Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
   9#include "ice.h"
  10#include "ice_base.h"
  11#include "ice_lib.h"
  12#include "ice_fltr.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_dcb_nl.h"
  15#include "ice_devlink.h"
  16
 
  17#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
 
  18static const char ice_driver_string[] = DRV_SUMMARY;
  19static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  20
  21/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  22#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  23#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  24
  25MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  26MODULE_DESCRIPTION(DRV_SUMMARY);
  27MODULE_LICENSE("GPL v2");
  28MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  29
  30static int debug = -1;
  31module_param(debug, int, 0644);
  32#ifndef CONFIG_DYNAMIC_DEBUG
  33MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  34#else
  35MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  36#endif /* !CONFIG_DYNAMIC_DEBUG */
  37
  38static struct workqueue_struct *ice_wq;
  39static const struct net_device_ops ice_netdev_safe_mode_ops;
  40static const struct net_device_ops ice_netdev_ops;
  41static int ice_vsi_open(struct ice_vsi *vsi);
  42
  43static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  44
  45static void ice_vsi_release_all(struct ice_pf *pf);
 
 
 
 
  46
  47/**
  48 * ice_get_tx_pending - returns number of Tx descriptors not processed
  49 * @ring: the ring of descriptors
 
 
 
 
 
  50 */
  51static u16 ice_get_tx_pending(struct ice_ring *ring)
  52{
  53	u16 head, tail;
 
  54
  55	head = ring->next_to_clean;
  56	tail = ring->next_to_use;
 
 
  57
  58	if (head != tail)
  59		return (head < tail) ?
  60			tail - head : (tail + ring->count - head);
  61	return 0;
 
 
 
 
  62}
  63
  64/**
  65 * ice_check_for_hang_subtask - check for and recover hung queues
  66 * @pf: pointer to PF struct
 
 
 
  67 */
  68static void ice_check_for_hang_subtask(struct ice_pf *pf)
  69{
  70	struct ice_vsi *vsi = NULL;
  71	struct ice_hw *hw;
  72	unsigned int i;
  73	int packets;
  74	u32 v;
  75
  76	ice_for_each_vsi(pf, v)
  77		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  78			vsi = pf->vsi[v];
  79			break;
  80		}
  81
  82	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
  83		return;
 
 
 
 
 
  84
  85	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  86		return;
  87
  88	hw = &vsi->back->hw;
 
 
  89
  90	for (i = 0; i < vsi->num_txq; i++) {
  91		struct ice_ring *tx_ring = vsi->tx_rings[i];
  92
  93		if (tx_ring && tx_ring->desc) {
  94			/* If packet counter has not changed the queue is
  95			 * likely stalled, so force an interrupt for this
  96			 * queue.
  97			 *
  98			 * prev_pkt would be negative if there was no
  99			 * pending work.
 100			 */
 101			packets = tx_ring->stats.pkts & INT_MAX;
 102			if (tx_ring->tx_stats.prev_pkt == packets) {
 103				/* Trigger sw interrupt to revive the queue */
 104				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 105				continue;
 106			}
 107
 108			/* Memory barrier between read of packet count and call
 109			 * to ice_get_tx_pending()
 110			 */
 111			smp_rmb();
 112			tx_ring->tx_stats.prev_pkt =
 113			    ice_get_tx_pending(tx_ring) ? packets : -1;
 114		}
 115	}
 
 
 116}
 117
 118/**
 119 * ice_init_mac_fltr - Set initial MAC filters
 120 * @pf: board private structure
 121 *
 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 123 * address and broadcast address. If an error is encountered, netdevice will be
 124 * unregistered.
 
 
 
 
 125 */
 126static int ice_init_mac_fltr(struct ice_pf *pf)
 
 127{
 128	enum ice_status status;
 129	struct ice_vsi *vsi;
 130	u8 *perm_addr;
 131
 132	vsi = ice_get_main_vsi(pf);
 133	if (!vsi)
 134		return -EINVAL;
 135
 136	perm_addr = vsi->port_info->mac.perm_addr;
 137	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 138	if (!status)
 139		return 0;
 
 
 140
 141	/* We aren't useful with no MAC filters, so unregister if we
 142	 * had an error
 143	 */
 144	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
 145		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
 146			ice_stat_str(status));
 147		unregister_netdev(vsi->netdev);
 148		free_netdev(vsi->netdev);
 149		vsi->netdev = NULL;
 150	}
 151
 152	return -EIO;
 153}
 154
 155/**
 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 157 * @netdev: the net device on which the sync is happening
 158 * @addr: MAC address to sync
 159 *
 160 * This is a callback function which is called by the in kernel device sync
 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 163 * MAC filters from the hardware.
 164 */
 165static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 166{
 167	struct ice_netdev_priv *np = netdev_priv(netdev);
 168	struct ice_vsi *vsi = np->vsi;
 169
 170	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 171				     ICE_FWD_TO_VSI))
 172		return -EINVAL;
 173
 174	return 0;
 175}
 176
 177/**
 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 179 * @netdev: the net device on which the unsync is happening
 180 * @addr: MAC address to unsync
 181 *
 182 * This is a callback function which is called by the in kernel device unsync
 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 185 * delete the MAC filters from the hardware.
 186 */
 187static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 188{
 189	struct ice_netdev_priv *np = netdev_priv(netdev);
 190	struct ice_vsi *vsi = np->vsi;
 191
 192	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 193				     ICE_FWD_TO_VSI))
 194		return -EINVAL;
 195
 196	return 0;
 197}
 198
 199/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200 * ice_vsi_fltr_changed - check if filter state changed
 201 * @vsi: VSI to be checked
 202 *
 203 * returns true if filter state has changed, false otherwise.
 204 */
 205static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 206{
 207	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
 208	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
 209	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 210}
 211
 212/**
 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 214 * @vsi: the VSI being configured
 215 * @promisc_m: mask of promiscuous config bits
 216 * @set_promisc: enable or disable promisc flag request
 217 *
 218 */
 219static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 220{
 221	struct ice_hw *hw = &vsi->back->hw;
 222	enum ice_status status = 0;
 223
 224	if (vsi->type != ICE_VSI_PF)
 225		return 0;
 226
 227	if (vsi->vlan_ena) {
 228		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 229						  set_promisc);
 230	} else {
 231		if (set_promisc)
 232			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 233						     0);
 234		else
 235			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 236						       0);
 237	}
 238
 239	if (status)
 240		return -EIO;
 241
 242	return 0;
 243}
 244
 245/**
 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 247 * @vsi: ptr to the VSI
 248 *
 249 * Push any outstanding VSI filter changes through the AdminQ.
 250 */
 251static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 252{
 253	struct device *dev = ice_pf_to_dev(vsi->back);
 254	struct net_device *netdev = vsi->netdev;
 255	bool promisc_forced_on = false;
 256	struct ice_pf *pf = vsi->back;
 257	struct ice_hw *hw = &pf->hw;
 258	enum ice_status status = 0;
 259	u32 changed_flags = 0;
 260	u8 promisc_m;
 261	int err = 0;
 262
 263	if (!vsi->netdev)
 264		return -EINVAL;
 265
 266	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
 267		usleep_range(1000, 2000);
 268
 269	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 270	vsi->current_netdev_flags = vsi->netdev->flags;
 271
 272	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 273	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 274
 275	if (ice_vsi_fltr_changed(vsi)) {
 276		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 277		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 278		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 279
 280		/* grab the netdev's addr_list_lock */
 281		netif_addr_lock_bh(netdev);
 282		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 283			      ice_add_mac_to_unsync_list);
 284		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 285			      ice_add_mac_to_unsync_list);
 286		/* our temp lists are populated. release lock */
 287		netif_addr_unlock_bh(netdev);
 288	}
 289
 290	/* Remove MAC addresses in the unsync list */
 291	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 292	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 293	if (status) {
 294		netdev_err(netdev, "Failed to delete MAC filters\n");
 295		/* if we failed because of alloc failures, just bail */
 296		if (status == ICE_ERR_NO_MEMORY) {
 297			err = -ENOMEM;
 298			goto out;
 299		}
 300	}
 301
 302	/* Add MAC addresses in the sync list */
 303	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 304	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 305	/* If filter is added successfully or already exists, do not go into
 306	 * 'if' condition and report it as error. Instead continue processing
 307	 * rest of the function.
 308	 */
 309	if (status && status != ICE_ERR_ALREADY_EXISTS) {
 310		netdev_err(netdev, "Failed to add MAC filters\n");
 311		/* If there is no more space for new umac filters, VSI
 312		 * should go into promiscuous mode. There should be some
 313		 * space reserved for promiscuous filters.
 314		 */
 315		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 316		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
 317				      vsi->state)) {
 318			promisc_forced_on = true;
 319			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 
 320				    vsi->vsi_num);
 321		} else {
 322			err = -EIO;
 323			goto out;
 324		}
 325	}
 326	/* check for changes in promiscuous modes */
 327	if (changed_flags & IFF_ALLMULTI) {
 328		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 329			if (vsi->vlan_ena)
 330				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 331			else
 332				promisc_m = ICE_MCAST_PROMISC_BITS;
 333
 334			err = ice_cfg_promisc(vsi, promisc_m, true);
 335			if (err) {
 336				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 
 
 
 
 
 
 337					   vsi->vsi_num);
 338				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 
 339				goto out_promisc;
 340			}
 341		} else {
 342			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 343			if (vsi->vlan_ena)
 344				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 345			else
 346				promisc_m = ICE_MCAST_PROMISC_BITS;
 347
 348			err = ice_cfg_promisc(vsi, promisc_m, false);
 349			if (err) {
 350				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 351					   vsi->vsi_num);
 352				vsi->current_netdev_flags |= IFF_ALLMULTI;
 
 353				goto out_promisc;
 354			}
 355		}
 356	}
 357
 358	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 359	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
 360		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 361		if (vsi->current_netdev_flags & IFF_PROMISC) {
 362			/* Apply Rx filter rule to get traffic from wire */
 363			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
 364				err = ice_set_dflt_vsi(pf->first_sw, vsi);
 365				if (err && err != -EEXIST) {
 366					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 367						   err, vsi->vsi_num);
 368					vsi->current_netdev_flags &=
 369						~IFF_PROMISC;
 370					goto out_promisc;
 371				}
 372				ice_cfg_vlan_pruning(vsi, false, false);
 373			}
 374		} else {
 375			/* Clear Rx filter to remove traffic from wire */
 376			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
 377				err = ice_clear_dflt_vsi(pf->first_sw);
 378				if (err) {
 379					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 380						   err, vsi->vsi_num);
 381					vsi->current_netdev_flags |=
 382						IFF_PROMISC;
 383					goto out_promisc;
 384				}
 385				if (vsi->num_vlan > 1)
 386					ice_cfg_vlan_pruning(vsi, true, false);
 
 
 
 
 
 
 
 387			}
 388		}
 389	}
 390	goto exit;
 391
 392out_promisc:
 393	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 394	goto exit;
 395out:
 396	/* if something went wrong then set the changed flag so we try again */
 397	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 398	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 399exit:
 400	clear_bit(__ICE_CFG_BUSY, vsi->state);
 401	return err;
 402}
 403
 404/**
 405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 406 * @pf: board private structure
 407 */
 408static void ice_sync_fltr_subtask(struct ice_pf *pf)
 409{
 410	int v;
 411
 412	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 413		return;
 414
 415	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 416
 417	ice_for_each_vsi(pf, v)
 418		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 419		    ice_vsi_sync_fltr(pf->vsi[v])) {
 420			/* come back and try again later */
 421			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 422			break;
 423		}
 424}
 425
 426/**
 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 428 * @pf: the PF
 429 * @locked: is the rtnl_lock already held
 430 */
 431static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 432{
 433	int v;
 434
 435	ice_for_each_vsi(pf, v)
 436		if (pf->vsi[v])
 437			ice_dis_vsi(pf->vsi[v], locked);
 438}
 439
 440/**
 441 * ice_prepare_for_reset - prep for the core to reset
 442 * @pf: board private structure
 443 *
 444 * Inform or close all dependent features in prep for reset.
 445 */
 446static void
 447ice_prepare_for_reset(struct ice_pf *pf)
 448{
 449	struct ice_hw *hw = &pf->hw;
 450	unsigned int i;
 451
 452	/* already prepared for reset */
 453	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
 454		return;
 455
 456	/* Notify VFs of impending reset */
 457	if (ice_check_sq_alive(hw, &hw->mailboxq))
 458		ice_vc_notify_reset(pf);
 459
 460	/* Disable VFs until reset is completed */
 461	ice_for_each_vf(pf, i)
 462		ice_set_vf_state_qs_dis(&pf->vf[i]);
 463
 464	/* clear SW filtering DB */
 465	ice_clear_hw_tbls(hw);
 466	/* disable the VSIs and their queues that are not already DOWN */
 467	ice_pf_dis_all_vsi(pf, false);
 
 468
 469	if (hw->port_info)
 470		ice_sched_clear_port(hw->port_info);
 
 471
 472	ice_shutdown_all_ctrlq(hw);
 473
 474	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 475}
 476
 477/**
 478 * ice_do_reset - Initiate one of many types of resets
 479 * @pf: board private structure
 480 * @reset_type: reset type requested
 481 * before this function was called.
 482 */
 483static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 484{
 485	struct device *dev = ice_pf_to_dev(pf);
 486	struct ice_hw *hw = &pf->hw;
 487
 488	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 489	WARN_ON(in_interrupt());
 490
 491	ice_prepare_for_reset(pf);
 
 
 
 
 
 
 
 492
 493	/* trigger the reset */
 494	if (ice_reset(hw, reset_type)) {
 495		dev_err(dev, "reset %d failed\n", reset_type);
 496		set_bit(__ICE_RESET_FAILED, pf->state);
 497		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 498		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 499		clear_bit(__ICE_PFR_REQ, pf->state);
 500		clear_bit(__ICE_CORER_REQ, pf->state);
 501		clear_bit(__ICE_GLOBR_REQ, pf->state);
 502		return;
 503	}
 504
 505	/* PFR is a bit of a special case because it doesn't result in an OICR
 506	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 507	 * associated state bits.
 508	 */
 509	if (reset_type == ICE_RESET_PFR) {
 510		pf->pfr_count++;
 511		ice_rebuild(pf, reset_type);
 512		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 513		clear_bit(__ICE_PFR_REQ, pf->state);
 514		ice_reset_all_vfs(pf, true);
 515	}
 516}
 517
 518/**
 519 * ice_reset_subtask - Set up for resetting the device and driver
 520 * @pf: board private structure
 521 */
 522static void ice_reset_subtask(struct ice_pf *pf)
 523{
 524	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 
 
 525
 526	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 527	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 528	 * of reset is pending and sets bits in pf->state indicating the reset
 529	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
 530	 * prepare for pending reset if not already (for PF software-initiated
 531	 * global resets the software should already be prepared for it as
 532	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
 533	 * by firmware or software on other PFs, that bit is not set so prepare
 534	 * for the reset now), poll for reset done, rebuild and return.
 535	 */
 536	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
 537		/* Perform the largest reset requested */
 538		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
 539			reset_type = ICE_RESET_CORER;
 540		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
 541			reset_type = ICE_RESET_GLOBR;
 542		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
 543			reset_type = ICE_RESET_EMPR;
 544		/* return if no valid reset type requested */
 545		if (reset_type == ICE_RESET_INVAL)
 546			return;
 547		ice_prepare_for_reset(pf);
 548
 549		/* make sure we are ready to rebuild */
 550		if (ice_check_reset(&pf->hw)) {
 551			set_bit(__ICE_RESET_FAILED, pf->state);
 552		} else {
 553			/* done with reset. start rebuild */
 554			pf->hw.reset_ongoing = false;
 555			ice_rebuild(pf, reset_type);
 556			/* clear bit to resume normal operations, but
 557			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 558			 */
 559			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 560			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 561			clear_bit(__ICE_PFR_REQ, pf->state);
 562			clear_bit(__ICE_CORER_REQ, pf->state);
 563			clear_bit(__ICE_GLOBR_REQ, pf->state);
 564			ice_reset_all_vfs(pf, true);
 565		}
 566
 567		return;
 568	}
 569
 570	/* No pending resets to finish processing. Check for new resets */
 571	if (test_bit(__ICE_PFR_REQ, pf->state))
 572		reset_type = ICE_RESET_PFR;
 573	if (test_bit(__ICE_CORER_REQ, pf->state))
 574		reset_type = ICE_RESET_CORER;
 575	if (test_bit(__ICE_GLOBR_REQ, pf->state))
 576		reset_type = ICE_RESET_GLOBR;
 577	/* If no valid reset type requested just return */
 578	if (reset_type == ICE_RESET_INVAL)
 579		return;
 
 
 
 580
 581	/* reset if not already down or busy */
 582	if (!test_bit(__ICE_DOWN, pf->state) &&
 583	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
 584		ice_do_reset(pf, reset_type);
 585	}
 
 
 
 586}
 587
 588/**
 589 * ice_print_topo_conflict - print topology conflict message
 590 * @vsi: the VSI whose topology status is being checked
 591 */
 592static void ice_print_topo_conflict(struct ice_vsi *vsi)
 593{
 594	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 595	case ICE_AQ_LINK_TOPO_CONFLICT:
 596	case ICE_AQ_LINK_MEDIA_CONFLICT:
 597	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 598	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 599	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 600		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
 601		break;
 602	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 603		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 604		break;
 605	default:
 606		break;
 607	}
 
 
 
 
 
 
 
 608}
 609
 610/**
 611 * ice_print_link_msg - print link up or down message
 612 * @vsi: the VSI whose link status is being queried
 613 * @isup: boolean for if the link is now up or down
 614 */
 615void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 616{
 617	struct ice_aqc_get_phy_caps_data *caps;
 618	const char *an_advertised;
 619	enum ice_status status;
 620	const char *fec_req;
 621	const char *speed;
 622	const char *fec;
 623	const char *fc;
 624	const char *an;
 625
 626	if (!vsi)
 627		return;
 628
 629	if (vsi->current_isup == isup)
 630		return;
 631
 632	vsi->current_isup = isup;
 633
 634	if (!isup) {
 635		netdev_info(vsi->netdev, "NIC Link is Down\n");
 636		return;
 637	}
 638
 639	switch (vsi->port_info->phy.link_info.link_speed) {
 640	case ICE_AQ_LINK_SPEED_100GB:
 641		speed = "100 G";
 642		break;
 643	case ICE_AQ_LINK_SPEED_50GB:
 644		speed = "50 G";
 645		break;
 646	case ICE_AQ_LINK_SPEED_40GB:
 647		speed = "40 G";
 648		break;
 649	case ICE_AQ_LINK_SPEED_25GB:
 650		speed = "25 G";
 651		break;
 652	case ICE_AQ_LINK_SPEED_20GB:
 653		speed = "20 G";
 654		break;
 655	case ICE_AQ_LINK_SPEED_10GB:
 656		speed = "10 G";
 657		break;
 658	case ICE_AQ_LINK_SPEED_5GB:
 659		speed = "5 G";
 660		break;
 661	case ICE_AQ_LINK_SPEED_2500MB:
 662		speed = "2.5 G";
 663		break;
 664	case ICE_AQ_LINK_SPEED_1000MB:
 665		speed = "1 G";
 666		break;
 667	case ICE_AQ_LINK_SPEED_100MB:
 668		speed = "100 M";
 669		break;
 670	default:
 671		speed = "Unknown";
 672		break;
 673	}
 674
 675	switch (vsi->port_info->fc.current_mode) {
 676	case ICE_FC_FULL:
 677		fc = "Rx/Tx";
 678		break;
 679	case ICE_FC_TX_PAUSE:
 680		fc = "Tx";
 681		break;
 682	case ICE_FC_RX_PAUSE:
 683		fc = "Rx";
 684		break;
 685	case ICE_FC_NONE:
 686		fc = "None";
 687		break;
 688	default:
 689		fc = "Unknown";
 690		break;
 691	}
 692
 693	/* Get FEC mode based on negotiated link info */
 694	switch (vsi->port_info->phy.link_info.fec_info) {
 695	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 696	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 697		fec = "RS-FEC";
 698		break;
 699	case ICE_AQ_LINK_25G_KR_FEC_EN:
 700		fec = "FC-FEC/BASE-R";
 701		break;
 702	default:
 703		fec = "NONE";
 704		break;
 705	}
 706
 707	/* check if autoneg completed, might be false due to not supported */
 708	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 709		an = "True";
 710	else
 711		an = "False";
 712
 713	/* Get FEC mode requested based on PHY caps last SW configuration */
 714	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 715	if (!caps) {
 716		fec_req = "Unknown";
 717		an_advertised = "Unknown";
 718		goto done;
 719	}
 720
 721	status = ice_aq_get_phy_caps(vsi->port_info, false,
 722				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
 723	if (status)
 724		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 
 
 
 
 
 725
 726	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 
 727
 728	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 729	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 730		fec_req = "RS-FEC";
 731	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 732		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 733		fec_req = "FC-FEC/BASE-R";
 734	else
 735		fec_req = "NONE";
 736
 737	kfree(caps);
 
 
 
 
 
 738
 739done:
 740	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 741		    speed, fec_req, fec, an_advertised, an, fc);
 742	ice_print_topo_conflict(vsi);
 743}
 744
 745/**
 746 * ice_vsi_link_event - update the VSI's netdev
 747 * @vsi: the VSI on which the link event occurred
 748 * @link_up: whether or not the VSI needs to be set up or down
 749 */
 750static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 751{
 752	if (!vsi)
 753		return;
 754
 755	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
 756		return;
 757
 758	if (vsi->type == ICE_VSI_PF) {
 759		if (link_up == netif_carrier_ok(vsi->netdev))
 
 
 760			return;
 761
 762		if (link_up) {
 763			netif_carrier_on(vsi->netdev);
 764			netif_tx_wake_all_queues(vsi->netdev);
 765		} else {
 766			netif_carrier_off(vsi->netdev);
 767			netif_tx_stop_all_queues(vsi->netdev);
 768		}
 769	}
 770}
 771
 772/**
 773 * ice_set_dflt_mib - send a default config MIB to the FW
 774 * @pf: private PF struct
 775 *
 776 * This function sends a default configuration MIB to the FW.
 777 *
 778 * If this function errors out at any point, the driver is still able to
 779 * function.  The main impact is that LFC may not operate as expected.
 780 * Therefore an error state in this function should be treated with a DBG
 781 * message and continue on with driver rebuild/reenable.
 782 */
 783static void ice_set_dflt_mib(struct ice_pf *pf)
 784{
 785	struct device *dev = ice_pf_to_dev(pf);
 786	u8 mib_type, *buf, *lldpmib = NULL;
 787	u16 len, typelen, offset = 0;
 788	struct ice_lldp_org_tlv *tlv;
 789	struct ice_hw *hw;
 790	u32 ouisubtype;
 791
 792	if (!pf) {
 793		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
 794		return;
 795	}
 796
 797	hw = &pf->hw;
 798	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 799	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 800	if (!lldpmib) {
 801		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 802			__func__);
 803		return;
 804	}
 805
 806	/* Add ETS CFG TLV */
 807	tlv = (struct ice_lldp_org_tlv *)lldpmib;
 808	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 809		   ICE_IEEE_ETS_TLV_LEN);
 810	tlv->typelen = htons(typelen);
 811	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 812		      ICE_IEEE_SUBTYPE_ETS_CFG);
 813	tlv->ouisubtype = htonl(ouisubtype);
 814
 815	buf = tlv->tlvinfo;
 816	buf[0] = 0;
 817
 818	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 819	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 820	 * Octets 13 - 20 are TSA values - leave as zeros
 821	 */
 822	buf[5] = 0x64;
 823	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 824	offset += len + 2;
 825	tlv = (struct ice_lldp_org_tlv *)
 826		((char *)tlv + sizeof(tlv->typelen) + len);
 827
 828	/* Add ETS REC TLV */
 829	buf = tlv->tlvinfo;
 830	tlv->typelen = htons(typelen);
 831
 832	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 833		      ICE_IEEE_SUBTYPE_ETS_REC);
 834	tlv->ouisubtype = htonl(ouisubtype);
 835
 836	/* First octet of buf is reserved
 837	 * Octets 1 - 4 map UP to TC - all UPs map to zero
 838	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
 839	 * Octets 13 - 20 are TSA value - leave as zeros
 840	 */
 841	buf[5] = 0x64;
 842	offset += len + 2;
 843	tlv = (struct ice_lldp_org_tlv *)
 844		((char *)tlv + sizeof(tlv->typelen) + len);
 845
 846	/* Add PFC CFG TLV */
 847	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 848		   ICE_IEEE_PFC_TLV_LEN);
 849	tlv->typelen = htons(typelen);
 850
 851	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 852		      ICE_IEEE_SUBTYPE_PFC_CFG);
 853	tlv->ouisubtype = htonl(ouisubtype);
 854
 855	/* Octet 1 left as all zeros - PFC disabled */
 856	buf[0] = 0x08;
 857	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 858	offset += len + 2;
 859
 860	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
 861		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
 862
 863	kfree(lldpmib);
 864}
 865
 866/**
 867 * ice_link_event - process the link event
 868 * @pf: PF that the link event is associated with
 869 * @pi: port_info for the port that the link event is associated with
 870 * @link_up: true if the physical link is up and false if it is down
 871 * @link_speed: current link speed received from the link event
 872 *
 873 * Returns 0 on success and negative on failure
 
 874 */
 875static int
 876ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 877	       u16 link_speed)
 878{
 879	struct device *dev = ice_pf_to_dev(pf);
 880	struct ice_phy_info *phy_info;
 881	struct ice_vsi *vsi;
 882	u16 old_link_speed;
 883	bool old_link;
 884	int result;
 885
 886	phy_info = &pi->phy;
 887	phy_info->link_info_old = phy_info->link_info;
 
 
 888
 889	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 890	old_link_speed = phy_info->link_info_old.link_speed;
 891
 892	/* update the link info structures and re-enable link events,
 893	 * don't bail on failure due to other book keeping needed
 894	 */
 895	result = ice_update_link_info(pi);
 896	if (result)
 897		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
 898			pi->lport);
 899
 900	/* Check if the link state is up after updating link info, and treat
 901	 * this event as an UP event since the link is actually UP now.
 902	 */
 903	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
 904		link_up = true;
 905
 906	vsi = ice_get_main_vsi(pf);
 907	if (!vsi || !vsi->port_info)
 908		return -EINVAL;
 909
 910	/* turn off PHY if media was removed */
 911	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 912	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 913		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 914
 915		result = ice_aq_set_link_restart_an(pi, false, NULL);
 916		if (result) {
 917			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
 918				vsi->vsi_num, result);
 919			return result;
 920		}
 921	}
 922
 923	/* if the old link up/down and speed is the same as the new */
 924	if (link_up == old_link && link_speed == old_link_speed)
 925		return result;
 926
 927	if (ice_is_dcb_active(pf)) {
 928		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
 929			ice_dcb_rebuild(pf);
 930	} else {
 931		if (link_up)
 932			ice_set_dflt_mib(pf);
 933	}
 934	ice_vsi_link_event(vsi, link_up);
 935	ice_print_link_msg(vsi, link_up);
 936
 937	ice_vc_notify_link_state(pf);
 938
 939	return result;
 940}
 941
 942/**
 943 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 944 * @pf: board private structure
 945 */
 946static void ice_watchdog_subtask(struct ice_pf *pf)
 947{
 948	int i;
 949
 950	/* if interface is down do nothing */
 951	if (test_bit(__ICE_DOWN, pf->state) ||
 952	    test_bit(__ICE_CFG_BUSY, pf->state))
 953		return;
 954
 955	/* make sure we don't do these things too often */
 956	if (time_before(jiffies,
 957			pf->serv_tmr_prev + pf->serv_tmr_period))
 958		return;
 959
 960	pf->serv_tmr_prev = jiffies;
 961
 962	/* Update the stats for active netdevs so the network stack
 963	 * can look at updated numbers whenever it cares to
 964	 */
 965	ice_update_pf_stats(pf);
 966	ice_for_each_vsi(pf, i)
 967		if (pf->vsi[i] && pf->vsi[i]->netdev)
 968			ice_update_vsi_stats(pf->vsi[i]);
 969}
 970
 971/**
 972 * ice_init_link_events - enable/initialize link events
 973 * @pi: pointer to the port_info instance
 974 *
 975 * Returns -EIO on failure, 0 on success
 976 */
 977static int ice_init_link_events(struct ice_port_info *pi)
 978{
 979	u16 mask;
 980
 981	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
 982		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
 983
 984	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
 985		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
 986			pi->lport);
 987		return -EIO;
 988	}
 989
 990	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
 991		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
 992			pi->lport);
 993		return -EIO;
 994	}
 995
 996	return 0;
 997}
 998
 999/**
1000 * ice_handle_link_event - handle link event via ARQ
1001 * @pf: PF that the link event is associated with
1002 * @event: event structure containing link status info
 
 
1003 */
1004static int
1005ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1006{
1007	struct ice_aqc_get_link_status_data *link_data;
1008	struct ice_port_info *port_info;
1009	int status;
1010
1011	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1012	port_info = pf->hw.port_info;
1013	if (!port_info)
1014		return -EINVAL;
1015
1016	status = ice_link_event(pf, port_info,
1017				!!(link_data->link_info & ICE_AQ_LINK_UP),
1018				le16_to_cpu(link_data->link_speed));
1019	if (status)
1020		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1021			status);
1022
1023	return status;
1024}
1025
1026enum ice_aq_task_state {
1027	ICE_AQ_TASK_WAITING = 0,
1028	ICE_AQ_TASK_COMPLETE,
1029	ICE_AQ_TASK_CANCELED,
1030};
1031
1032struct ice_aq_task {
1033	struct hlist_node entry;
1034
1035	u16 opcode;
1036	struct ice_rq_event_info *event;
1037	enum ice_aq_task_state state;
1038};
1039
1040/**
1041 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1042 * @pf: pointer to the PF private structure
1043 * @opcode: the opcode to wait for
1044 * @timeout: how long to wait, in jiffies
1045 * @event: storage for the event info
1046 *
1047 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1048 * current thread will be put to sleep until the specified event occurs or
1049 * until the given timeout is reached.
1050 *
1051 * To obtain only the descriptor contents, pass an event without an allocated
1052 * msg_buf. If the complete data buffer is desired, allocate the
1053 * event->msg_buf with enough space ahead of time.
1054 *
1055 * Returns: zero on success, or a negative error code on failure.
1056 */
1057int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1058			  struct ice_rq_event_info *event)
1059{
1060	struct ice_aq_task *task;
1061	long ret;
1062	int err;
1063
1064	task = kzalloc(sizeof(*task), GFP_KERNEL);
1065	if (!task)
1066		return -ENOMEM;
1067
1068	INIT_HLIST_NODE(&task->entry);
1069	task->opcode = opcode;
1070	task->event = event;
1071	task->state = ICE_AQ_TASK_WAITING;
1072
1073	spin_lock_bh(&pf->aq_wait_lock);
1074	hlist_add_head(&task->entry, &pf->aq_wait_list);
1075	spin_unlock_bh(&pf->aq_wait_lock);
1076
1077	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1078					       timeout);
1079	switch (task->state) {
1080	case ICE_AQ_TASK_WAITING:
1081		err = ret < 0 ? ret : -ETIMEDOUT;
1082		break;
1083	case ICE_AQ_TASK_CANCELED:
1084		err = ret < 0 ? ret : -ECANCELED;
1085		break;
1086	case ICE_AQ_TASK_COMPLETE:
1087		err = ret < 0 ? ret : 0;
1088		break;
1089	default:
1090		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1091		err = -EINVAL;
1092		break;
1093	}
1094
1095	spin_lock_bh(&pf->aq_wait_lock);
1096	hlist_del(&task->entry);
1097	spin_unlock_bh(&pf->aq_wait_lock);
1098	kfree(task);
1099
1100	return err;
1101}
1102
1103/**
1104 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1105 * @pf: pointer to the PF private structure
1106 * @opcode: the opcode of the event
1107 * @event: the event to check
1108 *
1109 * Loops over the current list of pending threads waiting for an AdminQ event.
1110 * For each matching task, copy the contents of the event into the task
1111 * structure and wake up the thread.
1112 *
1113 * If multiple threads wait for the same opcode, they will all be woken up.
1114 *
1115 * Note that event->msg_buf will only be duplicated if the event has a buffer
1116 * with enough space already allocated. Otherwise, only the descriptor and
1117 * message length will be copied.
1118 *
1119 * Returns: true if an event was found, false otherwise
1120 */
1121static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1122				struct ice_rq_event_info *event)
1123{
1124	struct ice_aq_task *task;
1125	bool found = false;
1126
1127	spin_lock_bh(&pf->aq_wait_lock);
1128	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1129		if (task->state || task->opcode != opcode)
1130			continue;
1131
1132		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1133		task->event->msg_len = event->msg_len;
1134
1135		/* Only copy the data buffer if a destination was set */
1136		if (task->event->msg_buf &&
1137		    task->event->buf_len > event->buf_len) {
1138			memcpy(task->event->msg_buf, event->msg_buf,
1139			       event->buf_len);
1140			task->event->buf_len = event->buf_len;
1141		}
1142
1143		task->state = ICE_AQ_TASK_COMPLETE;
1144		found = true;
1145	}
1146	spin_unlock_bh(&pf->aq_wait_lock);
1147
1148	if (found)
1149		wake_up(&pf->aq_wait_queue);
1150}
1151
1152/**
1153 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1154 * @pf: the PF private structure
1155 *
1156 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1157 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1158 */
1159static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1160{
1161	struct ice_aq_task *task;
1162
1163	spin_lock_bh(&pf->aq_wait_lock);
1164	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1165		task->state = ICE_AQ_TASK_CANCELED;
1166	spin_unlock_bh(&pf->aq_wait_lock);
1167
1168	wake_up(&pf->aq_wait_queue);
1169}
1170
1171/**
1172 * __ice_clean_ctrlq - helper function to clean controlq rings
1173 * @pf: ptr to struct ice_pf
1174 * @q_type: specific Control queue type
1175 */
1176static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1177{
1178	struct device *dev = ice_pf_to_dev(pf);
1179	struct ice_rq_event_info event;
1180	struct ice_hw *hw = &pf->hw;
1181	struct ice_ctl_q_info *cq;
1182	u16 pending, i = 0;
1183	const char *qtype;
1184	u32 oldval, val;
1185
1186	/* Do not clean control queue if/when PF reset fails */
1187	if (test_bit(__ICE_RESET_FAILED, pf->state))
1188		return 0;
1189
1190	switch (q_type) {
1191	case ICE_CTL_Q_ADMIN:
1192		cq = &hw->adminq;
1193		qtype = "Admin";
1194		break;
1195	case ICE_CTL_Q_MAILBOX:
1196		cq = &hw->mailboxq;
1197		qtype = "Mailbox";
1198		break;
1199	default:
1200		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
 
1201		return 0;
1202	}
1203
1204	/* check for error indications - PF_xx_AxQLEN register layout for
1205	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1206	 */
1207	val = rd32(hw, cq->rq.len);
1208	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1209		   PF_FW_ARQLEN_ARQCRIT_M)) {
1210		oldval = val;
1211		if (val & PF_FW_ARQLEN_ARQVFE_M)
1212			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1213				qtype);
1214		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1215			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
 
1216				qtype);
1217		}
1218		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1219			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
 
1220				qtype);
1221		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1222			 PF_FW_ARQLEN_ARQCRIT_M);
1223		if (oldval != val)
1224			wr32(hw, cq->rq.len, val);
1225	}
1226
1227	val = rd32(hw, cq->sq.len);
1228	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1229		   PF_FW_ATQLEN_ATQCRIT_M)) {
1230		oldval = val;
1231		if (val & PF_FW_ATQLEN_ATQVFE_M)
1232			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1233				qtype);
1234		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1235			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
 
1236				qtype);
1237		}
1238		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1239			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
 
1240				qtype);
1241		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1242			 PF_FW_ATQLEN_ATQCRIT_M);
1243		if (oldval != val)
1244			wr32(hw, cq->sq.len, val);
1245	}
1246
1247	event.buf_len = cq->rq_buf_size;
1248	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
 
1249	if (!event.msg_buf)
1250		return 0;
1251
1252	do {
1253		enum ice_status ret;
1254		u16 opcode;
1255
1256		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1257		if (ret == ICE_ERR_AQ_NO_WORK)
1258			break;
1259		if (ret) {
1260			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1261				ice_stat_str(ret));
 
1262			break;
1263		}
1264
1265		opcode = le16_to_cpu(event.desc.opcode);
1266
1267		/* Notify any thread that might be waiting for this event */
1268		ice_aq_check_events(pf, opcode, &event);
1269
1270		switch (opcode) {
1271		case ice_aqc_opc_get_link_status:
1272			if (ice_handle_link_event(pf, &event))
1273				dev_err(dev, "Could not handle link event\n");
1274			break;
1275		case ice_aqc_opc_event_lan_overflow:
1276			ice_vf_lan_overflow_event(pf, &event);
1277			break;
1278		case ice_mbx_opc_send_msg_to_pf:
1279			ice_vc_process_vf_msg(pf, &event);
1280			break;
1281		case ice_aqc_opc_fw_logging:
1282			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1283			break;
1284		case ice_aqc_opc_lldp_set_mib_change:
1285			ice_dcb_process_lldp_set_mib_change(pf, &event);
1286			break;
1287		default:
1288			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
 
1289				qtype, opcode);
1290			break;
1291		}
1292	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1293
1294	kfree(event.msg_buf);
1295
1296	return pending && (i == ICE_DFLT_IRQ_WORK);
1297}
1298
1299/**
1300 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1301 * @hw: pointer to hardware info
1302 * @cq: control queue information
1303 *
1304 * returns true if there are pending messages in a queue, false if there aren't
1305 */
1306static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1307{
1308	u16 ntu;
1309
1310	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1311	return cq->rq.next_to_clean != ntu;
1312}
1313
1314/**
1315 * ice_clean_adminq_subtask - clean the AdminQ rings
1316 * @pf: board private structure
1317 */
1318static void ice_clean_adminq_subtask(struct ice_pf *pf)
1319{
1320	struct ice_hw *hw = &pf->hw;
 
1321
1322	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1323		return;
1324
1325	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1326		return;
1327
1328	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1329
1330	/* There might be a situation where new messages arrive to a control
1331	 * queue between processing the last message and clearing the
1332	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1333	 * ice_ctrlq_pending) and process new messages if any.
1334	 */
1335	if (ice_ctrlq_pending(hw, &hw->adminq))
1336		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1337
1338	ice_flush(hw);
1339}
1340
1341/**
1342 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1343 * @pf: board private structure
1344 */
1345static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1346{
1347	struct ice_hw *hw = &pf->hw;
1348
1349	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1350		return;
1351
1352	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1353		return;
1354
1355	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1356
1357	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1358		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1359
1360	ice_flush(hw);
1361}
1362
1363/**
1364 * ice_service_task_schedule - schedule the service task to wake up
1365 * @pf: board private structure
1366 *
1367 * If not already scheduled, this puts the task into the work queue.
1368 */
1369void ice_service_task_schedule(struct ice_pf *pf)
1370{
1371	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1372	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1373	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1374		queue_work(ice_wq, &pf->serv_task);
1375}
1376
1377/**
1378 * ice_service_task_complete - finish up the service task
1379 * @pf: board private structure
1380 */
1381static void ice_service_task_complete(struct ice_pf *pf)
1382{
1383	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1384
1385	/* force memory (pf->state) to sync before next service task */
1386	smp_mb__before_atomic();
1387	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1388}
1389
1390/**
1391 * ice_service_task_stop - stop service task and cancel works
1392 * @pf: board private structure
1393 *
1394 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1395 * 1 otherwise.
1396 */
1397static int ice_service_task_stop(struct ice_pf *pf)
1398{
1399	int ret;
1400
1401	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1402
1403	if (pf->serv_tmr.function)
1404		del_timer_sync(&pf->serv_tmr);
1405	if (pf->serv_task.func)
1406		cancel_work_sync(&pf->serv_task);
1407
1408	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1409	return ret;
1410}
1411
1412/**
1413 * ice_service_task_restart - restart service task and schedule works
1414 * @pf: board private structure
1415 *
1416 * This function is needed for suspend and resume works (e.g WoL scenario)
1417 */
1418static void ice_service_task_restart(struct ice_pf *pf)
1419{
1420	clear_bit(__ICE_SERVICE_DIS, pf->state);
1421	ice_service_task_schedule(pf);
1422}
1423
1424/**
1425 * ice_service_timer - timer callback to schedule service task
1426 * @t: pointer to timer_list
1427 */
1428static void ice_service_timer(struct timer_list *t)
1429{
1430	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1431
1432	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1433	ice_service_task_schedule(pf);
1434}
1435
1436/**
1437 * ice_handle_mdd_event - handle malicious driver detect event
1438 * @pf: pointer to the PF structure
1439 *
1440 * Called from service task. OICR interrupt handler indicates MDD event.
1441 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1442 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1443 * disable the queue, the PF can be configured to reset the VF using ethtool
1444 * private flag mdd-auto-reset-vf.
1445 */
1446static void ice_handle_mdd_event(struct ice_pf *pf)
1447{
1448	struct device *dev = ice_pf_to_dev(pf);
1449	struct ice_hw *hw = &pf->hw;
1450	unsigned int i;
1451	u32 reg;
1452
1453	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1454		/* Since the VF MDD event logging is rate limited, check if
1455		 * there are pending MDD events.
1456		 */
1457		ice_print_vfs_mdd_events(pf);
1458		return;
1459	}
1460
1461	/* find what triggered an MDD event */
1462	reg = rd32(hw, GL_MDET_TX_PQM);
1463	if (reg & GL_MDET_TX_PQM_VALID_M) {
1464		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1465				GL_MDET_TX_PQM_PF_NUM_S;
1466		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1467				GL_MDET_TX_PQM_VF_NUM_S;
1468		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1469				GL_MDET_TX_PQM_MAL_TYPE_S;
1470		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1471				GL_MDET_TX_PQM_QNUM_S);
1472
1473		if (netif_msg_tx_err(pf))
1474			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1475				 event, queue, pf_num, vf_num);
1476		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1477	}
1478
1479	reg = rd32(hw, GL_MDET_TX_TCLAN);
1480	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1481		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1482				GL_MDET_TX_TCLAN_PF_NUM_S;
1483		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1484				GL_MDET_TX_TCLAN_VF_NUM_S;
1485		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1486				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1487		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1488				GL_MDET_TX_TCLAN_QNUM_S);
1489
1490		if (netif_msg_tx_err(pf))
1491			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492				 event, queue, pf_num, vf_num);
1493		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1494	}
1495
1496	reg = rd32(hw, GL_MDET_RX);
1497	if (reg & GL_MDET_RX_VALID_M) {
1498		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1499				GL_MDET_RX_PF_NUM_S;
1500		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1501				GL_MDET_RX_VF_NUM_S;
1502		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1503				GL_MDET_RX_MAL_TYPE_S;
1504		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1505				GL_MDET_RX_QNUM_S);
1506
1507		if (netif_msg_rx_err(pf))
1508			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1509				 event, queue, pf_num, vf_num);
1510		wr32(hw, GL_MDET_RX, 0xffffffff);
1511	}
1512
1513	/* check to see if this PF caused an MDD event */
1514	reg = rd32(hw, PF_MDET_TX_PQM);
1515	if (reg & PF_MDET_TX_PQM_VALID_M) {
1516		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1517		if (netif_msg_tx_err(pf))
1518			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1519	}
1520
1521	reg = rd32(hw, PF_MDET_TX_TCLAN);
1522	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1523		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1524		if (netif_msg_tx_err(pf))
1525			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1526	}
1527
1528	reg = rd32(hw, PF_MDET_RX);
1529	if (reg & PF_MDET_RX_VALID_M) {
1530		wr32(hw, PF_MDET_RX, 0xFFFF);
1531		if (netif_msg_rx_err(pf))
1532			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1533	}
1534
1535	/* Check to see if one of the VFs caused an MDD event, and then
1536	 * increment counters and set print pending
1537	 */
1538	ice_for_each_vf(pf, i) {
1539		struct ice_vf *vf = &pf->vf[i];
1540
1541		reg = rd32(hw, VP_MDET_TX_PQM(i));
1542		if (reg & VP_MDET_TX_PQM_VALID_M) {
1543			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1544			vf->mdd_tx_events.count++;
1545			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1546			if (netif_msg_tx_err(pf))
1547				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1548					 i);
1549		}
1550
1551		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1552		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1553			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1554			vf->mdd_tx_events.count++;
1555			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1556			if (netif_msg_tx_err(pf))
1557				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1558					 i);
1559		}
1560
1561		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1562		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1563			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1564			vf->mdd_tx_events.count++;
1565			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1566			if (netif_msg_tx_err(pf))
1567				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1568					 i);
1569		}
1570
1571		reg = rd32(hw, VP_MDET_RX(i));
1572		if (reg & VP_MDET_RX_VALID_M) {
1573			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1574			vf->mdd_rx_events.count++;
1575			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1576			if (netif_msg_rx_err(pf))
1577				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1578					 i);
1579
1580			/* Since the queue is disabled on VF Rx MDD events, the
1581			 * PF can be configured to reset the VF through ethtool
1582			 * private flag mdd-auto-reset-vf.
1583			 */
1584			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1585				/* VF MDD event counters will be cleared by
1586				 * reset, so print the event prior to reset.
1587				 */
1588				ice_print_vf_rx_mdd_event(vf);
1589				ice_reset_vf(&pf->vf[i], false);
1590			}
1591		}
1592	}
1593
1594	ice_print_vfs_mdd_events(pf);
1595}
1596
1597/**
1598 * ice_force_phys_link_state - Force the physical link state
1599 * @vsi: VSI to force the physical link state to up/down
1600 * @link_up: true/false indicates to set the physical link to up/down
1601 *
1602 * Force the physical link state by getting the current PHY capabilities from
1603 * hardware and setting the PHY config based on the determined capabilities. If
1604 * link changes a link event will be triggered because both the Enable Automatic
1605 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1606 *
1607 * Returns 0 on success, negative on failure
1608 */
1609static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1610{
1611	struct ice_aqc_get_phy_caps_data *pcaps;
1612	struct ice_aqc_set_phy_cfg_data *cfg;
1613	struct ice_port_info *pi;
1614	struct device *dev;
1615	int retcode;
1616
1617	if (!vsi || !vsi->port_info || !vsi->back)
1618		return -EINVAL;
1619	if (vsi->type != ICE_VSI_PF)
1620		return 0;
1621
1622	dev = ice_pf_to_dev(vsi->back);
1623
1624	pi = vsi->port_info;
1625
1626	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1627	if (!pcaps)
1628		return -ENOMEM;
1629
1630	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1631				      NULL);
1632	if (retcode) {
1633		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1634			vsi->vsi_num, retcode);
1635		retcode = -EIO;
1636		goto out;
1637	}
1638
1639	/* No change in link */
1640	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1641	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1642		goto out;
1643
1644	/* Use the current user PHY configuration. The current user PHY
1645	 * configuration is initialized during probe from PHY capabilities
1646	 * software mode, and updated on set PHY configuration.
1647	 */
1648	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1649	if (!cfg) {
1650		retcode = -ENOMEM;
1651		goto out;
1652	}
1653
1654	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1655	if (link_up)
1656		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1657	else
1658		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1659
1660	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1661	if (retcode) {
1662		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1663			vsi->vsi_num, retcode);
1664		retcode = -EIO;
1665	}
1666
1667	kfree(cfg);
1668out:
1669	kfree(pcaps);
1670	return retcode;
1671}
1672
1673/**
1674 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1675 * @pi: port info structure
1676 *
1677 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1678 */
1679static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1680{
1681	struct ice_aqc_get_phy_caps_data *pcaps;
1682	struct ice_pf *pf = pi->hw->back;
1683	enum ice_status status;
1684	int err = 0;
1685
1686	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1687	if (!pcaps)
1688		return -ENOMEM;
1689
1690	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1691				     NULL);
1692
1693	if (status) {
1694		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1695		err = -EIO;
1696		goto out;
1697	}
1698
1699	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1700	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1701
1702out:
1703	kfree(pcaps);
1704	return err;
1705}
1706
1707/**
1708 * ice_init_link_dflt_override - Initialize link default override
1709 * @pi: port info structure
1710 *
1711 * Initialize link default override and PHY total port shutdown during probe
1712 */
1713static void ice_init_link_dflt_override(struct ice_port_info *pi)
1714{
1715	struct ice_link_default_override_tlv *ldo;
1716	struct ice_pf *pf = pi->hw->back;
1717
1718	ldo = &pf->link_dflt_override;
1719	if (ice_get_link_default_override(ldo, pi))
1720		return;
1721
1722	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1723		return;
1724
1725	/* Enable Total Port Shutdown (override/replace link-down-on-close
1726	 * ethtool private flag) for ports with Port Disable bit set.
1727	 */
1728	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1729	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1730}
1731
1732/**
1733 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1734 * @pi: port info structure
1735 *
1736 * If default override is enabled, initialized the user PHY cfg speed and FEC
1737 * settings using the default override mask from the NVM.
1738 *
1739 * The PHY should only be configured with the default override settings the
1740 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1741 * is used to indicate that the user PHY cfg default override is initialized
1742 * and the PHY has not been configured with the default override settings. The
1743 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1744 * configured.
1745 */
1746static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1747{
1748	struct ice_link_default_override_tlv *ldo;
1749	struct ice_aqc_set_phy_cfg_data *cfg;
1750	struct ice_phy_info *phy = &pi->phy;
1751	struct ice_pf *pf = pi->hw->back;
1752
1753	ldo = &pf->link_dflt_override;
1754
1755	/* If link default override is enabled, use to mask NVM PHY capabilities
1756	 * for speed and FEC default configuration.
1757	 */
1758	cfg = &phy->curr_user_phy_cfg;
1759
1760	if (ldo->phy_type_low || ldo->phy_type_high) {
1761		cfg->phy_type_low = pf->nvm_phy_type_lo &
1762				    cpu_to_le64(ldo->phy_type_low);
1763		cfg->phy_type_high = pf->nvm_phy_type_hi &
1764				     cpu_to_le64(ldo->phy_type_high);
1765	}
1766	cfg->link_fec_opt = ldo->fec_options;
1767	phy->curr_user_fec_req = ICE_FEC_AUTO;
1768
1769	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1770}
1771
1772/**
1773 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1774 * @pi: port info structure
1775 *
1776 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1777 * mode to default. The PHY defaults are from get PHY capabilities topology
1778 * with media so call when media is first available. An error is returned if
1779 * called when media is not available. The PHY initialization completed state is
1780 * set here.
1781 *
1782 * These configurations are used when setting PHY
1783 * configuration. The user PHY configuration is updated on set PHY
1784 * configuration. Returns 0 on success, negative on failure
1785 */
1786static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1787{
1788	struct ice_aqc_get_phy_caps_data *pcaps;
1789	struct ice_phy_info *phy = &pi->phy;
1790	struct ice_pf *pf = pi->hw->back;
1791	enum ice_status status;
1792	struct ice_vsi *vsi;
1793	int err = 0;
1794
1795	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1796		return -EIO;
1797
1798	vsi = ice_get_main_vsi(pf);
1799	if (!vsi)
1800		return -EINVAL;
1801
1802	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1803	if (!pcaps)
1804		return -ENOMEM;
1805
1806	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1807				     NULL);
1808	if (status) {
1809		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1810		err = -EIO;
1811		goto err_out;
1812	}
1813
1814	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1815
1816	/* check if lenient mode is supported and enabled */
1817	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1818	    !(pcaps->module_compliance_enforcement &
1819	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1820		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1821
1822		/* if link default override is enabled, initialize user PHY
1823		 * configuration with link default override values
1824		 */
1825		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
1826			ice_init_phy_cfg_dflt_override(pi);
1827			goto out;
1828		}
1829	}
1830
1831	/* if link default override is not enabled, initialize PHY using
1832	 * topology with media
1833	 */
1834	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1835						      pcaps->link_fec_options);
1836	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1837
1838out:
1839	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1840	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1841err_out:
1842	kfree(pcaps);
1843	return err;
1844}
1845
1846/**
1847 * ice_configure_phy - configure PHY
1848 * @vsi: VSI of PHY
1849 *
1850 * Set the PHY configuration. If the current PHY configuration is the same as
1851 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1852 * configure the based get PHY capabilities for topology with media.
1853 */
1854static int ice_configure_phy(struct ice_vsi *vsi)
1855{
1856	struct device *dev = ice_pf_to_dev(vsi->back);
1857	struct ice_aqc_get_phy_caps_data *pcaps;
1858	struct ice_aqc_set_phy_cfg_data *cfg;
1859	struct ice_port_info *pi;
1860	enum ice_status status;
1861	int err = 0;
1862
1863	pi = vsi->port_info;
1864	if (!pi)
1865		return -EINVAL;
1866
1867	/* Ensure we have media as we cannot configure a medialess port */
1868	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1869		return -EPERM;
1870
1871	ice_print_topo_conflict(vsi);
1872
1873	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1874	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1875		return -EPERM;
1876
1877	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1878		return ice_force_phys_link_state(vsi, true);
1879
1880	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1881	if (!pcaps)
1882		return -ENOMEM;
1883
1884	/* Get current PHY config */
1885	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1886				     NULL);
1887	if (status) {
1888		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1889			vsi->vsi_num, ice_stat_str(status));
1890		err = -EIO;
1891		goto done;
1892	}
1893
1894	/* If PHY enable link is configured and configuration has not changed,
1895	 * there's nothing to do
1896	 */
1897	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1898	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1899		goto done;
1900
1901	/* Use PHY topology as baseline for configuration */
1902	memset(pcaps, 0, sizeof(*pcaps));
1903	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1904				     NULL);
1905	if (status) {
1906		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1907			vsi->vsi_num, ice_stat_str(status));
1908		err = -EIO;
1909		goto done;
1910	}
1911
1912	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1913	if (!cfg) {
1914		err = -ENOMEM;
1915		goto done;
1916	}
1917
1918	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1919
1920	/* Speed - If default override pending, use curr_user_phy_cfg set in
1921	 * ice_init_phy_user_cfg_ldo.
1922	 */
1923	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1924			       vsi->back->state)) {
1925		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1926		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1927	} else {
1928		u64 phy_low = 0, phy_high = 0;
1929
1930		ice_update_phy_type(&phy_low, &phy_high,
1931				    pi->phy.curr_user_speed_req);
1932		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1933		cfg->phy_type_high = pcaps->phy_type_high &
1934				     cpu_to_le64(phy_high);
1935	}
1936
1937	/* Can't provide what was requested; use PHY capabilities */
1938	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1939		cfg->phy_type_low = pcaps->phy_type_low;
1940		cfg->phy_type_high = pcaps->phy_type_high;
1941	}
1942
1943	/* FEC */
1944	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1945
1946	/* Can't provide what was requested; use PHY capabilities */
1947	if (cfg->link_fec_opt !=
1948	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1949		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1950		cfg->link_fec_opt = pcaps->link_fec_options;
1951	}
1952
1953	/* Flow Control - always supported; no need to check against
1954	 * capabilities
1955	 */
1956	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1957
1958	/* Enable link and link update */
1959	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1960
1961	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1962	if (status) {
1963		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1964			vsi->vsi_num, ice_stat_str(status));
1965		err = -EIO;
1966	}
1967
1968	kfree(cfg);
1969done:
1970	kfree(pcaps);
1971	return err;
1972}
1973
1974/**
1975 * ice_check_media_subtask - Check for media
1976 * @pf: pointer to PF struct
1977 *
1978 * If media is available, then initialize PHY user configuration if it is not
1979 * been, and configure the PHY if the interface is up.
1980 */
1981static void ice_check_media_subtask(struct ice_pf *pf)
1982{
1983	struct ice_port_info *pi;
1984	struct ice_vsi *vsi;
1985	int err;
1986
1987	/* No need to check for media if it's already present */
1988	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1989		return;
1990
1991	vsi = ice_get_main_vsi(pf);
1992	if (!vsi)
1993		return;
1994
1995	/* Refresh link info and check if media is present */
1996	pi = vsi->port_info;
1997	err = ice_update_link_info(pi);
1998	if (err)
1999		return;
2000
2001	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2002		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2003			ice_init_phy_user_cfg(pi);
2004
2005		/* PHY settings are reset on media insertion, reconfigure
2006		 * PHY to preserve settings.
2007		 */
2008		if (test_bit(__ICE_DOWN, vsi->state) &&
2009		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2010			return;
2011
2012		err = ice_configure_phy(vsi);
2013		if (!err)
2014			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2015
2016		/* A Link Status Event will be generated; the event handler
2017		 * will complete bringing the interface up
2018		 */
2019	}
2020}
2021
2022/**
2023 * ice_service_task - manage and run subtasks
2024 * @work: pointer to work_struct contained by the PF struct
2025 */
2026static void ice_service_task(struct work_struct *work)
2027{
2028	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2029	unsigned long start_time = jiffies;
2030
2031	/* subtasks */
2032
2033	/* process reset requests first */
2034	ice_reset_subtask(pf);
2035
2036	/* bail if a reset/recovery cycle is pending or rebuild failed */
2037	if (ice_is_reset_in_progress(pf->state) ||
2038	    test_bit(__ICE_SUSPENDED, pf->state) ||
2039	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2040		ice_service_task_complete(pf);
2041		return;
2042	}
2043
2044	ice_clean_adminq_subtask(pf);
2045	ice_check_media_subtask(pf);
2046	ice_check_for_hang_subtask(pf);
2047	ice_sync_fltr_subtask(pf);
2048	ice_handle_mdd_event(pf);
2049	ice_watchdog_subtask(pf);
 
2050
2051	if (ice_is_safe_mode(pf)) {
2052		ice_service_task_complete(pf);
2053		return;
2054	}
2055
2056	ice_process_vflr_event(pf);
2057	ice_clean_mailboxq_subtask(pf);
2058	ice_sync_arfs_fltrs(pf);
2059	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
2060	ice_service_task_complete(pf);
2061
2062	/* If the tasks have taken longer than one service timer period
2063	 * or there is more work to be done, reset the service timer to
2064	 * schedule the service task now.
2065	 */
2066	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2067	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2068	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2069	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2070	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
2071		mod_timer(&pf->serv_tmr, jiffies);
2072}
2073
2074/**
2075 * ice_set_ctrlq_len - helper function to set controlq length
2076 * @hw: pointer to the HW instance
2077 */
2078static void ice_set_ctrlq_len(struct ice_hw *hw)
2079{
2080	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2081	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2082	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2083	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2084	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2085	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2086	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2087	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2088}
2089
2090/**
2091 * ice_schedule_reset - schedule a reset
2092 * @pf: board private structure
2093 * @reset: reset being requested
2094 */
2095int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2096{
2097	struct device *dev = ice_pf_to_dev(pf);
2098
2099	/* bail out if earlier reset has failed */
2100	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2101		dev_dbg(dev, "earlier reset has failed\n");
2102		return -EIO;
2103	}
2104	/* bail if reset/recovery already in progress */
2105	if (ice_is_reset_in_progress(pf->state)) {
2106		dev_dbg(dev, "Reset already in progress\n");
2107		return -EBUSY;
2108	}
2109
2110	switch (reset) {
2111	case ICE_RESET_PFR:
2112		set_bit(__ICE_PFR_REQ, pf->state);
2113		break;
2114	case ICE_RESET_CORER:
2115		set_bit(__ICE_CORER_REQ, pf->state);
2116		break;
2117	case ICE_RESET_GLOBR:
2118		set_bit(__ICE_GLOBR_REQ, pf->state);
2119		break;
2120	default:
2121		return -EINVAL;
2122	}
2123
2124	ice_service_task_schedule(pf);
2125	return 0;
2126}
2127
2128/**
2129 * ice_irq_affinity_notify - Callback for affinity changes
2130 * @notify: context as to what irq was changed
2131 * @mask: the new affinity mask
2132 *
2133 * This is a callback function used by the irq_set_affinity_notifier function
2134 * so that we may register to receive changes to the irq affinity masks.
2135 */
2136static void
2137ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2138			const cpumask_t *mask)
2139{
2140	struct ice_q_vector *q_vector =
2141		container_of(notify, struct ice_q_vector, affinity_notify);
2142
2143	cpumask_copy(&q_vector->affinity_mask, mask);
2144}
2145
2146/**
2147 * ice_irq_affinity_release - Callback for affinity notifier release
2148 * @ref: internal core kernel usage
2149 *
2150 * This is a callback function used by the irq_set_affinity_notifier function
2151 * to inform the current notification subscriber that they will no longer
2152 * receive notifications.
2153 */
2154static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2155
2156/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2158 * @vsi: the VSI being configured
2159 */
2160static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2161{
2162	struct ice_hw *hw = &vsi->back->hw;
2163	int i;
2164
2165	ice_for_each_q_vector(vsi, i)
2166		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
 
 
 
 
2167
2168	ice_flush(hw);
2169	return 0;
2170}
2171
2172/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2173 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2174 * @vsi: the VSI being configured
2175 * @basename: name for the vector
2176 */
2177static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2178{
2179	int q_vectors = vsi->num_q_vectors;
2180	struct ice_pf *pf = vsi->back;
2181	int base = vsi->base_vector;
2182	struct device *dev;
2183	int rx_int_idx = 0;
2184	int tx_int_idx = 0;
2185	int vector, err;
2186	int irq_num;
2187
2188	dev = ice_pf_to_dev(pf);
2189	for (vector = 0; vector < q_vectors; vector++) {
2190		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2191
2192		irq_num = pf->msix_entries[base + vector].vector;
2193
2194		if (q_vector->tx.ring && q_vector->rx.ring) {
2195			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2196				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2197			tx_int_idx++;
2198		} else if (q_vector->rx.ring) {
2199			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2200				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2201		} else if (q_vector->tx.ring) {
2202			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2203				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2204		} else {
2205			/* skip this unused q_vector */
2206			continue;
2207		}
2208		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2209				       q_vector->name, q_vector);
 
 
2210		if (err) {
2211			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2212				   err);
2213			goto free_q_irqs;
2214		}
2215
2216		/* register for affinity change notifications */
2217		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2218			struct irq_affinity_notify *affinity_notify;
2219
2220			affinity_notify = &q_vector->affinity_notify;
2221			affinity_notify->notify = ice_irq_affinity_notify;
2222			affinity_notify->release = ice_irq_affinity_release;
2223			irq_set_affinity_notifier(irq_num, affinity_notify);
2224		}
2225
2226		/* assign the mask for this irq */
2227		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2228	}
2229
2230	vsi->irqs_ready = true;
2231	return 0;
2232
2233free_q_irqs:
2234	while (vector) {
2235		vector--;
2236		irq_num = pf->msix_entries[base + vector].vector;
2237		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2238			irq_set_affinity_notifier(irq_num, NULL);
2239		irq_set_affinity_hint(irq_num, NULL);
2240		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2241	}
2242	return err;
2243}
2244
2245/**
2246 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2247 * @vsi: VSI to setup Tx rings used by XDP
2248 *
2249 * Return 0 on success and negative value on error
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2250 */
2251static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2252{
2253	struct device *dev = ice_pf_to_dev(vsi->back);
 
 
 
 
2254	int i;
2255
2256	for (i = 0; i < vsi->num_xdp_txq; i++) {
2257		u16 xdp_q_idx = vsi->alloc_txq + i;
2258		struct ice_ring *xdp_ring;
2259
2260		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2261
2262		if (!xdp_ring)
2263			goto free_xdp_rings;
2264
2265		xdp_ring->q_index = xdp_q_idx;
2266		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2267		xdp_ring->ring_active = false;
2268		xdp_ring->vsi = vsi;
2269		xdp_ring->netdev = NULL;
2270		xdp_ring->dev = dev;
2271		xdp_ring->count = vsi->num_tx_desc;
2272		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2273		if (ice_setup_tx_ring(xdp_ring))
2274			goto free_xdp_rings;
2275		ice_set_ring_xdp(xdp_ring);
2276		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
2277	}
2278
2279	return 0;
 
 
 
2280
2281free_xdp_rings:
2282	for (; i >= 0; i--)
2283		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2284			ice_free_tx_ring(vsi->xdp_rings[i]);
2285	return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2286}
2287
2288/**
2289 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2290 * @vsi: VSI to set the bpf prog on
2291 * @prog: the bpf prog pointer
2292 */
2293static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2294{
2295	struct bpf_prog *old_prog;
2296	int i;
2297
2298	old_prog = xchg(&vsi->xdp_prog, prog);
2299	if (old_prog)
2300		bpf_prog_put(old_prog);
 
 
 
 
 
 
 
 
2301
2302	ice_for_each_rxq(vsi, i)
2303		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
 
 
2304}
2305
2306/**
2307 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2308 * @vsi: VSI to bring up Tx rings used by XDP
2309 * @prog: bpf program that will be assigned to VSI
2310 *
2311 * Return 0 on success and negative value on error
 
2312 */
2313int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2314{
2315	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2316	int xdp_rings_rem = vsi->num_xdp_txq;
2317	struct ice_pf *pf = vsi->back;
2318	struct ice_qs_cfg xdp_qs_cfg = {
2319		.qs_mutex = &pf->avail_q_mutex,
2320		.pf_map = pf->avail_txqs,
2321		.pf_map_size = pf->max_pf_txqs,
2322		.q_count = vsi->num_xdp_txq,
2323		.scatter_count = ICE_MAX_SCATTER_TXQS,
2324		.vsi_map = vsi->txq_map,
2325		.vsi_map_offset = vsi->alloc_txq,
2326		.mapping_mode = ICE_VSI_MAP_CONTIG
2327	};
2328	enum ice_status status;
2329	struct device *dev;
2330	int i, v_idx;
2331
2332	dev = ice_pf_to_dev(pf);
2333	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2334				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2335	if (!vsi->xdp_rings)
2336		return -ENOMEM;
2337
2338	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2339	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2340		goto err_map_xdp;
 
 
 
 
2341
2342	if (ice_xdp_alloc_setup_rings(vsi))
2343		goto clear_xdp_rings;
 
 
 
 
 
 
2344
2345	/* follow the logic from ice_vsi_map_rings_to_vectors */
2346	ice_for_each_q_vector(vsi, v_idx) {
2347		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2348		int xdp_rings_per_v, q_id, q_base;
2349
2350		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2351					       vsi->num_q_vectors - v_idx);
2352		q_base = vsi->num_xdp_txq - xdp_rings_rem;
 
 
 
 
 
2353
2354		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2355			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2356
2357			xdp_ring->q_vector = q_vector;
2358			xdp_ring->next = q_vector->tx.ring;
2359			q_vector->tx.ring = xdp_ring;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360		}
2361		xdp_rings_rem -= xdp_rings_per_v;
2362	}
2363
2364	/* omit the scheduler update if in reset path; XDP queues will be
2365	 * taken into account at the end of ice_vsi_rebuild, where
2366	 * ice_cfg_vsi_lan is being called
2367	 */
2368	if (ice_is_reset_in_progress(pf->state))
2369		return 0;
2370
2371	/* tell the Tx scheduler that right now we have
2372	 * additional queues
2373	 */
2374	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2375		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
 
 
2376
2377	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2378				 max_txqs);
2379	if (status) {
2380		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2381			ice_stat_str(status));
2382		goto clear_xdp_rings;
 
2383	}
2384	ice_vsi_assign_bpf_prog(vsi, prog);
2385
2386	return 0;
2387clear_xdp_rings:
2388	for (i = 0; i < vsi->num_xdp_txq; i++)
2389		if (vsi->xdp_rings[i]) {
2390			kfree_rcu(vsi->xdp_rings[i], rcu);
2391			vsi->xdp_rings[i] = NULL;
2392		}
2393
2394err_map_xdp:
2395	mutex_lock(&pf->avail_q_mutex);
2396	for (i = 0; i < vsi->num_xdp_txq; i++) {
2397		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2398		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2399	}
2400	mutex_unlock(&pf->avail_q_mutex);
2401
2402	devm_kfree(dev, vsi->xdp_rings);
2403	return -ENOMEM;
2404}
2405
2406/**
2407 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2408 * @vsi: VSI to remove XDP rings
2409 *
2410 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2411 * resources
2412 */
2413int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2414{
2415	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2416	struct ice_pf *pf = vsi->back;
2417	int i, v_idx;
2418
2419	/* q_vectors are freed in reset path so there's no point in detaching
2420	 * rings; in case of rebuild being triggered not from reset reset bits
2421	 * in pf->state won't be set, so additionally check first q_vector
2422	 * against NULL
2423	 */
2424	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2425		goto free_qmap;
2426
2427	ice_for_each_q_vector(vsi, v_idx) {
2428		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2429		struct ice_ring *ring;
2430
2431		ice_for_each_ring(ring, q_vector->tx)
2432			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2433				break;
2434
2435		/* restore the value of last node prior to XDP setup */
2436		q_vector->tx.ring = ring;
2437	}
2438
2439free_qmap:
2440	mutex_lock(&pf->avail_q_mutex);
2441	for (i = 0; i < vsi->num_xdp_txq; i++) {
2442		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2443		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2444	}
2445	mutex_unlock(&pf->avail_q_mutex);
2446
2447	for (i = 0; i < vsi->num_xdp_txq; i++)
2448		if (vsi->xdp_rings[i]) {
2449			if (vsi->xdp_rings[i]->desc)
2450				ice_free_tx_ring(vsi->xdp_rings[i]);
2451			kfree_rcu(vsi->xdp_rings[i], rcu);
2452			vsi->xdp_rings[i] = NULL;
2453		}
2454
2455	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2456	vsi->xdp_rings = NULL;
2457
2458	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2459		return 0;
 
2460
2461	ice_vsi_assign_bpf_prog(vsi, NULL);
 
 
 
2462
2463	/* notify Tx scheduler that we destroyed XDP queues and bring
2464	 * back the old number of child nodes
2465	 */
2466	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2467		max_txqs[i] = vsi->num_txq;
 
 
 
 
2468
2469	/* change number of XDP Tx queues to 0 */
2470	vsi->num_xdp_txq = 0;
2471
2472	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2473			       max_txqs);
 
2474}
2475
2476/**
2477 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2478 * @vsi: VSI to setup XDP for
2479 * @prog: XDP program
2480 * @extack: netlink extended ack
2481 */
2482static int
2483ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2484		   struct netlink_ext_ack *extack)
2485{
2486	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2487	bool if_running = netif_running(vsi->netdev);
2488	int ret = 0, xdp_ring_err = 0;
2489
2490	if (frame_size > vsi->rx_buf_len) {
2491		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2492		return -EOPNOTSUPP;
2493	}
2494
2495	/* need to stop netdev while setting up the program for Rx rings */
2496	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2497		ret = ice_down(vsi);
2498		if (ret) {
2499			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2500			return ret;
2501		}
2502	}
2503
2504	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2505		vsi->num_xdp_txq = vsi->alloc_rxq;
2506		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2507		if (xdp_ring_err)
2508			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2509	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2510		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2511		if (xdp_ring_err)
2512			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2513	} else {
2514		ice_vsi_assign_bpf_prog(vsi, prog);
2515	}
2516
2517	if (if_running)
2518		ret = ice_up(vsi);
2519
2520	if (!ret && prog && vsi->xsk_umems) {
2521		int i;
 
 
 
 
 
 
 
 
 
 
2522
2523		ice_for_each_rxq(vsi, i) {
2524			struct ice_ring *rx_ring = vsi->rx_rings[i];
2525
2526			if (rx_ring->xsk_umem)
2527				napi_schedule(&rx_ring->q_vector->napi);
 
 
 
2528		}
 
2529	}
2530
2531	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2532}
2533
2534/**
2535 * ice_xdp - implements XDP handler
2536 * @dev: netdevice
2537 * @xdp: XDP command
2538 */
2539static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2540{
2541	struct ice_netdev_priv *np = netdev_priv(dev);
2542	struct ice_vsi *vsi = np->vsi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2543
2544	if (vsi->type != ICE_VSI_PF) {
2545		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2546		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2547	}
2548
2549	switch (xdp->command) {
2550	case XDP_SETUP_PROG:
2551		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2552	case XDP_SETUP_XSK_UMEM:
2553		return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
2554					  xdp->xsk.queue_id);
2555	default:
2556		return -EINVAL;
2557	}
2558}
2559
2560/**
2561 * ice_ena_misc_vector - enable the non-queue interrupts
2562 * @pf: board private structure
2563 */
2564static void ice_ena_misc_vector(struct ice_pf *pf)
2565{
2566	struct ice_hw *hw = &pf->hw;
2567	u32 val;
2568
2569	/* Disable anti-spoof detection interrupt to prevent spurious event
2570	 * interrupts during a function reset. Anti-spoof functionally is
2571	 * still supported.
2572	 */
2573	val = rd32(hw, GL_MDCK_TX_TDPU);
2574	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2575	wr32(hw, GL_MDCK_TX_TDPU, val);
2576
2577	/* clear things first */
2578	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2579	rd32(hw, PFINT_OICR);		/* read to clear */
2580
2581	val = (PFINT_OICR_ECC_ERR_M |
 
 
2582	       PFINT_OICR_MAL_DETECT_M |
2583	       PFINT_OICR_GRST_M |
2584	       PFINT_OICR_PCI_EXCEPTION_M |
2585	       PFINT_OICR_VFLR_M |
2586	       PFINT_OICR_HMC_ERR_M |
2587	       PFINT_OICR_PE_CRITERR_M);
2588
2589	wr32(hw, PFINT_OICR_ENA, val);
2590
2591	/* SW_ITR_IDX = 0, but don't change INTENA */
2592	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2593	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2594}
2595
2596/**
2597 * ice_misc_intr - misc interrupt handler
2598 * @irq: interrupt number
2599 * @data: pointer to a q_vector
2600 */
2601static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2602{
2603	struct ice_pf *pf = (struct ice_pf *)data;
2604	struct ice_hw *hw = &pf->hw;
2605	irqreturn_t ret = IRQ_NONE;
2606	struct device *dev;
2607	u32 oicr, ena_mask;
2608
2609	dev = ice_pf_to_dev(pf);
2610	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2611	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2612
2613	oicr = rd32(hw, PFINT_OICR);
2614	ena_mask = rd32(hw, PFINT_OICR_ENA);
2615
2616	if (oicr & PFINT_OICR_SWINT_M) {
2617		ena_mask &= ~PFINT_OICR_SWINT_M;
2618		pf->sw_int_count++;
2619	}
2620
2621	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2622		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2623		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2624	}
2625	if (oicr & PFINT_OICR_VFLR_M) {
2626		/* disable any further VFLR event notifications */
2627		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2628			u32 reg = rd32(hw, PFINT_OICR_ENA);
2629
2630			reg &= ~PFINT_OICR_VFLR_M;
2631			wr32(hw, PFINT_OICR_ENA, reg);
2632		} else {
2633			ena_mask &= ~PFINT_OICR_VFLR_M;
2634			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2635		}
2636	}
2637
2638	if (oicr & PFINT_OICR_GRST_M) {
2639		u32 reset;
2640
2641		/* we have a reset warning */
2642		ena_mask &= ~PFINT_OICR_GRST_M;
2643		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2644			GLGEN_RSTAT_RESET_TYPE_S;
2645
2646		if (reset == ICE_RESET_CORER)
2647			pf->corer_count++;
2648		else if (reset == ICE_RESET_GLOBR)
2649			pf->globr_count++;
2650		else if (reset == ICE_RESET_EMPR)
2651			pf->empr_count++;
2652		else
2653			dev_dbg(dev, "Invalid reset type %d\n", reset);
2654
2655		/* If a reset cycle isn't already in progress, we set a bit in
2656		 * pf->state so that the service task can start a reset/rebuild.
2657		 * We also make note of which reset happened so that peer
2658		 * devices/drivers can be informed.
2659		 */
2660		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2661			if (reset == ICE_RESET_CORER)
2662				set_bit(__ICE_CORER_RECV, pf->state);
2663			else if (reset == ICE_RESET_GLOBR)
2664				set_bit(__ICE_GLOBR_RECV, pf->state);
2665			else
2666				set_bit(__ICE_EMPR_RECV, pf->state);
2667
2668			/* There are couple of different bits at play here.
2669			 * hw->reset_ongoing indicates whether the hardware is
2670			 * in reset. This is set to true when a reset interrupt
2671			 * is received and set back to false after the driver
2672			 * has determined that the hardware is out of reset.
2673			 *
2674			 * __ICE_RESET_OICR_RECV in pf->state indicates
2675			 * that a post reset rebuild is required before the
2676			 * driver is operational again. This is set above.
2677			 *
2678			 * As this is the start of the reset/rebuild cycle, set
2679			 * both to indicate that.
2680			 */
2681			hw->reset_ongoing = true;
2682		}
2683	}
2684
2685	if (oicr & PFINT_OICR_HMC_ERR_M) {
2686		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2687		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
 
2688			rd32(hw, PFHMC_ERRORINFO),
2689			rd32(hw, PFHMC_ERRORDATA));
2690	}
2691
2692	/* Report any remaining unexpected interrupts */
2693	oicr &= ena_mask;
2694	if (oicr) {
2695		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
 
2696		/* If a critical error is pending there is no choice but to
2697		 * reset the device.
2698		 */
2699		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2700			    PFINT_OICR_PCI_EXCEPTION_M |
2701			    PFINT_OICR_ECC_ERR_M)) {
2702			set_bit(__ICE_PFR_REQ, pf->state);
2703			ice_service_task_schedule(pf);
2704		}
 
2705	}
2706	ret = IRQ_HANDLED;
2707
2708	ice_service_task_schedule(pf);
2709	ice_irq_dynamic_ena(hw, NULL, NULL);
 
 
 
 
2710
2711	return ret;
2712}
2713
2714/**
2715 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2716 * @hw: pointer to HW structure
 
 
 
 
2717 */
2718static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2719{
2720	/* disable Admin queue Interrupt causes */
2721	wr32(hw, PFINT_FW_CTL,
2722	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2723
2724	/* disable Mailbox queue Interrupt causes */
2725	wr32(hw, PFINT_MBX_CTL,
2726	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2727
2728	/* disable Control queue Interrupt causes */
2729	wr32(hw, PFINT_OICR_CTL,
2730	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2731
2732	ice_flush(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2733}
2734
2735/**
2736 * ice_free_irq_msix_misc - Unroll misc vector setup
2737 * @pf: board private structure
 
 
2738 */
2739static void ice_free_irq_msix_misc(struct ice_pf *pf)
2740{
2741	struct ice_hw *hw = &pf->hw;
2742
2743	ice_dis_ctrlq_interrupts(hw);
 
 
 
 
 
 
 
 
 
 
 
 
2744
2745	/* disable OICR interrupt */
2746	wr32(hw, PFINT_OICR_ENA, 0);
2747	ice_flush(hw);
 
 
 
 
 
 
 
 
2748
2749	if (pf->msix_entries) {
2750		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2751		devm_free_irq(ice_pf_to_dev(pf),
2752			      pf->msix_entries[pf->oicr_idx].vector, pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2753	}
2754
2755	pf->num_avail_sw_msix += 1;
2756	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
 
 
 
 
 
 
2757}
2758
2759/**
2760 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2761 * @hw: pointer to HW structure
2762 * @reg_idx: HW vector index to associate the control queue interrupts with
2763 */
2764static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2765{
2766	u32 val;
2767
2768	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2769	       PFINT_OICR_CTL_CAUSE_ENA_M);
2770	wr32(hw, PFINT_OICR_CTL, val);
2771
2772	/* enable Admin queue Interrupt causes */
2773	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2774	       PFINT_FW_CTL_CAUSE_ENA_M);
2775	wr32(hw, PFINT_FW_CTL, val);
2776
2777	/* enable Mailbox queue Interrupt causes */
2778	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2779	       PFINT_MBX_CTL_CAUSE_ENA_M);
2780	wr32(hw, PFINT_MBX_CTL, val);
2781
2782	ice_flush(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2783}
2784
2785/**
2786 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2787 * @pf: board private structure
2788 *
2789 * This sets up the handler for MSIX 0, which is used to manage the
2790 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2791 * when in MSI or Legacy interrupt mode.
2792 */
2793static int ice_req_irq_msix_misc(struct ice_pf *pf)
2794{
2795	struct device *dev = ice_pf_to_dev(pf);
2796	struct ice_hw *hw = &pf->hw;
2797	int oicr_idx, err = 0;
 
 
2798
2799	if (!pf->int_name[0])
2800		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2801			 dev_driver_string(dev), dev_name(dev));
 
2802
2803	/* Do not request IRQ but do enable OICR interrupt since settings are
2804	 * lost during reset. Note that this function is called only during
2805	 * rebuild path and not while reset is in progress.
2806	 */
2807	if (ice_is_reset_in_progress(pf->state))
2808		goto skip_req_irq;
2809
2810	/* reserve one vector in irq_tracker for misc interrupts */
2811	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2812	if (oicr_idx < 0)
2813		return oicr_idx;
2814
2815	pf->num_avail_sw_msix -= 1;
2816	pf->oicr_idx = (u16)oicr_idx;
2817
2818	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
 
2819			       ice_misc_intr, 0, pf->int_name, pf);
2820	if (err) {
2821		dev_err(dev, "devm_request_irq for %s failed: %d\n",
 
2822			pf->int_name, err);
2823		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2824		pf->num_avail_sw_msix += 1;
2825		return err;
2826	}
2827
2828skip_req_irq:
2829	ice_ena_misc_vector(pf);
2830
2831	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
 
 
 
 
 
 
 
 
 
 
 
 
2832	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2833	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2834
2835	ice_flush(hw);
2836	ice_irq_dynamic_ena(hw, NULL, NULL);
2837
2838	return 0;
2839}
2840
2841/**
2842 * ice_napi_add - register NAPI handler for the VSI
2843 * @vsi: VSI for which NAPI handler is to be registered
2844 *
2845 * This function is only called in the driver's load path. Registering the NAPI
2846 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2847 * reset/rebuild, etc.)
2848 */
2849static void ice_napi_add(struct ice_vsi *vsi)
2850{
2851	int v_idx;
 
2852
2853	if (!vsi->netdev)
2854		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855
2856	ice_for_each_q_vector(vsi, v_idx)
2857		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2858			       ice_napi_poll, NAPI_POLL_WEIGHT);
2859}
2860
2861/**
2862 * ice_set_ops - set netdev and ethtools ops for the given netdev
2863 * @netdev: netdev instance
 
 
2864 */
2865static void ice_set_ops(struct net_device *netdev)
2866{
2867	struct ice_pf *pf = ice_netdev_to_pf(netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2868
2869	if (ice_is_safe_mode(pf)) {
2870		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2871		ice_set_ethtool_safe_mode_ops(netdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2872		return;
2873	}
 
2874
2875	netdev->netdev_ops = &ice_netdev_ops;
2876	ice_set_ethtool_ops(netdev);
 
 
 
 
 
 
 
 
 
2877}
2878
2879/**
2880 * ice_set_netdev_features - set features for the given netdev
2881 * @netdev: netdev instance
2882 */
2883static void ice_set_netdev_features(struct net_device *netdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2884{
2885	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2886	netdev_features_t csumo_features;
2887	netdev_features_t vlano_features;
2888	netdev_features_t dflt_features;
2889	netdev_features_t tso_features;
 
 
 
2890
2891	if (ice_is_safe_mode(pf)) {
2892		/* safe mode */
2893		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2894		netdev->hw_features = netdev->features;
2895		return;
2896	}
 
 
2897
2898	dflt_features = NETIF_F_SG	|
2899			NETIF_F_HIGHDMA	|
2900			NETIF_F_NTUPLE	|
2901			NETIF_F_RXHASH;
2902
2903	csumo_features = NETIF_F_RXCSUM	  |
2904			 NETIF_F_IP_CSUM  |
2905			 NETIF_F_SCTP_CRC |
2906			 NETIF_F_IPV6_CSUM;
2907
2908	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2909			 NETIF_F_HW_VLAN_CTAG_TX     |
2910			 NETIF_F_HW_VLAN_CTAG_RX;
2911
2912	tso_features = NETIF_F_TSO			|
2913		       NETIF_F_TSO_ECN			|
2914		       NETIF_F_TSO6			|
2915		       NETIF_F_GSO_GRE			|
2916		       NETIF_F_GSO_UDP_TUNNEL		|
2917		       NETIF_F_GSO_GRE_CSUM		|
2918		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2919		       NETIF_F_GSO_PARTIAL		|
2920		       NETIF_F_GSO_IPXIP4		|
2921		       NETIF_F_GSO_IPXIP6		|
2922		       NETIF_F_GSO_UDP_L4;
2923
2924	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2925					NETIF_F_GSO_GRE_CSUM;
2926	/* set features that user can change */
2927	netdev->hw_features = dflt_features | csumo_features |
2928			      vlano_features | tso_features;
2929
2930	/* add support for HW_CSUM on packets with MPLS header */
2931	netdev->mpls_features =  NETIF_F_HW_CSUM;
2932
2933	/* enable features */
2934	netdev->features |= netdev->hw_features;
2935	/* encap and VLAN devices inherit default, csumo and tso features */
2936	netdev->hw_enc_features |= dflt_features | csumo_features |
2937				   tso_features;
2938	netdev->vlan_features |= dflt_features | csumo_features |
2939				 tso_features;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2940}
2941
2942/**
2943 * ice_cfg_netdev - Allocate, configure and register a netdev
2944 * @vsi: the VSI associated with the new netdev
2945 *
2946 * Returns 0 on success, negative value on failure
2947 */
2948static int ice_cfg_netdev(struct ice_vsi *vsi)
2949{
2950	struct ice_pf *pf = vsi->back;
2951	struct ice_netdev_priv *np;
2952	struct net_device *netdev;
2953	u8 mac_addr[ETH_ALEN];
2954	int err;
2955
2956	err = ice_devlink_create_port(pf);
2957	if (err)
2958		return err;
2959
2960	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2961				    vsi->alloc_rxq);
2962	if (!netdev) {
2963		err = -ENOMEM;
2964		goto err_destroy_devlink_port;
2965	}
 
 
 
 
 
 
 
 
 
2966
2967	vsi->netdev = netdev;
2968	np = netdev_priv(netdev);
2969	np->vsi = vsi;
 
 
 
 
 
 
 
 
 
 
 
 
2970
2971	ice_set_netdev_features(netdev);
 
2972
2973	ice_set_ops(netdev);
2974
2975	if (vsi->type == ICE_VSI_PF) {
2976		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2977		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2978		ether_addr_copy(netdev->dev_addr, mac_addr);
2979		ether_addr_copy(netdev->perm_addr, mac_addr);
2980	}
2981
2982	netdev->priv_flags |= IFF_UNICAST_FLT;
 
2983
2984	/* Setup netdev TC information */
2985	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
 
 
 
 
 
2986
2987	/* setup watchdog timeout value to be 5 second */
2988	netdev->watchdog_timeo = 5 * HZ;
2989
2990	netdev->min_mtu = ETH_MIN_MTU;
2991	netdev->max_mtu = ICE_MAX_MTU;
 
 
 
 
 
 
 
 
 
2992
2993	err = register_netdev(vsi->netdev);
2994	if (err)
2995		goto err_free_netdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2996
2997	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
 
 
 
 
2998
2999	netif_carrier_off(vsi->netdev);
 
 
 
 
 
3000
3001	/* make sure transmit queues start off as stopped */
3002	netif_tx_stop_all_queues(vsi->netdev);
 
 
 
3003
3004	return 0;
3005
3006err_free_netdev:
3007	free_netdev(vsi->netdev);
3008	vsi->netdev = NULL;
3009err_destroy_devlink_port:
3010	ice_devlink_destroy_port(pf);
 
 
 
3011	return err;
3012}
3013
3014/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3016 * @lut: Lookup table
3017 * @rss_table_size: Lookup table size
3018 * @rss_size: Range of queue number for hashing
3019 */
3020void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3021{
3022	u16 i;
3023
3024	for (i = 0; i < rss_table_size; i++)
3025		lut[i] = i % rss_size;
3026}
3027
3028/**
3029 * ice_pf_vsi_setup - Set up a PF VSI
3030 * @pf: board private structure
3031 * @pi: pointer to the port_info instance
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032 *
3033 * Returns pointer to the successfully allocated VSI software struct
3034 * on success, otherwise returns NULL on failure.
 
3035 */
3036static struct ice_vsi *
3037ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3038{
3039	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3040}
3041
3042/**
3043 * ice_ctrl_vsi_setup - Set up a control VSI
3044 * @pf: board private structure
 
3045 * @pi: pointer to the port_info instance
3046 *
3047 * Returns pointer to the successfully allocated VSI software struct
3048 * on success, otherwise returns NULL on failure.
 
 
3049 */
3050static struct ice_vsi *
3051ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
 
3052{
3053	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3054}
3055
3056/**
3057 * ice_lb_vsi_setup - Set up a loopback VSI
3058 * @pf: board private structure
3059 * @pi: pointer to the port_info instance
3060 *
3061 * Returns pointer to the successfully allocated VSI software struct
3062 * on success, otherwise returns NULL on failure.
3063 */
3064struct ice_vsi *
3065ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3066{
3067	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3068}
3069
3070/**
3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3072 * @netdev: network interface to be adjusted
3073 * @proto: unused protocol
3074 * @vid: VLAN ID to be added
3075 *
3076 * net_device_ops implementation for adding VLAN IDs
3077 */
3078static int
3079ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3080		    u16 vid)
3081{
3082	struct ice_netdev_priv *np = netdev_priv(netdev);
3083	struct ice_vsi *vsi = np->vsi;
3084	int ret;
3085
3086	if (vid >= VLAN_N_VID) {
3087		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3088			   vid, VLAN_N_VID);
3089		return -EINVAL;
3090	}
3091
3092	if (vsi->info.pvid)
3093		return -EINVAL;
3094
3095	/* VLAN 0 is added by default during load/reset */
3096	if (!vid)
3097		return 0;
3098
3099	/* Enable VLAN pruning when a VLAN other than 0 is added */
3100	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3101		ret = ice_cfg_vlan_pruning(vsi, true, false);
3102		if (ret)
3103			return ret;
3104	}
3105
3106	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3107	 * packets aren't pruned by the device's internal switch on Rx
3108	 */
3109	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3110	if (!ret) {
3111		vsi->vlan_ena = true;
3112		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3113	}
3114
3115	return ret;
3116}
3117
3118/**
3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3120 * @netdev: network interface to be adjusted
3121 * @proto: unused protocol
3122 * @vid: VLAN ID to be removed
3123 *
3124 * net_device_ops implementation for removing VLAN IDs
3125 */
3126static int
3127ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3128		     u16 vid)
3129{
3130	struct ice_netdev_priv *np = netdev_priv(netdev);
3131	struct ice_vsi *vsi = np->vsi;
3132	int ret;
3133
3134	if (vsi->info.pvid)
3135		return -EINVAL;
3136
3137	/* don't allow removal of VLAN 0 */
3138	if (!vid)
3139		return 0;
3140
3141	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3142	 * information
3143	 */
3144	ret = ice_vsi_kill_vlan(vsi, vid);
3145	if (ret)
3146		return ret;
3147
3148	/* Disable pruning when VLAN 0 is the only VLAN rule */
3149	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3150		ret = ice_cfg_vlan_pruning(vsi, false, false);
3151
3152	vsi->vlan_ena = false;
3153	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3154	return ret;
3155}
3156
3157/**
3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3159 * @pf: board private structure
3160 *
3161 * Returns 0 on success, negative value on failure
3162 */
3163static int ice_setup_pf_sw(struct ice_pf *pf)
3164{
 
 
3165	struct ice_vsi *vsi;
3166	int status = 0;
3167
3168	if (ice_is_reset_in_progress(pf->state))
3169		return -EBUSY;
3170
3171	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3172	if (!vsi)
3173		return -ENOMEM;
3174
3175	status = ice_cfg_netdev(vsi);
3176	if (status) {
3177		status = -ENODEV;
3178		goto unroll_vsi_setup;
3179	}
3180	/* netdev has to be configured before setting frame size */
3181	ice_vsi_cfg_frame_size(vsi);
3182
3183	/* Setup DCB netlink interface */
3184	ice_dcbnl_setup(vsi);
 
 
 
 
 
 
3185
3186	/* registering the NAPI handler requires both the queues and
3187	 * netdev to be created, which are done in ice_pf_vsi_setup()
3188	 * and ice_cfg_netdev() respectively
3189	 */
3190	ice_napi_add(vsi);
 
 
 
3191
3192	status = ice_set_cpu_rx_rmap(vsi);
 
3193	if (status) {
3194		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3195			vsi->vsi_num, status);
3196		status = -EINVAL;
3197		goto unroll_napi_add;
3198	}
3199	status = ice_init_mac_fltr(pf);
3200	if (status)
3201		goto free_cpu_rx_map;
3202
 
3203	return status;
3204
3205free_cpu_rx_map:
3206	ice_free_cpu_rx_rmap(vsi);
3207
3208unroll_napi_add:
3209	if (vsi) {
3210		ice_napi_del(vsi);
 
 
3211		if (vsi->netdev) {
3212			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3213				unregister_netdev(vsi->netdev);
3214			free_netdev(vsi->netdev);
3215			vsi->netdev = NULL;
3216		}
3217	}
3218
3219unroll_vsi_setup:
3220	ice_vsi_release(vsi);
 
 
 
 
3221	return status;
3222}
3223
3224/**
3225 * ice_get_avail_q_count - Get count of queues in use
3226 * @pf_qmap: bitmap to get queue use count from
3227 * @lock: pointer to a mutex that protects access to pf_qmap
3228 * @size: size of the bitmap
3229 */
3230static u16
3231ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3232{
3233	unsigned long bit;
3234	u16 count = 0;
3235
3236	mutex_lock(lock);
3237	for_each_clear_bit(bit, pf_qmap, size)
3238		count++;
3239	mutex_unlock(lock);
3240
3241	return count;
3242}
3243
3244/**
3245 * ice_get_avail_txq_count - Get count of Tx queues in use
3246 * @pf: pointer to an ice_pf instance
3247 */
3248u16 ice_get_avail_txq_count(struct ice_pf *pf)
3249{
3250	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3251				     pf->max_pf_txqs);
3252}
3253
3254/**
3255 * ice_get_avail_rxq_count - Get count of Rx queues in use
3256 * @pf: pointer to an ice_pf instance
3257 */
3258u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3259{
3260	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3261				     pf->max_pf_rxqs);
3262}
3263
3264/**
3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3266 * @pf: board private structure to initialize
3267 */
3268static void ice_deinit_pf(struct ice_pf *pf)
3269{
3270	ice_service_task_stop(pf);
 
 
 
3271	mutex_destroy(&pf->sw_mutex);
3272	mutex_destroy(&pf->tc_mutex);
3273	mutex_destroy(&pf->avail_q_mutex);
3274
3275	if (pf->avail_txqs) {
3276		bitmap_free(pf->avail_txqs);
3277		pf->avail_txqs = NULL;
3278	}
3279
3280	if (pf->avail_rxqs) {
3281		bitmap_free(pf->avail_rxqs);
3282		pf->avail_rxqs = NULL;
3283	}
3284}
3285
3286/**
3287 * ice_set_pf_caps - set PFs capability flags
3288 * @pf: pointer to the PF instance
3289 */
3290static void ice_set_pf_caps(struct ice_pf *pf)
3291{
3292	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3293
3294	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3295	if (func_caps->common_cap.dcb)
3296		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3297	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3298	if (func_caps->common_cap.sr_iov_1_1) {
3299		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3300		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3301					      ICE_MAX_VF_COUNT);
3302	}
3303	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3304	if (func_caps->common_cap.rss_table_size)
3305		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3306
3307	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3308	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3309		u16 unused;
3310
3311		/* ctrl_vsi_idx will be set to a valid value when flow director
3312		 * is setup by ice_init_fdir
3313		 */
3314		pf->ctrl_vsi_idx = ICE_NO_VSI;
3315		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3316		/* force guaranteed filter pool for PF */
3317		ice_alloc_fd_guar_item(&pf->hw, &unused,
3318				       func_caps->fd_fltr_guar);
3319		/* force shared filter pool for PF */
3320		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3321				       func_caps->fd_fltr_best_effort);
3322	}
3323
3324	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3325	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3326}
3327
3328/**
3329 * ice_init_pf - Initialize general software structures (struct ice_pf)
3330 * @pf: board private structure to initialize
3331 */
3332static int ice_init_pf(struct ice_pf *pf)
3333{
3334	ice_set_pf_caps(pf);
 
3335
3336	mutex_init(&pf->sw_mutex);
3337	mutex_init(&pf->tc_mutex);
 
 
 
 
 
 
3338
3339	INIT_HLIST_HEAD(&pf->aq_wait_list);
3340	spin_lock_init(&pf->aq_wait_lock);
3341	init_waitqueue_head(&pf->aq_wait_queue);
3342
3343	/* setup service timer and periodic service task */
3344	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3345	pf->serv_tmr_period = HZ;
3346	INIT_WORK(&pf->serv_task, ice_service_task);
3347	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3348
3349	mutex_init(&pf->avail_q_mutex);
3350	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3351	if (!pf->avail_txqs)
3352		return -ENOMEM;
3353
3354	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3355	if (!pf->avail_rxqs) {
3356		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3357		pf->avail_txqs = NULL;
3358		return -ENOMEM;
3359	}
3360
3361	return 0;
3362}
3363
3364/**
3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3366 * @pf: board private structure
3367 *
3368 * compute the number of MSIX vectors required (v_budget) and request from
3369 * the OS. Return the number of vectors reserved or negative on failure
3370 */
3371static int ice_ena_msix_range(struct ice_pf *pf)
3372{
3373	struct device *dev = ice_pf_to_dev(pf);
3374	int v_left, v_actual, v_budget = 0;
3375	int needed, err, i;
3376
3377	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3378
3379	/* reserve one vector for miscellaneous handler */
3380	needed = 1;
3381	if (v_left < needed)
3382		goto no_hw_vecs_left_err;
3383	v_budget += needed;
3384	v_left -= needed;
3385
3386	/* reserve vectors for LAN traffic */
3387	needed = min_t(int, num_online_cpus(), v_left);
3388	if (v_left < needed)
3389		goto no_hw_vecs_left_err;
3390	pf->num_lan_msix = needed;
3391	v_budget += needed;
3392	v_left -= needed;
3393
3394	/* reserve one vector for flow director */
3395	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3396		needed = ICE_FDIR_MSIX;
3397		if (v_left < needed)
3398			goto no_hw_vecs_left_err;
3399		v_budget += needed;
3400		v_left -= needed;
3401	}
3402
3403	pf->msix_entries = devm_kcalloc(dev, v_budget,
3404					sizeof(*pf->msix_entries), GFP_KERNEL);
3405
3406	if (!pf->msix_entries) {
3407		err = -ENOMEM;
3408		goto exit_err;
3409	}
3410
3411	for (i = 0; i < v_budget; i++)
3412		pf->msix_entries[i].entry = i;
3413
3414	/* actually reserve the vectors */
3415	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3416					 ICE_MIN_MSIX, v_budget);
3417
3418	if (v_actual < 0) {
3419		dev_err(dev, "unable to reserve MSI-X vectors\n");
3420		err = v_actual;
3421		goto msix_err;
3422	}
3423
3424	if (v_actual < v_budget) {
3425		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
 
3426			 v_budget, v_actual);
3427/* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3428#define ICE_MIN_LAN_VECS 2
3429#define ICE_MIN_RDMA_VECS 2
3430#define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3431
3432		if (v_actual < ICE_MIN_LAN_VECS) {
3433			/* error if we can't get minimum vectors */
3434			pci_disable_msix(pf->pdev);
3435			err = -ERANGE;
3436			goto msix_err;
3437		} else {
3438			pf->num_lan_msix = ICE_MIN_LAN_VECS;
3439		}
3440	}
3441
3442	return v_actual;
3443
3444msix_err:
3445	devm_kfree(dev, pf->msix_entries);
3446	goto exit_err;
3447
3448no_hw_vecs_left_err:
3449	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3450		needed, v_left);
3451	err = -ERANGE;
3452exit_err:
3453	pf->num_lan_msix = 0;
 
3454	return err;
3455}
3456
3457/**
3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3459 * @pf: board private structure
3460 */
3461static void ice_dis_msix(struct ice_pf *pf)
3462{
3463	pci_disable_msix(pf->pdev);
3464	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3465	pf->msix_entries = NULL;
3466}
3467
3468/**
3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3470 * @pf: board private structure
3471 */
3472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3473{
3474	ice_dis_msix(pf);
3475
3476	if (pf->irq_tracker) {
3477		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3478		pf->irq_tracker = NULL;
3479	}
3480}
3481
3482/**
3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3484 * @pf: board private structure to initialize
3485 */
3486static int ice_init_interrupt_scheme(struct ice_pf *pf)
3487{
3488	int vectors;
 
3489
3490	vectors = ice_ena_msix_range(pf);
 
 
 
3491
3492	if (vectors < 0)
3493		return vectors;
3494
3495	/* set up vector assignment tracking */
3496	pf->irq_tracker =
3497		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3498			     (sizeof(u16) * vectors), GFP_KERNEL);
3499	if (!pf->irq_tracker) {
3500		ice_dis_msix(pf);
3501		return -ENOMEM;
3502	}
3503
3504	/* populate SW interrupts pool with number of OS granted IRQs. */
3505	pf->num_avail_sw_msix = (u16)vectors;
3506	pf->irq_tracker->num_entries = (u16)vectors;
3507	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3508
3509	return 0;
3510}
3511
3512/**
3513 * ice_is_wol_supported - get NVM state of WoL
3514 * @pf: board private structure
3515 *
3516 * Check if WoL is supported based on the HW configuration.
3517 * Returns true if NVM supports and enables WoL for this port, false otherwise
3518 */
3519bool ice_is_wol_supported(struct ice_pf *pf)
3520{
3521	struct ice_hw *hw = &pf->hw;
3522	u16 wol_ctrl;
3523
3524	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3525	 * word) indicates WoL is not supported on the corresponding PF ID.
3526	 */
3527	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3528		return false;
3529
3530	return !(BIT(hw->pf_id) & wol_ctrl);
3531}
3532
3533/**
3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3535 * @vsi: VSI being changed
3536 * @new_rx: new number of Rx queues
3537 * @new_tx: new number of Tx queues
3538 *
3539 * Only change the number of queues if new_tx, or new_rx is non-0.
3540 *
3541 * Returns 0 on success.
3542 */
3543int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3544{
3545	struct ice_pf *pf = vsi->back;
3546	int err = 0, timeout = 50;
3547
3548	if (!new_rx && !new_tx)
3549		return -EINVAL;
3550
3551	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3552		timeout--;
3553		if (!timeout)
3554			return -EBUSY;
3555		usleep_range(1000, 2000);
3556	}
3557
3558	if (new_tx)
3559		vsi->req_txq = (u16)new_tx;
3560	if (new_rx)
3561		vsi->req_rxq = (u16)new_rx;
3562
3563	/* set for the next time the netdev is started */
3564	if (!netif_running(vsi->netdev)) {
3565		ice_vsi_rebuild(vsi, false);
3566		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3567		goto done;
3568	}
3569
3570	ice_vsi_close(vsi);
3571	ice_vsi_rebuild(vsi, false);
3572	ice_pf_dcb_recfg(pf);
3573	ice_vsi_open(vsi);
3574done:
3575	clear_bit(__ICE_CFG_BUSY, pf->state);
3576	return err;
3577}
3578
3579/**
3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3581 * @pf: PF to configure
3582 *
3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3584 * VSI can still Tx/Rx VLAN tagged packets.
3585 */
3586static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3587{
3588	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3589	struct ice_vsi_ctx *ctxt;
3590	enum ice_status status;
3591	struct ice_hw *hw;
3592
3593	if (!vsi)
3594		return;
3595
3596	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3597	if (!ctxt)
3598		return;
3599
3600	hw = &pf->hw;
3601	ctxt->info = vsi->info;
3602
3603	ctxt->info.valid_sections =
3604		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3605			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3606			    ICE_AQ_VSI_PROP_SW_VALID);
3607
3608	/* disable VLAN anti-spoof */
3609	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3610				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3611
3612	/* disable VLAN pruning and keep all other settings */
3613	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3614
3615	/* allow all VLANs on Tx and don't strip on Rx */
3616	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3617		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3618
3619	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3620	if (status) {
3621		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3622			ice_stat_str(status),
3623			ice_aq_str(hw->adminq.sq_last_status));
3624	} else {
3625		vsi->info.sec_flags = ctxt->info.sec_flags;
3626		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3627		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3628	}
3629
3630	kfree(ctxt);
3631}
3632
3633/**
3634 * ice_log_pkg_init - log result of DDP package load
3635 * @hw: pointer to hardware info
3636 * @status: status of package load
3637 */
3638static void
3639ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3640{
3641	struct ice_pf *pf = (struct ice_pf *)hw->back;
3642	struct device *dev = ice_pf_to_dev(pf);
3643
3644	switch (*status) {
3645	case ICE_SUCCESS:
3646		/* The package download AdminQ command returned success because
3647		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3648		 * already a package loaded on the device.
3649		 */
3650		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3651		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3652		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3653		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3654		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3655			    sizeof(hw->pkg_name))) {
3656			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3657				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3658					 hw->active_pkg_name,
3659					 hw->active_pkg_ver.major,
3660					 hw->active_pkg_ver.minor,
3661					 hw->active_pkg_ver.update,
3662					 hw->active_pkg_ver.draft);
3663			else
3664				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3665					 hw->active_pkg_name,
3666					 hw->active_pkg_ver.major,
3667					 hw->active_pkg_ver.minor,
3668					 hw->active_pkg_ver.update,
3669					 hw->active_pkg_ver.draft);
3670		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3671			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3672			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3673				hw->active_pkg_name,
3674				hw->active_pkg_ver.major,
3675				hw->active_pkg_ver.minor,
3676				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3677			*status = ICE_ERR_NOT_SUPPORTED;
3678		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3679			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3680			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3681				 hw->active_pkg_name,
3682				 hw->active_pkg_ver.major,
3683				 hw->active_pkg_ver.minor,
3684				 hw->active_pkg_ver.update,
3685				 hw->active_pkg_ver.draft,
3686				 hw->pkg_name,
3687				 hw->pkg_ver.major,
3688				 hw->pkg_ver.minor,
3689				 hw->pkg_ver.update,
3690				 hw->pkg_ver.draft);
3691		} else {
3692			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3693			*status = ICE_ERR_NOT_SUPPORTED;
3694		}
3695		break;
3696	case ICE_ERR_FW_DDP_MISMATCH:
3697		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3698		break;
3699	case ICE_ERR_BUF_TOO_SHORT:
3700	case ICE_ERR_CFG:
3701		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3702		break;
3703	case ICE_ERR_NOT_SUPPORTED:
3704		/* Package File version not supported */
3705		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3706		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3707		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3708			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3709		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3710			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3711			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3712			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3713				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3714		break;
3715	case ICE_ERR_AQ_ERROR:
3716		switch (hw->pkg_dwnld_status) {
3717		case ICE_AQ_RC_ENOSEC:
3718		case ICE_AQ_RC_EBADSIG:
3719			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3720			return;
3721		case ICE_AQ_RC_ESVN:
3722			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3723			return;
3724		case ICE_AQ_RC_EBADMAN:
3725		case ICE_AQ_RC_EBADBUF:
3726			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3727			/* poll for reset to complete */
3728			if (ice_check_reset(hw))
3729				dev_err(dev, "Error resetting device. Please reload the driver\n");
3730			return;
3731		default:
3732			break;
3733		}
3734		fallthrough;
3735	default:
3736		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3737			*status);
3738		break;
3739	}
3740}
3741
3742/**
3743 * ice_load_pkg - load/reload the DDP Package file
3744 * @firmware: firmware structure when firmware requested or NULL for reload
3745 * @pf: pointer to the PF instance
3746 *
3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3748 * initialize HW tables.
3749 */
3750static void
3751ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3752{
3753	enum ice_status status = ICE_ERR_PARAM;
3754	struct device *dev = ice_pf_to_dev(pf);
3755	struct ice_hw *hw = &pf->hw;
3756
3757	/* Load DDP Package */
3758	if (firmware && !hw->pkg_copy) {
3759		status = ice_copy_and_init_pkg(hw, firmware->data,
3760					       firmware->size);
3761		ice_log_pkg_init(hw, &status);
3762	} else if (!firmware && hw->pkg_copy) {
3763		/* Reload package during rebuild after CORER/GLOBR reset */
3764		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3765		ice_log_pkg_init(hw, &status);
3766	} else {
3767		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3768	}
3769
3770	if (status) {
3771		/* Safe Mode */
3772		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3773		return;
3774	}
3775
3776	/* Successful download package is the precondition for advanced
3777	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3778	 */
3779	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3780}
3781
3782/**
3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3784 * @pf: pointer to the PF structure
3785 *
3786 * There is no error returned here because the driver should be able to handle
3787 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3788 * specifically with Tx.
3789 */
3790static void ice_verify_cacheline_size(struct ice_pf *pf)
3791{
3792	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3793		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3794			 ICE_CACHE_LINE_BYTES);
3795}
3796
3797/**
3798 * ice_send_version - update firmware with driver version
3799 * @pf: PF struct
3800 *
3801 * Returns ICE_SUCCESS on success, else error code
3802 */
3803static enum ice_status ice_send_version(struct ice_pf *pf)
3804{
3805	struct ice_driver_ver dv;
3806
3807	dv.major_ver = 0xff;
3808	dv.minor_ver = 0xff;
3809	dv.build_ver = 0xff;
3810	dv.subbuild_ver = 0;
3811	strscpy((char *)dv.driver_string, UTS_RELEASE,
3812		sizeof(dv.driver_string));
3813	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3814}
3815
3816/**
3817 * ice_init_fdir - Initialize flow director VSI and configuration
3818 * @pf: pointer to the PF instance
3819 *
3820 * returns 0 on success, negative on error
3821 */
3822static int ice_init_fdir(struct ice_pf *pf)
3823{
3824	struct device *dev = ice_pf_to_dev(pf);
3825	struct ice_vsi *ctrl_vsi;
3826	int err;
3827
3828	/* Side Band Flow Director needs to have a control VSI.
3829	 * Allocate it and store it in the PF.
3830	 */
3831	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3832	if (!ctrl_vsi) {
3833		dev_dbg(dev, "could not create control VSI\n");
3834		return -ENOMEM;
3835	}
3836
3837	err = ice_vsi_open_ctrl(ctrl_vsi);
3838	if (err) {
3839		dev_dbg(dev, "could not open control VSI\n");
3840		goto err_vsi_open;
3841	}
3842
3843	mutex_init(&pf->hw.fdir_fltr_lock);
3844
3845	err = ice_fdir_create_dflt_rules(pf);
3846	if (err)
3847		goto err_fdir_rule;
3848
3849	return 0;
3850
3851err_fdir_rule:
3852	ice_fdir_release_flows(&pf->hw);
3853	ice_vsi_close(ctrl_vsi);
3854err_vsi_open:
3855	ice_vsi_release(ctrl_vsi);
3856	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3857		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3858		pf->ctrl_vsi_idx = ICE_NO_VSI;
3859	}
3860	return err;
3861}
3862
3863/**
3864 * ice_get_opt_fw_name - return optional firmware file name or NULL
3865 * @pf: pointer to the PF instance
3866 */
3867static char *ice_get_opt_fw_name(struct ice_pf *pf)
3868{
3869	/* Optional firmware name same as default with additional dash
3870	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3871	 */
3872	struct pci_dev *pdev = pf->pdev;
3873	char *opt_fw_filename;
3874	u64 dsn;
3875
3876	/* Determine the name of the optional file using the DSN (two
3877	 * dwords following the start of the DSN Capability).
3878	 */
3879	dsn = pci_get_dsn(pdev);
3880	if (!dsn)
3881		return NULL;
3882
3883	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3884	if (!opt_fw_filename)
3885		return NULL;
3886
3887	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3888		 ICE_DDP_PKG_PATH, dsn);
3889
3890	return opt_fw_filename;
3891}
3892
3893/**
3894 * ice_request_fw - Device initialization routine
3895 * @pf: pointer to the PF instance
3896 */
3897static void ice_request_fw(struct ice_pf *pf)
3898{
3899	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3900	const struct firmware *firmware = NULL;
3901	struct device *dev = ice_pf_to_dev(pf);
3902	int err = 0;
3903
3904	/* optional device-specific DDP (if present) overrides the default DDP
3905	 * package file. kernel logs a debug message if the file doesn't exist,
3906	 * and warning messages for other errors.
3907	 */
3908	if (opt_fw_filename) {
3909		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3910		if (err) {
3911			kfree(opt_fw_filename);
3912			goto dflt_pkg_load;
3913		}
3914
3915		/* request for firmware was successful. Download to device */
3916		ice_load_pkg(firmware, pf);
3917		kfree(opt_fw_filename);
3918		release_firmware(firmware);
3919		return;
3920	}
3921
3922dflt_pkg_load:
3923	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3924	if (err) {
3925		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3926		return;
3927	}
3928
3929	/* request for firmware was successful. Download to device */
3930	ice_load_pkg(firmware, pf);
3931	release_firmware(firmware);
3932}
3933
3934/**
3935 * ice_print_wake_reason - show the wake up cause in the log
3936 * @pf: pointer to the PF struct
3937 */
3938static void ice_print_wake_reason(struct ice_pf *pf)
3939{
3940	u32 wus = pf->wakeup_reason;
3941	const char *wake_str;
3942
3943	/* if no wake event, nothing to print */
3944	if (!wus)
3945		return;
3946
3947	if (wus & PFPM_WUS_LNKC_M)
3948		wake_str = "Link\n";
3949	else if (wus & PFPM_WUS_MAG_M)
3950		wake_str = "Magic Packet\n";
3951	else if (wus & PFPM_WUS_MNG_M)
3952		wake_str = "Management\n";
3953	else if (wus & PFPM_WUS_FW_RST_WK_M)
3954		wake_str = "Firmware Reset\n";
3955	else
3956		wake_str = "Unknown\n";
3957
3958	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
 
3959}
3960
3961/**
3962 * ice_probe - Device initialization routine
3963 * @pdev: PCI device information struct
3964 * @ent: entry in ice_pci_tbl
3965 *
3966 * Returns 0 on success, negative on failure
3967 */
3968static int
3969ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3970{
3971	struct device *dev = &pdev->dev;
3972	struct ice_pf *pf;
3973	struct ice_hw *hw;
3974	int err;
3975
3976	/* this driver uses devres, see
3977	 * Documentation/driver-api/driver-model/devres.rst
3978	 */
3979	err = pcim_enable_device(pdev);
3980	if (err)
3981		return err;
3982
3983	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3984	if (err) {
3985		dev_err(dev, "BAR0 I/O map error %d\n", err);
3986		return err;
3987	}
3988
3989	pf = ice_allocate_pf(dev);
3990	if (!pf)
3991		return -ENOMEM;
3992
3993	/* set up for high or low DMA */
3994	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3995	if (err)
3996		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3997	if (err) {
3998		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3999		return err;
4000	}
4001
4002	pci_enable_pcie_error_reporting(pdev);
4003	pci_set_master(pdev);
4004
4005	pf->pdev = pdev;
4006	pci_set_drvdata(pdev, pf);
4007	set_bit(__ICE_DOWN, pf->state);
4008	/* Disable service task until DOWN bit is cleared */
4009	set_bit(__ICE_SERVICE_DIS, pf->state);
4010
4011	hw = &pf->hw;
4012	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4013	pci_save_state(pdev);
4014
4015	hw->back = pf;
4016	hw->vendor_id = pdev->vendor;
4017	hw->device_id = pdev->device;
4018	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4019	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4020	hw->subsystem_device_id = pdev->subsystem_device;
4021	hw->bus.device = PCI_SLOT(pdev->devfn);
4022	hw->bus.func = PCI_FUNC(pdev->devfn);
4023	ice_set_ctrlq_len(hw);
4024
4025	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4026
4027	err = ice_devlink_register(pf);
4028	if (err) {
4029		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4030		goto err_exit_unroll;
4031	}
4032
4033#ifndef CONFIG_DYNAMIC_DEBUG
4034	if (debug < -1)
4035		hw->debug_mask = debug;
4036#endif
4037
4038	err = ice_init_hw(hw);
4039	if (err) {
4040		dev_err(dev, "ice_init_hw failed: %d\n", err);
4041		err = -EIO;
4042		goto err_exit_unroll;
4043	}
4044
4045	ice_request_fw(pf);
4046
4047	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4048	 * set in pf->state, which will cause ice_is_safe_mode to return
4049	 * true
4050	 */
4051	if (ice_is_safe_mode(pf)) {
4052		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4053		/* we already got function/device capabilities but these don't
4054		 * reflect what the driver needs to do in safe mode. Instead of
4055		 * adding conditional logic everywhere to ignore these
4056		 * device/function capabilities, override them.
4057		 */
4058		ice_set_safe_mode_caps(hw);
4059	}
4060
4061	err = ice_init_pf(pf);
4062	if (err) {
4063		dev_err(dev, "ice_init_pf failed: %d\n", err);
4064		goto err_init_pf_unroll;
4065	}
4066
4067	ice_devlink_init_regions(pf);
4068
4069	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
 
4070	if (!pf->num_alloc_vsi) {
4071		err = -EIO;
4072		goto err_init_pf_unroll;
4073	}
4074
4075	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4076			       GFP_KERNEL);
4077	if (!pf->vsi) {
4078		err = -ENOMEM;
4079		goto err_init_pf_unroll;
4080	}
4081
4082	err = ice_init_interrupt_scheme(pf);
4083	if (err) {
4084		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
 
4085		err = -EIO;
4086		goto err_init_vsi_unroll;
4087	}
4088
4089	/* In case of MSIX we are going to setup the misc vector right here
4090	 * to handle admin queue events etc. In case of legacy and MSI
4091	 * the misc functionality and queue processing is combined in
4092	 * the same vector and that gets setup at open.
4093	 */
4094	err = ice_req_irq_msix_misc(pf);
4095	if (err) {
4096		dev_err(dev, "setup of misc vector failed: %d\n", err);
4097		goto err_init_interrupt_unroll;
 
 
 
4098	}
4099
4100	/* create switch struct for the switch element created by FW on boot */
4101	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
 
4102	if (!pf->first_sw) {
4103		err = -ENOMEM;
4104		goto err_msix_misc_unroll;
4105	}
4106
4107	if (hw->evb_veb)
4108		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4109	else
4110		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4111
4112	pf->first_sw->pf = pf;
4113
4114	/* record the sw_id available for later use */
4115	pf->first_sw->sw_id = hw->port_info->sw_id;
4116
4117	err = ice_setup_pf_sw(pf);
4118	if (err) {
4119		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
 
4120		goto err_alloc_sw_unroll;
4121	}
4122
4123	clear_bit(__ICE_SERVICE_DIS, pf->state);
4124
4125	/* tell the firmware we are up */
4126	err = ice_send_version(pf);
4127	if (err) {
4128		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4129			UTS_RELEASE, err);
4130		goto err_send_version_unroll;
4131	}
4132
4133	/* since everything is good, start the service timer */
4134	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4135
4136	err = ice_init_link_events(pf->hw.port_info);
4137	if (err) {
4138		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4139		goto err_send_version_unroll;
4140	}
4141
4142	err = ice_init_nvm_phy_type(pf->hw.port_info);
4143	if (err) {
4144		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4145		goto err_send_version_unroll;
4146	}
4147
4148	err = ice_update_link_info(pf->hw.port_info);
4149	if (err) {
4150		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4151		goto err_send_version_unroll;
4152	}
4153
4154	ice_init_link_dflt_override(pf->hw.port_info);
4155
4156	/* if media available, initialize PHY settings */
4157	if (pf->hw.port_info->phy.link_info.link_info &
4158	    ICE_AQ_MEDIA_AVAILABLE) {
4159		err = ice_init_phy_user_cfg(pf->hw.port_info);
4160		if (err) {
4161			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4162			goto err_send_version_unroll;
4163		}
4164
4165		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4166			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4167
4168			if (vsi)
4169				ice_configure_phy(vsi);
4170		}
4171	} else {
4172		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4173	}
4174
4175	ice_verify_cacheline_size(pf);
4176
4177	/* Save wakeup reason register for later use */
4178	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4179
4180	/* check for a power management event */
4181	ice_print_wake_reason(pf);
4182
4183	/* clear wake status, all bits */
4184	wr32(hw, PFPM_WUS, U32_MAX);
4185
4186	/* Disable WoL at init, wait for user to enable */
4187	device_set_wakeup_enable(dev, false);
4188
4189	if (ice_is_safe_mode(pf)) {
4190		ice_set_safe_mode_vlan_cfg(pf);
4191		goto probe_done;
4192	}
4193
4194	/* initialize DDP driven features */
4195
4196	/* Note: Flow director init failure is non-fatal to load */
4197	if (ice_init_fdir(pf))
4198		dev_err(dev, "could not initialize flow director\n");
4199
4200	/* Note: DCB init failure is non-fatal to load */
4201	if (ice_init_pf_dcb(pf, false)) {
4202		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4203		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4204	} else {
4205		ice_cfg_lldp_mib_change(&pf->hw, true);
4206	}
4207
4208	/* print PCI link speed and width */
4209	pcie_print_link_status(pf->pdev);
4210
4211probe_done:
4212	/* ready to go, so clear down state bit */
4213	clear_bit(__ICE_DOWN, pf->state);
4214	return 0;
4215
4216err_send_version_unroll:
4217	ice_vsi_release_all(pf);
4218err_alloc_sw_unroll:
4219	ice_devlink_destroy_port(pf);
4220	set_bit(__ICE_SERVICE_DIS, pf->state);
4221	set_bit(__ICE_DOWN, pf->state);
4222	devm_kfree(dev, pf->first_sw);
4223err_msix_misc_unroll:
4224	ice_free_irq_msix_misc(pf);
4225err_init_interrupt_unroll:
4226	ice_clear_interrupt_scheme(pf);
4227err_init_vsi_unroll:
4228	devm_kfree(dev, pf->vsi);
4229err_init_pf_unroll:
4230	ice_deinit_pf(pf);
4231	ice_devlink_destroy_regions(pf);
4232	ice_deinit_hw(hw);
4233err_exit_unroll:
4234	ice_devlink_unregister(pf);
4235	pci_disable_pcie_error_reporting(pdev);
4236	pci_disable_device(pdev);
4237	return err;
4238}
4239
4240/**
4241 * ice_set_wake - enable or disable Wake on LAN
4242 * @pf: pointer to the PF struct
4243 *
4244 * Simple helper for WoL control
4245 */
4246static void ice_set_wake(struct ice_pf *pf)
4247{
4248	struct ice_hw *hw = &pf->hw;
4249	bool wol = pf->wol_ena;
4250
4251	/* clear wake state, otherwise new wake events won't fire */
4252	wr32(hw, PFPM_WUS, U32_MAX);
4253
4254	/* enable / disable APM wake up, no RMW needed */
4255	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4256
4257	/* set magic packet filter enabled */
4258	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4259}
4260
4261/**
4262 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4263 * @pf: pointer to the PF struct
4264 *
4265 * Issue firmware command to enable multicast magic wake, making
4266 * sure that any locally administered address (LAA) is used for
4267 * wake, and that PF reset doesn't undo the LAA.
4268 */
4269static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4270{
4271	struct device *dev = ice_pf_to_dev(pf);
4272	struct ice_hw *hw = &pf->hw;
4273	enum ice_status status;
4274	u8 mac_addr[ETH_ALEN];
4275	struct ice_vsi *vsi;
4276	u8 flags;
4277
4278	if (!pf->wol_ena)
4279		return;
4280
4281	vsi = ice_get_main_vsi(pf);
4282	if (!vsi)
4283		return;
4284
4285	/* Get current MAC address in case it's an LAA */
4286	if (vsi->netdev)
4287		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4288	else
4289		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4290
4291	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4292		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4293		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4294
4295	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4296	if (status)
4297		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4298			ice_stat_str(status),
4299			ice_aq_str(hw->adminq.sq_last_status));
4300}
4301
4302/**
4303 * ice_remove - Device removal routine
4304 * @pdev: PCI device information struct
4305 */
4306static void ice_remove(struct pci_dev *pdev)
4307{
4308	struct ice_pf *pf = pci_get_drvdata(pdev);
4309	int i;
 
4310
4311	if (!pf)
4312		return;
4313
4314	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4315		if (!ice_is_reset_in_progress(pf->state))
4316			break;
4317		msleep(100);
4318	}
4319
4320	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4321		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4322		ice_free_vfs(pf);
4323	}
4324
4325	set_bit(__ICE_DOWN, pf->state);
4326	ice_service_task_stop(pf);
4327
4328	ice_aq_cancel_waiting_tasks(pf);
4329
4330	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4331	if (!ice_is_safe_mode(pf))
4332		ice_remove_arfs(pf);
4333	ice_setup_mc_magic_wake(pf);
4334	ice_devlink_destroy_port(pf);
4335	ice_vsi_release_all(pf);
4336	ice_set_wake(pf);
4337	ice_free_irq_msix_misc(pf);
4338	ice_for_each_vsi(pf, i) {
4339		if (!pf->vsi[i])
4340			continue;
4341		ice_vsi_free_q_vectors(pf->vsi[i]);
4342	}
4343	ice_deinit_pf(pf);
4344	ice_devlink_destroy_regions(pf);
4345	ice_deinit_hw(&pf->hw);
4346	ice_devlink_unregister(pf);
4347
4348	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4349	 * do it via ice_schedule_reset() since there is no need to rebuild
4350	 * and the service task is already stopped.
4351	 */
4352	ice_reset(&pf->hw, ICE_RESET_PFR);
4353	pci_wait_for_pending_transaction(pdev);
4354	ice_clear_interrupt_scheme(pf);
4355	pci_disable_pcie_error_reporting(pdev);
4356	pci_disable_device(pdev);
4357}
4358
4359/**
4360 * ice_shutdown - PCI callback for shutting down device
4361 * @pdev: PCI device information struct
4362 */
4363static void ice_shutdown(struct pci_dev *pdev)
4364{
4365	struct ice_pf *pf = pci_get_drvdata(pdev);
4366
4367	ice_remove(pdev);
4368
4369	if (system_state == SYSTEM_POWER_OFF) {
4370		pci_wake_from_d3(pdev, pf->wol_ena);
4371		pci_set_power_state(pdev, PCI_D3hot);
4372	}
4373}
4374
4375#ifdef CONFIG_PM
4376/**
4377 * ice_prepare_for_shutdown - prep for PCI shutdown
4378 * @pf: board private structure
4379 *
4380 * Inform or close all dependent features in prep for PCI device shutdown
4381 */
4382static void ice_prepare_for_shutdown(struct ice_pf *pf)
4383{
4384	struct ice_hw *hw = &pf->hw;
4385	u32 v;
4386
4387	/* Notify VFs of impending reset */
4388	if (ice_check_sq_alive(hw, &hw->mailboxq))
4389		ice_vc_notify_reset(pf);
4390
4391	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4392
4393	/* disable the VSIs and their queues that are not already DOWN */
4394	ice_pf_dis_all_vsi(pf, false);
4395
4396	ice_for_each_vsi(pf, v)
4397		if (pf->vsi[v])
4398			pf->vsi[v]->vsi_num = 0;
4399
4400	ice_shutdown_all_ctrlq(hw);
4401}
4402
4403/**
4404 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4405 * @pf: board private structure to reinitialize
4406 *
4407 * This routine reinitialize interrupt scheme that was cleared during
4408 * power management suspend callback.
4409 *
4410 * This should be called during resume routine to re-allocate the q_vectors
4411 * and reacquire interrupts.
4412 */
4413static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4414{
4415	struct device *dev = ice_pf_to_dev(pf);
4416	int ret, v;
4417
4418	/* Since we clear MSIX flag during suspend, we need to
4419	 * set it back during resume...
4420	 */
4421
4422	ret = ice_init_interrupt_scheme(pf);
4423	if (ret) {
4424		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4425		return ret;
4426	}
4427
4428	/* Remap vectors and rings, after successful re-init interrupts */
4429	ice_for_each_vsi(pf, v) {
4430		if (!pf->vsi[v])
4431			continue;
4432
4433		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4434		if (ret)
4435			goto err_reinit;
4436		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4437	}
4438
4439	ret = ice_req_irq_msix_misc(pf);
4440	if (ret) {
4441		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4442			ret);
4443		goto err_reinit;
4444	}
4445
4446	return 0;
4447
4448err_reinit:
4449	while (v--)
4450		if (pf->vsi[v])
4451			ice_vsi_free_q_vectors(pf->vsi[v]);
4452
4453	return ret;
4454}
4455
4456/**
4457 * ice_suspend
4458 * @dev: generic device information structure
4459 *
4460 * Power Management callback to quiesce the device and prepare
4461 * for D3 transition.
4462 */
4463static int __maybe_unused ice_suspend(struct device *dev)
4464{
4465	struct pci_dev *pdev = to_pci_dev(dev);
4466	struct ice_pf *pf;
4467	int disabled, v;
4468
4469	pf = pci_get_drvdata(pdev);
4470
4471	if (!ice_pf_state_is_nominal(pf)) {
4472		dev_err(dev, "Device is not ready, no need to suspend it\n");
4473		return -EBUSY;
4474	}
4475
4476	/* Stop watchdog tasks until resume completion.
4477	 * Even though it is most likely that the service task is
4478	 * disabled if the device is suspended or down, the service task's
4479	 * state is controlled by a different state bit, and we should
4480	 * store and honor whatever state that bit is in at this point.
4481	 */
4482	disabled = ice_service_task_stop(pf);
4483
4484	/* Already suspended?, then there is nothing to do */
4485	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4486		if (!disabled)
4487			ice_service_task_restart(pf);
4488		return 0;
4489	}
4490
4491	if (test_bit(__ICE_DOWN, pf->state) ||
4492	    ice_is_reset_in_progress(pf->state)) {
4493		dev_err(dev, "can't suspend device in reset or already down\n");
4494		if (!disabled)
4495			ice_service_task_restart(pf);
4496		return 0;
4497	}
4498
4499	ice_setup_mc_magic_wake(pf);
4500
4501	ice_prepare_for_shutdown(pf);
4502
4503	ice_set_wake(pf);
4504
4505	/* Free vectors, clear the interrupt scheme and release IRQs
4506	 * for proper hibernation, especially with large number of CPUs.
4507	 * Otherwise hibernation might fail when mapping all the vectors back
4508	 * to CPU0.
4509	 */
4510	ice_free_irq_msix_misc(pf);
4511	ice_for_each_vsi(pf, v) {
4512		if (!pf->vsi[v])
4513			continue;
4514		ice_vsi_free_q_vectors(pf->vsi[v]);
4515	}
4516	ice_clear_interrupt_scheme(pf);
4517
4518	pci_save_state(pdev);
4519	pci_wake_from_d3(pdev, pf->wol_ena);
4520	pci_set_power_state(pdev, PCI_D3hot);
4521	return 0;
4522}
4523
4524/**
4525 * ice_resume - PM callback for waking up from D3
4526 * @dev: generic device information structure
4527 */
4528static int __maybe_unused ice_resume(struct device *dev)
4529{
4530	struct pci_dev *pdev = to_pci_dev(dev);
4531	enum ice_reset_req reset_type;
4532	struct ice_pf *pf;
4533	struct ice_hw *hw;
4534	int ret;
4535
4536	pci_set_power_state(pdev, PCI_D0);
4537	pci_restore_state(pdev);
4538	pci_save_state(pdev);
4539
4540	if (!pci_device_is_present(pdev))
4541		return -ENODEV;
4542
4543	ret = pci_enable_device_mem(pdev);
4544	if (ret) {
4545		dev_err(dev, "Cannot enable device after suspend\n");
4546		return ret;
4547	}
4548
4549	pf = pci_get_drvdata(pdev);
4550	hw = &pf->hw;
4551
4552	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4553	ice_print_wake_reason(pf);
4554
4555	/* We cleared the interrupt scheme when we suspended, so we need to
4556	 * restore it now to resume device functionality.
4557	 */
4558	ret = ice_reinit_interrupt_scheme(pf);
4559	if (ret)
4560		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4561
4562	clear_bit(__ICE_DOWN, pf->state);
4563	/* Now perform PF reset and rebuild */
4564	reset_type = ICE_RESET_PFR;
4565	/* re-enable service task for reset, but allow reset to schedule it */
4566	clear_bit(__ICE_SERVICE_DIS, pf->state);
4567
4568	if (ice_schedule_reset(pf, reset_type))
4569		dev_err(dev, "Reset during resume failed.\n");
4570
4571	clear_bit(__ICE_SUSPENDED, pf->state);
4572	ice_service_task_restart(pf);
4573
4574	/* Restart the service task */
4575	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4576
4577	return 0;
4578}
4579#endif /* CONFIG_PM */
4580
4581/**
4582 * ice_pci_err_detected - warning that PCI error has been detected
4583 * @pdev: PCI device information struct
4584 * @err: the type of PCI error
4585 *
4586 * Called to warn that something happened on the PCI bus and the error handling
4587 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4588 */
4589static pci_ers_result_t
4590ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4591{
4592	struct ice_pf *pf = pci_get_drvdata(pdev);
4593
4594	if (!pf) {
4595		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4596			__func__, err);
4597		return PCI_ERS_RESULT_DISCONNECT;
4598	}
4599
4600	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4601		ice_service_task_stop(pf);
4602
4603		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4604			set_bit(__ICE_PFR_REQ, pf->state);
4605			ice_prepare_for_reset(pf);
4606		}
4607	}
4608
4609	return PCI_ERS_RESULT_NEED_RESET;
4610}
4611
4612/**
4613 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4614 * @pdev: PCI device information struct
4615 *
4616 * Called to determine if the driver can recover from the PCI slot reset by
4617 * using a register read to determine if the device is recoverable.
4618 */
4619static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4620{
4621	struct ice_pf *pf = pci_get_drvdata(pdev);
4622	pci_ers_result_t result;
4623	int err;
4624	u32 reg;
4625
4626	err = pci_enable_device_mem(pdev);
4627	if (err) {
4628		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4629			err);
4630		result = PCI_ERS_RESULT_DISCONNECT;
4631	} else {
4632		pci_set_master(pdev);
4633		pci_restore_state(pdev);
4634		pci_save_state(pdev);
4635		pci_wake_from_d3(pdev, false);
4636
4637		/* Check for life */
4638		reg = rd32(&pf->hw, GLGEN_RTRIG);
4639		if (!reg)
4640			result = PCI_ERS_RESULT_RECOVERED;
4641		else
4642			result = PCI_ERS_RESULT_DISCONNECT;
4643	}
4644
4645	err = pci_aer_clear_nonfatal_status(pdev);
4646	if (err)
4647		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4648			err);
4649		/* non-fatal, continue */
4650
4651	return result;
4652}
4653
4654/**
4655 * ice_pci_err_resume - restart operations after PCI error recovery
4656 * @pdev: PCI device information struct
4657 *
4658 * Called to allow the driver to bring things back up after PCI error and/or
4659 * reset recovery have finished
4660 */
4661static void ice_pci_err_resume(struct pci_dev *pdev)
4662{
4663	struct ice_pf *pf = pci_get_drvdata(pdev);
4664
4665	if (!pf) {
4666		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4667			__func__);
4668		return;
4669	}
4670
4671	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4672		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4673			__func__);
4674		return;
4675	}
4676
4677	ice_restore_all_vfs_msi_state(pdev);
4678
4679	ice_do_reset(pf, ICE_RESET_PFR);
4680	ice_service_task_restart(pf);
4681	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4682}
4683
4684/**
4685 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4686 * @pdev: PCI device information struct
4687 */
4688static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4689{
4690	struct ice_pf *pf = pci_get_drvdata(pdev);
4691
4692	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4693		ice_service_task_stop(pf);
4694
4695		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4696			set_bit(__ICE_PFR_REQ, pf->state);
4697			ice_prepare_for_reset(pf);
4698		}
4699	}
4700}
4701
4702/**
4703 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4704 * @pdev: PCI device information struct
4705 */
4706static void ice_pci_err_reset_done(struct pci_dev *pdev)
4707{
4708	ice_pci_err_resume(pdev);
4709}
4710
4711/* ice_pci_tbl - PCI Device ID Table
4712 *
4713 * Wildcard entries (PCI_ANY_ID) should come last
4714 * Last entry must be all 0s
4715 *
4716 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4717 *   Class, Class Mask, private data (not used) }
4718 */
4719static const struct pci_device_id ice_pci_tbl[] = {
4720	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4721	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4722	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
4723	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4724	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4725	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4726	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4727	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4728	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4729	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4730	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4731	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4732	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4733	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4734	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4735	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4736	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4737	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4738	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4739	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4740	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4741	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4742	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4743	/* required last entry */
4744	{ 0, }
4745};
4746MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4747
4748static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4749
4750static const struct pci_error_handlers ice_pci_err_handler = {
4751	.error_detected = ice_pci_err_detected,
4752	.slot_reset = ice_pci_err_slot_reset,
4753	.reset_prepare = ice_pci_err_reset_prepare,
4754	.reset_done = ice_pci_err_reset_done,
4755	.resume = ice_pci_err_resume
4756};
4757
4758static struct pci_driver ice_driver = {
4759	.name = KBUILD_MODNAME,
4760	.id_table = ice_pci_tbl,
4761	.probe = ice_probe,
4762	.remove = ice_remove,
4763#ifdef CONFIG_PM
4764	.driver.pm = &ice_pm_ops,
4765#endif /* CONFIG_PM */
4766	.shutdown = ice_shutdown,
4767	.sriov_configure = ice_sriov_configure,
4768	.err_handler = &ice_pci_err_handler
4769};
4770
4771/**
4772 * ice_module_init - Driver registration routine
4773 *
4774 * ice_module_init is the first routine called when the driver is
4775 * loaded. All it does is register with the PCI subsystem.
4776 */
4777static int __init ice_module_init(void)
4778{
4779	int status;
4780
4781	pr_info("%s\n", ice_driver_string);
4782	pr_info("%s\n", ice_copyright);
4783
4784	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4785	if (!ice_wq) {
4786		pr_err("Failed to create workqueue\n");
4787		return -ENOMEM;
4788	}
4789
4790	status = pci_register_driver(&ice_driver);
4791	if (status) {
4792		pr_err("failed to register PCI driver, err %d\n", status);
4793		destroy_workqueue(ice_wq);
4794	}
4795
4796	return status;
4797}
4798module_init(ice_module_init);
4799
4800/**
4801 * ice_module_exit - Driver exit cleanup routine
4802 *
4803 * ice_module_exit is called just before the driver is removed
4804 * from memory.
4805 */
4806static void __exit ice_module_exit(void)
4807{
4808	pci_unregister_driver(&ice_driver);
4809	destroy_workqueue(ice_wq);
4810	pr_info("module unloaded\n");
4811}
4812module_exit(ice_module_exit);
4813
4814/**
4815 * ice_set_mac_address - NDO callback to set MAC address
4816 * @netdev: network interface device structure
4817 * @pi: pointer to an address structure
4818 *
4819 * Returns 0 on success, negative on failure
4820 */
4821static int ice_set_mac_address(struct net_device *netdev, void *pi)
4822{
4823	struct ice_netdev_priv *np = netdev_priv(netdev);
4824	struct ice_vsi *vsi = np->vsi;
4825	struct ice_pf *pf = vsi->back;
4826	struct ice_hw *hw = &pf->hw;
4827	struct sockaddr *addr = pi;
4828	enum ice_status status;
 
 
4829	u8 flags = 0;
4830	int err = 0;
4831	u8 *mac;
4832
4833	mac = (u8 *)addr->sa_data;
4834
4835	if (!is_valid_ether_addr(mac))
4836		return -EADDRNOTAVAIL;
4837
4838	if (ether_addr_equal(netdev->dev_addr, mac)) {
4839		netdev_warn(netdev, "already using mac %pM\n", mac);
4840		return 0;
4841	}
4842
4843	if (test_bit(__ICE_DOWN, pf->state) ||
4844	    ice_is_reset_in_progress(pf->state)) {
4845		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4846			   mac);
4847		return -EBUSY;
4848	}
4849
4850	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4851	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4852	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
 
 
 
 
 
 
 
 
 
4853		err = -EADDRNOTAVAIL;
4854		goto err_update_filters;
4855	}
4856
4857	/* Add filter for new MAC. If filter exists, just return success */
4858	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4859	if (status == ICE_ERR_ALREADY_EXISTS) {
4860		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4861		return 0;
4862	}
4863
4864	/* error if the new filter addition failed */
4865	if (status)
 
 
 
 
 
 
4866		err = -EADDRNOTAVAIL;
 
 
 
 
 
 
 
4867
4868err_update_filters:
4869	if (err) {
4870		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4871			   mac);
4872		return err;
4873	}
4874
4875	/* change the netdev's MAC address */
4876	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4877	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4878		   netdev->dev_addr);
4879
4880	/* write new MAC address to the firmware */
4881	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4882	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4883	if (status) {
4884		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4885			   mac, ice_stat_str(status));
4886	}
4887	return 0;
4888}
4889
4890/**
4891 * ice_set_rx_mode - NDO callback to set the netdev filters
4892 * @netdev: network interface device structure
4893 */
4894static void ice_set_rx_mode(struct net_device *netdev)
4895{
4896	struct ice_netdev_priv *np = netdev_priv(netdev);
4897	struct ice_vsi *vsi = np->vsi;
4898
4899	if (!vsi)
4900		return;
4901
4902	/* Set the flags to synchronize filters
4903	 * ndo_set_rx_mode may be triggered even without a change in netdev
4904	 * flags
4905	 */
4906	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4907	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4908	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4909
4910	/* schedule our worker thread which will take care of
4911	 * applying the new filter changes
4912	 */
4913	ice_service_task_schedule(vsi->back);
4914}
4915
4916/**
4917 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4918 * @netdev: network interface device structure
4919 * @queue_index: Queue ID
4920 * @maxrate: maximum bandwidth in Mbps
4921 */
4922static int
4923ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4924{
4925	struct ice_netdev_priv *np = netdev_priv(netdev);
4926	struct ice_vsi *vsi = np->vsi;
4927	enum ice_status status;
4928	u16 q_handle;
4929	u8 tc;
4930
4931	/* Validate maxrate requested is within permitted range */
4932	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4933		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4934			   maxrate, queue_index);
4935		return -EINVAL;
4936	}
4937
4938	q_handle = vsi->tx_rings[queue_index]->q_handle;
4939	tc = ice_dcb_get_tc(vsi, queue_index);
4940
4941	/* Set BW back to default, when user set maxrate to 0 */
4942	if (!maxrate)
4943		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4944					       q_handle, ICE_MAX_BW);
4945	else
4946		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4947					  q_handle, ICE_MAX_BW, maxrate * 1000);
4948	if (status) {
4949		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4950			   ice_stat_str(status));
4951		return -EIO;
4952	}
4953
4954	return 0;
4955}
4956
4957/**
4958 * ice_fdb_add - add an entry to the hardware database
4959 * @ndm: the input from the stack
4960 * @tb: pointer to array of nladdr (unused)
4961 * @dev: the net device pointer
4962 * @addr: the MAC address entry being added
4963 * @vid: VLAN ID
4964 * @flags: instructions from stack about fdb operation
4965 * @extack: netlink extended ack
4966 */
4967static int
4968ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
4969	    struct net_device *dev, const unsigned char *addr, u16 vid,
4970	    u16 flags, struct netlink_ext_ack __always_unused *extack)
4971{
4972	int err;
4973
4974	if (vid) {
4975		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
4976		return -EINVAL;
4977	}
4978	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
4979		netdev_err(dev, "FDB only supports static addresses\n");
4980		return -EINVAL;
4981	}
4982
4983	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
4984		err = dev_uc_add_excl(dev, addr);
4985	else if (is_multicast_ether_addr(addr))
4986		err = dev_mc_add_excl(dev, addr);
4987	else
4988		err = -EINVAL;
4989
4990	/* Only return duplicate errors if NLM_F_EXCL is set */
4991	if (err == -EEXIST && !(flags & NLM_F_EXCL))
4992		err = 0;
4993
4994	return err;
4995}
4996
4997/**
4998 * ice_fdb_del - delete an entry from the hardware database
4999 * @ndm: the input from the stack
5000 * @tb: pointer to array of nladdr (unused)
5001 * @dev: the net device pointer
5002 * @addr: the MAC address entry being added
5003 * @vid: VLAN ID
5004 */
5005static int
5006ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5007	    struct net_device *dev, const unsigned char *addr,
5008	    __always_unused u16 vid)
5009{
5010	int err;
5011
5012	if (ndm->ndm_state & NUD_PERMANENT) {
5013		netdev_err(dev, "FDB only supports static addresses\n");
5014		return -EINVAL;
5015	}
5016
5017	if (is_unicast_ether_addr(addr))
5018		err = dev_uc_del(dev, addr);
5019	else if (is_multicast_ether_addr(addr))
5020		err = dev_mc_del(dev, addr);
5021	else
5022		err = -EINVAL;
5023
5024	return err;
5025}
5026
5027/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5028 * ice_set_features - set the netdev feature flags
5029 * @netdev: ptr to the netdev being adjusted
5030 * @features: the feature set that the stack is suggesting
5031 */
5032static int
5033ice_set_features(struct net_device *netdev, netdev_features_t features)
5034{
5035	struct ice_netdev_priv *np = netdev_priv(netdev);
5036	struct ice_vsi *vsi = np->vsi;
5037	struct ice_pf *pf = vsi->back;
5038	int ret = 0;
5039
5040	/* Don't set any netdev advanced features with device in Safe Mode */
5041	if (ice_is_safe_mode(vsi->back)) {
5042		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5043		return ret;
5044	}
5045
5046	/* Do not change setting during reset */
5047	if (ice_is_reset_in_progress(pf->state)) {
5048		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5049		return -EBUSY;
5050	}
5051
5052	/* Multiple features can be changed in one call so keep features in
5053	 * separate if/else statements to guarantee each feature is checked
5054	 */
5055	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5056		ret = ice_vsi_manage_rss_lut(vsi, true);
5057	else if (!(features & NETIF_F_RXHASH) &&
5058		 netdev->features & NETIF_F_RXHASH)
5059		ret = ice_vsi_manage_rss_lut(vsi, false);
5060
5061	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5062	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5063		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5064	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5065		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5066		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5067
5068	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5069	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5070		ret = ice_vsi_manage_vlan_insertion(vsi);
5071	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5072		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5073		ret = ice_vsi_manage_vlan_insertion(vsi);
5074
5075	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5076	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5077		ret = ice_cfg_vlan_pruning(vsi, true, false);
5078	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5079		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5080		ret = ice_cfg_vlan_pruning(vsi, false, false);
5081
5082	if ((features & NETIF_F_NTUPLE) &&
5083	    !(netdev->features & NETIF_F_NTUPLE)) {
5084		ice_vsi_manage_fdir(vsi, true);
5085		ice_init_arfs(vsi);
5086	} else if (!(features & NETIF_F_NTUPLE) &&
5087		 (netdev->features & NETIF_F_NTUPLE)) {
5088		ice_vsi_manage_fdir(vsi, false);
5089		ice_clear_arfs(vsi);
5090	}
5091
5092	return ret;
5093}
5094
5095/**
5096 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5097 * @vsi: VSI to setup VLAN properties for
5098 */
5099static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5100{
5101	int ret = 0;
5102
5103	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5104		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5105	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5106		ret = ice_vsi_manage_vlan_insertion(vsi);
5107
5108	return ret;
5109}
5110
5111/**
5112 * ice_vsi_cfg - Setup the VSI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5113 * @vsi: the VSI being configured
5114 *
5115 * Return 0 on success and negative value on error
 
5116 */
5117int ice_vsi_cfg(struct ice_vsi *vsi)
5118{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5119	int err;
5120
5121	if (vsi->netdev) {
5122		ice_set_rx_mode(vsi->netdev);
5123
5124		err = ice_vsi_vlan_setup(vsi);
 
5125
5126		if (err)
5127			return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5128	}
5129	ice_vsi_cfg_dcb_rings(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
5130
5131	err = ice_vsi_cfg_lan_txqs(vsi);
5132	if (!err && ice_is_xdp_ena_vsi(vsi))
5133		err = ice_vsi_cfg_xdp_txqs(vsi);
 
 
5134	if (!err)
5135		err = ice_vsi_cfg_rxqs(vsi);
5136
5137	return err;
5138}
5139
5140/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5141 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5142 * @vsi: the VSI being configured
5143 */
5144static void ice_napi_enable_all(struct ice_vsi *vsi)
5145{
5146	int q_idx;
5147
5148	if (!vsi->netdev)
5149		return;
5150
5151	ice_for_each_q_vector(vsi, q_idx) {
5152		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5153
5154		if (q_vector->rx.ring || q_vector->tx.ring)
5155			napi_enable(&q_vector->napi);
5156	}
5157}
5158
5159/**
5160 * ice_up_complete - Finish the last steps of bringing up a connection
5161 * @vsi: The VSI being configured
5162 *
5163 * Return 0 on success and negative value on error
5164 */
5165static int ice_up_complete(struct ice_vsi *vsi)
5166{
5167	struct ice_pf *pf = vsi->back;
5168	int err;
5169
5170	ice_vsi_cfg_msix(vsi);
 
 
 
5171
5172	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5173	 * Tx queue group list was configured and the context bits were
5174	 * programmed using ice_vsi_cfg_txqs
5175	 */
5176	err = ice_vsi_start_all_rx_rings(vsi);
5177	if (err)
5178		return err;
5179
5180	clear_bit(__ICE_DOWN, vsi->state);
5181	ice_napi_enable_all(vsi);
5182	ice_vsi_ena_irq(vsi);
5183
5184	if (vsi->port_info &&
5185	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5186	    vsi->netdev) {
5187		ice_print_link_msg(vsi, true);
5188		netif_tx_start_all_queues(vsi->netdev);
5189		netif_carrier_on(vsi->netdev);
5190	}
5191
5192	ice_service_task_schedule(pf);
5193
5194	return 0;
5195}
5196
5197/**
5198 * ice_up - Bring the connection back up after being down
5199 * @vsi: VSI being configured
5200 */
5201int ice_up(struct ice_vsi *vsi)
5202{
5203	int err;
5204
5205	err = ice_vsi_cfg(vsi);
5206	if (!err)
5207		err = ice_up_complete(vsi);
5208
5209	return err;
5210}
5211
5212/**
5213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5214 * @ring: Tx or Rx ring to read stats from
5215 * @pkts: packets stats counter
5216 * @bytes: bytes stats counter
5217 *
5218 * This function fetches stats from the ring considering the atomic operations
5219 * that needs to be performed to read u64 values in 32 bit machine.
5220 */
5221static void
5222ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5223{
5224	unsigned int start;
5225	*pkts = 0;
5226	*bytes = 0;
5227
5228	if (!ring)
5229		return;
5230	do {
5231		start = u64_stats_fetch_begin_irq(&ring->syncp);
5232		*pkts = ring->stats.pkts;
5233		*bytes = ring->stats.bytes;
5234	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5235}
5236
5237/**
5238 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5239 * @vsi: the VSI to be updated
5240 * @rings: rings to work on
5241 * @count: number of rings
5242 */
5243static void
5244ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5245			     u16 count)
5246{
5247	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5248	u16 i;
 
5249
5250	for (i = 0; i < count; i++) {
5251		struct ice_ring *ring;
5252		u64 pkts, bytes;
5253
5254		ring = READ_ONCE(rings[i]);
5255		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5256		vsi_stats->tx_packets += pkts;
5257		vsi_stats->tx_bytes += bytes;
5258		vsi->tx_restart += ring->tx_stats.restart_q;
5259		vsi->tx_busy += ring->tx_stats.tx_busy;
5260		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5261	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5262}
5263
5264/**
5265 * ice_update_vsi_ring_stats - Update VSI stats counters
5266 * @vsi: the VSI to be updated
5267 */
5268static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5269{
5270	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5271	struct ice_ring *ring;
5272	u64 pkts, bytes;
5273	int i;
5274
5275	/* reset netdev stats */
5276	vsi_stats->tx_packets = 0;
5277	vsi_stats->tx_bytes = 0;
5278	vsi_stats->rx_packets = 0;
5279	vsi_stats->rx_bytes = 0;
5280
5281	/* reset non-netdev (extended) stats */
5282	vsi->tx_restart = 0;
5283	vsi->tx_busy = 0;
5284	vsi->tx_linearize = 0;
5285	vsi->rx_buf_failed = 0;
5286	vsi->rx_page_failed = 0;
5287	vsi->rx_gro_dropped = 0;
5288
5289	rcu_read_lock();
5290
5291	/* update Tx rings counters */
5292	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
 
 
 
 
 
 
 
 
5293
5294	/* update Rx rings counters */
5295	ice_for_each_rxq(vsi, i) {
5296		ring = READ_ONCE(vsi->rx_rings[i]);
5297		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5298		vsi_stats->rx_packets += pkts;
5299		vsi_stats->rx_bytes += bytes;
5300		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5301		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5302		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5303	}
5304
5305	/* update XDP Tx rings counters */
5306	if (ice_is_xdp_ena_vsi(vsi))
5307		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5308					     vsi->num_xdp_txq);
5309
5310	rcu_read_unlock();
5311}
5312
5313/**
5314 * ice_update_vsi_stats - Update VSI stats counters
5315 * @vsi: the VSI to be updated
5316 */
5317void ice_update_vsi_stats(struct ice_vsi *vsi)
5318{
5319	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5320	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5321	struct ice_pf *pf = vsi->back;
5322
5323	if (test_bit(__ICE_DOWN, vsi->state) ||
5324	    test_bit(__ICE_CFG_BUSY, pf->state))
5325		return;
5326
5327	/* get stats as recorded by Tx/Rx rings */
5328	ice_update_vsi_ring_stats(vsi);
5329
5330	/* get VSI stats as recorded by the hardware */
5331	ice_update_eth_stats(vsi);
5332
5333	cur_ns->tx_errors = cur_es->tx_errors;
5334	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5335	cur_ns->tx_dropped = cur_es->tx_discards;
5336	cur_ns->multicast = cur_es->rx_multicast;
5337
5338	/* update some more netdev stats if this is main VSI */
5339	if (vsi->type == ICE_VSI_PF) {
5340		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5341		cur_ns->rx_errors = pf->stats.crc_errors +
5342				    pf->stats.illegal_bytes +
5343				    pf->stats.rx_len_errors +
5344				    pf->stats.rx_undersize +
5345				    pf->hw_csum_rx_error +
5346				    pf->stats.rx_jabber +
5347				    pf->stats.rx_fragments +
5348				    pf->stats.rx_oversize;
5349		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5350		/* record drops from the port level */
5351		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5352	}
5353}
5354
5355/**
5356 * ice_update_pf_stats - Update PF port stats counters
5357 * @pf: PF whose stats needs to be updated
5358 */
5359void ice_update_pf_stats(struct ice_pf *pf)
5360{
5361	struct ice_hw_port_stats *prev_ps, *cur_ps;
5362	struct ice_hw *hw = &pf->hw;
5363	u16 fd_ctr_base;
5364	u8 port;
5365
5366	port = hw->port_info->lport;
5367	prev_ps = &pf->stats_prev;
5368	cur_ps = &pf->stats;
 
5369
5370	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5371			  &prev_ps->eth.rx_bytes,
5372			  &cur_ps->eth.rx_bytes);
5373
5374	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5375			  &prev_ps->eth.rx_unicast,
5376			  &cur_ps->eth.rx_unicast);
5377
5378	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5379			  &prev_ps->eth.rx_multicast,
5380			  &cur_ps->eth.rx_multicast);
5381
5382	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5383			  &prev_ps->eth.rx_broadcast,
5384			  &cur_ps->eth.rx_broadcast);
5385
5386	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5387			  &prev_ps->eth.rx_discards,
5388			  &cur_ps->eth.rx_discards);
5389
5390	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5391			  &prev_ps->eth.tx_bytes,
5392			  &cur_ps->eth.tx_bytes);
5393
5394	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5395			  &prev_ps->eth.tx_unicast,
5396			  &cur_ps->eth.tx_unicast);
5397
5398	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5399			  &prev_ps->eth.tx_multicast,
5400			  &cur_ps->eth.tx_multicast);
5401
5402	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5403			  &prev_ps->eth.tx_broadcast,
5404			  &cur_ps->eth.tx_broadcast);
5405
5406	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5407			  &prev_ps->tx_dropped_link_down,
5408			  &cur_ps->tx_dropped_link_down);
5409
5410	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5411			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5412
5413	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5414			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
 
 
 
 
 
 
 
 
 
 
5415
5416	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5417			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5418
5419	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5420			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5421
5422	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5423			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5424
5425	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
 
5426			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5427
5428	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
 
5429			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5430
5431	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5432			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5433
5434	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5435			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5436
5437	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5438			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5439
5440	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5441			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
 
 
 
 
5442
5443	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
 
5444			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5445
5446	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
 
5447			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5448
5449	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
 
5450			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5451
5452	fd_ctr_base = hw->fd_ctr_base;
5453
5454	ice_stat_update40(hw,
5455			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5456			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5457			  &cur_ps->fd_sb_match);
5458	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5459			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5460
5461	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5462			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5463
5464	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5465			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5466
5467	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5468			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5469
5470	ice_update_dcb_stats(pf);
5471
5472	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5473			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5474
5475	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5476			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5477
5478	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5479			  &prev_ps->mac_local_faults,
5480			  &cur_ps->mac_local_faults);
5481
5482	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5483			  &prev_ps->mac_remote_faults,
5484			  &cur_ps->mac_remote_faults);
5485
5486	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5487			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5488
5489	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5490			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5491
5492	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5493			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5494
5495	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5496			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5497
5498	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5499			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5500
5501	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5502
5503	pf->stat_prev_loaded = true;
5504}
5505
5506/**
5507 * ice_get_stats64 - get statistics for network device structure
5508 * @netdev: network interface device structure
5509 * @stats: main device statistics structure
5510 */
5511static
5512void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5513{
5514	struct ice_netdev_priv *np = netdev_priv(netdev);
5515	struct rtnl_link_stats64 *vsi_stats;
5516	struct ice_vsi *vsi = np->vsi;
5517
5518	vsi_stats = &vsi->net_stats;
5519
5520	if (!vsi->num_txq || !vsi->num_rxq)
5521		return;
5522
5523	/* netdev packet/byte stats come from ring counter. These are obtained
5524	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5525	 * But, only call the update routine and read the registers if VSI is
5526	 * not down.
5527	 */
5528	if (!test_bit(__ICE_DOWN, vsi->state))
5529		ice_update_vsi_ring_stats(vsi);
5530	stats->tx_packets = vsi_stats->tx_packets;
5531	stats->tx_bytes = vsi_stats->tx_bytes;
5532	stats->rx_packets = vsi_stats->rx_packets;
5533	stats->rx_bytes = vsi_stats->rx_bytes;
5534
5535	/* The rest of the stats can be read from the hardware but instead we
5536	 * just return values that the watchdog task has already obtained from
5537	 * the hardware.
5538	 */
5539	stats->multicast = vsi_stats->multicast;
5540	stats->tx_errors = vsi_stats->tx_errors;
5541	stats->tx_dropped = vsi_stats->tx_dropped;
5542	stats->rx_errors = vsi_stats->rx_errors;
5543	stats->rx_dropped = vsi_stats->rx_dropped;
5544	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5545	stats->rx_length_errors = vsi_stats->rx_length_errors;
5546}
5547
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5548/**
5549 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5550 * @vsi: VSI having NAPI disabled
5551 */
5552static void ice_napi_disable_all(struct ice_vsi *vsi)
5553{
5554	int q_idx;
5555
5556	if (!vsi->netdev)
5557		return;
5558
5559	ice_for_each_q_vector(vsi, q_idx) {
5560		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5561
5562		if (q_vector->rx.ring || q_vector->tx.ring)
5563			napi_disable(&q_vector->napi);
5564	}
5565}
5566
5567/**
5568 * ice_down - Shutdown the connection
5569 * @vsi: The VSI being stopped
5570 */
5571int ice_down(struct ice_vsi *vsi)
5572{
5573	int i, tx_err, rx_err, link_err = 0;
5574
5575	/* Caller of this function is expected to set the
5576	 * vsi->state __ICE_DOWN bit
5577	 */
5578	if (vsi->netdev) {
5579		netif_carrier_off(vsi->netdev);
5580		netif_tx_disable(vsi->netdev);
5581	}
5582
5583	ice_vsi_dis_irq(vsi);
5584
5585	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5586	if (tx_err)
5587		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5588			   vsi->vsi_num, tx_err);
5589	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5590		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5591		if (tx_err)
5592			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5593				   vsi->vsi_num, tx_err);
5594	}
5595
5596	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5597	if (rx_err)
5598		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5599			   vsi->vsi_num, rx_err);
5600
5601	ice_napi_disable_all(vsi);
5602
5603	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5604		link_err = ice_force_phys_link_state(vsi, false);
5605		if (link_err)
5606			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5607				   vsi->vsi_num, link_err);
5608	}
5609
5610	ice_for_each_txq(vsi, i)
5611		ice_clean_tx_ring(vsi->tx_rings[i]);
5612
5613	ice_for_each_rxq(vsi, i)
5614		ice_clean_rx_ring(vsi->rx_rings[i]);
5615
5616	if (tx_err || rx_err || link_err) {
5617		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5618			   vsi->vsi_num, vsi->vsw->sw_id);
5619		return -EIO;
5620	}
5621
5622	return 0;
5623}
5624
5625/**
5626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5627 * @vsi: VSI having resources allocated
5628 *
5629 * Return 0 on success, negative on failure
5630 */
5631int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5632{
5633	int i, err = 0;
5634
5635	if (!vsi->num_txq) {
5636		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5637			vsi->vsi_num);
5638		return -EINVAL;
5639	}
5640
5641	ice_for_each_txq(vsi, i) {
5642		struct ice_ring *ring = vsi->tx_rings[i];
5643
5644		if (!ring)
5645			return -EINVAL;
5646
5647		ring->netdev = vsi->netdev;
5648		err = ice_setup_tx_ring(ring);
5649		if (err)
5650			break;
5651	}
5652
5653	return err;
5654}
5655
5656/**
5657 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5658 * @vsi: VSI having resources allocated
5659 *
5660 * Return 0 on success, negative on failure
5661 */
5662int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5663{
5664	int i, err = 0;
5665
5666	if (!vsi->num_rxq) {
5667		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5668			vsi->vsi_num);
5669		return -EINVAL;
5670	}
5671
5672	ice_for_each_rxq(vsi, i) {
5673		struct ice_ring *ring = vsi->rx_rings[i];
5674
5675		if (!ring)
5676			return -EINVAL;
5677
5678		ring->netdev = vsi->netdev;
5679		err = ice_setup_rx_ring(ring);
5680		if (err)
5681			break;
5682	}
5683
5684	return err;
5685}
5686
5687/**
5688 * ice_vsi_open_ctrl - open control VSI for use
5689 * @vsi: the VSI to open
5690 *
5691 * Initialization of the Control VSI
5692 *
5693 * Returns 0 on success, negative value on error
5694 */
5695int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5696{
5697	char int_name[ICE_INT_NAME_STR_LEN];
5698	struct ice_pf *pf = vsi->back;
5699	struct device *dev;
5700	int err;
5701
5702	dev = ice_pf_to_dev(pf);
5703	/* allocate descriptors */
5704	err = ice_vsi_setup_tx_rings(vsi);
5705	if (err)
5706		goto err_setup_tx;
5707
5708	err = ice_vsi_setup_rx_rings(vsi);
5709	if (err)
5710		goto err_setup_rx;
5711
5712	err = ice_vsi_cfg(vsi);
5713	if (err)
5714		goto err_setup_rx;
5715
5716	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5717		 dev_driver_string(dev), dev_name(dev));
5718	err = ice_vsi_req_irq_msix(vsi, int_name);
5719	if (err)
5720		goto err_setup_rx;
5721
5722	ice_vsi_cfg_msix(vsi);
 
 
 
 
 
 
5723
5724	err = ice_vsi_start_all_rx_rings(vsi);
5725	if (err)
5726		goto err_up_complete;
5727
5728	clear_bit(__ICE_DOWN, vsi->state);
5729	ice_vsi_ena_irq(vsi);
 
 
5730
5731	return 0;
 
 
 
 
 
 
5732
5733err_up_complete:
5734	ice_down(vsi);
5735err_setup_rx:
5736	ice_vsi_free_rx_rings(vsi);
5737err_setup_tx:
5738	ice_vsi_free_tx_rings(vsi);
5739
5740	return err;
 
 
5741}
5742
5743/**
5744 * ice_vsi_open - Called when a network interface is made active
5745 * @vsi: the VSI to open
5746 *
5747 * Initialization of the VSI
5748 *
5749 * Returns 0 on success, negative value on error
5750 */
5751static int ice_vsi_open(struct ice_vsi *vsi)
5752{
5753	char int_name[ICE_INT_NAME_STR_LEN];
5754	struct ice_pf *pf = vsi->back;
5755	int err;
5756
5757	/* allocate descriptors */
5758	err = ice_vsi_setup_tx_rings(vsi);
5759	if (err)
5760		goto err_setup_tx;
5761
5762	err = ice_vsi_setup_rx_rings(vsi);
5763	if (err)
5764		goto err_setup_rx;
5765
5766	err = ice_vsi_cfg(vsi);
5767	if (err)
5768		goto err_setup_rx;
5769
5770	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5771		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5772	err = ice_vsi_req_irq_msix(vsi, int_name);
5773	if (err)
5774		goto err_setup_rx;
5775
5776	/* Notify the stack of the actual queue counts. */
5777	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5778	if (err)
5779		goto err_set_qs;
5780
5781	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5782	if (err)
5783		goto err_set_qs;
5784
5785	err = ice_up_complete(vsi);
5786	if (err)
5787		goto err_up_complete;
5788
5789	return 0;
5790
5791err_up_complete:
5792	ice_down(vsi);
5793err_set_qs:
5794	ice_vsi_free_irq(vsi);
5795err_setup_rx:
5796	ice_vsi_free_rx_rings(vsi);
5797err_setup_tx:
5798	ice_vsi_free_tx_rings(vsi);
5799
5800	return err;
5801}
5802
5803/**
5804 * ice_vsi_release_all - Delete all VSIs
5805 * @pf: PF from which all VSIs are being removed
5806 */
5807static void ice_vsi_release_all(struct ice_pf *pf)
5808{
5809	int err, i;
 
5810
5811	if (!pf->vsi)
5812		return;
 
 
5813
5814	ice_for_each_vsi(pf, i) {
5815		if (!pf->vsi[i])
5816			continue;
 
 
 
 
5817
5818		err = ice_vsi_release(pf->vsi[i]);
5819		if (err)
5820			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5821				i, err, pf->vsi[i]->vsi_num);
5822	}
 
5823}
5824
5825/**
5826 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5827 * @pf: pointer to the PF instance
5828 * @type: VSI type to rebuild
5829 *
5830 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5831 */
5832static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5833{
5834	struct device *dev = ice_pf_to_dev(pf);
5835	enum ice_status status;
5836	int i, err;
5837
5838	ice_for_each_vsi(pf, i) {
5839		struct ice_vsi *vsi = pf->vsi[i];
 
5840
5841		if (!vsi || vsi->type != type)
5842			continue;
 
 
 
5843
5844		/* rebuild the VSI */
5845		err = ice_vsi_rebuild(vsi, true);
5846		if (err) {
5847			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5848				err, vsi->idx, ice_vsi_type_str(type));
5849			return err;
5850		}
5851
5852		/* replay filters for the VSI */
5853		status = ice_replay_vsi(&pf->hw, vsi->idx);
5854		if (status) {
5855			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5856				ice_stat_str(status), vsi->idx,
5857				ice_vsi_type_str(type));
5858			return -EIO;
5859		}
5860
5861		/* Re-map HW VSI number, using VSI handle that has been
5862		 * previously validated in ice_replay_vsi() call above
5863		 */
5864		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
 
 
 
 
 
 
 
 
5865
5866		/* enable the VSI */
5867		err = ice_ena_vsi(vsi, false);
5868		if (err) {
5869			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5870				err, vsi->idx, ice_vsi_type_str(type));
5871			return err;
5872		}
5873
5874		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5875			 ice_vsi_type_str(type));
5876	}
5877
5878	return 0;
5879}
5880
5881/**
5882 * ice_update_pf_netdev_link - Update PF netdev link status
5883 * @pf: pointer to the PF instance
5884 */
5885static void ice_update_pf_netdev_link(struct ice_pf *pf)
5886{
5887	bool link_up;
5888	int i;
5889
5890	ice_for_each_vsi(pf, i) {
5891		struct ice_vsi *vsi = pf->vsi[i];
5892
5893		if (!vsi || vsi->type != ICE_VSI_PF)
5894			return;
 
5895
5896		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5897		if (link_up) {
5898			netif_carrier_on(pf->vsi[i]->netdev);
5899			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5900		} else {
5901			netif_carrier_off(pf->vsi[i]->netdev);
5902			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5903		}
5904	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5905}
5906
5907/**
5908 * ice_rebuild - rebuild after reset
5909 * @pf: PF to rebuild
5910 * @reset_type: type of reset
5911 *
5912 * Do not rebuild VF VSI in this flow because that is already handled via
5913 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5914 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5915 * to reset/rebuild all the VF VSI twice.
5916 */
5917static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5918{
5919	struct device *dev = ice_pf_to_dev(pf);
5920	struct ice_hw *hw = &pf->hw;
5921	enum ice_status ret;
5922	int err;
5923
5924	if (test_bit(__ICE_DOWN, pf->state))
5925		goto clear_recovery;
5926
5927	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5928
5929	ret = ice_init_all_ctrlq(hw);
5930	if (ret) {
5931		dev_err(dev, "control queues init failed %s\n",
5932			ice_stat_str(ret));
5933		goto err_init_ctrlq;
5934	}
5935
5936	/* if DDP was previously loaded successfully */
5937	if (!ice_is_safe_mode(pf)) {
5938		/* reload the SW DB of filter tables */
5939		if (reset_type == ICE_RESET_PFR)
5940			ice_fill_blk_tbls(hw);
5941		else
5942			/* Reload DDP Package after CORER/GLOBR reset */
5943			ice_load_pkg(NULL, pf);
5944	}
5945
5946	ret = ice_clear_pf_cfg(hw);
5947	if (ret) {
5948		dev_err(dev, "clear PF configuration failed %s\n",
5949			ice_stat_str(ret));
5950		goto err_init_ctrlq;
5951	}
5952
5953	if (pf->first_sw->dflt_vsi_ena)
5954		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5955	/* clear the default VSI configuration if it exists */
5956	pf->first_sw->dflt_vsi = NULL;
5957	pf->first_sw->dflt_vsi_ena = false;
5958
5959	ice_clear_pxe_mode(hw);
5960
5961	ret = ice_get_caps(hw);
5962	if (ret) {
5963		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5964		goto err_init_ctrlq;
5965	}
5966
5967	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
5968	if (ret) {
5969		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
5970		goto err_init_ctrlq;
5971	}
5972
5973	err = ice_sched_init_port(hw->port_info);
5974	if (err)
5975		goto err_sched_init_port;
5976
5977	/* start misc vector */
5978	err = ice_req_irq_msix_misc(pf);
5979	if (err) {
5980		dev_err(dev, "misc vector setup failed: %d\n", err);
5981		goto err_sched_init_port;
5982	}
5983
5984	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
5985		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
5986		if (!rd32(hw, PFQF_FD_SIZE)) {
5987			u16 unused, guar, b_effort;
5988
5989			guar = hw->func_caps.fd_fltr_guar;
5990			b_effort = hw->func_caps.fd_fltr_best_effort;
5991
5992			/* force guaranteed filter pool for PF */
5993			ice_alloc_fd_guar_item(hw, &unused, guar);
5994			/* force shared filter pool for PF */
5995			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
5996		}
5997	}
5998
5999	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6000		ice_dcb_rebuild(pf);
6001
6002	/* rebuild PF VSI */
6003	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6004	if (err) {
6005		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6006		goto err_vsi_rebuild;
6007	}
6008
6009	/* If Flow Director is active */
6010	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6011		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6012		if (err) {
6013			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6014			goto err_vsi_rebuild;
6015		}
6016
6017		/* replay HW Flow Director recipes */
6018		if (hw->fdir_prof)
6019			ice_fdir_replay_flows(hw);
6020
6021		/* replay Flow Director filters */
6022		ice_fdir_replay_fltrs(pf);
6023
6024		ice_rebuild_arfs(pf);
6025	}
6026
6027	ice_update_pf_netdev_link(pf);
6028
6029	/* tell the firmware we are up */
6030	ret = ice_send_version(pf);
6031	if (ret) {
6032		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6033			ice_stat_str(ret));
6034		goto err_vsi_rebuild;
6035	}
6036
6037	ice_replay_post(hw);
 
6038
6039	/* if we get here, reset flow is successful */
6040	clear_bit(__ICE_RESET_FAILED, pf->state);
6041	return;
6042
6043err_vsi_rebuild:
6044err_sched_init_port:
6045	ice_sched_cleanup_all(hw);
6046err_init_ctrlq:
6047	ice_shutdown_all_ctrlq(hw);
6048	set_bit(__ICE_RESET_FAILED, pf->state);
6049clear_recovery:
6050	/* set this bit in PF state to control service task scheduling */
6051	set_bit(__ICE_NEEDS_RESTART, pf->state);
6052	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6053}
6054
6055/**
6056 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6057 * @vsi: Pointer to VSI structure
6058 */
6059static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6060{
6061	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6062		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6063	else
6064		return ICE_RXBUF_3072;
6065}
6066
6067/**
6068 * ice_change_mtu - NDO callback to change the MTU
6069 * @netdev: network interface device structure
6070 * @new_mtu: new value for maximum frame size
6071 *
6072 * Returns 0 on success, negative on failure
6073 */
6074static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6075{
6076	struct ice_netdev_priv *np = netdev_priv(netdev);
6077	struct ice_vsi *vsi = np->vsi;
6078	struct ice_pf *pf = vsi->back;
6079	u8 count = 0;
6080
6081	if (new_mtu == (int)netdev->mtu) {
6082		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6083		return 0;
6084	}
6085
6086	if (ice_is_xdp_ena_vsi(vsi)) {
6087		int frame_size = ice_max_xdp_frame_size(vsi);
6088
6089		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6090			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6091				   frame_size - ICE_ETH_PKT_HDR_PAD);
6092			return -EINVAL;
6093		}
6094	}
6095
6096	if (new_mtu < (int)netdev->min_mtu) {
6097		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6098			   netdev->min_mtu);
6099		return -EINVAL;
6100	} else if (new_mtu > (int)netdev->max_mtu) {
6101		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6102			   netdev->min_mtu);
6103		return -EINVAL;
6104	}
6105	/* if a reset is in progress, wait for some time for it to complete */
6106	do {
6107		if (ice_is_reset_in_progress(pf->state)) {
6108			count++;
6109			usleep_range(1000, 2000);
6110		} else {
6111			break;
6112		}
6113
6114	} while (count < 100);
6115
6116	if (count == 100) {
6117		netdev_err(netdev, "can't change MTU. Device is busy\n");
6118		return -EBUSY;
6119	}
6120
6121	netdev->mtu = (unsigned int)new_mtu;
6122
6123	/* if VSI is up, bring it down and then back up */
6124	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6125		int err;
6126
6127		err = ice_down(vsi);
6128		if (err) {
6129			netdev_err(netdev, "change MTU if_up err %d\n", err);
6130			return err;
6131		}
6132
6133		err = ice_up(vsi);
6134		if (err) {
6135			netdev_err(netdev, "change MTU if_up err %d\n", err);
6136			return err;
6137		}
6138	}
6139
6140	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6141	return 0;
6142}
6143
6144/**
6145 * ice_aq_str - convert AQ err code to a string
6146 * @aq_err: the AQ error code to convert
6147 */
6148const char *ice_aq_str(enum ice_aq_err aq_err)
6149{
6150	switch (aq_err) {
6151	case ICE_AQ_RC_OK:
6152		return "OK";
6153	case ICE_AQ_RC_EPERM:
6154		return "ICE_AQ_RC_EPERM";
6155	case ICE_AQ_RC_ENOENT:
6156		return "ICE_AQ_RC_ENOENT";
6157	case ICE_AQ_RC_ENOMEM:
6158		return "ICE_AQ_RC_ENOMEM";
6159	case ICE_AQ_RC_EBUSY:
6160		return "ICE_AQ_RC_EBUSY";
6161	case ICE_AQ_RC_EEXIST:
6162		return "ICE_AQ_RC_EEXIST";
6163	case ICE_AQ_RC_EINVAL:
6164		return "ICE_AQ_RC_EINVAL";
6165	case ICE_AQ_RC_ENOSPC:
6166		return "ICE_AQ_RC_ENOSPC";
6167	case ICE_AQ_RC_ENOSYS:
6168		return "ICE_AQ_RC_ENOSYS";
6169	case ICE_AQ_RC_EMODE:
6170		return "ICE_AQ_RC_EMODE";
6171	case ICE_AQ_RC_ENOSEC:
6172		return "ICE_AQ_RC_ENOSEC";
6173	case ICE_AQ_RC_EBADSIG:
6174		return "ICE_AQ_RC_EBADSIG";
6175	case ICE_AQ_RC_ESVN:
6176		return "ICE_AQ_RC_ESVN";
6177	case ICE_AQ_RC_EBADMAN:
6178		return "ICE_AQ_RC_EBADMAN";
6179	case ICE_AQ_RC_EBADBUF:
6180		return "ICE_AQ_RC_EBADBUF";
6181	}
6182
6183	return "ICE_AQ_RC_UNKNOWN";
6184}
6185
6186/**
6187 * ice_stat_str - convert status err code to a string
6188 * @stat_err: the status error code to convert
6189 */
6190const char *ice_stat_str(enum ice_status stat_err)
6191{
6192	switch (stat_err) {
6193	case ICE_SUCCESS:
6194		return "OK";
6195	case ICE_ERR_PARAM:
6196		return "ICE_ERR_PARAM";
6197	case ICE_ERR_NOT_IMPL:
6198		return "ICE_ERR_NOT_IMPL";
6199	case ICE_ERR_NOT_READY:
6200		return "ICE_ERR_NOT_READY";
6201	case ICE_ERR_NOT_SUPPORTED:
6202		return "ICE_ERR_NOT_SUPPORTED";
6203	case ICE_ERR_BAD_PTR:
6204		return "ICE_ERR_BAD_PTR";
6205	case ICE_ERR_INVAL_SIZE:
6206		return "ICE_ERR_INVAL_SIZE";
6207	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6208		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6209	case ICE_ERR_RESET_FAILED:
6210		return "ICE_ERR_RESET_FAILED";
6211	case ICE_ERR_FW_API_VER:
6212		return "ICE_ERR_FW_API_VER";
6213	case ICE_ERR_NO_MEMORY:
6214		return "ICE_ERR_NO_MEMORY";
6215	case ICE_ERR_CFG:
6216		return "ICE_ERR_CFG";
6217	case ICE_ERR_OUT_OF_RANGE:
6218		return "ICE_ERR_OUT_OF_RANGE";
6219	case ICE_ERR_ALREADY_EXISTS:
6220		return "ICE_ERR_ALREADY_EXISTS";
6221	case ICE_ERR_NVM_CHECKSUM:
6222		return "ICE_ERR_NVM_CHECKSUM";
6223	case ICE_ERR_BUF_TOO_SHORT:
6224		return "ICE_ERR_BUF_TOO_SHORT";
6225	case ICE_ERR_NVM_BLANK_MODE:
6226		return "ICE_ERR_NVM_BLANK_MODE";
6227	case ICE_ERR_IN_USE:
6228		return "ICE_ERR_IN_USE";
6229	case ICE_ERR_MAX_LIMIT:
6230		return "ICE_ERR_MAX_LIMIT";
6231	case ICE_ERR_RESET_ONGOING:
6232		return "ICE_ERR_RESET_ONGOING";
6233	case ICE_ERR_HW_TABLE:
6234		return "ICE_ERR_HW_TABLE";
6235	case ICE_ERR_DOES_NOT_EXIST:
6236		return "ICE_ERR_DOES_NOT_EXIST";
6237	case ICE_ERR_FW_DDP_MISMATCH:
6238		return "ICE_ERR_FW_DDP_MISMATCH";
6239	case ICE_ERR_AQ_ERROR:
6240		return "ICE_ERR_AQ_ERROR";
6241	case ICE_ERR_AQ_TIMEOUT:
6242		return "ICE_ERR_AQ_TIMEOUT";
6243	case ICE_ERR_AQ_FULL:
6244		return "ICE_ERR_AQ_FULL";
6245	case ICE_ERR_AQ_NO_WORK:
6246		return "ICE_ERR_AQ_NO_WORK";
6247	case ICE_ERR_AQ_EMPTY:
6248		return "ICE_ERR_AQ_EMPTY";
6249	case ICE_ERR_AQ_FW_CRITICAL:
6250		return "ICE_ERR_AQ_FW_CRITICAL";
6251	}
6252
6253	return "ICE_ERR_UNKNOWN";
6254}
6255
6256/**
6257 * ice_set_rss - Set RSS keys and lut
6258 * @vsi: Pointer to VSI structure
6259 * @seed: RSS hash seed
6260 * @lut: Lookup table
6261 * @lut_size: Lookup table size
6262 *
6263 * Returns 0 on success, negative on failure
6264 */
6265int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6266{
6267	struct ice_pf *pf = vsi->back;
6268	struct ice_hw *hw = &pf->hw;
6269	enum ice_status status;
6270	struct device *dev;
6271
6272	dev = ice_pf_to_dev(pf);
6273	if (seed) {
6274		struct ice_aqc_get_set_rss_keys *buf =
6275				  (struct ice_aqc_get_set_rss_keys *)seed;
6276
6277		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
6278
6279		if (status) {
6280			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6281				ice_stat_str(status),
6282				ice_aq_str(hw->adminq.sq_last_status));
6283			return -EIO;
6284		}
6285	}
6286
6287	if (lut) {
6288		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6289					    lut, lut_size);
6290		if (status) {
6291			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6292				ice_stat_str(status),
6293				ice_aq_str(hw->adminq.sq_last_status));
6294			return -EIO;
6295		}
6296	}
6297
6298	return 0;
6299}
6300
6301/**
6302 * ice_get_rss - Get RSS keys and lut
6303 * @vsi: Pointer to VSI structure
6304 * @seed: Buffer to store the keys
6305 * @lut: Buffer to store the lookup table entries
6306 * @lut_size: Size of buffer to store the lookup table entries
6307 *
6308 * Returns 0 on success, negative on failure
6309 */
6310int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6311{
6312	struct ice_pf *pf = vsi->back;
6313	struct ice_hw *hw = &pf->hw;
6314	enum ice_status status;
6315	struct device *dev;
6316
6317	dev = ice_pf_to_dev(pf);
6318	if (seed) {
6319		struct ice_aqc_get_set_rss_keys *buf =
6320				  (struct ice_aqc_get_set_rss_keys *)seed;
6321
6322		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6323		if (status) {
6324			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6325				ice_stat_str(status),
6326				ice_aq_str(hw->adminq.sq_last_status));
6327			return -EIO;
6328		}
6329	}
6330
6331	if (lut) {
6332		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6333					    lut, lut_size);
6334		if (status) {
6335			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6336				ice_stat_str(status),
6337				ice_aq_str(hw->adminq.sq_last_status));
6338			return -EIO;
6339		}
6340	}
6341
6342	return 0;
6343}
6344
6345/**
6346 * ice_bridge_getlink - Get the hardware bridge mode
6347 * @skb: skb buff
6348 * @pid: process ID
6349 * @seq: RTNL message seq
6350 * @dev: the netdev being configured
6351 * @filter_mask: filter mask passed in
6352 * @nlflags: netlink flags passed in
6353 *
6354 * Return the bridge mode (VEB/VEPA)
6355 */
6356static int
6357ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6358		   struct net_device *dev, u32 filter_mask, int nlflags)
6359{
6360	struct ice_netdev_priv *np = netdev_priv(dev);
6361	struct ice_vsi *vsi = np->vsi;
6362	struct ice_pf *pf = vsi->back;
6363	u16 bmode;
6364
6365	bmode = pf->first_sw->bridge_mode;
6366
6367	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6368				       filter_mask, NULL);
6369}
6370
6371/**
6372 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6373 * @vsi: Pointer to VSI structure
6374 * @bmode: Hardware bridge mode (VEB/VEPA)
6375 *
6376 * Returns 0 on success, negative on failure
6377 */
6378static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6379{
6380	struct ice_aqc_vsi_props *vsi_props;
6381	struct ice_hw *hw = &vsi->back->hw;
6382	struct ice_vsi_ctx *ctxt;
6383	enum ice_status status;
6384	int ret = 0;
6385
6386	vsi_props = &vsi->info;
6387
6388	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6389	if (!ctxt)
6390		return -ENOMEM;
6391
6392	ctxt->info = vsi->info;
6393
6394	if (bmode == BRIDGE_MODE_VEB)
6395		/* change from VEPA to VEB mode */
6396		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6397	else
6398		/* change from VEB to VEPA mode */
6399		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6400	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6401
6402	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6403	if (status) {
6404		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6405			bmode, ice_stat_str(status),
6406			ice_aq_str(hw->adminq.sq_last_status));
6407		ret = -EIO;
6408		goto out;
6409	}
6410	/* Update sw flags for book keeping */
6411	vsi_props->sw_flags = ctxt->info.sw_flags;
6412
6413out:
6414	kfree(ctxt);
6415	return ret;
6416}
6417
6418/**
6419 * ice_bridge_setlink - Set the hardware bridge mode
6420 * @dev: the netdev being configured
6421 * @nlh: RTNL message
6422 * @flags: bridge setlink flags
6423 * @extack: netlink extended ack
6424 *
6425 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6426 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6427 * not already set for all VSIs connected to this switch. And also update the
6428 * unicast switch filter rules for the corresponding switch of the netdev.
6429 */
6430static int
6431ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6432		   u16 __always_unused flags,
6433		   struct netlink_ext_ack __always_unused *extack)
6434{
6435	struct ice_netdev_priv *np = netdev_priv(dev);
6436	struct ice_pf *pf = np->vsi->back;
6437	struct nlattr *attr, *br_spec;
6438	struct ice_hw *hw = &pf->hw;
6439	enum ice_status status;
6440	struct ice_sw *pf_sw;
6441	int rem, v, err = 0;
6442
6443	pf_sw = pf->first_sw;
6444	/* find the attribute in the netlink message */
6445	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6446
6447	nla_for_each_nested(attr, br_spec, rem) {
6448		__u16 mode;
6449
6450		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6451			continue;
6452		mode = nla_get_u16(attr);
6453		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6454			return -EINVAL;
6455		/* Continue  if bridge mode is not being flipped */
6456		if (mode == pf_sw->bridge_mode)
6457			continue;
6458		/* Iterates through the PF VSI list and update the loopback
6459		 * mode of the VSI
6460		 */
6461		ice_for_each_vsi(pf, v) {
6462			if (!pf->vsi[v])
6463				continue;
6464			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6465			if (err)
6466				return err;
6467		}
6468
6469		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6470		/* Update the unicast switch filter rules for the corresponding
6471		 * switch of the netdev
6472		 */
6473		status = ice_update_sw_rule_bridge_mode(hw);
6474		if (status) {
6475			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6476				   mode, ice_stat_str(status),
6477				   ice_aq_str(hw->adminq.sq_last_status));
6478			/* revert hw->evb_veb */
6479			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6480			return -EIO;
6481		}
6482
6483		pf_sw->bridge_mode = mode;
6484	}
6485
6486	return 0;
6487}
6488
6489/**
6490 * ice_tx_timeout - Respond to a Tx Hang
6491 * @netdev: network interface device structure
6492 * @txqueue: Tx queue
6493 */
6494static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6495{
6496	struct ice_netdev_priv *np = netdev_priv(netdev);
6497	struct ice_ring *tx_ring = NULL;
6498	struct ice_vsi *vsi = np->vsi;
6499	struct ice_pf *pf = vsi->back;
6500	u32 i;
6501
6502	pf->tx_timeout_count++;
6503
6504	/* Check if PFC is enabled for the TC to which the queue belongs
6505	 * to. If yes then Tx timeout is not caused by a hung queue, no
6506	 * need to reset and rebuild
6507	 */
6508	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6509		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6510			 txqueue);
6511		return;
6512	}
6513
6514	/* now that we have an index, find the tx_ring struct */
6515	for (i = 0; i < vsi->num_txq; i++)
6516		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6517			if (txqueue == vsi->tx_rings[i]->q_index) {
6518				tx_ring = vsi->tx_rings[i];
6519				break;
6520			}
6521
6522	/* Reset recovery level if enough time has elapsed after last timeout.
6523	 * Also ensure no new reset action happens before next timeout period.
6524	 */
6525	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6526		pf->tx_timeout_recovery_level = 1;
6527	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6528				       netdev->watchdog_timeo)))
6529		return;
6530
6531	if (tx_ring) {
6532		struct ice_hw *hw = &pf->hw;
6533		u32 head, val = 0;
6534
6535		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6536			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6537		/* Read interrupt register */
6538		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6539
6540		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6541			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6542			    head, tx_ring->next_to_use, val);
6543	}
6544
6545	pf->tx_timeout_last_recovery = jiffies;
6546	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6547		    pf->tx_timeout_recovery_level, txqueue);
6548
6549	switch (pf->tx_timeout_recovery_level) {
6550	case 1:
6551		set_bit(__ICE_PFR_REQ, pf->state);
6552		break;
6553	case 2:
6554		set_bit(__ICE_CORER_REQ, pf->state);
6555		break;
6556	case 3:
6557		set_bit(__ICE_GLOBR_REQ, pf->state);
6558		break;
6559	default:
6560		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6561		set_bit(__ICE_DOWN, pf->state);
6562		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6563		set_bit(__ICE_SERVICE_DIS, pf->state);
6564		break;
6565	}
6566
6567	ice_service_task_schedule(pf);
6568	pf->tx_timeout_recovery_level++;
6569}
6570
6571/**
6572 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
6573 * @netdev: This physical port's netdev
6574 * @ti: Tunnel endpoint information
6575 */
6576static void
6577ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti)
6578{
6579	struct ice_netdev_priv *np = netdev_priv(netdev);
6580	struct ice_vsi *vsi = np->vsi;
6581	struct ice_pf *pf = vsi->back;
6582	enum ice_tunnel_type tnl_type;
6583	u16 port = ntohs(ti->port);
6584	enum ice_status status;
6585
6586	switch (ti->type) {
6587	case UDP_TUNNEL_TYPE_VXLAN:
6588		tnl_type = TNL_VXLAN;
6589		break;
6590	case UDP_TUNNEL_TYPE_GENEVE:
6591		tnl_type = TNL_GENEVE;
6592		break;
6593	default:
6594		netdev_err(netdev, "Unknown tunnel type\n");
6595		return;
6596	}
6597
6598	status = ice_create_tunnel(&pf->hw, tnl_type, port);
6599	if (status == ICE_ERR_OUT_OF_RANGE)
6600		netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n",
6601			    port);
6602	else if (status)
6603		netdev_err(netdev, "Error adding UDP tunnel - %s\n",
6604			   ice_stat_str(status));
6605}
6606
6607/**
6608 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
6609 * @netdev: This physical port's netdev
6610 * @ti: Tunnel endpoint information
6611 */
6612static void
6613ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti)
6614{
6615	struct ice_netdev_priv *np = netdev_priv(netdev);
6616	struct ice_vsi *vsi = np->vsi;
6617	struct ice_pf *pf = vsi->back;
6618	u16 port = ntohs(ti->port);
6619	enum ice_status status;
6620	bool retval;
6621
6622	retval = ice_tunnel_port_in_use(&pf->hw, port, NULL);
6623	if (!retval) {
6624		netdev_info(netdev, "port %d not found in UDP tunnels list\n",
6625			    port);
6626		return;
6627	}
6628
6629	status = ice_destroy_tunnel(&pf->hw, port, false);
6630	if (status)
6631		netdev_err(netdev, "error deleting port %d from UDP tunnels list\n",
6632			   port);
6633}
6634
6635/**
6636 * ice_open - Called when a network interface becomes active
6637 * @netdev: network interface device structure
6638 *
6639 * The open entry point is called when a network interface is made
6640 * active by the system (IFF_UP). At this point all resources needed
6641 * for transmit and receive operations are allocated, the interrupt
6642 * handler is registered with the OS, the netdev watchdog is enabled,
6643 * and the stack is notified that the interface is ready.
6644 *
6645 * Returns 0 on success, negative value on failure
6646 */
6647int ice_open(struct net_device *netdev)
6648{
6649	struct ice_netdev_priv *np = netdev_priv(netdev);
6650	struct ice_vsi *vsi = np->vsi;
6651	struct ice_pf *pf = vsi->back;
6652	struct ice_port_info *pi;
6653	int err;
6654
6655	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6656		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6657		return -EIO;
6658	}
6659
6660	if (test_bit(__ICE_DOWN, pf->state)) {
6661		netdev_err(netdev, "device is not ready yet\n");
6662		return -EBUSY;
6663	}
6664
6665	netif_carrier_off(netdev);
6666
6667	pi = vsi->port_info;
6668	err = ice_update_link_info(pi);
6669	if (err) {
6670		netdev_err(netdev, "Failed to get link info, error %d\n",
6671			   err);
6672		return err;
6673	}
6674
6675	/* Set PHY if there is media, otherwise, turn off PHY */
6676	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6677		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6678		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6679			err = ice_init_phy_user_cfg(pi);
6680			if (err) {
6681				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6682					   err);
6683				return err;
6684			}
6685		}
6686
6687		err = ice_configure_phy(vsi);
6688		if (err) {
6689			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6690				   err);
6691			return err;
6692		}
6693	} else {
6694		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6695		err = ice_aq_set_link_restart_an(pi, false, NULL);
6696		if (err) {
6697			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6698				   vsi->vsi_num, err);
6699			return err;
6700		}
6701	}
6702
6703	err = ice_vsi_open(vsi);
 
6704	if (err)
6705		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6706			   vsi->vsi_num, vsi->vsw->sw_id);
6707
6708	/* Update existing tunnels information */
6709	udp_tunnel_get_rx_info(netdev);
6710
6711	return err;
6712}
6713
6714/**
6715 * ice_stop - Disables a network interface
6716 * @netdev: network interface device structure
6717 *
6718 * The stop entry point is called when an interface is de-activated by the OS,
6719 * and the netdevice enters the DOWN state. The hardware is still under the
6720 * driver's control, but the netdev interface is disabled.
6721 *
6722 * Returns success only - not allowed to fail
6723 */
6724int ice_stop(struct net_device *netdev)
6725{
6726	struct ice_netdev_priv *np = netdev_priv(netdev);
6727	struct ice_vsi *vsi = np->vsi;
6728
6729	ice_vsi_close(vsi);
6730
6731	return 0;
6732}
6733
6734/**
6735 * ice_features_check - Validate encapsulated packet conforms to limits
6736 * @skb: skb buffer
6737 * @netdev: This port's netdev
6738 * @features: Offload features that the stack believes apply
6739 */
6740static netdev_features_t
6741ice_features_check(struct sk_buff *skb,
6742		   struct net_device __always_unused *netdev,
6743		   netdev_features_t features)
6744{
6745	size_t len;
6746
6747	/* No point in doing any of this if neither checksum nor GSO are
6748	 * being requested for this frame. We can rule out both by just
6749	 * checking for CHECKSUM_PARTIAL
6750	 */
6751	if (skb->ip_summed != CHECKSUM_PARTIAL)
6752		return features;
6753
6754	/* We cannot support GSO if the MSS is going to be less than
6755	 * 64 bytes. If it is then we need to drop support for GSO.
6756	 */
6757	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6758		features &= ~NETIF_F_GSO_MASK;
6759
6760	len = skb_network_header(skb) - skb->data;
6761	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6762		goto out_rm_features;
6763
6764	len = skb_transport_header(skb) - skb_network_header(skb);
6765	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6766		goto out_rm_features;
6767
6768	if (skb->encapsulation) {
6769		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6770		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6771			goto out_rm_features;
6772
6773		len = skb_inner_transport_header(skb) -
6774		      skb_inner_network_header(skb);
6775		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6776			goto out_rm_features;
6777	}
6778
6779	return features;
6780out_rm_features:
6781	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6782}
6783
6784static const struct net_device_ops ice_netdev_safe_mode_ops = {
6785	.ndo_open = ice_open,
6786	.ndo_stop = ice_stop,
6787	.ndo_start_xmit = ice_start_xmit,
6788	.ndo_set_mac_address = ice_set_mac_address,
6789	.ndo_validate_addr = eth_validate_addr,
6790	.ndo_change_mtu = ice_change_mtu,
6791	.ndo_get_stats64 = ice_get_stats64,
6792	.ndo_tx_timeout = ice_tx_timeout,
6793};
6794
6795static const struct net_device_ops ice_netdev_ops = {
6796	.ndo_open = ice_open,
6797	.ndo_stop = ice_stop,
6798	.ndo_start_xmit = ice_start_xmit,
6799	.ndo_features_check = ice_features_check,
6800	.ndo_set_rx_mode = ice_set_rx_mode,
6801	.ndo_set_mac_address = ice_set_mac_address,
6802	.ndo_validate_addr = eth_validate_addr,
6803	.ndo_change_mtu = ice_change_mtu,
6804	.ndo_get_stats64 = ice_get_stats64,
6805	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
6806	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6807	.ndo_set_vf_mac = ice_set_vf_mac,
6808	.ndo_get_vf_config = ice_get_vf_cfg,
6809	.ndo_set_vf_trust = ice_set_vf_trust,
6810	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6811	.ndo_set_vf_link_state = ice_set_vf_link_state,
6812	.ndo_get_vf_stats = ice_get_vf_stats,
6813	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6814	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6815	.ndo_set_features = ice_set_features,
6816	.ndo_bridge_getlink = ice_bridge_getlink,
6817	.ndo_bridge_setlink = ice_bridge_setlink,
6818	.ndo_fdb_add = ice_fdb_add,
6819	.ndo_fdb_del = ice_fdb_del,
6820#ifdef CONFIG_RFS_ACCEL
6821	.ndo_rx_flow_steer = ice_rx_flow_steer,
6822#endif
6823	.ndo_tx_timeout = ice_tx_timeout,
6824	.ndo_bpf = ice_xdp,
6825	.ndo_xdp_xmit = ice_xdp_xmit,
6826	.ndo_xsk_wakeup = ice_xsk_wakeup,
6827	.ndo_udp_tunnel_add = ice_udp_tunnel_add,
6828	.ndo_udp_tunnel_del = ice_udp_tunnel_del,
6829};
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
 
   8#include "ice.h"
 
 
 
 
 
 
   9
  10#define DRV_VERSION	"ice-0.7.0-k"
  11#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
  12const char ice_drv_ver[] = DRV_VERSION;
  13static const char ice_driver_string[] = DRV_SUMMARY;
  14static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  15
 
 
 
 
  16MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  17MODULE_DESCRIPTION(DRV_SUMMARY);
  18MODULE_LICENSE("GPL");
  19MODULE_VERSION(DRV_VERSION);
  20
  21static int debug = -1;
  22module_param(debug, int, 0644);
  23#ifndef CONFIG_DYNAMIC_DEBUG
  24MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  25#else
  26MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  27#endif /* !CONFIG_DYNAMIC_DEBUG */
  28
  29static struct workqueue_struct *ice_wq;
 
  30static const struct net_device_ops ice_netdev_ops;
 
 
 
  31
  32static void ice_pf_dis_all_vsi(struct ice_pf *pf);
  33static void ice_rebuild(struct ice_pf *pf);
  34static int ice_vsi_release(struct ice_vsi *vsi);
  35static void ice_update_vsi_stats(struct ice_vsi *vsi);
  36static void ice_update_pf_stats(struct ice_pf *pf);
  37
  38/**
  39 * ice_get_free_slot - get the next non-NULL location index in array
  40 * @array: array to search
  41 * @size: size of the array
  42 * @curr: last known occupied index to be used as a search hint
  43 *
  44 * void * is being used to keep the functionality generic. This lets us use this
  45 * function on any array of pointers.
  46 */
  47static int ice_get_free_slot(void *array, int size, int curr)
  48{
  49	int **tmp_array = (int **)array;
  50	int next;
  51
  52	if (curr < (size - 1) && !tmp_array[curr + 1]) {
  53		next = curr + 1;
  54	} else {
  55		int i = 0;
  56
  57		while ((i < size) && (tmp_array[i]))
  58			i++;
  59		if (i == size)
  60			next = ICE_NO_VSI;
  61		else
  62			next = i;
  63	}
  64	return next;
  65}
  66
  67/**
  68 * ice_search_res - Search the tracker for a block of resources
  69 * @res: pointer to the resource
  70 * @needed: size of the block needed
  71 * @id: identifier to track owner
  72 * Returns the base item index of the block, or -ENOMEM for error
  73 */
  74static int ice_search_res(struct ice_res_tracker *res, u16 needed, u16 id)
  75{
  76	int start = res->search_hint;
  77	int end = start;
 
 
 
  78
  79	id |= ICE_RES_VALID_BIT;
 
 
 
 
  80
  81	do {
  82		/* skip already allocated entries */
  83		if (res->list[end++] & ICE_RES_VALID_BIT) {
  84			start = end;
  85			if ((start + needed) > res->num_entries)
  86				break;
  87		}
  88
  89		if (end == (start + needed)) {
  90			int i = start;
  91
  92			/* there was enough, so assign it to the requestor */
  93			while (i != end)
  94				res->list[i++] = id;
  95
  96			if (end == res->num_entries)
  97				end = 0;
  98
  99			res->search_hint = end;
 100			return start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101		}
 102	} while (1);
 103
 104	return -ENOMEM;
 105}
 106
 107/**
 108 * ice_get_res - get a block of resources
 109 * @pf: board private structure
 110 * @res: pointer to the resource
 111 * @needed: size of the block needed
 112 * @id: identifier to track owner
 113 *
 114 * Returns the base item index of the block, or -ENOMEM for error
 115 * The search_hint trick and lack of advanced fit-finding only works
 116 * because we're highly likely to have all the same sized requests.
 117 * Linear search time and any fragmentation should be minimal.
 118 */
 119static int
 120ice_get_res(struct ice_pf *pf, struct ice_res_tracker *res, u16 needed, u16 id)
 121{
 122	int ret;
 
 
 123
 124	if (!res || !pf)
 
 125		return -EINVAL;
 126
 127	if (!needed || needed > res->num_entries || id >= ICE_RES_VALID_BIT) {
 128		dev_err(&pf->pdev->dev,
 129			"param err: needed=%d, num_entries = %d id=0x%04x\n",
 130			needed, res->num_entries, id);
 131		return -EINVAL;
 132	}
 133
 134	/* search based on search_hint */
 135	ret = ice_search_res(res, needed, id);
 136
 137	if (ret < 0) {
 138		/* previous search failed. Reset search hint and try again */
 139		res->search_hint = 0;
 140		ret = ice_search_res(res, needed, id);
 
 
 141	}
 142
 143	return ret;
 144}
 145
 146/**
 147 * ice_free_res - free a block of resources
 148 * @res: pointer to the resource
 149 * @index: starting index previously returned by ice_get_res
 150 * @id: identifier to track owner
 151 * Returns number of resources freed
 152 */
 153static int ice_free_res(struct ice_res_tracker *res, u16 index, u16 id)
 154{
 155	int count = 0;
 156	int i;
 157
 158	if (!res || index >= res->num_entries)
 159		return -EINVAL;
 160
 161	id |= ICE_RES_VALID_BIT;
 162	for (i = index; i < res->num_entries && res->list[i] == id; i++) {
 163		res->list[i] = 0;
 164		count++;
 165	}
 166
 167	return count;
 168}
 169
 170/**
 171 * ice_add_mac_to_list - Add a mac address filter entry to the list
 172 * @vsi: the VSI to be forwarded to
 173 * @add_list: pointer to the list which contains MAC filter entries
 174 * @macaddr: the MAC address to be added.
 175 *
 176 * Adds mac address filter entry to the temp list
 177 *
 178 * Returns 0 on success or ENOMEM on failure.
 179 */
 180static int ice_add_mac_to_list(struct ice_vsi *vsi, struct list_head *add_list,
 181			       const u8 *macaddr)
 182{
 183	struct ice_fltr_list_entry *tmp;
 184	struct ice_pf *pf = vsi->back;
 185
 186	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_ATOMIC);
 187	if (!tmp)
 188		return -ENOMEM;
 189
 190	tmp->fltr_info.flag = ICE_FLTR_TX;
 191	tmp->fltr_info.src = vsi->vsi_num;
 192	tmp->fltr_info.lkup_type = ICE_SW_LKUP_MAC;
 193	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
 194	tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
 195	ether_addr_copy(tmp->fltr_info.l_data.mac.mac_addr, macaddr);
 196
 197	INIT_LIST_HEAD(&tmp->list_entry);
 198	list_add(&tmp->list_entry, add_list);
 199
 200	return 0;
 201}
 202
 203/**
 204 * ice_add_mac_to_sync_list - creates list of mac addresses to be synced
 205 * @netdev: the net device on which the sync is happening
 206 * @addr: mac address to sync
 207 *
 208 * This is a callback function which is called by the in kernel device sync
 209 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 210 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 211 * mac filters from the hardware.
 212 */
 213static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 214{
 215	struct ice_netdev_priv *np = netdev_priv(netdev);
 216	struct ice_vsi *vsi = np->vsi;
 217
 218	if (ice_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr))
 
 219		return -EINVAL;
 220
 221	return 0;
 222}
 223
 224/**
 225 * ice_add_mac_to_unsync_list - creates list of mac addresses to be unsynced
 226 * @netdev: the net device on which the unsync is happening
 227 * @addr: mac address to unsync
 228 *
 229 * This is a callback function which is called by the in kernel device unsync
 230 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 231 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 232 * delete the mac filters from the hardware.
 233 */
 234static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 235{
 236	struct ice_netdev_priv *np = netdev_priv(netdev);
 237	struct ice_vsi *vsi = np->vsi;
 238
 239	if (ice_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr))
 
 240		return -EINVAL;
 241
 242	return 0;
 243}
 244
 245/**
 246 * ice_free_fltr_list - free filter lists helper
 247 * @dev: pointer to the device struct
 248 * @h: pointer to the list head to be freed
 249 *
 250 * Helper function to free filter lists previously created using
 251 * ice_add_mac_to_list
 252 */
 253static void ice_free_fltr_list(struct device *dev, struct list_head *h)
 254{
 255	struct ice_fltr_list_entry *e, *tmp;
 256
 257	list_for_each_entry_safe(e, tmp, h, list_entry) {
 258		list_del(&e->list_entry);
 259		devm_kfree(dev, e);
 260	}
 261}
 262
 263/**
 264 * ice_vsi_fltr_changed - check if filter state changed
 265 * @vsi: VSI to be checked
 266 *
 267 * returns true if filter state has changed, false otherwise.
 268 */
 269static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 270{
 271	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
 272	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
 273	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 274}
 275
 276/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 277 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 278 * @vsi: ptr to the VSI
 279 *
 280 * Push any outstanding VSI filter changes through the AdminQ.
 281 */
 282static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 283{
 284	struct device *dev = &vsi->back->pdev->dev;
 285	struct net_device *netdev = vsi->netdev;
 286	bool promisc_forced_on = false;
 287	struct ice_pf *pf = vsi->back;
 288	struct ice_hw *hw = &pf->hw;
 289	enum ice_status status = 0;
 290	u32 changed_flags = 0;
 
 291	int err = 0;
 292
 293	if (!vsi->netdev)
 294		return -EINVAL;
 295
 296	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
 297		usleep_range(1000, 2000);
 298
 299	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 300	vsi->current_netdev_flags = vsi->netdev->flags;
 301
 302	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 303	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 304
 305	if (ice_vsi_fltr_changed(vsi)) {
 306		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 307		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 308		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 309
 310		/* grab the netdev's addr_list_lock */
 311		netif_addr_lock_bh(netdev);
 312		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 313			      ice_add_mac_to_unsync_list);
 314		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 315			      ice_add_mac_to_unsync_list);
 316		/* our temp lists are populated. release lock */
 317		netif_addr_unlock_bh(netdev);
 318	}
 319
 320	/* Remove mac addresses in the unsync list */
 321	status = ice_remove_mac(hw, &vsi->tmp_unsync_list);
 322	ice_free_fltr_list(dev, &vsi->tmp_unsync_list);
 323	if (status) {
 324		netdev_err(netdev, "Failed to delete MAC filters\n");
 325		/* if we failed because of alloc failures, just bail */
 326		if (status == ICE_ERR_NO_MEMORY) {
 327			err = -ENOMEM;
 328			goto out;
 329		}
 330	}
 331
 332	/* Add mac addresses in the sync list */
 333	status = ice_add_mac(hw, &vsi->tmp_sync_list);
 334	ice_free_fltr_list(dev, &vsi->tmp_sync_list);
 335	if (status) {
 
 
 
 
 336		netdev_err(netdev, "Failed to add MAC filters\n");
 337		/* If there is no more space for new umac filters, vsi
 338		 * should go into promiscuous mode. There should be some
 339		 * space reserved for promiscuous filters.
 340		 */
 341		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 342		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
 343				      vsi->state)) {
 344			promisc_forced_on = true;
 345			netdev_warn(netdev,
 346				    "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 347				    vsi->vsi_num);
 348		} else {
 349			err = -EIO;
 350			goto out;
 351		}
 352	}
 353	/* check for changes in promiscuous modes */
 354	if (changed_flags & IFF_ALLMULTI)
 355		netdev_warn(netdev, "Unsupported configuration\n");
 
 
 
 
 356
 357	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 358	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
 359		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 360		if (vsi->current_netdev_flags & IFF_PROMISC) {
 361			/* Apply TX filter rule to get traffic from VMs */
 362			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
 363						  ICE_FLTR_TX);
 364			if (status) {
 365				netdev_err(netdev, "Error setting default VSI %i tx rule\n",
 366					   vsi->vsi_num);
 367				vsi->current_netdev_flags &= ~IFF_PROMISC;
 368				err = -EIO;
 369				goto out_promisc;
 370			}
 371			/* Apply RX filter rule to get traffic from wire */
 372			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, true,
 373						  ICE_FLTR_RX);
 374			if (status) {
 375				netdev_err(netdev, "Error setting default VSI %i rx rule\n",
 
 
 
 
 
 376					   vsi->vsi_num);
 377				vsi->current_netdev_flags &= ~IFF_PROMISC;
 378				err = -EIO;
 379				goto out_promisc;
 380			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381		} else {
 382			/* Clear TX filter rule to stop traffic from VMs */
 383			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
 384						  ICE_FLTR_TX);
 385			if (status) {
 386				netdev_err(netdev, "Error clearing default VSI %i tx rule\n",
 387					   vsi->vsi_num);
 388				vsi->current_netdev_flags |= IFF_PROMISC;
 389				err = -EIO;
 390				goto out_promisc;
 391			}
 392			/* Clear filter RX to remove traffic from wire */
 393			status = ice_cfg_dflt_vsi(hw, vsi->vsi_num, false,
 394						  ICE_FLTR_RX);
 395			if (status) {
 396				netdev_err(netdev, "Error clearing default VSI %i rx rule\n",
 397					   vsi->vsi_num);
 398				vsi->current_netdev_flags |= IFF_PROMISC;
 399				err = -EIO;
 400				goto out_promisc;
 401			}
 402		}
 403	}
 404	goto exit;
 405
 406out_promisc:
 407	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 408	goto exit;
 409out:
 410	/* if something went wrong then set the changed flag so we try again */
 411	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 412	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 413exit:
 414	clear_bit(__ICE_CFG_BUSY, vsi->state);
 415	return err;
 416}
 417
 418/**
 419 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 420 * @pf: board private structure
 421 */
 422static void ice_sync_fltr_subtask(struct ice_pf *pf)
 423{
 424	int v;
 425
 426	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 427		return;
 428
 429	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 430
 431	for (v = 0; v < pf->num_alloc_vsi; v++)
 432		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 433		    ice_vsi_sync_fltr(pf->vsi[v])) {
 434			/* come back and try again later */
 435			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 436			break;
 437		}
 438}
 439
 440/**
 441 * ice_is_reset_recovery_pending - schedule a reset
 442 * @state: pf state field
 
 443 */
 444static bool ice_is_reset_recovery_pending(unsigned long int *state)
 445{
 446	return test_bit(__ICE_RESET_RECOVERY_PENDING, state);
 
 
 
 
 447}
 448
 449/**
 450 * ice_prepare_for_reset - prep for the core to reset
 451 * @pf: board private structure
 452 *
 453 * Inform or close all dependent features in prep for reset.
 454 */
 455static void
 456ice_prepare_for_reset(struct ice_pf *pf)
 457{
 458	struct ice_hw *hw = &pf->hw;
 459	u32 v;
 460
 461	ice_for_each_vsi(pf, v)
 462		if (pf->vsi[v])
 463			ice_remove_vsi_fltr(hw, pf->vsi[v]->vsi_num);
 464
 465	dev_dbg(&pf->pdev->dev, "Tearing down internal switch for reset\n");
 
 
 
 
 
 
 466
 
 
 467	/* disable the VSIs and their queues that are not already DOWN */
 468	/* pf_dis_all_vsi modifies netdev structures -rtnl_lock needed */
 469	ice_pf_dis_all_vsi(pf);
 470
 471	ice_for_each_vsi(pf, v)
 472		if (pf->vsi[v])
 473			pf->vsi[v]->vsi_num = 0;
 474
 475	ice_shutdown_all_ctrlq(hw);
 
 
 476}
 477
 478/**
 479 * ice_do_reset - Initiate one of many types of resets
 480 * @pf: board private structure
 481 * @reset_type: reset type requested
 482 * before this function was called.
 483 */
 484static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 485{
 486	struct device *dev = &pf->pdev->dev;
 487	struct ice_hw *hw = &pf->hw;
 488
 489	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 490	WARN_ON(in_interrupt());
 491
 492	/* PFR is a bit of a special case because it doesn't result in an OICR
 493	 * interrupt. So for PFR, we prepare for reset, issue the reset and
 494	 * rebuild sequentially.
 495	 */
 496	if (reset_type == ICE_RESET_PFR) {
 497		set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 498		ice_prepare_for_reset(pf);
 499	}
 500
 501	/* trigger the reset */
 502	if (ice_reset(hw, reset_type)) {
 503		dev_err(dev, "reset %d failed\n", reset_type);
 504		set_bit(__ICE_RESET_FAILED, pf->state);
 505		clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 
 
 506		return;
 507	}
 508
 
 
 
 
 509	if (reset_type == ICE_RESET_PFR) {
 510		pf->pfr_count++;
 511		ice_rebuild(pf);
 512		clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 513	}
 514}
 515
 516/**
 517 * ice_reset_subtask - Set up for resetting the device and driver
 518 * @pf: board private structure
 519 */
 520static void ice_reset_subtask(struct ice_pf *pf)
 521{
 522	enum ice_reset_req reset_type;
 523
 524	rtnl_lock();
 525
 526	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 527	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what
 528	 * type of reset happened and sets __ICE_RESET_RECOVERY_PENDING bit in
 529	 * pf->state. So if reset/recovery is pending (as indicated by this bit)
 530	 * we do a rebuild and return.
 531	 */
 532	if (ice_is_reset_recovery_pending(pf->state)) {
 533		clear_bit(__ICE_GLOBR_RECV, pf->state);
 534		clear_bit(__ICE_CORER_RECV, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 535		ice_prepare_for_reset(pf);
 536
 537		/* make sure we are ready to rebuild */
 538		if (ice_check_reset(&pf->hw))
 539			set_bit(__ICE_RESET_FAILED, pf->state);
 540		else
 541			ice_rebuild(pf);
 542		clear_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 543		goto unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 544	}
 545
 546	/* No pending resets to finish processing. Check for new resets */
 547	if (test_and_clear_bit(__ICE_GLOBR_REQ, pf->state))
 
 
 
 
 548		reset_type = ICE_RESET_GLOBR;
 549	else if (test_and_clear_bit(__ICE_CORER_REQ, pf->state))
 550		reset_type = ICE_RESET_CORER;
 551	else if (test_and_clear_bit(__ICE_PFR_REQ, pf->state))
 552		reset_type = ICE_RESET_PFR;
 553	else
 554		goto unlock;
 555
 556	/* reset if not already down or resetting */
 557	if (!test_bit(__ICE_DOWN, pf->state) &&
 558	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
 559		ice_do_reset(pf, reset_type);
 560	}
 561
 562unlock:
 563	rtnl_unlock();
 564}
 565
 566/**
 567 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 568 * @pf: board private structure
 569 */
 570static void ice_watchdog_subtask(struct ice_pf *pf)
 571{
 572	int i;
 573
 574	/* if interface is down do nothing */
 575	if (test_bit(__ICE_DOWN, pf->state) ||
 576	    test_bit(__ICE_CFG_BUSY, pf->state))
 577		return;
 578
 579	/* make sure we don't do these things too often */
 580	if (time_before(jiffies,
 581			pf->serv_tmr_prev + pf->serv_tmr_period))
 582		return;
 583
 584	pf->serv_tmr_prev = jiffies;
 585
 586	/* Update the stats for active netdevs so the network stack
 587	 * can look at updated numbers whenever it cares to
 588	 */
 589	ice_update_pf_stats(pf);
 590	for (i = 0; i < pf->num_alloc_vsi; i++)
 591		if (pf->vsi[i] && pf->vsi[i]->netdev)
 592			ice_update_vsi_stats(pf->vsi[i]);
 593}
 594
 595/**
 596 * ice_print_link_msg - print link up or down message
 597 * @vsi: the VSI whose link status is being queried
 598 * @isup: boolean for if the link is now up or down
 599 */
 600void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 601{
 
 
 
 
 602	const char *speed;
 
 603	const char *fc;
 
 
 
 
 604
 605	if (vsi->current_isup == isup)
 606		return;
 607
 608	vsi->current_isup = isup;
 609
 610	if (!isup) {
 611		netdev_info(vsi->netdev, "NIC Link is Down\n");
 612		return;
 613	}
 614
 615	switch (vsi->port_info->phy.link_info.link_speed) {
 
 
 
 
 
 
 616	case ICE_AQ_LINK_SPEED_40GB:
 617		speed = "40 G";
 618		break;
 619	case ICE_AQ_LINK_SPEED_25GB:
 620		speed = "25 G";
 621		break;
 622	case ICE_AQ_LINK_SPEED_20GB:
 623		speed = "20 G";
 624		break;
 625	case ICE_AQ_LINK_SPEED_10GB:
 626		speed = "10 G";
 627		break;
 628	case ICE_AQ_LINK_SPEED_5GB:
 629		speed = "5 G";
 630		break;
 631	case ICE_AQ_LINK_SPEED_2500MB:
 632		speed = "2.5 G";
 633		break;
 634	case ICE_AQ_LINK_SPEED_1000MB:
 635		speed = "1 G";
 636		break;
 637	case ICE_AQ_LINK_SPEED_100MB:
 638		speed = "100 M";
 639		break;
 640	default:
 641		speed = "Unknown";
 642		break;
 643	}
 644
 645	switch (vsi->port_info->fc.current_mode) {
 646	case ICE_FC_FULL:
 647		fc = "RX/TX";
 648		break;
 649	case ICE_FC_TX_PAUSE:
 650		fc = "TX";
 651		break;
 652	case ICE_FC_RX_PAUSE:
 653		fc = "RX";
 
 
 
 654		break;
 655	default:
 656		fc = "Unknown";
 657		break;
 658	}
 659
 660	netdev_info(vsi->netdev, "NIC Link is up %sbps, Flow Control: %s\n",
 661		    speed, fc);
 662}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663
 664/**
 665 * ice_init_link_events - enable/initialize link events
 666 * @pi: pointer to the port_info instance
 667 *
 668 * Returns -EIO on failure, 0 on success
 669 */
 670static int ice_init_link_events(struct ice_port_info *pi)
 671{
 672	u16 mask;
 673
 674	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
 675		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
 676
 677	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
 678		dev_dbg(ice_hw_to_dev(pi->hw),
 679			"Failed to set link event mask for port %d\n",
 680			pi->lport);
 681		return -EIO;
 682	}
 
 
 683
 684	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
 685		dev_dbg(ice_hw_to_dev(pi->hw),
 686			"Failed to enable link events for port %d\n",
 687			pi->lport);
 688		return -EIO;
 689	}
 690
 691	return 0;
 
 
 
 692}
 693
 694/**
 695 * ice_vsi_link_event - update the vsi's netdev
 696 * @vsi: the vsi on which the link event occurred
 697 * @link_up: whether or not the vsi needs to be set up or down
 698 */
 699static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 700{
 701	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
 
 
 
 702		return;
 703
 704	if (vsi->type == ICE_VSI_PF) {
 705		if (!vsi->netdev) {
 706			dev_dbg(&vsi->back->pdev->dev,
 707				"vsi->netdev is not initialized!\n");
 708			return;
 709		}
 710		if (link_up) {
 711			netif_carrier_on(vsi->netdev);
 712			netif_tx_wake_all_queues(vsi->netdev);
 713		} else {
 714			netif_carrier_off(vsi->netdev);
 715			netif_tx_stop_all_queues(vsi->netdev);
 716		}
 717	}
 718}
 719
 720/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 721 * ice_link_event - process the link event
 722 * @pf: pf that the link event is associated with
 723 * @pi: port_info for the port that the link event is associated with
 
 
 724 *
 725 * Returns -EIO if ice_get_link_status() fails
 726 * Returns 0 on success
 727 */
 728static int
 729ice_link_event(struct ice_pf *pf, struct ice_port_info *pi)
 
 730{
 731	u8 new_link_speed, old_link_speed;
 732	struct ice_phy_info *phy_info;
 733	bool new_link_same_as_old;
 734	bool new_link, old_link;
 735	u8 lport;
 736	u16 v;
 737
 738	phy_info = &pi->phy;
 739	phy_info->link_info_old = phy_info->link_info;
 740	/* Force ice_get_link_status() to update link info */
 741	phy_info->get_link_info = true;
 742
 743	old_link = (phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 744	old_link_speed = phy_info->link_info_old.link_speed;
 745
 746	lport = pi->lport;
 747	if (ice_get_link_status(pi, &new_link)) {
 748		dev_dbg(&pf->pdev->dev,
 749			"Could not get link status for port %d\n", lport);
 750		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 752
 753	new_link_speed = phy_info->link_info.link_speed;
 754
 755	new_link_same_as_old = (new_link == old_link &&
 756				new_link_speed == old_link_speed);
 
 
 
 
 
 
 757
 758	ice_for_each_vsi(pf, v) {
 759		struct ice_vsi *vsi = pf->vsi[v];
 
 
 
 
 
 
 
 760
 761		if (!vsi || !vsi->port_info)
 762			continue;
 763
 764		if (new_link_same_as_old &&
 765		    (test_bit(__ICE_DOWN, vsi->state) ||
 766		    new_link == netif_carrier_ok(vsi->netdev)))
 767			continue;
 
 768
 769		if (vsi->port_info->lport == lport) {
 770			ice_print_link_msg(vsi, new_link);
 771			ice_vsi_link_event(vsi, new_link);
 772		}
 773	}
 774
 775	return 0;
 776}
 777
 778/**
 779 * ice_handle_link_event - handle link event via ARQ
 780 * @pf: pf that the link event is associated with
 781 *
 782 * Return -EINVAL if port_info is null
 783 * Return status on succes
 784 */
 785static int ice_handle_link_event(struct ice_pf *pf)
 
 786{
 
 787	struct ice_port_info *port_info;
 788	int status;
 789
 
 790	port_info = pf->hw.port_info;
 791	if (!port_info)
 792		return -EINVAL;
 793
 794	status = ice_link_event(pf, port_info);
 
 
 795	if (status)
 796		dev_dbg(&pf->pdev->dev,
 797			"Could not process link event, error %d\n", status);
 798
 799	return status;
 800}
 801
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802/**
 803 * __ice_clean_ctrlq - helper function to clean controlq rings
 804 * @pf: ptr to struct ice_pf
 805 * @q_type: specific Control queue type
 806 */
 807static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
 808{
 
 809	struct ice_rq_event_info event;
 810	struct ice_hw *hw = &pf->hw;
 811	struct ice_ctl_q_info *cq;
 812	u16 pending, i = 0;
 813	const char *qtype;
 814	u32 oldval, val;
 815
 816	/* Do not clean control queue if/when PF reset fails */
 817	if (test_bit(__ICE_RESET_FAILED, pf->state))
 818		return 0;
 819
 820	switch (q_type) {
 821	case ICE_CTL_Q_ADMIN:
 822		cq = &hw->adminq;
 823		qtype = "Admin";
 824		break;
 
 
 
 
 825	default:
 826		dev_warn(&pf->pdev->dev, "Unknown control queue type 0x%x\n",
 827			 q_type);
 828		return 0;
 829	}
 830
 831	/* check for error indications - PF_xx_AxQLEN register layout for
 832	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
 833	 */
 834	val = rd32(hw, cq->rq.len);
 835	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
 836		   PF_FW_ARQLEN_ARQCRIT_M)) {
 837		oldval = val;
 838		if (val & PF_FW_ARQLEN_ARQVFE_M)
 839			dev_dbg(&pf->pdev->dev,
 840				"%s Receive Queue VF Error detected\n", qtype);
 841		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
 842			dev_dbg(&pf->pdev->dev,
 843				"%s Receive Queue Overflow Error detected\n",
 844				qtype);
 845		}
 846		if (val & PF_FW_ARQLEN_ARQCRIT_M)
 847			dev_dbg(&pf->pdev->dev,
 848				"%s Receive Queue Critical Error detected\n",
 849				qtype);
 850		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
 851			 PF_FW_ARQLEN_ARQCRIT_M);
 852		if (oldval != val)
 853			wr32(hw, cq->rq.len, val);
 854	}
 855
 856	val = rd32(hw, cq->sq.len);
 857	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
 858		   PF_FW_ATQLEN_ATQCRIT_M)) {
 859		oldval = val;
 860		if (val & PF_FW_ATQLEN_ATQVFE_M)
 861			dev_dbg(&pf->pdev->dev,
 862				"%s Send Queue VF Error detected\n", qtype);
 863		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
 864			dev_dbg(&pf->pdev->dev,
 865				"%s Send Queue Overflow Error detected\n",
 866				qtype);
 867		}
 868		if (val & PF_FW_ATQLEN_ATQCRIT_M)
 869			dev_dbg(&pf->pdev->dev,
 870				"%s Send Queue Critical Error detected\n",
 871				qtype);
 872		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
 873			 PF_FW_ATQLEN_ATQCRIT_M);
 874		if (oldval != val)
 875			wr32(hw, cq->sq.len, val);
 876	}
 877
 878	event.buf_len = cq->rq_buf_size;
 879	event.msg_buf = devm_kzalloc(&pf->pdev->dev, event.buf_len,
 880				     GFP_KERNEL);
 881	if (!event.msg_buf)
 882		return 0;
 883
 884	do {
 885		enum ice_status ret;
 886		u16 opcode;
 887
 888		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
 889		if (ret == ICE_ERR_AQ_NO_WORK)
 890			break;
 891		if (ret) {
 892			dev_err(&pf->pdev->dev,
 893				"%s Receive Queue event error %d\n", qtype,
 894				ret);
 895			break;
 896		}
 897
 898		opcode = le16_to_cpu(event.desc.opcode);
 899
 
 
 
 900		switch (opcode) {
 901		case ice_aqc_opc_get_link_status:
 902			if (ice_handle_link_event(pf))
 903				dev_err(&pf->pdev->dev,
 904					"Could not handle link event");
 
 
 
 
 
 
 
 
 
 
 
 905			break;
 906		default:
 907			dev_dbg(&pf->pdev->dev,
 908				"%s Receive Queue unknown event 0x%04x ignored\n",
 909				qtype, opcode);
 910			break;
 911		}
 912	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
 913
 914	devm_kfree(&pf->pdev->dev, event.msg_buf);
 915
 916	return pending && (i == ICE_DFLT_IRQ_WORK);
 917}
 918
 919/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920 * ice_clean_adminq_subtask - clean the AdminQ rings
 921 * @pf: board private structure
 922 */
 923static void ice_clean_adminq_subtask(struct ice_pf *pf)
 924{
 925	struct ice_hw *hw = &pf->hw;
 926	u32 val;
 927
 928	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
 929		return;
 930
 931	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
 932		return;
 933
 934	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
 935
 936	/* re-enable Admin queue interrupt causes */
 937	val = rd32(hw, PFINT_FW_CTL);
 938	wr32(hw, PFINT_FW_CTL, (val | PFINT_FW_CTL_CAUSE_ENA_M));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 939
 940	ice_flush(hw);
 941}
 942
 943/**
 944 * ice_service_task_schedule - schedule the service task to wake up
 945 * @pf: board private structure
 946 *
 947 * If not already scheduled, this puts the task into the work queue.
 948 */
 949static void ice_service_task_schedule(struct ice_pf *pf)
 950{
 951	if (!test_bit(__ICE_DOWN, pf->state) &&
 952	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state))
 
 953		queue_work(ice_wq, &pf->serv_task);
 954}
 955
 956/**
 957 * ice_service_task_complete - finish up the service task
 958 * @pf: board private structure
 959 */
 960static void ice_service_task_complete(struct ice_pf *pf)
 961{
 962	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
 963
 964	/* force memory (pf->state) to sync before next service task */
 965	smp_mb__before_atomic();
 966	clear_bit(__ICE_SERVICE_SCHED, pf->state);
 967}
 968
 969/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 970 * ice_service_timer - timer callback to schedule service task
 971 * @t: pointer to timer_list
 972 */
 973static void ice_service_timer(struct timer_list *t)
 974{
 975	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
 976
 977	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
 978	ice_service_task_schedule(pf);
 979}
 980
 981/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 982 * ice_service_task - manage and run subtasks
 983 * @work: pointer to work_struct contained by the PF struct
 984 */
 985static void ice_service_task(struct work_struct *work)
 986{
 987	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
 988	unsigned long start_time = jiffies;
 989
 990	/* subtasks */
 991
 992	/* process reset requests first */
 993	ice_reset_subtask(pf);
 994
 995	/* bail if a reset/recovery cycle is pending */
 996	if (ice_is_reset_recovery_pending(pf->state) ||
 997	    test_bit(__ICE_SUSPENDED, pf->state)) {
 
 998		ice_service_task_complete(pf);
 999		return;
1000	}
1001
 
 
 
1002	ice_sync_fltr_subtask(pf);
 
1003	ice_watchdog_subtask(pf);
1004	ice_clean_adminq_subtask(pf);
1005
 
 
 
 
 
 
 
 
1006	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
1007	ice_service_task_complete(pf);
1008
1009	/* If the tasks have taken longer than one service timer period
1010	 * or there is more work to be done, reset the service timer to
1011	 * schedule the service task now.
1012	 */
1013	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
 
 
 
1014	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1015		mod_timer(&pf->serv_tmr, jiffies);
1016}
1017
1018/**
1019 * ice_set_ctrlq_len - helper function to set controlq length
1020 * @hw: pointer to the hw instance
1021 */
1022static void ice_set_ctrlq_len(struct ice_hw *hw)
1023{
1024	hw->adminq.num_rq_entries = ICE_AQ_LEN;
1025	hw->adminq.num_sq_entries = ICE_AQ_LEN;
1026	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
1027	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028}
1029
1030/**
1031 * ice_irq_affinity_notify - Callback for affinity changes
1032 * @notify: context as to what irq was changed
1033 * @mask: the new affinity mask
1034 *
1035 * This is a callback function used by the irq_set_affinity_notifier function
1036 * so that we may register to receive changes to the irq affinity masks.
1037 */
1038static void ice_irq_affinity_notify(struct irq_affinity_notify *notify,
1039				    const cpumask_t *mask)
 
1040{
1041	struct ice_q_vector *q_vector =
1042		container_of(notify, struct ice_q_vector, affinity_notify);
1043
1044	cpumask_copy(&q_vector->affinity_mask, mask);
1045}
1046
1047/**
1048 * ice_irq_affinity_release - Callback for affinity notifier release
1049 * @ref: internal core kernel usage
1050 *
1051 * This is a callback function used by the irq_set_affinity_notifier function
1052 * to inform the current notification subscriber that they will no longer
1053 * receive notifications.
1054 */
1055static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
1056
1057/**
1058 * ice_vsi_dis_irq - Mask off queue interrupt generation on the VSI
1059 * @vsi: the VSI being un-configured
1060 */
1061static void ice_vsi_dis_irq(struct ice_vsi *vsi)
1062{
1063	struct ice_pf *pf = vsi->back;
1064	struct ice_hw *hw = &pf->hw;
1065	int base = vsi->base_vector;
1066	u32 val;
1067	int i;
1068
1069	/* disable interrupt causation from each queue */
1070	if (vsi->tx_rings) {
1071		ice_for_each_txq(vsi, i) {
1072			if (vsi->tx_rings[i]) {
1073				u16 reg;
1074
1075				reg = vsi->tx_rings[i]->reg_idx;
1076				val = rd32(hw, QINT_TQCTL(reg));
1077				val &= ~QINT_TQCTL_CAUSE_ENA_M;
1078				wr32(hw, QINT_TQCTL(reg), val);
1079			}
1080		}
1081	}
1082
1083	if (vsi->rx_rings) {
1084		ice_for_each_rxq(vsi, i) {
1085			if (vsi->rx_rings[i]) {
1086				u16 reg;
1087
1088				reg = vsi->rx_rings[i]->reg_idx;
1089				val = rd32(hw, QINT_RQCTL(reg));
1090				val &= ~QINT_RQCTL_CAUSE_ENA_M;
1091				wr32(hw, QINT_RQCTL(reg), val);
1092			}
1093		}
1094	}
1095
1096	/* disable each interrupt */
1097	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1098		for (i = vsi->base_vector;
1099		     i < (vsi->num_q_vectors + vsi->base_vector); i++)
1100			wr32(hw, GLINT_DYN_CTL(i), 0);
1101
1102		ice_flush(hw);
1103		for (i = 0; i < vsi->num_q_vectors; i++)
1104			synchronize_irq(pf->msix_entries[i + base].vector);
1105	}
1106}
1107
1108/**
1109 * ice_vsi_ena_irq - Enable IRQ for the given VSI
1110 * @vsi: the VSI being configured
1111 */
1112static int ice_vsi_ena_irq(struct ice_vsi *vsi)
1113{
1114	struct ice_pf *pf = vsi->back;
1115	struct ice_hw *hw = &pf->hw;
1116
1117	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1118		int i;
1119
1120		for (i = 0; i < vsi->num_q_vectors; i++)
1121			ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
1122	}
1123
1124	ice_flush(hw);
1125	return 0;
1126}
1127
1128/**
1129 * ice_vsi_delete - delete a VSI from the switch
1130 * @vsi: pointer to VSI being removed
1131 */
1132static void ice_vsi_delete(struct ice_vsi *vsi)
1133{
1134	struct ice_pf *pf = vsi->back;
1135	struct ice_vsi_ctx ctxt;
1136	enum ice_status status;
1137
1138	ctxt.vsi_num = vsi->vsi_num;
1139
1140	memcpy(&ctxt.info, &vsi->info, sizeof(struct ice_aqc_vsi_props));
1141
1142	status = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
1143	if (status)
1144		dev_err(&pf->pdev->dev, "Failed to delete VSI %i in FW\n",
1145			vsi->vsi_num);
1146}
1147
1148/**
1149 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
1150 * @vsi: the VSI being configured
1151 * @basename: name for the vector
1152 */
1153static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
1154{
1155	int q_vectors = vsi->num_q_vectors;
1156	struct ice_pf *pf = vsi->back;
1157	int base = vsi->base_vector;
 
1158	int rx_int_idx = 0;
1159	int tx_int_idx = 0;
1160	int vector, err;
1161	int irq_num;
1162
 
1163	for (vector = 0; vector < q_vectors; vector++) {
1164		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
1165
1166		irq_num = pf->msix_entries[base + vector].vector;
1167
1168		if (q_vector->tx.ring && q_vector->rx.ring) {
1169			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1170				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
1171			tx_int_idx++;
1172		} else if (q_vector->rx.ring) {
1173			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1174				 "%s-%s-%d", basename, "rx", rx_int_idx++);
1175		} else if (q_vector->tx.ring) {
1176			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
1177				 "%s-%s-%d", basename, "tx", tx_int_idx++);
1178		} else {
1179			/* skip this unused q_vector */
1180			continue;
1181		}
1182		err = devm_request_irq(&pf->pdev->dev,
1183				       pf->msix_entries[base + vector].vector,
1184				       vsi->irq_handler, 0, q_vector->name,
1185				       q_vector);
1186		if (err) {
1187			netdev_err(vsi->netdev,
1188				   "MSIX request_irq failed, error: %d\n", err);
1189			goto free_q_irqs;
1190		}
1191
1192		/* register for affinity change notifications */
1193		q_vector->affinity_notify.notify = ice_irq_affinity_notify;
1194		q_vector->affinity_notify.release = ice_irq_affinity_release;
1195		irq_set_affinity_notifier(irq_num, &q_vector->affinity_notify);
 
 
 
 
 
1196
1197		/* assign the mask for this irq */
1198		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
1199	}
1200
1201	vsi->irqs_ready = true;
1202	return 0;
1203
1204free_q_irqs:
1205	while (vector) {
1206		vector--;
1207		irq_num = pf->msix_entries[base + vector].vector,
1208		irq_set_affinity_notifier(irq_num, NULL);
 
1209		irq_set_affinity_hint(irq_num, NULL);
1210		devm_free_irq(&pf->pdev->dev, irq_num, &vsi->q_vectors[vector]);
1211	}
1212	return err;
1213}
1214
1215/**
1216 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
1217 * @vsi: the VSI being configured
1218 */
1219static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
1220{
1221	struct ice_hw_common_caps *cap;
1222	struct ice_pf *pf = vsi->back;
1223
1224	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
1225		vsi->rss_size = 1;
1226		return;
1227	}
1228
1229	cap = &pf->hw.func_caps.common_cap;
1230	switch (vsi->type) {
1231	case ICE_VSI_PF:
1232		/* PF VSI will inherit RSS instance of PF */
1233		vsi->rss_table_size = cap->rss_table_size;
1234		vsi->rss_size = min_t(int, num_online_cpus(),
1235				      BIT(cap->rss_table_entry_width));
1236		vsi->rss_lut_type = ICE_AQC_GSET_RSS_LUT_TABLE_TYPE_PF;
1237		break;
1238	default:
1239		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1240		break;
1241	}
1242}
1243
1244/**
1245 * ice_vsi_setup_q_map - Setup a VSI queue map
1246 * @vsi: the VSI being configured
1247 * @ctxt: VSI context structure
1248 */
1249static void ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1250{
1251	u16 offset = 0, qmap = 0, numq_tc;
1252	u16 pow = 0, max_rss = 0, qcount;
1253	u16 qcount_tx = vsi->alloc_txq;
1254	u16 qcount_rx = vsi->alloc_rxq;
1255	bool ena_tc0 = false;
1256	int i;
1257
1258	/* at least TC0 should be enabled by default */
1259	if (vsi->tc_cfg.numtc) {
1260		if (!(vsi->tc_cfg.ena_tc & BIT(0)))
1261			ena_tc0 =  true;
1262	} else {
1263		ena_tc0 =  true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264	}
1265
1266	if (ena_tc0) {
1267		vsi->tc_cfg.numtc++;
1268		vsi->tc_cfg.ena_tc |= 1;
1269	}
1270
1271	numq_tc = qcount_rx / vsi->tc_cfg.numtc;
1272
1273	/* TC mapping is a function of the number of Rx queues assigned to the
1274	 * VSI for each traffic class and the offset of these queues.
1275	 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1276	 * queues allocated to TC0. No:of queues is a power-of-2.
1277	 *
1278	 * If TC is not enabled, the queue offset is set to 0, and allocate one
1279	 * queue, this way, traffic for the given TC will be sent to the default
1280	 * queue.
1281	 *
1282	 * Setup number and offset of Rx queues for all TCs for the VSI
1283	 */
1284
1285	/* qcount will change if RSS is enabled */
1286	if (test_bit(ICE_FLAG_RSS_ENA, vsi->back->flags)) {
1287		if (vsi->type == ICE_VSI_PF)
1288			max_rss = ICE_MAX_LG_RSS_QS;
1289		else
1290			max_rss = ICE_MAX_SMALL_RSS_QS;
1291
1292		qcount = min_t(int, numq_tc, max_rss);
1293		qcount = min_t(int, qcount, vsi->rss_size);
1294	} else {
1295		qcount = numq_tc;
1296	}
1297
1298	/* find higher power-of-2 of qcount */
1299	pow = ilog2(qcount);
1300
1301	if (!is_power_of_2(qcount))
1302		pow++;
1303
1304	for (i = 0; i < ICE_MAX_TRAFFIC_CLASS; i++) {
1305		if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1306			/* TC is not enabled */
1307			vsi->tc_cfg.tc_info[i].qoffset = 0;
1308			vsi->tc_cfg.tc_info[i].qcount = 1;
1309			ctxt->info.tc_mapping[i] = 0;
1310			continue;
1311		}
1312
1313		/* TC is enabled */
1314		vsi->tc_cfg.tc_info[i].qoffset = offset;
1315		vsi->tc_cfg.tc_info[i].qcount = qcount;
1316
1317		qmap = ((offset << ICE_AQ_VSI_TC_Q_OFFSET_S) &
1318			ICE_AQ_VSI_TC_Q_OFFSET_M) |
1319			((pow << ICE_AQ_VSI_TC_Q_NUM_S) &
1320			 ICE_AQ_VSI_TC_Q_NUM_M);
1321		offset += qcount;
1322		ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1323	}
1324
1325	vsi->num_txq = qcount_tx;
1326	vsi->num_rxq = offset;
1327
1328	/* Rx queue mapping */
1329	ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1330	/* q_mapping buffer holds the info for the first queue allocated for
1331	 * this VSI in the PF space and also the number of queues associated
1332	 * with this VSI.
1333	 */
1334	ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1335	ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1336}
1337
1338/**
1339 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
1340 * @ctxt: the VSI context being set
1341 *
1342 * This initializes a default VSI context for all sections except the Queues.
1343 */
1344static void ice_set_dflt_vsi_ctx(struct ice_vsi_ctx *ctxt)
1345{
1346	u32 table = 0;
1347
1348	memset(&ctxt->info, 0, sizeof(ctxt->info));
1349	/* VSI's should be allocated from shared pool */
1350	ctxt->alloc_from_pool = true;
1351	/* Src pruning enabled by default */
1352	ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
1353	/* Traffic from VSI can be sent to LAN */
1354	ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
1355	/* Allow all packets untagged/tagged */
1356	ctxt->info.port_vlan_flags = ((ICE_AQ_VSI_PVLAN_MODE_ALL &
1357				       ICE_AQ_VSI_PVLAN_MODE_M) >>
1358				      ICE_AQ_VSI_PVLAN_MODE_S);
1359	/* Show VLAN/UP from packets in Rx descriptors */
1360	ctxt->info.port_vlan_flags |= ((ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH &
1361					ICE_AQ_VSI_PVLAN_EMOD_M) >>
1362				       ICE_AQ_VSI_PVLAN_EMOD_S);
1363	/* Have 1:1 UP mapping for both ingress/egress tables */
1364	table |= ICE_UP_TABLE_TRANSLATE(0, 0);
1365	table |= ICE_UP_TABLE_TRANSLATE(1, 1);
1366	table |= ICE_UP_TABLE_TRANSLATE(2, 2);
1367	table |= ICE_UP_TABLE_TRANSLATE(3, 3);
1368	table |= ICE_UP_TABLE_TRANSLATE(4, 4);
1369	table |= ICE_UP_TABLE_TRANSLATE(5, 5);
1370	table |= ICE_UP_TABLE_TRANSLATE(6, 6);
1371	table |= ICE_UP_TABLE_TRANSLATE(7, 7);
1372	ctxt->info.ingress_table = cpu_to_le32(table);
1373	ctxt->info.egress_table = cpu_to_le32(table);
1374	/* Have 1:1 UP mapping for outer to inner UP table */
1375	ctxt->info.outer_up_table = cpu_to_le32(table);
1376	/* No Outer tag support outer_tag_flags remains to zero */
1377}
1378
1379/**
1380 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1381 * @ctxt: the VSI context being set
1382 * @vsi: the VSI being configured
1383 */
1384static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1385{
1386	u8 lut_type, hash_type;
 
1387
1388	switch (vsi->type) {
1389	case ICE_VSI_PF:
1390		/* PF VSI will inherit RSS instance of PF */
1391		lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1392		hash_type = ICE_AQ_VSI_Q_OPT_RSS_TPLZ;
1393		break;
1394	default:
1395		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1396			 vsi->type);
1397		return;
1398	}
1399
1400	ctxt->info.q_opt_rss = ((lut_type << ICE_AQ_VSI_Q_OPT_RSS_LUT_S) &
1401				ICE_AQ_VSI_Q_OPT_RSS_LUT_M) |
1402				((hash_type << ICE_AQ_VSI_Q_OPT_RSS_HASH_S) &
1403				 ICE_AQ_VSI_Q_OPT_RSS_HASH_M);
1404}
1405
1406/**
1407 * ice_vsi_add - Create a new VSI or fetch preallocated VSI
1408 * @vsi: the VSI being configured
 
1409 *
1410 * This initializes a VSI context depending on the VSI type to be added and
1411 * passes it down to the add_vsi aq command to create a new VSI.
1412 */
1413static int ice_vsi_add(struct ice_vsi *vsi)
1414{
1415	struct ice_vsi_ctx ctxt = { 0 };
 
1416	struct ice_pf *pf = vsi->back;
1417	struct ice_hw *hw = &pf->hw;
1418	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1419
1420	switch (vsi->type) {
1421	case ICE_VSI_PF:
1422		ctxt.flags = ICE_AQ_VSI_TYPE_PF;
1423		break;
1424	default:
1425		return -ENODEV;
1426	}
1427
1428	ice_set_dflt_vsi_ctx(&ctxt);
1429	/* if the switch is in VEB mode, allow VSI loopback */
1430	if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1431		ctxt.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1432
1433	/* Set LUT type and HASH type if RSS is enabled */
1434	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
1435		ice_set_rss_vsi_ctx(&ctxt, vsi);
1436
1437	ctxt.info.sw_id = vsi->port_info->sw_id;
1438	ice_vsi_setup_q_map(vsi, &ctxt);
 
 
1439
1440	ret = ice_aq_add_vsi(hw, &ctxt, NULL);
1441	if (ret) {
1442		dev_err(&vsi->back->pdev->dev,
1443			"Add VSI AQ call failed, err %d\n", ret);
1444		return -EIO;
1445	}
1446	vsi->info = ctxt.info;
1447	vsi->vsi_num = ctxt.vsi_num;
1448
1449	return ret;
1450}
1451
1452/**
1453 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
1454 * @vsi: the VSI being cleaned up
1455 */
1456static void ice_vsi_release_msix(struct ice_vsi *vsi)
1457{
1458	struct ice_pf *pf = vsi->back;
1459	u16 vector = vsi->base_vector;
1460	struct ice_hw *hw = &pf->hw;
1461	u32 txq = 0;
1462	u32 rxq = 0;
1463	int i, q;
1464
1465	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1466		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1467
1468		wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), 0);
1469		wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), 0);
1470		for (q = 0; q < q_vector->num_ring_tx; q++) {
1471			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
1472			txq++;
1473		}
1474
1475		for (q = 0; q < q_vector->num_ring_rx; q++) {
1476			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
1477			rxq++;
1478		}
 
1479	}
1480
1481	ice_flush(hw);
1482}
 
 
 
 
1483
1484/**
1485 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1486 * @vsi: the VSI having rings deallocated
1487 */
1488static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1489{
1490	int i;
1491
1492	if (vsi->tx_rings) {
1493		for (i = 0; i < vsi->alloc_txq; i++) {
1494			if (vsi->tx_rings[i]) {
1495				kfree_rcu(vsi->tx_rings[i], rcu);
1496				vsi->tx_rings[i] = NULL;
1497			}
1498		}
1499	}
1500	if (vsi->rx_rings) {
1501		for (i = 0; i < vsi->alloc_rxq; i++) {
1502			if (vsi->rx_rings[i]) {
1503				kfree_rcu(vsi->rx_rings[i], rcu);
1504				vsi->rx_rings[i] = NULL;
1505			}
 
 
1506		}
 
 
 
 
 
 
1507	}
 
 
 
 
1508}
1509
1510/**
1511 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1512 * @vsi: VSI which is having rings allocated
 
 
 
1513 */
1514static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1515{
 
1516	struct ice_pf *pf = vsi->back;
1517	int i;
 
 
 
 
 
 
 
 
1518
1519	/* Allocate tx_rings */
1520	for (i = 0; i < vsi->alloc_txq; i++) {
1521		struct ice_ring *ring;
1522
1523		/* allocate with kzalloc(), free with kfree_rcu() */
1524		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
 
 
 
 
 
1525
1526		if (!ring)
1527			goto err_out;
 
 
 
 
 
1528
1529		ring->q_index = i;
1530		ring->reg_idx = vsi->txq_map[i];
1531		ring->ring_active = false;
1532		ring->vsi = vsi;
1533		ring->netdev = vsi->netdev;
1534		ring->dev = &pf->pdev->dev;
1535		ring->count = vsi->num_desc;
1536
1537		vsi->tx_rings[i] = ring;
1538	}
1539
1540	/* Allocate rx_rings */
1541	for (i = 0; i < vsi->alloc_rxq; i++) {
1542		struct ice_ring *ring;
1543
1544		/* allocate with kzalloc(), free with kfree_rcu() */
1545		ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1546		if (!ring)
1547			goto err_out;
1548
1549		ring->q_index = i;
1550		ring->reg_idx = vsi->rxq_map[i];
1551		ring->ring_active = false;
1552		ring->vsi = vsi;
1553		ring->netdev = vsi->netdev;
1554		ring->dev = &pf->pdev->dev;
1555		ring->count = vsi->num_desc;
1556		vsi->rx_rings[i] = ring;
1557	}
1558
1559	return 0;
 
1560
1561err_out:
1562	ice_vsi_clear_rings(vsi);
1563	return -ENOMEM;
1564}
1565
1566/**
1567 * ice_vsi_free_irq - Free the irq association with the OS
1568 * @vsi: the VSI being configured
 
 
1569 */
1570static void ice_vsi_free_irq(struct ice_vsi *vsi)
 
 
1571{
1572	struct ice_pf *pf = vsi->back;
1573	int base = vsi->base_vector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574
1575	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
1576		int i;
 
 
 
 
 
 
 
 
 
 
1577
1578		if (!vsi->q_vectors || !vsi->irqs_ready)
1579			return;
1580
1581		vsi->irqs_ready = false;
1582		for (i = 0; i < vsi->num_q_vectors; i++) {
1583			u16 vector = i + base;
1584			int irq_num;
1585
1586			irq_num = pf->msix_entries[vector].vector;
1587
1588			/* free only the irqs that were actually requested */
1589			if (!vsi->q_vectors[i] ||
1590			    !(vsi->q_vectors[i]->num_ring_tx ||
1591			      vsi->q_vectors[i]->num_ring_rx))
1592				continue;
1593
1594			/* clear the affinity notifier in the IRQ descriptor */
1595			irq_set_affinity_notifier(irq_num, NULL);
1596
1597			/* clear the affinity_mask in the IRQ descriptor */
1598			irq_set_affinity_hint(irq_num, NULL);
1599			synchronize_irq(irq_num);
1600			devm_free_irq(&pf->pdev->dev, irq_num,
1601				      vsi->q_vectors[i]);
1602		}
1603		ice_vsi_release_msix(vsi);
1604	}
 
 
1605}
1606
1607/**
1608 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1609 * @vsi: the VSI being configured
 
1610 */
1611static void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1612{
1613	struct ice_pf *pf = vsi->back;
1614	u16 vector = vsi->base_vector;
1615	struct ice_hw *hw = &pf->hw;
1616	u32 txq = 0, rxq = 0;
1617	int i, q, itr;
1618	u8 itr_gran;
1619
1620	for (i = 0; i < vsi->num_q_vectors; i++, vector++) {
1621		struct ice_q_vector *q_vector = vsi->q_vectors[i];
1622
1623		itr_gran = hw->itr_gran_200;
1624
1625		if (q_vector->num_ring_rx) {
1626			q_vector->rx.itr =
1627				ITR_TO_REG(vsi->rx_rings[rxq]->rx_itr_setting,
1628					   itr_gran);
1629			q_vector->rx.latency_range = ICE_LOW_LATENCY;
1630		}
1631
1632		if (q_vector->num_ring_tx) {
1633			q_vector->tx.itr =
1634				ITR_TO_REG(vsi->tx_rings[txq]->tx_itr_setting,
1635					   itr_gran);
1636			q_vector->tx.latency_range = ICE_LOW_LATENCY;
1637		}
1638		wr32(hw, GLINT_ITR(ICE_RX_ITR, vector), q_vector->rx.itr);
1639		wr32(hw, GLINT_ITR(ICE_TX_ITR, vector), q_vector->tx.itr);
1640
1641		/* Both Transmit Queue Interrupt Cause Control register
1642		 * and Receive Queue Interrupt Cause control register
1643		 * expects MSIX_INDX field to be the vector index
1644		 * within the function space and not the absolute
1645		 * vector index across PF or across device.
1646		 * For SR-IOV VF VSIs queue vector index always starts
1647		 * with 1 since first vector index(0) is used for OICR
1648		 * in VF space. Since VMDq and other PF VSIs are withtin
1649		 * the PF function space, use the vector index thats
1650		 * tracked for this PF.
1651		 */
1652		for (q = 0; q < q_vector->num_ring_tx; q++) {
1653			u32 val;
1654
1655			itr = ICE_TX_ITR;
1656			val = QINT_TQCTL_CAUSE_ENA_M |
1657			      (itr << QINT_TQCTL_ITR_INDX_S)  |
1658			      (vector << QINT_TQCTL_MSIX_INDX_S);
1659			wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
1660			txq++;
1661		}
1662
1663		for (q = 0; q < q_vector->num_ring_rx; q++) {
1664			u32 val;
1665
1666			itr = ICE_RX_ITR;
1667			val = QINT_RQCTL_CAUSE_ENA_M |
1668			      (itr << QINT_RQCTL_ITR_INDX_S)  |
1669			      (vector << QINT_RQCTL_MSIX_INDX_S);
1670			wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
1671			rxq++;
1672		}
1673	}
1674
1675	ice_flush(hw);
 
 
 
 
 
 
 
 
1676}
1677
1678/**
1679 * ice_ena_misc_vector - enable the non-queue interrupts
1680 * @pf: board private structure
1681 */
1682static void ice_ena_misc_vector(struct ice_pf *pf)
1683{
1684	struct ice_hw *hw = &pf->hw;
1685	u32 val;
1686
 
 
 
 
 
 
 
 
1687	/* clear things first */
1688	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
1689	rd32(hw, PFINT_OICR);		/* read to clear */
1690
1691	val = (PFINT_OICR_HLP_RDY_M |
1692	       PFINT_OICR_CPM_RDY_M |
1693	       PFINT_OICR_ECC_ERR_M |
1694	       PFINT_OICR_MAL_DETECT_M |
1695	       PFINT_OICR_GRST_M |
1696	       PFINT_OICR_PCI_EXCEPTION_M |
1697	       PFINT_OICR_GPIO_M |
1698	       PFINT_OICR_STORM_DETECT_M |
1699	       PFINT_OICR_HMC_ERR_M);
1700
1701	wr32(hw, PFINT_OICR_ENA, val);
1702
1703	/* SW_ITR_IDX = 0, but don't change INTENA */
1704	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
1705	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
1706}
1707
1708/**
1709 * ice_misc_intr - misc interrupt handler
1710 * @irq: interrupt number
1711 * @data: pointer to a q_vector
1712 */
1713static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
1714{
1715	struct ice_pf *pf = (struct ice_pf *)data;
1716	struct ice_hw *hw = &pf->hw;
1717	irqreturn_t ret = IRQ_NONE;
 
1718	u32 oicr, ena_mask;
1719
 
1720	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
 
1721
1722	oicr = rd32(hw, PFINT_OICR);
1723	ena_mask = rd32(hw, PFINT_OICR_ENA);
1724
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1725	if (oicr & PFINT_OICR_GRST_M) {
1726		u32 reset;
 
1727		/* we have a reset warning */
1728		ena_mask &= ~PFINT_OICR_GRST_M;
1729		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
1730			GLGEN_RSTAT_RESET_TYPE_S;
1731
1732		if (reset == ICE_RESET_CORER)
1733			pf->corer_count++;
1734		else if (reset == ICE_RESET_GLOBR)
1735			pf->globr_count++;
 
 
1736		else
1737			pf->empr_count++;
1738
1739		/* If a reset cycle isn't already in progress, we set a bit in
1740		 * pf->state so that the service task can start a reset/rebuild.
1741		 * We also make note of which reset happened so that peer
1742		 * devices/drivers can be informed.
1743		 */
1744		if (!test_bit(__ICE_RESET_RECOVERY_PENDING, pf->state)) {
1745			if (reset == ICE_RESET_CORER)
1746				set_bit(__ICE_CORER_RECV, pf->state);
1747			else if (reset == ICE_RESET_GLOBR)
1748				set_bit(__ICE_GLOBR_RECV, pf->state);
1749			else
1750				set_bit(__ICE_EMPR_RECV, pf->state);
1751
1752			set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
1753		}
1754	}
1755
1756	if (oicr & PFINT_OICR_HMC_ERR_M) {
1757		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
1758		dev_dbg(&pf->pdev->dev,
1759			"HMC Error interrupt - info 0x%x, data 0x%x\n",
1760			rd32(hw, PFHMC_ERRORINFO),
1761			rd32(hw, PFHMC_ERRORDATA));
1762	}
1763
1764	/* Report and mask off any remaining unexpected interrupts */
1765	oicr &= ena_mask;
1766	if (oicr) {
1767		dev_dbg(&pf->pdev->dev, "unhandled interrupt oicr=0x%08x\n",
1768			oicr);
1769		/* If a critical error is pending there is no choice but to
1770		 * reset the device.
1771		 */
1772		if (oicr & (PFINT_OICR_PE_CRITERR_M |
1773			    PFINT_OICR_PCI_EXCEPTION_M |
1774			    PFINT_OICR_ECC_ERR_M)) {
1775			set_bit(__ICE_PFR_REQ, pf->state);
1776			ice_service_task_schedule(pf);
1777		}
1778		ena_mask &= ~oicr;
1779	}
1780	ret = IRQ_HANDLED;
1781
1782	/* re-enable interrupt causes that are not handled during this pass */
1783	wr32(hw, PFINT_OICR_ENA, ena_mask);
1784	if (!test_bit(__ICE_DOWN, pf->state)) {
1785		ice_service_task_schedule(pf);
1786		ice_irq_dynamic_ena(hw, NULL, NULL);
1787	}
1788
1789	return ret;
1790}
1791
1792/**
1793 * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
1794 * @vsi: the VSI being configured
1795 *
1796 * This function maps descriptor rings to the queue-specific vectors allotted
1797 * through the MSI-X enabling code. On a constrained vector budget, we map Tx
1798 * and Rx rings to the vector as "efficiently" as possible.
1799 */
1800static void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
1801{
1802	int q_vectors = vsi->num_q_vectors;
1803	int tx_rings_rem, rx_rings_rem;
1804	int v_id;
 
 
 
 
 
 
 
 
1805
1806	/* initially assigning remaining rings count to VSIs num queue value */
1807	tx_rings_rem = vsi->num_txq;
1808	rx_rings_rem = vsi->num_rxq;
1809
1810	for (v_id = 0; v_id < q_vectors; v_id++) {
1811		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
1812		int tx_rings_per_v, rx_rings_per_v, q_id, q_base;
1813
1814		/* Tx rings mapping to vector */
1815		tx_rings_per_v = DIV_ROUND_UP(tx_rings_rem, q_vectors - v_id);
1816		q_vector->num_ring_tx = tx_rings_per_v;
1817		q_vector->tx.ring = NULL;
1818		q_base = vsi->num_txq - tx_rings_rem;
1819
1820		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
1821			struct ice_ring *tx_ring = vsi->tx_rings[q_id];
1822
1823			tx_ring->q_vector = q_vector;
1824			tx_ring->next = q_vector->tx.ring;
1825			q_vector->tx.ring = tx_ring;
1826		}
1827		tx_rings_rem -= tx_rings_per_v;
1828
1829		/* Rx rings mapping to vector */
1830		rx_rings_per_v = DIV_ROUND_UP(rx_rings_rem, q_vectors - v_id);
1831		q_vector->num_ring_rx = rx_rings_per_v;
1832		q_vector->rx.ring = NULL;
1833		q_base = vsi->num_rxq - rx_rings_rem;
1834
1835		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
1836			struct ice_ring *rx_ring = vsi->rx_rings[q_id];
1837
1838			rx_ring->q_vector = q_vector;
1839			rx_ring->next = q_vector->rx.ring;
1840			q_vector->rx.ring = rx_ring;
1841		}
1842		rx_rings_rem -= rx_rings_per_v;
1843	}
1844}
1845
1846/**
1847 * ice_vsi_set_num_qs - Set num queues, descriptors and vectors for a VSI
1848 * @vsi: the VSI being configured
1849 *
1850 * Return 0 on success and a negative value on error
1851 */
1852static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
1853{
1854	struct ice_pf *pf = vsi->back;
1855
1856	switch (vsi->type) {
1857	case ICE_VSI_PF:
1858		vsi->alloc_txq = pf->num_lan_tx;
1859		vsi->alloc_rxq = pf->num_lan_rx;
1860		vsi->num_desc = ALIGN(ICE_DFLT_NUM_DESC, ICE_REQ_DESC_MULTIPLE);
1861		vsi->num_q_vectors = max_t(int, pf->num_lan_rx, pf->num_lan_tx);
1862		break;
1863	default:
1864		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
1865			 vsi->type);
1866		break;
1867	}
1868}
1869
1870/**
1871 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the vsi
1872 * @vsi: VSI pointer
1873 * @alloc_qvectors: a bool to specify if q_vectors need to be allocated.
1874 *
1875 * On error: returns error code (negative)
1876 * On success: returns 0
1877 */
1878static int ice_vsi_alloc_arrays(struct ice_vsi *vsi, bool alloc_qvectors)
1879{
1880	struct ice_pf *pf = vsi->back;
1881
1882	/* allocate memory for both Tx and Rx ring pointers */
1883	vsi->tx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_txq,
1884				     sizeof(struct ice_ring *), GFP_KERNEL);
1885	if (!vsi->tx_rings)
1886		goto err_txrings;
1887
1888	vsi->rx_rings = devm_kcalloc(&pf->pdev->dev, vsi->alloc_rxq,
1889				     sizeof(struct ice_ring *), GFP_KERNEL);
1890	if (!vsi->rx_rings)
1891		goto err_rxrings;
1892
1893	if (alloc_qvectors) {
1894		/* allocate memory for q_vector pointers */
1895		vsi->q_vectors = devm_kcalloc(&pf->pdev->dev,
1896					      vsi->num_q_vectors,
1897					      sizeof(struct ice_q_vector *),
1898					      GFP_KERNEL);
1899		if (!vsi->q_vectors)
1900			goto err_vectors;
1901	}
1902
1903	return 0;
1904
1905err_vectors:
1906	devm_kfree(&pf->pdev->dev, vsi->rx_rings);
1907err_rxrings:
1908	devm_kfree(&pf->pdev->dev, vsi->tx_rings);
1909err_txrings:
1910	return -ENOMEM;
1911}
1912
1913/**
1914 * ice_msix_clean_rings - MSIX mode Interrupt Handler
1915 * @irq: interrupt number
1916 * @data: pointer to a q_vector
1917 */
1918static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
1919{
1920	struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
1921
1922	if (!q_vector->tx.ring && !q_vector->rx.ring)
1923		return IRQ_HANDLED;
 
1924
1925	napi_schedule(&q_vector->napi);
 
 
 
1926
1927	return IRQ_HANDLED;
1928}
 
 
1929
1930/**
1931 * ice_vsi_alloc - Allocates the next available struct vsi in the PF
1932 * @pf: board private structure
1933 * @type: type of VSI
1934 *
1935 * returns a pointer to a VSI on success, NULL on failure.
1936 */
1937static struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf, enum ice_vsi_type type)
1938{
1939	struct ice_vsi *vsi = NULL;
1940
1941	/* Need to protect the allocation of the VSIs at the PF level */
1942	mutex_lock(&pf->sw_mutex);
1943
1944	/* If we have already allocated our maximum number of VSIs,
1945	 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
1946	 * is available to be populated
1947	 */
1948	if (pf->next_vsi == ICE_NO_VSI) {
1949		dev_dbg(&pf->pdev->dev, "out of VSI slots!\n");
1950		goto unlock_pf;
1951	}
1952
1953	vsi = devm_kzalloc(&pf->pdev->dev, sizeof(*vsi), GFP_KERNEL);
1954	if (!vsi)
1955		goto unlock_pf;
1956
1957	vsi->type = type;
1958	vsi->back = pf;
1959	set_bit(__ICE_DOWN, vsi->state);
1960	vsi->idx = pf->next_vsi;
1961	vsi->work_lmt = ICE_DFLT_IRQ_WORK;
1962
1963	ice_vsi_set_num_qs(vsi);
1964
1965	switch (vsi->type) {
1966	case ICE_VSI_PF:
1967		if (ice_vsi_alloc_arrays(vsi, true))
1968			goto err_rings;
1969
1970		/* Setup default MSIX irq handler for VSI */
1971		vsi->irq_handler = ice_msix_clean_rings;
1972		break;
1973	default:
1974		dev_warn(&pf->pdev->dev, "Unknown VSI type %d\n", vsi->type);
1975		goto unlock_pf;
1976	}
1977
1978	/* fill VSI slot in the PF struct */
1979	pf->vsi[pf->next_vsi] = vsi;
1980
1981	/* prepare pf->next_vsi for next use */
1982	pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
1983					 pf->next_vsi);
1984	goto unlock_pf;
1985
1986err_rings:
1987	devm_kfree(&pf->pdev->dev, vsi);
1988	vsi = NULL;
1989unlock_pf:
1990	mutex_unlock(&pf->sw_mutex);
1991	return vsi;
1992}
1993
1994/**
1995 * ice_free_irq_msix_misc - Unroll misc vector setup
1996 * @pf: board private structure
1997 */
1998static void ice_free_irq_msix_misc(struct ice_pf *pf)
1999{
2000	/* disable OICR interrupt */
2001	wr32(&pf->hw, PFINT_OICR_ENA, 0);
2002	ice_flush(&pf->hw);
2003
2004	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags) && pf->msix_entries) {
2005		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2006		devm_free_irq(&pf->pdev->dev,
2007			      pf->msix_entries[pf->oicr_idx].vector, pf);
2008	}
2009
2010	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2011}
2012
2013/**
2014 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2015 * @pf: board private structure
2016 *
2017 * This sets up the handler for MSIX 0, which is used to manage the
2018 * non-queue interrupts, e.g. AdminQ and errors.  This is not used
2019 * when in MSI or Legacy interrupt mode.
2020 */
2021static int ice_req_irq_msix_misc(struct ice_pf *pf)
2022{
 
2023	struct ice_hw *hw = &pf->hw;
2024	int oicr_idx, err = 0;
2025	u8 itr_gran;
2026	u32 val;
2027
2028	if (!pf->int_name[0])
2029		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2030			 dev_driver_string(&pf->pdev->dev),
2031			 dev_name(&pf->pdev->dev));
2032
2033	/* Do not request IRQ but do enable OICR interrupt since settings are
2034	 * lost during reset. Note that this function is called only during
2035	 * rebuild path and not while reset is in progress.
2036	 */
2037	if (ice_is_reset_recovery_pending(pf->state))
2038		goto skip_req_irq;
2039
2040	/* reserve one vector in irq_tracker for misc interrupts */
2041	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2042	if (oicr_idx < 0)
2043		return oicr_idx;
2044
2045	pf->oicr_idx = oicr_idx;
 
2046
2047	err = devm_request_irq(&pf->pdev->dev,
2048			       pf->msix_entries[pf->oicr_idx].vector,
2049			       ice_misc_intr, 0, pf->int_name, pf);
2050	if (err) {
2051		dev_err(&pf->pdev->dev,
2052			"devm_request_irq for %s failed: %d\n",
2053			pf->int_name, err);
2054		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
 
2055		return err;
2056	}
2057
2058skip_req_irq:
2059	ice_ena_misc_vector(pf);
2060
2061	val = (pf->oicr_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2062	      (ICE_RX_ITR & PFINT_OICR_CTL_ITR_INDX_M) |
2063	      PFINT_OICR_CTL_CAUSE_ENA_M;
2064	wr32(hw, PFINT_OICR_CTL, val);
2065
2066	/* This enables Admin queue Interrupt causes */
2067	val = (pf->oicr_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2068	      (ICE_RX_ITR & PFINT_FW_CTL_ITR_INDX_M) |
2069	      PFINT_FW_CTL_CAUSE_ENA_M;
2070	wr32(hw, PFINT_FW_CTL, val);
2071
2072	itr_gran = hw->itr_gran_200;
2073
2074	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2075	     ITR_TO_REG(ICE_ITR_8K, itr_gran));
2076
2077	ice_flush(hw);
2078	ice_irq_dynamic_ena(hw, NULL, NULL);
2079
2080	return 0;
2081}
2082
2083/**
2084 * ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
2085 * @vsi: the VSI getting queues
2086 *
2087 * Return 0 on success and a negative value on error
 
 
2088 */
2089static int ice_vsi_get_qs_contig(struct ice_vsi *vsi)
2090{
2091	struct ice_pf *pf = vsi->back;
2092	int offset, ret = 0;
2093
2094	mutex_lock(&pf->avail_q_mutex);
2095	/* look for contiguous block of queues for tx */
2096	offset = bitmap_find_next_zero_area(pf->avail_txqs, ICE_MAX_TXQS,
2097					    0, vsi->alloc_txq, 0);
2098	if (offset < ICE_MAX_TXQS) {
2099		int i;
2100
2101		bitmap_set(pf->avail_txqs, offset, vsi->alloc_txq);
2102		for (i = 0; i < vsi->alloc_txq; i++)
2103			vsi->txq_map[i] = i + offset;
2104	} else {
2105		ret = -ENOMEM;
2106		vsi->tx_mapping_mode = ICE_VSI_MAP_SCATTER;
2107	}
2108
2109	/* look for contiguous block of queues for rx */
2110	offset = bitmap_find_next_zero_area(pf->avail_rxqs, ICE_MAX_RXQS,
2111					    0, vsi->alloc_rxq, 0);
2112	if (offset < ICE_MAX_RXQS) {
2113		int i;
2114
2115		bitmap_set(pf->avail_rxqs, offset, vsi->alloc_rxq);
2116		for (i = 0; i < vsi->alloc_rxq; i++)
2117			vsi->rxq_map[i] = i + offset;
2118	} else {
2119		ret = -ENOMEM;
2120		vsi->rx_mapping_mode = ICE_VSI_MAP_SCATTER;
2121	}
2122	mutex_unlock(&pf->avail_q_mutex);
2123
2124	return ret;
 
 
2125}
2126
2127/**
2128 * ice_vsi_get_qs_scatter - Assign a scattered queues to VSI
2129 * @vsi: the VSI getting queues
2130 *
2131 * Return 0 on success and a negative value on error
2132 */
2133static int ice_vsi_get_qs_scatter(struct ice_vsi *vsi)
2134{
2135	struct ice_pf *pf = vsi->back;
2136	int i, index = 0;
2137
2138	mutex_lock(&pf->avail_q_mutex);
2139
2140	if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2141		for (i = 0; i < vsi->alloc_txq; i++) {
2142			index = find_next_zero_bit(pf->avail_txqs,
2143						   ICE_MAX_TXQS, index);
2144			if (index < ICE_MAX_TXQS) {
2145				set_bit(index, pf->avail_txqs);
2146				vsi->txq_map[i] = index;
2147			} else {
2148				goto err_scatter_tx;
2149			}
2150		}
2151	}
2152
2153	if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER) {
2154		for (i = 0; i < vsi->alloc_rxq; i++) {
2155			index = find_next_zero_bit(pf->avail_rxqs,
2156						   ICE_MAX_RXQS, index);
2157			if (index < ICE_MAX_RXQS) {
2158				set_bit(index, pf->avail_rxqs);
2159				vsi->rxq_map[i] = index;
2160			} else {
2161				goto err_scatter_rx;
2162			}
2163		}
2164	}
2165
2166	mutex_unlock(&pf->avail_q_mutex);
2167	return 0;
2168
2169err_scatter_rx:
2170	/* unflag any queues we have grabbed (i is failed position) */
2171	for (index = 0; index < i; index++) {
2172		clear_bit(vsi->rxq_map[index], pf->avail_rxqs);
2173		vsi->rxq_map[index] = 0;
2174	}
2175	i = vsi->alloc_txq;
2176err_scatter_tx:
2177	/* i is either position of failed attempt or vsi->alloc_txq */
2178	for (index = 0; index < i; index++) {
2179		clear_bit(vsi->txq_map[index], pf->avail_txqs);
2180		vsi->txq_map[index] = 0;
2181	}
2182
2183	mutex_unlock(&pf->avail_q_mutex);
2184	return -ENOMEM;
2185}
2186
2187/**
2188 * ice_vsi_get_qs - Assign queues from PF to VSI
2189 * @vsi: the VSI to assign queues to
2190 *
2191 * Returns 0 on success and a negative value on error
2192 */
2193static int ice_vsi_get_qs(struct ice_vsi *vsi)
2194{
2195	int ret = 0;
2196
2197	vsi->tx_mapping_mode = ICE_VSI_MAP_CONTIG;
2198	vsi->rx_mapping_mode = ICE_VSI_MAP_CONTIG;
2199
2200	/* NOTE: ice_vsi_get_qs_contig() will set the rx/tx mapping
2201	 * modes individually to scatter if assigning contiguous queues
2202	 * to rx or tx fails
2203	 */
2204	ret = ice_vsi_get_qs_contig(vsi);
2205	if (ret < 0) {
2206		if (vsi->tx_mapping_mode == ICE_VSI_MAP_SCATTER)
2207			vsi->alloc_txq = max_t(u16, vsi->alloc_txq,
2208					       ICE_MAX_SCATTER_TXQS);
2209		if (vsi->rx_mapping_mode == ICE_VSI_MAP_SCATTER)
2210			vsi->alloc_rxq = max_t(u16, vsi->alloc_rxq,
2211					       ICE_MAX_SCATTER_RXQS);
2212		ret = ice_vsi_get_qs_scatter(vsi);
2213	}
2214
2215	return ret;
2216}
2217
2218/**
2219 * ice_vsi_put_qs - Release queues from VSI to PF
2220 * @vsi: the VSI thats going to release queues
2221 */
2222static void ice_vsi_put_qs(struct ice_vsi *vsi)
2223{
2224	struct ice_pf *pf = vsi->back;
2225	int i;
2226
2227	mutex_lock(&pf->avail_q_mutex);
2228
2229	for (i = 0; i < vsi->alloc_txq; i++) {
2230		clear_bit(vsi->txq_map[i], pf->avail_txqs);
2231		vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
2232	}
2233
2234	for (i = 0; i < vsi->alloc_rxq; i++) {
2235		clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
2236		vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
2237	}
2238
2239	mutex_unlock(&pf->avail_q_mutex);
2240}
2241
2242/**
2243 * ice_free_q_vector - Free memory allocated for a specific interrupt vector
2244 * @vsi: VSI having the memory freed
2245 * @v_idx: index of the vector to be freed
2246 */
2247static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
2248{
2249	struct ice_q_vector *q_vector;
2250	struct ice_ring *ring;
2251
2252	if (!vsi->q_vectors[v_idx]) {
2253		dev_dbg(&vsi->back->pdev->dev, "Queue vector at index %d not found\n",
2254			v_idx);
2255		return;
2256	}
2257	q_vector = vsi->q_vectors[v_idx];
2258
2259	ice_for_each_ring(ring, q_vector->tx)
2260		ring->q_vector = NULL;
2261	ice_for_each_ring(ring, q_vector->rx)
2262		ring->q_vector = NULL;
2263
2264	/* only VSI with an associated netdev is set up with NAPI */
2265	if (vsi->netdev)
2266		netif_napi_del(&q_vector->napi);
2267
2268	devm_kfree(&vsi->back->pdev->dev, q_vector);
2269	vsi->q_vectors[v_idx] = NULL;
2270}
2271
2272/**
2273 * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
2274 * @vsi: the VSI having memory freed
2275 */
2276static void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
2277{
2278	int v_idx;
2279
2280	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++)
2281		ice_free_q_vector(vsi, v_idx);
2282}
2283
2284/**
2285 * ice_cfg_netdev - Setup the netdev flags
2286 * @vsi: the VSI being configured
2287 *
2288 * Returns 0 on success, negative value on failure
2289 */
2290static int ice_cfg_netdev(struct ice_vsi *vsi)
2291{
 
2292	netdev_features_t csumo_features;
2293	netdev_features_t vlano_features;
2294	netdev_features_t dflt_features;
2295	netdev_features_t tso_features;
2296	struct ice_netdev_priv *np;
2297	struct net_device *netdev;
2298	u8 mac_addr[ETH_ALEN];
2299
2300	netdev = alloc_etherdev_mqs(sizeof(struct ice_netdev_priv),
2301				    vsi->alloc_txq, vsi->alloc_rxq);
2302	if (!netdev)
2303		return -ENOMEM;
2304
2305	vsi->netdev = netdev;
2306	np = netdev_priv(netdev);
2307	np->vsi = vsi;
2308
2309	dflt_features = NETIF_F_SG	|
2310			NETIF_F_HIGHDMA	|
 
2311			NETIF_F_RXHASH;
2312
2313	csumo_features = NETIF_F_RXCSUM	  |
2314			 NETIF_F_IP_CSUM  |
 
2315			 NETIF_F_IPV6_CSUM;
2316
2317	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2318			 NETIF_F_HW_VLAN_CTAG_TX     |
2319			 NETIF_F_HW_VLAN_CTAG_RX;
2320
2321	tso_features = NETIF_F_TSO;
 
 
 
 
 
 
 
 
 
 
2322
 
 
2323	/* set features that user can change */
2324	netdev->hw_features = dflt_features | csumo_features |
2325			      vlano_features | tso_features;
2326
 
 
 
2327	/* enable features */
2328	netdev->features |= netdev->hw_features;
2329	/* encap and VLAN devices inherit default, csumo and tso features */
2330	netdev->hw_enc_features |= dflt_features | csumo_features |
2331				   tso_features;
2332	netdev->vlan_features |= dflt_features | csumo_features |
2333				 tso_features;
2334
2335	if (vsi->type == ICE_VSI_PF) {
2336		SET_NETDEV_DEV(netdev, &vsi->back->pdev->dev);
2337		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2338
2339		ether_addr_copy(netdev->dev_addr, mac_addr);
2340		ether_addr_copy(netdev->perm_addr, mac_addr);
2341	}
2342
2343	netdev->priv_flags |= IFF_UNICAST_FLT;
2344
2345	/* assign netdev_ops */
2346	netdev->netdev_ops = &ice_netdev_ops;
2347
2348	/* setup watchdog timeout value to be 5 second */
2349	netdev->watchdog_timeo = 5 * HZ;
2350
2351	ice_set_ethtool_ops(netdev);
2352
2353	netdev->min_mtu = ETH_MIN_MTU;
2354	netdev->max_mtu = ICE_MAX_MTU;
2355
2356	return 0;
2357}
2358
2359/**
2360 * ice_vsi_free_arrays - clean up vsi resources
2361 * @vsi: pointer to VSI being cleared
2362 * @free_qvectors: bool to specify if q_vectors should be deallocated
 
2363 */
2364static void ice_vsi_free_arrays(struct ice_vsi *vsi, bool free_qvectors)
2365{
2366	struct ice_pf *pf = vsi->back;
 
 
 
 
2367
2368	/* free the ring and vector containers */
2369	if (free_qvectors && vsi->q_vectors) {
2370		devm_kfree(&pf->pdev->dev, vsi->q_vectors);
2371		vsi->q_vectors = NULL;
 
 
 
 
 
2372	}
2373	if (vsi->tx_rings) {
2374		devm_kfree(&pf->pdev->dev, vsi->tx_rings);
2375		vsi->tx_rings = NULL;
2376	}
2377	if (vsi->rx_rings) {
2378		devm_kfree(&pf->pdev->dev, vsi->rx_rings);
2379		vsi->rx_rings = NULL;
2380	}
2381}
2382
2383/**
2384 * ice_vsi_clear - clean up and deallocate the provided vsi
2385 * @vsi: pointer to VSI being cleared
2386 *
2387 * This deallocates the vsi's queue resources, removes it from the PF's
2388 * VSI array if necessary, and deallocates the VSI
2389 *
2390 * Returns 0 on success, negative on failure
2391 */
2392static int ice_vsi_clear(struct ice_vsi *vsi)
2393{
2394	struct ice_pf *pf = NULL;
2395
2396	if (!vsi)
2397		return 0;
2398
2399	if (!vsi->back)
2400		return -EINVAL;
2401
2402	pf = vsi->back;
2403
2404	if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
2405		dev_dbg(&pf->pdev->dev, "vsi does not exist at pf->vsi[%d]\n",
2406			vsi->idx);
2407		return -EINVAL;
 
2408	}
2409
2410	mutex_lock(&pf->sw_mutex);
2411	/* updates the PF for this cleared vsi */
2412
2413	pf->vsi[vsi->idx] = NULL;
2414	if (vsi->idx < pf->next_vsi)
2415		pf->next_vsi = vsi->idx;
2416
2417	ice_vsi_free_arrays(vsi, true);
2418	mutex_unlock(&pf->sw_mutex);
2419	devm_kfree(&pf->pdev->dev, vsi);
2420
2421	return 0;
2422}
2423
2424/**
2425 * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
2426 * @vsi: the VSI being configured
2427 * @v_idx: index of the vector in the vsi struct
2428 *
2429 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
2430 */
2431static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, int v_idx)
2432{
2433	struct ice_pf *pf = vsi->back;
2434	struct ice_q_vector *q_vector;
2435
2436	/* allocate q_vector */
2437	q_vector = devm_kzalloc(&pf->pdev->dev, sizeof(*q_vector), GFP_KERNEL);
2438	if (!q_vector)
2439		return -ENOMEM;
2440
2441	q_vector->vsi = vsi;
2442	q_vector->v_idx = v_idx;
2443	/* only set affinity_mask if the CPU is online */
2444	if (cpu_online(v_idx))
2445		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
2446
2447	if (vsi->netdev)
2448		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll,
2449			       NAPI_POLL_WEIGHT);
2450	/* tie q_vector and vsi together */
2451	vsi->q_vectors[v_idx] = q_vector;
2452
2453	return 0;
2454}
2455
2456/**
2457 * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
2458 * @vsi: the VSI being configured
2459 *
2460 * We allocate one q_vector per queue interrupt.  If allocation fails we
2461 * return -ENOMEM.
2462 */
2463static int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
2464{
2465	struct ice_pf *pf = vsi->back;
2466	int v_idx = 0, num_q_vectors;
2467	int err;
2468
2469	if (vsi->q_vectors[0]) {
2470		dev_dbg(&pf->pdev->dev, "VSI %d has existing q_vectors\n",
2471			vsi->vsi_num);
2472		return -EEXIST;
2473	}
2474
2475	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
2476		num_q_vectors = vsi->num_q_vectors;
2477	} else {
2478		err = -EINVAL;
2479		goto err_out;
2480	}
2481
2482	for (v_idx = 0; v_idx < num_q_vectors; v_idx++) {
2483		err = ice_vsi_alloc_q_vector(vsi, v_idx);
2484		if (err)
2485			goto err_out;
2486	}
2487
2488	return 0;
2489
2490err_out:
2491	while (v_idx--)
2492		ice_free_q_vector(vsi, v_idx);
2493
2494	dev_err(&pf->pdev->dev,
2495		"Failed to allocate %d q_vector for VSI %d, ret=%d\n",
2496		vsi->num_q_vectors, vsi->vsi_num, err);
2497	vsi->num_q_vectors = 0;
2498	return err;
2499}
2500
2501/**
2502 * ice_vsi_setup_vector_base - Set up the base vector for the given VSI
2503 * @vsi: ptr to the VSI
2504 *
2505 * This should only be called after ice_vsi_alloc() which allocates the
2506 * corresponding SW VSI structure and initializes num_queue_pairs for the
2507 * newly allocated VSI.
2508 *
2509 * Returns 0 on success or negative on failure
2510 */
2511static int ice_vsi_setup_vector_base(struct ice_vsi *vsi)
2512{
2513	struct ice_pf *pf = vsi->back;
2514	int num_q_vectors = 0;
2515
2516	if (vsi->base_vector) {
2517		dev_dbg(&pf->pdev->dev, "VSI %d has non-zero base vector %d\n",
2518			vsi->vsi_num, vsi->base_vector);
2519		return -EEXIST;
2520	}
2521
2522	if (!test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
2523		return -ENOENT;
2524
2525	switch (vsi->type) {
2526	case ICE_VSI_PF:
2527		num_q_vectors = vsi->num_q_vectors;
2528		break;
2529	default:
2530		dev_warn(&vsi->back->pdev->dev, "Unknown VSI type %d\n",
2531			 vsi->type);
2532		break;
2533	}
2534
2535	if (num_q_vectors)
2536		vsi->base_vector = ice_get_res(pf, pf->irq_tracker,
2537					       num_q_vectors, vsi->idx);
2538
2539	if (vsi->base_vector < 0) {
2540		dev_err(&pf->pdev->dev,
2541			"Failed to get tracking for %d vectors for VSI %d, err=%d\n",
2542			num_q_vectors, vsi->vsi_num, vsi->base_vector);
2543		return -ENOENT;
2544	}
2545
2546	return 0;
2547}
2548
2549/**
2550 * ice_fill_rss_lut - Fill the RSS lookup table with default values
2551 * @lut: Lookup table
2552 * @rss_table_size: Lookup table size
2553 * @rss_size: Range of queue number for hashing
2554 */
2555void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
2556{
2557	u16 i;
2558
2559	for (i = 0; i < rss_table_size; i++)
2560		lut[i] = i % rss_size;
2561}
2562
2563/**
2564 * ice_vsi_cfg_rss - Configure RSS params for a VSI
2565 * @vsi: VSI to be configured
2566 */
2567static int ice_vsi_cfg_rss(struct ice_vsi *vsi)
2568{
2569	u8 seed[ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE];
2570	struct ice_aqc_get_set_rss_keys *key;
2571	struct ice_pf *pf = vsi->back;
2572	enum ice_status status;
2573	int err = 0;
2574	u8 *lut;
2575
2576	vsi->rss_size = min_t(int, vsi->rss_size, vsi->num_rxq);
2577
2578	lut = devm_kzalloc(&pf->pdev->dev, vsi->rss_table_size, GFP_KERNEL);
2579	if (!lut)
2580		return -ENOMEM;
2581
2582	if (vsi->rss_lut_user)
2583		memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
2584	else
2585		ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
2586
2587	status = ice_aq_set_rss_lut(&pf->hw, vsi->vsi_num, vsi->rss_lut_type,
2588				    lut, vsi->rss_table_size);
2589
2590	if (status) {
2591		dev_err(&vsi->back->pdev->dev,
2592			"set_rss_lut failed, error %d\n", status);
2593		err = -EIO;
2594		goto ice_vsi_cfg_rss_exit;
2595	}
2596
2597	key = devm_kzalloc(&vsi->back->pdev->dev, sizeof(*key), GFP_KERNEL);
2598	if (!key) {
2599		err = -ENOMEM;
2600		goto ice_vsi_cfg_rss_exit;
2601	}
2602
2603	if (vsi->rss_hkey_user)
2604		memcpy(seed, vsi->rss_hkey_user,
2605		       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2606	else
2607		netdev_rss_key_fill((void *)seed,
2608				    ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2609	memcpy(&key->standard_rss_key, seed,
2610	       ICE_AQC_GET_SET_RSS_KEY_DATA_RSS_KEY_SIZE);
2611
2612	status = ice_aq_set_rss_key(&pf->hw, vsi->vsi_num, key);
2613
2614	if (status) {
2615		dev_err(&vsi->back->pdev->dev, "set_rss_key failed, error %d\n",
2616			status);
2617		err = -EIO;
2618	}
2619
2620	devm_kfree(&pf->pdev->dev, key);
2621ice_vsi_cfg_rss_exit:
2622	devm_kfree(&pf->pdev->dev, lut);
2623	return err;
2624}
2625
2626/**
2627 * ice_vsi_reinit_setup - return resource and reallocate resource for a VSI
2628 * @vsi: pointer to the ice_vsi
2629 *
2630 * This reallocates the VSIs queue resources
2631 *
2632 * Returns 0 on success and negative value on failure
2633 */
2634static int ice_vsi_reinit_setup(struct ice_vsi *vsi)
 
2635{
2636	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2637	int ret, i;
2638
2639	if (!vsi)
2640		return -EINVAL;
2641
2642	ice_vsi_free_q_vectors(vsi);
2643	ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
2644	vsi->base_vector = 0;
2645	ice_vsi_clear_rings(vsi);
2646	ice_vsi_free_arrays(vsi, false);
2647	ice_vsi_set_num_qs(vsi);
2648
2649	/* Initialize VSI struct elements and create VSI in FW */
2650	ret = ice_vsi_add(vsi);
2651	if (ret < 0)
2652		goto err_vsi;
2653
2654	ret = ice_vsi_alloc_arrays(vsi, false);
2655	if (ret < 0)
2656		goto err_vsi;
2657
2658	switch (vsi->type) {
2659	case ICE_VSI_PF:
2660		if (!vsi->netdev) {
2661			ret = ice_cfg_netdev(vsi);
2662			if (ret)
2663				goto err_rings;
2664
2665			ret = register_netdev(vsi->netdev);
2666			if (ret)
2667				goto err_rings;
2668
2669			netif_carrier_off(vsi->netdev);
2670			netif_tx_stop_all_queues(vsi->netdev);
2671		}
2672
2673		ret = ice_vsi_alloc_q_vectors(vsi);
2674		if (ret)
2675			goto err_rings;
2676
2677		ret = ice_vsi_setup_vector_base(vsi);
2678		if (ret)
2679			goto err_vectors;
2680
2681		ret = ice_vsi_alloc_rings(vsi);
2682		if (ret)
2683			goto err_vectors;
2684
2685		ice_vsi_map_rings_to_vectors(vsi);
2686		break;
2687	default:
2688		break;
2689	}
2690
2691	ice_vsi_set_tc_cfg(vsi);
2692
2693	/* configure VSI nodes based on number of queues and TC's */
2694	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2695		max_txqs[i] = vsi->num_txq;
2696
2697	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2698			      vsi->tc_cfg.ena_tc, max_txqs);
2699	if (ret) {
2700		dev_info(&vsi->back->pdev->dev,
2701			 "Failed VSI lan queue config\n");
2702		goto err_vectors;
2703	}
2704	return 0;
2705
2706err_vectors:
2707	ice_vsi_free_q_vectors(vsi);
2708err_rings:
2709	if (vsi->netdev) {
2710		vsi->current_netdev_flags = 0;
2711		unregister_netdev(vsi->netdev);
2712		free_netdev(vsi->netdev);
2713		vsi->netdev = NULL;
2714	}
2715err_vsi:
2716	ice_vsi_clear(vsi);
2717	set_bit(__ICE_RESET_FAILED, vsi->back->state);
2718	return ret;
2719}
2720
2721/**
2722 * ice_vsi_setup - Set up a VSI by a given type
2723 * @pf: board private structure
2724 * @type: VSI type
2725 * @pi: pointer to the port_info instance
2726 *
2727 * This allocates the sw VSI structure and its queue resources.
2728 *
2729 * Returns pointer to the successfully allocated and configure VSI sw struct on
2730 * success, otherwise returns NULL on failure.
2731 */
2732static struct ice_vsi *
2733ice_vsi_setup(struct ice_pf *pf, enum ice_vsi_type type,
2734	      struct ice_port_info *pi)
2735{
2736	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2737	struct device *dev = &pf->pdev->dev;
2738	struct ice_vsi_ctx ctxt = { 0 };
2739	struct ice_vsi *vsi;
2740	int ret, i;
2741
2742	vsi = ice_vsi_alloc(pf, type);
2743	if (!vsi) {
2744		dev_err(dev, "could not allocate VSI\n");
2745		return NULL;
2746	}
2747
2748	vsi->port_info = pi;
2749	vsi->vsw = pf->first_sw;
2750
2751	if (ice_vsi_get_qs(vsi)) {
2752		dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2753			vsi->idx);
2754		goto err_get_qs;
2755	}
2756
2757	/* set RSS capabilities */
2758	ice_vsi_set_rss_params(vsi);
2759
2760	/* create the VSI */
2761	ret = ice_vsi_add(vsi);
2762	if (ret)
2763		goto err_vsi;
2764
2765	ctxt.vsi_num = vsi->vsi_num;
2766
2767	switch (vsi->type) {
2768	case ICE_VSI_PF:
2769		ret = ice_cfg_netdev(vsi);
2770		if (ret)
2771			goto err_cfg_netdev;
2772
2773		ret = register_netdev(vsi->netdev);
2774		if (ret)
2775			goto err_register_netdev;
2776
2777		netif_carrier_off(vsi->netdev);
2778
2779		/* make sure transmit queues start off as stopped */
2780		netif_tx_stop_all_queues(vsi->netdev);
2781		ret = ice_vsi_alloc_q_vectors(vsi);
2782		if (ret)
2783			goto err_msix;
2784
2785		ret = ice_vsi_setup_vector_base(vsi);
2786		if (ret)
2787			goto err_rings;
2788
2789		ret = ice_vsi_alloc_rings(vsi);
2790		if (ret)
2791			goto err_rings;
2792
2793		ice_vsi_map_rings_to_vectors(vsi);
2794
2795		/* Do not exit if configuring RSS had an issue, at least
2796		 * receive traffic on first queue. Hence no need to capture
2797		 * return value
2798		 */
2799		if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2800			ice_vsi_cfg_rss(vsi);
2801		break;
2802	default:
2803		/* if vsi type is not recognized, clean up the resources and
2804		 * exit
2805		 */
2806		goto err_rings;
2807	}
2808
2809	ice_vsi_set_tc_cfg(vsi);
2810
2811	/* configure VSI nodes based on number of queues and TC's */
2812	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2813		max_txqs[i] = vsi->num_txq;
2814
2815	ret = ice_cfg_vsi_lan(vsi->port_info, vsi->vsi_num,
2816			      vsi->tc_cfg.ena_tc, max_txqs);
2817	if (ret) {
2818		dev_info(&pf->pdev->dev, "Failed VSI lan queue config\n");
2819		goto err_rings;
2820	}
2821
2822	return vsi;
2823
2824err_rings:
2825	ice_vsi_free_q_vectors(vsi);
2826err_msix:
2827	if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
2828		unregister_netdev(vsi->netdev);
2829err_register_netdev:
2830	if (vsi->netdev) {
2831		free_netdev(vsi->netdev);
2832		vsi->netdev = NULL;
2833	}
2834err_cfg_netdev:
2835	ret = ice_aq_free_vsi(&pf->hw, &ctxt, false, NULL);
2836	if (ret)
2837		dev_err(&vsi->back->pdev->dev,
2838			"Free VSI AQ call failed, err %d\n", ret);
2839err_vsi:
2840	ice_vsi_put_qs(vsi);
2841err_get_qs:
2842	pf->q_left_tx += vsi->alloc_txq;
2843	pf->q_left_rx += vsi->alloc_rxq;
2844	ice_vsi_clear(vsi);
2845
2846	return NULL;
2847}
2848
2849/**
2850 * ice_vsi_add_vlan - Add vsi membership for given vlan
2851 * @vsi: the vsi being configured
2852 * @vid: vlan id to be added
 
 
 
2853 */
2854static int ice_vsi_add_vlan(struct ice_vsi *vsi, u16 vid)
 
2855{
2856	struct ice_fltr_list_entry *tmp;
2857	struct ice_pf *pf = vsi->back;
2858	LIST_HEAD(tmp_add_list);
2859	enum ice_status status;
2860	int err = 0;
2861
2862	tmp = devm_kzalloc(&pf->pdev->dev, sizeof(*tmp), GFP_KERNEL);
2863	if (!tmp)
2864		return -ENOMEM;
2865
2866	tmp->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2867	tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2868	tmp->fltr_info.flag = ICE_FLTR_TX;
2869	tmp->fltr_info.src = vsi->vsi_num;
2870	tmp->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2871	tmp->fltr_info.l_data.vlan.vlan_id = vid;
2872
2873	INIT_LIST_HEAD(&tmp->list_entry);
2874	list_add(&tmp->list_entry, &tmp_add_list);
2875
2876	status = ice_add_vlan(&pf->hw, &tmp_add_list);
2877	if (status) {
2878		err = -ENODEV;
2879		dev_err(&pf->pdev->dev, "Failure Adding VLAN %d on VSI %i\n",
2880			vid, vsi->vsi_num);
2881	}
2882
2883	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2884	return err;
2885}
2886
2887/**
2888 * ice_vlan_rx_add_vid - Add a vlan id filter to HW offload
2889 * @netdev: network interface to be adjusted
2890 * @proto: unused protocol
2891 * @vid: vlan id to be added
2892 *
2893 * net_device_ops implementation for adding vlan ids
2894 */
2895static int ice_vlan_rx_add_vid(struct net_device *netdev,
2896			       __always_unused __be16 proto, u16 vid)
 
2897{
2898	struct ice_netdev_priv *np = netdev_priv(netdev);
2899	struct ice_vsi *vsi = np->vsi;
2900	int ret = 0;
2901
2902	if (vid >= VLAN_N_VID) {
2903		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
2904			   vid, VLAN_N_VID);
2905		return -EINVAL;
2906	}
2907
2908	if (vsi->info.pvid)
2909		return -EINVAL;
2910
2911	/* Add all VLAN ids including 0 to the switch filter. VLAN id 0 is
2912	 * needed to continue allowing all untagged packets since VLAN prune
2913	 * list is applied to all packets by the switch
 
 
 
 
 
 
 
 
 
 
2914	 */
2915	ret = ice_vsi_add_vlan(vsi, vid);
2916
2917	if (!ret)
2918		set_bit(vid, vsi->active_vlans);
 
2919
2920	return ret;
2921}
2922
2923/**
2924 * ice_vsi_kill_vlan - Remove VSI membership for a given VLAN
2925 * @vsi: the VSI being configured
2926 * @vid: VLAN id to be removed
2927 */
2928static void ice_vsi_kill_vlan(struct ice_vsi *vsi, u16 vid)
2929{
2930	struct ice_fltr_list_entry *list;
2931	struct ice_pf *pf = vsi->back;
2932	LIST_HEAD(tmp_add_list);
2933
2934	list = devm_kzalloc(&pf->pdev->dev, sizeof(*list), GFP_KERNEL);
2935	if (!list)
2936		return;
2937
2938	list->fltr_info.lkup_type = ICE_SW_LKUP_VLAN;
2939	list->fltr_info.fwd_id.vsi_id = vsi->vsi_num;
2940	list->fltr_info.fltr_act = ICE_FWD_TO_VSI;
2941	list->fltr_info.l_data.vlan.vlan_id = vid;
2942	list->fltr_info.flag = ICE_FLTR_TX;
2943	list->fltr_info.src = vsi->vsi_num;
2944
2945	INIT_LIST_HEAD(&list->list_entry);
2946	list_add(&list->list_entry, &tmp_add_list);
2947
2948	if (ice_remove_vlan(&pf->hw, &tmp_add_list))
2949		dev_err(&pf->pdev->dev, "Error removing VLAN %d on vsi %i\n",
2950			vid, vsi->vsi_num);
2951
2952	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
2953}
2954
2955/**
2956 * ice_vlan_rx_kill_vid - Remove a vlan id filter from HW offload
2957 * @netdev: network interface to be adjusted
2958 * @proto: unused protocol
2959 * @vid: vlan id to be removed
2960 *
2961 * net_device_ops implementation for removing vlan ids
2962 */
2963static int ice_vlan_rx_kill_vid(struct net_device *netdev,
2964				__always_unused __be16 proto, u16 vid)
 
2965{
2966	struct ice_netdev_priv *np = netdev_priv(netdev);
2967	struct ice_vsi *vsi = np->vsi;
 
2968
2969	if (vsi->info.pvid)
2970		return -EINVAL;
2971
2972	/* return code is ignored as there is nothing a user
2973	 * can do about failure to remove and a log message was
2974	 * already printed from the other function
 
 
 
2975	 */
2976	ice_vsi_kill_vlan(vsi, vid);
 
 
2977
2978	clear_bit(vid, vsi->active_vlans);
 
 
2979
2980	return 0;
 
 
2981}
2982
2983/**
2984 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
2985 * @pf: board private structure
2986 *
2987 * Returns 0 on success, negative value on failure
2988 */
2989static int ice_setup_pf_sw(struct ice_pf *pf)
2990{
2991	LIST_HEAD(tmp_add_list);
2992	u8 broadcast[ETH_ALEN];
2993	struct ice_vsi *vsi;
2994	int status = 0;
2995
2996	if (!ice_is_reset_recovery_pending(pf->state)) {
2997		vsi = ice_vsi_setup(pf, ICE_VSI_PF, pf->hw.port_info);
2998		if (!vsi) {
2999			status = -ENOMEM;
3000			goto error_exit;
3001		}
3002	} else {
3003		vsi = pf->vsi[0];
3004		status = ice_vsi_reinit_setup(vsi);
3005		if (status < 0)
3006			return -EIO;
3007	}
 
 
3008
3009	/* tmp_add_list contains a list of MAC addresses for which MAC
3010	 * filters need to be programmed. Add the VSI's unicast MAC to
3011	 * this list
3012	 */
3013	status = ice_add_mac_to_list(vsi, &tmp_add_list,
3014				     vsi->port_info->mac.perm_addr);
3015	if (status)
3016		goto error_exit;
3017
3018	/* VSI needs to receive broadcast traffic, so add the broadcast
3019	 * MAC address to the list.
 
3020	 */
3021	eth_broadcast_addr(broadcast);
3022	status = ice_add_mac_to_list(vsi, &tmp_add_list, broadcast);
3023	if (status)
3024		goto error_exit;
3025
3026	/* program MAC filters for entries in tmp_add_list */
3027	status = ice_add_mac(&pf->hw, &tmp_add_list);
3028	if (status) {
3029		dev_err(&pf->pdev->dev, "Could not add MAC filters\n");
3030		status = -ENOMEM;
3031		goto error_exit;
 
3032	}
 
 
 
3033
3034	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3035	return status;
3036
3037error_exit:
3038	ice_free_fltr_list(&pf->pdev->dev, &tmp_add_list);
3039
 
3040	if (vsi) {
3041		ice_vsi_free_q_vectors(vsi);
3042		if (vsi->netdev && vsi->netdev->reg_state == NETREG_REGISTERED)
3043			unregister_netdev(vsi->netdev);
3044		if (vsi->netdev) {
 
 
3045			free_netdev(vsi->netdev);
3046			vsi->netdev = NULL;
3047		}
 
3048
3049		ice_vsi_delete(vsi);
3050		ice_vsi_put_qs(vsi);
3051		pf->q_left_tx += vsi->alloc_txq;
3052		pf->q_left_rx += vsi->alloc_rxq;
3053		ice_vsi_clear(vsi);
3054	}
3055	return status;
3056}
3057
3058/**
3059 * ice_determine_q_usage - Calculate queue distribution
3060 * @pf: board private structure
3061 *
3062 * Return -ENOMEM if we don't get enough queues for all ports
3063 */
3064static void ice_determine_q_usage(struct ice_pf *pf)
 
3065{
3066	u16 q_left_tx, q_left_rx;
 
3067
3068	q_left_tx = pf->hw.func_caps.common_cap.num_txq;
3069	q_left_rx = pf->hw.func_caps.common_cap.num_rxq;
 
 
3070
3071	pf->num_lan_tx = min_t(int, q_left_tx, num_online_cpus());
 
3072
3073	/* only 1 rx queue unless RSS is enabled */
3074	if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags))
3075		pf->num_lan_rx = 1;
3076	else
3077		pf->num_lan_rx = min_t(int, q_left_rx, num_online_cpus());
 
 
 
 
3078
3079	pf->q_left_tx = q_left_tx - pf->num_lan_tx;
3080	pf->q_left_rx = q_left_rx - pf->num_lan_rx;
 
 
 
 
 
 
3081}
3082
3083/**
3084 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3085 * @pf: board private structure to initialize
3086 */
3087static void ice_deinit_pf(struct ice_pf *pf)
3088{
3089	if (pf->serv_tmr.function)
3090		del_timer_sync(&pf->serv_tmr);
3091	if (pf->serv_task.func)
3092		cancel_work_sync(&pf->serv_task);
3093	mutex_destroy(&pf->sw_mutex);
 
3094	mutex_destroy(&pf->avail_q_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3095}
3096
3097/**
3098 * ice_init_pf - Initialize general software structures (struct ice_pf)
3099 * @pf: board private structure to initialize
3100 */
3101static void ice_init_pf(struct ice_pf *pf)
3102{
3103	bitmap_zero(pf->flags, ICE_PF_FLAGS_NBITS);
3104	set_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3105
3106	mutex_init(&pf->sw_mutex);
3107	mutex_init(&pf->avail_q_mutex);
3108
3109	/* Clear avail_[t|r]x_qs bitmaps (set all to avail) */
3110	mutex_lock(&pf->avail_q_mutex);
3111	bitmap_zero(pf->avail_txqs, ICE_MAX_TXQS);
3112	bitmap_zero(pf->avail_rxqs, ICE_MAX_RXQS);
3113	mutex_unlock(&pf->avail_q_mutex);
3114
3115	if (pf->hw.func_caps.common_cap.rss_table_size)
3116		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
 
3117
3118	/* setup service timer and periodic service task */
3119	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3120	pf->serv_tmr_period = HZ;
3121	INIT_WORK(&pf->serv_task, ice_service_task);
3122	clear_bit(__ICE_SERVICE_SCHED, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3123}
3124
3125/**
3126 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3127 * @pf: board private structure
3128 *
3129 * compute the number of MSIX vectors required (v_budget) and request from
3130 * the OS. Return the number of vectors reserved or negative on failure
3131 */
3132static int ice_ena_msix_range(struct ice_pf *pf)
3133{
 
3134	int v_left, v_actual, v_budget = 0;
3135	int needed, err, i;
3136
3137	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3138
3139	/* reserve one vector for miscellaneous handler */
3140	needed = 1;
 
 
3141	v_budget += needed;
3142	v_left -= needed;
3143
3144	/* reserve vectors for LAN traffic */
3145	pf->num_lan_msix = min_t(int, num_online_cpus(), v_left);
3146	v_budget += pf->num_lan_msix;
 
 
 
 
 
 
 
 
 
 
 
 
 
3147
3148	pf->msix_entries = devm_kcalloc(&pf->pdev->dev, v_budget,
3149					sizeof(struct msix_entry), GFP_KERNEL);
3150
3151	if (!pf->msix_entries) {
3152		err = -ENOMEM;
3153		goto exit_err;
3154	}
3155
3156	for (i = 0; i < v_budget; i++)
3157		pf->msix_entries[i].entry = i;
3158
3159	/* actually reserve the vectors */
3160	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3161					 ICE_MIN_MSIX, v_budget);
3162
3163	if (v_actual < 0) {
3164		dev_err(&pf->pdev->dev, "unable to reserve MSI-X vectors\n");
3165		err = v_actual;
3166		goto msix_err;
3167	}
3168
3169	if (v_actual < v_budget) {
3170		dev_warn(&pf->pdev->dev,
3171			 "not enough vectors. requested = %d, obtained = %d\n",
3172			 v_budget, v_actual);
3173		if (v_actual >= (pf->num_lan_msix + 1)) {
3174			pf->num_avail_msix = v_actual - (pf->num_lan_msix + 1);
3175		} else if (v_actual >= 2) {
3176			pf->num_lan_msix = 1;
3177			pf->num_avail_msix = v_actual - 2;
3178		} else {
 
3179			pci_disable_msix(pf->pdev);
3180			err = -ERANGE;
3181			goto msix_err;
 
 
3182		}
3183	}
3184
3185	return v_actual;
3186
3187msix_err:
3188	devm_kfree(&pf->pdev->dev, pf->msix_entries);
3189	goto exit_err;
3190
 
 
 
 
3191exit_err:
3192	pf->num_lan_msix = 0;
3193	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
3194	return err;
3195}
3196
3197/**
3198 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3199 * @pf: board private structure
3200 */
3201static void ice_dis_msix(struct ice_pf *pf)
3202{
3203	pci_disable_msix(pf->pdev);
3204	devm_kfree(&pf->pdev->dev, pf->msix_entries);
3205	pf->msix_entries = NULL;
3206	clear_bit(ICE_FLAG_MSIX_ENA, pf->flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
3207}
3208
3209/**
3210 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3211 * @pf: board private structure to initialize
3212 */
3213static int ice_init_interrupt_scheme(struct ice_pf *pf)
3214{
3215	int vectors = 0;
3216	ssize_t size;
3217
3218	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3219		vectors = ice_ena_msix_range(pf);
3220	else
3221		return -ENODEV;
3222
3223	if (vectors < 0)
3224		return vectors;
3225
3226	/* set up vector assignment tracking */
3227	size = sizeof(struct ice_res_tracker) + (sizeof(u16) * vectors);
3228
3229	pf->irq_tracker = devm_kzalloc(&pf->pdev->dev, size, GFP_KERNEL);
3230	if (!pf->irq_tracker) {
3231		ice_dis_msix(pf);
3232		return -ENOMEM;
3233	}
3234
3235	pf->irq_tracker->num_entries = vectors;
 
 
 
3236
3237	return 0;
3238}
3239
3240/**
3241 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3242 * @pf: board private structure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3243 */
3244static void ice_clear_interrupt_scheme(struct ice_pf *pf)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3245{
3246	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
3247		ice_dis_msix(pf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3248
3249	devm_kfree(&pf->pdev->dev, pf->irq_tracker);
3250	pf->irq_tracker = NULL;
3251}
3252
3253/**
3254 * ice_probe - Device initialization routine
3255 * @pdev: PCI device information struct
3256 * @ent: entry in ice_pci_tbl
3257 *
3258 * Returns 0 on success, negative on failure
3259 */
3260static int ice_probe(struct pci_dev *pdev,
3261		     const struct pci_device_id __always_unused *ent)
3262{
 
3263	struct ice_pf *pf;
3264	struct ice_hw *hw;
3265	int err;
3266
3267	/* this driver uses devres, see Documentation/driver-model/devres.txt */
 
 
3268	err = pcim_enable_device(pdev);
3269	if (err)
3270		return err;
3271
3272	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3273	if (err) {
3274		dev_err(&pdev->dev, "I/O map error %d\n", err);
3275		return err;
3276	}
3277
3278	pf = devm_kzalloc(&pdev->dev, sizeof(*pf), GFP_KERNEL);
3279	if (!pf)
3280		return -ENOMEM;
3281
3282	/* set up for high or low dma */
3283	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3284	if (err)
3285		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
3286	if (err) {
3287		dev_err(&pdev->dev, "DMA configuration failed: 0x%x\n", err);
3288		return err;
3289	}
3290
3291	pci_enable_pcie_error_reporting(pdev);
3292	pci_set_master(pdev);
3293
3294	pf->pdev = pdev;
3295	pci_set_drvdata(pdev, pf);
3296	set_bit(__ICE_DOWN, pf->state);
 
 
3297
3298	hw = &pf->hw;
3299	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
 
 
3300	hw->back = pf;
3301	hw->vendor_id = pdev->vendor;
3302	hw->device_id = pdev->device;
3303	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
3304	hw->subsystem_vendor_id = pdev->subsystem_vendor;
3305	hw->subsystem_device_id = pdev->subsystem_device;
3306	hw->bus.device = PCI_SLOT(pdev->devfn);
3307	hw->bus.func = PCI_FUNC(pdev->devfn);
3308	ice_set_ctrlq_len(hw);
3309
3310	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
3311
 
 
 
 
 
 
3312#ifndef CONFIG_DYNAMIC_DEBUG
3313	if (debug < -1)
3314		hw->debug_mask = debug;
3315#endif
3316
3317	err = ice_init_hw(hw);
3318	if (err) {
3319		dev_err(&pdev->dev, "ice_init_hw failed: %d\n", err);
3320		err = -EIO;
3321		goto err_exit_unroll;
3322	}
3323
3324	dev_info(&pdev->dev, "firmware %d.%d.%05d api %d.%d\n",
3325		 hw->fw_maj_ver, hw->fw_min_ver, hw->fw_build,
3326		 hw->api_maj_ver, hw->api_min_ver);
 
 
 
 
 
 
 
 
 
 
 
 
3327
3328	ice_init_pf(pf);
 
 
 
 
3329
3330	ice_determine_q_usage(pf);
3331
3332	pf->num_alloc_vsi = min_t(u16, ICE_MAX_VSI_ALLOC,
3333				  hw->func_caps.guaranteed_num_vsi);
3334	if (!pf->num_alloc_vsi) {
3335		err = -EIO;
3336		goto err_init_pf_unroll;
3337	}
3338
3339	pf->vsi = devm_kcalloc(&pdev->dev, pf->num_alloc_vsi,
3340			       sizeof(struct ice_vsi *), GFP_KERNEL);
3341	if (!pf->vsi) {
3342		err = -ENOMEM;
3343		goto err_init_pf_unroll;
3344	}
3345
3346	err = ice_init_interrupt_scheme(pf);
3347	if (err) {
3348		dev_err(&pdev->dev,
3349			"ice_init_interrupt_scheme failed: %d\n", err);
3350		err = -EIO;
3351		goto err_init_interrupt_unroll;
3352	}
3353
3354	/* In case of MSIX we are going to setup the misc vector right here
3355	 * to handle admin queue events etc. In case of legacy and MSI
3356	 * the misc functionality and queue processing is combined in
3357	 * the same vector and that gets setup at open.
3358	 */
3359	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
3360		err = ice_req_irq_msix_misc(pf);
3361		if (err) {
3362			dev_err(&pdev->dev,
3363				"setup of misc vector failed: %d\n", err);
3364			goto err_init_interrupt_unroll;
3365		}
3366	}
3367
3368	/* create switch struct for the switch element created by FW on boot */
3369	pf->first_sw = devm_kzalloc(&pdev->dev, sizeof(struct ice_sw),
3370				    GFP_KERNEL);
3371	if (!pf->first_sw) {
3372		err = -ENOMEM;
3373		goto err_msix_misc_unroll;
3374	}
3375
3376	pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
 
 
 
 
3377	pf->first_sw->pf = pf;
3378
3379	/* record the sw_id available for later use */
3380	pf->first_sw->sw_id = hw->port_info->sw_id;
3381
3382	err = ice_setup_pf_sw(pf);
3383	if (err) {
3384		dev_err(&pdev->dev,
3385			"probe failed due to setup pf switch:%d\n", err);
3386		goto err_alloc_sw_unroll;
3387	}
3388
3389	/* Driver is mostly up */
3390	clear_bit(__ICE_DOWN, pf->state);
 
 
 
 
 
 
 
3391
3392	/* since everything is good, start the service timer */
3393	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
3394
3395	err = ice_init_link_events(pf->hw.port_info);
3396	if (err) {
3397		dev_err(&pdev->dev, "ice_init_link_events failed: %d\n", err);
3398		goto err_alloc_sw_unroll;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3399	}
3400
 
 
 
 
 
 
3401	return 0;
3402
 
 
3403err_alloc_sw_unroll:
 
 
3404	set_bit(__ICE_DOWN, pf->state);
3405	devm_kfree(&pf->pdev->dev, pf->first_sw);
3406err_msix_misc_unroll:
3407	ice_free_irq_msix_misc(pf);
3408err_init_interrupt_unroll:
3409	ice_clear_interrupt_scheme(pf);
3410	devm_kfree(&pdev->dev, pf->vsi);
 
3411err_init_pf_unroll:
3412	ice_deinit_pf(pf);
 
3413	ice_deinit_hw(hw);
3414err_exit_unroll:
 
3415	pci_disable_pcie_error_reporting(pdev);
 
3416	return err;
3417}
3418
3419/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3420 * ice_remove - Device removal routine
3421 * @pdev: PCI device information struct
3422 */
3423static void ice_remove(struct pci_dev *pdev)
3424{
3425	struct ice_pf *pf = pci_get_drvdata(pdev);
3426	int i = 0;
3427	int err;
3428
3429	if (!pf)
3430		return;
3431
 
 
 
 
 
 
 
 
 
 
 
3432	set_bit(__ICE_DOWN, pf->state);
 
3433
3434	for (i = 0; i < pf->num_alloc_vsi; i++) {
 
 
 
 
 
 
 
 
 
 
3435		if (!pf->vsi[i])
3436			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3437
3438		err = ice_vsi_release(pf->vsi[i]);
3439		if (err)
3440			dev_dbg(&pf->pdev->dev, "Failed to release VSI index %d (err %d)\n",
3441				i, err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442	}
3443
 
 
 
 
 
 
 
 
 
 
 
3444	ice_free_irq_msix_misc(pf);
 
 
 
 
 
3445	ice_clear_interrupt_scheme(pf);
3446	ice_deinit_pf(pf);
3447	ice_deinit_hw(&pf->hw);
3448	pci_disable_pcie_error_reporting(pdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3449}
3450
3451/* ice_pci_tbl - PCI Device ID Table
3452 *
3453 * Wildcard entries (PCI_ANY_ID) should come last
3454 * Last entry must be all 0s
3455 *
3456 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
3457 *   Class, Class Mask, private data (not used) }
3458 */
3459static const struct pci_device_id ice_pci_tbl[] = {
3460	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_BACKPLANE), 0 },
3461	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_QSFP), 0 },
3462	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SFP), 0 },
3463	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_10G_BASE_T), 0 },
3464	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_C810_SGMII), 0 },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3465	/* required last entry */
3466	{ 0, }
3467};
3468MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
3469
 
 
 
 
 
 
 
 
 
 
3470static struct pci_driver ice_driver = {
3471	.name = KBUILD_MODNAME,
3472	.id_table = ice_pci_tbl,
3473	.probe = ice_probe,
3474	.remove = ice_remove,
 
 
 
 
 
 
3475};
3476
3477/**
3478 * ice_module_init - Driver registration routine
3479 *
3480 * ice_module_init is the first routine called when the driver is
3481 * loaded. All it does is register with the PCI subsystem.
3482 */
3483static int __init ice_module_init(void)
3484{
3485	int status;
3486
3487	pr_info("%s - version %s\n", ice_driver_string, ice_drv_ver);
3488	pr_info("%s\n", ice_copyright);
3489
3490	ice_wq = alloc_ordered_workqueue("%s", WQ_MEM_RECLAIM, KBUILD_MODNAME);
3491	if (!ice_wq) {
3492		pr_err("Failed to create workqueue\n");
3493		return -ENOMEM;
3494	}
3495
3496	status = pci_register_driver(&ice_driver);
3497	if (status) {
3498		pr_err("failed to register pci driver, err %d\n", status);
3499		destroy_workqueue(ice_wq);
3500	}
3501
3502	return status;
3503}
3504module_init(ice_module_init);
3505
3506/**
3507 * ice_module_exit - Driver exit cleanup routine
3508 *
3509 * ice_module_exit is called just before the driver is removed
3510 * from memory.
3511 */
3512static void __exit ice_module_exit(void)
3513{
3514	pci_unregister_driver(&ice_driver);
3515	destroy_workqueue(ice_wq);
3516	pr_info("module unloaded\n");
3517}
3518module_exit(ice_module_exit);
3519
3520/**
3521 * ice_set_mac_address - NDO callback to set mac address
3522 * @netdev: network interface device structure
3523 * @pi: pointer to an address structure
3524 *
3525 * Returns 0 on success, negative on failure
3526 */
3527static int ice_set_mac_address(struct net_device *netdev, void *pi)
3528{
3529	struct ice_netdev_priv *np = netdev_priv(netdev);
3530	struct ice_vsi *vsi = np->vsi;
3531	struct ice_pf *pf = vsi->back;
3532	struct ice_hw *hw = &pf->hw;
3533	struct sockaddr *addr = pi;
3534	enum ice_status status;
3535	LIST_HEAD(a_mac_list);
3536	LIST_HEAD(r_mac_list);
3537	u8 flags = 0;
3538	int err;
3539	u8 *mac;
3540
3541	mac = (u8 *)addr->sa_data;
3542
3543	if (!is_valid_ether_addr(mac))
3544		return -EADDRNOTAVAIL;
3545
3546	if (ether_addr_equal(netdev->dev_addr, mac)) {
3547		netdev_warn(netdev, "already using mac %pM\n", mac);
3548		return 0;
3549	}
3550
3551	if (test_bit(__ICE_DOWN, pf->state) ||
3552	    ice_is_reset_recovery_pending(pf->state)) {
3553		netdev_err(netdev, "can't set mac %pM. device not ready\n",
3554			   mac);
3555		return -EBUSY;
3556	}
3557
3558	/* When we change the mac address we also have to change the mac address
3559	 * based filter rules that were created previously for the old mac
3560	 * address. So first, we remove the old filter rule using ice_remove_mac
3561	 * and then create a new filter rule using ice_add_mac. Note that for
3562	 * both these operations, we first need to form a "list" of mac
3563	 * addresses (even though in this case, we have only 1 mac address to be
3564	 * added/removed) and this done using ice_add_mac_to_list. Depending on
3565	 * the ensuing operation this "list" of mac addresses is either to be
3566	 * added or removed from the filter.
3567	 */
3568	err = ice_add_mac_to_list(vsi, &r_mac_list, netdev->dev_addr);
3569	if (err) {
3570		err = -EADDRNOTAVAIL;
3571		goto free_lists;
3572	}
3573
3574	status = ice_remove_mac(hw, &r_mac_list);
3575	if (status) {
3576		err = -EADDRNOTAVAIL;
3577		goto free_lists;
 
3578	}
3579
3580	err = ice_add_mac_to_list(vsi, &a_mac_list, mac);
3581	if (err) {
3582		err = -EADDRNOTAVAIL;
3583		goto free_lists;
3584	}
3585
3586	status = ice_add_mac(hw, &a_mac_list);
3587	if (status) {
3588		err = -EADDRNOTAVAIL;
3589		goto free_lists;
3590	}
3591
3592free_lists:
3593	/* free list entries */
3594	ice_free_fltr_list(&pf->pdev->dev, &r_mac_list);
3595	ice_free_fltr_list(&pf->pdev->dev, &a_mac_list);
3596
 
3597	if (err) {
3598		netdev_err(netdev, "can't set mac %pM. filter update failed\n",
3599			   mac);
3600		return err;
3601	}
3602
3603	/* change the netdev's mac address */
3604	memcpy(netdev->dev_addr, mac, netdev->addr_len);
3605	netdev_dbg(vsi->netdev, "updated mac address to %pM\n",
3606		   netdev->dev_addr);
3607
3608	/* write new mac address to the firmware */
3609	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
3610	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
3611	if (status) {
3612		netdev_err(netdev, "can't set mac %pM. write to firmware failed.\n",
3613			   mac);
3614	}
3615	return 0;
3616}
3617
3618/**
3619 * ice_set_rx_mode - NDO callback to set the netdev filters
3620 * @netdev: network interface device structure
3621 */
3622static void ice_set_rx_mode(struct net_device *netdev)
3623{
3624	struct ice_netdev_priv *np = netdev_priv(netdev);
3625	struct ice_vsi *vsi = np->vsi;
3626
3627	if (!vsi)
3628		return;
3629
3630	/* Set the flags to synchronize filters
3631	 * ndo_set_rx_mode may be triggered even without a change in netdev
3632	 * flags
3633	 */
3634	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
3635	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
3636	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
3637
3638	/* schedule our worker thread which will take care of
3639	 * applying the new filter changes
3640	 */
3641	ice_service_task_schedule(vsi->back);
3642}
3643
3644/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3645 * ice_fdb_add - add an entry to the hardware database
3646 * @ndm: the input from the stack
3647 * @tb: pointer to array of nladdr (unused)
3648 * @dev: the net device pointer
3649 * @addr: the MAC address entry being added
3650 * @vid: VLAN id
3651 * @flags: instructions from stack about fdb operation
 
3652 */
3653static int ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
3654		       struct net_device *dev, const unsigned char *addr,
3655		       u16 vid, u16 flags)
 
3656{
3657	int err;
3658
3659	if (vid) {
3660		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
3661		return -EINVAL;
3662	}
3663	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
3664		netdev_err(dev, "FDB only supports static addresses\n");
3665		return -EINVAL;
3666	}
3667
3668	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
3669		err = dev_uc_add_excl(dev, addr);
3670	else if (is_multicast_ether_addr(addr))
3671		err = dev_mc_add_excl(dev, addr);
3672	else
3673		err = -EINVAL;
3674
3675	/* Only return duplicate errors if NLM_F_EXCL is set */
3676	if (err == -EEXIST && !(flags & NLM_F_EXCL))
3677		err = 0;
3678
3679	return err;
3680}
3681
3682/**
3683 * ice_fdb_del - delete an entry from the hardware database
3684 * @ndm: the input from the stack
3685 * @tb: pointer to array of nladdr (unused)
3686 * @dev: the net device pointer
3687 * @addr: the MAC address entry being added
3688 * @vid: VLAN id
3689 */
3690static int ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
3691		       struct net_device *dev, const unsigned char *addr,
3692		       __always_unused u16 vid)
 
3693{
3694	int err;
3695
3696	if (ndm->ndm_state & NUD_PERMANENT) {
3697		netdev_err(dev, "FDB only supports static addresses\n");
3698		return -EINVAL;
3699	}
3700
3701	if (is_unicast_ether_addr(addr))
3702		err = dev_uc_del(dev, addr);
3703	else if (is_multicast_ether_addr(addr))
3704		err = dev_mc_del(dev, addr);
3705	else
3706		err = -EINVAL;
3707
3708	return err;
3709}
3710
3711/**
3712 * ice_vsi_manage_vlan_insertion - Manage VLAN insertion for the VSI for Tx
3713 * @vsi: the vsi being changed
3714 */
3715static int ice_vsi_manage_vlan_insertion(struct ice_vsi *vsi)
3716{
3717	struct device *dev = &vsi->back->pdev->dev;
3718	struct ice_hw *hw = &vsi->back->hw;
3719	struct ice_vsi_ctx ctxt = { 0 };
3720	enum ice_status status;
3721
3722	/* Here we are configuring the VSI to let the driver add VLAN tags by
3723	 * setting port_vlan_flags to ICE_AQ_VSI_PVLAN_MODE_ALL. The actual VLAN
3724	 * tag insertion happens in the Tx hot path, in ice_tx_map.
3725	 */
3726	ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_MODE_ALL;
3727
3728	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3729	ctxt.vsi_num = vsi->vsi_num;
3730
3731	status = ice_aq_update_vsi(hw, &ctxt, NULL);
3732	if (status) {
3733		dev_err(dev, "update VSI for VLAN insert failed, err %d aq_err %d\n",
3734			status, hw->adminq.sq_last_status);
3735		return -EIO;
3736	}
3737
3738	vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3739	return 0;
3740}
3741
3742/**
3743 * ice_vsi_manage_vlan_stripping - Manage VLAN stripping for the VSI for Rx
3744 * @vsi: the vsi being changed
3745 * @ena: boolean value indicating if this is a enable or disable request
3746 */
3747static int ice_vsi_manage_vlan_stripping(struct ice_vsi *vsi, bool ena)
3748{
3749	struct device *dev = &vsi->back->pdev->dev;
3750	struct ice_hw *hw = &vsi->back->hw;
3751	struct ice_vsi_ctx ctxt = { 0 };
3752	enum ice_status status;
3753
3754	/* Here we are configuring what the VSI should do with the VLAN tag in
3755	 * the Rx packet. We can either leave the tag in the packet or put it in
3756	 * the Rx descriptor.
3757	 */
3758	if (ena) {
3759		/* Strip VLAN tag from Rx packet and put it in the desc */
3760		ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_STR_BOTH;
3761	} else {
3762		/* Disable stripping. Leave tag in packet */
3763		ctxt.info.port_vlan_flags = ICE_AQ_VSI_PVLAN_EMOD_NOTHING;
3764	}
3765
3766	ctxt.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID);
3767	ctxt.vsi_num = vsi->vsi_num;
3768
3769	status = ice_aq_update_vsi(hw, &ctxt, NULL);
3770	if (status) {
3771		dev_err(dev, "update VSI for VALN strip failed, ena = %d err %d aq_err %d\n",
3772			ena, status, hw->adminq.sq_last_status);
3773		return -EIO;
3774	}
3775
3776	vsi->info.port_vlan_flags = ctxt.info.port_vlan_flags;
3777	return 0;
3778}
3779
3780/**
3781 * ice_set_features - set the netdev feature flags
3782 * @netdev: ptr to the netdev being adjusted
3783 * @features: the feature set that the stack is suggesting
3784 */
3785static int ice_set_features(struct net_device *netdev,
3786			    netdev_features_t features)
3787{
3788	struct ice_netdev_priv *np = netdev_priv(netdev);
3789	struct ice_vsi *vsi = np->vsi;
 
3790	int ret = 0;
3791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3792	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
3793	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3794		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3795	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
3796		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
3797		ret = ice_vsi_manage_vlan_stripping(vsi, false);
3798	else if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
3799		 !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
 
3800		ret = ice_vsi_manage_vlan_insertion(vsi);
3801	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
3802		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
3803		ret = ice_vsi_manage_vlan_insertion(vsi);
3804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3805	return ret;
3806}
3807
3808/**
3809 * ice_vsi_vlan_setup - Setup vlan offload properties on a VSI
3810 * @vsi: VSI to setup vlan properties for
3811 */
3812static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
3813{
3814	int ret = 0;
3815
3816	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3817		ret = ice_vsi_manage_vlan_stripping(vsi, true);
3818	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
3819		ret = ice_vsi_manage_vlan_insertion(vsi);
3820
3821	return ret;
3822}
3823
3824/**
3825 * ice_restore_vlan - Reinstate VLANs when vsi/netdev comes back up
3826 * @vsi: the VSI being brought back up
3827 */
3828static int ice_restore_vlan(struct ice_vsi *vsi)
3829{
3830	int err;
3831	u16 vid;
3832
3833	if (!vsi->netdev)
3834		return -EINVAL;
3835
3836	err = ice_vsi_vlan_setup(vsi);
3837	if (err)
3838		return err;
3839
3840	for_each_set_bit(vid, vsi->active_vlans, VLAN_N_VID) {
3841		err = ice_vlan_rx_add_vid(vsi->netdev, htons(ETH_P_8021Q), vid);
3842		if (err)
3843			break;
3844	}
3845
3846	return err;
3847}
3848
3849/**
3850 * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
3851 * @ring: The Tx ring to configure
3852 * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
3853 * @pf_q: queue index in the PF space
3854 *
3855 * Configure the Tx descriptor ring in TLAN context.
3856 */
3857static void
3858ice_setup_tx_ctx(struct ice_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
3859{
3860	struct ice_vsi *vsi = ring->vsi;
3861	struct ice_hw *hw = &vsi->back->hw;
3862
3863	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
3864
3865	tlan_ctx->port_num = vsi->port_info->lport;
3866
3867	/* Transmit Queue Length */
3868	tlan_ctx->qlen = ring->count;
3869
3870	/* PF number */
3871	tlan_ctx->pf_num = hw->pf_id;
3872
3873	/* queue belongs to a specific VSI type
3874	 * VF / VM index should be programmed per vmvf_type setting:
3875	 * for vmvf_type = VF, it is VF number between 0-256
3876	 * for vmvf_type = VM, it is VM number between 0-767
3877	 * for PF or EMP this field should be set to zero
3878	 */
3879	switch (vsi->type) {
3880	case ICE_VSI_PF:
3881		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
3882		break;
3883	default:
3884		return;
3885	}
3886
3887	/* make sure the context is associated with the right VSI */
3888	tlan_ctx->src_vsi = vsi->vsi_num;
3889
3890	tlan_ctx->tso_ena = ICE_TX_LEGACY;
3891	tlan_ctx->tso_qnum = pf_q;
3892
3893	/* Legacy or Advanced Host Interface:
3894	 * 0: Advanced Host Interface
3895	 * 1: Legacy Host Interface
3896	 */
3897	tlan_ctx->legacy_int = ICE_TX_LEGACY;
3898}
3899
3900/**
3901 * ice_vsi_cfg_txqs - Configure the VSI for Tx
3902 * @vsi: the VSI being configured
3903 *
3904 * Return 0 on success and a negative value on error
3905 * Configure the Tx VSI for operation.
3906 */
3907static int ice_vsi_cfg_txqs(struct ice_vsi *vsi)
3908{
3909	struct ice_aqc_add_tx_qgrp *qg_buf;
3910	struct ice_aqc_add_txqs_perq *txq;
3911	struct ice_pf *pf = vsi->back;
3912	enum ice_status status;
3913	u16 buf_len, i, pf_q;
3914	int err = 0, tc = 0;
3915	u8 num_q_grps;
3916
3917	buf_len = sizeof(struct ice_aqc_add_tx_qgrp);
3918	qg_buf = devm_kzalloc(&pf->pdev->dev, buf_len, GFP_KERNEL);
3919	if (!qg_buf)
3920		return -ENOMEM;
3921
3922	if (vsi->num_txq > ICE_MAX_TXQ_PER_TXQG) {
3923		err = -EINVAL;
3924		goto err_cfg_txqs;
3925	}
3926	qg_buf->num_txqs = 1;
3927	num_q_grps = 1;
3928
3929	/* set up and configure the tx queues */
3930	ice_for_each_txq(vsi, i) {
3931		struct ice_tlan_ctx tlan_ctx = { 0 };
3932
3933		pf_q = vsi->txq_map[i];
3934		ice_setup_tx_ctx(vsi->tx_rings[i], &tlan_ctx, pf_q);
3935		/* copy context contents into the qg_buf */
3936		qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
3937		ice_set_ctx((u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
3938			    ice_tlan_ctx_info);
3939
3940		/* init queue specific tail reg. It is referred as transmit
3941		 * comm scheduler queue doorbell.
3942		 */
3943		vsi->tx_rings[i]->tail = pf->hw.hw_addr + QTX_COMM_DBELL(pf_q);
3944		status = ice_ena_vsi_txq(vsi->port_info, vsi->vsi_num, tc,
3945					 num_q_grps, qg_buf, buf_len, NULL);
3946		if (status) {
3947			dev_err(&vsi->back->pdev->dev,
3948				"Failed to set LAN Tx queue context, error: %d\n",
3949				status);
3950			err = -ENODEV;
3951			goto err_cfg_txqs;
3952		}
3953
3954		/* Add Tx Queue TEID into the VSI tx ring from the response
3955		 * This will complete configuring and enabling the queue.
3956		 */
3957		txq = &qg_buf->txqs[0];
3958		if (pf_q == le16_to_cpu(txq->txq_id))
3959			vsi->tx_rings[i]->txq_teid =
3960				le32_to_cpu(txq->q_teid);
3961	}
3962err_cfg_txqs:
3963	devm_kfree(&pf->pdev->dev, qg_buf);
3964	return err;
3965}
3966
3967/**
3968 * ice_setup_rx_ctx - Configure a receive ring context
3969 * @ring: The Rx ring to configure
3970 *
3971 * Configure the Rx descriptor ring in RLAN context.
3972 */
3973static int ice_setup_rx_ctx(struct ice_ring *ring)
3974{
3975	struct ice_vsi *vsi = ring->vsi;
3976	struct ice_hw *hw = &vsi->back->hw;
3977	u32 rxdid = ICE_RXDID_FLEX_NIC;
3978	struct ice_rlan_ctx rlan_ctx;
3979	u32 regval;
3980	u16 pf_q;
3981	int err;
3982
3983	/* what is RX queue number in global space of 2K rx queues */
3984	pf_q = vsi->rxq_map[ring->q_index];
3985
3986	/* clear the context structure first */
3987	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
3988
3989	rlan_ctx.base = ring->dma >> 7;
3990
3991	rlan_ctx.qlen = ring->count;
3992
3993	/* Receive Packet Data Buffer Size.
3994	 * The Packet Data Buffer Size is defined in 128 byte units.
3995	 */
3996	rlan_ctx.dbuf = vsi->rx_buf_len >> ICE_RLAN_CTX_DBUF_S;
3997
3998	/* use 32 byte descriptors */
3999	rlan_ctx.dsize = 1;
4000
4001	/* Strip the Ethernet CRC bytes before the packet is posted to host
4002	 * memory.
4003	 */
4004	rlan_ctx.crcstrip = 1;
4005
4006	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor */
4007	rlan_ctx.l2tsel = 1;
4008
4009	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
4010	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
4011	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
4012
4013	/* This controls whether VLAN is stripped from inner headers
4014	 * The VLAN in the inner L2 header is stripped to the receive
4015	 * descriptor if enabled by this flag.
4016	 */
4017	rlan_ctx.showiv = 0;
4018
4019	/* Max packet size for this queue - must not be set to a larger value
4020	 * than 5 x DBUF
4021	 */
4022	rlan_ctx.rxmax = min_t(u16, vsi->max_frame,
4023			       ICE_MAX_CHAINED_RX_BUFS * vsi->rx_buf_len);
4024
4025	/* Rx queue threshold in units of 64 */
4026	rlan_ctx.lrxqthresh = 1;
4027
4028	 /* Enable Flexible Descriptors in the queue context which
4029	  * allows this driver to select a specific receive descriptor format
4030	  */
4031	regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
4032	regval |= (rxdid << QRXFLXP_CNTXT_RXDID_IDX_S) &
4033		QRXFLXP_CNTXT_RXDID_IDX_M;
4034
4035	/* increasing context priority to pick up profile id;
4036	 * default is 0x01; setting to 0x03 to ensure profile
4037	 * is programming if prev context is of same priority
4038	 */
4039	regval |= (0x03 << QRXFLXP_CNTXT_RXDID_PRIO_S) &
4040		QRXFLXP_CNTXT_RXDID_PRIO_M;
4041
4042	wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
4043
4044	/* Absolute queue number out of 2K needs to be passed */
4045	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
4046	if (err) {
4047		dev_err(&vsi->back->pdev->dev,
4048			"Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
4049			pf_q, err);
4050		return -EIO;
4051	}
4052
4053	/* init queue specific tail register */
4054	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
4055	writel(0, ring->tail);
4056	ice_alloc_rx_bufs(ring, ICE_DESC_UNUSED(ring));
4057
4058	return 0;
4059}
4060
4061/**
4062 * ice_vsi_cfg_rxqs - Configure the VSI for Rx
4063 * @vsi: the VSI being configured
4064 *
4065 * Return 0 on success and a negative value on error
4066 * Configure the Rx VSI for operation.
4067 */
4068static int ice_vsi_cfg_rxqs(struct ice_vsi *vsi)
4069{
4070	int err = 0;
4071	u16 i;
4072
4073	if (vsi->netdev && vsi->netdev->mtu > ETH_DATA_LEN)
4074		vsi->max_frame = vsi->netdev->mtu +
4075			ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4076	else
4077		vsi->max_frame = ICE_RXBUF_2048;
4078
4079	vsi->rx_buf_len = ICE_RXBUF_2048;
4080	/* set up individual rings */
4081	for (i = 0; i < vsi->num_rxq && !err; i++)
4082		err = ice_setup_rx_ctx(vsi->rx_rings[i]);
4083
4084	if (err) {
4085		dev_err(&vsi->back->pdev->dev, "ice_setup_rx_ctx failed\n");
4086		return -EIO;
4087	}
4088	return err;
4089}
4090
4091/**
4092 * ice_vsi_cfg - Setup the VSI
4093 * @vsi: the VSI being configured
4094 *
4095 * Return 0 on success and negative value on error
4096 */
4097static int ice_vsi_cfg(struct ice_vsi *vsi)
4098{
4099	int err;
4100
4101	ice_set_rx_mode(vsi->netdev);
4102
4103	err = ice_restore_vlan(vsi);
4104	if (err)
4105		return err;
4106
4107	err = ice_vsi_cfg_txqs(vsi);
4108	if (!err)
4109		err = ice_vsi_cfg_rxqs(vsi);
4110
4111	return err;
4112}
4113
4114/**
4115 * ice_vsi_stop_tx_rings - Disable Tx rings
4116 * @vsi: the VSI being configured
4117 */
4118static int ice_vsi_stop_tx_rings(struct ice_vsi *vsi)
4119{
4120	struct ice_pf *pf = vsi->back;
4121	struct ice_hw *hw = &pf->hw;
4122	enum ice_status status;
4123	u32 *q_teids, val;
4124	u16 *q_ids, i;
4125	int err = 0;
4126
4127	if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
4128		return -EINVAL;
4129
4130	q_teids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_teids),
4131			       GFP_KERNEL);
4132	if (!q_teids)
4133		return -ENOMEM;
4134
4135	q_ids = devm_kcalloc(&pf->pdev->dev, vsi->num_txq, sizeof(*q_ids),
4136			     GFP_KERNEL);
4137	if (!q_ids) {
4138		err = -ENOMEM;
4139		goto err_alloc_q_ids;
4140	}
4141
4142	/* set up the tx queue list to be disabled */
4143	ice_for_each_txq(vsi, i) {
4144		u16 v_idx;
4145
4146		if (!vsi->tx_rings || !vsi->tx_rings[i]) {
4147			err = -EINVAL;
4148			goto err_out;
4149		}
4150
4151		q_ids[i] = vsi->txq_map[i];
4152		q_teids[i] = vsi->tx_rings[i]->txq_teid;
4153
4154		/* clear cause_ena bit for disabled queues */
4155		val = rd32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx));
4156		val &= ~QINT_TQCTL_CAUSE_ENA_M;
4157		wr32(hw, QINT_TQCTL(vsi->tx_rings[i]->reg_idx), val);
4158
4159		/* software is expected to wait for 100 ns */
4160		ndelay(100);
4161
4162		/* trigger a software interrupt for the vector associated to
4163		 * the queue to schedule napi handler
4164		 */
4165		v_idx = vsi->tx_rings[i]->q_vector->v_idx;
4166		wr32(hw, GLINT_DYN_CTL(vsi->base_vector + v_idx),
4167		     GLINT_DYN_CTL_SWINT_TRIG_M | GLINT_DYN_CTL_INTENA_MSK_M);
4168	}
4169	status = ice_dis_vsi_txq(vsi->port_info, vsi->num_txq, q_ids, q_teids,
4170				 NULL);
4171	if (status) {
4172		dev_err(&pf->pdev->dev,
4173			"Failed to disable LAN Tx queues, error: %d\n",
4174			status);
4175		err = -ENODEV;
4176	}
4177
4178err_out:
4179	devm_kfree(&pf->pdev->dev, q_ids);
4180
4181err_alloc_q_ids:
4182	devm_kfree(&pf->pdev->dev, q_teids);
4183
4184	return err;
4185}
4186
4187/**
4188 * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
4189 * @pf: the PF being configured
4190 * @pf_q: the PF queue
4191 * @ena: enable or disable state of the queue
4192 *
4193 * This routine will wait for the given Rx queue of the PF to reach the
4194 * enabled or disabled state.
4195 * Returns -ETIMEDOUT in case of failing to reach the requested state after
4196 * multiple retries; else will return 0 in case of success.
4197 */
4198static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
4199{
4200	int i;
4201
4202	for (i = 0; i < ICE_Q_WAIT_RETRY_LIMIT; i++) {
4203		u32 rx_reg = rd32(&pf->hw, QRX_CTRL(pf_q));
4204
4205		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4206			break;
4207
4208		usleep_range(10, 20);
4209	}
4210	if (i >= ICE_Q_WAIT_RETRY_LIMIT)
4211		return -ETIMEDOUT;
4212
4213	return 0;
4214}
4215
4216/**
4217 * ice_vsi_ctrl_rx_rings - Start or stop a VSI's rx rings
4218 * @vsi: the VSI being configured
4219 * @ena: start or stop the rx rings
4220 */
4221static int ice_vsi_ctrl_rx_rings(struct ice_vsi *vsi, bool ena)
4222{
4223	struct ice_pf *pf = vsi->back;
4224	struct ice_hw *hw = &pf->hw;
4225	int i, j, ret = 0;
4226
4227	for (i = 0; i < vsi->num_rxq; i++) {
4228		int pf_q = vsi->rxq_map[i];
4229		u32 rx_reg;
4230
4231		for (j = 0; j < ICE_Q_WAIT_MAX_RETRY; j++) {
4232			rx_reg = rd32(hw, QRX_CTRL(pf_q));
4233			if (((rx_reg >> QRX_CTRL_QENA_REQ_S) & 1) ==
4234			    ((rx_reg >> QRX_CTRL_QENA_STAT_S) & 1))
4235				break;
4236			usleep_range(1000, 2000);
4237		}
4238
4239		/* Skip if the queue is already in the requested state */
4240		if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
4241			continue;
4242
4243		/* turn on/off the queue */
4244		if (ena)
4245			rx_reg |= QRX_CTRL_QENA_REQ_M;
4246		else
4247			rx_reg &= ~QRX_CTRL_QENA_REQ_M;
4248		wr32(hw, QRX_CTRL(pf_q), rx_reg);
4249
4250		/* wait for the change to finish */
4251		ret = ice_pf_rxq_wait(pf, pf_q, ena);
4252		if (ret) {
4253			dev_err(&pf->pdev->dev,
4254				"VSI idx %d Rx ring %d %sable timeout\n",
4255				vsi->idx, pf_q, (ena ? "en" : "dis"));
4256			break;
4257		}
4258	}
4259
4260	return ret;
4261}
4262
4263/**
4264 * ice_vsi_start_rx_rings - start VSI's rx rings
4265 * @vsi: the VSI whose rings are to be started
4266 *
4267 * Returns 0 on success and a negative value on error
4268 */
4269static int ice_vsi_start_rx_rings(struct ice_vsi *vsi)
4270{
4271	return ice_vsi_ctrl_rx_rings(vsi, true);
4272}
4273
4274/**
4275 * ice_vsi_stop_rx_rings - stop VSI's rx rings
4276 * @vsi: the VSI
4277 *
4278 * Returns 0 on success and a negative value on error
4279 */
4280static int ice_vsi_stop_rx_rings(struct ice_vsi *vsi)
4281{
4282	return ice_vsi_ctrl_rx_rings(vsi, false);
4283}
4284
4285/**
4286 * ice_vsi_stop_tx_rx_rings - stop VSI's tx and rx rings
4287 * @vsi: the VSI
4288 * Returns 0 on success and a negative value on error
4289 */
4290static int ice_vsi_stop_tx_rx_rings(struct ice_vsi *vsi)
4291{
4292	int err_tx, err_rx;
4293
4294	err_tx = ice_vsi_stop_tx_rings(vsi);
4295	if (err_tx)
4296		dev_dbg(&vsi->back->pdev->dev, "Failed to disable Tx rings\n");
4297
4298	err_rx = ice_vsi_stop_rx_rings(vsi);
4299	if (err_rx)
4300		dev_dbg(&vsi->back->pdev->dev, "Failed to disable Rx rings\n");
4301
4302	if (err_tx || err_rx)
4303		return -EIO;
4304
4305	return 0;
4306}
4307
4308/**
4309 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
4310 * @vsi: the VSI being configured
4311 */
4312static void ice_napi_enable_all(struct ice_vsi *vsi)
4313{
4314	int q_idx;
4315
4316	if (!vsi->netdev)
4317		return;
4318
4319	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4320		napi_enable(&vsi->q_vectors[q_idx]->napi);
 
 
 
 
4321}
4322
4323/**
4324 * ice_up_complete - Finish the last steps of bringing up a connection
4325 * @vsi: The VSI being configured
4326 *
4327 * Return 0 on success and negative value on error
4328 */
4329static int ice_up_complete(struct ice_vsi *vsi)
4330{
4331	struct ice_pf *pf = vsi->back;
4332	int err;
4333
4334	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4335		ice_vsi_cfg_msix(vsi);
4336	else
4337		return -ENOTSUPP;
4338
4339	/* Enable only Rx rings, Tx rings were enabled by the FW when the
4340	 * Tx queue group list was configured and the context bits were
4341	 * programmed using ice_vsi_cfg_txqs
4342	 */
4343	err = ice_vsi_start_rx_rings(vsi);
4344	if (err)
4345		return err;
4346
4347	clear_bit(__ICE_DOWN, vsi->state);
4348	ice_napi_enable_all(vsi);
4349	ice_vsi_ena_irq(vsi);
4350
4351	if (vsi->port_info &&
4352	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
4353	    vsi->netdev) {
4354		ice_print_link_msg(vsi, true);
4355		netif_tx_start_all_queues(vsi->netdev);
4356		netif_carrier_on(vsi->netdev);
4357	}
4358
4359	ice_service_task_schedule(pf);
4360
4361	return err;
4362}
4363
4364/**
4365 * ice_up - Bring the connection back up after being down
4366 * @vsi: VSI being configured
4367 */
4368int ice_up(struct ice_vsi *vsi)
4369{
4370	int err;
4371
4372	err = ice_vsi_cfg(vsi);
4373	if (!err)
4374		err = ice_up_complete(vsi);
4375
4376	return err;
4377}
4378
4379/**
4380 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
4381 * @ring: Tx or Rx ring to read stats from
4382 * @pkts: packets stats counter
4383 * @bytes: bytes stats counter
4384 *
4385 * This function fetches stats from the ring considering the atomic operations
4386 * that needs to be performed to read u64 values in 32 bit machine.
4387 */
4388static void ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts,
4389					 u64 *bytes)
4390{
4391	unsigned int start;
4392	*pkts = 0;
4393	*bytes = 0;
4394
4395	if (!ring)
4396		return;
4397	do {
4398		start = u64_stats_fetch_begin_irq(&ring->syncp);
4399		*pkts = ring->stats.pkts;
4400		*bytes = ring->stats.bytes;
4401	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
4402}
4403
4404/**
4405 * ice_stat_update40 - read 40 bit stat from the chip and update stat values
4406 * @hw: ptr to the hardware info
4407 * @hireg: high 32 bit HW register to read from
4408 * @loreg: low 32 bit HW register to read from
4409 * @prev_stat_loaded: bool to specify if previous stats are loaded
4410 * @prev_stat: ptr to previous loaded stat value
4411 * @cur_stat: ptr to current stat value
4412 */
4413static void ice_stat_update40(struct ice_hw *hw, u32 hireg, u32 loreg,
4414			      bool prev_stat_loaded, u64 *prev_stat,
4415			      u64 *cur_stat)
4416{
4417	u64 new_data;
4418
4419	new_data = rd32(hw, loreg);
4420	new_data |= ((u64)(rd32(hw, hireg) & 0xFFFF)) << 32;
4421
4422	/* device stats are not reset at PFR, they likely will not be zeroed
4423	 * when the driver starts. So save the first values read and use them as
4424	 * offsets to be subtracted from the raw values in order to report stats
4425	 * that count from zero.
4426	 */
4427	if (!prev_stat_loaded)
4428		*prev_stat = new_data;
4429	if (likely(new_data >= *prev_stat))
4430		*cur_stat = new_data - *prev_stat;
4431	else
4432		/* to manage the potential roll-over */
4433		*cur_stat = (new_data + BIT_ULL(40)) - *prev_stat;
4434	*cur_stat &= 0xFFFFFFFFFFULL;
4435}
4436
4437/**
4438 * ice_stat_update32 - read 32 bit stat from the chip and update stat values
4439 * @hw: ptr to the hardware info
4440 * @reg: HW register to read from
4441 * @prev_stat_loaded: bool to specify if previous stats are loaded
4442 * @prev_stat: ptr to previous loaded stat value
4443 * @cur_stat: ptr to current stat value
4444 */
4445static void ice_stat_update32(struct ice_hw *hw, u32 reg, bool prev_stat_loaded,
4446			      u64 *prev_stat, u64 *cur_stat)
4447{
4448	u32 new_data;
4449
4450	new_data = rd32(hw, reg);
4451
4452	/* device stats are not reset at PFR, they likely will not be zeroed
4453	 * when the driver starts. So save the first values read and use them as
4454	 * offsets to be subtracted from the raw values in order to report stats
4455	 * that count from zero.
4456	 */
4457	if (!prev_stat_loaded)
4458		*prev_stat = new_data;
4459	if (likely(new_data >= *prev_stat))
4460		*cur_stat = new_data - *prev_stat;
4461	else
4462		/* to manage the potential roll-over */
4463		*cur_stat = (new_data + BIT_ULL(32)) - *prev_stat;
4464}
4465
4466/**
4467 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
4468 * @vsi: the VSI to be updated
 
 
4469 */
4470static void ice_update_eth_stats(struct ice_vsi *vsi)
 
 
4471{
4472	struct ice_eth_stats *prev_es, *cur_es;
4473	struct ice_hw *hw = &vsi->back->hw;
4474	u16 vsi_num = vsi->vsi_num;    /* HW absolute index of a VSI */
4475
4476	prev_es = &vsi->eth_stats_prev;
4477	cur_es = &vsi->eth_stats;
 
4478
4479	ice_stat_update40(hw, GLV_GORCH(vsi_num), GLV_GORCL(vsi_num),
4480			  vsi->stat_offsets_loaded, &prev_es->rx_bytes,
4481			  &cur_es->rx_bytes);
4482
4483	ice_stat_update40(hw, GLV_UPRCH(vsi_num), GLV_UPRCL(vsi_num),
4484			  vsi->stat_offsets_loaded, &prev_es->rx_unicast,
4485			  &cur_es->rx_unicast);
4486
4487	ice_stat_update40(hw, GLV_MPRCH(vsi_num), GLV_MPRCL(vsi_num),
4488			  vsi->stat_offsets_loaded, &prev_es->rx_multicast,
4489			  &cur_es->rx_multicast);
4490
4491	ice_stat_update40(hw, GLV_BPRCH(vsi_num), GLV_BPRCL(vsi_num),
4492			  vsi->stat_offsets_loaded, &prev_es->rx_broadcast,
4493			  &cur_es->rx_broadcast);
4494
4495	ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
4496			  &prev_es->rx_discards, &cur_es->rx_discards);
4497
4498	ice_stat_update40(hw, GLV_GOTCH(vsi_num), GLV_GOTCL(vsi_num),
4499			  vsi->stat_offsets_loaded, &prev_es->tx_bytes,
4500			  &cur_es->tx_bytes);
4501
4502	ice_stat_update40(hw, GLV_UPTCH(vsi_num), GLV_UPTCL(vsi_num),
4503			  vsi->stat_offsets_loaded, &prev_es->tx_unicast,
4504			  &cur_es->tx_unicast);
4505
4506	ice_stat_update40(hw, GLV_MPTCH(vsi_num), GLV_MPTCL(vsi_num),
4507			  vsi->stat_offsets_loaded, &prev_es->tx_multicast,
4508			  &cur_es->tx_multicast);
4509
4510	ice_stat_update40(hw, GLV_BPTCH(vsi_num), GLV_BPTCL(vsi_num),
4511			  vsi->stat_offsets_loaded, &prev_es->tx_broadcast,
4512			  &cur_es->tx_broadcast);
4513
4514	ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
4515			  &prev_es->tx_errors, &cur_es->tx_errors);
4516
4517	vsi->stat_offsets_loaded = true;
4518}
4519
4520/**
4521 * ice_update_vsi_ring_stats - Update VSI stats counters
4522 * @vsi: the VSI to be updated
4523 */
4524static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
4525{
4526	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
4527	struct ice_ring *ring;
4528	u64 pkts, bytes;
4529	int i;
4530
4531	/* reset netdev stats */
4532	vsi_stats->tx_packets = 0;
4533	vsi_stats->tx_bytes = 0;
4534	vsi_stats->rx_packets = 0;
4535	vsi_stats->rx_bytes = 0;
4536
4537	/* reset non-netdev (extended) stats */
4538	vsi->tx_restart = 0;
4539	vsi->tx_busy = 0;
4540	vsi->tx_linearize = 0;
4541	vsi->rx_buf_failed = 0;
4542	vsi->rx_page_failed = 0;
 
4543
4544	rcu_read_lock();
4545
4546	/* update Tx rings counters */
4547	ice_for_each_txq(vsi, i) {
4548		ring = READ_ONCE(vsi->tx_rings[i]);
4549		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4550		vsi_stats->tx_packets += pkts;
4551		vsi_stats->tx_bytes += bytes;
4552		vsi->tx_restart += ring->tx_stats.restart_q;
4553		vsi->tx_busy += ring->tx_stats.tx_busy;
4554		vsi->tx_linearize += ring->tx_stats.tx_linearize;
4555	}
4556
4557	/* update Rx rings counters */
4558	ice_for_each_rxq(vsi, i) {
4559		ring = READ_ONCE(vsi->rx_rings[i]);
4560		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
4561		vsi_stats->rx_packets += pkts;
4562		vsi_stats->rx_bytes += bytes;
4563		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
4564		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
 
4565	}
4566
 
 
 
 
 
4567	rcu_read_unlock();
4568}
4569
4570/**
4571 * ice_update_vsi_stats - Update VSI stats counters
4572 * @vsi: the VSI to be updated
4573 */
4574static void ice_update_vsi_stats(struct ice_vsi *vsi)
4575{
4576	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
4577	struct ice_eth_stats *cur_es = &vsi->eth_stats;
4578	struct ice_pf *pf = vsi->back;
4579
4580	if (test_bit(__ICE_DOWN, vsi->state) ||
4581	    test_bit(__ICE_CFG_BUSY, pf->state))
4582		return;
4583
4584	/* get stats as recorded by Tx/Rx rings */
4585	ice_update_vsi_ring_stats(vsi);
4586
4587	/* get VSI stats as recorded by the hardware */
4588	ice_update_eth_stats(vsi);
4589
4590	cur_ns->tx_errors = cur_es->tx_errors;
4591	cur_ns->rx_dropped = cur_es->rx_discards;
4592	cur_ns->tx_dropped = cur_es->tx_discards;
4593	cur_ns->multicast = cur_es->rx_multicast;
4594
4595	/* update some more netdev stats if this is main VSI */
4596	if (vsi->type == ICE_VSI_PF) {
4597		cur_ns->rx_crc_errors = pf->stats.crc_errors;
4598		cur_ns->rx_errors = pf->stats.crc_errors +
4599				    pf->stats.illegal_bytes;
 
 
 
 
 
 
4600		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
 
 
4601	}
4602}
4603
4604/**
4605 * ice_update_pf_stats - Update PF port stats counters
4606 * @pf: PF whose stats needs to be updated
4607 */
4608static void ice_update_pf_stats(struct ice_pf *pf)
4609{
4610	struct ice_hw_port_stats *prev_ps, *cur_ps;
4611	struct ice_hw *hw = &pf->hw;
4612	u8 pf_id;
 
4613
 
4614	prev_ps = &pf->stats_prev;
4615	cur_ps = &pf->stats;
4616	pf_id = hw->pf_id;
4617
4618	ice_stat_update40(hw, GLPRT_GORCH(pf_id), GLPRT_GORCL(pf_id),
4619			  pf->stat_prev_loaded, &prev_ps->eth.rx_bytes,
4620			  &cur_ps->eth.rx_bytes);
4621
4622	ice_stat_update40(hw, GLPRT_UPRCH(pf_id), GLPRT_UPRCL(pf_id),
4623			  pf->stat_prev_loaded, &prev_ps->eth.rx_unicast,
4624			  &cur_ps->eth.rx_unicast);
4625
4626	ice_stat_update40(hw, GLPRT_MPRCH(pf_id), GLPRT_MPRCL(pf_id),
4627			  pf->stat_prev_loaded, &prev_ps->eth.rx_multicast,
4628			  &cur_ps->eth.rx_multicast);
4629
4630	ice_stat_update40(hw, GLPRT_BPRCH(pf_id), GLPRT_BPRCL(pf_id),
4631			  pf->stat_prev_loaded, &prev_ps->eth.rx_broadcast,
4632			  &cur_ps->eth.rx_broadcast);
4633
4634	ice_stat_update40(hw, GLPRT_GOTCH(pf_id), GLPRT_GOTCL(pf_id),
4635			  pf->stat_prev_loaded, &prev_ps->eth.tx_bytes,
 
 
 
 
4636			  &cur_ps->eth.tx_bytes);
4637
4638	ice_stat_update40(hw, GLPRT_UPTCH(pf_id), GLPRT_UPTCL(pf_id),
4639			  pf->stat_prev_loaded, &prev_ps->eth.tx_unicast,
4640			  &cur_ps->eth.tx_unicast);
4641
4642	ice_stat_update40(hw, GLPRT_MPTCH(pf_id), GLPRT_MPTCL(pf_id),
4643			  pf->stat_prev_loaded, &prev_ps->eth.tx_multicast,
4644			  &cur_ps->eth.tx_multicast);
4645
4646	ice_stat_update40(hw, GLPRT_BPTCH(pf_id), GLPRT_BPTCL(pf_id),
4647			  pf->stat_prev_loaded, &prev_ps->eth.tx_broadcast,
4648			  &cur_ps->eth.tx_broadcast);
4649
4650	ice_stat_update32(hw, GLPRT_TDOLD(pf_id), pf->stat_prev_loaded,
4651			  &prev_ps->tx_dropped_link_down,
4652			  &cur_ps->tx_dropped_link_down);
4653
4654	ice_stat_update40(hw, GLPRT_PRC64H(pf_id), GLPRT_PRC64L(pf_id),
4655			  pf->stat_prev_loaded, &prev_ps->rx_size_64,
4656			  &cur_ps->rx_size_64);
4657
4658	ice_stat_update40(hw, GLPRT_PRC127H(pf_id), GLPRT_PRC127L(pf_id),
4659			  pf->stat_prev_loaded, &prev_ps->rx_size_127,
4660			  &cur_ps->rx_size_127);
4661
4662	ice_stat_update40(hw, GLPRT_PRC255H(pf_id), GLPRT_PRC255L(pf_id),
4663			  pf->stat_prev_loaded, &prev_ps->rx_size_255,
4664			  &cur_ps->rx_size_255);
4665
4666	ice_stat_update40(hw, GLPRT_PRC511H(pf_id), GLPRT_PRC511L(pf_id),
4667			  pf->stat_prev_loaded, &prev_ps->rx_size_511,
4668			  &cur_ps->rx_size_511);
4669
4670	ice_stat_update40(hw, GLPRT_PRC1023H(pf_id),
4671			  GLPRT_PRC1023L(pf_id), pf->stat_prev_loaded,
 
 
 
 
 
4672			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
4673
4674	ice_stat_update40(hw, GLPRT_PRC1522H(pf_id),
4675			  GLPRT_PRC1522L(pf_id), pf->stat_prev_loaded,
4676			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
4677
4678	ice_stat_update40(hw, GLPRT_PRC9522H(pf_id),
4679			  GLPRT_PRC9522L(pf_id), pf->stat_prev_loaded,
4680			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
4681
4682	ice_stat_update40(hw, GLPRT_PTC64H(pf_id), GLPRT_PTC64L(pf_id),
4683			  pf->stat_prev_loaded, &prev_ps->tx_size_64,
4684			  &cur_ps->tx_size_64);
4685
4686	ice_stat_update40(hw, GLPRT_PTC127H(pf_id), GLPRT_PTC127L(pf_id),
4687			  pf->stat_prev_loaded, &prev_ps->tx_size_127,
4688			  &cur_ps->tx_size_127);
4689
4690	ice_stat_update40(hw, GLPRT_PTC255H(pf_id), GLPRT_PTC255L(pf_id),
4691			  pf->stat_prev_loaded, &prev_ps->tx_size_255,
4692			  &cur_ps->tx_size_255);
4693
4694	ice_stat_update40(hw, GLPRT_PTC511H(pf_id), GLPRT_PTC511L(pf_id),
4695			  pf->stat_prev_loaded, &prev_ps->tx_size_511,
4696			  &cur_ps->tx_size_511);
4697
4698	ice_stat_update40(hw, GLPRT_PTC1023H(pf_id),
4699			  GLPRT_PTC1023L(pf_id), pf->stat_prev_loaded,
4700			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
4701
4702	ice_stat_update40(hw, GLPRT_PTC1522H(pf_id),
4703			  GLPRT_PTC1522L(pf_id), pf->stat_prev_loaded,
4704			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
4705
4706	ice_stat_update40(hw, GLPRT_PTC9522H(pf_id),
4707			  GLPRT_PTC9522L(pf_id), pf->stat_prev_loaded,
4708			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
4709
4710	ice_stat_update32(hw, GLPRT_LXONRXC(pf_id), pf->stat_prev_loaded,
 
 
 
 
 
 
4711			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
4712
4713	ice_stat_update32(hw, GLPRT_LXOFFRXC(pf_id), pf->stat_prev_loaded,
4714			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
4715
4716	ice_stat_update32(hw, GLPRT_LXONTXC(pf_id), pf->stat_prev_loaded,
4717			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
4718
4719	ice_stat_update32(hw, GLPRT_LXOFFTXC(pf_id), pf->stat_prev_loaded,
4720			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
4721
4722	ice_stat_update32(hw, GLPRT_CRCERRS(pf_id), pf->stat_prev_loaded,
 
 
4723			  &prev_ps->crc_errors, &cur_ps->crc_errors);
4724
4725	ice_stat_update32(hw, GLPRT_ILLERRC(pf_id), pf->stat_prev_loaded,
4726			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
4727
4728	ice_stat_update32(hw, GLPRT_MLFC(pf_id), pf->stat_prev_loaded,
4729			  &prev_ps->mac_local_faults,
4730			  &cur_ps->mac_local_faults);
4731
4732	ice_stat_update32(hw, GLPRT_MRFC(pf_id), pf->stat_prev_loaded,
4733			  &prev_ps->mac_remote_faults,
4734			  &cur_ps->mac_remote_faults);
4735
4736	ice_stat_update32(hw, GLPRT_RLEC(pf_id), pf->stat_prev_loaded,
4737			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
4738
4739	ice_stat_update32(hw, GLPRT_RUC(pf_id), pf->stat_prev_loaded,
4740			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
4741
4742	ice_stat_update32(hw, GLPRT_RFC(pf_id), pf->stat_prev_loaded,
4743			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
4744
4745	ice_stat_update32(hw, GLPRT_ROC(pf_id), pf->stat_prev_loaded,
4746			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
4747
4748	ice_stat_update32(hw, GLPRT_RJC(pf_id), pf->stat_prev_loaded,
4749			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
4750
 
 
4751	pf->stat_prev_loaded = true;
4752}
4753
4754/**
4755 * ice_get_stats64 - get statistics for network device structure
4756 * @netdev: network interface device structure
4757 * @stats: main device statistics structure
4758 */
4759static
4760void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
4761{
4762	struct ice_netdev_priv *np = netdev_priv(netdev);
4763	struct rtnl_link_stats64 *vsi_stats;
4764	struct ice_vsi *vsi = np->vsi;
4765
4766	vsi_stats = &vsi->net_stats;
4767
4768	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->num_txq || !vsi->num_rxq)
4769		return;
 
4770	/* netdev packet/byte stats come from ring counter. These are obtained
4771	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
 
 
4772	 */
4773	ice_update_vsi_ring_stats(vsi);
 
4774	stats->tx_packets = vsi_stats->tx_packets;
4775	stats->tx_bytes = vsi_stats->tx_bytes;
4776	stats->rx_packets = vsi_stats->rx_packets;
4777	stats->rx_bytes = vsi_stats->rx_bytes;
4778
4779	/* The rest of the stats can be read from the hardware but instead we
4780	 * just return values that the watchdog task has already obtained from
4781	 * the hardware.
4782	 */
4783	stats->multicast = vsi_stats->multicast;
4784	stats->tx_errors = vsi_stats->tx_errors;
4785	stats->tx_dropped = vsi_stats->tx_dropped;
4786	stats->rx_errors = vsi_stats->rx_errors;
4787	stats->rx_dropped = vsi_stats->rx_dropped;
4788	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
4789	stats->rx_length_errors = vsi_stats->rx_length_errors;
4790}
4791
4792#ifdef CONFIG_NET_POLL_CONTROLLER
4793/**
4794 * ice_netpoll - polling "interrupt" handler
4795 * @netdev: network interface device structure
4796 *
4797 * Used by netconsole to send skbs without having to re-enable interrupts.
4798 * This is not called in the normal interrupt path.
4799 */
4800static void ice_netpoll(struct net_device *netdev)
4801{
4802	struct ice_netdev_priv *np = netdev_priv(netdev);
4803	struct ice_vsi *vsi = np->vsi;
4804	struct ice_pf *pf = vsi->back;
4805	int i;
4806
4807	if (test_bit(__ICE_DOWN, vsi->state) ||
4808	    !test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4809		return;
4810
4811	for (i = 0; i < vsi->num_q_vectors; i++)
4812		ice_msix_clean_rings(0, vsi->q_vectors[i]);
4813}
4814#endif /* CONFIG_NET_POLL_CONTROLLER */
4815
4816/**
4817 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
4818 * @vsi: VSI having NAPI disabled
4819 */
4820static void ice_napi_disable_all(struct ice_vsi *vsi)
4821{
4822	int q_idx;
4823
4824	if (!vsi->netdev)
4825		return;
4826
4827	for (q_idx = 0; q_idx < vsi->num_q_vectors; q_idx++)
4828		napi_disable(&vsi->q_vectors[q_idx]->napi);
 
 
 
 
4829}
4830
4831/**
4832 * ice_down - Shutdown the connection
4833 * @vsi: The VSI being stopped
4834 */
4835int ice_down(struct ice_vsi *vsi)
4836{
4837	int i, err;
4838
4839	/* Caller of this function is expected to set the
4840	 * vsi->state __ICE_DOWN bit
4841	 */
4842	if (vsi->netdev) {
4843		netif_carrier_off(vsi->netdev);
4844		netif_tx_disable(vsi->netdev);
4845	}
4846
4847	ice_vsi_dis_irq(vsi);
4848	err = ice_vsi_stop_tx_rx_rings(vsi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4849	ice_napi_disable_all(vsi);
4850
 
 
 
 
 
 
 
4851	ice_for_each_txq(vsi, i)
4852		ice_clean_tx_ring(vsi->tx_rings[i]);
4853
4854	ice_for_each_rxq(vsi, i)
4855		ice_clean_rx_ring(vsi->rx_rings[i]);
4856
4857	if (err)
4858		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
4859			   vsi->vsi_num, vsi->vsw->sw_id);
4860	return err;
 
 
 
4861}
4862
4863/**
4864 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
4865 * @vsi: VSI having resources allocated
4866 *
4867 * Return 0 on success, negative on failure
4868 */
4869static int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
4870{
4871	int i, err;
4872
4873	if (!vsi->num_txq) {
4874		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Tx queues\n",
4875			vsi->vsi_num);
4876		return -EINVAL;
4877	}
4878
4879	ice_for_each_txq(vsi, i) {
4880		err = ice_setup_tx_ring(vsi->tx_rings[i]);
 
 
 
 
 
 
4881		if (err)
4882			break;
4883	}
4884
4885	return err;
4886}
4887
4888/**
4889 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
4890 * @vsi: VSI having resources allocated
4891 *
4892 * Return 0 on success, negative on failure
4893 */
4894static int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
4895{
4896	int i, err;
4897
4898	if (!vsi->num_rxq) {
4899		dev_err(&vsi->back->pdev->dev, "VSI %d has 0 Rx queues\n",
4900			vsi->vsi_num);
4901		return -EINVAL;
4902	}
4903
4904	ice_for_each_rxq(vsi, i) {
4905		err = ice_setup_rx_ring(vsi->rx_rings[i]);
 
 
 
 
 
 
4906		if (err)
4907			break;
4908	}
4909
4910	return err;
4911}
4912
4913/**
4914 * ice_vsi_req_irq - Request IRQ from the OS
4915 * @vsi: The VSI IRQ is being requested for
4916 * @basename: name for the vector
 
4917 *
4918 * Return 0 on success and a negative value on error
4919 */
4920static int ice_vsi_req_irq(struct ice_vsi *vsi, char *basename)
4921{
 
4922	struct ice_pf *pf = vsi->back;
4923	int err = -EINVAL;
 
4924
4925	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags))
4926		err = ice_vsi_req_irq_msix(vsi, basename);
 
 
 
4927
4928	return err;
4929}
 
 
 
 
 
 
 
 
 
 
 
4930
4931/**
4932 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
4933 * @vsi: the VSI having resources freed
4934 */
4935static void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
4936{
4937	int i;
4938
4939	if (!vsi->tx_rings)
4940		return;
 
4941
4942	ice_for_each_txq(vsi, i)
4943		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
4944			ice_free_tx_ring(vsi->tx_rings[i]);
4945}
4946
4947/**
4948 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
4949 * @vsi: the VSI having resources freed
4950 */
4951static void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
4952{
4953	int i;
4954
4955	if (!vsi->rx_rings)
4956		return;
 
 
 
 
4957
4958	ice_for_each_rxq(vsi, i)
4959		if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
4960			ice_free_rx_ring(vsi->rx_rings[i]);
4961}
4962
4963/**
4964 * ice_vsi_open - Called when a network interface is made active
4965 * @vsi: the VSI to open
4966 *
4967 * Initialization of the VSI
4968 *
4969 * Returns 0 on success, negative value on error
4970 */
4971static int ice_vsi_open(struct ice_vsi *vsi)
4972{
4973	char int_name[ICE_INT_NAME_STR_LEN];
4974	struct ice_pf *pf = vsi->back;
4975	int err;
4976
4977	/* allocate descriptors */
4978	err = ice_vsi_setup_tx_rings(vsi);
4979	if (err)
4980		goto err_setup_tx;
4981
4982	err = ice_vsi_setup_rx_rings(vsi);
4983	if (err)
4984		goto err_setup_rx;
4985
4986	err = ice_vsi_cfg(vsi);
4987	if (err)
4988		goto err_setup_rx;
4989
4990	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
4991		 dev_driver_string(&pf->pdev->dev), vsi->netdev->name);
4992	err = ice_vsi_req_irq(vsi, int_name);
4993	if (err)
4994		goto err_setup_rx;
4995
4996	/* Notify the stack of the actual queue counts. */
4997	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
4998	if (err)
4999		goto err_set_qs;
5000
5001	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5002	if (err)
5003		goto err_set_qs;
5004
5005	err = ice_up_complete(vsi);
5006	if (err)
5007		goto err_up_complete;
5008
5009	return 0;
5010
5011err_up_complete:
5012	ice_down(vsi);
5013err_set_qs:
5014	ice_vsi_free_irq(vsi);
5015err_setup_rx:
5016	ice_vsi_free_rx_rings(vsi);
5017err_setup_tx:
5018	ice_vsi_free_tx_rings(vsi);
5019
5020	return err;
5021}
5022
5023/**
5024 * ice_vsi_close - Shut down a VSI
5025 * @vsi: the VSI being shut down
5026 */
5027static void ice_vsi_close(struct ice_vsi *vsi)
5028{
5029	if (!test_and_set_bit(__ICE_DOWN, vsi->state))
5030		ice_down(vsi);
5031
5032	ice_vsi_free_irq(vsi);
5033	ice_vsi_free_tx_rings(vsi);
5034	ice_vsi_free_rx_rings(vsi);
5035}
5036
5037/**
5038 * ice_rss_clean - Delete RSS related VSI structures that hold user inputs
5039 * @vsi: the VSI being removed
5040 */
5041static void ice_rss_clean(struct ice_vsi *vsi)
5042{
5043	struct ice_pf *pf;
5044
5045	pf = vsi->back;
5046
5047	if (vsi->rss_hkey_user)
5048		devm_kfree(&pf->pdev->dev, vsi->rss_hkey_user);
5049	if (vsi->rss_lut_user)
5050		devm_kfree(&pf->pdev->dev, vsi->rss_lut_user);
5051}
5052
5053/**
5054 * ice_vsi_release - Delete a VSI and free its resources
5055 * @vsi: the VSI being removed
 
5056 *
5057 * Returns 0 on success or < 0 on error
5058 */
5059static int ice_vsi_release(struct ice_vsi *vsi)
5060{
5061	struct ice_pf *pf;
 
 
5062
5063	if (!vsi->back)
5064		return -ENODEV;
5065	pf = vsi->back;
5066
5067	if (vsi->netdev) {
5068		unregister_netdev(vsi->netdev);
5069		free_netdev(vsi->netdev);
5070		vsi->netdev = NULL;
5071	}
5072
5073	if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
5074		ice_rss_clean(vsi);
 
 
 
 
 
5075
5076	/* Disable VSI and free resources */
5077	ice_vsi_dis_irq(vsi);
5078	ice_vsi_close(vsi);
 
 
 
 
 
5079
5080	/* reclaim interrupt vectors back to PF */
5081	ice_free_res(vsi->back->irq_tracker, vsi->base_vector, vsi->idx);
5082	pf->num_avail_msix += vsi->num_q_vectors;
5083
5084	ice_remove_vsi_fltr(&pf->hw, vsi->vsi_num);
5085	ice_vsi_delete(vsi);
5086	ice_vsi_free_q_vectors(vsi);
5087	ice_vsi_clear_rings(vsi);
5088
5089	ice_vsi_put_qs(vsi);
5090	pf->q_left_tx += vsi->alloc_txq;
5091	pf->q_left_rx += vsi->alloc_rxq;
5092
5093	ice_vsi_clear(vsi);
 
 
 
 
 
 
 
 
 
 
5094
5095	return 0;
5096}
5097
5098/**
5099 * ice_dis_vsi - pause a VSI
5100 * @vsi: the VSI being paused
5101 */
5102static void ice_dis_vsi(struct ice_vsi *vsi)
5103{
5104	if (test_bit(__ICE_DOWN, vsi->state))
5105		return;
5106
5107	set_bit(__ICE_NEEDS_RESTART, vsi->state);
 
5108
5109	if (vsi->netdev && netif_running(vsi->netdev) &&
5110	    vsi->type == ICE_VSI_PF)
5111		vsi->netdev->netdev_ops->ndo_stop(vsi->netdev);
5112
5113	ice_vsi_close(vsi);
5114}
5115
5116/**
5117 * ice_ena_vsi - resume a VSI
5118 * @vsi: the VSI being resume
5119 */
5120static void ice_ena_vsi(struct ice_vsi *vsi)
5121{
5122	if (!test_and_clear_bit(__ICE_NEEDS_RESTART, vsi->state))
5123		return;
5124
5125	if (vsi->netdev && netif_running(vsi->netdev))
5126		vsi->netdev->netdev_ops->ndo_open(vsi->netdev);
5127	else if (ice_vsi_open(vsi))
5128		/* this clears the DOWN bit */
5129		dev_dbg(&vsi->back->pdev->dev, "Failed open VSI 0x%04X on switch 0x%04X\n",
5130			vsi->vsi_num, vsi->vsw->sw_id);
5131}
5132
5133/**
5134 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
5135 * @pf: the PF
5136 */
5137static void ice_pf_dis_all_vsi(struct ice_pf *pf)
5138{
5139	int v;
5140
5141	ice_for_each_vsi(pf, v)
5142		if (pf->vsi[v])
5143			ice_dis_vsi(pf->vsi[v]);
5144}
5145
5146/**
5147 * ice_pf_ena_all_vsi - Resume all VSIs on a PF
5148 * @pf: the PF
5149 */
5150static void ice_pf_ena_all_vsi(struct ice_pf *pf)
5151{
5152	int v;
5153
5154	ice_for_each_vsi(pf, v)
5155		if (pf->vsi[v])
5156			ice_ena_vsi(pf->vsi[v]);
5157}
5158
5159/**
5160 * ice_rebuild - rebuild after reset
5161 * @pf: pf to rebuild
 
 
 
 
 
 
5162 */
5163static void ice_rebuild(struct ice_pf *pf)
5164{
5165	struct device *dev = &pf->pdev->dev;
5166	struct ice_hw *hw = &pf->hw;
5167	enum ice_status ret;
5168	int err;
5169
5170	if (test_bit(__ICE_DOWN, pf->state))
5171		goto clear_recovery;
5172
5173	dev_dbg(dev, "rebuilding pf\n");
5174
5175	ret = ice_init_all_ctrlq(hw);
5176	if (ret) {
5177		dev_err(dev, "control queues init failed %d\n", ret);
5178		goto fail_reset;
 
 
 
 
 
 
 
 
 
 
 
5179	}
5180
5181	ret = ice_clear_pf_cfg(hw);
5182	if (ret) {
5183		dev_err(dev, "clear PF configuration failed %d\n", ret);
5184		goto fail_reset;
 
5185	}
5186
 
 
 
 
 
 
5187	ice_clear_pxe_mode(hw);
5188
5189	ret = ice_get_caps(hw);
5190	if (ret) {
5191		dev_err(dev, "ice_get_caps failed %d\n", ret);
5192		goto fail_reset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5193	}
5194
5195	/* basic nic switch setup */
5196	err = ice_setup_pf_sw(pf);
 
 
 
5197	if (err) {
5198		dev_err(dev, "ice_setup_pf_sw failed\n");
5199		goto fail_reset;
5200	}
5201
5202	/* start misc vector */
5203	if (test_bit(ICE_FLAG_MSIX_ENA, pf->flags)) {
5204		err = ice_req_irq_msix_misc(pf);
5205		if (err) {
5206			dev_err(dev, "misc vector setup failed: %d\n", err);
5207			goto fail_reset;
5208		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5209	}
5210
5211	/* restart the VSIs that were rebuilt and running before the reset */
5212	ice_pf_ena_all_vsi(pf);
5213
 
 
5214	return;
5215
5216fail_reset:
 
 
 
5217	ice_shutdown_all_ctrlq(hw);
5218	set_bit(__ICE_RESET_FAILED, pf->state);
5219clear_recovery:
5220	set_bit(__ICE_RESET_RECOVERY_PENDING, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5221}
5222
5223/**
5224 * ice_change_mtu - NDO callback to change the MTU
5225 * @netdev: network interface device structure
5226 * @new_mtu: new value for maximum frame size
5227 *
5228 * Returns 0 on success, negative on failure
5229 */
5230static int ice_change_mtu(struct net_device *netdev, int new_mtu)
5231{
5232	struct ice_netdev_priv *np = netdev_priv(netdev);
5233	struct ice_vsi *vsi = np->vsi;
5234	struct ice_pf *pf = vsi->back;
5235	u8 count = 0;
5236
5237	if (new_mtu == netdev->mtu) {
5238		netdev_warn(netdev, "mtu is already %d\n", netdev->mtu);
5239		return 0;
5240	}
5241
5242	if (new_mtu < netdev->min_mtu) {
5243		netdev_err(netdev, "new mtu invalid. min_mtu is %d\n",
 
 
 
 
 
 
 
 
 
 
5244			   netdev->min_mtu);
5245		return -EINVAL;
5246	} else if (new_mtu > netdev->max_mtu) {
5247		netdev_err(netdev, "new mtu invalid. max_mtu is %d\n",
5248			   netdev->min_mtu);
5249		return -EINVAL;
5250	}
5251	/* if a reset is in progress, wait for some time for it to complete */
5252	do {
5253		if (ice_is_reset_recovery_pending(pf->state)) {
5254			count++;
5255			usleep_range(1000, 2000);
5256		} else {
5257			break;
5258		}
5259
5260	} while (count < 100);
5261
5262	if (count == 100) {
5263		netdev_err(netdev, "can't change mtu. Device is busy\n");
5264		return -EBUSY;
5265	}
5266
5267	netdev->mtu = new_mtu;
5268
5269	/* if VSI is up, bring it down and then back up */
5270	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
5271		int err;
5272
5273		err = ice_down(vsi);
5274		if (err) {
5275			netdev_err(netdev, "change mtu if_up err %d\n", err);
5276			return err;
5277		}
5278
5279		err = ice_up(vsi);
5280		if (err) {
5281			netdev_err(netdev, "change mtu if_up err %d\n", err);
5282			return err;
5283		}
5284	}
5285
5286	netdev_dbg(netdev, "changed mtu to %d\n", new_mtu);
5287	return 0;
5288}
5289
5290/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5291 * ice_set_rss - Set RSS keys and lut
5292 * @vsi: Pointer to VSI structure
5293 * @seed: RSS hash seed
5294 * @lut: Lookup table
5295 * @lut_size: Lookup table size
5296 *
5297 * Returns 0 on success, negative on failure
5298 */
5299int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
5300{
5301	struct ice_pf *pf = vsi->back;
5302	struct ice_hw *hw = &pf->hw;
5303	enum ice_status status;
 
5304
 
5305	if (seed) {
5306		struct ice_aqc_get_set_rss_keys *buf =
5307				  (struct ice_aqc_get_set_rss_keys *)seed;
5308
5309		status = ice_aq_set_rss_key(hw, vsi->vsi_num, buf);
5310
5311		if (status) {
5312			dev_err(&pf->pdev->dev,
5313				"Cannot set RSS key, err %d aq_err %d\n",
5314				status, hw->adminq.rq_last_status);
5315			return -EIO;
5316		}
5317	}
5318
5319	if (lut) {
5320		status = ice_aq_set_rss_lut(hw, vsi->vsi_num,
5321					    vsi->rss_lut_type, lut, lut_size);
5322		if (status) {
5323			dev_err(&pf->pdev->dev,
5324				"Cannot set RSS lut, err %d aq_err %d\n",
5325				status, hw->adminq.rq_last_status);
5326			return -EIO;
5327		}
5328	}
5329
5330	return 0;
5331}
5332
5333/**
5334 * ice_get_rss - Get RSS keys and lut
5335 * @vsi: Pointer to VSI structure
5336 * @seed: Buffer to store the keys
5337 * @lut: Buffer to store the lookup table entries
5338 * @lut_size: Size of buffer to store the lookup table entries
5339 *
5340 * Returns 0 on success, negative on failure
5341 */
5342int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
5343{
5344	struct ice_pf *pf = vsi->back;
5345	struct ice_hw *hw = &pf->hw;
5346	enum ice_status status;
 
5347
 
5348	if (seed) {
5349		struct ice_aqc_get_set_rss_keys *buf =
5350				  (struct ice_aqc_get_set_rss_keys *)seed;
5351
5352		status = ice_aq_get_rss_key(hw, vsi->vsi_num, buf);
5353		if (status) {
5354			dev_err(&pf->pdev->dev,
5355				"Cannot get RSS key, err %d aq_err %d\n",
5356				status, hw->adminq.rq_last_status);
5357			return -EIO;
5358		}
5359	}
5360
5361	if (lut) {
5362		status = ice_aq_get_rss_lut(hw, vsi->vsi_num,
5363					    vsi->rss_lut_type, lut, lut_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5364		if (status) {
5365			dev_err(&pf->pdev->dev,
5366				"Cannot get RSS lut, err %d aq_err %d\n",
5367				status, hw->adminq.rq_last_status);
 
 
5368			return -EIO;
5369		}
 
 
5370	}
5371
5372	return 0;
5373}
5374
5375/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5376 * ice_open - Called when a network interface becomes active
5377 * @netdev: network interface device structure
5378 *
5379 * The open entry point is called when a network interface is made
5380 * active by the system (IFF_UP).  At this point all resources needed
5381 * for transmit and receive operations are allocated, the interrupt
5382 * handler is registered with the OS, the netdev watchdog is enabled,
5383 * and the stack is notified that the interface is ready.
5384 *
5385 * Returns 0 on success, negative value on failure
5386 */
5387static int ice_open(struct net_device *netdev)
5388{
5389	struct ice_netdev_priv *np = netdev_priv(netdev);
5390	struct ice_vsi *vsi = np->vsi;
 
 
5391	int err;
5392
 
 
 
 
 
 
 
 
 
 
5393	netif_carrier_off(netdev);
5394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5395	err = ice_vsi_open(vsi);
5396
5397	if (err)
5398		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
5399			   vsi->vsi_num, vsi->vsw->sw_id);
 
 
 
 
5400	return err;
5401}
5402
5403/**
5404 * ice_stop - Disables a network interface
5405 * @netdev: network interface device structure
5406 *
5407 * The stop entry point is called when an interface is de-activated by the OS,
5408 * and the netdevice enters the DOWN state.  The hardware is still under the
5409 * driver's control, but the netdev interface is disabled.
5410 *
5411 * Returns success only - not allowed to fail
5412 */
5413static int ice_stop(struct net_device *netdev)
5414{
5415	struct ice_netdev_priv *np = netdev_priv(netdev);
5416	struct ice_vsi *vsi = np->vsi;
5417
5418	ice_vsi_close(vsi);
5419
5420	return 0;
5421}
5422
5423/**
5424 * ice_features_check - Validate encapsulated packet conforms to limits
5425 * @skb: skb buffer
5426 * @netdev: This port's netdev
5427 * @features: Offload features that the stack believes apply
5428 */
5429static netdev_features_t
5430ice_features_check(struct sk_buff *skb,
5431		   struct net_device __always_unused *netdev,
5432		   netdev_features_t features)
5433{
5434	size_t len;
5435
5436	/* No point in doing any of this if neither checksum nor GSO are
5437	 * being requested for this frame.  We can rule out both by just
5438	 * checking for CHECKSUM_PARTIAL
5439	 */
5440	if (skb->ip_summed != CHECKSUM_PARTIAL)
5441		return features;
5442
5443	/* We cannot support GSO if the MSS is going to be less than
5444	 * 64 bytes.  If it is then we need to drop support for GSO.
5445	 */
5446	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
5447		features &= ~NETIF_F_GSO_MASK;
5448
5449	len = skb_network_header(skb) - skb->data;
5450	if (len & ~(ICE_TXD_MACLEN_MAX))
5451		goto out_rm_features;
5452
5453	len = skb_transport_header(skb) - skb_network_header(skb);
5454	if (len & ~(ICE_TXD_IPLEN_MAX))
5455		goto out_rm_features;
5456
5457	if (skb->encapsulation) {
5458		len = skb_inner_network_header(skb) - skb_transport_header(skb);
5459		if (len & ~(ICE_TXD_L4LEN_MAX))
5460			goto out_rm_features;
5461
5462		len = skb_inner_transport_header(skb) -
5463		      skb_inner_network_header(skb);
5464		if (len & ~(ICE_TXD_IPLEN_MAX))
5465			goto out_rm_features;
5466	}
5467
5468	return features;
5469out_rm_features:
5470	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
5471}
5472
 
 
 
 
 
 
 
 
 
 
 
5473static const struct net_device_ops ice_netdev_ops = {
5474	.ndo_open = ice_open,
5475	.ndo_stop = ice_stop,
5476	.ndo_start_xmit = ice_start_xmit,
5477	.ndo_features_check = ice_features_check,
5478	.ndo_set_rx_mode = ice_set_rx_mode,
5479	.ndo_set_mac_address = ice_set_mac_address,
5480	.ndo_validate_addr = eth_validate_addr,
5481	.ndo_change_mtu = ice_change_mtu,
5482	.ndo_get_stats64 = ice_get_stats64,
5483#ifdef CONFIG_NET_POLL_CONTROLLER
5484	.ndo_poll_controller = ice_netpoll,
5485#endif /* CONFIG_NET_POLL_CONTROLLER */
 
 
 
 
 
5486	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
5487	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
5488	.ndo_set_features = ice_set_features,
 
 
5489	.ndo_fdb_add = ice_fdb_add,
5490	.ndo_fdb_del = ice_fdb_del,
 
 
 
 
 
 
 
 
 
5491};