2861/**
2862 * ice_set_ops - set netdev and ethtools ops for the given netdev
2863 * @netdev: netdev instance
2864 */
2865static void ice_set_ops(struct net_device *netdev)
2866{
2867 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2868
2869 if (ice_is_safe_mode(pf)) {
2870 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2871 ice_set_ethtool_safe_mode_ops(netdev);
2872 return;
2873 }
2874
2875 netdev->netdev_ops = &ice_netdev_ops;
2876 ice_set_ethtool_ops(netdev);
2877}
2878
2879/**
2880 * ice_set_netdev_features - set features for the given netdev
2881 * @netdev: netdev instance
2882 */
2883static void ice_set_netdev_features(struct net_device *netdev)
2884{
2885 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2886 netdev_features_t csumo_features;
2887 netdev_features_t vlano_features;
2888 netdev_features_t dflt_features;
2889 netdev_features_t tso_features;
2890
2891 if (ice_is_safe_mode(pf)) {
2892 /* safe mode */
2893 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2894 netdev->hw_features = netdev->features;
2895 return;
2896 }
2897
2898 dflt_features = NETIF_F_SG |
2899 NETIF_F_HIGHDMA |
2900 NETIF_F_NTUPLE |
2901 NETIF_F_RXHASH;
2902
2903 csumo_features = NETIF_F_RXCSUM |
2904 NETIF_F_IP_CSUM |
2905 NETIF_F_SCTP_CRC |
2906 NETIF_F_IPV6_CSUM;
2907
2908 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2909 NETIF_F_HW_VLAN_CTAG_TX |
2910 NETIF_F_HW_VLAN_CTAG_RX;
2911
2912 tso_features = NETIF_F_TSO |
2913 NETIF_F_TSO_ECN |
2914 NETIF_F_TSO6 |
2915 NETIF_F_GSO_GRE |
2916 NETIF_F_GSO_UDP_TUNNEL |
2917 NETIF_F_GSO_GRE_CSUM |
2918 NETIF_F_GSO_UDP_TUNNEL_CSUM |
2919 NETIF_F_GSO_PARTIAL |
2920 NETIF_F_GSO_IPXIP4 |
2921 NETIF_F_GSO_IPXIP6 |
2922 NETIF_F_GSO_UDP_L4;
2923
2924 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2925 NETIF_F_GSO_GRE_CSUM;
2926 /* set features that user can change */
2927 netdev->hw_features = dflt_features | csumo_features |
2928 vlano_features | tso_features;
2929
2930 /* add support for HW_CSUM on packets with MPLS header */
2931 netdev->mpls_features = NETIF_F_HW_CSUM;
2932
2933 /* enable features */
2934 netdev->features |= netdev->hw_features;
2935 /* encap and VLAN devices inherit default, csumo and tso features */
2936 netdev->hw_enc_features |= dflt_features | csumo_features |
2937 tso_features;
2938 netdev->vlan_features |= dflt_features | csumo_features |
2939 tso_features;
2940}
2941
2942/**
2943 * ice_cfg_netdev - Allocate, configure and register a netdev
2944 * @vsi: the VSI associated with the new netdev
2945 *
2946 * Returns 0 on success, negative value on failure
2947 */
2948static int ice_cfg_netdev(struct ice_vsi *vsi)
2949{
2950 struct ice_pf *pf = vsi->back;
2951 struct ice_netdev_priv *np;
2952 struct net_device *netdev;
2953 u8 mac_addr[ETH_ALEN];
2954 int err;
2955
2956 err = ice_devlink_create_port(pf);
2957 if (err)
2958 return err;
2959
2960 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2961 vsi->alloc_rxq);
2962 if (!netdev) {
2963 err = -ENOMEM;
2964 goto err_destroy_devlink_port;
2965 }
2966
2967 vsi->netdev = netdev;
2968 np = netdev_priv(netdev);
2969 np->vsi = vsi;
2970
2971 ice_set_netdev_features(netdev);
2972
2973 ice_set_ops(netdev);
2974
2975 if (vsi->type == ICE_VSI_PF) {
2976 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2977 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2978 ether_addr_copy(netdev->dev_addr, mac_addr);
2979 ether_addr_copy(netdev->perm_addr, mac_addr);
2980 }
2981
2982 netdev->priv_flags |= IFF_UNICAST_FLT;
2983
2984 /* Setup netdev TC information */
2985 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2986
2987 /* setup watchdog timeout value to be 5 second */
2988 netdev->watchdog_timeo = 5 * HZ;
2989
2990 netdev->min_mtu = ETH_MIN_MTU;
2991 netdev->max_mtu = ICE_MAX_MTU;
2992
2993 err = register_netdev(vsi->netdev);
2994 if (err)
2995 goto err_free_netdev;
2996
2997 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
2998
2999 netif_carrier_off(vsi->netdev);
3000
3001 /* make sure transmit queues start off as stopped */
3002 netif_tx_stop_all_queues(vsi->netdev);
3003
3004 return 0;
3005
3006err_free_netdev:
3007 free_netdev(vsi->netdev);
3008 vsi->netdev = NULL;
3009err_destroy_devlink_port:
3010 ice_devlink_destroy_port(pf);
3011 return err;
3012}
3013
3014/**
3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3016 * @lut: Lookup table
3017 * @rss_table_size: Lookup table size
3018 * @rss_size: Range of queue number for hashing
3019 */
3020void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3021{
3022 u16 i;
3023
3024 for (i = 0; i < rss_table_size; i++)
3025 lut[i] = i % rss_size;
3026}
3027
3028/**
3029 * ice_pf_vsi_setup - Set up a PF VSI
3030 * @pf: board private structure
3031 * @pi: pointer to the port_info instance
3032 *
3033 * Returns pointer to the successfully allocated VSI software struct
3034 * on success, otherwise returns NULL on failure.
3035 */
3036static struct ice_vsi *
3037ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3038{
3039 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3040}
3041
3042/**
3043 * ice_ctrl_vsi_setup - Set up a control VSI
3044 * @pf: board private structure
3045 * @pi: pointer to the port_info instance
3046 *
3047 * Returns pointer to the successfully allocated VSI software struct
3048 * on success, otherwise returns NULL on failure.
3049 */
3050static struct ice_vsi *
3051ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3052{
3053 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3054}
3055
3056/**
3057 * ice_lb_vsi_setup - Set up a loopback VSI
3058 * @pf: board private structure
3059 * @pi: pointer to the port_info instance
3060 *
3061 * Returns pointer to the successfully allocated VSI software struct
3062 * on success, otherwise returns NULL on failure.
3063 */
3064struct ice_vsi *
3065ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3066{
3067 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3068}
3069
3070/**
3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3072 * @netdev: network interface to be adjusted
3073 * @proto: unused protocol
3074 * @vid: VLAN ID to be added
3075 *
3076 * net_device_ops implementation for adding VLAN IDs
3077 */
3078static int
3079ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3080 u16 vid)
3081{
3082 struct ice_netdev_priv *np = netdev_priv(netdev);
3083 struct ice_vsi *vsi = np->vsi;
3084 int ret;
3085
3086 if (vid >= VLAN_N_VID) {
3087 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3088 vid, VLAN_N_VID);
3089 return -EINVAL;
3090 }
3091
3092 if (vsi->info.pvid)
3093 return -EINVAL;
3094
3095 /* VLAN 0 is added by default during load/reset */
3096 if (!vid)
3097 return 0;
3098
3099 /* Enable VLAN pruning when a VLAN other than 0 is added */
3100 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3101 ret = ice_cfg_vlan_pruning(vsi, true, false);
3102 if (ret)
3103 return ret;
3104 }
3105
3106 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3107 * packets aren't pruned by the device's internal switch on Rx
3108 */
3109 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3110 if (!ret) {
3111 vsi->vlan_ena = true;
3112 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3113 }
3114
3115 return ret;
3116}
3117
3118/**
3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3120 * @netdev: network interface to be adjusted
3121 * @proto: unused protocol
3122 * @vid: VLAN ID to be removed
3123 *
3124 * net_device_ops implementation for removing VLAN IDs
3125 */
3126static int
3127ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3128 u16 vid)
3129{
3130 struct ice_netdev_priv *np = netdev_priv(netdev);
3131 struct ice_vsi *vsi = np->vsi;
3132 int ret;
3133
3134 if (vsi->info.pvid)
3135 return -EINVAL;
3136
3137 /* don't allow removal of VLAN 0 */
3138 if (!vid)
3139 return 0;
3140
3141 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3142 * information
3143 */
3144 ret = ice_vsi_kill_vlan(vsi, vid);
3145 if (ret)
3146 return ret;
3147
3148 /* Disable pruning when VLAN 0 is the only VLAN rule */
3149 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3150 ret = ice_cfg_vlan_pruning(vsi, false, false);
3151
3152 vsi->vlan_ena = false;
3153 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3154 return ret;
3155}
3156
3157/**
3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3159 * @pf: board private structure
3160 *
3161 * Returns 0 on success, negative value on failure
3162 */
3163static int ice_setup_pf_sw(struct ice_pf *pf)
3164{
3165 struct ice_vsi *vsi;
3166 int status = 0;
3167
3168 if (ice_is_reset_in_progress(pf->state))
3169 return -EBUSY;
3170
3171 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3172 if (!vsi)
3173 return -ENOMEM;
3174
3175 status = ice_cfg_netdev(vsi);
3176 if (status) {
3177 status = -ENODEV;
3178 goto unroll_vsi_setup;
3179 }
3180 /* netdev has to be configured before setting frame size */
3181 ice_vsi_cfg_frame_size(vsi);
3182
3183 /* Setup DCB netlink interface */
3184 ice_dcbnl_setup(vsi);
3185
3186 /* registering the NAPI handler requires both the queues and
3187 * netdev to be created, which are done in ice_pf_vsi_setup()
3188 * and ice_cfg_netdev() respectively
3189 */
3190 ice_napi_add(vsi);
3191
3192 status = ice_set_cpu_rx_rmap(vsi);
3193 if (status) {
3194 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3195 vsi->vsi_num, status);
3196 status = -EINVAL;
3197 goto unroll_napi_add;
3198 }
3199 status = ice_init_mac_fltr(pf);
3200 if (status)
3201 goto free_cpu_rx_map;
3202
3203 return status;
3204
3205free_cpu_rx_map:
3206 ice_free_cpu_rx_rmap(vsi);
3207
3208unroll_napi_add:
3209 if (vsi) {
3210 ice_napi_del(vsi);
3211 if (vsi->netdev) {
3212 if (vsi->netdev->reg_state == NETREG_REGISTERED)
3213 unregister_netdev(vsi->netdev);
3214 free_netdev(vsi->netdev);
3215 vsi->netdev = NULL;
3216 }
3217 }
3218
3219unroll_vsi_setup:
3220 ice_vsi_release(vsi);
3221 return status;
3222}
3223
3224/**
3225 * ice_get_avail_q_count - Get count of queues in use
3226 * @pf_qmap: bitmap to get queue use count from
3227 * @lock: pointer to a mutex that protects access to pf_qmap
3228 * @size: size of the bitmap
3229 */
3230static u16
3231ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3232{
3233 unsigned long bit;
3234 u16 count = 0;
3235
3236 mutex_lock(lock);
3237 for_each_clear_bit(bit, pf_qmap, size)
3238 count++;
3239 mutex_unlock(lock);
3240
3241 return count;
3242}
3243
3244/**
3245 * ice_get_avail_txq_count - Get count of Tx queues in use
3246 * @pf: pointer to an ice_pf instance
3247 */
3248u16 ice_get_avail_txq_count(struct ice_pf *pf)
3249{
3250 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3251 pf->max_pf_txqs);
3252}
3253
3254/**
3255 * ice_get_avail_rxq_count - Get count of Rx queues in use
3256 * @pf: pointer to an ice_pf instance
3257 */
3258u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3259{
3260 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3261 pf->max_pf_rxqs);
3262}
3263
3264/**
3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3266 * @pf: board private structure to initialize
3267 */
3268static void ice_deinit_pf(struct ice_pf *pf)
3269{
3270 ice_service_task_stop(pf);
3271 mutex_destroy(&pf->sw_mutex);
3272 mutex_destroy(&pf->tc_mutex);
3273 mutex_destroy(&pf->avail_q_mutex);
3274
3275 if (pf->avail_txqs) {
3276 bitmap_free(pf->avail_txqs);
3277 pf->avail_txqs = NULL;
3278 }
3279
3280 if (pf->avail_rxqs) {
3281 bitmap_free(pf->avail_rxqs);
3282 pf->avail_rxqs = NULL;
3283 }
3284}
3285
3286/**
3287 * ice_set_pf_caps - set PFs capability flags
3288 * @pf: pointer to the PF instance
3289 */
3290static void ice_set_pf_caps(struct ice_pf *pf)
3291{
3292 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3293
3294 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3295 if (func_caps->common_cap.dcb)
3296 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3297 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3298 if (func_caps->common_cap.sr_iov_1_1) {
3299 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3300 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3301 ICE_MAX_VF_COUNT);
3302 }
3303 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3304 if (func_caps->common_cap.rss_table_size)
3305 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3306
3307 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3308 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3309 u16 unused;
3310
3311 /* ctrl_vsi_idx will be set to a valid value when flow director
3312 * is setup by ice_init_fdir
3313 */
3314 pf->ctrl_vsi_idx = ICE_NO_VSI;
3315 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3316 /* force guaranteed filter pool for PF */
3317 ice_alloc_fd_guar_item(&pf->hw, &unused,
3318 func_caps->fd_fltr_guar);
3319 /* force shared filter pool for PF */
3320 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3321 func_caps->fd_fltr_best_effort);
3322 }
3323
3324 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3325 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3326}
3327
3328/**
3329 * ice_init_pf - Initialize general software structures (struct ice_pf)
3330 * @pf: board private structure to initialize
3331 */
3332static int ice_init_pf(struct ice_pf *pf)
3333{
3334 ice_set_pf_caps(pf);
3335
3336 mutex_init(&pf->sw_mutex);
3337 mutex_init(&pf->tc_mutex);
3338
3339 INIT_HLIST_HEAD(&pf->aq_wait_list);
3340 spin_lock_init(&pf->aq_wait_lock);
3341 init_waitqueue_head(&pf->aq_wait_queue);
3342
3343 /* setup service timer and periodic service task */
3344 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3345 pf->serv_tmr_period = HZ;
3346 INIT_WORK(&pf->serv_task, ice_service_task);
3347 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3348
3349 mutex_init(&pf->avail_q_mutex);
3350 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3351 if (!pf->avail_txqs)
3352 return -ENOMEM;
3353
3354 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3355 if (!pf->avail_rxqs) {
3356 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3357 pf->avail_txqs = NULL;
3358 return -ENOMEM;
3359 }
3360
3361 return 0;
3362}
3363
3364/**
3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3366 * @pf: board private structure
3367 *
3368 * compute the number of MSIX vectors required (v_budget) and request from
3369 * the OS. Return the number of vectors reserved or negative on failure
3370 */
3371static int ice_ena_msix_range(struct ice_pf *pf)
3372{
3373 struct device *dev = ice_pf_to_dev(pf);
3374 int v_left, v_actual, v_budget = 0;
3375 int needed, err, i;
3376
3377 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3378
3379 /* reserve one vector for miscellaneous handler */
3380 needed = 1;
3381 if (v_left < needed)
3382 goto no_hw_vecs_left_err;
3383 v_budget += needed;
3384 v_left -= needed;
3385
3386 /* reserve vectors for LAN traffic */
3387 needed = min_t(int, num_online_cpus(), v_left);
3388 if (v_left < needed)
3389 goto no_hw_vecs_left_err;
3390 pf->num_lan_msix = needed;
3391 v_budget += needed;
3392 v_left -= needed;
3393
3394 /* reserve one vector for flow director */
3395 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3396 needed = ICE_FDIR_MSIX;
3397 if (v_left < needed)
3398 goto no_hw_vecs_left_err;
3399 v_budget += needed;
3400 v_left -= needed;
3401 }
3402
3403 pf->msix_entries = devm_kcalloc(dev, v_budget,
3404 sizeof(*pf->msix_entries), GFP_KERNEL);
3405
3406 if (!pf->msix_entries) {
3407 err = -ENOMEM;
3408 goto exit_err;
3409 }
3410
3411 for (i = 0; i < v_budget; i++)
3412 pf->msix_entries[i].entry = i;
3413
3414 /* actually reserve the vectors */
3415 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3416 ICE_MIN_MSIX, v_budget);
3417
3418 if (v_actual < 0) {
3419 dev_err(dev, "unable to reserve MSI-X vectors\n");
3420 err = v_actual;
3421 goto msix_err;
3422 }
3423
3424 if (v_actual < v_budget) {
3425 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3426 v_budget, v_actual);
3427/* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3428#define ICE_MIN_LAN_VECS 2
3429#define ICE_MIN_RDMA_VECS 2
3430#define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3431
3432 if (v_actual < ICE_MIN_LAN_VECS) {
3433 /* error if we can't get minimum vectors */
3434 pci_disable_msix(pf->pdev);
3435 err = -ERANGE;
3436 goto msix_err;
3437 } else {
3438 pf->num_lan_msix = ICE_MIN_LAN_VECS;
3439 }
3440 }
3441
3442 return v_actual;
3443
3444msix_err:
3445 devm_kfree(dev, pf->msix_entries);
3446 goto exit_err;
3447
3448no_hw_vecs_left_err:
3449 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3450 needed, v_left);
3451 err = -ERANGE;
3452exit_err:
3453 pf->num_lan_msix = 0;
3454 return err;
3455}
3456
3457/**
3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3459 * @pf: board private structure
3460 */
3461static void ice_dis_msix(struct ice_pf *pf)
3462{
3463 pci_disable_msix(pf->pdev);
3464 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3465 pf->msix_entries = NULL;
3466}
3467
3468/**
3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3470 * @pf: board private structure
3471 */
3472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3473{
3474 ice_dis_msix(pf);
3475
3476 if (pf->irq_tracker) {
3477 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3478 pf->irq_tracker = NULL;
3479 }
3480}
3481
3482/**
3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3484 * @pf: board private structure to initialize
3485 */
3486static int ice_init_interrupt_scheme(struct ice_pf *pf)
3487{
3488 int vectors;
3489
3490 vectors = ice_ena_msix_range(pf);
3491
3492 if (vectors < 0)
3493 return vectors;
3494
3495 /* set up vector assignment tracking */
3496 pf->irq_tracker =
3497 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3498 (sizeof(u16) * vectors), GFP_KERNEL);
3499 if (!pf->irq_tracker) {
3500 ice_dis_msix(pf);
3501 return -ENOMEM;
3502 }
3503
3504 /* populate SW interrupts pool with number of OS granted IRQs. */
3505 pf->num_avail_sw_msix = (u16)vectors;
3506 pf->irq_tracker->num_entries = (u16)vectors;
3507 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3508
3509 return 0;
3510}
3511
3512/**
3513 * ice_is_wol_supported - get NVM state of WoL
3514 * @pf: board private structure
3515 *
3516 * Check if WoL is supported based on the HW configuration.
3517 * Returns true if NVM supports and enables WoL for this port, false otherwise
3518 */
3519bool ice_is_wol_supported(struct ice_pf *pf)
3520{
3521 struct ice_hw *hw = &pf->hw;
3522 u16 wol_ctrl;
3523
3524 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3525 * word) indicates WoL is not supported on the corresponding PF ID.
3526 */
3527 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3528 return false;
3529
3530 return !(BIT(hw->pf_id) & wol_ctrl);
3531}
3532
3533/**
3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3535 * @vsi: VSI being changed
3536 * @new_rx: new number of Rx queues
3537 * @new_tx: new number of Tx queues
3538 *
3539 * Only change the number of queues if new_tx, or new_rx is non-0.
3540 *
3541 * Returns 0 on success.
3542 */
3543int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3544{
3545 struct ice_pf *pf = vsi->back;
3546 int err = 0, timeout = 50;
3547
3548 if (!new_rx && !new_tx)
3549 return -EINVAL;
3550
3551 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3552 timeout--;
3553 if (!timeout)
3554 return -EBUSY;
3555 usleep_range(1000, 2000);
3556 }
3557
3558 if (new_tx)
3559 vsi->req_txq = (u16)new_tx;
3560 if (new_rx)
3561 vsi->req_rxq = (u16)new_rx;
3562
3563 /* set for the next time the netdev is started */
3564 if (!netif_running(vsi->netdev)) {
3565 ice_vsi_rebuild(vsi, false);
3566 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3567 goto done;
3568 }
3569
3570 ice_vsi_close(vsi);
3571 ice_vsi_rebuild(vsi, false);
3572 ice_pf_dcb_recfg(pf);
3573 ice_vsi_open(vsi);
3574done:
3575 clear_bit(__ICE_CFG_BUSY, pf->state);
3576 return err;
3577}
3578
3579/**
3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3581 * @pf: PF to configure
3582 *
3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3584 * VSI can still Tx/Rx VLAN tagged packets.
3585 */
3586static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3587{
3588 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3589 struct ice_vsi_ctx *ctxt;
3590 enum ice_status status;
3591 struct ice_hw *hw;
3592
3593 if (!vsi)
3594 return;
3595
3596 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3597 if (!ctxt)
3598 return;
3599
3600 hw = &pf->hw;
3601 ctxt->info = vsi->info;
3602
3603 ctxt->info.valid_sections =
3604 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3605 ICE_AQ_VSI_PROP_SECURITY_VALID |
3606 ICE_AQ_VSI_PROP_SW_VALID);
3607
3608 /* disable VLAN anti-spoof */
3609 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3610 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3611
3612 /* disable VLAN pruning and keep all other settings */
3613 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3614
3615 /* allow all VLANs on Tx and don't strip on Rx */
3616 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3617 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3618
3619 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3620 if (status) {
3621 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3622 ice_stat_str(status),
3623 ice_aq_str(hw->adminq.sq_last_status));
3624 } else {
3625 vsi->info.sec_flags = ctxt->info.sec_flags;
3626 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3627 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3628 }
3629
3630 kfree(ctxt);
3631}
3632
3633/**
3634 * ice_log_pkg_init - log result of DDP package load
3635 * @hw: pointer to hardware info
3636 * @status: status of package load
3637 */
3638static void
3639ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3640{
3641 struct ice_pf *pf = (struct ice_pf *)hw->back;
3642 struct device *dev = ice_pf_to_dev(pf);
3643
3644 switch (*status) {
3645 case ICE_SUCCESS:
3646 /* The package download AdminQ command returned success because
3647 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3648 * already a package loaded on the device.
3649 */
3650 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3651 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3652 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3653 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3654 !memcmp(hw->pkg_name, hw->active_pkg_name,
3655 sizeof(hw->pkg_name))) {
3656 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3657 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3658 hw->active_pkg_name,
3659 hw->active_pkg_ver.major,
3660 hw->active_pkg_ver.minor,
3661 hw->active_pkg_ver.update,
3662 hw->active_pkg_ver.draft);
3663 else
3664 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3665 hw->active_pkg_name,
3666 hw->active_pkg_ver.major,
3667 hw->active_pkg_ver.minor,
3668 hw->active_pkg_ver.update,
3669 hw->active_pkg_ver.draft);
3670 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3671 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3672 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3673 hw->active_pkg_name,
3674 hw->active_pkg_ver.major,
3675 hw->active_pkg_ver.minor,
3676 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3677 *status = ICE_ERR_NOT_SUPPORTED;
3678 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3679 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3680 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3681 hw->active_pkg_name,
3682 hw->active_pkg_ver.major,
3683 hw->active_pkg_ver.minor,
3684 hw->active_pkg_ver.update,
3685 hw->active_pkg_ver.draft,
3686 hw->pkg_name,
3687 hw->pkg_ver.major,
3688 hw->pkg_ver.minor,
3689 hw->pkg_ver.update,
3690 hw->pkg_ver.draft);
3691 } else {
3692 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3693 *status = ICE_ERR_NOT_SUPPORTED;
3694 }
3695 break;
3696 case ICE_ERR_FW_DDP_MISMATCH:
3697 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3698 break;
3699 case ICE_ERR_BUF_TOO_SHORT:
3700 case ICE_ERR_CFG:
3701 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3702 break;
3703 case ICE_ERR_NOT_SUPPORTED:
3704 /* Package File version not supported */
3705 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3706 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3707 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3708 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3709 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3710 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3711 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3712 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3713 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3714 break;
3715 case ICE_ERR_AQ_ERROR:
3716 switch (hw->pkg_dwnld_status) {
3717 case ICE_AQ_RC_ENOSEC:
3718 case ICE_AQ_RC_EBADSIG:
3719 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3720 return;
3721 case ICE_AQ_RC_ESVN:
3722 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3723 return;
3724 case ICE_AQ_RC_EBADMAN:
3725 case ICE_AQ_RC_EBADBUF:
3726 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3727 /* poll for reset to complete */
3728 if (ice_check_reset(hw))
3729 dev_err(dev, "Error resetting device. Please reload the driver\n");
3730 return;
3731 default:
3732 break;
3733 }
3734 fallthrough;
3735 default:
3736 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3737 *status);
3738 break;
3739 }
3740}
3741
3742/**
3743 * ice_load_pkg - load/reload the DDP Package file
3744 * @firmware: firmware structure when firmware requested or NULL for reload
3745 * @pf: pointer to the PF instance
3746 *
3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3748 * initialize HW tables.
3749 */
3750static void
3751ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3752{
3753 enum ice_status status = ICE_ERR_PARAM;
3754 struct device *dev = ice_pf_to_dev(pf);
3755 struct ice_hw *hw = &pf->hw;
3756
3757 /* Load DDP Package */
3758 if (firmware && !hw->pkg_copy) {
3759 status = ice_copy_and_init_pkg(hw, firmware->data,
3760 firmware->size);
3761 ice_log_pkg_init(hw, &status);
3762 } else if (!firmware && hw->pkg_copy) {
3763 /* Reload package during rebuild after CORER/GLOBR reset */
3764 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3765 ice_log_pkg_init(hw, &status);
3766 } else {
3767 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3768 }
3769
3770 if (status) {
3771 /* Safe Mode */
3772 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3773 return;
3774 }
3775
3776 /* Successful download package is the precondition for advanced
3777 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3778 */
3779 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3780}
3781
3782/**
3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3784 * @pf: pointer to the PF structure
3785 *
3786 * There is no error returned here because the driver should be able to handle
3787 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3788 * specifically with Tx.
3789 */
3790static void ice_verify_cacheline_size(struct ice_pf *pf)
3791{
3792 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3793 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3794 ICE_CACHE_LINE_BYTES);
3795}
3796
3797/**
3798 * ice_send_version - update firmware with driver version
3799 * @pf: PF struct
3800 *
3801 * Returns ICE_SUCCESS on success, else error code
3802 */
3803static enum ice_status ice_send_version(struct ice_pf *pf)
3804{
3805 struct ice_driver_ver dv;
3806
3807 dv.major_ver = 0xff;
3808 dv.minor_ver = 0xff;
3809 dv.build_ver = 0xff;
3810 dv.subbuild_ver = 0;
3811 strscpy((char *)dv.driver_string, UTS_RELEASE,
3812 sizeof(dv.driver_string));
3813 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3814}
3815
3816/**
3817 * ice_init_fdir - Initialize flow director VSI and configuration
3818 * @pf: pointer to the PF instance
3819 *
3820 * returns 0 on success, negative on error
3821 */
3822static int ice_init_fdir(struct ice_pf *pf)
3823{
3824 struct device *dev = ice_pf_to_dev(pf);
3825 struct ice_vsi *ctrl_vsi;
3826 int err;
3827
3828 /* Side Band Flow Director needs to have a control VSI.
3829 * Allocate it and store it in the PF.
3830 */
3831 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3832 if (!ctrl_vsi) {
3833 dev_dbg(dev, "could not create control VSI\n");
3834 return -ENOMEM;
3835 }
3836
3837 err = ice_vsi_open_ctrl(ctrl_vsi);
3838 if (err) {
3839 dev_dbg(dev, "could not open control VSI\n");
3840 goto err_vsi_open;
3841 }
3842
3843 mutex_init(&pf->hw.fdir_fltr_lock);
3844
3845 err = ice_fdir_create_dflt_rules(pf);
3846 if (err)
3847 goto err_fdir_rule;
3848
3849 return 0;
3850
3851err_fdir_rule:
3852 ice_fdir_release_flows(&pf->hw);
3853 ice_vsi_close(ctrl_vsi);
3854err_vsi_open:
3855 ice_vsi_release(ctrl_vsi);
3856 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3857 pf->vsi[pf->ctrl_vsi_idx] = NULL;
3858 pf->ctrl_vsi_idx = ICE_NO_VSI;
3859 }
3860 return err;
3861}
3862
3863/**
3864 * ice_get_opt_fw_name - return optional firmware file name or NULL
3865 * @pf: pointer to the PF instance
3866 */
3867static char *ice_get_opt_fw_name(struct ice_pf *pf)
3868{
3869 /* Optional firmware name same as default with additional dash
3870 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3871 */
3872 struct pci_dev *pdev = pf->pdev;
3873 char *opt_fw_filename;
3874 u64 dsn;
3875
3876 /* Determine the name of the optional file using the DSN (two
3877 * dwords following the start of the DSN Capability).
3878 */
3879 dsn = pci_get_dsn(pdev);
3880 if (!dsn)
3881 return NULL;
3882
3883 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3884 if (!opt_fw_filename)
3885 return NULL;
3886
3887 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3888 ICE_DDP_PKG_PATH, dsn);
3889
3890 return opt_fw_filename;
3891}
3892
3893/**
3894 * ice_request_fw - Device initialization routine
3895 * @pf: pointer to the PF instance
3896 */
3897static void ice_request_fw(struct ice_pf *pf)
3898{
3899 char *opt_fw_filename = ice_get_opt_fw_name(pf);
3900 const struct firmware *firmware = NULL;
3901 struct device *dev = ice_pf_to_dev(pf);
3902 int err = 0;
3903
3904 /* optional device-specific DDP (if present) overrides the default DDP
3905 * package file. kernel logs a debug message if the file doesn't exist,
3906 * and warning messages for other errors.
3907 */
3908 if (opt_fw_filename) {
3909 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3910 if (err) {
3911 kfree(opt_fw_filename);
3912 goto dflt_pkg_load;
3913 }
3914
3915 /* request for firmware was successful. Download to device */
3916 ice_load_pkg(firmware, pf);
3917 kfree(opt_fw_filename);
3918 release_firmware(firmware);
3919 return;
3920 }
3921
3922dflt_pkg_load:
3923 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3924 if (err) {
3925 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3926 return;
3927 }
3928
3929 /* request for firmware was successful. Download to device */
3930 ice_load_pkg(firmware, pf);
3931 release_firmware(firmware);
3932}
3933
3934/**
3935 * ice_print_wake_reason - show the wake up cause in the log
3936 * @pf: pointer to the PF struct
3937 */
3938static void ice_print_wake_reason(struct ice_pf *pf)
3939{
3940 u32 wus = pf->wakeup_reason;
3941 const char *wake_str;
3942
3943 /* if no wake event, nothing to print */
3944 if (!wus)
3945 return;
3946
3947 if (wus & PFPM_WUS_LNKC_M)
3948 wake_str = "Link\n";
3949 else if (wus & PFPM_WUS_MAG_M)
3950 wake_str = "Magic Packet\n";
3951 else if (wus & PFPM_WUS_MNG_M)
3952 wake_str = "Management\n";
3953 else if (wus & PFPM_WUS_FW_RST_WK_M)
3954 wake_str = "Firmware Reset\n";
3955 else
3956 wake_str = "Unknown\n";
3957
3958 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3959}
3960
3961/**
3962 * ice_probe - Device initialization routine
3963 * @pdev: PCI device information struct
3964 * @ent: entry in ice_pci_tbl
3965 *
3966 * Returns 0 on success, negative on failure
3967 */
3968static int
3969ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3970{
3971 struct device *dev = &pdev->dev;
3972 struct ice_pf *pf;
3973 struct ice_hw *hw;
3974 int err;
3975
3976 /* this driver uses devres, see
3977 * Documentation/driver-api/driver-model/devres.rst
3978 */
3979 err = pcim_enable_device(pdev);
3980 if (err)
3981 return err;
3982
3983 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3984 if (err) {
3985 dev_err(dev, "BAR0 I/O map error %d\n", err);
3986 return err;
3987 }
3988
3989 pf = ice_allocate_pf(dev);
3990 if (!pf)
3991 return -ENOMEM;
3992
3993 /* set up for high or low DMA */
3994 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3995 if (err)
3996 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3997 if (err) {
3998 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3999 return err;
4000 }
4001
4002 pci_enable_pcie_error_reporting(pdev);
4003 pci_set_master(pdev);
4004
4005 pf->pdev = pdev;
4006 pci_set_drvdata(pdev, pf);
4007 set_bit(__ICE_DOWN, pf->state);
4008 /* Disable service task until DOWN bit is cleared */
4009 set_bit(__ICE_SERVICE_DIS, pf->state);
4010
4011 hw = &pf->hw;
4012 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4013 pci_save_state(pdev);
4014
4015 hw->back = pf;
4016 hw->vendor_id = pdev->vendor;
4017 hw->device_id = pdev->device;
4018 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4019 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4020 hw->subsystem_device_id = pdev->subsystem_device;
4021 hw->bus.device = PCI_SLOT(pdev->devfn);
4022 hw->bus.func = PCI_FUNC(pdev->devfn);
4023 ice_set_ctrlq_len(hw);
4024
4025 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4026
4027 err = ice_devlink_register(pf);
4028 if (err) {
4029 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4030 goto err_exit_unroll;
4031 }
4032
4033#ifndef CONFIG_DYNAMIC_DEBUG
4034 if (debug < -1)
4035 hw->debug_mask = debug;
4036#endif
4037
4038 err = ice_init_hw(hw);
4039 if (err) {
4040 dev_err(dev, "ice_init_hw failed: %d\n", err);
4041 err = -EIO;
4042 goto err_exit_unroll;
4043 }
4044
4045 ice_request_fw(pf);
4046
4047 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4048 * set in pf->state, which will cause ice_is_safe_mode to return
4049 * true
4050 */
4051 if (ice_is_safe_mode(pf)) {
4052 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4053 /* we already got function/device capabilities but these don't
4054 * reflect what the driver needs to do in safe mode. Instead of
4055 * adding conditional logic everywhere to ignore these
4056 * device/function capabilities, override them.
4057 */
4058 ice_set_safe_mode_caps(hw);
4059 }
4060
4061 err = ice_init_pf(pf);
4062 if (err) {
4063 dev_err(dev, "ice_init_pf failed: %d\n", err);
4064 goto err_init_pf_unroll;
4065 }
4066
4067 ice_devlink_init_regions(pf);
4068
4069 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4070 if (!pf->num_alloc_vsi) {
4071 err = -EIO;
4072 goto err_init_pf_unroll;
4073 }
4074
4075 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4076 GFP_KERNEL);
4077 if (!pf->vsi) {
4078 err = -ENOMEM;
4079 goto err_init_pf_unroll;
4080 }
4081
4082 err = ice_init_interrupt_scheme(pf);
4083 if (err) {
4084 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4085 err = -EIO;
4086 goto err_init_vsi_unroll;
4087 }
4088
4089 /* In case of MSIX we are going to setup the misc vector right here
4090 * to handle admin queue events etc. In case of legacy and MSI
4091 * the misc functionality and queue processing is combined in
4092 * the same vector and that gets setup at open.
4093 */
4094 err = ice_req_irq_msix_misc(pf);
4095 if (err) {
4096 dev_err(dev, "setup of misc vector failed: %d\n", err);
4097 goto err_init_interrupt_unroll;
4098 }
4099
4100 /* create switch struct for the switch element created by FW on boot */
4101 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4102 if (!pf->first_sw) {
4103 err = -ENOMEM;
4104 goto err_msix_misc_unroll;
4105 }
4106
4107 if (hw->evb_veb)
4108 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4109 else
4110 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4111
4112 pf->first_sw->pf = pf;
4113
4114 /* record the sw_id available for later use */
4115 pf->first_sw->sw_id = hw->port_info->sw_id;
4116
4117 err = ice_setup_pf_sw(pf);
4118 if (err) {
4119 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4120 goto err_alloc_sw_unroll;
4121 }
4122
4123 clear_bit(__ICE_SERVICE_DIS, pf->state);
4124
4125 /* tell the firmware we are up */
4126 err = ice_send_version(pf);
4127 if (err) {
4128 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4129 UTS_RELEASE, err);
4130 goto err_send_version_unroll;
4131 }
4132
4133 /* since everything is good, start the service timer */
4134 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4135
4136 err = ice_init_link_events(pf->hw.port_info);
4137 if (err) {
4138 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4139 goto err_send_version_unroll;
4140 }
4141
4142 err = ice_init_nvm_phy_type(pf->hw.port_info);
4143 if (err) {
4144 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4145 goto err_send_version_unroll;
4146 }
4147
4148 err = ice_update_link_info(pf->hw.port_info);
4149 if (err) {
4150 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4151 goto err_send_version_unroll;
4152 }
4153
4154 ice_init_link_dflt_override(pf->hw.port_info);
4155
4156 /* if media available, initialize PHY settings */
4157 if (pf->hw.port_info->phy.link_info.link_info &
4158 ICE_AQ_MEDIA_AVAILABLE) {
4159 err = ice_init_phy_user_cfg(pf->hw.port_info);
4160 if (err) {
4161 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4162 goto err_send_version_unroll;
4163 }
4164
4165 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4166 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4167
4168 if (vsi)
4169 ice_configure_phy(vsi);
4170 }
4171 } else {
4172 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4173 }
4174
4175 ice_verify_cacheline_size(pf);
4176
4177 /* Save wakeup reason register for later use */
4178 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4179
4180 /* check for a power management event */
4181 ice_print_wake_reason(pf);
4182
4183 /* clear wake status, all bits */
4184 wr32(hw, PFPM_WUS, U32_MAX);
4185
4186 /* Disable WoL at init, wait for user to enable */
4187 device_set_wakeup_enable(dev, false);
4188
4189 if (ice_is_safe_mode(pf)) {
4190 ice_set_safe_mode_vlan_cfg(pf);
4191 goto probe_done;
4192 }
4193
4194 /* initialize DDP driven features */
4195
4196 /* Note: Flow director init failure is non-fatal to load */
4197 if (ice_init_fdir(pf))
4198 dev_err(dev, "could not initialize flow director\n");
4199
4200 /* Note: DCB init failure is non-fatal to load */
4201 if (ice_init_pf_dcb(pf, false)) {
4202 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4203 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4204 } else {
4205 ice_cfg_lldp_mib_change(&pf->hw, true);
4206 }
4207
4208 /* print PCI link speed and width */
4209 pcie_print_link_status(pf->pdev);
4210
4211probe_done:
4212 /* ready to go, so clear down state bit */
4213 clear_bit(__ICE_DOWN, pf->state);
4214 return 0;
4215
4216err_send_version_unroll:
4217 ice_vsi_release_all(pf);
4218err_alloc_sw_unroll:
4219 ice_devlink_destroy_port(pf);
4220 set_bit(__ICE_SERVICE_DIS, pf->state);
4221 set_bit(__ICE_DOWN, pf->state);
4222 devm_kfree(dev, pf->first_sw);
4223err_msix_misc_unroll:
4224 ice_free_irq_msix_misc(pf);
4225err_init_interrupt_unroll:
4226 ice_clear_interrupt_scheme(pf);
4227err_init_vsi_unroll:
4228 devm_kfree(dev, pf->vsi);
4229err_init_pf_unroll:
4230 ice_deinit_pf(pf);
4231 ice_devlink_destroy_regions(pf);
4232 ice_deinit_hw(hw);
4233err_exit_unroll:
4234 ice_devlink_unregister(pf);
4235 pci_disable_pcie_error_reporting(pdev);
4236 pci_disable_device(pdev);
4237 return err;
4238}
4239
4240/**
4241 * ice_set_wake - enable or disable Wake on LAN
4242 * @pf: pointer to the PF struct
4243 *
4244 * Simple helper for WoL control
4245 */
4246static void ice_set_wake(struct ice_pf *pf)
4247{
4248 struct ice_hw *hw = &pf->hw;
4249 bool wol = pf->wol_ena;
4250
4251 /* clear wake state, otherwise new wake events won't fire */
4252 wr32(hw, PFPM_WUS, U32_MAX);
4253
4254 /* enable / disable APM wake up, no RMW needed */
4255 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4256
4257 /* set magic packet filter enabled */
4258 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4259}
4260
4261/**
4262 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4263 * @pf: pointer to the PF struct
4264 *
4265 * Issue firmware command to enable multicast magic wake, making
4266 * sure that any locally administered address (LAA) is used for
4267 * wake, and that PF reset doesn't undo the LAA.
4268 */
4269static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4270{
4271 struct device *dev = ice_pf_to_dev(pf);
4272 struct ice_hw *hw = &pf->hw;
4273 enum ice_status status;
4274 u8 mac_addr[ETH_ALEN];
4275 struct ice_vsi *vsi;
4276 u8 flags;
4277
4278 if (!pf->wol_ena)
4279 return;
4280
4281 vsi = ice_get_main_vsi(pf);
4282 if (!vsi)
4283 return;
4284
4285 /* Get current MAC address in case it's an LAA */
4286 if (vsi->netdev)
4287 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4288 else
4289 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4290
4291 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4292 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4293 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4294
4295 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4296 if (status)
4297 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4298 ice_stat_str(status),
4299 ice_aq_str(hw->adminq.sq_last_status));
4300}
4301
4302/**
4303 * ice_remove - Device removal routine
4304 * @pdev: PCI device information struct
4305 */
4306static void ice_remove(struct pci_dev *pdev)
4307{
4308 struct ice_pf *pf = pci_get_drvdata(pdev);
4309 int i;
4310
4311 if (!pf)
4312 return;
4313
4314 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4315 if (!ice_is_reset_in_progress(pf->state))
4316 break;
4317 msleep(100);
4318 }
4319
4320 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4321 set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4322 ice_free_vfs(pf);
4323 }
4324
4325 set_bit(__ICE_DOWN, pf->state);
4326 ice_service_task_stop(pf);
4327
4328 ice_aq_cancel_waiting_tasks(pf);
4329
4330 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4331 if (!ice_is_safe_mode(pf))
4332 ice_remove_arfs(pf);
4333 ice_setup_mc_magic_wake(pf);
4334 ice_devlink_destroy_port(pf);
4335 ice_vsi_release_all(pf);
4336 ice_set_wake(pf);
4337 ice_free_irq_msix_misc(pf);
4338 ice_for_each_vsi(pf, i) {
4339 if (!pf->vsi[i])
4340 continue;
4341 ice_vsi_free_q_vectors(pf->vsi[i]);
4342 }
4343 ice_deinit_pf(pf);
4344 ice_devlink_destroy_regions(pf);
4345 ice_deinit_hw(&pf->hw);
4346 ice_devlink_unregister(pf);
4347
4348 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4349 * do it via ice_schedule_reset() since there is no need to rebuild
4350 * and the service task is already stopped.
4351 */
4352 ice_reset(&pf->hw, ICE_RESET_PFR);
4353 pci_wait_for_pending_transaction(pdev);
4354 ice_clear_interrupt_scheme(pf);
4355 pci_disable_pcie_error_reporting(pdev);
4356 pci_disable_device(pdev);
4357}
4358
4359/**
4360 * ice_shutdown - PCI callback for shutting down device
4361 * @pdev: PCI device information struct
4362 */
4363static void ice_shutdown(struct pci_dev *pdev)
4364{
4365 struct ice_pf *pf = pci_get_drvdata(pdev);
4366
4367 ice_remove(pdev);
4368
4369 if (system_state == SYSTEM_POWER_OFF) {
4370 pci_wake_from_d3(pdev, pf->wol_ena);
4371 pci_set_power_state(pdev, PCI_D3hot);
4372 }
4373}
4374
4375#ifdef CONFIG_PM
4376/**
4377 * ice_prepare_for_shutdown - prep for PCI shutdown
4378 * @pf: board private structure
4379 *
4380 * Inform or close all dependent features in prep for PCI device shutdown
4381 */
4382static void ice_prepare_for_shutdown(struct ice_pf *pf)
4383{
4384 struct ice_hw *hw = &pf->hw;
4385 u32 v;
4386
4387 /* Notify VFs of impending reset */
4388 if (ice_check_sq_alive(hw, &hw->mailboxq))
4389 ice_vc_notify_reset(pf);
4390
4391 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4392
4393 /* disable the VSIs and their queues that are not already DOWN */
4394 ice_pf_dis_all_vsi(pf, false);
4395
4396 ice_for_each_vsi(pf, v)
4397 if (pf->vsi[v])
4398 pf->vsi[v]->vsi_num = 0;
4399
4400 ice_shutdown_all_ctrlq(hw);
4401}
4402
4403/**
4404 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4405 * @pf: board private structure to reinitialize
4406 *
4407 * This routine reinitialize interrupt scheme that was cleared during
4408 * power management suspend callback.
4409 *
4410 * This should be called during resume routine to re-allocate the q_vectors
4411 * and reacquire interrupts.
4412 */
4413static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4414{
4415 struct device *dev = ice_pf_to_dev(pf);
4416 int ret, v;
4417
4418 /* Since we clear MSIX flag during suspend, we need to
4419 * set it back during resume...
4420 */
4421
4422 ret = ice_init_interrupt_scheme(pf);
4423 if (ret) {
4424 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4425 return ret;
4426 }
4427
4428 /* Remap vectors and rings, after successful re-init interrupts */
4429 ice_for_each_vsi(pf, v) {
4430 if (!pf->vsi[v])
4431 continue;
4432
4433 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4434 if (ret)
4435 goto err_reinit;
4436 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4437 }
4438
4439 ret = ice_req_irq_msix_misc(pf);
4440 if (ret) {
4441 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4442 ret);
4443 goto err_reinit;
4444 }
4445
4446 return 0;
4447
4448err_reinit:
4449 while (v--)
4450 if (pf->vsi[v])
4451 ice_vsi_free_q_vectors(pf->vsi[v]);
4452
4453 return ret;
4454}
4455
4456/**
4457 * ice_suspend
4458 * @dev: generic device information structure
4459 *
4460 * Power Management callback to quiesce the device and prepare
4461 * for D3 transition.
4462 */
4463static int __maybe_unused ice_suspend(struct device *dev)
4464{
4465 struct pci_dev *pdev = to_pci_dev(dev);
4466 struct ice_pf *pf;
4467 int disabled, v;
4468
4469 pf = pci_get_drvdata(pdev);
4470
4471 if (!ice_pf_state_is_nominal(pf)) {
4472 dev_err(dev, "Device is not ready, no need to suspend it\n");
4473 return -EBUSY;
4474 }
4475
4476 /* Stop watchdog tasks until resume completion.
4477 * Even though it is most likely that the service task is
4478 * disabled if the device is suspended or down, the service task's
4479 * state is controlled by a different state bit, and we should
4480 * store and honor whatever state that bit is in at this point.
4481 */
4482 disabled = ice_service_task_stop(pf);
4483
4484 /* Already suspended?, then there is nothing to do */
4485 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4486 if (!disabled)
4487 ice_service_task_restart(pf);
4488 return 0;
4489 }
4490
4491 if (test_bit(__ICE_DOWN, pf->state) ||
4492 ice_is_reset_in_progress(pf->state)) {
4493 dev_err(dev, "can't suspend device in reset or already down\n");
4494 if (!disabled)
4495 ice_service_task_restart(pf);
4496 return 0;
4497 }
4498
4499 ice_setup_mc_magic_wake(pf);
4500
4501 ice_prepare_for_shutdown(pf);
4502
4503 ice_set_wake(pf);
4504
4505 /* Free vectors, clear the interrupt scheme and release IRQs
4506 * for proper hibernation, especially with large number of CPUs.
4507 * Otherwise hibernation might fail when mapping all the vectors back
4508 * to CPU0.
4509 */
4510 ice_free_irq_msix_misc(pf);
4511 ice_for_each_vsi(pf, v) {
4512 if (!pf->vsi[v])
4513 continue;
4514 ice_vsi_free_q_vectors(pf->vsi[v]);
4515 }
4516 ice_clear_interrupt_scheme(pf);
4517
4518 pci_save_state(pdev);
4519 pci_wake_from_d3(pdev, pf->wol_ena);
4520 pci_set_power_state(pdev, PCI_D3hot);
4521 return 0;
4522}
4523
4524/**
4525 * ice_resume - PM callback for waking up from D3
4526 * @dev: generic device information structure
4527 */
4528static int __maybe_unused ice_resume(struct device *dev)
4529{
4530 struct pci_dev *pdev = to_pci_dev(dev);
4531 enum ice_reset_req reset_type;
4532 struct ice_pf *pf;
4533 struct ice_hw *hw;
4534 int ret;
4535
4536 pci_set_power_state(pdev, PCI_D0);
4537 pci_restore_state(pdev);
4538 pci_save_state(pdev);
4539
4540 if (!pci_device_is_present(pdev))
4541 return -ENODEV;
4542
4543 ret = pci_enable_device_mem(pdev);
4544 if (ret) {
4545 dev_err(dev, "Cannot enable device after suspend\n");
4546 return ret;
4547 }
4548
4549 pf = pci_get_drvdata(pdev);
4550 hw = &pf->hw;
4551
4552 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4553 ice_print_wake_reason(pf);
4554
4555 /* We cleared the interrupt scheme when we suspended, so we need to
4556 * restore it now to resume device functionality.
4557 */
4558 ret = ice_reinit_interrupt_scheme(pf);
4559 if (ret)
4560 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4561
4562 clear_bit(__ICE_DOWN, pf->state);
4563 /* Now perform PF reset and rebuild */
4564 reset_type = ICE_RESET_PFR;
4565 /* re-enable service task for reset, but allow reset to schedule it */
4566 clear_bit(__ICE_SERVICE_DIS, pf->state);
4567
4568 if (ice_schedule_reset(pf, reset_type))
4569 dev_err(dev, "Reset during resume failed.\n");
4570
4571 clear_bit(__ICE_SUSPENDED, pf->state);
4572 ice_service_task_restart(pf);
4573
4574 /* Restart the service task */
4575 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4576
4577 return 0;
4578}
4579#endif /* CONFIG_PM */
4580
4581/**
4582 * ice_pci_err_detected - warning that PCI error has been detected
4583 * @pdev: PCI device information struct
4584 * @err: the type of PCI error
4585 *
4586 * Called to warn that something happened on the PCI bus and the error handling
4587 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4588 */
4589static pci_ers_result_t
4590ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4591{
4592 struct ice_pf *pf = pci_get_drvdata(pdev);
4593
4594 if (!pf) {
4595 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4596 __func__, err);
4597 return PCI_ERS_RESULT_DISCONNECT;
4598 }
4599
4600 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4601 ice_service_task_stop(pf);
4602
4603 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4604 set_bit(__ICE_PFR_REQ, pf->state);
4605 ice_prepare_for_reset(pf);
4606 }
4607 }
4608
4609 return PCI_ERS_RESULT_NEED_RESET;
4610}
4611
4612/**
4613 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4614 * @pdev: PCI device information struct
4615 *
4616 * Called to determine if the driver can recover from the PCI slot reset by
4617 * using a register read to determine if the device is recoverable.
4618 */
4619static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4620{
4621 struct ice_pf *pf = pci_get_drvdata(pdev);
4622 pci_ers_result_t result;
4623 int err;
4624 u32 reg;
4625
4626 err = pci_enable_device_mem(pdev);
4627 if (err) {
4628 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4629 err);
4630 result = PCI_ERS_RESULT_DISCONNECT;
4631 } else {
4632 pci_set_master(pdev);
4633 pci_restore_state(pdev);
4634 pci_save_state(pdev);
4635 pci_wake_from_d3(pdev, false);
4636
4637 /* Check for life */
4638 reg = rd32(&pf->hw, GLGEN_RTRIG);
4639 if (!reg)
4640 result = PCI_ERS_RESULT_RECOVERED;
4641 else
4642 result = PCI_ERS_RESULT_DISCONNECT;
4643 }
4644
4645 err = pci_aer_clear_nonfatal_status(pdev);
4646 if (err)
4647 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4648 err);
4649 /* non-fatal, continue */
4650
4651 return result;
4652}
4653
4654/**
4655 * ice_pci_err_resume - restart operations after PCI error recovery
4656 * @pdev: PCI device information struct
4657 *
4658 * Called to allow the driver to bring things back up after PCI error and/or
4659 * reset recovery have finished
4660 */
4661static void ice_pci_err_resume(struct pci_dev *pdev)
4662{
4663 struct ice_pf *pf = pci_get_drvdata(pdev);
4664
4665 if (!pf) {
4666 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4667 __func__);
4668 return;
4669 }
4670
4671 if (test_bit(__ICE_SUSPENDED, pf->state)) {
4672 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4673 __func__);
4674 return;
4675 }
4676
4677 ice_restore_all_vfs_msi_state(pdev);
4678
4679 ice_do_reset(pf, ICE_RESET_PFR);
4680 ice_service_task_restart(pf);
4681 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4682}
4683
4684/**
4685 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4686 * @pdev: PCI device information struct
4687 */
4688static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4689{
4690 struct ice_pf *pf = pci_get_drvdata(pdev);
4691
4692 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4693 ice_service_task_stop(pf);
4694
4695 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4696 set_bit(__ICE_PFR_REQ, pf->state);
4697 ice_prepare_for_reset(pf);
4698 }
4699 }
4700}
4701
4702/**
4703 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4704 * @pdev: PCI device information struct
4705 */
4706static void ice_pci_err_reset_done(struct pci_dev *pdev)
4707{
4708 ice_pci_err_resume(pdev);
4709}
4710
4711/* ice_pci_tbl - PCI Device ID Table
4712 *
4713 * Wildcard entries (PCI_ANY_ID) should come last
4714 * Last entry must be all 0s
4715 *
4716 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4717 * Class, Class Mask, private data (not used) }
4718 */
4719static const struct pci_device_id ice_pci_tbl[] = {
4720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4741 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4742 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4743 /* required last entry */
4744 { 0, }
4745};
4746MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4747
4748static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4749
4750static const struct pci_error_handlers ice_pci_err_handler = {
4751 .error_detected = ice_pci_err_detected,
4752 .slot_reset = ice_pci_err_slot_reset,
4753 .reset_prepare = ice_pci_err_reset_prepare,
4754 .reset_done = ice_pci_err_reset_done,
4755 .resume = ice_pci_err_resume
4756};
4757
4758static struct pci_driver ice_driver = {
4759 .name = KBUILD_MODNAME,
4760 .id_table = ice_pci_tbl,
4761 .probe = ice_probe,
4762 .remove = ice_remove,
4763#ifdef CONFIG_PM
4764 .driver.pm = &ice_pm_ops,
4765#endif /* CONFIG_PM */
4766 .shutdown = ice_shutdown,
4767 .sriov_configure = ice_sriov_configure,
4768 .err_handler = &ice_pci_err_handler
4769};
4770
4771/**
4772 * ice_module_init - Driver registration routine
4773 *
4774 * ice_module_init is the first routine called when the driver is
4775 * loaded. All it does is register with the PCI subsystem.
4776 */
4777static int __init ice_module_init(void)
4778{
4779 int status;
4780
4781 pr_info("%s\n", ice_driver_string);
4782 pr_info("%s\n", ice_copyright);
4783
4784 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4785 if (!ice_wq) {
4786 pr_err("Failed to create workqueue\n");
4787 return -ENOMEM;
4788 }
4789
4790 status = pci_register_driver(&ice_driver);
4791 if (status) {
4792 pr_err("failed to register PCI driver, err %d\n", status);
4793 destroy_workqueue(ice_wq);
4794 }
4795
4796 return status;
4797}
4798module_init(ice_module_init);
4799
4800/**
4801 * ice_module_exit - Driver exit cleanup routine
4802 *
4803 * ice_module_exit is called just before the driver is removed
4804 * from memory.
4805 */
4806static void __exit ice_module_exit(void)
4807{
4808 pci_unregister_driver(&ice_driver);
4809 destroy_workqueue(ice_wq);
4810 pr_info("module unloaded\n");
4811}
4812module_exit(ice_module_exit);
4813
4814/**
4815 * ice_set_mac_address - NDO callback to set MAC address
4816 * @netdev: network interface device structure
4817 * @pi: pointer to an address structure
4818 *
4819 * Returns 0 on success, negative on failure
4820 */
4821static int ice_set_mac_address(struct net_device *netdev, void *pi)
4822{
4823 struct ice_netdev_priv *np = netdev_priv(netdev);
4824 struct ice_vsi *vsi = np->vsi;
4825 struct ice_pf *pf = vsi->back;
4826 struct ice_hw *hw = &pf->hw;
4827 struct sockaddr *addr = pi;
4828 enum ice_status status;
4829 u8 flags = 0;
4830 int err = 0;
4831 u8 *mac;
4832
4833 mac = (u8 *)addr->sa_data;
4834
4835 if (!is_valid_ether_addr(mac))
4836 return -EADDRNOTAVAIL;
4837
4838 if (ether_addr_equal(netdev->dev_addr, mac)) {
4839 netdev_warn(netdev, "already using mac %pM\n", mac);
4840 return 0;
4841 }
4842
4843 if (test_bit(__ICE_DOWN, pf->state) ||
4844 ice_is_reset_in_progress(pf->state)) {
4845 netdev_err(netdev, "can't set mac %pM. device not ready\n",
4846 mac);
4847 return -EBUSY;
4848 }
4849
4850 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
4851 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4852 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4853 err = -EADDRNOTAVAIL;
4854 goto err_update_filters;
4855 }
4856
4857 /* Add filter for new MAC. If filter exists, just return success */
4858 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4859 if (status == ICE_ERR_ALREADY_EXISTS) {
4860 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4861 return 0;
4862 }
4863
4864 /* error if the new filter addition failed */
4865 if (status)
4866 err = -EADDRNOTAVAIL;
4867
4868err_update_filters:
4869 if (err) {
4870 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4871 mac);
4872 return err;
4873 }
4874
4875 /* change the netdev's MAC address */
4876 memcpy(netdev->dev_addr, mac, netdev->addr_len);
4877 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4878 netdev->dev_addr);
4879
4880 /* write new MAC address to the firmware */
4881 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4882 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4883 if (status) {
4884 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4885 mac, ice_stat_str(status));
4886 }
4887 return 0;
4888}
4889
4890/**
4891 * ice_set_rx_mode - NDO callback to set the netdev filters
4892 * @netdev: network interface device structure
4893 */
4894static void ice_set_rx_mode(struct net_device *netdev)
4895{
4896 struct ice_netdev_priv *np = netdev_priv(netdev);
4897 struct ice_vsi *vsi = np->vsi;
4898
4899 if (!vsi)
4900 return;
4901
4902 /* Set the flags to synchronize filters
4903 * ndo_set_rx_mode may be triggered even without a change in netdev
4904 * flags
4905 */
4906 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4907 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4908 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4909
4910 /* schedule our worker thread which will take care of
4911 * applying the new filter changes
4912 */
4913 ice_service_task_schedule(vsi->back);
4914}
4915
4916/**
4917 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4918 * @netdev: network interface device structure
4919 * @queue_index: Queue ID
4920 * @maxrate: maximum bandwidth in Mbps
4921 */
4922static int
4923ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4924{
4925 struct ice_netdev_priv *np = netdev_priv(netdev);
4926 struct ice_vsi *vsi = np->vsi;
4927 enum ice_status status;
4928 u16 q_handle;
4929 u8 tc;
4930
4931 /* Validate maxrate requested is within permitted range */
4932 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4933 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4934 maxrate, queue_index);
4935 return -EINVAL;
4936 }
4937
4938 q_handle = vsi->tx_rings[queue_index]->q_handle;
4939 tc = ice_dcb_get_tc(vsi, queue_index);
4940
4941 /* Set BW back to default, when user set maxrate to 0 */
4942 if (!maxrate)
4943 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4944 q_handle, ICE_MAX_BW);
4945 else
4946 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4947 q_handle, ICE_MAX_BW, maxrate * 1000);
4948 if (status) {
4949 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4950 ice_stat_str(status));
4951 return -EIO;
4952 }
4953
4954 return 0;
4955}
4956
4957/**
4958 * ice_fdb_add - add an entry to the hardware database
4959 * @ndm: the input from the stack
4960 * @tb: pointer to array of nladdr (unused)
4961 * @dev: the net device pointer
4962 * @addr: the MAC address entry being added
4963 * @vid: VLAN ID
4964 * @flags: instructions from stack about fdb operation
4965 * @extack: netlink extended ack
4966 */
4967static int
4968ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
4969 struct net_device *dev, const unsigned char *addr, u16 vid,
4970 u16 flags, struct netlink_ext_ack __always_unused *extack)
4971{
4972 int err;
4973
4974 if (vid) {
4975 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
4976 return -EINVAL;
4977 }
4978 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
4979 netdev_err(dev, "FDB only supports static addresses\n");
4980 return -EINVAL;
4981 }
4982
4983 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
4984 err = dev_uc_add_excl(dev, addr);
4985 else if (is_multicast_ether_addr(addr))
4986 err = dev_mc_add_excl(dev, addr);
4987 else
4988 err = -EINVAL;
4989
4990 /* Only return duplicate errors if NLM_F_EXCL is set */
4991 if (err == -EEXIST && !(flags & NLM_F_EXCL))
4992 err = 0;
4993
4994 return err;
4995}
4996
4997/**
4998 * ice_fdb_del - delete an entry from the hardware database
4999 * @ndm: the input from the stack
5000 * @tb: pointer to array of nladdr (unused)
5001 * @dev: the net device pointer
5002 * @addr: the MAC address entry being added
5003 * @vid: VLAN ID
5004 */
5005static int
5006ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5007 struct net_device *dev, const unsigned char *addr,
5008 __always_unused u16 vid)
5009{
5010 int err;
5011
5012 if (ndm->ndm_state & NUD_PERMANENT) {
5013 netdev_err(dev, "FDB only supports static addresses\n");
5014 return -EINVAL;
5015 }
5016
5017 if (is_unicast_ether_addr(addr))
5018 err = dev_uc_del(dev, addr);
5019 else if (is_multicast_ether_addr(addr))
5020 err = dev_mc_del(dev, addr);
5021 else
5022 err = -EINVAL;
5023
5024 return err;
5025}
5026
5027/**
5028 * ice_set_features - set the netdev feature flags
5029 * @netdev: ptr to the netdev being adjusted
5030 * @features: the feature set that the stack is suggesting
5031 */
5032static int
5033ice_set_features(struct net_device *netdev, netdev_features_t features)
5034{
5035 struct ice_netdev_priv *np = netdev_priv(netdev);
5036 struct ice_vsi *vsi = np->vsi;
5037 struct ice_pf *pf = vsi->back;
5038 int ret = 0;
5039
5040 /* Don't set any netdev advanced features with device in Safe Mode */
5041 if (ice_is_safe_mode(vsi->back)) {
5042 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5043 return ret;
5044 }
5045
5046 /* Do not change setting during reset */
5047 if (ice_is_reset_in_progress(pf->state)) {
5048 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5049 return -EBUSY;
5050 }
5051
5052 /* Multiple features can be changed in one call so keep features in
5053 * separate if/else statements to guarantee each feature is checked
5054 */
5055 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5056 ret = ice_vsi_manage_rss_lut(vsi, true);
5057 else if (!(features & NETIF_F_RXHASH) &&
5058 netdev->features & NETIF_F_RXHASH)
5059 ret = ice_vsi_manage_rss_lut(vsi, false);
5060
5061 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5062 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5063 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5064 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5065 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5066 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5067
5068 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5069 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5070 ret = ice_vsi_manage_vlan_insertion(vsi);
5071 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5072 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5073 ret = ice_vsi_manage_vlan_insertion(vsi);
5074
5075 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5076 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5077 ret = ice_cfg_vlan_pruning(vsi, true, false);
5078 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5079 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5080 ret = ice_cfg_vlan_pruning(vsi, false, false);
5081
5082 if ((features & NETIF_F_NTUPLE) &&
5083 !(netdev->features & NETIF_F_NTUPLE)) {
5084 ice_vsi_manage_fdir(vsi, true);
5085 ice_init_arfs(vsi);
5086 } else if (!(features & NETIF_F_NTUPLE) &&
5087 (netdev->features & NETIF_F_NTUPLE)) {
5088 ice_vsi_manage_fdir(vsi, false);
5089 ice_clear_arfs(vsi);
5090 }
5091
5092 return ret;
5093}
5094
5095/**
5096 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5097 * @vsi: VSI to setup VLAN properties for
5098 */
5099static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5100{
5101 int ret = 0;
5102
5103 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5104 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5105 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5106 ret = ice_vsi_manage_vlan_insertion(vsi);
5107
5108 return ret;
5109}
5110
5111/**
5112 * ice_vsi_cfg - Setup the VSI
5113 * @vsi: the VSI being configured
5114 *
5115 * Return 0 on success and negative value on error
5116 */
5117int ice_vsi_cfg(struct ice_vsi *vsi)
5118{
5119 int err;
5120
5121 if (vsi->netdev) {
5122 ice_set_rx_mode(vsi->netdev);
5123
5124 err = ice_vsi_vlan_setup(vsi);
5125
5126 if (err)
5127 return err;
5128 }
5129 ice_vsi_cfg_dcb_rings(vsi);
5130
5131 err = ice_vsi_cfg_lan_txqs(vsi);
5132 if (!err && ice_is_xdp_ena_vsi(vsi))
5133 err = ice_vsi_cfg_xdp_txqs(vsi);
5134 if (!err)
5135 err = ice_vsi_cfg_rxqs(vsi);
5136
5137 return err;
5138}
5139
5140/**
5141 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5142 * @vsi: the VSI being configured
5143 */
5144static void ice_napi_enable_all(struct ice_vsi *vsi)
5145{
5146 int q_idx;
5147
5148 if (!vsi->netdev)
5149 return;
5150
5151 ice_for_each_q_vector(vsi, q_idx) {
5152 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5153
5154 if (q_vector->rx.ring || q_vector->tx.ring)
5155 napi_enable(&q_vector->napi);
5156 }
5157}
5158
5159/**
5160 * ice_up_complete - Finish the last steps of bringing up a connection
5161 * @vsi: The VSI being configured
5162 *
5163 * Return 0 on success and negative value on error
5164 */
5165static int ice_up_complete(struct ice_vsi *vsi)
5166{
5167 struct ice_pf *pf = vsi->back;
5168 int err;
5169
5170 ice_vsi_cfg_msix(vsi);
5171
5172 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5173 * Tx queue group list was configured and the context bits were
5174 * programmed using ice_vsi_cfg_txqs
5175 */
5176 err = ice_vsi_start_all_rx_rings(vsi);
5177 if (err)
5178 return err;
5179
5180 clear_bit(__ICE_DOWN, vsi->state);
5181 ice_napi_enable_all(vsi);
5182 ice_vsi_ena_irq(vsi);
5183
5184 if (vsi->port_info &&
5185 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5186 vsi->netdev) {
5187 ice_print_link_msg(vsi, true);
5188 netif_tx_start_all_queues(vsi->netdev);
5189 netif_carrier_on(vsi->netdev);
5190 }
5191
5192 ice_service_task_schedule(pf);
5193
5194 return 0;
5195}
5196
5197/**
5198 * ice_up - Bring the connection back up after being down
5199 * @vsi: VSI being configured
5200 */
5201int ice_up(struct ice_vsi *vsi)
5202{
5203 int err;
5204
5205 err = ice_vsi_cfg(vsi);
5206 if (!err)
5207 err = ice_up_complete(vsi);
5208
5209 return err;
5210}
5211
5212/**
5213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5214 * @ring: Tx or Rx ring to read stats from
5215 * @pkts: packets stats counter
5216 * @bytes: bytes stats counter
5217 *
5218 * This function fetches stats from the ring considering the atomic operations
5219 * that needs to be performed to read u64 values in 32 bit machine.
5220 */
5221static void
5222ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5223{
5224 unsigned int start;
5225 *pkts = 0;
5226 *bytes = 0;
5227
5228 if (!ring)
5229 return;
5230 do {
5231 start = u64_stats_fetch_begin_irq(&ring->syncp);
5232 *pkts = ring->stats.pkts;
5233 *bytes = ring->stats.bytes;
5234 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5235}
5236
5237/**
5238 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5239 * @vsi: the VSI to be updated
5240 * @rings: rings to work on
5241 * @count: number of rings
5242 */
5243static void
5244ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5245 u16 count)
5246{
5247 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5248 u16 i;
5249
5250 for (i = 0; i < count; i++) {
5251 struct ice_ring *ring;
5252 u64 pkts, bytes;
5253
5254 ring = READ_ONCE(rings[i]);
5255 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5256 vsi_stats->tx_packets += pkts;
5257 vsi_stats->tx_bytes += bytes;
5258 vsi->tx_restart += ring->tx_stats.restart_q;
5259 vsi->tx_busy += ring->tx_stats.tx_busy;
5260 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5261 }
5262}
5263
5264/**
5265 * ice_update_vsi_ring_stats - Update VSI stats counters
5266 * @vsi: the VSI to be updated
5267 */
5268static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5269{
5270 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5271 struct ice_ring *ring;
5272 u64 pkts, bytes;
5273 int i;
5274
5275 /* reset netdev stats */
5276 vsi_stats->tx_packets = 0;
5277 vsi_stats->tx_bytes = 0;
5278 vsi_stats->rx_packets = 0;
5279 vsi_stats->rx_bytes = 0;
5280
5281 /* reset non-netdev (extended) stats */
5282 vsi->tx_restart = 0;
5283 vsi->tx_busy = 0;
5284 vsi->tx_linearize = 0;
5285 vsi->rx_buf_failed = 0;
5286 vsi->rx_page_failed = 0;
5287 vsi->rx_gro_dropped = 0;
5288
5289 rcu_read_lock();
5290
5291 /* update Tx rings counters */
5292 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5293
5294 /* update Rx rings counters */
5295 ice_for_each_rxq(vsi, i) {
5296 ring = READ_ONCE(vsi->rx_rings[i]);
5297 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5298 vsi_stats->rx_packets += pkts;
5299 vsi_stats->rx_bytes += bytes;
5300 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5301 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5302 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5303 }
5304
5305 /* update XDP Tx rings counters */
5306 if (ice_is_xdp_ena_vsi(vsi))
5307 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5308 vsi->num_xdp_txq);
5309
5310 rcu_read_unlock();
5311}
5312
5313/**
5314 * ice_update_vsi_stats - Update VSI stats counters
5315 * @vsi: the VSI to be updated
5316 */
5317void ice_update_vsi_stats(struct ice_vsi *vsi)
5318{
5319 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5320 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5321 struct ice_pf *pf = vsi->back;
5322
5323 if (test_bit(__ICE_DOWN, vsi->state) ||
5324 test_bit(__ICE_CFG_BUSY, pf->state))
5325 return;
5326
5327 /* get stats as recorded by Tx/Rx rings */
5328 ice_update_vsi_ring_stats(vsi);
5329
5330 /* get VSI stats as recorded by the hardware */
5331 ice_update_eth_stats(vsi);
5332
5333 cur_ns->tx_errors = cur_es->tx_errors;
5334 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5335 cur_ns->tx_dropped = cur_es->tx_discards;
5336 cur_ns->multicast = cur_es->rx_multicast;
5337
5338 /* update some more netdev stats if this is main VSI */
5339 if (vsi->type == ICE_VSI_PF) {
5340 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5341 cur_ns->rx_errors = pf->stats.crc_errors +
5342 pf->stats.illegal_bytes +
5343 pf->stats.rx_len_errors +
5344 pf->stats.rx_undersize +
5345 pf->hw_csum_rx_error +
5346 pf->stats.rx_jabber +
5347 pf->stats.rx_fragments +
5348 pf->stats.rx_oversize;
5349 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5350 /* record drops from the port level */
5351 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5352 }
5353}
5354
5355/**
5356 * ice_update_pf_stats - Update PF port stats counters
5357 * @pf: PF whose stats needs to be updated
5358 */
5359void ice_update_pf_stats(struct ice_pf *pf)
5360{
5361 struct ice_hw_port_stats *prev_ps, *cur_ps;
5362 struct ice_hw *hw = &pf->hw;
5363 u16 fd_ctr_base;
5364 u8 port;
5365
5366 port = hw->port_info->lport;
5367 prev_ps = &pf->stats_prev;
5368 cur_ps = &pf->stats;
5369
5370 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5371 &prev_ps->eth.rx_bytes,
5372 &cur_ps->eth.rx_bytes);
5373
5374 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5375 &prev_ps->eth.rx_unicast,
5376 &cur_ps->eth.rx_unicast);
5377
5378 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5379 &prev_ps->eth.rx_multicast,
5380 &cur_ps->eth.rx_multicast);
5381
5382 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5383 &prev_ps->eth.rx_broadcast,
5384 &cur_ps->eth.rx_broadcast);
5385
5386 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5387 &prev_ps->eth.rx_discards,
5388 &cur_ps->eth.rx_discards);
5389
5390 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5391 &prev_ps->eth.tx_bytes,
5392 &cur_ps->eth.tx_bytes);
5393
5394 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5395 &prev_ps->eth.tx_unicast,
5396 &cur_ps->eth.tx_unicast);
5397
5398 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5399 &prev_ps->eth.tx_multicast,
5400 &cur_ps->eth.tx_multicast);
5401
5402 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5403 &prev_ps->eth.tx_broadcast,
5404 &cur_ps->eth.tx_broadcast);
5405
5406 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5407 &prev_ps->tx_dropped_link_down,
5408 &cur_ps->tx_dropped_link_down);
5409
5410 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5411 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5412
5413 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5414 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5415
5416 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5417 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5418
5419 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5420 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5421
5422 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5423 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5424
5425 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5426 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5427
5428 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5429 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5430
5431 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5432 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5433
5434 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5435 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5436
5437 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5438 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5439
5440 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5441 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5442
5443 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5444 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5445
5446 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5447 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5448
5449 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5450 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5451
5452 fd_ctr_base = hw->fd_ctr_base;
5453
5454 ice_stat_update40(hw,
5455 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5456 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5457 &cur_ps->fd_sb_match);
5458 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5459 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5460
5461 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5462 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5463
5464 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5465 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5466
5467 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5468 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5469
5470 ice_update_dcb_stats(pf);
5471
5472 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5473 &prev_ps->crc_errors, &cur_ps->crc_errors);
5474
5475 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5476 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5477
5478 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5479 &prev_ps->mac_local_faults,
5480 &cur_ps->mac_local_faults);
5481
5482 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5483 &prev_ps->mac_remote_faults,
5484 &cur_ps->mac_remote_faults);
5485
5486 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5487 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5488
5489 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5490 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5491
5492 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5493 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5494
5495 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5496 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5497
5498 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5499 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5500
5501 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5502
5503 pf->stat_prev_loaded = true;
5504}
5505
5506/**
5507 * ice_get_stats64 - get statistics for network device structure
5508 * @netdev: network interface device structure
5509 * @stats: main device statistics structure
5510 */
5511static
5512void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5513{
5514 struct ice_netdev_priv *np = netdev_priv(netdev);
5515 struct rtnl_link_stats64 *vsi_stats;
5516 struct ice_vsi *vsi = np->vsi;
5517
5518 vsi_stats = &vsi->net_stats;
5519
5520 if (!vsi->num_txq || !vsi->num_rxq)
5521 return;
5522
5523 /* netdev packet/byte stats come from ring counter. These are obtained
5524 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5525 * But, only call the update routine and read the registers if VSI is
5526 * not down.
5527 */
5528 if (!test_bit(__ICE_DOWN, vsi->state))
5529 ice_update_vsi_ring_stats(vsi);
5530 stats->tx_packets = vsi_stats->tx_packets;
5531 stats->tx_bytes = vsi_stats->tx_bytes;
5532 stats->rx_packets = vsi_stats->rx_packets;
5533 stats->rx_bytes = vsi_stats->rx_bytes;
5534
5535 /* The rest of the stats can be read from the hardware but instead we
5536 * just return values that the watchdog task has already obtained from
5537 * the hardware.
5538 */
5539 stats->multicast = vsi_stats->multicast;
5540 stats->tx_errors = vsi_stats->tx_errors;
5541 stats->tx_dropped = vsi_stats->tx_dropped;
5542 stats->rx_errors = vsi_stats->rx_errors;
5543 stats->rx_dropped = vsi_stats->rx_dropped;
5544 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5545 stats->rx_length_errors = vsi_stats->rx_length_errors;
5546}
5547
5548/**
5549 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5550 * @vsi: VSI having NAPI disabled
5551 */
5552static void ice_napi_disable_all(struct ice_vsi *vsi)
5553{
5554 int q_idx;
5555
5556 if (!vsi->netdev)
5557 return;
5558
5559 ice_for_each_q_vector(vsi, q_idx) {
5560 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5561
5562 if (q_vector->rx.ring || q_vector->tx.ring)
5563 napi_disable(&q_vector->napi);
5564 }
5565}
5566
5567/**
5568 * ice_down - Shutdown the connection
5569 * @vsi: The VSI being stopped
5570 */
5571int ice_down(struct ice_vsi *vsi)
5572{
5573 int i, tx_err, rx_err, link_err = 0;
5574
5575 /* Caller of this function is expected to set the
5576 * vsi->state __ICE_DOWN bit
5577 */
5578 if (vsi->netdev) {
5579 netif_carrier_off(vsi->netdev);
5580 netif_tx_disable(vsi->netdev);
5581 }
5582
5583 ice_vsi_dis_irq(vsi);
5584
5585 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5586 if (tx_err)
5587 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5588 vsi->vsi_num, tx_err);
5589 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5590 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5591 if (tx_err)
5592 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5593 vsi->vsi_num, tx_err);
5594 }
5595
5596 rx_err = ice_vsi_stop_all_rx_rings(vsi);
5597 if (rx_err)
5598 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5599 vsi->vsi_num, rx_err);
5600
5601 ice_napi_disable_all(vsi);
5602
5603 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5604 link_err = ice_force_phys_link_state(vsi, false);
5605 if (link_err)
5606 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5607 vsi->vsi_num, link_err);
5608 }
5609
5610 ice_for_each_txq(vsi, i)
5611 ice_clean_tx_ring(vsi->tx_rings[i]);
5612
5613 ice_for_each_rxq(vsi, i)
5614 ice_clean_rx_ring(vsi->rx_rings[i]);
5615
5616 if (tx_err || rx_err || link_err) {
5617 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5618 vsi->vsi_num, vsi->vsw->sw_id);
5619 return -EIO;
5620 }
5621
5622 return 0;
5623}
5624
5625/**
5626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5627 * @vsi: VSI having resources allocated
5628 *
5629 * Return 0 on success, negative on failure
5630 */
5631int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5632{
5633 int i, err = 0;
5634
5635 if (!vsi->num_txq) {
5636 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5637 vsi->vsi_num);
5638 return -EINVAL;
5639 }
5640
5641 ice_for_each_txq(vsi, i) {
5642 struct ice_ring *ring = vsi->tx_rings[i];
5643
5644 if (!ring)
5645 return -EINVAL;
5646
5647 ring->netdev = vsi->netdev;
5648 err = ice_setup_tx_ring(ring);
5649 if (err)
5650 break;
5651 }
5652
5653 return err;
5654}
5655
5656/**
5657 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5658 * @vsi: VSI having resources allocated
5659 *
5660 * Return 0 on success, negative on failure
5661 */
5662int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5663{
5664 int i, err = 0;
5665
5666 if (!vsi->num_rxq) {
5667 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5668 vsi->vsi_num);
5669 return -EINVAL;
5670 }
5671
5672 ice_for_each_rxq(vsi, i) {
5673 struct ice_ring *ring = vsi->rx_rings[i];
5674
5675 if (!ring)
5676 return -EINVAL;
5677
5678 ring->netdev = vsi->netdev;
5679 err = ice_setup_rx_ring(ring);
5680 if (err)
5681 break;
5682 }
5683
5684 return err;
5685}
5686
5687/**
5688 * ice_vsi_open_ctrl - open control VSI for use
5689 * @vsi: the VSI to open
5690 *
5691 * Initialization of the Control VSI
5692 *
5693 * Returns 0 on success, negative value on error
5694 */
5695int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5696{
5697 char int_name[ICE_INT_NAME_STR_LEN];
5698 struct ice_pf *pf = vsi->back;
5699 struct device *dev;
5700 int err;
5701
5702 dev = ice_pf_to_dev(pf);
5703 /* allocate descriptors */
5704 err = ice_vsi_setup_tx_rings(vsi);
5705 if (err)
5706 goto err_setup_tx;
5707
5708 err = ice_vsi_setup_rx_rings(vsi);
5709 if (err)
5710 goto err_setup_rx;
5711
5712 err = ice_vsi_cfg(vsi);
5713 if (err)
5714 goto err_setup_rx;
5715
5716 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5717 dev_driver_string(dev), dev_name(dev));
5718 err = ice_vsi_req_irq_msix(vsi, int_name);
5719 if (err)
5720 goto err_setup_rx;
5721
5722 ice_vsi_cfg_msix(vsi);
5723
5724 err = ice_vsi_start_all_rx_rings(vsi);
5725 if (err)
5726 goto err_up_complete;
5727
5728 clear_bit(__ICE_DOWN, vsi->state);
5729 ice_vsi_ena_irq(vsi);
5730
5731 return 0;
5732
5733err_up_complete:
5734 ice_down(vsi);
5735err_setup_rx:
5736 ice_vsi_free_rx_rings(vsi);
5737err_setup_tx:
5738 ice_vsi_free_tx_rings(vsi);
5739
5740 return err;
5741}
5742
5743/**
5744 * ice_vsi_open - Called when a network interface is made active
5745 * @vsi: the VSI to open
5746 *
5747 * Initialization of the VSI
5748 *
5749 * Returns 0 on success, negative value on error
5750 */
5751static int ice_vsi_open(struct ice_vsi *vsi)
5752{
5753 char int_name[ICE_INT_NAME_STR_LEN];
5754 struct ice_pf *pf = vsi->back;
5755 int err;
5756
5757 /* allocate descriptors */
5758 err = ice_vsi_setup_tx_rings(vsi);
5759 if (err)
5760 goto err_setup_tx;
5761
5762 err = ice_vsi_setup_rx_rings(vsi);
5763 if (err)
5764 goto err_setup_rx;
5765
5766 err = ice_vsi_cfg(vsi);
5767 if (err)
5768 goto err_setup_rx;
5769
5770 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5771 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5772 err = ice_vsi_req_irq_msix(vsi, int_name);
5773 if (err)
5774 goto err_setup_rx;
5775
5776 /* Notify the stack of the actual queue counts. */
5777 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5778 if (err)
5779 goto err_set_qs;
5780
5781 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5782 if (err)
5783 goto err_set_qs;
5784
5785 err = ice_up_complete(vsi);
5786 if (err)
5787 goto err_up_complete;
5788
5789 return 0;
5790
5791err_up_complete:
5792 ice_down(vsi);
5793err_set_qs:
5794 ice_vsi_free_irq(vsi);
5795err_setup_rx:
5796 ice_vsi_free_rx_rings(vsi);
5797err_setup_tx:
5798 ice_vsi_free_tx_rings(vsi);
5799
5800 return err;
5801}
5802
5803/**
5804 * ice_vsi_release_all - Delete all VSIs
5805 * @pf: PF from which all VSIs are being removed
5806 */
5807static void ice_vsi_release_all(struct ice_pf *pf)
5808{
5809 int err, i;
5810
5811 if (!pf->vsi)
5812 return;
5813
5814 ice_for_each_vsi(pf, i) {
5815 if (!pf->vsi[i])
5816 continue;
5817
5818 err = ice_vsi_release(pf->vsi[i]);
5819 if (err)
5820 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5821 i, err, pf->vsi[i]->vsi_num);
5822 }
5823}
5824
5825/**
5826 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5827 * @pf: pointer to the PF instance
5828 * @type: VSI type to rebuild
5829 *
5830 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5831 */
5832static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5833{
5834 struct device *dev = ice_pf_to_dev(pf);
5835 enum ice_status status;
5836 int i, err;
5837
5838 ice_for_each_vsi(pf, i) {
5839 struct ice_vsi *vsi = pf->vsi[i];
5840
5841 if (!vsi || vsi->type != type)
5842 continue;
5843
5844 /* rebuild the VSI */
5845 err = ice_vsi_rebuild(vsi, true);
5846 if (err) {
5847 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5848 err, vsi->idx, ice_vsi_type_str(type));
5849 return err;
5850 }
5851
5852 /* replay filters for the VSI */
5853 status = ice_replay_vsi(&pf->hw, vsi->idx);
5854 if (status) {
5855 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5856 ice_stat_str(status), vsi->idx,
5857 ice_vsi_type_str(type));
5858 return -EIO;
5859 }
5860
5861 /* Re-map HW VSI number, using VSI handle that has been
5862 * previously validated in ice_replay_vsi() call above
5863 */
5864 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5865
5866 /* enable the VSI */
5867 err = ice_ena_vsi(vsi, false);
5868 if (err) {
5869 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5870 err, vsi->idx, ice_vsi_type_str(type));
5871 return err;
5872 }
5873
5874 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5875 ice_vsi_type_str(type));
5876 }
5877
5878 return 0;
5879}
5880
5881/**
5882 * ice_update_pf_netdev_link - Update PF netdev link status
5883 * @pf: pointer to the PF instance
5884 */
5885static void ice_update_pf_netdev_link(struct ice_pf *pf)
5886{
5887 bool link_up;
5888 int i;
5889
5890 ice_for_each_vsi(pf, i) {
5891 struct ice_vsi *vsi = pf->vsi[i];
5892
5893 if (!vsi || vsi->type != ICE_VSI_PF)
5894 return;
5895
5896 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5897 if (link_up) {
5898 netif_carrier_on(pf->vsi[i]->netdev);
5899 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5900 } else {
5901 netif_carrier_off(pf->vsi[i]->netdev);
5902 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5903 }
5904 }
5905}
5906
5907/**
5908 * ice_rebuild - rebuild after reset
5909 * @pf: PF to rebuild
5910 * @reset_type: type of reset
5911 *
5912 * Do not rebuild VF VSI in this flow because that is already handled via
5913 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5914 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5915 * to reset/rebuild all the VF VSI twice.
5916 */
5917static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5918{
5919 struct device *dev = ice_pf_to_dev(pf);
5920 struct ice_hw *hw = &pf->hw;
5921 enum ice_status ret;
5922 int err;
5923
5924 if (test_bit(__ICE_DOWN, pf->state))
5925 goto clear_recovery;
5926
5927 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5928
5929 ret = ice_init_all_ctrlq(hw);
5930 if (ret) {
5931 dev_err(dev, "control queues init failed %s\n",
5932 ice_stat_str(ret));
5933 goto err_init_ctrlq;
5934 }
5935
5936 /* if DDP was previously loaded successfully */
5937 if (!ice_is_safe_mode(pf)) {
5938 /* reload the SW DB of filter tables */
5939 if (reset_type == ICE_RESET_PFR)
5940 ice_fill_blk_tbls(hw);
5941 else
5942 /* Reload DDP Package after CORER/GLOBR reset */
5943 ice_load_pkg(NULL, pf);
5944 }
5945
5946 ret = ice_clear_pf_cfg(hw);
5947 if (ret) {
5948 dev_err(dev, "clear PF configuration failed %s\n",
5949 ice_stat_str(ret));
5950 goto err_init_ctrlq;
5951 }
5952
5953 if (pf->first_sw->dflt_vsi_ena)
5954 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5955 /* clear the default VSI configuration if it exists */
5956 pf->first_sw->dflt_vsi = NULL;
5957 pf->first_sw->dflt_vsi_ena = false;
5958
5959 ice_clear_pxe_mode(hw);
5960
5961 ret = ice_get_caps(hw);
5962 if (ret) {
5963 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5964 goto err_init_ctrlq;
5965 }
5966
5967 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
5968 if (ret) {
5969 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
5970 goto err_init_ctrlq;
5971 }
5972
5973 err = ice_sched_init_port(hw->port_info);
5974 if (err)
5975 goto err_sched_init_port;
5976
5977 /* start misc vector */
5978 err = ice_req_irq_msix_misc(pf);
5979 if (err) {
5980 dev_err(dev, "misc vector setup failed: %d\n", err);
5981 goto err_sched_init_port;
5982 }
5983
5984 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
5985 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
5986 if (!rd32(hw, PFQF_FD_SIZE)) {
5987 u16 unused, guar, b_effort;
5988
5989 guar = hw->func_caps.fd_fltr_guar;
5990 b_effort = hw->func_caps.fd_fltr_best_effort;
5991
5992 /* force guaranteed filter pool for PF */
5993 ice_alloc_fd_guar_item(hw, &unused, guar);
5994 /* force shared filter pool for PF */
5995 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
5996 }
5997 }
5998
5999 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6000 ice_dcb_rebuild(pf);
6001
6002 /* rebuild PF VSI */
6003 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6004 if (err) {
6005 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6006 goto err_vsi_rebuild;
6007 }
6008
6009 /* If Flow Director is active */
6010 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6011 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6012 if (err) {
6013 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6014 goto err_vsi_rebuild;
6015 }
6016
6017 /* replay HW Flow Director recipes */
6018 if (hw->fdir_prof)
6019 ice_fdir_replay_flows(hw);
6020
6021 /* replay Flow Director filters */
6022 ice_fdir_replay_fltrs(pf);
6023
6024 ice_rebuild_arfs(pf);
6025 }
6026
6027 ice_update_pf_netdev_link(pf);
6028
6029 /* tell the firmware we are up */
6030 ret = ice_send_version(pf);
6031 if (ret) {
6032 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6033 ice_stat_str(ret));
6034 goto err_vsi_rebuild;
6035 }
6036
6037 ice_replay_post(hw);
6038
6039 /* if we get here, reset flow is successful */
6040 clear_bit(__ICE_RESET_FAILED, pf->state);
6041 return;
6042
6043err_vsi_rebuild:
6044err_sched_init_port:
6045 ice_sched_cleanup_all(hw);
6046err_init_ctrlq:
6047 ice_shutdown_all_ctrlq(hw);
6048 set_bit(__ICE_RESET_FAILED, pf->state);
6049clear_recovery:
6050 /* set this bit in PF state to control service task scheduling */
6051 set_bit(__ICE_NEEDS_RESTART, pf->state);
6052 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6053}
6054
6055/**
6056 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6057 * @vsi: Pointer to VSI structure
6058 */
6059static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6060{
6061 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6062 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6063 else
6064 return ICE_RXBUF_3072;
6065}
6066
6067/**
6068 * ice_change_mtu - NDO callback to change the MTU
6069 * @netdev: network interface device structure
6070 * @new_mtu: new value for maximum frame size
6071 *
6072 * Returns 0 on success, negative on failure
6073 */
6074static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6075{
6076 struct ice_netdev_priv *np = netdev_priv(netdev);
6077 struct ice_vsi *vsi = np->vsi;
6078 struct ice_pf *pf = vsi->back;
6079 u8 count = 0;
6080
6081 if (new_mtu == (int)netdev->mtu) {
6082 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6083 return 0;
6084 }
6085
6086 if (ice_is_xdp_ena_vsi(vsi)) {
6087 int frame_size = ice_max_xdp_frame_size(vsi);
6088
6089 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6090 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6091 frame_size - ICE_ETH_PKT_HDR_PAD);
6092 return -EINVAL;
6093 }
6094 }
6095
6096 if (new_mtu < (int)netdev->min_mtu) {
6097 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6098 netdev->min_mtu);
6099 return -EINVAL;
6100 } else if (new_mtu > (int)netdev->max_mtu) {
6101 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6102 netdev->min_mtu);
6103 return -EINVAL;
6104 }
6105 /* if a reset is in progress, wait for some time for it to complete */
6106 do {
6107 if (ice_is_reset_in_progress(pf->state)) {
6108 count++;
6109 usleep_range(1000, 2000);
6110 } else {
6111 break;
6112 }
6113
6114 } while (count < 100);
6115
6116 if (count == 100) {
6117 netdev_err(netdev, "can't change MTU. Device is busy\n");
6118 return -EBUSY;
6119 }
6120
6121 netdev->mtu = (unsigned int)new_mtu;
6122
6123 /* if VSI is up, bring it down and then back up */
6124 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6125 int err;
6126
6127 err = ice_down(vsi);
6128 if (err) {
6129 netdev_err(netdev, "change MTU if_up err %d\n", err);
6130 return err;
6131 }
6132
6133 err = ice_up(vsi);
6134 if (err) {
6135 netdev_err(netdev, "change MTU if_up err %d\n", err);
6136 return err;
6137 }
6138 }
6139
6140 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6141 return 0;
6142}
6143
6144/**
6145 * ice_aq_str - convert AQ err code to a string
6146 * @aq_err: the AQ error code to convert
6147 */
6148const char *ice_aq_str(enum ice_aq_err aq_err)
6149{
6150 switch (aq_err) {
6151 case ICE_AQ_RC_OK:
6152 return "OK";
6153 case ICE_AQ_RC_EPERM:
6154 return "ICE_AQ_RC_EPERM";
6155 case ICE_AQ_RC_ENOENT:
6156 return "ICE_AQ_RC_ENOENT";
6157 case ICE_AQ_RC_ENOMEM:
6158 return "ICE_AQ_RC_ENOMEM";
6159 case ICE_AQ_RC_EBUSY:
6160 return "ICE_AQ_RC_EBUSY";
6161 case ICE_AQ_RC_EEXIST:
6162 return "ICE_AQ_RC_EEXIST";
6163 case ICE_AQ_RC_EINVAL:
6164 return "ICE_AQ_RC_EINVAL";
6165 case ICE_AQ_RC_ENOSPC:
6166 return "ICE_AQ_RC_ENOSPC";
6167 case ICE_AQ_RC_ENOSYS:
6168 return "ICE_AQ_RC_ENOSYS";
6169 case ICE_AQ_RC_EMODE:
6170 return "ICE_AQ_RC_EMODE";
6171 case ICE_AQ_RC_ENOSEC:
6172 return "ICE_AQ_RC_ENOSEC";
6173 case ICE_AQ_RC_EBADSIG:
6174 return "ICE_AQ_RC_EBADSIG";
6175 case ICE_AQ_RC_ESVN:
6176 return "ICE_AQ_RC_ESVN";
6177 case ICE_AQ_RC_EBADMAN:
6178 return "ICE_AQ_RC_EBADMAN";
6179 case ICE_AQ_RC_EBADBUF:
6180 return "ICE_AQ_RC_EBADBUF";
6181 }
6182
6183 return "ICE_AQ_RC_UNKNOWN";
6184}
6185
6186/**
6187 * ice_stat_str - convert status err code to a string
6188 * @stat_err: the status error code to convert
6189 */
6190const char *ice_stat_str(enum ice_status stat_err)
6191{
6192 switch (stat_err) {
6193 case ICE_SUCCESS:
6194 return "OK";
6195 case ICE_ERR_PARAM:
6196 return "ICE_ERR_PARAM";
6197 case ICE_ERR_NOT_IMPL:
6198 return "ICE_ERR_NOT_IMPL";
6199 case ICE_ERR_NOT_READY:
6200 return "ICE_ERR_NOT_READY";
6201 case ICE_ERR_NOT_SUPPORTED:
6202 return "ICE_ERR_NOT_SUPPORTED";
6203 case ICE_ERR_BAD_PTR:
6204 return "ICE_ERR_BAD_PTR";
6205 case ICE_ERR_INVAL_SIZE:
6206 return "ICE_ERR_INVAL_SIZE";
6207 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6208 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6209 case ICE_ERR_RESET_FAILED:
6210 return "ICE_ERR_RESET_FAILED";
6211 case ICE_ERR_FW_API_VER:
6212 return "ICE_ERR_FW_API_VER";
6213 case ICE_ERR_NO_MEMORY:
6214 return "ICE_ERR_NO_MEMORY";
6215 case ICE_ERR_CFG:
6216 return "ICE_ERR_CFG";
6217 case ICE_ERR_OUT_OF_RANGE:
6218 return "ICE_ERR_OUT_OF_RANGE";
6219 case ICE_ERR_ALREADY_EXISTS:
6220 return "ICE_ERR_ALREADY_EXISTS";
6221 case ICE_ERR_NVM_CHECKSUM:
6222 return "ICE_ERR_NVM_CHECKSUM";
6223 case ICE_ERR_BUF_TOO_SHORT:
6224 return "ICE_ERR_BUF_TOO_SHORT";
6225 case ICE_ERR_NVM_BLANK_MODE:
6226 return "ICE_ERR_NVM_BLANK_MODE";
6227 case ICE_ERR_IN_USE:
6228 return "ICE_ERR_IN_USE";
6229 case ICE_ERR_MAX_LIMIT:
6230 return "ICE_ERR_MAX_LIMIT";
6231 case ICE_ERR_RESET_ONGOING:
6232 return "ICE_ERR_RESET_ONGOING";
6233 case ICE_ERR_HW_TABLE:
6234 return "ICE_ERR_HW_TABLE";
6235 case ICE_ERR_DOES_NOT_EXIST:
6236 return "ICE_ERR_DOES_NOT_EXIST";
6237 case ICE_ERR_FW_DDP_MISMATCH:
6238 return "ICE_ERR_FW_DDP_MISMATCH";
6239 case ICE_ERR_AQ_ERROR:
6240 return "ICE_ERR_AQ_ERROR";
6241 case ICE_ERR_AQ_TIMEOUT:
6242 return "ICE_ERR_AQ_TIMEOUT";
6243 case ICE_ERR_AQ_FULL:
6244 return "ICE_ERR_AQ_FULL";
6245 case ICE_ERR_AQ_NO_WORK:
6246 return "ICE_ERR_AQ_NO_WORK";
6247 case ICE_ERR_AQ_EMPTY:
6248 return "ICE_ERR_AQ_EMPTY";
6249 case ICE_ERR_AQ_FW_CRITICAL:
6250 return "ICE_ERR_AQ_FW_CRITICAL";
6251 }
6252
6253 return "ICE_ERR_UNKNOWN";
6254}
6255
6256/**
6257 * ice_set_rss - Set RSS keys and lut
6258 * @vsi: Pointer to VSI structure
6259 * @seed: RSS hash seed
6260 * @lut: Lookup table
6261 * @lut_size: Lookup table size
6262 *
6263 * Returns 0 on success, negative on failure
6264 */
6265int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6266{
6267 struct ice_pf *pf = vsi->back;
6268 struct ice_hw *hw = &pf->hw;
6269 enum ice_status status;
6270 struct device *dev;
6271
6272 dev = ice_pf_to_dev(pf);
6273 if (seed) {
6274 struct ice_aqc_get_set_rss_keys *buf =
6275 (struct ice_aqc_get_set_rss_keys *)seed;
6276
6277 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6278
6279 if (status) {
6280 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6281 ice_stat_str(status),
6282 ice_aq_str(hw->adminq.sq_last_status));
6283 return -EIO;
6284 }
6285 }
6286
6287 if (lut) {
6288 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6289 lut, lut_size);
6290 if (status) {
6291 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6292 ice_stat_str(status),
6293 ice_aq_str(hw->adminq.sq_last_status));
6294 return -EIO;
6295 }
6296 }
6297
6298 return 0;
6299}
6300
6301/**
6302 * ice_get_rss - Get RSS keys and lut
6303 * @vsi: Pointer to VSI structure
6304 * @seed: Buffer to store the keys
6305 * @lut: Buffer to store the lookup table entries
6306 * @lut_size: Size of buffer to store the lookup table entries
6307 *
6308 * Returns 0 on success, negative on failure
6309 */
6310int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6311{
6312 struct ice_pf *pf = vsi->back;
6313 struct ice_hw *hw = &pf->hw;
6314 enum ice_status status;
6315 struct device *dev;
6316
6317 dev = ice_pf_to_dev(pf);
6318 if (seed) {
6319 struct ice_aqc_get_set_rss_keys *buf =
6320 (struct ice_aqc_get_set_rss_keys *)seed;
6321
6322 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6323 if (status) {
6324 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6325 ice_stat_str(status),
6326 ice_aq_str(hw->adminq.sq_last_status));
6327 return -EIO;
6328 }
6329 }
6330
6331 if (lut) {
6332 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6333 lut, lut_size);
6334 if (status) {
6335 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6336 ice_stat_str(status),
6337 ice_aq_str(hw->adminq.sq_last_status));
6338 return -EIO;
6339 }
6340 }
6341
6342 return 0;
6343}
6344
6345/**
6346 * ice_bridge_getlink - Get the hardware bridge mode
6347 * @skb: skb buff
6348 * @pid: process ID
6349 * @seq: RTNL message seq
6350 * @dev: the netdev being configured
6351 * @filter_mask: filter mask passed in
6352 * @nlflags: netlink flags passed in
6353 *
6354 * Return the bridge mode (VEB/VEPA)
6355 */
6356static int
6357ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6358 struct net_device *dev, u32 filter_mask, int nlflags)
6359{
6360 struct ice_netdev_priv *np = netdev_priv(dev);
6361 struct ice_vsi *vsi = np->vsi;
6362 struct ice_pf *pf = vsi->back;
6363 u16 bmode;
6364
6365 bmode = pf->first_sw->bridge_mode;
6366
6367 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6368 filter_mask, NULL);
6369}
6370
6371/**
6372 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6373 * @vsi: Pointer to VSI structure
6374 * @bmode: Hardware bridge mode (VEB/VEPA)
6375 *
6376 * Returns 0 on success, negative on failure
6377 */
6378static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6379{
6380 struct ice_aqc_vsi_props *vsi_props;
6381 struct ice_hw *hw = &vsi->back->hw;
6382 struct ice_vsi_ctx *ctxt;
6383 enum ice_status status;
6384 int ret = 0;
6385
6386 vsi_props = &vsi->info;
6387
6388 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6389 if (!ctxt)
6390 return -ENOMEM;
6391
6392 ctxt->info = vsi->info;
6393
6394 if (bmode == BRIDGE_MODE_VEB)
6395 /* change from VEPA to VEB mode */
6396 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6397 else
6398 /* change from VEB to VEPA mode */
6399 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6400 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6401
6402 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6403 if (status) {
6404 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6405 bmode, ice_stat_str(status),
6406 ice_aq_str(hw->adminq.sq_last_status));
6407 ret = -EIO;
6408 goto out;
6409 }
6410 /* Update sw flags for book keeping */
6411 vsi_props->sw_flags = ctxt->info.sw_flags;
6412
6413out:
6414 kfree(ctxt);
6415 return ret;
6416}
6417
6418/**
6419 * ice_bridge_setlink - Set the hardware bridge mode
6420 * @dev: the netdev being configured
6421 * @nlh: RTNL message
6422 * @flags: bridge setlink flags
6423 * @extack: netlink extended ack
6424 *
6425 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6426 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6427 * not already set for all VSIs connected to this switch. And also update the
6428 * unicast switch filter rules for the corresponding switch of the netdev.
6429 */
6430static int
6431ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6432 u16 __always_unused flags,
6433 struct netlink_ext_ack __always_unused *extack)
6434{
6435 struct ice_netdev_priv *np = netdev_priv(dev);
6436 struct ice_pf *pf = np->vsi->back;
6437 struct nlattr *attr, *br_spec;
6438 struct ice_hw *hw = &pf->hw;
6439 enum ice_status status;
6440 struct ice_sw *pf_sw;
6441 int rem, v, err = 0;
6442
6443 pf_sw = pf->first_sw;
6444 /* find the attribute in the netlink message */
6445 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6446
6447 nla_for_each_nested(attr, br_spec, rem) {
6448 __u16 mode;
6449
6450 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6451 continue;
6452 mode = nla_get_u16(attr);
6453 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6454 return -EINVAL;
6455 /* Continue if bridge mode is not being flipped */
6456 if (mode == pf_sw->bridge_mode)
6457 continue;
6458 /* Iterates through the PF VSI list and update the loopback
6459 * mode of the VSI
6460 */
6461 ice_for_each_vsi(pf, v) {
6462 if (!pf->vsi[v])
6463 continue;
6464 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6465 if (err)
6466 return err;
6467 }
6468
6469 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6470 /* Update the unicast switch filter rules for the corresponding
6471 * switch of the netdev
6472 */
6473 status = ice_update_sw_rule_bridge_mode(hw);
6474 if (status) {
6475 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6476 mode, ice_stat_str(status),
6477 ice_aq_str(hw->adminq.sq_last_status));
6478 /* revert hw->evb_veb */
6479 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6480 return -EIO;
6481 }
6482
6483 pf_sw->bridge_mode = mode;
6484 }
6485
6486 return 0;
6487}
6488
6489/**
6490 * ice_tx_timeout - Respond to a Tx Hang
6491 * @netdev: network interface device structure
6492 * @txqueue: Tx queue
6493 */
6494static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6495{
6496 struct ice_netdev_priv *np = netdev_priv(netdev);
6497 struct ice_ring *tx_ring = NULL;
6498 struct ice_vsi *vsi = np->vsi;
6499 struct ice_pf *pf = vsi->back;
6500 u32 i;
6501
6502 pf->tx_timeout_count++;
6503
6504 /* Check if PFC is enabled for the TC to which the queue belongs
6505 * to. If yes then Tx timeout is not caused by a hung queue, no
6506 * need to reset and rebuild
6507 */
6508 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6509 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6510 txqueue);
6511 return;
6512 }
6513
6514 /* now that we have an index, find the tx_ring struct */
6515 for (i = 0; i < vsi->num_txq; i++)
6516 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6517 if (txqueue == vsi->tx_rings[i]->q_index) {
6518 tx_ring = vsi->tx_rings[i];
6519 break;
6520 }
6521
6522 /* Reset recovery level if enough time has elapsed after last timeout.
6523 * Also ensure no new reset action happens before next timeout period.
6524 */
6525 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6526 pf->tx_timeout_recovery_level = 1;
6527 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6528 netdev->watchdog_timeo)))
6529 return;
6530
6531 if (tx_ring) {
6532 struct ice_hw *hw = &pf->hw;
6533 u32 head, val = 0;
6534
6535 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6536 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6537 /* Read interrupt register */
6538 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6539
6540 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6541 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6542 head, tx_ring->next_to_use, val);
6543 }
6544
6545 pf->tx_timeout_last_recovery = jiffies;
6546 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6547 pf->tx_timeout_recovery_level, txqueue);
6548
6549 switch (pf->tx_timeout_recovery_level) {
6550 case 1:
6551 set_bit(__ICE_PFR_REQ, pf->state);
6552 break;
6553 case 2:
6554 set_bit(__ICE_CORER_REQ, pf->state);
6555 break;
6556 case 3:
6557 set_bit(__ICE_GLOBR_REQ, pf->state);
6558 break;
6559 default:
6560 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6561 set_bit(__ICE_DOWN, pf->state);
6562 set_bit(__ICE_NEEDS_RESTART, vsi->state);
6563 set_bit(__ICE_SERVICE_DIS, pf->state);
6564 break;
6565 }
6566
6567 ice_service_task_schedule(pf);
6568 pf->tx_timeout_recovery_level++;
6569}
6570
6571/**
6572 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
6573 * @netdev: This physical port's netdev
6574 * @ti: Tunnel endpoint information
6575 */
6576static void
6577ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti)
6578{
6579 struct ice_netdev_priv *np = netdev_priv(netdev);
6580 struct ice_vsi *vsi = np->vsi;
6581 struct ice_pf *pf = vsi->back;
6582 enum ice_tunnel_type tnl_type;
6583 u16 port = ntohs(ti->port);
6584 enum ice_status status;
6585
6586 switch (ti->type) {
6587 case UDP_TUNNEL_TYPE_VXLAN:
6588 tnl_type = TNL_VXLAN;
6589 break;
6590 case UDP_TUNNEL_TYPE_GENEVE:
6591 tnl_type = TNL_GENEVE;
6592 break;
6593 default:
6594 netdev_err(netdev, "Unknown tunnel type\n");
6595 return;
6596 }
6597
6598 status = ice_create_tunnel(&pf->hw, tnl_type, port);
6599 if (status == ICE_ERR_OUT_OF_RANGE)
6600 netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n",
6601 port);
6602 else if (status)
6603 netdev_err(netdev, "Error adding UDP tunnel - %s\n",
6604 ice_stat_str(status));
6605}
6606
6607/**
6608 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
6609 * @netdev: This physical port's netdev
6610 * @ti: Tunnel endpoint information
6611 */
6612static void
6613ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti)
6614{
6615 struct ice_netdev_priv *np = netdev_priv(netdev);
6616 struct ice_vsi *vsi = np->vsi;
6617 struct ice_pf *pf = vsi->back;
6618 u16 port = ntohs(ti->port);
6619 enum ice_status status;
6620 bool retval;
6621
6622 retval = ice_tunnel_port_in_use(&pf->hw, port, NULL);
6623 if (!retval) {
6624 netdev_info(netdev, "port %d not found in UDP tunnels list\n",
6625 port);
6626 return;
6627 }
6628
6629 status = ice_destroy_tunnel(&pf->hw, port, false);
6630 if (status)
6631 netdev_err(netdev, "error deleting port %d from UDP tunnels list\n",
6632 port);
6633}
6634
6635/**
6636 * ice_open - Called when a network interface becomes active
6637 * @netdev: network interface device structure
6638 *
6639 * The open entry point is called when a network interface is made
6640 * active by the system (IFF_UP). At this point all resources needed
6641 * for transmit and receive operations are allocated, the interrupt
6642 * handler is registered with the OS, the netdev watchdog is enabled,
6643 * and the stack is notified that the interface is ready.
6644 *
6645 * Returns 0 on success, negative value on failure
6646 */
6647int ice_open(struct net_device *netdev)
6648{
6649 struct ice_netdev_priv *np = netdev_priv(netdev);
6650 struct ice_vsi *vsi = np->vsi;
6651 struct ice_pf *pf = vsi->back;
6652 struct ice_port_info *pi;
6653 int err;
6654
6655 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6656 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6657 return -EIO;
6658 }
6659
6660 if (test_bit(__ICE_DOWN, pf->state)) {
6661 netdev_err(netdev, "device is not ready yet\n");
6662 return -EBUSY;
6663 }
6664
6665 netif_carrier_off(netdev);
6666
6667 pi = vsi->port_info;
6668 err = ice_update_link_info(pi);
6669 if (err) {
6670 netdev_err(netdev, "Failed to get link info, error %d\n",
6671 err);
6672 return err;
6673 }
6674
6675 /* Set PHY if there is media, otherwise, turn off PHY */
6676 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6677 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6678 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6679 err = ice_init_phy_user_cfg(pi);
6680 if (err) {
6681 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6682 err);
6683 return err;
6684 }
6685 }
6686
6687 err = ice_configure_phy(vsi);
6688 if (err) {
6689 netdev_err(netdev, "Failed to set physical link up, error %d\n",
6690 err);
6691 return err;
6692 }
6693 } else {
6694 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6695 err = ice_aq_set_link_restart_an(pi, false, NULL);
6696 if (err) {
6697 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6698 vsi->vsi_num, err);
6699 return err;
6700 }
6701 }
6702
6703 err = ice_vsi_open(vsi);
6704 if (err)
6705 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6706 vsi->vsi_num, vsi->vsw->sw_id);
6707
6708 /* Update existing tunnels information */
6709 udp_tunnel_get_rx_info(netdev);
6710
6711 return err;
6712}
6713
6714/**
6715 * ice_stop - Disables a network interface
6716 * @netdev: network interface device structure
6717 *
6718 * The stop entry point is called when an interface is de-activated by the OS,
6719 * and the netdevice enters the DOWN state. The hardware is still under the
6720 * driver's control, but the netdev interface is disabled.
6721 *
6722 * Returns success only - not allowed to fail
6723 */
6724int ice_stop(struct net_device *netdev)
6725{
6726 struct ice_netdev_priv *np = netdev_priv(netdev);
6727 struct ice_vsi *vsi = np->vsi;
6728
6729 ice_vsi_close(vsi);
6730
6731 return 0;
6732}
6733
6734/**
6735 * ice_features_check - Validate encapsulated packet conforms to limits
6736 * @skb: skb buffer
6737 * @netdev: This port's netdev
6738 * @features: Offload features that the stack believes apply
6739 */
6740static netdev_features_t
6741ice_features_check(struct sk_buff *skb,
6742 struct net_device __always_unused *netdev,
6743 netdev_features_t features)
6744{
6745 size_t len;
6746
6747 /* No point in doing any of this if neither checksum nor GSO are
6748 * being requested for this frame. We can rule out both by just
6749 * checking for CHECKSUM_PARTIAL
6750 */
6751 if (skb->ip_summed != CHECKSUM_PARTIAL)
6752 return features;
6753
6754 /* We cannot support GSO if the MSS is going to be less than
6755 * 64 bytes. If it is then we need to drop support for GSO.
6756 */
6757 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6758 features &= ~NETIF_F_GSO_MASK;
6759
6760 len = skb_network_header(skb) - skb->data;
6761 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6762 goto out_rm_features;
6763
6764 len = skb_transport_header(skb) - skb_network_header(skb);
6765 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6766 goto out_rm_features;
6767
6768 if (skb->encapsulation) {
6769 len = skb_inner_network_header(skb) - skb_transport_header(skb);
6770 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6771 goto out_rm_features;
6772
6773 len = skb_inner_transport_header(skb) -
6774 skb_inner_network_header(skb);
6775 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6776 goto out_rm_features;
6777 }
6778
6779 return features;
6780out_rm_features:
6781 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6782}
6783
6784static const struct net_device_ops ice_netdev_safe_mode_ops = {
6785 .ndo_open = ice_open,
6786 .ndo_stop = ice_stop,
6787 .ndo_start_xmit = ice_start_xmit,
6788 .ndo_set_mac_address = ice_set_mac_address,
6789 .ndo_validate_addr = eth_validate_addr,
6790 .ndo_change_mtu = ice_change_mtu,
6791 .ndo_get_stats64 = ice_get_stats64,
6792 .ndo_tx_timeout = ice_tx_timeout,
6793};
6794
6795static const struct net_device_ops ice_netdev_ops = {
6796 .ndo_open = ice_open,
6797 .ndo_stop = ice_stop,
6798 .ndo_start_xmit = ice_start_xmit,
6799 .ndo_features_check = ice_features_check,
6800 .ndo_set_rx_mode = ice_set_rx_mode,
6801 .ndo_set_mac_address = ice_set_mac_address,
6802 .ndo_validate_addr = eth_validate_addr,
6803 .ndo_change_mtu = ice_change_mtu,
6804 .ndo_get_stats64 = ice_get_stats64,
6805 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
6806 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6807 .ndo_set_vf_mac = ice_set_vf_mac,
6808 .ndo_get_vf_config = ice_get_vf_cfg,
6809 .ndo_set_vf_trust = ice_set_vf_trust,
6810 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
6811 .ndo_set_vf_link_state = ice_set_vf_link_state,
6812 .ndo_get_vf_stats = ice_get_vf_stats,
6813 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6814 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6815 .ndo_set_features = ice_set_features,
6816 .ndo_bridge_getlink = ice_bridge_getlink,
6817 .ndo_bridge_setlink = ice_bridge_setlink,
6818 .ndo_fdb_add = ice_fdb_add,
6819 .ndo_fdb_del = ice_fdb_del,
6820#ifdef CONFIG_RFS_ACCEL
6821 .ndo_rx_flow_steer = ice_rx_flow_steer,
6822#endif
6823 .ndo_tx_timeout = ice_tx_timeout,
6824 .ndo_bpf = ice_xdp,
6825 .ndo_xdp_xmit = ice_xdp_xmit,
6826 .ndo_xsk_wakeup = ice_xsk_wakeup,
6827 .ndo_udp_tunnel_add = ice_udp_tunnel_add,
6828 .ndo_udp_tunnel_del = ice_udp_tunnel_del,
6829};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include "ice.h"
10#include "ice_base.h"
11#include "ice_lib.h"
12#include "ice_fltr.h"
13#include "ice_dcb_lib.h"
14#include "ice_dcb_nl.h"
15#include "ice_devlink.h"
16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17 * ice tracepoint functions. This must be done exactly once across the
18 * ice driver.
19 */
20#define CREATE_TRACE_POINTS
21#include "ice_trace.h"
22#include "ice_eswitch.h"
23#include "ice_tc_lib.h"
24#include "ice_vsi_vlan_ops.h"
25
26#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
27static const char ice_driver_string[] = DRV_SUMMARY;
28static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29
30/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
32#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
33
34MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35MODULE_DESCRIPTION(DRV_SUMMARY);
36MODULE_LICENSE("GPL v2");
37MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38
39static int debug = -1;
40module_param(debug, int, 0644);
41#ifndef CONFIG_DYNAMIC_DEBUG
42MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43#else
44MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45#endif /* !CONFIG_DYNAMIC_DEBUG */
46
47static DEFINE_IDA(ice_aux_ida);
48DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49EXPORT_SYMBOL(ice_xdp_locking_key);
50
51/**
52 * ice_hw_to_dev - Get device pointer from the hardware structure
53 * @hw: pointer to the device HW structure
54 *
55 * Used to access the device pointer from compilation units which can't easily
56 * include the definition of struct ice_pf without leading to circular header
57 * dependencies.
58 */
59struct device *ice_hw_to_dev(struct ice_hw *hw)
60{
61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62
63 return &pf->pdev->dev;
64}
65
66static struct workqueue_struct *ice_wq;
67static const struct net_device_ops ice_netdev_safe_mode_ops;
68static const struct net_device_ops ice_netdev_ops;
69
70static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71
72static void ice_vsi_release_all(struct ice_pf *pf);
73
74static int ice_rebuild_channels(struct ice_pf *pf);
75static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76
77static int
78ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 void *cb_priv, enum tc_setup_type type, void *type_data,
80 void *data,
81 void (*cleanup)(struct flow_block_cb *block_cb));
82
83bool netif_is_ice(struct net_device *dev)
84{
85 return dev && (dev->netdev_ops == &ice_netdev_ops);
86}
87
88/**
89 * ice_get_tx_pending - returns number of Tx descriptors not processed
90 * @ring: the ring of descriptors
91 */
92static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93{
94 u16 head, tail;
95
96 head = ring->next_to_clean;
97 tail = ring->next_to_use;
98
99 if (head != tail)
100 return (head < tail) ?
101 tail - head : (tail + ring->count - head);
102 return 0;
103}
104
105/**
106 * ice_check_for_hang_subtask - check for and recover hung queues
107 * @pf: pointer to PF struct
108 */
109static void ice_check_for_hang_subtask(struct ice_pf *pf)
110{
111 struct ice_vsi *vsi = NULL;
112 struct ice_hw *hw;
113 unsigned int i;
114 int packets;
115 u32 v;
116
117 ice_for_each_vsi(pf, v)
118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 vsi = pf->vsi[v];
120 break;
121 }
122
123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 return;
125
126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 return;
128
129 hw = &vsi->back->hw;
130
131 ice_for_each_txq(vsi, i) {
132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133 struct ice_ring_stats *ring_stats;
134
135 if (!tx_ring)
136 continue;
137 if (ice_ring_ch_enabled(tx_ring))
138 continue;
139
140 ring_stats = tx_ring->ring_stats;
141 if (!ring_stats)
142 continue;
143
144 if (tx_ring->desc) {
145 /* If packet counter has not changed the queue is
146 * likely stalled, so force an interrupt for this
147 * queue.
148 *
149 * prev_pkt would be negative if there was no
150 * pending work.
151 */
152 packets = ring_stats->stats.pkts & INT_MAX;
153 if (ring_stats->tx_stats.prev_pkt == packets) {
154 /* Trigger sw interrupt to revive the queue */
155 ice_trigger_sw_intr(hw, tx_ring->q_vector);
156 continue;
157 }
158
159 /* Memory barrier between read of packet count and call
160 * to ice_get_tx_pending()
161 */
162 smp_rmb();
163 ring_stats->tx_stats.prev_pkt =
164 ice_get_tx_pending(tx_ring) ? packets : -1;
165 }
166 }
167}
168
169/**
170 * ice_init_mac_fltr - Set initial MAC filters
171 * @pf: board private structure
172 *
173 * Set initial set of MAC filters for PF VSI; configure filters for permanent
174 * address and broadcast address. If an error is encountered, netdevice will be
175 * unregistered.
176 */
177static int ice_init_mac_fltr(struct ice_pf *pf)
178{
179 struct ice_vsi *vsi;
180 u8 *perm_addr;
181
182 vsi = ice_get_main_vsi(pf);
183 if (!vsi)
184 return -EINVAL;
185
186 perm_addr = vsi->port_info->mac.perm_addr;
187 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
188}
189
190/**
191 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
192 * @netdev: the net device on which the sync is happening
193 * @addr: MAC address to sync
194 *
195 * This is a callback function which is called by the in kernel device sync
196 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
197 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
198 * MAC filters from the hardware.
199 */
200static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
201{
202 struct ice_netdev_priv *np = netdev_priv(netdev);
203 struct ice_vsi *vsi = np->vsi;
204
205 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
206 ICE_FWD_TO_VSI))
207 return -EINVAL;
208
209 return 0;
210}
211
212/**
213 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
214 * @netdev: the net device on which the unsync is happening
215 * @addr: MAC address to unsync
216 *
217 * This is a callback function which is called by the in kernel device unsync
218 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
219 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
220 * delete the MAC filters from the hardware.
221 */
222static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
223{
224 struct ice_netdev_priv *np = netdev_priv(netdev);
225 struct ice_vsi *vsi = np->vsi;
226
227 /* Under some circumstances, we might receive a request to delete our
228 * own device address from our uc list. Because we store the device
229 * address in the VSI's MAC filter list, we need to ignore such
230 * requests and not delete our device address from this list.
231 */
232 if (ether_addr_equal(addr, netdev->dev_addr))
233 return 0;
234
235 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
236 ICE_FWD_TO_VSI))
237 return -EINVAL;
238
239 return 0;
240}
241
242/**
243 * ice_vsi_fltr_changed - check if filter state changed
244 * @vsi: VSI to be checked
245 *
246 * returns true if filter state has changed, false otherwise.
247 */
248static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
249{
250 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
251 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
252}
253
254/**
255 * ice_set_promisc - Enable promiscuous mode for a given PF
256 * @vsi: the VSI being configured
257 * @promisc_m: mask of promiscuous config bits
258 *
259 */
260static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
261{
262 int status;
263
264 if (vsi->type != ICE_VSI_PF)
265 return 0;
266
267 if (ice_vsi_has_non_zero_vlans(vsi)) {
268 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
269 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
270 promisc_m);
271 } else {
272 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
273 promisc_m, 0);
274 }
275 if (status && status != -EEXIST)
276 return status;
277
278 netdev_dbg(vsi->netdev, "set promisc filter bits for VSI %i: 0x%x\n",
279 vsi->vsi_num, promisc_m);
280 return 0;
281}
282
283/**
284 * ice_clear_promisc - Disable promiscuous mode for a given PF
285 * @vsi: the VSI being configured
286 * @promisc_m: mask of promiscuous config bits
287 *
288 */
289static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
290{
291 int status;
292
293 if (vsi->type != ICE_VSI_PF)
294 return 0;
295
296 if (ice_vsi_has_non_zero_vlans(vsi)) {
297 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
298 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
299 promisc_m);
300 } else {
301 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
302 promisc_m, 0);
303 }
304
305 netdev_dbg(vsi->netdev, "clear promisc filter bits for VSI %i: 0x%x\n",
306 vsi->vsi_num, promisc_m);
307 return status;
308}
309
310/**
311 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
312 * @vsi: ptr to the VSI
313 *
314 * Push any outstanding VSI filter changes through the AdminQ.
315 */
316static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
317{
318 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
319 struct device *dev = ice_pf_to_dev(vsi->back);
320 struct net_device *netdev = vsi->netdev;
321 bool promisc_forced_on = false;
322 struct ice_pf *pf = vsi->back;
323 struct ice_hw *hw = &pf->hw;
324 u32 changed_flags = 0;
325 int err;
326
327 if (!vsi->netdev)
328 return -EINVAL;
329
330 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
331 usleep_range(1000, 2000);
332
333 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
334 vsi->current_netdev_flags = vsi->netdev->flags;
335
336 INIT_LIST_HEAD(&vsi->tmp_sync_list);
337 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
338
339 if (ice_vsi_fltr_changed(vsi)) {
340 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
341 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
342
343 /* grab the netdev's addr_list_lock */
344 netif_addr_lock_bh(netdev);
345 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
346 ice_add_mac_to_unsync_list);
347 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
348 ice_add_mac_to_unsync_list);
349 /* our temp lists are populated. release lock */
350 netif_addr_unlock_bh(netdev);
351 }
352
353 /* Remove MAC addresses in the unsync list */
354 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
355 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
356 if (err) {
357 netdev_err(netdev, "Failed to delete MAC filters\n");
358 /* if we failed because of alloc failures, just bail */
359 if (err == -ENOMEM)
360 goto out;
361 }
362
363 /* Add MAC addresses in the sync list */
364 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
365 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
366 /* If filter is added successfully or already exists, do not go into
367 * 'if' condition and report it as error. Instead continue processing
368 * rest of the function.
369 */
370 if (err && err != -EEXIST) {
371 netdev_err(netdev, "Failed to add MAC filters\n");
372 /* If there is no more space for new umac filters, VSI
373 * should go into promiscuous mode. There should be some
374 * space reserved for promiscuous filters.
375 */
376 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
377 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
378 vsi->state)) {
379 promisc_forced_on = true;
380 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
381 vsi->vsi_num);
382 } else {
383 goto out;
384 }
385 }
386 err = 0;
387 /* check for changes in promiscuous modes */
388 if (changed_flags & IFF_ALLMULTI) {
389 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
390 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
391 if (err) {
392 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
393 goto out_promisc;
394 }
395 } else {
396 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
397 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
398 if (err) {
399 vsi->current_netdev_flags |= IFF_ALLMULTI;
400 goto out_promisc;
401 }
402 }
403 }
404
405 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
406 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
407 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
408 if (vsi->current_netdev_flags & IFF_PROMISC) {
409 /* Apply Rx filter rule to get traffic from wire */
410 if (!ice_is_dflt_vsi_in_use(vsi->port_info)) {
411 err = ice_set_dflt_vsi(vsi);
412 if (err && err != -EEXIST) {
413 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
414 err, vsi->vsi_num);
415 vsi->current_netdev_flags &=
416 ~IFF_PROMISC;
417 goto out_promisc;
418 }
419 err = 0;
420 vlan_ops->dis_rx_filtering(vsi);
421
422 /* promiscuous mode implies allmulticast so
423 * that VSIs that are in promiscuous mode are
424 * subscribed to multicast packets coming to
425 * the port
426 */
427 err = ice_set_promisc(vsi,
428 ICE_MCAST_PROMISC_BITS);
429 if (err)
430 goto out_promisc;
431 }
432 } else {
433 /* Clear Rx filter to remove traffic from wire */
434 if (ice_is_vsi_dflt_vsi(vsi)) {
435 err = ice_clear_dflt_vsi(vsi);
436 if (err) {
437 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
438 err, vsi->vsi_num);
439 vsi->current_netdev_flags |=
440 IFF_PROMISC;
441 goto out_promisc;
442 }
443 if (vsi->netdev->features &
444 NETIF_F_HW_VLAN_CTAG_FILTER)
445 vlan_ops->ena_rx_filtering(vsi);
446 }
447
448 /* disable allmulti here, but only if allmulti is not
449 * still enabled for the netdev
450 */
451 if (!(vsi->current_netdev_flags & IFF_ALLMULTI)) {
452 err = ice_clear_promisc(vsi,
453 ICE_MCAST_PROMISC_BITS);
454 if (err) {
455 netdev_err(netdev, "Error %d clearing multicast promiscuous on VSI %i\n",
456 err, vsi->vsi_num);
457 }
458 }
459 }
460 }
461 goto exit;
462
463out_promisc:
464 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
465 goto exit;
466out:
467 /* if something went wrong then set the changed flag so we try again */
468 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
469 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
470exit:
471 clear_bit(ICE_CFG_BUSY, vsi->state);
472 return err;
473}
474
475/**
476 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
477 * @pf: board private structure
478 */
479static void ice_sync_fltr_subtask(struct ice_pf *pf)
480{
481 int v;
482
483 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
484 return;
485
486 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
487
488 ice_for_each_vsi(pf, v)
489 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
490 ice_vsi_sync_fltr(pf->vsi[v])) {
491 /* come back and try again later */
492 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
493 break;
494 }
495}
496
497/**
498 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
499 * @pf: the PF
500 * @locked: is the rtnl_lock already held
501 */
502static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
503{
504 int node;
505 int v;
506
507 ice_for_each_vsi(pf, v)
508 if (pf->vsi[v])
509 ice_dis_vsi(pf->vsi[v], locked);
510
511 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
512 pf->pf_agg_node[node].num_vsis = 0;
513
514 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
515 pf->vf_agg_node[node].num_vsis = 0;
516}
517
518/**
519 * ice_clear_sw_switch_recipes - clear switch recipes
520 * @pf: board private structure
521 *
522 * Mark switch recipes as not created in sw structures. There are cases where
523 * rules (especially advanced rules) need to be restored, either re-read from
524 * hardware or added again. For example after the reset. 'recp_created' flag
525 * prevents from doing that and need to be cleared upfront.
526 */
527static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
528{
529 struct ice_sw_recipe *recp;
530 u8 i;
531
532 recp = pf->hw.switch_info->recp_list;
533 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
534 recp[i].recp_created = false;
535}
536
537/**
538 * ice_prepare_for_reset - prep for reset
539 * @pf: board private structure
540 * @reset_type: reset type requested
541 *
542 * Inform or close all dependent features in prep for reset.
543 */
544static void
545ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
546{
547 struct ice_hw *hw = &pf->hw;
548 struct ice_vsi *vsi;
549 struct ice_vf *vf;
550 unsigned int bkt;
551
552 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
553
554 /* already prepared for reset */
555 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
556 return;
557
558 ice_unplug_aux_dev(pf);
559
560 /* Notify VFs of impending reset */
561 if (ice_check_sq_alive(hw, &hw->mailboxq))
562 ice_vc_notify_reset(pf);
563
564 /* Disable VFs until reset is completed */
565 mutex_lock(&pf->vfs.table_lock);
566 ice_for_each_vf(pf, bkt, vf)
567 ice_set_vf_state_qs_dis(vf);
568 mutex_unlock(&pf->vfs.table_lock);
569
570 if (ice_is_eswitch_mode_switchdev(pf)) {
571 if (reset_type != ICE_RESET_PFR)
572 ice_clear_sw_switch_recipes(pf);
573 }
574
575 /* release ADQ specific HW and SW resources */
576 vsi = ice_get_main_vsi(pf);
577 if (!vsi)
578 goto skip;
579
580 /* to be on safe side, reset orig_rss_size so that normal flow
581 * of deciding rss_size can take precedence
582 */
583 vsi->orig_rss_size = 0;
584
585 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
586 if (reset_type == ICE_RESET_PFR) {
587 vsi->old_ena_tc = vsi->all_enatc;
588 vsi->old_numtc = vsi->all_numtc;
589 } else {
590 ice_remove_q_channels(vsi, true);
591
592 /* for other reset type, do not support channel rebuild
593 * hence reset needed info
594 */
595 vsi->old_ena_tc = 0;
596 vsi->all_enatc = 0;
597 vsi->old_numtc = 0;
598 vsi->all_numtc = 0;
599 vsi->req_txq = 0;
600 vsi->req_rxq = 0;
601 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
602 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
603 }
604 }
605skip:
606
607 /* clear SW filtering DB */
608 ice_clear_hw_tbls(hw);
609 /* disable the VSIs and their queues that are not already DOWN */
610 ice_pf_dis_all_vsi(pf, false);
611
612 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
613 ice_ptp_prepare_for_reset(pf);
614
615 if (ice_is_feature_supported(pf, ICE_F_GNSS))
616 ice_gnss_exit(pf);
617
618 if (hw->port_info)
619 ice_sched_clear_port(hw->port_info);
620
621 ice_shutdown_all_ctrlq(hw);
622
623 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
624}
625
626/**
627 * ice_do_reset - Initiate one of many types of resets
628 * @pf: board private structure
629 * @reset_type: reset type requested before this function was called.
630 */
631static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
632{
633 struct device *dev = ice_pf_to_dev(pf);
634 struct ice_hw *hw = &pf->hw;
635
636 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
637
638 ice_prepare_for_reset(pf, reset_type);
639
640 /* trigger the reset */
641 if (ice_reset(hw, reset_type)) {
642 dev_err(dev, "reset %d failed\n", reset_type);
643 set_bit(ICE_RESET_FAILED, pf->state);
644 clear_bit(ICE_RESET_OICR_RECV, pf->state);
645 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
646 clear_bit(ICE_PFR_REQ, pf->state);
647 clear_bit(ICE_CORER_REQ, pf->state);
648 clear_bit(ICE_GLOBR_REQ, pf->state);
649 wake_up(&pf->reset_wait_queue);
650 return;
651 }
652
653 /* PFR is a bit of a special case because it doesn't result in an OICR
654 * interrupt. So for PFR, rebuild after the reset and clear the reset-
655 * associated state bits.
656 */
657 if (reset_type == ICE_RESET_PFR) {
658 pf->pfr_count++;
659 ice_rebuild(pf, reset_type);
660 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
661 clear_bit(ICE_PFR_REQ, pf->state);
662 wake_up(&pf->reset_wait_queue);
663 ice_reset_all_vfs(pf);
664 }
665}
666
667/**
668 * ice_reset_subtask - Set up for resetting the device and driver
669 * @pf: board private structure
670 */
671static void ice_reset_subtask(struct ice_pf *pf)
672{
673 enum ice_reset_req reset_type = ICE_RESET_INVAL;
674
675 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
676 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
677 * of reset is pending and sets bits in pf->state indicating the reset
678 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
679 * prepare for pending reset if not already (for PF software-initiated
680 * global resets the software should already be prepared for it as
681 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
682 * by firmware or software on other PFs, that bit is not set so prepare
683 * for the reset now), poll for reset done, rebuild and return.
684 */
685 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
686 /* Perform the largest reset requested */
687 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
688 reset_type = ICE_RESET_CORER;
689 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
690 reset_type = ICE_RESET_GLOBR;
691 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
692 reset_type = ICE_RESET_EMPR;
693 /* return if no valid reset type requested */
694 if (reset_type == ICE_RESET_INVAL)
695 return;
696 ice_prepare_for_reset(pf, reset_type);
697
698 /* make sure we are ready to rebuild */
699 if (ice_check_reset(&pf->hw)) {
700 set_bit(ICE_RESET_FAILED, pf->state);
701 } else {
702 /* done with reset. start rebuild */
703 pf->hw.reset_ongoing = false;
704 ice_rebuild(pf, reset_type);
705 /* clear bit to resume normal operations, but
706 * ICE_NEEDS_RESTART bit is set in case rebuild failed
707 */
708 clear_bit(ICE_RESET_OICR_RECV, pf->state);
709 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
710 clear_bit(ICE_PFR_REQ, pf->state);
711 clear_bit(ICE_CORER_REQ, pf->state);
712 clear_bit(ICE_GLOBR_REQ, pf->state);
713 wake_up(&pf->reset_wait_queue);
714 ice_reset_all_vfs(pf);
715 }
716
717 return;
718 }
719
720 /* No pending resets to finish processing. Check for new resets */
721 if (test_bit(ICE_PFR_REQ, pf->state))
722 reset_type = ICE_RESET_PFR;
723 if (test_bit(ICE_CORER_REQ, pf->state))
724 reset_type = ICE_RESET_CORER;
725 if (test_bit(ICE_GLOBR_REQ, pf->state))
726 reset_type = ICE_RESET_GLOBR;
727 /* If no valid reset type requested just return */
728 if (reset_type == ICE_RESET_INVAL)
729 return;
730
731 /* reset if not already down or busy */
732 if (!test_bit(ICE_DOWN, pf->state) &&
733 !test_bit(ICE_CFG_BUSY, pf->state)) {
734 ice_do_reset(pf, reset_type);
735 }
736}
737
738/**
739 * ice_print_topo_conflict - print topology conflict message
740 * @vsi: the VSI whose topology status is being checked
741 */
742static void ice_print_topo_conflict(struct ice_vsi *vsi)
743{
744 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
745 case ICE_AQ_LINK_TOPO_CONFLICT:
746 case ICE_AQ_LINK_MEDIA_CONFLICT:
747 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
748 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
749 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
750 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
751 break;
752 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
753 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
754 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
755 else
756 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
757 break;
758 default:
759 break;
760 }
761}
762
763/**
764 * ice_print_link_msg - print link up or down message
765 * @vsi: the VSI whose link status is being queried
766 * @isup: boolean for if the link is now up or down
767 */
768void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
769{
770 struct ice_aqc_get_phy_caps_data *caps;
771 const char *an_advertised;
772 const char *fec_req;
773 const char *speed;
774 const char *fec;
775 const char *fc;
776 const char *an;
777 int status;
778
779 if (!vsi)
780 return;
781
782 if (vsi->current_isup == isup)
783 return;
784
785 vsi->current_isup = isup;
786
787 if (!isup) {
788 netdev_info(vsi->netdev, "NIC Link is Down\n");
789 return;
790 }
791
792 switch (vsi->port_info->phy.link_info.link_speed) {
793 case ICE_AQ_LINK_SPEED_100GB:
794 speed = "100 G";
795 break;
796 case ICE_AQ_LINK_SPEED_50GB:
797 speed = "50 G";
798 break;
799 case ICE_AQ_LINK_SPEED_40GB:
800 speed = "40 G";
801 break;
802 case ICE_AQ_LINK_SPEED_25GB:
803 speed = "25 G";
804 break;
805 case ICE_AQ_LINK_SPEED_20GB:
806 speed = "20 G";
807 break;
808 case ICE_AQ_LINK_SPEED_10GB:
809 speed = "10 G";
810 break;
811 case ICE_AQ_LINK_SPEED_5GB:
812 speed = "5 G";
813 break;
814 case ICE_AQ_LINK_SPEED_2500MB:
815 speed = "2.5 G";
816 break;
817 case ICE_AQ_LINK_SPEED_1000MB:
818 speed = "1 G";
819 break;
820 case ICE_AQ_LINK_SPEED_100MB:
821 speed = "100 M";
822 break;
823 default:
824 speed = "Unknown ";
825 break;
826 }
827
828 switch (vsi->port_info->fc.current_mode) {
829 case ICE_FC_FULL:
830 fc = "Rx/Tx";
831 break;
832 case ICE_FC_TX_PAUSE:
833 fc = "Tx";
834 break;
835 case ICE_FC_RX_PAUSE:
836 fc = "Rx";
837 break;
838 case ICE_FC_NONE:
839 fc = "None";
840 break;
841 default:
842 fc = "Unknown";
843 break;
844 }
845
846 /* Get FEC mode based on negotiated link info */
847 switch (vsi->port_info->phy.link_info.fec_info) {
848 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
849 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
850 fec = "RS-FEC";
851 break;
852 case ICE_AQ_LINK_25G_KR_FEC_EN:
853 fec = "FC-FEC/BASE-R";
854 break;
855 default:
856 fec = "NONE";
857 break;
858 }
859
860 /* check if autoneg completed, might be false due to not supported */
861 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
862 an = "True";
863 else
864 an = "False";
865
866 /* Get FEC mode requested based on PHY caps last SW configuration */
867 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
868 if (!caps) {
869 fec_req = "Unknown";
870 an_advertised = "Unknown";
871 goto done;
872 }
873
874 status = ice_aq_get_phy_caps(vsi->port_info, false,
875 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
876 if (status)
877 netdev_info(vsi->netdev, "Get phy capability failed.\n");
878
879 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
880
881 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
882 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
883 fec_req = "RS-FEC";
884 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
885 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
886 fec_req = "FC-FEC/BASE-R";
887 else
888 fec_req = "NONE";
889
890 kfree(caps);
891
892done:
893 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
894 speed, fec_req, fec, an_advertised, an, fc);
895 ice_print_topo_conflict(vsi);
896}
897
898/**
899 * ice_vsi_link_event - update the VSI's netdev
900 * @vsi: the VSI on which the link event occurred
901 * @link_up: whether or not the VSI needs to be set up or down
902 */
903static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
904{
905 if (!vsi)
906 return;
907
908 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
909 return;
910
911 if (vsi->type == ICE_VSI_PF) {
912 if (link_up == netif_carrier_ok(vsi->netdev))
913 return;
914
915 if (link_up) {
916 netif_carrier_on(vsi->netdev);
917 netif_tx_wake_all_queues(vsi->netdev);
918 } else {
919 netif_carrier_off(vsi->netdev);
920 netif_tx_stop_all_queues(vsi->netdev);
921 }
922 }
923}
924
925/**
926 * ice_set_dflt_mib - send a default config MIB to the FW
927 * @pf: private PF struct
928 *
929 * This function sends a default configuration MIB to the FW.
930 *
931 * If this function errors out at any point, the driver is still able to
932 * function. The main impact is that LFC may not operate as expected.
933 * Therefore an error state in this function should be treated with a DBG
934 * message and continue on with driver rebuild/reenable.
935 */
936static void ice_set_dflt_mib(struct ice_pf *pf)
937{
938 struct device *dev = ice_pf_to_dev(pf);
939 u8 mib_type, *buf, *lldpmib = NULL;
940 u16 len, typelen, offset = 0;
941 struct ice_lldp_org_tlv *tlv;
942 struct ice_hw *hw = &pf->hw;
943 u32 ouisubtype;
944
945 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
946 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
947 if (!lldpmib) {
948 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
949 __func__);
950 return;
951 }
952
953 /* Add ETS CFG TLV */
954 tlv = (struct ice_lldp_org_tlv *)lldpmib;
955 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
956 ICE_IEEE_ETS_TLV_LEN);
957 tlv->typelen = htons(typelen);
958 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
959 ICE_IEEE_SUBTYPE_ETS_CFG);
960 tlv->ouisubtype = htonl(ouisubtype);
961
962 buf = tlv->tlvinfo;
963 buf[0] = 0;
964
965 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
966 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
967 * Octets 13 - 20 are TSA values - leave as zeros
968 */
969 buf[5] = 0x64;
970 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
971 offset += len + 2;
972 tlv = (struct ice_lldp_org_tlv *)
973 ((char *)tlv + sizeof(tlv->typelen) + len);
974
975 /* Add ETS REC TLV */
976 buf = tlv->tlvinfo;
977 tlv->typelen = htons(typelen);
978
979 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
980 ICE_IEEE_SUBTYPE_ETS_REC);
981 tlv->ouisubtype = htonl(ouisubtype);
982
983 /* First octet of buf is reserved
984 * Octets 1 - 4 map UP to TC - all UPs map to zero
985 * Octets 5 - 12 are BW values - set TC 0 to 100%.
986 * Octets 13 - 20 are TSA value - leave as zeros
987 */
988 buf[5] = 0x64;
989 offset += len + 2;
990 tlv = (struct ice_lldp_org_tlv *)
991 ((char *)tlv + sizeof(tlv->typelen) + len);
992
993 /* Add PFC CFG TLV */
994 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
995 ICE_IEEE_PFC_TLV_LEN);
996 tlv->typelen = htons(typelen);
997
998 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
999 ICE_IEEE_SUBTYPE_PFC_CFG);
1000 tlv->ouisubtype = htonl(ouisubtype);
1001
1002 /* Octet 1 left as all zeros - PFC disabled */
1003 buf[0] = 0x08;
1004 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
1005 offset += len + 2;
1006
1007 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
1008 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
1009
1010 kfree(lldpmib);
1011}
1012
1013/**
1014 * ice_check_phy_fw_load - check if PHY FW load failed
1015 * @pf: pointer to PF struct
1016 * @link_cfg_err: bitmap from the link info structure
1017 *
1018 * check if external PHY FW load failed and print an error message if it did
1019 */
1020static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1021{
1022 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1023 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1024 return;
1025 }
1026
1027 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1028 return;
1029
1030 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1031 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1032 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1033 }
1034}
1035
1036/**
1037 * ice_check_module_power
1038 * @pf: pointer to PF struct
1039 * @link_cfg_err: bitmap from the link info structure
1040 *
1041 * check module power level returned by a previous call to aq_get_link_info
1042 * and print error messages if module power level is not supported
1043 */
1044static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1045{
1046 /* if module power level is supported, clear the flag */
1047 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1048 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1049 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1050 return;
1051 }
1052
1053 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1054 * above block didn't clear this bit, there's nothing to do
1055 */
1056 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1057 return;
1058
1059 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1060 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1061 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1062 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1063 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1064 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1065 }
1066}
1067
1068/**
1069 * ice_check_link_cfg_err - check if link configuration failed
1070 * @pf: pointer to the PF struct
1071 * @link_cfg_err: bitmap from the link info structure
1072 *
1073 * print if any link configuration failure happens due to the value in the
1074 * link_cfg_err parameter in the link info structure
1075 */
1076static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1077{
1078 ice_check_module_power(pf, link_cfg_err);
1079 ice_check_phy_fw_load(pf, link_cfg_err);
1080}
1081
1082/**
1083 * ice_link_event - process the link event
1084 * @pf: PF that the link event is associated with
1085 * @pi: port_info for the port that the link event is associated with
1086 * @link_up: true if the physical link is up and false if it is down
1087 * @link_speed: current link speed received from the link event
1088 *
1089 * Returns 0 on success and negative on failure
1090 */
1091static int
1092ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1093 u16 link_speed)
1094{
1095 struct device *dev = ice_pf_to_dev(pf);
1096 struct ice_phy_info *phy_info;
1097 struct ice_vsi *vsi;
1098 u16 old_link_speed;
1099 bool old_link;
1100 int status;
1101
1102 phy_info = &pi->phy;
1103 phy_info->link_info_old = phy_info->link_info;
1104
1105 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1106 old_link_speed = phy_info->link_info_old.link_speed;
1107
1108 /* update the link info structures and re-enable link events,
1109 * don't bail on failure due to other book keeping needed
1110 */
1111 status = ice_update_link_info(pi);
1112 if (status)
1113 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1114 pi->lport, status,
1115 ice_aq_str(pi->hw->adminq.sq_last_status));
1116
1117 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1118
1119 /* Check if the link state is up after updating link info, and treat
1120 * this event as an UP event since the link is actually UP now.
1121 */
1122 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1123 link_up = true;
1124
1125 vsi = ice_get_main_vsi(pf);
1126 if (!vsi || !vsi->port_info)
1127 return -EINVAL;
1128
1129 /* turn off PHY if media was removed */
1130 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1131 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1132 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1133 ice_set_link(vsi, false);
1134 }
1135
1136 /* if the old link up/down and speed is the same as the new */
1137 if (link_up == old_link && link_speed == old_link_speed)
1138 return 0;
1139
1140 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1141
1142 if (ice_is_dcb_active(pf)) {
1143 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1144 ice_dcb_rebuild(pf);
1145 } else {
1146 if (link_up)
1147 ice_set_dflt_mib(pf);
1148 }
1149 ice_vsi_link_event(vsi, link_up);
1150 ice_print_link_msg(vsi, link_up);
1151
1152 ice_vc_notify_link_state(pf);
1153
1154 return 0;
1155}
1156
1157/**
1158 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1159 * @pf: board private structure
1160 */
1161static void ice_watchdog_subtask(struct ice_pf *pf)
1162{
1163 int i;
1164
1165 /* if interface is down do nothing */
1166 if (test_bit(ICE_DOWN, pf->state) ||
1167 test_bit(ICE_CFG_BUSY, pf->state))
1168 return;
1169
1170 /* make sure we don't do these things too often */
1171 if (time_before(jiffies,
1172 pf->serv_tmr_prev + pf->serv_tmr_period))
1173 return;
1174
1175 pf->serv_tmr_prev = jiffies;
1176
1177 /* Update the stats for active netdevs so the network stack
1178 * can look at updated numbers whenever it cares to
1179 */
1180 ice_update_pf_stats(pf);
1181 ice_for_each_vsi(pf, i)
1182 if (pf->vsi[i] && pf->vsi[i]->netdev)
1183 ice_update_vsi_stats(pf->vsi[i]);
1184}
1185
1186/**
1187 * ice_init_link_events - enable/initialize link events
1188 * @pi: pointer to the port_info instance
1189 *
1190 * Returns -EIO on failure, 0 on success
1191 */
1192static int ice_init_link_events(struct ice_port_info *pi)
1193{
1194 u16 mask;
1195
1196 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1197 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1198 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1199
1200 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1201 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1202 pi->lport);
1203 return -EIO;
1204 }
1205
1206 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1207 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1208 pi->lport);
1209 return -EIO;
1210 }
1211
1212 return 0;
1213}
1214
1215/**
1216 * ice_handle_link_event - handle link event via ARQ
1217 * @pf: PF that the link event is associated with
1218 * @event: event structure containing link status info
1219 */
1220static int
1221ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1222{
1223 struct ice_aqc_get_link_status_data *link_data;
1224 struct ice_port_info *port_info;
1225 int status;
1226
1227 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1228 port_info = pf->hw.port_info;
1229 if (!port_info)
1230 return -EINVAL;
1231
1232 status = ice_link_event(pf, port_info,
1233 !!(link_data->link_info & ICE_AQ_LINK_UP),
1234 le16_to_cpu(link_data->link_speed));
1235 if (status)
1236 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1237 status);
1238
1239 return status;
1240}
1241
1242enum ice_aq_task_state {
1243 ICE_AQ_TASK_WAITING = 0,
1244 ICE_AQ_TASK_COMPLETE,
1245 ICE_AQ_TASK_CANCELED,
1246};
1247
1248struct ice_aq_task {
1249 struct hlist_node entry;
1250
1251 u16 opcode;
1252 struct ice_rq_event_info *event;
1253 enum ice_aq_task_state state;
1254};
1255
1256/**
1257 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1258 * @pf: pointer to the PF private structure
1259 * @opcode: the opcode to wait for
1260 * @timeout: how long to wait, in jiffies
1261 * @event: storage for the event info
1262 *
1263 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1264 * current thread will be put to sleep until the specified event occurs or
1265 * until the given timeout is reached.
1266 *
1267 * To obtain only the descriptor contents, pass an event without an allocated
1268 * msg_buf. If the complete data buffer is desired, allocate the
1269 * event->msg_buf with enough space ahead of time.
1270 *
1271 * Returns: zero on success, or a negative error code on failure.
1272 */
1273int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1274 struct ice_rq_event_info *event)
1275{
1276 struct device *dev = ice_pf_to_dev(pf);
1277 struct ice_aq_task *task;
1278 unsigned long start;
1279 long ret;
1280 int err;
1281
1282 task = kzalloc(sizeof(*task), GFP_KERNEL);
1283 if (!task)
1284 return -ENOMEM;
1285
1286 INIT_HLIST_NODE(&task->entry);
1287 task->opcode = opcode;
1288 task->event = event;
1289 task->state = ICE_AQ_TASK_WAITING;
1290
1291 spin_lock_bh(&pf->aq_wait_lock);
1292 hlist_add_head(&task->entry, &pf->aq_wait_list);
1293 spin_unlock_bh(&pf->aq_wait_lock);
1294
1295 start = jiffies;
1296
1297 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1298 timeout);
1299 switch (task->state) {
1300 case ICE_AQ_TASK_WAITING:
1301 err = ret < 0 ? ret : -ETIMEDOUT;
1302 break;
1303 case ICE_AQ_TASK_CANCELED:
1304 err = ret < 0 ? ret : -ECANCELED;
1305 break;
1306 case ICE_AQ_TASK_COMPLETE:
1307 err = ret < 0 ? ret : 0;
1308 break;
1309 default:
1310 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1311 err = -EINVAL;
1312 break;
1313 }
1314
1315 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1316 jiffies_to_msecs(jiffies - start),
1317 jiffies_to_msecs(timeout),
1318 opcode);
1319
1320 spin_lock_bh(&pf->aq_wait_lock);
1321 hlist_del(&task->entry);
1322 spin_unlock_bh(&pf->aq_wait_lock);
1323 kfree(task);
1324
1325 return err;
1326}
1327
1328/**
1329 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1330 * @pf: pointer to the PF private structure
1331 * @opcode: the opcode of the event
1332 * @event: the event to check
1333 *
1334 * Loops over the current list of pending threads waiting for an AdminQ event.
1335 * For each matching task, copy the contents of the event into the task
1336 * structure and wake up the thread.
1337 *
1338 * If multiple threads wait for the same opcode, they will all be woken up.
1339 *
1340 * Note that event->msg_buf will only be duplicated if the event has a buffer
1341 * with enough space already allocated. Otherwise, only the descriptor and
1342 * message length will be copied.
1343 *
1344 * Returns: true if an event was found, false otherwise
1345 */
1346static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1347 struct ice_rq_event_info *event)
1348{
1349 struct ice_aq_task *task;
1350 bool found = false;
1351
1352 spin_lock_bh(&pf->aq_wait_lock);
1353 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1354 if (task->state || task->opcode != opcode)
1355 continue;
1356
1357 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1358 task->event->msg_len = event->msg_len;
1359
1360 /* Only copy the data buffer if a destination was set */
1361 if (task->event->msg_buf &&
1362 task->event->buf_len > event->buf_len) {
1363 memcpy(task->event->msg_buf, event->msg_buf,
1364 event->buf_len);
1365 task->event->buf_len = event->buf_len;
1366 }
1367
1368 task->state = ICE_AQ_TASK_COMPLETE;
1369 found = true;
1370 }
1371 spin_unlock_bh(&pf->aq_wait_lock);
1372
1373 if (found)
1374 wake_up(&pf->aq_wait_queue);
1375}
1376
1377/**
1378 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1379 * @pf: the PF private structure
1380 *
1381 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1382 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1383 */
1384static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1385{
1386 struct ice_aq_task *task;
1387
1388 spin_lock_bh(&pf->aq_wait_lock);
1389 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1390 task->state = ICE_AQ_TASK_CANCELED;
1391 spin_unlock_bh(&pf->aq_wait_lock);
1392
1393 wake_up(&pf->aq_wait_queue);
1394}
1395
1396/**
1397 * __ice_clean_ctrlq - helper function to clean controlq rings
1398 * @pf: ptr to struct ice_pf
1399 * @q_type: specific Control queue type
1400 */
1401static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1402{
1403 struct device *dev = ice_pf_to_dev(pf);
1404 struct ice_rq_event_info event;
1405 struct ice_hw *hw = &pf->hw;
1406 struct ice_ctl_q_info *cq;
1407 u16 pending, i = 0;
1408 const char *qtype;
1409 u32 oldval, val;
1410
1411 /* Do not clean control queue if/when PF reset fails */
1412 if (test_bit(ICE_RESET_FAILED, pf->state))
1413 return 0;
1414
1415 switch (q_type) {
1416 case ICE_CTL_Q_ADMIN:
1417 cq = &hw->adminq;
1418 qtype = "Admin";
1419 break;
1420 case ICE_CTL_Q_SB:
1421 cq = &hw->sbq;
1422 qtype = "Sideband";
1423 break;
1424 case ICE_CTL_Q_MAILBOX:
1425 cq = &hw->mailboxq;
1426 qtype = "Mailbox";
1427 /* we are going to try to detect a malicious VF, so set the
1428 * state to begin detection
1429 */
1430 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1431 break;
1432 default:
1433 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1434 return 0;
1435 }
1436
1437 /* check for error indications - PF_xx_AxQLEN register layout for
1438 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1439 */
1440 val = rd32(hw, cq->rq.len);
1441 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1442 PF_FW_ARQLEN_ARQCRIT_M)) {
1443 oldval = val;
1444 if (val & PF_FW_ARQLEN_ARQVFE_M)
1445 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1446 qtype);
1447 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1448 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1449 qtype);
1450 }
1451 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1452 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1453 qtype);
1454 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1455 PF_FW_ARQLEN_ARQCRIT_M);
1456 if (oldval != val)
1457 wr32(hw, cq->rq.len, val);
1458 }
1459
1460 val = rd32(hw, cq->sq.len);
1461 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1462 PF_FW_ATQLEN_ATQCRIT_M)) {
1463 oldval = val;
1464 if (val & PF_FW_ATQLEN_ATQVFE_M)
1465 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1466 qtype);
1467 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1468 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1469 qtype);
1470 }
1471 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1472 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1473 qtype);
1474 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1475 PF_FW_ATQLEN_ATQCRIT_M);
1476 if (oldval != val)
1477 wr32(hw, cq->sq.len, val);
1478 }
1479
1480 event.buf_len = cq->rq_buf_size;
1481 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1482 if (!event.msg_buf)
1483 return 0;
1484
1485 do {
1486 u16 opcode;
1487 int ret;
1488
1489 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1490 if (ret == -EALREADY)
1491 break;
1492 if (ret) {
1493 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1494 ret);
1495 break;
1496 }
1497
1498 opcode = le16_to_cpu(event.desc.opcode);
1499
1500 /* Notify any thread that might be waiting for this event */
1501 ice_aq_check_events(pf, opcode, &event);
1502
1503 switch (opcode) {
1504 case ice_aqc_opc_get_link_status:
1505 if (ice_handle_link_event(pf, &event))
1506 dev_err(dev, "Could not handle link event\n");
1507 break;
1508 case ice_aqc_opc_event_lan_overflow:
1509 ice_vf_lan_overflow_event(pf, &event);
1510 break;
1511 case ice_mbx_opc_send_msg_to_pf:
1512 if (!ice_is_malicious_vf(pf, &event, i, pending))
1513 ice_vc_process_vf_msg(pf, &event);
1514 break;
1515 case ice_aqc_opc_fw_logging:
1516 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1517 break;
1518 case ice_aqc_opc_lldp_set_mib_change:
1519 ice_dcb_process_lldp_set_mib_change(pf, &event);
1520 break;
1521 default:
1522 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1523 qtype, opcode);
1524 break;
1525 }
1526 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1527
1528 kfree(event.msg_buf);
1529
1530 return pending && (i == ICE_DFLT_IRQ_WORK);
1531}
1532
1533/**
1534 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1535 * @hw: pointer to hardware info
1536 * @cq: control queue information
1537 *
1538 * returns true if there are pending messages in a queue, false if there aren't
1539 */
1540static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1541{
1542 u16 ntu;
1543
1544 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1545 return cq->rq.next_to_clean != ntu;
1546}
1547
1548/**
1549 * ice_clean_adminq_subtask - clean the AdminQ rings
1550 * @pf: board private structure
1551 */
1552static void ice_clean_adminq_subtask(struct ice_pf *pf)
1553{
1554 struct ice_hw *hw = &pf->hw;
1555
1556 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1557 return;
1558
1559 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1560 return;
1561
1562 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1563
1564 /* There might be a situation where new messages arrive to a control
1565 * queue between processing the last message and clearing the
1566 * EVENT_PENDING bit. So before exiting, check queue head again (using
1567 * ice_ctrlq_pending) and process new messages if any.
1568 */
1569 if (ice_ctrlq_pending(hw, &hw->adminq))
1570 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1571
1572 ice_flush(hw);
1573}
1574
1575/**
1576 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1577 * @pf: board private structure
1578 */
1579static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1580{
1581 struct ice_hw *hw = &pf->hw;
1582
1583 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1584 return;
1585
1586 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1587 return;
1588
1589 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1590
1591 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1592 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1593
1594 ice_flush(hw);
1595}
1596
1597/**
1598 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1599 * @pf: board private structure
1600 */
1601static void ice_clean_sbq_subtask(struct ice_pf *pf)
1602{
1603 struct ice_hw *hw = &pf->hw;
1604
1605 /* Nothing to do here if sideband queue is not supported */
1606 if (!ice_is_sbq_supported(hw)) {
1607 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1608 return;
1609 }
1610
1611 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1612 return;
1613
1614 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1615 return;
1616
1617 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1618
1619 if (ice_ctrlq_pending(hw, &hw->sbq))
1620 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1621
1622 ice_flush(hw);
1623}
1624
1625/**
1626 * ice_service_task_schedule - schedule the service task to wake up
1627 * @pf: board private structure
1628 *
1629 * If not already scheduled, this puts the task into the work queue.
1630 */
1631void ice_service_task_schedule(struct ice_pf *pf)
1632{
1633 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1634 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1635 !test_bit(ICE_NEEDS_RESTART, pf->state))
1636 queue_work(ice_wq, &pf->serv_task);
1637}
1638
1639/**
1640 * ice_service_task_complete - finish up the service task
1641 * @pf: board private structure
1642 */
1643static void ice_service_task_complete(struct ice_pf *pf)
1644{
1645 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1646
1647 /* force memory (pf->state) to sync before next service task */
1648 smp_mb__before_atomic();
1649 clear_bit(ICE_SERVICE_SCHED, pf->state);
1650}
1651
1652/**
1653 * ice_service_task_stop - stop service task and cancel works
1654 * @pf: board private structure
1655 *
1656 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1657 * 1 otherwise.
1658 */
1659static int ice_service_task_stop(struct ice_pf *pf)
1660{
1661 int ret;
1662
1663 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1664
1665 if (pf->serv_tmr.function)
1666 del_timer_sync(&pf->serv_tmr);
1667 if (pf->serv_task.func)
1668 cancel_work_sync(&pf->serv_task);
1669
1670 clear_bit(ICE_SERVICE_SCHED, pf->state);
1671 return ret;
1672}
1673
1674/**
1675 * ice_service_task_restart - restart service task and schedule works
1676 * @pf: board private structure
1677 *
1678 * This function is needed for suspend and resume works (e.g WoL scenario)
1679 */
1680static void ice_service_task_restart(struct ice_pf *pf)
1681{
1682 clear_bit(ICE_SERVICE_DIS, pf->state);
1683 ice_service_task_schedule(pf);
1684}
1685
1686/**
1687 * ice_service_timer - timer callback to schedule service task
1688 * @t: pointer to timer_list
1689 */
1690static void ice_service_timer(struct timer_list *t)
1691{
1692 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1693
1694 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1695 ice_service_task_schedule(pf);
1696}
1697
1698/**
1699 * ice_handle_mdd_event - handle malicious driver detect event
1700 * @pf: pointer to the PF structure
1701 *
1702 * Called from service task. OICR interrupt handler indicates MDD event.
1703 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1704 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1705 * disable the queue, the PF can be configured to reset the VF using ethtool
1706 * private flag mdd-auto-reset-vf.
1707 */
1708static void ice_handle_mdd_event(struct ice_pf *pf)
1709{
1710 struct device *dev = ice_pf_to_dev(pf);
1711 struct ice_hw *hw = &pf->hw;
1712 struct ice_vf *vf;
1713 unsigned int bkt;
1714 u32 reg;
1715
1716 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1717 /* Since the VF MDD event logging is rate limited, check if
1718 * there are pending MDD events.
1719 */
1720 ice_print_vfs_mdd_events(pf);
1721 return;
1722 }
1723
1724 /* find what triggered an MDD event */
1725 reg = rd32(hw, GL_MDET_TX_PQM);
1726 if (reg & GL_MDET_TX_PQM_VALID_M) {
1727 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1728 GL_MDET_TX_PQM_PF_NUM_S;
1729 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1730 GL_MDET_TX_PQM_VF_NUM_S;
1731 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1732 GL_MDET_TX_PQM_MAL_TYPE_S;
1733 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1734 GL_MDET_TX_PQM_QNUM_S);
1735
1736 if (netif_msg_tx_err(pf))
1737 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1738 event, queue, pf_num, vf_num);
1739 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1740 }
1741
1742 reg = rd32(hw, GL_MDET_TX_TCLAN);
1743 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1744 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1745 GL_MDET_TX_TCLAN_PF_NUM_S;
1746 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1747 GL_MDET_TX_TCLAN_VF_NUM_S;
1748 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1749 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1750 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1751 GL_MDET_TX_TCLAN_QNUM_S);
1752
1753 if (netif_msg_tx_err(pf))
1754 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1755 event, queue, pf_num, vf_num);
1756 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1757 }
1758
1759 reg = rd32(hw, GL_MDET_RX);
1760 if (reg & GL_MDET_RX_VALID_M) {
1761 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1762 GL_MDET_RX_PF_NUM_S;
1763 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1764 GL_MDET_RX_VF_NUM_S;
1765 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1766 GL_MDET_RX_MAL_TYPE_S;
1767 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1768 GL_MDET_RX_QNUM_S);
1769
1770 if (netif_msg_rx_err(pf))
1771 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1772 event, queue, pf_num, vf_num);
1773 wr32(hw, GL_MDET_RX, 0xffffffff);
1774 }
1775
1776 /* check to see if this PF caused an MDD event */
1777 reg = rd32(hw, PF_MDET_TX_PQM);
1778 if (reg & PF_MDET_TX_PQM_VALID_M) {
1779 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1780 if (netif_msg_tx_err(pf))
1781 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1782 }
1783
1784 reg = rd32(hw, PF_MDET_TX_TCLAN);
1785 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1786 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1787 if (netif_msg_tx_err(pf))
1788 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1789 }
1790
1791 reg = rd32(hw, PF_MDET_RX);
1792 if (reg & PF_MDET_RX_VALID_M) {
1793 wr32(hw, PF_MDET_RX, 0xFFFF);
1794 if (netif_msg_rx_err(pf))
1795 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1796 }
1797
1798 /* Check to see if one of the VFs caused an MDD event, and then
1799 * increment counters and set print pending
1800 */
1801 mutex_lock(&pf->vfs.table_lock);
1802 ice_for_each_vf(pf, bkt, vf) {
1803 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1804 if (reg & VP_MDET_TX_PQM_VALID_M) {
1805 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1806 vf->mdd_tx_events.count++;
1807 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1808 if (netif_msg_tx_err(pf))
1809 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1810 vf->vf_id);
1811 }
1812
1813 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1814 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1815 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1816 vf->mdd_tx_events.count++;
1817 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1818 if (netif_msg_tx_err(pf))
1819 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1820 vf->vf_id);
1821 }
1822
1823 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1824 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1825 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1826 vf->mdd_tx_events.count++;
1827 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1828 if (netif_msg_tx_err(pf))
1829 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1830 vf->vf_id);
1831 }
1832
1833 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1834 if (reg & VP_MDET_RX_VALID_M) {
1835 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1836 vf->mdd_rx_events.count++;
1837 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1838 if (netif_msg_rx_err(pf))
1839 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1840 vf->vf_id);
1841
1842 /* Since the queue is disabled on VF Rx MDD events, the
1843 * PF can be configured to reset the VF through ethtool
1844 * private flag mdd-auto-reset-vf.
1845 */
1846 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1847 /* VF MDD event counters will be cleared by
1848 * reset, so print the event prior to reset.
1849 */
1850 ice_print_vf_rx_mdd_event(vf);
1851 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1852 }
1853 }
1854 }
1855 mutex_unlock(&pf->vfs.table_lock);
1856
1857 ice_print_vfs_mdd_events(pf);
1858}
1859
1860/**
1861 * ice_force_phys_link_state - Force the physical link state
1862 * @vsi: VSI to force the physical link state to up/down
1863 * @link_up: true/false indicates to set the physical link to up/down
1864 *
1865 * Force the physical link state by getting the current PHY capabilities from
1866 * hardware and setting the PHY config based on the determined capabilities. If
1867 * link changes a link event will be triggered because both the Enable Automatic
1868 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1869 *
1870 * Returns 0 on success, negative on failure
1871 */
1872static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1873{
1874 struct ice_aqc_get_phy_caps_data *pcaps;
1875 struct ice_aqc_set_phy_cfg_data *cfg;
1876 struct ice_port_info *pi;
1877 struct device *dev;
1878 int retcode;
1879
1880 if (!vsi || !vsi->port_info || !vsi->back)
1881 return -EINVAL;
1882 if (vsi->type != ICE_VSI_PF)
1883 return 0;
1884
1885 dev = ice_pf_to_dev(vsi->back);
1886
1887 pi = vsi->port_info;
1888
1889 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1890 if (!pcaps)
1891 return -ENOMEM;
1892
1893 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1894 NULL);
1895 if (retcode) {
1896 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1897 vsi->vsi_num, retcode);
1898 retcode = -EIO;
1899 goto out;
1900 }
1901
1902 /* No change in link */
1903 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1904 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1905 goto out;
1906
1907 /* Use the current user PHY configuration. The current user PHY
1908 * configuration is initialized during probe from PHY capabilities
1909 * software mode, and updated on set PHY configuration.
1910 */
1911 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1912 if (!cfg) {
1913 retcode = -ENOMEM;
1914 goto out;
1915 }
1916
1917 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1918 if (link_up)
1919 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1920 else
1921 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1922
1923 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1924 if (retcode) {
1925 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1926 vsi->vsi_num, retcode);
1927 retcode = -EIO;
1928 }
1929
1930 kfree(cfg);
1931out:
1932 kfree(pcaps);
1933 return retcode;
1934}
1935
1936/**
1937 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1938 * @pi: port info structure
1939 *
1940 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1941 */
1942static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1943{
1944 struct ice_aqc_get_phy_caps_data *pcaps;
1945 struct ice_pf *pf = pi->hw->back;
1946 int err;
1947
1948 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1949 if (!pcaps)
1950 return -ENOMEM;
1951
1952 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1953 pcaps, NULL);
1954
1955 if (err) {
1956 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1957 goto out;
1958 }
1959
1960 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1961 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1962
1963out:
1964 kfree(pcaps);
1965 return err;
1966}
1967
1968/**
1969 * ice_init_link_dflt_override - Initialize link default override
1970 * @pi: port info structure
1971 *
1972 * Initialize link default override and PHY total port shutdown during probe
1973 */
1974static void ice_init_link_dflt_override(struct ice_port_info *pi)
1975{
1976 struct ice_link_default_override_tlv *ldo;
1977 struct ice_pf *pf = pi->hw->back;
1978
1979 ldo = &pf->link_dflt_override;
1980 if (ice_get_link_default_override(ldo, pi))
1981 return;
1982
1983 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1984 return;
1985
1986 /* Enable Total Port Shutdown (override/replace link-down-on-close
1987 * ethtool private flag) for ports with Port Disable bit set.
1988 */
1989 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1990 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1991}
1992
1993/**
1994 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1995 * @pi: port info structure
1996 *
1997 * If default override is enabled, initialize the user PHY cfg speed and FEC
1998 * settings using the default override mask from the NVM.
1999 *
2000 * The PHY should only be configured with the default override settings the
2001 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
2002 * is used to indicate that the user PHY cfg default override is initialized
2003 * and the PHY has not been configured with the default override settings. The
2004 * state is set here, and cleared in ice_configure_phy the first time the PHY is
2005 * configured.
2006 *
2007 * This function should be called only if the FW doesn't support default
2008 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
2009 */
2010static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
2011{
2012 struct ice_link_default_override_tlv *ldo;
2013 struct ice_aqc_set_phy_cfg_data *cfg;
2014 struct ice_phy_info *phy = &pi->phy;
2015 struct ice_pf *pf = pi->hw->back;
2016
2017 ldo = &pf->link_dflt_override;
2018
2019 /* If link default override is enabled, use to mask NVM PHY capabilities
2020 * for speed and FEC default configuration.
2021 */
2022 cfg = &phy->curr_user_phy_cfg;
2023
2024 if (ldo->phy_type_low || ldo->phy_type_high) {
2025 cfg->phy_type_low = pf->nvm_phy_type_lo &
2026 cpu_to_le64(ldo->phy_type_low);
2027 cfg->phy_type_high = pf->nvm_phy_type_hi &
2028 cpu_to_le64(ldo->phy_type_high);
2029 }
2030 cfg->link_fec_opt = ldo->fec_options;
2031 phy->curr_user_fec_req = ICE_FEC_AUTO;
2032
2033 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2034}
2035
2036/**
2037 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2038 * @pi: port info structure
2039 *
2040 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2041 * mode to default. The PHY defaults are from get PHY capabilities topology
2042 * with media so call when media is first available. An error is returned if
2043 * called when media is not available. The PHY initialization completed state is
2044 * set here.
2045 *
2046 * These configurations are used when setting PHY
2047 * configuration. The user PHY configuration is updated on set PHY
2048 * configuration. Returns 0 on success, negative on failure
2049 */
2050static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2051{
2052 struct ice_aqc_get_phy_caps_data *pcaps;
2053 struct ice_phy_info *phy = &pi->phy;
2054 struct ice_pf *pf = pi->hw->back;
2055 int err;
2056
2057 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2058 return -EIO;
2059
2060 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2061 if (!pcaps)
2062 return -ENOMEM;
2063
2064 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2065 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2066 pcaps, NULL);
2067 else
2068 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2069 pcaps, NULL);
2070 if (err) {
2071 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2072 goto err_out;
2073 }
2074
2075 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2076
2077 /* check if lenient mode is supported and enabled */
2078 if (ice_fw_supports_link_override(pi->hw) &&
2079 !(pcaps->module_compliance_enforcement &
2080 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2081 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2082
2083 /* if the FW supports default PHY configuration mode, then the driver
2084 * does not have to apply link override settings. If not,
2085 * initialize user PHY configuration with link override values
2086 */
2087 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2088 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2089 ice_init_phy_cfg_dflt_override(pi);
2090 goto out;
2091 }
2092 }
2093
2094 /* if link default override is not enabled, set user flow control and
2095 * FEC settings based on what get_phy_caps returned
2096 */
2097 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2098 pcaps->link_fec_options);
2099 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2100
2101out:
2102 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2103 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2104err_out:
2105 kfree(pcaps);
2106 return err;
2107}
2108
2109/**
2110 * ice_configure_phy - configure PHY
2111 * @vsi: VSI of PHY
2112 *
2113 * Set the PHY configuration. If the current PHY configuration is the same as
2114 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2115 * configure the based get PHY capabilities for topology with media.
2116 */
2117static int ice_configure_phy(struct ice_vsi *vsi)
2118{
2119 struct device *dev = ice_pf_to_dev(vsi->back);
2120 struct ice_port_info *pi = vsi->port_info;
2121 struct ice_aqc_get_phy_caps_data *pcaps;
2122 struct ice_aqc_set_phy_cfg_data *cfg;
2123 struct ice_phy_info *phy = &pi->phy;
2124 struct ice_pf *pf = vsi->back;
2125 int err;
2126
2127 /* Ensure we have media as we cannot configure a medialess port */
2128 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2129 return -EPERM;
2130
2131 ice_print_topo_conflict(vsi);
2132
2133 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2134 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2135 return -EPERM;
2136
2137 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2138 return ice_force_phys_link_state(vsi, true);
2139
2140 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2141 if (!pcaps)
2142 return -ENOMEM;
2143
2144 /* Get current PHY config */
2145 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2146 NULL);
2147 if (err) {
2148 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2149 vsi->vsi_num, err);
2150 goto done;
2151 }
2152
2153 /* If PHY enable link is configured and configuration has not changed,
2154 * there's nothing to do
2155 */
2156 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2157 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2158 goto done;
2159
2160 /* Use PHY topology as baseline for configuration */
2161 memset(pcaps, 0, sizeof(*pcaps));
2162 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2163 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2164 pcaps, NULL);
2165 else
2166 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2167 pcaps, NULL);
2168 if (err) {
2169 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2170 vsi->vsi_num, err);
2171 goto done;
2172 }
2173
2174 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2175 if (!cfg) {
2176 err = -ENOMEM;
2177 goto done;
2178 }
2179
2180 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2181
2182 /* Speed - If default override pending, use curr_user_phy_cfg set in
2183 * ice_init_phy_user_cfg_ldo.
2184 */
2185 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2186 vsi->back->state)) {
2187 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2188 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2189 } else {
2190 u64 phy_low = 0, phy_high = 0;
2191
2192 ice_update_phy_type(&phy_low, &phy_high,
2193 pi->phy.curr_user_speed_req);
2194 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2195 cfg->phy_type_high = pcaps->phy_type_high &
2196 cpu_to_le64(phy_high);
2197 }
2198
2199 /* Can't provide what was requested; use PHY capabilities */
2200 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2201 cfg->phy_type_low = pcaps->phy_type_low;
2202 cfg->phy_type_high = pcaps->phy_type_high;
2203 }
2204
2205 /* FEC */
2206 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2207
2208 /* Can't provide what was requested; use PHY capabilities */
2209 if (cfg->link_fec_opt !=
2210 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2211 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2212 cfg->link_fec_opt = pcaps->link_fec_options;
2213 }
2214
2215 /* Flow Control - always supported; no need to check against
2216 * capabilities
2217 */
2218 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2219
2220 /* Enable link and link update */
2221 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2222
2223 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2224 if (err)
2225 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2226 vsi->vsi_num, err);
2227
2228 kfree(cfg);
2229done:
2230 kfree(pcaps);
2231 return err;
2232}
2233
2234/**
2235 * ice_check_media_subtask - Check for media
2236 * @pf: pointer to PF struct
2237 *
2238 * If media is available, then initialize PHY user configuration if it is not
2239 * been, and configure the PHY if the interface is up.
2240 */
2241static void ice_check_media_subtask(struct ice_pf *pf)
2242{
2243 struct ice_port_info *pi;
2244 struct ice_vsi *vsi;
2245 int err;
2246
2247 /* No need to check for media if it's already present */
2248 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2249 return;
2250
2251 vsi = ice_get_main_vsi(pf);
2252 if (!vsi)
2253 return;
2254
2255 /* Refresh link info and check if media is present */
2256 pi = vsi->port_info;
2257 err = ice_update_link_info(pi);
2258 if (err)
2259 return;
2260
2261 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2262
2263 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2264 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2265 ice_init_phy_user_cfg(pi);
2266
2267 /* PHY settings are reset on media insertion, reconfigure
2268 * PHY to preserve settings.
2269 */
2270 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2271 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2272 return;
2273
2274 err = ice_configure_phy(vsi);
2275 if (!err)
2276 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2277
2278 /* A Link Status Event will be generated; the event handler
2279 * will complete bringing the interface up
2280 */
2281 }
2282}
2283
2284/**
2285 * ice_service_task - manage and run subtasks
2286 * @work: pointer to work_struct contained by the PF struct
2287 */
2288static void ice_service_task(struct work_struct *work)
2289{
2290 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2291 unsigned long start_time = jiffies;
2292
2293 /* subtasks */
2294
2295 /* process reset requests first */
2296 ice_reset_subtask(pf);
2297
2298 /* bail if a reset/recovery cycle is pending or rebuild failed */
2299 if (ice_is_reset_in_progress(pf->state) ||
2300 test_bit(ICE_SUSPENDED, pf->state) ||
2301 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2302 ice_service_task_complete(pf);
2303 return;
2304 }
2305
2306 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2307 struct iidc_event *event;
2308
2309 event = kzalloc(sizeof(*event), GFP_KERNEL);
2310 if (event) {
2311 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2312 /* report the entire OICR value to AUX driver */
2313 swap(event->reg, pf->oicr_err_reg);
2314 ice_send_event_to_aux(pf, event);
2315 kfree(event);
2316 }
2317 }
2318
2319 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2320 /* Plug aux device per request */
2321 ice_plug_aux_dev(pf);
2322
2323 /* Mark plugging as done but check whether unplug was
2324 * requested during ice_plug_aux_dev() call
2325 * (e.g. from ice_clear_rdma_cap()) and if so then
2326 * plug aux device.
2327 */
2328 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2329 ice_unplug_aux_dev(pf);
2330 }
2331
2332 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2333 struct iidc_event *event;
2334
2335 event = kzalloc(sizeof(*event), GFP_KERNEL);
2336 if (event) {
2337 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2338 ice_send_event_to_aux(pf, event);
2339 kfree(event);
2340 }
2341 }
2342
2343 ice_clean_adminq_subtask(pf);
2344 ice_check_media_subtask(pf);
2345 ice_check_for_hang_subtask(pf);
2346 ice_sync_fltr_subtask(pf);
2347 ice_handle_mdd_event(pf);
2348 ice_watchdog_subtask(pf);
2349
2350 if (ice_is_safe_mode(pf)) {
2351 ice_service_task_complete(pf);
2352 return;
2353 }
2354
2355 ice_process_vflr_event(pf);
2356 ice_clean_mailboxq_subtask(pf);
2357 ice_clean_sbq_subtask(pf);
2358 ice_sync_arfs_fltrs(pf);
2359 ice_flush_fdir_ctx(pf);
2360
2361 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2362 ice_service_task_complete(pf);
2363
2364 /* If the tasks have taken longer than one service timer period
2365 * or there is more work to be done, reset the service timer to
2366 * schedule the service task now.
2367 */
2368 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2369 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2370 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2371 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2372 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2373 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2374 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2375 mod_timer(&pf->serv_tmr, jiffies);
2376}
2377
2378/**
2379 * ice_set_ctrlq_len - helper function to set controlq length
2380 * @hw: pointer to the HW instance
2381 */
2382static void ice_set_ctrlq_len(struct ice_hw *hw)
2383{
2384 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2385 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2386 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2387 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2388 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2389 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2390 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2391 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2392 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2393 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2394 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2395 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2396}
2397
2398/**
2399 * ice_schedule_reset - schedule a reset
2400 * @pf: board private structure
2401 * @reset: reset being requested
2402 */
2403int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2404{
2405 struct device *dev = ice_pf_to_dev(pf);
2406
2407 /* bail out if earlier reset has failed */
2408 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2409 dev_dbg(dev, "earlier reset has failed\n");
2410 return -EIO;
2411 }
2412 /* bail if reset/recovery already in progress */
2413 if (ice_is_reset_in_progress(pf->state)) {
2414 dev_dbg(dev, "Reset already in progress\n");
2415 return -EBUSY;
2416 }
2417
2418 switch (reset) {
2419 case ICE_RESET_PFR:
2420 set_bit(ICE_PFR_REQ, pf->state);
2421 break;
2422 case ICE_RESET_CORER:
2423 set_bit(ICE_CORER_REQ, pf->state);
2424 break;
2425 case ICE_RESET_GLOBR:
2426 set_bit(ICE_GLOBR_REQ, pf->state);
2427 break;
2428 default:
2429 return -EINVAL;
2430 }
2431
2432 ice_service_task_schedule(pf);
2433 return 0;
2434}
2435
2436/**
2437 * ice_irq_affinity_notify - Callback for affinity changes
2438 * @notify: context as to what irq was changed
2439 * @mask: the new affinity mask
2440 *
2441 * This is a callback function used by the irq_set_affinity_notifier function
2442 * so that we may register to receive changes to the irq affinity masks.
2443 */
2444static void
2445ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2446 const cpumask_t *mask)
2447{
2448 struct ice_q_vector *q_vector =
2449 container_of(notify, struct ice_q_vector, affinity_notify);
2450
2451 cpumask_copy(&q_vector->affinity_mask, mask);
2452}
2453
2454/**
2455 * ice_irq_affinity_release - Callback for affinity notifier release
2456 * @ref: internal core kernel usage
2457 *
2458 * This is a callback function used by the irq_set_affinity_notifier function
2459 * to inform the current notification subscriber that they will no longer
2460 * receive notifications.
2461 */
2462static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2463
2464/**
2465 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2466 * @vsi: the VSI being configured
2467 */
2468static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2469{
2470 struct ice_hw *hw = &vsi->back->hw;
2471 int i;
2472
2473 ice_for_each_q_vector(vsi, i)
2474 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2475
2476 ice_flush(hw);
2477 return 0;
2478}
2479
2480/**
2481 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2482 * @vsi: the VSI being configured
2483 * @basename: name for the vector
2484 */
2485static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2486{
2487 int q_vectors = vsi->num_q_vectors;
2488 struct ice_pf *pf = vsi->back;
2489 int base = vsi->base_vector;
2490 struct device *dev;
2491 int rx_int_idx = 0;
2492 int tx_int_idx = 0;
2493 int vector, err;
2494 int irq_num;
2495
2496 dev = ice_pf_to_dev(pf);
2497 for (vector = 0; vector < q_vectors; vector++) {
2498 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2499
2500 irq_num = pf->msix_entries[base + vector].vector;
2501
2502 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2503 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2504 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2505 tx_int_idx++;
2506 } else if (q_vector->rx.rx_ring) {
2507 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2508 "%s-%s-%d", basename, "rx", rx_int_idx++);
2509 } else if (q_vector->tx.tx_ring) {
2510 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2511 "%s-%s-%d", basename, "tx", tx_int_idx++);
2512 } else {
2513 /* skip this unused q_vector */
2514 continue;
2515 }
2516 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2517 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2518 IRQF_SHARED, q_vector->name,
2519 q_vector);
2520 else
2521 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2522 0, q_vector->name, q_vector);
2523 if (err) {
2524 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2525 err);
2526 goto free_q_irqs;
2527 }
2528
2529 /* register for affinity change notifications */
2530 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2531 struct irq_affinity_notify *affinity_notify;
2532
2533 affinity_notify = &q_vector->affinity_notify;
2534 affinity_notify->notify = ice_irq_affinity_notify;
2535 affinity_notify->release = ice_irq_affinity_release;
2536 irq_set_affinity_notifier(irq_num, affinity_notify);
2537 }
2538
2539 /* assign the mask for this irq */
2540 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2541 }
2542
2543 err = ice_set_cpu_rx_rmap(vsi);
2544 if (err) {
2545 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2546 vsi->vsi_num, ERR_PTR(err));
2547 goto free_q_irqs;
2548 }
2549
2550 vsi->irqs_ready = true;
2551 return 0;
2552
2553free_q_irqs:
2554 while (vector) {
2555 vector--;
2556 irq_num = pf->msix_entries[base + vector].vector;
2557 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2558 irq_set_affinity_notifier(irq_num, NULL);
2559 irq_set_affinity_hint(irq_num, NULL);
2560 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2561 }
2562 return err;
2563}
2564
2565/**
2566 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2567 * @vsi: VSI to setup Tx rings used by XDP
2568 *
2569 * Return 0 on success and negative value on error
2570 */
2571static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2572{
2573 struct device *dev = ice_pf_to_dev(vsi->back);
2574 struct ice_tx_desc *tx_desc;
2575 int i, j;
2576
2577 ice_for_each_xdp_txq(vsi, i) {
2578 u16 xdp_q_idx = vsi->alloc_txq + i;
2579 struct ice_ring_stats *ring_stats;
2580 struct ice_tx_ring *xdp_ring;
2581
2582 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2583 if (!xdp_ring)
2584 goto free_xdp_rings;
2585
2586 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
2587 if (!ring_stats) {
2588 ice_free_tx_ring(xdp_ring);
2589 goto free_xdp_rings;
2590 }
2591
2592 xdp_ring->ring_stats = ring_stats;
2593 xdp_ring->q_index = xdp_q_idx;
2594 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2595 xdp_ring->vsi = vsi;
2596 xdp_ring->netdev = NULL;
2597 xdp_ring->dev = dev;
2598 xdp_ring->count = vsi->num_tx_desc;
2599 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2600 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2601 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2602 if (ice_setup_tx_ring(xdp_ring))
2603 goto free_xdp_rings;
2604 ice_set_ring_xdp(xdp_ring);
2605 spin_lock_init(&xdp_ring->tx_lock);
2606 for (j = 0; j < xdp_ring->count; j++) {
2607 tx_desc = ICE_TX_DESC(xdp_ring, j);
2608 tx_desc->cmd_type_offset_bsz = 0;
2609 }
2610 }
2611
2612 return 0;
2613
2614free_xdp_rings:
2615 for (; i >= 0; i--) {
2616 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc) {
2617 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2618 vsi->xdp_rings[i]->ring_stats = NULL;
2619 ice_free_tx_ring(vsi->xdp_rings[i]);
2620 }
2621 }
2622 return -ENOMEM;
2623}
2624
2625/**
2626 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2627 * @vsi: VSI to set the bpf prog on
2628 * @prog: the bpf prog pointer
2629 */
2630static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2631{
2632 struct bpf_prog *old_prog;
2633 int i;
2634
2635 old_prog = xchg(&vsi->xdp_prog, prog);
2636 if (old_prog)
2637 bpf_prog_put(old_prog);
2638
2639 ice_for_each_rxq(vsi, i)
2640 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2641}
2642
2643/**
2644 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2645 * @vsi: VSI to bring up Tx rings used by XDP
2646 * @prog: bpf program that will be assigned to VSI
2647 *
2648 * Return 0 on success and negative value on error
2649 */
2650int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2651{
2652 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2653 int xdp_rings_rem = vsi->num_xdp_txq;
2654 struct ice_pf *pf = vsi->back;
2655 struct ice_qs_cfg xdp_qs_cfg = {
2656 .qs_mutex = &pf->avail_q_mutex,
2657 .pf_map = pf->avail_txqs,
2658 .pf_map_size = pf->max_pf_txqs,
2659 .q_count = vsi->num_xdp_txq,
2660 .scatter_count = ICE_MAX_SCATTER_TXQS,
2661 .vsi_map = vsi->txq_map,
2662 .vsi_map_offset = vsi->alloc_txq,
2663 .mapping_mode = ICE_VSI_MAP_CONTIG
2664 };
2665 struct device *dev;
2666 int i, v_idx;
2667 int status;
2668
2669 dev = ice_pf_to_dev(pf);
2670 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2671 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2672 if (!vsi->xdp_rings)
2673 return -ENOMEM;
2674
2675 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2676 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2677 goto err_map_xdp;
2678
2679 if (static_key_enabled(&ice_xdp_locking_key))
2680 netdev_warn(vsi->netdev,
2681 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2682
2683 if (ice_xdp_alloc_setup_rings(vsi))
2684 goto clear_xdp_rings;
2685
2686 /* follow the logic from ice_vsi_map_rings_to_vectors */
2687 ice_for_each_q_vector(vsi, v_idx) {
2688 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2689 int xdp_rings_per_v, q_id, q_base;
2690
2691 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2692 vsi->num_q_vectors - v_idx);
2693 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2694
2695 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2696 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2697
2698 xdp_ring->q_vector = q_vector;
2699 xdp_ring->next = q_vector->tx.tx_ring;
2700 q_vector->tx.tx_ring = xdp_ring;
2701 }
2702 xdp_rings_rem -= xdp_rings_per_v;
2703 }
2704
2705 ice_for_each_rxq(vsi, i) {
2706 if (static_key_enabled(&ice_xdp_locking_key)) {
2707 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2708 } else {
2709 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2710 struct ice_tx_ring *ring;
2711
2712 ice_for_each_tx_ring(ring, q_vector->tx) {
2713 if (ice_ring_is_xdp(ring)) {
2714 vsi->rx_rings[i]->xdp_ring = ring;
2715 break;
2716 }
2717 }
2718 }
2719 ice_tx_xsk_pool(vsi, i);
2720 }
2721
2722 /* omit the scheduler update if in reset path; XDP queues will be
2723 * taken into account at the end of ice_vsi_rebuild, where
2724 * ice_cfg_vsi_lan is being called
2725 */
2726 if (ice_is_reset_in_progress(pf->state))
2727 return 0;
2728
2729 /* tell the Tx scheduler that right now we have
2730 * additional queues
2731 */
2732 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2733 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2734
2735 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2736 max_txqs);
2737 if (status) {
2738 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2739 status);
2740 goto clear_xdp_rings;
2741 }
2742
2743 /* assign the prog only when it's not already present on VSI;
2744 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2745 * VSI rebuild that happens under ethtool -L can expose us to
2746 * the bpf_prog refcount issues as we would be swapping same
2747 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2748 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2749 * this is not harmful as dev_xdp_install bumps the refcount
2750 * before calling the op exposed by the driver;
2751 */
2752 if (!ice_is_xdp_ena_vsi(vsi))
2753 ice_vsi_assign_bpf_prog(vsi, prog);
2754
2755 return 0;
2756clear_xdp_rings:
2757 ice_for_each_xdp_txq(vsi, i)
2758 if (vsi->xdp_rings[i]) {
2759 kfree_rcu(vsi->xdp_rings[i], rcu);
2760 vsi->xdp_rings[i] = NULL;
2761 }
2762
2763err_map_xdp:
2764 mutex_lock(&pf->avail_q_mutex);
2765 ice_for_each_xdp_txq(vsi, i) {
2766 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2767 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2768 }
2769 mutex_unlock(&pf->avail_q_mutex);
2770
2771 devm_kfree(dev, vsi->xdp_rings);
2772 return -ENOMEM;
2773}
2774
2775/**
2776 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2777 * @vsi: VSI to remove XDP rings
2778 *
2779 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2780 * resources
2781 */
2782int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2783{
2784 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2785 struct ice_pf *pf = vsi->back;
2786 int i, v_idx;
2787
2788 /* q_vectors are freed in reset path so there's no point in detaching
2789 * rings; in case of rebuild being triggered not from reset bits
2790 * in pf->state won't be set, so additionally check first q_vector
2791 * against NULL
2792 */
2793 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2794 goto free_qmap;
2795
2796 ice_for_each_q_vector(vsi, v_idx) {
2797 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2798 struct ice_tx_ring *ring;
2799
2800 ice_for_each_tx_ring(ring, q_vector->tx)
2801 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2802 break;
2803
2804 /* restore the value of last node prior to XDP setup */
2805 q_vector->tx.tx_ring = ring;
2806 }
2807
2808free_qmap:
2809 mutex_lock(&pf->avail_q_mutex);
2810 ice_for_each_xdp_txq(vsi, i) {
2811 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2812 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2813 }
2814 mutex_unlock(&pf->avail_q_mutex);
2815
2816 ice_for_each_xdp_txq(vsi, i)
2817 if (vsi->xdp_rings[i]) {
2818 if (vsi->xdp_rings[i]->desc) {
2819 synchronize_rcu();
2820 ice_free_tx_ring(vsi->xdp_rings[i]);
2821 }
2822 kfree_rcu(vsi->xdp_rings[i]->ring_stats, rcu);
2823 vsi->xdp_rings[i]->ring_stats = NULL;
2824 kfree_rcu(vsi->xdp_rings[i], rcu);
2825 vsi->xdp_rings[i] = NULL;
2826 }
2827
2828 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2829 vsi->xdp_rings = NULL;
2830
2831 if (static_key_enabled(&ice_xdp_locking_key))
2832 static_branch_dec(&ice_xdp_locking_key);
2833
2834 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2835 return 0;
2836
2837 ice_vsi_assign_bpf_prog(vsi, NULL);
2838
2839 /* notify Tx scheduler that we destroyed XDP queues and bring
2840 * back the old number of child nodes
2841 */
2842 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2843 max_txqs[i] = vsi->num_txq;
2844
2845 /* change number of XDP Tx queues to 0 */
2846 vsi->num_xdp_txq = 0;
2847
2848 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2849 max_txqs);
2850}
2851
2852/**
2853 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2854 * @vsi: VSI to schedule napi on
2855 */
2856static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2857{
2858 int i;
2859
2860 ice_for_each_rxq(vsi, i) {
2861 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2862
2863 if (rx_ring->xsk_pool)
2864 napi_schedule(&rx_ring->q_vector->napi);
2865 }
2866}
2867
2868/**
2869 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2870 * @vsi: VSI to determine the count of XDP Tx qs
2871 *
2872 * returns 0 if Tx qs count is higher than at least half of CPU count,
2873 * -ENOMEM otherwise
2874 */
2875int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2876{
2877 u16 avail = ice_get_avail_txq_count(vsi->back);
2878 u16 cpus = num_possible_cpus();
2879
2880 if (avail < cpus / 2)
2881 return -ENOMEM;
2882
2883 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2884
2885 if (vsi->num_xdp_txq < cpus)
2886 static_branch_inc(&ice_xdp_locking_key);
2887
2888 return 0;
2889}
2890
2891/**
2892 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2893 * @vsi: VSI to setup XDP for
2894 * @prog: XDP program
2895 * @extack: netlink extended ack
2896 */
2897static int
2898ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2899 struct netlink_ext_ack *extack)
2900{
2901 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2902 bool if_running = netif_running(vsi->netdev);
2903 int ret = 0, xdp_ring_err = 0;
2904
2905 if (frame_size > vsi->rx_buf_len) {
2906 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2907 return -EOPNOTSUPP;
2908 }
2909
2910 /* need to stop netdev while setting up the program for Rx rings */
2911 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2912 ret = ice_down(vsi);
2913 if (ret) {
2914 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2915 return ret;
2916 }
2917 }
2918
2919 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2920 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2921 if (xdp_ring_err) {
2922 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2923 } else {
2924 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2925 if (xdp_ring_err)
2926 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2927 }
2928 /* reallocate Rx queues that are used for zero-copy */
2929 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2930 if (xdp_ring_err)
2931 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2932 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2933 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2934 if (xdp_ring_err)
2935 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2936 /* reallocate Rx queues that were used for zero-copy */
2937 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2938 if (xdp_ring_err)
2939 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2940 } else {
2941 /* safe to call even when prog == vsi->xdp_prog as
2942 * dev_xdp_install in net/core/dev.c incremented prog's
2943 * refcount so corresponding bpf_prog_put won't cause
2944 * underflow
2945 */
2946 ice_vsi_assign_bpf_prog(vsi, prog);
2947 }
2948
2949 if (if_running)
2950 ret = ice_up(vsi);
2951
2952 if (!ret && prog)
2953 ice_vsi_rx_napi_schedule(vsi);
2954
2955 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2956}
2957
2958/**
2959 * ice_xdp_safe_mode - XDP handler for safe mode
2960 * @dev: netdevice
2961 * @xdp: XDP command
2962 */
2963static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2964 struct netdev_bpf *xdp)
2965{
2966 NL_SET_ERR_MSG_MOD(xdp->extack,
2967 "Please provide working DDP firmware package in order to use XDP\n"
2968 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2969 return -EOPNOTSUPP;
2970}
2971
2972/**
2973 * ice_xdp - implements XDP handler
2974 * @dev: netdevice
2975 * @xdp: XDP command
2976 */
2977static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2978{
2979 struct ice_netdev_priv *np = netdev_priv(dev);
2980 struct ice_vsi *vsi = np->vsi;
2981
2982 if (vsi->type != ICE_VSI_PF) {
2983 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2984 return -EINVAL;
2985 }
2986
2987 switch (xdp->command) {
2988 case XDP_SETUP_PROG:
2989 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2990 case XDP_SETUP_XSK_POOL:
2991 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2992 xdp->xsk.queue_id);
2993 default:
2994 return -EINVAL;
2995 }
2996}
2997
2998/**
2999 * ice_ena_misc_vector - enable the non-queue interrupts
3000 * @pf: board private structure
3001 */
3002static void ice_ena_misc_vector(struct ice_pf *pf)
3003{
3004 struct ice_hw *hw = &pf->hw;
3005 u32 val;
3006
3007 /* Disable anti-spoof detection interrupt to prevent spurious event
3008 * interrupts during a function reset. Anti-spoof functionally is
3009 * still supported.
3010 */
3011 val = rd32(hw, GL_MDCK_TX_TDPU);
3012 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
3013 wr32(hw, GL_MDCK_TX_TDPU, val);
3014
3015 /* clear things first */
3016 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
3017 rd32(hw, PFINT_OICR); /* read to clear */
3018
3019 val = (PFINT_OICR_ECC_ERR_M |
3020 PFINT_OICR_MAL_DETECT_M |
3021 PFINT_OICR_GRST_M |
3022 PFINT_OICR_PCI_EXCEPTION_M |
3023 PFINT_OICR_VFLR_M |
3024 PFINT_OICR_HMC_ERR_M |
3025 PFINT_OICR_PE_PUSH_M |
3026 PFINT_OICR_PE_CRITERR_M);
3027
3028 wr32(hw, PFINT_OICR_ENA, val);
3029
3030 /* SW_ITR_IDX = 0, but don't change INTENA */
3031 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3032 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3033}
3034
3035/**
3036 * ice_misc_intr - misc interrupt handler
3037 * @irq: interrupt number
3038 * @data: pointer to a q_vector
3039 */
3040static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3041{
3042 struct ice_pf *pf = (struct ice_pf *)data;
3043 struct ice_hw *hw = &pf->hw;
3044 irqreturn_t ret = IRQ_NONE;
3045 struct device *dev;
3046 u32 oicr, ena_mask;
3047
3048 dev = ice_pf_to_dev(pf);
3049 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3050 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3051 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3052
3053 oicr = rd32(hw, PFINT_OICR);
3054 ena_mask = rd32(hw, PFINT_OICR_ENA);
3055
3056 if (oicr & PFINT_OICR_SWINT_M) {
3057 ena_mask &= ~PFINT_OICR_SWINT_M;
3058 pf->sw_int_count++;
3059 }
3060
3061 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3062 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3063 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3064 }
3065 if (oicr & PFINT_OICR_VFLR_M) {
3066 /* disable any further VFLR event notifications */
3067 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3068 u32 reg = rd32(hw, PFINT_OICR_ENA);
3069
3070 reg &= ~PFINT_OICR_VFLR_M;
3071 wr32(hw, PFINT_OICR_ENA, reg);
3072 } else {
3073 ena_mask &= ~PFINT_OICR_VFLR_M;
3074 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3075 }
3076 }
3077
3078 if (oicr & PFINT_OICR_GRST_M) {
3079 u32 reset;
3080
3081 /* we have a reset warning */
3082 ena_mask &= ~PFINT_OICR_GRST_M;
3083 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3084 GLGEN_RSTAT_RESET_TYPE_S;
3085
3086 if (reset == ICE_RESET_CORER)
3087 pf->corer_count++;
3088 else if (reset == ICE_RESET_GLOBR)
3089 pf->globr_count++;
3090 else if (reset == ICE_RESET_EMPR)
3091 pf->empr_count++;
3092 else
3093 dev_dbg(dev, "Invalid reset type %d\n", reset);
3094
3095 /* If a reset cycle isn't already in progress, we set a bit in
3096 * pf->state so that the service task can start a reset/rebuild.
3097 */
3098 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3099 if (reset == ICE_RESET_CORER)
3100 set_bit(ICE_CORER_RECV, pf->state);
3101 else if (reset == ICE_RESET_GLOBR)
3102 set_bit(ICE_GLOBR_RECV, pf->state);
3103 else
3104 set_bit(ICE_EMPR_RECV, pf->state);
3105
3106 /* There are couple of different bits at play here.
3107 * hw->reset_ongoing indicates whether the hardware is
3108 * in reset. This is set to true when a reset interrupt
3109 * is received and set back to false after the driver
3110 * has determined that the hardware is out of reset.
3111 *
3112 * ICE_RESET_OICR_RECV in pf->state indicates
3113 * that a post reset rebuild is required before the
3114 * driver is operational again. This is set above.
3115 *
3116 * As this is the start of the reset/rebuild cycle, set
3117 * both to indicate that.
3118 */
3119 hw->reset_ongoing = true;
3120 }
3121 }
3122
3123 if (oicr & PFINT_OICR_TSYN_TX_M) {
3124 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3125 if (!hw->reset_ongoing)
3126 ret = IRQ_WAKE_THREAD;
3127 }
3128
3129 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3130 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3131 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3132
3133 /* Save EVENTs from GTSYN register */
3134 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3135 GLTSYN_STAT_EVENT1_M |
3136 GLTSYN_STAT_EVENT2_M);
3137 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3138 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3139 }
3140
3141#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3142 if (oicr & ICE_AUX_CRIT_ERR) {
3143 pf->oicr_err_reg |= oicr;
3144 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3145 ena_mask &= ~ICE_AUX_CRIT_ERR;
3146 }
3147
3148 /* Report any remaining unexpected interrupts */
3149 oicr &= ena_mask;
3150 if (oicr) {
3151 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3152 /* If a critical error is pending there is no choice but to
3153 * reset the device.
3154 */
3155 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3156 PFINT_OICR_ECC_ERR_M)) {
3157 set_bit(ICE_PFR_REQ, pf->state);
3158 ice_service_task_schedule(pf);
3159 }
3160 }
3161 if (!ret)
3162 ret = IRQ_HANDLED;
3163
3164 ice_service_task_schedule(pf);
3165 ice_irq_dynamic_ena(hw, NULL, NULL);
3166
3167 return ret;
3168}
3169
3170/**
3171 * ice_misc_intr_thread_fn - misc interrupt thread function
3172 * @irq: interrupt number
3173 * @data: pointer to a q_vector
3174 */
3175static irqreturn_t ice_misc_intr_thread_fn(int __always_unused irq, void *data)
3176{
3177 struct ice_pf *pf = data;
3178
3179 if (ice_is_reset_in_progress(pf->state))
3180 return IRQ_HANDLED;
3181
3182 while (!ice_ptp_process_ts(pf))
3183 usleep_range(50, 100);
3184
3185 return IRQ_HANDLED;
3186}
3187
3188/**
3189 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3190 * @hw: pointer to HW structure
3191 */
3192static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3193{
3194 /* disable Admin queue Interrupt causes */
3195 wr32(hw, PFINT_FW_CTL,
3196 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3197
3198 /* disable Mailbox queue Interrupt causes */
3199 wr32(hw, PFINT_MBX_CTL,
3200 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3201
3202 wr32(hw, PFINT_SB_CTL,
3203 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3204
3205 /* disable Control queue Interrupt causes */
3206 wr32(hw, PFINT_OICR_CTL,
3207 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3208
3209 ice_flush(hw);
3210}
3211
3212/**
3213 * ice_free_irq_msix_misc - Unroll misc vector setup
3214 * @pf: board private structure
3215 */
3216static void ice_free_irq_msix_misc(struct ice_pf *pf)
3217{
3218 struct ice_hw *hw = &pf->hw;
3219
3220 ice_dis_ctrlq_interrupts(hw);
3221
3222 /* disable OICR interrupt */
3223 wr32(hw, PFINT_OICR_ENA, 0);
3224 ice_flush(hw);
3225
3226 if (pf->msix_entries) {
3227 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3228 devm_free_irq(ice_pf_to_dev(pf),
3229 pf->msix_entries[pf->oicr_idx].vector, pf);
3230 }
3231
3232 pf->num_avail_sw_msix += 1;
3233 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3234}
3235
3236/**
3237 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3238 * @hw: pointer to HW structure
3239 * @reg_idx: HW vector index to associate the control queue interrupts with
3240 */
3241static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3242{
3243 u32 val;
3244
3245 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3246 PFINT_OICR_CTL_CAUSE_ENA_M);
3247 wr32(hw, PFINT_OICR_CTL, val);
3248
3249 /* enable Admin queue Interrupt causes */
3250 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3251 PFINT_FW_CTL_CAUSE_ENA_M);
3252 wr32(hw, PFINT_FW_CTL, val);
3253
3254 /* enable Mailbox queue Interrupt causes */
3255 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3256 PFINT_MBX_CTL_CAUSE_ENA_M);
3257 wr32(hw, PFINT_MBX_CTL, val);
3258
3259 /* This enables Sideband queue Interrupt causes */
3260 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3261 PFINT_SB_CTL_CAUSE_ENA_M);
3262 wr32(hw, PFINT_SB_CTL, val);
3263
3264 ice_flush(hw);
3265}
3266
3267/**
3268 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3269 * @pf: board private structure
3270 *
3271 * This sets up the handler for MSIX 0, which is used to manage the
3272 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3273 * when in MSI or Legacy interrupt mode.
3274 */
3275static int ice_req_irq_msix_misc(struct ice_pf *pf)
3276{
3277 struct device *dev = ice_pf_to_dev(pf);
3278 struct ice_hw *hw = &pf->hw;
3279 int oicr_idx, err = 0;
3280
3281 if (!pf->int_name[0])
3282 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3283 dev_driver_string(dev), dev_name(dev));
3284
3285 /* Do not request IRQ but do enable OICR interrupt since settings are
3286 * lost during reset. Note that this function is called only during
3287 * rebuild path and not while reset is in progress.
3288 */
3289 if (ice_is_reset_in_progress(pf->state))
3290 goto skip_req_irq;
3291
3292 /* reserve one vector in irq_tracker for misc interrupts */
3293 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3294 if (oicr_idx < 0)
3295 return oicr_idx;
3296
3297 pf->num_avail_sw_msix -= 1;
3298 pf->oicr_idx = (u16)oicr_idx;
3299
3300 err = devm_request_threaded_irq(dev,
3301 pf->msix_entries[pf->oicr_idx].vector,
3302 ice_misc_intr, ice_misc_intr_thread_fn,
3303 0, pf->int_name, pf);
3304 if (err) {
3305 dev_err(dev, "devm_request_threaded_irq for %s failed: %d\n",
3306 pf->int_name, err);
3307 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3308 pf->num_avail_sw_msix += 1;
3309 return err;
3310 }
3311
3312skip_req_irq:
3313 ice_ena_misc_vector(pf);
3314
3315 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3316 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3317 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3318
3319 ice_flush(hw);
3320 ice_irq_dynamic_ena(hw, NULL, NULL);
3321
3322 return 0;
3323}
3324
3325/**
3326 * ice_napi_add - register NAPI handler for the VSI
3327 * @vsi: VSI for which NAPI handler is to be registered
3328 *
3329 * This function is only called in the driver's load path. Registering the NAPI
3330 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3331 * reset/rebuild, etc.)
3332 */
3333static void ice_napi_add(struct ice_vsi *vsi)
3334{
3335 int v_idx;
3336
3337 if (!vsi->netdev)
3338 return;
3339
3340 ice_for_each_q_vector(vsi, v_idx)
3341 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3342 ice_napi_poll);
3343}
3344
3345/**
3346 * ice_set_ops - set netdev and ethtools ops for the given netdev
3347 * @netdev: netdev instance
3348 */
3349static void ice_set_ops(struct net_device *netdev)
3350{
3351 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3352
3353 if (ice_is_safe_mode(pf)) {
3354 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3355 ice_set_ethtool_safe_mode_ops(netdev);
3356 return;
3357 }
3358
3359 netdev->netdev_ops = &ice_netdev_ops;
3360 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3361 ice_set_ethtool_ops(netdev);
3362}
3363
3364/**
3365 * ice_set_netdev_features - set features for the given netdev
3366 * @netdev: netdev instance
3367 */
3368static void ice_set_netdev_features(struct net_device *netdev)
3369{
3370 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3371 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3372 netdev_features_t csumo_features;
3373 netdev_features_t vlano_features;
3374 netdev_features_t dflt_features;
3375 netdev_features_t tso_features;
3376
3377 if (ice_is_safe_mode(pf)) {
3378 /* safe mode */
3379 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3380 netdev->hw_features = netdev->features;
3381 return;
3382 }
3383
3384 dflt_features = NETIF_F_SG |
3385 NETIF_F_HIGHDMA |
3386 NETIF_F_NTUPLE |
3387 NETIF_F_RXHASH;
3388
3389 csumo_features = NETIF_F_RXCSUM |
3390 NETIF_F_IP_CSUM |
3391 NETIF_F_SCTP_CRC |
3392 NETIF_F_IPV6_CSUM;
3393
3394 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3395 NETIF_F_HW_VLAN_CTAG_TX |
3396 NETIF_F_HW_VLAN_CTAG_RX;
3397
3398 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3399 if (is_dvm_ena)
3400 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3401
3402 tso_features = NETIF_F_TSO |
3403 NETIF_F_TSO_ECN |
3404 NETIF_F_TSO6 |
3405 NETIF_F_GSO_GRE |
3406 NETIF_F_GSO_UDP_TUNNEL |
3407 NETIF_F_GSO_GRE_CSUM |
3408 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3409 NETIF_F_GSO_PARTIAL |
3410 NETIF_F_GSO_IPXIP4 |
3411 NETIF_F_GSO_IPXIP6 |
3412 NETIF_F_GSO_UDP_L4;
3413
3414 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3415 NETIF_F_GSO_GRE_CSUM;
3416 /* set features that user can change */
3417 netdev->hw_features = dflt_features | csumo_features |
3418 vlano_features | tso_features;
3419
3420 /* add support for HW_CSUM on packets with MPLS header */
3421 netdev->mpls_features = NETIF_F_HW_CSUM |
3422 NETIF_F_TSO |
3423 NETIF_F_TSO6;
3424
3425 /* enable features */
3426 netdev->features |= netdev->hw_features;
3427
3428 netdev->hw_features |= NETIF_F_HW_TC;
3429 netdev->hw_features |= NETIF_F_LOOPBACK;
3430
3431 /* encap and VLAN devices inherit default, csumo and tso features */
3432 netdev->hw_enc_features |= dflt_features | csumo_features |
3433 tso_features;
3434 netdev->vlan_features |= dflt_features | csumo_features |
3435 tso_features;
3436
3437 /* advertise support but don't enable by default since only one type of
3438 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3439 * type turns on the other has to be turned off. This is enforced by the
3440 * ice_fix_features() ndo callback.
3441 */
3442 if (is_dvm_ena)
3443 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3444 NETIF_F_HW_VLAN_STAG_TX;
3445
3446 /* Leave CRC / FCS stripping enabled by default, but allow the value to
3447 * be changed at runtime
3448 */
3449 netdev->hw_features |= NETIF_F_RXFCS;
3450}
3451
3452/**
3453 * ice_cfg_netdev - Allocate, configure and register a netdev
3454 * @vsi: the VSI associated with the new netdev
3455 *
3456 * Returns 0 on success, negative value on failure
3457 */
3458static int ice_cfg_netdev(struct ice_vsi *vsi)
3459{
3460 struct ice_netdev_priv *np;
3461 struct net_device *netdev;
3462 u8 mac_addr[ETH_ALEN];
3463
3464 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3465 vsi->alloc_rxq);
3466 if (!netdev)
3467 return -ENOMEM;
3468
3469 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3470 vsi->netdev = netdev;
3471 np = netdev_priv(netdev);
3472 np->vsi = vsi;
3473
3474 ice_set_netdev_features(netdev);
3475
3476 ice_set_ops(netdev);
3477
3478 if (vsi->type == ICE_VSI_PF) {
3479 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3480 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3481 eth_hw_addr_set(netdev, mac_addr);
3482 ether_addr_copy(netdev->perm_addr, mac_addr);
3483 }
3484
3485 netdev->priv_flags |= IFF_UNICAST_FLT;
3486
3487 /* Setup netdev TC information */
3488 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3489
3490 /* setup watchdog timeout value to be 5 second */
3491 netdev->watchdog_timeo = 5 * HZ;
3492
3493 netdev->min_mtu = ETH_MIN_MTU;
3494 netdev->max_mtu = ICE_MAX_MTU;
3495
3496 return 0;
3497}
3498
3499/**
3500 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3501 * @lut: Lookup table
3502 * @rss_table_size: Lookup table size
3503 * @rss_size: Range of queue number for hashing
3504 */
3505void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3506{
3507 u16 i;
3508
3509 for (i = 0; i < rss_table_size; i++)
3510 lut[i] = i % rss_size;
3511}
3512
3513/**
3514 * ice_pf_vsi_setup - Set up a PF VSI
3515 * @pf: board private structure
3516 * @pi: pointer to the port_info instance
3517 *
3518 * Returns pointer to the successfully allocated VSI software struct
3519 * on success, otherwise returns NULL on failure.
3520 */
3521static struct ice_vsi *
3522ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3523{
3524 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3525}
3526
3527static struct ice_vsi *
3528ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3529 struct ice_channel *ch)
3530{
3531 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3532}
3533
3534/**
3535 * ice_ctrl_vsi_setup - Set up a control VSI
3536 * @pf: board private structure
3537 * @pi: pointer to the port_info instance
3538 *
3539 * Returns pointer to the successfully allocated VSI software struct
3540 * on success, otherwise returns NULL on failure.
3541 */
3542static struct ice_vsi *
3543ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3544{
3545 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3546}
3547
3548/**
3549 * ice_lb_vsi_setup - Set up a loopback VSI
3550 * @pf: board private structure
3551 * @pi: pointer to the port_info instance
3552 *
3553 * Returns pointer to the successfully allocated VSI software struct
3554 * on success, otherwise returns NULL on failure.
3555 */
3556struct ice_vsi *
3557ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3558{
3559 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3560}
3561
3562/**
3563 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3564 * @netdev: network interface to be adjusted
3565 * @proto: VLAN TPID
3566 * @vid: VLAN ID to be added
3567 *
3568 * net_device_ops implementation for adding VLAN IDs
3569 */
3570static int
3571ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3572{
3573 struct ice_netdev_priv *np = netdev_priv(netdev);
3574 struct ice_vsi_vlan_ops *vlan_ops;
3575 struct ice_vsi *vsi = np->vsi;
3576 struct ice_vlan vlan;
3577 int ret;
3578
3579 /* VLAN 0 is added by default during load/reset */
3580 if (!vid)
3581 return 0;
3582
3583 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3584 usleep_range(1000, 2000);
3585
3586 /* Add multicast promisc rule for the VLAN ID to be added if
3587 * all-multicast is currently enabled.
3588 */
3589 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3590 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3591 ICE_MCAST_VLAN_PROMISC_BITS,
3592 vid);
3593 if (ret)
3594 goto finish;
3595 }
3596
3597 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3598
3599 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3600 * packets aren't pruned by the device's internal switch on Rx
3601 */
3602 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3603 ret = vlan_ops->add_vlan(vsi, &vlan);
3604 if (ret)
3605 goto finish;
3606
3607 /* If all-multicast is currently enabled and this VLAN ID is only one
3608 * besides VLAN-0 we have to update look-up type of multicast promisc
3609 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3610 */
3611 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3612 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3613 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3614 ICE_MCAST_PROMISC_BITS, 0);
3615 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3616 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3617 }
3618
3619finish:
3620 clear_bit(ICE_CFG_BUSY, vsi->state);
3621
3622 return ret;
3623}
3624
3625/**
3626 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3627 * @netdev: network interface to be adjusted
3628 * @proto: VLAN TPID
3629 * @vid: VLAN ID to be removed
3630 *
3631 * net_device_ops implementation for removing VLAN IDs
3632 */
3633static int
3634ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3635{
3636 struct ice_netdev_priv *np = netdev_priv(netdev);
3637 struct ice_vsi_vlan_ops *vlan_ops;
3638 struct ice_vsi *vsi = np->vsi;
3639 struct ice_vlan vlan;
3640 int ret;
3641
3642 /* don't allow removal of VLAN 0 */
3643 if (!vid)
3644 return 0;
3645
3646 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3647 usleep_range(1000, 2000);
3648
3649 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3650 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3651 if (ret) {
3652 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3653 vsi->vsi_num);
3654 vsi->current_netdev_flags |= IFF_ALLMULTI;
3655 }
3656
3657 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3658
3659 /* Make sure VLAN delete is successful before updating VLAN
3660 * information
3661 */
3662 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3663 ret = vlan_ops->del_vlan(vsi, &vlan);
3664 if (ret)
3665 goto finish;
3666
3667 /* Remove multicast promisc rule for the removed VLAN ID if
3668 * all-multicast is enabled.
3669 */
3670 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3671 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3672 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3673
3674 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3675 /* Update look-up type of multicast promisc rule for VLAN 0
3676 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3677 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3678 */
3679 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3680 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3681 ICE_MCAST_VLAN_PROMISC_BITS,
3682 0);
3683 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3684 ICE_MCAST_PROMISC_BITS, 0);
3685 }
3686 }
3687
3688finish:
3689 clear_bit(ICE_CFG_BUSY, vsi->state);
3690
3691 return ret;
3692}
3693
3694/**
3695 * ice_rep_indr_tc_block_unbind
3696 * @cb_priv: indirection block private data
3697 */
3698static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3699{
3700 struct ice_indr_block_priv *indr_priv = cb_priv;
3701
3702 list_del(&indr_priv->list);
3703 kfree(indr_priv);
3704}
3705
3706/**
3707 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3708 * @vsi: VSI struct which has the netdev
3709 */
3710static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3711{
3712 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3713
3714 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3715 ice_rep_indr_tc_block_unbind);
3716}
3717
3718/**
3719 * ice_tc_indir_block_remove - clean indirect TC block notifications
3720 * @pf: PF structure
3721 */
3722static void ice_tc_indir_block_remove(struct ice_pf *pf)
3723{
3724 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3725
3726 if (!pf_vsi)
3727 return;
3728
3729 ice_tc_indir_block_unregister(pf_vsi);
3730}
3731
3732/**
3733 * ice_tc_indir_block_register - Register TC indirect block notifications
3734 * @vsi: VSI struct which has the netdev
3735 *
3736 * Returns 0 on success, negative value on failure
3737 */
3738static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3739{
3740 struct ice_netdev_priv *np;
3741
3742 if (!vsi || !vsi->netdev)
3743 return -EINVAL;
3744
3745 np = netdev_priv(vsi->netdev);
3746
3747 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3748 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3749}
3750
3751/**
3752 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3753 * @pf: board private structure
3754 *
3755 * Returns 0 on success, negative value on failure
3756 */
3757static int ice_setup_pf_sw(struct ice_pf *pf)
3758{
3759 struct device *dev = ice_pf_to_dev(pf);
3760 bool dvm = ice_is_dvm_ena(&pf->hw);
3761 struct ice_vsi *vsi;
3762 int status;
3763
3764 if (ice_is_reset_in_progress(pf->state))
3765 return -EBUSY;
3766
3767 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3768 if (status)
3769 return -EIO;
3770
3771 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3772 if (!vsi)
3773 return -ENOMEM;
3774
3775 /* init channel list */
3776 INIT_LIST_HEAD(&vsi->ch_list);
3777
3778 status = ice_cfg_netdev(vsi);
3779 if (status)
3780 goto unroll_vsi_setup;
3781 /* netdev has to be configured before setting frame size */
3782 ice_vsi_cfg_frame_size(vsi);
3783
3784 /* init indirect block notifications */
3785 status = ice_tc_indir_block_register(vsi);
3786 if (status) {
3787 dev_err(dev, "Failed to register netdev notifier\n");
3788 goto unroll_cfg_netdev;
3789 }
3790
3791 /* Setup DCB netlink interface */
3792 ice_dcbnl_setup(vsi);
3793
3794 /* registering the NAPI handler requires both the queues and
3795 * netdev to be created, which are done in ice_pf_vsi_setup()
3796 * and ice_cfg_netdev() respectively
3797 */
3798 ice_napi_add(vsi);
3799
3800 status = ice_init_mac_fltr(pf);
3801 if (status)
3802 goto unroll_napi_add;
3803
3804 return 0;
3805
3806unroll_napi_add:
3807 ice_tc_indir_block_unregister(vsi);
3808unroll_cfg_netdev:
3809 if (vsi) {
3810 ice_napi_del(vsi);
3811 if (vsi->netdev) {
3812 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3813 free_netdev(vsi->netdev);
3814 vsi->netdev = NULL;
3815 }
3816 }
3817
3818unroll_vsi_setup:
3819 ice_vsi_release(vsi);
3820 return status;
3821}
3822
3823/**
3824 * ice_get_avail_q_count - Get count of queues in use
3825 * @pf_qmap: bitmap to get queue use count from
3826 * @lock: pointer to a mutex that protects access to pf_qmap
3827 * @size: size of the bitmap
3828 */
3829static u16
3830ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3831{
3832 unsigned long bit;
3833 u16 count = 0;
3834
3835 mutex_lock(lock);
3836 for_each_clear_bit(bit, pf_qmap, size)
3837 count++;
3838 mutex_unlock(lock);
3839
3840 return count;
3841}
3842
3843/**
3844 * ice_get_avail_txq_count - Get count of Tx queues in use
3845 * @pf: pointer to an ice_pf instance
3846 */
3847u16 ice_get_avail_txq_count(struct ice_pf *pf)
3848{
3849 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3850 pf->max_pf_txqs);
3851}
3852
3853/**
3854 * ice_get_avail_rxq_count - Get count of Rx queues in use
3855 * @pf: pointer to an ice_pf instance
3856 */
3857u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3858{
3859 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3860 pf->max_pf_rxqs);
3861}
3862
3863/**
3864 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3865 * @pf: board private structure to initialize
3866 */
3867static void ice_deinit_pf(struct ice_pf *pf)
3868{
3869 ice_service_task_stop(pf);
3870 mutex_destroy(&pf->adev_mutex);
3871 mutex_destroy(&pf->sw_mutex);
3872 mutex_destroy(&pf->tc_mutex);
3873 mutex_destroy(&pf->avail_q_mutex);
3874 mutex_destroy(&pf->vfs.table_lock);
3875
3876 if (pf->avail_txqs) {
3877 bitmap_free(pf->avail_txqs);
3878 pf->avail_txqs = NULL;
3879 }
3880
3881 if (pf->avail_rxqs) {
3882 bitmap_free(pf->avail_rxqs);
3883 pf->avail_rxqs = NULL;
3884 }
3885
3886 if (pf->ptp.clock)
3887 ptp_clock_unregister(pf->ptp.clock);
3888}
3889
3890/**
3891 * ice_set_pf_caps - set PFs capability flags
3892 * @pf: pointer to the PF instance
3893 */
3894static void ice_set_pf_caps(struct ice_pf *pf)
3895{
3896 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3897
3898 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3899 if (func_caps->common_cap.rdma)
3900 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3901 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3902 if (func_caps->common_cap.dcb)
3903 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3904 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3905 if (func_caps->common_cap.sr_iov_1_1) {
3906 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3907 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3908 ICE_MAX_SRIOV_VFS);
3909 }
3910 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3911 if (func_caps->common_cap.rss_table_size)
3912 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3913
3914 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3915 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3916 u16 unused;
3917
3918 /* ctrl_vsi_idx will be set to a valid value when flow director
3919 * is setup by ice_init_fdir
3920 */
3921 pf->ctrl_vsi_idx = ICE_NO_VSI;
3922 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3923 /* force guaranteed filter pool for PF */
3924 ice_alloc_fd_guar_item(&pf->hw, &unused,
3925 func_caps->fd_fltr_guar);
3926 /* force shared filter pool for PF */
3927 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3928 func_caps->fd_fltr_best_effort);
3929 }
3930
3931 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3932 if (func_caps->common_cap.ieee_1588)
3933 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3934
3935 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3936 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3937}
3938
3939/**
3940 * ice_init_pf - Initialize general software structures (struct ice_pf)
3941 * @pf: board private structure to initialize
3942 */
3943static int ice_init_pf(struct ice_pf *pf)
3944{
3945 ice_set_pf_caps(pf);
3946
3947 mutex_init(&pf->sw_mutex);
3948 mutex_init(&pf->tc_mutex);
3949 mutex_init(&pf->adev_mutex);
3950
3951 INIT_HLIST_HEAD(&pf->aq_wait_list);
3952 spin_lock_init(&pf->aq_wait_lock);
3953 init_waitqueue_head(&pf->aq_wait_queue);
3954
3955 init_waitqueue_head(&pf->reset_wait_queue);
3956
3957 /* setup service timer and periodic service task */
3958 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3959 pf->serv_tmr_period = HZ;
3960 INIT_WORK(&pf->serv_task, ice_service_task);
3961 clear_bit(ICE_SERVICE_SCHED, pf->state);
3962
3963 mutex_init(&pf->avail_q_mutex);
3964 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3965 if (!pf->avail_txqs)
3966 return -ENOMEM;
3967
3968 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3969 if (!pf->avail_rxqs) {
3970 bitmap_free(pf->avail_txqs);
3971 pf->avail_txqs = NULL;
3972 return -ENOMEM;
3973 }
3974
3975 mutex_init(&pf->vfs.table_lock);
3976 hash_init(pf->vfs.table);
3977
3978 return 0;
3979}
3980
3981/**
3982 * ice_reduce_msix_usage - Reduce usage of MSI-X vectors
3983 * @pf: board private structure
3984 * @v_remain: number of remaining MSI-X vectors to be distributed
3985 *
3986 * Reduce the usage of MSI-X vectors when entire request cannot be fulfilled.
3987 * pf->num_lan_msix and pf->num_rdma_msix values are set based on number of
3988 * remaining vectors.
3989 */
3990static void ice_reduce_msix_usage(struct ice_pf *pf, int v_remain)
3991{
3992 int v_rdma;
3993
3994 if (!ice_is_rdma_ena(pf)) {
3995 pf->num_lan_msix = v_remain;
3996 return;
3997 }
3998
3999 /* RDMA needs at least 1 interrupt in addition to AEQ MSIX */
4000 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
4001
4002 if (v_remain < ICE_MIN_LAN_TXRX_MSIX + ICE_MIN_RDMA_MSIX) {
4003 dev_warn(ice_pf_to_dev(pf), "Not enough MSI-X vectors to support RDMA.\n");
4004 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4005
4006 pf->num_rdma_msix = 0;
4007 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4008 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4009 (v_remain - v_rdma < v_rdma)) {
4010 /* Support minimum RDMA and give remaining vectors to LAN MSIX */
4011 pf->num_rdma_msix = ICE_MIN_RDMA_MSIX;
4012 pf->num_lan_msix = v_remain - ICE_MIN_RDMA_MSIX;
4013 } else {
4014 /* Split remaining MSIX with RDMA after accounting for AEQ MSIX
4015 */
4016 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4017 ICE_RDMA_NUM_AEQ_MSIX;
4018 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4019 }
4020}
4021
4022/**
4023 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
4024 * @pf: board private structure
4025 *
4026 * Compute the number of MSIX vectors wanted and request from the OS. Adjust
4027 * device usage if there are not enough vectors. Return the number of vectors
4028 * reserved or negative on failure.
4029 */
4030static int ice_ena_msix_range(struct ice_pf *pf)
4031{
4032 int num_cpus, hw_num_msix, v_other, v_wanted, v_actual;
4033 struct device *dev = ice_pf_to_dev(pf);
4034 int err, i;
4035
4036 hw_num_msix = pf->hw.func_caps.common_cap.num_msix_vectors;
4037 num_cpus = num_online_cpus();
4038
4039 /* LAN miscellaneous handler */
4040 v_other = ICE_MIN_LAN_OICR_MSIX;
4041
4042 /* Flow Director */
4043 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
4044 v_other += ICE_FDIR_MSIX;
4045
4046 /* switchdev */
4047 v_other += ICE_ESWITCH_MSIX;
4048
4049 v_wanted = v_other;
4050
4051 /* LAN traffic */
4052 pf->num_lan_msix = num_cpus;
4053 v_wanted += pf->num_lan_msix;
4054
4055 /* RDMA auxiliary driver */
4056 if (ice_is_rdma_ena(pf)) {
4057 pf->num_rdma_msix = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
4058 v_wanted += pf->num_rdma_msix;
4059 }
4060
4061 if (v_wanted > hw_num_msix) {
4062 int v_remain;
4063
4064 dev_warn(dev, "not enough device MSI-X vectors. wanted = %d, available = %d\n",
4065 v_wanted, hw_num_msix);
4066
4067 if (hw_num_msix < ICE_MIN_MSIX) {
4068 err = -ERANGE;
4069 goto exit_err;
4070 }
4071
4072 v_remain = hw_num_msix - v_other;
4073 if (v_remain < ICE_MIN_LAN_TXRX_MSIX) {
4074 v_other = ICE_MIN_MSIX - ICE_MIN_LAN_TXRX_MSIX;
4075 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4076 }
4077
4078 ice_reduce_msix_usage(pf, v_remain);
4079 v_wanted = pf->num_lan_msix + pf->num_rdma_msix + v_other;
4080
4081 dev_notice(dev, "Reducing request to %d MSI-X vectors for LAN traffic.\n",
4082 pf->num_lan_msix);
4083 if (ice_is_rdma_ena(pf))
4084 dev_notice(dev, "Reducing request to %d MSI-X vectors for RDMA.\n",
4085 pf->num_rdma_msix);
4086 }
4087
4088 pf->msix_entries = devm_kcalloc(dev, v_wanted,
4089 sizeof(*pf->msix_entries), GFP_KERNEL);
4090 if (!pf->msix_entries) {
4091 err = -ENOMEM;
4092 goto exit_err;
4093 }
4094
4095 for (i = 0; i < v_wanted; i++)
4096 pf->msix_entries[i].entry = i;
4097
4098 /* actually reserve the vectors */
4099 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
4100 ICE_MIN_MSIX, v_wanted);
4101 if (v_actual < 0) {
4102 dev_err(dev, "unable to reserve MSI-X vectors\n");
4103 err = v_actual;
4104 goto msix_err;
4105 }
4106
4107 if (v_actual < v_wanted) {
4108 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4109 v_wanted, v_actual);
4110
4111 if (v_actual < ICE_MIN_MSIX) {
4112 /* error if we can't get minimum vectors */
4113 pci_disable_msix(pf->pdev);
4114 err = -ERANGE;
4115 goto msix_err;
4116 } else {
4117 int v_remain = v_actual - v_other;
4118
4119 if (v_remain < ICE_MIN_LAN_TXRX_MSIX)
4120 v_remain = ICE_MIN_LAN_TXRX_MSIX;
4121
4122 ice_reduce_msix_usage(pf, v_remain);
4123
4124 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4125 pf->num_lan_msix);
4126
4127 if (ice_is_rdma_ena(pf))
4128 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4129 pf->num_rdma_msix);
4130 }
4131 }
4132
4133 return v_actual;
4134
4135msix_err:
4136 devm_kfree(dev, pf->msix_entries);
4137
4138exit_err:
4139 pf->num_rdma_msix = 0;
4140 pf->num_lan_msix = 0;
4141 return err;
4142}
4143
4144/**
4145 * ice_dis_msix - Disable MSI-X interrupt setup in OS
4146 * @pf: board private structure
4147 */
4148static void ice_dis_msix(struct ice_pf *pf)
4149{
4150 pci_disable_msix(pf->pdev);
4151 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4152 pf->msix_entries = NULL;
4153}
4154
4155/**
4156 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4157 * @pf: board private structure
4158 */
4159static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4160{
4161 ice_dis_msix(pf);
4162
4163 if (pf->irq_tracker) {
4164 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4165 pf->irq_tracker = NULL;
4166 }
4167}
4168
4169/**
4170 * ice_init_interrupt_scheme - Determine proper interrupt scheme
4171 * @pf: board private structure to initialize
4172 */
4173static int ice_init_interrupt_scheme(struct ice_pf *pf)
4174{
4175 int vectors;
4176
4177 vectors = ice_ena_msix_range(pf);
4178
4179 if (vectors < 0)
4180 return vectors;
4181
4182 /* set up vector assignment tracking */
4183 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4184 struct_size(pf->irq_tracker, list, vectors),
4185 GFP_KERNEL);
4186 if (!pf->irq_tracker) {
4187 ice_dis_msix(pf);
4188 return -ENOMEM;
4189 }
4190
4191 /* populate SW interrupts pool with number of OS granted IRQs. */
4192 pf->num_avail_sw_msix = (u16)vectors;
4193 pf->irq_tracker->num_entries = (u16)vectors;
4194 pf->irq_tracker->end = pf->irq_tracker->num_entries;
4195
4196 return 0;
4197}
4198
4199/**
4200 * ice_is_wol_supported - check if WoL is supported
4201 * @hw: pointer to hardware info
4202 *
4203 * Check if WoL is supported based on the HW configuration.
4204 * Returns true if NVM supports and enables WoL for this port, false otherwise
4205 */
4206bool ice_is_wol_supported(struct ice_hw *hw)
4207{
4208 u16 wol_ctrl;
4209
4210 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4211 * word) indicates WoL is not supported on the corresponding PF ID.
4212 */
4213 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4214 return false;
4215
4216 return !(BIT(hw->port_info->lport) & wol_ctrl);
4217}
4218
4219/**
4220 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4221 * @vsi: VSI being changed
4222 * @new_rx: new number of Rx queues
4223 * @new_tx: new number of Tx queues
4224 * @locked: is adev device_lock held
4225 *
4226 * Only change the number of queues if new_tx, or new_rx is non-0.
4227 *
4228 * Returns 0 on success.
4229 */
4230int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx, bool locked)
4231{
4232 struct ice_pf *pf = vsi->back;
4233 int err = 0, timeout = 50;
4234
4235 if (!new_rx && !new_tx)
4236 return -EINVAL;
4237
4238 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4239 timeout--;
4240 if (!timeout)
4241 return -EBUSY;
4242 usleep_range(1000, 2000);
4243 }
4244
4245 if (new_tx)
4246 vsi->req_txq = (u16)new_tx;
4247 if (new_rx)
4248 vsi->req_rxq = (u16)new_rx;
4249
4250 /* set for the next time the netdev is started */
4251 if (!netif_running(vsi->netdev)) {
4252 ice_vsi_rebuild(vsi, false);
4253 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4254 goto done;
4255 }
4256
4257 ice_vsi_close(vsi);
4258 ice_vsi_rebuild(vsi, false);
4259 ice_pf_dcb_recfg(pf, locked);
4260 ice_vsi_open(vsi);
4261done:
4262 clear_bit(ICE_CFG_BUSY, pf->state);
4263 return err;
4264}
4265
4266/**
4267 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4268 * @pf: PF to configure
4269 *
4270 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4271 * VSI can still Tx/Rx VLAN tagged packets.
4272 */
4273static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4274{
4275 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4276 struct ice_vsi_ctx *ctxt;
4277 struct ice_hw *hw;
4278 int status;
4279
4280 if (!vsi)
4281 return;
4282
4283 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4284 if (!ctxt)
4285 return;
4286
4287 hw = &pf->hw;
4288 ctxt->info = vsi->info;
4289
4290 ctxt->info.valid_sections =
4291 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4292 ICE_AQ_VSI_PROP_SECURITY_VALID |
4293 ICE_AQ_VSI_PROP_SW_VALID);
4294
4295 /* disable VLAN anti-spoof */
4296 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4297 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4298
4299 /* disable VLAN pruning and keep all other settings */
4300 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4301
4302 /* allow all VLANs on Tx and don't strip on Rx */
4303 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4304 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4305
4306 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4307 if (status) {
4308 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4309 status, ice_aq_str(hw->adminq.sq_last_status));
4310 } else {
4311 vsi->info.sec_flags = ctxt->info.sec_flags;
4312 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4313 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4314 }
4315
4316 kfree(ctxt);
4317}
4318
4319/**
4320 * ice_log_pkg_init - log result of DDP package load
4321 * @hw: pointer to hardware info
4322 * @state: state of package load
4323 */
4324static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4325{
4326 struct ice_pf *pf = hw->back;
4327 struct device *dev;
4328
4329 dev = ice_pf_to_dev(pf);
4330
4331 switch (state) {
4332 case ICE_DDP_PKG_SUCCESS:
4333 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4334 hw->active_pkg_name,
4335 hw->active_pkg_ver.major,
4336 hw->active_pkg_ver.minor,
4337 hw->active_pkg_ver.update,
4338 hw->active_pkg_ver.draft);
4339 break;
4340 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4341 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4342 hw->active_pkg_name,
4343 hw->active_pkg_ver.major,
4344 hw->active_pkg_ver.minor,
4345 hw->active_pkg_ver.update,
4346 hw->active_pkg_ver.draft);
4347 break;
4348 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4349 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4350 hw->active_pkg_name,
4351 hw->active_pkg_ver.major,
4352 hw->active_pkg_ver.minor,
4353 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4354 break;
4355 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4356 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4357 hw->active_pkg_name,
4358 hw->active_pkg_ver.major,
4359 hw->active_pkg_ver.minor,
4360 hw->active_pkg_ver.update,
4361 hw->active_pkg_ver.draft,
4362 hw->pkg_name,
4363 hw->pkg_ver.major,
4364 hw->pkg_ver.minor,
4365 hw->pkg_ver.update,
4366 hw->pkg_ver.draft);
4367 break;
4368 case ICE_DDP_PKG_FW_MISMATCH:
4369 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4370 break;
4371 case ICE_DDP_PKG_INVALID_FILE:
4372 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4373 break;
4374 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4375 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4376 break;
4377 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4378 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4379 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4380 break;
4381 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4382 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4383 break;
4384 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4385 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4386 break;
4387 case ICE_DDP_PKG_LOAD_ERROR:
4388 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4389 /* poll for reset to complete */
4390 if (ice_check_reset(hw))
4391 dev_err(dev, "Error resetting device. Please reload the driver\n");
4392 break;
4393 case ICE_DDP_PKG_ERR:
4394 default:
4395 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4396 break;
4397 }
4398}
4399
4400/**
4401 * ice_load_pkg - load/reload the DDP Package file
4402 * @firmware: firmware structure when firmware requested or NULL for reload
4403 * @pf: pointer to the PF instance
4404 *
4405 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4406 * initialize HW tables.
4407 */
4408static void
4409ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4410{
4411 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4412 struct device *dev = ice_pf_to_dev(pf);
4413 struct ice_hw *hw = &pf->hw;
4414
4415 /* Load DDP Package */
4416 if (firmware && !hw->pkg_copy) {
4417 state = ice_copy_and_init_pkg(hw, firmware->data,
4418 firmware->size);
4419 ice_log_pkg_init(hw, state);
4420 } else if (!firmware && hw->pkg_copy) {
4421 /* Reload package during rebuild after CORER/GLOBR reset */
4422 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4423 ice_log_pkg_init(hw, state);
4424 } else {
4425 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4426 }
4427
4428 if (!ice_is_init_pkg_successful(state)) {
4429 /* Safe Mode */
4430 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4431 return;
4432 }
4433
4434 /* Successful download package is the precondition for advanced
4435 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4436 */
4437 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4438}
4439
4440/**
4441 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4442 * @pf: pointer to the PF structure
4443 *
4444 * There is no error returned here because the driver should be able to handle
4445 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4446 * specifically with Tx.
4447 */
4448static void ice_verify_cacheline_size(struct ice_pf *pf)
4449{
4450 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4451 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4452 ICE_CACHE_LINE_BYTES);
4453}
4454
4455/**
4456 * ice_send_version - update firmware with driver version
4457 * @pf: PF struct
4458 *
4459 * Returns 0 on success, else error code
4460 */
4461static int ice_send_version(struct ice_pf *pf)
4462{
4463 struct ice_driver_ver dv;
4464
4465 dv.major_ver = 0xff;
4466 dv.minor_ver = 0xff;
4467 dv.build_ver = 0xff;
4468 dv.subbuild_ver = 0;
4469 strscpy((char *)dv.driver_string, UTS_RELEASE,
4470 sizeof(dv.driver_string));
4471 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4472}
4473
4474/**
4475 * ice_init_fdir - Initialize flow director VSI and configuration
4476 * @pf: pointer to the PF instance
4477 *
4478 * returns 0 on success, negative on error
4479 */
4480static int ice_init_fdir(struct ice_pf *pf)
4481{
4482 struct device *dev = ice_pf_to_dev(pf);
4483 struct ice_vsi *ctrl_vsi;
4484 int err;
4485
4486 /* Side Band Flow Director needs to have a control VSI.
4487 * Allocate it and store it in the PF.
4488 */
4489 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4490 if (!ctrl_vsi) {
4491 dev_dbg(dev, "could not create control VSI\n");
4492 return -ENOMEM;
4493 }
4494
4495 err = ice_vsi_open_ctrl(ctrl_vsi);
4496 if (err) {
4497 dev_dbg(dev, "could not open control VSI\n");
4498 goto err_vsi_open;
4499 }
4500
4501 mutex_init(&pf->hw.fdir_fltr_lock);
4502
4503 err = ice_fdir_create_dflt_rules(pf);
4504 if (err)
4505 goto err_fdir_rule;
4506
4507 return 0;
4508
4509err_fdir_rule:
4510 ice_fdir_release_flows(&pf->hw);
4511 ice_vsi_close(ctrl_vsi);
4512err_vsi_open:
4513 ice_vsi_release(ctrl_vsi);
4514 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4515 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4516 pf->ctrl_vsi_idx = ICE_NO_VSI;
4517 }
4518 return err;
4519}
4520
4521/**
4522 * ice_get_opt_fw_name - return optional firmware file name or NULL
4523 * @pf: pointer to the PF instance
4524 */
4525static char *ice_get_opt_fw_name(struct ice_pf *pf)
4526{
4527 /* Optional firmware name same as default with additional dash
4528 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4529 */
4530 struct pci_dev *pdev = pf->pdev;
4531 char *opt_fw_filename;
4532 u64 dsn;
4533
4534 /* Determine the name of the optional file using the DSN (two
4535 * dwords following the start of the DSN Capability).
4536 */
4537 dsn = pci_get_dsn(pdev);
4538 if (!dsn)
4539 return NULL;
4540
4541 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4542 if (!opt_fw_filename)
4543 return NULL;
4544
4545 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4546 ICE_DDP_PKG_PATH, dsn);
4547
4548 return opt_fw_filename;
4549}
4550
4551/**
4552 * ice_request_fw - Device initialization routine
4553 * @pf: pointer to the PF instance
4554 */
4555static void ice_request_fw(struct ice_pf *pf)
4556{
4557 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4558 const struct firmware *firmware = NULL;
4559 struct device *dev = ice_pf_to_dev(pf);
4560 int err = 0;
4561
4562 /* optional device-specific DDP (if present) overrides the default DDP
4563 * package file. kernel logs a debug message if the file doesn't exist,
4564 * and warning messages for other errors.
4565 */
4566 if (opt_fw_filename) {
4567 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4568 if (err) {
4569 kfree(opt_fw_filename);
4570 goto dflt_pkg_load;
4571 }
4572
4573 /* request for firmware was successful. Download to device */
4574 ice_load_pkg(firmware, pf);
4575 kfree(opt_fw_filename);
4576 release_firmware(firmware);
4577 return;
4578 }
4579
4580dflt_pkg_load:
4581 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4582 if (err) {
4583 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4584 return;
4585 }
4586
4587 /* request for firmware was successful. Download to device */
4588 ice_load_pkg(firmware, pf);
4589 release_firmware(firmware);
4590}
4591
4592/**
4593 * ice_print_wake_reason - show the wake up cause in the log
4594 * @pf: pointer to the PF struct
4595 */
4596static void ice_print_wake_reason(struct ice_pf *pf)
4597{
4598 u32 wus = pf->wakeup_reason;
4599 const char *wake_str;
4600
4601 /* if no wake event, nothing to print */
4602 if (!wus)
4603 return;
4604
4605 if (wus & PFPM_WUS_LNKC_M)
4606 wake_str = "Link\n";
4607 else if (wus & PFPM_WUS_MAG_M)
4608 wake_str = "Magic Packet\n";
4609 else if (wus & PFPM_WUS_MNG_M)
4610 wake_str = "Management\n";
4611 else if (wus & PFPM_WUS_FW_RST_WK_M)
4612 wake_str = "Firmware Reset\n";
4613 else
4614 wake_str = "Unknown\n";
4615
4616 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4617}
4618
4619/**
4620 * ice_register_netdev - register netdev
4621 * @pf: pointer to the PF struct
4622 */
4623static int ice_register_netdev(struct ice_pf *pf)
4624{
4625 struct ice_vsi *vsi;
4626 int err = 0;
4627
4628 vsi = ice_get_main_vsi(pf);
4629 if (!vsi || !vsi->netdev)
4630 return -EIO;
4631
4632 err = register_netdev(vsi->netdev);
4633 if (err)
4634 goto err_register_netdev;
4635
4636 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4637 netif_carrier_off(vsi->netdev);
4638 netif_tx_stop_all_queues(vsi->netdev);
4639
4640 return 0;
4641err_register_netdev:
4642 free_netdev(vsi->netdev);
4643 vsi->netdev = NULL;
4644 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4645 return err;
4646}
4647
4648/**
4649 * ice_probe - Device initialization routine
4650 * @pdev: PCI device information struct
4651 * @ent: entry in ice_pci_tbl
4652 *
4653 * Returns 0 on success, negative on failure
4654 */
4655static int
4656ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4657{
4658 struct device *dev = &pdev->dev;
4659 struct ice_vsi *vsi;
4660 struct ice_pf *pf;
4661 struct ice_hw *hw;
4662 int i, err;
4663
4664 if (pdev->is_virtfn) {
4665 dev_err(dev, "can't probe a virtual function\n");
4666 return -EINVAL;
4667 }
4668
4669 /* this driver uses devres, see
4670 * Documentation/driver-api/driver-model/devres.rst
4671 */
4672 err = pcim_enable_device(pdev);
4673 if (err)
4674 return err;
4675
4676 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4677 if (err) {
4678 dev_err(dev, "BAR0 I/O map error %d\n", err);
4679 return err;
4680 }
4681
4682 pf = ice_allocate_pf(dev);
4683 if (!pf)
4684 return -ENOMEM;
4685
4686 /* initialize Auxiliary index to invalid value */
4687 pf->aux_idx = -1;
4688
4689 /* set up for high or low DMA */
4690 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4691 if (err) {
4692 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4693 return err;
4694 }
4695
4696 pci_enable_pcie_error_reporting(pdev);
4697 pci_set_master(pdev);
4698
4699 pf->pdev = pdev;
4700 pci_set_drvdata(pdev, pf);
4701 set_bit(ICE_DOWN, pf->state);
4702 /* Disable service task until DOWN bit is cleared */
4703 set_bit(ICE_SERVICE_DIS, pf->state);
4704
4705 hw = &pf->hw;
4706 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4707 pci_save_state(pdev);
4708
4709 hw->back = pf;
4710 hw->vendor_id = pdev->vendor;
4711 hw->device_id = pdev->device;
4712 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4713 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4714 hw->subsystem_device_id = pdev->subsystem_device;
4715 hw->bus.device = PCI_SLOT(pdev->devfn);
4716 hw->bus.func = PCI_FUNC(pdev->devfn);
4717 ice_set_ctrlq_len(hw);
4718
4719 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4720
4721#ifndef CONFIG_DYNAMIC_DEBUG
4722 if (debug < -1)
4723 hw->debug_mask = debug;
4724#endif
4725
4726 err = ice_init_hw(hw);
4727 if (err) {
4728 dev_err(dev, "ice_init_hw failed: %d\n", err);
4729 err = -EIO;
4730 goto err_exit_unroll;
4731 }
4732
4733 ice_init_feature_support(pf);
4734
4735 ice_request_fw(pf);
4736
4737 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4738 * set in pf->state, which will cause ice_is_safe_mode to return
4739 * true
4740 */
4741 if (ice_is_safe_mode(pf)) {
4742 /* we already got function/device capabilities but these don't
4743 * reflect what the driver needs to do in safe mode. Instead of
4744 * adding conditional logic everywhere to ignore these
4745 * device/function capabilities, override them.
4746 */
4747 ice_set_safe_mode_caps(hw);
4748 }
4749
4750 err = ice_init_pf(pf);
4751 if (err) {
4752 dev_err(dev, "ice_init_pf failed: %d\n", err);
4753 goto err_init_pf_unroll;
4754 }
4755
4756 ice_devlink_init_regions(pf);
4757
4758 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4759 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4760 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4761 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4762 i = 0;
4763 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4764 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4765 pf->hw.tnl.valid_count[TNL_VXLAN];
4766 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4767 UDP_TUNNEL_TYPE_VXLAN;
4768 i++;
4769 }
4770 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4771 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4772 pf->hw.tnl.valid_count[TNL_GENEVE];
4773 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4774 UDP_TUNNEL_TYPE_GENEVE;
4775 i++;
4776 }
4777
4778 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4779 if (!pf->num_alloc_vsi) {
4780 err = -EIO;
4781 goto err_init_pf_unroll;
4782 }
4783 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4784 dev_warn(&pf->pdev->dev,
4785 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4786 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4787 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4788 }
4789
4790 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4791 GFP_KERNEL);
4792 if (!pf->vsi) {
4793 err = -ENOMEM;
4794 goto err_init_pf_unroll;
4795 }
4796
4797 pf->vsi_stats = devm_kcalloc(dev, pf->num_alloc_vsi,
4798 sizeof(*pf->vsi_stats), GFP_KERNEL);
4799 if (!pf->vsi_stats) {
4800 err = -ENOMEM;
4801 goto err_init_vsi_unroll;
4802 }
4803
4804 err = ice_init_interrupt_scheme(pf);
4805 if (err) {
4806 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4807 err = -EIO;
4808 goto err_init_vsi_stats_unroll;
4809 }
4810
4811 /* In case of MSIX we are going to setup the misc vector right here
4812 * to handle admin queue events etc. In case of legacy and MSI
4813 * the misc functionality and queue processing is combined in
4814 * the same vector and that gets setup at open.
4815 */
4816 err = ice_req_irq_msix_misc(pf);
4817 if (err) {
4818 dev_err(dev, "setup of misc vector failed: %d\n", err);
4819 goto err_init_interrupt_unroll;
4820 }
4821
4822 /* create switch struct for the switch element created by FW on boot */
4823 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4824 if (!pf->first_sw) {
4825 err = -ENOMEM;
4826 goto err_msix_misc_unroll;
4827 }
4828
4829 if (hw->evb_veb)
4830 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4831 else
4832 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4833
4834 pf->first_sw->pf = pf;
4835
4836 /* record the sw_id available for later use */
4837 pf->first_sw->sw_id = hw->port_info->sw_id;
4838
4839 err = ice_setup_pf_sw(pf);
4840 if (err) {
4841 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4842 goto err_alloc_sw_unroll;
4843 }
4844
4845 clear_bit(ICE_SERVICE_DIS, pf->state);
4846
4847 /* tell the firmware we are up */
4848 err = ice_send_version(pf);
4849 if (err) {
4850 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4851 UTS_RELEASE, err);
4852 goto err_send_version_unroll;
4853 }
4854
4855 /* since everything is good, start the service timer */
4856 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4857
4858 err = ice_init_link_events(pf->hw.port_info);
4859 if (err) {
4860 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4861 goto err_send_version_unroll;
4862 }
4863
4864 /* not a fatal error if this fails */
4865 err = ice_init_nvm_phy_type(pf->hw.port_info);
4866 if (err)
4867 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4868
4869 /* not a fatal error if this fails */
4870 err = ice_update_link_info(pf->hw.port_info);
4871 if (err)
4872 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4873
4874 ice_init_link_dflt_override(pf->hw.port_info);
4875
4876 ice_check_link_cfg_err(pf,
4877 pf->hw.port_info->phy.link_info.link_cfg_err);
4878
4879 /* if media available, initialize PHY settings */
4880 if (pf->hw.port_info->phy.link_info.link_info &
4881 ICE_AQ_MEDIA_AVAILABLE) {
4882 /* not a fatal error if this fails */
4883 err = ice_init_phy_user_cfg(pf->hw.port_info);
4884 if (err)
4885 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4886
4887 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4888 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4889
4890 if (vsi)
4891 ice_configure_phy(vsi);
4892 }
4893 } else {
4894 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4895 }
4896
4897 ice_verify_cacheline_size(pf);
4898
4899 /* Save wakeup reason register for later use */
4900 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4901
4902 /* check for a power management event */
4903 ice_print_wake_reason(pf);
4904
4905 /* clear wake status, all bits */
4906 wr32(hw, PFPM_WUS, U32_MAX);
4907
4908 /* Disable WoL at init, wait for user to enable */
4909 device_set_wakeup_enable(dev, false);
4910
4911 if (ice_is_safe_mode(pf)) {
4912 ice_set_safe_mode_vlan_cfg(pf);
4913 goto probe_done;
4914 }
4915
4916 /* initialize DDP driven features */
4917 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4918 ice_ptp_init(pf);
4919
4920 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4921 ice_gnss_init(pf);
4922
4923 /* Note: Flow director init failure is non-fatal to load */
4924 if (ice_init_fdir(pf))
4925 dev_err(dev, "could not initialize flow director\n");
4926
4927 /* Note: DCB init failure is non-fatal to load */
4928 if (ice_init_pf_dcb(pf, false)) {
4929 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4930 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4931 } else {
4932 ice_cfg_lldp_mib_change(&pf->hw, true);
4933 }
4934
4935 if (ice_init_lag(pf))
4936 dev_warn(dev, "Failed to init link aggregation support\n");
4937
4938 /* print PCI link speed and width */
4939 pcie_print_link_status(pf->pdev);
4940
4941probe_done:
4942 err = ice_devlink_create_pf_port(pf);
4943 if (err)
4944 goto err_create_pf_port;
4945
4946 vsi = ice_get_main_vsi(pf);
4947 if (!vsi || !vsi->netdev) {
4948 err = -EINVAL;
4949 goto err_netdev_reg;
4950 }
4951
4952 SET_NETDEV_DEVLINK_PORT(vsi->netdev, &pf->devlink_port);
4953
4954 err = ice_register_netdev(pf);
4955 if (err)
4956 goto err_netdev_reg;
4957
4958 err = ice_devlink_register_params(pf);
4959 if (err)
4960 goto err_netdev_reg;
4961
4962 /* ready to go, so clear down state bit */
4963 clear_bit(ICE_DOWN, pf->state);
4964 if (ice_is_rdma_ena(pf)) {
4965 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4966 if (pf->aux_idx < 0) {
4967 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4968 err = -ENOMEM;
4969 goto err_devlink_reg_param;
4970 }
4971
4972 err = ice_init_rdma(pf);
4973 if (err) {
4974 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4975 err = -EIO;
4976 goto err_init_aux_unroll;
4977 }
4978 } else {
4979 dev_warn(dev, "RDMA is not supported on this device\n");
4980 }
4981
4982 ice_devlink_register(pf);
4983 return 0;
4984
4985err_init_aux_unroll:
4986 pf->adev = NULL;
4987 ida_free(&ice_aux_ida, pf->aux_idx);
4988err_devlink_reg_param:
4989 ice_devlink_unregister_params(pf);
4990err_netdev_reg:
4991 ice_devlink_destroy_pf_port(pf);
4992err_create_pf_port:
4993err_send_version_unroll:
4994 ice_vsi_release_all(pf);
4995err_alloc_sw_unroll:
4996 set_bit(ICE_SERVICE_DIS, pf->state);
4997 set_bit(ICE_DOWN, pf->state);
4998 devm_kfree(dev, pf->first_sw);
4999err_msix_misc_unroll:
5000 ice_free_irq_msix_misc(pf);
5001err_init_interrupt_unroll:
5002 ice_clear_interrupt_scheme(pf);
5003err_init_vsi_stats_unroll:
5004 devm_kfree(dev, pf->vsi_stats);
5005 pf->vsi_stats = NULL;
5006err_init_vsi_unroll:
5007 devm_kfree(dev, pf->vsi);
5008err_init_pf_unroll:
5009 ice_deinit_pf(pf);
5010 ice_devlink_destroy_regions(pf);
5011 ice_deinit_hw(hw);
5012err_exit_unroll:
5013 pci_disable_pcie_error_reporting(pdev);
5014 pci_disable_device(pdev);
5015 return err;
5016}
5017
5018/**
5019 * ice_set_wake - enable or disable Wake on LAN
5020 * @pf: pointer to the PF struct
5021 *
5022 * Simple helper for WoL control
5023 */
5024static void ice_set_wake(struct ice_pf *pf)
5025{
5026 struct ice_hw *hw = &pf->hw;
5027 bool wol = pf->wol_ena;
5028
5029 /* clear wake state, otherwise new wake events won't fire */
5030 wr32(hw, PFPM_WUS, U32_MAX);
5031
5032 /* enable / disable APM wake up, no RMW needed */
5033 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
5034
5035 /* set magic packet filter enabled */
5036 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
5037}
5038
5039/**
5040 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
5041 * @pf: pointer to the PF struct
5042 *
5043 * Issue firmware command to enable multicast magic wake, making
5044 * sure that any locally administered address (LAA) is used for
5045 * wake, and that PF reset doesn't undo the LAA.
5046 */
5047static void ice_setup_mc_magic_wake(struct ice_pf *pf)
5048{
5049 struct device *dev = ice_pf_to_dev(pf);
5050 struct ice_hw *hw = &pf->hw;
5051 u8 mac_addr[ETH_ALEN];
5052 struct ice_vsi *vsi;
5053 int status;
5054 u8 flags;
5055
5056 if (!pf->wol_ena)
5057 return;
5058
5059 vsi = ice_get_main_vsi(pf);
5060 if (!vsi)
5061 return;
5062
5063 /* Get current MAC address in case it's an LAA */
5064 if (vsi->netdev)
5065 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
5066 else
5067 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
5068
5069 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
5070 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
5071 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
5072
5073 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
5074 if (status)
5075 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
5076 status, ice_aq_str(hw->adminq.sq_last_status));
5077}
5078
5079/**
5080 * ice_remove - Device removal routine
5081 * @pdev: PCI device information struct
5082 */
5083static void ice_remove(struct pci_dev *pdev)
5084{
5085 struct ice_pf *pf = pci_get_drvdata(pdev);
5086 int i;
5087
5088 ice_devlink_unregister(pf);
5089 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5090 if (!ice_is_reset_in_progress(pf->state))
5091 break;
5092 msleep(100);
5093 }
5094
5095 ice_tc_indir_block_remove(pf);
5096
5097 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5098 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5099 ice_free_vfs(pf);
5100 }
5101
5102 ice_service_task_stop(pf);
5103
5104 ice_aq_cancel_waiting_tasks(pf);
5105 ice_unplug_aux_dev(pf);
5106 if (pf->aux_idx >= 0)
5107 ida_free(&ice_aux_ida, pf->aux_idx);
5108 ice_devlink_unregister_params(pf);
5109 set_bit(ICE_DOWN, pf->state);
5110
5111 ice_deinit_lag(pf);
5112 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5113 ice_ptp_release(pf);
5114 if (ice_is_feature_supported(pf, ICE_F_GNSS))
5115 ice_gnss_exit(pf);
5116 if (!ice_is_safe_mode(pf))
5117 ice_remove_arfs(pf);
5118 ice_setup_mc_magic_wake(pf);
5119 ice_vsi_release_all(pf);
5120 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5121 ice_devlink_destroy_pf_port(pf);
5122 ice_set_wake(pf);
5123 ice_free_irq_msix_misc(pf);
5124 ice_for_each_vsi(pf, i) {
5125 if (!pf->vsi[i])
5126 continue;
5127 ice_vsi_free_q_vectors(pf->vsi[i]);
5128 }
5129 devm_kfree(&pdev->dev, pf->vsi_stats);
5130 pf->vsi_stats = NULL;
5131 ice_deinit_pf(pf);
5132 ice_devlink_destroy_regions(pf);
5133 ice_deinit_hw(&pf->hw);
5134
5135 /* Issue a PFR as part of the prescribed driver unload flow. Do not
5136 * do it via ice_schedule_reset() since there is no need to rebuild
5137 * and the service task is already stopped.
5138 */
5139 ice_reset(&pf->hw, ICE_RESET_PFR);
5140 pci_wait_for_pending_transaction(pdev);
5141 ice_clear_interrupt_scheme(pf);
5142 pci_disable_pcie_error_reporting(pdev);
5143 pci_disable_device(pdev);
5144}
5145
5146/**
5147 * ice_shutdown - PCI callback for shutting down device
5148 * @pdev: PCI device information struct
5149 */
5150static void ice_shutdown(struct pci_dev *pdev)
5151{
5152 struct ice_pf *pf = pci_get_drvdata(pdev);
5153
5154 ice_remove(pdev);
5155
5156 if (system_state == SYSTEM_POWER_OFF) {
5157 pci_wake_from_d3(pdev, pf->wol_ena);
5158 pci_set_power_state(pdev, PCI_D3hot);
5159 }
5160}
5161
5162#ifdef CONFIG_PM
5163/**
5164 * ice_prepare_for_shutdown - prep for PCI shutdown
5165 * @pf: board private structure
5166 *
5167 * Inform or close all dependent features in prep for PCI device shutdown
5168 */
5169static void ice_prepare_for_shutdown(struct ice_pf *pf)
5170{
5171 struct ice_hw *hw = &pf->hw;
5172 u32 v;
5173
5174 /* Notify VFs of impending reset */
5175 if (ice_check_sq_alive(hw, &hw->mailboxq))
5176 ice_vc_notify_reset(pf);
5177
5178 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5179
5180 /* disable the VSIs and their queues that are not already DOWN */
5181 ice_pf_dis_all_vsi(pf, false);
5182
5183 ice_for_each_vsi(pf, v)
5184 if (pf->vsi[v])
5185 pf->vsi[v]->vsi_num = 0;
5186
5187 ice_shutdown_all_ctrlq(hw);
5188}
5189
5190/**
5191 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5192 * @pf: board private structure to reinitialize
5193 *
5194 * This routine reinitialize interrupt scheme that was cleared during
5195 * power management suspend callback.
5196 *
5197 * This should be called during resume routine to re-allocate the q_vectors
5198 * and reacquire interrupts.
5199 */
5200static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5201{
5202 struct device *dev = ice_pf_to_dev(pf);
5203 int ret, v;
5204
5205 /* Since we clear MSIX flag during suspend, we need to
5206 * set it back during resume...
5207 */
5208
5209 ret = ice_init_interrupt_scheme(pf);
5210 if (ret) {
5211 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5212 return ret;
5213 }
5214
5215 /* Remap vectors and rings, after successful re-init interrupts */
5216 ice_for_each_vsi(pf, v) {
5217 if (!pf->vsi[v])
5218 continue;
5219
5220 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5221 if (ret)
5222 goto err_reinit;
5223 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5224 }
5225
5226 ret = ice_req_irq_msix_misc(pf);
5227 if (ret) {
5228 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5229 ret);
5230 goto err_reinit;
5231 }
5232
5233 return 0;
5234
5235err_reinit:
5236 while (v--)
5237 if (pf->vsi[v])
5238 ice_vsi_free_q_vectors(pf->vsi[v]);
5239
5240 return ret;
5241}
5242
5243/**
5244 * ice_suspend
5245 * @dev: generic device information structure
5246 *
5247 * Power Management callback to quiesce the device and prepare
5248 * for D3 transition.
5249 */
5250static int __maybe_unused ice_suspend(struct device *dev)
5251{
5252 struct pci_dev *pdev = to_pci_dev(dev);
5253 struct ice_pf *pf;
5254 int disabled, v;
5255
5256 pf = pci_get_drvdata(pdev);
5257
5258 if (!ice_pf_state_is_nominal(pf)) {
5259 dev_err(dev, "Device is not ready, no need to suspend it\n");
5260 return -EBUSY;
5261 }
5262
5263 /* Stop watchdog tasks until resume completion.
5264 * Even though it is most likely that the service task is
5265 * disabled if the device is suspended or down, the service task's
5266 * state is controlled by a different state bit, and we should
5267 * store and honor whatever state that bit is in at this point.
5268 */
5269 disabled = ice_service_task_stop(pf);
5270
5271 ice_unplug_aux_dev(pf);
5272
5273 /* Already suspended?, then there is nothing to do */
5274 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5275 if (!disabled)
5276 ice_service_task_restart(pf);
5277 return 0;
5278 }
5279
5280 if (test_bit(ICE_DOWN, pf->state) ||
5281 ice_is_reset_in_progress(pf->state)) {
5282 dev_err(dev, "can't suspend device in reset or already down\n");
5283 if (!disabled)
5284 ice_service_task_restart(pf);
5285 return 0;
5286 }
5287
5288 ice_setup_mc_magic_wake(pf);
5289
5290 ice_prepare_for_shutdown(pf);
5291
5292 ice_set_wake(pf);
5293
5294 /* Free vectors, clear the interrupt scheme and release IRQs
5295 * for proper hibernation, especially with large number of CPUs.
5296 * Otherwise hibernation might fail when mapping all the vectors back
5297 * to CPU0.
5298 */
5299 ice_free_irq_msix_misc(pf);
5300 ice_for_each_vsi(pf, v) {
5301 if (!pf->vsi[v])
5302 continue;
5303 ice_vsi_free_q_vectors(pf->vsi[v]);
5304 }
5305 ice_clear_interrupt_scheme(pf);
5306
5307 pci_save_state(pdev);
5308 pci_wake_from_d3(pdev, pf->wol_ena);
5309 pci_set_power_state(pdev, PCI_D3hot);
5310 return 0;
5311}
5312
5313/**
5314 * ice_resume - PM callback for waking up from D3
5315 * @dev: generic device information structure
5316 */
5317static int __maybe_unused ice_resume(struct device *dev)
5318{
5319 struct pci_dev *pdev = to_pci_dev(dev);
5320 enum ice_reset_req reset_type;
5321 struct ice_pf *pf;
5322 struct ice_hw *hw;
5323 int ret;
5324
5325 pci_set_power_state(pdev, PCI_D0);
5326 pci_restore_state(pdev);
5327 pci_save_state(pdev);
5328
5329 if (!pci_device_is_present(pdev))
5330 return -ENODEV;
5331
5332 ret = pci_enable_device_mem(pdev);
5333 if (ret) {
5334 dev_err(dev, "Cannot enable device after suspend\n");
5335 return ret;
5336 }
5337
5338 pf = pci_get_drvdata(pdev);
5339 hw = &pf->hw;
5340
5341 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5342 ice_print_wake_reason(pf);
5343
5344 /* We cleared the interrupt scheme when we suspended, so we need to
5345 * restore it now to resume device functionality.
5346 */
5347 ret = ice_reinit_interrupt_scheme(pf);
5348 if (ret)
5349 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5350
5351 clear_bit(ICE_DOWN, pf->state);
5352 /* Now perform PF reset and rebuild */
5353 reset_type = ICE_RESET_PFR;
5354 /* re-enable service task for reset, but allow reset to schedule it */
5355 clear_bit(ICE_SERVICE_DIS, pf->state);
5356
5357 if (ice_schedule_reset(pf, reset_type))
5358 dev_err(dev, "Reset during resume failed.\n");
5359
5360 clear_bit(ICE_SUSPENDED, pf->state);
5361 ice_service_task_restart(pf);
5362
5363 /* Restart the service task */
5364 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5365
5366 return 0;
5367}
5368#endif /* CONFIG_PM */
5369
5370/**
5371 * ice_pci_err_detected - warning that PCI error has been detected
5372 * @pdev: PCI device information struct
5373 * @err: the type of PCI error
5374 *
5375 * Called to warn that something happened on the PCI bus and the error handling
5376 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5377 */
5378static pci_ers_result_t
5379ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5380{
5381 struct ice_pf *pf = pci_get_drvdata(pdev);
5382
5383 if (!pf) {
5384 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5385 __func__, err);
5386 return PCI_ERS_RESULT_DISCONNECT;
5387 }
5388
5389 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5390 ice_service_task_stop(pf);
5391
5392 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5393 set_bit(ICE_PFR_REQ, pf->state);
5394 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5395 }
5396 }
5397
5398 return PCI_ERS_RESULT_NEED_RESET;
5399}
5400
5401/**
5402 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5403 * @pdev: PCI device information struct
5404 *
5405 * Called to determine if the driver can recover from the PCI slot reset by
5406 * using a register read to determine if the device is recoverable.
5407 */
5408static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5409{
5410 struct ice_pf *pf = pci_get_drvdata(pdev);
5411 pci_ers_result_t result;
5412 int err;
5413 u32 reg;
5414
5415 err = pci_enable_device_mem(pdev);
5416 if (err) {
5417 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5418 err);
5419 result = PCI_ERS_RESULT_DISCONNECT;
5420 } else {
5421 pci_set_master(pdev);
5422 pci_restore_state(pdev);
5423 pci_save_state(pdev);
5424 pci_wake_from_d3(pdev, false);
5425
5426 /* Check for life */
5427 reg = rd32(&pf->hw, GLGEN_RTRIG);
5428 if (!reg)
5429 result = PCI_ERS_RESULT_RECOVERED;
5430 else
5431 result = PCI_ERS_RESULT_DISCONNECT;
5432 }
5433
5434 return result;
5435}
5436
5437/**
5438 * ice_pci_err_resume - restart operations after PCI error recovery
5439 * @pdev: PCI device information struct
5440 *
5441 * Called to allow the driver to bring things back up after PCI error and/or
5442 * reset recovery have finished
5443 */
5444static void ice_pci_err_resume(struct pci_dev *pdev)
5445{
5446 struct ice_pf *pf = pci_get_drvdata(pdev);
5447
5448 if (!pf) {
5449 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5450 __func__);
5451 return;
5452 }
5453
5454 if (test_bit(ICE_SUSPENDED, pf->state)) {
5455 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5456 __func__);
5457 return;
5458 }
5459
5460 ice_restore_all_vfs_msi_state(pdev);
5461
5462 ice_do_reset(pf, ICE_RESET_PFR);
5463 ice_service_task_restart(pf);
5464 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5465}
5466
5467/**
5468 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5469 * @pdev: PCI device information struct
5470 */
5471static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5472{
5473 struct ice_pf *pf = pci_get_drvdata(pdev);
5474
5475 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5476 ice_service_task_stop(pf);
5477
5478 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5479 set_bit(ICE_PFR_REQ, pf->state);
5480 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5481 }
5482 }
5483}
5484
5485/**
5486 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5487 * @pdev: PCI device information struct
5488 */
5489static void ice_pci_err_reset_done(struct pci_dev *pdev)
5490{
5491 ice_pci_err_resume(pdev);
5492}
5493
5494/* ice_pci_tbl - PCI Device ID Table
5495 *
5496 * Wildcard entries (PCI_ANY_ID) should come last
5497 * Last entry must be all 0s
5498 *
5499 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5500 * Class, Class Mask, private data (not used) }
5501 */
5502static const struct pci_device_id ice_pci_tbl[] = {
5503 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5504 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5505 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5506 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5507 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5508 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5509 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5510 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5511 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5512 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5513 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5514 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5515 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5516 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5517 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5518 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5519 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5520 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5521 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5522 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5523 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5524 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5525 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5526 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5527 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5528 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5529 /* required last entry */
5530 { 0, }
5531};
5532MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5533
5534static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5535
5536static const struct pci_error_handlers ice_pci_err_handler = {
5537 .error_detected = ice_pci_err_detected,
5538 .slot_reset = ice_pci_err_slot_reset,
5539 .reset_prepare = ice_pci_err_reset_prepare,
5540 .reset_done = ice_pci_err_reset_done,
5541 .resume = ice_pci_err_resume
5542};
5543
5544static struct pci_driver ice_driver = {
5545 .name = KBUILD_MODNAME,
5546 .id_table = ice_pci_tbl,
5547 .probe = ice_probe,
5548 .remove = ice_remove,
5549#ifdef CONFIG_PM
5550 .driver.pm = &ice_pm_ops,
5551#endif /* CONFIG_PM */
5552 .shutdown = ice_shutdown,
5553 .sriov_configure = ice_sriov_configure,
5554 .err_handler = &ice_pci_err_handler
5555};
5556
5557/**
5558 * ice_module_init - Driver registration routine
5559 *
5560 * ice_module_init is the first routine called when the driver is
5561 * loaded. All it does is register with the PCI subsystem.
5562 */
5563static int __init ice_module_init(void)
5564{
5565 int status;
5566
5567 pr_info("%s\n", ice_driver_string);
5568 pr_info("%s\n", ice_copyright);
5569
5570 ice_wq = alloc_workqueue("%s", 0, 0, KBUILD_MODNAME);
5571 if (!ice_wq) {
5572 pr_err("Failed to create workqueue\n");
5573 return -ENOMEM;
5574 }
5575
5576 status = pci_register_driver(&ice_driver);
5577 if (status) {
5578 pr_err("failed to register PCI driver, err %d\n", status);
5579 destroy_workqueue(ice_wq);
5580 }
5581
5582 return status;
5583}
5584module_init(ice_module_init);
5585
5586/**
5587 * ice_module_exit - Driver exit cleanup routine
5588 *
5589 * ice_module_exit is called just before the driver is removed
5590 * from memory.
5591 */
5592static void __exit ice_module_exit(void)
5593{
5594 pci_unregister_driver(&ice_driver);
5595 destroy_workqueue(ice_wq);
5596 pr_info("module unloaded\n");
5597}
5598module_exit(ice_module_exit);
5599
5600/**
5601 * ice_set_mac_address - NDO callback to set MAC address
5602 * @netdev: network interface device structure
5603 * @pi: pointer to an address structure
5604 *
5605 * Returns 0 on success, negative on failure
5606 */
5607static int ice_set_mac_address(struct net_device *netdev, void *pi)
5608{
5609 struct ice_netdev_priv *np = netdev_priv(netdev);
5610 struct ice_vsi *vsi = np->vsi;
5611 struct ice_pf *pf = vsi->back;
5612 struct ice_hw *hw = &pf->hw;
5613 struct sockaddr *addr = pi;
5614 u8 old_mac[ETH_ALEN];
5615 u8 flags = 0;
5616 u8 *mac;
5617 int err;
5618
5619 mac = (u8 *)addr->sa_data;
5620
5621 if (!is_valid_ether_addr(mac))
5622 return -EADDRNOTAVAIL;
5623
5624 if (ether_addr_equal(netdev->dev_addr, mac)) {
5625 netdev_dbg(netdev, "already using mac %pM\n", mac);
5626 return 0;
5627 }
5628
5629 if (test_bit(ICE_DOWN, pf->state) ||
5630 ice_is_reset_in_progress(pf->state)) {
5631 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5632 mac);
5633 return -EBUSY;
5634 }
5635
5636 if (ice_chnl_dmac_fltr_cnt(pf)) {
5637 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5638 mac);
5639 return -EAGAIN;
5640 }
5641
5642 netif_addr_lock_bh(netdev);
5643 ether_addr_copy(old_mac, netdev->dev_addr);
5644 /* change the netdev's MAC address */
5645 eth_hw_addr_set(netdev, mac);
5646 netif_addr_unlock_bh(netdev);
5647
5648 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5649 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5650 if (err && err != -ENOENT) {
5651 err = -EADDRNOTAVAIL;
5652 goto err_update_filters;
5653 }
5654
5655 /* Add filter for new MAC. If filter exists, return success */
5656 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5657 if (err == -EEXIST) {
5658 /* Although this MAC filter is already present in hardware it's
5659 * possible in some cases (e.g. bonding) that dev_addr was
5660 * modified outside of the driver and needs to be restored back
5661 * to this value.
5662 */
5663 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5664
5665 return 0;
5666 } else if (err) {
5667 /* error if the new filter addition failed */
5668 err = -EADDRNOTAVAIL;
5669 }
5670
5671err_update_filters:
5672 if (err) {
5673 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5674 mac);
5675 netif_addr_lock_bh(netdev);
5676 eth_hw_addr_set(netdev, old_mac);
5677 netif_addr_unlock_bh(netdev);
5678 return err;
5679 }
5680
5681 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5682 netdev->dev_addr);
5683
5684 /* write new MAC address to the firmware */
5685 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5686 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5687 if (err) {
5688 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5689 mac, err);
5690 }
5691 return 0;
5692}
5693
5694/**
5695 * ice_set_rx_mode - NDO callback to set the netdev filters
5696 * @netdev: network interface device structure
5697 */
5698static void ice_set_rx_mode(struct net_device *netdev)
5699{
5700 struct ice_netdev_priv *np = netdev_priv(netdev);
5701 struct ice_vsi *vsi = np->vsi;
5702
5703 if (!vsi)
5704 return;
5705
5706 /* Set the flags to synchronize filters
5707 * ndo_set_rx_mode may be triggered even without a change in netdev
5708 * flags
5709 */
5710 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5711 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5712 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5713
5714 /* schedule our worker thread which will take care of
5715 * applying the new filter changes
5716 */
5717 ice_service_task_schedule(vsi->back);
5718}
5719
5720/**
5721 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5722 * @netdev: network interface device structure
5723 * @queue_index: Queue ID
5724 * @maxrate: maximum bandwidth in Mbps
5725 */
5726static int
5727ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5728{
5729 struct ice_netdev_priv *np = netdev_priv(netdev);
5730 struct ice_vsi *vsi = np->vsi;
5731 u16 q_handle;
5732 int status;
5733 u8 tc;
5734
5735 /* Validate maxrate requested is within permitted range */
5736 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5737 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5738 maxrate, queue_index);
5739 return -EINVAL;
5740 }
5741
5742 q_handle = vsi->tx_rings[queue_index]->q_handle;
5743 tc = ice_dcb_get_tc(vsi, queue_index);
5744
5745 /* Set BW back to default, when user set maxrate to 0 */
5746 if (!maxrate)
5747 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5748 q_handle, ICE_MAX_BW);
5749 else
5750 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5751 q_handle, ICE_MAX_BW, maxrate * 1000);
5752 if (status)
5753 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5754 status);
5755
5756 return status;
5757}
5758
5759/**
5760 * ice_fdb_add - add an entry to the hardware database
5761 * @ndm: the input from the stack
5762 * @tb: pointer to array of nladdr (unused)
5763 * @dev: the net device pointer
5764 * @addr: the MAC address entry being added
5765 * @vid: VLAN ID
5766 * @flags: instructions from stack about fdb operation
5767 * @extack: netlink extended ack
5768 */
5769static int
5770ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5771 struct net_device *dev, const unsigned char *addr, u16 vid,
5772 u16 flags, struct netlink_ext_ack __always_unused *extack)
5773{
5774 int err;
5775
5776 if (vid) {
5777 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5778 return -EINVAL;
5779 }
5780 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5781 netdev_err(dev, "FDB only supports static addresses\n");
5782 return -EINVAL;
5783 }
5784
5785 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5786 err = dev_uc_add_excl(dev, addr);
5787 else if (is_multicast_ether_addr(addr))
5788 err = dev_mc_add_excl(dev, addr);
5789 else
5790 err = -EINVAL;
5791
5792 /* Only return duplicate errors if NLM_F_EXCL is set */
5793 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5794 err = 0;
5795
5796 return err;
5797}
5798
5799/**
5800 * ice_fdb_del - delete an entry from the hardware database
5801 * @ndm: the input from the stack
5802 * @tb: pointer to array of nladdr (unused)
5803 * @dev: the net device pointer
5804 * @addr: the MAC address entry being added
5805 * @vid: VLAN ID
5806 * @extack: netlink extended ack
5807 */
5808static int
5809ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5810 struct net_device *dev, const unsigned char *addr,
5811 __always_unused u16 vid, struct netlink_ext_ack *extack)
5812{
5813 int err;
5814
5815 if (ndm->ndm_state & NUD_PERMANENT) {
5816 netdev_err(dev, "FDB only supports static addresses\n");
5817 return -EINVAL;
5818 }
5819
5820 if (is_unicast_ether_addr(addr))
5821 err = dev_uc_del(dev, addr);
5822 else if (is_multicast_ether_addr(addr))
5823 err = dev_mc_del(dev, addr);
5824 else
5825 err = -EINVAL;
5826
5827 return err;
5828}
5829
5830#define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5831 NETIF_F_HW_VLAN_CTAG_TX | \
5832 NETIF_F_HW_VLAN_STAG_RX | \
5833 NETIF_F_HW_VLAN_STAG_TX)
5834
5835#define NETIF_VLAN_STRIPPING_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5836 NETIF_F_HW_VLAN_STAG_RX)
5837
5838#define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5839 NETIF_F_HW_VLAN_STAG_FILTER)
5840
5841/**
5842 * ice_fix_features - fix the netdev features flags based on device limitations
5843 * @netdev: ptr to the netdev that flags are being fixed on
5844 * @features: features that need to be checked and possibly fixed
5845 *
5846 * Make sure any fixups are made to features in this callback. This enables the
5847 * driver to not have to check unsupported configurations throughout the driver
5848 * because that's the responsiblity of this callback.
5849 *
5850 * Single VLAN Mode (SVM) Supported Features:
5851 * NETIF_F_HW_VLAN_CTAG_FILTER
5852 * NETIF_F_HW_VLAN_CTAG_RX
5853 * NETIF_F_HW_VLAN_CTAG_TX
5854 *
5855 * Double VLAN Mode (DVM) Supported Features:
5856 * NETIF_F_HW_VLAN_CTAG_FILTER
5857 * NETIF_F_HW_VLAN_CTAG_RX
5858 * NETIF_F_HW_VLAN_CTAG_TX
5859 *
5860 * NETIF_F_HW_VLAN_STAG_FILTER
5861 * NETIF_HW_VLAN_STAG_RX
5862 * NETIF_HW_VLAN_STAG_TX
5863 *
5864 * Features that need fixing:
5865 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5866 * These are mutually exlusive as the VSI context cannot support multiple
5867 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
5868 * is not done, then default to clearing the requested STAG offload
5869 * settings.
5870 *
5871 * All supported filtering has to be enabled or disabled together. For
5872 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5873 * together. If this is not done, then default to VLAN filtering disabled.
5874 * These are mutually exclusive as there is currently no way to
5875 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5876 * prune rules.
5877 */
5878static netdev_features_t
5879ice_fix_features(struct net_device *netdev, netdev_features_t features)
5880{
5881 struct ice_netdev_priv *np = netdev_priv(netdev);
5882 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5883 bool cur_ctag, cur_stag, req_ctag, req_stag;
5884
5885 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5886 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5887 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5888
5889 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5890 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5891 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5892
5893 if (req_vlan_fltr != cur_vlan_fltr) {
5894 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5895 if (req_ctag && req_stag) {
5896 features |= NETIF_VLAN_FILTERING_FEATURES;
5897 } else if (!req_ctag && !req_stag) {
5898 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5899 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
5900 (!cur_stag && req_stag && !cur_ctag)) {
5901 features |= NETIF_VLAN_FILTERING_FEATURES;
5902 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5903 } else if ((cur_ctag && !req_ctag && cur_stag) ||
5904 (cur_stag && !req_stag && cur_ctag)) {
5905 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5906 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5907 }
5908 } else {
5909 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5910 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5911
5912 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5913 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5914 }
5915 }
5916
5917 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5918 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5919 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5920 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5921 NETIF_F_HW_VLAN_STAG_TX);
5922 }
5923
5924 if (!(netdev->features & NETIF_F_RXFCS) &&
5925 (features & NETIF_F_RXFCS) &&
5926 (features & NETIF_VLAN_STRIPPING_FEATURES) &&
5927 !ice_vsi_has_non_zero_vlans(np->vsi)) {
5928 netdev_warn(netdev, "Disabling VLAN stripping as FCS/CRC stripping is also disabled and there is no VLAN configured\n");
5929 features &= ~NETIF_VLAN_STRIPPING_FEATURES;
5930 }
5931
5932 return features;
5933}
5934
5935/**
5936 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5937 * @vsi: PF's VSI
5938 * @features: features used to determine VLAN offload settings
5939 *
5940 * First, determine the vlan_ethertype based on the VLAN offload bits in
5941 * features. Then determine if stripping and insertion should be enabled or
5942 * disabled. Finally enable or disable VLAN stripping and insertion.
5943 */
5944static int
5945ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5946{
5947 bool enable_stripping = true, enable_insertion = true;
5948 struct ice_vsi_vlan_ops *vlan_ops;
5949 int strip_err = 0, insert_err = 0;
5950 u16 vlan_ethertype = 0;
5951
5952 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5953
5954 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5955 vlan_ethertype = ETH_P_8021AD;
5956 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5957 vlan_ethertype = ETH_P_8021Q;
5958
5959 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5960 enable_stripping = false;
5961 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5962 enable_insertion = false;
5963
5964 if (enable_stripping)
5965 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5966 else
5967 strip_err = vlan_ops->dis_stripping(vsi);
5968
5969 if (enable_insertion)
5970 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5971 else
5972 insert_err = vlan_ops->dis_insertion(vsi);
5973
5974 if (strip_err || insert_err)
5975 return -EIO;
5976
5977 return 0;
5978}
5979
5980/**
5981 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5982 * @vsi: PF's VSI
5983 * @features: features used to determine VLAN filtering settings
5984 *
5985 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5986 * features.
5987 */
5988static int
5989ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5990{
5991 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5992 int err = 0;
5993
5994 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5995 * if either bit is set
5996 */
5997 if (features &
5998 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5999 err = vlan_ops->ena_rx_filtering(vsi);
6000 else
6001 err = vlan_ops->dis_rx_filtering(vsi);
6002
6003 return err;
6004}
6005
6006/**
6007 * ice_set_vlan_features - set VLAN settings based on suggested feature set
6008 * @netdev: ptr to the netdev being adjusted
6009 * @features: the feature set that the stack is suggesting
6010 *
6011 * Only update VLAN settings if the requested_vlan_features are different than
6012 * the current_vlan_features.
6013 */
6014static int
6015ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
6016{
6017 netdev_features_t current_vlan_features, requested_vlan_features;
6018 struct ice_netdev_priv *np = netdev_priv(netdev);
6019 struct ice_vsi *vsi = np->vsi;
6020 int err;
6021
6022 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
6023 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
6024 if (current_vlan_features ^ requested_vlan_features) {
6025 if ((features & NETIF_F_RXFCS) &&
6026 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6027 dev_err(ice_pf_to_dev(vsi->back),
6028 "To enable VLAN stripping, you must first enable FCS/CRC stripping\n");
6029 return -EIO;
6030 }
6031
6032 err = ice_set_vlan_offload_features(vsi, features);
6033 if (err)
6034 return err;
6035 }
6036
6037 current_vlan_features = netdev->features &
6038 NETIF_VLAN_FILTERING_FEATURES;
6039 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
6040 if (current_vlan_features ^ requested_vlan_features) {
6041 err = ice_set_vlan_filtering_features(vsi, features);
6042 if (err)
6043 return err;
6044 }
6045
6046 return 0;
6047}
6048
6049/**
6050 * ice_set_loopback - turn on/off loopback mode on underlying PF
6051 * @vsi: ptr to VSI
6052 * @ena: flag to indicate the on/off setting
6053 */
6054static int ice_set_loopback(struct ice_vsi *vsi, bool ena)
6055{
6056 bool if_running = netif_running(vsi->netdev);
6057 int ret;
6058
6059 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
6060 ret = ice_down(vsi);
6061 if (ret) {
6062 netdev_err(vsi->netdev, "Preparing device to toggle loopback failed\n");
6063 return ret;
6064 }
6065 }
6066 ret = ice_aq_set_mac_loopback(&vsi->back->hw, ena, NULL);
6067 if (ret)
6068 netdev_err(vsi->netdev, "Failed to toggle loopback state\n");
6069 if (if_running)
6070 ret = ice_up(vsi);
6071
6072 return ret;
6073}
6074
6075/**
6076 * ice_set_features - set the netdev feature flags
6077 * @netdev: ptr to the netdev being adjusted
6078 * @features: the feature set that the stack is suggesting
6079 */
6080static int
6081ice_set_features(struct net_device *netdev, netdev_features_t features)
6082{
6083 netdev_features_t changed = netdev->features ^ features;
6084 struct ice_netdev_priv *np = netdev_priv(netdev);
6085 struct ice_vsi *vsi = np->vsi;
6086 struct ice_pf *pf = vsi->back;
6087 int ret = 0;
6088
6089 /* Don't set any netdev advanced features with device in Safe Mode */
6090 if (ice_is_safe_mode(pf)) {
6091 dev_err(ice_pf_to_dev(pf),
6092 "Device is in Safe Mode - not enabling advanced netdev features\n");
6093 return ret;
6094 }
6095
6096 /* Do not change setting during reset */
6097 if (ice_is_reset_in_progress(pf->state)) {
6098 dev_err(ice_pf_to_dev(pf),
6099 "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
6100 return -EBUSY;
6101 }
6102
6103 /* Multiple features can be changed in one call so keep features in
6104 * separate if/else statements to guarantee each feature is checked
6105 */
6106 if (changed & NETIF_F_RXHASH)
6107 ice_vsi_manage_rss_lut(vsi, !!(features & NETIF_F_RXHASH));
6108
6109 ret = ice_set_vlan_features(netdev, features);
6110 if (ret)
6111 return ret;
6112
6113 /* Turn on receive of FCS aka CRC, and after setting this
6114 * flag the packet data will have the 4 byte CRC appended
6115 */
6116 if (changed & NETIF_F_RXFCS) {
6117 if ((features & NETIF_F_RXFCS) &&
6118 (features & NETIF_VLAN_STRIPPING_FEATURES)) {
6119 dev_err(ice_pf_to_dev(vsi->back),
6120 "To disable FCS/CRC stripping, you must first disable VLAN stripping\n");
6121 return -EIO;
6122 }
6123
6124 ice_vsi_cfg_crc_strip(vsi, !!(features & NETIF_F_RXFCS));
6125 ret = ice_down_up(vsi);
6126 if (ret)
6127 return ret;
6128 }
6129
6130 if (changed & NETIF_F_NTUPLE) {
6131 bool ena = !!(features & NETIF_F_NTUPLE);
6132
6133 ice_vsi_manage_fdir(vsi, ena);
6134 ena ? ice_init_arfs(vsi) : ice_clear_arfs(vsi);
6135 }
6136
6137 /* don't turn off hw_tc_offload when ADQ is already enabled */
6138 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
6139 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
6140 return -EACCES;
6141 }
6142
6143 if (changed & NETIF_F_HW_TC) {
6144 bool ena = !!(features & NETIF_F_HW_TC);
6145
6146 ena ? set_bit(ICE_FLAG_CLS_FLOWER, pf->flags) :
6147 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6148 }
6149
6150 if (changed & NETIF_F_LOOPBACK)
6151 ret = ice_set_loopback(vsi, !!(features & NETIF_F_LOOPBACK));
6152
6153 return ret;
6154}
6155
6156/**
6157 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6158 * @vsi: VSI to setup VLAN properties for
6159 */
6160static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6161{
6162 int err;
6163
6164 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6165 if (err)
6166 return err;
6167
6168 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6169 if (err)
6170 return err;
6171
6172 return ice_vsi_add_vlan_zero(vsi);
6173}
6174
6175/**
6176 * ice_vsi_cfg - Setup the VSI
6177 * @vsi: the VSI being configured
6178 *
6179 * Return 0 on success and negative value on error
6180 */
6181int ice_vsi_cfg(struct ice_vsi *vsi)
6182{
6183 int err;
6184
6185 if (vsi->netdev) {
6186 ice_set_rx_mode(vsi->netdev);
6187
6188 if (vsi->type != ICE_VSI_LB) {
6189 err = ice_vsi_vlan_setup(vsi);
6190
6191 if (err)
6192 return err;
6193 }
6194 }
6195 ice_vsi_cfg_dcb_rings(vsi);
6196
6197 err = ice_vsi_cfg_lan_txqs(vsi);
6198 if (!err && ice_is_xdp_ena_vsi(vsi))
6199 err = ice_vsi_cfg_xdp_txqs(vsi);
6200 if (!err)
6201 err = ice_vsi_cfg_rxqs(vsi);
6202
6203 return err;
6204}
6205
6206/* THEORY OF MODERATION:
6207 * The ice driver hardware works differently than the hardware that DIMLIB was
6208 * originally made for. ice hardware doesn't have packet count limits that
6209 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6210 * which is hard-coded to a limit of 250,000 ints/second.
6211 * If not using dynamic moderation, the INTRL value can be modified
6212 * by ethtool rx-usecs-high.
6213 */
6214struct ice_dim {
6215 /* the throttle rate for interrupts, basically worst case delay before
6216 * an initial interrupt fires, value is stored in microseconds.
6217 */
6218 u16 itr;
6219};
6220
6221/* Make a different profile for Rx that doesn't allow quite so aggressive
6222 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6223 * second.
6224 */
6225static const struct ice_dim rx_profile[] = {
6226 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6227 {8}, /* 125,000 ints/s */
6228 {16}, /* 62,500 ints/s */
6229 {62}, /* 16,129 ints/s */
6230 {126} /* 7,936 ints/s */
6231};
6232
6233/* The transmit profile, which has the same sorts of values
6234 * as the previous struct
6235 */
6236static const struct ice_dim tx_profile[] = {
6237 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6238 {8}, /* 125,000 ints/s */
6239 {40}, /* 16,125 ints/s */
6240 {128}, /* 7,812 ints/s */
6241 {256} /* 3,906 ints/s */
6242};
6243
6244static void ice_tx_dim_work(struct work_struct *work)
6245{
6246 struct ice_ring_container *rc;
6247 struct dim *dim;
6248 u16 itr;
6249
6250 dim = container_of(work, struct dim, work);
6251 rc = (struct ice_ring_container *)dim->priv;
6252
6253 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6254
6255 /* look up the values in our local table */
6256 itr = tx_profile[dim->profile_ix].itr;
6257
6258 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6259 ice_write_itr(rc, itr);
6260
6261 dim->state = DIM_START_MEASURE;
6262}
6263
6264static void ice_rx_dim_work(struct work_struct *work)
6265{
6266 struct ice_ring_container *rc;
6267 struct dim *dim;
6268 u16 itr;
6269
6270 dim = container_of(work, struct dim, work);
6271 rc = (struct ice_ring_container *)dim->priv;
6272
6273 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6274
6275 /* look up the values in our local table */
6276 itr = rx_profile[dim->profile_ix].itr;
6277
6278 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6279 ice_write_itr(rc, itr);
6280
6281 dim->state = DIM_START_MEASURE;
6282}
6283
6284#define ICE_DIM_DEFAULT_PROFILE_IX 1
6285
6286/**
6287 * ice_init_moderation - set up interrupt moderation
6288 * @q_vector: the vector containing rings to be configured
6289 *
6290 * Set up interrupt moderation registers, with the intent to do the right thing
6291 * when called from reset or from probe, and whether or not dynamic moderation
6292 * is enabled or not. Take special care to write all the registers in both
6293 * dynamic moderation mode or not in order to make sure hardware is in a known
6294 * state.
6295 */
6296static void ice_init_moderation(struct ice_q_vector *q_vector)
6297{
6298 struct ice_ring_container *rc;
6299 bool tx_dynamic, rx_dynamic;
6300
6301 rc = &q_vector->tx;
6302 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6303 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6304 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6305 rc->dim.priv = rc;
6306 tx_dynamic = ITR_IS_DYNAMIC(rc);
6307
6308 /* set the initial TX ITR to match the above */
6309 ice_write_itr(rc, tx_dynamic ?
6310 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6311
6312 rc = &q_vector->rx;
6313 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6314 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6315 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6316 rc->dim.priv = rc;
6317 rx_dynamic = ITR_IS_DYNAMIC(rc);
6318
6319 /* set the initial RX ITR to match the above */
6320 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6321 rc->itr_setting);
6322
6323 ice_set_q_vector_intrl(q_vector);
6324}
6325
6326/**
6327 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6328 * @vsi: the VSI being configured
6329 */
6330static void ice_napi_enable_all(struct ice_vsi *vsi)
6331{
6332 int q_idx;
6333
6334 if (!vsi->netdev)
6335 return;
6336
6337 ice_for_each_q_vector(vsi, q_idx) {
6338 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6339
6340 ice_init_moderation(q_vector);
6341
6342 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6343 napi_enable(&q_vector->napi);
6344 }
6345}
6346
6347/**
6348 * ice_up_complete - Finish the last steps of bringing up a connection
6349 * @vsi: The VSI being configured
6350 *
6351 * Return 0 on success and negative value on error
6352 */
6353static int ice_up_complete(struct ice_vsi *vsi)
6354{
6355 struct ice_pf *pf = vsi->back;
6356 int err;
6357
6358 ice_vsi_cfg_msix(vsi);
6359
6360 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6361 * Tx queue group list was configured and the context bits were
6362 * programmed using ice_vsi_cfg_txqs
6363 */
6364 err = ice_vsi_start_all_rx_rings(vsi);
6365 if (err)
6366 return err;
6367
6368 clear_bit(ICE_VSI_DOWN, vsi->state);
6369 ice_napi_enable_all(vsi);
6370 ice_vsi_ena_irq(vsi);
6371
6372 if (vsi->port_info &&
6373 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6374 vsi->netdev) {
6375 ice_print_link_msg(vsi, true);
6376 netif_tx_start_all_queues(vsi->netdev);
6377 netif_carrier_on(vsi->netdev);
6378 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6379 }
6380
6381 /* Perform an initial read of the statistics registers now to
6382 * set the baseline so counters are ready when interface is up
6383 */
6384 ice_update_eth_stats(vsi);
6385 ice_service_task_schedule(pf);
6386
6387 return 0;
6388}
6389
6390/**
6391 * ice_up - Bring the connection back up after being down
6392 * @vsi: VSI being configured
6393 */
6394int ice_up(struct ice_vsi *vsi)
6395{
6396 int err;
6397
6398 err = ice_vsi_cfg(vsi);
6399 if (!err)
6400 err = ice_up_complete(vsi);
6401
6402 return err;
6403}
6404
6405/**
6406 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6407 * @syncp: pointer to u64_stats_sync
6408 * @stats: stats that pkts and bytes count will be taken from
6409 * @pkts: packets stats counter
6410 * @bytes: bytes stats counter
6411 *
6412 * This function fetches stats from the ring considering the atomic operations
6413 * that needs to be performed to read u64 values in 32 bit machine.
6414 */
6415void
6416ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6417 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6418{
6419 unsigned int start;
6420
6421 do {
6422 start = u64_stats_fetch_begin(syncp);
6423 *pkts = stats.pkts;
6424 *bytes = stats.bytes;
6425 } while (u64_stats_fetch_retry(syncp, start));
6426}
6427
6428/**
6429 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6430 * @vsi: the VSI to be updated
6431 * @vsi_stats: the stats struct to be updated
6432 * @rings: rings to work on
6433 * @count: number of rings
6434 */
6435static void
6436ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6437 struct rtnl_link_stats64 *vsi_stats,
6438 struct ice_tx_ring **rings, u16 count)
6439{
6440 u16 i;
6441
6442 for (i = 0; i < count; i++) {
6443 struct ice_tx_ring *ring;
6444 u64 pkts = 0, bytes = 0;
6445
6446 ring = READ_ONCE(rings[i]);
6447 if (!ring || !ring->ring_stats)
6448 continue;
6449 ice_fetch_u64_stats_per_ring(&ring->ring_stats->syncp,
6450 ring->ring_stats->stats, &pkts,
6451 &bytes);
6452 vsi_stats->tx_packets += pkts;
6453 vsi_stats->tx_bytes += bytes;
6454 vsi->tx_restart += ring->ring_stats->tx_stats.restart_q;
6455 vsi->tx_busy += ring->ring_stats->tx_stats.tx_busy;
6456 vsi->tx_linearize += ring->ring_stats->tx_stats.tx_linearize;
6457 }
6458}
6459
6460/**
6461 * ice_update_vsi_ring_stats - Update VSI stats counters
6462 * @vsi: the VSI to be updated
6463 */
6464static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6465{
6466 struct rtnl_link_stats64 *net_stats, *stats_prev;
6467 struct rtnl_link_stats64 *vsi_stats;
6468 u64 pkts, bytes;
6469 int i;
6470
6471 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6472 if (!vsi_stats)
6473 return;
6474
6475 /* reset non-netdev (extended) stats */
6476 vsi->tx_restart = 0;
6477 vsi->tx_busy = 0;
6478 vsi->tx_linearize = 0;
6479 vsi->rx_buf_failed = 0;
6480 vsi->rx_page_failed = 0;
6481
6482 rcu_read_lock();
6483
6484 /* update Tx rings counters */
6485 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6486 vsi->num_txq);
6487
6488 /* update Rx rings counters */
6489 ice_for_each_rxq(vsi, i) {
6490 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6491 struct ice_ring_stats *ring_stats;
6492
6493 ring_stats = ring->ring_stats;
6494 ice_fetch_u64_stats_per_ring(&ring_stats->syncp,
6495 ring_stats->stats, &pkts,
6496 &bytes);
6497 vsi_stats->rx_packets += pkts;
6498 vsi_stats->rx_bytes += bytes;
6499 vsi->rx_buf_failed += ring_stats->rx_stats.alloc_buf_failed;
6500 vsi->rx_page_failed += ring_stats->rx_stats.alloc_page_failed;
6501 }
6502
6503 /* update XDP Tx rings counters */
6504 if (ice_is_xdp_ena_vsi(vsi))
6505 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6506 vsi->num_xdp_txq);
6507
6508 rcu_read_unlock();
6509
6510 net_stats = &vsi->net_stats;
6511 stats_prev = &vsi->net_stats_prev;
6512
6513 /* clear prev counters after reset */
6514 if (vsi_stats->tx_packets < stats_prev->tx_packets ||
6515 vsi_stats->rx_packets < stats_prev->rx_packets) {
6516 stats_prev->tx_packets = 0;
6517 stats_prev->tx_bytes = 0;
6518 stats_prev->rx_packets = 0;
6519 stats_prev->rx_bytes = 0;
6520 }
6521
6522 /* update netdev counters */
6523 net_stats->tx_packets += vsi_stats->tx_packets - stats_prev->tx_packets;
6524 net_stats->tx_bytes += vsi_stats->tx_bytes - stats_prev->tx_bytes;
6525 net_stats->rx_packets += vsi_stats->rx_packets - stats_prev->rx_packets;
6526 net_stats->rx_bytes += vsi_stats->rx_bytes - stats_prev->rx_bytes;
6527
6528 stats_prev->tx_packets = vsi_stats->tx_packets;
6529 stats_prev->tx_bytes = vsi_stats->tx_bytes;
6530 stats_prev->rx_packets = vsi_stats->rx_packets;
6531 stats_prev->rx_bytes = vsi_stats->rx_bytes;
6532
6533 kfree(vsi_stats);
6534}
6535
6536/**
6537 * ice_update_vsi_stats - Update VSI stats counters
6538 * @vsi: the VSI to be updated
6539 */
6540void ice_update_vsi_stats(struct ice_vsi *vsi)
6541{
6542 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6543 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6544 struct ice_pf *pf = vsi->back;
6545
6546 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6547 test_bit(ICE_CFG_BUSY, pf->state))
6548 return;
6549
6550 /* get stats as recorded by Tx/Rx rings */
6551 ice_update_vsi_ring_stats(vsi);
6552
6553 /* get VSI stats as recorded by the hardware */
6554 ice_update_eth_stats(vsi);
6555
6556 cur_ns->tx_errors = cur_es->tx_errors;
6557 cur_ns->rx_dropped = cur_es->rx_discards;
6558 cur_ns->tx_dropped = cur_es->tx_discards;
6559 cur_ns->multicast = cur_es->rx_multicast;
6560
6561 /* update some more netdev stats if this is main VSI */
6562 if (vsi->type == ICE_VSI_PF) {
6563 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6564 cur_ns->rx_errors = pf->stats.crc_errors +
6565 pf->stats.illegal_bytes +
6566 pf->stats.rx_len_errors +
6567 pf->stats.rx_undersize +
6568 pf->hw_csum_rx_error +
6569 pf->stats.rx_jabber +
6570 pf->stats.rx_fragments +
6571 pf->stats.rx_oversize;
6572 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6573 /* record drops from the port level */
6574 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6575 }
6576}
6577
6578/**
6579 * ice_update_pf_stats - Update PF port stats counters
6580 * @pf: PF whose stats needs to be updated
6581 */
6582void ice_update_pf_stats(struct ice_pf *pf)
6583{
6584 struct ice_hw_port_stats *prev_ps, *cur_ps;
6585 struct ice_hw *hw = &pf->hw;
6586 u16 fd_ctr_base;
6587 u8 port;
6588
6589 port = hw->port_info->lport;
6590 prev_ps = &pf->stats_prev;
6591 cur_ps = &pf->stats;
6592
6593 if (ice_is_reset_in_progress(pf->state))
6594 pf->stat_prev_loaded = false;
6595
6596 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6597 &prev_ps->eth.rx_bytes,
6598 &cur_ps->eth.rx_bytes);
6599
6600 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6601 &prev_ps->eth.rx_unicast,
6602 &cur_ps->eth.rx_unicast);
6603
6604 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6605 &prev_ps->eth.rx_multicast,
6606 &cur_ps->eth.rx_multicast);
6607
6608 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6609 &prev_ps->eth.rx_broadcast,
6610 &cur_ps->eth.rx_broadcast);
6611
6612 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6613 &prev_ps->eth.rx_discards,
6614 &cur_ps->eth.rx_discards);
6615
6616 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6617 &prev_ps->eth.tx_bytes,
6618 &cur_ps->eth.tx_bytes);
6619
6620 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6621 &prev_ps->eth.tx_unicast,
6622 &cur_ps->eth.tx_unicast);
6623
6624 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6625 &prev_ps->eth.tx_multicast,
6626 &cur_ps->eth.tx_multicast);
6627
6628 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6629 &prev_ps->eth.tx_broadcast,
6630 &cur_ps->eth.tx_broadcast);
6631
6632 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6633 &prev_ps->tx_dropped_link_down,
6634 &cur_ps->tx_dropped_link_down);
6635
6636 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6637 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6638
6639 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6640 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6641
6642 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6643 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6644
6645 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6646 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6647
6648 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6649 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6650
6651 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6652 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6653
6654 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6655 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6656
6657 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6658 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6659
6660 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6661 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6662
6663 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6664 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6665
6666 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6667 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6668
6669 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6670 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6671
6672 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6673 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6674
6675 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6676 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6677
6678 fd_ctr_base = hw->fd_ctr_base;
6679
6680 ice_stat_update40(hw,
6681 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6682 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6683 &cur_ps->fd_sb_match);
6684 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6685 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6686
6687 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6688 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6689
6690 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6691 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6692
6693 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6694 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6695
6696 ice_update_dcb_stats(pf);
6697
6698 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6699 &prev_ps->crc_errors, &cur_ps->crc_errors);
6700
6701 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6702 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6703
6704 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6705 &prev_ps->mac_local_faults,
6706 &cur_ps->mac_local_faults);
6707
6708 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6709 &prev_ps->mac_remote_faults,
6710 &cur_ps->mac_remote_faults);
6711
6712 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6713 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6714
6715 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6716 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6717
6718 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6719 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6720
6721 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6722 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6723
6724 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6725 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6726
6727 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6728
6729 pf->stat_prev_loaded = true;
6730}
6731
6732/**
6733 * ice_get_stats64 - get statistics for network device structure
6734 * @netdev: network interface device structure
6735 * @stats: main device statistics structure
6736 */
6737static
6738void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6739{
6740 struct ice_netdev_priv *np = netdev_priv(netdev);
6741 struct rtnl_link_stats64 *vsi_stats;
6742 struct ice_vsi *vsi = np->vsi;
6743
6744 vsi_stats = &vsi->net_stats;
6745
6746 if (!vsi->num_txq || !vsi->num_rxq)
6747 return;
6748
6749 /* netdev packet/byte stats come from ring counter. These are obtained
6750 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6751 * But, only call the update routine and read the registers if VSI is
6752 * not down.
6753 */
6754 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6755 ice_update_vsi_ring_stats(vsi);
6756 stats->tx_packets = vsi_stats->tx_packets;
6757 stats->tx_bytes = vsi_stats->tx_bytes;
6758 stats->rx_packets = vsi_stats->rx_packets;
6759 stats->rx_bytes = vsi_stats->rx_bytes;
6760
6761 /* The rest of the stats can be read from the hardware but instead we
6762 * just return values that the watchdog task has already obtained from
6763 * the hardware.
6764 */
6765 stats->multicast = vsi_stats->multicast;
6766 stats->tx_errors = vsi_stats->tx_errors;
6767 stats->tx_dropped = vsi_stats->tx_dropped;
6768 stats->rx_errors = vsi_stats->rx_errors;
6769 stats->rx_dropped = vsi_stats->rx_dropped;
6770 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6771 stats->rx_length_errors = vsi_stats->rx_length_errors;
6772}
6773
6774/**
6775 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6776 * @vsi: VSI having NAPI disabled
6777 */
6778static void ice_napi_disable_all(struct ice_vsi *vsi)
6779{
6780 int q_idx;
6781
6782 if (!vsi->netdev)
6783 return;
6784
6785 ice_for_each_q_vector(vsi, q_idx) {
6786 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6787
6788 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6789 napi_disable(&q_vector->napi);
6790
6791 cancel_work_sync(&q_vector->tx.dim.work);
6792 cancel_work_sync(&q_vector->rx.dim.work);
6793 }
6794}
6795
6796/**
6797 * ice_down - Shutdown the connection
6798 * @vsi: The VSI being stopped
6799 *
6800 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6801 */
6802int ice_down(struct ice_vsi *vsi)
6803{
6804 int i, tx_err, rx_err, vlan_err = 0;
6805
6806 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6807
6808 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6809 vlan_err = ice_vsi_del_vlan_zero(vsi);
6810 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6811 netif_carrier_off(vsi->netdev);
6812 netif_tx_disable(vsi->netdev);
6813 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6814 ice_eswitch_stop_all_tx_queues(vsi->back);
6815 }
6816
6817 ice_vsi_dis_irq(vsi);
6818
6819 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6820 if (tx_err)
6821 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6822 vsi->vsi_num, tx_err);
6823 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6824 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6825 if (tx_err)
6826 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6827 vsi->vsi_num, tx_err);
6828 }
6829
6830 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6831 if (rx_err)
6832 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6833 vsi->vsi_num, rx_err);
6834
6835 ice_napi_disable_all(vsi);
6836
6837 ice_for_each_txq(vsi, i)
6838 ice_clean_tx_ring(vsi->tx_rings[i]);
6839
6840 ice_for_each_rxq(vsi, i)
6841 ice_clean_rx_ring(vsi->rx_rings[i]);
6842
6843 if (tx_err || rx_err || vlan_err) {
6844 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6845 vsi->vsi_num, vsi->vsw->sw_id);
6846 return -EIO;
6847 }
6848
6849 return 0;
6850}
6851
6852/**
6853 * ice_down_up - shutdown the VSI connection and bring it up
6854 * @vsi: the VSI to be reconnected
6855 */
6856int ice_down_up(struct ice_vsi *vsi)
6857{
6858 int ret;
6859
6860 /* if DOWN already set, nothing to do */
6861 if (test_and_set_bit(ICE_VSI_DOWN, vsi->state))
6862 return 0;
6863
6864 ret = ice_down(vsi);
6865 if (ret)
6866 return ret;
6867
6868 ret = ice_up(vsi);
6869 if (ret) {
6870 netdev_err(vsi->netdev, "reallocating resources failed during netdev features change, may need to reload driver\n");
6871 return ret;
6872 }
6873
6874 return 0;
6875}
6876
6877/**
6878 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6879 * @vsi: VSI having resources allocated
6880 *
6881 * Return 0 on success, negative on failure
6882 */
6883int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6884{
6885 int i, err = 0;
6886
6887 if (!vsi->num_txq) {
6888 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6889 vsi->vsi_num);
6890 return -EINVAL;
6891 }
6892
6893 ice_for_each_txq(vsi, i) {
6894 struct ice_tx_ring *ring = vsi->tx_rings[i];
6895
6896 if (!ring)
6897 return -EINVAL;
6898
6899 if (vsi->netdev)
6900 ring->netdev = vsi->netdev;
6901 err = ice_setup_tx_ring(ring);
6902 if (err)
6903 break;
6904 }
6905
6906 return err;
6907}
6908
6909/**
6910 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6911 * @vsi: VSI having resources allocated
6912 *
6913 * Return 0 on success, negative on failure
6914 */
6915int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6916{
6917 int i, err = 0;
6918
6919 if (!vsi->num_rxq) {
6920 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6921 vsi->vsi_num);
6922 return -EINVAL;
6923 }
6924
6925 ice_for_each_rxq(vsi, i) {
6926 struct ice_rx_ring *ring = vsi->rx_rings[i];
6927
6928 if (!ring)
6929 return -EINVAL;
6930
6931 if (vsi->netdev)
6932 ring->netdev = vsi->netdev;
6933 err = ice_setup_rx_ring(ring);
6934 if (err)
6935 break;
6936 }
6937
6938 return err;
6939}
6940
6941/**
6942 * ice_vsi_open_ctrl - open control VSI for use
6943 * @vsi: the VSI to open
6944 *
6945 * Initialization of the Control VSI
6946 *
6947 * Returns 0 on success, negative value on error
6948 */
6949int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6950{
6951 char int_name[ICE_INT_NAME_STR_LEN];
6952 struct ice_pf *pf = vsi->back;
6953 struct device *dev;
6954 int err;
6955
6956 dev = ice_pf_to_dev(pf);
6957 /* allocate descriptors */
6958 err = ice_vsi_setup_tx_rings(vsi);
6959 if (err)
6960 goto err_setup_tx;
6961
6962 err = ice_vsi_setup_rx_rings(vsi);
6963 if (err)
6964 goto err_setup_rx;
6965
6966 err = ice_vsi_cfg(vsi);
6967 if (err)
6968 goto err_setup_rx;
6969
6970 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6971 dev_driver_string(dev), dev_name(dev));
6972 err = ice_vsi_req_irq_msix(vsi, int_name);
6973 if (err)
6974 goto err_setup_rx;
6975
6976 ice_vsi_cfg_msix(vsi);
6977
6978 err = ice_vsi_start_all_rx_rings(vsi);
6979 if (err)
6980 goto err_up_complete;
6981
6982 clear_bit(ICE_VSI_DOWN, vsi->state);
6983 ice_vsi_ena_irq(vsi);
6984
6985 return 0;
6986
6987err_up_complete:
6988 ice_down(vsi);
6989err_setup_rx:
6990 ice_vsi_free_rx_rings(vsi);
6991err_setup_tx:
6992 ice_vsi_free_tx_rings(vsi);
6993
6994 return err;
6995}
6996
6997/**
6998 * ice_vsi_open - Called when a network interface is made active
6999 * @vsi: the VSI to open
7000 *
7001 * Initialization of the VSI
7002 *
7003 * Returns 0 on success, negative value on error
7004 */
7005int ice_vsi_open(struct ice_vsi *vsi)
7006{
7007 char int_name[ICE_INT_NAME_STR_LEN];
7008 struct ice_pf *pf = vsi->back;
7009 int err;
7010
7011 /* allocate descriptors */
7012 err = ice_vsi_setup_tx_rings(vsi);
7013 if (err)
7014 goto err_setup_tx;
7015
7016 err = ice_vsi_setup_rx_rings(vsi);
7017 if (err)
7018 goto err_setup_rx;
7019
7020 err = ice_vsi_cfg(vsi);
7021 if (err)
7022 goto err_setup_rx;
7023
7024 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
7025 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
7026 err = ice_vsi_req_irq_msix(vsi, int_name);
7027 if (err)
7028 goto err_setup_rx;
7029
7030 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
7031
7032 if (vsi->type == ICE_VSI_PF) {
7033 /* Notify the stack of the actual queue counts. */
7034 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
7035 if (err)
7036 goto err_set_qs;
7037
7038 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
7039 if (err)
7040 goto err_set_qs;
7041 }
7042
7043 err = ice_up_complete(vsi);
7044 if (err)
7045 goto err_up_complete;
7046
7047 return 0;
7048
7049err_up_complete:
7050 ice_down(vsi);
7051err_set_qs:
7052 ice_vsi_free_irq(vsi);
7053err_setup_rx:
7054 ice_vsi_free_rx_rings(vsi);
7055err_setup_tx:
7056 ice_vsi_free_tx_rings(vsi);
7057
7058 return err;
7059}
7060
7061/**
7062 * ice_vsi_release_all - Delete all VSIs
7063 * @pf: PF from which all VSIs are being removed
7064 */
7065static void ice_vsi_release_all(struct ice_pf *pf)
7066{
7067 int err, i;
7068
7069 if (!pf->vsi)
7070 return;
7071
7072 ice_for_each_vsi(pf, i) {
7073 if (!pf->vsi[i])
7074 continue;
7075
7076 if (pf->vsi[i]->type == ICE_VSI_CHNL)
7077 continue;
7078
7079 err = ice_vsi_release(pf->vsi[i]);
7080 if (err)
7081 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
7082 i, err, pf->vsi[i]->vsi_num);
7083 }
7084}
7085
7086/**
7087 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
7088 * @pf: pointer to the PF instance
7089 * @type: VSI type to rebuild
7090 *
7091 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
7092 */
7093static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
7094{
7095 struct device *dev = ice_pf_to_dev(pf);
7096 int i, err;
7097
7098 ice_for_each_vsi(pf, i) {
7099 struct ice_vsi *vsi = pf->vsi[i];
7100
7101 if (!vsi || vsi->type != type)
7102 continue;
7103
7104 /* rebuild the VSI */
7105 err = ice_vsi_rebuild(vsi, true);
7106 if (err) {
7107 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
7108 err, vsi->idx, ice_vsi_type_str(type));
7109 return err;
7110 }
7111
7112 /* replay filters for the VSI */
7113 err = ice_replay_vsi(&pf->hw, vsi->idx);
7114 if (err) {
7115 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
7116 err, vsi->idx, ice_vsi_type_str(type));
7117 return err;
7118 }
7119
7120 /* Re-map HW VSI number, using VSI handle that has been
7121 * previously validated in ice_replay_vsi() call above
7122 */
7123 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
7124
7125 /* enable the VSI */
7126 err = ice_ena_vsi(vsi, false);
7127 if (err) {
7128 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
7129 err, vsi->idx, ice_vsi_type_str(type));
7130 return err;
7131 }
7132
7133 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
7134 ice_vsi_type_str(type));
7135 }
7136
7137 return 0;
7138}
7139
7140/**
7141 * ice_update_pf_netdev_link - Update PF netdev link status
7142 * @pf: pointer to the PF instance
7143 */
7144static void ice_update_pf_netdev_link(struct ice_pf *pf)
7145{
7146 bool link_up;
7147 int i;
7148
7149 ice_for_each_vsi(pf, i) {
7150 struct ice_vsi *vsi = pf->vsi[i];
7151
7152 if (!vsi || vsi->type != ICE_VSI_PF)
7153 return;
7154
7155 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
7156 if (link_up) {
7157 netif_carrier_on(pf->vsi[i]->netdev);
7158 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
7159 } else {
7160 netif_carrier_off(pf->vsi[i]->netdev);
7161 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
7162 }
7163 }
7164}
7165
7166/**
7167 * ice_rebuild - rebuild after reset
7168 * @pf: PF to rebuild
7169 * @reset_type: type of reset
7170 *
7171 * Do not rebuild VF VSI in this flow because that is already handled via
7172 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
7173 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
7174 * to reset/rebuild all the VF VSI twice.
7175 */
7176static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
7177{
7178 struct device *dev = ice_pf_to_dev(pf);
7179 struct ice_hw *hw = &pf->hw;
7180 bool dvm;
7181 int err;
7182
7183 if (test_bit(ICE_DOWN, pf->state))
7184 goto clear_recovery;
7185
7186 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
7187
7188#define ICE_EMP_RESET_SLEEP_MS 5000
7189 if (reset_type == ICE_RESET_EMPR) {
7190 /* If an EMP reset has occurred, any previously pending flash
7191 * update will have completed. We no longer know whether or
7192 * not the NVM update EMP reset is restricted.
7193 */
7194 pf->fw_emp_reset_disabled = false;
7195
7196 msleep(ICE_EMP_RESET_SLEEP_MS);
7197 }
7198
7199 err = ice_init_all_ctrlq(hw);
7200 if (err) {
7201 dev_err(dev, "control queues init failed %d\n", err);
7202 goto err_init_ctrlq;
7203 }
7204
7205 /* if DDP was previously loaded successfully */
7206 if (!ice_is_safe_mode(pf)) {
7207 /* reload the SW DB of filter tables */
7208 if (reset_type == ICE_RESET_PFR)
7209 ice_fill_blk_tbls(hw);
7210 else
7211 /* Reload DDP Package after CORER/GLOBR reset */
7212 ice_load_pkg(NULL, pf);
7213 }
7214
7215 err = ice_clear_pf_cfg(hw);
7216 if (err) {
7217 dev_err(dev, "clear PF configuration failed %d\n", err);
7218 goto err_init_ctrlq;
7219 }
7220
7221 ice_clear_pxe_mode(hw);
7222
7223 err = ice_init_nvm(hw);
7224 if (err) {
7225 dev_err(dev, "ice_init_nvm failed %d\n", err);
7226 goto err_init_ctrlq;
7227 }
7228
7229 err = ice_get_caps(hw);
7230 if (err) {
7231 dev_err(dev, "ice_get_caps failed %d\n", err);
7232 goto err_init_ctrlq;
7233 }
7234
7235 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7236 if (err) {
7237 dev_err(dev, "set_mac_cfg failed %d\n", err);
7238 goto err_init_ctrlq;
7239 }
7240
7241 dvm = ice_is_dvm_ena(hw);
7242
7243 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7244 if (err)
7245 goto err_init_ctrlq;
7246
7247 err = ice_sched_init_port(hw->port_info);
7248 if (err)
7249 goto err_sched_init_port;
7250
7251 /* start misc vector */
7252 err = ice_req_irq_msix_misc(pf);
7253 if (err) {
7254 dev_err(dev, "misc vector setup failed: %d\n", err);
7255 goto err_sched_init_port;
7256 }
7257
7258 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7259 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7260 if (!rd32(hw, PFQF_FD_SIZE)) {
7261 u16 unused, guar, b_effort;
7262
7263 guar = hw->func_caps.fd_fltr_guar;
7264 b_effort = hw->func_caps.fd_fltr_best_effort;
7265
7266 /* force guaranteed filter pool for PF */
7267 ice_alloc_fd_guar_item(hw, &unused, guar);
7268 /* force shared filter pool for PF */
7269 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7270 }
7271 }
7272
7273 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7274 ice_dcb_rebuild(pf);
7275
7276 /* If the PF previously had enabled PTP, PTP init needs to happen before
7277 * the VSI rebuild. If not, this causes the PTP link status events to
7278 * fail.
7279 */
7280 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7281 ice_ptp_reset(pf);
7282
7283 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7284 ice_gnss_init(pf);
7285
7286 /* rebuild PF VSI */
7287 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7288 if (err) {
7289 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7290 goto err_vsi_rebuild;
7291 }
7292
7293 /* configure PTP timestamping after VSI rebuild */
7294 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7295 ice_ptp_cfg_timestamp(pf, false);
7296
7297 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7298 if (err) {
7299 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7300 goto err_vsi_rebuild;
7301 }
7302
7303 if (reset_type == ICE_RESET_PFR) {
7304 err = ice_rebuild_channels(pf);
7305 if (err) {
7306 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7307 err);
7308 goto err_vsi_rebuild;
7309 }
7310 }
7311
7312 /* If Flow Director is active */
7313 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7314 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7315 if (err) {
7316 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7317 goto err_vsi_rebuild;
7318 }
7319
7320 /* replay HW Flow Director recipes */
7321 if (hw->fdir_prof)
7322 ice_fdir_replay_flows(hw);
7323
7324 /* replay Flow Director filters */
7325 ice_fdir_replay_fltrs(pf);
7326
7327 ice_rebuild_arfs(pf);
7328 }
7329
7330 ice_update_pf_netdev_link(pf);
7331
7332 /* tell the firmware we are up */
7333 err = ice_send_version(pf);
7334 if (err) {
7335 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7336 err);
7337 goto err_vsi_rebuild;
7338 }
7339
7340 ice_replay_post(hw);
7341
7342 /* if we get here, reset flow is successful */
7343 clear_bit(ICE_RESET_FAILED, pf->state);
7344
7345 ice_plug_aux_dev(pf);
7346 return;
7347
7348err_vsi_rebuild:
7349err_sched_init_port:
7350 ice_sched_cleanup_all(hw);
7351err_init_ctrlq:
7352 ice_shutdown_all_ctrlq(hw);
7353 set_bit(ICE_RESET_FAILED, pf->state);
7354clear_recovery:
7355 /* set this bit in PF state to control service task scheduling */
7356 set_bit(ICE_NEEDS_RESTART, pf->state);
7357 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7358}
7359
7360/**
7361 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7362 * @vsi: Pointer to VSI structure
7363 */
7364static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7365{
7366 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7367 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7368 else
7369 return ICE_RXBUF_3072;
7370}
7371
7372/**
7373 * ice_change_mtu - NDO callback to change the MTU
7374 * @netdev: network interface device structure
7375 * @new_mtu: new value for maximum frame size
7376 *
7377 * Returns 0 on success, negative on failure
7378 */
7379static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7380{
7381 struct ice_netdev_priv *np = netdev_priv(netdev);
7382 struct ice_vsi *vsi = np->vsi;
7383 struct ice_pf *pf = vsi->back;
7384 u8 count = 0;
7385 int err = 0;
7386
7387 if (new_mtu == (int)netdev->mtu) {
7388 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7389 return 0;
7390 }
7391
7392 if (ice_is_xdp_ena_vsi(vsi)) {
7393 int frame_size = ice_max_xdp_frame_size(vsi);
7394
7395 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7396 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7397 frame_size - ICE_ETH_PKT_HDR_PAD);
7398 return -EINVAL;
7399 }
7400 }
7401
7402 /* if a reset is in progress, wait for some time for it to complete */
7403 do {
7404 if (ice_is_reset_in_progress(pf->state)) {
7405 count++;
7406 usleep_range(1000, 2000);
7407 } else {
7408 break;
7409 }
7410
7411 } while (count < 100);
7412
7413 if (count == 100) {
7414 netdev_err(netdev, "can't change MTU. Device is busy\n");
7415 return -EBUSY;
7416 }
7417
7418 netdev->mtu = (unsigned int)new_mtu;
7419
7420 /* if VSI is up, bring it down and then back up */
7421 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7422 err = ice_down(vsi);
7423 if (err) {
7424 netdev_err(netdev, "change MTU if_down err %d\n", err);
7425 return err;
7426 }
7427
7428 err = ice_up(vsi);
7429 if (err) {
7430 netdev_err(netdev, "change MTU if_up err %d\n", err);
7431 return err;
7432 }
7433 }
7434
7435 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7436 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7437
7438 return err;
7439}
7440
7441/**
7442 * ice_eth_ioctl - Access the hwtstamp interface
7443 * @netdev: network interface device structure
7444 * @ifr: interface request data
7445 * @cmd: ioctl command
7446 */
7447static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7448{
7449 struct ice_netdev_priv *np = netdev_priv(netdev);
7450 struct ice_pf *pf = np->vsi->back;
7451
7452 switch (cmd) {
7453 case SIOCGHWTSTAMP:
7454 return ice_ptp_get_ts_config(pf, ifr);
7455 case SIOCSHWTSTAMP:
7456 return ice_ptp_set_ts_config(pf, ifr);
7457 default:
7458 return -EOPNOTSUPP;
7459 }
7460}
7461
7462/**
7463 * ice_aq_str - convert AQ err code to a string
7464 * @aq_err: the AQ error code to convert
7465 */
7466const char *ice_aq_str(enum ice_aq_err aq_err)
7467{
7468 switch (aq_err) {
7469 case ICE_AQ_RC_OK:
7470 return "OK";
7471 case ICE_AQ_RC_EPERM:
7472 return "ICE_AQ_RC_EPERM";
7473 case ICE_AQ_RC_ENOENT:
7474 return "ICE_AQ_RC_ENOENT";
7475 case ICE_AQ_RC_ENOMEM:
7476 return "ICE_AQ_RC_ENOMEM";
7477 case ICE_AQ_RC_EBUSY:
7478 return "ICE_AQ_RC_EBUSY";
7479 case ICE_AQ_RC_EEXIST:
7480 return "ICE_AQ_RC_EEXIST";
7481 case ICE_AQ_RC_EINVAL:
7482 return "ICE_AQ_RC_EINVAL";
7483 case ICE_AQ_RC_ENOSPC:
7484 return "ICE_AQ_RC_ENOSPC";
7485 case ICE_AQ_RC_ENOSYS:
7486 return "ICE_AQ_RC_ENOSYS";
7487 case ICE_AQ_RC_EMODE:
7488 return "ICE_AQ_RC_EMODE";
7489 case ICE_AQ_RC_ENOSEC:
7490 return "ICE_AQ_RC_ENOSEC";
7491 case ICE_AQ_RC_EBADSIG:
7492 return "ICE_AQ_RC_EBADSIG";
7493 case ICE_AQ_RC_ESVN:
7494 return "ICE_AQ_RC_ESVN";
7495 case ICE_AQ_RC_EBADMAN:
7496 return "ICE_AQ_RC_EBADMAN";
7497 case ICE_AQ_RC_EBADBUF:
7498 return "ICE_AQ_RC_EBADBUF";
7499 }
7500
7501 return "ICE_AQ_RC_UNKNOWN";
7502}
7503
7504/**
7505 * ice_set_rss_lut - Set RSS LUT
7506 * @vsi: Pointer to VSI structure
7507 * @lut: Lookup table
7508 * @lut_size: Lookup table size
7509 *
7510 * Returns 0 on success, negative on failure
7511 */
7512int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7513{
7514 struct ice_aq_get_set_rss_lut_params params = {};
7515 struct ice_hw *hw = &vsi->back->hw;
7516 int status;
7517
7518 if (!lut)
7519 return -EINVAL;
7520
7521 params.vsi_handle = vsi->idx;
7522 params.lut_size = lut_size;
7523 params.lut_type = vsi->rss_lut_type;
7524 params.lut = lut;
7525
7526 status = ice_aq_set_rss_lut(hw, ¶ms);
7527 if (status)
7528 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7529 status, ice_aq_str(hw->adminq.sq_last_status));
7530
7531 return status;
7532}
7533
7534/**
7535 * ice_set_rss_key - Set RSS key
7536 * @vsi: Pointer to the VSI structure
7537 * @seed: RSS hash seed
7538 *
7539 * Returns 0 on success, negative on failure
7540 */
7541int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7542{
7543 struct ice_hw *hw = &vsi->back->hw;
7544 int status;
7545
7546 if (!seed)
7547 return -EINVAL;
7548
7549 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7550 if (status)
7551 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7552 status, ice_aq_str(hw->adminq.sq_last_status));
7553
7554 return status;
7555}
7556
7557/**
7558 * ice_get_rss_lut - Get RSS LUT
7559 * @vsi: Pointer to VSI structure
7560 * @lut: Buffer to store the lookup table entries
7561 * @lut_size: Size of buffer to store the lookup table entries
7562 *
7563 * Returns 0 on success, negative on failure
7564 */
7565int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7566{
7567 struct ice_aq_get_set_rss_lut_params params = {};
7568 struct ice_hw *hw = &vsi->back->hw;
7569 int status;
7570
7571 if (!lut)
7572 return -EINVAL;
7573
7574 params.vsi_handle = vsi->idx;
7575 params.lut_size = lut_size;
7576 params.lut_type = vsi->rss_lut_type;
7577 params.lut = lut;
7578
7579 status = ice_aq_get_rss_lut(hw, ¶ms);
7580 if (status)
7581 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7582 status, ice_aq_str(hw->adminq.sq_last_status));
7583
7584 return status;
7585}
7586
7587/**
7588 * ice_get_rss_key - Get RSS key
7589 * @vsi: Pointer to VSI structure
7590 * @seed: Buffer to store the key in
7591 *
7592 * Returns 0 on success, negative on failure
7593 */
7594int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7595{
7596 struct ice_hw *hw = &vsi->back->hw;
7597 int status;
7598
7599 if (!seed)
7600 return -EINVAL;
7601
7602 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7603 if (status)
7604 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7605 status, ice_aq_str(hw->adminq.sq_last_status));
7606
7607 return status;
7608}
7609
7610/**
7611 * ice_bridge_getlink - Get the hardware bridge mode
7612 * @skb: skb buff
7613 * @pid: process ID
7614 * @seq: RTNL message seq
7615 * @dev: the netdev being configured
7616 * @filter_mask: filter mask passed in
7617 * @nlflags: netlink flags passed in
7618 *
7619 * Return the bridge mode (VEB/VEPA)
7620 */
7621static int
7622ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7623 struct net_device *dev, u32 filter_mask, int nlflags)
7624{
7625 struct ice_netdev_priv *np = netdev_priv(dev);
7626 struct ice_vsi *vsi = np->vsi;
7627 struct ice_pf *pf = vsi->back;
7628 u16 bmode;
7629
7630 bmode = pf->first_sw->bridge_mode;
7631
7632 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7633 filter_mask, NULL);
7634}
7635
7636/**
7637 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7638 * @vsi: Pointer to VSI structure
7639 * @bmode: Hardware bridge mode (VEB/VEPA)
7640 *
7641 * Returns 0 on success, negative on failure
7642 */
7643static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7644{
7645 struct ice_aqc_vsi_props *vsi_props;
7646 struct ice_hw *hw = &vsi->back->hw;
7647 struct ice_vsi_ctx *ctxt;
7648 int ret;
7649
7650 vsi_props = &vsi->info;
7651
7652 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7653 if (!ctxt)
7654 return -ENOMEM;
7655
7656 ctxt->info = vsi->info;
7657
7658 if (bmode == BRIDGE_MODE_VEB)
7659 /* change from VEPA to VEB mode */
7660 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7661 else
7662 /* change from VEB to VEPA mode */
7663 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7664 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7665
7666 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7667 if (ret) {
7668 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7669 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7670 goto out;
7671 }
7672 /* Update sw flags for book keeping */
7673 vsi_props->sw_flags = ctxt->info.sw_flags;
7674
7675out:
7676 kfree(ctxt);
7677 return ret;
7678}
7679
7680/**
7681 * ice_bridge_setlink - Set the hardware bridge mode
7682 * @dev: the netdev being configured
7683 * @nlh: RTNL message
7684 * @flags: bridge setlink flags
7685 * @extack: netlink extended ack
7686 *
7687 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7688 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7689 * not already set for all VSIs connected to this switch. And also update the
7690 * unicast switch filter rules for the corresponding switch of the netdev.
7691 */
7692static int
7693ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7694 u16 __always_unused flags,
7695 struct netlink_ext_ack __always_unused *extack)
7696{
7697 struct ice_netdev_priv *np = netdev_priv(dev);
7698 struct ice_pf *pf = np->vsi->back;
7699 struct nlattr *attr, *br_spec;
7700 struct ice_hw *hw = &pf->hw;
7701 struct ice_sw *pf_sw;
7702 int rem, v, err = 0;
7703
7704 pf_sw = pf->first_sw;
7705 /* find the attribute in the netlink message */
7706 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7707
7708 nla_for_each_nested(attr, br_spec, rem) {
7709 __u16 mode;
7710
7711 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7712 continue;
7713 mode = nla_get_u16(attr);
7714 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7715 return -EINVAL;
7716 /* Continue if bridge mode is not being flipped */
7717 if (mode == pf_sw->bridge_mode)
7718 continue;
7719 /* Iterates through the PF VSI list and update the loopback
7720 * mode of the VSI
7721 */
7722 ice_for_each_vsi(pf, v) {
7723 if (!pf->vsi[v])
7724 continue;
7725 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7726 if (err)
7727 return err;
7728 }
7729
7730 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7731 /* Update the unicast switch filter rules for the corresponding
7732 * switch of the netdev
7733 */
7734 err = ice_update_sw_rule_bridge_mode(hw);
7735 if (err) {
7736 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7737 mode, err,
7738 ice_aq_str(hw->adminq.sq_last_status));
7739 /* revert hw->evb_veb */
7740 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7741 return err;
7742 }
7743
7744 pf_sw->bridge_mode = mode;
7745 }
7746
7747 return 0;
7748}
7749
7750/**
7751 * ice_tx_timeout - Respond to a Tx Hang
7752 * @netdev: network interface device structure
7753 * @txqueue: Tx queue
7754 */
7755static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7756{
7757 struct ice_netdev_priv *np = netdev_priv(netdev);
7758 struct ice_tx_ring *tx_ring = NULL;
7759 struct ice_vsi *vsi = np->vsi;
7760 struct ice_pf *pf = vsi->back;
7761 u32 i;
7762
7763 pf->tx_timeout_count++;
7764
7765 /* Check if PFC is enabled for the TC to which the queue belongs
7766 * to. If yes then Tx timeout is not caused by a hung queue, no
7767 * need to reset and rebuild
7768 */
7769 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7770 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7771 txqueue);
7772 return;
7773 }
7774
7775 /* now that we have an index, find the tx_ring struct */
7776 ice_for_each_txq(vsi, i)
7777 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7778 if (txqueue == vsi->tx_rings[i]->q_index) {
7779 tx_ring = vsi->tx_rings[i];
7780 break;
7781 }
7782
7783 /* Reset recovery level if enough time has elapsed after last timeout.
7784 * Also ensure no new reset action happens before next timeout period.
7785 */
7786 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7787 pf->tx_timeout_recovery_level = 1;
7788 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7789 netdev->watchdog_timeo)))
7790 return;
7791
7792 if (tx_ring) {
7793 struct ice_hw *hw = &pf->hw;
7794 u32 head, val = 0;
7795
7796 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7797 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7798 /* Read interrupt register */
7799 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7800
7801 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7802 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7803 head, tx_ring->next_to_use, val);
7804 }
7805
7806 pf->tx_timeout_last_recovery = jiffies;
7807 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7808 pf->tx_timeout_recovery_level, txqueue);
7809
7810 switch (pf->tx_timeout_recovery_level) {
7811 case 1:
7812 set_bit(ICE_PFR_REQ, pf->state);
7813 break;
7814 case 2:
7815 set_bit(ICE_CORER_REQ, pf->state);
7816 break;
7817 case 3:
7818 set_bit(ICE_GLOBR_REQ, pf->state);
7819 break;
7820 default:
7821 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7822 set_bit(ICE_DOWN, pf->state);
7823 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7824 set_bit(ICE_SERVICE_DIS, pf->state);
7825 break;
7826 }
7827
7828 ice_service_task_schedule(pf);
7829 pf->tx_timeout_recovery_level++;
7830}
7831
7832/**
7833 * ice_setup_tc_cls_flower - flower classifier offloads
7834 * @np: net device to configure
7835 * @filter_dev: device on which filter is added
7836 * @cls_flower: offload data
7837 */
7838static int
7839ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7840 struct net_device *filter_dev,
7841 struct flow_cls_offload *cls_flower)
7842{
7843 struct ice_vsi *vsi = np->vsi;
7844
7845 if (cls_flower->common.chain_index)
7846 return -EOPNOTSUPP;
7847
7848 switch (cls_flower->command) {
7849 case FLOW_CLS_REPLACE:
7850 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7851 case FLOW_CLS_DESTROY:
7852 return ice_del_cls_flower(vsi, cls_flower);
7853 default:
7854 return -EINVAL;
7855 }
7856}
7857
7858/**
7859 * ice_setup_tc_block_cb - callback handler registered for TC block
7860 * @type: TC SETUP type
7861 * @type_data: TC flower offload data that contains user input
7862 * @cb_priv: netdev private data
7863 */
7864static int
7865ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7866{
7867 struct ice_netdev_priv *np = cb_priv;
7868
7869 switch (type) {
7870 case TC_SETUP_CLSFLOWER:
7871 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7872 type_data);
7873 default:
7874 return -EOPNOTSUPP;
7875 }
7876}
7877
7878/**
7879 * ice_validate_mqprio_qopt - Validate TCF input parameters
7880 * @vsi: Pointer to VSI
7881 * @mqprio_qopt: input parameters for mqprio queue configuration
7882 *
7883 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7884 * needed), and make sure user doesn't specify qcount and BW rate limit
7885 * for TCs, which are more than "num_tc"
7886 */
7887static int
7888ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7889 struct tc_mqprio_qopt_offload *mqprio_qopt)
7890{
7891 u64 sum_max_rate = 0, sum_min_rate = 0;
7892 int non_power_of_2_qcount = 0;
7893 struct ice_pf *pf = vsi->back;
7894 int max_rss_q_cnt = 0;
7895 struct device *dev;
7896 int i, speed;
7897 u8 num_tc;
7898
7899 if (vsi->type != ICE_VSI_PF)
7900 return -EINVAL;
7901
7902 if (mqprio_qopt->qopt.offset[0] != 0 ||
7903 mqprio_qopt->qopt.num_tc < 1 ||
7904 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7905 return -EINVAL;
7906
7907 dev = ice_pf_to_dev(pf);
7908 vsi->ch_rss_size = 0;
7909 num_tc = mqprio_qopt->qopt.num_tc;
7910
7911 for (i = 0; num_tc; i++) {
7912 int qcount = mqprio_qopt->qopt.count[i];
7913 u64 max_rate, min_rate, rem;
7914
7915 if (!qcount)
7916 return -EINVAL;
7917
7918 if (is_power_of_2(qcount)) {
7919 if (non_power_of_2_qcount &&
7920 qcount > non_power_of_2_qcount) {
7921 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7922 qcount, non_power_of_2_qcount);
7923 return -EINVAL;
7924 }
7925 if (qcount > max_rss_q_cnt)
7926 max_rss_q_cnt = qcount;
7927 } else {
7928 if (non_power_of_2_qcount &&
7929 qcount != non_power_of_2_qcount) {
7930 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7931 qcount, non_power_of_2_qcount);
7932 return -EINVAL;
7933 }
7934 if (qcount < max_rss_q_cnt) {
7935 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7936 qcount, max_rss_q_cnt);
7937 return -EINVAL;
7938 }
7939 max_rss_q_cnt = qcount;
7940 non_power_of_2_qcount = qcount;
7941 }
7942
7943 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7944 * converts the bandwidth rate limit into Bytes/s when
7945 * passing it down to the driver. So convert input bandwidth
7946 * from Bytes/s to Kbps
7947 */
7948 max_rate = mqprio_qopt->max_rate[i];
7949 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7950 sum_max_rate += max_rate;
7951
7952 /* min_rate is minimum guaranteed rate and it can't be zero */
7953 min_rate = mqprio_qopt->min_rate[i];
7954 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7955 sum_min_rate += min_rate;
7956
7957 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7958 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7959 min_rate, ICE_MIN_BW_LIMIT);
7960 return -EINVAL;
7961 }
7962
7963 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7964 if (rem) {
7965 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7966 i, ICE_MIN_BW_LIMIT);
7967 return -EINVAL;
7968 }
7969
7970 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7971 if (rem) {
7972 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7973 i, ICE_MIN_BW_LIMIT);
7974 return -EINVAL;
7975 }
7976
7977 /* min_rate can't be more than max_rate, except when max_rate
7978 * is zero (implies max_rate sought is max line rate). In such
7979 * a case min_rate can be more than max.
7980 */
7981 if (max_rate && min_rate > max_rate) {
7982 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7983 min_rate, max_rate);
7984 return -EINVAL;
7985 }
7986
7987 if (i >= mqprio_qopt->qopt.num_tc - 1)
7988 break;
7989 if (mqprio_qopt->qopt.offset[i + 1] !=
7990 (mqprio_qopt->qopt.offset[i] + qcount))
7991 return -EINVAL;
7992 }
7993 if (vsi->num_rxq <
7994 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7995 return -EINVAL;
7996 if (vsi->num_txq <
7997 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7998 return -EINVAL;
7999
8000 speed = ice_get_link_speed_kbps(vsi);
8001 if (sum_max_rate && sum_max_rate > (u64)speed) {
8002 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
8003 sum_max_rate, speed);
8004 return -EINVAL;
8005 }
8006 if (sum_min_rate && sum_min_rate > (u64)speed) {
8007 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
8008 sum_min_rate, speed);
8009 return -EINVAL;
8010 }
8011
8012 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
8013 vsi->ch_rss_size = max_rss_q_cnt;
8014
8015 return 0;
8016}
8017
8018/**
8019 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
8020 * @pf: ptr to PF device
8021 * @vsi: ptr to VSI
8022 */
8023static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
8024{
8025 struct device *dev = ice_pf_to_dev(pf);
8026 bool added = false;
8027 struct ice_hw *hw;
8028 int flow;
8029
8030 if (!(vsi->num_gfltr || vsi->num_bfltr))
8031 return -EINVAL;
8032
8033 hw = &pf->hw;
8034 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
8035 struct ice_fd_hw_prof *prof;
8036 int tun, status;
8037 u64 entry_h;
8038
8039 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
8040 hw->fdir_prof[flow]->cnt))
8041 continue;
8042
8043 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
8044 enum ice_flow_priority prio;
8045 u64 prof_id;
8046
8047 /* add this VSI to FDir profile for this flow */
8048 prio = ICE_FLOW_PRIO_NORMAL;
8049 prof = hw->fdir_prof[flow];
8050 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
8051 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
8052 prof->vsi_h[0], vsi->idx,
8053 prio, prof->fdir_seg[tun],
8054 &entry_h);
8055 if (status) {
8056 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
8057 vsi->idx, flow);
8058 continue;
8059 }
8060
8061 prof->entry_h[prof->cnt][tun] = entry_h;
8062 }
8063
8064 /* store VSI for filter replay and delete */
8065 prof->vsi_h[prof->cnt] = vsi->idx;
8066 prof->cnt++;
8067
8068 added = true;
8069 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
8070 flow);
8071 }
8072
8073 if (!added)
8074 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
8075
8076 return 0;
8077}
8078
8079/**
8080 * ice_add_channel - add a channel by adding VSI
8081 * @pf: ptr to PF device
8082 * @sw_id: underlying HW switching element ID
8083 * @ch: ptr to channel structure
8084 *
8085 * Add a channel (VSI) using add_vsi and queue_map
8086 */
8087static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
8088{
8089 struct device *dev = ice_pf_to_dev(pf);
8090 struct ice_vsi *vsi;
8091
8092 if (ch->type != ICE_VSI_CHNL) {
8093 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
8094 return -EINVAL;
8095 }
8096
8097 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
8098 if (!vsi || vsi->type != ICE_VSI_CHNL) {
8099 dev_err(dev, "create chnl VSI failure\n");
8100 return -EINVAL;
8101 }
8102
8103 ice_add_vsi_to_fdir(pf, vsi);
8104
8105 ch->sw_id = sw_id;
8106 ch->vsi_num = vsi->vsi_num;
8107 ch->info.mapping_flags = vsi->info.mapping_flags;
8108 ch->ch_vsi = vsi;
8109 /* set the back pointer of channel for newly created VSI */
8110 vsi->ch = ch;
8111
8112 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
8113 sizeof(vsi->info.q_mapping));
8114 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
8115 sizeof(vsi->info.tc_mapping));
8116
8117 return 0;
8118}
8119
8120/**
8121 * ice_chnl_cfg_res
8122 * @vsi: the VSI being setup
8123 * @ch: ptr to channel structure
8124 *
8125 * Configure channel specific resources such as rings, vector.
8126 */
8127static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
8128{
8129 int i;
8130
8131 for (i = 0; i < ch->num_txq; i++) {
8132 struct ice_q_vector *tx_q_vector, *rx_q_vector;
8133 struct ice_ring_container *rc;
8134 struct ice_tx_ring *tx_ring;
8135 struct ice_rx_ring *rx_ring;
8136
8137 tx_ring = vsi->tx_rings[ch->base_q + i];
8138 rx_ring = vsi->rx_rings[ch->base_q + i];
8139 if (!tx_ring || !rx_ring)
8140 continue;
8141
8142 /* setup ring being channel enabled */
8143 tx_ring->ch = ch;
8144 rx_ring->ch = ch;
8145
8146 /* following code block sets up vector specific attributes */
8147 tx_q_vector = tx_ring->q_vector;
8148 rx_q_vector = rx_ring->q_vector;
8149 if (!tx_q_vector && !rx_q_vector)
8150 continue;
8151
8152 if (tx_q_vector) {
8153 tx_q_vector->ch = ch;
8154 /* setup Tx and Rx ITR setting if DIM is off */
8155 rc = &tx_q_vector->tx;
8156 if (!ITR_IS_DYNAMIC(rc))
8157 ice_write_itr(rc, rc->itr_setting);
8158 }
8159 if (rx_q_vector) {
8160 rx_q_vector->ch = ch;
8161 /* setup Tx and Rx ITR setting if DIM is off */
8162 rc = &rx_q_vector->rx;
8163 if (!ITR_IS_DYNAMIC(rc))
8164 ice_write_itr(rc, rc->itr_setting);
8165 }
8166 }
8167
8168 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
8169 * GLINT_ITR register would have written to perform in-context
8170 * update, hence perform flush
8171 */
8172 if (ch->num_txq || ch->num_rxq)
8173 ice_flush(&vsi->back->hw);
8174}
8175
8176/**
8177 * ice_cfg_chnl_all_res - configure channel resources
8178 * @vsi: pte to main_vsi
8179 * @ch: ptr to channel structure
8180 *
8181 * This function configures channel specific resources such as flow-director
8182 * counter index, and other resources such as queues, vectors, ITR settings
8183 */
8184static void
8185ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8186{
8187 /* configure channel (aka ADQ) resources such as queues, vectors,
8188 * ITR settings for channel specific vectors and anything else
8189 */
8190 ice_chnl_cfg_res(vsi, ch);
8191}
8192
8193/**
8194 * ice_setup_hw_channel - setup new channel
8195 * @pf: ptr to PF device
8196 * @vsi: the VSI being setup
8197 * @ch: ptr to channel structure
8198 * @sw_id: underlying HW switching element ID
8199 * @type: type of channel to be created (VMDq2/VF)
8200 *
8201 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8202 * and configures Tx rings accordingly
8203 */
8204static int
8205ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8206 struct ice_channel *ch, u16 sw_id, u8 type)
8207{
8208 struct device *dev = ice_pf_to_dev(pf);
8209 int ret;
8210
8211 ch->base_q = vsi->next_base_q;
8212 ch->type = type;
8213
8214 ret = ice_add_channel(pf, sw_id, ch);
8215 if (ret) {
8216 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8217 return ret;
8218 }
8219
8220 /* configure/setup ADQ specific resources */
8221 ice_cfg_chnl_all_res(vsi, ch);
8222
8223 /* make sure to update the next_base_q so that subsequent channel's
8224 * (aka ADQ) VSI queue map is correct
8225 */
8226 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8227 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8228 ch->num_rxq);
8229
8230 return 0;
8231}
8232
8233/**
8234 * ice_setup_channel - setup new channel using uplink element
8235 * @pf: ptr to PF device
8236 * @vsi: the VSI being setup
8237 * @ch: ptr to channel structure
8238 *
8239 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8240 * and uplink switching element
8241 */
8242static bool
8243ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8244 struct ice_channel *ch)
8245{
8246 struct device *dev = ice_pf_to_dev(pf);
8247 u16 sw_id;
8248 int ret;
8249
8250 if (vsi->type != ICE_VSI_PF) {
8251 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8252 return false;
8253 }
8254
8255 sw_id = pf->first_sw->sw_id;
8256
8257 /* create channel (VSI) */
8258 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8259 if (ret) {
8260 dev_err(dev, "failed to setup hw_channel\n");
8261 return false;
8262 }
8263 dev_dbg(dev, "successfully created channel()\n");
8264
8265 return ch->ch_vsi ? true : false;
8266}
8267
8268/**
8269 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8270 * @vsi: VSI to be configured
8271 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8272 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8273 */
8274static int
8275ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8276{
8277 int err;
8278
8279 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8280 if (err)
8281 return err;
8282
8283 return ice_set_max_bw_limit(vsi, max_tx_rate);
8284}
8285
8286/**
8287 * ice_create_q_channel - function to create channel
8288 * @vsi: VSI to be configured
8289 * @ch: ptr to channel (it contains channel specific params)
8290 *
8291 * This function creates channel (VSI) using num_queues specified by user,
8292 * reconfigs RSS if needed.
8293 */
8294static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8295{
8296 struct ice_pf *pf = vsi->back;
8297 struct device *dev;
8298
8299 if (!ch)
8300 return -EINVAL;
8301
8302 dev = ice_pf_to_dev(pf);
8303 if (!ch->num_txq || !ch->num_rxq) {
8304 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8305 return -EINVAL;
8306 }
8307
8308 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8309 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8310 vsi->cnt_q_avail, ch->num_txq);
8311 return -EINVAL;
8312 }
8313
8314 if (!ice_setup_channel(pf, vsi, ch)) {
8315 dev_info(dev, "Failed to setup channel\n");
8316 return -EINVAL;
8317 }
8318 /* configure BW rate limit */
8319 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8320 int ret;
8321
8322 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8323 ch->min_tx_rate);
8324 if (ret)
8325 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8326 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8327 else
8328 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8329 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8330 }
8331
8332 vsi->cnt_q_avail -= ch->num_txq;
8333
8334 return 0;
8335}
8336
8337/**
8338 * ice_rem_all_chnl_fltrs - removes all channel filters
8339 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8340 *
8341 * Remove all advanced switch filters only if they are channel specific
8342 * tc-flower based filter
8343 */
8344static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8345{
8346 struct ice_tc_flower_fltr *fltr;
8347 struct hlist_node *node;
8348
8349 /* to remove all channel filters, iterate an ordered list of filters */
8350 hlist_for_each_entry_safe(fltr, node,
8351 &pf->tc_flower_fltr_list,
8352 tc_flower_node) {
8353 struct ice_rule_query_data rule;
8354 int status;
8355
8356 /* for now process only channel specific filters */
8357 if (!ice_is_chnl_fltr(fltr))
8358 continue;
8359
8360 rule.rid = fltr->rid;
8361 rule.rule_id = fltr->rule_id;
8362 rule.vsi_handle = fltr->dest_vsi_handle;
8363 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8364 if (status) {
8365 if (status == -ENOENT)
8366 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8367 rule.rule_id);
8368 else
8369 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8370 status);
8371 } else if (fltr->dest_vsi) {
8372 /* update advanced switch filter count */
8373 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8374 u32 flags = fltr->flags;
8375
8376 fltr->dest_vsi->num_chnl_fltr--;
8377 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8378 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8379 pf->num_dmac_chnl_fltrs--;
8380 }
8381 }
8382
8383 hlist_del(&fltr->tc_flower_node);
8384 kfree(fltr);
8385 }
8386}
8387
8388/**
8389 * ice_remove_q_channels - Remove queue channels for the TCs
8390 * @vsi: VSI to be configured
8391 * @rem_fltr: delete advanced switch filter or not
8392 *
8393 * Remove queue channels for the TCs
8394 */
8395static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8396{
8397 struct ice_channel *ch, *ch_tmp;
8398 struct ice_pf *pf = vsi->back;
8399 int i;
8400
8401 /* remove all tc-flower based filter if they are channel filters only */
8402 if (rem_fltr)
8403 ice_rem_all_chnl_fltrs(pf);
8404
8405 /* remove ntuple filters since queue configuration is being changed */
8406 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8407 struct ice_hw *hw = &pf->hw;
8408
8409 mutex_lock(&hw->fdir_fltr_lock);
8410 ice_fdir_del_all_fltrs(vsi);
8411 mutex_unlock(&hw->fdir_fltr_lock);
8412 }
8413
8414 /* perform cleanup for channels if they exist */
8415 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8416 struct ice_vsi *ch_vsi;
8417
8418 list_del(&ch->list);
8419 ch_vsi = ch->ch_vsi;
8420 if (!ch_vsi) {
8421 kfree(ch);
8422 continue;
8423 }
8424
8425 /* Reset queue contexts */
8426 for (i = 0; i < ch->num_rxq; i++) {
8427 struct ice_tx_ring *tx_ring;
8428 struct ice_rx_ring *rx_ring;
8429
8430 tx_ring = vsi->tx_rings[ch->base_q + i];
8431 rx_ring = vsi->rx_rings[ch->base_q + i];
8432 if (tx_ring) {
8433 tx_ring->ch = NULL;
8434 if (tx_ring->q_vector)
8435 tx_ring->q_vector->ch = NULL;
8436 }
8437 if (rx_ring) {
8438 rx_ring->ch = NULL;
8439 if (rx_ring->q_vector)
8440 rx_ring->q_vector->ch = NULL;
8441 }
8442 }
8443
8444 /* Release FD resources for the channel VSI */
8445 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8446
8447 /* clear the VSI from scheduler tree */
8448 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8449
8450 /* Delete VSI from FW */
8451 ice_vsi_delete(ch->ch_vsi);
8452
8453 /* Delete VSI from PF and HW VSI arrays */
8454 ice_vsi_clear(ch->ch_vsi);
8455
8456 /* free the channel */
8457 kfree(ch);
8458 }
8459
8460 /* clear the channel VSI map which is stored in main VSI */
8461 ice_for_each_chnl_tc(i)
8462 vsi->tc_map_vsi[i] = NULL;
8463
8464 /* reset main VSI's all TC information */
8465 vsi->all_enatc = 0;
8466 vsi->all_numtc = 0;
8467}
8468
8469/**
8470 * ice_rebuild_channels - rebuild channel
8471 * @pf: ptr to PF
8472 *
8473 * Recreate channel VSIs and replay filters
8474 */
8475static int ice_rebuild_channels(struct ice_pf *pf)
8476{
8477 struct device *dev = ice_pf_to_dev(pf);
8478 struct ice_vsi *main_vsi;
8479 bool rem_adv_fltr = true;
8480 struct ice_channel *ch;
8481 struct ice_vsi *vsi;
8482 int tc_idx = 1;
8483 int i, err;
8484
8485 main_vsi = ice_get_main_vsi(pf);
8486 if (!main_vsi)
8487 return 0;
8488
8489 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8490 main_vsi->old_numtc == 1)
8491 return 0; /* nothing to be done */
8492
8493 /* reconfigure main VSI based on old value of TC and cached values
8494 * for MQPRIO opts
8495 */
8496 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8497 if (err) {
8498 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8499 main_vsi->old_ena_tc, main_vsi->vsi_num);
8500 return err;
8501 }
8502
8503 /* rebuild ADQ VSIs */
8504 ice_for_each_vsi(pf, i) {
8505 enum ice_vsi_type type;
8506
8507 vsi = pf->vsi[i];
8508 if (!vsi || vsi->type != ICE_VSI_CHNL)
8509 continue;
8510
8511 type = vsi->type;
8512
8513 /* rebuild ADQ VSI */
8514 err = ice_vsi_rebuild(vsi, true);
8515 if (err) {
8516 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8517 ice_vsi_type_str(type), vsi->idx, err);
8518 goto cleanup;
8519 }
8520
8521 /* Re-map HW VSI number, using VSI handle that has been
8522 * previously validated in ice_replay_vsi() call above
8523 */
8524 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8525
8526 /* replay filters for the VSI */
8527 err = ice_replay_vsi(&pf->hw, vsi->idx);
8528 if (err) {
8529 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8530 ice_vsi_type_str(type), err, vsi->idx);
8531 rem_adv_fltr = false;
8532 goto cleanup;
8533 }
8534 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8535 ice_vsi_type_str(type), vsi->idx);
8536
8537 /* store ADQ VSI at correct TC index in main VSI's
8538 * map of TC to VSI
8539 */
8540 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8541 }
8542
8543 /* ADQ VSI(s) has been rebuilt successfully, so setup
8544 * channel for main VSI's Tx and Rx rings
8545 */
8546 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8547 struct ice_vsi *ch_vsi;
8548
8549 ch_vsi = ch->ch_vsi;
8550 if (!ch_vsi)
8551 continue;
8552
8553 /* reconfig channel resources */
8554 ice_cfg_chnl_all_res(main_vsi, ch);
8555
8556 /* replay BW rate limit if it is non-zero */
8557 if (!ch->max_tx_rate && !ch->min_tx_rate)
8558 continue;
8559
8560 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8561 ch->min_tx_rate);
8562 if (err)
8563 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8564 err, ch->max_tx_rate, ch->min_tx_rate,
8565 ch_vsi->vsi_num);
8566 else
8567 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8568 ch->max_tx_rate, ch->min_tx_rate,
8569 ch_vsi->vsi_num);
8570 }
8571
8572 /* reconfig RSS for main VSI */
8573 if (main_vsi->ch_rss_size)
8574 ice_vsi_cfg_rss_lut_key(main_vsi);
8575
8576 return 0;
8577
8578cleanup:
8579 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8580 return err;
8581}
8582
8583/**
8584 * ice_create_q_channels - Add queue channel for the given TCs
8585 * @vsi: VSI to be configured
8586 *
8587 * Configures queue channel mapping to the given TCs
8588 */
8589static int ice_create_q_channels(struct ice_vsi *vsi)
8590{
8591 struct ice_pf *pf = vsi->back;
8592 struct ice_channel *ch;
8593 int ret = 0, i;
8594
8595 ice_for_each_chnl_tc(i) {
8596 if (!(vsi->all_enatc & BIT(i)))
8597 continue;
8598
8599 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8600 if (!ch) {
8601 ret = -ENOMEM;
8602 goto err_free;
8603 }
8604 INIT_LIST_HEAD(&ch->list);
8605 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8606 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8607 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8608 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8609 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8610
8611 /* convert to Kbits/s */
8612 if (ch->max_tx_rate)
8613 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8614 ICE_BW_KBPS_DIVISOR);
8615 if (ch->min_tx_rate)
8616 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8617 ICE_BW_KBPS_DIVISOR);
8618
8619 ret = ice_create_q_channel(vsi, ch);
8620 if (ret) {
8621 dev_err(ice_pf_to_dev(pf),
8622 "failed creating channel TC:%d\n", i);
8623 kfree(ch);
8624 goto err_free;
8625 }
8626 list_add_tail(&ch->list, &vsi->ch_list);
8627 vsi->tc_map_vsi[i] = ch->ch_vsi;
8628 dev_dbg(ice_pf_to_dev(pf),
8629 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8630 }
8631 return 0;
8632
8633err_free:
8634 ice_remove_q_channels(vsi, false);
8635
8636 return ret;
8637}
8638
8639/**
8640 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8641 * @netdev: net device to configure
8642 * @type_data: TC offload data
8643 */
8644static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8645{
8646 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8647 struct ice_netdev_priv *np = netdev_priv(netdev);
8648 struct ice_vsi *vsi = np->vsi;
8649 struct ice_pf *pf = vsi->back;
8650 u16 mode, ena_tc_qdisc = 0;
8651 int cur_txq, cur_rxq;
8652 u8 hw = 0, num_tcf;
8653 struct device *dev;
8654 int ret, i;
8655
8656 dev = ice_pf_to_dev(pf);
8657 num_tcf = mqprio_qopt->qopt.num_tc;
8658 hw = mqprio_qopt->qopt.hw;
8659 mode = mqprio_qopt->mode;
8660 if (!hw) {
8661 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8662 vsi->ch_rss_size = 0;
8663 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8664 goto config_tcf;
8665 }
8666
8667 /* Generate queue region map for number of TCF requested */
8668 for (i = 0; i < num_tcf; i++)
8669 ena_tc_qdisc |= BIT(i);
8670
8671 switch (mode) {
8672 case TC_MQPRIO_MODE_CHANNEL:
8673
8674 if (pf->hw.port_info->is_custom_tx_enabled) {
8675 dev_err(dev, "Custom Tx scheduler feature enabled, can't configure ADQ\n");
8676 return -EBUSY;
8677 }
8678 ice_tear_down_devlink_rate_tree(pf);
8679
8680 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8681 if (ret) {
8682 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8683 ret);
8684 return ret;
8685 }
8686 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8687 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8688 /* don't assume state of hw_tc_offload during driver load
8689 * and set the flag for TC flower filter if hw_tc_offload
8690 * already ON
8691 */
8692 if (vsi->netdev->features & NETIF_F_HW_TC)
8693 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8694 break;
8695 default:
8696 return -EINVAL;
8697 }
8698
8699config_tcf:
8700
8701 /* Requesting same TCF configuration as already enabled */
8702 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8703 mode != TC_MQPRIO_MODE_CHANNEL)
8704 return 0;
8705
8706 /* Pause VSI queues */
8707 ice_dis_vsi(vsi, true);
8708
8709 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8710 ice_remove_q_channels(vsi, true);
8711
8712 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8713 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8714 num_online_cpus());
8715 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8716 num_online_cpus());
8717 } else {
8718 /* logic to rebuild VSI, same like ethtool -L */
8719 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8720
8721 for (i = 0; i < num_tcf; i++) {
8722 if (!(ena_tc_qdisc & BIT(i)))
8723 continue;
8724
8725 offset = vsi->mqprio_qopt.qopt.offset[i];
8726 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8727 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8728 }
8729 vsi->req_txq = offset + qcount_tx;
8730 vsi->req_rxq = offset + qcount_rx;
8731
8732 /* store away original rss_size info, so that it gets reused
8733 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8734 * determine, what should be the rss_sizefor main VSI
8735 */
8736 vsi->orig_rss_size = vsi->rss_size;
8737 }
8738
8739 /* save current values of Tx and Rx queues before calling VSI rebuild
8740 * for fallback option
8741 */
8742 cur_txq = vsi->num_txq;
8743 cur_rxq = vsi->num_rxq;
8744
8745 /* proceed with rebuild main VSI using correct number of queues */
8746 ret = ice_vsi_rebuild(vsi, false);
8747 if (ret) {
8748 /* fallback to current number of queues */
8749 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8750 vsi->req_txq = cur_txq;
8751 vsi->req_rxq = cur_rxq;
8752 clear_bit(ICE_RESET_FAILED, pf->state);
8753 if (ice_vsi_rebuild(vsi, false)) {
8754 dev_err(dev, "Rebuild of main VSI failed again\n");
8755 return ret;
8756 }
8757 }
8758
8759 vsi->all_numtc = num_tcf;
8760 vsi->all_enatc = ena_tc_qdisc;
8761 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8762 if (ret) {
8763 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8764 vsi->vsi_num);
8765 goto exit;
8766 }
8767
8768 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8769 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8770 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8771
8772 /* set TC0 rate limit if specified */
8773 if (max_tx_rate || min_tx_rate) {
8774 /* convert to Kbits/s */
8775 if (max_tx_rate)
8776 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8777 if (min_tx_rate)
8778 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8779
8780 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8781 if (!ret) {
8782 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8783 max_tx_rate, min_tx_rate, vsi->vsi_num);
8784 } else {
8785 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8786 max_tx_rate, min_tx_rate, vsi->vsi_num);
8787 goto exit;
8788 }
8789 }
8790 ret = ice_create_q_channels(vsi);
8791 if (ret) {
8792 netdev_err(netdev, "failed configuring queue channels\n");
8793 goto exit;
8794 } else {
8795 netdev_dbg(netdev, "successfully configured channels\n");
8796 }
8797 }
8798
8799 if (vsi->ch_rss_size)
8800 ice_vsi_cfg_rss_lut_key(vsi);
8801
8802exit:
8803 /* if error, reset the all_numtc and all_enatc */
8804 if (ret) {
8805 vsi->all_numtc = 0;
8806 vsi->all_enatc = 0;
8807 }
8808 /* resume VSI */
8809 ice_ena_vsi(vsi, true);
8810
8811 return ret;
8812}
8813
8814static LIST_HEAD(ice_block_cb_list);
8815
8816static int
8817ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8818 void *type_data)
8819{
8820 struct ice_netdev_priv *np = netdev_priv(netdev);
8821 struct ice_pf *pf = np->vsi->back;
8822 int err;
8823
8824 switch (type) {
8825 case TC_SETUP_BLOCK:
8826 return flow_block_cb_setup_simple(type_data,
8827 &ice_block_cb_list,
8828 ice_setup_tc_block_cb,
8829 np, np, true);
8830 case TC_SETUP_QDISC_MQPRIO:
8831 /* setup traffic classifier for receive side */
8832 mutex_lock(&pf->tc_mutex);
8833 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8834 mutex_unlock(&pf->tc_mutex);
8835 return err;
8836 default:
8837 return -EOPNOTSUPP;
8838 }
8839 return -EOPNOTSUPP;
8840}
8841
8842static struct ice_indr_block_priv *
8843ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8844 struct net_device *netdev)
8845{
8846 struct ice_indr_block_priv *cb_priv;
8847
8848 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8849 if (!cb_priv->netdev)
8850 return NULL;
8851 if (cb_priv->netdev == netdev)
8852 return cb_priv;
8853 }
8854 return NULL;
8855}
8856
8857static int
8858ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8859 void *indr_priv)
8860{
8861 struct ice_indr_block_priv *priv = indr_priv;
8862 struct ice_netdev_priv *np = priv->np;
8863
8864 switch (type) {
8865 case TC_SETUP_CLSFLOWER:
8866 return ice_setup_tc_cls_flower(np, priv->netdev,
8867 (struct flow_cls_offload *)
8868 type_data);
8869 default:
8870 return -EOPNOTSUPP;
8871 }
8872}
8873
8874static int
8875ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8876 struct ice_netdev_priv *np,
8877 struct flow_block_offload *f, void *data,
8878 void (*cleanup)(struct flow_block_cb *block_cb))
8879{
8880 struct ice_indr_block_priv *indr_priv;
8881 struct flow_block_cb *block_cb;
8882
8883 if (!ice_is_tunnel_supported(netdev) &&
8884 !(is_vlan_dev(netdev) &&
8885 vlan_dev_real_dev(netdev) == np->vsi->netdev))
8886 return -EOPNOTSUPP;
8887
8888 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8889 return -EOPNOTSUPP;
8890
8891 switch (f->command) {
8892 case FLOW_BLOCK_BIND:
8893 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8894 if (indr_priv)
8895 return -EEXIST;
8896
8897 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8898 if (!indr_priv)
8899 return -ENOMEM;
8900
8901 indr_priv->netdev = netdev;
8902 indr_priv->np = np;
8903 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8904
8905 block_cb =
8906 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8907 indr_priv, indr_priv,
8908 ice_rep_indr_tc_block_unbind,
8909 f, netdev, sch, data, np,
8910 cleanup);
8911
8912 if (IS_ERR(block_cb)) {
8913 list_del(&indr_priv->list);
8914 kfree(indr_priv);
8915 return PTR_ERR(block_cb);
8916 }
8917 flow_block_cb_add(block_cb, f);
8918 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8919 break;
8920 case FLOW_BLOCK_UNBIND:
8921 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8922 if (!indr_priv)
8923 return -ENOENT;
8924
8925 block_cb = flow_block_cb_lookup(f->block,
8926 ice_indr_setup_block_cb,
8927 indr_priv);
8928 if (!block_cb)
8929 return -ENOENT;
8930
8931 flow_indr_block_cb_remove(block_cb, f);
8932
8933 list_del(&block_cb->driver_list);
8934 break;
8935 default:
8936 return -EOPNOTSUPP;
8937 }
8938 return 0;
8939}
8940
8941static int
8942ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8943 void *cb_priv, enum tc_setup_type type, void *type_data,
8944 void *data,
8945 void (*cleanup)(struct flow_block_cb *block_cb))
8946{
8947 switch (type) {
8948 case TC_SETUP_BLOCK:
8949 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8950 data, cleanup);
8951
8952 default:
8953 return -EOPNOTSUPP;
8954 }
8955}
8956
8957/**
8958 * ice_open - Called when a network interface becomes active
8959 * @netdev: network interface device structure
8960 *
8961 * The open entry point is called when a network interface is made
8962 * active by the system (IFF_UP). At this point all resources needed
8963 * for transmit and receive operations are allocated, the interrupt
8964 * handler is registered with the OS, the netdev watchdog is enabled,
8965 * and the stack is notified that the interface is ready.
8966 *
8967 * Returns 0 on success, negative value on failure
8968 */
8969int ice_open(struct net_device *netdev)
8970{
8971 struct ice_netdev_priv *np = netdev_priv(netdev);
8972 struct ice_pf *pf = np->vsi->back;
8973
8974 if (ice_is_reset_in_progress(pf->state)) {
8975 netdev_err(netdev, "can't open net device while reset is in progress");
8976 return -EBUSY;
8977 }
8978
8979 return ice_open_internal(netdev);
8980}
8981
8982/**
8983 * ice_open_internal - Called when a network interface becomes active
8984 * @netdev: network interface device structure
8985 *
8986 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8987 * handling routine
8988 *
8989 * Returns 0 on success, negative value on failure
8990 */
8991int ice_open_internal(struct net_device *netdev)
8992{
8993 struct ice_netdev_priv *np = netdev_priv(netdev);
8994 struct ice_vsi *vsi = np->vsi;
8995 struct ice_pf *pf = vsi->back;
8996 struct ice_port_info *pi;
8997 int err;
8998
8999 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
9000 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
9001 return -EIO;
9002 }
9003
9004 netif_carrier_off(netdev);
9005
9006 pi = vsi->port_info;
9007 err = ice_update_link_info(pi);
9008 if (err) {
9009 netdev_err(netdev, "Failed to get link info, error %d\n", err);
9010 return err;
9011 }
9012
9013 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
9014
9015 /* Set PHY if there is media, otherwise, turn off PHY */
9016 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
9017 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9018 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
9019 err = ice_init_phy_user_cfg(pi);
9020 if (err) {
9021 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
9022 err);
9023 return err;
9024 }
9025 }
9026
9027 err = ice_configure_phy(vsi);
9028 if (err) {
9029 netdev_err(netdev, "Failed to set physical link up, error %d\n",
9030 err);
9031 return err;
9032 }
9033 } else {
9034 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
9035 ice_set_link(vsi, false);
9036 }
9037
9038 err = ice_vsi_open(vsi);
9039 if (err)
9040 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
9041 vsi->vsi_num, vsi->vsw->sw_id);
9042
9043 /* Update existing tunnels information */
9044 udp_tunnel_get_rx_info(netdev);
9045
9046 return err;
9047}
9048
9049/**
9050 * ice_stop - Disables a network interface
9051 * @netdev: network interface device structure
9052 *
9053 * The stop entry point is called when an interface is de-activated by the OS,
9054 * and the netdevice enters the DOWN state. The hardware is still under the
9055 * driver's control, but the netdev interface is disabled.
9056 *
9057 * Returns success only - not allowed to fail
9058 */
9059int ice_stop(struct net_device *netdev)
9060{
9061 struct ice_netdev_priv *np = netdev_priv(netdev);
9062 struct ice_vsi *vsi = np->vsi;
9063 struct ice_pf *pf = vsi->back;
9064
9065 if (ice_is_reset_in_progress(pf->state)) {
9066 netdev_err(netdev, "can't stop net device while reset is in progress");
9067 return -EBUSY;
9068 }
9069
9070 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
9071 int link_err = ice_force_phys_link_state(vsi, false);
9072
9073 if (link_err) {
9074 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
9075 vsi->vsi_num, link_err);
9076 return -EIO;
9077 }
9078 }
9079
9080 ice_vsi_close(vsi);
9081
9082 return 0;
9083}
9084
9085/**
9086 * ice_features_check - Validate encapsulated packet conforms to limits
9087 * @skb: skb buffer
9088 * @netdev: This port's netdev
9089 * @features: Offload features that the stack believes apply
9090 */
9091static netdev_features_t
9092ice_features_check(struct sk_buff *skb,
9093 struct net_device __always_unused *netdev,
9094 netdev_features_t features)
9095{
9096 bool gso = skb_is_gso(skb);
9097 size_t len;
9098
9099 /* No point in doing any of this if neither checksum nor GSO are
9100 * being requested for this frame. We can rule out both by just
9101 * checking for CHECKSUM_PARTIAL
9102 */
9103 if (skb->ip_summed != CHECKSUM_PARTIAL)
9104 return features;
9105
9106 /* We cannot support GSO if the MSS is going to be less than
9107 * 64 bytes. If it is then we need to drop support for GSO.
9108 */
9109 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
9110 features &= ~NETIF_F_GSO_MASK;
9111
9112 len = skb_network_offset(skb);
9113 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
9114 goto out_rm_features;
9115
9116 len = skb_network_header_len(skb);
9117 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9118 goto out_rm_features;
9119
9120 if (skb->encapsulation) {
9121 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
9122 * the case of IPIP frames, the transport header pointer is
9123 * after the inner header! So check to make sure that this
9124 * is a GRE or UDP_TUNNEL frame before doing that math.
9125 */
9126 if (gso && (skb_shinfo(skb)->gso_type &
9127 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
9128 len = skb_inner_network_header(skb) -
9129 skb_transport_header(skb);
9130 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
9131 goto out_rm_features;
9132 }
9133
9134 len = skb_inner_network_header_len(skb);
9135 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
9136 goto out_rm_features;
9137 }
9138
9139 return features;
9140out_rm_features:
9141 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
9142}
9143
9144static const struct net_device_ops ice_netdev_safe_mode_ops = {
9145 .ndo_open = ice_open,
9146 .ndo_stop = ice_stop,
9147 .ndo_start_xmit = ice_start_xmit,
9148 .ndo_set_mac_address = ice_set_mac_address,
9149 .ndo_validate_addr = eth_validate_addr,
9150 .ndo_change_mtu = ice_change_mtu,
9151 .ndo_get_stats64 = ice_get_stats64,
9152 .ndo_tx_timeout = ice_tx_timeout,
9153 .ndo_bpf = ice_xdp_safe_mode,
9154};
9155
9156static const struct net_device_ops ice_netdev_ops = {
9157 .ndo_open = ice_open,
9158 .ndo_stop = ice_stop,
9159 .ndo_start_xmit = ice_start_xmit,
9160 .ndo_select_queue = ice_select_queue,
9161 .ndo_features_check = ice_features_check,
9162 .ndo_fix_features = ice_fix_features,
9163 .ndo_set_rx_mode = ice_set_rx_mode,
9164 .ndo_set_mac_address = ice_set_mac_address,
9165 .ndo_validate_addr = eth_validate_addr,
9166 .ndo_change_mtu = ice_change_mtu,
9167 .ndo_get_stats64 = ice_get_stats64,
9168 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
9169 .ndo_eth_ioctl = ice_eth_ioctl,
9170 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
9171 .ndo_set_vf_mac = ice_set_vf_mac,
9172 .ndo_get_vf_config = ice_get_vf_cfg,
9173 .ndo_set_vf_trust = ice_set_vf_trust,
9174 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
9175 .ndo_set_vf_link_state = ice_set_vf_link_state,
9176 .ndo_get_vf_stats = ice_get_vf_stats,
9177 .ndo_set_vf_rate = ice_set_vf_bw,
9178 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
9179 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
9180 .ndo_setup_tc = ice_setup_tc,
9181 .ndo_set_features = ice_set_features,
9182 .ndo_bridge_getlink = ice_bridge_getlink,
9183 .ndo_bridge_setlink = ice_bridge_setlink,
9184 .ndo_fdb_add = ice_fdb_add,
9185 .ndo_fdb_del = ice_fdb_del,
9186#ifdef CONFIG_RFS_ACCEL
9187 .ndo_rx_flow_steer = ice_rx_flow_steer,
9188#endif
9189 .ndo_tx_timeout = ice_tx_timeout,
9190 .ndo_bpf = ice_xdp,
9191 .ndo_xdp_xmit = ice_xdp_xmit,
9192 .ndo_xsk_wakeup = ice_xsk_wakeup,
9193};