Loading...
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include <generated/utsrelease.h>
9#include "ice.h"
10#include "ice_base.h"
11#include "ice_lib.h"
12#include "ice_fltr.h"
13#include "ice_dcb_lib.h"
14#include "ice_dcb_nl.h"
15#include "ice_devlink.h"
16
17#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
18static const char ice_driver_string[] = DRV_SUMMARY;
19static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
20
21/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
22#define ICE_DDP_PKG_PATH "intel/ice/ddp/"
23#define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
24
25MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
26MODULE_DESCRIPTION(DRV_SUMMARY);
27MODULE_LICENSE("GPL v2");
28MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
29
30static int debug = -1;
31module_param(debug, int, 0644);
32#ifndef CONFIG_DYNAMIC_DEBUG
33MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
34#else
35MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
36#endif /* !CONFIG_DYNAMIC_DEBUG */
37
38static struct workqueue_struct *ice_wq;
39static const struct net_device_ops ice_netdev_safe_mode_ops;
40static const struct net_device_ops ice_netdev_ops;
41static int ice_vsi_open(struct ice_vsi *vsi);
42
43static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
44
45static void ice_vsi_release_all(struct ice_pf *pf);
46
47/**
48 * ice_get_tx_pending - returns number of Tx descriptors not processed
49 * @ring: the ring of descriptors
50 */
51static u16 ice_get_tx_pending(struct ice_ring *ring)
52{
53 u16 head, tail;
54
55 head = ring->next_to_clean;
56 tail = ring->next_to_use;
57
58 if (head != tail)
59 return (head < tail) ?
60 tail - head : (tail + ring->count - head);
61 return 0;
62}
63
64/**
65 * ice_check_for_hang_subtask - check for and recover hung queues
66 * @pf: pointer to PF struct
67 */
68static void ice_check_for_hang_subtask(struct ice_pf *pf)
69{
70 struct ice_vsi *vsi = NULL;
71 struct ice_hw *hw;
72 unsigned int i;
73 int packets;
74 u32 v;
75
76 ice_for_each_vsi(pf, v)
77 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
78 vsi = pf->vsi[v];
79 break;
80 }
81
82 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
83 return;
84
85 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
86 return;
87
88 hw = &vsi->back->hw;
89
90 for (i = 0; i < vsi->num_txq; i++) {
91 struct ice_ring *tx_ring = vsi->tx_rings[i];
92
93 if (tx_ring && tx_ring->desc) {
94 /* If packet counter has not changed the queue is
95 * likely stalled, so force an interrupt for this
96 * queue.
97 *
98 * prev_pkt would be negative if there was no
99 * pending work.
100 */
101 packets = tx_ring->stats.pkts & INT_MAX;
102 if (tx_ring->tx_stats.prev_pkt == packets) {
103 /* Trigger sw interrupt to revive the queue */
104 ice_trigger_sw_intr(hw, tx_ring->q_vector);
105 continue;
106 }
107
108 /* Memory barrier between read of packet count and call
109 * to ice_get_tx_pending()
110 */
111 smp_rmb();
112 tx_ring->tx_stats.prev_pkt =
113 ice_get_tx_pending(tx_ring) ? packets : -1;
114 }
115 }
116}
117
118/**
119 * ice_init_mac_fltr - Set initial MAC filters
120 * @pf: board private structure
121 *
122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
123 * address and broadcast address. If an error is encountered, netdevice will be
124 * unregistered.
125 */
126static int ice_init_mac_fltr(struct ice_pf *pf)
127{
128 enum ice_status status;
129 struct ice_vsi *vsi;
130 u8 *perm_addr;
131
132 vsi = ice_get_main_vsi(pf);
133 if (!vsi)
134 return -EINVAL;
135
136 perm_addr = vsi->port_info->mac.perm_addr;
137 status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
138 if (!status)
139 return 0;
140
141 /* We aren't useful with no MAC filters, so unregister if we
142 * had an error
143 */
144 if (vsi->netdev->reg_state == NETREG_REGISTERED) {
145 dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
146 ice_stat_str(status));
147 unregister_netdev(vsi->netdev);
148 free_netdev(vsi->netdev);
149 vsi->netdev = NULL;
150 }
151
152 return -EIO;
153}
154
155/**
156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
157 * @netdev: the net device on which the sync is happening
158 * @addr: MAC address to sync
159 *
160 * This is a callback function which is called by the in kernel device sync
161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
163 * MAC filters from the hardware.
164 */
165static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
166{
167 struct ice_netdev_priv *np = netdev_priv(netdev);
168 struct ice_vsi *vsi = np->vsi;
169
170 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
171 ICE_FWD_TO_VSI))
172 return -EINVAL;
173
174 return 0;
175}
176
177/**
178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
179 * @netdev: the net device on which the unsync is happening
180 * @addr: MAC address to unsync
181 *
182 * This is a callback function which is called by the in kernel device unsync
183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
185 * delete the MAC filters from the hardware.
186 */
187static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
188{
189 struct ice_netdev_priv *np = netdev_priv(netdev);
190 struct ice_vsi *vsi = np->vsi;
191
192 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
193 ICE_FWD_TO_VSI))
194 return -EINVAL;
195
196 return 0;
197}
198
199/**
200 * ice_vsi_fltr_changed - check if filter state changed
201 * @vsi: VSI to be checked
202 *
203 * returns true if filter state has changed, false otherwise.
204 */
205static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
206{
207 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
208 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
209 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
210}
211
212/**
213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
214 * @vsi: the VSI being configured
215 * @promisc_m: mask of promiscuous config bits
216 * @set_promisc: enable or disable promisc flag request
217 *
218 */
219static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
220{
221 struct ice_hw *hw = &vsi->back->hw;
222 enum ice_status status = 0;
223
224 if (vsi->type != ICE_VSI_PF)
225 return 0;
226
227 if (vsi->vlan_ena) {
228 status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
229 set_promisc);
230 } else {
231 if (set_promisc)
232 status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
233 0);
234 else
235 status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
236 0);
237 }
238
239 if (status)
240 return -EIO;
241
242 return 0;
243}
244
245/**
246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
247 * @vsi: ptr to the VSI
248 *
249 * Push any outstanding VSI filter changes through the AdminQ.
250 */
251static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
252{
253 struct device *dev = ice_pf_to_dev(vsi->back);
254 struct net_device *netdev = vsi->netdev;
255 bool promisc_forced_on = false;
256 struct ice_pf *pf = vsi->back;
257 struct ice_hw *hw = &pf->hw;
258 enum ice_status status = 0;
259 u32 changed_flags = 0;
260 u8 promisc_m;
261 int err = 0;
262
263 if (!vsi->netdev)
264 return -EINVAL;
265
266 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
267 usleep_range(1000, 2000);
268
269 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
270 vsi->current_netdev_flags = vsi->netdev->flags;
271
272 INIT_LIST_HEAD(&vsi->tmp_sync_list);
273 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
274
275 if (ice_vsi_fltr_changed(vsi)) {
276 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
277 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
278 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
279
280 /* grab the netdev's addr_list_lock */
281 netif_addr_lock_bh(netdev);
282 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
283 ice_add_mac_to_unsync_list);
284 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
285 ice_add_mac_to_unsync_list);
286 /* our temp lists are populated. release lock */
287 netif_addr_unlock_bh(netdev);
288 }
289
290 /* Remove MAC addresses in the unsync list */
291 status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
292 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
293 if (status) {
294 netdev_err(netdev, "Failed to delete MAC filters\n");
295 /* if we failed because of alloc failures, just bail */
296 if (status == ICE_ERR_NO_MEMORY) {
297 err = -ENOMEM;
298 goto out;
299 }
300 }
301
302 /* Add MAC addresses in the sync list */
303 status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
304 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
305 /* If filter is added successfully or already exists, do not go into
306 * 'if' condition and report it as error. Instead continue processing
307 * rest of the function.
308 */
309 if (status && status != ICE_ERR_ALREADY_EXISTS) {
310 netdev_err(netdev, "Failed to add MAC filters\n");
311 /* If there is no more space for new umac filters, VSI
312 * should go into promiscuous mode. There should be some
313 * space reserved for promiscuous filters.
314 */
315 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
316 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
317 vsi->state)) {
318 promisc_forced_on = true;
319 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
320 vsi->vsi_num);
321 } else {
322 err = -EIO;
323 goto out;
324 }
325 }
326 /* check for changes in promiscuous modes */
327 if (changed_flags & IFF_ALLMULTI) {
328 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
329 if (vsi->vlan_ena)
330 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
331 else
332 promisc_m = ICE_MCAST_PROMISC_BITS;
333
334 err = ice_cfg_promisc(vsi, promisc_m, true);
335 if (err) {
336 netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
337 vsi->vsi_num);
338 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
339 goto out_promisc;
340 }
341 } else {
342 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
343 if (vsi->vlan_ena)
344 promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
345 else
346 promisc_m = ICE_MCAST_PROMISC_BITS;
347
348 err = ice_cfg_promisc(vsi, promisc_m, false);
349 if (err) {
350 netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
351 vsi->vsi_num);
352 vsi->current_netdev_flags |= IFF_ALLMULTI;
353 goto out_promisc;
354 }
355 }
356 }
357
358 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
359 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
360 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
361 if (vsi->current_netdev_flags & IFF_PROMISC) {
362 /* Apply Rx filter rule to get traffic from wire */
363 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
364 err = ice_set_dflt_vsi(pf->first_sw, vsi);
365 if (err && err != -EEXIST) {
366 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
367 err, vsi->vsi_num);
368 vsi->current_netdev_flags &=
369 ~IFF_PROMISC;
370 goto out_promisc;
371 }
372 ice_cfg_vlan_pruning(vsi, false, false);
373 }
374 } else {
375 /* Clear Rx filter to remove traffic from wire */
376 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
377 err = ice_clear_dflt_vsi(pf->first_sw);
378 if (err) {
379 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
380 err, vsi->vsi_num);
381 vsi->current_netdev_flags |=
382 IFF_PROMISC;
383 goto out_promisc;
384 }
385 if (vsi->num_vlan > 1)
386 ice_cfg_vlan_pruning(vsi, true, false);
387 }
388 }
389 }
390 goto exit;
391
392out_promisc:
393 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
394 goto exit;
395out:
396 /* if something went wrong then set the changed flag so we try again */
397 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
398 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
399exit:
400 clear_bit(__ICE_CFG_BUSY, vsi->state);
401 return err;
402}
403
404/**
405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
406 * @pf: board private structure
407 */
408static void ice_sync_fltr_subtask(struct ice_pf *pf)
409{
410 int v;
411
412 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
413 return;
414
415 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
416
417 ice_for_each_vsi(pf, v)
418 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
419 ice_vsi_sync_fltr(pf->vsi[v])) {
420 /* come back and try again later */
421 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
422 break;
423 }
424}
425
426/**
427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
428 * @pf: the PF
429 * @locked: is the rtnl_lock already held
430 */
431static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
432{
433 int v;
434
435 ice_for_each_vsi(pf, v)
436 if (pf->vsi[v])
437 ice_dis_vsi(pf->vsi[v], locked);
438}
439
440/**
441 * ice_prepare_for_reset - prep for the core to reset
442 * @pf: board private structure
443 *
444 * Inform or close all dependent features in prep for reset.
445 */
446static void
447ice_prepare_for_reset(struct ice_pf *pf)
448{
449 struct ice_hw *hw = &pf->hw;
450 unsigned int i;
451
452 /* already prepared for reset */
453 if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
454 return;
455
456 /* Notify VFs of impending reset */
457 if (ice_check_sq_alive(hw, &hw->mailboxq))
458 ice_vc_notify_reset(pf);
459
460 /* Disable VFs until reset is completed */
461 ice_for_each_vf(pf, i)
462 ice_set_vf_state_qs_dis(&pf->vf[i]);
463
464 /* clear SW filtering DB */
465 ice_clear_hw_tbls(hw);
466 /* disable the VSIs and their queues that are not already DOWN */
467 ice_pf_dis_all_vsi(pf, false);
468
469 if (hw->port_info)
470 ice_sched_clear_port(hw->port_info);
471
472 ice_shutdown_all_ctrlq(hw);
473
474 set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
475}
476
477/**
478 * ice_do_reset - Initiate one of many types of resets
479 * @pf: board private structure
480 * @reset_type: reset type requested
481 * before this function was called.
482 */
483static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
484{
485 struct device *dev = ice_pf_to_dev(pf);
486 struct ice_hw *hw = &pf->hw;
487
488 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
489 WARN_ON(in_interrupt());
490
491 ice_prepare_for_reset(pf);
492
493 /* trigger the reset */
494 if (ice_reset(hw, reset_type)) {
495 dev_err(dev, "reset %d failed\n", reset_type);
496 set_bit(__ICE_RESET_FAILED, pf->state);
497 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
498 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
499 clear_bit(__ICE_PFR_REQ, pf->state);
500 clear_bit(__ICE_CORER_REQ, pf->state);
501 clear_bit(__ICE_GLOBR_REQ, pf->state);
502 return;
503 }
504
505 /* PFR is a bit of a special case because it doesn't result in an OICR
506 * interrupt. So for PFR, rebuild after the reset and clear the reset-
507 * associated state bits.
508 */
509 if (reset_type == ICE_RESET_PFR) {
510 pf->pfr_count++;
511 ice_rebuild(pf, reset_type);
512 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
513 clear_bit(__ICE_PFR_REQ, pf->state);
514 ice_reset_all_vfs(pf, true);
515 }
516}
517
518/**
519 * ice_reset_subtask - Set up for resetting the device and driver
520 * @pf: board private structure
521 */
522static void ice_reset_subtask(struct ice_pf *pf)
523{
524 enum ice_reset_req reset_type = ICE_RESET_INVAL;
525
526 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
527 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
528 * of reset is pending and sets bits in pf->state indicating the reset
529 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
530 * prepare for pending reset if not already (for PF software-initiated
531 * global resets the software should already be prepared for it as
532 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
533 * by firmware or software on other PFs, that bit is not set so prepare
534 * for the reset now), poll for reset done, rebuild and return.
535 */
536 if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
537 /* Perform the largest reset requested */
538 if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
539 reset_type = ICE_RESET_CORER;
540 if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
541 reset_type = ICE_RESET_GLOBR;
542 if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
543 reset_type = ICE_RESET_EMPR;
544 /* return if no valid reset type requested */
545 if (reset_type == ICE_RESET_INVAL)
546 return;
547 ice_prepare_for_reset(pf);
548
549 /* make sure we are ready to rebuild */
550 if (ice_check_reset(&pf->hw)) {
551 set_bit(__ICE_RESET_FAILED, pf->state);
552 } else {
553 /* done with reset. start rebuild */
554 pf->hw.reset_ongoing = false;
555 ice_rebuild(pf, reset_type);
556 /* clear bit to resume normal operations, but
557 * ICE_NEEDS_RESTART bit is set in case rebuild failed
558 */
559 clear_bit(__ICE_RESET_OICR_RECV, pf->state);
560 clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
561 clear_bit(__ICE_PFR_REQ, pf->state);
562 clear_bit(__ICE_CORER_REQ, pf->state);
563 clear_bit(__ICE_GLOBR_REQ, pf->state);
564 ice_reset_all_vfs(pf, true);
565 }
566
567 return;
568 }
569
570 /* No pending resets to finish processing. Check for new resets */
571 if (test_bit(__ICE_PFR_REQ, pf->state))
572 reset_type = ICE_RESET_PFR;
573 if (test_bit(__ICE_CORER_REQ, pf->state))
574 reset_type = ICE_RESET_CORER;
575 if (test_bit(__ICE_GLOBR_REQ, pf->state))
576 reset_type = ICE_RESET_GLOBR;
577 /* If no valid reset type requested just return */
578 if (reset_type == ICE_RESET_INVAL)
579 return;
580
581 /* reset if not already down or busy */
582 if (!test_bit(__ICE_DOWN, pf->state) &&
583 !test_bit(__ICE_CFG_BUSY, pf->state)) {
584 ice_do_reset(pf, reset_type);
585 }
586}
587
588/**
589 * ice_print_topo_conflict - print topology conflict message
590 * @vsi: the VSI whose topology status is being checked
591 */
592static void ice_print_topo_conflict(struct ice_vsi *vsi)
593{
594 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
595 case ICE_AQ_LINK_TOPO_CONFLICT:
596 case ICE_AQ_LINK_MEDIA_CONFLICT:
597 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
598 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
599 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
600 netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
601 break;
602 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
603 netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
604 break;
605 default:
606 break;
607 }
608}
609
610/**
611 * ice_print_link_msg - print link up or down message
612 * @vsi: the VSI whose link status is being queried
613 * @isup: boolean for if the link is now up or down
614 */
615void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
616{
617 struct ice_aqc_get_phy_caps_data *caps;
618 const char *an_advertised;
619 enum ice_status status;
620 const char *fec_req;
621 const char *speed;
622 const char *fec;
623 const char *fc;
624 const char *an;
625
626 if (!vsi)
627 return;
628
629 if (vsi->current_isup == isup)
630 return;
631
632 vsi->current_isup = isup;
633
634 if (!isup) {
635 netdev_info(vsi->netdev, "NIC Link is Down\n");
636 return;
637 }
638
639 switch (vsi->port_info->phy.link_info.link_speed) {
640 case ICE_AQ_LINK_SPEED_100GB:
641 speed = "100 G";
642 break;
643 case ICE_AQ_LINK_SPEED_50GB:
644 speed = "50 G";
645 break;
646 case ICE_AQ_LINK_SPEED_40GB:
647 speed = "40 G";
648 break;
649 case ICE_AQ_LINK_SPEED_25GB:
650 speed = "25 G";
651 break;
652 case ICE_AQ_LINK_SPEED_20GB:
653 speed = "20 G";
654 break;
655 case ICE_AQ_LINK_SPEED_10GB:
656 speed = "10 G";
657 break;
658 case ICE_AQ_LINK_SPEED_5GB:
659 speed = "5 G";
660 break;
661 case ICE_AQ_LINK_SPEED_2500MB:
662 speed = "2.5 G";
663 break;
664 case ICE_AQ_LINK_SPEED_1000MB:
665 speed = "1 G";
666 break;
667 case ICE_AQ_LINK_SPEED_100MB:
668 speed = "100 M";
669 break;
670 default:
671 speed = "Unknown";
672 break;
673 }
674
675 switch (vsi->port_info->fc.current_mode) {
676 case ICE_FC_FULL:
677 fc = "Rx/Tx";
678 break;
679 case ICE_FC_TX_PAUSE:
680 fc = "Tx";
681 break;
682 case ICE_FC_RX_PAUSE:
683 fc = "Rx";
684 break;
685 case ICE_FC_NONE:
686 fc = "None";
687 break;
688 default:
689 fc = "Unknown";
690 break;
691 }
692
693 /* Get FEC mode based on negotiated link info */
694 switch (vsi->port_info->phy.link_info.fec_info) {
695 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
696 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
697 fec = "RS-FEC";
698 break;
699 case ICE_AQ_LINK_25G_KR_FEC_EN:
700 fec = "FC-FEC/BASE-R";
701 break;
702 default:
703 fec = "NONE";
704 break;
705 }
706
707 /* check if autoneg completed, might be false due to not supported */
708 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
709 an = "True";
710 else
711 an = "False";
712
713 /* Get FEC mode requested based on PHY caps last SW configuration */
714 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
715 if (!caps) {
716 fec_req = "Unknown";
717 an_advertised = "Unknown";
718 goto done;
719 }
720
721 status = ice_aq_get_phy_caps(vsi->port_info, false,
722 ICE_AQC_REPORT_SW_CFG, caps, NULL);
723 if (status)
724 netdev_info(vsi->netdev, "Get phy capability failed.\n");
725
726 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
727
728 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
729 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
730 fec_req = "RS-FEC";
731 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
732 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
733 fec_req = "FC-FEC/BASE-R";
734 else
735 fec_req = "NONE";
736
737 kfree(caps);
738
739done:
740 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
741 speed, fec_req, fec, an_advertised, an, fc);
742 ice_print_topo_conflict(vsi);
743}
744
745/**
746 * ice_vsi_link_event - update the VSI's netdev
747 * @vsi: the VSI on which the link event occurred
748 * @link_up: whether or not the VSI needs to be set up or down
749 */
750static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
751{
752 if (!vsi)
753 return;
754
755 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
756 return;
757
758 if (vsi->type == ICE_VSI_PF) {
759 if (link_up == netif_carrier_ok(vsi->netdev))
760 return;
761
762 if (link_up) {
763 netif_carrier_on(vsi->netdev);
764 netif_tx_wake_all_queues(vsi->netdev);
765 } else {
766 netif_carrier_off(vsi->netdev);
767 netif_tx_stop_all_queues(vsi->netdev);
768 }
769 }
770}
771
772/**
773 * ice_set_dflt_mib - send a default config MIB to the FW
774 * @pf: private PF struct
775 *
776 * This function sends a default configuration MIB to the FW.
777 *
778 * If this function errors out at any point, the driver is still able to
779 * function. The main impact is that LFC may not operate as expected.
780 * Therefore an error state in this function should be treated with a DBG
781 * message and continue on with driver rebuild/reenable.
782 */
783static void ice_set_dflt_mib(struct ice_pf *pf)
784{
785 struct device *dev = ice_pf_to_dev(pf);
786 u8 mib_type, *buf, *lldpmib = NULL;
787 u16 len, typelen, offset = 0;
788 struct ice_lldp_org_tlv *tlv;
789 struct ice_hw *hw;
790 u32 ouisubtype;
791
792 if (!pf) {
793 dev_dbg(dev, "%s NULL pf pointer\n", __func__);
794 return;
795 }
796
797 hw = &pf->hw;
798 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
799 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
800 if (!lldpmib) {
801 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
802 __func__);
803 return;
804 }
805
806 /* Add ETS CFG TLV */
807 tlv = (struct ice_lldp_org_tlv *)lldpmib;
808 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
809 ICE_IEEE_ETS_TLV_LEN);
810 tlv->typelen = htons(typelen);
811 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
812 ICE_IEEE_SUBTYPE_ETS_CFG);
813 tlv->ouisubtype = htonl(ouisubtype);
814
815 buf = tlv->tlvinfo;
816 buf[0] = 0;
817
818 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
819 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
820 * Octets 13 - 20 are TSA values - leave as zeros
821 */
822 buf[5] = 0x64;
823 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
824 offset += len + 2;
825 tlv = (struct ice_lldp_org_tlv *)
826 ((char *)tlv + sizeof(tlv->typelen) + len);
827
828 /* Add ETS REC TLV */
829 buf = tlv->tlvinfo;
830 tlv->typelen = htons(typelen);
831
832 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
833 ICE_IEEE_SUBTYPE_ETS_REC);
834 tlv->ouisubtype = htonl(ouisubtype);
835
836 /* First octet of buf is reserved
837 * Octets 1 - 4 map UP to TC - all UPs map to zero
838 * Octets 5 - 12 are BW values - set TC 0 to 100%.
839 * Octets 13 - 20 are TSA value - leave as zeros
840 */
841 buf[5] = 0x64;
842 offset += len + 2;
843 tlv = (struct ice_lldp_org_tlv *)
844 ((char *)tlv + sizeof(tlv->typelen) + len);
845
846 /* Add PFC CFG TLV */
847 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
848 ICE_IEEE_PFC_TLV_LEN);
849 tlv->typelen = htons(typelen);
850
851 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
852 ICE_IEEE_SUBTYPE_PFC_CFG);
853 tlv->ouisubtype = htonl(ouisubtype);
854
855 /* Octet 1 left as all zeros - PFC disabled */
856 buf[0] = 0x08;
857 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
858 offset += len + 2;
859
860 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
861 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
862
863 kfree(lldpmib);
864}
865
866/**
867 * ice_link_event - process the link event
868 * @pf: PF that the link event is associated with
869 * @pi: port_info for the port that the link event is associated with
870 * @link_up: true if the physical link is up and false if it is down
871 * @link_speed: current link speed received from the link event
872 *
873 * Returns 0 on success and negative on failure
874 */
875static int
876ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
877 u16 link_speed)
878{
879 struct device *dev = ice_pf_to_dev(pf);
880 struct ice_phy_info *phy_info;
881 struct ice_vsi *vsi;
882 u16 old_link_speed;
883 bool old_link;
884 int result;
885
886 phy_info = &pi->phy;
887 phy_info->link_info_old = phy_info->link_info;
888
889 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
890 old_link_speed = phy_info->link_info_old.link_speed;
891
892 /* update the link info structures and re-enable link events,
893 * don't bail on failure due to other book keeping needed
894 */
895 result = ice_update_link_info(pi);
896 if (result)
897 dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
898 pi->lport);
899
900 /* Check if the link state is up after updating link info, and treat
901 * this event as an UP event since the link is actually UP now.
902 */
903 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
904 link_up = true;
905
906 vsi = ice_get_main_vsi(pf);
907 if (!vsi || !vsi->port_info)
908 return -EINVAL;
909
910 /* turn off PHY if media was removed */
911 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
912 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
913 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
914
915 result = ice_aq_set_link_restart_an(pi, false, NULL);
916 if (result) {
917 dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
918 vsi->vsi_num, result);
919 return result;
920 }
921 }
922
923 /* if the old link up/down and speed is the same as the new */
924 if (link_up == old_link && link_speed == old_link_speed)
925 return result;
926
927 if (ice_is_dcb_active(pf)) {
928 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
929 ice_dcb_rebuild(pf);
930 } else {
931 if (link_up)
932 ice_set_dflt_mib(pf);
933 }
934 ice_vsi_link_event(vsi, link_up);
935 ice_print_link_msg(vsi, link_up);
936
937 ice_vc_notify_link_state(pf);
938
939 return result;
940}
941
942/**
943 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
944 * @pf: board private structure
945 */
946static void ice_watchdog_subtask(struct ice_pf *pf)
947{
948 int i;
949
950 /* if interface is down do nothing */
951 if (test_bit(__ICE_DOWN, pf->state) ||
952 test_bit(__ICE_CFG_BUSY, pf->state))
953 return;
954
955 /* make sure we don't do these things too often */
956 if (time_before(jiffies,
957 pf->serv_tmr_prev + pf->serv_tmr_period))
958 return;
959
960 pf->serv_tmr_prev = jiffies;
961
962 /* Update the stats for active netdevs so the network stack
963 * can look at updated numbers whenever it cares to
964 */
965 ice_update_pf_stats(pf);
966 ice_for_each_vsi(pf, i)
967 if (pf->vsi[i] && pf->vsi[i]->netdev)
968 ice_update_vsi_stats(pf->vsi[i]);
969}
970
971/**
972 * ice_init_link_events - enable/initialize link events
973 * @pi: pointer to the port_info instance
974 *
975 * Returns -EIO on failure, 0 on success
976 */
977static int ice_init_link_events(struct ice_port_info *pi)
978{
979 u16 mask;
980
981 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
982 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
983
984 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
985 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
986 pi->lport);
987 return -EIO;
988 }
989
990 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
991 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
992 pi->lport);
993 return -EIO;
994 }
995
996 return 0;
997}
998
999/**
1000 * ice_handle_link_event - handle link event via ARQ
1001 * @pf: PF that the link event is associated with
1002 * @event: event structure containing link status info
1003 */
1004static int
1005ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1006{
1007 struct ice_aqc_get_link_status_data *link_data;
1008 struct ice_port_info *port_info;
1009 int status;
1010
1011 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1012 port_info = pf->hw.port_info;
1013 if (!port_info)
1014 return -EINVAL;
1015
1016 status = ice_link_event(pf, port_info,
1017 !!(link_data->link_info & ICE_AQ_LINK_UP),
1018 le16_to_cpu(link_data->link_speed));
1019 if (status)
1020 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1021 status);
1022
1023 return status;
1024}
1025
1026enum ice_aq_task_state {
1027 ICE_AQ_TASK_WAITING = 0,
1028 ICE_AQ_TASK_COMPLETE,
1029 ICE_AQ_TASK_CANCELED,
1030};
1031
1032struct ice_aq_task {
1033 struct hlist_node entry;
1034
1035 u16 opcode;
1036 struct ice_rq_event_info *event;
1037 enum ice_aq_task_state state;
1038};
1039
1040/**
1041 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1042 * @pf: pointer to the PF private structure
1043 * @opcode: the opcode to wait for
1044 * @timeout: how long to wait, in jiffies
1045 * @event: storage for the event info
1046 *
1047 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1048 * current thread will be put to sleep until the specified event occurs or
1049 * until the given timeout is reached.
1050 *
1051 * To obtain only the descriptor contents, pass an event without an allocated
1052 * msg_buf. If the complete data buffer is desired, allocate the
1053 * event->msg_buf with enough space ahead of time.
1054 *
1055 * Returns: zero on success, or a negative error code on failure.
1056 */
1057int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1058 struct ice_rq_event_info *event)
1059{
1060 struct ice_aq_task *task;
1061 long ret;
1062 int err;
1063
1064 task = kzalloc(sizeof(*task), GFP_KERNEL);
1065 if (!task)
1066 return -ENOMEM;
1067
1068 INIT_HLIST_NODE(&task->entry);
1069 task->opcode = opcode;
1070 task->event = event;
1071 task->state = ICE_AQ_TASK_WAITING;
1072
1073 spin_lock_bh(&pf->aq_wait_lock);
1074 hlist_add_head(&task->entry, &pf->aq_wait_list);
1075 spin_unlock_bh(&pf->aq_wait_lock);
1076
1077 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1078 timeout);
1079 switch (task->state) {
1080 case ICE_AQ_TASK_WAITING:
1081 err = ret < 0 ? ret : -ETIMEDOUT;
1082 break;
1083 case ICE_AQ_TASK_CANCELED:
1084 err = ret < 0 ? ret : -ECANCELED;
1085 break;
1086 case ICE_AQ_TASK_COMPLETE:
1087 err = ret < 0 ? ret : 0;
1088 break;
1089 default:
1090 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1091 err = -EINVAL;
1092 break;
1093 }
1094
1095 spin_lock_bh(&pf->aq_wait_lock);
1096 hlist_del(&task->entry);
1097 spin_unlock_bh(&pf->aq_wait_lock);
1098 kfree(task);
1099
1100 return err;
1101}
1102
1103/**
1104 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1105 * @pf: pointer to the PF private structure
1106 * @opcode: the opcode of the event
1107 * @event: the event to check
1108 *
1109 * Loops over the current list of pending threads waiting for an AdminQ event.
1110 * For each matching task, copy the contents of the event into the task
1111 * structure and wake up the thread.
1112 *
1113 * If multiple threads wait for the same opcode, they will all be woken up.
1114 *
1115 * Note that event->msg_buf will only be duplicated if the event has a buffer
1116 * with enough space already allocated. Otherwise, only the descriptor and
1117 * message length will be copied.
1118 *
1119 * Returns: true if an event was found, false otherwise
1120 */
1121static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1122 struct ice_rq_event_info *event)
1123{
1124 struct ice_aq_task *task;
1125 bool found = false;
1126
1127 spin_lock_bh(&pf->aq_wait_lock);
1128 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1129 if (task->state || task->opcode != opcode)
1130 continue;
1131
1132 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1133 task->event->msg_len = event->msg_len;
1134
1135 /* Only copy the data buffer if a destination was set */
1136 if (task->event->msg_buf &&
1137 task->event->buf_len > event->buf_len) {
1138 memcpy(task->event->msg_buf, event->msg_buf,
1139 event->buf_len);
1140 task->event->buf_len = event->buf_len;
1141 }
1142
1143 task->state = ICE_AQ_TASK_COMPLETE;
1144 found = true;
1145 }
1146 spin_unlock_bh(&pf->aq_wait_lock);
1147
1148 if (found)
1149 wake_up(&pf->aq_wait_queue);
1150}
1151
1152/**
1153 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1154 * @pf: the PF private structure
1155 *
1156 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1157 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1158 */
1159static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1160{
1161 struct ice_aq_task *task;
1162
1163 spin_lock_bh(&pf->aq_wait_lock);
1164 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1165 task->state = ICE_AQ_TASK_CANCELED;
1166 spin_unlock_bh(&pf->aq_wait_lock);
1167
1168 wake_up(&pf->aq_wait_queue);
1169}
1170
1171/**
1172 * __ice_clean_ctrlq - helper function to clean controlq rings
1173 * @pf: ptr to struct ice_pf
1174 * @q_type: specific Control queue type
1175 */
1176static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1177{
1178 struct device *dev = ice_pf_to_dev(pf);
1179 struct ice_rq_event_info event;
1180 struct ice_hw *hw = &pf->hw;
1181 struct ice_ctl_q_info *cq;
1182 u16 pending, i = 0;
1183 const char *qtype;
1184 u32 oldval, val;
1185
1186 /* Do not clean control queue if/when PF reset fails */
1187 if (test_bit(__ICE_RESET_FAILED, pf->state))
1188 return 0;
1189
1190 switch (q_type) {
1191 case ICE_CTL_Q_ADMIN:
1192 cq = &hw->adminq;
1193 qtype = "Admin";
1194 break;
1195 case ICE_CTL_Q_MAILBOX:
1196 cq = &hw->mailboxq;
1197 qtype = "Mailbox";
1198 break;
1199 default:
1200 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1201 return 0;
1202 }
1203
1204 /* check for error indications - PF_xx_AxQLEN register layout for
1205 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1206 */
1207 val = rd32(hw, cq->rq.len);
1208 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1209 PF_FW_ARQLEN_ARQCRIT_M)) {
1210 oldval = val;
1211 if (val & PF_FW_ARQLEN_ARQVFE_M)
1212 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1213 qtype);
1214 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1215 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1216 qtype);
1217 }
1218 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1219 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1220 qtype);
1221 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1222 PF_FW_ARQLEN_ARQCRIT_M);
1223 if (oldval != val)
1224 wr32(hw, cq->rq.len, val);
1225 }
1226
1227 val = rd32(hw, cq->sq.len);
1228 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1229 PF_FW_ATQLEN_ATQCRIT_M)) {
1230 oldval = val;
1231 if (val & PF_FW_ATQLEN_ATQVFE_M)
1232 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1233 qtype);
1234 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1235 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1236 qtype);
1237 }
1238 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1239 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1240 qtype);
1241 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1242 PF_FW_ATQLEN_ATQCRIT_M);
1243 if (oldval != val)
1244 wr32(hw, cq->sq.len, val);
1245 }
1246
1247 event.buf_len = cq->rq_buf_size;
1248 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1249 if (!event.msg_buf)
1250 return 0;
1251
1252 do {
1253 enum ice_status ret;
1254 u16 opcode;
1255
1256 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1257 if (ret == ICE_ERR_AQ_NO_WORK)
1258 break;
1259 if (ret) {
1260 dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1261 ice_stat_str(ret));
1262 break;
1263 }
1264
1265 opcode = le16_to_cpu(event.desc.opcode);
1266
1267 /* Notify any thread that might be waiting for this event */
1268 ice_aq_check_events(pf, opcode, &event);
1269
1270 switch (opcode) {
1271 case ice_aqc_opc_get_link_status:
1272 if (ice_handle_link_event(pf, &event))
1273 dev_err(dev, "Could not handle link event\n");
1274 break;
1275 case ice_aqc_opc_event_lan_overflow:
1276 ice_vf_lan_overflow_event(pf, &event);
1277 break;
1278 case ice_mbx_opc_send_msg_to_pf:
1279 ice_vc_process_vf_msg(pf, &event);
1280 break;
1281 case ice_aqc_opc_fw_logging:
1282 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1283 break;
1284 case ice_aqc_opc_lldp_set_mib_change:
1285 ice_dcb_process_lldp_set_mib_change(pf, &event);
1286 break;
1287 default:
1288 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1289 qtype, opcode);
1290 break;
1291 }
1292 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1293
1294 kfree(event.msg_buf);
1295
1296 return pending && (i == ICE_DFLT_IRQ_WORK);
1297}
1298
1299/**
1300 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1301 * @hw: pointer to hardware info
1302 * @cq: control queue information
1303 *
1304 * returns true if there are pending messages in a queue, false if there aren't
1305 */
1306static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1307{
1308 u16 ntu;
1309
1310 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1311 return cq->rq.next_to_clean != ntu;
1312}
1313
1314/**
1315 * ice_clean_adminq_subtask - clean the AdminQ rings
1316 * @pf: board private structure
1317 */
1318static void ice_clean_adminq_subtask(struct ice_pf *pf)
1319{
1320 struct ice_hw *hw = &pf->hw;
1321
1322 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1323 return;
1324
1325 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1326 return;
1327
1328 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1329
1330 /* There might be a situation where new messages arrive to a control
1331 * queue between processing the last message and clearing the
1332 * EVENT_PENDING bit. So before exiting, check queue head again (using
1333 * ice_ctrlq_pending) and process new messages if any.
1334 */
1335 if (ice_ctrlq_pending(hw, &hw->adminq))
1336 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1337
1338 ice_flush(hw);
1339}
1340
1341/**
1342 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1343 * @pf: board private structure
1344 */
1345static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1346{
1347 struct ice_hw *hw = &pf->hw;
1348
1349 if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1350 return;
1351
1352 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1353 return;
1354
1355 clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1356
1357 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1358 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1359
1360 ice_flush(hw);
1361}
1362
1363/**
1364 * ice_service_task_schedule - schedule the service task to wake up
1365 * @pf: board private structure
1366 *
1367 * If not already scheduled, this puts the task into the work queue.
1368 */
1369void ice_service_task_schedule(struct ice_pf *pf)
1370{
1371 if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1372 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1373 !test_bit(__ICE_NEEDS_RESTART, pf->state))
1374 queue_work(ice_wq, &pf->serv_task);
1375}
1376
1377/**
1378 * ice_service_task_complete - finish up the service task
1379 * @pf: board private structure
1380 */
1381static void ice_service_task_complete(struct ice_pf *pf)
1382{
1383 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1384
1385 /* force memory (pf->state) to sync before next service task */
1386 smp_mb__before_atomic();
1387 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1388}
1389
1390/**
1391 * ice_service_task_stop - stop service task and cancel works
1392 * @pf: board private structure
1393 *
1394 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1395 * 1 otherwise.
1396 */
1397static int ice_service_task_stop(struct ice_pf *pf)
1398{
1399 int ret;
1400
1401 ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1402
1403 if (pf->serv_tmr.function)
1404 del_timer_sync(&pf->serv_tmr);
1405 if (pf->serv_task.func)
1406 cancel_work_sync(&pf->serv_task);
1407
1408 clear_bit(__ICE_SERVICE_SCHED, pf->state);
1409 return ret;
1410}
1411
1412/**
1413 * ice_service_task_restart - restart service task and schedule works
1414 * @pf: board private structure
1415 *
1416 * This function is needed for suspend and resume works (e.g WoL scenario)
1417 */
1418static void ice_service_task_restart(struct ice_pf *pf)
1419{
1420 clear_bit(__ICE_SERVICE_DIS, pf->state);
1421 ice_service_task_schedule(pf);
1422}
1423
1424/**
1425 * ice_service_timer - timer callback to schedule service task
1426 * @t: pointer to timer_list
1427 */
1428static void ice_service_timer(struct timer_list *t)
1429{
1430 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1431
1432 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1433 ice_service_task_schedule(pf);
1434}
1435
1436/**
1437 * ice_handle_mdd_event - handle malicious driver detect event
1438 * @pf: pointer to the PF structure
1439 *
1440 * Called from service task. OICR interrupt handler indicates MDD event.
1441 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1442 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1443 * disable the queue, the PF can be configured to reset the VF using ethtool
1444 * private flag mdd-auto-reset-vf.
1445 */
1446static void ice_handle_mdd_event(struct ice_pf *pf)
1447{
1448 struct device *dev = ice_pf_to_dev(pf);
1449 struct ice_hw *hw = &pf->hw;
1450 unsigned int i;
1451 u32 reg;
1452
1453 if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1454 /* Since the VF MDD event logging is rate limited, check if
1455 * there are pending MDD events.
1456 */
1457 ice_print_vfs_mdd_events(pf);
1458 return;
1459 }
1460
1461 /* find what triggered an MDD event */
1462 reg = rd32(hw, GL_MDET_TX_PQM);
1463 if (reg & GL_MDET_TX_PQM_VALID_M) {
1464 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1465 GL_MDET_TX_PQM_PF_NUM_S;
1466 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1467 GL_MDET_TX_PQM_VF_NUM_S;
1468 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1469 GL_MDET_TX_PQM_MAL_TYPE_S;
1470 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1471 GL_MDET_TX_PQM_QNUM_S);
1472
1473 if (netif_msg_tx_err(pf))
1474 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1475 event, queue, pf_num, vf_num);
1476 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1477 }
1478
1479 reg = rd32(hw, GL_MDET_TX_TCLAN);
1480 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1481 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1482 GL_MDET_TX_TCLAN_PF_NUM_S;
1483 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1484 GL_MDET_TX_TCLAN_VF_NUM_S;
1485 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1486 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1487 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1488 GL_MDET_TX_TCLAN_QNUM_S);
1489
1490 if (netif_msg_tx_err(pf))
1491 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492 event, queue, pf_num, vf_num);
1493 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1494 }
1495
1496 reg = rd32(hw, GL_MDET_RX);
1497 if (reg & GL_MDET_RX_VALID_M) {
1498 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1499 GL_MDET_RX_PF_NUM_S;
1500 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1501 GL_MDET_RX_VF_NUM_S;
1502 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1503 GL_MDET_RX_MAL_TYPE_S;
1504 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1505 GL_MDET_RX_QNUM_S);
1506
1507 if (netif_msg_rx_err(pf))
1508 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1509 event, queue, pf_num, vf_num);
1510 wr32(hw, GL_MDET_RX, 0xffffffff);
1511 }
1512
1513 /* check to see if this PF caused an MDD event */
1514 reg = rd32(hw, PF_MDET_TX_PQM);
1515 if (reg & PF_MDET_TX_PQM_VALID_M) {
1516 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1517 if (netif_msg_tx_err(pf))
1518 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1519 }
1520
1521 reg = rd32(hw, PF_MDET_TX_TCLAN);
1522 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1523 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1524 if (netif_msg_tx_err(pf))
1525 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1526 }
1527
1528 reg = rd32(hw, PF_MDET_RX);
1529 if (reg & PF_MDET_RX_VALID_M) {
1530 wr32(hw, PF_MDET_RX, 0xFFFF);
1531 if (netif_msg_rx_err(pf))
1532 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1533 }
1534
1535 /* Check to see if one of the VFs caused an MDD event, and then
1536 * increment counters and set print pending
1537 */
1538 ice_for_each_vf(pf, i) {
1539 struct ice_vf *vf = &pf->vf[i];
1540
1541 reg = rd32(hw, VP_MDET_TX_PQM(i));
1542 if (reg & VP_MDET_TX_PQM_VALID_M) {
1543 wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1544 vf->mdd_tx_events.count++;
1545 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1546 if (netif_msg_tx_err(pf))
1547 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1548 i);
1549 }
1550
1551 reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1552 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1553 wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1554 vf->mdd_tx_events.count++;
1555 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1556 if (netif_msg_tx_err(pf))
1557 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1558 i);
1559 }
1560
1561 reg = rd32(hw, VP_MDET_TX_TDPU(i));
1562 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1563 wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1564 vf->mdd_tx_events.count++;
1565 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1566 if (netif_msg_tx_err(pf))
1567 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1568 i);
1569 }
1570
1571 reg = rd32(hw, VP_MDET_RX(i));
1572 if (reg & VP_MDET_RX_VALID_M) {
1573 wr32(hw, VP_MDET_RX(i), 0xFFFF);
1574 vf->mdd_rx_events.count++;
1575 set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1576 if (netif_msg_rx_err(pf))
1577 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1578 i);
1579
1580 /* Since the queue is disabled on VF Rx MDD events, the
1581 * PF can be configured to reset the VF through ethtool
1582 * private flag mdd-auto-reset-vf.
1583 */
1584 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1585 /* VF MDD event counters will be cleared by
1586 * reset, so print the event prior to reset.
1587 */
1588 ice_print_vf_rx_mdd_event(vf);
1589 ice_reset_vf(&pf->vf[i], false);
1590 }
1591 }
1592 }
1593
1594 ice_print_vfs_mdd_events(pf);
1595}
1596
1597/**
1598 * ice_force_phys_link_state - Force the physical link state
1599 * @vsi: VSI to force the physical link state to up/down
1600 * @link_up: true/false indicates to set the physical link to up/down
1601 *
1602 * Force the physical link state by getting the current PHY capabilities from
1603 * hardware and setting the PHY config based on the determined capabilities. If
1604 * link changes a link event will be triggered because both the Enable Automatic
1605 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1606 *
1607 * Returns 0 on success, negative on failure
1608 */
1609static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1610{
1611 struct ice_aqc_get_phy_caps_data *pcaps;
1612 struct ice_aqc_set_phy_cfg_data *cfg;
1613 struct ice_port_info *pi;
1614 struct device *dev;
1615 int retcode;
1616
1617 if (!vsi || !vsi->port_info || !vsi->back)
1618 return -EINVAL;
1619 if (vsi->type != ICE_VSI_PF)
1620 return 0;
1621
1622 dev = ice_pf_to_dev(vsi->back);
1623
1624 pi = vsi->port_info;
1625
1626 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1627 if (!pcaps)
1628 return -ENOMEM;
1629
1630 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1631 NULL);
1632 if (retcode) {
1633 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1634 vsi->vsi_num, retcode);
1635 retcode = -EIO;
1636 goto out;
1637 }
1638
1639 /* No change in link */
1640 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1641 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1642 goto out;
1643
1644 /* Use the current user PHY configuration. The current user PHY
1645 * configuration is initialized during probe from PHY capabilities
1646 * software mode, and updated on set PHY configuration.
1647 */
1648 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1649 if (!cfg) {
1650 retcode = -ENOMEM;
1651 goto out;
1652 }
1653
1654 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1655 if (link_up)
1656 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1657 else
1658 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1659
1660 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1661 if (retcode) {
1662 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1663 vsi->vsi_num, retcode);
1664 retcode = -EIO;
1665 }
1666
1667 kfree(cfg);
1668out:
1669 kfree(pcaps);
1670 return retcode;
1671}
1672
1673/**
1674 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1675 * @pi: port info structure
1676 *
1677 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1678 */
1679static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1680{
1681 struct ice_aqc_get_phy_caps_data *pcaps;
1682 struct ice_pf *pf = pi->hw->back;
1683 enum ice_status status;
1684 int err = 0;
1685
1686 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1687 if (!pcaps)
1688 return -ENOMEM;
1689
1690 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1691 NULL);
1692
1693 if (status) {
1694 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1695 err = -EIO;
1696 goto out;
1697 }
1698
1699 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1700 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1701
1702out:
1703 kfree(pcaps);
1704 return err;
1705}
1706
1707/**
1708 * ice_init_link_dflt_override - Initialize link default override
1709 * @pi: port info structure
1710 *
1711 * Initialize link default override and PHY total port shutdown during probe
1712 */
1713static void ice_init_link_dflt_override(struct ice_port_info *pi)
1714{
1715 struct ice_link_default_override_tlv *ldo;
1716 struct ice_pf *pf = pi->hw->back;
1717
1718 ldo = &pf->link_dflt_override;
1719 if (ice_get_link_default_override(ldo, pi))
1720 return;
1721
1722 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1723 return;
1724
1725 /* Enable Total Port Shutdown (override/replace link-down-on-close
1726 * ethtool private flag) for ports with Port Disable bit set.
1727 */
1728 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1729 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1730}
1731
1732/**
1733 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1734 * @pi: port info structure
1735 *
1736 * If default override is enabled, initialized the user PHY cfg speed and FEC
1737 * settings using the default override mask from the NVM.
1738 *
1739 * The PHY should only be configured with the default override settings the
1740 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1741 * is used to indicate that the user PHY cfg default override is initialized
1742 * and the PHY has not been configured with the default override settings. The
1743 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1744 * configured.
1745 */
1746static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1747{
1748 struct ice_link_default_override_tlv *ldo;
1749 struct ice_aqc_set_phy_cfg_data *cfg;
1750 struct ice_phy_info *phy = &pi->phy;
1751 struct ice_pf *pf = pi->hw->back;
1752
1753 ldo = &pf->link_dflt_override;
1754
1755 /* If link default override is enabled, use to mask NVM PHY capabilities
1756 * for speed and FEC default configuration.
1757 */
1758 cfg = &phy->curr_user_phy_cfg;
1759
1760 if (ldo->phy_type_low || ldo->phy_type_high) {
1761 cfg->phy_type_low = pf->nvm_phy_type_lo &
1762 cpu_to_le64(ldo->phy_type_low);
1763 cfg->phy_type_high = pf->nvm_phy_type_hi &
1764 cpu_to_le64(ldo->phy_type_high);
1765 }
1766 cfg->link_fec_opt = ldo->fec_options;
1767 phy->curr_user_fec_req = ICE_FEC_AUTO;
1768
1769 set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1770}
1771
1772/**
1773 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1774 * @pi: port info structure
1775 *
1776 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1777 * mode to default. The PHY defaults are from get PHY capabilities topology
1778 * with media so call when media is first available. An error is returned if
1779 * called when media is not available. The PHY initialization completed state is
1780 * set here.
1781 *
1782 * These configurations are used when setting PHY
1783 * configuration. The user PHY configuration is updated on set PHY
1784 * configuration. Returns 0 on success, negative on failure
1785 */
1786static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1787{
1788 struct ice_aqc_get_phy_caps_data *pcaps;
1789 struct ice_phy_info *phy = &pi->phy;
1790 struct ice_pf *pf = pi->hw->back;
1791 enum ice_status status;
1792 struct ice_vsi *vsi;
1793 int err = 0;
1794
1795 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1796 return -EIO;
1797
1798 vsi = ice_get_main_vsi(pf);
1799 if (!vsi)
1800 return -EINVAL;
1801
1802 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1803 if (!pcaps)
1804 return -ENOMEM;
1805
1806 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1807 NULL);
1808 if (status) {
1809 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1810 err = -EIO;
1811 goto err_out;
1812 }
1813
1814 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1815
1816 /* check if lenient mode is supported and enabled */
1817 if (ice_fw_supports_link_override(&vsi->back->hw) &&
1818 !(pcaps->module_compliance_enforcement &
1819 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1820 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1821
1822 /* if link default override is enabled, initialize user PHY
1823 * configuration with link default override values
1824 */
1825 if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1826 ice_init_phy_cfg_dflt_override(pi);
1827 goto out;
1828 }
1829 }
1830
1831 /* if link default override is not enabled, initialize PHY using
1832 * topology with media
1833 */
1834 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1835 pcaps->link_fec_options);
1836 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1837
1838out:
1839 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1840 set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1841err_out:
1842 kfree(pcaps);
1843 return err;
1844}
1845
1846/**
1847 * ice_configure_phy - configure PHY
1848 * @vsi: VSI of PHY
1849 *
1850 * Set the PHY configuration. If the current PHY configuration is the same as
1851 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1852 * configure the based get PHY capabilities for topology with media.
1853 */
1854static int ice_configure_phy(struct ice_vsi *vsi)
1855{
1856 struct device *dev = ice_pf_to_dev(vsi->back);
1857 struct ice_aqc_get_phy_caps_data *pcaps;
1858 struct ice_aqc_set_phy_cfg_data *cfg;
1859 struct ice_port_info *pi;
1860 enum ice_status status;
1861 int err = 0;
1862
1863 pi = vsi->port_info;
1864 if (!pi)
1865 return -EINVAL;
1866
1867 /* Ensure we have media as we cannot configure a medialess port */
1868 if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1869 return -EPERM;
1870
1871 ice_print_topo_conflict(vsi);
1872
1873 if (vsi->port_info->phy.link_info.topo_media_conflict ==
1874 ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1875 return -EPERM;
1876
1877 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1878 return ice_force_phys_link_state(vsi, true);
1879
1880 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1881 if (!pcaps)
1882 return -ENOMEM;
1883
1884 /* Get current PHY config */
1885 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1886 NULL);
1887 if (status) {
1888 dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1889 vsi->vsi_num, ice_stat_str(status));
1890 err = -EIO;
1891 goto done;
1892 }
1893
1894 /* If PHY enable link is configured and configuration has not changed,
1895 * there's nothing to do
1896 */
1897 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1898 ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1899 goto done;
1900
1901 /* Use PHY topology as baseline for configuration */
1902 memset(pcaps, 0, sizeof(*pcaps));
1903 status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1904 NULL);
1905 if (status) {
1906 dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1907 vsi->vsi_num, ice_stat_str(status));
1908 err = -EIO;
1909 goto done;
1910 }
1911
1912 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1913 if (!cfg) {
1914 err = -ENOMEM;
1915 goto done;
1916 }
1917
1918 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1919
1920 /* Speed - If default override pending, use curr_user_phy_cfg set in
1921 * ice_init_phy_user_cfg_ldo.
1922 */
1923 if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1924 vsi->back->state)) {
1925 cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1926 cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1927 } else {
1928 u64 phy_low = 0, phy_high = 0;
1929
1930 ice_update_phy_type(&phy_low, &phy_high,
1931 pi->phy.curr_user_speed_req);
1932 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1933 cfg->phy_type_high = pcaps->phy_type_high &
1934 cpu_to_le64(phy_high);
1935 }
1936
1937 /* Can't provide what was requested; use PHY capabilities */
1938 if (!cfg->phy_type_low && !cfg->phy_type_high) {
1939 cfg->phy_type_low = pcaps->phy_type_low;
1940 cfg->phy_type_high = pcaps->phy_type_high;
1941 }
1942
1943 /* FEC */
1944 ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1945
1946 /* Can't provide what was requested; use PHY capabilities */
1947 if (cfg->link_fec_opt !=
1948 (cfg->link_fec_opt & pcaps->link_fec_options)) {
1949 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1950 cfg->link_fec_opt = pcaps->link_fec_options;
1951 }
1952
1953 /* Flow Control - always supported; no need to check against
1954 * capabilities
1955 */
1956 ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1957
1958 /* Enable link and link update */
1959 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1960
1961 status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1962 if (status) {
1963 dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1964 vsi->vsi_num, ice_stat_str(status));
1965 err = -EIO;
1966 }
1967
1968 kfree(cfg);
1969done:
1970 kfree(pcaps);
1971 return err;
1972}
1973
1974/**
1975 * ice_check_media_subtask - Check for media
1976 * @pf: pointer to PF struct
1977 *
1978 * If media is available, then initialize PHY user configuration if it is not
1979 * been, and configure the PHY if the interface is up.
1980 */
1981static void ice_check_media_subtask(struct ice_pf *pf)
1982{
1983 struct ice_port_info *pi;
1984 struct ice_vsi *vsi;
1985 int err;
1986
1987 /* No need to check for media if it's already present */
1988 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1989 return;
1990
1991 vsi = ice_get_main_vsi(pf);
1992 if (!vsi)
1993 return;
1994
1995 /* Refresh link info and check if media is present */
1996 pi = vsi->port_info;
1997 err = ice_update_link_info(pi);
1998 if (err)
1999 return;
2000
2001 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2002 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2003 ice_init_phy_user_cfg(pi);
2004
2005 /* PHY settings are reset on media insertion, reconfigure
2006 * PHY to preserve settings.
2007 */
2008 if (test_bit(__ICE_DOWN, vsi->state) &&
2009 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2010 return;
2011
2012 err = ice_configure_phy(vsi);
2013 if (!err)
2014 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2015
2016 /* A Link Status Event will be generated; the event handler
2017 * will complete bringing the interface up
2018 */
2019 }
2020}
2021
2022/**
2023 * ice_service_task - manage and run subtasks
2024 * @work: pointer to work_struct contained by the PF struct
2025 */
2026static void ice_service_task(struct work_struct *work)
2027{
2028 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2029 unsigned long start_time = jiffies;
2030
2031 /* subtasks */
2032
2033 /* process reset requests first */
2034 ice_reset_subtask(pf);
2035
2036 /* bail if a reset/recovery cycle is pending or rebuild failed */
2037 if (ice_is_reset_in_progress(pf->state) ||
2038 test_bit(__ICE_SUSPENDED, pf->state) ||
2039 test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2040 ice_service_task_complete(pf);
2041 return;
2042 }
2043
2044 ice_clean_adminq_subtask(pf);
2045 ice_check_media_subtask(pf);
2046 ice_check_for_hang_subtask(pf);
2047 ice_sync_fltr_subtask(pf);
2048 ice_handle_mdd_event(pf);
2049 ice_watchdog_subtask(pf);
2050
2051 if (ice_is_safe_mode(pf)) {
2052 ice_service_task_complete(pf);
2053 return;
2054 }
2055
2056 ice_process_vflr_event(pf);
2057 ice_clean_mailboxq_subtask(pf);
2058 ice_sync_arfs_fltrs(pf);
2059 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2060 ice_service_task_complete(pf);
2061
2062 /* If the tasks have taken longer than one service timer period
2063 * or there is more work to be done, reset the service timer to
2064 * schedule the service task now.
2065 */
2066 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2067 test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2068 test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2069 test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2070 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2071 mod_timer(&pf->serv_tmr, jiffies);
2072}
2073
2074/**
2075 * ice_set_ctrlq_len - helper function to set controlq length
2076 * @hw: pointer to the HW instance
2077 */
2078static void ice_set_ctrlq_len(struct ice_hw *hw)
2079{
2080 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2081 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2082 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2083 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2084 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2085 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2086 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2087 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2088}
2089
2090/**
2091 * ice_schedule_reset - schedule a reset
2092 * @pf: board private structure
2093 * @reset: reset being requested
2094 */
2095int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2096{
2097 struct device *dev = ice_pf_to_dev(pf);
2098
2099 /* bail out if earlier reset has failed */
2100 if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2101 dev_dbg(dev, "earlier reset has failed\n");
2102 return -EIO;
2103 }
2104 /* bail if reset/recovery already in progress */
2105 if (ice_is_reset_in_progress(pf->state)) {
2106 dev_dbg(dev, "Reset already in progress\n");
2107 return -EBUSY;
2108 }
2109
2110 switch (reset) {
2111 case ICE_RESET_PFR:
2112 set_bit(__ICE_PFR_REQ, pf->state);
2113 break;
2114 case ICE_RESET_CORER:
2115 set_bit(__ICE_CORER_REQ, pf->state);
2116 break;
2117 case ICE_RESET_GLOBR:
2118 set_bit(__ICE_GLOBR_REQ, pf->state);
2119 break;
2120 default:
2121 return -EINVAL;
2122 }
2123
2124 ice_service_task_schedule(pf);
2125 return 0;
2126}
2127
2128/**
2129 * ice_irq_affinity_notify - Callback for affinity changes
2130 * @notify: context as to what irq was changed
2131 * @mask: the new affinity mask
2132 *
2133 * This is a callback function used by the irq_set_affinity_notifier function
2134 * so that we may register to receive changes to the irq affinity masks.
2135 */
2136static void
2137ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2138 const cpumask_t *mask)
2139{
2140 struct ice_q_vector *q_vector =
2141 container_of(notify, struct ice_q_vector, affinity_notify);
2142
2143 cpumask_copy(&q_vector->affinity_mask, mask);
2144}
2145
2146/**
2147 * ice_irq_affinity_release - Callback for affinity notifier release
2148 * @ref: internal core kernel usage
2149 *
2150 * This is a callback function used by the irq_set_affinity_notifier function
2151 * to inform the current notification subscriber that they will no longer
2152 * receive notifications.
2153 */
2154static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2155
2156/**
2157 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2158 * @vsi: the VSI being configured
2159 */
2160static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2161{
2162 struct ice_hw *hw = &vsi->back->hw;
2163 int i;
2164
2165 ice_for_each_q_vector(vsi, i)
2166 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2167
2168 ice_flush(hw);
2169 return 0;
2170}
2171
2172/**
2173 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2174 * @vsi: the VSI being configured
2175 * @basename: name for the vector
2176 */
2177static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2178{
2179 int q_vectors = vsi->num_q_vectors;
2180 struct ice_pf *pf = vsi->back;
2181 int base = vsi->base_vector;
2182 struct device *dev;
2183 int rx_int_idx = 0;
2184 int tx_int_idx = 0;
2185 int vector, err;
2186 int irq_num;
2187
2188 dev = ice_pf_to_dev(pf);
2189 for (vector = 0; vector < q_vectors; vector++) {
2190 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2191
2192 irq_num = pf->msix_entries[base + vector].vector;
2193
2194 if (q_vector->tx.ring && q_vector->rx.ring) {
2195 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2196 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2197 tx_int_idx++;
2198 } else if (q_vector->rx.ring) {
2199 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2200 "%s-%s-%d", basename, "rx", rx_int_idx++);
2201 } else if (q_vector->tx.ring) {
2202 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2203 "%s-%s-%d", basename, "tx", tx_int_idx++);
2204 } else {
2205 /* skip this unused q_vector */
2206 continue;
2207 }
2208 err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2209 q_vector->name, q_vector);
2210 if (err) {
2211 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2212 err);
2213 goto free_q_irqs;
2214 }
2215
2216 /* register for affinity change notifications */
2217 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2218 struct irq_affinity_notify *affinity_notify;
2219
2220 affinity_notify = &q_vector->affinity_notify;
2221 affinity_notify->notify = ice_irq_affinity_notify;
2222 affinity_notify->release = ice_irq_affinity_release;
2223 irq_set_affinity_notifier(irq_num, affinity_notify);
2224 }
2225
2226 /* assign the mask for this irq */
2227 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2228 }
2229
2230 vsi->irqs_ready = true;
2231 return 0;
2232
2233free_q_irqs:
2234 while (vector) {
2235 vector--;
2236 irq_num = pf->msix_entries[base + vector].vector;
2237 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2238 irq_set_affinity_notifier(irq_num, NULL);
2239 irq_set_affinity_hint(irq_num, NULL);
2240 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2241 }
2242 return err;
2243}
2244
2245/**
2246 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2247 * @vsi: VSI to setup Tx rings used by XDP
2248 *
2249 * Return 0 on success and negative value on error
2250 */
2251static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2252{
2253 struct device *dev = ice_pf_to_dev(vsi->back);
2254 int i;
2255
2256 for (i = 0; i < vsi->num_xdp_txq; i++) {
2257 u16 xdp_q_idx = vsi->alloc_txq + i;
2258 struct ice_ring *xdp_ring;
2259
2260 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2261
2262 if (!xdp_ring)
2263 goto free_xdp_rings;
2264
2265 xdp_ring->q_index = xdp_q_idx;
2266 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2267 xdp_ring->ring_active = false;
2268 xdp_ring->vsi = vsi;
2269 xdp_ring->netdev = NULL;
2270 xdp_ring->dev = dev;
2271 xdp_ring->count = vsi->num_tx_desc;
2272 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2273 if (ice_setup_tx_ring(xdp_ring))
2274 goto free_xdp_rings;
2275 ice_set_ring_xdp(xdp_ring);
2276 xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
2277 }
2278
2279 return 0;
2280
2281free_xdp_rings:
2282 for (; i >= 0; i--)
2283 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2284 ice_free_tx_ring(vsi->xdp_rings[i]);
2285 return -ENOMEM;
2286}
2287
2288/**
2289 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2290 * @vsi: VSI to set the bpf prog on
2291 * @prog: the bpf prog pointer
2292 */
2293static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2294{
2295 struct bpf_prog *old_prog;
2296 int i;
2297
2298 old_prog = xchg(&vsi->xdp_prog, prog);
2299 if (old_prog)
2300 bpf_prog_put(old_prog);
2301
2302 ice_for_each_rxq(vsi, i)
2303 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2304}
2305
2306/**
2307 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2308 * @vsi: VSI to bring up Tx rings used by XDP
2309 * @prog: bpf program that will be assigned to VSI
2310 *
2311 * Return 0 on success and negative value on error
2312 */
2313int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2314{
2315 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2316 int xdp_rings_rem = vsi->num_xdp_txq;
2317 struct ice_pf *pf = vsi->back;
2318 struct ice_qs_cfg xdp_qs_cfg = {
2319 .qs_mutex = &pf->avail_q_mutex,
2320 .pf_map = pf->avail_txqs,
2321 .pf_map_size = pf->max_pf_txqs,
2322 .q_count = vsi->num_xdp_txq,
2323 .scatter_count = ICE_MAX_SCATTER_TXQS,
2324 .vsi_map = vsi->txq_map,
2325 .vsi_map_offset = vsi->alloc_txq,
2326 .mapping_mode = ICE_VSI_MAP_CONTIG
2327 };
2328 enum ice_status status;
2329 struct device *dev;
2330 int i, v_idx;
2331
2332 dev = ice_pf_to_dev(pf);
2333 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2334 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2335 if (!vsi->xdp_rings)
2336 return -ENOMEM;
2337
2338 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2339 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2340 goto err_map_xdp;
2341
2342 if (ice_xdp_alloc_setup_rings(vsi))
2343 goto clear_xdp_rings;
2344
2345 /* follow the logic from ice_vsi_map_rings_to_vectors */
2346 ice_for_each_q_vector(vsi, v_idx) {
2347 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2348 int xdp_rings_per_v, q_id, q_base;
2349
2350 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2351 vsi->num_q_vectors - v_idx);
2352 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2353
2354 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2355 struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2356
2357 xdp_ring->q_vector = q_vector;
2358 xdp_ring->next = q_vector->tx.ring;
2359 q_vector->tx.ring = xdp_ring;
2360 }
2361 xdp_rings_rem -= xdp_rings_per_v;
2362 }
2363
2364 /* omit the scheduler update if in reset path; XDP queues will be
2365 * taken into account at the end of ice_vsi_rebuild, where
2366 * ice_cfg_vsi_lan is being called
2367 */
2368 if (ice_is_reset_in_progress(pf->state))
2369 return 0;
2370
2371 /* tell the Tx scheduler that right now we have
2372 * additional queues
2373 */
2374 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2375 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2376
2377 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2378 max_txqs);
2379 if (status) {
2380 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2381 ice_stat_str(status));
2382 goto clear_xdp_rings;
2383 }
2384 ice_vsi_assign_bpf_prog(vsi, prog);
2385
2386 return 0;
2387clear_xdp_rings:
2388 for (i = 0; i < vsi->num_xdp_txq; i++)
2389 if (vsi->xdp_rings[i]) {
2390 kfree_rcu(vsi->xdp_rings[i], rcu);
2391 vsi->xdp_rings[i] = NULL;
2392 }
2393
2394err_map_xdp:
2395 mutex_lock(&pf->avail_q_mutex);
2396 for (i = 0; i < vsi->num_xdp_txq; i++) {
2397 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2398 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2399 }
2400 mutex_unlock(&pf->avail_q_mutex);
2401
2402 devm_kfree(dev, vsi->xdp_rings);
2403 return -ENOMEM;
2404}
2405
2406/**
2407 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2408 * @vsi: VSI to remove XDP rings
2409 *
2410 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2411 * resources
2412 */
2413int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2414{
2415 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2416 struct ice_pf *pf = vsi->back;
2417 int i, v_idx;
2418
2419 /* q_vectors are freed in reset path so there's no point in detaching
2420 * rings; in case of rebuild being triggered not from reset reset bits
2421 * in pf->state won't be set, so additionally check first q_vector
2422 * against NULL
2423 */
2424 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2425 goto free_qmap;
2426
2427 ice_for_each_q_vector(vsi, v_idx) {
2428 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2429 struct ice_ring *ring;
2430
2431 ice_for_each_ring(ring, q_vector->tx)
2432 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2433 break;
2434
2435 /* restore the value of last node prior to XDP setup */
2436 q_vector->tx.ring = ring;
2437 }
2438
2439free_qmap:
2440 mutex_lock(&pf->avail_q_mutex);
2441 for (i = 0; i < vsi->num_xdp_txq; i++) {
2442 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2443 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2444 }
2445 mutex_unlock(&pf->avail_q_mutex);
2446
2447 for (i = 0; i < vsi->num_xdp_txq; i++)
2448 if (vsi->xdp_rings[i]) {
2449 if (vsi->xdp_rings[i]->desc)
2450 ice_free_tx_ring(vsi->xdp_rings[i]);
2451 kfree_rcu(vsi->xdp_rings[i], rcu);
2452 vsi->xdp_rings[i] = NULL;
2453 }
2454
2455 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2456 vsi->xdp_rings = NULL;
2457
2458 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2459 return 0;
2460
2461 ice_vsi_assign_bpf_prog(vsi, NULL);
2462
2463 /* notify Tx scheduler that we destroyed XDP queues and bring
2464 * back the old number of child nodes
2465 */
2466 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2467 max_txqs[i] = vsi->num_txq;
2468
2469 /* change number of XDP Tx queues to 0 */
2470 vsi->num_xdp_txq = 0;
2471
2472 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2473 max_txqs);
2474}
2475
2476/**
2477 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2478 * @vsi: VSI to setup XDP for
2479 * @prog: XDP program
2480 * @extack: netlink extended ack
2481 */
2482static int
2483ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2484 struct netlink_ext_ack *extack)
2485{
2486 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2487 bool if_running = netif_running(vsi->netdev);
2488 int ret = 0, xdp_ring_err = 0;
2489
2490 if (frame_size > vsi->rx_buf_len) {
2491 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2492 return -EOPNOTSUPP;
2493 }
2494
2495 /* need to stop netdev while setting up the program for Rx rings */
2496 if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2497 ret = ice_down(vsi);
2498 if (ret) {
2499 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2500 return ret;
2501 }
2502 }
2503
2504 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2505 vsi->num_xdp_txq = vsi->alloc_rxq;
2506 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2507 if (xdp_ring_err)
2508 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2509 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2510 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2511 if (xdp_ring_err)
2512 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2513 } else {
2514 ice_vsi_assign_bpf_prog(vsi, prog);
2515 }
2516
2517 if (if_running)
2518 ret = ice_up(vsi);
2519
2520 if (!ret && prog && vsi->xsk_umems) {
2521 int i;
2522
2523 ice_for_each_rxq(vsi, i) {
2524 struct ice_ring *rx_ring = vsi->rx_rings[i];
2525
2526 if (rx_ring->xsk_umem)
2527 napi_schedule(&rx_ring->q_vector->napi);
2528 }
2529 }
2530
2531 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2532}
2533
2534/**
2535 * ice_xdp - implements XDP handler
2536 * @dev: netdevice
2537 * @xdp: XDP command
2538 */
2539static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2540{
2541 struct ice_netdev_priv *np = netdev_priv(dev);
2542 struct ice_vsi *vsi = np->vsi;
2543
2544 if (vsi->type != ICE_VSI_PF) {
2545 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2546 return -EINVAL;
2547 }
2548
2549 switch (xdp->command) {
2550 case XDP_SETUP_PROG:
2551 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2552 case XDP_SETUP_XSK_UMEM:
2553 return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
2554 xdp->xsk.queue_id);
2555 default:
2556 return -EINVAL;
2557 }
2558}
2559
2560/**
2561 * ice_ena_misc_vector - enable the non-queue interrupts
2562 * @pf: board private structure
2563 */
2564static void ice_ena_misc_vector(struct ice_pf *pf)
2565{
2566 struct ice_hw *hw = &pf->hw;
2567 u32 val;
2568
2569 /* Disable anti-spoof detection interrupt to prevent spurious event
2570 * interrupts during a function reset. Anti-spoof functionally is
2571 * still supported.
2572 */
2573 val = rd32(hw, GL_MDCK_TX_TDPU);
2574 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2575 wr32(hw, GL_MDCK_TX_TDPU, val);
2576
2577 /* clear things first */
2578 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2579 rd32(hw, PFINT_OICR); /* read to clear */
2580
2581 val = (PFINT_OICR_ECC_ERR_M |
2582 PFINT_OICR_MAL_DETECT_M |
2583 PFINT_OICR_GRST_M |
2584 PFINT_OICR_PCI_EXCEPTION_M |
2585 PFINT_OICR_VFLR_M |
2586 PFINT_OICR_HMC_ERR_M |
2587 PFINT_OICR_PE_CRITERR_M);
2588
2589 wr32(hw, PFINT_OICR_ENA, val);
2590
2591 /* SW_ITR_IDX = 0, but don't change INTENA */
2592 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2593 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2594}
2595
2596/**
2597 * ice_misc_intr - misc interrupt handler
2598 * @irq: interrupt number
2599 * @data: pointer to a q_vector
2600 */
2601static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2602{
2603 struct ice_pf *pf = (struct ice_pf *)data;
2604 struct ice_hw *hw = &pf->hw;
2605 irqreturn_t ret = IRQ_NONE;
2606 struct device *dev;
2607 u32 oicr, ena_mask;
2608
2609 dev = ice_pf_to_dev(pf);
2610 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2611 set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2612
2613 oicr = rd32(hw, PFINT_OICR);
2614 ena_mask = rd32(hw, PFINT_OICR_ENA);
2615
2616 if (oicr & PFINT_OICR_SWINT_M) {
2617 ena_mask &= ~PFINT_OICR_SWINT_M;
2618 pf->sw_int_count++;
2619 }
2620
2621 if (oicr & PFINT_OICR_MAL_DETECT_M) {
2622 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2623 set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2624 }
2625 if (oicr & PFINT_OICR_VFLR_M) {
2626 /* disable any further VFLR event notifications */
2627 if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2628 u32 reg = rd32(hw, PFINT_OICR_ENA);
2629
2630 reg &= ~PFINT_OICR_VFLR_M;
2631 wr32(hw, PFINT_OICR_ENA, reg);
2632 } else {
2633 ena_mask &= ~PFINT_OICR_VFLR_M;
2634 set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2635 }
2636 }
2637
2638 if (oicr & PFINT_OICR_GRST_M) {
2639 u32 reset;
2640
2641 /* we have a reset warning */
2642 ena_mask &= ~PFINT_OICR_GRST_M;
2643 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2644 GLGEN_RSTAT_RESET_TYPE_S;
2645
2646 if (reset == ICE_RESET_CORER)
2647 pf->corer_count++;
2648 else if (reset == ICE_RESET_GLOBR)
2649 pf->globr_count++;
2650 else if (reset == ICE_RESET_EMPR)
2651 pf->empr_count++;
2652 else
2653 dev_dbg(dev, "Invalid reset type %d\n", reset);
2654
2655 /* If a reset cycle isn't already in progress, we set a bit in
2656 * pf->state so that the service task can start a reset/rebuild.
2657 * We also make note of which reset happened so that peer
2658 * devices/drivers can be informed.
2659 */
2660 if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2661 if (reset == ICE_RESET_CORER)
2662 set_bit(__ICE_CORER_RECV, pf->state);
2663 else if (reset == ICE_RESET_GLOBR)
2664 set_bit(__ICE_GLOBR_RECV, pf->state);
2665 else
2666 set_bit(__ICE_EMPR_RECV, pf->state);
2667
2668 /* There are couple of different bits at play here.
2669 * hw->reset_ongoing indicates whether the hardware is
2670 * in reset. This is set to true when a reset interrupt
2671 * is received and set back to false after the driver
2672 * has determined that the hardware is out of reset.
2673 *
2674 * __ICE_RESET_OICR_RECV in pf->state indicates
2675 * that a post reset rebuild is required before the
2676 * driver is operational again. This is set above.
2677 *
2678 * As this is the start of the reset/rebuild cycle, set
2679 * both to indicate that.
2680 */
2681 hw->reset_ongoing = true;
2682 }
2683 }
2684
2685 if (oicr & PFINT_OICR_HMC_ERR_M) {
2686 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2687 dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2688 rd32(hw, PFHMC_ERRORINFO),
2689 rd32(hw, PFHMC_ERRORDATA));
2690 }
2691
2692 /* Report any remaining unexpected interrupts */
2693 oicr &= ena_mask;
2694 if (oicr) {
2695 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2696 /* If a critical error is pending there is no choice but to
2697 * reset the device.
2698 */
2699 if (oicr & (PFINT_OICR_PE_CRITERR_M |
2700 PFINT_OICR_PCI_EXCEPTION_M |
2701 PFINT_OICR_ECC_ERR_M)) {
2702 set_bit(__ICE_PFR_REQ, pf->state);
2703 ice_service_task_schedule(pf);
2704 }
2705 }
2706 ret = IRQ_HANDLED;
2707
2708 ice_service_task_schedule(pf);
2709 ice_irq_dynamic_ena(hw, NULL, NULL);
2710
2711 return ret;
2712}
2713
2714/**
2715 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2716 * @hw: pointer to HW structure
2717 */
2718static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2719{
2720 /* disable Admin queue Interrupt causes */
2721 wr32(hw, PFINT_FW_CTL,
2722 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2723
2724 /* disable Mailbox queue Interrupt causes */
2725 wr32(hw, PFINT_MBX_CTL,
2726 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2727
2728 /* disable Control queue Interrupt causes */
2729 wr32(hw, PFINT_OICR_CTL,
2730 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2731
2732 ice_flush(hw);
2733}
2734
2735/**
2736 * ice_free_irq_msix_misc - Unroll misc vector setup
2737 * @pf: board private structure
2738 */
2739static void ice_free_irq_msix_misc(struct ice_pf *pf)
2740{
2741 struct ice_hw *hw = &pf->hw;
2742
2743 ice_dis_ctrlq_interrupts(hw);
2744
2745 /* disable OICR interrupt */
2746 wr32(hw, PFINT_OICR_ENA, 0);
2747 ice_flush(hw);
2748
2749 if (pf->msix_entries) {
2750 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2751 devm_free_irq(ice_pf_to_dev(pf),
2752 pf->msix_entries[pf->oicr_idx].vector, pf);
2753 }
2754
2755 pf->num_avail_sw_msix += 1;
2756 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2757}
2758
2759/**
2760 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2761 * @hw: pointer to HW structure
2762 * @reg_idx: HW vector index to associate the control queue interrupts with
2763 */
2764static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2765{
2766 u32 val;
2767
2768 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2769 PFINT_OICR_CTL_CAUSE_ENA_M);
2770 wr32(hw, PFINT_OICR_CTL, val);
2771
2772 /* enable Admin queue Interrupt causes */
2773 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2774 PFINT_FW_CTL_CAUSE_ENA_M);
2775 wr32(hw, PFINT_FW_CTL, val);
2776
2777 /* enable Mailbox queue Interrupt causes */
2778 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2779 PFINT_MBX_CTL_CAUSE_ENA_M);
2780 wr32(hw, PFINT_MBX_CTL, val);
2781
2782 ice_flush(hw);
2783}
2784
2785/**
2786 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2787 * @pf: board private structure
2788 *
2789 * This sets up the handler for MSIX 0, which is used to manage the
2790 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2791 * when in MSI or Legacy interrupt mode.
2792 */
2793static int ice_req_irq_msix_misc(struct ice_pf *pf)
2794{
2795 struct device *dev = ice_pf_to_dev(pf);
2796 struct ice_hw *hw = &pf->hw;
2797 int oicr_idx, err = 0;
2798
2799 if (!pf->int_name[0])
2800 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2801 dev_driver_string(dev), dev_name(dev));
2802
2803 /* Do not request IRQ but do enable OICR interrupt since settings are
2804 * lost during reset. Note that this function is called only during
2805 * rebuild path and not while reset is in progress.
2806 */
2807 if (ice_is_reset_in_progress(pf->state))
2808 goto skip_req_irq;
2809
2810 /* reserve one vector in irq_tracker for misc interrupts */
2811 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2812 if (oicr_idx < 0)
2813 return oicr_idx;
2814
2815 pf->num_avail_sw_msix -= 1;
2816 pf->oicr_idx = (u16)oicr_idx;
2817
2818 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2819 ice_misc_intr, 0, pf->int_name, pf);
2820 if (err) {
2821 dev_err(dev, "devm_request_irq for %s failed: %d\n",
2822 pf->int_name, err);
2823 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2824 pf->num_avail_sw_msix += 1;
2825 return err;
2826 }
2827
2828skip_req_irq:
2829 ice_ena_misc_vector(pf);
2830
2831 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2832 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2833 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2834
2835 ice_flush(hw);
2836 ice_irq_dynamic_ena(hw, NULL, NULL);
2837
2838 return 0;
2839}
2840
2841/**
2842 * ice_napi_add - register NAPI handler for the VSI
2843 * @vsi: VSI for which NAPI handler is to be registered
2844 *
2845 * This function is only called in the driver's load path. Registering the NAPI
2846 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2847 * reset/rebuild, etc.)
2848 */
2849static void ice_napi_add(struct ice_vsi *vsi)
2850{
2851 int v_idx;
2852
2853 if (!vsi->netdev)
2854 return;
2855
2856 ice_for_each_q_vector(vsi, v_idx)
2857 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2858 ice_napi_poll, NAPI_POLL_WEIGHT);
2859}
2860
2861/**
2862 * ice_set_ops - set netdev and ethtools ops for the given netdev
2863 * @netdev: netdev instance
2864 */
2865static void ice_set_ops(struct net_device *netdev)
2866{
2867 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2868
2869 if (ice_is_safe_mode(pf)) {
2870 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2871 ice_set_ethtool_safe_mode_ops(netdev);
2872 return;
2873 }
2874
2875 netdev->netdev_ops = &ice_netdev_ops;
2876 ice_set_ethtool_ops(netdev);
2877}
2878
2879/**
2880 * ice_set_netdev_features - set features for the given netdev
2881 * @netdev: netdev instance
2882 */
2883static void ice_set_netdev_features(struct net_device *netdev)
2884{
2885 struct ice_pf *pf = ice_netdev_to_pf(netdev);
2886 netdev_features_t csumo_features;
2887 netdev_features_t vlano_features;
2888 netdev_features_t dflt_features;
2889 netdev_features_t tso_features;
2890
2891 if (ice_is_safe_mode(pf)) {
2892 /* safe mode */
2893 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2894 netdev->hw_features = netdev->features;
2895 return;
2896 }
2897
2898 dflt_features = NETIF_F_SG |
2899 NETIF_F_HIGHDMA |
2900 NETIF_F_NTUPLE |
2901 NETIF_F_RXHASH;
2902
2903 csumo_features = NETIF_F_RXCSUM |
2904 NETIF_F_IP_CSUM |
2905 NETIF_F_SCTP_CRC |
2906 NETIF_F_IPV6_CSUM;
2907
2908 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2909 NETIF_F_HW_VLAN_CTAG_TX |
2910 NETIF_F_HW_VLAN_CTAG_RX;
2911
2912 tso_features = NETIF_F_TSO |
2913 NETIF_F_TSO_ECN |
2914 NETIF_F_TSO6 |
2915 NETIF_F_GSO_GRE |
2916 NETIF_F_GSO_UDP_TUNNEL |
2917 NETIF_F_GSO_GRE_CSUM |
2918 NETIF_F_GSO_UDP_TUNNEL_CSUM |
2919 NETIF_F_GSO_PARTIAL |
2920 NETIF_F_GSO_IPXIP4 |
2921 NETIF_F_GSO_IPXIP6 |
2922 NETIF_F_GSO_UDP_L4;
2923
2924 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2925 NETIF_F_GSO_GRE_CSUM;
2926 /* set features that user can change */
2927 netdev->hw_features = dflt_features | csumo_features |
2928 vlano_features | tso_features;
2929
2930 /* add support for HW_CSUM on packets with MPLS header */
2931 netdev->mpls_features = NETIF_F_HW_CSUM;
2932
2933 /* enable features */
2934 netdev->features |= netdev->hw_features;
2935 /* encap and VLAN devices inherit default, csumo and tso features */
2936 netdev->hw_enc_features |= dflt_features | csumo_features |
2937 tso_features;
2938 netdev->vlan_features |= dflt_features | csumo_features |
2939 tso_features;
2940}
2941
2942/**
2943 * ice_cfg_netdev - Allocate, configure and register a netdev
2944 * @vsi: the VSI associated with the new netdev
2945 *
2946 * Returns 0 on success, negative value on failure
2947 */
2948static int ice_cfg_netdev(struct ice_vsi *vsi)
2949{
2950 struct ice_pf *pf = vsi->back;
2951 struct ice_netdev_priv *np;
2952 struct net_device *netdev;
2953 u8 mac_addr[ETH_ALEN];
2954 int err;
2955
2956 err = ice_devlink_create_port(pf);
2957 if (err)
2958 return err;
2959
2960 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2961 vsi->alloc_rxq);
2962 if (!netdev) {
2963 err = -ENOMEM;
2964 goto err_destroy_devlink_port;
2965 }
2966
2967 vsi->netdev = netdev;
2968 np = netdev_priv(netdev);
2969 np->vsi = vsi;
2970
2971 ice_set_netdev_features(netdev);
2972
2973 ice_set_ops(netdev);
2974
2975 if (vsi->type == ICE_VSI_PF) {
2976 SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2977 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2978 ether_addr_copy(netdev->dev_addr, mac_addr);
2979 ether_addr_copy(netdev->perm_addr, mac_addr);
2980 }
2981
2982 netdev->priv_flags |= IFF_UNICAST_FLT;
2983
2984 /* Setup netdev TC information */
2985 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2986
2987 /* setup watchdog timeout value to be 5 second */
2988 netdev->watchdog_timeo = 5 * HZ;
2989
2990 netdev->min_mtu = ETH_MIN_MTU;
2991 netdev->max_mtu = ICE_MAX_MTU;
2992
2993 err = register_netdev(vsi->netdev);
2994 if (err)
2995 goto err_free_netdev;
2996
2997 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
2998
2999 netif_carrier_off(vsi->netdev);
3000
3001 /* make sure transmit queues start off as stopped */
3002 netif_tx_stop_all_queues(vsi->netdev);
3003
3004 return 0;
3005
3006err_free_netdev:
3007 free_netdev(vsi->netdev);
3008 vsi->netdev = NULL;
3009err_destroy_devlink_port:
3010 ice_devlink_destroy_port(pf);
3011 return err;
3012}
3013
3014/**
3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3016 * @lut: Lookup table
3017 * @rss_table_size: Lookup table size
3018 * @rss_size: Range of queue number for hashing
3019 */
3020void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3021{
3022 u16 i;
3023
3024 for (i = 0; i < rss_table_size; i++)
3025 lut[i] = i % rss_size;
3026}
3027
3028/**
3029 * ice_pf_vsi_setup - Set up a PF VSI
3030 * @pf: board private structure
3031 * @pi: pointer to the port_info instance
3032 *
3033 * Returns pointer to the successfully allocated VSI software struct
3034 * on success, otherwise returns NULL on failure.
3035 */
3036static struct ice_vsi *
3037ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3038{
3039 return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3040}
3041
3042/**
3043 * ice_ctrl_vsi_setup - Set up a control VSI
3044 * @pf: board private structure
3045 * @pi: pointer to the port_info instance
3046 *
3047 * Returns pointer to the successfully allocated VSI software struct
3048 * on success, otherwise returns NULL on failure.
3049 */
3050static struct ice_vsi *
3051ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3052{
3053 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3054}
3055
3056/**
3057 * ice_lb_vsi_setup - Set up a loopback VSI
3058 * @pf: board private structure
3059 * @pi: pointer to the port_info instance
3060 *
3061 * Returns pointer to the successfully allocated VSI software struct
3062 * on success, otherwise returns NULL on failure.
3063 */
3064struct ice_vsi *
3065ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3066{
3067 return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3068}
3069
3070/**
3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3072 * @netdev: network interface to be adjusted
3073 * @proto: unused protocol
3074 * @vid: VLAN ID to be added
3075 *
3076 * net_device_ops implementation for adding VLAN IDs
3077 */
3078static int
3079ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3080 u16 vid)
3081{
3082 struct ice_netdev_priv *np = netdev_priv(netdev);
3083 struct ice_vsi *vsi = np->vsi;
3084 int ret;
3085
3086 if (vid >= VLAN_N_VID) {
3087 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3088 vid, VLAN_N_VID);
3089 return -EINVAL;
3090 }
3091
3092 if (vsi->info.pvid)
3093 return -EINVAL;
3094
3095 /* VLAN 0 is added by default during load/reset */
3096 if (!vid)
3097 return 0;
3098
3099 /* Enable VLAN pruning when a VLAN other than 0 is added */
3100 if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3101 ret = ice_cfg_vlan_pruning(vsi, true, false);
3102 if (ret)
3103 return ret;
3104 }
3105
3106 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3107 * packets aren't pruned by the device's internal switch on Rx
3108 */
3109 ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3110 if (!ret) {
3111 vsi->vlan_ena = true;
3112 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3113 }
3114
3115 return ret;
3116}
3117
3118/**
3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3120 * @netdev: network interface to be adjusted
3121 * @proto: unused protocol
3122 * @vid: VLAN ID to be removed
3123 *
3124 * net_device_ops implementation for removing VLAN IDs
3125 */
3126static int
3127ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3128 u16 vid)
3129{
3130 struct ice_netdev_priv *np = netdev_priv(netdev);
3131 struct ice_vsi *vsi = np->vsi;
3132 int ret;
3133
3134 if (vsi->info.pvid)
3135 return -EINVAL;
3136
3137 /* don't allow removal of VLAN 0 */
3138 if (!vid)
3139 return 0;
3140
3141 /* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3142 * information
3143 */
3144 ret = ice_vsi_kill_vlan(vsi, vid);
3145 if (ret)
3146 return ret;
3147
3148 /* Disable pruning when VLAN 0 is the only VLAN rule */
3149 if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3150 ret = ice_cfg_vlan_pruning(vsi, false, false);
3151
3152 vsi->vlan_ena = false;
3153 set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3154 return ret;
3155}
3156
3157/**
3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3159 * @pf: board private structure
3160 *
3161 * Returns 0 on success, negative value on failure
3162 */
3163static int ice_setup_pf_sw(struct ice_pf *pf)
3164{
3165 struct ice_vsi *vsi;
3166 int status = 0;
3167
3168 if (ice_is_reset_in_progress(pf->state))
3169 return -EBUSY;
3170
3171 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3172 if (!vsi)
3173 return -ENOMEM;
3174
3175 status = ice_cfg_netdev(vsi);
3176 if (status) {
3177 status = -ENODEV;
3178 goto unroll_vsi_setup;
3179 }
3180 /* netdev has to be configured before setting frame size */
3181 ice_vsi_cfg_frame_size(vsi);
3182
3183 /* Setup DCB netlink interface */
3184 ice_dcbnl_setup(vsi);
3185
3186 /* registering the NAPI handler requires both the queues and
3187 * netdev to be created, which are done in ice_pf_vsi_setup()
3188 * and ice_cfg_netdev() respectively
3189 */
3190 ice_napi_add(vsi);
3191
3192 status = ice_set_cpu_rx_rmap(vsi);
3193 if (status) {
3194 dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3195 vsi->vsi_num, status);
3196 status = -EINVAL;
3197 goto unroll_napi_add;
3198 }
3199 status = ice_init_mac_fltr(pf);
3200 if (status)
3201 goto free_cpu_rx_map;
3202
3203 return status;
3204
3205free_cpu_rx_map:
3206 ice_free_cpu_rx_rmap(vsi);
3207
3208unroll_napi_add:
3209 if (vsi) {
3210 ice_napi_del(vsi);
3211 if (vsi->netdev) {
3212 if (vsi->netdev->reg_state == NETREG_REGISTERED)
3213 unregister_netdev(vsi->netdev);
3214 free_netdev(vsi->netdev);
3215 vsi->netdev = NULL;
3216 }
3217 }
3218
3219unroll_vsi_setup:
3220 ice_vsi_release(vsi);
3221 return status;
3222}
3223
3224/**
3225 * ice_get_avail_q_count - Get count of queues in use
3226 * @pf_qmap: bitmap to get queue use count from
3227 * @lock: pointer to a mutex that protects access to pf_qmap
3228 * @size: size of the bitmap
3229 */
3230static u16
3231ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3232{
3233 unsigned long bit;
3234 u16 count = 0;
3235
3236 mutex_lock(lock);
3237 for_each_clear_bit(bit, pf_qmap, size)
3238 count++;
3239 mutex_unlock(lock);
3240
3241 return count;
3242}
3243
3244/**
3245 * ice_get_avail_txq_count - Get count of Tx queues in use
3246 * @pf: pointer to an ice_pf instance
3247 */
3248u16 ice_get_avail_txq_count(struct ice_pf *pf)
3249{
3250 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3251 pf->max_pf_txqs);
3252}
3253
3254/**
3255 * ice_get_avail_rxq_count - Get count of Rx queues in use
3256 * @pf: pointer to an ice_pf instance
3257 */
3258u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3259{
3260 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3261 pf->max_pf_rxqs);
3262}
3263
3264/**
3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3266 * @pf: board private structure to initialize
3267 */
3268static void ice_deinit_pf(struct ice_pf *pf)
3269{
3270 ice_service_task_stop(pf);
3271 mutex_destroy(&pf->sw_mutex);
3272 mutex_destroy(&pf->tc_mutex);
3273 mutex_destroy(&pf->avail_q_mutex);
3274
3275 if (pf->avail_txqs) {
3276 bitmap_free(pf->avail_txqs);
3277 pf->avail_txqs = NULL;
3278 }
3279
3280 if (pf->avail_rxqs) {
3281 bitmap_free(pf->avail_rxqs);
3282 pf->avail_rxqs = NULL;
3283 }
3284}
3285
3286/**
3287 * ice_set_pf_caps - set PFs capability flags
3288 * @pf: pointer to the PF instance
3289 */
3290static void ice_set_pf_caps(struct ice_pf *pf)
3291{
3292 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3293
3294 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3295 if (func_caps->common_cap.dcb)
3296 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3297 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3298 if (func_caps->common_cap.sr_iov_1_1) {
3299 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3300 pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3301 ICE_MAX_VF_COUNT);
3302 }
3303 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3304 if (func_caps->common_cap.rss_table_size)
3305 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3306
3307 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3308 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3309 u16 unused;
3310
3311 /* ctrl_vsi_idx will be set to a valid value when flow director
3312 * is setup by ice_init_fdir
3313 */
3314 pf->ctrl_vsi_idx = ICE_NO_VSI;
3315 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3316 /* force guaranteed filter pool for PF */
3317 ice_alloc_fd_guar_item(&pf->hw, &unused,
3318 func_caps->fd_fltr_guar);
3319 /* force shared filter pool for PF */
3320 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3321 func_caps->fd_fltr_best_effort);
3322 }
3323
3324 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3325 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3326}
3327
3328/**
3329 * ice_init_pf - Initialize general software structures (struct ice_pf)
3330 * @pf: board private structure to initialize
3331 */
3332static int ice_init_pf(struct ice_pf *pf)
3333{
3334 ice_set_pf_caps(pf);
3335
3336 mutex_init(&pf->sw_mutex);
3337 mutex_init(&pf->tc_mutex);
3338
3339 INIT_HLIST_HEAD(&pf->aq_wait_list);
3340 spin_lock_init(&pf->aq_wait_lock);
3341 init_waitqueue_head(&pf->aq_wait_queue);
3342
3343 /* setup service timer and periodic service task */
3344 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3345 pf->serv_tmr_period = HZ;
3346 INIT_WORK(&pf->serv_task, ice_service_task);
3347 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3348
3349 mutex_init(&pf->avail_q_mutex);
3350 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3351 if (!pf->avail_txqs)
3352 return -ENOMEM;
3353
3354 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3355 if (!pf->avail_rxqs) {
3356 devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3357 pf->avail_txqs = NULL;
3358 return -ENOMEM;
3359 }
3360
3361 return 0;
3362}
3363
3364/**
3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3366 * @pf: board private structure
3367 *
3368 * compute the number of MSIX vectors required (v_budget) and request from
3369 * the OS. Return the number of vectors reserved or negative on failure
3370 */
3371static int ice_ena_msix_range(struct ice_pf *pf)
3372{
3373 struct device *dev = ice_pf_to_dev(pf);
3374 int v_left, v_actual, v_budget = 0;
3375 int needed, err, i;
3376
3377 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3378
3379 /* reserve one vector for miscellaneous handler */
3380 needed = 1;
3381 if (v_left < needed)
3382 goto no_hw_vecs_left_err;
3383 v_budget += needed;
3384 v_left -= needed;
3385
3386 /* reserve vectors for LAN traffic */
3387 needed = min_t(int, num_online_cpus(), v_left);
3388 if (v_left < needed)
3389 goto no_hw_vecs_left_err;
3390 pf->num_lan_msix = needed;
3391 v_budget += needed;
3392 v_left -= needed;
3393
3394 /* reserve one vector for flow director */
3395 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3396 needed = ICE_FDIR_MSIX;
3397 if (v_left < needed)
3398 goto no_hw_vecs_left_err;
3399 v_budget += needed;
3400 v_left -= needed;
3401 }
3402
3403 pf->msix_entries = devm_kcalloc(dev, v_budget,
3404 sizeof(*pf->msix_entries), GFP_KERNEL);
3405
3406 if (!pf->msix_entries) {
3407 err = -ENOMEM;
3408 goto exit_err;
3409 }
3410
3411 for (i = 0; i < v_budget; i++)
3412 pf->msix_entries[i].entry = i;
3413
3414 /* actually reserve the vectors */
3415 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3416 ICE_MIN_MSIX, v_budget);
3417
3418 if (v_actual < 0) {
3419 dev_err(dev, "unable to reserve MSI-X vectors\n");
3420 err = v_actual;
3421 goto msix_err;
3422 }
3423
3424 if (v_actual < v_budget) {
3425 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3426 v_budget, v_actual);
3427/* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3428#define ICE_MIN_LAN_VECS 2
3429#define ICE_MIN_RDMA_VECS 2
3430#define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3431
3432 if (v_actual < ICE_MIN_LAN_VECS) {
3433 /* error if we can't get minimum vectors */
3434 pci_disable_msix(pf->pdev);
3435 err = -ERANGE;
3436 goto msix_err;
3437 } else {
3438 pf->num_lan_msix = ICE_MIN_LAN_VECS;
3439 }
3440 }
3441
3442 return v_actual;
3443
3444msix_err:
3445 devm_kfree(dev, pf->msix_entries);
3446 goto exit_err;
3447
3448no_hw_vecs_left_err:
3449 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3450 needed, v_left);
3451 err = -ERANGE;
3452exit_err:
3453 pf->num_lan_msix = 0;
3454 return err;
3455}
3456
3457/**
3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3459 * @pf: board private structure
3460 */
3461static void ice_dis_msix(struct ice_pf *pf)
3462{
3463 pci_disable_msix(pf->pdev);
3464 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3465 pf->msix_entries = NULL;
3466}
3467
3468/**
3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3470 * @pf: board private structure
3471 */
3472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3473{
3474 ice_dis_msix(pf);
3475
3476 if (pf->irq_tracker) {
3477 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3478 pf->irq_tracker = NULL;
3479 }
3480}
3481
3482/**
3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3484 * @pf: board private structure to initialize
3485 */
3486static int ice_init_interrupt_scheme(struct ice_pf *pf)
3487{
3488 int vectors;
3489
3490 vectors = ice_ena_msix_range(pf);
3491
3492 if (vectors < 0)
3493 return vectors;
3494
3495 /* set up vector assignment tracking */
3496 pf->irq_tracker =
3497 devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3498 (sizeof(u16) * vectors), GFP_KERNEL);
3499 if (!pf->irq_tracker) {
3500 ice_dis_msix(pf);
3501 return -ENOMEM;
3502 }
3503
3504 /* populate SW interrupts pool with number of OS granted IRQs. */
3505 pf->num_avail_sw_msix = (u16)vectors;
3506 pf->irq_tracker->num_entries = (u16)vectors;
3507 pf->irq_tracker->end = pf->irq_tracker->num_entries;
3508
3509 return 0;
3510}
3511
3512/**
3513 * ice_is_wol_supported - get NVM state of WoL
3514 * @pf: board private structure
3515 *
3516 * Check if WoL is supported based on the HW configuration.
3517 * Returns true if NVM supports and enables WoL for this port, false otherwise
3518 */
3519bool ice_is_wol_supported(struct ice_pf *pf)
3520{
3521 struct ice_hw *hw = &pf->hw;
3522 u16 wol_ctrl;
3523
3524 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3525 * word) indicates WoL is not supported on the corresponding PF ID.
3526 */
3527 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3528 return false;
3529
3530 return !(BIT(hw->pf_id) & wol_ctrl);
3531}
3532
3533/**
3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3535 * @vsi: VSI being changed
3536 * @new_rx: new number of Rx queues
3537 * @new_tx: new number of Tx queues
3538 *
3539 * Only change the number of queues if new_tx, or new_rx is non-0.
3540 *
3541 * Returns 0 on success.
3542 */
3543int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3544{
3545 struct ice_pf *pf = vsi->back;
3546 int err = 0, timeout = 50;
3547
3548 if (!new_rx && !new_tx)
3549 return -EINVAL;
3550
3551 while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3552 timeout--;
3553 if (!timeout)
3554 return -EBUSY;
3555 usleep_range(1000, 2000);
3556 }
3557
3558 if (new_tx)
3559 vsi->req_txq = (u16)new_tx;
3560 if (new_rx)
3561 vsi->req_rxq = (u16)new_rx;
3562
3563 /* set for the next time the netdev is started */
3564 if (!netif_running(vsi->netdev)) {
3565 ice_vsi_rebuild(vsi, false);
3566 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3567 goto done;
3568 }
3569
3570 ice_vsi_close(vsi);
3571 ice_vsi_rebuild(vsi, false);
3572 ice_pf_dcb_recfg(pf);
3573 ice_vsi_open(vsi);
3574done:
3575 clear_bit(__ICE_CFG_BUSY, pf->state);
3576 return err;
3577}
3578
3579/**
3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3581 * @pf: PF to configure
3582 *
3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3584 * VSI can still Tx/Rx VLAN tagged packets.
3585 */
3586static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3587{
3588 struct ice_vsi *vsi = ice_get_main_vsi(pf);
3589 struct ice_vsi_ctx *ctxt;
3590 enum ice_status status;
3591 struct ice_hw *hw;
3592
3593 if (!vsi)
3594 return;
3595
3596 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3597 if (!ctxt)
3598 return;
3599
3600 hw = &pf->hw;
3601 ctxt->info = vsi->info;
3602
3603 ctxt->info.valid_sections =
3604 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3605 ICE_AQ_VSI_PROP_SECURITY_VALID |
3606 ICE_AQ_VSI_PROP_SW_VALID);
3607
3608 /* disable VLAN anti-spoof */
3609 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3610 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3611
3612 /* disable VLAN pruning and keep all other settings */
3613 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3614
3615 /* allow all VLANs on Tx and don't strip on Rx */
3616 ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3617 ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3618
3619 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3620 if (status) {
3621 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3622 ice_stat_str(status),
3623 ice_aq_str(hw->adminq.sq_last_status));
3624 } else {
3625 vsi->info.sec_flags = ctxt->info.sec_flags;
3626 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3627 vsi->info.vlan_flags = ctxt->info.vlan_flags;
3628 }
3629
3630 kfree(ctxt);
3631}
3632
3633/**
3634 * ice_log_pkg_init - log result of DDP package load
3635 * @hw: pointer to hardware info
3636 * @status: status of package load
3637 */
3638static void
3639ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3640{
3641 struct ice_pf *pf = (struct ice_pf *)hw->back;
3642 struct device *dev = ice_pf_to_dev(pf);
3643
3644 switch (*status) {
3645 case ICE_SUCCESS:
3646 /* The package download AdminQ command returned success because
3647 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3648 * already a package loaded on the device.
3649 */
3650 if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3651 hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3652 hw->pkg_ver.update == hw->active_pkg_ver.update &&
3653 hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3654 !memcmp(hw->pkg_name, hw->active_pkg_name,
3655 sizeof(hw->pkg_name))) {
3656 if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3657 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3658 hw->active_pkg_name,
3659 hw->active_pkg_ver.major,
3660 hw->active_pkg_ver.minor,
3661 hw->active_pkg_ver.update,
3662 hw->active_pkg_ver.draft);
3663 else
3664 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3665 hw->active_pkg_name,
3666 hw->active_pkg_ver.major,
3667 hw->active_pkg_ver.minor,
3668 hw->active_pkg_ver.update,
3669 hw->active_pkg_ver.draft);
3670 } else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3671 hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3672 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
3673 hw->active_pkg_name,
3674 hw->active_pkg_ver.major,
3675 hw->active_pkg_ver.minor,
3676 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3677 *status = ICE_ERR_NOT_SUPPORTED;
3678 } else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3679 hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3680 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3681 hw->active_pkg_name,
3682 hw->active_pkg_ver.major,
3683 hw->active_pkg_ver.minor,
3684 hw->active_pkg_ver.update,
3685 hw->active_pkg_ver.draft,
3686 hw->pkg_name,
3687 hw->pkg_ver.major,
3688 hw->pkg_ver.minor,
3689 hw->pkg_ver.update,
3690 hw->pkg_ver.draft);
3691 } else {
3692 dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system. If the problem persists, update the NVM. Entering Safe Mode.\n");
3693 *status = ICE_ERR_NOT_SUPPORTED;
3694 }
3695 break;
3696 case ICE_ERR_FW_DDP_MISMATCH:
3697 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
3698 break;
3699 case ICE_ERR_BUF_TOO_SHORT:
3700 case ICE_ERR_CFG:
3701 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3702 break;
3703 case ICE_ERR_NOT_SUPPORTED:
3704 /* Package File version not supported */
3705 if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3706 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3707 hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3708 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
3709 else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3710 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3711 hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3712 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
3713 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3714 break;
3715 case ICE_ERR_AQ_ERROR:
3716 switch (hw->pkg_dwnld_status) {
3717 case ICE_AQ_RC_ENOSEC:
3718 case ICE_AQ_RC_EBADSIG:
3719 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
3720 return;
3721 case ICE_AQ_RC_ESVN:
3722 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
3723 return;
3724 case ICE_AQ_RC_EBADMAN:
3725 case ICE_AQ_RC_EBADBUF:
3726 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
3727 /* poll for reset to complete */
3728 if (ice_check_reset(hw))
3729 dev_err(dev, "Error resetting device. Please reload the driver\n");
3730 return;
3731 default:
3732 break;
3733 }
3734 fallthrough;
3735 default:
3736 dev_err(dev, "An unknown error (%d) occurred when loading the DDP package. Entering Safe Mode.\n",
3737 *status);
3738 break;
3739 }
3740}
3741
3742/**
3743 * ice_load_pkg - load/reload the DDP Package file
3744 * @firmware: firmware structure when firmware requested or NULL for reload
3745 * @pf: pointer to the PF instance
3746 *
3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3748 * initialize HW tables.
3749 */
3750static void
3751ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3752{
3753 enum ice_status status = ICE_ERR_PARAM;
3754 struct device *dev = ice_pf_to_dev(pf);
3755 struct ice_hw *hw = &pf->hw;
3756
3757 /* Load DDP Package */
3758 if (firmware && !hw->pkg_copy) {
3759 status = ice_copy_and_init_pkg(hw, firmware->data,
3760 firmware->size);
3761 ice_log_pkg_init(hw, &status);
3762 } else if (!firmware && hw->pkg_copy) {
3763 /* Reload package during rebuild after CORER/GLOBR reset */
3764 status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3765 ice_log_pkg_init(hw, &status);
3766 } else {
3767 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3768 }
3769
3770 if (status) {
3771 /* Safe Mode */
3772 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3773 return;
3774 }
3775
3776 /* Successful download package is the precondition for advanced
3777 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3778 */
3779 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3780}
3781
3782/**
3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3784 * @pf: pointer to the PF structure
3785 *
3786 * There is no error returned here because the driver should be able to handle
3787 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3788 * specifically with Tx.
3789 */
3790static void ice_verify_cacheline_size(struct ice_pf *pf)
3791{
3792 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3793 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3794 ICE_CACHE_LINE_BYTES);
3795}
3796
3797/**
3798 * ice_send_version - update firmware with driver version
3799 * @pf: PF struct
3800 *
3801 * Returns ICE_SUCCESS on success, else error code
3802 */
3803static enum ice_status ice_send_version(struct ice_pf *pf)
3804{
3805 struct ice_driver_ver dv;
3806
3807 dv.major_ver = 0xff;
3808 dv.minor_ver = 0xff;
3809 dv.build_ver = 0xff;
3810 dv.subbuild_ver = 0;
3811 strscpy((char *)dv.driver_string, UTS_RELEASE,
3812 sizeof(dv.driver_string));
3813 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3814}
3815
3816/**
3817 * ice_init_fdir - Initialize flow director VSI and configuration
3818 * @pf: pointer to the PF instance
3819 *
3820 * returns 0 on success, negative on error
3821 */
3822static int ice_init_fdir(struct ice_pf *pf)
3823{
3824 struct device *dev = ice_pf_to_dev(pf);
3825 struct ice_vsi *ctrl_vsi;
3826 int err;
3827
3828 /* Side Band Flow Director needs to have a control VSI.
3829 * Allocate it and store it in the PF.
3830 */
3831 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3832 if (!ctrl_vsi) {
3833 dev_dbg(dev, "could not create control VSI\n");
3834 return -ENOMEM;
3835 }
3836
3837 err = ice_vsi_open_ctrl(ctrl_vsi);
3838 if (err) {
3839 dev_dbg(dev, "could not open control VSI\n");
3840 goto err_vsi_open;
3841 }
3842
3843 mutex_init(&pf->hw.fdir_fltr_lock);
3844
3845 err = ice_fdir_create_dflt_rules(pf);
3846 if (err)
3847 goto err_fdir_rule;
3848
3849 return 0;
3850
3851err_fdir_rule:
3852 ice_fdir_release_flows(&pf->hw);
3853 ice_vsi_close(ctrl_vsi);
3854err_vsi_open:
3855 ice_vsi_release(ctrl_vsi);
3856 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3857 pf->vsi[pf->ctrl_vsi_idx] = NULL;
3858 pf->ctrl_vsi_idx = ICE_NO_VSI;
3859 }
3860 return err;
3861}
3862
3863/**
3864 * ice_get_opt_fw_name - return optional firmware file name or NULL
3865 * @pf: pointer to the PF instance
3866 */
3867static char *ice_get_opt_fw_name(struct ice_pf *pf)
3868{
3869 /* Optional firmware name same as default with additional dash
3870 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3871 */
3872 struct pci_dev *pdev = pf->pdev;
3873 char *opt_fw_filename;
3874 u64 dsn;
3875
3876 /* Determine the name of the optional file using the DSN (two
3877 * dwords following the start of the DSN Capability).
3878 */
3879 dsn = pci_get_dsn(pdev);
3880 if (!dsn)
3881 return NULL;
3882
3883 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3884 if (!opt_fw_filename)
3885 return NULL;
3886
3887 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3888 ICE_DDP_PKG_PATH, dsn);
3889
3890 return opt_fw_filename;
3891}
3892
3893/**
3894 * ice_request_fw - Device initialization routine
3895 * @pf: pointer to the PF instance
3896 */
3897static void ice_request_fw(struct ice_pf *pf)
3898{
3899 char *opt_fw_filename = ice_get_opt_fw_name(pf);
3900 const struct firmware *firmware = NULL;
3901 struct device *dev = ice_pf_to_dev(pf);
3902 int err = 0;
3903
3904 /* optional device-specific DDP (if present) overrides the default DDP
3905 * package file. kernel logs a debug message if the file doesn't exist,
3906 * and warning messages for other errors.
3907 */
3908 if (opt_fw_filename) {
3909 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3910 if (err) {
3911 kfree(opt_fw_filename);
3912 goto dflt_pkg_load;
3913 }
3914
3915 /* request for firmware was successful. Download to device */
3916 ice_load_pkg(firmware, pf);
3917 kfree(opt_fw_filename);
3918 release_firmware(firmware);
3919 return;
3920 }
3921
3922dflt_pkg_load:
3923 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3924 if (err) {
3925 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3926 return;
3927 }
3928
3929 /* request for firmware was successful. Download to device */
3930 ice_load_pkg(firmware, pf);
3931 release_firmware(firmware);
3932}
3933
3934/**
3935 * ice_print_wake_reason - show the wake up cause in the log
3936 * @pf: pointer to the PF struct
3937 */
3938static void ice_print_wake_reason(struct ice_pf *pf)
3939{
3940 u32 wus = pf->wakeup_reason;
3941 const char *wake_str;
3942
3943 /* if no wake event, nothing to print */
3944 if (!wus)
3945 return;
3946
3947 if (wus & PFPM_WUS_LNKC_M)
3948 wake_str = "Link\n";
3949 else if (wus & PFPM_WUS_MAG_M)
3950 wake_str = "Magic Packet\n";
3951 else if (wus & PFPM_WUS_MNG_M)
3952 wake_str = "Management\n";
3953 else if (wus & PFPM_WUS_FW_RST_WK_M)
3954 wake_str = "Firmware Reset\n";
3955 else
3956 wake_str = "Unknown\n";
3957
3958 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3959}
3960
3961/**
3962 * ice_probe - Device initialization routine
3963 * @pdev: PCI device information struct
3964 * @ent: entry in ice_pci_tbl
3965 *
3966 * Returns 0 on success, negative on failure
3967 */
3968static int
3969ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3970{
3971 struct device *dev = &pdev->dev;
3972 struct ice_pf *pf;
3973 struct ice_hw *hw;
3974 int err;
3975
3976 /* this driver uses devres, see
3977 * Documentation/driver-api/driver-model/devres.rst
3978 */
3979 err = pcim_enable_device(pdev);
3980 if (err)
3981 return err;
3982
3983 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3984 if (err) {
3985 dev_err(dev, "BAR0 I/O map error %d\n", err);
3986 return err;
3987 }
3988
3989 pf = ice_allocate_pf(dev);
3990 if (!pf)
3991 return -ENOMEM;
3992
3993 /* set up for high or low DMA */
3994 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3995 if (err)
3996 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3997 if (err) {
3998 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3999 return err;
4000 }
4001
4002 pci_enable_pcie_error_reporting(pdev);
4003 pci_set_master(pdev);
4004
4005 pf->pdev = pdev;
4006 pci_set_drvdata(pdev, pf);
4007 set_bit(__ICE_DOWN, pf->state);
4008 /* Disable service task until DOWN bit is cleared */
4009 set_bit(__ICE_SERVICE_DIS, pf->state);
4010
4011 hw = &pf->hw;
4012 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4013 pci_save_state(pdev);
4014
4015 hw->back = pf;
4016 hw->vendor_id = pdev->vendor;
4017 hw->device_id = pdev->device;
4018 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4019 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4020 hw->subsystem_device_id = pdev->subsystem_device;
4021 hw->bus.device = PCI_SLOT(pdev->devfn);
4022 hw->bus.func = PCI_FUNC(pdev->devfn);
4023 ice_set_ctrlq_len(hw);
4024
4025 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4026
4027 err = ice_devlink_register(pf);
4028 if (err) {
4029 dev_err(dev, "ice_devlink_register failed: %d\n", err);
4030 goto err_exit_unroll;
4031 }
4032
4033#ifndef CONFIG_DYNAMIC_DEBUG
4034 if (debug < -1)
4035 hw->debug_mask = debug;
4036#endif
4037
4038 err = ice_init_hw(hw);
4039 if (err) {
4040 dev_err(dev, "ice_init_hw failed: %d\n", err);
4041 err = -EIO;
4042 goto err_exit_unroll;
4043 }
4044
4045 ice_request_fw(pf);
4046
4047 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4048 * set in pf->state, which will cause ice_is_safe_mode to return
4049 * true
4050 */
4051 if (ice_is_safe_mode(pf)) {
4052 dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4053 /* we already got function/device capabilities but these don't
4054 * reflect what the driver needs to do in safe mode. Instead of
4055 * adding conditional logic everywhere to ignore these
4056 * device/function capabilities, override them.
4057 */
4058 ice_set_safe_mode_caps(hw);
4059 }
4060
4061 err = ice_init_pf(pf);
4062 if (err) {
4063 dev_err(dev, "ice_init_pf failed: %d\n", err);
4064 goto err_init_pf_unroll;
4065 }
4066
4067 ice_devlink_init_regions(pf);
4068
4069 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4070 if (!pf->num_alloc_vsi) {
4071 err = -EIO;
4072 goto err_init_pf_unroll;
4073 }
4074
4075 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4076 GFP_KERNEL);
4077 if (!pf->vsi) {
4078 err = -ENOMEM;
4079 goto err_init_pf_unroll;
4080 }
4081
4082 err = ice_init_interrupt_scheme(pf);
4083 if (err) {
4084 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4085 err = -EIO;
4086 goto err_init_vsi_unroll;
4087 }
4088
4089 /* In case of MSIX we are going to setup the misc vector right here
4090 * to handle admin queue events etc. In case of legacy and MSI
4091 * the misc functionality and queue processing is combined in
4092 * the same vector and that gets setup at open.
4093 */
4094 err = ice_req_irq_msix_misc(pf);
4095 if (err) {
4096 dev_err(dev, "setup of misc vector failed: %d\n", err);
4097 goto err_init_interrupt_unroll;
4098 }
4099
4100 /* create switch struct for the switch element created by FW on boot */
4101 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4102 if (!pf->first_sw) {
4103 err = -ENOMEM;
4104 goto err_msix_misc_unroll;
4105 }
4106
4107 if (hw->evb_veb)
4108 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4109 else
4110 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4111
4112 pf->first_sw->pf = pf;
4113
4114 /* record the sw_id available for later use */
4115 pf->first_sw->sw_id = hw->port_info->sw_id;
4116
4117 err = ice_setup_pf_sw(pf);
4118 if (err) {
4119 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4120 goto err_alloc_sw_unroll;
4121 }
4122
4123 clear_bit(__ICE_SERVICE_DIS, pf->state);
4124
4125 /* tell the firmware we are up */
4126 err = ice_send_version(pf);
4127 if (err) {
4128 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4129 UTS_RELEASE, err);
4130 goto err_send_version_unroll;
4131 }
4132
4133 /* since everything is good, start the service timer */
4134 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4135
4136 err = ice_init_link_events(pf->hw.port_info);
4137 if (err) {
4138 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4139 goto err_send_version_unroll;
4140 }
4141
4142 err = ice_init_nvm_phy_type(pf->hw.port_info);
4143 if (err) {
4144 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4145 goto err_send_version_unroll;
4146 }
4147
4148 err = ice_update_link_info(pf->hw.port_info);
4149 if (err) {
4150 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4151 goto err_send_version_unroll;
4152 }
4153
4154 ice_init_link_dflt_override(pf->hw.port_info);
4155
4156 /* if media available, initialize PHY settings */
4157 if (pf->hw.port_info->phy.link_info.link_info &
4158 ICE_AQ_MEDIA_AVAILABLE) {
4159 err = ice_init_phy_user_cfg(pf->hw.port_info);
4160 if (err) {
4161 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4162 goto err_send_version_unroll;
4163 }
4164
4165 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4166 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4167
4168 if (vsi)
4169 ice_configure_phy(vsi);
4170 }
4171 } else {
4172 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4173 }
4174
4175 ice_verify_cacheline_size(pf);
4176
4177 /* Save wakeup reason register for later use */
4178 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4179
4180 /* check for a power management event */
4181 ice_print_wake_reason(pf);
4182
4183 /* clear wake status, all bits */
4184 wr32(hw, PFPM_WUS, U32_MAX);
4185
4186 /* Disable WoL at init, wait for user to enable */
4187 device_set_wakeup_enable(dev, false);
4188
4189 if (ice_is_safe_mode(pf)) {
4190 ice_set_safe_mode_vlan_cfg(pf);
4191 goto probe_done;
4192 }
4193
4194 /* initialize DDP driven features */
4195
4196 /* Note: Flow director init failure is non-fatal to load */
4197 if (ice_init_fdir(pf))
4198 dev_err(dev, "could not initialize flow director\n");
4199
4200 /* Note: DCB init failure is non-fatal to load */
4201 if (ice_init_pf_dcb(pf, false)) {
4202 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4203 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4204 } else {
4205 ice_cfg_lldp_mib_change(&pf->hw, true);
4206 }
4207
4208 /* print PCI link speed and width */
4209 pcie_print_link_status(pf->pdev);
4210
4211probe_done:
4212 /* ready to go, so clear down state bit */
4213 clear_bit(__ICE_DOWN, pf->state);
4214 return 0;
4215
4216err_send_version_unroll:
4217 ice_vsi_release_all(pf);
4218err_alloc_sw_unroll:
4219 ice_devlink_destroy_port(pf);
4220 set_bit(__ICE_SERVICE_DIS, pf->state);
4221 set_bit(__ICE_DOWN, pf->state);
4222 devm_kfree(dev, pf->first_sw);
4223err_msix_misc_unroll:
4224 ice_free_irq_msix_misc(pf);
4225err_init_interrupt_unroll:
4226 ice_clear_interrupt_scheme(pf);
4227err_init_vsi_unroll:
4228 devm_kfree(dev, pf->vsi);
4229err_init_pf_unroll:
4230 ice_deinit_pf(pf);
4231 ice_devlink_destroy_regions(pf);
4232 ice_deinit_hw(hw);
4233err_exit_unroll:
4234 ice_devlink_unregister(pf);
4235 pci_disable_pcie_error_reporting(pdev);
4236 pci_disable_device(pdev);
4237 return err;
4238}
4239
4240/**
4241 * ice_set_wake - enable or disable Wake on LAN
4242 * @pf: pointer to the PF struct
4243 *
4244 * Simple helper for WoL control
4245 */
4246static void ice_set_wake(struct ice_pf *pf)
4247{
4248 struct ice_hw *hw = &pf->hw;
4249 bool wol = pf->wol_ena;
4250
4251 /* clear wake state, otherwise new wake events won't fire */
4252 wr32(hw, PFPM_WUS, U32_MAX);
4253
4254 /* enable / disable APM wake up, no RMW needed */
4255 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4256
4257 /* set magic packet filter enabled */
4258 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4259}
4260
4261/**
4262 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4263 * @pf: pointer to the PF struct
4264 *
4265 * Issue firmware command to enable multicast magic wake, making
4266 * sure that any locally administered address (LAA) is used for
4267 * wake, and that PF reset doesn't undo the LAA.
4268 */
4269static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4270{
4271 struct device *dev = ice_pf_to_dev(pf);
4272 struct ice_hw *hw = &pf->hw;
4273 enum ice_status status;
4274 u8 mac_addr[ETH_ALEN];
4275 struct ice_vsi *vsi;
4276 u8 flags;
4277
4278 if (!pf->wol_ena)
4279 return;
4280
4281 vsi = ice_get_main_vsi(pf);
4282 if (!vsi)
4283 return;
4284
4285 /* Get current MAC address in case it's an LAA */
4286 if (vsi->netdev)
4287 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4288 else
4289 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4290
4291 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4292 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4293 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4294
4295 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4296 if (status)
4297 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4298 ice_stat_str(status),
4299 ice_aq_str(hw->adminq.sq_last_status));
4300}
4301
4302/**
4303 * ice_remove - Device removal routine
4304 * @pdev: PCI device information struct
4305 */
4306static void ice_remove(struct pci_dev *pdev)
4307{
4308 struct ice_pf *pf = pci_get_drvdata(pdev);
4309 int i;
4310
4311 if (!pf)
4312 return;
4313
4314 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4315 if (!ice_is_reset_in_progress(pf->state))
4316 break;
4317 msleep(100);
4318 }
4319
4320 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4321 set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4322 ice_free_vfs(pf);
4323 }
4324
4325 set_bit(__ICE_DOWN, pf->state);
4326 ice_service_task_stop(pf);
4327
4328 ice_aq_cancel_waiting_tasks(pf);
4329
4330 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4331 if (!ice_is_safe_mode(pf))
4332 ice_remove_arfs(pf);
4333 ice_setup_mc_magic_wake(pf);
4334 ice_devlink_destroy_port(pf);
4335 ice_vsi_release_all(pf);
4336 ice_set_wake(pf);
4337 ice_free_irq_msix_misc(pf);
4338 ice_for_each_vsi(pf, i) {
4339 if (!pf->vsi[i])
4340 continue;
4341 ice_vsi_free_q_vectors(pf->vsi[i]);
4342 }
4343 ice_deinit_pf(pf);
4344 ice_devlink_destroy_regions(pf);
4345 ice_deinit_hw(&pf->hw);
4346 ice_devlink_unregister(pf);
4347
4348 /* Issue a PFR as part of the prescribed driver unload flow. Do not
4349 * do it via ice_schedule_reset() since there is no need to rebuild
4350 * and the service task is already stopped.
4351 */
4352 ice_reset(&pf->hw, ICE_RESET_PFR);
4353 pci_wait_for_pending_transaction(pdev);
4354 ice_clear_interrupt_scheme(pf);
4355 pci_disable_pcie_error_reporting(pdev);
4356 pci_disable_device(pdev);
4357}
4358
4359/**
4360 * ice_shutdown - PCI callback for shutting down device
4361 * @pdev: PCI device information struct
4362 */
4363static void ice_shutdown(struct pci_dev *pdev)
4364{
4365 struct ice_pf *pf = pci_get_drvdata(pdev);
4366
4367 ice_remove(pdev);
4368
4369 if (system_state == SYSTEM_POWER_OFF) {
4370 pci_wake_from_d3(pdev, pf->wol_ena);
4371 pci_set_power_state(pdev, PCI_D3hot);
4372 }
4373}
4374
4375#ifdef CONFIG_PM
4376/**
4377 * ice_prepare_for_shutdown - prep for PCI shutdown
4378 * @pf: board private structure
4379 *
4380 * Inform or close all dependent features in prep for PCI device shutdown
4381 */
4382static void ice_prepare_for_shutdown(struct ice_pf *pf)
4383{
4384 struct ice_hw *hw = &pf->hw;
4385 u32 v;
4386
4387 /* Notify VFs of impending reset */
4388 if (ice_check_sq_alive(hw, &hw->mailboxq))
4389 ice_vc_notify_reset(pf);
4390
4391 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4392
4393 /* disable the VSIs and their queues that are not already DOWN */
4394 ice_pf_dis_all_vsi(pf, false);
4395
4396 ice_for_each_vsi(pf, v)
4397 if (pf->vsi[v])
4398 pf->vsi[v]->vsi_num = 0;
4399
4400 ice_shutdown_all_ctrlq(hw);
4401}
4402
4403/**
4404 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4405 * @pf: board private structure to reinitialize
4406 *
4407 * This routine reinitialize interrupt scheme that was cleared during
4408 * power management suspend callback.
4409 *
4410 * This should be called during resume routine to re-allocate the q_vectors
4411 * and reacquire interrupts.
4412 */
4413static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4414{
4415 struct device *dev = ice_pf_to_dev(pf);
4416 int ret, v;
4417
4418 /* Since we clear MSIX flag during suspend, we need to
4419 * set it back during resume...
4420 */
4421
4422 ret = ice_init_interrupt_scheme(pf);
4423 if (ret) {
4424 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4425 return ret;
4426 }
4427
4428 /* Remap vectors and rings, after successful re-init interrupts */
4429 ice_for_each_vsi(pf, v) {
4430 if (!pf->vsi[v])
4431 continue;
4432
4433 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4434 if (ret)
4435 goto err_reinit;
4436 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4437 }
4438
4439 ret = ice_req_irq_msix_misc(pf);
4440 if (ret) {
4441 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4442 ret);
4443 goto err_reinit;
4444 }
4445
4446 return 0;
4447
4448err_reinit:
4449 while (v--)
4450 if (pf->vsi[v])
4451 ice_vsi_free_q_vectors(pf->vsi[v]);
4452
4453 return ret;
4454}
4455
4456/**
4457 * ice_suspend
4458 * @dev: generic device information structure
4459 *
4460 * Power Management callback to quiesce the device and prepare
4461 * for D3 transition.
4462 */
4463static int __maybe_unused ice_suspend(struct device *dev)
4464{
4465 struct pci_dev *pdev = to_pci_dev(dev);
4466 struct ice_pf *pf;
4467 int disabled, v;
4468
4469 pf = pci_get_drvdata(pdev);
4470
4471 if (!ice_pf_state_is_nominal(pf)) {
4472 dev_err(dev, "Device is not ready, no need to suspend it\n");
4473 return -EBUSY;
4474 }
4475
4476 /* Stop watchdog tasks until resume completion.
4477 * Even though it is most likely that the service task is
4478 * disabled if the device is suspended or down, the service task's
4479 * state is controlled by a different state bit, and we should
4480 * store and honor whatever state that bit is in at this point.
4481 */
4482 disabled = ice_service_task_stop(pf);
4483
4484 /* Already suspended?, then there is nothing to do */
4485 if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4486 if (!disabled)
4487 ice_service_task_restart(pf);
4488 return 0;
4489 }
4490
4491 if (test_bit(__ICE_DOWN, pf->state) ||
4492 ice_is_reset_in_progress(pf->state)) {
4493 dev_err(dev, "can't suspend device in reset or already down\n");
4494 if (!disabled)
4495 ice_service_task_restart(pf);
4496 return 0;
4497 }
4498
4499 ice_setup_mc_magic_wake(pf);
4500
4501 ice_prepare_for_shutdown(pf);
4502
4503 ice_set_wake(pf);
4504
4505 /* Free vectors, clear the interrupt scheme and release IRQs
4506 * for proper hibernation, especially with large number of CPUs.
4507 * Otherwise hibernation might fail when mapping all the vectors back
4508 * to CPU0.
4509 */
4510 ice_free_irq_msix_misc(pf);
4511 ice_for_each_vsi(pf, v) {
4512 if (!pf->vsi[v])
4513 continue;
4514 ice_vsi_free_q_vectors(pf->vsi[v]);
4515 }
4516 ice_clear_interrupt_scheme(pf);
4517
4518 pci_save_state(pdev);
4519 pci_wake_from_d3(pdev, pf->wol_ena);
4520 pci_set_power_state(pdev, PCI_D3hot);
4521 return 0;
4522}
4523
4524/**
4525 * ice_resume - PM callback for waking up from D3
4526 * @dev: generic device information structure
4527 */
4528static int __maybe_unused ice_resume(struct device *dev)
4529{
4530 struct pci_dev *pdev = to_pci_dev(dev);
4531 enum ice_reset_req reset_type;
4532 struct ice_pf *pf;
4533 struct ice_hw *hw;
4534 int ret;
4535
4536 pci_set_power_state(pdev, PCI_D0);
4537 pci_restore_state(pdev);
4538 pci_save_state(pdev);
4539
4540 if (!pci_device_is_present(pdev))
4541 return -ENODEV;
4542
4543 ret = pci_enable_device_mem(pdev);
4544 if (ret) {
4545 dev_err(dev, "Cannot enable device after suspend\n");
4546 return ret;
4547 }
4548
4549 pf = pci_get_drvdata(pdev);
4550 hw = &pf->hw;
4551
4552 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4553 ice_print_wake_reason(pf);
4554
4555 /* We cleared the interrupt scheme when we suspended, so we need to
4556 * restore it now to resume device functionality.
4557 */
4558 ret = ice_reinit_interrupt_scheme(pf);
4559 if (ret)
4560 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4561
4562 clear_bit(__ICE_DOWN, pf->state);
4563 /* Now perform PF reset and rebuild */
4564 reset_type = ICE_RESET_PFR;
4565 /* re-enable service task for reset, but allow reset to schedule it */
4566 clear_bit(__ICE_SERVICE_DIS, pf->state);
4567
4568 if (ice_schedule_reset(pf, reset_type))
4569 dev_err(dev, "Reset during resume failed.\n");
4570
4571 clear_bit(__ICE_SUSPENDED, pf->state);
4572 ice_service_task_restart(pf);
4573
4574 /* Restart the service task */
4575 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4576
4577 return 0;
4578}
4579#endif /* CONFIG_PM */
4580
4581/**
4582 * ice_pci_err_detected - warning that PCI error has been detected
4583 * @pdev: PCI device information struct
4584 * @err: the type of PCI error
4585 *
4586 * Called to warn that something happened on the PCI bus and the error handling
4587 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
4588 */
4589static pci_ers_result_t
4590ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4591{
4592 struct ice_pf *pf = pci_get_drvdata(pdev);
4593
4594 if (!pf) {
4595 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4596 __func__, err);
4597 return PCI_ERS_RESULT_DISCONNECT;
4598 }
4599
4600 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4601 ice_service_task_stop(pf);
4602
4603 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4604 set_bit(__ICE_PFR_REQ, pf->state);
4605 ice_prepare_for_reset(pf);
4606 }
4607 }
4608
4609 return PCI_ERS_RESULT_NEED_RESET;
4610}
4611
4612/**
4613 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4614 * @pdev: PCI device information struct
4615 *
4616 * Called to determine if the driver can recover from the PCI slot reset by
4617 * using a register read to determine if the device is recoverable.
4618 */
4619static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4620{
4621 struct ice_pf *pf = pci_get_drvdata(pdev);
4622 pci_ers_result_t result;
4623 int err;
4624 u32 reg;
4625
4626 err = pci_enable_device_mem(pdev);
4627 if (err) {
4628 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4629 err);
4630 result = PCI_ERS_RESULT_DISCONNECT;
4631 } else {
4632 pci_set_master(pdev);
4633 pci_restore_state(pdev);
4634 pci_save_state(pdev);
4635 pci_wake_from_d3(pdev, false);
4636
4637 /* Check for life */
4638 reg = rd32(&pf->hw, GLGEN_RTRIG);
4639 if (!reg)
4640 result = PCI_ERS_RESULT_RECOVERED;
4641 else
4642 result = PCI_ERS_RESULT_DISCONNECT;
4643 }
4644
4645 err = pci_aer_clear_nonfatal_status(pdev);
4646 if (err)
4647 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4648 err);
4649 /* non-fatal, continue */
4650
4651 return result;
4652}
4653
4654/**
4655 * ice_pci_err_resume - restart operations after PCI error recovery
4656 * @pdev: PCI device information struct
4657 *
4658 * Called to allow the driver to bring things back up after PCI error and/or
4659 * reset recovery have finished
4660 */
4661static void ice_pci_err_resume(struct pci_dev *pdev)
4662{
4663 struct ice_pf *pf = pci_get_drvdata(pdev);
4664
4665 if (!pf) {
4666 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4667 __func__);
4668 return;
4669 }
4670
4671 if (test_bit(__ICE_SUSPENDED, pf->state)) {
4672 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4673 __func__);
4674 return;
4675 }
4676
4677 ice_restore_all_vfs_msi_state(pdev);
4678
4679 ice_do_reset(pf, ICE_RESET_PFR);
4680 ice_service_task_restart(pf);
4681 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4682}
4683
4684/**
4685 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4686 * @pdev: PCI device information struct
4687 */
4688static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4689{
4690 struct ice_pf *pf = pci_get_drvdata(pdev);
4691
4692 if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4693 ice_service_task_stop(pf);
4694
4695 if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4696 set_bit(__ICE_PFR_REQ, pf->state);
4697 ice_prepare_for_reset(pf);
4698 }
4699 }
4700}
4701
4702/**
4703 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4704 * @pdev: PCI device information struct
4705 */
4706static void ice_pci_err_reset_done(struct pci_dev *pdev)
4707{
4708 ice_pci_err_resume(pdev);
4709}
4710
4711/* ice_pci_tbl - PCI Device ID Table
4712 *
4713 * Wildcard entries (PCI_ANY_ID) should come last
4714 * Last entry must be all 0s
4715 *
4716 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4717 * Class, Class Mask, private data (not used) }
4718 */
4719static const struct pci_device_id ice_pci_tbl[] = {
4720 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4721 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4722 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4723 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4724 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4725 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4726 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4727 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4728 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4729 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4730 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4731 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4732 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4733 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4734 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4735 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4736 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4737 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4738 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4739 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4740 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4741 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4742 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4743 /* required last entry */
4744 { 0, }
4745};
4746MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4747
4748static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4749
4750static const struct pci_error_handlers ice_pci_err_handler = {
4751 .error_detected = ice_pci_err_detected,
4752 .slot_reset = ice_pci_err_slot_reset,
4753 .reset_prepare = ice_pci_err_reset_prepare,
4754 .reset_done = ice_pci_err_reset_done,
4755 .resume = ice_pci_err_resume
4756};
4757
4758static struct pci_driver ice_driver = {
4759 .name = KBUILD_MODNAME,
4760 .id_table = ice_pci_tbl,
4761 .probe = ice_probe,
4762 .remove = ice_remove,
4763#ifdef CONFIG_PM
4764 .driver.pm = &ice_pm_ops,
4765#endif /* CONFIG_PM */
4766 .shutdown = ice_shutdown,
4767 .sriov_configure = ice_sriov_configure,
4768 .err_handler = &ice_pci_err_handler
4769};
4770
4771/**
4772 * ice_module_init - Driver registration routine
4773 *
4774 * ice_module_init is the first routine called when the driver is
4775 * loaded. All it does is register with the PCI subsystem.
4776 */
4777static int __init ice_module_init(void)
4778{
4779 int status;
4780
4781 pr_info("%s\n", ice_driver_string);
4782 pr_info("%s\n", ice_copyright);
4783
4784 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4785 if (!ice_wq) {
4786 pr_err("Failed to create workqueue\n");
4787 return -ENOMEM;
4788 }
4789
4790 status = pci_register_driver(&ice_driver);
4791 if (status) {
4792 pr_err("failed to register PCI driver, err %d\n", status);
4793 destroy_workqueue(ice_wq);
4794 }
4795
4796 return status;
4797}
4798module_init(ice_module_init);
4799
4800/**
4801 * ice_module_exit - Driver exit cleanup routine
4802 *
4803 * ice_module_exit is called just before the driver is removed
4804 * from memory.
4805 */
4806static void __exit ice_module_exit(void)
4807{
4808 pci_unregister_driver(&ice_driver);
4809 destroy_workqueue(ice_wq);
4810 pr_info("module unloaded\n");
4811}
4812module_exit(ice_module_exit);
4813
4814/**
4815 * ice_set_mac_address - NDO callback to set MAC address
4816 * @netdev: network interface device structure
4817 * @pi: pointer to an address structure
4818 *
4819 * Returns 0 on success, negative on failure
4820 */
4821static int ice_set_mac_address(struct net_device *netdev, void *pi)
4822{
4823 struct ice_netdev_priv *np = netdev_priv(netdev);
4824 struct ice_vsi *vsi = np->vsi;
4825 struct ice_pf *pf = vsi->back;
4826 struct ice_hw *hw = &pf->hw;
4827 struct sockaddr *addr = pi;
4828 enum ice_status status;
4829 u8 flags = 0;
4830 int err = 0;
4831 u8 *mac;
4832
4833 mac = (u8 *)addr->sa_data;
4834
4835 if (!is_valid_ether_addr(mac))
4836 return -EADDRNOTAVAIL;
4837
4838 if (ether_addr_equal(netdev->dev_addr, mac)) {
4839 netdev_warn(netdev, "already using mac %pM\n", mac);
4840 return 0;
4841 }
4842
4843 if (test_bit(__ICE_DOWN, pf->state) ||
4844 ice_is_reset_in_progress(pf->state)) {
4845 netdev_err(netdev, "can't set mac %pM. device not ready\n",
4846 mac);
4847 return -EBUSY;
4848 }
4849
4850 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
4851 status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4852 if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4853 err = -EADDRNOTAVAIL;
4854 goto err_update_filters;
4855 }
4856
4857 /* Add filter for new MAC. If filter exists, just return success */
4858 status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4859 if (status == ICE_ERR_ALREADY_EXISTS) {
4860 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4861 return 0;
4862 }
4863
4864 /* error if the new filter addition failed */
4865 if (status)
4866 err = -EADDRNOTAVAIL;
4867
4868err_update_filters:
4869 if (err) {
4870 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4871 mac);
4872 return err;
4873 }
4874
4875 /* change the netdev's MAC address */
4876 memcpy(netdev->dev_addr, mac, netdev->addr_len);
4877 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4878 netdev->dev_addr);
4879
4880 /* write new MAC address to the firmware */
4881 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4882 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4883 if (status) {
4884 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4885 mac, ice_stat_str(status));
4886 }
4887 return 0;
4888}
4889
4890/**
4891 * ice_set_rx_mode - NDO callback to set the netdev filters
4892 * @netdev: network interface device structure
4893 */
4894static void ice_set_rx_mode(struct net_device *netdev)
4895{
4896 struct ice_netdev_priv *np = netdev_priv(netdev);
4897 struct ice_vsi *vsi = np->vsi;
4898
4899 if (!vsi)
4900 return;
4901
4902 /* Set the flags to synchronize filters
4903 * ndo_set_rx_mode may be triggered even without a change in netdev
4904 * flags
4905 */
4906 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4907 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4908 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4909
4910 /* schedule our worker thread which will take care of
4911 * applying the new filter changes
4912 */
4913 ice_service_task_schedule(vsi->back);
4914}
4915
4916/**
4917 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4918 * @netdev: network interface device structure
4919 * @queue_index: Queue ID
4920 * @maxrate: maximum bandwidth in Mbps
4921 */
4922static int
4923ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4924{
4925 struct ice_netdev_priv *np = netdev_priv(netdev);
4926 struct ice_vsi *vsi = np->vsi;
4927 enum ice_status status;
4928 u16 q_handle;
4929 u8 tc;
4930
4931 /* Validate maxrate requested is within permitted range */
4932 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4933 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4934 maxrate, queue_index);
4935 return -EINVAL;
4936 }
4937
4938 q_handle = vsi->tx_rings[queue_index]->q_handle;
4939 tc = ice_dcb_get_tc(vsi, queue_index);
4940
4941 /* Set BW back to default, when user set maxrate to 0 */
4942 if (!maxrate)
4943 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4944 q_handle, ICE_MAX_BW);
4945 else
4946 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4947 q_handle, ICE_MAX_BW, maxrate * 1000);
4948 if (status) {
4949 netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4950 ice_stat_str(status));
4951 return -EIO;
4952 }
4953
4954 return 0;
4955}
4956
4957/**
4958 * ice_fdb_add - add an entry to the hardware database
4959 * @ndm: the input from the stack
4960 * @tb: pointer to array of nladdr (unused)
4961 * @dev: the net device pointer
4962 * @addr: the MAC address entry being added
4963 * @vid: VLAN ID
4964 * @flags: instructions from stack about fdb operation
4965 * @extack: netlink extended ack
4966 */
4967static int
4968ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
4969 struct net_device *dev, const unsigned char *addr, u16 vid,
4970 u16 flags, struct netlink_ext_ack __always_unused *extack)
4971{
4972 int err;
4973
4974 if (vid) {
4975 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
4976 return -EINVAL;
4977 }
4978 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
4979 netdev_err(dev, "FDB only supports static addresses\n");
4980 return -EINVAL;
4981 }
4982
4983 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
4984 err = dev_uc_add_excl(dev, addr);
4985 else if (is_multicast_ether_addr(addr))
4986 err = dev_mc_add_excl(dev, addr);
4987 else
4988 err = -EINVAL;
4989
4990 /* Only return duplicate errors if NLM_F_EXCL is set */
4991 if (err == -EEXIST && !(flags & NLM_F_EXCL))
4992 err = 0;
4993
4994 return err;
4995}
4996
4997/**
4998 * ice_fdb_del - delete an entry from the hardware database
4999 * @ndm: the input from the stack
5000 * @tb: pointer to array of nladdr (unused)
5001 * @dev: the net device pointer
5002 * @addr: the MAC address entry being added
5003 * @vid: VLAN ID
5004 */
5005static int
5006ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5007 struct net_device *dev, const unsigned char *addr,
5008 __always_unused u16 vid)
5009{
5010 int err;
5011
5012 if (ndm->ndm_state & NUD_PERMANENT) {
5013 netdev_err(dev, "FDB only supports static addresses\n");
5014 return -EINVAL;
5015 }
5016
5017 if (is_unicast_ether_addr(addr))
5018 err = dev_uc_del(dev, addr);
5019 else if (is_multicast_ether_addr(addr))
5020 err = dev_mc_del(dev, addr);
5021 else
5022 err = -EINVAL;
5023
5024 return err;
5025}
5026
5027/**
5028 * ice_set_features - set the netdev feature flags
5029 * @netdev: ptr to the netdev being adjusted
5030 * @features: the feature set that the stack is suggesting
5031 */
5032static int
5033ice_set_features(struct net_device *netdev, netdev_features_t features)
5034{
5035 struct ice_netdev_priv *np = netdev_priv(netdev);
5036 struct ice_vsi *vsi = np->vsi;
5037 struct ice_pf *pf = vsi->back;
5038 int ret = 0;
5039
5040 /* Don't set any netdev advanced features with device in Safe Mode */
5041 if (ice_is_safe_mode(vsi->back)) {
5042 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5043 return ret;
5044 }
5045
5046 /* Do not change setting during reset */
5047 if (ice_is_reset_in_progress(pf->state)) {
5048 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5049 return -EBUSY;
5050 }
5051
5052 /* Multiple features can be changed in one call so keep features in
5053 * separate if/else statements to guarantee each feature is checked
5054 */
5055 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5056 ret = ice_vsi_manage_rss_lut(vsi, true);
5057 else if (!(features & NETIF_F_RXHASH) &&
5058 netdev->features & NETIF_F_RXHASH)
5059 ret = ice_vsi_manage_rss_lut(vsi, false);
5060
5061 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5062 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5063 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5064 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5065 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5066 ret = ice_vsi_manage_vlan_stripping(vsi, false);
5067
5068 if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5069 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5070 ret = ice_vsi_manage_vlan_insertion(vsi);
5071 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5072 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5073 ret = ice_vsi_manage_vlan_insertion(vsi);
5074
5075 if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5076 !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5077 ret = ice_cfg_vlan_pruning(vsi, true, false);
5078 else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5079 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5080 ret = ice_cfg_vlan_pruning(vsi, false, false);
5081
5082 if ((features & NETIF_F_NTUPLE) &&
5083 !(netdev->features & NETIF_F_NTUPLE)) {
5084 ice_vsi_manage_fdir(vsi, true);
5085 ice_init_arfs(vsi);
5086 } else if (!(features & NETIF_F_NTUPLE) &&
5087 (netdev->features & NETIF_F_NTUPLE)) {
5088 ice_vsi_manage_fdir(vsi, false);
5089 ice_clear_arfs(vsi);
5090 }
5091
5092 return ret;
5093}
5094
5095/**
5096 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5097 * @vsi: VSI to setup VLAN properties for
5098 */
5099static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5100{
5101 int ret = 0;
5102
5103 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5104 ret = ice_vsi_manage_vlan_stripping(vsi, true);
5105 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5106 ret = ice_vsi_manage_vlan_insertion(vsi);
5107
5108 return ret;
5109}
5110
5111/**
5112 * ice_vsi_cfg - Setup the VSI
5113 * @vsi: the VSI being configured
5114 *
5115 * Return 0 on success and negative value on error
5116 */
5117int ice_vsi_cfg(struct ice_vsi *vsi)
5118{
5119 int err;
5120
5121 if (vsi->netdev) {
5122 ice_set_rx_mode(vsi->netdev);
5123
5124 err = ice_vsi_vlan_setup(vsi);
5125
5126 if (err)
5127 return err;
5128 }
5129 ice_vsi_cfg_dcb_rings(vsi);
5130
5131 err = ice_vsi_cfg_lan_txqs(vsi);
5132 if (!err && ice_is_xdp_ena_vsi(vsi))
5133 err = ice_vsi_cfg_xdp_txqs(vsi);
5134 if (!err)
5135 err = ice_vsi_cfg_rxqs(vsi);
5136
5137 return err;
5138}
5139
5140/**
5141 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5142 * @vsi: the VSI being configured
5143 */
5144static void ice_napi_enable_all(struct ice_vsi *vsi)
5145{
5146 int q_idx;
5147
5148 if (!vsi->netdev)
5149 return;
5150
5151 ice_for_each_q_vector(vsi, q_idx) {
5152 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5153
5154 if (q_vector->rx.ring || q_vector->tx.ring)
5155 napi_enable(&q_vector->napi);
5156 }
5157}
5158
5159/**
5160 * ice_up_complete - Finish the last steps of bringing up a connection
5161 * @vsi: The VSI being configured
5162 *
5163 * Return 0 on success and negative value on error
5164 */
5165static int ice_up_complete(struct ice_vsi *vsi)
5166{
5167 struct ice_pf *pf = vsi->back;
5168 int err;
5169
5170 ice_vsi_cfg_msix(vsi);
5171
5172 /* Enable only Rx rings, Tx rings were enabled by the FW when the
5173 * Tx queue group list was configured and the context bits were
5174 * programmed using ice_vsi_cfg_txqs
5175 */
5176 err = ice_vsi_start_all_rx_rings(vsi);
5177 if (err)
5178 return err;
5179
5180 clear_bit(__ICE_DOWN, vsi->state);
5181 ice_napi_enable_all(vsi);
5182 ice_vsi_ena_irq(vsi);
5183
5184 if (vsi->port_info &&
5185 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5186 vsi->netdev) {
5187 ice_print_link_msg(vsi, true);
5188 netif_tx_start_all_queues(vsi->netdev);
5189 netif_carrier_on(vsi->netdev);
5190 }
5191
5192 ice_service_task_schedule(pf);
5193
5194 return 0;
5195}
5196
5197/**
5198 * ice_up - Bring the connection back up after being down
5199 * @vsi: VSI being configured
5200 */
5201int ice_up(struct ice_vsi *vsi)
5202{
5203 int err;
5204
5205 err = ice_vsi_cfg(vsi);
5206 if (!err)
5207 err = ice_up_complete(vsi);
5208
5209 return err;
5210}
5211
5212/**
5213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5214 * @ring: Tx or Rx ring to read stats from
5215 * @pkts: packets stats counter
5216 * @bytes: bytes stats counter
5217 *
5218 * This function fetches stats from the ring considering the atomic operations
5219 * that needs to be performed to read u64 values in 32 bit machine.
5220 */
5221static void
5222ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5223{
5224 unsigned int start;
5225 *pkts = 0;
5226 *bytes = 0;
5227
5228 if (!ring)
5229 return;
5230 do {
5231 start = u64_stats_fetch_begin_irq(&ring->syncp);
5232 *pkts = ring->stats.pkts;
5233 *bytes = ring->stats.bytes;
5234 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5235}
5236
5237/**
5238 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5239 * @vsi: the VSI to be updated
5240 * @rings: rings to work on
5241 * @count: number of rings
5242 */
5243static void
5244ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5245 u16 count)
5246{
5247 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5248 u16 i;
5249
5250 for (i = 0; i < count; i++) {
5251 struct ice_ring *ring;
5252 u64 pkts, bytes;
5253
5254 ring = READ_ONCE(rings[i]);
5255 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5256 vsi_stats->tx_packets += pkts;
5257 vsi_stats->tx_bytes += bytes;
5258 vsi->tx_restart += ring->tx_stats.restart_q;
5259 vsi->tx_busy += ring->tx_stats.tx_busy;
5260 vsi->tx_linearize += ring->tx_stats.tx_linearize;
5261 }
5262}
5263
5264/**
5265 * ice_update_vsi_ring_stats - Update VSI stats counters
5266 * @vsi: the VSI to be updated
5267 */
5268static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5269{
5270 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5271 struct ice_ring *ring;
5272 u64 pkts, bytes;
5273 int i;
5274
5275 /* reset netdev stats */
5276 vsi_stats->tx_packets = 0;
5277 vsi_stats->tx_bytes = 0;
5278 vsi_stats->rx_packets = 0;
5279 vsi_stats->rx_bytes = 0;
5280
5281 /* reset non-netdev (extended) stats */
5282 vsi->tx_restart = 0;
5283 vsi->tx_busy = 0;
5284 vsi->tx_linearize = 0;
5285 vsi->rx_buf_failed = 0;
5286 vsi->rx_page_failed = 0;
5287 vsi->rx_gro_dropped = 0;
5288
5289 rcu_read_lock();
5290
5291 /* update Tx rings counters */
5292 ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5293
5294 /* update Rx rings counters */
5295 ice_for_each_rxq(vsi, i) {
5296 ring = READ_ONCE(vsi->rx_rings[i]);
5297 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5298 vsi_stats->rx_packets += pkts;
5299 vsi_stats->rx_bytes += bytes;
5300 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5301 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5302 vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5303 }
5304
5305 /* update XDP Tx rings counters */
5306 if (ice_is_xdp_ena_vsi(vsi))
5307 ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5308 vsi->num_xdp_txq);
5309
5310 rcu_read_unlock();
5311}
5312
5313/**
5314 * ice_update_vsi_stats - Update VSI stats counters
5315 * @vsi: the VSI to be updated
5316 */
5317void ice_update_vsi_stats(struct ice_vsi *vsi)
5318{
5319 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5320 struct ice_eth_stats *cur_es = &vsi->eth_stats;
5321 struct ice_pf *pf = vsi->back;
5322
5323 if (test_bit(__ICE_DOWN, vsi->state) ||
5324 test_bit(__ICE_CFG_BUSY, pf->state))
5325 return;
5326
5327 /* get stats as recorded by Tx/Rx rings */
5328 ice_update_vsi_ring_stats(vsi);
5329
5330 /* get VSI stats as recorded by the hardware */
5331 ice_update_eth_stats(vsi);
5332
5333 cur_ns->tx_errors = cur_es->tx_errors;
5334 cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5335 cur_ns->tx_dropped = cur_es->tx_discards;
5336 cur_ns->multicast = cur_es->rx_multicast;
5337
5338 /* update some more netdev stats if this is main VSI */
5339 if (vsi->type == ICE_VSI_PF) {
5340 cur_ns->rx_crc_errors = pf->stats.crc_errors;
5341 cur_ns->rx_errors = pf->stats.crc_errors +
5342 pf->stats.illegal_bytes +
5343 pf->stats.rx_len_errors +
5344 pf->stats.rx_undersize +
5345 pf->hw_csum_rx_error +
5346 pf->stats.rx_jabber +
5347 pf->stats.rx_fragments +
5348 pf->stats.rx_oversize;
5349 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5350 /* record drops from the port level */
5351 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5352 }
5353}
5354
5355/**
5356 * ice_update_pf_stats - Update PF port stats counters
5357 * @pf: PF whose stats needs to be updated
5358 */
5359void ice_update_pf_stats(struct ice_pf *pf)
5360{
5361 struct ice_hw_port_stats *prev_ps, *cur_ps;
5362 struct ice_hw *hw = &pf->hw;
5363 u16 fd_ctr_base;
5364 u8 port;
5365
5366 port = hw->port_info->lport;
5367 prev_ps = &pf->stats_prev;
5368 cur_ps = &pf->stats;
5369
5370 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5371 &prev_ps->eth.rx_bytes,
5372 &cur_ps->eth.rx_bytes);
5373
5374 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5375 &prev_ps->eth.rx_unicast,
5376 &cur_ps->eth.rx_unicast);
5377
5378 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5379 &prev_ps->eth.rx_multicast,
5380 &cur_ps->eth.rx_multicast);
5381
5382 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5383 &prev_ps->eth.rx_broadcast,
5384 &cur_ps->eth.rx_broadcast);
5385
5386 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5387 &prev_ps->eth.rx_discards,
5388 &cur_ps->eth.rx_discards);
5389
5390 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5391 &prev_ps->eth.tx_bytes,
5392 &cur_ps->eth.tx_bytes);
5393
5394 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5395 &prev_ps->eth.tx_unicast,
5396 &cur_ps->eth.tx_unicast);
5397
5398 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5399 &prev_ps->eth.tx_multicast,
5400 &cur_ps->eth.tx_multicast);
5401
5402 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5403 &prev_ps->eth.tx_broadcast,
5404 &cur_ps->eth.tx_broadcast);
5405
5406 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5407 &prev_ps->tx_dropped_link_down,
5408 &cur_ps->tx_dropped_link_down);
5409
5410 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5411 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5412
5413 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5414 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5415
5416 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5417 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5418
5419 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5420 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5421
5422 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5423 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5424
5425 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5426 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5427
5428 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5429 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5430
5431 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5432 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5433
5434 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5435 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5436
5437 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5438 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5439
5440 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5441 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5442
5443 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5444 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5445
5446 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5447 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5448
5449 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5450 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5451
5452 fd_ctr_base = hw->fd_ctr_base;
5453
5454 ice_stat_update40(hw,
5455 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5456 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5457 &cur_ps->fd_sb_match);
5458 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5459 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5460
5461 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5462 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5463
5464 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5465 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5466
5467 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5468 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5469
5470 ice_update_dcb_stats(pf);
5471
5472 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5473 &prev_ps->crc_errors, &cur_ps->crc_errors);
5474
5475 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5476 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5477
5478 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5479 &prev_ps->mac_local_faults,
5480 &cur_ps->mac_local_faults);
5481
5482 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5483 &prev_ps->mac_remote_faults,
5484 &cur_ps->mac_remote_faults);
5485
5486 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5487 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5488
5489 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5490 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5491
5492 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5493 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5494
5495 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5496 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5497
5498 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5499 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5500
5501 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5502
5503 pf->stat_prev_loaded = true;
5504}
5505
5506/**
5507 * ice_get_stats64 - get statistics for network device structure
5508 * @netdev: network interface device structure
5509 * @stats: main device statistics structure
5510 */
5511static
5512void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5513{
5514 struct ice_netdev_priv *np = netdev_priv(netdev);
5515 struct rtnl_link_stats64 *vsi_stats;
5516 struct ice_vsi *vsi = np->vsi;
5517
5518 vsi_stats = &vsi->net_stats;
5519
5520 if (!vsi->num_txq || !vsi->num_rxq)
5521 return;
5522
5523 /* netdev packet/byte stats come from ring counter. These are obtained
5524 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5525 * But, only call the update routine and read the registers if VSI is
5526 * not down.
5527 */
5528 if (!test_bit(__ICE_DOWN, vsi->state))
5529 ice_update_vsi_ring_stats(vsi);
5530 stats->tx_packets = vsi_stats->tx_packets;
5531 stats->tx_bytes = vsi_stats->tx_bytes;
5532 stats->rx_packets = vsi_stats->rx_packets;
5533 stats->rx_bytes = vsi_stats->rx_bytes;
5534
5535 /* The rest of the stats can be read from the hardware but instead we
5536 * just return values that the watchdog task has already obtained from
5537 * the hardware.
5538 */
5539 stats->multicast = vsi_stats->multicast;
5540 stats->tx_errors = vsi_stats->tx_errors;
5541 stats->tx_dropped = vsi_stats->tx_dropped;
5542 stats->rx_errors = vsi_stats->rx_errors;
5543 stats->rx_dropped = vsi_stats->rx_dropped;
5544 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5545 stats->rx_length_errors = vsi_stats->rx_length_errors;
5546}
5547
5548/**
5549 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5550 * @vsi: VSI having NAPI disabled
5551 */
5552static void ice_napi_disable_all(struct ice_vsi *vsi)
5553{
5554 int q_idx;
5555
5556 if (!vsi->netdev)
5557 return;
5558
5559 ice_for_each_q_vector(vsi, q_idx) {
5560 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5561
5562 if (q_vector->rx.ring || q_vector->tx.ring)
5563 napi_disable(&q_vector->napi);
5564 }
5565}
5566
5567/**
5568 * ice_down - Shutdown the connection
5569 * @vsi: The VSI being stopped
5570 */
5571int ice_down(struct ice_vsi *vsi)
5572{
5573 int i, tx_err, rx_err, link_err = 0;
5574
5575 /* Caller of this function is expected to set the
5576 * vsi->state __ICE_DOWN bit
5577 */
5578 if (vsi->netdev) {
5579 netif_carrier_off(vsi->netdev);
5580 netif_tx_disable(vsi->netdev);
5581 }
5582
5583 ice_vsi_dis_irq(vsi);
5584
5585 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5586 if (tx_err)
5587 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5588 vsi->vsi_num, tx_err);
5589 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5590 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5591 if (tx_err)
5592 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5593 vsi->vsi_num, tx_err);
5594 }
5595
5596 rx_err = ice_vsi_stop_all_rx_rings(vsi);
5597 if (rx_err)
5598 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5599 vsi->vsi_num, rx_err);
5600
5601 ice_napi_disable_all(vsi);
5602
5603 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5604 link_err = ice_force_phys_link_state(vsi, false);
5605 if (link_err)
5606 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5607 vsi->vsi_num, link_err);
5608 }
5609
5610 ice_for_each_txq(vsi, i)
5611 ice_clean_tx_ring(vsi->tx_rings[i]);
5612
5613 ice_for_each_rxq(vsi, i)
5614 ice_clean_rx_ring(vsi->rx_rings[i]);
5615
5616 if (tx_err || rx_err || link_err) {
5617 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5618 vsi->vsi_num, vsi->vsw->sw_id);
5619 return -EIO;
5620 }
5621
5622 return 0;
5623}
5624
5625/**
5626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5627 * @vsi: VSI having resources allocated
5628 *
5629 * Return 0 on success, negative on failure
5630 */
5631int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5632{
5633 int i, err = 0;
5634
5635 if (!vsi->num_txq) {
5636 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5637 vsi->vsi_num);
5638 return -EINVAL;
5639 }
5640
5641 ice_for_each_txq(vsi, i) {
5642 struct ice_ring *ring = vsi->tx_rings[i];
5643
5644 if (!ring)
5645 return -EINVAL;
5646
5647 ring->netdev = vsi->netdev;
5648 err = ice_setup_tx_ring(ring);
5649 if (err)
5650 break;
5651 }
5652
5653 return err;
5654}
5655
5656/**
5657 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5658 * @vsi: VSI having resources allocated
5659 *
5660 * Return 0 on success, negative on failure
5661 */
5662int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5663{
5664 int i, err = 0;
5665
5666 if (!vsi->num_rxq) {
5667 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5668 vsi->vsi_num);
5669 return -EINVAL;
5670 }
5671
5672 ice_for_each_rxq(vsi, i) {
5673 struct ice_ring *ring = vsi->rx_rings[i];
5674
5675 if (!ring)
5676 return -EINVAL;
5677
5678 ring->netdev = vsi->netdev;
5679 err = ice_setup_rx_ring(ring);
5680 if (err)
5681 break;
5682 }
5683
5684 return err;
5685}
5686
5687/**
5688 * ice_vsi_open_ctrl - open control VSI for use
5689 * @vsi: the VSI to open
5690 *
5691 * Initialization of the Control VSI
5692 *
5693 * Returns 0 on success, negative value on error
5694 */
5695int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5696{
5697 char int_name[ICE_INT_NAME_STR_LEN];
5698 struct ice_pf *pf = vsi->back;
5699 struct device *dev;
5700 int err;
5701
5702 dev = ice_pf_to_dev(pf);
5703 /* allocate descriptors */
5704 err = ice_vsi_setup_tx_rings(vsi);
5705 if (err)
5706 goto err_setup_tx;
5707
5708 err = ice_vsi_setup_rx_rings(vsi);
5709 if (err)
5710 goto err_setup_rx;
5711
5712 err = ice_vsi_cfg(vsi);
5713 if (err)
5714 goto err_setup_rx;
5715
5716 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5717 dev_driver_string(dev), dev_name(dev));
5718 err = ice_vsi_req_irq_msix(vsi, int_name);
5719 if (err)
5720 goto err_setup_rx;
5721
5722 ice_vsi_cfg_msix(vsi);
5723
5724 err = ice_vsi_start_all_rx_rings(vsi);
5725 if (err)
5726 goto err_up_complete;
5727
5728 clear_bit(__ICE_DOWN, vsi->state);
5729 ice_vsi_ena_irq(vsi);
5730
5731 return 0;
5732
5733err_up_complete:
5734 ice_down(vsi);
5735err_setup_rx:
5736 ice_vsi_free_rx_rings(vsi);
5737err_setup_tx:
5738 ice_vsi_free_tx_rings(vsi);
5739
5740 return err;
5741}
5742
5743/**
5744 * ice_vsi_open - Called when a network interface is made active
5745 * @vsi: the VSI to open
5746 *
5747 * Initialization of the VSI
5748 *
5749 * Returns 0 on success, negative value on error
5750 */
5751static int ice_vsi_open(struct ice_vsi *vsi)
5752{
5753 char int_name[ICE_INT_NAME_STR_LEN];
5754 struct ice_pf *pf = vsi->back;
5755 int err;
5756
5757 /* allocate descriptors */
5758 err = ice_vsi_setup_tx_rings(vsi);
5759 if (err)
5760 goto err_setup_tx;
5761
5762 err = ice_vsi_setup_rx_rings(vsi);
5763 if (err)
5764 goto err_setup_rx;
5765
5766 err = ice_vsi_cfg(vsi);
5767 if (err)
5768 goto err_setup_rx;
5769
5770 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5771 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5772 err = ice_vsi_req_irq_msix(vsi, int_name);
5773 if (err)
5774 goto err_setup_rx;
5775
5776 /* Notify the stack of the actual queue counts. */
5777 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5778 if (err)
5779 goto err_set_qs;
5780
5781 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5782 if (err)
5783 goto err_set_qs;
5784
5785 err = ice_up_complete(vsi);
5786 if (err)
5787 goto err_up_complete;
5788
5789 return 0;
5790
5791err_up_complete:
5792 ice_down(vsi);
5793err_set_qs:
5794 ice_vsi_free_irq(vsi);
5795err_setup_rx:
5796 ice_vsi_free_rx_rings(vsi);
5797err_setup_tx:
5798 ice_vsi_free_tx_rings(vsi);
5799
5800 return err;
5801}
5802
5803/**
5804 * ice_vsi_release_all - Delete all VSIs
5805 * @pf: PF from which all VSIs are being removed
5806 */
5807static void ice_vsi_release_all(struct ice_pf *pf)
5808{
5809 int err, i;
5810
5811 if (!pf->vsi)
5812 return;
5813
5814 ice_for_each_vsi(pf, i) {
5815 if (!pf->vsi[i])
5816 continue;
5817
5818 err = ice_vsi_release(pf->vsi[i]);
5819 if (err)
5820 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5821 i, err, pf->vsi[i]->vsi_num);
5822 }
5823}
5824
5825/**
5826 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5827 * @pf: pointer to the PF instance
5828 * @type: VSI type to rebuild
5829 *
5830 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5831 */
5832static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5833{
5834 struct device *dev = ice_pf_to_dev(pf);
5835 enum ice_status status;
5836 int i, err;
5837
5838 ice_for_each_vsi(pf, i) {
5839 struct ice_vsi *vsi = pf->vsi[i];
5840
5841 if (!vsi || vsi->type != type)
5842 continue;
5843
5844 /* rebuild the VSI */
5845 err = ice_vsi_rebuild(vsi, true);
5846 if (err) {
5847 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5848 err, vsi->idx, ice_vsi_type_str(type));
5849 return err;
5850 }
5851
5852 /* replay filters for the VSI */
5853 status = ice_replay_vsi(&pf->hw, vsi->idx);
5854 if (status) {
5855 dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5856 ice_stat_str(status), vsi->idx,
5857 ice_vsi_type_str(type));
5858 return -EIO;
5859 }
5860
5861 /* Re-map HW VSI number, using VSI handle that has been
5862 * previously validated in ice_replay_vsi() call above
5863 */
5864 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5865
5866 /* enable the VSI */
5867 err = ice_ena_vsi(vsi, false);
5868 if (err) {
5869 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5870 err, vsi->idx, ice_vsi_type_str(type));
5871 return err;
5872 }
5873
5874 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5875 ice_vsi_type_str(type));
5876 }
5877
5878 return 0;
5879}
5880
5881/**
5882 * ice_update_pf_netdev_link - Update PF netdev link status
5883 * @pf: pointer to the PF instance
5884 */
5885static void ice_update_pf_netdev_link(struct ice_pf *pf)
5886{
5887 bool link_up;
5888 int i;
5889
5890 ice_for_each_vsi(pf, i) {
5891 struct ice_vsi *vsi = pf->vsi[i];
5892
5893 if (!vsi || vsi->type != ICE_VSI_PF)
5894 return;
5895
5896 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5897 if (link_up) {
5898 netif_carrier_on(pf->vsi[i]->netdev);
5899 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5900 } else {
5901 netif_carrier_off(pf->vsi[i]->netdev);
5902 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5903 }
5904 }
5905}
5906
5907/**
5908 * ice_rebuild - rebuild after reset
5909 * @pf: PF to rebuild
5910 * @reset_type: type of reset
5911 *
5912 * Do not rebuild VF VSI in this flow because that is already handled via
5913 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5914 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5915 * to reset/rebuild all the VF VSI twice.
5916 */
5917static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5918{
5919 struct device *dev = ice_pf_to_dev(pf);
5920 struct ice_hw *hw = &pf->hw;
5921 enum ice_status ret;
5922 int err;
5923
5924 if (test_bit(__ICE_DOWN, pf->state))
5925 goto clear_recovery;
5926
5927 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5928
5929 ret = ice_init_all_ctrlq(hw);
5930 if (ret) {
5931 dev_err(dev, "control queues init failed %s\n",
5932 ice_stat_str(ret));
5933 goto err_init_ctrlq;
5934 }
5935
5936 /* if DDP was previously loaded successfully */
5937 if (!ice_is_safe_mode(pf)) {
5938 /* reload the SW DB of filter tables */
5939 if (reset_type == ICE_RESET_PFR)
5940 ice_fill_blk_tbls(hw);
5941 else
5942 /* Reload DDP Package after CORER/GLOBR reset */
5943 ice_load_pkg(NULL, pf);
5944 }
5945
5946 ret = ice_clear_pf_cfg(hw);
5947 if (ret) {
5948 dev_err(dev, "clear PF configuration failed %s\n",
5949 ice_stat_str(ret));
5950 goto err_init_ctrlq;
5951 }
5952
5953 if (pf->first_sw->dflt_vsi_ena)
5954 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5955 /* clear the default VSI configuration if it exists */
5956 pf->first_sw->dflt_vsi = NULL;
5957 pf->first_sw->dflt_vsi_ena = false;
5958
5959 ice_clear_pxe_mode(hw);
5960
5961 ret = ice_get_caps(hw);
5962 if (ret) {
5963 dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5964 goto err_init_ctrlq;
5965 }
5966
5967 ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
5968 if (ret) {
5969 dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
5970 goto err_init_ctrlq;
5971 }
5972
5973 err = ice_sched_init_port(hw->port_info);
5974 if (err)
5975 goto err_sched_init_port;
5976
5977 /* start misc vector */
5978 err = ice_req_irq_msix_misc(pf);
5979 if (err) {
5980 dev_err(dev, "misc vector setup failed: %d\n", err);
5981 goto err_sched_init_port;
5982 }
5983
5984 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
5985 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
5986 if (!rd32(hw, PFQF_FD_SIZE)) {
5987 u16 unused, guar, b_effort;
5988
5989 guar = hw->func_caps.fd_fltr_guar;
5990 b_effort = hw->func_caps.fd_fltr_best_effort;
5991
5992 /* force guaranteed filter pool for PF */
5993 ice_alloc_fd_guar_item(hw, &unused, guar);
5994 /* force shared filter pool for PF */
5995 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
5996 }
5997 }
5998
5999 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6000 ice_dcb_rebuild(pf);
6001
6002 /* rebuild PF VSI */
6003 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6004 if (err) {
6005 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6006 goto err_vsi_rebuild;
6007 }
6008
6009 /* If Flow Director is active */
6010 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6011 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6012 if (err) {
6013 dev_err(dev, "control VSI rebuild failed: %d\n", err);
6014 goto err_vsi_rebuild;
6015 }
6016
6017 /* replay HW Flow Director recipes */
6018 if (hw->fdir_prof)
6019 ice_fdir_replay_flows(hw);
6020
6021 /* replay Flow Director filters */
6022 ice_fdir_replay_fltrs(pf);
6023
6024 ice_rebuild_arfs(pf);
6025 }
6026
6027 ice_update_pf_netdev_link(pf);
6028
6029 /* tell the firmware we are up */
6030 ret = ice_send_version(pf);
6031 if (ret) {
6032 dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6033 ice_stat_str(ret));
6034 goto err_vsi_rebuild;
6035 }
6036
6037 ice_replay_post(hw);
6038
6039 /* if we get here, reset flow is successful */
6040 clear_bit(__ICE_RESET_FAILED, pf->state);
6041 return;
6042
6043err_vsi_rebuild:
6044err_sched_init_port:
6045 ice_sched_cleanup_all(hw);
6046err_init_ctrlq:
6047 ice_shutdown_all_ctrlq(hw);
6048 set_bit(__ICE_RESET_FAILED, pf->state);
6049clear_recovery:
6050 /* set this bit in PF state to control service task scheduling */
6051 set_bit(__ICE_NEEDS_RESTART, pf->state);
6052 dev_err(dev, "Rebuild failed, unload and reload driver\n");
6053}
6054
6055/**
6056 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6057 * @vsi: Pointer to VSI structure
6058 */
6059static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6060{
6061 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6062 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6063 else
6064 return ICE_RXBUF_3072;
6065}
6066
6067/**
6068 * ice_change_mtu - NDO callback to change the MTU
6069 * @netdev: network interface device structure
6070 * @new_mtu: new value for maximum frame size
6071 *
6072 * Returns 0 on success, negative on failure
6073 */
6074static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6075{
6076 struct ice_netdev_priv *np = netdev_priv(netdev);
6077 struct ice_vsi *vsi = np->vsi;
6078 struct ice_pf *pf = vsi->back;
6079 u8 count = 0;
6080
6081 if (new_mtu == (int)netdev->mtu) {
6082 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6083 return 0;
6084 }
6085
6086 if (ice_is_xdp_ena_vsi(vsi)) {
6087 int frame_size = ice_max_xdp_frame_size(vsi);
6088
6089 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6090 netdev_err(netdev, "max MTU for XDP usage is %d\n",
6091 frame_size - ICE_ETH_PKT_HDR_PAD);
6092 return -EINVAL;
6093 }
6094 }
6095
6096 if (new_mtu < (int)netdev->min_mtu) {
6097 netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6098 netdev->min_mtu);
6099 return -EINVAL;
6100 } else if (new_mtu > (int)netdev->max_mtu) {
6101 netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6102 netdev->min_mtu);
6103 return -EINVAL;
6104 }
6105 /* if a reset is in progress, wait for some time for it to complete */
6106 do {
6107 if (ice_is_reset_in_progress(pf->state)) {
6108 count++;
6109 usleep_range(1000, 2000);
6110 } else {
6111 break;
6112 }
6113
6114 } while (count < 100);
6115
6116 if (count == 100) {
6117 netdev_err(netdev, "can't change MTU. Device is busy\n");
6118 return -EBUSY;
6119 }
6120
6121 netdev->mtu = (unsigned int)new_mtu;
6122
6123 /* if VSI is up, bring it down and then back up */
6124 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6125 int err;
6126
6127 err = ice_down(vsi);
6128 if (err) {
6129 netdev_err(netdev, "change MTU if_up err %d\n", err);
6130 return err;
6131 }
6132
6133 err = ice_up(vsi);
6134 if (err) {
6135 netdev_err(netdev, "change MTU if_up err %d\n", err);
6136 return err;
6137 }
6138 }
6139
6140 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6141 return 0;
6142}
6143
6144/**
6145 * ice_aq_str - convert AQ err code to a string
6146 * @aq_err: the AQ error code to convert
6147 */
6148const char *ice_aq_str(enum ice_aq_err aq_err)
6149{
6150 switch (aq_err) {
6151 case ICE_AQ_RC_OK:
6152 return "OK";
6153 case ICE_AQ_RC_EPERM:
6154 return "ICE_AQ_RC_EPERM";
6155 case ICE_AQ_RC_ENOENT:
6156 return "ICE_AQ_RC_ENOENT";
6157 case ICE_AQ_RC_ENOMEM:
6158 return "ICE_AQ_RC_ENOMEM";
6159 case ICE_AQ_RC_EBUSY:
6160 return "ICE_AQ_RC_EBUSY";
6161 case ICE_AQ_RC_EEXIST:
6162 return "ICE_AQ_RC_EEXIST";
6163 case ICE_AQ_RC_EINVAL:
6164 return "ICE_AQ_RC_EINVAL";
6165 case ICE_AQ_RC_ENOSPC:
6166 return "ICE_AQ_RC_ENOSPC";
6167 case ICE_AQ_RC_ENOSYS:
6168 return "ICE_AQ_RC_ENOSYS";
6169 case ICE_AQ_RC_EMODE:
6170 return "ICE_AQ_RC_EMODE";
6171 case ICE_AQ_RC_ENOSEC:
6172 return "ICE_AQ_RC_ENOSEC";
6173 case ICE_AQ_RC_EBADSIG:
6174 return "ICE_AQ_RC_EBADSIG";
6175 case ICE_AQ_RC_ESVN:
6176 return "ICE_AQ_RC_ESVN";
6177 case ICE_AQ_RC_EBADMAN:
6178 return "ICE_AQ_RC_EBADMAN";
6179 case ICE_AQ_RC_EBADBUF:
6180 return "ICE_AQ_RC_EBADBUF";
6181 }
6182
6183 return "ICE_AQ_RC_UNKNOWN";
6184}
6185
6186/**
6187 * ice_stat_str - convert status err code to a string
6188 * @stat_err: the status error code to convert
6189 */
6190const char *ice_stat_str(enum ice_status stat_err)
6191{
6192 switch (stat_err) {
6193 case ICE_SUCCESS:
6194 return "OK";
6195 case ICE_ERR_PARAM:
6196 return "ICE_ERR_PARAM";
6197 case ICE_ERR_NOT_IMPL:
6198 return "ICE_ERR_NOT_IMPL";
6199 case ICE_ERR_NOT_READY:
6200 return "ICE_ERR_NOT_READY";
6201 case ICE_ERR_NOT_SUPPORTED:
6202 return "ICE_ERR_NOT_SUPPORTED";
6203 case ICE_ERR_BAD_PTR:
6204 return "ICE_ERR_BAD_PTR";
6205 case ICE_ERR_INVAL_SIZE:
6206 return "ICE_ERR_INVAL_SIZE";
6207 case ICE_ERR_DEVICE_NOT_SUPPORTED:
6208 return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6209 case ICE_ERR_RESET_FAILED:
6210 return "ICE_ERR_RESET_FAILED";
6211 case ICE_ERR_FW_API_VER:
6212 return "ICE_ERR_FW_API_VER";
6213 case ICE_ERR_NO_MEMORY:
6214 return "ICE_ERR_NO_MEMORY";
6215 case ICE_ERR_CFG:
6216 return "ICE_ERR_CFG";
6217 case ICE_ERR_OUT_OF_RANGE:
6218 return "ICE_ERR_OUT_OF_RANGE";
6219 case ICE_ERR_ALREADY_EXISTS:
6220 return "ICE_ERR_ALREADY_EXISTS";
6221 case ICE_ERR_NVM_CHECKSUM:
6222 return "ICE_ERR_NVM_CHECKSUM";
6223 case ICE_ERR_BUF_TOO_SHORT:
6224 return "ICE_ERR_BUF_TOO_SHORT";
6225 case ICE_ERR_NVM_BLANK_MODE:
6226 return "ICE_ERR_NVM_BLANK_MODE";
6227 case ICE_ERR_IN_USE:
6228 return "ICE_ERR_IN_USE";
6229 case ICE_ERR_MAX_LIMIT:
6230 return "ICE_ERR_MAX_LIMIT";
6231 case ICE_ERR_RESET_ONGOING:
6232 return "ICE_ERR_RESET_ONGOING";
6233 case ICE_ERR_HW_TABLE:
6234 return "ICE_ERR_HW_TABLE";
6235 case ICE_ERR_DOES_NOT_EXIST:
6236 return "ICE_ERR_DOES_NOT_EXIST";
6237 case ICE_ERR_FW_DDP_MISMATCH:
6238 return "ICE_ERR_FW_DDP_MISMATCH";
6239 case ICE_ERR_AQ_ERROR:
6240 return "ICE_ERR_AQ_ERROR";
6241 case ICE_ERR_AQ_TIMEOUT:
6242 return "ICE_ERR_AQ_TIMEOUT";
6243 case ICE_ERR_AQ_FULL:
6244 return "ICE_ERR_AQ_FULL";
6245 case ICE_ERR_AQ_NO_WORK:
6246 return "ICE_ERR_AQ_NO_WORK";
6247 case ICE_ERR_AQ_EMPTY:
6248 return "ICE_ERR_AQ_EMPTY";
6249 case ICE_ERR_AQ_FW_CRITICAL:
6250 return "ICE_ERR_AQ_FW_CRITICAL";
6251 }
6252
6253 return "ICE_ERR_UNKNOWN";
6254}
6255
6256/**
6257 * ice_set_rss - Set RSS keys and lut
6258 * @vsi: Pointer to VSI structure
6259 * @seed: RSS hash seed
6260 * @lut: Lookup table
6261 * @lut_size: Lookup table size
6262 *
6263 * Returns 0 on success, negative on failure
6264 */
6265int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6266{
6267 struct ice_pf *pf = vsi->back;
6268 struct ice_hw *hw = &pf->hw;
6269 enum ice_status status;
6270 struct device *dev;
6271
6272 dev = ice_pf_to_dev(pf);
6273 if (seed) {
6274 struct ice_aqc_get_set_rss_keys *buf =
6275 (struct ice_aqc_get_set_rss_keys *)seed;
6276
6277 status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6278
6279 if (status) {
6280 dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6281 ice_stat_str(status),
6282 ice_aq_str(hw->adminq.sq_last_status));
6283 return -EIO;
6284 }
6285 }
6286
6287 if (lut) {
6288 status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6289 lut, lut_size);
6290 if (status) {
6291 dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6292 ice_stat_str(status),
6293 ice_aq_str(hw->adminq.sq_last_status));
6294 return -EIO;
6295 }
6296 }
6297
6298 return 0;
6299}
6300
6301/**
6302 * ice_get_rss - Get RSS keys and lut
6303 * @vsi: Pointer to VSI structure
6304 * @seed: Buffer to store the keys
6305 * @lut: Buffer to store the lookup table entries
6306 * @lut_size: Size of buffer to store the lookup table entries
6307 *
6308 * Returns 0 on success, negative on failure
6309 */
6310int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6311{
6312 struct ice_pf *pf = vsi->back;
6313 struct ice_hw *hw = &pf->hw;
6314 enum ice_status status;
6315 struct device *dev;
6316
6317 dev = ice_pf_to_dev(pf);
6318 if (seed) {
6319 struct ice_aqc_get_set_rss_keys *buf =
6320 (struct ice_aqc_get_set_rss_keys *)seed;
6321
6322 status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6323 if (status) {
6324 dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6325 ice_stat_str(status),
6326 ice_aq_str(hw->adminq.sq_last_status));
6327 return -EIO;
6328 }
6329 }
6330
6331 if (lut) {
6332 status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6333 lut, lut_size);
6334 if (status) {
6335 dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6336 ice_stat_str(status),
6337 ice_aq_str(hw->adminq.sq_last_status));
6338 return -EIO;
6339 }
6340 }
6341
6342 return 0;
6343}
6344
6345/**
6346 * ice_bridge_getlink - Get the hardware bridge mode
6347 * @skb: skb buff
6348 * @pid: process ID
6349 * @seq: RTNL message seq
6350 * @dev: the netdev being configured
6351 * @filter_mask: filter mask passed in
6352 * @nlflags: netlink flags passed in
6353 *
6354 * Return the bridge mode (VEB/VEPA)
6355 */
6356static int
6357ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6358 struct net_device *dev, u32 filter_mask, int nlflags)
6359{
6360 struct ice_netdev_priv *np = netdev_priv(dev);
6361 struct ice_vsi *vsi = np->vsi;
6362 struct ice_pf *pf = vsi->back;
6363 u16 bmode;
6364
6365 bmode = pf->first_sw->bridge_mode;
6366
6367 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6368 filter_mask, NULL);
6369}
6370
6371/**
6372 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6373 * @vsi: Pointer to VSI structure
6374 * @bmode: Hardware bridge mode (VEB/VEPA)
6375 *
6376 * Returns 0 on success, negative on failure
6377 */
6378static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6379{
6380 struct ice_aqc_vsi_props *vsi_props;
6381 struct ice_hw *hw = &vsi->back->hw;
6382 struct ice_vsi_ctx *ctxt;
6383 enum ice_status status;
6384 int ret = 0;
6385
6386 vsi_props = &vsi->info;
6387
6388 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6389 if (!ctxt)
6390 return -ENOMEM;
6391
6392 ctxt->info = vsi->info;
6393
6394 if (bmode == BRIDGE_MODE_VEB)
6395 /* change from VEPA to VEB mode */
6396 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6397 else
6398 /* change from VEB to VEPA mode */
6399 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6400 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6401
6402 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6403 if (status) {
6404 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6405 bmode, ice_stat_str(status),
6406 ice_aq_str(hw->adminq.sq_last_status));
6407 ret = -EIO;
6408 goto out;
6409 }
6410 /* Update sw flags for book keeping */
6411 vsi_props->sw_flags = ctxt->info.sw_flags;
6412
6413out:
6414 kfree(ctxt);
6415 return ret;
6416}
6417
6418/**
6419 * ice_bridge_setlink - Set the hardware bridge mode
6420 * @dev: the netdev being configured
6421 * @nlh: RTNL message
6422 * @flags: bridge setlink flags
6423 * @extack: netlink extended ack
6424 *
6425 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6426 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6427 * not already set for all VSIs connected to this switch. And also update the
6428 * unicast switch filter rules for the corresponding switch of the netdev.
6429 */
6430static int
6431ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6432 u16 __always_unused flags,
6433 struct netlink_ext_ack __always_unused *extack)
6434{
6435 struct ice_netdev_priv *np = netdev_priv(dev);
6436 struct ice_pf *pf = np->vsi->back;
6437 struct nlattr *attr, *br_spec;
6438 struct ice_hw *hw = &pf->hw;
6439 enum ice_status status;
6440 struct ice_sw *pf_sw;
6441 int rem, v, err = 0;
6442
6443 pf_sw = pf->first_sw;
6444 /* find the attribute in the netlink message */
6445 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6446
6447 nla_for_each_nested(attr, br_spec, rem) {
6448 __u16 mode;
6449
6450 if (nla_type(attr) != IFLA_BRIDGE_MODE)
6451 continue;
6452 mode = nla_get_u16(attr);
6453 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6454 return -EINVAL;
6455 /* Continue if bridge mode is not being flipped */
6456 if (mode == pf_sw->bridge_mode)
6457 continue;
6458 /* Iterates through the PF VSI list and update the loopback
6459 * mode of the VSI
6460 */
6461 ice_for_each_vsi(pf, v) {
6462 if (!pf->vsi[v])
6463 continue;
6464 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6465 if (err)
6466 return err;
6467 }
6468
6469 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6470 /* Update the unicast switch filter rules for the corresponding
6471 * switch of the netdev
6472 */
6473 status = ice_update_sw_rule_bridge_mode(hw);
6474 if (status) {
6475 netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6476 mode, ice_stat_str(status),
6477 ice_aq_str(hw->adminq.sq_last_status));
6478 /* revert hw->evb_veb */
6479 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6480 return -EIO;
6481 }
6482
6483 pf_sw->bridge_mode = mode;
6484 }
6485
6486 return 0;
6487}
6488
6489/**
6490 * ice_tx_timeout - Respond to a Tx Hang
6491 * @netdev: network interface device structure
6492 * @txqueue: Tx queue
6493 */
6494static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6495{
6496 struct ice_netdev_priv *np = netdev_priv(netdev);
6497 struct ice_ring *tx_ring = NULL;
6498 struct ice_vsi *vsi = np->vsi;
6499 struct ice_pf *pf = vsi->back;
6500 u32 i;
6501
6502 pf->tx_timeout_count++;
6503
6504 /* Check if PFC is enabled for the TC to which the queue belongs
6505 * to. If yes then Tx timeout is not caused by a hung queue, no
6506 * need to reset and rebuild
6507 */
6508 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6509 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6510 txqueue);
6511 return;
6512 }
6513
6514 /* now that we have an index, find the tx_ring struct */
6515 for (i = 0; i < vsi->num_txq; i++)
6516 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6517 if (txqueue == vsi->tx_rings[i]->q_index) {
6518 tx_ring = vsi->tx_rings[i];
6519 break;
6520 }
6521
6522 /* Reset recovery level if enough time has elapsed after last timeout.
6523 * Also ensure no new reset action happens before next timeout period.
6524 */
6525 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6526 pf->tx_timeout_recovery_level = 1;
6527 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6528 netdev->watchdog_timeo)))
6529 return;
6530
6531 if (tx_ring) {
6532 struct ice_hw *hw = &pf->hw;
6533 u32 head, val = 0;
6534
6535 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6536 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6537 /* Read interrupt register */
6538 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6539
6540 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6541 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6542 head, tx_ring->next_to_use, val);
6543 }
6544
6545 pf->tx_timeout_last_recovery = jiffies;
6546 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6547 pf->tx_timeout_recovery_level, txqueue);
6548
6549 switch (pf->tx_timeout_recovery_level) {
6550 case 1:
6551 set_bit(__ICE_PFR_REQ, pf->state);
6552 break;
6553 case 2:
6554 set_bit(__ICE_CORER_REQ, pf->state);
6555 break;
6556 case 3:
6557 set_bit(__ICE_GLOBR_REQ, pf->state);
6558 break;
6559 default:
6560 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6561 set_bit(__ICE_DOWN, pf->state);
6562 set_bit(__ICE_NEEDS_RESTART, vsi->state);
6563 set_bit(__ICE_SERVICE_DIS, pf->state);
6564 break;
6565 }
6566
6567 ice_service_task_schedule(pf);
6568 pf->tx_timeout_recovery_level++;
6569}
6570
6571/**
6572 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
6573 * @netdev: This physical port's netdev
6574 * @ti: Tunnel endpoint information
6575 */
6576static void
6577ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti)
6578{
6579 struct ice_netdev_priv *np = netdev_priv(netdev);
6580 struct ice_vsi *vsi = np->vsi;
6581 struct ice_pf *pf = vsi->back;
6582 enum ice_tunnel_type tnl_type;
6583 u16 port = ntohs(ti->port);
6584 enum ice_status status;
6585
6586 switch (ti->type) {
6587 case UDP_TUNNEL_TYPE_VXLAN:
6588 tnl_type = TNL_VXLAN;
6589 break;
6590 case UDP_TUNNEL_TYPE_GENEVE:
6591 tnl_type = TNL_GENEVE;
6592 break;
6593 default:
6594 netdev_err(netdev, "Unknown tunnel type\n");
6595 return;
6596 }
6597
6598 status = ice_create_tunnel(&pf->hw, tnl_type, port);
6599 if (status == ICE_ERR_OUT_OF_RANGE)
6600 netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n",
6601 port);
6602 else if (status)
6603 netdev_err(netdev, "Error adding UDP tunnel - %s\n",
6604 ice_stat_str(status));
6605}
6606
6607/**
6608 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
6609 * @netdev: This physical port's netdev
6610 * @ti: Tunnel endpoint information
6611 */
6612static void
6613ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti)
6614{
6615 struct ice_netdev_priv *np = netdev_priv(netdev);
6616 struct ice_vsi *vsi = np->vsi;
6617 struct ice_pf *pf = vsi->back;
6618 u16 port = ntohs(ti->port);
6619 enum ice_status status;
6620 bool retval;
6621
6622 retval = ice_tunnel_port_in_use(&pf->hw, port, NULL);
6623 if (!retval) {
6624 netdev_info(netdev, "port %d not found in UDP tunnels list\n",
6625 port);
6626 return;
6627 }
6628
6629 status = ice_destroy_tunnel(&pf->hw, port, false);
6630 if (status)
6631 netdev_err(netdev, "error deleting port %d from UDP tunnels list\n",
6632 port);
6633}
6634
6635/**
6636 * ice_open - Called when a network interface becomes active
6637 * @netdev: network interface device structure
6638 *
6639 * The open entry point is called when a network interface is made
6640 * active by the system (IFF_UP). At this point all resources needed
6641 * for transmit and receive operations are allocated, the interrupt
6642 * handler is registered with the OS, the netdev watchdog is enabled,
6643 * and the stack is notified that the interface is ready.
6644 *
6645 * Returns 0 on success, negative value on failure
6646 */
6647int ice_open(struct net_device *netdev)
6648{
6649 struct ice_netdev_priv *np = netdev_priv(netdev);
6650 struct ice_vsi *vsi = np->vsi;
6651 struct ice_pf *pf = vsi->back;
6652 struct ice_port_info *pi;
6653 int err;
6654
6655 if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6656 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6657 return -EIO;
6658 }
6659
6660 if (test_bit(__ICE_DOWN, pf->state)) {
6661 netdev_err(netdev, "device is not ready yet\n");
6662 return -EBUSY;
6663 }
6664
6665 netif_carrier_off(netdev);
6666
6667 pi = vsi->port_info;
6668 err = ice_update_link_info(pi);
6669 if (err) {
6670 netdev_err(netdev, "Failed to get link info, error %d\n",
6671 err);
6672 return err;
6673 }
6674
6675 /* Set PHY if there is media, otherwise, turn off PHY */
6676 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6677 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6678 if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6679 err = ice_init_phy_user_cfg(pi);
6680 if (err) {
6681 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6682 err);
6683 return err;
6684 }
6685 }
6686
6687 err = ice_configure_phy(vsi);
6688 if (err) {
6689 netdev_err(netdev, "Failed to set physical link up, error %d\n",
6690 err);
6691 return err;
6692 }
6693 } else {
6694 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6695 err = ice_aq_set_link_restart_an(pi, false, NULL);
6696 if (err) {
6697 netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6698 vsi->vsi_num, err);
6699 return err;
6700 }
6701 }
6702
6703 err = ice_vsi_open(vsi);
6704 if (err)
6705 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6706 vsi->vsi_num, vsi->vsw->sw_id);
6707
6708 /* Update existing tunnels information */
6709 udp_tunnel_get_rx_info(netdev);
6710
6711 return err;
6712}
6713
6714/**
6715 * ice_stop - Disables a network interface
6716 * @netdev: network interface device structure
6717 *
6718 * The stop entry point is called when an interface is de-activated by the OS,
6719 * and the netdevice enters the DOWN state. The hardware is still under the
6720 * driver's control, but the netdev interface is disabled.
6721 *
6722 * Returns success only - not allowed to fail
6723 */
6724int ice_stop(struct net_device *netdev)
6725{
6726 struct ice_netdev_priv *np = netdev_priv(netdev);
6727 struct ice_vsi *vsi = np->vsi;
6728
6729 ice_vsi_close(vsi);
6730
6731 return 0;
6732}
6733
6734/**
6735 * ice_features_check - Validate encapsulated packet conforms to limits
6736 * @skb: skb buffer
6737 * @netdev: This port's netdev
6738 * @features: Offload features that the stack believes apply
6739 */
6740static netdev_features_t
6741ice_features_check(struct sk_buff *skb,
6742 struct net_device __always_unused *netdev,
6743 netdev_features_t features)
6744{
6745 size_t len;
6746
6747 /* No point in doing any of this if neither checksum nor GSO are
6748 * being requested for this frame. We can rule out both by just
6749 * checking for CHECKSUM_PARTIAL
6750 */
6751 if (skb->ip_summed != CHECKSUM_PARTIAL)
6752 return features;
6753
6754 /* We cannot support GSO if the MSS is going to be less than
6755 * 64 bytes. If it is then we need to drop support for GSO.
6756 */
6757 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6758 features &= ~NETIF_F_GSO_MASK;
6759
6760 len = skb_network_header(skb) - skb->data;
6761 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6762 goto out_rm_features;
6763
6764 len = skb_transport_header(skb) - skb_network_header(skb);
6765 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6766 goto out_rm_features;
6767
6768 if (skb->encapsulation) {
6769 len = skb_inner_network_header(skb) - skb_transport_header(skb);
6770 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6771 goto out_rm_features;
6772
6773 len = skb_inner_transport_header(skb) -
6774 skb_inner_network_header(skb);
6775 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6776 goto out_rm_features;
6777 }
6778
6779 return features;
6780out_rm_features:
6781 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6782}
6783
6784static const struct net_device_ops ice_netdev_safe_mode_ops = {
6785 .ndo_open = ice_open,
6786 .ndo_stop = ice_stop,
6787 .ndo_start_xmit = ice_start_xmit,
6788 .ndo_set_mac_address = ice_set_mac_address,
6789 .ndo_validate_addr = eth_validate_addr,
6790 .ndo_change_mtu = ice_change_mtu,
6791 .ndo_get_stats64 = ice_get_stats64,
6792 .ndo_tx_timeout = ice_tx_timeout,
6793};
6794
6795static const struct net_device_ops ice_netdev_ops = {
6796 .ndo_open = ice_open,
6797 .ndo_stop = ice_stop,
6798 .ndo_start_xmit = ice_start_xmit,
6799 .ndo_features_check = ice_features_check,
6800 .ndo_set_rx_mode = ice_set_rx_mode,
6801 .ndo_set_mac_address = ice_set_mac_address,
6802 .ndo_validate_addr = eth_validate_addr,
6803 .ndo_change_mtu = ice_change_mtu,
6804 .ndo_get_stats64 = ice_get_stats64,
6805 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
6806 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6807 .ndo_set_vf_mac = ice_set_vf_mac,
6808 .ndo_get_vf_config = ice_get_vf_cfg,
6809 .ndo_set_vf_trust = ice_set_vf_trust,
6810 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
6811 .ndo_set_vf_link_state = ice_set_vf_link_state,
6812 .ndo_get_vf_stats = ice_get_vf_stats,
6813 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6814 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6815 .ndo_set_features = ice_set_features,
6816 .ndo_bridge_getlink = ice_bridge_getlink,
6817 .ndo_bridge_setlink = ice_bridge_setlink,
6818 .ndo_fdb_add = ice_fdb_add,
6819 .ndo_fdb_del = ice_fdb_del,
6820#ifdef CONFIG_RFS_ACCEL
6821 .ndo_rx_flow_steer = ice_rx_flow_steer,
6822#endif
6823 .ndo_tx_timeout = ice_tx_timeout,
6824 .ndo_bpf = ice_xdp,
6825 .ndo_xdp_xmit = ice_xdp_xmit,
6826 .ndo_xsk_wakeup = ice_xsk_wakeup,
6827 .ndo_udp_tunnel_add = ice_udp_tunnel_add,
6828 .ndo_udp_tunnel_del = ice_udp_tunnel_del,
6829};
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright (c) 2018, Intel Corporation. */
3
4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8#include "ice.h"
9
10#define DRV_VERSION "ice-0.7.0-k"
11#define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
12const char ice_drv_ver[] = DRV_VERSION;
13static const char ice_driver_string[] = DRV_SUMMARY;
14static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
15
16MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
17MODULE_DESCRIPTION(DRV_SUMMARY);
18MODULE_LICENSE("GPL");
19MODULE_VERSION(DRV_VERSION);
20
21static int debug = -1;
22module_param(debug, int, 0644);
23#ifndef CONFIG_DYNAMIC_DEBUG
24MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
25#else
26MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
27#endif /* !CONFIG_DYNAMIC_DEBUG */
28
29static struct workqueue_struct *ice_wq;
30static const struct net_device_ops ice_netdev_ops;
31
32static void ice_pf_dis_all_vsi(struct ice_pf *pf);
33static void ice_rebuild(struct ice_pf *pf);
34static int ice_vsi_release(struct ice_vsi *vsi);
35static void ice_update_vsi_stats(struct ice_vsi *vsi);
36static void ice_update_pf_stats(struct ice_pf *pf);
37
38/**
39 * ice_get_free_slot - get the next non-NULL location index in array
40 * @array: array to search
41 * @size: size of the array
42 * @curr: last known occupied index to be used as a search hint
43 *
44 * void * is being used to keep the functionality generic. This lets us use this
45 * function on any array of pointers.
46 */
47static int ice_get_free_slot(void *array, int size, int curr)
48{
49 int **tmp_array = (int **)array;
50 int next;
51
52 if (curr < (size - 1) && !tmp_array[curr + 1]) {
53 next = curr + 1;
54 } else {
55 int i = 0;
56
57 while ((i < size) && (tmp_array[i]))
58 i++;
59 if (i == size)
60 next = ICE_NO_VSI;
61 else
62 next = i;
63 }
64 return next;
65}
66
67/**
68 * ice_search_res - Search the tracker for a block of resources
69 * @res: pointer to the resource
70 * @needed: size of the block needed
71 * @id: identifier to track owner
72 * Returns the base item index of the block, or -ENOMEM for error
73 */
74static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
75{
76 int start = res->search_hint;
77 int end = start;
78
79 id |= ICE_RES_VALID_BIT;
80
81 do {
82 /* skip already allocated entries */
83 if (res->list[end++] & ICE_RES_VALID_BIT) {
84 start = end;
85 if ((start + needed) > res->num_entries)
86 break;
87 }
88
89 if (end == (start + needed)) {
90 int i = start;
91
92 /* there was enough, so assign it to the requestor */
93 while (i != end)
94 res->list[i++] = id;
95
96 if (end == res->num_entries)
97 end = 0;
98
99 res->search_hint = end;
100 return start;
101 }
102 } while (1);
103
104 return -ENOMEM;
105}
106
107/**
108 * ice_get_res - get a block of resources
109 * @pf: board private structure
110 * @res: pointer to the resource
111 * @needed: size of the block needed
112 * @id: identifier to track owner
113 *
114 * Returns the base item index of the block, or -ENOMEM for error
115 * The search_hint trick and lack of advanced fit-finding only works
116 * because we're highly likely to have all the same sized requests.
117 * Linear search time and any fragmentation should be minimal.
118 */
119static int
120ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
121{
122 int ret;
123
124 if (!res || !pf)
125 return -EINVAL;
126
127 if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
128 dev_err(&pf->pdev->dev,
129 "param err: needed=%d, num_entries = %d id=0x%04x\n",
130 needed, res->num_entries, id);
131 return -EINVAL;
132 }
133
134 /* search based on search_hint */
135 ret = ice_search_res(res, needed, id);
136
137 if (ret < 0) {
138 /* previous search failed. Reset search hint and try again */
139 res->search_hint = 0;
140 ret = ice_search_res(res, needed, id);
141 }
142
143 return ret;
144}
145
146/**
147 * ice_free_res - free a block of resources
148 * @res: pointer to the resource
149 * @index: starting index previously returned by ice_get_res
150 * @id: identifier to track owner
151 * Returns number of resources freed
152 */
153static int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
154{
155 int count = 0;
156 int i;
157
158 if (!res || index >= res->num_entries)
159 return -EINVAL;
160
161 id |= ICE_RES_VALID_BIT;
162 for (i = index; i < res->num_entries && res->list[i] == id; i++) {
163 res->list[i] = 0;
164 count++;
165 }
166
167 return count;
168}
169
170/**
171 * ice_add_mac_to_list - Add a mac address filter entry to the list
172 * @vsi: the VSI to be forwarded to
173 * @add_list: pointer to the list which contains MAC filter entries
174 * @macaddr: the MAC address to be added.
175 *
176 * Adds mac address filter entry to the temp list
177 *
178 * Returns 0 on success or ENOMEM on failure.
179 */
180static int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
181 const u8 *macaddr)
182{
183 struct ice_fltr_list_entry *tmp;
184 struct ice_pf *pf = vsi->back;
185
186 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
187 if (!tmp)
188 return -ENOMEM;
189
190 tmp->fltr_info.flag = ICE_FLTR_TX;
191 tmp->fltr_info.src = vsi->vsi_num;
192 tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
193 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
194 tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
195 ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
196
197 INIT_LIST_HEAD(&tmp->list_entry);
198 list_add(&tmp->list_entry, add_list);
199
200 return 0;
201}
202
203/**
204 * ice_add_mac_to_sync_list - creates list of mac addresses to be synced
205 * @netdev: the net device on which the sync is happening
206 * @addr: mac address to sync
207 *
208 * This is a callback function which is called by the in kernel device sync
209 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
210 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
211 * mac filters from the hardware.
212 */
213static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
214{
215 struct ice_netdev_priv *np = netdev_priv(netdev);
216 struct ice_vsi *vsi = np->vsi;
217
218 if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
219 return -EINVAL;
220
221 return 0;
222}
223
224/**
225 * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced
226 * @netdev: the net device on which the unsync is happening
227 * @addr: mac address to unsync
228 *
229 * This is a callback function which is called by the in kernel device unsync
230 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
231 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
232 * delete the mac filters from the hardware.
233 */
234static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
235{
236 struct ice_netdev_priv *np = netdev_priv(netdev);
237 struct ice_vsi *vsi = np->vsi;
238
239 if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
240 return -EINVAL;
241
242 return 0;
243}
244
245/**
246 * ice_free_fltr_list - free filter lists helper
247 * @dev: pointer to the device struct
248 * @h: pointer to the list head to be freed
249 *
250 * Helper function to free filter lists previously created using
251 * ice_add_mac_to_list
252 */
253static void ice_free_fltr_list(struct device *dev, struct list_head *h)
254{
255 struct ice_fltr_list_entry *e, *tmp;
256
257 list_for_each_entry_safe(e, tmp, h, list_entry) {
258 list_del(&e->list_entry);
259 devm_kfree(dev, e);
260 }
261}
262
263/**
264 * ice_vsi_fltr_changed - check if filter state changed
265 * @vsi: VSI to be checked
266 *
267 * returns true if filter state has changed, false otherwise.
268 */
269static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
270{
271 return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
272 test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
273 test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
274}
275
276/**
277 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
278 * @vsi: ptr to the VSI
279 *
280 * Push any outstanding VSI filter changes through the AdminQ.
281 */
282static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
283{
284 struct device *dev = &vsi->back->pdev->dev;
285 struct net_device *netdev = vsi->netdev;
286 bool promisc_forced_on = false;
287 struct ice_pf *pf = vsi->back;
288 struct ice_hw *hw = &pf->hw;
289 enum ice_status status = 0;
290 u32 changed_flags = 0;
291 int err = 0;
292
293 if (!vsi->netdev)
294 return -EINVAL;
295
296 while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
297 usleep_range(1000, 2000);
298
299 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
300 vsi->current_netdev_flags = vsi->netdev->flags;
301
302 INIT_LIST_HEAD(&vsi->tmp_sync_list);
303 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
304
305 if (ice_vsi_fltr_changed(vsi)) {
306 clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
307 clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
308 clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
309
310 /* grab the netdev's addr_list_lock */
311 netif_addr_lock_bh(netdev);
312 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
313 ice_add_mac_to_unsync_list);
314 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
315 ice_add_mac_to_unsync_list);
316 /* our temp lists are populated. release lock */
317 netif_addr_unlock_bh(netdev);
318 }
319
320 /* Remove mac addresses in the unsync list */
321 status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
322 ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
323 if (status) {
324 netdev_err(netdev, "Failed to delete MAC filters\n");
325 /* if we failed because of alloc failures, just bail */
326 if (status == ICE_ERR_NO_MEMORY) {
327 err = -ENOMEM;
328 goto out;
329 }
330 }
331
332 /* Add mac addresses in the sync list */
333 status = ice_add_mac(hw, &vsi->tmp_sync_list);
334 ice_free_fltr_list(dev, &vsi->tmp_sync_list);
335 if (status) {
336 netdev_err(netdev, "Failed to add MAC filters\n");
337 /* If there is no more space for new umac filters, vsi
338 * should go into promiscuous mode. There should be some
339 * space reserved for promiscuous filters.
340 */
341 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
342 !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
343 vsi->state)) {
344 promisc_forced_on = true;
345 netdev_warn(netdev,
346 "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
347 vsi->vsi_num);
348 } else {
349 err = -EIO;
350 goto out;
351 }
352 }
353 /* check for changes in promiscuous modes */
354 if (changed_flags & IFF_ALLMULTI)
355 netdev_warn(netdev, "Unsupported configuration\n");
356
357 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
358 test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
359 clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
360 if (vsi->current_netdev_flags & IFF_PROMISC) {
361 /* Apply TX filter rule to get traffic from VMs */
362 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
363 ICE_FLTR_TX);
364 if (status) {
365 netdev_err(netdev, "Error setting default VSI %i tx rule\n",
366 vsi->vsi_num);
367 vsi->current_netdev_flags &= ~IFF_PROMISC;
368 err = -EIO;
369 goto out_promisc;
370 }
371 /* Apply RX filter rule to get traffic from wire */
372 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
373 ICE_FLTR_RX);
374 if (status) {
375 netdev_err(netdev, "Error setting default VSI %i rx rule\n",
376 vsi->vsi_num);
377 vsi->current_netdev_flags &= ~IFF_PROMISC;
378 err = -EIO;
379 goto out_promisc;
380 }
381 } else {
382 /* Clear TX filter rule to stop traffic from VMs */
383 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
384 ICE_FLTR_TX);
385 if (status) {
386 netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
387 vsi->vsi_num);
388 vsi->current_netdev_flags |= IFF_PROMISC;
389 err = -EIO;
390 goto out_promisc;
391 }
392 /* Clear filter RX to remove traffic from wire */
393 status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
394 ICE_FLTR_RX);
395 if (status) {
396 netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
397 vsi->vsi_num);
398 vsi->current_netdev_flags |= IFF_PROMISC;
399 err = -EIO;
400 goto out_promisc;
401 }
402 }
403 }
404 goto exit;
405
406out_promisc:
407 set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
408 goto exit;
409out:
410 /* if something went wrong then set the changed flag so we try again */
411 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
412 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
413exit:
414 clear_bit(__ICE_CFG_BUSY, vsi->state);
415 return err;
416}
417
418/**
419 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
420 * @pf: board private structure
421 */
422static void ice_sync_fltr_subtask(struct ice_pf *pf)
423{
424 int v;
425
426 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
427 return;
428
429 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
430
431 for (v = 0; v < pf->num_alloc_vsi; v++)
432 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
433 ice_vsi_sync_fltr(pf->vsi[v])) {
434 /* come back and try again later */
435 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
436 break;
437 }
438}
439
440/**
441 * ice_is_reset_recovery_pending - schedule a reset
442 * @state: pf state field
443 */
444static bool ice_is_reset_recovery_pending(unsigned long int *state)
445{
446 return test_bit(__ICE_RESET_RECOVERY_PENDING, state);
447}
448
449/**
450 * ice_prepare_for_reset - prep for the core to reset
451 * @pf: board private structure
452 *
453 * Inform or close all dependent features in prep for reset.
454 */
455static void
456ice_prepare_for_reset(struct ice_pf *pf)
457{
458 struct ice_hw *hw = &pf->hw;
459 u32 v;
460
461 ice_for_each_vsi(pf, v)
462 if (pf->vsi[v])
463 ice_remove_vsi_fltr(hw, pf->vsi[v]->vsi_num);
464
465 dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
466
467 /* disable the VSIs and their queues that are not already DOWN */
468 /* pf_dis_all_vsi modifies netdev structures -rtnl_lock needed */
469 ice_pf_dis_all_vsi(pf);
470
471 ice_for_each_vsi(pf, v)
472 if (pf->vsi[v])
473 pf->vsi[v]->vsi_num = 0;
474
475 ice_shutdown_all_ctrlq(hw);
476}
477
478/**
479 * ice_do_reset - Initiate one of many types of resets
480 * @pf: board private structure
481 * @reset_type: reset type requested
482 * before this function was called.
483 */
484static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
485{
486 struct device *dev = &pf->pdev->dev;
487 struct ice_hw *hw = &pf->hw;
488
489 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
490 WARN_ON(in_interrupt());
491
492 /* PFR is a bit of a special case because it doesn't result in an OICR
493 * interrupt. So for PFR, we prepare for reset, issue the reset and
494 * rebuild sequentially.
495 */
496 if (reset_type == ICE_RESET_PFR) {
497 set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
498 ice_prepare_for_reset(pf);
499 }
500
501 /* trigger the reset */
502 if (ice_reset(hw, reset_type)) {
503 dev_err(dev, "reset %d failed\n", reset_type);
504 set_bit(__ICE_RESET_FAILED, pf->state);
505 clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
506 return;
507 }
508
509 if (reset_type == ICE_RESET_PFR) {
510 pf->pfr_count++;
511 ice_rebuild(pf);
512 clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
513 }
514}
515
516/**
517 * ice_reset_subtask - Set up for resetting the device and driver
518 * @pf: board private structure
519 */
520static void ice_reset_subtask(struct ice_pf *pf)
521{
522 enum ice_reset_req reset_type;
523
524 rtnl_lock();
525
526 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
527 * OICR interrupt. The OICR handler (ice_misc_intr) determines what
528 * type of reset happened and sets __ICE_RESET_RECOVERY_PENDING bit in
529 * pf->state. So if reset/recovery is pending (as indicated by this bit)
530 * we do a rebuild and return.
531 */
532 if (ice_is_reset_recovery_pending(pf->state)) {
533 clear_bit(__ICE_GLOBR_RECV, pf->state);
534 clear_bit(__ICE_CORER_RECV, pf->state);
535 ice_prepare_for_reset(pf);
536
537 /* make sure we are ready to rebuild */
538 if (ice_check_reset(&pf->hw))
539 set_bit(__ICE_RESET_FAILED, pf->state);
540 else
541 ice_rebuild(pf);
542 clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
543 goto unlock;
544 }
545
546 /* No pending resets to finish processing. Check for new resets */
547 if (test_and_clear_bit(__ICE_GLOBR_REQ, pf->state))
548 reset_type = ICE_RESET_GLOBR;
549 else if (test_and_clear_bit(__ICE_CORER_REQ, pf->state))
550 reset_type = ICE_RESET_CORER;
551 else if (test_and_clear_bit(__ICE_PFR_REQ, pf->state))
552 reset_type = ICE_RESET_PFR;
553 else
554 goto unlock;
555
556 /* reset if not already down or resetting */
557 if (!test_bit(__ICE_DOWN, pf->state) &&
558 !test_bit(__ICE_CFG_BUSY, pf->state)) {
559 ice_do_reset(pf, reset_type);
560 }
561
562unlock:
563 rtnl_unlock();
564}
565
566/**
567 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
568 * @pf: board private structure
569 */
570static void ice_watchdog_subtask(struct ice_pf *pf)
571{
572 int i;
573
574 /* if interface is down do nothing */
575 if (test_bit(__ICE_DOWN, pf->state) ||
576 test_bit(__ICE_CFG_BUSY, pf->state))
577 return;
578
579 /* make sure we don't do these things too often */
580 if (time_before(jiffies,
581 pf->serv_tmr_prev + pf->serv_tmr_period))
582 return;
583
584 pf->serv_tmr_prev = jiffies;
585
586 /* Update the stats for active netdevs so the network stack
587 * can look at updated numbers whenever it cares to
588 */
589 ice_update_pf_stats(pf);
590 for (i = 0; i < pf->num_alloc_vsi; i++)
591 if (pf->vsi[i] && pf->vsi[i]->netdev)
592 ice_update_vsi_stats(pf->vsi[i]);
593}
594
595/**
596 * ice_print_link_msg - print link up or down message
597 * @vsi: the VSI whose link status is being queried
598 * @isup: boolean for if the link is now up or down
599 */
600void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
601{
602 const char *speed;
603 const char *fc;
604
605 if (vsi->current_isup == isup)
606 return;
607
608 vsi->current_isup = isup;
609
610 if (!isup) {
611 netdev_info(vsi->netdev, "NIC Link is Down\n");
612 return;
613 }
614
615 switch (vsi->port_info->phy.link_info.link_speed) {
616 case ICE_AQ_LINK_SPEED_40GB:
617 speed = "40 G";
618 break;
619 case ICE_AQ_LINK_SPEED_25GB:
620 speed = "25 G";
621 break;
622 case ICE_AQ_LINK_SPEED_20GB:
623 speed = "20 G";
624 break;
625 case ICE_AQ_LINK_SPEED_10GB:
626 speed = "10 G";
627 break;
628 case ICE_AQ_LINK_SPEED_5GB:
629 speed = "5 G";
630 break;
631 case ICE_AQ_LINK_SPEED_2500MB:
632 speed = "2.5 G";
633 break;
634 case ICE_AQ_LINK_SPEED_1000MB:
635 speed = "1 G";
636 break;
637 case ICE_AQ_LINK_SPEED_100MB:
638 speed = "100 M";
639 break;
640 default:
641 speed = "Unknown";
642 break;
643 }
644
645 switch (vsi->port_info->fc.current_mode) {
646 case ICE_FC_FULL:
647 fc = "RX/TX";
648 break;
649 case ICE_FC_TX_PAUSE:
650 fc = "TX";
651 break;
652 case ICE_FC_RX_PAUSE:
653 fc = "RX";
654 break;
655 default:
656 fc = "Unknown";
657 break;
658 }
659
660 netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
661 speed, fc);
662}
663
664/**
665 * ice_init_link_events - enable/initialize link events
666 * @pi: pointer to the port_info instance
667 *
668 * Returns -EIO on failure, 0 on success
669 */
670static int ice_init_link_events(struct ice_port_info *pi)
671{
672 u16 mask;
673
674 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
675 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
676
677 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
678 dev_dbg(ice_hw_to_dev(pi->hw),
679 "Failed to set link event mask for port %d\n",
680 pi->lport);
681 return -EIO;
682 }
683
684 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
685 dev_dbg(ice_hw_to_dev(pi->hw),
686 "Failed to enable link events for port %d\n",
687 pi->lport);
688 return -EIO;
689 }
690
691 return 0;
692}
693
694/**
695 * ice_vsi_link_event - update the vsi's netdev
696 * @vsi: the vsi on which the link event occurred
697 * @link_up: whether or not the vsi needs to be set up or down
698 */
699static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
700{
701 if (!vsi || test_bit(__ICE_DOWN, vsi->state))
702 return;
703
704 if (vsi->type == ICE_VSI_PF) {
705 if (!vsi->netdev) {
706 dev_dbg(&vsi->back->pdev->dev,
707 "vsi->netdev is not initialized!\n");
708 return;
709 }
710 if (link_up) {
711 netif_carrier_on(vsi->netdev);
712 netif_tx_wake_all_queues(vsi->netdev);
713 } else {
714 netif_carrier_off(vsi->netdev);
715 netif_tx_stop_all_queues(vsi->netdev);
716 }
717 }
718}
719
720/**
721 * ice_link_event - process the link event
722 * @pf: pf that the link event is associated with
723 * @pi: port_info for the port that the link event is associated with
724 *
725 * Returns -EIO if ice_get_link_status() fails
726 * Returns 0 on success
727 */
728static int
729ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
730{
731 u8 new_link_speed, old_link_speed;
732 struct ice_phy_info *phy_info;
733 bool new_link_same_as_old;
734 bool new_link, old_link;
735 u8 lport;
736 u16 v;
737
738 phy_info = &pi->phy;
739 phy_info->link_info_old = phy_info->link_info;
740 /* Force ice_get_link_status() to update link info */
741 phy_info->get_link_info = true;
742
743 old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
744 old_link_speed = phy_info->link_info_old.link_speed;
745
746 lport = pi->lport;
747 if (ice_get_link_status(pi, &new_link)) {
748 dev_dbg(&pf->pdev->dev,
749 "Could not get link status for port %d\n", lport);
750 return -EIO;
751 }
752
753 new_link_speed = phy_info->link_info.link_speed;
754
755 new_link_same_as_old = (new_link == old_link &&
756 new_link_speed == old_link_speed);
757
758 ice_for_each_vsi(pf, v) {
759 struct ice_vsi *vsi = pf->vsi[v];
760
761 if (!vsi || !vsi->port_info)
762 continue;
763
764 if (new_link_same_as_old &&
765 (test_bit(__ICE_DOWN, vsi->state) ||
766 new_link == netif_carrier_ok(vsi->netdev)))
767 continue;
768
769 if (vsi->port_info->lport == lport) {
770 ice_print_link_msg(vsi, new_link);
771 ice_vsi_link_event(vsi, new_link);
772 }
773 }
774
775 return 0;
776}
777
778/**
779 * ice_handle_link_event - handle link event via ARQ
780 * @pf: pf that the link event is associated with
781 *
782 * Return -EINVAL if port_info is null
783 * Return status on succes
784 */
785static int ice_handle_link_event(struct ice_pf *pf)
786{
787 struct ice_port_info *port_info;
788 int status;
789
790 port_info = pf->hw.port_info;
791 if (!port_info)
792 return -EINVAL;
793
794 status = ice_link_event(pf, port_info);
795 if (status)
796 dev_dbg(&pf->pdev->dev,
797 "Could not process link event, error %d\n", status);
798
799 return status;
800}
801
802/**
803 * __ice_clean_ctrlq - helper function to clean controlq rings
804 * @pf: ptr to struct ice_pf
805 * @q_type: specific Control queue type
806 */
807static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
808{
809 struct ice_rq_event_info event;
810 struct ice_hw *hw = &pf->hw;
811 struct ice_ctl_q_info *cq;
812 u16 pending, i = 0;
813 const char *qtype;
814 u32 oldval, val;
815
816 /* Do not clean control queue if/when PF reset fails */
817 if (test_bit(__ICE_RESET_FAILED, pf->state))
818 return 0;
819
820 switch (q_type) {
821 case ICE_CTL_Q_ADMIN:
822 cq = &hw->adminq;
823 qtype = "Admin";
824 break;
825 default:
826 dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
827 q_type);
828 return 0;
829 }
830
831 /* check for error indications - PF_xx_AxQLEN register layout for
832 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
833 */
834 val = rd32(hw, cq->rq.len);
835 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
836 PF_FW_ARQLEN_ARQCRIT_M)) {
837 oldval = val;
838 if (val & PF_FW_ARQLEN_ARQVFE_M)
839 dev_dbg(&pf->pdev->dev,
840 "%s Receive Queue VF Error detected\n", qtype);
841 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
842 dev_dbg(&pf->pdev->dev,
843 "%s Receive Queue Overflow Error detected\n",
844 qtype);
845 }
846 if (val & PF_FW_ARQLEN_ARQCRIT_M)
847 dev_dbg(&pf->pdev->dev,
848 "%s Receive Queue Critical Error detected\n",
849 qtype);
850 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
851 PF_FW_ARQLEN_ARQCRIT_M);
852 if (oldval != val)
853 wr32(hw, cq->rq.len, val);
854 }
855
856 val = rd32(hw, cq->sq.len);
857 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
858 PF_FW_ATQLEN_ATQCRIT_M)) {
859 oldval = val;
860 if (val & PF_FW_ATQLEN_ATQVFE_M)
861 dev_dbg(&pf->pdev->dev,
862 "%s Send Queue VF Error detected\n", qtype);
863 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
864 dev_dbg(&pf->pdev->dev,
865 "%s Send Queue Overflow Error detected\n",
866 qtype);
867 }
868 if (val & PF_FW_ATQLEN_ATQCRIT_M)
869 dev_dbg(&pf->pdev->dev,
870 "%s Send Queue Critical Error detected\n",
871 qtype);
872 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
873 PF_FW_ATQLEN_ATQCRIT_M);
874 if (oldval != val)
875 wr32(hw, cq->sq.len, val);
876 }
877
878 event.buf_len = cq->rq_buf_size;
879 event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
880 GFP_KERNEL);
881 if (!event.msg_buf)
882 return 0;
883
884 do {
885 enum ice_status ret;
886 u16 opcode;
887
888 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
889 if (ret == ICE_ERR_AQ_NO_WORK)
890 break;
891 if (ret) {
892 dev_err(&pf->pdev->dev,
893 "%s Receive Queue event error %d\n", qtype,
894 ret);
895 break;
896 }
897
898 opcode = le16_to_cpu(event.desc.opcode);
899
900 switch (opcode) {
901 case ice_aqc_opc_get_link_status:
902 if (ice_handle_link_event(pf))
903 dev_err(&pf->pdev->dev,
904 "Could not handle link event");
905 break;
906 default:
907 dev_dbg(&pf->pdev->dev,
908 "%s Receive Queue unknown event 0x%04x ignored\n",
909 qtype, opcode);
910 break;
911 }
912 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
913
914 devm_kfree(&pf->pdev->dev, event.msg_buf);
915
916 return pending && (i == ICE_DFLT_IRQ_WORK);
917}
918
919/**
920 * ice_clean_adminq_subtask - clean the AdminQ rings
921 * @pf: board private structure
922 */
923static void ice_clean_adminq_subtask(struct ice_pf *pf)
924{
925 struct ice_hw *hw = &pf->hw;
926 u32 val;
927
928 if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
929 return;
930
931 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
932 return;
933
934 clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
935
936 /* re-enable Admin queue interrupt causes */
937 val = rd32(hw, PFINT_FW_CTL);
938 wr32(hw, PFINT_FW_CTL, (val | PFINT_FW_CTL_CAUSE_ENA_M));
939
940 ice_flush(hw);
941}
942
943/**
944 * ice_service_task_schedule - schedule the service task to wake up
945 * @pf: board private structure
946 *
947 * If not already scheduled, this puts the task into the work queue.
948 */
949static void ice_service_task_schedule(struct ice_pf *pf)
950{
951 if (!test_bit(__ICE_DOWN, pf->state) &&
952 !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state))
953 queue_work(ice_wq, &pf->serv_task);
954}
955
956/**
957 * ice_service_task_complete - finish up the service task
958 * @pf: board private structure
959 */
960static void ice_service_task_complete(struct ice_pf *pf)
961{
962 WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
963
964 /* force memory (pf->state) to sync before next service task */
965 smp_mb__before_atomic();
966 clear_bit(__ICE_SERVICE_SCHED, pf->state);
967}
968
969/**
970 * ice_service_timer - timer callback to schedule service task
971 * @t: pointer to timer_list
972 */
973static void ice_service_timer(struct timer_list *t)
974{
975 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
976
977 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
978 ice_service_task_schedule(pf);
979}
980
981/**
982 * ice_service_task - manage and run subtasks
983 * @work: pointer to work_struct contained by the PF struct
984 */
985static void ice_service_task(struct work_struct *work)
986{
987 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
988 unsigned long start_time = jiffies;
989
990 /* subtasks */
991
992 /* process reset requests first */
993 ice_reset_subtask(pf);
994
995 /* bail if a reset/recovery cycle is pending */
996 if (ice_is_reset_recovery_pending(pf->state) ||
997 test_bit(__ICE_SUSPENDED, pf->state)) {
998 ice_service_task_complete(pf);
999 return;
1000 }
1001
1002 ice_sync_fltr_subtask(pf);
1003 ice_watchdog_subtask(pf);
1004 ice_clean_adminq_subtask(pf);
1005
1006 /* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1007 ice_service_task_complete(pf);
1008
1009 /* If the tasks have taken longer than one service timer period
1010 * or there is more work to be done, reset the service timer to
1011 * schedule the service task now.
1012 */
1013 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
1014 test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1015 mod_timer(&pf->serv_tmr, jiffies);
1016}
1017
1018/**
1019 * ice_set_ctrlq_len - helper function to set controlq length
1020 * @hw: pointer to the hw instance
1021 */
1022static void ice_set_ctrlq_len(struct ice_hw *hw)
1023{
1024 hw->adminq.num_rq_entries = ICE_AQ_LEN;
1025 hw->adminq.num_sq_entries = ICE_AQ_LEN;
1026 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1027 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
1028}
1029
1030/**
1031 * ice_irq_affinity_notify - Callback for affinity changes
1032 * @notify: context as to what irq was changed
1033 * @mask: the new affinity mask
1034 *
1035 * This is a callback function used by the irq_set_affinity_notifier function
1036 * so that we may register to receive changes to the irq affinity masks.
1037 */
1038static void ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1039 const cpumask_t *mask)
1040{
1041 struct ice_q_vector *q_vector =
1042 container_of(notify, struct ice_q_vector, affinity_notify);
1043
1044 cpumask_copy(&q_vector->affinity_mask, mask);
1045}
1046
1047/**
1048 * ice_irq_affinity_release - Callback for affinity notifier release
1049 * @ref: internal core kernel usage
1050 *
1051 * This is a callback function used by the irq_set_affinity_notifier function
1052 * to inform the current notification subscriber that they will no longer
1053 * receive notifications.
1054 */
1055static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1056
1057/**
1058 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
1059 * @vsi: the VSI being un-configured
1060 */
1061static void ice_vsi_dis_irq(struct ice_vsi *vsi)
1062{
1063 struct ice_pf *pf = vsi->back;
1064 struct ice_hw *hw = &pf->hw;
1065 int base = vsi->base_vector;
1066 u32 val;
1067 int i;
1068
1069 /* disable interrupt causation from each queue */
1070 if (vsi->tx_rings) {
1071 ice_for_each_txq(vsi, i) {
1072 if (vsi->tx_rings[i]) {
1073 u16 reg;
1074
1075 reg = vsi->tx_rings[i]->reg_idx;
1076 val = rd32(hw, QINT_TQCTL(reg));
1077 val &= ~QINT_TQCTL_CAUSE_ENA_M;
1078 wr32(hw, QINT_TQCTL(reg), val);
1079 }
1080 }
1081 }
1082
1083 if (vsi->rx_rings) {
1084 ice_for_each_rxq(vsi, i) {
1085 if (vsi->rx_rings[i]) {
1086 u16 reg;
1087
1088 reg = vsi->rx_rings[i]->reg_idx;
1089 val = rd32(hw, QINT_RQCTL(reg));
1090 val &= ~QINT_RQCTL_CAUSE_ENA_M;
1091 wr32(hw, QINT_RQCTL(reg), val);
1092 }
1093 }
1094 }
1095
1096 /* disable each interrupt */
1097 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1098 for (i = vsi->base_vector;
1099 i < (vsi->num_q_vectors + vsi->base_vector); i++)
1100 wr32(hw, GLINT_DYN_CTL(i), 0);
1101
1102 ice_flush(hw);
1103 for (i = 0; i < vsi->num_q_vectors; i++)
1104 synchronize_irq(pf->msix_entries[i + base].vector);
1105 }
1106}
1107
1108/**
1109 * ice_vsi_ena_irq - Enable IRQ for the given VSI
1110 * @vsi: the VSI being configured
1111 */
1112static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1113{
1114 struct ice_pf *pf = vsi->back;
1115 struct ice_hw *hw = &pf->hw;
1116
1117 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1118 int i;
1119
1120 for (i = 0; i < vsi->num_q_vectors; i++)
1121 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1122 }
1123
1124 ice_flush(hw);
1125 return 0;
1126}
1127
1128/**
1129 * ice_vsi_delete - delete a VSI from the switch
1130 * @vsi: pointer to VSI being removed
1131 */
1132static void ice_vsi_delete(struct ice_vsi *vsi)
1133{
1134 struct ice_pf *pf = vsi->back;
1135 struct ice_vsi_ctx ctxt;
1136 enum ice_status status;
1137
1138 ctxt.vsi_num = vsi->vsi_num;
1139
1140 memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props));
1141
1142 status = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
1143 if (status)
1144 dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
1145 vsi->vsi_num);
1146}
1147
1148/**
1149 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1150 * @vsi: the VSI being configured
1151 * @basename: name for the vector
1152 */
1153static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1154{
1155 int q_vectors = vsi->num_q_vectors;
1156 struct ice_pf *pf = vsi->back;
1157 int base = vsi->base_vector;
1158 int rx_int_idx = 0;
1159 int tx_int_idx = 0;
1160 int vector, err;
1161 int irq_num;
1162
1163 for (vector = 0; vector < q_vectors; vector++) {
1164 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1165
1166 irq_num = pf->msix_entries[base + vector].vector;
1167
1168 if (q_vector->tx.ring && q_vector->rx.ring) {
1169 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1170 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1171 tx_int_idx++;
1172 } else if (q_vector->rx.ring) {
1173 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1174 "%s-%s-%d", basename, "rx", rx_int_idx++);
1175 } else if (q_vector->tx.ring) {
1176 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1177 "%s-%s-%d", basename, "tx", tx_int_idx++);
1178 } else {
1179 /* skip this unused q_vector */
1180 continue;
1181 }
1182 err = devm_request_irq(&pf->pdev->dev,
1183 pf->msix_entries[base + vector].vector,
1184 vsi->irq_handler, 0, q_vector->name,
1185 q_vector);
1186 if (err) {
1187 netdev_err(vsi->netdev,
1188 "MSIX request_irq failed, error: %d\n", err);
1189 goto free_q_irqs;
1190 }
1191
1192 /* register for affinity change notifications */
1193 q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1194 q_vector->affinity_notify.release = ice_irq_affinity_release;
1195 irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
1196
1197 /* assign the mask for this irq */
1198 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1199 }
1200
1201 vsi->irqs_ready = true;
1202 return 0;
1203
1204free_q_irqs:
1205 while (vector) {
1206 vector--;
1207 irq_num = pf->msix_entries[base + vector].vector,
1208 irq_set_affinity_notifier(irq_num, NULL);
1209 irq_set_affinity_hint(irq_num, NULL);
1210 devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1211 }
1212 return err;
1213}
1214
1215/**
1216 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
1217 * @vsi: the VSI being configured
1218 */
1219static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
1220{
1221 struct ice_hw_common_caps *cap;
1222 struct ice_pf *pf = vsi->back;
1223
1224 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
1225 vsi->rss_size = 1;
1226 return;
1227 }
1228
1229 cap = &pf->hw.func_caps.common_cap;
1230 switch (vsi->type) {
1231 case ICE_VSI_PF:
1232 /* PF VSI will inherit RSS instance of PF */
1233 vsi->rss_table_size = cap->rss_table_size;
1234 vsi->rss_size = min_t(int, num_online_cpus(),
1235 BIT(cap->rss_table_entry_width));
1236 vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
1237 break;
1238 default:
1239 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1240 break;
1241 }
1242}
1243
1244/**
1245 * ice_vsi_setup_q_map - Setup a VSI queue map
1246 * @vsi: the VSI being configured
1247 * @ctxt: VSI context structure
1248 */
1249static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1250{
1251 u16 offset = 0, qmap = 0, numq_tc;
1252 u16 pow = 0, max_rss = 0, qcount;
1253 u16 qcount_tx = vsi->alloc_txq;
1254 u16 qcount_rx = vsi->alloc_rxq;
1255 bool ena_tc0 = false;
1256 int i;
1257
1258 /* at least TC0 should be enabled by default */
1259 if (vsi->tc_cfg.numtc) {
1260 if (!(vsi->tc_cfg.ena_tc & BIT(0)))
1261 ena_tc0 = true;
1262 } else {
1263 ena_tc0 = true;
1264 }
1265
1266 if (ena_tc0) {
1267 vsi->tc_cfg.numtc++;
1268 vsi->tc_cfg.ena_tc |= 1;
1269 }
1270
1271 numq_tc = qcount_rx / vsi->tc_cfg.numtc;
1272
1273 /* TC mapping is a function of the number of Rx queues assigned to the
1274 * VSI for each traffic class and the offset of these queues.
1275 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1276 * queues allocated to TC0. No:of queues is a power-of-2.
1277 *
1278 * If TC is not enabled, the queue offset is set to 0, and allocate one
1279 * queue, this way, traffic for the given TC will be sent to the default
1280 * queue.
1281 *
1282 * Setup number and offset of Rx queues for all TCs for the VSI
1283 */
1284
1285 /* qcount will change if RSS is enabled */
1286 if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
1287 if (vsi->type == ICE_VSI_PF)
1288 max_rss = ICE_MAX_LG_RSS_QS;
1289 else
1290 max_rss = ICE_MAX_SMALL_RSS_QS;
1291
1292 qcount = min_t(int, numq_tc, max_rss);
1293 qcount = min_t(int, qcount, vsi->rss_size);
1294 } else {
1295 qcount = numq_tc;
1296 }
1297
1298 /* find higher power-of-2 of qcount */
1299 pow = ilog2(qcount);
1300
1301 if (!is_power_of_2(qcount))
1302 pow++;
1303
1304 for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
1305 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1306 /* TC is not enabled */
1307 vsi->tc_cfg.tc_info[i].qoffset = 0;
1308 vsi->tc_cfg.tc_info[i].qcount = 1;
1309 ctxt->info.tc_mapping[i] = 0;
1310 continue;
1311 }
1312
1313 /* TC is enabled */
1314 vsi->tc_cfg.tc_info[i].qoffset = offset;
1315 vsi->tc_cfg.tc_info[i].qcount = qcount;
1316
1317 qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1318 ICE_AQ_VSI_TC_Q_OFFSET_M) |
1319 ((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1320 ICE_AQ_VSI_TC_Q_NUM_M);
1321 offset += qcount;
1322 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1323 }
1324
1325 vsi->num_txq = qcount_tx;
1326 vsi->num_rxq = offset;
1327
1328 /* Rx queue mapping */
1329 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1330 /* q_mapping buffer holds the info for the first queue allocated for
1331 * this VSI in the PF space and also the number of queues associated
1332 * with this VSI.
1333 */
1334 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1335 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1336}
1337
1338/**
1339 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
1340 * @ctxt: the VSI context being set
1341 *
1342 * This initializes a default VSI context for all sections except the Queues.
1343 */
1344static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
1345{
1346 u32 table = 0;
1347
1348 memset(&ctxt->info, 0, sizeof(ctxt->info));
1349 /* VSI's should be allocated from shared pool */
1350 ctxt->alloc_from_pool = true;
1351 /* Src pruning enabled by default */
1352 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
1353 /* Traffic from VSI can be sent to LAN */
1354 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
1355 /* Allow all packets untagged/tagged */
1356 ctxt->info.port_vlan_flags = ((ICE_AQ_VSI_PVLAN_MODE_ALL &
1357 ICE_AQ_VSI_PVLAN_MODE_M) >>
1358 ICE_AQ_VSI_PVLAN_MODE_S);
1359 /* Show VLAN/UP from packets in Rx descriptors */
1360 ctxt->info.port_vlan_flags |= ((ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH &
1361 ICE_AQ_VSI_PVLAN_EMOD_M) >>
1362 ICE_AQ_VSI_PVLAN_EMOD_S);
1363 /* Have 1:1 UP mapping for both ingress/egress tables */
1364 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1365 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1366 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1367 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1368 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1369 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1370 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1371 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1372 ctxt->info.ingress_table = cpu_to_le32(table);
1373 ctxt->info.egress_table = cpu_to_le32(table);
1374 /* Have 1:1 UP mapping for outer to inner UP table */
1375 ctxt->info.outer_up_table = cpu_to_le32(table);
1376 /* No Outer tag support outer_tag_flags remains to zero */
1377}
1378
1379/**
1380 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1381 * @ctxt: the VSI context being set
1382 * @vsi: the VSI being configured
1383 */
1384static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1385{
1386 u8 lut_type, hash_type;
1387
1388 switch (vsi->type) {
1389 case ICE_VSI_PF:
1390 /* PF VSI will inherit RSS instance of PF */
1391 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1392 hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1393 break;
1394 default:
1395 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1396 vsi->type);
1397 return;
1398 }
1399
1400 ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1401 ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1402 ((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1403 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1404}
1405
1406/**
1407 * ice_vsi_add - Create a new VSI or fetch preallocated VSI
1408 * @vsi: the VSI being configured
1409 *
1410 * This initializes a VSI context depending on the VSI type to be added and
1411 * passes it down to the add_vsi aq command to create a new VSI.
1412 */
1413static int ice_vsi_add(struct ice_vsi *vsi)
1414{
1415 struct ice_vsi_ctx ctxt = { 0 };
1416 struct ice_pf *pf = vsi->back;
1417 struct ice_hw *hw = &pf->hw;
1418 int ret = 0;
1419
1420 switch (vsi->type) {
1421 case ICE_VSI_PF:
1422 ctxt.flags = ICE_AQ_VSI_TYPE_PF;
1423 break;
1424 default:
1425 return -ENODEV;
1426 }
1427
1428 ice_set_dflt_vsi_ctx(&ctxt);
1429 /* if the switch is in VEB mode, allow VSI loopback */
1430 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1431 ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1432
1433 /* Set LUT type and HASH type if RSS is enabled */
1434 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1435 ice_set_rss_vsi_ctx(&ctxt, vsi);
1436
1437 ctxt.info.sw_id = vsi->port_info->sw_id;
1438 ice_vsi_setup_q_map(vsi, &ctxt);
1439
1440 ret = ice_aq_add_vsi(hw, &ctxt, NULL);
1441 if (ret) {
1442 dev_err(&vsi->back->pdev->dev,
1443 "Add VSI AQ call failed, err %d\n", ret);
1444 return -EIO;
1445 }
1446 vsi->info = ctxt.info;
1447 vsi->vsi_num = ctxt.vsi_num;
1448
1449 return ret;
1450}
1451
1452/**
1453 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
1454 * @vsi: the VSI being cleaned up
1455 */
1456static void ice_vsi_release_msix(struct ice_vsi *vsi)
1457{
1458 struct ice_pf *pf = vsi->back;
1459 u16 vector = vsi->base_vector;
1460 struct ice_hw *hw = &pf->hw;
1461 u32 txq = 0;
1462 u32 rxq = 0;
1463 int i, q;
1464
1465 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1466 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1467
1468 wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), 0);
1469 wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), 0);
1470 for (q = 0; q < q_vector->num_ring_tx; q++) {
1471 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
1472 txq++;
1473 }
1474
1475 for (q = 0; q < q_vector->num_ring_rx; q++) {
1476 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
1477 rxq++;
1478 }
1479 }
1480
1481 ice_flush(hw);
1482}
1483
1484/**
1485 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1486 * @vsi: the VSI having rings deallocated
1487 */
1488static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1489{
1490 int i;
1491
1492 if (vsi->tx_rings) {
1493 for (i = 0; i < vsi->alloc_txq; i++) {
1494 if (vsi->tx_rings[i]) {
1495 kfree_rcu(vsi->tx_rings[i], rcu);
1496 vsi->tx_rings[i] = NULL;
1497 }
1498 }
1499 }
1500 if (vsi->rx_rings) {
1501 for (i = 0; i < vsi->alloc_rxq; i++) {
1502 if (vsi->rx_rings[i]) {
1503 kfree_rcu(vsi->rx_rings[i], rcu);
1504 vsi->rx_rings[i] = NULL;
1505 }
1506 }
1507 }
1508}
1509
1510/**
1511 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1512 * @vsi: VSI which is having rings allocated
1513 */
1514static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1515{
1516 struct ice_pf *pf = vsi->back;
1517 int i;
1518
1519 /* Allocate tx_rings */
1520 for (i = 0; i < vsi->alloc_txq; i++) {
1521 struct ice_ring *ring;
1522
1523 /* allocate with kzalloc(), free with kfree_rcu() */
1524 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1525
1526 if (!ring)
1527 goto err_out;
1528
1529 ring->q_index = i;
1530 ring->reg_idx = vsi->txq_map[i];
1531 ring->ring_active = false;
1532 ring->vsi = vsi;
1533 ring->netdev = vsi->netdev;
1534 ring->dev = &pf->pdev->dev;
1535 ring->count = vsi->num_desc;
1536
1537 vsi->tx_rings[i] = ring;
1538 }
1539
1540 /* Allocate rx_rings */
1541 for (i = 0; i < vsi->alloc_rxq; i++) {
1542 struct ice_ring *ring;
1543
1544 /* allocate with kzalloc(), free with kfree_rcu() */
1545 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1546 if (!ring)
1547 goto err_out;
1548
1549 ring->q_index = i;
1550 ring->reg_idx = vsi->rxq_map[i];
1551 ring->ring_active = false;
1552 ring->vsi = vsi;
1553 ring->netdev = vsi->netdev;
1554 ring->dev = &pf->pdev->dev;
1555 ring->count = vsi->num_desc;
1556 vsi->rx_rings[i] = ring;
1557 }
1558
1559 return 0;
1560
1561err_out:
1562 ice_vsi_clear_rings(vsi);
1563 return -ENOMEM;
1564}
1565
1566/**
1567 * ice_vsi_free_irq - Free the irq association with the OS
1568 * @vsi: the VSI being configured
1569 */
1570static void ice_vsi_free_irq(struct ice_vsi *vsi)
1571{
1572 struct ice_pf *pf = vsi->back;
1573 int base = vsi->base_vector;
1574
1575 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1576 int i;
1577
1578 if (!vsi->q_vectors || !vsi->irqs_ready)
1579 return;
1580
1581 vsi->irqs_ready = false;
1582 for (i = 0; i < vsi->num_q_vectors; i++) {
1583 u16 vector = i + base;
1584 int irq_num;
1585
1586 irq_num = pf->msix_entries[vector].vector;
1587
1588 /* free only the irqs that were actually requested */
1589 if (!vsi->q_vectors[i] ||
1590 !(vsi->q_vectors[i]->num_ring_tx ||
1591 vsi->q_vectors[i]->num_ring_rx))
1592 continue;
1593
1594 /* clear the affinity notifier in the IRQ descriptor */
1595 irq_set_affinity_notifier(irq_num, NULL);
1596
1597 /* clear the affinity_mask in the IRQ descriptor */
1598 irq_set_affinity_hint(irq_num, NULL);
1599 synchronize_irq(irq_num);
1600 devm_free_irq(&pf->pdev->dev, irq_num,
1601 vsi->q_vectors[i]);
1602 }
1603 ice_vsi_release_msix(vsi);
1604 }
1605}
1606
1607/**
1608 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1609 * @vsi: the VSI being configured
1610 */
1611static void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1612{
1613 struct ice_pf *pf = vsi->back;
1614 u16 vector = vsi->base_vector;
1615 struct ice_hw *hw = &pf->hw;
1616 u32 txq = 0, rxq = 0;
1617 int i, q, itr;
1618 u8 itr_gran;
1619
1620 for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1621 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1622
1623 itr_gran = hw->itr_gran_200;
1624
1625 if (q_vector->num_ring_rx) {
1626 q_vector->rx.itr =
1627 ITR_TO_REG(vsi->rx_rings[rxq]->rx_itr_setting,
1628 itr_gran);
1629 q_vector->rx.latency_range = ICE_LOW_LATENCY;
1630 }
1631
1632 if (q_vector->num_ring_tx) {
1633 q_vector->tx.itr =
1634 ITR_TO_REG(vsi->tx_rings[txq]->tx_itr_setting,
1635 itr_gran);
1636 q_vector->tx.latency_range = ICE_LOW_LATENCY;
1637 }
1638 wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), q_vector->rx.itr);
1639 wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), q_vector->tx.itr);
1640
1641 /* Both Transmit Queue Interrupt Cause Control register
1642 * and Receive Queue Interrupt Cause control register
1643 * expects MSIX_INDX field to be the vector index
1644 * within the function space and not the absolute
1645 * vector index across PF or across device.
1646 * For SR-IOV VF VSIs queue vector index always starts
1647 * with 1 since first vector index(0) is used for OICR
1648 * in VF space. Since VMDq and other PF VSIs are withtin
1649 * the PF function space, use the vector index thats
1650 * tracked for this PF.
1651 */
1652 for (q = 0; q < q_vector->num_ring_tx; q++) {
1653 u32 val;
1654
1655 itr = ICE_TX_ITR;
1656 val = QINT_TQCTL_CAUSE_ENA_M |
1657 (itr << QINT_TQCTL_ITR_INDX_S) |
1658 (vector << QINT_TQCTL_MSIX_INDX_S);
1659 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1660 txq++;
1661 }
1662
1663 for (q = 0; q < q_vector->num_ring_rx; q++) {
1664 u32 val;
1665
1666 itr = ICE_RX_ITR;
1667 val = QINT_RQCTL_CAUSE_ENA_M |
1668 (itr << QINT_RQCTL_ITR_INDX_S) |
1669 (vector << QINT_RQCTL_MSIX_INDX_S);
1670 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1671 rxq++;
1672 }
1673 }
1674
1675 ice_flush(hw);
1676}
1677
1678/**
1679 * ice_ena_misc_vector - enable the non-queue interrupts
1680 * @pf: board private structure
1681 */
1682static void ice_ena_misc_vector(struct ice_pf *pf)
1683{
1684 struct ice_hw *hw = &pf->hw;
1685 u32 val;
1686
1687 /* clear things first */
1688 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
1689 rd32(hw, PFINT_OICR); /* read to clear */
1690
1691 val = (PFINT_OICR_HLP_RDY_M |
1692 PFINT_OICR_CPM_RDY_M |
1693 PFINT_OICR_ECC_ERR_M |
1694 PFINT_OICR_MAL_DETECT_M |
1695 PFINT_OICR_GRST_M |
1696 PFINT_OICR_PCI_EXCEPTION_M |
1697 PFINT_OICR_GPIO_M |
1698 PFINT_OICR_STORM_DETECT_M |
1699 PFINT_OICR_HMC_ERR_M);
1700
1701 wr32(hw, PFINT_OICR_ENA, val);
1702
1703 /* SW_ITR_IDX = 0, but don't change INTENA */
1704 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1705 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1706}
1707
1708/**
1709 * ice_misc_intr - misc interrupt handler
1710 * @irq: interrupt number
1711 * @data: pointer to a q_vector
1712 */
1713static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1714{
1715 struct ice_pf *pf = (struct ice_pf *)data;
1716 struct ice_hw *hw = &pf->hw;
1717 irqreturn_t ret = IRQ_NONE;
1718 u32 oicr, ena_mask;
1719
1720 set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1721
1722 oicr = rd32(hw, PFINT_OICR);
1723 ena_mask = rd32(hw, PFINT_OICR_ENA);
1724
1725 if (oicr & PFINT_OICR_GRST_M) {
1726 u32 reset;
1727 /* we have a reset warning */
1728 ena_mask &= ~PFINT_OICR_GRST_M;
1729 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1730 GLGEN_RSTAT_RESET_TYPE_S;
1731
1732 if (reset == ICE_RESET_CORER)
1733 pf->corer_count++;
1734 else if (reset == ICE_RESET_GLOBR)
1735 pf->globr_count++;
1736 else
1737 pf->empr_count++;
1738
1739 /* If a reset cycle isn't already in progress, we set a bit in
1740 * pf->state so that the service task can start a reset/rebuild.
1741 * We also make note of which reset happened so that peer
1742 * devices/drivers can be informed.
1743 */
1744 if (!test_bit(__ICE_RESET_RECOVERY_PENDING, pf->state)) {
1745 if (reset == ICE_RESET_CORER)
1746 set_bit(__ICE_CORER_RECV, pf->state);
1747 else if (reset == ICE_RESET_GLOBR)
1748 set_bit(__ICE_GLOBR_RECV, pf->state);
1749 else
1750 set_bit(__ICE_EMPR_RECV, pf->state);
1751
1752 set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
1753 }
1754 }
1755
1756 if (oicr & PFINT_OICR_HMC_ERR_M) {
1757 ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1758 dev_dbg(&pf->pdev->dev,
1759 "HMC Error interrupt - info 0x%x, data 0x%x\n",
1760 rd32(hw, PFHMC_ERRORINFO),
1761 rd32(hw, PFHMC_ERRORDATA));
1762 }
1763
1764 /* Report and mask off any remaining unexpected interrupts */
1765 oicr &= ena_mask;
1766 if (oicr) {
1767 dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1768 oicr);
1769 /* If a critical error is pending there is no choice but to
1770 * reset the device.
1771 */
1772 if (oicr & (PFINT_OICR_PE_CRITERR_M |
1773 PFINT_OICR_PCI_EXCEPTION_M |
1774 PFINT_OICR_ECC_ERR_M)) {
1775 set_bit(__ICE_PFR_REQ, pf->state);
1776 ice_service_task_schedule(pf);
1777 }
1778 ena_mask &= ~oicr;
1779 }
1780 ret = IRQ_HANDLED;
1781
1782 /* re-enable interrupt causes that are not handled during this pass */
1783 wr32(hw, PFINT_OICR_ENA, ena_mask);
1784 if (!test_bit(__ICE_DOWN, pf->state)) {
1785 ice_service_task_schedule(pf);
1786 ice_irq_dynamic_ena(hw, NULL, NULL);
1787 }
1788
1789 return ret;
1790}
1791
1792/**
1793 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1794 * @vsi: the VSI being configured
1795 *
1796 * This function maps descriptor rings to the queue-specific vectors allotted
1797 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1798 * and Rx rings to the vector as "efficiently" as possible.
1799 */
1800static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1801{
1802 int q_vectors = vsi->num_q_vectors;
1803 int tx_rings_rem, rx_rings_rem;
1804 int v_id;
1805
1806 /* initially assigning remaining rings count to VSIs num queue value */
1807 tx_rings_rem = vsi->num_txq;
1808 rx_rings_rem = vsi->num_rxq;
1809
1810 for (v_id = 0; v_id < q_vectors; v_id++) {
1811 struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1812 int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1813
1814 /* Tx rings mapping to vector */
1815 tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1816 q_vector->num_ring_tx = tx_rings_per_v;
1817 q_vector->tx.ring = NULL;
1818 q_base = vsi->num_txq - tx_rings_rem;
1819
1820 for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1821 struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1822
1823 tx_ring->q_vector = q_vector;
1824 tx_ring->next = q_vector->tx.ring;
1825 q_vector->tx.ring = tx_ring;
1826 }
1827 tx_rings_rem -= tx_rings_per_v;
1828
1829 /* Rx rings mapping to vector */
1830 rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1831 q_vector->num_ring_rx = rx_rings_per_v;
1832 q_vector->rx.ring = NULL;
1833 q_base = vsi->num_rxq - rx_rings_rem;
1834
1835 for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1836 struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1837
1838 rx_ring->q_vector = q_vector;
1839 rx_ring->next = q_vector->rx.ring;
1840 q_vector->rx.ring = rx_ring;
1841 }
1842 rx_rings_rem -= rx_rings_per_v;
1843 }
1844}
1845
1846/**
1847 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI
1848 * @vsi: the VSI being configured
1849 *
1850 * Return 0 on success and a negative value on error
1851 */
1852static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
1853{
1854 struct ice_pf *pf = vsi->back;
1855
1856 switch (vsi->type) {
1857 case ICE_VSI_PF:
1858 vsi->alloc_txq = pf->num_lan_tx;
1859 vsi->alloc_rxq = pf->num_lan_rx;
1860 vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE);
1861 vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
1862 break;
1863 default:
1864 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1865 vsi->type);
1866 break;
1867 }
1868}
1869
1870/**
1871 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
1872 * @vsi: VSI pointer
1873 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
1874 *
1875 * On error: returns error code (negative)
1876 * On success: returns 0
1877 */
1878static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
1879{
1880 struct ice_pf *pf = vsi->back;
1881
1882 /* allocate memory for both Tx and Rx ring pointers */
1883 vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
1884 sizeof(struct ice_ring *), GFP_KERNEL);
1885 if (!vsi->tx_rings)
1886 goto err_txrings;
1887
1888 vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
1889 sizeof(struct ice_ring *), GFP_KERNEL);
1890 if (!vsi->rx_rings)
1891 goto err_rxrings;
1892
1893 if (alloc_qvectors) {
1894 /* allocate memory for q_vector pointers */
1895 vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
1896 vsi->num_q_vectors,
1897 sizeof(struct ice_q_vector *),
1898 GFP_KERNEL);
1899 if (!vsi->q_vectors)
1900 goto err_vectors;
1901 }
1902
1903 return 0;
1904
1905err_vectors:
1906 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
1907err_rxrings:
1908 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
1909err_txrings:
1910 return -ENOMEM;
1911}
1912
1913/**
1914 * ice_msix_clean_rings - MSIX mode Interrupt Handler
1915 * @irq: interrupt number
1916 * @data: pointer to a q_vector
1917 */
1918static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
1919{
1920 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
1921
1922 if (!q_vector->tx.ring && !q_vector->rx.ring)
1923 return IRQ_HANDLED;
1924
1925 napi_schedule(&q_vector->napi);
1926
1927 return IRQ_HANDLED;
1928}
1929
1930/**
1931 * ice_vsi_alloc - Allocates the next available struct vsi in the PF
1932 * @pf: board private structure
1933 * @type: type of VSI
1934 *
1935 * returns a pointer to a VSI on success, NULL on failure.
1936 */
1937static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type)
1938{
1939 struct ice_vsi *vsi = NULL;
1940
1941 /* Need to protect the allocation of the VSIs at the PF level */
1942 mutex_lock(&pf->sw_mutex);
1943
1944 /* If we have already allocated our maximum number of VSIs,
1945 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
1946 * is available to be populated
1947 */
1948 if (pf->next_vsi == ICE_NO_VSI) {
1949 dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
1950 goto unlock_pf;
1951 }
1952
1953 vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
1954 if (!vsi)
1955 goto unlock_pf;
1956
1957 vsi->type = type;
1958 vsi->back = pf;
1959 set_bit(__ICE_DOWN, vsi->state);
1960 vsi->idx = pf->next_vsi;
1961 vsi->work_lmt = ICE_DFLT_IRQ_WORK;
1962
1963 ice_vsi_set_num_qs(vsi);
1964
1965 switch (vsi->type) {
1966 case ICE_VSI_PF:
1967 if (ice_vsi_alloc_arrays(vsi, true))
1968 goto err_rings;
1969
1970 /* Setup default MSIX irq handler for VSI */
1971 vsi->irq_handler = ice_msix_clean_rings;
1972 break;
1973 default:
1974 dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1975 goto unlock_pf;
1976 }
1977
1978 /* fill VSI slot in the PF struct */
1979 pf->vsi[pf->next_vsi] = vsi;
1980
1981 /* prepare pf->next_vsi for next use */
1982 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
1983 pf->next_vsi);
1984 goto unlock_pf;
1985
1986err_rings:
1987 devm_kfree(&pf->pdev->dev, vsi);
1988 vsi = NULL;
1989unlock_pf:
1990 mutex_unlock(&pf->sw_mutex);
1991 return vsi;
1992}
1993
1994/**
1995 * ice_free_irq_msix_misc - Unroll misc vector setup
1996 * @pf: board private structure
1997 */
1998static void ice_free_irq_msix_misc(struct ice_pf *pf)
1999{
2000 /* disable OICR interrupt */
2001 wr32(&pf->hw, PFINT_OICR_ENA, 0);
2002 ice_flush(&pf->hw);
2003
2004 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
2005 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2006 devm_free_irq(&pf->pdev->dev,
2007 pf->msix_entries[pf->oicr_idx].vector, pf);
2008 }
2009
2010 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2011}
2012
2013/**
2014 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2015 * @pf: board private structure
2016 *
2017 * This sets up the handler for MSIX 0, which is used to manage the
2018 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2019 * when in MSI or Legacy interrupt mode.
2020 */
2021static int ice_req_irq_msix_misc(struct ice_pf *pf)
2022{
2023 struct ice_hw *hw = &pf->hw;
2024 int oicr_idx, err = 0;
2025 u8 itr_gran;
2026 u32 val;
2027
2028 if (!pf->int_name[0])
2029 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2030 dev_driver_string(&pf->pdev->dev),
2031 dev_name(&pf->pdev->dev));
2032
2033 /* Do not request IRQ but do enable OICR interrupt since settings are
2034 * lost during reset. Note that this function is called only during
2035 * rebuild path and not while reset is in progress.
2036 */
2037 if (ice_is_reset_recovery_pending(pf->state))
2038 goto skip_req_irq;
2039
2040 /* reserve one vector in irq_tracker for misc interrupts */
2041 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2042 if (oicr_idx < 0)
2043 return oicr_idx;
2044
2045 pf->oicr_idx = oicr_idx;
2046
2047 err = devm_request_irq(&pf->pdev->dev,
2048 pf->msix_entries[pf->oicr_idx].vector,
2049 ice_misc_intr, 0, pf->int_name, pf);
2050 if (err) {
2051 dev_err(&pf->pdev->dev,
2052 "devm_request_irq for %s failed: %d\n",
2053 pf->int_name, err);
2054 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2055 return err;
2056 }
2057
2058skip_req_irq:
2059 ice_ena_misc_vector(pf);
2060
2061 val = (pf->oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2062 (ICE_RX_ITR & PFINT_OICR_CTL_ITR_INDX_M) |
2063 PFINT_OICR_CTL_CAUSE_ENA_M;
2064 wr32(hw, PFINT_OICR_CTL, val);
2065
2066 /* This enables Admin queue Interrupt causes */
2067 val = (pf->oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2068 (ICE_RX_ITR & PFINT_FW_CTL_ITR_INDX_M) |
2069 PFINT_FW_CTL_CAUSE_ENA_M;
2070 wr32(hw, PFINT_FW_CTL, val);
2071
2072 itr_gran = hw->itr_gran_200;
2073
2074 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2075 ITR_TO_REG(ICE_ITR_8K, itr_gran));
2076
2077 ice_flush(hw);
2078 ice_irq_dynamic_ena(hw, NULL, NULL);
2079
2080 return 0;
2081}
2082
2083/**
2084 * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
2085 * @vsi: the VSI getting queues
2086 *
2087 * Return 0 on success and a negative value on error
2088 */
2089static int ice_vsi_get_qs_contig(struct ice_vsi *vsi)
2090{
2091 struct ice_pf *pf = vsi->back;
2092 int offset, ret = 0;
2093
2094 mutex_lock(&pf->avail_q_mutex);
2095 /* look for contiguous block of queues for tx */
2096 offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS,
2097 0, vsi->alloc_txq, 0);
2098 if (offset < ICE_MAX_TXQS) {
2099 int i;
2100
2101 bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq);
2102 for (i = 0; i < vsi->alloc_txq; i++)
2103 vsi->txq_map[i] = i + offset;
2104 } else {
2105 ret = -ENOMEM;
2106 vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER;
2107 }
2108
2109 /* look for contiguous block of queues for rx */
2110 offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS,
2111 0, vsi->alloc_rxq, 0);
2112 if (offset < ICE_MAX_RXQS) {
2113 int i;
2114
2115 bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq);
2116 for (i = 0; i < vsi->alloc_rxq; i++)
2117 vsi->rxq_map[i] = i + offset;
2118 } else {
2119 ret = -ENOMEM;
2120 vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER;
2121 }
2122 mutex_unlock(&pf->avail_q_mutex);
2123
2124 return ret;
2125}
2126
2127/**
2128 * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI
2129 * @vsi: the VSI getting queues
2130 *
2131 * Return 0 on success and a negative value on error
2132 */
2133static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi)
2134{
2135 struct ice_pf *pf = vsi->back;
2136 int i, index = 0;
2137
2138 mutex_lock(&pf->avail_q_mutex);
2139
2140 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2141 for (i = 0; i < vsi->alloc_txq; i++) {
2142 index = find_next_zero_bit(pf->avail_txqs,
2143 ICE_MAX_TXQS, index);
2144 if (index < ICE_MAX_TXQS) {
2145 set_bit(index, pf->avail_txqs);
2146 vsi->txq_map[i] = index;
2147 } else {
2148 goto err_scatter_tx;
2149 }
2150 }
2151 }
2152
2153 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2154 for (i = 0; i < vsi->alloc_rxq; i++) {
2155 index = find_next_zero_bit(pf->avail_rxqs,
2156 ICE_MAX_RXQS, index);
2157 if (index < ICE_MAX_RXQS) {
2158 set_bit(index, pf->avail_rxqs);
2159 vsi->rxq_map[i] = index;
2160 } else {
2161 goto err_scatter_rx;
2162 }
2163 }
2164 }
2165
2166 mutex_unlock(&pf->avail_q_mutex);
2167 return 0;
2168
2169err_scatter_rx:
2170 /* unflag any queues we have grabbed (i is failed position) */
2171 for (index = 0; index < i; index++) {
2172 clear_bit(vsi->rxq_map[index], pf->avail_rxqs);
2173 vsi->rxq_map[index] = 0;
2174 }
2175 i = vsi->alloc_txq;
2176err_scatter_tx:
2177 /* i is either position of failed attempt or vsi->alloc_txq */
2178 for (index = 0; index < i; index++) {
2179 clear_bit(vsi->txq_map[index], pf->avail_txqs);
2180 vsi->txq_map[index] = 0;
2181 }
2182
2183 mutex_unlock(&pf->avail_q_mutex);
2184 return -ENOMEM;
2185}
2186
2187/**
2188 * ice_vsi_get_qs - Assign queues from PF to VSI
2189 * @vsi: the VSI to assign queues to
2190 *
2191 * Returns 0 on success and a negative value on error
2192 */
2193static int ice_vsi_get_qs(struct ice_vsi *vsi)
2194{
2195 int ret = 0;
2196
2197 vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
2198 vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
2199
2200 /* NOTE: ice_vsi_get_qs_contig() will set the rx/tx mapping
2201 * modes individually to scatter if assigning contiguous queues
2202 * to rx or tx fails
2203 */
2204 ret = ice_vsi_get_qs_contig(vsi);
2205 if (ret < 0) {
2206 if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER)
2207 vsi->alloc_txq = max_t(u16, vsi->alloc_txq,
2208 ICE_MAX_SCATTER_TXQS);
2209 if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER)
2210 vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq,
2211 ICE_MAX_SCATTER_RXQS);
2212 ret = ice_vsi_get_qs_scatter(vsi);
2213 }
2214
2215 return ret;
2216}
2217
2218/**
2219 * ice_vsi_put_qs - Release queues from VSI to PF
2220 * @vsi: the VSI thats going to release queues
2221 */
2222static void ice_vsi_put_qs(struct ice_vsi *vsi)
2223{
2224 struct ice_pf *pf = vsi->back;
2225 int i;
2226
2227 mutex_lock(&pf->avail_q_mutex);
2228
2229 for (i = 0; i < vsi->alloc_txq; i++) {
2230 clear_bit(vsi->txq_map[i], pf->avail_txqs);
2231 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
2232 }
2233
2234 for (i = 0; i < vsi->alloc_rxq; i++) {
2235 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
2236 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
2237 }
2238
2239 mutex_unlock(&pf->avail_q_mutex);
2240}
2241
2242/**
2243 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
2244 * @vsi: VSI having the memory freed
2245 * @v_idx: index of the vector to be freed
2246 */
2247static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
2248{
2249 struct ice_q_vector *q_vector;
2250 struct ice_ring *ring;
2251
2252 if (!vsi->q_vectors[v_idx]) {
2253 dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
2254 v_idx);
2255 return;
2256 }
2257 q_vector = vsi->q_vectors[v_idx];
2258
2259 ice_for_each_ring(ring, q_vector->tx)
2260 ring->q_vector = NULL;
2261 ice_for_each_ring(ring, q_vector->rx)
2262 ring->q_vector = NULL;
2263
2264 /* only VSI with an associated netdev is set up with NAPI */
2265 if (vsi->netdev)
2266 netif_napi_del(&q_vector->napi);
2267
2268 devm_kfree(&vsi->back->pdev->dev, q_vector);
2269 vsi->q_vectors[v_idx] = NULL;
2270}
2271
2272/**
2273 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
2274 * @vsi: the VSI having memory freed
2275 */
2276static void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
2277{
2278 int v_idx;
2279
2280 for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
2281 ice_free_q_vector(vsi, v_idx);
2282}
2283
2284/**
2285 * ice_cfg_netdev - Setup the netdev flags
2286 * @vsi: the VSI being configured
2287 *
2288 * Returns 0 on success, negative value on failure
2289 */
2290static int ice_cfg_netdev(struct ice_vsi *vsi)
2291{
2292 netdev_features_t csumo_features;
2293 netdev_features_t vlano_features;
2294 netdev_features_t dflt_features;
2295 netdev_features_t tso_features;
2296 struct ice_netdev_priv *np;
2297 struct net_device *netdev;
2298 u8 mac_addr[ETH_ALEN];
2299
2300 netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv),
2301 vsi->alloc_txq, vsi->alloc_rxq);
2302 if (!netdev)
2303 return -ENOMEM;
2304
2305 vsi->netdev = netdev;
2306 np = netdev_priv(netdev);
2307 np->vsi = vsi;
2308
2309 dflt_features = NETIF_F_SG |
2310 NETIF_F_HIGHDMA |
2311 NETIF_F_RXHASH;
2312
2313 csumo_features = NETIF_F_RXCSUM |
2314 NETIF_F_IP_CSUM |
2315 NETIF_F_IPV6_CSUM;
2316
2317 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2318 NETIF_F_HW_VLAN_CTAG_TX |
2319 NETIF_F_HW_VLAN_CTAG_RX;
2320
2321 tso_features = NETIF_F_TSO;
2322
2323 /* set features that user can change */
2324 netdev->hw_features = dflt_features | csumo_features |
2325 vlano_features | tso_features;
2326
2327 /* enable features */
2328 netdev->features |= netdev->hw_features;
2329 /* encap and VLAN devices inherit default, csumo and tso features */
2330 netdev->hw_enc_features |= dflt_features | csumo_features |
2331 tso_features;
2332 netdev->vlan_features |= dflt_features | csumo_features |
2333 tso_features;
2334
2335 if (vsi->type == ICE_VSI_PF) {
2336 SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
2337 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2338
2339 ether_addr_copy(netdev->dev_addr, mac_addr);
2340 ether_addr_copy(netdev->perm_addr, mac_addr);
2341 }
2342
2343 netdev->priv_flags |= IFF_UNICAST_FLT;
2344
2345 /* assign netdev_ops */
2346 netdev->netdev_ops = &ice_netdev_ops;
2347
2348 /* setup watchdog timeout value to be 5 second */
2349 netdev->watchdog_timeo = 5 * HZ;
2350
2351 ice_set_ethtool_ops(netdev);
2352
2353 netdev->min_mtu = ETH_MIN_MTU;
2354 netdev->max_mtu = ICE_MAX_MTU;
2355
2356 return 0;
2357}
2358
2359/**
2360 * ice_vsi_free_arrays - clean up vsi resources
2361 * @vsi: pointer to VSI being cleared
2362 * @free_qvectors: bool to specify if q_vectors should be deallocated
2363 */
2364static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
2365{
2366 struct ice_pf *pf = vsi->back;
2367
2368 /* free the ring and vector containers */
2369 if (free_qvectors && vsi->q_vectors) {
2370 devm_kfree(&pf->pdev->dev, vsi->q_vectors);
2371 vsi->q_vectors = NULL;
2372 }
2373 if (vsi->tx_rings) {
2374 devm_kfree(&pf->pdev->dev, vsi->tx_rings);
2375 vsi->tx_rings = NULL;
2376 }
2377 if (vsi->rx_rings) {
2378 devm_kfree(&pf->pdev->dev, vsi->rx_rings);
2379 vsi->rx_rings = NULL;
2380 }
2381}
2382
2383/**
2384 * ice_vsi_clear - clean up and deallocate the provided vsi
2385 * @vsi: pointer to VSI being cleared
2386 *
2387 * This deallocates the vsi's queue resources, removes it from the PF's
2388 * VSI array if necessary, and deallocates the VSI
2389 *
2390 * Returns 0 on success, negative on failure
2391 */
2392static int ice_vsi_clear(struct ice_vsi *vsi)
2393{
2394 struct ice_pf *pf = NULL;
2395
2396 if (!vsi)
2397 return 0;
2398
2399 if (!vsi->back)
2400 return -EINVAL;
2401
2402 pf = vsi->back;
2403
2404 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
2405 dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
2406 vsi->idx);
2407 return -EINVAL;
2408 }
2409
2410 mutex_lock(&pf->sw_mutex);
2411 /* updates the PF for this cleared vsi */
2412
2413 pf->vsi[vsi->idx] = NULL;
2414 if (vsi->idx < pf->next_vsi)
2415 pf->next_vsi = vsi->idx;
2416
2417 ice_vsi_free_arrays(vsi, true);
2418 mutex_unlock(&pf->sw_mutex);
2419 devm_kfree(&pf->pdev->dev, vsi);
2420
2421 return 0;
2422}
2423
2424/**
2425 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
2426 * @vsi: the VSI being configured
2427 * @v_idx: index of the vector in the vsi struct
2428 *
2429 * We allocate one q_vector. If allocation fails we return -ENOMEM.
2430 */
2431static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
2432{
2433 struct ice_pf *pf = vsi->back;
2434 struct ice_q_vector *q_vector;
2435
2436 /* allocate q_vector */
2437 q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
2438 if (!q_vector)
2439 return -ENOMEM;
2440
2441 q_vector->vsi = vsi;
2442 q_vector->v_idx = v_idx;
2443 /* only set affinity_mask if the CPU is online */
2444 if (cpu_online(v_idx))
2445 cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
2446
2447 if (vsi->netdev)
2448 netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
2449 NAPI_POLL_WEIGHT);
2450 /* tie q_vector and vsi together */
2451 vsi->q_vectors[v_idx] = q_vector;
2452
2453 return 0;
2454}
2455
2456/**
2457 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
2458 * @vsi: the VSI being configured
2459 *
2460 * We allocate one q_vector per queue interrupt. If allocation fails we
2461 * return -ENOMEM.
2462 */
2463static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
2464{
2465 struct ice_pf *pf = vsi->back;
2466 int v_idx = 0, num_q_vectors;
2467 int err;
2468
2469 if (vsi->q_vectors[0]) {
2470 dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
2471 vsi->vsi_num);
2472 return -EEXIST;
2473 }
2474
2475 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2476 num_q_vectors = vsi->num_q_vectors;
2477 } else {
2478 err = -EINVAL;
2479 goto err_out;
2480 }
2481
2482 for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
2483 err = ice_vsi_alloc_q_vector(vsi, v_idx);
2484 if (err)
2485 goto err_out;
2486 }
2487
2488 return 0;
2489
2490err_out:
2491 while (v_idx--)
2492 ice_free_q_vector(vsi, v_idx);
2493
2494 dev_err(&pf->pdev->dev,
2495 "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
2496 vsi->num_q_vectors, vsi->vsi_num, err);
2497 vsi->num_q_vectors = 0;
2498 return err;
2499}
2500
2501/**
2502 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
2503 * @vsi: ptr to the VSI
2504 *
2505 * This should only be called after ice_vsi_alloc() which allocates the
2506 * corresponding SW VSI structure and initializes num_queue_pairs for the
2507 * newly allocated VSI.
2508 *
2509 * Returns 0 on success or negative on failure
2510 */
2511static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
2512{
2513 struct ice_pf *pf = vsi->back;
2514 int num_q_vectors = 0;
2515
2516 if (vsi->base_vector) {
2517 dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
2518 vsi->vsi_num, vsi->base_vector);
2519 return -EEXIST;
2520 }
2521
2522 if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2523 return -ENOENT;
2524
2525 switch (vsi->type) {
2526 case ICE_VSI_PF:
2527 num_q_vectors = vsi->num_q_vectors;
2528 break;
2529 default:
2530 dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
2531 vsi->type);
2532 break;
2533 }
2534
2535 if (num_q_vectors)
2536 vsi->base_vector = ice_get_res(pf, pf->irq_tracker,
2537 num_q_vectors, vsi->idx);
2538
2539 if (vsi->base_vector < 0) {
2540 dev_err(&pf->pdev->dev,
2541 "Failed to get tracking for %d vectors for VSI %d, err=%d\n",
2542 num_q_vectors, vsi->vsi_num, vsi->base_vector);
2543 return -ENOENT;
2544 }
2545
2546 return 0;
2547}
2548
2549/**
2550 * ice_fill_rss_lut - Fill the RSS lookup table with default values
2551 * @lut: Lookup table
2552 * @rss_table_size: Lookup table size
2553 * @rss_size: Range of queue number for hashing
2554 */
2555void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2556{
2557 u16 i;
2558
2559 for (i = 0; i < rss_table_size; i++)
2560 lut[i] = i % rss_size;
2561}
2562
2563/**
2564 * ice_vsi_cfg_rss - Configure RSS params for a VSI
2565 * @vsi: VSI to be configured
2566 */
2567static int ice_vsi_cfg_rss(struct ice_vsi *vsi)
2568{
2569 u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
2570 struct ice_aqc_get_set_rss_keys *key;
2571 struct ice_pf *pf = vsi->back;
2572 enum ice_status status;
2573 int err = 0;
2574 u8 *lut;
2575
2576 vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
2577
2578 lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
2579 if (!lut)
2580 return -ENOMEM;
2581
2582 if (vsi->rss_lut_user)
2583 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
2584 else
2585 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
2586
2587 status = ice_aq_set_rss_lut(&pf->hw, vsi->vsi_num, vsi->rss_lut_type,
2588 lut, vsi->rss_table_size);
2589
2590 if (status) {
2591 dev_err(&vsi->back->pdev->dev,
2592 "set_rss_lut failed, error %d\n", status);
2593 err = -EIO;
2594 goto ice_vsi_cfg_rss_exit;
2595 }
2596
2597 key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
2598 if (!key) {
2599 err = -ENOMEM;
2600 goto ice_vsi_cfg_rss_exit;
2601 }
2602
2603 if (vsi->rss_hkey_user)
2604 memcpy(seed, vsi->rss_hkey_user,
2605 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2606 else
2607 netdev_rss_key_fill((void *)seed,
2608 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2609 memcpy(&key->standard_rss_key, seed,
2610 ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2611
2612 status = ice_aq_set_rss_key(&pf->hw, vsi->vsi_num, key);
2613
2614 if (status) {
2615 dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
2616 status);
2617 err = -EIO;
2618 }
2619
2620 devm_kfree(&pf->pdev->dev, key);
2621ice_vsi_cfg_rss_exit:
2622 devm_kfree(&pf->pdev->dev, lut);
2623 return err;
2624}
2625
2626/**
2627 * ice_vsi_reinit_setup - return resource and reallocate resource for a VSI
2628 * @vsi: pointer to the ice_vsi
2629 *
2630 * This reallocates the VSIs queue resources
2631 *
2632 * Returns 0 on success and negative value on failure
2633 */
2634static int ice_vsi_reinit_setup(struct ice_vsi *vsi)
2635{
2636 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2637 int ret, i;
2638
2639 if (!vsi)
2640 return -EINVAL;
2641
2642 ice_vsi_free_q_vectors(vsi);
2643 ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
2644 vsi->base_vector = 0;
2645 ice_vsi_clear_rings(vsi);
2646 ice_vsi_free_arrays(vsi, false);
2647 ice_vsi_set_num_qs(vsi);
2648
2649 /* Initialize VSI struct elements and create VSI in FW */
2650 ret = ice_vsi_add(vsi);
2651 if (ret < 0)
2652 goto err_vsi;
2653
2654 ret = ice_vsi_alloc_arrays(vsi, false);
2655 if (ret < 0)
2656 goto err_vsi;
2657
2658 switch (vsi->type) {
2659 case ICE_VSI_PF:
2660 if (!vsi->netdev) {
2661 ret = ice_cfg_netdev(vsi);
2662 if (ret)
2663 goto err_rings;
2664
2665 ret = register_netdev(vsi->netdev);
2666 if (ret)
2667 goto err_rings;
2668
2669 netif_carrier_off(vsi->netdev);
2670 netif_tx_stop_all_queues(vsi->netdev);
2671 }
2672
2673 ret = ice_vsi_alloc_q_vectors(vsi);
2674 if (ret)
2675 goto err_rings;
2676
2677 ret = ice_vsi_setup_vector_base(vsi);
2678 if (ret)
2679 goto err_vectors;
2680
2681 ret = ice_vsi_alloc_rings(vsi);
2682 if (ret)
2683 goto err_vectors;
2684
2685 ice_vsi_map_rings_to_vectors(vsi);
2686 break;
2687 default:
2688 break;
2689 }
2690
2691 ice_vsi_set_tc_cfg(vsi);
2692
2693 /* configure VSI nodes based on number of queues and TC's */
2694 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2695 max_txqs[i] = vsi->num_txq;
2696
2697 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2698 vsi->tc_cfg.ena_tc, max_txqs);
2699 if (ret) {
2700 dev_info(&vsi->back->pdev->dev,
2701 "Failed VSI lan queue config\n");
2702 goto err_vectors;
2703 }
2704 return 0;
2705
2706err_vectors:
2707 ice_vsi_free_q_vectors(vsi);
2708err_rings:
2709 if (vsi->netdev) {
2710 vsi->current_netdev_flags = 0;
2711 unregister_netdev(vsi->netdev);
2712 free_netdev(vsi->netdev);
2713 vsi->netdev = NULL;
2714 }
2715err_vsi:
2716 ice_vsi_clear(vsi);
2717 set_bit(__ICE_RESET_FAILED, vsi->back->state);
2718 return ret;
2719}
2720
2721/**
2722 * ice_vsi_setup - Set up a VSI by a given type
2723 * @pf: board private structure
2724 * @type: VSI type
2725 * @pi: pointer to the port_info instance
2726 *
2727 * This allocates the sw VSI structure and its queue resources.
2728 *
2729 * Returns pointer to the successfully allocated and configure VSI sw struct on
2730 * success, otherwise returns NULL on failure.
2731 */
2732static struct ice_vsi *
2733ice_vsi_setup(struct ice_pf *pf, enum ice_vsi_type type,
2734 struct ice_port_info *pi)
2735{
2736 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2737 struct device *dev = &pf->pdev->dev;
2738 struct ice_vsi_ctx ctxt = { 0 };
2739 struct ice_vsi *vsi;
2740 int ret, i;
2741
2742 vsi = ice_vsi_alloc(pf, type);
2743 if (!vsi) {
2744 dev_err(dev, "could not allocate VSI\n");
2745 return NULL;
2746 }
2747
2748 vsi->port_info = pi;
2749 vsi->vsw = pf->first_sw;
2750
2751 if (ice_vsi_get_qs(vsi)) {
2752 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2753 vsi->idx);
2754 goto err_get_qs;
2755 }
2756
2757 /* set RSS capabilities */
2758 ice_vsi_set_rss_params(vsi);
2759
2760 /* create the VSI */
2761 ret = ice_vsi_add(vsi);
2762 if (ret)
2763 goto err_vsi;
2764
2765 ctxt.vsi_num = vsi->vsi_num;
2766
2767 switch (vsi->type) {
2768 case ICE_VSI_PF:
2769 ret = ice_cfg_netdev(vsi);
2770 if (ret)
2771 goto err_cfg_netdev;
2772
2773 ret = register_netdev(vsi->netdev);
2774 if (ret)
2775 goto err_register_netdev;
2776
2777 netif_carrier_off(vsi->netdev);
2778
2779 /* make sure transmit queues start off as stopped */
2780 netif_tx_stop_all_queues(vsi->netdev);
2781 ret = ice_vsi_alloc_q_vectors(vsi);
2782 if (ret)
2783 goto err_msix;
2784
2785 ret = ice_vsi_setup_vector_base(vsi);
2786 if (ret)
2787 goto err_rings;
2788
2789 ret = ice_vsi_alloc_rings(vsi);
2790 if (ret)
2791 goto err_rings;
2792
2793 ice_vsi_map_rings_to_vectors(vsi);
2794
2795 /* Do not exit if configuring RSS had an issue, at least
2796 * receive traffic on first queue. Hence no need to capture
2797 * return value
2798 */
2799 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2800 ice_vsi_cfg_rss(vsi);
2801 break;
2802 default:
2803 /* if vsi type is not recognized, clean up the resources and
2804 * exit
2805 */
2806 goto err_rings;
2807 }
2808
2809 ice_vsi_set_tc_cfg(vsi);
2810
2811 /* configure VSI nodes based on number of queues and TC's */
2812 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2813 max_txqs[i] = vsi->num_txq;
2814
2815 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2816 vsi->tc_cfg.ena_tc, max_txqs);
2817 if (ret) {
2818 dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
2819 goto err_rings;
2820 }
2821
2822 return vsi;
2823
2824err_rings:
2825 ice_vsi_free_q_vectors(vsi);
2826err_msix:
2827 if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
2828 unregister_netdev(vsi->netdev);
2829err_register_netdev:
2830 if (vsi->netdev) {
2831 free_netdev(vsi->netdev);
2832 vsi->netdev = NULL;
2833 }
2834err_cfg_netdev:
2835 ret = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
2836 if (ret)
2837 dev_err(&vsi->back->pdev->dev,
2838 "Free VSI AQ call failed, err %d\n", ret);
2839err_vsi:
2840 ice_vsi_put_qs(vsi);
2841err_get_qs:
2842 pf->q_left_tx += vsi->alloc_txq;
2843 pf->q_left_rx += vsi->alloc_rxq;
2844 ice_vsi_clear(vsi);
2845
2846 return NULL;
2847}
2848
2849/**
2850 * ice_vsi_add_vlan - Add vsi membership for given vlan
2851 * @vsi: the vsi being configured
2852 * @vid: vlan id to be added
2853 */
2854static int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
2855{
2856 struct ice_fltr_list_entry *tmp;
2857 struct ice_pf *pf = vsi->back;
2858 LIST_HEAD(tmp_add_list);
2859 enum ice_status status;
2860 int err = 0;
2861
2862 tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
2863 if (!tmp)
2864 return -ENOMEM;
2865
2866 tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2867 tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2868 tmp->fltr_info.flag = ICE_FLTR_TX;
2869 tmp->fltr_info.src = vsi->vsi_num;
2870 tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2871 tmp->fltr_info.l_data.vlan.vlan_id = vid;
2872
2873 INIT_LIST_HEAD(&tmp->list_entry);
2874 list_add(&tmp->list_entry, &tmp_add_list);
2875
2876 status = ice_add_vlan(&pf->hw, &tmp_add_list);
2877 if (status) {
2878 err = -ENODEV;
2879 dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
2880 vid, vsi->vsi_num);
2881 }
2882
2883 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2884 return err;
2885}
2886
2887/**
2888 * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload
2889 * @netdev: network interface to be adjusted
2890 * @proto: unused protocol
2891 * @vid: vlan id to be added
2892 *
2893 * net_device_ops implementation for adding vlan ids
2894 */
2895static int ice_vlan_rx_add_vid(struct net_device *netdev,
2896 __always_unused __be16 proto, u16 vid)
2897{
2898 struct ice_netdev_priv *np = netdev_priv(netdev);
2899 struct ice_vsi *vsi = np->vsi;
2900 int ret = 0;
2901
2902 if (vid >= VLAN_N_VID) {
2903 netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2904 vid, VLAN_N_VID);
2905 return -EINVAL;
2906 }
2907
2908 if (vsi->info.pvid)
2909 return -EINVAL;
2910
2911 /* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is
2912 * needed to continue allowing all untagged packets since VLAN prune
2913 * list is applied to all packets by the switch
2914 */
2915 ret = ice_vsi_add_vlan(vsi, vid);
2916
2917 if (!ret)
2918 set_bit(vid, vsi->active_vlans);
2919
2920 return ret;
2921}
2922
2923/**
2924 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
2925 * @vsi: the VSI being configured
2926 * @vid: VLAN id to be removed
2927 */
2928static void ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
2929{
2930 struct ice_fltr_list_entry *list;
2931 struct ice_pf *pf = vsi->back;
2932 LIST_HEAD(tmp_add_list);
2933
2934 list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2935 if (!list)
2936 return;
2937
2938 list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2939 list->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2940 list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2941 list->fltr_info.l_data.vlan.vlan_id = vid;
2942 list->fltr_info.flag = ICE_FLTR_TX;
2943 list->fltr_info.src = vsi->vsi_num;
2944
2945 INIT_LIST_HEAD(&list->list_entry);
2946 list_add(&list->list_entry, &tmp_add_list);
2947
2948 if (ice_remove_vlan(&pf->hw, &tmp_add_list))
2949 dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
2950 vid, vsi->vsi_num);
2951
2952 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2953}
2954
2955/**
2956 * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
2957 * @netdev: network interface to be adjusted
2958 * @proto: unused protocol
2959 * @vid: vlan id to be removed
2960 *
2961 * net_device_ops implementation for removing vlan ids
2962 */
2963static int ice_vlan_rx_kill_vid(struct net_device *netdev,
2964 __always_unused __be16 proto, u16 vid)
2965{
2966 struct ice_netdev_priv *np = netdev_priv(netdev);
2967 struct ice_vsi *vsi = np->vsi;
2968
2969 if (vsi->info.pvid)
2970 return -EINVAL;
2971
2972 /* return code is ignored as there is nothing a user
2973 * can do about failure to remove and a log message was
2974 * already printed from the other function
2975 */
2976 ice_vsi_kill_vlan(vsi, vid);
2977
2978 clear_bit(vid, vsi->active_vlans);
2979
2980 return 0;
2981}
2982
2983/**
2984 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2985 * @pf: board private structure
2986 *
2987 * Returns 0 on success, negative value on failure
2988 */
2989static int ice_setup_pf_sw(struct ice_pf *pf)
2990{
2991 LIST_HEAD(tmp_add_list);
2992 u8 broadcast[ETH_ALEN];
2993 struct ice_vsi *vsi;
2994 int status = 0;
2995
2996 if (!ice_is_reset_recovery_pending(pf->state)) {
2997 vsi = ice_vsi_setup(pf, ICE_VSI_PF, pf->hw.port_info);
2998 if (!vsi) {
2999 status = -ENOMEM;
3000 goto error_exit;
3001 }
3002 } else {
3003 vsi = pf->vsi[0];
3004 status = ice_vsi_reinit_setup(vsi);
3005 if (status < 0)
3006 return -EIO;
3007 }
3008
3009 /* tmp_add_list contains a list of MAC addresses for which MAC
3010 * filters need to be programmed. Add the VSI's unicast MAC to
3011 * this list
3012 */
3013 status = ice_add_mac_to_list(vsi, &tmp_add_list,
3014 vsi->port_info->mac.perm_addr);
3015 if (status)
3016 goto error_exit;
3017
3018 /* VSI needs to receive broadcast traffic, so add the broadcast
3019 * MAC address to the list.
3020 */
3021 eth_broadcast_addr(broadcast);
3022 status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
3023 if (status)
3024 goto error_exit;
3025
3026 /* program MAC filters for entries in tmp_add_list */
3027 status = ice_add_mac(&pf->hw, &tmp_add_list);
3028 if (status) {
3029 dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
3030 status = -ENOMEM;
3031 goto error_exit;
3032 }
3033
3034 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3035 return status;
3036
3037error_exit:
3038 ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3039
3040 if (vsi) {
3041 ice_vsi_free_q_vectors(vsi);
3042 if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
3043 unregister_netdev(vsi->netdev);
3044 if (vsi->netdev) {
3045 free_netdev(vsi->netdev);
3046 vsi->netdev = NULL;
3047 }
3048
3049 ice_vsi_delete(vsi);
3050 ice_vsi_put_qs(vsi);
3051 pf->q_left_tx += vsi->alloc_txq;
3052 pf->q_left_rx += vsi->alloc_rxq;
3053 ice_vsi_clear(vsi);
3054 }
3055 return status;
3056}
3057
3058/**
3059 * ice_determine_q_usage - Calculate queue distribution
3060 * @pf: board private structure
3061 *
3062 * Return -ENOMEM if we don't get enough queues for all ports
3063 */
3064static void ice_determine_q_usage(struct ice_pf *pf)
3065{
3066 u16 q_left_tx, q_left_rx;
3067
3068 q_left_tx = pf->hw.func_caps.common_cap.num_txq;
3069 q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
3070
3071 pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
3072
3073 /* only 1 rx queue unless RSS is enabled */
3074 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3075 pf->num_lan_rx = 1;
3076 else
3077 pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
3078
3079 pf->q_left_tx = q_left_tx - pf->num_lan_tx;
3080 pf->q_left_rx = q_left_rx - pf->num_lan_rx;
3081}
3082
3083/**
3084 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3085 * @pf: board private structure to initialize
3086 */
3087static void ice_deinit_pf(struct ice_pf *pf)
3088{
3089 if (pf->serv_tmr.function)
3090 del_timer_sync(&pf->serv_tmr);
3091 if (pf->serv_task.func)
3092 cancel_work_sync(&pf->serv_task);
3093 mutex_destroy(&pf->sw_mutex);
3094 mutex_destroy(&pf->avail_q_mutex);
3095}
3096
3097/**
3098 * ice_init_pf - Initialize general software structures (struct ice_pf)
3099 * @pf: board private structure to initialize
3100 */
3101static void ice_init_pf(struct ice_pf *pf)
3102{
3103 bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
3104 set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3105
3106 mutex_init(&pf->sw_mutex);
3107 mutex_init(&pf->avail_q_mutex);
3108
3109 /* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
3110 mutex_lock(&pf->avail_q_mutex);
3111 bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
3112 bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
3113 mutex_unlock(&pf->avail_q_mutex);
3114
3115 if (pf->hw.func_caps.common_cap.rss_table_size)
3116 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3117
3118 /* setup service timer and periodic service task */
3119 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3120 pf->serv_tmr_period = HZ;
3121 INIT_WORK(&pf->serv_task, ice_service_task);
3122 clear_bit(__ICE_SERVICE_SCHED, pf->state);
3123}
3124
3125/**
3126 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3127 * @pf: board private structure
3128 *
3129 * compute the number of MSIX vectors required (v_budget) and request from
3130 * the OS. Return the number of vectors reserved or negative on failure
3131 */
3132static int ice_ena_msix_range(struct ice_pf *pf)
3133{
3134 int v_left, v_actual, v_budget = 0;
3135 int needed, err, i;
3136
3137 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3138
3139 /* reserve one vector for miscellaneous handler */
3140 needed = 1;
3141 v_budget += needed;
3142 v_left -= needed;
3143
3144 /* reserve vectors for LAN traffic */
3145 pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
3146 v_budget += pf->num_lan_msix;
3147
3148 pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
3149 sizeof(struct msix_entry), GFP_KERNEL);
3150
3151 if (!pf->msix_entries) {
3152 err = -ENOMEM;
3153 goto exit_err;
3154 }
3155
3156 for (i = 0; i < v_budget; i++)
3157 pf->msix_entries[i].entry = i;
3158
3159 /* actually reserve the vectors */
3160 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3161 ICE_MIN_MSIX, v_budget);
3162
3163 if (v_actual < 0) {
3164 dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
3165 err = v_actual;
3166 goto msix_err;
3167 }
3168
3169 if (v_actual < v_budget) {
3170 dev_warn(&pf->pdev->dev,
3171 "not enough vectors. requested = %d, obtained = %d\n",
3172 v_budget, v_actual);
3173 if (v_actual >= (pf->num_lan_msix + 1)) {
3174 pf->num_avail_msix = v_actual - (pf->num_lan_msix + 1);
3175 } else if (v_actual >= 2) {
3176 pf->num_lan_msix = 1;
3177 pf->num_avail_msix = v_actual - 2;
3178 } else {
3179 pci_disable_msix(pf->pdev);
3180 err = -ERANGE;
3181 goto msix_err;
3182 }
3183 }
3184
3185 return v_actual;
3186
3187msix_err:
3188 devm_kfree(&pf->pdev->dev, pf->msix_entries);
3189 goto exit_err;
3190
3191exit_err:
3192 pf->num_lan_msix = 0;
3193 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3194 return err;
3195}
3196
3197/**
3198 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3199 * @pf: board private structure
3200 */
3201static void ice_dis_msix(struct ice_pf *pf)
3202{
3203 pci_disable_msix(pf->pdev);
3204 devm_kfree(&pf->pdev->dev, pf->msix_entries);
3205 pf->msix_entries = NULL;
3206 clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3207}
3208
3209/**
3210 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3211 * @pf: board private structure to initialize
3212 */
3213static int ice_init_interrupt_scheme(struct ice_pf *pf)
3214{
3215 int vectors = 0;
3216 ssize_t size;
3217
3218 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3219 vectors = ice_ena_msix_range(pf);
3220 else
3221 return -ENODEV;
3222
3223 if (vectors < 0)
3224 return vectors;
3225
3226 /* set up vector assignment tracking */
3227 size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors);
3228
3229 pf->irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
3230 if (!pf->irq_tracker) {
3231 ice_dis_msix(pf);
3232 return -ENOMEM;
3233 }
3234
3235 pf->irq_tracker->num_entries = vectors;
3236
3237 return 0;
3238}
3239
3240/**
3241 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3242 * @pf: board private structure
3243 */
3244static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3245{
3246 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3247 ice_dis_msix(pf);
3248
3249 devm_kfree(&pf->pdev->dev, pf->irq_tracker);
3250 pf->irq_tracker = NULL;
3251}
3252
3253/**
3254 * ice_probe - Device initialization routine
3255 * @pdev: PCI device information struct
3256 * @ent: entry in ice_pci_tbl
3257 *
3258 * Returns 0 on success, negative on failure
3259 */
3260static int ice_probe(struct pci_dev *pdev,
3261 const struct pci_device_id __always_unused *ent)
3262{
3263 struct ice_pf *pf;
3264 struct ice_hw *hw;
3265 int err;
3266
3267 /* this driver uses devres, see Documentation/driver-model/devres.txt */
3268 err = pcim_enable_device(pdev);
3269 if (err)
3270 return err;
3271
3272 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3273 if (err) {
3274 dev_err(&pdev->dev, "I/O map error %d\n", err);
3275 return err;
3276 }
3277
3278 pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL);
3279 if (!pf)
3280 return -ENOMEM;
3281
3282 /* set up for high or low dma */
3283 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3284 if (err)
3285 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3286 if (err) {
3287 dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
3288 return err;
3289 }
3290
3291 pci_enable_pcie_error_reporting(pdev);
3292 pci_set_master(pdev);
3293
3294 pf->pdev = pdev;
3295 pci_set_drvdata(pdev, pf);
3296 set_bit(__ICE_DOWN, pf->state);
3297
3298 hw = &pf->hw;
3299 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
3300 hw->back = pf;
3301 hw->vendor_id = pdev->vendor;
3302 hw->device_id = pdev->device;
3303 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3304 hw->subsystem_vendor_id = pdev->subsystem_vendor;
3305 hw->subsystem_device_id = pdev->subsystem_device;
3306 hw->bus.device = PCI_SLOT(pdev->devfn);
3307 hw->bus.func = PCI_FUNC(pdev->devfn);
3308 ice_set_ctrlq_len(hw);
3309
3310 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3311
3312#ifndef CONFIG_DYNAMIC_DEBUG
3313 if (debug < -1)
3314 hw->debug_mask = debug;
3315#endif
3316
3317 err = ice_init_hw(hw);
3318 if (err) {
3319 dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err);
3320 err = -EIO;
3321 goto err_exit_unroll;
3322 }
3323
3324 dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n",
3325 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
3326 hw->api_maj_ver, hw->api_min_ver);
3327
3328 ice_init_pf(pf);
3329
3330 ice_determine_q_usage(pf);
3331
3332 pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC,
3333 hw->func_caps.guaranteed_num_vsi);
3334 if (!pf->num_alloc_vsi) {
3335 err = -EIO;
3336 goto err_init_pf_unroll;
3337 }
3338
3339 pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi,
3340 sizeof(struct ice_vsi *), GFP_KERNEL);
3341 if (!pf->vsi) {
3342 err = -ENOMEM;
3343 goto err_init_pf_unroll;
3344 }
3345
3346 err = ice_init_interrupt_scheme(pf);
3347 if (err) {
3348 dev_err(&pdev->dev,
3349 "ice_init_interrupt_scheme failed: %d\n", err);
3350 err = -EIO;
3351 goto err_init_interrupt_unroll;
3352 }
3353
3354 /* In case of MSIX we are going to setup the misc vector right here
3355 * to handle admin queue events etc. In case of legacy and MSI
3356 * the misc functionality and queue processing is combined in
3357 * the same vector and that gets setup at open.
3358 */
3359 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
3360 err = ice_req_irq_msix_misc(pf);
3361 if (err) {
3362 dev_err(&pdev->dev,
3363 "setup of misc vector failed: %d\n", err);
3364 goto err_init_interrupt_unroll;
3365 }
3366 }
3367
3368 /* create switch struct for the switch element created by FW on boot */
3369 pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw),
3370 GFP_KERNEL);
3371 if (!pf->first_sw) {
3372 err = -ENOMEM;
3373 goto err_msix_misc_unroll;
3374 }
3375
3376 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
3377 pf->first_sw->pf = pf;
3378
3379 /* record the sw_id available for later use */
3380 pf->first_sw->sw_id = hw->port_info->sw_id;
3381
3382 err = ice_setup_pf_sw(pf);
3383 if (err) {
3384 dev_err(&pdev->dev,
3385 "probe failed due to setup pf switch:%d\n", err);
3386 goto err_alloc_sw_unroll;
3387 }
3388
3389 /* Driver is mostly up */
3390 clear_bit(__ICE_DOWN, pf->state);
3391
3392 /* since everything is good, start the service timer */
3393 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3394
3395 err = ice_init_link_events(pf->hw.port_info);
3396 if (err) {
3397 dev_err(&pdev->dev, "ice_init_link_events failed: %d\n", err);
3398 goto err_alloc_sw_unroll;
3399 }
3400
3401 return 0;
3402
3403err_alloc_sw_unroll:
3404 set_bit(__ICE_DOWN, pf->state);
3405 devm_kfree(&pf->pdev->dev, pf->first_sw);
3406err_msix_misc_unroll:
3407 ice_free_irq_msix_misc(pf);
3408err_init_interrupt_unroll:
3409 ice_clear_interrupt_scheme(pf);
3410 devm_kfree(&pdev->dev, pf->vsi);
3411err_init_pf_unroll:
3412 ice_deinit_pf(pf);
3413 ice_deinit_hw(hw);
3414err_exit_unroll:
3415 pci_disable_pcie_error_reporting(pdev);
3416 return err;
3417}
3418
3419/**
3420 * ice_remove - Device removal routine
3421 * @pdev: PCI device information struct
3422 */
3423static void ice_remove(struct pci_dev *pdev)
3424{
3425 struct ice_pf *pf = pci_get_drvdata(pdev);
3426 int i = 0;
3427 int err;
3428
3429 if (!pf)
3430 return;
3431
3432 set_bit(__ICE_DOWN, pf->state);
3433
3434 for (i = 0; i < pf->num_alloc_vsi; i++) {
3435 if (!pf->vsi[i])
3436 continue;
3437
3438 err = ice_vsi_release(pf->vsi[i]);
3439 if (err)
3440 dev_dbg(&pf->pdev->dev, "Failed to release VSI index %d (err %d)\n",
3441 i, err);
3442 }
3443
3444 ice_free_irq_msix_misc(pf);
3445 ice_clear_interrupt_scheme(pf);
3446 ice_deinit_pf(pf);
3447 ice_deinit_hw(&pf->hw);
3448 pci_disable_pcie_error_reporting(pdev);
3449}
3450
3451/* ice_pci_tbl - PCI Device ID Table
3452 *
3453 * Wildcard entries (PCI_ANY_ID) should come last
3454 * Last entry must be all 0s
3455 *
3456 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3457 * Class, Class Mask, private data (not used) }
3458 */
3459static const struct pci_device_id ice_pci_tbl[] = {
3460 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_BACKPLANE), 0 },
3461 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_QSFP), 0 },
3462 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SFP), 0 },
3463 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_10G_BASE_T), 0 },
3464 { PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SGMII), 0 },
3465 /* required last entry */
3466 { 0, }
3467};
3468MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3469
3470static struct pci_driver ice_driver = {
3471 .name = KBUILD_MODNAME,
3472 .id_table = ice_pci_tbl,
3473 .probe = ice_probe,
3474 .remove = ice_remove,
3475};
3476
3477/**
3478 * ice_module_init - Driver registration routine
3479 *
3480 * ice_module_init is the first routine called when the driver is
3481 * loaded. All it does is register with the PCI subsystem.
3482 */
3483static int __init ice_module_init(void)
3484{
3485 int status;
3486
3487 pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3488 pr_info("%s\n", ice_copyright);
3489
3490 ice_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, KBUILD_MODNAME);
3491 if (!ice_wq) {
3492 pr_err("Failed to create workqueue\n");
3493 return -ENOMEM;
3494 }
3495
3496 status = pci_register_driver(&ice_driver);
3497 if (status) {
3498 pr_err("failed to register pci driver, err %d\n", status);
3499 destroy_workqueue(ice_wq);
3500 }
3501
3502 return status;
3503}
3504module_init(ice_module_init);
3505
3506/**
3507 * ice_module_exit - Driver exit cleanup routine
3508 *
3509 * ice_module_exit is called just before the driver is removed
3510 * from memory.
3511 */
3512static void __exit ice_module_exit(void)
3513{
3514 pci_unregister_driver(&ice_driver);
3515 destroy_workqueue(ice_wq);
3516 pr_info("module unloaded\n");
3517}
3518module_exit(ice_module_exit);
3519
3520/**
3521 * ice_set_mac_address - NDO callback to set mac address
3522 * @netdev: network interface device structure
3523 * @pi: pointer to an address structure
3524 *
3525 * Returns 0 on success, negative on failure
3526 */
3527static int ice_set_mac_address(struct net_device *netdev, void *pi)
3528{
3529 struct ice_netdev_priv *np = netdev_priv(netdev);
3530 struct ice_vsi *vsi = np->vsi;
3531 struct ice_pf *pf = vsi->back;
3532 struct ice_hw *hw = &pf->hw;
3533 struct sockaddr *addr = pi;
3534 enum ice_status status;
3535 LIST_HEAD(a_mac_list);
3536 LIST_HEAD(r_mac_list);
3537 u8 flags = 0;
3538 int err;
3539 u8 *mac;
3540
3541 mac = (u8 *)addr->sa_data;
3542
3543 if (!is_valid_ether_addr(mac))
3544 return -EADDRNOTAVAIL;
3545
3546 if (ether_addr_equal(netdev->dev_addr, mac)) {
3547 netdev_warn(netdev, "already using mac %pM\n", mac);
3548 return 0;
3549 }
3550
3551 if (test_bit(__ICE_DOWN, pf->state) ||
3552 ice_is_reset_recovery_pending(pf->state)) {
3553 netdev_err(netdev, "can't set mac %pM. device not ready\n",
3554 mac);
3555 return -EBUSY;
3556 }
3557
3558 /* When we change the mac address we also have to change the mac address
3559 * based filter rules that were created previously for the old mac
3560 * address. So first, we remove the old filter rule using ice_remove_mac
3561 * and then create a new filter rule using ice_add_mac. Note that for
3562 * both these operations, we first need to form a "list" of mac
3563 * addresses (even though in this case, we have only 1 mac address to be
3564 * added/removed) and this done using ice_add_mac_to_list. Depending on
3565 * the ensuing operation this "list" of mac addresses is either to be
3566 * added or removed from the filter.
3567 */
3568 err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
3569 if (err) {
3570 err = -EADDRNOTAVAIL;
3571 goto free_lists;
3572 }
3573
3574 status = ice_remove_mac(hw, &r_mac_list);
3575 if (status) {
3576 err = -EADDRNOTAVAIL;
3577 goto free_lists;
3578 }
3579
3580 err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
3581 if (err) {
3582 err = -EADDRNOTAVAIL;
3583 goto free_lists;
3584 }
3585
3586 status = ice_add_mac(hw, &a_mac_list);
3587 if (status) {
3588 err = -EADDRNOTAVAIL;
3589 goto free_lists;
3590 }
3591
3592free_lists:
3593 /* free list entries */
3594 ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
3595 ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
3596
3597 if (err) {
3598 netdev_err(netdev, "can't set mac %pM. filter update failed\n",
3599 mac);
3600 return err;
3601 }
3602
3603 /* change the netdev's mac address */
3604 memcpy(netdev->dev_addr, mac, netdev->addr_len);
3605 netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
3606 netdev->dev_addr);
3607
3608 /* write new mac address to the firmware */
3609 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3610 status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3611 if (status) {
3612 netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
3613 mac);
3614 }
3615 return 0;
3616}
3617
3618/**
3619 * ice_set_rx_mode - NDO callback to set the netdev filters
3620 * @netdev: network interface device structure
3621 */
3622static void ice_set_rx_mode(struct net_device *netdev)
3623{
3624 struct ice_netdev_priv *np = netdev_priv(netdev);
3625 struct ice_vsi *vsi = np->vsi;
3626
3627 if (!vsi)
3628 return;
3629
3630 /* Set the flags to synchronize filters
3631 * ndo_set_rx_mode may be triggered even without a change in netdev
3632 * flags
3633 */
3634 set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3635 set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3636 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3637
3638 /* schedule our worker thread which will take care of
3639 * applying the new filter changes
3640 */
3641 ice_service_task_schedule(vsi->back);
3642}
3643
3644/**
3645 * ice_fdb_add - add an entry to the hardware database
3646 * @ndm: the input from the stack
3647 * @tb: pointer to array of nladdr (unused)
3648 * @dev: the net device pointer
3649 * @addr: the MAC address entry being added
3650 * @vid: VLAN id
3651 * @flags: instructions from stack about fdb operation
3652 */
3653static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3654 struct net_device *dev, const unsigned char *addr,
3655 u16 vid, u16 flags)
3656{
3657 int err;
3658
3659 if (vid) {
3660 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3661 return -EINVAL;
3662 }
3663 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3664 netdev_err(dev, "FDB only supports static addresses\n");
3665 return -EINVAL;
3666 }
3667
3668 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3669 err = dev_uc_add_excl(dev, addr);
3670 else if (is_multicast_ether_addr(addr))
3671 err = dev_mc_add_excl(dev, addr);
3672 else
3673 err = -EINVAL;
3674
3675 /* Only return duplicate errors if NLM_F_EXCL is set */
3676 if (err == -EEXIST && !(flags & NLM_F_EXCL))
3677 err = 0;
3678
3679 return err;
3680}
3681
3682/**
3683 * ice_fdb_del - delete an entry from the hardware database
3684 * @ndm: the input from the stack
3685 * @tb: pointer to array of nladdr (unused)
3686 * @dev: the net device pointer
3687 * @addr: the MAC address entry being added
3688 * @vid: VLAN id
3689 */
3690static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3691 struct net_device *dev, const unsigned char *addr,
3692 __always_unused u16 vid)
3693{
3694 int err;
3695
3696 if (ndm->ndm_state & NUD_PERMANENT) {
3697 netdev_err(dev, "FDB only supports static addresses\n");
3698 return -EINVAL;
3699 }
3700
3701 if (is_unicast_ether_addr(addr))
3702 err = dev_uc_del(dev, addr);
3703 else if (is_multicast_ether_addr(addr))
3704 err = dev_mc_del(dev, addr);
3705 else
3706 err = -EINVAL;
3707
3708 return err;
3709}
3710
3711/**
3712 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
3713 * @vsi: the vsi being changed
3714 */
3715static int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
3716{
3717 struct device *dev = &vsi->back->pdev->dev;
3718 struct ice_hw *hw = &vsi->back->hw;
3719 struct ice_vsi_ctx ctxt = { 0 };
3720 enum ice_status status;
3721
3722 /* Here we are configuring the VSI to let the driver add VLAN tags by
3723 * setting port_vlan_flags to ICE_AQ_VSI_PVLAN_MODE_ALL. The actual VLAN
3724 * tag insertion happens in the Tx hot path, in ice_tx_map.
3725 */
3726 ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_MODE_ALL;
3727
3728 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3729 ctxt.vsi_num = vsi->vsi_num;
3730
3731 status = ice_aq_update_vsi(hw, &ctxt, NULL);
3732 if (status) {
3733 dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
3734 status, hw->adminq.sq_last_status);
3735 return -EIO;
3736 }
3737
3738 vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3739 return 0;
3740}
3741
3742/**
3743 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
3744 * @vsi: the vsi being changed
3745 * @ena: boolean value indicating if this is a enable or disable request
3746 */
3747static int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
3748{
3749 struct device *dev = &vsi->back->pdev->dev;
3750 struct ice_hw *hw = &vsi->back->hw;
3751 struct ice_vsi_ctx ctxt = { 0 };
3752 enum ice_status status;
3753
3754 /* Here we are configuring what the VSI should do with the VLAN tag in
3755 * the Rx packet. We can either leave the tag in the packet or put it in
3756 * the Rx descriptor.
3757 */
3758 if (ena) {
3759 /* Strip VLAN tag from Rx packet and put it in the desc */
3760 ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH;
3761 } else {
3762 /* Disable stripping. Leave tag in packet */
3763 ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_NOTHING;
3764 }
3765
3766 ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3767 ctxt.vsi_num = vsi->vsi_num;
3768
3769 status = ice_aq_update_vsi(hw, &ctxt, NULL);
3770 if (status) {
3771 dev_err(dev, "update VSI for VALN strip failed, ena = %d err %d aq_err %d\n",
3772 ena, status, hw->adminq.sq_last_status);
3773 return -EIO;
3774 }
3775
3776 vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3777 return 0;
3778}
3779
3780/**
3781 * ice_set_features - set the netdev feature flags
3782 * @netdev: ptr to the netdev being adjusted
3783 * @features: the feature set that the stack is suggesting
3784 */
3785static int ice_set_features(struct net_device *netdev,
3786 netdev_features_t features)
3787{
3788 struct ice_netdev_priv *np = netdev_priv(netdev);
3789 struct ice_vsi *vsi = np->vsi;
3790 int ret = 0;
3791
3792 if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3793 !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3794 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3795 else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3796 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3797 ret = ice_vsi_manage_vlan_stripping(vsi, false);
3798 else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3799 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3800 ret = ice_vsi_manage_vlan_insertion(vsi);
3801 else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3802 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3803 ret = ice_vsi_manage_vlan_insertion(vsi);
3804
3805 return ret;
3806}
3807
3808/**
3809 * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI
3810 * @vsi: VSI to setup vlan properties for
3811 */
3812static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3813{
3814 int ret = 0;
3815
3816 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3817 ret = ice_vsi_manage_vlan_stripping(vsi, true);
3818 if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3819 ret = ice_vsi_manage_vlan_insertion(vsi);
3820
3821 return ret;
3822}
3823
3824/**
3825 * ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up
3826 * @vsi: the VSI being brought back up
3827 */
3828static int ice_restore_vlan(struct ice_vsi *vsi)
3829{
3830 int err;
3831 u16 vid;
3832
3833 if (!vsi->netdev)
3834 return -EINVAL;
3835
3836 err = ice_vsi_vlan_setup(vsi);
3837 if (err)
3838 return err;
3839
3840 for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) {
3841 err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid);
3842 if (err)
3843 break;
3844 }
3845
3846 return err;
3847}
3848
3849/**
3850 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
3851 * @ring: The Tx ring to configure
3852 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
3853 * @pf_q: queue index in the PF space
3854 *
3855 * Configure the Tx descriptor ring in TLAN context.
3856 */
3857static void
3858ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
3859{
3860 struct ice_vsi *vsi = ring->vsi;
3861 struct ice_hw *hw = &vsi->back->hw;
3862
3863 tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
3864
3865 tlan_ctx->port_num = vsi->port_info->lport;
3866
3867 /* Transmit Queue Length */
3868 tlan_ctx->qlen = ring->count;
3869
3870 /* PF number */
3871 tlan_ctx->pf_num = hw->pf_id;
3872
3873 /* queue belongs to a specific VSI type
3874 * VF / VM index should be programmed per vmvf_type setting:
3875 * for vmvf_type = VF, it is VF number between 0-256
3876 * for vmvf_type = VM, it is VM number between 0-767
3877 * for PF or EMP this field should be set to zero
3878 */
3879 switch (vsi->type) {
3880 case ICE_VSI_PF:
3881 tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
3882 break;
3883 default:
3884 return;
3885 }
3886
3887 /* make sure the context is associated with the right VSI */
3888 tlan_ctx->src_vsi = vsi->vsi_num;
3889
3890 tlan_ctx->tso_ena = ICE_TX_LEGACY;
3891 tlan_ctx->tso_qnum = pf_q;
3892
3893 /* Legacy or Advanced Host Interface:
3894 * 0: Advanced Host Interface
3895 * 1: Legacy Host Interface
3896 */
3897 tlan_ctx->legacy_int = ICE_TX_LEGACY;
3898}
3899
3900/**
3901 * ice_vsi_cfg_txqs - Configure the VSI for Tx
3902 * @vsi: the VSI being configured
3903 *
3904 * Return 0 on success and a negative value on error
3905 * Configure the Tx VSI for operation.
3906 */
3907static int ice_vsi_cfg_txqs(struct ice_vsi *vsi)
3908{
3909 struct ice_aqc_add_tx_qgrp *qg_buf;
3910 struct ice_aqc_add_txqs_perq *txq;
3911 struct ice_pf *pf = vsi->back;
3912 enum ice_status status;
3913 u16 buf_len, i, pf_q;
3914 int err = 0, tc = 0;
3915 u8 num_q_grps;
3916
3917 buf_len = sizeof(struct ice_aqc_add_tx_qgrp);
3918 qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
3919 if (!qg_buf)
3920 return -ENOMEM;
3921
3922 if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) {
3923 err = -EINVAL;
3924 goto err_cfg_txqs;
3925 }
3926 qg_buf->num_txqs = 1;
3927 num_q_grps = 1;
3928
3929 /* set up and configure the tx queues */
3930 ice_for_each_txq(vsi, i) {
3931 struct ice_tlan_ctx tlan_ctx = { 0 };
3932
3933 pf_q = vsi->txq_map[i];
3934 ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q);
3935 /* copy context contents into the qg_buf */
3936 qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
3937 ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
3938 ice_tlan_ctx_info);
3939
3940 /* init queue specific tail reg. It is referred as transmit
3941 * comm scheduler queue doorbell.
3942 */
3943 vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
3944 status = ice_ena_vsi_txq(vsi->port_info, vsi->vsi_num, tc,
3945 num_q_grps, qg_buf, buf_len, NULL);
3946 if (status) {
3947 dev_err(&vsi->back->pdev->dev,
3948 "Failed to set LAN Tx queue context, error: %d\n",
3949 status);
3950 err = -ENODEV;
3951 goto err_cfg_txqs;
3952 }
3953
3954 /* Add Tx Queue TEID into the VSI tx ring from the response
3955 * This will complete configuring and enabling the queue.
3956 */
3957 txq = &qg_buf->txqs[0];
3958 if (pf_q == le16_to_cpu(txq->txq_id))
3959 vsi->tx_rings[i]->txq_teid =
3960 le32_to_cpu(txq->q_teid);
3961 }
3962err_cfg_txqs:
3963 devm_kfree(&pf->pdev->dev, qg_buf);
3964 return err;
3965}
3966
3967/**
3968 * ice_setup_rx_ctx - Configure a receive ring context
3969 * @ring: The Rx ring to configure
3970 *
3971 * Configure the Rx descriptor ring in RLAN context.
3972 */
3973static int ice_setup_rx_ctx(struct ice_ring *ring)
3974{
3975 struct ice_vsi *vsi = ring->vsi;
3976 struct ice_hw *hw = &vsi->back->hw;
3977 u32 rxdid = ICE_RXDID_FLEX_NIC;
3978 struct ice_rlan_ctx rlan_ctx;
3979 u32 regval;
3980 u16 pf_q;
3981 int err;
3982
3983 /* what is RX queue number in global space of 2K rx queues */
3984 pf_q = vsi->rxq_map[ring->q_index];
3985
3986 /* clear the context structure first */
3987 memset(&rlan_ctx, 0, sizeof(rlan_ctx));
3988
3989 rlan_ctx.base = ring->dma >> 7;
3990
3991 rlan_ctx.qlen = ring->count;
3992
3993 /* Receive Packet Data Buffer Size.
3994 * The Packet Data Buffer Size is defined in 128 byte units.
3995 */
3996 rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
3997
3998 /* use 32 byte descriptors */
3999 rlan_ctx.dsize = 1;
4000
4001 /* Strip the Ethernet CRC bytes before the packet is posted to host
4002 * memory.
4003 */
4004 rlan_ctx.crcstrip = 1;
4005
4006 /* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
4007 rlan_ctx.l2tsel = 1;
4008
4009 rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
4010 rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
4011 rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
4012
4013 /* This controls whether VLAN is stripped from inner headers
4014 * The VLAN in the inner L2 header is stripped to the receive
4015 * descriptor if enabled by this flag.
4016 */
4017 rlan_ctx.showiv = 0;
4018
4019 /* Max packet size for this queue - must not be set to a larger value
4020 * than 5 x DBUF
4021 */
4022 rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
4023 ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
4024
4025 /* Rx queue threshold in units of 64 */
4026 rlan_ctx.lrxqthresh = 1;
4027
4028 /* Enable Flexible Descriptors in the queue context which
4029 * allows this driver to select a specific receive descriptor format
4030 */
4031 regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
4032 regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
4033 QRXFLXP_CNTXT_RXDID_IDX_M;
4034
4035 /* increasing context priority to pick up profile id;
4036 * default is 0x01; setting to 0x03 to ensure profile
4037 * is programming if prev context is of same priority
4038 */
4039 regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
4040 QRXFLXP_CNTXT_RXDID_PRIO_M;
4041
4042 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
4043
4044 /* Absolute queue number out of 2K needs to be passed */
4045 err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
4046 if (err) {
4047 dev_err(&vsi->back->pdev->dev,
4048 "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
4049 pf_q, err);
4050 return -EIO;
4051 }
4052
4053 /* init queue specific tail register */
4054 ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
4055 writel(0, ring->tail);
4056 ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
4057
4058 return 0;
4059}
4060
4061/**
4062 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
4063 * @vsi: the VSI being configured
4064 *
4065 * Return 0 on success and a negative value on error
4066 * Configure the Rx VSI for operation.
4067 */
4068static int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
4069{
4070 int err = 0;
4071 u16 i;
4072
4073 if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
4074 vsi->max_frame = vsi->netdev->mtu +
4075 ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4076 else
4077 vsi->max_frame = ICE_RXBUF_2048;
4078
4079 vsi->rx_buf_len = ICE_RXBUF_2048;
4080 /* set up individual rings */
4081 for (i = 0; i < vsi->num_rxq && !err; i++)
4082 err = ice_setup_rx_ctx(vsi->rx_rings[i]);
4083
4084 if (err) {
4085 dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
4086 return -EIO;
4087 }
4088 return err;
4089}
4090
4091/**
4092 * ice_vsi_cfg - Setup the VSI
4093 * @vsi: the VSI being configured
4094 *
4095 * Return 0 on success and negative value on error
4096 */
4097static int ice_vsi_cfg(struct ice_vsi *vsi)
4098{
4099 int err;
4100
4101 ice_set_rx_mode(vsi->netdev);
4102
4103 err = ice_restore_vlan(vsi);
4104 if (err)
4105 return err;
4106
4107 err = ice_vsi_cfg_txqs(vsi);
4108 if (!err)
4109 err = ice_vsi_cfg_rxqs(vsi);
4110
4111 return err;
4112}
4113
4114/**
4115 * ice_vsi_stop_tx_rings - Disable Tx rings
4116 * @vsi: the VSI being configured
4117 */
4118static int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
4119{
4120 struct ice_pf *pf = vsi->back;
4121 struct ice_hw *hw = &pf->hw;
4122 enum ice_status status;
4123 u32 *q_teids, val;
4124 u16 *q_ids, i;
4125 int err = 0;
4126
4127 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
4128 return -EINVAL;
4129
4130 q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
4131 GFP_KERNEL);
4132 if (!q_teids)
4133 return -ENOMEM;
4134
4135 q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
4136 GFP_KERNEL);
4137 if (!q_ids) {
4138 err = -ENOMEM;
4139 goto err_alloc_q_ids;
4140 }
4141
4142 /* set up the tx queue list to be disabled */
4143 ice_for_each_txq(vsi, i) {
4144 u16 v_idx;
4145
4146 if (!vsi->tx_rings || !vsi->tx_rings[i]) {
4147 err = -EINVAL;
4148 goto err_out;
4149 }
4150
4151 q_ids[i] = vsi->txq_map[i];
4152 q_teids[i] = vsi->tx_rings[i]->txq_teid;
4153
4154 /* clear cause_ena bit for disabled queues */
4155 val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
4156 val &= ~QINT_TQCTL_CAUSE_ENA_M;
4157 wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
4158
4159 /* software is expected to wait for 100 ns */
4160 ndelay(100);
4161
4162 /* trigger a software interrupt for the vector associated to
4163 * the queue to schedule napi handler
4164 */
4165 v_idx = vsi->tx_rings[i]->q_vector->v_idx;
4166 wr32(hw, GLINT_DYN_CTL(vsi->base_vector + v_idx),
4167 GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
4168 }
4169 status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
4170 NULL);
4171 if (status) {
4172 dev_err(&pf->pdev->dev,
4173 "Failed to disable LAN Tx queues, error: %d\n",
4174 status);
4175 err = -ENODEV;
4176 }
4177
4178err_out:
4179 devm_kfree(&pf->pdev->dev, q_ids);
4180
4181err_alloc_q_ids:
4182 devm_kfree(&pf->pdev->dev, q_teids);
4183
4184 return err;
4185}
4186
4187/**
4188 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4189 * @pf: the PF being configured
4190 * @pf_q: the PF queue
4191 * @ena: enable or disable state of the queue
4192 *
4193 * This routine will wait for the given Rx queue of the PF to reach the
4194 * enabled or disabled state.
4195 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4196 * multiple retries; else will return 0 in case of success.
4197 */
4198static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
4199{
4200 int i;
4201
4202 for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
4203 u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q));
4204
4205 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4206 break;
4207
4208 usleep_range(10, 20);
4209 }
4210 if (i >= ICE_Q_WAIT_RETRY_LIMIT)
4211 return -ETIMEDOUT;
4212
4213 return 0;
4214}
4215
4216/**
4217 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's rx rings
4218 * @vsi: the VSI being configured
4219 * @ena: start or stop the rx rings
4220 */
4221static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
4222{
4223 struct ice_pf *pf = vsi->back;
4224 struct ice_hw *hw = &pf->hw;
4225 int i, j, ret = 0;
4226
4227 for (i = 0; i < vsi->num_rxq; i++) {
4228 int pf_q = vsi->rxq_map[i];
4229 u32 rx_reg;
4230
4231 for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
4232 rx_reg = rd32(hw, QRX_CTRL(pf_q));
4233 if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
4234 ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
4235 break;
4236 usleep_range(1000, 2000);
4237 }
4238
4239 /* Skip if the queue is already in the requested state */
4240 if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4241 continue;
4242
4243 /* turn on/off the queue */
4244 if (ena)
4245 rx_reg |= QRX_CTRL_QENA_REQ_M;
4246 else
4247 rx_reg &= ~QRX_CTRL_QENA_REQ_M;
4248 wr32(hw, QRX_CTRL(pf_q), rx_reg);
4249
4250 /* wait for the change to finish */
4251 ret = ice_pf_rxq_wait(pf, pf_q, ena);
4252 if (ret) {
4253 dev_err(&pf->pdev->dev,
4254 "VSI idx %d Rx ring %d %sable timeout\n",
4255 vsi->idx, pf_q, (ena ? "en" : "dis"));
4256 break;
4257 }
4258 }
4259
4260 return ret;
4261}
4262
4263/**
4264 * ice_vsi_start_rx_rings - start VSI's rx rings
4265 * @vsi: the VSI whose rings are to be started
4266 *
4267 * Returns 0 on success and a negative value on error
4268 */
4269static int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
4270{
4271 return ice_vsi_ctrl_rx_rings(vsi, true);
4272}
4273
4274/**
4275 * ice_vsi_stop_rx_rings - stop VSI's rx rings
4276 * @vsi: the VSI
4277 *
4278 * Returns 0 on success and a negative value on error
4279 */
4280static int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
4281{
4282 return ice_vsi_ctrl_rx_rings(vsi, false);
4283}
4284
4285/**
4286 * ice_vsi_stop_tx_rx_rings - stop VSI's tx and rx rings
4287 * @vsi: the VSI
4288 * Returns 0 on success and a negative value on error
4289 */
4290static int ice_vsi_stop_tx_rx_rings(struct ice_vsi *vsi)
4291{
4292 int err_tx, err_rx;
4293
4294 err_tx = ice_vsi_stop_tx_rings(vsi);
4295 if (err_tx)
4296 dev_dbg(&vsi->back->pdev->dev, "Failed to disable Tx rings\n");
4297
4298 err_rx = ice_vsi_stop_rx_rings(vsi);
4299 if (err_rx)
4300 dev_dbg(&vsi->back->pdev->dev, "Failed to disable Rx rings\n");
4301
4302 if (err_tx || err_rx)
4303 return -EIO;
4304
4305 return 0;
4306}
4307
4308/**
4309 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
4310 * @vsi: the VSI being configured
4311 */
4312static void ice_napi_enable_all(struct ice_vsi *vsi)
4313{
4314 int q_idx;
4315
4316 if (!vsi->netdev)
4317 return;
4318
4319 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4320 napi_enable(&vsi->q_vectors[q_idx]->napi);
4321}
4322
4323/**
4324 * ice_up_complete - Finish the last steps of bringing up a connection
4325 * @vsi: The VSI being configured
4326 *
4327 * Return 0 on success and negative value on error
4328 */
4329static int ice_up_complete(struct ice_vsi *vsi)
4330{
4331 struct ice_pf *pf = vsi->back;
4332 int err;
4333
4334 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4335 ice_vsi_cfg_msix(vsi);
4336 else
4337 return -ENOTSUPP;
4338
4339 /* Enable only Rx rings, Tx rings were enabled by the FW when the
4340 * Tx queue group list was configured and the context bits were
4341 * programmed using ice_vsi_cfg_txqs
4342 */
4343 err = ice_vsi_start_rx_rings(vsi);
4344 if (err)
4345 return err;
4346
4347 clear_bit(__ICE_DOWN, vsi->state);
4348 ice_napi_enable_all(vsi);
4349 ice_vsi_ena_irq(vsi);
4350
4351 if (vsi->port_info &&
4352 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
4353 vsi->netdev) {
4354 ice_print_link_msg(vsi, true);
4355 netif_tx_start_all_queues(vsi->netdev);
4356 netif_carrier_on(vsi->netdev);
4357 }
4358
4359 ice_service_task_schedule(pf);
4360
4361 return err;
4362}
4363
4364/**
4365 * ice_up - Bring the connection back up after being down
4366 * @vsi: VSI being configured
4367 */
4368int ice_up(struct ice_vsi *vsi)
4369{
4370 int err;
4371
4372 err = ice_vsi_cfg(vsi);
4373 if (!err)
4374 err = ice_up_complete(vsi);
4375
4376 return err;
4377}
4378
4379/**
4380 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4381 * @ring: Tx or Rx ring to read stats from
4382 * @pkts: packets stats counter
4383 * @bytes: bytes stats counter
4384 *
4385 * This function fetches stats from the ring considering the atomic operations
4386 * that needs to be performed to read u64 values in 32 bit machine.
4387 */
4388static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts,
4389 u64 *bytes)
4390{
4391 unsigned int start;
4392 *pkts = 0;
4393 *bytes = 0;
4394
4395 if (!ring)
4396 return;
4397 do {
4398 start = u64_stats_fetch_begin_irq(&ring->syncp);
4399 *pkts = ring->stats.pkts;
4400 *bytes = ring->stats.bytes;
4401 } while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4402}
4403
4404/**
4405 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4406 * @hw: ptr to the hardware info
4407 * @hireg: high 32 bit HW register to read from
4408 * @loreg: low 32 bit HW register to read from
4409 * @prev_stat_loaded: bool to specify if previous stats are loaded
4410 * @prev_stat: ptr to previous loaded stat value
4411 * @cur_stat: ptr to current stat value
4412 */
4413static void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
4414 bool prev_stat_loaded, u64 *prev_stat,
4415 u64 *cur_stat)
4416{
4417 u64 new_data;
4418
4419 new_data = rd32(hw, loreg);
4420 new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
4421
4422 /* device stats are not reset at PFR, they likely will not be zeroed
4423 * when the driver starts. So save the first values read and use them as
4424 * offsets to be subtracted from the raw values in order to report stats
4425 * that count from zero.
4426 */
4427 if (!prev_stat_loaded)
4428 *prev_stat = new_data;
4429 if (likely(new_data >= *prev_stat))
4430 *cur_stat = new_data - *prev_stat;
4431 else
4432 /* to manage the potential roll-over */
4433 *cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
4434 *cur_stat &= 0xFFFFFFFFFFULL;
4435}
4436
4437/**
4438 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4439 * @hw: ptr to the hardware info
4440 * @reg: HW register to read from
4441 * @prev_stat_loaded: bool to specify if previous stats are loaded
4442 * @prev_stat: ptr to previous loaded stat value
4443 * @cur_stat: ptr to current stat value
4444 */
4445static void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4446 u64 *prev_stat, u64 *cur_stat)
4447{
4448 u32 new_data;
4449
4450 new_data = rd32(hw, reg);
4451
4452 /* device stats are not reset at PFR, they likely will not be zeroed
4453 * when the driver starts. So save the first values read and use them as
4454 * offsets to be subtracted from the raw values in order to report stats
4455 * that count from zero.
4456 */
4457 if (!prev_stat_loaded)
4458 *prev_stat = new_data;
4459 if (likely(new_data >= *prev_stat))
4460 *cur_stat = new_data - *prev_stat;
4461 else
4462 /* to manage the potential roll-over */
4463 *cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
4464}
4465
4466/**
4467 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
4468 * @vsi: the VSI to be updated
4469 */
4470static void ice_update_eth_stats(struct ice_vsi *vsi)
4471{
4472 struct ice_eth_stats *prev_es, *cur_es;
4473 struct ice_hw *hw = &vsi->back->hw;
4474 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
4475
4476 prev_es = &vsi->eth_stats_prev;
4477 cur_es = &vsi->eth_stats;
4478
4479 ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
4480 vsi->stat_offsets_loaded, &prev_es->rx_bytes,
4481 &cur_es->rx_bytes);
4482
4483 ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
4484 vsi->stat_offsets_loaded, &prev_es->rx_unicast,
4485 &cur_es->rx_unicast);
4486
4487 ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
4488 vsi->stat_offsets_loaded, &prev_es->rx_multicast,
4489 &cur_es->rx_multicast);
4490
4491 ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
4492 vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
4493 &cur_es->rx_broadcast);
4494
4495 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
4496 &prev_es->rx_discards, &cur_es->rx_discards);
4497
4498 ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
4499 vsi->stat_offsets_loaded, &prev_es->tx_bytes,
4500 &cur_es->tx_bytes);
4501
4502 ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
4503 vsi->stat_offsets_loaded, &prev_es->tx_unicast,
4504 &cur_es->tx_unicast);
4505
4506 ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
4507 vsi->stat_offsets_loaded, &prev_es->tx_multicast,
4508 &cur_es->tx_multicast);
4509
4510 ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
4511 vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
4512 &cur_es->tx_broadcast);
4513
4514 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
4515 &prev_es->tx_errors, &cur_es->tx_errors);
4516
4517 vsi->stat_offsets_loaded = true;
4518}
4519
4520/**
4521 * ice_update_vsi_ring_stats - Update VSI stats counters
4522 * @vsi: the VSI to be updated
4523 */
4524static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4525{
4526 struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4527 struct ice_ring *ring;
4528 u64 pkts, bytes;
4529 int i;
4530
4531 /* reset netdev stats */
4532 vsi_stats->tx_packets = 0;
4533 vsi_stats->tx_bytes = 0;
4534 vsi_stats->rx_packets = 0;
4535 vsi_stats->rx_bytes = 0;
4536
4537 /* reset non-netdev (extended) stats */
4538 vsi->tx_restart = 0;
4539 vsi->tx_busy = 0;
4540 vsi->tx_linearize = 0;
4541 vsi->rx_buf_failed = 0;
4542 vsi->rx_page_failed = 0;
4543
4544 rcu_read_lock();
4545
4546 /* update Tx rings counters */
4547 ice_for_each_txq(vsi, i) {
4548 ring = READ_ONCE(vsi->tx_rings[i]);
4549 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4550 vsi_stats->tx_packets += pkts;
4551 vsi_stats->tx_bytes += bytes;
4552 vsi->tx_restart += ring->tx_stats.restart_q;
4553 vsi->tx_busy += ring->tx_stats.tx_busy;
4554 vsi->tx_linearize += ring->tx_stats.tx_linearize;
4555 }
4556
4557 /* update Rx rings counters */
4558 ice_for_each_rxq(vsi, i) {
4559 ring = READ_ONCE(vsi->rx_rings[i]);
4560 ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4561 vsi_stats->rx_packets += pkts;
4562 vsi_stats->rx_bytes += bytes;
4563 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4564 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
4565 }
4566
4567 rcu_read_unlock();
4568}
4569
4570/**
4571 * ice_update_vsi_stats - Update VSI stats counters
4572 * @vsi: the VSI to be updated
4573 */
4574static void ice_update_vsi_stats(struct ice_vsi *vsi)
4575{
4576 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4577 struct ice_eth_stats *cur_es = &vsi->eth_stats;
4578 struct ice_pf *pf = vsi->back;
4579
4580 if (test_bit(__ICE_DOWN, vsi->state) ||
4581 test_bit(__ICE_CFG_BUSY, pf->state))
4582 return;
4583
4584 /* get stats as recorded by Tx/Rx rings */
4585 ice_update_vsi_ring_stats(vsi);
4586
4587 /* get VSI stats as recorded by the hardware */
4588 ice_update_eth_stats(vsi);
4589
4590 cur_ns->tx_errors = cur_es->tx_errors;
4591 cur_ns->rx_dropped = cur_es->rx_discards;
4592 cur_ns->tx_dropped = cur_es->tx_discards;
4593 cur_ns->multicast = cur_es->rx_multicast;
4594
4595 /* update some more netdev stats if this is main VSI */
4596 if (vsi->type == ICE_VSI_PF) {
4597 cur_ns->rx_crc_errors = pf->stats.crc_errors;
4598 cur_ns->rx_errors = pf->stats.crc_errors +
4599 pf->stats.illegal_bytes;
4600 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
4601 }
4602}
4603
4604/**
4605 * ice_update_pf_stats - Update PF port stats counters
4606 * @pf: PF whose stats needs to be updated
4607 */
4608static void ice_update_pf_stats(struct ice_pf *pf)
4609{
4610 struct ice_hw_port_stats *prev_ps, *cur_ps;
4611 struct ice_hw *hw = &pf->hw;
4612 u8 pf_id;
4613
4614 prev_ps = &pf->stats_prev;
4615 cur_ps = &pf->stats;
4616 pf_id = hw->pf_id;
4617
4618 ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
4619 pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
4620 &cur_ps->eth.rx_bytes);
4621
4622 ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
4623 pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
4624 &cur_ps->eth.rx_unicast);
4625
4626 ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
4627 pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
4628 &cur_ps->eth.rx_multicast);
4629
4630 ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
4631 pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
4632 &cur_ps->eth.rx_broadcast);
4633
4634 ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
4635 pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
4636 &cur_ps->eth.tx_bytes);
4637
4638 ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
4639 pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
4640 &cur_ps->eth.tx_unicast);
4641
4642 ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
4643 pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
4644 &cur_ps->eth.tx_multicast);
4645
4646 ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
4647 pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
4648 &cur_ps->eth.tx_broadcast);
4649
4650 ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
4651 &prev_ps->tx_dropped_link_down,
4652 &cur_ps->tx_dropped_link_down);
4653
4654 ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
4655 pf->stat_prev_loaded, &prev_ps->rx_size_64,
4656 &cur_ps->rx_size_64);
4657
4658 ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
4659 pf->stat_prev_loaded, &prev_ps->rx_size_127,
4660 &cur_ps->rx_size_127);
4661
4662 ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
4663 pf->stat_prev_loaded, &prev_ps->rx_size_255,
4664 &cur_ps->rx_size_255);
4665
4666 ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
4667 pf->stat_prev_loaded, &prev_ps->rx_size_511,
4668 &cur_ps->rx_size_511);
4669
4670 ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
4671 GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
4672 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4673
4674 ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
4675 GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
4676 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4677
4678 ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
4679 GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
4680 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4681
4682 ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
4683 pf->stat_prev_loaded, &prev_ps->tx_size_64,
4684 &cur_ps->tx_size_64);
4685
4686 ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
4687 pf->stat_prev_loaded, &prev_ps->tx_size_127,
4688 &cur_ps->tx_size_127);
4689
4690 ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
4691 pf->stat_prev_loaded, &prev_ps->tx_size_255,
4692 &cur_ps->tx_size_255);
4693
4694 ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
4695 pf->stat_prev_loaded, &prev_ps->tx_size_511,
4696 &cur_ps->tx_size_511);
4697
4698 ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
4699 GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
4700 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4701
4702 ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
4703 GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
4704 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4705
4706 ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
4707 GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
4708 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4709
4710 ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
4711 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4712
4713 ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
4714 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4715
4716 ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
4717 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4718
4719 ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
4720 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4721
4722 ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
4723 &prev_ps->crc_errors, &cur_ps->crc_errors);
4724
4725 ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
4726 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4727
4728 ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
4729 &prev_ps->mac_local_faults,
4730 &cur_ps->mac_local_faults);
4731
4732 ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
4733 &prev_ps->mac_remote_faults,
4734 &cur_ps->mac_remote_faults);
4735
4736 ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
4737 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4738
4739 ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
4740 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4741
4742 ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
4743 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4744
4745 ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
4746 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4747
4748 ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
4749 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4750
4751 pf->stat_prev_loaded = true;
4752}
4753
4754/**
4755 * ice_get_stats64 - get statistics for network device structure
4756 * @netdev: network interface device structure
4757 * @stats: main device statistics structure
4758 */
4759static
4760void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4761{
4762 struct ice_netdev_priv *np = netdev_priv(netdev);
4763 struct rtnl_link_stats64 *vsi_stats;
4764 struct ice_vsi *vsi = np->vsi;
4765
4766 vsi_stats = &vsi->net_stats;
4767
4768 if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
4769 return;
4770 /* netdev packet/byte stats come from ring counter. These are obtained
4771 * by summing up ring counters (done by ice_update_vsi_ring_stats).
4772 */
4773 ice_update_vsi_ring_stats(vsi);
4774 stats->tx_packets = vsi_stats->tx_packets;
4775 stats->tx_bytes = vsi_stats->tx_bytes;
4776 stats->rx_packets = vsi_stats->rx_packets;
4777 stats->rx_bytes = vsi_stats->rx_bytes;
4778
4779 /* The rest of the stats can be read from the hardware but instead we
4780 * just return values that the watchdog task has already obtained from
4781 * the hardware.
4782 */
4783 stats->multicast = vsi_stats->multicast;
4784 stats->tx_errors = vsi_stats->tx_errors;
4785 stats->tx_dropped = vsi_stats->tx_dropped;
4786 stats->rx_errors = vsi_stats->rx_errors;
4787 stats->rx_dropped = vsi_stats->rx_dropped;
4788 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4789 stats->rx_length_errors = vsi_stats->rx_length_errors;
4790}
4791
4792#ifdef CONFIG_NET_POLL_CONTROLLER
4793/**
4794 * ice_netpoll - polling "interrupt" handler
4795 * @netdev: network interface device structure
4796 *
4797 * Used by netconsole to send skbs without having to re-enable interrupts.
4798 * This is not called in the normal interrupt path.
4799 */
4800static void ice_netpoll(struct net_device *netdev)
4801{
4802 struct ice_netdev_priv *np = netdev_priv(netdev);
4803 struct ice_vsi *vsi = np->vsi;
4804 struct ice_pf *pf = vsi->back;
4805 int i;
4806
4807 if (test_bit(__ICE_DOWN, vsi->state) ||
4808 !test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4809 return;
4810
4811 for (i = 0; i < vsi->num_q_vectors; i++)
4812 ice_msix_clean_rings(0, vsi->q_vectors[i]);
4813}
4814#endif /* CONFIG_NET_POLL_CONTROLLER */
4815
4816/**
4817 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4818 * @vsi: VSI having NAPI disabled
4819 */
4820static void ice_napi_disable_all(struct ice_vsi *vsi)
4821{
4822 int q_idx;
4823
4824 if (!vsi->netdev)
4825 return;
4826
4827 for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4828 napi_disable(&vsi->q_vectors[q_idx]->napi);
4829}
4830
4831/**
4832 * ice_down - Shutdown the connection
4833 * @vsi: The VSI being stopped
4834 */
4835int ice_down(struct ice_vsi *vsi)
4836{
4837 int i, err;
4838
4839 /* Caller of this function is expected to set the
4840 * vsi->state __ICE_DOWN bit
4841 */
4842 if (vsi->netdev) {
4843 netif_carrier_off(vsi->netdev);
4844 netif_tx_disable(vsi->netdev);
4845 }
4846
4847 ice_vsi_dis_irq(vsi);
4848 err = ice_vsi_stop_tx_rx_rings(vsi);
4849 ice_napi_disable_all(vsi);
4850
4851 ice_for_each_txq(vsi, i)
4852 ice_clean_tx_ring(vsi->tx_rings[i]);
4853
4854 ice_for_each_rxq(vsi, i)
4855 ice_clean_rx_ring(vsi->rx_rings[i]);
4856
4857 if (err)
4858 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
4859 vsi->vsi_num, vsi->vsw->sw_id);
4860 return err;
4861}
4862
4863/**
4864 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4865 * @vsi: VSI having resources allocated
4866 *
4867 * Return 0 on success, negative on failure
4868 */
4869static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4870{
4871 int i, err;
4872
4873 if (!vsi->num_txq) {
4874 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
4875 vsi->vsi_num);
4876 return -EINVAL;
4877 }
4878
4879 ice_for_each_txq(vsi, i) {
4880 err = ice_setup_tx_ring(vsi->tx_rings[i]);
4881 if (err)
4882 break;
4883 }
4884
4885 return err;
4886}
4887
4888/**
4889 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4890 * @vsi: VSI having resources allocated
4891 *
4892 * Return 0 on success, negative on failure
4893 */
4894static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4895{
4896 int i, err;
4897
4898 if (!vsi->num_rxq) {
4899 dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
4900 vsi->vsi_num);
4901 return -EINVAL;
4902 }
4903
4904 ice_for_each_rxq(vsi, i) {
4905 err = ice_setup_rx_ring(vsi->rx_rings[i]);
4906 if (err)
4907 break;
4908 }
4909
4910 return err;
4911}
4912
4913/**
4914 * ice_vsi_req_irq - Request IRQ from the OS
4915 * @vsi: The VSI IRQ is being requested for
4916 * @basename: name for the vector
4917 *
4918 * Return 0 on success and a negative value on error
4919 */
4920static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
4921{
4922 struct ice_pf *pf = vsi->back;
4923 int err = -EINVAL;
4924
4925 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4926 err = ice_vsi_req_irq_msix(vsi, basename);
4927
4928 return err;
4929}
4930
4931/**
4932 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
4933 * @vsi: the VSI having resources freed
4934 */
4935static void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
4936{
4937 int i;
4938
4939 if (!vsi->tx_rings)
4940 return;
4941
4942 ice_for_each_txq(vsi, i)
4943 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4944 ice_free_tx_ring(vsi->tx_rings[i]);
4945}
4946
4947/**
4948 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
4949 * @vsi: the VSI having resources freed
4950 */
4951static void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
4952{
4953 int i;
4954
4955 if (!vsi->rx_rings)
4956 return;
4957
4958 ice_for_each_rxq(vsi, i)
4959 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
4960 ice_free_rx_ring(vsi->rx_rings[i]);
4961}
4962
4963/**
4964 * ice_vsi_open - Called when a network interface is made active
4965 * @vsi: the VSI to open
4966 *
4967 * Initialization of the VSI
4968 *
4969 * Returns 0 on success, negative value on error
4970 */
4971static int ice_vsi_open(struct ice_vsi *vsi)
4972{
4973 char int_name[ICE_INT_NAME_STR_LEN];
4974 struct ice_pf *pf = vsi->back;
4975 int err;
4976
4977 /* allocate descriptors */
4978 err = ice_vsi_setup_tx_rings(vsi);
4979 if (err)
4980 goto err_setup_tx;
4981
4982 err = ice_vsi_setup_rx_rings(vsi);
4983 if (err)
4984 goto err_setup_rx;
4985
4986 err = ice_vsi_cfg(vsi);
4987 if (err)
4988 goto err_setup_rx;
4989
4990 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4991 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
4992 err = ice_vsi_req_irq(vsi, int_name);
4993 if (err)
4994 goto err_setup_rx;
4995
4996 /* Notify the stack of the actual queue counts. */
4997 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4998 if (err)
4999 goto err_set_qs;
5000
5001 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5002 if (err)
5003 goto err_set_qs;
5004
5005 err = ice_up_complete(vsi);
5006 if (err)
5007 goto err_up_complete;
5008
5009 return 0;
5010
5011err_up_complete:
5012 ice_down(vsi);
5013err_set_qs:
5014 ice_vsi_free_irq(vsi);
5015err_setup_rx:
5016 ice_vsi_free_rx_rings(vsi);
5017err_setup_tx:
5018 ice_vsi_free_tx_rings(vsi);
5019
5020 return err;
5021}
5022
5023/**
5024 * ice_vsi_close - Shut down a VSI
5025 * @vsi: the VSI being shut down
5026 */
5027static void ice_vsi_close(struct ice_vsi *vsi)
5028{
5029 if (!test_and_set_bit(__ICE_DOWN, vsi->state))
5030 ice_down(vsi);
5031
5032 ice_vsi_free_irq(vsi);
5033 ice_vsi_free_tx_rings(vsi);
5034 ice_vsi_free_rx_rings(vsi);
5035}
5036
5037/**
5038 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
5039 * @vsi: the VSI being removed
5040 */
5041static void ice_rss_clean(struct ice_vsi *vsi)
5042{
5043 struct ice_pf *pf;
5044
5045 pf = vsi->back;
5046
5047 if (vsi->rss_hkey_user)
5048 devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
5049 if (vsi->rss_lut_user)
5050 devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
5051}
5052
5053/**
5054 * ice_vsi_release - Delete a VSI and free its resources
5055 * @vsi: the VSI being removed
5056 *
5057 * Returns 0 on success or < 0 on error
5058 */
5059static int ice_vsi_release(struct ice_vsi *vsi)
5060{
5061 struct ice_pf *pf;
5062
5063 if (!vsi->back)
5064 return -ENODEV;
5065 pf = vsi->back;
5066
5067 if (vsi->netdev) {
5068 unregister_netdev(vsi->netdev);
5069 free_netdev(vsi->netdev);
5070 vsi->netdev = NULL;
5071 }
5072
5073 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
5074 ice_rss_clean(vsi);
5075
5076 /* Disable VSI and free resources */
5077 ice_vsi_dis_irq(vsi);
5078 ice_vsi_close(vsi);
5079
5080 /* reclaim interrupt vectors back to PF */
5081 ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
5082 pf->num_avail_msix += vsi->num_q_vectors;
5083
5084 ice_remove_vsi_fltr(&pf->hw, vsi->vsi_num);
5085 ice_vsi_delete(vsi);
5086 ice_vsi_free_q_vectors(vsi);
5087 ice_vsi_clear_rings(vsi);
5088
5089 ice_vsi_put_qs(vsi);
5090 pf->q_left_tx += vsi->alloc_txq;
5091 pf->q_left_rx += vsi->alloc_rxq;
5092
5093 ice_vsi_clear(vsi);
5094
5095 return 0;
5096}
5097
5098/**
5099 * ice_dis_vsi - pause a VSI
5100 * @vsi: the VSI being paused
5101 */
5102static void ice_dis_vsi(struct ice_vsi *vsi)
5103{
5104 if (test_bit(__ICE_DOWN, vsi->state))
5105 return;
5106
5107 set_bit(__ICE_NEEDS_RESTART, vsi->state);
5108
5109 if (vsi->netdev && netif_running(vsi->netdev) &&
5110 vsi->type == ICE_VSI_PF)
5111 vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
5112
5113 ice_vsi_close(vsi);
5114}
5115
5116/**
5117 * ice_ena_vsi - resume a VSI
5118 * @vsi: the VSI being resume
5119 */
5120static void ice_ena_vsi(struct ice_vsi *vsi)
5121{
5122 if (!test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state))
5123 return;
5124
5125 if (vsi->netdev && netif_running(vsi->netdev))
5126 vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
5127 else if (ice_vsi_open(vsi))
5128 /* this clears the DOWN bit */
5129 dev_dbg(&vsi->back->pdev->dev, "Failed open VSI 0x%04X on switch 0x%04X\n",
5130 vsi->vsi_num, vsi->vsw->sw_id);
5131}
5132
5133/**
5134 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
5135 * @pf: the PF
5136 */
5137static void ice_pf_dis_all_vsi(struct ice_pf *pf)
5138{
5139 int v;
5140
5141 ice_for_each_vsi(pf, v)
5142 if (pf->vsi[v])
5143 ice_dis_vsi(pf->vsi[v]);
5144}
5145
5146/**
5147 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
5148 * @pf: the PF
5149 */
5150static void ice_pf_ena_all_vsi(struct ice_pf *pf)
5151{
5152 int v;
5153
5154 ice_for_each_vsi(pf, v)
5155 if (pf->vsi[v])
5156 ice_ena_vsi(pf->vsi[v]);
5157}
5158
5159/**
5160 * ice_rebuild - rebuild after reset
5161 * @pf: pf to rebuild
5162 */
5163static void ice_rebuild(struct ice_pf *pf)
5164{
5165 struct device *dev = &pf->pdev->dev;
5166 struct ice_hw *hw = &pf->hw;
5167 enum ice_status ret;
5168 int err;
5169
5170 if (test_bit(__ICE_DOWN, pf->state))
5171 goto clear_recovery;
5172
5173 dev_dbg(dev, "rebuilding pf\n");
5174
5175 ret = ice_init_all_ctrlq(hw);
5176 if (ret) {
5177 dev_err(dev, "control queues init failed %d\n", ret);
5178 goto fail_reset;
5179 }
5180
5181 ret = ice_clear_pf_cfg(hw);
5182 if (ret) {
5183 dev_err(dev, "clear PF configuration failed %d\n", ret);
5184 goto fail_reset;
5185 }
5186
5187 ice_clear_pxe_mode(hw);
5188
5189 ret = ice_get_caps(hw);
5190 if (ret) {
5191 dev_err(dev, "ice_get_caps failed %d\n", ret);
5192 goto fail_reset;
5193 }
5194
5195 /* basic nic switch setup */
5196 err = ice_setup_pf_sw(pf);
5197 if (err) {
5198 dev_err(dev, "ice_setup_pf_sw failed\n");
5199 goto fail_reset;
5200 }
5201
5202 /* start misc vector */
5203 if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
5204 err = ice_req_irq_msix_misc(pf);
5205 if (err) {
5206 dev_err(dev, "misc vector setup failed: %d\n", err);
5207 goto fail_reset;
5208 }
5209 }
5210
5211 /* restart the VSIs that were rebuilt and running before the reset */
5212 ice_pf_ena_all_vsi(pf);
5213
5214 return;
5215
5216fail_reset:
5217 ice_shutdown_all_ctrlq(hw);
5218 set_bit(__ICE_RESET_FAILED, pf->state);
5219clear_recovery:
5220 set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
5221}
5222
5223/**
5224 * ice_change_mtu - NDO callback to change the MTU
5225 * @netdev: network interface device structure
5226 * @new_mtu: new value for maximum frame size
5227 *
5228 * Returns 0 on success, negative on failure
5229 */
5230static int ice_change_mtu(struct net_device *netdev, int new_mtu)
5231{
5232 struct ice_netdev_priv *np = netdev_priv(netdev);
5233 struct ice_vsi *vsi = np->vsi;
5234 struct ice_pf *pf = vsi->back;
5235 u8 count = 0;
5236
5237 if (new_mtu == netdev->mtu) {
5238 netdev_warn(netdev, "mtu is already %d\n", netdev->mtu);
5239 return 0;
5240 }
5241
5242 if (new_mtu < netdev->min_mtu) {
5243 netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
5244 netdev->min_mtu);
5245 return -EINVAL;
5246 } else if (new_mtu > netdev->max_mtu) {
5247 netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
5248 netdev->min_mtu);
5249 return -EINVAL;
5250 }
5251 /* if a reset is in progress, wait for some time for it to complete */
5252 do {
5253 if (ice_is_reset_recovery_pending(pf->state)) {
5254 count++;
5255 usleep_range(1000, 2000);
5256 } else {
5257 break;
5258 }
5259
5260 } while (count < 100);
5261
5262 if (count == 100) {
5263 netdev_err(netdev, "can't change mtu. Device is busy\n");
5264 return -EBUSY;
5265 }
5266
5267 netdev->mtu = new_mtu;
5268
5269 /* if VSI is up, bring it down and then back up */
5270 if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
5271 int err;
5272
5273 err = ice_down(vsi);
5274 if (err) {
5275 netdev_err(netdev, "change mtu if_up err %d\n", err);
5276 return err;
5277 }
5278
5279 err = ice_up(vsi);
5280 if (err) {
5281 netdev_err(netdev, "change mtu if_up err %d\n", err);
5282 return err;
5283 }
5284 }
5285
5286 netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
5287 return 0;
5288}
5289
5290/**
5291 * ice_set_rss - Set RSS keys and lut
5292 * @vsi: Pointer to VSI structure
5293 * @seed: RSS hash seed
5294 * @lut: Lookup table
5295 * @lut_size: Lookup table size
5296 *
5297 * Returns 0 on success, negative on failure
5298 */
5299int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
5300{
5301 struct ice_pf *pf = vsi->back;
5302 struct ice_hw *hw = &pf->hw;
5303 enum ice_status status;
5304
5305 if (seed) {
5306 struct ice_aqc_get_set_rss_keys *buf =
5307 (struct ice_aqc_get_set_rss_keys *)seed;
5308
5309 status = ice_aq_set_rss_key(hw, vsi->vsi_num, buf);
5310
5311 if (status) {
5312 dev_err(&pf->pdev->dev,
5313 "Cannot set RSS key, err %d aq_err %d\n",
5314 status, hw->adminq.rq_last_status);
5315 return -EIO;
5316 }
5317 }
5318
5319 if (lut) {
5320 status = ice_aq_set_rss_lut(hw, vsi->vsi_num,
5321 vsi->rss_lut_type, lut, lut_size);
5322 if (status) {
5323 dev_err(&pf->pdev->dev,
5324 "Cannot set RSS lut, err %d aq_err %d\n",
5325 status, hw->adminq.rq_last_status);
5326 return -EIO;
5327 }
5328 }
5329
5330 return 0;
5331}
5332
5333/**
5334 * ice_get_rss - Get RSS keys and lut
5335 * @vsi: Pointer to VSI structure
5336 * @seed: Buffer to store the keys
5337 * @lut: Buffer to store the lookup table entries
5338 * @lut_size: Size of buffer to store the lookup table entries
5339 *
5340 * Returns 0 on success, negative on failure
5341 */
5342int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
5343{
5344 struct ice_pf *pf = vsi->back;
5345 struct ice_hw *hw = &pf->hw;
5346 enum ice_status status;
5347
5348 if (seed) {
5349 struct ice_aqc_get_set_rss_keys *buf =
5350 (struct ice_aqc_get_set_rss_keys *)seed;
5351
5352 status = ice_aq_get_rss_key(hw, vsi->vsi_num, buf);
5353 if (status) {
5354 dev_err(&pf->pdev->dev,
5355 "Cannot get RSS key, err %d aq_err %d\n",
5356 status, hw->adminq.rq_last_status);
5357 return -EIO;
5358 }
5359 }
5360
5361 if (lut) {
5362 status = ice_aq_get_rss_lut(hw, vsi->vsi_num,
5363 vsi->rss_lut_type, lut, lut_size);
5364 if (status) {
5365 dev_err(&pf->pdev->dev,
5366 "Cannot get RSS lut, err %d aq_err %d\n",
5367 status, hw->adminq.rq_last_status);
5368 return -EIO;
5369 }
5370 }
5371
5372 return 0;
5373}
5374
5375/**
5376 * ice_open - Called when a network interface becomes active
5377 * @netdev: network interface device structure
5378 *
5379 * The open entry point is called when a network interface is made
5380 * active by the system (IFF_UP). At this point all resources needed
5381 * for transmit and receive operations are allocated, the interrupt
5382 * handler is registered with the OS, the netdev watchdog is enabled,
5383 * and the stack is notified that the interface is ready.
5384 *
5385 * Returns 0 on success, negative value on failure
5386 */
5387static int ice_open(struct net_device *netdev)
5388{
5389 struct ice_netdev_priv *np = netdev_priv(netdev);
5390 struct ice_vsi *vsi = np->vsi;
5391 int err;
5392
5393 netif_carrier_off(netdev);
5394
5395 err = ice_vsi_open(vsi);
5396
5397 if (err)
5398 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5399 vsi->vsi_num, vsi->vsw->sw_id);
5400 return err;
5401}
5402
5403/**
5404 * ice_stop - Disables a network interface
5405 * @netdev: network interface device structure
5406 *
5407 * The stop entry point is called when an interface is de-activated by the OS,
5408 * and the netdevice enters the DOWN state. The hardware is still under the
5409 * driver's control, but the netdev interface is disabled.
5410 *
5411 * Returns success only - not allowed to fail
5412 */
5413static int ice_stop(struct net_device *netdev)
5414{
5415 struct ice_netdev_priv *np = netdev_priv(netdev);
5416 struct ice_vsi *vsi = np->vsi;
5417
5418 ice_vsi_close(vsi);
5419
5420 return 0;
5421}
5422
5423/**
5424 * ice_features_check - Validate encapsulated packet conforms to limits
5425 * @skb: skb buffer
5426 * @netdev: This port's netdev
5427 * @features: Offload features that the stack believes apply
5428 */
5429static netdev_features_t
5430ice_features_check(struct sk_buff *skb,
5431 struct net_device __always_unused *netdev,
5432 netdev_features_t features)
5433{
5434 size_t len;
5435
5436 /* No point in doing any of this if neither checksum nor GSO are
5437 * being requested for this frame. We can rule out both by just
5438 * checking for CHECKSUM_PARTIAL
5439 */
5440 if (skb->ip_summed != CHECKSUM_PARTIAL)
5441 return features;
5442
5443 /* We cannot support GSO if the MSS is going to be less than
5444 * 64 bytes. If it is then we need to drop support for GSO.
5445 */
5446 if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5447 features &= ~NETIF_F_GSO_MASK;
5448
5449 len = skb_network_header(skb) - skb->data;
5450 if (len & ~(ICE_TXD_MACLEN_MAX))
5451 goto out_rm_features;
5452
5453 len = skb_transport_header(skb) - skb_network_header(skb);
5454 if (len & ~(ICE_TXD_IPLEN_MAX))
5455 goto out_rm_features;
5456
5457 if (skb->encapsulation) {
5458 len = skb_inner_network_header(skb) - skb_transport_header(skb);
5459 if (len & ~(ICE_TXD_L4LEN_MAX))
5460 goto out_rm_features;
5461
5462 len = skb_inner_transport_header(skb) -
5463 skb_inner_network_header(skb);
5464 if (len & ~(ICE_TXD_IPLEN_MAX))
5465 goto out_rm_features;
5466 }
5467
5468 return features;
5469out_rm_features:
5470 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5471}
5472
5473static const struct net_device_ops ice_netdev_ops = {
5474 .ndo_open = ice_open,
5475 .ndo_stop = ice_stop,
5476 .ndo_start_xmit = ice_start_xmit,
5477 .ndo_features_check = ice_features_check,
5478 .ndo_set_rx_mode = ice_set_rx_mode,
5479 .ndo_set_mac_address = ice_set_mac_address,
5480 .ndo_validate_addr = eth_validate_addr,
5481 .ndo_change_mtu = ice_change_mtu,
5482 .ndo_get_stats64 = ice_get_stats64,
5483#ifdef CONFIG_NET_POLL_CONTROLLER
5484 .ndo_poll_controller = ice_netpoll,
5485#endif /* CONFIG_NET_POLL_CONTROLLER */
5486 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5487 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5488 .ndo_set_features = ice_set_features,
5489 .ndo_fdb_add = ice_fdb_add,
5490 .ndo_fdb_del = ice_fdb_del,
5491};