Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
   9#include "ice.h"
  10#include "ice_base.h"
  11#include "ice_lib.h"
  12#include "ice_fltr.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_dcb_nl.h"
  15#include "ice_devlink.h"
 
 
 
 
 
 
  16
  17#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
  18static const char ice_driver_string[] = DRV_SUMMARY;
  19static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  20
  21/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  22#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  23#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  24
  25MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  26MODULE_DESCRIPTION(DRV_SUMMARY);
  27MODULE_LICENSE("GPL v2");
  28MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  29
  30static int debug = -1;
  31module_param(debug, int, 0644);
  32#ifndef CONFIG_DYNAMIC_DEBUG
  33MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  34#else
  35MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  36#endif /* !CONFIG_DYNAMIC_DEBUG */
  37
 
 
  38static struct workqueue_struct *ice_wq;
  39static const struct net_device_ops ice_netdev_safe_mode_ops;
  40static const struct net_device_ops ice_netdev_ops;
  41static int ice_vsi_open(struct ice_vsi *vsi);
  42
  43static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  44
  45static void ice_vsi_release_all(struct ice_pf *pf);
  46
 
 
 
 
 
  47/**
  48 * ice_get_tx_pending - returns number of Tx descriptors not processed
  49 * @ring: the ring of descriptors
  50 */
  51static u16 ice_get_tx_pending(struct ice_ring *ring)
  52{
  53	u16 head, tail;
  54
  55	head = ring->next_to_clean;
  56	tail = ring->next_to_use;
  57
  58	if (head != tail)
  59		return (head < tail) ?
  60			tail - head : (tail + ring->count - head);
  61	return 0;
  62}
  63
  64/**
  65 * ice_check_for_hang_subtask - check for and recover hung queues
  66 * @pf: pointer to PF struct
  67 */
  68static void ice_check_for_hang_subtask(struct ice_pf *pf)
  69{
  70	struct ice_vsi *vsi = NULL;
  71	struct ice_hw *hw;
  72	unsigned int i;
  73	int packets;
  74	u32 v;
  75
  76	ice_for_each_vsi(pf, v)
  77		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  78			vsi = pf->vsi[v];
  79			break;
  80		}
  81
  82	if (!vsi || test_bit(__ICE_DOWN, vsi->state))
  83		return;
  84
  85	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  86		return;
  87
  88	hw = &vsi->back->hw;
  89
  90	for (i = 0; i < vsi->num_txq; i++) {
  91		struct ice_ring *tx_ring = vsi->tx_rings[i];
  92
  93		if (tx_ring && tx_ring->desc) {
  94			/* If packet counter has not changed the queue is
  95			 * likely stalled, so force an interrupt for this
  96			 * queue.
  97			 *
  98			 * prev_pkt would be negative if there was no
  99			 * pending work.
 100			 */
 101			packets = tx_ring->stats.pkts & INT_MAX;
 102			if (tx_ring->tx_stats.prev_pkt == packets) {
 103				/* Trigger sw interrupt to revive the queue */
 104				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 105				continue;
 106			}
 107
 108			/* Memory barrier between read of packet count and call
 109			 * to ice_get_tx_pending()
 110			 */
 111			smp_rmb();
 112			tx_ring->tx_stats.prev_pkt =
 113			    ice_get_tx_pending(tx_ring) ? packets : -1;
 114		}
 115	}
 116}
 117
 118/**
 119 * ice_init_mac_fltr - Set initial MAC filters
 120 * @pf: board private structure
 121 *
 122 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 123 * address and broadcast address. If an error is encountered, netdevice will be
 124 * unregistered.
 125 */
 126static int ice_init_mac_fltr(struct ice_pf *pf)
 127{
 128	enum ice_status status;
 129	struct ice_vsi *vsi;
 130	u8 *perm_addr;
 131
 132	vsi = ice_get_main_vsi(pf);
 133	if (!vsi)
 134		return -EINVAL;
 135
 136	perm_addr = vsi->port_info->mac.perm_addr;
 137	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 138	if (!status)
 139		return 0;
 140
 141	/* We aren't useful with no MAC filters, so unregister if we
 142	 * had an error
 143	 */
 144	if (vsi->netdev->reg_state == NETREG_REGISTERED) {
 145		dev_err(ice_pf_to_dev(pf), "Could not add MAC filters error %s. Unregistering device\n",
 146			ice_stat_str(status));
 147		unregister_netdev(vsi->netdev);
 148		free_netdev(vsi->netdev);
 149		vsi->netdev = NULL;
 150	}
 151
 152	return -EIO;
 153}
 154
 155/**
 156 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 157 * @netdev: the net device on which the sync is happening
 158 * @addr: MAC address to sync
 159 *
 160 * This is a callback function which is called by the in kernel device sync
 161 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 162 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 163 * MAC filters from the hardware.
 164 */
 165static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 166{
 167	struct ice_netdev_priv *np = netdev_priv(netdev);
 168	struct ice_vsi *vsi = np->vsi;
 169
 170	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 171				     ICE_FWD_TO_VSI))
 172		return -EINVAL;
 173
 174	return 0;
 175}
 176
 177/**
 178 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 179 * @netdev: the net device on which the unsync is happening
 180 * @addr: MAC address to unsync
 181 *
 182 * This is a callback function which is called by the in kernel device unsync
 183 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 184 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 185 * delete the MAC filters from the hardware.
 186 */
 187static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 188{
 189	struct ice_netdev_priv *np = netdev_priv(netdev);
 190	struct ice_vsi *vsi = np->vsi;
 191
 
 
 
 
 
 
 
 
 192	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 193				     ICE_FWD_TO_VSI))
 194		return -EINVAL;
 195
 196	return 0;
 197}
 198
 199/**
 200 * ice_vsi_fltr_changed - check if filter state changed
 201 * @vsi: VSI to be checked
 202 *
 203 * returns true if filter state has changed, false otherwise.
 204 */
 205static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 206{
 207	return test_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags) ||
 208	       test_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags) ||
 209	       test_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 210}
 211
 212/**
 213 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 214 * @vsi: the VSI being configured
 215 * @promisc_m: mask of promiscuous config bits
 216 * @set_promisc: enable or disable promisc flag request
 217 *
 218 */
 219static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 220{
 221	struct ice_hw *hw = &vsi->back->hw;
 222	enum ice_status status = 0;
 223
 224	if (vsi->type != ICE_VSI_PF)
 225		return 0;
 226
 227	if (vsi->vlan_ena) {
 228		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 229						  set_promisc);
 230	} else {
 231		if (set_promisc)
 232			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 233						     0);
 234		else
 235			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 236						       0);
 237	}
 238
 239	if (status)
 240		return -EIO;
 241
 242	return 0;
 243}
 244
 245/**
 246 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 247 * @vsi: ptr to the VSI
 248 *
 249 * Push any outstanding VSI filter changes through the AdminQ.
 250 */
 251static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 252{
 253	struct device *dev = ice_pf_to_dev(vsi->back);
 254	struct net_device *netdev = vsi->netdev;
 255	bool promisc_forced_on = false;
 256	struct ice_pf *pf = vsi->back;
 257	struct ice_hw *hw = &pf->hw;
 258	enum ice_status status = 0;
 259	u32 changed_flags = 0;
 260	u8 promisc_m;
 261	int err = 0;
 262
 263	if (!vsi->netdev)
 264		return -EINVAL;
 265
 266	while (test_and_set_bit(__ICE_CFG_BUSY, vsi->state))
 267		usleep_range(1000, 2000);
 268
 269	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 270	vsi->current_netdev_flags = vsi->netdev->flags;
 271
 272	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 273	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 274
 275	if (ice_vsi_fltr_changed(vsi)) {
 276		clear_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 277		clear_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 278		clear_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
 279
 280		/* grab the netdev's addr_list_lock */
 281		netif_addr_lock_bh(netdev);
 282		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 283			      ice_add_mac_to_unsync_list);
 284		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 285			      ice_add_mac_to_unsync_list);
 286		/* our temp lists are populated. release lock */
 287		netif_addr_unlock_bh(netdev);
 288	}
 289
 290	/* Remove MAC addresses in the unsync list */
 291	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 292	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 293	if (status) {
 294		netdev_err(netdev, "Failed to delete MAC filters\n");
 295		/* if we failed because of alloc failures, just bail */
 296		if (status == ICE_ERR_NO_MEMORY) {
 297			err = -ENOMEM;
 298			goto out;
 299		}
 300	}
 301
 302	/* Add MAC addresses in the sync list */
 303	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 304	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 305	/* If filter is added successfully or already exists, do not go into
 306	 * 'if' condition and report it as error. Instead continue processing
 307	 * rest of the function.
 308	 */
 309	if (status && status != ICE_ERR_ALREADY_EXISTS) {
 310		netdev_err(netdev, "Failed to add MAC filters\n");
 311		/* If there is no more space for new umac filters, VSI
 312		 * should go into promiscuous mode. There should be some
 313		 * space reserved for promiscuous filters.
 314		 */
 315		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 316		    !test_and_set_bit(__ICE_FLTR_OVERFLOW_PROMISC,
 317				      vsi->state)) {
 318			promisc_forced_on = true;
 319			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 320				    vsi->vsi_num);
 321		} else {
 322			err = -EIO;
 323			goto out;
 324		}
 325	}
 326	/* check for changes in promiscuous modes */
 327	if (changed_flags & IFF_ALLMULTI) {
 328		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 329			if (vsi->vlan_ena)
 330				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 331			else
 332				promisc_m = ICE_MCAST_PROMISC_BITS;
 333
 334			err = ice_cfg_promisc(vsi, promisc_m, true);
 335			if (err) {
 336				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 337					   vsi->vsi_num);
 338				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 339				goto out_promisc;
 340			}
 341		} else {
 342			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 343			if (vsi->vlan_ena)
 344				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 345			else
 346				promisc_m = ICE_MCAST_PROMISC_BITS;
 347
 348			err = ice_cfg_promisc(vsi, promisc_m, false);
 349			if (err) {
 350				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 351					   vsi->vsi_num);
 352				vsi->current_netdev_flags |= IFF_ALLMULTI;
 353				goto out_promisc;
 354			}
 355		}
 356	}
 357
 358	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 359	    test_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags)) {
 360		clear_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 361		if (vsi->current_netdev_flags & IFF_PROMISC) {
 362			/* Apply Rx filter rule to get traffic from wire */
 363			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
 364				err = ice_set_dflt_vsi(pf->first_sw, vsi);
 365				if (err && err != -EEXIST) {
 366					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 367						   err, vsi->vsi_num);
 368					vsi->current_netdev_flags &=
 369						~IFF_PROMISC;
 370					goto out_promisc;
 371				}
 372				ice_cfg_vlan_pruning(vsi, false, false);
 373			}
 374		} else {
 375			/* Clear Rx filter to remove traffic from wire */
 376			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
 377				err = ice_clear_dflt_vsi(pf->first_sw);
 378				if (err) {
 379					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 380						   err, vsi->vsi_num);
 381					vsi->current_netdev_flags |=
 382						IFF_PROMISC;
 383					goto out_promisc;
 384				}
 385				if (vsi->num_vlan > 1)
 386					ice_cfg_vlan_pruning(vsi, true, false);
 387			}
 388		}
 389	}
 390	goto exit;
 391
 392out_promisc:
 393	set_bit(ICE_VSI_FLAG_PROMISC_CHANGED, vsi->flags);
 394	goto exit;
 395out:
 396	/* if something went wrong then set the changed flag so we try again */
 397	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
 398	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
 399exit:
 400	clear_bit(__ICE_CFG_BUSY, vsi->state);
 401	return err;
 402}
 403
 404/**
 405 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 406 * @pf: board private structure
 407 */
 408static void ice_sync_fltr_subtask(struct ice_pf *pf)
 409{
 410	int v;
 411
 412	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 413		return;
 414
 415	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 416
 417	ice_for_each_vsi(pf, v)
 418		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 419		    ice_vsi_sync_fltr(pf->vsi[v])) {
 420			/* come back and try again later */
 421			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 422			break;
 423		}
 424}
 425
 426/**
 427 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 428 * @pf: the PF
 429 * @locked: is the rtnl_lock already held
 430 */
 431static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 432{
 
 433	int v;
 434
 435	ice_for_each_vsi(pf, v)
 436		if (pf->vsi[v])
 437			ice_dis_vsi(pf->vsi[v], locked);
 
 
 
 
 
 
 438}
 439
 440/**
 441 * ice_prepare_for_reset - prep for the core to reset
 442 * @pf: board private structure
 443 *
 444 * Inform or close all dependent features in prep for reset.
 445 */
 446static void
 447ice_prepare_for_reset(struct ice_pf *pf)
 448{
 449	struct ice_hw *hw = &pf->hw;
 450	unsigned int i;
 451
 452	/* already prepared for reset */
 453	if (test_bit(__ICE_PREPARED_FOR_RESET, pf->state))
 454		return;
 455
 
 
 456	/* Notify VFs of impending reset */
 457	if (ice_check_sq_alive(hw, &hw->mailboxq))
 458		ice_vc_notify_reset(pf);
 459
 460	/* Disable VFs until reset is completed */
 461	ice_for_each_vf(pf, i)
 462		ice_set_vf_state_qs_dis(&pf->vf[i]);
 463
 464	/* clear SW filtering DB */
 465	ice_clear_hw_tbls(hw);
 466	/* disable the VSIs and their queues that are not already DOWN */
 467	ice_pf_dis_all_vsi(pf, false);
 468
 
 
 
 469	if (hw->port_info)
 470		ice_sched_clear_port(hw->port_info);
 471
 472	ice_shutdown_all_ctrlq(hw);
 473
 474	set_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 475}
 476
 477/**
 478 * ice_do_reset - Initiate one of many types of resets
 479 * @pf: board private structure
 480 * @reset_type: reset type requested
 481 * before this function was called.
 482 */
 483static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 484{
 485	struct device *dev = ice_pf_to_dev(pf);
 486	struct ice_hw *hw = &pf->hw;
 487
 488	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 489	WARN_ON(in_interrupt());
 490
 491	ice_prepare_for_reset(pf);
 492
 493	/* trigger the reset */
 494	if (ice_reset(hw, reset_type)) {
 495		dev_err(dev, "reset %d failed\n", reset_type);
 496		set_bit(__ICE_RESET_FAILED, pf->state);
 497		clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 498		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 499		clear_bit(__ICE_PFR_REQ, pf->state);
 500		clear_bit(__ICE_CORER_REQ, pf->state);
 501		clear_bit(__ICE_GLOBR_REQ, pf->state);
 
 502		return;
 503	}
 504
 505	/* PFR is a bit of a special case because it doesn't result in an OICR
 506	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 507	 * associated state bits.
 508	 */
 509	if (reset_type == ICE_RESET_PFR) {
 510		pf->pfr_count++;
 511		ice_rebuild(pf, reset_type);
 512		clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 513		clear_bit(__ICE_PFR_REQ, pf->state);
 
 514		ice_reset_all_vfs(pf, true);
 515	}
 516}
 517
 518/**
 519 * ice_reset_subtask - Set up for resetting the device and driver
 520 * @pf: board private structure
 521 */
 522static void ice_reset_subtask(struct ice_pf *pf)
 523{
 524	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 525
 526	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 527	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 528	 * of reset is pending and sets bits in pf->state indicating the reset
 529	 * type and __ICE_RESET_OICR_RECV. So, if the latter bit is set
 530	 * prepare for pending reset if not already (for PF software-initiated
 531	 * global resets the software should already be prepared for it as
 532	 * indicated by __ICE_PREPARED_FOR_RESET; for global resets initiated
 533	 * by firmware or software on other PFs, that bit is not set so prepare
 534	 * for the reset now), poll for reset done, rebuild and return.
 535	 */
 536	if (test_bit(__ICE_RESET_OICR_RECV, pf->state)) {
 537		/* Perform the largest reset requested */
 538		if (test_and_clear_bit(__ICE_CORER_RECV, pf->state))
 539			reset_type = ICE_RESET_CORER;
 540		if (test_and_clear_bit(__ICE_GLOBR_RECV, pf->state))
 541			reset_type = ICE_RESET_GLOBR;
 542		if (test_and_clear_bit(__ICE_EMPR_RECV, pf->state))
 543			reset_type = ICE_RESET_EMPR;
 544		/* return if no valid reset type requested */
 545		if (reset_type == ICE_RESET_INVAL)
 546			return;
 547		ice_prepare_for_reset(pf);
 548
 549		/* make sure we are ready to rebuild */
 550		if (ice_check_reset(&pf->hw)) {
 551			set_bit(__ICE_RESET_FAILED, pf->state);
 552		} else {
 553			/* done with reset. start rebuild */
 554			pf->hw.reset_ongoing = false;
 555			ice_rebuild(pf, reset_type);
 556			/* clear bit to resume normal operations, but
 557			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 558			 */
 559			clear_bit(__ICE_RESET_OICR_RECV, pf->state);
 560			clear_bit(__ICE_PREPARED_FOR_RESET, pf->state);
 561			clear_bit(__ICE_PFR_REQ, pf->state);
 562			clear_bit(__ICE_CORER_REQ, pf->state);
 563			clear_bit(__ICE_GLOBR_REQ, pf->state);
 
 564			ice_reset_all_vfs(pf, true);
 565		}
 566
 567		return;
 568	}
 569
 570	/* No pending resets to finish processing. Check for new resets */
 571	if (test_bit(__ICE_PFR_REQ, pf->state))
 572		reset_type = ICE_RESET_PFR;
 573	if (test_bit(__ICE_CORER_REQ, pf->state))
 574		reset_type = ICE_RESET_CORER;
 575	if (test_bit(__ICE_GLOBR_REQ, pf->state))
 576		reset_type = ICE_RESET_GLOBR;
 577	/* If no valid reset type requested just return */
 578	if (reset_type == ICE_RESET_INVAL)
 579		return;
 580
 581	/* reset if not already down or busy */
 582	if (!test_bit(__ICE_DOWN, pf->state) &&
 583	    !test_bit(__ICE_CFG_BUSY, pf->state)) {
 584		ice_do_reset(pf, reset_type);
 585	}
 586}
 587
 588/**
 589 * ice_print_topo_conflict - print topology conflict message
 590 * @vsi: the VSI whose topology status is being checked
 591 */
 592static void ice_print_topo_conflict(struct ice_vsi *vsi)
 593{
 594	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 595	case ICE_AQ_LINK_TOPO_CONFLICT:
 596	case ICE_AQ_LINK_MEDIA_CONFLICT:
 597	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 598	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 599	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 600		netdev_info(vsi->netdev, "Possible mis-configuration of the Ethernet port detected, please use the Intel(R) Ethernet Port Configuration Tool application to address the issue.\n");
 601		break;
 602	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 603		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 604		break;
 605	default:
 606		break;
 607	}
 608}
 609
 610/**
 611 * ice_print_link_msg - print link up or down message
 612 * @vsi: the VSI whose link status is being queried
 613 * @isup: boolean for if the link is now up or down
 614 */
 615void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 616{
 617	struct ice_aqc_get_phy_caps_data *caps;
 618	const char *an_advertised;
 619	enum ice_status status;
 620	const char *fec_req;
 621	const char *speed;
 622	const char *fec;
 623	const char *fc;
 624	const char *an;
 625
 626	if (!vsi)
 627		return;
 628
 629	if (vsi->current_isup == isup)
 630		return;
 631
 632	vsi->current_isup = isup;
 633
 634	if (!isup) {
 635		netdev_info(vsi->netdev, "NIC Link is Down\n");
 636		return;
 637	}
 638
 639	switch (vsi->port_info->phy.link_info.link_speed) {
 640	case ICE_AQ_LINK_SPEED_100GB:
 641		speed = "100 G";
 642		break;
 643	case ICE_AQ_LINK_SPEED_50GB:
 644		speed = "50 G";
 645		break;
 646	case ICE_AQ_LINK_SPEED_40GB:
 647		speed = "40 G";
 648		break;
 649	case ICE_AQ_LINK_SPEED_25GB:
 650		speed = "25 G";
 651		break;
 652	case ICE_AQ_LINK_SPEED_20GB:
 653		speed = "20 G";
 654		break;
 655	case ICE_AQ_LINK_SPEED_10GB:
 656		speed = "10 G";
 657		break;
 658	case ICE_AQ_LINK_SPEED_5GB:
 659		speed = "5 G";
 660		break;
 661	case ICE_AQ_LINK_SPEED_2500MB:
 662		speed = "2.5 G";
 663		break;
 664	case ICE_AQ_LINK_SPEED_1000MB:
 665		speed = "1 G";
 666		break;
 667	case ICE_AQ_LINK_SPEED_100MB:
 668		speed = "100 M";
 669		break;
 670	default:
 671		speed = "Unknown";
 672		break;
 673	}
 674
 675	switch (vsi->port_info->fc.current_mode) {
 676	case ICE_FC_FULL:
 677		fc = "Rx/Tx";
 678		break;
 679	case ICE_FC_TX_PAUSE:
 680		fc = "Tx";
 681		break;
 682	case ICE_FC_RX_PAUSE:
 683		fc = "Rx";
 684		break;
 685	case ICE_FC_NONE:
 686		fc = "None";
 687		break;
 688	default:
 689		fc = "Unknown";
 690		break;
 691	}
 692
 693	/* Get FEC mode based on negotiated link info */
 694	switch (vsi->port_info->phy.link_info.fec_info) {
 695	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 696	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 697		fec = "RS-FEC";
 698		break;
 699	case ICE_AQ_LINK_25G_KR_FEC_EN:
 700		fec = "FC-FEC/BASE-R";
 701		break;
 702	default:
 703		fec = "NONE";
 704		break;
 705	}
 706
 707	/* check if autoneg completed, might be false due to not supported */
 708	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 709		an = "True";
 710	else
 711		an = "False";
 712
 713	/* Get FEC mode requested based on PHY caps last SW configuration */
 714	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 715	if (!caps) {
 716		fec_req = "Unknown";
 717		an_advertised = "Unknown";
 718		goto done;
 719	}
 720
 721	status = ice_aq_get_phy_caps(vsi->port_info, false,
 722				     ICE_AQC_REPORT_SW_CFG, caps, NULL);
 723	if (status)
 724		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 725
 726	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 727
 728	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 729	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 730		fec_req = "RS-FEC";
 731	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 732		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 733		fec_req = "FC-FEC/BASE-R";
 734	else
 735		fec_req = "NONE";
 736
 737	kfree(caps);
 738
 739done:
 740	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 741		    speed, fec_req, fec, an_advertised, an, fc);
 742	ice_print_topo_conflict(vsi);
 743}
 744
 745/**
 746 * ice_vsi_link_event - update the VSI's netdev
 747 * @vsi: the VSI on which the link event occurred
 748 * @link_up: whether or not the VSI needs to be set up or down
 749 */
 750static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 751{
 752	if (!vsi)
 753		return;
 754
 755	if (test_bit(__ICE_DOWN, vsi->state) || !vsi->netdev)
 756		return;
 757
 758	if (vsi->type == ICE_VSI_PF) {
 759		if (link_up == netif_carrier_ok(vsi->netdev))
 760			return;
 761
 762		if (link_up) {
 763			netif_carrier_on(vsi->netdev);
 764			netif_tx_wake_all_queues(vsi->netdev);
 765		} else {
 766			netif_carrier_off(vsi->netdev);
 767			netif_tx_stop_all_queues(vsi->netdev);
 768		}
 769	}
 770}
 771
 772/**
 773 * ice_set_dflt_mib - send a default config MIB to the FW
 774 * @pf: private PF struct
 775 *
 776 * This function sends a default configuration MIB to the FW.
 777 *
 778 * If this function errors out at any point, the driver is still able to
 779 * function.  The main impact is that LFC may not operate as expected.
 780 * Therefore an error state in this function should be treated with a DBG
 781 * message and continue on with driver rebuild/reenable.
 782 */
 783static void ice_set_dflt_mib(struct ice_pf *pf)
 784{
 785	struct device *dev = ice_pf_to_dev(pf);
 786	u8 mib_type, *buf, *lldpmib = NULL;
 787	u16 len, typelen, offset = 0;
 788	struct ice_lldp_org_tlv *tlv;
 789	struct ice_hw *hw;
 790	u32 ouisubtype;
 791
 792	if (!pf) {
 793		dev_dbg(dev, "%s NULL pf pointer\n", __func__);
 794		return;
 795	}
 796
 797	hw = &pf->hw;
 798	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 799	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 800	if (!lldpmib) {
 801		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 802			__func__);
 803		return;
 804	}
 805
 806	/* Add ETS CFG TLV */
 807	tlv = (struct ice_lldp_org_tlv *)lldpmib;
 808	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 809		   ICE_IEEE_ETS_TLV_LEN);
 810	tlv->typelen = htons(typelen);
 811	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 812		      ICE_IEEE_SUBTYPE_ETS_CFG);
 813	tlv->ouisubtype = htonl(ouisubtype);
 814
 815	buf = tlv->tlvinfo;
 816	buf[0] = 0;
 817
 818	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 819	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 820	 * Octets 13 - 20 are TSA values - leave as zeros
 821	 */
 822	buf[5] = 0x64;
 823	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 824	offset += len + 2;
 825	tlv = (struct ice_lldp_org_tlv *)
 826		((char *)tlv + sizeof(tlv->typelen) + len);
 827
 828	/* Add ETS REC TLV */
 829	buf = tlv->tlvinfo;
 830	tlv->typelen = htons(typelen);
 831
 832	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 833		      ICE_IEEE_SUBTYPE_ETS_REC);
 834	tlv->ouisubtype = htonl(ouisubtype);
 835
 836	/* First octet of buf is reserved
 837	 * Octets 1 - 4 map UP to TC - all UPs map to zero
 838	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
 839	 * Octets 13 - 20 are TSA value - leave as zeros
 840	 */
 841	buf[5] = 0x64;
 842	offset += len + 2;
 843	tlv = (struct ice_lldp_org_tlv *)
 844		((char *)tlv + sizeof(tlv->typelen) + len);
 845
 846	/* Add PFC CFG TLV */
 847	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 848		   ICE_IEEE_PFC_TLV_LEN);
 849	tlv->typelen = htons(typelen);
 850
 851	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 852		      ICE_IEEE_SUBTYPE_PFC_CFG);
 853	tlv->ouisubtype = htonl(ouisubtype);
 854
 855	/* Octet 1 left as all zeros - PFC disabled */
 856	buf[0] = 0x08;
 857	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 858	offset += len + 2;
 859
 860	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
 861		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
 862
 863	kfree(lldpmib);
 864}
 865
 866/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867 * ice_link_event - process the link event
 868 * @pf: PF that the link event is associated with
 869 * @pi: port_info for the port that the link event is associated with
 870 * @link_up: true if the physical link is up and false if it is down
 871 * @link_speed: current link speed received from the link event
 872 *
 873 * Returns 0 on success and negative on failure
 874 */
 875static int
 876ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 877	       u16 link_speed)
 878{
 879	struct device *dev = ice_pf_to_dev(pf);
 880	struct ice_phy_info *phy_info;
 
 881	struct ice_vsi *vsi;
 882	u16 old_link_speed;
 883	bool old_link;
 884	int result;
 885
 886	phy_info = &pi->phy;
 887	phy_info->link_info_old = phy_info->link_info;
 888
 889	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 890	old_link_speed = phy_info->link_info_old.link_speed;
 891
 892	/* update the link info structures and re-enable link events,
 893	 * don't bail on failure due to other book keeping needed
 894	 */
 895	result = ice_update_link_info(pi);
 896	if (result)
 897		dev_dbg(dev, "Failed to update link status and re-enable link events for port %d\n",
 898			pi->lport);
 
 
 
 899
 900	/* Check if the link state is up after updating link info, and treat
 901	 * this event as an UP event since the link is actually UP now.
 902	 */
 903	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
 904		link_up = true;
 905
 906	vsi = ice_get_main_vsi(pf);
 907	if (!vsi || !vsi->port_info)
 908		return -EINVAL;
 909
 910	/* turn off PHY if media was removed */
 911	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 912	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 913		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 914
 915		result = ice_aq_set_link_restart_an(pi, false, NULL);
 916		if (result) {
 917			dev_dbg(dev, "Failed to set link down, VSI %d error %d\n",
 918				vsi->vsi_num, result);
 919			return result;
 920		}
 921	}
 922
 923	/* if the old link up/down and speed is the same as the new */
 924	if (link_up == old_link && link_speed == old_link_speed)
 925		return result;
 926
 927	if (ice_is_dcb_active(pf)) {
 928		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
 929			ice_dcb_rebuild(pf);
 930	} else {
 931		if (link_up)
 932			ice_set_dflt_mib(pf);
 933	}
 934	ice_vsi_link_event(vsi, link_up);
 935	ice_print_link_msg(vsi, link_up);
 936
 937	ice_vc_notify_link_state(pf);
 938
 939	return result;
 940}
 941
 942/**
 943 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 944 * @pf: board private structure
 945 */
 946static void ice_watchdog_subtask(struct ice_pf *pf)
 947{
 948	int i;
 949
 950	/* if interface is down do nothing */
 951	if (test_bit(__ICE_DOWN, pf->state) ||
 952	    test_bit(__ICE_CFG_BUSY, pf->state))
 953		return;
 954
 955	/* make sure we don't do these things too often */
 956	if (time_before(jiffies,
 957			pf->serv_tmr_prev + pf->serv_tmr_period))
 958		return;
 959
 960	pf->serv_tmr_prev = jiffies;
 961
 962	/* Update the stats for active netdevs so the network stack
 963	 * can look at updated numbers whenever it cares to
 964	 */
 965	ice_update_pf_stats(pf);
 966	ice_for_each_vsi(pf, i)
 967		if (pf->vsi[i] && pf->vsi[i]->netdev)
 968			ice_update_vsi_stats(pf->vsi[i]);
 969}
 970
 971/**
 972 * ice_init_link_events - enable/initialize link events
 973 * @pi: pointer to the port_info instance
 974 *
 975 * Returns -EIO on failure, 0 on success
 976 */
 977static int ice_init_link_events(struct ice_port_info *pi)
 978{
 979	u16 mask;
 980
 981	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
 982		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
 983
 984	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
 985		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
 986			pi->lport);
 987		return -EIO;
 988	}
 989
 990	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
 991		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
 992			pi->lport);
 993		return -EIO;
 994	}
 995
 996	return 0;
 997}
 998
 999/**
1000 * ice_handle_link_event - handle link event via ARQ
1001 * @pf: PF that the link event is associated with
1002 * @event: event structure containing link status info
1003 */
1004static int
1005ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1006{
1007	struct ice_aqc_get_link_status_data *link_data;
1008	struct ice_port_info *port_info;
1009	int status;
1010
1011	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1012	port_info = pf->hw.port_info;
1013	if (!port_info)
1014		return -EINVAL;
1015
1016	status = ice_link_event(pf, port_info,
1017				!!(link_data->link_info & ICE_AQ_LINK_UP),
1018				le16_to_cpu(link_data->link_speed));
1019	if (status)
1020		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1021			status);
1022
1023	return status;
1024}
1025
1026enum ice_aq_task_state {
1027	ICE_AQ_TASK_WAITING = 0,
1028	ICE_AQ_TASK_COMPLETE,
1029	ICE_AQ_TASK_CANCELED,
1030};
1031
1032struct ice_aq_task {
1033	struct hlist_node entry;
1034
1035	u16 opcode;
1036	struct ice_rq_event_info *event;
1037	enum ice_aq_task_state state;
1038};
1039
1040/**
1041 * ice_wait_for_aq_event - Wait for an AdminQ event from firmware
1042 * @pf: pointer to the PF private structure
1043 * @opcode: the opcode to wait for
1044 * @timeout: how long to wait, in jiffies
1045 * @event: storage for the event info
1046 *
1047 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1048 * current thread will be put to sleep until the specified event occurs or
1049 * until the given timeout is reached.
1050 *
1051 * To obtain only the descriptor contents, pass an event without an allocated
1052 * msg_buf. If the complete data buffer is desired, allocate the
1053 * event->msg_buf with enough space ahead of time.
1054 *
1055 * Returns: zero on success, or a negative error code on failure.
1056 */
1057int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1058			  struct ice_rq_event_info *event)
1059{
 
1060	struct ice_aq_task *task;
 
1061	long ret;
1062	int err;
1063
1064	task = kzalloc(sizeof(*task), GFP_KERNEL);
1065	if (!task)
1066		return -ENOMEM;
1067
1068	INIT_HLIST_NODE(&task->entry);
1069	task->opcode = opcode;
1070	task->event = event;
1071	task->state = ICE_AQ_TASK_WAITING;
1072
1073	spin_lock_bh(&pf->aq_wait_lock);
1074	hlist_add_head(&task->entry, &pf->aq_wait_list);
1075	spin_unlock_bh(&pf->aq_wait_lock);
1076
 
 
1077	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1078					       timeout);
1079	switch (task->state) {
1080	case ICE_AQ_TASK_WAITING:
1081		err = ret < 0 ? ret : -ETIMEDOUT;
1082		break;
1083	case ICE_AQ_TASK_CANCELED:
1084		err = ret < 0 ? ret : -ECANCELED;
1085		break;
1086	case ICE_AQ_TASK_COMPLETE:
1087		err = ret < 0 ? ret : 0;
1088		break;
1089	default:
1090		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1091		err = -EINVAL;
1092		break;
1093	}
1094
 
 
 
 
 
1095	spin_lock_bh(&pf->aq_wait_lock);
1096	hlist_del(&task->entry);
1097	spin_unlock_bh(&pf->aq_wait_lock);
1098	kfree(task);
1099
1100	return err;
1101}
1102
1103/**
1104 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1105 * @pf: pointer to the PF private structure
1106 * @opcode: the opcode of the event
1107 * @event: the event to check
1108 *
1109 * Loops over the current list of pending threads waiting for an AdminQ event.
1110 * For each matching task, copy the contents of the event into the task
1111 * structure and wake up the thread.
1112 *
1113 * If multiple threads wait for the same opcode, they will all be woken up.
1114 *
1115 * Note that event->msg_buf will only be duplicated if the event has a buffer
1116 * with enough space already allocated. Otherwise, only the descriptor and
1117 * message length will be copied.
1118 *
1119 * Returns: true if an event was found, false otherwise
1120 */
1121static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1122				struct ice_rq_event_info *event)
1123{
1124	struct ice_aq_task *task;
1125	bool found = false;
1126
1127	spin_lock_bh(&pf->aq_wait_lock);
1128	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1129		if (task->state || task->opcode != opcode)
1130			continue;
1131
1132		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1133		task->event->msg_len = event->msg_len;
1134
1135		/* Only copy the data buffer if a destination was set */
1136		if (task->event->msg_buf &&
1137		    task->event->buf_len > event->buf_len) {
1138			memcpy(task->event->msg_buf, event->msg_buf,
1139			       event->buf_len);
1140			task->event->buf_len = event->buf_len;
1141		}
1142
1143		task->state = ICE_AQ_TASK_COMPLETE;
1144		found = true;
1145	}
1146	spin_unlock_bh(&pf->aq_wait_lock);
1147
1148	if (found)
1149		wake_up(&pf->aq_wait_queue);
1150}
1151
1152/**
1153 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1154 * @pf: the PF private structure
1155 *
1156 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1157 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1158 */
1159static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1160{
1161	struct ice_aq_task *task;
1162
1163	spin_lock_bh(&pf->aq_wait_lock);
1164	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1165		task->state = ICE_AQ_TASK_CANCELED;
1166	spin_unlock_bh(&pf->aq_wait_lock);
1167
1168	wake_up(&pf->aq_wait_queue);
1169}
1170
1171/**
1172 * __ice_clean_ctrlq - helper function to clean controlq rings
1173 * @pf: ptr to struct ice_pf
1174 * @q_type: specific Control queue type
1175 */
1176static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1177{
1178	struct device *dev = ice_pf_to_dev(pf);
1179	struct ice_rq_event_info event;
1180	struct ice_hw *hw = &pf->hw;
1181	struct ice_ctl_q_info *cq;
1182	u16 pending, i = 0;
1183	const char *qtype;
1184	u32 oldval, val;
1185
1186	/* Do not clean control queue if/when PF reset fails */
1187	if (test_bit(__ICE_RESET_FAILED, pf->state))
1188		return 0;
1189
1190	switch (q_type) {
1191	case ICE_CTL_Q_ADMIN:
1192		cq = &hw->adminq;
1193		qtype = "Admin";
1194		break;
 
 
 
 
1195	case ICE_CTL_Q_MAILBOX:
1196		cq = &hw->mailboxq;
1197		qtype = "Mailbox";
 
 
 
 
1198		break;
1199	default:
1200		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1201		return 0;
1202	}
1203
1204	/* check for error indications - PF_xx_AxQLEN register layout for
1205	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1206	 */
1207	val = rd32(hw, cq->rq.len);
1208	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1209		   PF_FW_ARQLEN_ARQCRIT_M)) {
1210		oldval = val;
1211		if (val & PF_FW_ARQLEN_ARQVFE_M)
1212			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1213				qtype);
1214		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1215			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1216				qtype);
1217		}
1218		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1219			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1220				qtype);
1221		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1222			 PF_FW_ARQLEN_ARQCRIT_M);
1223		if (oldval != val)
1224			wr32(hw, cq->rq.len, val);
1225	}
1226
1227	val = rd32(hw, cq->sq.len);
1228	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1229		   PF_FW_ATQLEN_ATQCRIT_M)) {
1230		oldval = val;
1231		if (val & PF_FW_ATQLEN_ATQVFE_M)
1232			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1233				qtype);
1234		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1235			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1236				qtype);
1237		}
1238		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1239			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1240				qtype);
1241		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1242			 PF_FW_ATQLEN_ATQCRIT_M);
1243		if (oldval != val)
1244			wr32(hw, cq->sq.len, val);
1245	}
1246
1247	event.buf_len = cq->rq_buf_size;
1248	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1249	if (!event.msg_buf)
1250		return 0;
1251
1252	do {
1253		enum ice_status ret;
1254		u16 opcode;
1255
1256		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1257		if (ret == ICE_ERR_AQ_NO_WORK)
1258			break;
1259		if (ret) {
1260			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1261				ice_stat_str(ret));
1262			break;
1263		}
1264
1265		opcode = le16_to_cpu(event.desc.opcode);
1266
1267		/* Notify any thread that might be waiting for this event */
1268		ice_aq_check_events(pf, opcode, &event);
1269
1270		switch (opcode) {
1271		case ice_aqc_opc_get_link_status:
1272			if (ice_handle_link_event(pf, &event))
1273				dev_err(dev, "Could not handle link event\n");
1274			break;
1275		case ice_aqc_opc_event_lan_overflow:
1276			ice_vf_lan_overflow_event(pf, &event);
1277			break;
1278		case ice_mbx_opc_send_msg_to_pf:
1279			ice_vc_process_vf_msg(pf, &event);
 
1280			break;
1281		case ice_aqc_opc_fw_logging:
1282			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1283			break;
1284		case ice_aqc_opc_lldp_set_mib_change:
1285			ice_dcb_process_lldp_set_mib_change(pf, &event);
1286			break;
1287		default:
1288			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1289				qtype, opcode);
1290			break;
1291		}
1292	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1293
1294	kfree(event.msg_buf);
1295
1296	return pending && (i == ICE_DFLT_IRQ_WORK);
1297}
1298
1299/**
1300 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1301 * @hw: pointer to hardware info
1302 * @cq: control queue information
1303 *
1304 * returns true if there are pending messages in a queue, false if there aren't
1305 */
1306static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1307{
1308	u16 ntu;
1309
1310	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1311	return cq->rq.next_to_clean != ntu;
1312}
1313
1314/**
1315 * ice_clean_adminq_subtask - clean the AdminQ rings
1316 * @pf: board private structure
1317 */
1318static void ice_clean_adminq_subtask(struct ice_pf *pf)
1319{
1320	struct ice_hw *hw = &pf->hw;
1321
1322	if (!test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
1323		return;
1324
1325	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1326		return;
1327
1328	clear_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
1329
1330	/* There might be a situation where new messages arrive to a control
1331	 * queue between processing the last message and clearing the
1332	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1333	 * ice_ctrlq_pending) and process new messages if any.
1334	 */
1335	if (ice_ctrlq_pending(hw, &hw->adminq))
1336		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1337
1338	ice_flush(hw);
1339}
1340
1341/**
1342 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1343 * @pf: board private structure
1344 */
1345static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1346{
1347	struct ice_hw *hw = &pf->hw;
1348
1349	if (!test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1350		return;
1351
1352	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1353		return;
1354
1355	clear_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1356
1357	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1358		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1359
1360	ice_flush(hw);
1361}
1362
1363/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1364 * ice_service_task_schedule - schedule the service task to wake up
1365 * @pf: board private structure
1366 *
1367 * If not already scheduled, this puts the task into the work queue.
1368 */
1369void ice_service_task_schedule(struct ice_pf *pf)
1370{
1371	if (!test_bit(__ICE_SERVICE_DIS, pf->state) &&
1372	    !test_and_set_bit(__ICE_SERVICE_SCHED, pf->state) &&
1373	    !test_bit(__ICE_NEEDS_RESTART, pf->state))
1374		queue_work(ice_wq, &pf->serv_task);
1375}
1376
1377/**
1378 * ice_service_task_complete - finish up the service task
1379 * @pf: board private structure
1380 */
1381static void ice_service_task_complete(struct ice_pf *pf)
1382{
1383	WARN_ON(!test_bit(__ICE_SERVICE_SCHED, pf->state));
1384
1385	/* force memory (pf->state) to sync before next service task */
1386	smp_mb__before_atomic();
1387	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1388}
1389
1390/**
1391 * ice_service_task_stop - stop service task and cancel works
1392 * @pf: board private structure
1393 *
1394 * Return 0 if the __ICE_SERVICE_DIS bit was not already set,
1395 * 1 otherwise.
1396 */
1397static int ice_service_task_stop(struct ice_pf *pf)
1398{
1399	int ret;
1400
1401	ret = test_and_set_bit(__ICE_SERVICE_DIS, pf->state);
1402
1403	if (pf->serv_tmr.function)
1404		del_timer_sync(&pf->serv_tmr);
1405	if (pf->serv_task.func)
1406		cancel_work_sync(&pf->serv_task);
1407
1408	clear_bit(__ICE_SERVICE_SCHED, pf->state);
1409	return ret;
1410}
1411
1412/**
1413 * ice_service_task_restart - restart service task and schedule works
1414 * @pf: board private structure
1415 *
1416 * This function is needed for suspend and resume works (e.g WoL scenario)
1417 */
1418static void ice_service_task_restart(struct ice_pf *pf)
1419{
1420	clear_bit(__ICE_SERVICE_DIS, pf->state);
1421	ice_service_task_schedule(pf);
1422}
1423
1424/**
1425 * ice_service_timer - timer callback to schedule service task
1426 * @t: pointer to timer_list
1427 */
1428static void ice_service_timer(struct timer_list *t)
1429{
1430	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1431
1432	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1433	ice_service_task_schedule(pf);
1434}
1435
1436/**
1437 * ice_handle_mdd_event - handle malicious driver detect event
1438 * @pf: pointer to the PF structure
1439 *
1440 * Called from service task. OICR interrupt handler indicates MDD event.
1441 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1442 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1443 * disable the queue, the PF can be configured to reset the VF using ethtool
1444 * private flag mdd-auto-reset-vf.
1445 */
1446static void ice_handle_mdd_event(struct ice_pf *pf)
1447{
1448	struct device *dev = ice_pf_to_dev(pf);
1449	struct ice_hw *hw = &pf->hw;
1450	unsigned int i;
1451	u32 reg;
1452
1453	if (!test_and_clear_bit(__ICE_MDD_EVENT_PENDING, pf->state)) {
1454		/* Since the VF MDD event logging is rate limited, check if
1455		 * there are pending MDD events.
1456		 */
1457		ice_print_vfs_mdd_events(pf);
1458		return;
1459	}
1460
1461	/* find what triggered an MDD event */
1462	reg = rd32(hw, GL_MDET_TX_PQM);
1463	if (reg & GL_MDET_TX_PQM_VALID_M) {
1464		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1465				GL_MDET_TX_PQM_PF_NUM_S;
1466		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1467				GL_MDET_TX_PQM_VF_NUM_S;
1468		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1469				GL_MDET_TX_PQM_MAL_TYPE_S;
1470		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1471				GL_MDET_TX_PQM_QNUM_S);
1472
1473		if (netif_msg_tx_err(pf))
1474			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1475				 event, queue, pf_num, vf_num);
1476		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1477	}
1478
1479	reg = rd32(hw, GL_MDET_TX_TCLAN);
1480	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1481		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1482				GL_MDET_TX_TCLAN_PF_NUM_S;
1483		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1484				GL_MDET_TX_TCLAN_VF_NUM_S;
1485		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1486				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1487		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1488				GL_MDET_TX_TCLAN_QNUM_S);
1489
1490		if (netif_msg_tx_err(pf))
1491			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1492				 event, queue, pf_num, vf_num);
1493		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1494	}
1495
1496	reg = rd32(hw, GL_MDET_RX);
1497	if (reg & GL_MDET_RX_VALID_M) {
1498		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1499				GL_MDET_RX_PF_NUM_S;
1500		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1501				GL_MDET_RX_VF_NUM_S;
1502		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1503				GL_MDET_RX_MAL_TYPE_S;
1504		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1505				GL_MDET_RX_QNUM_S);
1506
1507		if (netif_msg_rx_err(pf))
1508			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1509				 event, queue, pf_num, vf_num);
1510		wr32(hw, GL_MDET_RX, 0xffffffff);
1511	}
1512
1513	/* check to see if this PF caused an MDD event */
1514	reg = rd32(hw, PF_MDET_TX_PQM);
1515	if (reg & PF_MDET_TX_PQM_VALID_M) {
1516		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1517		if (netif_msg_tx_err(pf))
1518			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1519	}
1520
1521	reg = rd32(hw, PF_MDET_TX_TCLAN);
1522	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1523		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1524		if (netif_msg_tx_err(pf))
1525			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1526	}
1527
1528	reg = rd32(hw, PF_MDET_RX);
1529	if (reg & PF_MDET_RX_VALID_M) {
1530		wr32(hw, PF_MDET_RX, 0xFFFF);
1531		if (netif_msg_rx_err(pf))
1532			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1533	}
1534
1535	/* Check to see if one of the VFs caused an MDD event, and then
1536	 * increment counters and set print pending
1537	 */
1538	ice_for_each_vf(pf, i) {
1539		struct ice_vf *vf = &pf->vf[i];
1540
1541		reg = rd32(hw, VP_MDET_TX_PQM(i));
1542		if (reg & VP_MDET_TX_PQM_VALID_M) {
1543			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1544			vf->mdd_tx_events.count++;
1545			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1546			if (netif_msg_tx_err(pf))
1547				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1548					 i);
1549		}
1550
1551		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1552		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1553			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1554			vf->mdd_tx_events.count++;
1555			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1556			if (netif_msg_tx_err(pf))
1557				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1558					 i);
1559		}
1560
1561		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1562		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1563			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1564			vf->mdd_tx_events.count++;
1565			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1566			if (netif_msg_tx_err(pf))
1567				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1568					 i);
1569		}
1570
1571		reg = rd32(hw, VP_MDET_RX(i));
1572		if (reg & VP_MDET_RX_VALID_M) {
1573			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1574			vf->mdd_rx_events.count++;
1575			set_bit(__ICE_MDD_VF_PRINT_PENDING, pf->state);
1576			if (netif_msg_rx_err(pf))
1577				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1578					 i);
1579
1580			/* Since the queue is disabled on VF Rx MDD events, the
1581			 * PF can be configured to reset the VF through ethtool
1582			 * private flag mdd-auto-reset-vf.
1583			 */
1584			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1585				/* VF MDD event counters will be cleared by
1586				 * reset, so print the event prior to reset.
1587				 */
1588				ice_print_vf_rx_mdd_event(vf);
1589				ice_reset_vf(&pf->vf[i], false);
1590			}
1591		}
1592	}
1593
1594	ice_print_vfs_mdd_events(pf);
1595}
1596
1597/**
1598 * ice_force_phys_link_state - Force the physical link state
1599 * @vsi: VSI to force the physical link state to up/down
1600 * @link_up: true/false indicates to set the physical link to up/down
1601 *
1602 * Force the physical link state by getting the current PHY capabilities from
1603 * hardware and setting the PHY config based on the determined capabilities. If
1604 * link changes a link event will be triggered because both the Enable Automatic
1605 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1606 *
1607 * Returns 0 on success, negative on failure
1608 */
1609static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1610{
1611	struct ice_aqc_get_phy_caps_data *pcaps;
1612	struct ice_aqc_set_phy_cfg_data *cfg;
1613	struct ice_port_info *pi;
1614	struct device *dev;
1615	int retcode;
1616
1617	if (!vsi || !vsi->port_info || !vsi->back)
1618		return -EINVAL;
1619	if (vsi->type != ICE_VSI_PF)
1620		return 0;
1621
1622	dev = ice_pf_to_dev(vsi->back);
1623
1624	pi = vsi->port_info;
1625
1626	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1627	if (!pcaps)
1628		return -ENOMEM;
1629
1630	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1631				      NULL);
1632	if (retcode) {
1633		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1634			vsi->vsi_num, retcode);
1635		retcode = -EIO;
1636		goto out;
1637	}
1638
1639	/* No change in link */
1640	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1641	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1642		goto out;
1643
1644	/* Use the current user PHY configuration. The current user PHY
1645	 * configuration is initialized during probe from PHY capabilities
1646	 * software mode, and updated on set PHY configuration.
1647	 */
1648	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1649	if (!cfg) {
1650		retcode = -ENOMEM;
1651		goto out;
1652	}
1653
1654	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1655	if (link_up)
1656		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1657	else
1658		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1659
1660	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1661	if (retcode) {
1662		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1663			vsi->vsi_num, retcode);
1664		retcode = -EIO;
1665	}
1666
1667	kfree(cfg);
1668out:
1669	kfree(pcaps);
1670	return retcode;
1671}
1672
1673/**
1674 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1675 * @pi: port info structure
1676 *
1677 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1678 */
1679static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1680{
1681	struct ice_aqc_get_phy_caps_data *pcaps;
1682	struct ice_pf *pf = pi->hw->back;
1683	enum ice_status status;
1684	int err = 0;
1685
1686	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1687	if (!pcaps)
1688		return -ENOMEM;
1689
1690	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_NVM_CAP, pcaps,
1691				     NULL);
1692
1693	if (status) {
1694		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1695		err = -EIO;
1696		goto out;
1697	}
1698
1699	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1700	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1701
1702out:
1703	kfree(pcaps);
1704	return err;
1705}
1706
1707/**
1708 * ice_init_link_dflt_override - Initialize link default override
1709 * @pi: port info structure
1710 *
1711 * Initialize link default override and PHY total port shutdown during probe
1712 */
1713static void ice_init_link_dflt_override(struct ice_port_info *pi)
1714{
1715	struct ice_link_default_override_tlv *ldo;
1716	struct ice_pf *pf = pi->hw->back;
1717
1718	ldo = &pf->link_dflt_override;
1719	if (ice_get_link_default_override(ldo, pi))
1720		return;
1721
1722	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1723		return;
1724
1725	/* Enable Total Port Shutdown (override/replace link-down-on-close
1726	 * ethtool private flag) for ports with Port Disable bit set.
1727	 */
1728	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1729	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1730}
1731
1732/**
1733 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1734 * @pi: port info structure
1735 *
1736 * If default override is enabled, initialized the user PHY cfg speed and FEC
1737 * settings using the default override mask from the NVM.
1738 *
1739 * The PHY should only be configured with the default override settings the
1740 * first time media is available. The __ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1741 * is used to indicate that the user PHY cfg default override is initialized
1742 * and the PHY has not been configured with the default override settings. The
1743 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1744 * configured.
 
 
 
1745 */
1746static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1747{
1748	struct ice_link_default_override_tlv *ldo;
1749	struct ice_aqc_set_phy_cfg_data *cfg;
1750	struct ice_phy_info *phy = &pi->phy;
1751	struct ice_pf *pf = pi->hw->back;
1752
1753	ldo = &pf->link_dflt_override;
1754
1755	/* If link default override is enabled, use to mask NVM PHY capabilities
1756	 * for speed and FEC default configuration.
1757	 */
1758	cfg = &phy->curr_user_phy_cfg;
1759
1760	if (ldo->phy_type_low || ldo->phy_type_high) {
1761		cfg->phy_type_low = pf->nvm_phy_type_lo &
1762				    cpu_to_le64(ldo->phy_type_low);
1763		cfg->phy_type_high = pf->nvm_phy_type_hi &
1764				     cpu_to_le64(ldo->phy_type_high);
1765	}
1766	cfg->link_fec_opt = ldo->fec_options;
1767	phy->curr_user_fec_req = ICE_FEC_AUTO;
1768
1769	set_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1770}
1771
1772/**
1773 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1774 * @pi: port info structure
1775 *
1776 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1777 * mode to default. The PHY defaults are from get PHY capabilities topology
1778 * with media so call when media is first available. An error is returned if
1779 * called when media is not available. The PHY initialization completed state is
1780 * set here.
1781 *
1782 * These configurations are used when setting PHY
1783 * configuration. The user PHY configuration is updated on set PHY
1784 * configuration. Returns 0 on success, negative on failure
1785 */
1786static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1787{
1788	struct ice_aqc_get_phy_caps_data *pcaps;
1789	struct ice_phy_info *phy = &pi->phy;
1790	struct ice_pf *pf = pi->hw->back;
1791	enum ice_status status;
1792	struct ice_vsi *vsi;
1793	int err = 0;
1794
1795	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1796		return -EIO;
1797
1798	vsi = ice_get_main_vsi(pf);
1799	if (!vsi)
1800		return -EINVAL;
1801
1802	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1803	if (!pcaps)
1804		return -ENOMEM;
1805
1806	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1807				     NULL);
 
 
 
 
1808	if (status) {
1809		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1810		err = -EIO;
1811		goto err_out;
1812	}
1813
1814	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1815
1816	/* check if lenient mode is supported and enabled */
1817	if (ice_fw_supports_link_override(&vsi->back->hw) &&
1818	    !(pcaps->module_compliance_enforcement &
1819	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1820		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1821
1822		/* if link default override is enabled, initialize user PHY
1823		 * configuration with link default override values
 
1824		 */
1825		if (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN) {
 
1826			ice_init_phy_cfg_dflt_override(pi);
1827			goto out;
1828		}
1829	}
1830
1831	/* if link default override is not enabled, initialize PHY using
1832	 * topology with media
1833	 */
1834	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1835						      pcaps->link_fec_options);
1836	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1837
1838out:
1839	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1840	set_bit(__ICE_PHY_INIT_COMPLETE, pf->state);
1841err_out:
1842	kfree(pcaps);
1843	return err;
1844}
1845
1846/**
1847 * ice_configure_phy - configure PHY
1848 * @vsi: VSI of PHY
1849 *
1850 * Set the PHY configuration. If the current PHY configuration is the same as
1851 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1852 * configure the based get PHY capabilities for topology with media.
1853 */
1854static int ice_configure_phy(struct ice_vsi *vsi)
1855{
1856	struct device *dev = ice_pf_to_dev(vsi->back);
 
1857	struct ice_aqc_get_phy_caps_data *pcaps;
1858	struct ice_aqc_set_phy_cfg_data *cfg;
1859	struct ice_port_info *pi;
 
1860	enum ice_status status;
1861	int err = 0;
1862
1863	pi = vsi->port_info;
1864	if (!pi)
1865		return -EINVAL;
1866
1867	/* Ensure we have media as we cannot configure a medialess port */
1868	if (!(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1869		return -EPERM;
1870
1871	ice_print_topo_conflict(vsi);
1872
1873	if (vsi->port_info->phy.link_info.topo_media_conflict ==
1874	    ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
1875		return -EPERM;
1876
1877	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
1878		return ice_force_phys_link_state(vsi, true);
1879
1880	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1881	if (!pcaps)
1882		return -ENOMEM;
1883
1884	/* Get current PHY config */
1885	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_SW_CFG, pcaps,
1886				     NULL);
1887	if (status) {
1888		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1889			vsi->vsi_num, ice_stat_str(status));
1890		err = -EIO;
1891		goto done;
1892	}
1893
1894	/* If PHY enable link is configured and configuration has not changed,
1895	 * there's nothing to do
1896	 */
1897	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1898	    ice_phy_caps_equals_cfg(pcaps, &pi->phy.curr_user_phy_cfg))
1899		goto done;
1900
1901	/* Use PHY topology as baseline for configuration */
1902	memset(pcaps, 0, sizeof(*pcaps));
1903	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP, pcaps,
1904				     NULL);
 
 
 
 
1905	if (status) {
1906		dev_err(dev, "Failed to get PHY topology, VSI %d error %s\n",
1907			vsi->vsi_num, ice_stat_str(status));
1908		err = -EIO;
1909		goto done;
1910	}
1911
1912	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1913	if (!cfg) {
1914		err = -ENOMEM;
1915		goto done;
1916	}
1917
1918	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
1919
1920	/* Speed - If default override pending, use curr_user_phy_cfg set in
1921	 * ice_init_phy_user_cfg_ldo.
1922	 */
1923	if (test_and_clear_bit(__ICE_LINK_DEFAULT_OVERRIDE_PENDING,
1924			       vsi->back->state)) {
1925		cfg->phy_type_low = pi->phy.curr_user_phy_cfg.phy_type_low;
1926		cfg->phy_type_high = pi->phy.curr_user_phy_cfg.phy_type_high;
1927	} else {
1928		u64 phy_low = 0, phy_high = 0;
1929
1930		ice_update_phy_type(&phy_low, &phy_high,
1931				    pi->phy.curr_user_speed_req);
1932		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
1933		cfg->phy_type_high = pcaps->phy_type_high &
1934				     cpu_to_le64(phy_high);
1935	}
1936
1937	/* Can't provide what was requested; use PHY capabilities */
1938	if (!cfg->phy_type_low && !cfg->phy_type_high) {
1939		cfg->phy_type_low = pcaps->phy_type_low;
1940		cfg->phy_type_high = pcaps->phy_type_high;
1941	}
1942
1943	/* FEC */
1944	ice_cfg_phy_fec(pi, cfg, pi->phy.curr_user_fec_req);
1945
1946	/* Can't provide what was requested; use PHY capabilities */
1947	if (cfg->link_fec_opt !=
1948	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
1949		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
1950		cfg->link_fec_opt = pcaps->link_fec_options;
1951	}
1952
1953	/* Flow Control - always supported; no need to check against
1954	 * capabilities
1955	 */
1956	ice_cfg_phy_fc(pi, cfg, pi->phy.curr_user_fc_req);
1957
1958	/* Enable link and link update */
1959	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
1960
1961	status = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1962	if (status) {
1963		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
1964			vsi->vsi_num, ice_stat_str(status));
1965		err = -EIO;
1966	}
1967
1968	kfree(cfg);
1969done:
1970	kfree(pcaps);
1971	return err;
1972}
1973
1974/**
1975 * ice_check_media_subtask - Check for media
1976 * @pf: pointer to PF struct
1977 *
1978 * If media is available, then initialize PHY user configuration if it is not
1979 * been, and configure the PHY if the interface is up.
1980 */
1981static void ice_check_media_subtask(struct ice_pf *pf)
1982{
1983	struct ice_port_info *pi;
1984	struct ice_vsi *vsi;
1985	int err;
1986
1987	/* No need to check for media if it's already present */
1988	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
1989		return;
1990
1991	vsi = ice_get_main_vsi(pf);
1992	if (!vsi)
1993		return;
1994
1995	/* Refresh link info and check if media is present */
1996	pi = vsi->port_info;
1997	err = ice_update_link_info(pi);
1998	if (err)
1999		return;
2000
 
 
2001	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2002		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state))
2003			ice_init_phy_user_cfg(pi);
2004
2005		/* PHY settings are reset on media insertion, reconfigure
2006		 * PHY to preserve settings.
2007		 */
2008		if (test_bit(__ICE_DOWN, vsi->state) &&
2009		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2010			return;
2011
2012		err = ice_configure_phy(vsi);
2013		if (!err)
2014			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2015
2016		/* A Link Status Event will be generated; the event handler
2017		 * will complete bringing the interface up
2018		 */
2019	}
2020}
2021
2022/**
2023 * ice_service_task - manage and run subtasks
2024 * @work: pointer to work_struct contained by the PF struct
2025 */
2026static void ice_service_task(struct work_struct *work)
2027{
2028	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2029	unsigned long start_time = jiffies;
2030
2031	/* subtasks */
2032
2033	/* process reset requests first */
2034	ice_reset_subtask(pf);
2035
2036	/* bail if a reset/recovery cycle is pending or rebuild failed */
2037	if (ice_is_reset_in_progress(pf->state) ||
2038	    test_bit(__ICE_SUSPENDED, pf->state) ||
2039	    test_bit(__ICE_NEEDS_RESTART, pf->state)) {
2040		ice_service_task_complete(pf);
2041		return;
2042	}
2043
2044	ice_clean_adminq_subtask(pf);
2045	ice_check_media_subtask(pf);
2046	ice_check_for_hang_subtask(pf);
2047	ice_sync_fltr_subtask(pf);
2048	ice_handle_mdd_event(pf);
2049	ice_watchdog_subtask(pf);
2050
2051	if (ice_is_safe_mode(pf)) {
2052		ice_service_task_complete(pf);
2053		return;
2054	}
2055
2056	ice_process_vflr_event(pf);
2057	ice_clean_mailboxq_subtask(pf);
 
2058	ice_sync_arfs_fltrs(pf);
2059	/* Clear __ICE_SERVICE_SCHED flag to allow scheduling next event */
 
 
2060	ice_service_task_complete(pf);
2061
2062	/* If the tasks have taken longer than one service timer period
2063	 * or there is more work to be done, reset the service timer to
2064	 * schedule the service task now.
2065	 */
2066	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2067	    test_bit(__ICE_MDD_EVENT_PENDING, pf->state) ||
2068	    test_bit(__ICE_VFLR_EVENT_PENDING, pf->state) ||
2069	    test_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2070	    test_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state))
 
 
2071		mod_timer(&pf->serv_tmr, jiffies);
2072}
2073
2074/**
2075 * ice_set_ctrlq_len - helper function to set controlq length
2076 * @hw: pointer to the HW instance
2077 */
2078static void ice_set_ctrlq_len(struct ice_hw *hw)
2079{
2080	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2081	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2082	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2083	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2084	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2085	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2086	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2087	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
 
 
 
 
2088}
2089
2090/**
2091 * ice_schedule_reset - schedule a reset
2092 * @pf: board private structure
2093 * @reset: reset being requested
2094 */
2095int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2096{
2097	struct device *dev = ice_pf_to_dev(pf);
2098
2099	/* bail out if earlier reset has failed */
2100	if (test_bit(__ICE_RESET_FAILED, pf->state)) {
2101		dev_dbg(dev, "earlier reset has failed\n");
2102		return -EIO;
2103	}
2104	/* bail if reset/recovery already in progress */
2105	if (ice_is_reset_in_progress(pf->state)) {
2106		dev_dbg(dev, "Reset already in progress\n");
2107		return -EBUSY;
2108	}
2109
 
 
2110	switch (reset) {
2111	case ICE_RESET_PFR:
2112		set_bit(__ICE_PFR_REQ, pf->state);
2113		break;
2114	case ICE_RESET_CORER:
2115		set_bit(__ICE_CORER_REQ, pf->state);
2116		break;
2117	case ICE_RESET_GLOBR:
2118		set_bit(__ICE_GLOBR_REQ, pf->state);
2119		break;
2120	default:
2121		return -EINVAL;
2122	}
2123
2124	ice_service_task_schedule(pf);
2125	return 0;
2126}
2127
2128/**
2129 * ice_irq_affinity_notify - Callback for affinity changes
2130 * @notify: context as to what irq was changed
2131 * @mask: the new affinity mask
2132 *
2133 * This is a callback function used by the irq_set_affinity_notifier function
2134 * so that we may register to receive changes to the irq affinity masks.
2135 */
2136static void
2137ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2138			const cpumask_t *mask)
2139{
2140	struct ice_q_vector *q_vector =
2141		container_of(notify, struct ice_q_vector, affinity_notify);
2142
2143	cpumask_copy(&q_vector->affinity_mask, mask);
2144}
2145
2146/**
2147 * ice_irq_affinity_release - Callback for affinity notifier release
2148 * @ref: internal core kernel usage
2149 *
2150 * This is a callback function used by the irq_set_affinity_notifier function
2151 * to inform the current notification subscriber that they will no longer
2152 * receive notifications.
2153 */
2154static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2155
2156/**
2157 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2158 * @vsi: the VSI being configured
2159 */
2160static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2161{
2162	struct ice_hw *hw = &vsi->back->hw;
2163	int i;
2164
2165	ice_for_each_q_vector(vsi, i)
2166		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2167
2168	ice_flush(hw);
2169	return 0;
2170}
2171
2172/**
2173 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2174 * @vsi: the VSI being configured
2175 * @basename: name for the vector
2176 */
2177static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2178{
2179	int q_vectors = vsi->num_q_vectors;
2180	struct ice_pf *pf = vsi->back;
2181	int base = vsi->base_vector;
2182	struct device *dev;
2183	int rx_int_idx = 0;
2184	int tx_int_idx = 0;
2185	int vector, err;
2186	int irq_num;
2187
2188	dev = ice_pf_to_dev(pf);
2189	for (vector = 0; vector < q_vectors; vector++) {
2190		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2191
2192		irq_num = pf->msix_entries[base + vector].vector;
2193
2194		if (q_vector->tx.ring && q_vector->rx.ring) {
2195			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2196				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2197			tx_int_idx++;
2198		} else if (q_vector->rx.ring) {
2199			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2200				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2201		} else if (q_vector->tx.ring) {
2202			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2203				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2204		} else {
2205			/* skip this unused q_vector */
2206			continue;
2207		}
2208		err = devm_request_irq(dev, irq_num, vsi->irq_handler, 0,
2209				       q_vector->name, q_vector);
 
 
 
 
 
2210		if (err) {
2211			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2212				   err);
2213			goto free_q_irqs;
2214		}
2215
2216		/* register for affinity change notifications */
2217		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2218			struct irq_affinity_notify *affinity_notify;
2219
2220			affinity_notify = &q_vector->affinity_notify;
2221			affinity_notify->notify = ice_irq_affinity_notify;
2222			affinity_notify->release = ice_irq_affinity_release;
2223			irq_set_affinity_notifier(irq_num, affinity_notify);
2224		}
2225
2226		/* assign the mask for this irq */
2227		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2228	}
2229
2230	vsi->irqs_ready = true;
2231	return 0;
2232
2233free_q_irqs:
2234	while (vector) {
2235		vector--;
2236		irq_num = pf->msix_entries[base + vector].vector;
2237		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2238			irq_set_affinity_notifier(irq_num, NULL);
2239		irq_set_affinity_hint(irq_num, NULL);
2240		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2241	}
2242	return err;
2243}
2244
2245/**
2246 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2247 * @vsi: VSI to setup Tx rings used by XDP
2248 *
2249 * Return 0 on success and negative value on error
2250 */
2251static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2252{
2253	struct device *dev = ice_pf_to_dev(vsi->back);
2254	int i;
2255
2256	for (i = 0; i < vsi->num_xdp_txq; i++) {
2257		u16 xdp_q_idx = vsi->alloc_txq + i;
2258		struct ice_ring *xdp_ring;
2259
2260		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2261
2262		if (!xdp_ring)
2263			goto free_xdp_rings;
2264
2265		xdp_ring->q_index = xdp_q_idx;
2266		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2267		xdp_ring->ring_active = false;
2268		xdp_ring->vsi = vsi;
2269		xdp_ring->netdev = NULL;
2270		xdp_ring->dev = dev;
2271		xdp_ring->count = vsi->num_tx_desc;
2272		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2273		if (ice_setup_tx_ring(xdp_ring))
2274			goto free_xdp_rings;
2275		ice_set_ring_xdp(xdp_ring);
2276		xdp_ring->xsk_umem = ice_xsk_umem(xdp_ring);
2277	}
2278
2279	return 0;
2280
2281free_xdp_rings:
2282	for (; i >= 0; i--)
2283		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2284			ice_free_tx_ring(vsi->xdp_rings[i]);
2285	return -ENOMEM;
2286}
2287
2288/**
2289 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2290 * @vsi: VSI to set the bpf prog on
2291 * @prog: the bpf prog pointer
2292 */
2293static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2294{
2295	struct bpf_prog *old_prog;
2296	int i;
2297
2298	old_prog = xchg(&vsi->xdp_prog, prog);
2299	if (old_prog)
2300		bpf_prog_put(old_prog);
2301
2302	ice_for_each_rxq(vsi, i)
2303		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2304}
2305
2306/**
2307 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2308 * @vsi: VSI to bring up Tx rings used by XDP
2309 * @prog: bpf program that will be assigned to VSI
2310 *
2311 * Return 0 on success and negative value on error
2312 */
2313int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2314{
2315	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2316	int xdp_rings_rem = vsi->num_xdp_txq;
2317	struct ice_pf *pf = vsi->back;
2318	struct ice_qs_cfg xdp_qs_cfg = {
2319		.qs_mutex = &pf->avail_q_mutex,
2320		.pf_map = pf->avail_txqs,
2321		.pf_map_size = pf->max_pf_txqs,
2322		.q_count = vsi->num_xdp_txq,
2323		.scatter_count = ICE_MAX_SCATTER_TXQS,
2324		.vsi_map = vsi->txq_map,
2325		.vsi_map_offset = vsi->alloc_txq,
2326		.mapping_mode = ICE_VSI_MAP_CONTIG
2327	};
2328	enum ice_status status;
2329	struct device *dev;
2330	int i, v_idx;
2331
2332	dev = ice_pf_to_dev(pf);
2333	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2334				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2335	if (!vsi->xdp_rings)
2336		return -ENOMEM;
2337
2338	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2339	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2340		goto err_map_xdp;
2341
2342	if (ice_xdp_alloc_setup_rings(vsi))
2343		goto clear_xdp_rings;
2344
2345	/* follow the logic from ice_vsi_map_rings_to_vectors */
2346	ice_for_each_q_vector(vsi, v_idx) {
2347		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2348		int xdp_rings_per_v, q_id, q_base;
2349
2350		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2351					       vsi->num_q_vectors - v_idx);
2352		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2353
2354		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2355			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2356
2357			xdp_ring->q_vector = q_vector;
2358			xdp_ring->next = q_vector->tx.ring;
2359			q_vector->tx.ring = xdp_ring;
2360		}
2361		xdp_rings_rem -= xdp_rings_per_v;
2362	}
2363
2364	/* omit the scheduler update if in reset path; XDP queues will be
2365	 * taken into account at the end of ice_vsi_rebuild, where
2366	 * ice_cfg_vsi_lan is being called
2367	 */
2368	if (ice_is_reset_in_progress(pf->state))
2369		return 0;
2370
2371	/* tell the Tx scheduler that right now we have
2372	 * additional queues
2373	 */
2374	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2375		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2376
2377	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2378				 max_txqs);
2379	if (status) {
2380		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2381			ice_stat_str(status));
2382		goto clear_xdp_rings;
2383	}
2384	ice_vsi_assign_bpf_prog(vsi, prog);
2385
2386	return 0;
2387clear_xdp_rings:
2388	for (i = 0; i < vsi->num_xdp_txq; i++)
2389		if (vsi->xdp_rings[i]) {
2390			kfree_rcu(vsi->xdp_rings[i], rcu);
2391			vsi->xdp_rings[i] = NULL;
2392		}
2393
2394err_map_xdp:
2395	mutex_lock(&pf->avail_q_mutex);
2396	for (i = 0; i < vsi->num_xdp_txq; i++) {
2397		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2398		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2399	}
2400	mutex_unlock(&pf->avail_q_mutex);
2401
2402	devm_kfree(dev, vsi->xdp_rings);
2403	return -ENOMEM;
2404}
2405
2406/**
2407 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2408 * @vsi: VSI to remove XDP rings
2409 *
2410 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2411 * resources
2412 */
2413int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2414{
2415	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2416	struct ice_pf *pf = vsi->back;
2417	int i, v_idx;
2418
2419	/* q_vectors are freed in reset path so there's no point in detaching
2420	 * rings; in case of rebuild being triggered not from reset reset bits
2421	 * in pf->state won't be set, so additionally check first q_vector
2422	 * against NULL
2423	 */
2424	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2425		goto free_qmap;
2426
2427	ice_for_each_q_vector(vsi, v_idx) {
2428		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2429		struct ice_ring *ring;
2430
2431		ice_for_each_ring(ring, q_vector->tx)
2432			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2433				break;
2434
2435		/* restore the value of last node prior to XDP setup */
2436		q_vector->tx.ring = ring;
2437	}
2438
2439free_qmap:
2440	mutex_lock(&pf->avail_q_mutex);
2441	for (i = 0; i < vsi->num_xdp_txq; i++) {
2442		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2443		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2444	}
2445	mutex_unlock(&pf->avail_q_mutex);
2446
2447	for (i = 0; i < vsi->num_xdp_txq; i++)
2448		if (vsi->xdp_rings[i]) {
2449			if (vsi->xdp_rings[i]->desc)
2450				ice_free_tx_ring(vsi->xdp_rings[i]);
2451			kfree_rcu(vsi->xdp_rings[i], rcu);
2452			vsi->xdp_rings[i] = NULL;
2453		}
2454
2455	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2456	vsi->xdp_rings = NULL;
2457
2458	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2459		return 0;
2460
2461	ice_vsi_assign_bpf_prog(vsi, NULL);
2462
2463	/* notify Tx scheduler that we destroyed XDP queues and bring
2464	 * back the old number of child nodes
2465	 */
2466	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2467		max_txqs[i] = vsi->num_txq;
2468
2469	/* change number of XDP Tx queues to 0 */
2470	vsi->num_xdp_txq = 0;
2471
2472	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2473			       max_txqs);
2474}
2475
2476/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2477 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2478 * @vsi: VSI to setup XDP for
2479 * @prog: XDP program
2480 * @extack: netlink extended ack
2481 */
2482static int
2483ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2484		   struct netlink_ext_ack *extack)
2485{
2486	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2487	bool if_running = netif_running(vsi->netdev);
2488	int ret = 0, xdp_ring_err = 0;
2489
2490	if (frame_size > vsi->rx_buf_len) {
2491		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2492		return -EOPNOTSUPP;
2493	}
2494
2495	/* need to stop netdev while setting up the program for Rx rings */
2496	if (if_running && !test_and_set_bit(__ICE_DOWN, vsi->state)) {
2497		ret = ice_down(vsi);
2498		if (ret) {
2499			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2500			return ret;
2501		}
2502	}
2503
2504	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2505		vsi->num_xdp_txq = vsi->alloc_rxq;
2506		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2507		if (xdp_ring_err)
2508			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2509	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2510		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2511		if (xdp_ring_err)
2512			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2513	} else {
2514		ice_vsi_assign_bpf_prog(vsi, prog);
2515	}
2516
2517	if (if_running)
2518		ret = ice_up(vsi);
2519
2520	if (!ret && prog && vsi->xsk_umems) {
2521		int i;
2522
2523		ice_for_each_rxq(vsi, i) {
2524			struct ice_ring *rx_ring = vsi->rx_rings[i];
2525
2526			if (rx_ring->xsk_umem)
2527				napi_schedule(&rx_ring->q_vector->napi);
2528		}
2529	}
2530
2531	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2532}
2533
2534/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2535 * ice_xdp - implements XDP handler
2536 * @dev: netdevice
2537 * @xdp: XDP command
2538 */
2539static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2540{
2541	struct ice_netdev_priv *np = netdev_priv(dev);
2542	struct ice_vsi *vsi = np->vsi;
2543
2544	if (vsi->type != ICE_VSI_PF) {
2545		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2546		return -EINVAL;
2547	}
2548
2549	switch (xdp->command) {
2550	case XDP_SETUP_PROG:
2551		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2552	case XDP_SETUP_XSK_UMEM:
2553		return ice_xsk_umem_setup(vsi, xdp->xsk.umem,
2554					  xdp->xsk.queue_id);
2555	default:
2556		return -EINVAL;
2557	}
2558}
2559
2560/**
2561 * ice_ena_misc_vector - enable the non-queue interrupts
2562 * @pf: board private structure
2563 */
2564static void ice_ena_misc_vector(struct ice_pf *pf)
2565{
2566	struct ice_hw *hw = &pf->hw;
2567	u32 val;
2568
2569	/* Disable anti-spoof detection interrupt to prevent spurious event
2570	 * interrupts during a function reset. Anti-spoof functionally is
2571	 * still supported.
2572	 */
2573	val = rd32(hw, GL_MDCK_TX_TDPU);
2574	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2575	wr32(hw, GL_MDCK_TX_TDPU, val);
2576
2577	/* clear things first */
2578	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2579	rd32(hw, PFINT_OICR);		/* read to clear */
2580
2581	val = (PFINT_OICR_ECC_ERR_M |
2582	       PFINT_OICR_MAL_DETECT_M |
2583	       PFINT_OICR_GRST_M |
2584	       PFINT_OICR_PCI_EXCEPTION_M |
2585	       PFINT_OICR_VFLR_M |
2586	       PFINT_OICR_HMC_ERR_M |
 
2587	       PFINT_OICR_PE_CRITERR_M);
2588
2589	wr32(hw, PFINT_OICR_ENA, val);
2590
2591	/* SW_ITR_IDX = 0, but don't change INTENA */
2592	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2593	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2594}
2595
2596/**
2597 * ice_misc_intr - misc interrupt handler
2598 * @irq: interrupt number
2599 * @data: pointer to a q_vector
2600 */
2601static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2602{
2603	struct ice_pf *pf = (struct ice_pf *)data;
2604	struct ice_hw *hw = &pf->hw;
2605	irqreturn_t ret = IRQ_NONE;
2606	struct device *dev;
2607	u32 oicr, ena_mask;
2608
2609	dev = ice_pf_to_dev(pf);
2610	set_bit(__ICE_ADMINQ_EVENT_PENDING, pf->state);
2611	set_bit(__ICE_MAILBOXQ_EVENT_PENDING, pf->state);
 
2612
2613	oicr = rd32(hw, PFINT_OICR);
2614	ena_mask = rd32(hw, PFINT_OICR_ENA);
2615
2616	if (oicr & PFINT_OICR_SWINT_M) {
2617		ena_mask &= ~PFINT_OICR_SWINT_M;
2618		pf->sw_int_count++;
2619	}
2620
2621	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2622		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2623		set_bit(__ICE_MDD_EVENT_PENDING, pf->state);
2624	}
2625	if (oicr & PFINT_OICR_VFLR_M) {
2626		/* disable any further VFLR event notifications */
2627		if (test_bit(__ICE_VF_RESETS_DISABLED, pf->state)) {
2628			u32 reg = rd32(hw, PFINT_OICR_ENA);
2629
2630			reg &= ~PFINT_OICR_VFLR_M;
2631			wr32(hw, PFINT_OICR_ENA, reg);
2632		} else {
2633			ena_mask &= ~PFINT_OICR_VFLR_M;
2634			set_bit(__ICE_VFLR_EVENT_PENDING, pf->state);
2635		}
2636	}
2637
2638	if (oicr & PFINT_OICR_GRST_M) {
2639		u32 reset;
2640
2641		/* we have a reset warning */
2642		ena_mask &= ~PFINT_OICR_GRST_M;
2643		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2644			GLGEN_RSTAT_RESET_TYPE_S;
2645
2646		if (reset == ICE_RESET_CORER)
2647			pf->corer_count++;
2648		else if (reset == ICE_RESET_GLOBR)
2649			pf->globr_count++;
2650		else if (reset == ICE_RESET_EMPR)
2651			pf->empr_count++;
2652		else
2653			dev_dbg(dev, "Invalid reset type %d\n", reset);
2654
2655		/* If a reset cycle isn't already in progress, we set a bit in
2656		 * pf->state so that the service task can start a reset/rebuild.
2657		 * We also make note of which reset happened so that peer
2658		 * devices/drivers can be informed.
2659		 */
2660		if (!test_and_set_bit(__ICE_RESET_OICR_RECV, pf->state)) {
2661			if (reset == ICE_RESET_CORER)
2662				set_bit(__ICE_CORER_RECV, pf->state);
2663			else if (reset == ICE_RESET_GLOBR)
2664				set_bit(__ICE_GLOBR_RECV, pf->state);
2665			else
2666				set_bit(__ICE_EMPR_RECV, pf->state);
2667
2668			/* There are couple of different bits at play here.
2669			 * hw->reset_ongoing indicates whether the hardware is
2670			 * in reset. This is set to true when a reset interrupt
2671			 * is received and set back to false after the driver
2672			 * has determined that the hardware is out of reset.
2673			 *
2674			 * __ICE_RESET_OICR_RECV in pf->state indicates
2675			 * that a post reset rebuild is required before the
2676			 * driver is operational again. This is set above.
2677			 *
2678			 * As this is the start of the reset/rebuild cycle, set
2679			 * both to indicate that.
2680			 */
2681			hw->reset_ongoing = true;
2682		}
2683	}
2684
2685	if (oicr & PFINT_OICR_HMC_ERR_M) {
2686		ena_mask &= ~PFINT_OICR_HMC_ERR_M;
2687		dev_dbg(dev, "HMC Error interrupt - info 0x%x, data 0x%x\n",
2688			rd32(hw, PFHMC_ERRORINFO),
2689			rd32(hw, PFHMC_ERRORDATA));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2690	}
2691
2692	/* Report any remaining unexpected interrupts */
2693	oicr &= ena_mask;
2694	if (oicr) {
2695		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2696		/* If a critical error is pending there is no choice but to
2697		 * reset the device.
2698		 */
2699		if (oicr & (PFINT_OICR_PE_CRITERR_M |
2700			    PFINT_OICR_PCI_EXCEPTION_M |
2701			    PFINT_OICR_ECC_ERR_M)) {
2702			set_bit(__ICE_PFR_REQ, pf->state);
2703			ice_service_task_schedule(pf);
2704		}
2705	}
2706	ret = IRQ_HANDLED;
2707
2708	ice_service_task_schedule(pf);
2709	ice_irq_dynamic_ena(hw, NULL, NULL);
2710
2711	return ret;
2712}
2713
2714/**
2715 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2716 * @hw: pointer to HW structure
2717 */
2718static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2719{
2720	/* disable Admin queue Interrupt causes */
2721	wr32(hw, PFINT_FW_CTL,
2722	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2723
2724	/* disable Mailbox queue Interrupt causes */
2725	wr32(hw, PFINT_MBX_CTL,
2726	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2727
 
 
 
2728	/* disable Control queue Interrupt causes */
2729	wr32(hw, PFINT_OICR_CTL,
2730	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2731
2732	ice_flush(hw);
2733}
2734
2735/**
2736 * ice_free_irq_msix_misc - Unroll misc vector setup
2737 * @pf: board private structure
2738 */
2739static void ice_free_irq_msix_misc(struct ice_pf *pf)
2740{
2741	struct ice_hw *hw = &pf->hw;
2742
2743	ice_dis_ctrlq_interrupts(hw);
2744
2745	/* disable OICR interrupt */
2746	wr32(hw, PFINT_OICR_ENA, 0);
2747	ice_flush(hw);
2748
2749	if (pf->msix_entries) {
2750		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2751		devm_free_irq(ice_pf_to_dev(pf),
2752			      pf->msix_entries[pf->oicr_idx].vector, pf);
2753	}
2754
2755	pf->num_avail_sw_msix += 1;
2756	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2757}
2758
2759/**
2760 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2761 * @hw: pointer to HW structure
2762 * @reg_idx: HW vector index to associate the control queue interrupts with
2763 */
2764static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2765{
2766	u32 val;
2767
2768	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2769	       PFINT_OICR_CTL_CAUSE_ENA_M);
2770	wr32(hw, PFINT_OICR_CTL, val);
2771
2772	/* enable Admin queue Interrupt causes */
2773	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2774	       PFINT_FW_CTL_CAUSE_ENA_M);
2775	wr32(hw, PFINT_FW_CTL, val);
2776
2777	/* enable Mailbox queue Interrupt causes */
2778	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2779	       PFINT_MBX_CTL_CAUSE_ENA_M);
2780	wr32(hw, PFINT_MBX_CTL, val);
2781
 
 
 
 
 
2782	ice_flush(hw);
2783}
2784
2785/**
2786 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2787 * @pf: board private structure
2788 *
2789 * This sets up the handler for MSIX 0, which is used to manage the
2790 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2791 * when in MSI or Legacy interrupt mode.
2792 */
2793static int ice_req_irq_msix_misc(struct ice_pf *pf)
2794{
2795	struct device *dev = ice_pf_to_dev(pf);
2796	struct ice_hw *hw = &pf->hw;
2797	int oicr_idx, err = 0;
2798
2799	if (!pf->int_name[0])
2800		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2801			 dev_driver_string(dev), dev_name(dev));
2802
2803	/* Do not request IRQ but do enable OICR interrupt since settings are
2804	 * lost during reset. Note that this function is called only during
2805	 * rebuild path and not while reset is in progress.
2806	 */
2807	if (ice_is_reset_in_progress(pf->state))
2808		goto skip_req_irq;
2809
2810	/* reserve one vector in irq_tracker for misc interrupts */
2811	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2812	if (oicr_idx < 0)
2813		return oicr_idx;
2814
2815	pf->num_avail_sw_msix -= 1;
2816	pf->oicr_idx = (u16)oicr_idx;
2817
2818	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2819			       ice_misc_intr, 0, pf->int_name, pf);
2820	if (err) {
2821		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2822			pf->int_name, err);
2823		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2824		pf->num_avail_sw_msix += 1;
2825		return err;
2826	}
2827
2828skip_req_irq:
2829	ice_ena_misc_vector(pf);
2830
2831	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
2832	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
2833	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
2834
2835	ice_flush(hw);
2836	ice_irq_dynamic_ena(hw, NULL, NULL);
2837
2838	return 0;
2839}
2840
2841/**
2842 * ice_napi_add - register NAPI handler for the VSI
2843 * @vsi: VSI for which NAPI handler is to be registered
2844 *
2845 * This function is only called in the driver's load path. Registering the NAPI
2846 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2847 * reset/rebuild, etc.)
2848 */
2849static void ice_napi_add(struct ice_vsi *vsi)
2850{
2851	int v_idx;
2852
2853	if (!vsi->netdev)
2854		return;
2855
2856	ice_for_each_q_vector(vsi, v_idx)
2857		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
2858			       ice_napi_poll, NAPI_POLL_WEIGHT);
2859}
2860
2861/**
2862 * ice_set_ops - set netdev and ethtools ops for the given netdev
2863 * @netdev: netdev instance
2864 */
2865static void ice_set_ops(struct net_device *netdev)
2866{
2867	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2868
2869	if (ice_is_safe_mode(pf)) {
2870		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
2871		ice_set_ethtool_safe_mode_ops(netdev);
2872		return;
2873	}
2874
2875	netdev->netdev_ops = &ice_netdev_ops;
 
2876	ice_set_ethtool_ops(netdev);
2877}
2878
2879/**
2880 * ice_set_netdev_features - set features for the given netdev
2881 * @netdev: netdev instance
2882 */
2883static void ice_set_netdev_features(struct net_device *netdev)
2884{
2885	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2886	netdev_features_t csumo_features;
2887	netdev_features_t vlano_features;
2888	netdev_features_t dflt_features;
2889	netdev_features_t tso_features;
2890
2891	if (ice_is_safe_mode(pf)) {
2892		/* safe mode */
2893		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
2894		netdev->hw_features = netdev->features;
2895		return;
2896	}
2897
2898	dflt_features = NETIF_F_SG	|
2899			NETIF_F_HIGHDMA	|
2900			NETIF_F_NTUPLE	|
2901			NETIF_F_RXHASH;
2902
2903	csumo_features = NETIF_F_RXCSUM	  |
2904			 NETIF_F_IP_CSUM  |
2905			 NETIF_F_SCTP_CRC |
2906			 NETIF_F_IPV6_CSUM;
2907
2908	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
2909			 NETIF_F_HW_VLAN_CTAG_TX     |
2910			 NETIF_F_HW_VLAN_CTAG_RX;
2911
2912	tso_features = NETIF_F_TSO			|
2913		       NETIF_F_TSO_ECN			|
2914		       NETIF_F_TSO6			|
2915		       NETIF_F_GSO_GRE			|
2916		       NETIF_F_GSO_UDP_TUNNEL		|
2917		       NETIF_F_GSO_GRE_CSUM		|
2918		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
2919		       NETIF_F_GSO_PARTIAL		|
2920		       NETIF_F_GSO_IPXIP4		|
2921		       NETIF_F_GSO_IPXIP6		|
2922		       NETIF_F_GSO_UDP_L4;
2923
2924	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
2925					NETIF_F_GSO_GRE_CSUM;
2926	/* set features that user can change */
2927	netdev->hw_features = dflt_features | csumo_features |
2928			      vlano_features | tso_features;
2929
2930	/* add support for HW_CSUM on packets with MPLS header */
2931	netdev->mpls_features =  NETIF_F_HW_CSUM;
2932
2933	/* enable features */
2934	netdev->features |= netdev->hw_features;
2935	/* encap and VLAN devices inherit default, csumo and tso features */
2936	netdev->hw_enc_features |= dflt_features | csumo_features |
2937				   tso_features;
2938	netdev->vlan_features |= dflt_features | csumo_features |
2939				 tso_features;
2940}
2941
2942/**
2943 * ice_cfg_netdev - Allocate, configure and register a netdev
2944 * @vsi: the VSI associated with the new netdev
2945 *
2946 * Returns 0 on success, negative value on failure
2947 */
2948static int ice_cfg_netdev(struct ice_vsi *vsi)
2949{
2950	struct ice_pf *pf = vsi->back;
2951	struct ice_netdev_priv *np;
2952	struct net_device *netdev;
2953	u8 mac_addr[ETH_ALEN];
2954	int err;
2955
2956	err = ice_devlink_create_port(pf);
2957	if (err)
2958		return err;
2959
2960	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
2961				    vsi->alloc_rxq);
2962	if (!netdev) {
2963		err = -ENOMEM;
2964		goto err_destroy_devlink_port;
2965	}
2966
 
2967	vsi->netdev = netdev;
2968	np = netdev_priv(netdev);
2969	np->vsi = vsi;
2970
2971	ice_set_netdev_features(netdev);
2972
2973	ice_set_ops(netdev);
2974
2975	if (vsi->type == ICE_VSI_PF) {
2976		SET_NETDEV_DEV(netdev, ice_pf_to_dev(pf));
2977		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
2978		ether_addr_copy(netdev->dev_addr, mac_addr);
2979		ether_addr_copy(netdev->perm_addr, mac_addr);
2980	}
2981
2982	netdev->priv_flags |= IFF_UNICAST_FLT;
2983
2984	/* Setup netdev TC information */
2985	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
2986
2987	/* setup watchdog timeout value to be 5 second */
2988	netdev->watchdog_timeo = 5 * HZ;
2989
2990	netdev->min_mtu = ETH_MIN_MTU;
2991	netdev->max_mtu = ICE_MAX_MTU;
2992
2993	err = register_netdev(vsi->netdev);
2994	if (err)
2995		goto err_free_netdev;
2996
2997	devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
2998
2999	netif_carrier_off(vsi->netdev);
3000
3001	/* make sure transmit queues start off as stopped */
3002	netif_tx_stop_all_queues(vsi->netdev);
3003
3004	return 0;
3005
3006err_free_netdev:
3007	free_netdev(vsi->netdev);
3008	vsi->netdev = NULL;
3009err_destroy_devlink_port:
3010	ice_devlink_destroy_port(pf);
3011	return err;
3012}
3013
3014/**
3015 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3016 * @lut: Lookup table
3017 * @rss_table_size: Lookup table size
3018 * @rss_size: Range of queue number for hashing
3019 */
3020void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3021{
3022	u16 i;
3023
3024	for (i = 0; i < rss_table_size; i++)
3025		lut[i] = i % rss_size;
3026}
3027
3028/**
3029 * ice_pf_vsi_setup - Set up a PF VSI
3030 * @pf: board private structure
3031 * @pi: pointer to the port_info instance
3032 *
3033 * Returns pointer to the successfully allocated VSI software struct
3034 * on success, otherwise returns NULL on failure.
3035 */
3036static struct ice_vsi *
3037ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3038{
3039	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3040}
3041
3042/**
3043 * ice_ctrl_vsi_setup - Set up a control VSI
3044 * @pf: board private structure
3045 * @pi: pointer to the port_info instance
3046 *
3047 * Returns pointer to the successfully allocated VSI software struct
3048 * on success, otherwise returns NULL on failure.
3049 */
3050static struct ice_vsi *
3051ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3052{
3053	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3054}
3055
3056/**
3057 * ice_lb_vsi_setup - Set up a loopback VSI
3058 * @pf: board private structure
3059 * @pi: pointer to the port_info instance
3060 *
3061 * Returns pointer to the successfully allocated VSI software struct
3062 * on success, otherwise returns NULL on failure.
3063 */
3064struct ice_vsi *
3065ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3066{
3067	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3068}
3069
3070/**
3071 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3072 * @netdev: network interface to be adjusted
3073 * @proto: unused protocol
3074 * @vid: VLAN ID to be added
3075 *
3076 * net_device_ops implementation for adding VLAN IDs
3077 */
3078static int
3079ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3080		    u16 vid)
3081{
3082	struct ice_netdev_priv *np = netdev_priv(netdev);
3083	struct ice_vsi *vsi = np->vsi;
3084	int ret;
3085
3086	if (vid >= VLAN_N_VID) {
3087		netdev_err(netdev, "VLAN id requested %d is out of range %d\n",
3088			   vid, VLAN_N_VID);
3089		return -EINVAL;
3090	}
3091
3092	if (vsi->info.pvid)
3093		return -EINVAL;
3094
3095	/* VLAN 0 is added by default during load/reset */
3096	if (!vid)
3097		return 0;
3098
3099	/* Enable VLAN pruning when a VLAN other than 0 is added */
3100	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3101		ret = ice_cfg_vlan_pruning(vsi, true, false);
3102		if (ret)
3103			return ret;
3104	}
3105
3106	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3107	 * packets aren't pruned by the device's internal switch on Rx
3108	 */
3109	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3110	if (!ret) {
3111		vsi->vlan_ena = true;
3112		set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3113	}
3114
3115	return ret;
3116}
3117
3118/**
3119 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3120 * @netdev: network interface to be adjusted
3121 * @proto: unused protocol
3122 * @vid: VLAN ID to be removed
3123 *
3124 * net_device_ops implementation for removing VLAN IDs
3125 */
3126static int
3127ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3128		     u16 vid)
3129{
3130	struct ice_netdev_priv *np = netdev_priv(netdev);
3131	struct ice_vsi *vsi = np->vsi;
3132	int ret;
3133
3134	if (vsi->info.pvid)
3135		return -EINVAL;
3136
3137	/* don't allow removal of VLAN 0 */
3138	if (!vid)
3139		return 0;
3140
3141	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3142	 * information
3143	 */
3144	ret = ice_vsi_kill_vlan(vsi, vid);
3145	if (ret)
3146		return ret;
3147
3148	/* Disable pruning when VLAN 0 is the only VLAN rule */
3149	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3150		ret = ice_cfg_vlan_pruning(vsi, false, false);
3151
3152	vsi->vlan_ena = false;
3153	set_bit(ICE_VSI_FLAG_VLAN_FLTR_CHANGED, vsi->flags);
3154	return ret;
3155}
3156
3157/**
3158 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3159 * @pf: board private structure
3160 *
3161 * Returns 0 on success, negative value on failure
3162 */
3163static int ice_setup_pf_sw(struct ice_pf *pf)
3164{
3165	struct ice_vsi *vsi;
3166	int status = 0;
3167
3168	if (ice_is_reset_in_progress(pf->state))
3169		return -EBUSY;
3170
3171	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3172	if (!vsi)
3173		return -ENOMEM;
3174
3175	status = ice_cfg_netdev(vsi);
3176	if (status) {
3177		status = -ENODEV;
3178		goto unroll_vsi_setup;
3179	}
3180	/* netdev has to be configured before setting frame size */
3181	ice_vsi_cfg_frame_size(vsi);
3182
3183	/* Setup DCB netlink interface */
3184	ice_dcbnl_setup(vsi);
3185
3186	/* registering the NAPI handler requires both the queues and
3187	 * netdev to be created, which are done in ice_pf_vsi_setup()
3188	 * and ice_cfg_netdev() respectively
3189	 */
3190	ice_napi_add(vsi);
3191
3192	status = ice_set_cpu_rx_rmap(vsi);
3193	if (status) {
3194		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3195			vsi->vsi_num, status);
3196		status = -EINVAL;
3197		goto unroll_napi_add;
3198	}
3199	status = ice_init_mac_fltr(pf);
3200	if (status)
3201		goto free_cpu_rx_map;
3202
3203	return status;
3204
3205free_cpu_rx_map:
3206	ice_free_cpu_rx_rmap(vsi);
3207
3208unroll_napi_add:
3209	if (vsi) {
3210		ice_napi_del(vsi);
3211		if (vsi->netdev) {
3212			if (vsi->netdev->reg_state == NETREG_REGISTERED)
3213				unregister_netdev(vsi->netdev);
3214			free_netdev(vsi->netdev);
3215			vsi->netdev = NULL;
3216		}
3217	}
3218
3219unroll_vsi_setup:
3220	ice_vsi_release(vsi);
3221	return status;
3222}
3223
3224/**
3225 * ice_get_avail_q_count - Get count of queues in use
3226 * @pf_qmap: bitmap to get queue use count from
3227 * @lock: pointer to a mutex that protects access to pf_qmap
3228 * @size: size of the bitmap
3229 */
3230static u16
3231ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3232{
3233	unsigned long bit;
3234	u16 count = 0;
3235
3236	mutex_lock(lock);
3237	for_each_clear_bit(bit, pf_qmap, size)
3238		count++;
3239	mutex_unlock(lock);
3240
3241	return count;
3242}
3243
3244/**
3245 * ice_get_avail_txq_count - Get count of Tx queues in use
3246 * @pf: pointer to an ice_pf instance
3247 */
3248u16 ice_get_avail_txq_count(struct ice_pf *pf)
3249{
3250	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3251				     pf->max_pf_txqs);
3252}
3253
3254/**
3255 * ice_get_avail_rxq_count - Get count of Rx queues in use
3256 * @pf: pointer to an ice_pf instance
3257 */
3258u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3259{
3260	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3261				     pf->max_pf_rxqs);
3262}
3263
3264/**
3265 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3266 * @pf: board private structure to initialize
3267 */
3268static void ice_deinit_pf(struct ice_pf *pf)
3269{
3270	ice_service_task_stop(pf);
3271	mutex_destroy(&pf->sw_mutex);
3272	mutex_destroy(&pf->tc_mutex);
3273	mutex_destroy(&pf->avail_q_mutex);
3274
3275	if (pf->avail_txqs) {
3276		bitmap_free(pf->avail_txqs);
3277		pf->avail_txqs = NULL;
3278	}
3279
3280	if (pf->avail_rxqs) {
3281		bitmap_free(pf->avail_rxqs);
3282		pf->avail_rxqs = NULL;
3283	}
 
 
 
3284}
3285
3286/**
3287 * ice_set_pf_caps - set PFs capability flags
3288 * @pf: pointer to the PF instance
3289 */
3290static void ice_set_pf_caps(struct ice_pf *pf)
3291{
3292	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3293
 
 
 
 
 
 
3294	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3295	if (func_caps->common_cap.dcb)
3296		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3297	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3298	if (func_caps->common_cap.sr_iov_1_1) {
3299		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3300		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3301					      ICE_MAX_VF_COUNT);
3302	}
3303	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3304	if (func_caps->common_cap.rss_table_size)
3305		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3306
3307	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3308	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3309		u16 unused;
3310
3311		/* ctrl_vsi_idx will be set to a valid value when flow director
3312		 * is setup by ice_init_fdir
3313		 */
3314		pf->ctrl_vsi_idx = ICE_NO_VSI;
3315		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3316		/* force guaranteed filter pool for PF */
3317		ice_alloc_fd_guar_item(&pf->hw, &unused,
3318				       func_caps->fd_fltr_guar);
3319		/* force shared filter pool for PF */
3320		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3321				       func_caps->fd_fltr_best_effort);
3322	}
3323
 
 
 
 
3324	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3325	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3326}
3327
3328/**
3329 * ice_init_pf - Initialize general software structures (struct ice_pf)
3330 * @pf: board private structure to initialize
3331 */
3332static int ice_init_pf(struct ice_pf *pf)
3333{
3334	ice_set_pf_caps(pf);
3335
3336	mutex_init(&pf->sw_mutex);
3337	mutex_init(&pf->tc_mutex);
3338
3339	INIT_HLIST_HEAD(&pf->aq_wait_list);
3340	spin_lock_init(&pf->aq_wait_lock);
3341	init_waitqueue_head(&pf->aq_wait_queue);
3342
 
 
3343	/* setup service timer and periodic service task */
3344	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3345	pf->serv_tmr_period = HZ;
3346	INIT_WORK(&pf->serv_task, ice_service_task);
3347	clear_bit(__ICE_SERVICE_SCHED, pf->state);
3348
3349	mutex_init(&pf->avail_q_mutex);
3350	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3351	if (!pf->avail_txqs)
3352		return -ENOMEM;
3353
3354	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3355	if (!pf->avail_rxqs) {
3356		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3357		pf->avail_txqs = NULL;
3358		return -ENOMEM;
3359	}
3360
3361	return 0;
3362}
3363
3364/**
3365 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3366 * @pf: board private structure
3367 *
3368 * compute the number of MSIX vectors required (v_budget) and request from
3369 * the OS. Return the number of vectors reserved or negative on failure
3370 */
3371static int ice_ena_msix_range(struct ice_pf *pf)
3372{
 
3373	struct device *dev = ice_pf_to_dev(pf);
3374	int v_left, v_actual, v_budget = 0;
3375	int needed, err, i;
3376
3377	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
 
3378
3379	/* reserve one vector for miscellaneous handler */
3380	needed = 1;
3381	if (v_left < needed)
3382		goto no_hw_vecs_left_err;
3383	v_budget += needed;
3384	v_left -= needed;
3385
 
 
 
 
 
 
 
 
 
 
 
 
3386	/* reserve vectors for LAN traffic */
3387	needed = min_t(int, num_online_cpus(), v_left);
3388	if (v_left < needed)
3389		goto no_hw_vecs_left_err;
3390	pf->num_lan_msix = needed;
3391	v_budget += needed;
3392	v_left -= needed;
3393
3394	/* reserve one vector for flow director */
3395	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3396		needed = ICE_FDIR_MSIX;
3397		if (v_left < needed)
3398			goto no_hw_vecs_left_err;
 
3399		v_budget += needed;
3400		v_left -= needed;
3401	}
3402
3403	pf->msix_entries = devm_kcalloc(dev, v_budget,
3404					sizeof(*pf->msix_entries), GFP_KERNEL);
3405
3406	if (!pf->msix_entries) {
3407		err = -ENOMEM;
3408		goto exit_err;
3409	}
3410
3411	for (i = 0; i < v_budget; i++)
3412		pf->msix_entries[i].entry = i;
3413
3414	/* actually reserve the vectors */
3415	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3416					 ICE_MIN_MSIX, v_budget);
3417
3418	if (v_actual < 0) {
3419		dev_err(dev, "unable to reserve MSI-X vectors\n");
3420		err = v_actual;
3421		goto msix_err;
3422	}
3423
3424	if (v_actual < v_budget) {
3425		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3426			 v_budget, v_actual);
3427/* 2 vectors each for LAN and RDMA (traffic + OICR), one for flow director */
3428#define ICE_MIN_LAN_VECS 2
3429#define ICE_MIN_RDMA_VECS 2
3430#define ICE_MIN_VECS (ICE_MIN_LAN_VECS + ICE_MIN_RDMA_VECS + 1)
3431
3432		if (v_actual < ICE_MIN_LAN_VECS) {
3433			/* error if we can't get minimum vectors */
3434			pci_disable_msix(pf->pdev);
3435			err = -ERANGE;
3436			goto msix_err;
3437		} else {
3438			pf->num_lan_msix = ICE_MIN_LAN_VECS;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3439		}
3440	}
3441
3442	return v_actual;
3443
3444msix_err:
3445	devm_kfree(dev, pf->msix_entries);
3446	goto exit_err;
3447
3448no_hw_vecs_left_err:
3449	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3450		needed, v_left);
3451	err = -ERANGE;
3452exit_err:
 
3453	pf->num_lan_msix = 0;
3454	return err;
3455}
3456
3457/**
3458 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3459 * @pf: board private structure
3460 */
3461static void ice_dis_msix(struct ice_pf *pf)
3462{
3463	pci_disable_msix(pf->pdev);
3464	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3465	pf->msix_entries = NULL;
3466}
3467
3468/**
3469 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3470 * @pf: board private structure
3471 */
3472static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3473{
3474	ice_dis_msix(pf);
3475
3476	if (pf->irq_tracker) {
3477		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3478		pf->irq_tracker = NULL;
3479	}
3480}
3481
3482/**
3483 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3484 * @pf: board private structure to initialize
3485 */
3486static int ice_init_interrupt_scheme(struct ice_pf *pf)
3487{
3488	int vectors;
3489
3490	vectors = ice_ena_msix_range(pf);
3491
3492	if (vectors < 0)
3493		return vectors;
3494
3495	/* set up vector assignment tracking */
3496	pf->irq_tracker =
3497		devm_kzalloc(ice_pf_to_dev(pf), sizeof(*pf->irq_tracker) +
3498			     (sizeof(u16) * vectors), GFP_KERNEL);
3499	if (!pf->irq_tracker) {
3500		ice_dis_msix(pf);
3501		return -ENOMEM;
3502	}
3503
3504	/* populate SW interrupts pool with number of OS granted IRQs. */
3505	pf->num_avail_sw_msix = (u16)vectors;
3506	pf->irq_tracker->num_entries = (u16)vectors;
3507	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3508
3509	return 0;
3510}
3511
3512/**
3513 * ice_is_wol_supported - get NVM state of WoL
3514 * @pf: board private structure
3515 *
3516 * Check if WoL is supported based on the HW configuration.
3517 * Returns true if NVM supports and enables WoL for this port, false otherwise
3518 */
3519bool ice_is_wol_supported(struct ice_pf *pf)
3520{
3521	struct ice_hw *hw = &pf->hw;
3522	u16 wol_ctrl;
3523
3524	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3525	 * word) indicates WoL is not supported on the corresponding PF ID.
3526	 */
3527	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3528		return false;
3529
3530	return !(BIT(hw->pf_id) & wol_ctrl);
3531}
3532
3533/**
3534 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3535 * @vsi: VSI being changed
3536 * @new_rx: new number of Rx queues
3537 * @new_tx: new number of Tx queues
3538 *
3539 * Only change the number of queues if new_tx, or new_rx is non-0.
3540 *
3541 * Returns 0 on success.
3542 */
3543int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3544{
3545	struct ice_pf *pf = vsi->back;
3546	int err = 0, timeout = 50;
3547
3548	if (!new_rx && !new_tx)
3549		return -EINVAL;
3550
3551	while (test_and_set_bit(__ICE_CFG_BUSY, pf->state)) {
3552		timeout--;
3553		if (!timeout)
3554			return -EBUSY;
3555		usleep_range(1000, 2000);
3556	}
3557
3558	if (new_tx)
3559		vsi->req_txq = (u16)new_tx;
3560	if (new_rx)
3561		vsi->req_rxq = (u16)new_rx;
3562
3563	/* set for the next time the netdev is started */
3564	if (!netif_running(vsi->netdev)) {
3565		ice_vsi_rebuild(vsi, false);
3566		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3567		goto done;
3568	}
3569
3570	ice_vsi_close(vsi);
3571	ice_vsi_rebuild(vsi, false);
3572	ice_pf_dcb_recfg(pf);
3573	ice_vsi_open(vsi);
3574done:
3575	clear_bit(__ICE_CFG_BUSY, pf->state);
3576	return err;
3577}
3578
3579/**
3580 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3581 * @pf: PF to configure
3582 *
3583 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3584 * VSI can still Tx/Rx VLAN tagged packets.
3585 */
3586static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3587{
3588	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3589	struct ice_vsi_ctx *ctxt;
3590	enum ice_status status;
3591	struct ice_hw *hw;
3592
3593	if (!vsi)
3594		return;
3595
3596	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3597	if (!ctxt)
3598		return;
3599
3600	hw = &pf->hw;
3601	ctxt->info = vsi->info;
3602
3603	ctxt->info.valid_sections =
3604		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3605			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3606			    ICE_AQ_VSI_PROP_SW_VALID);
3607
3608	/* disable VLAN anti-spoof */
3609	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3610				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3611
3612	/* disable VLAN pruning and keep all other settings */
3613	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3614
3615	/* allow all VLANs on Tx and don't strip on Rx */
3616	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3617		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3618
3619	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3620	if (status) {
3621		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3622			ice_stat_str(status),
3623			ice_aq_str(hw->adminq.sq_last_status));
3624	} else {
3625		vsi->info.sec_flags = ctxt->info.sec_flags;
3626		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3627		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3628	}
3629
3630	kfree(ctxt);
3631}
3632
3633/**
3634 * ice_log_pkg_init - log result of DDP package load
3635 * @hw: pointer to hardware info
3636 * @status: status of package load
3637 */
3638static void
3639ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3640{
3641	struct ice_pf *pf = (struct ice_pf *)hw->back;
3642	struct device *dev = ice_pf_to_dev(pf);
3643
3644	switch (*status) {
3645	case ICE_SUCCESS:
3646		/* The package download AdminQ command returned success because
3647		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3648		 * already a package loaded on the device.
3649		 */
3650		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3651		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3652		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3653		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3654		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3655			    sizeof(hw->pkg_name))) {
3656			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3657				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3658					 hw->active_pkg_name,
3659					 hw->active_pkg_ver.major,
3660					 hw->active_pkg_ver.minor,
3661					 hw->active_pkg_ver.update,
3662					 hw->active_pkg_ver.draft);
3663			else
3664				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3665					 hw->active_pkg_name,
3666					 hw->active_pkg_ver.major,
3667					 hw->active_pkg_ver.minor,
3668					 hw->active_pkg_ver.update,
3669					 hw->active_pkg_ver.draft);
3670		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3671			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3672			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3673				hw->active_pkg_name,
3674				hw->active_pkg_ver.major,
3675				hw->active_pkg_ver.minor,
3676				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3677			*status = ICE_ERR_NOT_SUPPORTED;
3678		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3679			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3680			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3681				 hw->active_pkg_name,
3682				 hw->active_pkg_ver.major,
3683				 hw->active_pkg_ver.minor,
3684				 hw->active_pkg_ver.update,
3685				 hw->active_pkg_ver.draft,
3686				 hw->pkg_name,
3687				 hw->pkg_ver.major,
3688				 hw->pkg_ver.minor,
3689				 hw->pkg_ver.update,
3690				 hw->pkg_ver.draft);
3691		} else {
3692			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3693			*status = ICE_ERR_NOT_SUPPORTED;
3694		}
3695		break;
3696	case ICE_ERR_FW_DDP_MISMATCH:
3697		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3698		break;
3699	case ICE_ERR_BUF_TOO_SHORT:
3700	case ICE_ERR_CFG:
3701		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3702		break;
3703	case ICE_ERR_NOT_SUPPORTED:
3704		/* Package File version not supported */
3705		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3706		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3707		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3708			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3709		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3710			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3711			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3712			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3713				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3714		break;
3715	case ICE_ERR_AQ_ERROR:
3716		switch (hw->pkg_dwnld_status) {
3717		case ICE_AQ_RC_ENOSEC:
3718		case ICE_AQ_RC_EBADSIG:
3719			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3720			return;
3721		case ICE_AQ_RC_ESVN:
3722			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3723			return;
3724		case ICE_AQ_RC_EBADMAN:
3725		case ICE_AQ_RC_EBADBUF:
3726			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3727			/* poll for reset to complete */
3728			if (ice_check_reset(hw))
3729				dev_err(dev, "Error resetting device. Please reload the driver\n");
3730			return;
3731		default:
3732			break;
3733		}
3734		fallthrough;
3735	default:
3736		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3737			*status);
3738		break;
3739	}
3740}
3741
3742/**
3743 * ice_load_pkg - load/reload the DDP Package file
3744 * @firmware: firmware structure when firmware requested or NULL for reload
3745 * @pf: pointer to the PF instance
3746 *
3747 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3748 * initialize HW tables.
3749 */
3750static void
3751ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3752{
3753	enum ice_status status = ICE_ERR_PARAM;
3754	struct device *dev = ice_pf_to_dev(pf);
3755	struct ice_hw *hw = &pf->hw;
3756
3757	/* Load DDP Package */
3758	if (firmware && !hw->pkg_copy) {
3759		status = ice_copy_and_init_pkg(hw, firmware->data,
3760					       firmware->size);
3761		ice_log_pkg_init(hw, &status);
3762	} else if (!firmware && hw->pkg_copy) {
3763		/* Reload package during rebuild after CORER/GLOBR reset */
3764		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3765		ice_log_pkg_init(hw, &status);
3766	} else {
3767		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3768	}
3769
3770	if (status) {
3771		/* Safe Mode */
3772		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3773		return;
3774	}
3775
3776	/* Successful download package is the precondition for advanced
3777	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3778	 */
3779	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3780}
3781
3782/**
3783 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3784 * @pf: pointer to the PF structure
3785 *
3786 * There is no error returned here because the driver should be able to handle
3787 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3788 * specifically with Tx.
3789 */
3790static void ice_verify_cacheline_size(struct ice_pf *pf)
3791{
3792	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3793		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3794			 ICE_CACHE_LINE_BYTES);
3795}
3796
3797/**
3798 * ice_send_version - update firmware with driver version
3799 * @pf: PF struct
3800 *
3801 * Returns ICE_SUCCESS on success, else error code
3802 */
3803static enum ice_status ice_send_version(struct ice_pf *pf)
3804{
3805	struct ice_driver_ver dv;
3806
3807	dv.major_ver = 0xff;
3808	dv.minor_ver = 0xff;
3809	dv.build_ver = 0xff;
3810	dv.subbuild_ver = 0;
3811	strscpy((char *)dv.driver_string, UTS_RELEASE,
3812		sizeof(dv.driver_string));
3813	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
3814}
3815
3816/**
3817 * ice_init_fdir - Initialize flow director VSI and configuration
3818 * @pf: pointer to the PF instance
3819 *
3820 * returns 0 on success, negative on error
3821 */
3822static int ice_init_fdir(struct ice_pf *pf)
3823{
3824	struct device *dev = ice_pf_to_dev(pf);
3825	struct ice_vsi *ctrl_vsi;
3826	int err;
3827
3828	/* Side Band Flow Director needs to have a control VSI.
3829	 * Allocate it and store it in the PF.
3830	 */
3831	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
3832	if (!ctrl_vsi) {
3833		dev_dbg(dev, "could not create control VSI\n");
3834		return -ENOMEM;
3835	}
3836
3837	err = ice_vsi_open_ctrl(ctrl_vsi);
3838	if (err) {
3839		dev_dbg(dev, "could not open control VSI\n");
3840		goto err_vsi_open;
3841	}
3842
3843	mutex_init(&pf->hw.fdir_fltr_lock);
3844
3845	err = ice_fdir_create_dflt_rules(pf);
3846	if (err)
3847		goto err_fdir_rule;
3848
3849	return 0;
3850
3851err_fdir_rule:
3852	ice_fdir_release_flows(&pf->hw);
3853	ice_vsi_close(ctrl_vsi);
3854err_vsi_open:
3855	ice_vsi_release(ctrl_vsi);
3856	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
3857		pf->vsi[pf->ctrl_vsi_idx] = NULL;
3858		pf->ctrl_vsi_idx = ICE_NO_VSI;
3859	}
3860	return err;
3861}
3862
3863/**
3864 * ice_get_opt_fw_name - return optional firmware file name or NULL
3865 * @pf: pointer to the PF instance
3866 */
3867static char *ice_get_opt_fw_name(struct ice_pf *pf)
3868{
3869	/* Optional firmware name same as default with additional dash
3870	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
3871	 */
3872	struct pci_dev *pdev = pf->pdev;
3873	char *opt_fw_filename;
3874	u64 dsn;
3875
3876	/* Determine the name of the optional file using the DSN (two
3877	 * dwords following the start of the DSN Capability).
3878	 */
3879	dsn = pci_get_dsn(pdev);
3880	if (!dsn)
3881		return NULL;
3882
3883	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
3884	if (!opt_fw_filename)
3885		return NULL;
3886
3887	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
3888		 ICE_DDP_PKG_PATH, dsn);
3889
3890	return opt_fw_filename;
3891}
3892
3893/**
3894 * ice_request_fw - Device initialization routine
3895 * @pf: pointer to the PF instance
3896 */
3897static void ice_request_fw(struct ice_pf *pf)
3898{
3899	char *opt_fw_filename = ice_get_opt_fw_name(pf);
3900	const struct firmware *firmware = NULL;
3901	struct device *dev = ice_pf_to_dev(pf);
3902	int err = 0;
3903
3904	/* optional device-specific DDP (if present) overrides the default DDP
3905	 * package file. kernel logs a debug message if the file doesn't exist,
3906	 * and warning messages for other errors.
3907	 */
3908	if (opt_fw_filename) {
3909		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
3910		if (err) {
3911			kfree(opt_fw_filename);
3912			goto dflt_pkg_load;
3913		}
3914
3915		/* request for firmware was successful. Download to device */
3916		ice_load_pkg(firmware, pf);
3917		kfree(opt_fw_filename);
3918		release_firmware(firmware);
3919		return;
3920	}
3921
3922dflt_pkg_load:
3923	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
3924	if (err) {
3925		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
3926		return;
3927	}
3928
3929	/* request for firmware was successful. Download to device */
3930	ice_load_pkg(firmware, pf);
3931	release_firmware(firmware);
3932}
3933
3934/**
3935 * ice_print_wake_reason - show the wake up cause in the log
3936 * @pf: pointer to the PF struct
3937 */
3938static void ice_print_wake_reason(struct ice_pf *pf)
3939{
3940	u32 wus = pf->wakeup_reason;
3941	const char *wake_str;
3942
3943	/* if no wake event, nothing to print */
3944	if (!wus)
3945		return;
3946
3947	if (wus & PFPM_WUS_LNKC_M)
3948		wake_str = "Link\n";
3949	else if (wus & PFPM_WUS_MAG_M)
3950		wake_str = "Magic Packet\n";
3951	else if (wus & PFPM_WUS_MNG_M)
3952		wake_str = "Management\n";
3953	else if (wus & PFPM_WUS_FW_RST_WK_M)
3954		wake_str = "Firmware Reset\n";
3955	else
3956		wake_str = "Unknown\n";
3957
3958	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
3959}
3960
3961/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3962 * ice_probe - Device initialization routine
3963 * @pdev: PCI device information struct
3964 * @ent: entry in ice_pci_tbl
3965 *
3966 * Returns 0 on success, negative on failure
3967 */
3968static int
3969ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
3970{
3971	struct device *dev = &pdev->dev;
3972	struct ice_pf *pf;
3973	struct ice_hw *hw;
3974	int err;
 
 
 
 
 
3975
3976	/* this driver uses devres, see
3977	 * Documentation/driver-api/driver-model/devres.rst
3978	 */
3979	err = pcim_enable_device(pdev);
3980	if (err)
3981		return err;
3982
3983	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), pci_name(pdev));
3984	if (err) {
3985		dev_err(dev, "BAR0 I/O map error %d\n", err);
3986		return err;
3987	}
3988
3989	pf = ice_allocate_pf(dev);
3990	if (!pf)
3991		return -ENOMEM;
3992
 
 
 
3993	/* set up for high or low DMA */
3994	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
3995	if (err)
3996		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
3997	if (err) {
3998		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
3999		return err;
4000	}
4001
4002	pci_enable_pcie_error_reporting(pdev);
4003	pci_set_master(pdev);
4004
4005	pf->pdev = pdev;
4006	pci_set_drvdata(pdev, pf);
4007	set_bit(__ICE_DOWN, pf->state);
4008	/* Disable service task until DOWN bit is cleared */
4009	set_bit(__ICE_SERVICE_DIS, pf->state);
4010
4011	hw = &pf->hw;
4012	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4013	pci_save_state(pdev);
4014
4015	hw->back = pf;
4016	hw->vendor_id = pdev->vendor;
4017	hw->device_id = pdev->device;
4018	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4019	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4020	hw->subsystem_device_id = pdev->subsystem_device;
4021	hw->bus.device = PCI_SLOT(pdev->devfn);
4022	hw->bus.func = PCI_FUNC(pdev->devfn);
4023	ice_set_ctrlq_len(hw);
4024
4025	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4026
4027	err = ice_devlink_register(pf);
4028	if (err) {
4029		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4030		goto err_exit_unroll;
4031	}
4032
4033#ifndef CONFIG_DYNAMIC_DEBUG
4034	if (debug < -1)
4035		hw->debug_mask = debug;
4036#endif
4037
4038	err = ice_init_hw(hw);
4039	if (err) {
4040		dev_err(dev, "ice_init_hw failed: %d\n", err);
4041		err = -EIO;
4042		goto err_exit_unroll;
4043	}
4044
4045	ice_request_fw(pf);
4046
4047	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4048	 * set in pf->state, which will cause ice_is_safe_mode to return
4049	 * true
4050	 */
4051	if (ice_is_safe_mode(pf)) {
4052		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4053		/* we already got function/device capabilities but these don't
4054		 * reflect what the driver needs to do in safe mode. Instead of
4055		 * adding conditional logic everywhere to ignore these
4056		 * device/function capabilities, override them.
4057		 */
4058		ice_set_safe_mode_caps(hw);
4059	}
4060
4061	err = ice_init_pf(pf);
4062	if (err) {
4063		dev_err(dev, "ice_init_pf failed: %d\n", err);
4064		goto err_init_pf_unroll;
4065	}
4066
4067	ice_devlink_init_regions(pf);
4068
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4069	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4070	if (!pf->num_alloc_vsi) {
4071		err = -EIO;
4072		goto err_init_pf_unroll;
4073	}
 
 
 
 
 
 
4074
4075	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4076			       GFP_KERNEL);
4077	if (!pf->vsi) {
4078		err = -ENOMEM;
4079		goto err_init_pf_unroll;
4080	}
4081
4082	err = ice_init_interrupt_scheme(pf);
4083	if (err) {
4084		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4085		err = -EIO;
4086		goto err_init_vsi_unroll;
4087	}
4088
4089	/* In case of MSIX we are going to setup the misc vector right here
4090	 * to handle admin queue events etc. In case of legacy and MSI
4091	 * the misc functionality and queue processing is combined in
4092	 * the same vector and that gets setup at open.
4093	 */
4094	err = ice_req_irq_msix_misc(pf);
4095	if (err) {
4096		dev_err(dev, "setup of misc vector failed: %d\n", err);
4097		goto err_init_interrupt_unroll;
4098	}
4099
4100	/* create switch struct for the switch element created by FW on boot */
4101	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4102	if (!pf->first_sw) {
4103		err = -ENOMEM;
4104		goto err_msix_misc_unroll;
4105	}
4106
4107	if (hw->evb_veb)
4108		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4109	else
4110		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4111
4112	pf->first_sw->pf = pf;
4113
4114	/* record the sw_id available for later use */
4115	pf->first_sw->sw_id = hw->port_info->sw_id;
4116
4117	err = ice_setup_pf_sw(pf);
4118	if (err) {
4119		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4120		goto err_alloc_sw_unroll;
4121	}
4122
4123	clear_bit(__ICE_SERVICE_DIS, pf->state);
4124
4125	/* tell the firmware we are up */
4126	err = ice_send_version(pf);
4127	if (err) {
4128		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4129			UTS_RELEASE, err);
4130		goto err_send_version_unroll;
4131	}
4132
4133	/* since everything is good, start the service timer */
4134	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4135
4136	err = ice_init_link_events(pf->hw.port_info);
4137	if (err) {
4138		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4139		goto err_send_version_unroll;
4140	}
4141
 
4142	err = ice_init_nvm_phy_type(pf->hw.port_info);
4143	if (err) {
4144		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4145		goto err_send_version_unroll;
4146	}
4147
 
4148	err = ice_update_link_info(pf->hw.port_info);
4149	if (err) {
4150		dev_err(dev, "ice_update_link_info failed: %d\n", err);
4151		goto err_send_version_unroll;
4152	}
4153
4154	ice_init_link_dflt_override(pf->hw.port_info);
4155
 
 
4156	/* if media available, initialize PHY settings */
4157	if (pf->hw.port_info->phy.link_info.link_info &
4158	    ICE_AQ_MEDIA_AVAILABLE) {
 
4159		err = ice_init_phy_user_cfg(pf->hw.port_info);
4160		if (err) {
4161			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4162			goto err_send_version_unroll;
4163		}
4164
4165		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4166			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4167
4168			if (vsi)
4169				ice_configure_phy(vsi);
4170		}
4171	} else {
4172		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4173	}
4174
4175	ice_verify_cacheline_size(pf);
4176
4177	/* Save wakeup reason register for later use */
4178	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4179
4180	/* check for a power management event */
4181	ice_print_wake_reason(pf);
4182
4183	/* clear wake status, all bits */
4184	wr32(hw, PFPM_WUS, U32_MAX);
4185
4186	/* Disable WoL at init, wait for user to enable */
4187	device_set_wakeup_enable(dev, false);
4188
4189	if (ice_is_safe_mode(pf)) {
4190		ice_set_safe_mode_vlan_cfg(pf);
4191		goto probe_done;
4192	}
4193
4194	/* initialize DDP driven features */
 
 
4195
4196	/* Note: Flow director init failure is non-fatal to load */
4197	if (ice_init_fdir(pf))
4198		dev_err(dev, "could not initialize flow director\n");
4199
4200	/* Note: DCB init failure is non-fatal to load */
4201	if (ice_init_pf_dcb(pf, false)) {
4202		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4203		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4204	} else {
4205		ice_cfg_lldp_mib_change(&pf->hw, true);
4206	}
4207
 
 
 
4208	/* print PCI link speed and width */
4209	pcie_print_link_status(pf->pdev);
4210
4211probe_done:
 
 
 
 
4212	/* ready to go, so clear down state bit */
4213	clear_bit(__ICE_DOWN, pf->state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4214	return 0;
4215
 
 
 
 
4216err_send_version_unroll:
4217	ice_vsi_release_all(pf);
4218err_alloc_sw_unroll:
4219	ice_devlink_destroy_port(pf);
4220	set_bit(__ICE_SERVICE_DIS, pf->state);
4221	set_bit(__ICE_DOWN, pf->state);
4222	devm_kfree(dev, pf->first_sw);
4223err_msix_misc_unroll:
4224	ice_free_irq_msix_misc(pf);
4225err_init_interrupt_unroll:
4226	ice_clear_interrupt_scheme(pf);
4227err_init_vsi_unroll:
4228	devm_kfree(dev, pf->vsi);
4229err_init_pf_unroll:
4230	ice_deinit_pf(pf);
4231	ice_devlink_destroy_regions(pf);
4232	ice_deinit_hw(hw);
4233err_exit_unroll:
4234	ice_devlink_unregister(pf);
4235	pci_disable_pcie_error_reporting(pdev);
4236	pci_disable_device(pdev);
4237	return err;
4238}
4239
4240/**
4241 * ice_set_wake - enable or disable Wake on LAN
4242 * @pf: pointer to the PF struct
4243 *
4244 * Simple helper for WoL control
4245 */
4246static void ice_set_wake(struct ice_pf *pf)
4247{
4248	struct ice_hw *hw = &pf->hw;
4249	bool wol = pf->wol_ena;
4250
4251	/* clear wake state, otherwise new wake events won't fire */
4252	wr32(hw, PFPM_WUS, U32_MAX);
4253
4254	/* enable / disable APM wake up, no RMW needed */
4255	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4256
4257	/* set magic packet filter enabled */
4258	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4259}
4260
4261/**
4262 * ice_setup_magic_mc_wake - setup device to wake on multicast magic packet
4263 * @pf: pointer to the PF struct
4264 *
4265 * Issue firmware command to enable multicast magic wake, making
4266 * sure that any locally administered address (LAA) is used for
4267 * wake, and that PF reset doesn't undo the LAA.
4268 */
4269static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4270{
4271	struct device *dev = ice_pf_to_dev(pf);
4272	struct ice_hw *hw = &pf->hw;
4273	enum ice_status status;
4274	u8 mac_addr[ETH_ALEN];
4275	struct ice_vsi *vsi;
4276	u8 flags;
4277
4278	if (!pf->wol_ena)
4279		return;
4280
4281	vsi = ice_get_main_vsi(pf);
4282	if (!vsi)
4283		return;
4284
4285	/* Get current MAC address in case it's an LAA */
4286	if (vsi->netdev)
4287		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4288	else
4289		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4290
4291	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4292		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4293		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4294
4295	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4296	if (status)
4297		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4298			ice_stat_str(status),
4299			ice_aq_str(hw->adminq.sq_last_status));
4300}
4301
4302/**
4303 * ice_remove - Device removal routine
4304 * @pdev: PCI device information struct
4305 */
4306static void ice_remove(struct pci_dev *pdev)
4307{
4308	struct ice_pf *pf = pci_get_drvdata(pdev);
4309	int i;
4310
4311	if (!pf)
4312		return;
4313
4314	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4315		if (!ice_is_reset_in_progress(pf->state))
4316			break;
4317		msleep(100);
4318	}
4319
4320	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4321		set_bit(__ICE_VF_RESETS_DISABLED, pf->state);
4322		ice_free_vfs(pf);
4323	}
4324
4325	set_bit(__ICE_DOWN, pf->state);
4326	ice_service_task_stop(pf);
4327
4328	ice_aq_cancel_waiting_tasks(pf);
 
 
 
 
4329
4330	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
 
 
 
4331	if (!ice_is_safe_mode(pf))
4332		ice_remove_arfs(pf);
4333	ice_setup_mc_magic_wake(pf);
4334	ice_devlink_destroy_port(pf);
4335	ice_vsi_release_all(pf);
4336	ice_set_wake(pf);
4337	ice_free_irq_msix_misc(pf);
4338	ice_for_each_vsi(pf, i) {
4339		if (!pf->vsi[i])
4340			continue;
4341		ice_vsi_free_q_vectors(pf->vsi[i]);
4342	}
4343	ice_deinit_pf(pf);
4344	ice_devlink_destroy_regions(pf);
4345	ice_deinit_hw(&pf->hw);
4346	ice_devlink_unregister(pf);
4347
4348	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4349	 * do it via ice_schedule_reset() since there is no need to rebuild
4350	 * and the service task is already stopped.
4351	 */
4352	ice_reset(&pf->hw, ICE_RESET_PFR);
4353	pci_wait_for_pending_transaction(pdev);
4354	ice_clear_interrupt_scheme(pf);
4355	pci_disable_pcie_error_reporting(pdev);
4356	pci_disable_device(pdev);
4357}
4358
4359/**
4360 * ice_shutdown - PCI callback for shutting down device
4361 * @pdev: PCI device information struct
4362 */
4363static void ice_shutdown(struct pci_dev *pdev)
4364{
4365	struct ice_pf *pf = pci_get_drvdata(pdev);
4366
4367	ice_remove(pdev);
4368
4369	if (system_state == SYSTEM_POWER_OFF) {
4370		pci_wake_from_d3(pdev, pf->wol_ena);
4371		pci_set_power_state(pdev, PCI_D3hot);
4372	}
4373}
4374
4375#ifdef CONFIG_PM
4376/**
4377 * ice_prepare_for_shutdown - prep for PCI shutdown
4378 * @pf: board private structure
4379 *
4380 * Inform or close all dependent features in prep for PCI device shutdown
4381 */
4382static void ice_prepare_for_shutdown(struct ice_pf *pf)
4383{
4384	struct ice_hw *hw = &pf->hw;
4385	u32 v;
4386
4387	/* Notify VFs of impending reset */
4388	if (ice_check_sq_alive(hw, &hw->mailboxq))
4389		ice_vc_notify_reset(pf);
4390
4391	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4392
4393	/* disable the VSIs and their queues that are not already DOWN */
4394	ice_pf_dis_all_vsi(pf, false);
4395
4396	ice_for_each_vsi(pf, v)
4397		if (pf->vsi[v])
4398			pf->vsi[v]->vsi_num = 0;
4399
4400	ice_shutdown_all_ctrlq(hw);
4401}
4402
4403/**
4404 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4405 * @pf: board private structure to reinitialize
4406 *
4407 * This routine reinitialize interrupt scheme that was cleared during
4408 * power management suspend callback.
4409 *
4410 * This should be called during resume routine to re-allocate the q_vectors
4411 * and reacquire interrupts.
4412 */
4413static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4414{
4415	struct device *dev = ice_pf_to_dev(pf);
4416	int ret, v;
4417
4418	/* Since we clear MSIX flag during suspend, we need to
4419	 * set it back during resume...
4420	 */
4421
4422	ret = ice_init_interrupt_scheme(pf);
4423	if (ret) {
4424		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4425		return ret;
4426	}
4427
4428	/* Remap vectors and rings, after successful re-init interrupts */
4429	ice_for_each_vsi(pf, v) {
4430		if (!pf->vsi[v])
4431			continue;
4432
4433		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4434		if (ret)
4435			goto err_reinit;
4436		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4437	}
4438
4439	ret = ice_req_irq_msix_misc(pf);
4440	if (ret) {
4441		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4442			ret);
4443		goto err_reinit;
4444	}
4445
4446	return 0;
4447
4448err_reinit:
4449	while (v--)
4450		if (pf->vsi[v])
4451			ice_vsi_free_q_vectors(pf->vsi[v]);
4452
4453	return ret;
4454}
4455
4456/**
4457 * ice_suspend
4458 * @dev: generic device information structure
4459 *
4460 * Power Management callback to quiesce the device and prepare
4461 * for D3 transition.
4462 */
4463static int __maybe_unused ice_suspend(struct device *dev)
4464{
4465	struct pci_dev *pdev = to_pci_dev(dev);
4466	struct ice_pf *pf;
4467	int disabled, v;
4468
4469	pf = pci_get_drvdata(pdev);
4470
4471	if (!ice_pf_state_is_nominal(pf)) {
4472		dev_err(dev, "Device is not ready, no need to suspend it\n");
4473		return -EBUSY;
4474	}
4475
4476	/* Stop watchdog tasks until resume completion.
4477	 * Even though it is most likely that the service task is
4478	 * disabled if the device is suspended or down, the service task's
4479	 * state is controlled by a different state bit, and we should
4480	 * store and honor whatever state that bit is in at this point.
4481	 */
4482	disabled = ice_service_task_stop(pf);
4483
 
 
4484	/* Already suspended?, then there is nothing to do */
4485	if (test_and_set_bit(__ICE_SUSPENDED, pf->state)) {
4486		if (!disabled)
4487			ice_service_task_restart(pf);
4488		return 0;
4489	}
4490
4491	if (test_bit(__ICE_DOWN, pf->state) ||
4492	    ice_is_reset_in_progress(pf->state)) {
4493		dev_err(dev, "can't suspend device in reset or already down\n");
4494		if (!disabled)
4495			ice_service_task_restart(pf);
4496		return 0;
4497	}
4498
4499	ice_setup_mc_magic_wake(pf);
4500
4501	ice_prepare_for_shutdown(pf);
4502
4503	ice_set_wake(pf);
4504
4505	/* Free vectors, clear the interrupt scheme and release IRQs
4506	 * for proper hibernation, especially with large number of CPUs.
4507	 * Otherwise hibernation might fail when mapping all the vectors back
4508	 * to CPU0.
4509	 */
4510	ice_free_irq_msix_misc(pf);
4511	ice_for_each_vsi(pf, v) {
4512		if (!pf->vsi[v])
4513			continue;
4514		ice_vsi_free_q_vectors(pf->vsi[v]);
4515	}
 
4516	ice_clear_interrupt_scheme(pf);
4517
4518	pci_save_state(pdev);
4519	pci_wake_from_d3(pdev, pf->wol_ena);
4520	pci_set_power_state(pdev, PCI_D3hot);
4521	return 0;
4522}
4523
4524/**
4525 * ice_resume - PM callback for waking up from D3
4526 * @dev: generic device information structure
4527 */
4528static int __maybe_unused ice_resume(struct device *dev)
4529{
4530	struct pci_dev *pdev = to_pci_dev(dev);
4531	enum ice_reset_req reset_type;
4532	struct ice_pf *pf;
4533	struct ice_hw *hw;
4534	int ret;
4535
4536	pci_set_power_state(pdev, PCI_D0);
4537	pci_restore_state(pdev);
4538	pci_save_state(pdev);
4539
4540	if (!pci_device_is_present(pdev))
4541		return -ENODEV;
4542
4543	ret = pci_enable_device_mem(pdev);
4544	if (ret) {
4545		dev_err(dev, "Cannot enable device after suspend\n");
4546		return ret;
4547	}
4548
4549	pf = pci_get_drvdata(pdev);
4550	hw = &pf->hw;
4551
4552	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4553	ice_print_wake_reason(pf);
4554
4555	/* We cleared the interrupt scheme when we suspended, so we need to
4556	 * restore it now to resume device functionality.
4557	 */
4558	ret = ice_reinit_interrupt_scheme(pf);
4559	if (ret)
4560		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4561
4562	clear_bit(__ICE_DOWN, pf->state);
4563	/* Now perform PF reset and rebuild */
4564	reset_type = ICE_RESET_PFR;
4565	/* re-enable service task for reset, but allow reset to schedule it */
4566	clear_bit(__ICE_SERVICE_DIS, pf->state);
4567
4568	if (ice_schedule_reset(pf, reset_type))
4569		dev_err(dev, "Reset during resume failed.\n");
4570
4571	clear_bit(__ICE_SUSPENDED, pf->state);
4572	ice_service_task_restart(pf);
4573
4574	/* Restart the service task */
4575	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4576
4577	return 0;
4578}
4579#endif /* CONFIG_PM */
4580
4581/**
4582 * ice_pci_err_detected - warning that PCI error has been detected
4583 * @pdev: PCI device information struct
4584 * @err: the type of PCI error
4585 *
4586 * Called to warn that something happened on the PCI bus and the error handling
4587 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4588 */
4589static pci_ers_result_t
4590ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4591{
4592	struct ice_pf *pf = pci_get_drvdata(pdev);
4593
4594	if (!pf) {
4595		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4596			__func__, err);
4597		return PCI_ERS_RESULT_DISCONNECT;
4598	}
4599
4600	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4601		ice_service_task_stop(pf);
4602
4603		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4604			set_bit(__ICE_PFR_REQ, pf->state);
4605			ice_prepare_for_reset(pf);
4606		}
4607	}
4608
4609	return PCI_ERS_RESULT_NEED_RESET;
4610}
4611
4612/**
4613 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4614 * @pdev: PCI device information struct
4615 *
4616 * Called to determine if the driver can recover from the PCI slot reset by
4617 * using a register read to determine if the device is recoverable.
4618 */
4619static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4620{
4621	struct ice_pf *pf = pci_get_drvdata(pdev);
4622	pci_ers_result_t result;
4623	int err;
4624	u32 reg;
4625
4626	err = pci_enable_device_mem(pdev);
4627	if (err) {
4628		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4629			err);
4630		result = PCI_ERS_RESULT_DISCONNECT;
4631	} else {
4632		pci_set_master(pdev);
4633		pci_restore_state(pdev);
4634		pci_save_state(pdev);
4635		pci_wake_from_d3(pdev, false);
4636
4637		/* Check for life */
4638		reg = rd32(&pf->hw, GLGEN_RTRIG);
4639		if (!reg)
4640			result = PCI_ERS_RESULT_RECOVERED;
4641		else
4642			result = PCI_ERS_RESULT_DISCONNECT;
4643	}
4644
4645	err = pci_aer_clear_nonfatal_status(pdev);
4646	if (err)
4647		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4648			err);
4649		/* non-fatal, continue */
4650
4651	return result;
4652}
4653
4654/**
4655 * ice_pci_err_resume - restart operations after PCI error recovery
4656 * @pdev: PCI device information struct
4657 *
4658 * Called to allow the driver to bring things back up after PCI error and/or
4659 * reset recovery have finished
4660 */
4661static void ice_pci_err_resume(struct pci_dev *pdev)
4662{
4663	struct ice_pf *pf = pci_get_drvdata(pdev);
4664
4665	if (!pf) {
4666		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4667			__func__);
4668		return;
4669	}
4670
4671	if (test_bit(__ICE_SUSPENDED, pf->state)) {
4672		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4673			__func__);
4674		return;
4675	}
4676
4677	ice_restore_all_vfs_msi_state(pdev);
4678
4679	ice_do_reset(pf, ICE_RESET_PFR);
4680	ice_service_task_restart(pf);
4681	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4682}
4683
4684/**
4685 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4686 * @pdev: PCI device information struct
4687 */
4688static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4689{
4690	struct ice_pf *pf = pci_get_drvdata(pdev);
4691
4692	if (!test_bit(__ICE_SUSPENDED, pf->state)) {
4693		ice_service_task_stop(pf);
4694
4695		if (!test_bit(__ICE_PREPARED_FOR_RESET, pf->state)) {
4696			set_bit(__ICE_PFR_REQ, pf->state);
4697			ice_prepare_for_reset(pf);
4698		}
4699	}
4700}
4701
4702/**
4703 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
4704 * @pdev: PCI device information struct
4705 */
4706static void ice_pci_err_reset_done(struct pci_dev *pdev)
4707{
4708	ice_pci_err_resume(pdev);
4709}
4710
4711/* ice_pci_tbl - PCI Device ID Table
4712 *
4713 * Wildcard entries (PCI_ANY_ID) should come last
4714 * Last entry must be all 0s
4715 *
4716 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
4717 *   Class, Class Mask, private data (not used) }
4718 */
4719static const struct pci_device_id ice_pci_tbl[] = {
4720	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
4721	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
4722	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
 
 
4723	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
4724	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
4725	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
4726	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
4727	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
4728	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
4729	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
4730	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
4731	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
4732	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
4733	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
4734	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
4735	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
4736	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
4737	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
4738	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
4739	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
4740	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
4741	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
4742	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
4743	/* required last entry */
4744	{ 0, }
4745};
4746MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
4747
4748static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
4749
4750static const struct pci_error_handlers ice_pci_err_handler = {
4751	.error_detected = ice_pci_err_detected,
4752	.slot_reset = ice_pci_err_slot_reset,
4753	.reset_prepare = ice_pci_err_reset_prepare,
4754	.reset_done = ice_pci_err_reset_done,
4755	.resume = ice_pci_err_resume
4756};
4757
4758static struct pci_driver ice_driver = {
4759	.name = KBUILD_MODNAME,
4760	.id_table = ice_pci_tbl,
4761	.probe = ice_probe,
4762	.remove = ice_remove,
4763#ifdef CONFIG_PM
4764	.driver.pm = &ice_pm_ops,
4765#endif /* CONFIG_PM */
4766	.shutdown = ice_shutdown,
4767	.sriov_configure = ice_sriov_configure,
4768	.err_handler = &ice_pci_err_handler
4769};
4770
4771/**
4772 * ice_module_init - Driver registration routine
4773 *
4774 * ice_module_init is the first routine called when the driver is
4775 * loaded. All it does is register with the PCI subsystem.
4776 */
4777static int __init ice_module_init(void)
4778{
4779	int status;
4780
4781	pr_info("%s\n", ice_driver_string);
4782	pr_info("%s\n", ice_copyright);
4783
4784	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
4785	if (!ice_wq) {
4786		pr_err("Failed to create workqueue\n");
4787		return -ENOMEM;
4788	}
4789
4790	status = pci_register_driver(&ice_driver);
4791	if (status) {
4792		pr_err("failed to register PCI driver, err %d\n", status);
4793		destroy_workqueue(ice_wq);
4794	}
4795
4796	return status;
4797}
4798module_init(ice_module_init);
4799
4800/**
4801 * ice_module_exit - Driver exit cleanup routine
4802 *
4803 * ice_module_exit is called just before the driver is removed
4804 * from memory.
4805 */
4806static void __exit ice_module_exit(void)
4807{
4808	pci_unregister_driver(&ice_driver);
4809	destroy_workqueue(ice_wq);
4810	pr_info("module unloaded\n");
4811}
4812module_exit(ice_module_exit);
4813
4814/**
4815 * ice_set_mac_address - NDO callback to set MAC address
4816 * @netdev: network interface device structure
4817 * @pi: pointer to an address structure
4818 *
4819 * Returns 0 on success, negative on failure
4820 */
4821static int ice_set_mac_address(struct net_device *netdev, void *pi)
4822{
4823	struct ice_netdev_priv *np = netdev_priv(netdev);
4824	struct ice_vsi *vsi = np->vsi;
4825	struct ice_pf *pf = vsi->back;
4826	struct ice_hw *hw = &pf->hw;
4827	struct sockaddr *addr = pi;
4828	enum ice_status status;
 
4829	u8 flags = 0;
4830	int err = 0;
4831	u8 *mac;
4832
4833	mac = (u8 *)addr->sa_data;
4834
4835	if (!is_valid_ether_addr(mac))
4836		return -EADDRNOTAVAIL;
4837
4838	if (ether_addr_equal(netdev->dev_addr, mac)) {
4839		netdev_warn(netdev, "already using mac %pM\n", mac);
4840		return 0;
4841	}
4842
4843	if (test_bit(__ICE_DOWN, pf->state) ||
4844	    ice_is_reset_in_progress(pf->state)) {
4845		netdev_err(netdev, "can't set mac %pM. device not ready\n",
4846			   mac);
4847		return -EBUSY;
4848	}
4849
 
 
 
 
 
 
4850	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
4851	status = ice_fltr_remove_mac(vsi, netdev->dev_addr, ICE_FWD_TO_VSI);
4852	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
4853		err = -EADDRNOTAVAIL;
4854		goto err_update_filters;
4855	}
4856
4857	/* Add filter for new MAC. If filter exists, just return success */
4858	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
4859	if (status == ICE_ERR_ALREADY_EXISTS) {
 
 
 
 
 
4860		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
4861		return 0;
4862	}
4863
4864	/* error if the new filter addition failed */
4865	if (status)
4866		err = -EADDRNOTAVAIL;
4867
4868err_update_filters:
4869	if (err) {
4870		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
4871			   mac);
 
 
 
4872		return err;
4873	}
4874
4875	/* change the netdev's MAC address */
4876	memcpy(netdev->dev_addr, mac, netdev->addr_len);
4877	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
4878		   netdev->dev_addr);
4879
4880	/* write new MAC address to the firmware */
4881	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
4882	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
4883	if (status) {
4884		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
4885			   mac, ice_stat_str(status));
4886	}
4887	return 0;
4888}
4889
4890/**
4891 * ice_set_rx_mode - NDO callback to set the netdev filters
4892 * @netdev: network interface device structure
4893 */
4894static void ice_set_rx_mode(struct net_device *netdev)
4895{
4896	struct ice_netdev_priv *np = netdev_priv(netdev);
4897	struct ice_vsi *vsi = np->vsi;
4898
4899	if (!vsi)
4900		return;
4901
4902	/* Set the flags to synchronize filters
4903	 * ndo_set_rx_mode may be triggered even without a change in netdev
4904	 * flags
4905	 */
4906	set_bit(ICE_VSI_FLAG_UMAC_FLTR_CHANGED, vsi->flags);
4907	set_bit(ICE_VSI_FLAG_MMAC_FLTR_CHANGED, vsi->flags);
4908	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
4909
4910	/* schedule our worker thread which will take care of
4911	 * applying the new filter changes
4912	 */
4913	ice_service_task_schedule(vsi->back);
4914}
4915
4916/**
4917 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
4918 * @netdev: network interface device structure
4919 * @queue_index: Queue ID
4920 * @maxrate: maximum bandwidth in Mbps
4921 */
4922static int
4923ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
4924{
4925	struct ice_netdev_priv *np = netdev_priv(netdev);
4926	struct ice_vsi *vsi = np->vsi;
4927	enum ice_status status;
4928	u16 q_handle;
4929	u8 tc;
4930
4931	/* Validate maxrate requested is within permitted range */
4932	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
4933		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
4934			   maxrate, queue_index);
4935		return -EINVAL;
4936	}
4937
4938	q_handle = vsi->tx_rings[queue_index]->q_handle;
4939	tc = ice_dcb_get_tc(vsi, queue_index);
4940
4941	/* Set BW back to default, when user set maxrate to 0 */
4942	if (!maxrate)
4943		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
4944					       q_handle, ICE_MAX_BW);
4945	else
4946		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
4947					  q_handle, ICE_MAX_BW, maxrate * 1000);
4948	if (status) {
4949		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
4950			   ice_stat_str(status));
4951		return -EIO;
4952	}
4953
4954	return 0;
4955}
4956
4957/**
4958 * ice_fdb_add - add an entry to the hardware database
4959 * @ndm: the input from the stack
4960 * @tb: pointer to array of nladdr (unused)
4961 * @dev: the net device pointer
4962 * @addr: the MAC address entry being added
4963 * @vid: VLAN ID
4964 * @flags: instructions from stack about fdb operation
4965 * @extack: netlink extended ack
4966 */
4967static int
4968ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
4969	    struct net_device *dev, const unsigned char *addr, u16 vid,
4970	    u16 flags, struct netlink_ext_ack __always_unused *extack)
4971{
4972	int err;
4973
4974	if (vid) {
4975		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
4976		return -EINVAL;
4977	}
4978	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
4979		netdev_err(dev, "FDB only supports static addresses\n");
4980		return -EINVAL;
4981	}
4982
4983	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
4984		err = dev_uc_add_excl(dev, addr);
4985	else if (is_multicast_ether_addr(addr))
4986		err = dev_mc_add_excl(dev, addr);
4987	else
4988		err = -EINVAL;
4989
4990	/* Only return duplicate errors if NLM_F_EXCL is set */
4991	if (err == -EEXIST && !(flags & NLM_F_EXCL))
4992		err = 0;
4993
4994	return err;
4995}
4996
4997/**
4998 * ice_fdb_del - delete an entry from the hardware database
4999 * @ndm: the input from the stack
5000 * @tb: pointer to array of nladdr (unused)
5001 * @dev: the net device pointer
5002 * @addr: the MAC address entry being added
5003 * @vid: VLAN ID
5004 */
5005static int
5006ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5007	    struct net_device *dev, const unsigned char *addr,
5008	    __always_unused u16 vid)
5009{
5010	int err;
5011
5012	if (ndm->ndm_state & NUD_PERMANENT) {
5013		netdev_err(dev, "FDB only supports static addresses\n");
5014		return -EINVAL;
5015	}
5016
5017	if (is_unicast_ether_addr(addr))
5018		err = dev_uc_del(dev, addr);
5019	else if (is_multicast_ether_addr(addr))
5020		err = dev_mc_del(dev, addr);
5021	else
5022		err = -EINVAL;
5023
5024	return err;
5025}
5026
5027/**
5028 * ice_set_features - set the netdev feature flags
5029 * @netdev: ptr to the netdev being adjusted
5030 * @features: the feature set that the stack is suggesting
5031 */
5032static int
5033ice_set_features(struct net_device *netdev, netdev_features_t features)
5034{
5035	struct ice_netdev_priv *np = netdev_priv(netdev);
5036	struct ice_vsi *vsi = np->vsi;
5037	struct ice_pf *pf = vsi->back;
5038	int ret = 0;
5039
5040	/* Don't set any netdev advanced features with device in Safe Mode */
5041	if (ice_is_safe_mode(vsi->back)) {
5042		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5043		return ret;
5044	}
5045
5046	/* Do not change setting during reset */
5047	if (ice_is_reset_in_progress(pf->state)) {
5048		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5049		return -EBUSY;
5050	}
5051
5052	/* Multiple features can be changed in one call so keep features in
5053	 * separate if/else statements to guarantee each feature is checked
5054	 */
5055	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5056		ret = ice_vsi_manage_rss_lut(vsi, true);
5057	else if (!(features & NETIF_F_RXHASH) &&
5058		 netdev->features & NETIF_F_RXHASH)
5059		ret = ice_vsi_manage_rss_lut(vsi, false);
5060
5061	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5062	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5063		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5064	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5065		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5066		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5067
5068	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5069	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5070		ret = ice_vsi_manage_vlan_insertion(vsi);
5071	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5072		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5073		ret = ice_vsi_manage_vlan_insertion(vsi);
5074
5075	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5076	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5077		ret = ice_cfg_vlan_pruning(vsi, true, false);
5078	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5079		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5080		ret = ice_cfg_vlan_pruning(vsi, false, false);
5081
5082	if ((features & NETIF_F_NTUPLE) &&
5083	    !(netdev->features & NETIF_F_NTUPLE)) {
5084		ice_vsi_manage_fdir(vsi, true);
5085		ice_init_arfs(vsi);
5086	} else if (!(features & NETIF_F_NTUPLE) &&
5087		 (netdev->features & NETIF_F_NTUPLE)) {
5088		ice_vsi_manage_fdir(vsi, false);
5089		ice_clear_arfs(vsi);
5090	}
5091
5092	return ret;
5093}
5094
5095/**
5096 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5097 * @vsi: VSI to setup VLAN properties for
5098 */
5099static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5100{
5101	int ret = 0;
5102
5103	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5104		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5105	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5106		ret = ice_vsi_manage_vlan_insertion(vsi);
5107
5108	return ret;
5109}
5110
5111/**
5112 * ice_vsi_cfg - Setup the VSI
5113 * @vsi: the VSI being configured
5114 *
5115 * Return 0 on success and negative value on error
5116 */
5117int ice_vsi_cfg(struct ice_vsi *vsi)
5118{
5119	int err;
5120
5121	if (vsi->netdev) {
5122		ice_set_rx_mode(vsi->netdev);
5123
5124		err = ice_vsi_vlan_setup(vsi);
5125
5126		if (err)
5127			return err;
5128	}
5129	ice_vsi_cfg_dcb_rings(vsi);
5130
5131	err = ice_vsi_cfg_lan_txqs(vsi);
5132	if (!err && ice_is_xdp_ena_vsi(vsi))
5133		err = ice_vsi_cfg_xdp_txqs(vsi);
5134	if (!err)
5135		err = ice_vsi_cfg_rxqs(vsi);
5136
5137	return err;
5138}
5139
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5140/**
5141 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5142 * @vsi: the VSI being configured
5143 */
5144static void ice_napi_enable_all(struct ice_vsi *vsi)
5145{
5146	int q_idx;
5147
5148	if (!vsi->netdev)
5149		return;
5150
5151	ice_for_each_q_vector(vsi, q_idx) {
5152		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5153
 
 
 
 
 
 
5154		if (q_vector->rx.ring || q_vector->tx.ring)
5155			napi_enable(&q_vector->napi);
5156	}
5157}
5158
5159/**
5160 * ice_up_complete - Finish the last steps of bringing up a connection
5161 * @vsi: The VSI being configured
5162 *
5163 * Return 0 on success and negative value on error
5164 */
5165static int ice_up_complete(struct ice_vsi *vsi)
5166{
5167	struct ice_pf *pf = vsi->back;
5168	int err;
5169
5170	ice_vsi_cfg_msix(vsi);
5171
5172	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5173	 * Tx queue group list was configured and the context bits were
5174	 * programmed using ice_vsi_cfg_txqs
5175	 */
5176	err = ice_vsi_start_all_rx_rings(vsi);
5177	if (err)
5178		return err;
5179
5180	clear_bit(__ICE_DOWN, vsi->state);
5181	ice_napi_enable_all(vsi);
5182	ice_vsi_ena_irq(vsi);
5183
5184	if (vsi->port_info &&
5185	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5186	    vsi->netdev) {
5187		ice_print_link_msg(vsi, true);
5188		netif_tx_start_all_queues(vsi->netdev);
5189		netif_carrier_on(vsi->netdev);
5190	}
5191
5192	ice_service_task_schedule(pf);
5193
5194	return 0;
5195}
5196
5197/**
5198 * ice_up - Bring the connection back up after being down
5199 * @vsi: VSI being configured
5200 */
5201int ice_up(struct ice_vsi *vsi)
5202{
5203	int err;
5204
5205	err = ice_vsi_cfg(vsi);
5206	if (!err)
5207		err = ice_up_complete(vsi);
5208
5209	return err;
5210}
5211
5212/**
5213 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5214 * @ring: Tx or Rx ring to read stats from
5215 * @pkts: packets stats counter
5216 * @bytes: bytes stats counter
5217 *
5218 * This function fetches stats from the ring considering the atomic operations
5219 * that needs to be performed to read u64 values in 32 bit machine.
5220 */
5221static void
5222ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5223{
5224	unsigned int start;
5225	*pkts = 0;
5226	*bytes = 0;
5227
5228	if (!ring)
5229		return;
5230	do {
5231		start = u64_stats_fetch_begin_irq(&ring->syncp);
5232		*pkts = ring->stats.pkts;
5233		*bytes = ring->stats.bytes;
5234	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5235}
5236
5237/**
5238 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5239 * @vsi: the VSI to be updated
5240 * @rings: rings to work on
5241 * @count: number of rings
5242 */
5243static void
5244ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5245			     u16 count)
5246{
5247	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5248	u16 i;
5249
5250	for (i = 0; i < count; i++) {
5251		struct ice_ring *ring;
5252		u64 pkts, bytes;
5253
5254		ring = READ_ONCE(rings[i]);
5255		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5256		vsi_stats->tx_packets += pkts;
5257		vsi_stats->tx_bytes += bytes;
5258		vsi->tx_restart += ring->tx_stats.restart_q;
5259		vsi->tx_busy += ring->tx_stats.tx_busy;
5260		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5261	}
5262}
5263
5264/**
5265 * ice_update_vsi_ring_stats - Update VSI stats counters
5266 * @vsi: the VSI to be updated
5267 */
5268static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5269{
5270	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5271	struct ice_ring *ring;
5272	u64 pkts, bytes;
5273	int i;
5274
5275	/* reset netdev stats */
5276	vsi_stats->tx_packets = 0;
5277	vsi_stats->tx_bytes = 0;
5278	vsi_stats->rx_packets = 0;
5279	vsi_stats->rx_bytes = 0;
5280
5281	/* reset non-netdev (extended) stats */
5282	vsi->tx_restart = 0;
5283	vsi->tx_busy = 0;
5284	vsi->tx_linearize = 0;
5285	vsi->rx_buf_failed = 0;
5286	vsi->rx_page_failed = 0;
5287	vsi->rx_gro_dropped = 0;
5288
5289	rcu_read_lock();
5290
5291	/* update Tx rings counters */
5292	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5293
5294	/* update Rx rings counters */
5295	ice_for_each_rxq(vsi, i) {
5296		ring = READ_ONCE(vsi->rx_rings[i]);
 
5297		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5298		vsi_stats->rx_packets += pkts;
5299		vsi_stats->rx_bytes += bytes;
5300		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5301		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
5302		vsi->rx_gro_dropped += ring->rx_stats.gro_dropped;
5303	}
5304
5305	/* update XDP Tx rings counters */
5306	if (ice_is_xdp_ena_vsi(vsi))
5307		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5308					     vsi->num_xdp_txq);
5309
5310	rcu_read_unlock();
5311}
5312
5313/**
5314 * ice_update_vsi_stats - Update VSI stats counters
5315 * @vsi: the VSI to be updated
5316 */
5317void ice_update_vsi_stats(struct ice_vsi *vsi)
5318{
5319	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5320	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5321	struct ice_pf *pf = vsi->back;
5322
5323	if (test_bit(__ICE_DOWN, vsi->state) ||
5324	    test_bit(__ICE_CFG_BUSY, pf->state))
5325		return;
5326
5327	/* get stats as recorded by Tx/Rx rings */
5328	ice_update_vsi_ring_stats(vsi);
5329
5330	/* get VSI stats as recorded by the hardware */
5331	ice_update_eth_stats(vsi);
5332
5333	cur_ns->tx_errors = cur_es->tx_errors;
5334	cur_ns->rx_dropped = cur_es->rx_discards + vsi->rx_gro_dropped;
5335	cur_ns->tx_dropped = cur_es->tx_discards;
5336	cur_ns->multicast = cur_es->rx_multicast;
5337
5338	/* update some more netdev stats if this is main VSI */
5339	if (vsi->type == ICE_VSI_PF) {
5340		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5341		cur_ns->rx_errors = pf->stats.crc_errors +
5342				    pf->stats.illegal_bytes +
5343				    pf->stats.rx_len_errors +
5344				    pf->stats.rx_undersize +
5345				    pf->hw_csum_rx_error +
5346				    pf->stats.rx_jabber +
5347				    pf->stats.rx_fragments +
5348				    pf->stats.rx_oversize;
5349		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5350		/* record drops from the port level */
5351		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5352	}
5353}
5354
5355/**
5356 * ice_update_pf_stats - Update PF port stats counters
5357 * @pf: PF whose stats needs to be updated
5358 */
5359void ice_update_pf_stats(struct ice_pf *pf)
5360{
5361	struct ice_hw_port_stats *prev_ps, *cur_ps;
5362	struct ice_hw *hw = &pf->hw;
5363	u16 fd_ctr_base;
5364	u8 port;
5365
5366	port = hw->port_info->lport;
5367	prev_ps = &pf->stats_prev;
5368	cur_ps = &pf->stats;
5369
5370	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5371			  &prev_ps->eth.rx_bytes,
5372			  &cur_ps->eth.rx_bytes);
5373
5374	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5375			  &prev_ps->eth.rx_unicast,
5376			  &cur_ps->eth.rx_unicast);
5377
5378	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5379			  &prev_ps->eth.rx_multicast,
5380			  &cur_ps->eth.rx_multicast);
5381
5382	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5383			  &prev_ps->eth.rx_broadcast,
5384			  &cur_ps->eth.rx_broadcast);
5385
5386	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5387			  &prev_ps->eth.rx_discards,
5388			  &cur_ps->eth.rx_discards);
5389
5390	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5391			  &prev_ps->eth.tx_bytes,
5392			  &cur_ps->eth.tx_bytes);
5393
5394	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5395			  &prev_ps->eth.tx_unicast,
5396			  &cur_ps->eth.tx_unicast);
5397
5398	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5399			  &prev_ps->eth.tx_multicast,
5400			  &cur_ps->eth.tx_multicast);
5401
5402	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5403			  &prev_ps->eth.tx_broadcast,
5404			  &cur_ps->eth.tx_broadcast);
5405
5406	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5407			  &prev_ps->tx_dropped_link_down,
5408			  &cur_ps->tx_dropped_link_down);
5409
5410	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5411			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5412
5413	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5414			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5415
5416	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5417			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5418
5419	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5420			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5421
5422	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5423			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5424
5425	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5426			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5427
5428	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5429			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5430
5431	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5432			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5433
5434	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5435			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5436
5437	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5438			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5439
5440	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5441			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5442
5443	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5444			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5445
5446	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5447			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5448
5449	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5450			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5451
5452	fd_ctr_base = hw->fd_ctr_base;
5453
5454	ice_stat_update40(hw,
5455			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5456			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5457			  &cur_ps->fd_sb_match);
5458	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5459			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5460
5461	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5462			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5463
5464	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5465			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5466
5467	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5468			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5469
5470	ice_update_dcb_stats(pf);
5471
5472	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5473			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5474
5475	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5476			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5477
5478	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5479			  &prev_ps->mac_local_faults,
5480			  &cur_ps->mac_local_faults);
5481
5482	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5483			  &prev_ps->mac_remote_faults,
5484			  &cur_ps->mac_remote_faults);
5485
5486	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5487			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5488
5489	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5490			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5491
5492	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5493			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5494
5495	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5496			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5497
5498	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5499			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5500
5501	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5502
5503	pf->stat_prev_loaded = true;
5504}
5505
5506/**
5507 * ice_get_stats64 - get statistics for network device structure
5508 * @netdev: network interface device structure
5509 * @stats: main device statistics structure
5510 */
5511static
5512void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5513{
5514	struct ice_netdev_priv *np = netdev_priv(netdev);
5515	struct rtnl_link_stats64 *vsi_stats;
5516	struct ice_vsi *vsi = np->vsi;
5517
5518	vsi_stats = &vsi->net_stats;
5519
5520	if (!vsi->num_txq || !vsi->num_rxq)
5521		return;
5522
5523	/* netdev packet/byte stats come from ring counter. These are obtained
5524	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5525	 * But, only call the update routine and read the registers if VSI is
5526	 * not down.
5527	 */
5528	if (!test_bit(__ICE_DOWN, vsi->state))
5529		ice_update_vsi_ring_stats(vsi);
5530	stats->tx_packets = vsi_stats->tx_packets;
5531	stats->tx_bytes = vsi_stats->tx_bytes;
5532	stats->rx_packets = vsi_stats->rx_packets;
5533	stats->rx_bytes = vsi_stats->rx_bytes;
5534
5535	/* The rest of the stats can be read from the hardware but instead we
5536	 * just return values that the watchdog task has already obtained from
5537	 * the hardware.
5538	 */
5539	stats->multicast = vsi_stats->multicast;
5540	stats->tx_errors = vsi_stats->tx_errors;
5541	stats->tx_dropped = vsi_stats->tx_dropped;
5542	stats->rx_errors = vsi_stats->rx_errors;
5543	stats->rx_dropped = vsi_stats->rx_dropped;
5544	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5545	stats->rx_length_errors = vsi_stats->rx_length_errors;
5546}
5547
5548/**
5549 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5550 * @vsi: VSI having NAPI disabled
5551 */
5552static void ice_napi_disable_all(struct ice_vsi *vsi)
5553{
5554	int q_idx;
5555
5556	if (!vsi->netdev)
5557		return;
5558
5559	ice_for_each_q_vector(vsi, q_idx) {
5560		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5561
5562		if (q_vector->rx.ring || q_vector->tx.ring)
5563			napi_disable(&q_vector->napi);
 
 
 
5564	}
5565}
5566
5567/**
5568 * ice_down - Shutdown the connection
5569 * @vsi: The VSI being stopped
5570 */
5571int ice_down(struct ice_vsi *vsi)
5572{
5573	int i, tx_err, rx_err, link_err = 0;
5574
5575	/* Caller of this function is expected to set the
5576	 * vsi->state __ICE_DOWN bit
5577	 */
5578	if (vsi->netdev) {
5579		netif_carrier_off(vsi->netdev);
5580		netif_tx_disable(vsi->netdev);
5581	}
5582
5583	ice_vsi_dis_irq(vsi);
5584
5585	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
5586	if (tx_err)
5587		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
5588			   vsi->vsi_num, tx_err);
5589	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
5590		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
5591		if (tx_err)
5592			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
5593				   vsi->vsi_num, tx_err);
5594	}
5595
5596	rx_err = ice_vsi_stop_all_rx_rings(vsi);
5597	if (rx_err)
5598		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
5599			   vsi->vsi_num, rx_err);
5600
5601	ice_napi_disable_all(vsi);
5602
5603	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
5604		link_err = ice_force_phys_link_state(vsi, false);
5605		if (link_err)
5606			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
5607				   vsi->vsi_num, link_err);
5608	}
5609
5610	ice_for_each_txq(vsi, i)
5611		ice_clean_tx_ring(vsi->tx_rings[i]);
5612
5613	ice_for_each_rxq(vsi, i)
5614		ice_clean_rx_ring(vsi->rx_rings[i]);
5615
5616	if (tx_err || rx_err || link_err) {
5617		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
5618			   vsi->vsi_num, vsi->vsw->sw_id);
5619		return -EIO;
5620	}
5621
5622	return 0;
5623}
5624
5625/**
5626 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
5627 * @vsi: VSI having resources allocated
5628 *
5629 * Return 0 on success, negative on failure
5630 */
5631int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
5632{
5633	int i, err = 0;
5634
5635	if (!vsi->num_txq) {
5636		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
5637			vsi->vsi_num);
5638		return -EINVAL;
5639	}
5640
5641	ice_for_each_txq(vsi, i) {
5642		struct ice_ring *ring = vsi->tx_rings[i];
5643
5644		if (!ring)
5645			return -EINVAL;
5646
5647		ring->netdev = vsi->netdev;
5648		err = ice_setup_tx_ring(ring);
5649		if (err)
5650			break;
5651	}
5652
5653	return err;
5654}
5655
5656/**
5657 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
5658 * @vsi: VSI having resources allocated
5659 *
5660 * Return 0 on success, negative on failure
5661 */
5662int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
5663{
5664	int i, err = 0;
5665
5666	if (!vsi->num_rxq) {
5667		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
5668			vsi->vsi_num);
5669		return -EINVAL;
5670	}
5671
5672	ice_for_each_rxq(vsi, i) {
5673		struct ice_ring *ring = vsi->rx_rings[i];
5674
5675		if (!ring)
5676			return -EINVAL;
5677
5678		ring->netdev = vsi->netdev;
5679		err = ice_setup_rx_ring(ring);
5680		if (err)
5681			break;
5682	}
5683
5684	return err;
5685}
5686
5687/**
5688 * ice_vsi_open_ctrl - open control VSI for use
5689 * @vsi: the VSI to open
5690 *
5691 * Initialization of the Control VSI
5692 *
5693 * Returns 0 on success, negative value on error
5694 */
5695int ice_vsi_open_ctrl(struct ice_vsi *vsi)
5696{
5697	char int_name[ICE_INT_NAME_STR_LEN];
5698	struct ice_pf *pf = vsi->back;
5699	struct device *dev;
5700	int err;
5701
5702	dev = ice_pf_to_dev(pf);
5703	/* allocate descriptors */
5704	err = ice_vsi_setup_tx_rings(vsi);
5705	if (err)
5706		goto err_setup_tx;
5707
5708	err = ice_vsi_setup_rx_rings(vsi);
5709	if (err)
5710		goto err_setup_rx;
5711
5712	err = ice_vsi_cfg(vsi);
5713	if (err)
5714		goto err_setup_rx;
5715
5716	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
5717		 dev_driver_string(dev), dev_name(dev));
5718	err = ice_vsi_req_irq_msix(vsi, int_name);
5719	if (err)
5720		goto err_setup_rx;
5721
5722	ice_vsi_cfg_msix(vsi);
5723
5724	err = ice_vsi_start_all_rx_rings(vsi);
5725	if (err)
5726		goto err_up_complete;
5727
5728	clear_bit(__ICE_DOWN, vsi->state);
5729	ice_vsi_ena_irq(vsi);
5730
5731	return 0;
5732
5733err_up_complete:
5734	ice_down(vsi);
5735err_setup_rx:
5736	ice_vsi_free_rx_rings(vsi);
5737err_setup_tx:
5738	ice_vsi_free_tx_rings(vsi);
5739
5740	return err;
5741}
5742
5743/**
5744 * ice_vsi_open - Called when a network interface is made active
5745 * @vsi: the VSI to open
5746 *
5747 * Initialization of the VSI
5748 *
5749 * Returns 0 on success, negative value on error
5750 */
5751static int ice_vsi_open(struct ice_vsi *vsi)
5752{
5753	char int_name[ICE_INT_NAME_STR_LEN];
5754	struct ice_pf *pf = vsi->back;
5755	int err;
5756
5757	/* allocate descriptors */
5758	err = ice_vsi_setup_tx_rings(vsi);
5759	if (err)
5760		goto err_setup_tx;
5761
5762	err = ice_vsi_setup_rx_rings(vsi);
5763	if (err)
5764		goto err_setup_rx;
5765
5766	err = ice_vsi_cfg(vsi);
5767	if (err)
5768		goto err_setup_rx;
5769
5770	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
5771		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
5772	err = ice_vsi_req_irq_msix(vsi, int_name);
5773	if (err)
5774		goto err_setup_rx;
5775
5776	/* Notify the stack of the actual queue counts. */
5777	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
5778	if (err)
5779		goto err_set_qs;
5780
5781	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
5782	if (err)
5783		goto err_set_qs;
5784
5785	err = ice_up_complete(vsi);
5786	if (err)
5787		goto err_up_complete;
5788
5789	return 0;
5790
5791err_up_complete:
5792	ice_down(vsi);
5793err_set_qs:
5794	ice_vsi_free_irq(vsi);
5795err_setup_rx:
5796	ice_vsi_free_rx_rings(vsi);
5797err_setup_tx:
5798	ice_vsi_free_tx_rings(vsi);
5799
5800	return err;
5801}
5802
5803/**
5804 * ice_vsi_release_all - Delete all VSIs
5805 * @pf: PF from which all VSIs are being removed
5806 */
5807static void ice_vsi_release_all(struct ice_pf *pf)
5808{
5809	int err, i;
5810
5811	if (!pf->vsi)
5812		return;
5813
5814	ice_for_each_vsi(pf, i) {
5815		if (!pf->vsi[i])
5816			continue;
5817
5818		err = ice_vsi_release(pf->vsi[i]);
5819		if (err)
5820			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
5821				i, err, pf->vsi[i]->vsi_num);
5822	}
5823}
5824
5825/**
5826 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
5827 * @pf: pointer to the PF instance
5828 * @type: VSI type to rebuild
5829 *
5830 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
5831 */
5832static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
5833{
5834	struct device *dev = ice_pf_to_dev(pf);
5835	enum ice_status status;
5836	int i, err;
5837
5838	ice_for_each_vsi(pf, i) {
5839		struct ice_vsi *vsi = pf->vsi[i];
5840
5841		if (!vsi || vsi->type != type)
5842			continue;
5843
5844		/* rebuild the VSI */
5845		err = ice_vsi_rebuild(vsi, true);
5846		if (err) {
5847			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
5848				err, vsi->idx, ice_vsi_type_str(type));
5849			return err;
5850		}
5851
5852		/* replay filters for the VSI */
5853		status = ice_replay_vsi(&pf->hw, vsi->idx);
5854		if (status) {
5855			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
5856				ice_stat_str(status), vsi->idx,
5857				ice_vsi_type_str(type));
5858			return -EIO;
5859		}
5860
5861		/* Re-map HW VSI number, using VSI handle that has been
5862		 * previously validated in ice_replay_vsi() call above
5863		 */
5864		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
5865
5866		/* enable the VSI */
5867		err = ice_ena_vsi(vsi, false);
5868		if (err) {
5869			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
5870				err, vsi->idx, ice_vsi_type_str(type));
5871			return err;
5872		}
5873
5874		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
5875			 ice_vsi_type_str(type));
5876	}
5877
5878	return 0;
5879}
5880
5881/**
5882 * ice_update_pf_netdev_link - Update PF netdev link status
5883 * @pf: pointer to the PF instance
5884 */
5885static void ice_update_pf_netdev_link(struct ice_pf *pf)
5886{
5887	bool link_up;
5888	int i;
5889
5890	ice_for_each_vsi(pf, i) {
5891		struct ice_vsi *vsi = pf->vsi[i];
5892
5893		if (!vsi || vsi->type != ICE_VSI_PF)
5894			return;
5895
5896		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
5897		if (link_up) {
5898			netif_carrier_on(pf->vsi[i]->netdev);
5899			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
5900		} else {
5901			netif_carrier_off(pf->vsi[i]->netdev);
5902			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
5903		}
5904	}
5905}
5906
5907/**
5908 * ice_rebuild - rebuild after reset
5909 * @pf: PF to rebuild
5910 * @reset_type: type of reset
5911 *
5912 * Do not rebuild VF VSI in this flow because that is already handled via
5913 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
5914 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
5915 * to reset/rebuild all the VF VSI twice.
5916 */
5917static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
5918{
5919	struct device *dev = ice_pf_to_dev(pf);
5920	struct ice_hw *hw = &pf->hw;
5921	enum ice_status ret;
5922	int err;
5923
5924	if (test_bit(__ICE_DOWN, pf->state))
5925		goto clear_recovery;
5926
5927	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
5928
5929	ret = ice_init_all_ctrlq(hw);
5930	if (ret) {
5931		dev_err(dev, "control queues init failed %s\n",
5932			ice_stat_str(ret));
5933		goto err_init_ctrlq;
5934	}
5935
5936	/* if DDP was previously loaded successfully */
5937	if (!ice_is_safe_mode(pf)) {
5938		/* reload the SW DB of filter tables */
5939		if (reset_type == ICE_RESET_PFR)
5940			ice_fill_blk_tbls(hw);
5941		else
5942			/* Reload DDP Package after CORER/GLOBR reset */
5943			ice_load_pkg(NULL, pf);
5944	}
5945
5946	ret = ice_clear_pf_cfg(hw);
5947	if (ret) {
5948		dev_err(dev, "clear PF configuration failed %s\n",
5949			ice_stat_str(ret));
5950		goto err_init_ctrlq;
5951	}
5952
5953	if (pf->first_sw->dflt_vsi_ena)
5954		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
5955	/* clear the default VSI configuration if it exists */
5956	pf->first_sw->dflt_vsi = NULL;
5957	pf->first_sw->dflt_vsi_ena = false;
5958
5959	ice_clear_pxe_mode(hw);
5960
 
 
 
 
 
 
5961	ret = ice_get_caps(hw);
5962	if (ret) {
5963		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
5964		goto err_init_ctrlq;
5965	}
5966
5967	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
5968	if (ret) {
5969		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
5970		goto err_init_ctrlq;
5971	}
5972
5973	err = ice_sched_init_port(hw->port_info);
5974	if (err)
5975		goto err_sched_init_port;
5976
5977	/* start misc vector */
5978	err = ice_req_irq_msix_misc(pf);
5979	if (err) {
5980		dev_err(dev, "misc vector setup failed: %d\n", err);
5981		goto err_sched_init_port;
5982	}
5983
5984	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
5985		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
5986		if (!rd32(hw, PFQF_FD_SIZE)) {
5987			u16 unused, guar, b_effort;
5988
5989			guar = hw->func_caps.fd_fltr_guar;
5990			b_effort = hw->func_caps.fd_fltr_best_effort;
5991
5992			/* force guaranteed filter pool for PF */
5993			ice_alloc_fd_guar_item(hw, &unused, guar);
5994			/* force shared filter pool for PF */
5995			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
5996		}
5997	}
5998
5999	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6000		ice_dcb_rebuild(pf);
6001
 
 
 
 
 
 
 
6002	/* rebuild PF VSI */
6003	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6004	if (err) {
6005		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6006		goto err_vsi_rebuild;
6007	}
6008
6009	/* If Flow Director is active */
6010	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6011		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6012		if (err) {
6013			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6014			goto err_vsi_rebuild;
6015		}
6016
6017		/* replay HW Flow Director recipes */
6018		if (hw->fdir_prof)
6019			ice_fdir_replay_flows(hw);
6020
6021		/* replay Flow Director filters */
6022		ice_fdir_replay_fltrs(pf);
6023
6024		ice_rebuild_arfs(pf);
6025	}
6026
6027	ice_update_pf_netdev_link(pf);
6028
6029	/* tell the firmware we are up */
6030	ret = ice_send_version(pf);
6031	if (ret) {
6032		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6033			ice_stat_str(ret));
6034		goto err_vsi_rebuild;
6035	}
6036
6037	ice_replay_post(hw);
6038
6039	/* if we get here, reset flow is successful */
6040	clear_bit(__ICE_RESET_FAILED, pf->state);
 
 
6041	return;
6042
6043err_vsi_rebuild:
6044err_sched_init_port:
6045	ice_sched_cleanup_all(hw);
6046err_init_ctrlq:
6047	ice_shutdown_all_ctrlq(hw);
6048	set_bit(__ICE_RESET_FAILED, pf->state);
6049clear_recovery:
6050	/* set this bit in PF state to control service task scheduling */
6051	set_bit(__ICE_NEEDS_RESTART, pf->state);
6052	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6053}
6054
6055/**
6056 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6057 * @vsi: Pointer to VSI structure
6058 */
6059static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6060{
6061	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6062		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6063	else
6064		return ICE_RXBUF_3072;
6065}
6066
6067/**
6068 * ice_change_mtu - NDO callback to change the MTU
6069 * @netdev: network interface device structure
6070 * @new_mtu: new value for maximum frame size
6071 *
6072 * Returns 0 on success, negative on failure
6073 */
6074static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6075{
6076	struct ice_netdev_priv *np = netdev_priv(netdev);
6077	struct ice_vsi *vsi = np->vsi;
6078	struct ice_pf *pf = vsi->back;
 
6079	u8 count = 0;
 
6080
6081	if (new_mtu == (int)netdev->mtu) {
6082		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6083		return 0;
6084	}
6085
6086	if (ice_is_xdp_ena_vsi(vsi)) {
6087		int frame_size = ice_max_xdp_frame_size(vsi);
6088
6089		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6090			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6091				   frame_size - ICE_ETH_PKT_HDR_PAD);
6092			return -EINVAL;
6093		}
6094	}
6095
6096	if (new_mtu < (int)netdev->min_mtu) {
6097		netdev_err(netdev, "new MTU invalid. min_mtu is %d\n",
6098			   netdev->min_mtu);
6099		return -EINVAL;
6100	} else if (new_mtu > (int)netdev->max_mtu) {
6101		netdev_err(netdev, "new MTU invalid. max_mtu is %d\n",
6102			   netdev->min_mtu);
6103		return -EINVAL;
6104	}
6105	/* if a reset is in progress, wait for some time for it to complete */
6106	do {
6107		if (ice_is_reset_in_progress(pf->state)) {
6108			count++;
6109			usleep_range(1000, 2000);
6110		} else {
6111			break;
6112		}
6113
6114	} while (count < 100);
6115
6116	if (count == 100) {
6117		netdev_err(netdev, "can't change MTU. Device is busy\n");
6118		return -EBUSY;
6119	}
6120
 
 
 
 
 
 
 
 
6121	netdev->mtu = (unsigned int)new_mtu;
6122
6123	/* if VSI is up, bring it down and then back up */
6124	if (!test_and_set_bit(__ICE_DOWN, vsi->state)) {
6125		int err;
6126
6127		err = ice_down(vsi);
6128		if (err) {
6129			netdev_err(netdev, "change MTU if_up err %d\n", err);
6130			return err;
6131		}
6132
6133		err = ice_up(vsi);
6134		if (err) {
6135			netdev_err(netdev, "change MTU if_up err %d\n", err);
6136			return err;
6137		}
6138	}
6139
6140	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6141	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6142}
6143
6144/**
6145 * ice_aq_str - convert AQ err code to a string
6146 * @aq_err: the AQ error code to convert
6147 */
6148const char *ice_aq_str(enum ice_aq_err aq_err)
6149{
6150	switch (aq_err) {
6151	case ICE_AQ_RC_OK:
6152		return "OK";
6153	case ICE_AQ_RC_EPERM:
6154		return "ICE_AQ_RC_EPERM";
6155	case ICE_AQ_RC_ENOENT:
6156		return "ICE_AQ_RC_ENOENT";
6157	case ICE_AQ_RC_ENOMEM:
6158		return "ICE_AQ_RC_ENOMEM";
6159	case ICE_AQ_RC_EBUSY:
6160		return "ICE_AQ_RC_EBUSY";
6161	case ICE_AQ_RC_EEXIST:
6162		return "ICE_AQ_RC_EEXIST";
6163	case ICE_AQ_RC_EINVAL:
6164		return "ICE_AQ_RC_EINVAL";
6165	case ICE_AQ_RC_ENOSPC:
6166		return "ICE_AQ_RC_ENOSPC";
6167	case ICE_AQ_RC_ENOSYS:
6168		return "ICE_AQ_RC_ENOSYS";
6169	case ICE_AQ_RC_EMODE:
6170		return "ICE_AQ_RC_EMODE";
6171	case ICE_AQ_RC_ENOSEC:
6172		return "ICE_AQ_RC_ENOSEC";
6173	case ICE_AQ_RC_EBADSIG:
6174		return "ICE_AQ_RC_EBADSIG";
6175	case ICE_AQ_RC_ESVN:
6176		return "ICE_AQ_RC_ESVN";
6177	case ICE_AQ_RC_EBADMAN:
6178		return "ICE_AQ_RC_EBADMAN";
6179	case ICE_AQ_RC_EBADBUF:
6180		return "ICE_AQ_RC_EBADBUF";
6181	}
6182
6183	return "ICE_AQ_RC_UNKNOWN";
6184}
6185
6186/**
6187 * ice_stat_str - convert status err code to a string
6188 * @stat_err: the status error code to convert
6189 */
6190const char *ice_stat_str(enum ice_status stat_err)
6191{
6192	switch (stat_err) {
6193	case ICE_SUCCESS:
6194		return "OK";
6195	case ICE_ERR_PARAM:
6196		return "ICE_ERR_PARAM";
6197	case ICE_ERR_NOT_IMPL:
6198		return "ICE_ERR_NOT_IMPL";
6199	case ICE_ERR_NOT_READY:
6200		return "ICE_ERR_NOT_READY";
6201	case ICE_ERR_NOT_SUPPORTED:
6202		return "ICE_ERR_NOT_SUPPORTED";
6203	case ICE_ERR_BAD_PTR:
6204		return "ICE_ERR_BAD_PTR";
6205	case ICE_ERR_INVAL_SIZE:
6206		return "ICE_ERR_INVAL_SIZE";
6207	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6208		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6209	case ICE_ERR_RESET_FAILED:
6210		return "ICE_ERR_RESET_FAILED";
6211	case ICE_ERR_FW_API_VER:
6212		return "ICE_ERR_FW_API_VER";
6213	case ICE_ERR_NO_MEMORY:
6214		return "ICE_ERR_NO_MEMORY";
6215	case ICE_ERR_CFG:
6216		return "ICE_ERR_CFG";
6217	case ICE_ERR_OUT_OF_RANGE:
6218		return "ICE_ERR_OUT_OF_RANGE";
6219	case ICE_ERR_ALREADY_EXISTS:
6220		return "ICE_ERR_ALREADY_EXISTS";
 
 
6221	case ICE_ERR_NVM_CHECKSUM:
6222		return "ICE_ERR_NVM_CHECKSUM";
6223	case ICE_ERR_BUF_TOO_SHORT:
6224		return "ICE_ERR_BUF_TOO_SHORT";
6225	case ICE_ERR_NVM_BLANK_MODE:
6226		return "ICE_ERR_NVM_BLANK_MODE";
6227	case ICE_ERR_IN_USE:
6228		return "ICE_ERR_IN_USE";
6229	case ICE_ERR_MAX_LIMIT:
6230		return "ICE_ERR_MAX_LIMIT";
6231	case ICE_ERR_RESET_ONGOING:
6232		return "ICE_ERR_RESET_ONGOING";
6233	case ICE_ERR_HW_TABLE:
6234		return "ICE_ERR_HW_TABLE";
6235	case ICE_ERR_DOES_NOT_EXIST:
6236		return "ICE_ERR_DOES_NOT_EXIST";
6237	case ICE_ERR_FW_DDP_MISMATCH:
6238		return "ICE_ERR_FW_DDP_MISMATCH";
6239	case ICE_ERR_AQ_ERROR:
6240		return "ICE_ERR_AQ_ERROR";
6241	case ICE_ERR_AQ_TIMEOUT:
6242		return "ICE_ERR_AQ_TIMEOUT";
6243	case ICE_ERR_AQ_FULL:
6244		return "ICE_ERR_AQ_FULL";
6245	case ICE_ERR_AQ_NO_WORK:
6246		return "ICE_ERR_AQ_NO_WORK";
6247	case ICE_ERR_AQ_EMPTY:
6248		return "ICE_ERR_AQ_EMPTY";
6249	case ICE_ERR_AQ_FW_CRITICAL:
6250		return "ICE_ERR_AQ_FW_CRITICAL";
6251	}
6252
6253	return "ICE_ERR_UNKNOWN";
6254}
6255
6256/**
6257 * ice_set_rss - Set RSS keys and lut
6258 * @vsi: Pointer to VSI structure
6259 * @seed: RSS hash seed
6260 * @lut: Lookup table
6261 * @lut_size: Lookup table size
6262 *
6263 * Returns 0 on success, negative on failure
6264 */
6265int ice_set_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6266{
6267	struct ice_pf *pf = vsi->back;
6268	struct ice_hw *hw = &pf->hw;
6269	enum ice_status status;
6270	struct device *dev;
6271
6272	dev = ice_pf_to_dev(pf);
6273	if (seed) {
6274		struct ice_aqc_get_set_rss_keys *buf =
6275				  (struct ice_aqc_get_set_rss_keys *)seed;
6276
6277		status = ice_aq_set_rss_key(hw, vsi->idx, buf);
 
 
 
6278
6279		if (status) {
6280			dev_err(dev, "Cannot set RSS key, err %s aq_err %s\n",
6281				ice_stat_str(status),
6282				ice_aq_str(hw->adminq.sq_last_status));
6283			return -EIO;
6284		}
6285	}
6286
6287	if (lut) {
6288		status = ice_aq_set_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6289					    lut, lut_size);
6290		if (status) {
6291			dev_err(dev, "Cannot set RSS lut, err %s aq_err %s\n",
6292				ice_stat_str(status),
6293				ice_aq_str(hw->adminq.sq_last_status));
6294			return -EIO;
6295		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6296	}
6297
6298	return 0;
6299}
6300
6301/**
6302 * ice_get_rss - Get RSS keys and lut
6303 * @vsi: Pointer to VSI structure
6304 * @seed: Buffer to store the keys
6305 * @lut: Buffer to store the lookup table entries
6306 * @lut_size: Size of buffer to store the lookup table entries
6307 *
6308 * Returns 0 on success, negative on failure
6309 */
6310int ice_get_rss(struct ice_vsi *vsi, u8 *seed, u8 *lut, u16 lut_size)
6311{
6312	struct ice_pf *pf = vsi->back;
6313	struct ice_hw *hw = &pf->hw;
6314	enum ice_status status;
6315	struct device *dev;
6316
6317	dev = ice_pf_to_dev(pf);
6318	if (seed) {
6319		struct ice_aqc_get_set_rss_keys *buf =
6320				  (struct ice_aqc_get_set_rss_keys *)seed;
6321
6322		status = ice_aq_get_rss_key(hw, vsi->idx, buf);
6323		if (status) {
6324			dev_err(dev, "Cannot get RSS key, err %s aq_err %s\n",
6325				ice_stat_str(status),
6326				ice_aq_str(hw->adminq.sq_last_status));
6327			return -EIO;
6328		}
 
 
 
 
6329	}
6330
6331	if (lut) {
6332		status = ice_aq_get_rss_lut(hw, vsi->idx, vsi->rss_lut_type,
6333					    lut, lut_size);
6334		if (status) {
6335			dev_err(dev, "Cannot get RSS lut, err %s aq_err %s\n",
6336				ice_stat_str(status),
6337				ice_aq_str(hw->adminq.sq_last_status));
6338			return -EIO;
6339		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6340	}
6341
6342	return 0;
6343}
6344
6345/**
6346 * ice_bridge_getlink - Get the hardware bridge mode
6347 * @skb: skb buff
6348 * @pid: process ID
6349 * @seq: RTNL message seq
6350 * @dev: the netdev being configured
6351 * @filter_mask: filter mask passed in
6352 * @nlflags: netlink flags passed in
6353 *
6354 * Return the bridge mode (VEB/VEPA)
6355 */
6356static int
6357ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6358		   struct net_device *dev, u32 filter_mask, int nlflags)
6359{
6360	struct ice_netdev_priv *np = netdev_priv(dev);
6361	struct ice_vsi *vsi = np->vsi;
6362	struct ice_pf *pf = vsi->back;
6363	u16 bmode;
6364
6365	bmode = pf->first_sw->bridge_mode;
6366
6367	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6368				       filter_mask, NULL);
6369}
6370
6371/**
6372 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6373 * @vsi: Pointer to VSI structure
6374 * @bmode: Hardware bridge mode (VEB/VEPA)
6375 *
6376 * Returns 0 on success, negative on failure
6377 */
6378static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6379{
6380	struct ice_aqc_vsi_props *vsi_props;
6381	struct ice_hw *hw = &vsi->back->hw;
6382	struct ice_vsi_ctx *ctxt;
6383	enum ice_status status;
6384	int ret = 0;
6385
6386	vsi_props = &vsi->info;
6387
6388	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6389	if (!ctxt)
6390		return -ENOMEM;
6391
6392	ctxt->info = vsi->info;
6393
6394	if (bmode == BRIDGE_MODE_VEB)
6395		/* change from VEPA to VEB mode */
6396		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6397	else
6398		/* change from VEB to VEPA mode */
6399		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6400	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6401
6402	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6403	if (status) {
6404		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6405			bmode, ice_stat_str(status),
6406			ice_aq_str(hw->adminq.sq_last_status));
6407		ret = -EIO;
6408		goto out;
6409	}
6410	/* Update sw flags for book keeping */
6411	vsi_props->sw_flags = ctxt->info.sw_flags;
6412
6413out:
6414	kfree(ctxt);
6415	return ret;
6416}
6417
6418/**
6419 * ice_bridge_setlink - Set the hardware bridge mode
6420 * @dev: the netdev being configured
6421 * @nlh: RTNL message
6422 * @flags: bridge setlink flags
6423 * @extack: netlink extended ack
6424 *
6425 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6426 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6427 * not already set for all VSIs connected to this switch. And also update the
6428 * unicast switch filter rules for the corresponding switch of the netdev.
6429 */
6430static int
6431ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6432		   u16 __always_unused flags,
6433		   struct netlink_ext_ack __always_unused *extack)
6434{
6435	struct ice_netdev_priv *np = netdev_priv(dev);
6436	struct ice_pf *pf = np->vsi->back;
6437	struct nlattr *attr, *br_spec;
6438	struct ice_hw *hw = &pf->hw;
6439	enum ice_status status;
6440	struct ice_sw *pf_sw;
6441	int rem, v, err = 0;
6442
6443	pf_sw = pf->first_sw;
6444	/* find the attribute in the netlink message */
6445	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6446
6447	nla_for_each_nested(attr, br_spec, rem) {
6448		__u16 mode;
6449
6450		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6451			continue;
6452		mode = nla_get_u16(attr);
6453		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6454			return -EINVAL;
6455		/* Continue  if bridge mode is not being flipped */
6456		if (mode == pf_sw->bridge_mode)
6457			continue;
6458		/* Iterates through the PF VSI list and update the loopback
6459		 * mode of the VSI
6460		 */
6461		ice_for_each_vsi(pf, v) {
6462			if (!pf->vsi[v])
6463				continue;
6464			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6465			if (err)
6466				return err;
6467		}
6468
6469		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6470		/* Update the unicast switch filter rules for the corresponding
6471		 * switch of the netdev
6472		 */
6473		status = ice_update_sw_rule_bridge_mode(hw);
6474		if (status) {
6475			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6476				   mode, ice_stat_str(status),
6477				   ice_aq_str(hw->adminq.sq_last_status));
6478			/* revert hw->evb_veb */
6479			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6480			return -EIO;
6481		}
6482
6483		pf_sw->bridge_mode = mode;
6484	}
6485
6486	return 0;
6487}
6488
6489/**
6490 * ice_tx_timeout - Respond to a Tx Hang
6491 * @netdev: network interface device structure
6492 * @txqueue: Tx queue
6493 */
6494static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6495{
6496	struct ice_netdev_priv *np = netdev_priv(netdev);
6497	struct ice_ring *tx_ring = NULL;
6498	struct ice_vsi *vsi = np->vsi;
6499	struct ice_pf *pf = vsi->back;
6500	u32 i;
6501
6502	pf->tx_timeout_count++;
6503
6504	/* Check if PFC is enabled for the TC to which the queue belongs
6505	 * to. If yes then Tx timeout is not caused by a hung queue, no
6506	 * need to reset and rebuild
6507	 */
6508	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
6509		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
6510			 txqueue);
6511		return;
6512	}
6513
6514	/* now that we have an index, find the tx_ring struct */
6515	for (i = 0; i < vsi->num_txq; i++)
6516		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
6517			if (txqueue == vsi->tx_rings[i]->q_index) {
6518				tx_ring = vsi->tx_rings[i];
6519				break;
6520			}
6521
6522	/* Reset recovery level if enough time has elapsed after last timeout.
6523	 * Also ensure no new reset action happens before next timeout period.
6524	 */
6525	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
6526		pf->tx_timeout_recovery_level = 1;
6527	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
6528				       netdev->watchdog_timeo)))
6529		return;
6530
6531	if (tx_ring) {
6532		struct ice_hw *hw = &pf->hw;
6533		u32 head, val = 0;
6534
6535		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
6536			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
6537		/* Read interrupt register */
6538		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
6539
6540		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
6541			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
6542			    head, tx_ring->next_to_use, val);
6543	}
6544
6545	pf->tx_timeout_last_recovery = jiffies;
6546	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
6547		    pf->tx_timeout_recovery_level, txqueue);
6548
6549	switch (pf->tx_timeout_recovery_level) {
6550	case 1:
6551		set_bit(__ICE_PFR_REQ, pf->state);
6552		break;
6553	case 2:
6554		set_bit(__ICE_CORER_REQ, pf->state);
6555		break;
6556	case 3:
6557		set_bit(__ICE_GLOBR_REQ, pf->state);
6558		break;
6559	default:
6560		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
6561		set_bit(__ICE_DOWN, pf->state);
6562		set_bit(__ICE_NEEDS_RESTART, vsi->state);
6563		set_bit(__ICE_SERVICE_DIS, pf->state);
6564		break;
6565	}
6566
6567	ice_service_task_schedule(pf);
6568	pf->tx_timeout_recovery_level++;
6569}
6570
6571/**
6572 * ice_udp_tunnel_add - Get notifications about UDP tunnel ports that come up
6573 * @netdev: This physical port's netdev
6574 * @ti: Tunnel endpoint information
6575 */
6576static void
6577ice_udp_tunnel_add(struct net_device *netdev, struct udp_tunnel_info *ti)
6578{
6579	struct ice_netdev_priv *np = netdev_priv(netdev);
6580	struct ice_vsi *vsi = np->vsi;
6581	struct ice_pf *pf = vsi->back;
6582	enum ice_tunnel_type tnl_type;
6583	u16 port = ntohs(ti->port);
6584	enum ice_status status;
6585
6586	switch (ti->type) {
6587	case UDP_TUNNEL_TYPE_VXLAN:
6588		tnl_type = TNL_VXLAN;
6589		break;
6590	case UDP_TUNNEL_TYPE_GENEVE:
6591		tnl_type = TNL_GENEVE;
6592		break;
6593	default:
6594		netdev_err(netdev, "Unknown tunnel type\n");
6595		return;
6596	}
6597
6598	status = ice_create_tunnel(&pf->hw, tnl_type, port);
6599	if (status == ICE_ERR_OUT_OF_RANGE)
6600		netdev_info(netdev, "Max tunneled UDP ports reached, port %d not added\n",
6601			    port);
6602	else if (status)
6603		netdev_err(netdev, "Error adding UDP tunnel - %s\n",
6604			   ice_stat_str(status));
6605}
6606
6607/**
6608 * ice_udp_tunnel_del - Get notifications about UDP tunnel ports that go away
6609 * @netdev: This physical port's netdev
6610 * @ti: Tunnel endpoint information
6611 */
6612static void
6613ice_udp_tunnel_del(struct net_device *netdev, struct udp_tunnel_info *ti)
6614{
6615	struct ice_netdev_priv *np = netdev_priv(netdev);
6616	struct ice_vsi *vsi = np->vsi;
6617	struct ice_pf *pf = vsi->back;
6618	u16 port = ntohs(ti->port);
6619	enum ice_status status;
6620	bool retval;
6621
6622	retval = ice_tunnel_port_in_use(&pf->hw, port, NULL);
6623	if (!retval) {
6624		netdev_info(netdev, "port %d not found in UDP tunnels list\n",
6625			    port);
6626		return;
6627	}
6628
6629	status = ice_destroy_tunnel(&pf->hw, port, false);
6630	if (status)
6631		netdev_err(netdev, "error deleting port %d from UDP tunnels list\n",
6632			   port);
6633}
6634
6635/**
6636 * ice_open - Called when a network interface becomes active
6637 * @netdev: network interface device structure
6638 *
6639 * The open entry point is called when a network interface is made
6640 * active by the system (IFF_UP). At this point all resources needed
6641 * for transmit and receive operations are allocated, the interrupt
6642 * handler is registered with the OS, the netdev watchdog is enabled,
6643 * and the stack is notified that the interface is ready.
6644 *
6645 * Returns 0 on success, negative value on failure
6646 */
6647int ice_open(struct net_device *netdev)
6648{
6649	struct ice_netdev_priv *np = netdev_priv(netdev);
6650	struct ice_vsi *vsi = np->vsi;
6651	struct ice_pf *pf = vsi->back;
6652	struct ice_port_info *pi;
 
6653	int err;
6654
6655	if (test_bit(__ICE_NEEDS_RESTART, pf->state)) {
6656		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
6657		return -EIO;
6658	}
6659
6660	if (test_bit(__ICE_DOWN, pf->state)) {
6661		netdev_err(netdev, "device is not ready yet\n");
6662		return -EBUSY;
6663	}
6664
6665	netif_carrier_off(netdev);
6666
6667	pi = vsi->port_info;
6668	err = ice_update_link_info(pi);
6669	if (err) {
6670		netdev_err(netdev, "Failed to get link info, error %d\n",
6671			   err);
6672		return err;
6673	}
6674
 
 
6675	/* Set PHY if there is media, otherwise, turn off PHY */
6676	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
6677		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6678		if (!test_bit(__ICE_PHY_INIT_COMPLETE, pf->state)) {
6679			err = ice_init_phy_user_cfg(pi);
6680			if (err) {
6681				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
6682					   err);
6683				return err;
6684			}
6685		}
6686
6687		err = ice_configure_phy(vsi);
6688		if (err) {
6689			netdev_err(netdev, "Failed to set physical link up, error %d\n",
6690				   err);
6691			return err;
6692		}
6693	} else {
6694		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
6695		err = ice_aq_set_link_restart_an(pi, false, NULL);
6696		if (err) {
6697			netdev_err(netdev, "Failed to set PHY state, VSI %d error %d\n",
6698				   vsi->vsi_num, err);
6699			return err;
6700		}
6701	}
6702
6703	err = ice_vsi_open(vsi);
6704	if (err)
6705		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
6706			   vsi->vsi_num, vsi->vsw->sw_id);
6707
6708	/* Update existing tunnels information */
6709	udp_tunnel_get_rx_info(netdev);
6710
6711	return err;
6712}
6713
6714/**
6715 * ice_stop - Disables a network interface
6716 * @netdev: network interface device structure
6717 *
6718 * The stop entry point is called when an interface is de-activated by the OS,
6719 * and the netdevice enters the DOWN state. The hardware is still under the
6720 * driver's control, but the netdev interface is disabled.
6721 *
6722 * Returns success only - not allowed to fail
6723 */
6724int ice_stop(struct net_device *netdev)
6725{
6726	struct ice_netdev_priv *np = netdev_priv(netdev);
6727	struct ice_vsi *vsi = np->vsi;
 
 
 
 
 
 
6728
6729	ice_vsi_close(vsi);
6730
6731	return 0;
6732}
6733
6734/**
6735 * ice_features_check - Validate encapsulated packet conforms to limits
6736 * @skb: skb buffer
6737 * @netdev: This port's netdev
6738 * @features: Offload features that the stack believes apply
6739 */
6740static netdev_features_t
6741ice_features_check(struct sk_buff *skb,
6742		   struct net_device __always_unused *netdev,
6743		   netdev_features_t features)
6744{
6745	size_t len;
6746
6747	/* No point in doing any of this if neither checksum nor GSO are
6748	 * being requested for this frame. We can rule out both by just
6749	 * checking for CHECKSUM_PARTIAL
6750	 */
6751	if (skb->ip_summed != CHECKSUM_PARTIAL)
6752		return features;
6753
6754	/* We cannot support GSO if the MSS is going to be less than
6755	 * 64 bytes. If it is then we need to drop support for GSO.
6756	 */
6757	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
6758		features &= ~NETIF_F_GSO_MASK;
6759
6760	len = skb_network_header(skb) - skb->data;
6761	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
6762		goto out_rm_features;
6763
6764	len = skb_transport_header(skb) - skb_network_header(skb);
6765	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6766		goto out_rm_features;
6767
6768	if (skb->encapsulation) {
6769		len = skb_inner_network_header(skb) - skb_transport_header(skb);
6770		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
6771			goto out_rm_features;
6772
6773		len = skb_inner_transport_header(skb) -
6774		      skb_inner_network_header(skb);
6775		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
6776			goto out_rm_features;
6777	}
6778
6779	return features;
6780out_rm_features:
6781	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
6782}
6783
6784static const struct net_device_ops ice_netdev_safe_mode_ops = {
6785	.ndo_open = ice_open,
6786	.ndo_stop = ice_stop,
6787	.ndo_start_xmit = ice_start_xmit,
6788	.ndo_set_mac_address = ice_set_mac_address,
6789	.ndo_validate_addr = eth_validate_addr,
6790	.ndo_change_mtu = ice_change_mtu,
6791	.ndo_get_stats64 = ice_get_stats64,
6792	.ndo_tx_timeout = ice_tx_timeout,
 
6793};
6794
6795static const struct net_device_ops ice_netdev_ops = {
6796	.ndo_open = ice_open,
6797	.ndo_stop = ice_stop,
6798	.ndo_start_xmit = ice_start_xmit,
6799	.ndo_features_check = ice_features_check,
6800	.ndo_set_rx_mode = ice_set_rx_mode,
6801	.ndo_set_mac_address = ice_set_mac_address,
6802	.ndo_validate_addr = eth_validate_addr,
6803	.ndo_change_mtu = ice_change_mtu,
6804	.ndo_get_stats64 = ice_get_stats64,
6805	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
 
6806	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
6807	.ndo_set_vf_mac = ice_set_vf_mac,
6808	.ndo_get_vf_config = ice_get_vf_cfg,
6809	.ndo_set_vf_trust = ice_set_vf_trust,
6810	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
6811	.ndo_set_vf_link_state = ice_set_vf_link_state,
6812	.ndo_get_vf_stats = ice_get_vf_stats,
6813	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
6814	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
6815	.ndo_set_features = ice_set_features,
6816	.ndo_bridge_getlink = ice_bridge_getlink,
6817	.ndo_bridge_setlink = ice_bridge_setlink,
6818	.ndo_fdb_add = ice_fdb_add,
6819	.ndo_fdb_del = ice_fdb_del,
6820#ifdef CONFIG_RFS_ACCEL
6821	.ndo_rx_flow_steer = ice_rx_flow_steer,
6822#endif
6823	.ndo_tx_timeout = ice_tx_timeout,
6824	.ndo_bpf = ice_xdp,
6825	.ndo_xdp_xmit = ice_xdp_xmit,
6826	.ndo_xsk_wakeup = ice_xsk_wakeup,
6827	.ndo_udp_tunnel_add = ice_udp_tunnel_add,
6828	.ndo_udp_tunnel_del = ice_udp_tunnel_del,
6829};
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c) 2018, Intel Corporation. */
   3
   4/* Intel(R) Ethernet Connection E800 Series Linux Driver */
   5
   6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   7
   8#include <generated/utsrelease.h>
   9#include "ice.h"
  10#include "ice_base.h"
  11#include "ice_lib.h"
  12#include "ice_fltr.h"
  13#include "ice_dcb_lib.h"
  14#include "ice_dcb_nl.h"
  15#include "ice_devlink.h"
  16/* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
  17 * ice tracepoint functions. This must be done exactly once across the
  18 * ice driver.
  19 */
  20#define CREATE_TRACE_POINTS
  21#include "ice_trace.h"
  22
  23#define DRV_SUMMARY	"Intel(R) Ethernet Connection E800 Series Linux Driver"
  24static const char ice_driver_string[] = DRV_SUMMARY;
  25static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
  26
  27/* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
  28#define ICE_DDP_PKG_PATH	"intel/ice/ddp/"
  29#define ICE_DDP_PKG_FILE	ICE_DDP_PKG_PATH "ice.pkg"
  30
  31MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  32MODULE_DESCRIPTION(DRV_SUMMARY);
  33MODULE_LICENSE("GPL v2");
  34MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
  35
  36static int debug = -1;
  37module_param(debug, int, 0644);
  38#ifndef CONFIG_DYNAMIC_DEBUG
  39MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
  40#else
  41MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
  42#endif /* !CONFIG_DYNAMIC_DEBUG */
  43
  44static DEFINE_IDA(ice_aux_ida);
  45
  46static struct workqueue_struct *ice_wq;
  47static const struct net_device_ops ice_netdev_safe_mode_ops;
  48static const struct net_device_ops ice_netdev_ops;
  49static int ice_vsi_open(struct ice_vsi *vsi);
  50
  51static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
  52
  53static void ice_vsi_release_all(struct ice_pf *pf);
  54
  55bool netif_is_ice(struct net_device *dev)
  56{
  57	return dev && (dev->netdev_ops == &ice_netdev_ops);
  58}
  59
  60/**
  61 * ice_get_tx_pending - returns number of Tx descriptors not processed
  62 * @ring: the ring of descriptors
  63 */
  64static u16 ice_get_tx_pending(struct ice_ring *ring)
  65{
  66	u16 head, tail;
  67
  68	head = ring->next_to_clean;
  69	tail = ring->next_to_use;
  70
  71	if (head != tail)
  72		return (head < tail) ?
  73			tail - head : (tail + ring->count - head);
  74	return 0;
  75}
  76
  77/**
  78 * ice_check_for_hang_subtask - check for and recover hung queues
  79 * @pf: pointer to PF struct
  80 */
  81static void ice_check_for_hang_subtask(struct ice_pf *pf)
  82{
  83	struct ice_vsi *vsi = NULL;
  84	struct ice_hw *hw;
  85	unsigned int i;
  86	int packets;
  87	u32 v;
  88
  89	ice_for_each_vsi(pf, v)
  90		if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
  91			vsi = pf->vsi[v];
  92			break;
  93		}
  94
  95	if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
  96		return;
  97
  98	if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
  99		return;
 100
 101	hw = &vsi->back->hw;
 102
 103	for (i = 0; i < vsi->num_txq; i++) {
 104		struct ice_ring *tx_ring = vsi->tx_rings[i];
 105
 106		if (tx_ring && tx_ring->desc) {
 107			/* If packet counter has not changed the queue is
 108			 * likely stalled, so force an interrupt for this
 109			 * queue.
 110			 *
 111			 * prev_pkt would be negative if there was no
 112			 * pending work.
 113			 */
 114			packets = tx_ring->stats.pkts & INT_MAX;
 115			if (tx_ring->tx_stats.prev_pkt == packets) {
 116				/* Trigger sw interrupt to revive the queue */
 117				ice_trigger_sw_intr(hw, tx_ring->q_vector);
 118				continue;
 119			}
 120
 121			/* Memory barrier between read of packet count and call
 122			 * to ice_get_tx_pending()
 123			 */
 124			smp_rmb();
 125			tx_ring->tx_stats.prev_pkt =
 126			    ice_get_tx_pending(tx_ring) ? packets : -1;
 127		}
 128	}
 129}
 130
 131/**
 132 * ice_init_mac_fltr - Set initial MAC filters
 133 * @pf: board private structure
 134 *
 135 * Set initial set of MAC filters for PF VSI; configure filters for permanent
 136 * address and broadcast address. If an error is encountered, netdevice will be
 137 * unregistered.
 138 */
 139static int ice_init_mac_fltr(struct ice_pf *pf)
 140{
 141	enum ice_status status;
 142	struct ice_vsi *vsi;
 143	u8 *perm_addr;
 144
 145	vsi = ice_get_main_vsi(pf);
 146	if (!vsi)
 147		return -EINVAL;
 148
 149	perm_addr = vsi->port_info->mac.perm_addr;
 150	status = ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
 151	if (status)
 152		return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 153
 154	return 0;
 155}
 156
 157/**
 158 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
 159 * @netdev: the net device on which the sync is happening
 160 * @addr: MAC address to sync
 161 *
 162 * This is a callback function which is called by the in kernel device sync
 163 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
 164 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
 165 * MAC filters from the hardware.
 166 */
 167static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
 168{
 169	struct ice_netdev_priv *np = netdev_priv(netdev);
 170	struct ice_vsi *vsi = np->vsi;
 171
 172	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
 173				     ICE_FWD_TO_VSI))
 174		return -EINVAL;
 175
 176	return 0;
 177}
 178
 179/**
 180 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
 181 * @netdev: the net device on which the unsync is happening
 182 * @addr: MAC address to unsync
 183 *
 184 * This is a callback function which is called by the in kernel device unsync
 185 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
 186 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
 187 * delete the MAC filters from the hardware.
 188 */
 189static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
 190{
 191	struct ice_netdev_priv *np = netdev_priv(netdev);
 192	struct ice_vsi *vsi = np->vsi;
 193
 194	/* Under some circumstances, we might receive a request to delete our
 195	 * own device address from our uc list. Because we store the device
 196	 * address in the VSI's MAC filter list, we need to ignore such
 197	 * requests and not delete our device address from this list.
 198	 */
 199	if (ether_addr_equal(addr, netdev->dev_addr))
 200		return 0;
 201
 202	if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
 203				     ICE_FWD_TO_VSI))
 204		return -EINVAL;
 205
 206	return 0;
 207}
 208
 209/**
 210 * ice_vsi_fltr_changed - check if filter state changed
 211 * @vsi: VSI to be checked
 212 *
 213 * returns true if filter state has changed, false otherwise.
 214 */
 215static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
 216{
 217	return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
 218	       test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state) ||
 219	       test_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 220}
 221
 222/**
 223 * ice_cfg_promisc - Enable or disable promiscuous mode for a given PF
 224 * @vsi: the VSI being configured
 225 * @promisc_m: mask of promiscuous config bits
 226 * @set_promisc: enable or disable promisc flag request
 227 *
 228 */
 229static int ice_cfg_promisc(struct ice_vsi *vsi, u8 promisc_m, bool set_promisc)
 230{
 231	struct ice_hw *hw = &vsi->back->hw;
 232	enum ice_status status = 0;
 233
 234	if (vsi->type != ICE_VSI_PF)
 235		return 0;
 236
 237	if (vsi->num_vlan > 1) {
 238		status = ice_set_vlan_vsi_promisc(hw, vsi->idx, promisc_m,
 239						  set_promisc);
 240	} else {
 241		if (set_promisc)
 242			status = ice_set_vsi_promisc(hw, vsi->idx, promisc_m,
 243						     0);
 244		else
 245			status = ice_clear_vsi_promisc(hw, vsi->idx, promisc_m,
 246						       0);
 247	}
 248
 249	if (status)
 250		return -EIO;
 251
 252	return 0;
 253}
 254
 255/**
 256 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
 257 * @vsi: ptr to the VSI
 258 *
 259 * Push any outstanding VSI filter changes through the AdminQ.
 260 */
 261static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
 262{
 263	struct device *dev = ice_pf_to_dev(vsi->back);
 264	struct net_device *netdev = vsi->netdev;
 265	bool promisc_forced_on = false;
 266	struct ice_pf *pf = vsi->back;
 267	struct ice_hw *hw = &pf->hw;
 268	enum ice_status status = 0;
 269	u32 changed_flags = 0;
 270	u8 promisc_m;
 271	int err = 0;
 272
 273	if (!vsi->netdev)
 274		return -EINVAL;
 275
 276	while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
 277		usleep_range(1000, 2000);
 278
 279	changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
 280	vsi->current_netdev_flags = vsi->netdev->flags;
 281
 282	INIT_LIST_HEAD(&vsi->tmp_sync_list);
 283	INIT_LIST_HEAD(&vsi->tmp_unsync_list);
 284
 285	if (ice_vsi_fltr_changed(vsi)) {
 286		clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 287		clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 288		clear_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 289
 290		/* grab the netdev's addr_list_lock */
 291		netif_addr_lock_bh(netdev);
 292		__dev_uc_sync(netdev, ice_add_mac_to_sync_list,
 293			      ice_add_mac_to_unsync_list);
 294		__dev_mc_sync(netdev, ice_add_mac_to_sync_list,
 295			      ice_add_mac_to_unsync_list);
 296		/* our temp lists are populated. release lock */
 297		netif_addr_unlock_bh(netdev);
 298	}
 299
 300	/* Remove MAC addresses in the unsync list */
 301	status = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
 302	ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
 303	if (status) {
 304		netdev_err(netdev, "Failed to delete MAC filters\n");
 305		/* if we failed because of alloc failures, just bail */
 306		if (status == ICE_ERR_NO_MEMORY) {
 307			err = -ENOMEM;
 308			goto out;
 309		}
 310	}
 311
 312	/* Add MAC addresses in the sync list */
 313	status = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
 314	ice_fltr_free_list(dev, &vsi->tmp_sync_list);
 315	/* If filter is added successfully or already exists, do not go into
 316	 * 'if' condition and report it as error. Instead continue processing
 317	 * rest of the function.
 318	 */
 319	if (status && status != ICE_ERR_ALREADY_EXISTS) {
 320		netdev_err(netdev, "Failed to add MAC filters\n");
 321		/* If there is no more space for new umac filters, VSI
 322		 * should go into promiscuous mode. There should be some
 323		 * space reserved for promiscuous filters.
 324		 */
 325		if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
 326		    !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
 327				      vsi->state)) {
 328			promisc_forced_on = true;
 329			netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
 330				    vsi->vsi_num);
 331		} else {
 332			err = -EIO;
 333			goto out;
 334		}
 335	}
 336	/* check for changes in promiscuous modes */
 337	if (changed_flags & IFF_ALLMULTI) {
 338		if (vsi->current_netdev_flags & IFF_ALLMULTI) {
 339			if (vsi->num_vlan > 1)
 340				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 341			else
 342				promisc_m = ICE_MCAST_PROMISC_BITS;
 343
 344			err = ice_cfg_promisc(vsi, promisc_m, true);
 345			if (err) {
 346				netdev_err(netdev, "Error setting Multicast promiscuous mode on VSI %i\n",
 347					   vsi->vsi_num);
 348				vsi->current_netdev_flags &= ~IFF_ALLMULTI;
 349				goto out_promisc;
 350			}
 351		} else {
 352			/* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
 353			if (vsi->num_vlan > 1)
 354				promisc_m = ICE_MCAST_VLAN_PROMISC_BITS;
 355			else
 356				promisc_m = ICE_MCAST_PROMISC_BITS;
 357
 358			err = ice_cfg_promisc(vsi, promisc_m, false);
 359			if (err) {
 360				netdev_err(netdev, "Error clearing Multicast promiscuous mode on VSI %i\n",
 361					   vsi->vsi_num);
 362				vsi->current_netdev_flags |= IFF_ALLMULTI;
 363				goto out_promisc;
 364			}
 365		}
 366	}
 367
 368	if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
 369	    test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
 370		clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 371		if (vsi->current_netdev_flags & IFF_PROMISC) {
 372			/* Apply Rx filter rule to get traffic from wire */
 373			if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
 374				err = ice_set_dflt_vsi(pf->first_sw, vsi);
 375				if (err && err != -EEXIST) {
 376					netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
 377						   err, vsi->vsi_num);
 378					vsi->current_netdev_flags &=
 379						~IFF_PROMISC;
 380					goto out_promisc;
 381				}
 382				ice_cfg_vlan_pruning(vsi, false, false);
 383			}
 384		} else {
 385			/* Clear Rx filter to remove traffic from wire */
 386			if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
 387				err = ice_clear_dflt_vsi(pf->first_sw);
 388				if (err) {
 389					netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
 390						   err, vsi->vsi_num);
 391					vsi->current_netdev_flags |=
 392						IFF_PROMISC;
 393					goto out_promisc;
 394				}
 395				if (vsi->num_vlan > 1)
 396					ice_cfg_vlan_pruning(vsi, true, false);
 397			}
 398		}
 399	}
 400	goto exit;
 401
 402out_promisc:
 403	set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
 404	goto exit;
 405out:
 406	/* if something went wrong then set the changed flag so we try again */
 407	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
 408	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
 409exit:
 410	clear_bit(ICE_CFG_BUSY, vsi->state);
 411	return err;
 412}
 413
 414/**
 415 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
 416 * @pf: board private structure
 417 */
 418static void ice_sync_fltr_subtask(struct ice_pf *pf)
 419{
 420	int v;
 421
 422	if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
 423		return;
 424
 425	clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 426
 427	ice_for_each_vsi(pf, v)
 428		if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
 429		    ice_vsi_sync_fltr(pf->vsi[v])) {
 430			/* come back and try again later */
 431			set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
 432			break;
 433		}
 434}
 435
 436/**
 437 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
 438 * @pf: the PF
 439 * @locked: is the rtnl_lock already held
 440 */
 441static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
 442{
 443	int node;
 444	int v;
 445
 446	ice_for_each_vsi(pf, v)
 447		if (pf->vsi[v])
 448			ice_dis_vsi(pf->vsi[v], locked);
 449
 450	for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
 451		pf->pf_agg_node[node].num_vsis = 0;
 452
 453	for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
 454		pf->vf_agg_node[node].num_vsis = 0;
 455}
 456
 457/**
 458 * ice_prepare_for_reset - prep for the core to reset
 459 * @pf: board private structure
 460 *
 461 * Inform or close all dependent features in prep for reset.
 462 */
 463static void
 464ice_prepare_for_reset(struct ice_pf *pf)
 465{
 466	struct ice_hw *hw = &pf->hw;
 467	unsigned int i;
 468
 469	/* already prepared for reset */
 470	if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
 471		return;
 472
 473	ice_unplug_aux_dev(pf);
 474
 475	/* Notify VFs of impending reset */
 476	if (ice_check_sq_alive(hw, &hw->mailboxq))
 477		ice_vc_notify_reset(pf);
 478
 479	/* Disable VFs until reset is completed */
 480	ice_for_each_vf(pf, i)
 481		ice_set_vf_state_qs_dis(&pf->vf[i]);
 482
 483	/* clear SW filtering DB */
 484	ice_clear_hw_tbls(hw);
 485	/* disable the VSIs and their queues that are not already DOWN */
 486	ice_pf_dis_all_vsi(pf, false);
 487
 488	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
 489		ice_ptp_release(pf);
 490
 491	if (hw->port_info)
 492		ice_sched_clear_port(hw->port_info);
 493
 494	ice_shutdown_all_ctrlq(hw);
 495
 496	set_bit(ICE_PREPARED_FOR_RESET, pf->state);
 497}
 498
 499/**
 500 * ice_do_reset - Initiate one of many types of resets
 501 * @pf: board private structure
 502 * @reset_type: reset type requested
 503 * before this function was called.
 504 */
 505static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
 506{
 507	struct device *dev = ice_pf_to_dev(pf);
 508	struct ice_hw *hw = &pf->hw;
 509
 510	dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
 
 511
 512	ice_prepare_for_reset(pf);
 513
 514	/* trigger the reset */
 515	if (ice_reset(hw, reset_type)) {
 516		dev_err(dev, "reset %d failed\n", reset_type);
 517		set_bit(ICE_RESET_FAILED, pf->state);
 518		clear_bit(ICE_RESET_OICR_RECV, pf->state);
 519		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 520		clear_bit(ICE_PFR_REQ, pf->state);
 521		clear_bit(ICE_CORER_REQ, pf->state);
 522		clear_bit(ICE_GLOBR_REQ, pf->state);
 523		wake_up(&pf->reset_wait_queue);
 524		return;
 525	}
 526
 527	/* PFR is a bit of a special case because it doesn't result in an OICR
 528	 * interrupt. So for PFR, rebuild after the reset and clear the reset-
 529	 * associated state bits.
 530	 */
 531	if (reset_type == ICE_RESET_PFR) {
 532		pf->pfr_count++;
 533		ice_rebuild(pf, reset_type);
 534		clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 535		clear_bit(ICE_PFR_REQ, pf->state);
 536		wake_up(&pf->reset_wait_queue);
 537		ice_reset_all_vfs(pf, true);
 538	}
 539}
 540
 541/**
 542 * ice_reset_subtask - Set up for resetting the device and driver
 543 * @pf: board private structure
 544 */
 545static void ice_reset_subtask(struct ice_pf *pf)
 546{
 547	enum ice_reset_req reset_type = ICE_RESET_INVAL;
 548
 549	/* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
 550	 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
 551	 * of reset is pending and sets bits in pf->state indicating the reset
 552	 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
 553	 * prepare for pending reset if not already (for PF software-initiated
 554	 * global resets the software should already be prepared for it as
 555	 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
 556	 * by firmware or software on other PFs, that bit is not set so prepare
 557	 * for the reset now), poll for reset done, rebuild and return.
 558	 */
 559	if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
 560		/* Perform the largest reset requested */
 561		if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
 562			reset_type = ICE_RESET_CORER;
 563		if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
 564			reset_type = ICE_RESET_GLOBR;
 565		if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
 566			reset_type = ICE_RESET_EMPR;
 567		/* return if no valid reset type requested */
 568		if (reset_type == ICE_RESET_INVAL)
 569			return;
 570		ice_prepare_for_reset(pf);
 571
 572		/* make sure we are ready to rebuild */
 573		if (ice_check_reset(&pf->hw)) {
 574			set_bit(ICE_RESET_FAILED, pf->state);
 575		} else {
 576			/* done with reset. start rebuild */
 577			pf->hw.reset_ongoing = false;
 578			ice_rebuild(pf, reset_type);
 579			/* clear bit to resume normal operations, but
 580			 * ICE_NEEDS_RESTART bit is set in case rebuild failed
 581			 */
 582			clear_bit(ICE_RESET_OICR_RECV, pf->state);
 583			clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
 584			clear_bit(ICE_PFR_REQ, pf->state);
 585			clear_bit(ICE_CORER_REQ, pf->state);
 586			clear_bit(ICE_GLOBR_REQ, pf->state);
 587			wake_up(&pf->reset_wait_queue);
 588			ice_reset_all_vfs(pf, true);
 589		}
 590
 591		return;
 592	}
 593
 594	/* No pending resets to finish processing. Check for new resets */
 595	if (test_bit(ICE_PFR_REQ, pf->state))
 596		reset_type = ICE_RESET_PFR;
 597	if (test_bit(ICE_CORER_REQ, pf->state))
 598		reset_type = ICE_RESET_CORER;
 599	if (test_bit(ICE_GLOBR_REQ, pf->state))
 600		reset_type = ICE_RESET_GLOBR;
 601	/* If no valid reset type requested just return */
 602	if (reset_type == ICE_RESET_INVAL)
 603		return;
 604
 605	/* reset if not already down or busy */
 606	if (!test_bit(ICE_DOWN, pf->state) &&
 607	    !test_bit(ICE_CFG_BUSY, pf->state)) {
 608		ice_do_reset(pf, reset_type);
 609	}
 610}
 611
 612/**
 613 * ice_print_topo_conflict - print topology conflict message
 614 * @vsi: the VSI whose topology status is being checked
 615 */
 616static void ice_print_topo_conflict(struct ice_vsi *vsi)
 617{
 618	switch (vsi->port_info->phy.link_info.topo_media_conflict) {
 619	case ICE_AQ_LINK_TOPO_CONFLICT:
 620	case ICE_AQ_LINK_MEDIA_CONFLICT:
 621	case ICE_AQ_LINK_TOPO_UNREACH_PRT:
 622	case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
 623	case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
 624		netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
 625		break;
 626	case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
 627		netdev_info(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
 628		break;
 629	default:
 630		break;
 631	}
 632}
 633
 634/**
 635 * ice_print_link_msg - print link up or down message
 636 * @vsi: the VSI whose link status is being queried
 637 * @isup: boolean for if the link is now up or down
 638 */
 639void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
 640{
 641	struct ice_aqc_get_phy_caps_data *caps;
 642	const char *an_advertised;
 643	enum ice_status status;
 644	const char *fec_req;
 645	const char *speed;
 646	const char *fec;
 647	const char *fc;
 648	const char *an;
 649
 650	if (!vsi)
 651		return;
 652
 653	if (vsi->current_isup == isup)
 654		return;
 655
 656	vsi->current_isup = isup;
 657
 658	if (!isup) {
 659		netdev_info(vsi->netdev, "NIC Link is Down\n");
 660		return;
 661	}
 662
 663	switch (vsi->port_info->phy.link_info.link_speed) {
 664	case ICE_AQ_LINK_SPEED_100GB:
 665		speed = "100 G";
 666		break;
 667	case ICE_AQ_LINK_SPEED_50GB:
 668		speed = "50 G";
 669		break;
 670	case ICE_AQ_LINK_SPEED_40GB:
 671		speed = "40 G";
 672		break;
 673	case ICE_AQ_LINK_SPEED_25GB:
 674		speed = "25 G";
 675		break;
 676	case ICE_AQ_LINK_SPEED_20GB:
 677		speed = "20 G";
 678		break;
 679	case ICE_AQ_LINK_SPEED_10GB:
 680		speed = "10 G";
 681		break;
 682	case ICE_AQ_LINK_SPEED_5GB:
 683		speed = "5 G";
 684		break;
 685	case ICE_AQ_LINK_SPEED_2500MB:
 686		speed = "2.5 G";
 687		break;
 688	case ICE_AQ_LINK_SPEED_1000MB:
 689		speed = "1 G";
 690		break;
 691	case ICE_AQ_LINK_SPEED_100MB:
 692		speed = "100 M";
 693		break;
 694	default:
 695		speed = "Unknown ";
 696		break;
 697	}
 698
 699	switch (vsi->port_info->fc.current_mode) {
 700	case ICE_FC_FULL:
 701		fc = "Rx/Tx";
 702		break;
 703	case ICE_FC_TX_PAUSE:
 704		fc = "Tx";
 705		break;
 706	case ICE_FC_RX_PAUSE:
 707		fc = "Rx";
 708		break;
 709	case ICE_FC_NONE:
 710		fc = "None";
 711		break;
 712	default:
 713		fc = "Unknown";
 714		break;
 715	}
 716
 717	/* Get FEC mode based on negotiated link info */
 718	switch (vsi->port_info->phy.link_info.fec_info) {
 719	case ICE_AQ_LINK_25G_RS_528_FEC_EN:
 720	case ICE_AQ_LINK_25G_RS_544_FEC_EN:
 721		fec = "RS-FEC";
 722		break;
 723	case ICE_AQ_LINK_25G_KR_FEC_EN:
 724		fec = "FC-FEC/BASE-R";
 725		break;
 726	default:
 727		fec = "NONE";
 728		break;
 729	}
 730
 731	/* check if autoneg completed, might be false due to not supported */
 732	if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
 733		an = "True";
 734	else
 735		an = "False";
 736
 737	/* Get FEC mode requested based on PHY caps last SW configuration */
 738	caps = kzalloc(sizeof(*caps), GFP_KERNEL);
 739	if (!caps) {
 740		fec_req = "Unknown";
 741		an_advertised = "Unknown";
 742		goto done;
 743	}
 744
 745	status = ice_aq_get_phy_caps(vsi->port_info, false,
 746				     ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
 747	if (status)
 748		netdev_info(vsi->netdev, "Get phy capability failed.\n");
 749
 750	an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
 751
 752	if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
 753	    caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
 754		fec_req = "RS-FEC";
 755	else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
 756		 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
 757		fec_req = "FC-FEC/BASE-R";
 758	else
 759		fec_req = "NONE";
 760
 761	kfree(caps);
 762
 763done:
 764	netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
 765		    speed, fec_req, fec, an_advertised, an, fc);
 766	ice_print_topo_conflict(vsi);
 767}
 768
 769/**
 770 * ice_vsi_link_event - update the VSI's netdev
 771 * @vsi: the VSI on which the link event occurred
 772 * @link_up: whether or not the VSI needs to be set up or down
 773 */
 774static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
 775{
 776	if (!vsi)
 777		return;
 778
 779	if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
 780		return;
 781
 782	if (vsi->type == ICE_VSI_PF) {
 783		if (link_up == netif_carrier_ok(vsi->netdev))
 784			return;
 785
 786		if (link_up) {
 787			netif_carrier_on(vsi->netdev);
 788			netif_tx_wake_all_queues(vsi->netdev);
 789		} else {
 790			netif_carrier_off(vsi->netdev);
 791			netif_tx_stop_all_queues(vsi->netdev);
 792		}
 793	}
 794}
 795
 796/**
 797 * ice_set_dflt_mib - send a default config MIB to the FW
 798 * @pf: private PF struct
 799 *
 800 * This function sends a default configuration MIB to the FW.
 801 *
 802 * If this function errors out at any point, the driver is still able to
 803 * function.  The main impact is that LFC may not operate as expected.
 804 * Therefore an error state in this function should be treated with a DBG
 805 * message and continue on with driver rebuild/reenable.
 806 */
 807static void ice_set_dflt_mib(struct ice_pf *pf)
 808{
 809	struct device *dev = ice_pf_to_dev(pf);
 810	u8 mib_type, *buf, *lldpmib = NULL;
 811	u16 len, typelen, offset = 0;
 812	struct ice_lldp_org_tlv *tlv;
 813	struct ice_hw *hw = &pf->hw;
 814	u32 ouisubtype;
 815
 
 
 
 
 
 
 816	mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
 817	lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
 818	if (!lldpmib) {
 819		dev_dbg(dev, "%s Failed to allocate MIB memory\n",
 820			__func__);
 821		return;
 822	}
 823
 824	/* Add ETS CFG TLV */
 825	tlv = (struct ice_lldp_org_tlv *)lldpmib;
 826	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 827		   ICE_IEEE_ETS_TLV_LEN);
 828	tlv->typelen = htons(typelen);
 829	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 830		      ICE_IEEE_SUBTYPE_ETS_CFG);
 831	tlv->ouisubtype = htonl(ouisubtype);
 832
 833	buf = tlv->tlvinfo;
 834	buf[0] = 0;
 835
 836	/* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
 837	 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
 838	 * Octets 13 - 20 are TSA values - leave as zeros
 839	 */
 840	buf[5] = 0x64;
 841	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 842	offset += len + 2;
 843	tlv = (struct ice_lldp_org_tlv *)
 844		((char *)tlv + sizeof(tlv->typelen) + len);
 845
 846	/* Add ETS REC TLV */
 847	buf = tlv->tlvinfo;
 848	tlv->typelen = htons(typelen);
 849
 850	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 851		      ICE_IEEE_SUBTYPE_ETS_REC);
 852	tlv->ouisubtype = htonl(ouisubtype);
 853
 854	/* First octet of buf is reserved
 855	 * Octets 1 - 4 map UP to TC - all UPs map to zero
 856	 * Octets 5 - 12 are BW values - set TC 0 to 100%.
 857	 * Octets 13 - 20 are TSA value - leave as zeros
 858	 */
 859	buf[5] = 0x64;
 860	offset += len + 2;
 861	tlv = (struct ice_lldp_org_tlv *)
 862		((char *)tlv + sizeof(tlv->typelen) + len);
 863
 864	/* Add PFC CFG TLV */
 865	typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
 866		   ICE_IEEE_PFC_TLV_LEN);
 867	tlv->typelen = htons(typelen);
 868
 869	ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
 870		      ICE_IEEE_SUBTYPE_PFC_CFG);
 871	tlv->ouisubtype = htonl(ouisubtype);
 872
 873	/* Octet 1 left as all zeros - PFC disabled */
 874	buf[0] = 0x08;
 875	len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
 876	offset += len + 2;
 877
 878	if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
 879		dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
 880
 881	kfree(lldpmib);
 882}
 883
 884/**
 885 * ice_check_module_power
 886 * @pf: pointer to PF struct
 887 * @link_cfg_err: bitmap from the link info structure
 888 *
 889 * check module power level returned by a previous call to aq_get_link_info
 890 * and print error messages if module power level is not supported
 891 */
 892static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
 893{
 894	/* if module power level is supported, clear the flag */
 895	if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
 896			      ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
 897		clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 898		return;
 899	}
 900
 901	/* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
 902	 * above block didn't clear this bit, there's nothing to do
 903	 */
 904	if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
 905		return;
 906
 907	if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
 908		dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
 909		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 910	} else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
 911		dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
 912		set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
 913	}
 914}
 915
 916/**
 917 * ice_link_event - process the link event
 918 * @pf: PF that the link event is associated with
 919 * @pi: port_info for the port that the link event is associated with
 920 * @link_up: true if the physical link is up and false if it is down
 921 * @link_speed: current link speed received from the link event
 922 *
 923 * Returns 0 on success and negative on failure
 924 */
 925static int
 926ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
 927	       u16 link_speed)
 928{
 929	struct device *dev = ice_pf_to_dev(pf);
 930	struct ice_phy_info *phy_info;
 931	enum ice_status status;
 932	struct ice_vsi *vsi;
 933	u16 old_link_speed;
 934	bool old_link;
 
 935
 936	phy_info = &pi->phy;
 937	phy_info->link_info_old = phy_info->link_info;
 938
 939	old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
 940	old_link_speed = phy_info->link_info_old.link_speed;
 941
 942	/* update the link info structures and re-enable link events,
 943	 * don't bail on failure due to other book keeping needed
 944	 */
 945	status = ice_update_link_info(pi);
 946	if (status)
 947		dev_dbg(dev, "Failed to update link status on port %d, err %s aq_err %s\n",
 948			pi->lport, ice_stat_str(status),
 949			ice_aq_str(pi->hw->adminq.sq_last_status));
 950
 951	ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
 952
 953	/* Check if the link state is up after updating link info, and treat
 954	 * this event as an UP event since the link is actually UP now.
 955	 */
 956	if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
 957		link_up = true;
 958
 959	vsi = ice_get_main_vsi(pf);
 960	if (!vsi || !vsi->port_info)
 961		return -EINVAL;
 962
 963	/* turn off PHY if media was removed */
 964	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
 965	    !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
 966		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
 967		ice_set_link(vsi, false);
 
 
 
 
 
 
 968	}
 969
 970	/* if the old link up/down and speed is the same as the new */
 971	if (link_up == old_link && link_speed == old_link_speed)
 972		return 0;
 973
 974	if (ice_is_dcb_active(pf)) {
 975		if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
 976			ice_dcb_rebuild(pf);
 977	} else {
 978		if (link_up)
 979			ice_set_dflt_mib(pf);
 980	}
 981	ice_vsi_link_event(vsi, link_up);
 982	ice_print_link_msg(vsi, link_up);
 983
 984	ice_vc_notify_link_state(pf);
 985
 986	return 0;
 987}
 988
 989/**
 990 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
 991 * @pf: board private structure
 992 */
 993static void ice_watchdog_subtask(struct ice_pf *pf)
 994{
 995	int i;
 996
 997	/* if interface is down do nothing */
 998	if (test_bit(ICE_DOWN, pf->state) ||
 999	    test_bit(ICE_CFG_BUSY, pf->state))
1000		return;
1001
1002	/* make sure we don't do these things too often */
1003	if (time_before(jiffies,
1004			pf->serv_tmr_prev + pf->serv_tmr_period))
1005		return;
1006
1007	pf->serv_tmr_prev = jiffies;
1008
1009	/* Update the stats for active netdevs so the network stack
1010	 * can look at updated numbers whenever it cares to
1011	 */
1012	ice_update_pf_stats(pf);
1013	ice_for_each_vsi(pf, i)
1014		if (pf->vsi[i] && pf->vsi[i]->netdev)
1015			ice_update_vsi_stats(pf->vsi[i]);
1016}
1017
1018/**
1019 * ice_init_link_events - enable/initialize link events
1020 * @pi: pointer to the port_info instance
1021 *
1022 * Returns -EIO on failure, 0 on success
1023 */
1024static int ice_init_link_events(struct ice_port_info *pi)
1025{
1026	u16 mask;
1027
1028	mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1029		       ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL));
1030
1031	if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1032		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1033			pi->lport);
1034		return -EIO;
1035	}
1036
1037	if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1038		dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1039			pi->lport);
1040		return -EIO;
1041	}
1042
1043	return 0;
1044}
1045
1046/**
1047 * ice_handle_link_event - handle link event via ARQ
1048 * @pf: PF that the link event is associated with
1049 * @event: event structure containing link status info
1050 */
1051static int
1052ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1053{
1054	struct ice_aqc_get_link_status_data *link_data;
1055	struct ice_port_info *port_info;
1056	int status;
1057
1058	link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1059	port_info = pf->hw.port_info;
1060	if (!port_info)
1061		return -EINVAL;
1062
1063	status = ice_link_event(pf, port_info,
1064				!!(link_data->link_info & ICE_AQ_LINK_UP),
1065				le16_to_cpu(link_data->link_speed));
1066	if (status)
1067		dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1068			status);
1069
1070	return status;
1071}
1072
1073enum ice_aq_task_state {
1074	ICE_AQ_TASK_WAITING = 0,
1075	ICE_AQ_TASK_COMPLETE,
1076	ICE_AQ_TASK_CANCELED,
1077};
1078
1079struct ice_aq_task {
1080	struct hlist_node entry;
1081
1082	u16 opcode;
1083	struct ice_rq_event_info *event;
1084	enum ice_aq_task_state state;
1085};
1086
1087/**
1088 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1089 * @pf: pointer to the PF private structure
1090 * @opcode: the opcode to wait for
1091 * @timeout: how long to wait, in jiffies
1092 * @event: storage for the event info
1093 *
1094 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1095 * current thread will be put to sleep until the specified event occurs or
1096 * until the given timeout is reached.
1097 *
1098 * To obtain only the descriptor contents, pass an event without an allocated
1099 * msg_buf. If the complete data buffer is desired, allocate the
1100 * event->msg_buf with enough space ahead of time.
1101 *
1102 * Returns: zero on success, or a negative error code on failure.
1103 */
1104int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1105			  struct ice_rq_event_info *event)
1106{
1107	struct device *dev = ice_pf_to_dev(pf);
1108	struct ice_aq_task *task;
1109	unsigned long start;
1110	long ret;
1111	int err;
1112
1113	task = kzalloc(sizeof(*task), GFP_KERNEL);
1114	if (!task)
1115		return -ENOMEM;
1116
1117	INIT_HLIST_NODE(&task->entry);
1118	task->opcode = opcode;
1119	task->event = event;
1120	task->state = ICE_AQ_TASK_WAITING;
1121
1122	spin_lock_bh(&pf->aq_wait_lock);
1123	hlist_add_head(&task->entry, &pf->aq_wait_list);
1124	spin_unlock_bh(&pf->aq_wait_lock);
1125
1126	start = jiffies;
1127
1128	ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1129					       timeout);
1130	switch (task->state) {
1131	case ICE_AQ_TASK_WAITING:
1132		err = ret < 0 ? ret : -ETIMEDOUT;
1133		break;
1134	case ICE_AQ_TASK_CANCELED:
1135		err = ret < 0 ? ret : -ECANCELED;
1136		break;
1137	case ICE_AQ_TASK_COMPLETE:
1138		err = ret < 0 ? ret : 0;
1139		break;
1140	default:
1141		WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1142		err = -EINVAL;
1143		break;
1144	}
1145
1146	dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1147		jiffies_to_msecs(jiffies - start),
1148		jiffies_to_msecs(timeout),
1149		opcode);
1150
1151	spin_lock_bh(&pf->aq_wait_lock);
1152	hlist_del(&task->entry);
1153	spin_unlock_bh(&pf->aq_wait_lock);
1154	kfree(task);
1155
1156	return err;
1157}
1158
1159/**
1160 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1161 * @pf: pointer to the PF private structure
1162 * @opcode: the opcode of the event
1163 * @event: the event to check
1164 *
1165 * Loops over the current list of pending threads waiting for an AdminQ event.
1166 * For each matching task, copy the contents of the event into the task
1167 * structure and wake up the thread.
1168 *
1169 * If multiple threads wait for the same opcode, they will all be woken up.
1170 *
1171 * Note that event->msg_buf will only be duplicated if the event has a buffer
1172 * with enough space already allocated. Otherwise, only the descriptor and
1173 * message length will be copied.
1174 *
1175 * Returns: true if an event was found, false otherwise
1176 */
1177static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1178				struct ice_rq_event_info *event)
1179{
1180	struct ice_aq_task *task;
1181	bool found = false;
1182
1183	spin_lock_bh(&pf->aq_wait_lock);
1184	hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1185		if (task->state || task->opcode != opcode)
1186			continue;
1187
1188		memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1189		task->event->msg_len = event->msg_len;
1190
1191		/* Only copy the data buffer if a destination was set */
1192		if (task->event->msg_buf &&
1193		    task->event->buf_len > event->buf_len) {
1194			memcpy(task->event->msg_buf, event->msg_buf,
1195			       event->buf_len);
1196			task->event->buf_len = event->buf_len;
1197		}
1198
1199		task->state = ICE_AQ_TASK_COMPLETE;
1200		found = true;
1201	}
1202	spin_unlock_bh(&pf->aq_wait_lock);
1203
1204	if (found)
1205		wake_up(&pf->aq_wait_queue);
1206}
1207
1208/**
1209 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1210 * @pf: the PF private structure
1211 *
1212 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1213 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1214 */
1215static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1216{
1217	struct ice_aq_task *task;
1218
1219	spin_lock_bh(&pf->aq_wait_lock);
1220	hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1221		task->state = ICE_AQ_TASK_CANCELED;
1222	spin_unlock_bh(&pf->aq_wait_lock);
1223
1224	wake_up(&pf->aq_wait_queue);
1225}
1226
1227/**
1228 * __ice_clean_ctrlq - helper function to clean controlq rings
1229 * @pf: ptr to struct ice_pf
1230 * @q_type: specific Control queue type
1231 */
1232static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1233{
1234	struct device *dev = ice_pf_to_dev(pf);
1235	struct ice_rq_event_info event;
1236	struct ice_hw *hw = &pf->hw;
1237	struct ice_ctl_q_info *cq;
1238	u16 pending, i = 0;
1239	const char *qtype;
1240	u32 oldval, val;
1241
1242	/* Do not clean control queue if/when PF reset fails */
1243	if (test_bit(ICE_RESET_FAILED, pf->state))
1244		return 0;
1245
1246	switch (q_type) {
1247	case ICE_CTL_Q_ADMIN:
1248		cq = &hw->adminq;
1249		qtype = "Admin";
1250		break;
1251	case ICE_CTL_Q_SB:
1252		cq = &hw->sbq;
1253		qtype = "Sideband";
1254		break;
1255	case ICE_CTL_Q_MAILBOX:
1256		cq = &hw->mailboxq;
1257		qtype = "Mailbox";
1258		/* we are going to try to detect a malicious VF, so set the
1259		 * state to begin detection
1260		 */
1261		hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1262		break;
1263	default:
1264		dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1265		return 0;
1266	}
1267
1268	/* check for error indications - PF_xx_AxQLEN register layout for
1269	 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1270	 */
1271	val = rd32(hw, cq->rq.len);
1272	if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1273		   PF_FW_ARQLEN_ARQCRIT_M)) {
1274		oldval = val;
1275		if (val & PF_FW_ARQLEN_ARQVFE_M)
1276			dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1277				qtype);
1278		if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1279			dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1280				qtype);
1281		}
1282		if (val & PF_FW_ARQLEN_ARQCRIT_M)
1283			dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1284				qtype);
1285		val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1286			 PF_FW_ARQLEN_ARQCRIT_M);
1287		if (oldval != val)
1288			wr32(hw, cq->rq.len, val);
1289	}
1290
1291	val = rd32(hw, cq->sq.len);
1292	if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1293		   PF_FW_ATQLEN_ATQCRIT_M)) {
1294		oldval = val;
1295		if (val & PF_FW_ATQLEN_ATQVFE_M)
1296			dev_dbg(dev, "%s Send Queue VF Error detected\n",
1297				qtype);
1298		if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1299			dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1300				qtype);
1301		}
1302		if (val & PF_FW_ATQLEN_ATQCRIT_M)
1303			dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1304				qtype);
1305		val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1306			 PF_FW_ATQLEN_ATQCRIT_M);
1307		if (oldval != val)
1308			wr32(hw, cq->sq.len, val);
1309	}
1310
1311	event.buf_len = cq->rq_buf_size;
1312	event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1313	if (!event.msg_buf)
1314		return 0;
1315
1316	do {
1317		enum ice_status ret;
1318		u16 opcode;
1319
1320		ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1321		if (ret == ICE_ERR_AQ_NO_WORK)
1322			break;
1323		if (ret) {
1324			dev_err(dev, "%s Receive Queue event error %s\n", qtype,
1325				ice_stat_str(ret));
1326			break;
1327		}
1328
1329		opcode = le16_to_cpu(event.desc.opcode);
1330
1331		/* Notify any thread that might be waiting for this event */
1332		ice_aq_check_events(pf, opcode, &event);
1333
1334		switch (opcode) {
1335		case ice_aqc_opc_get_link_status:
1336			if (ice_handle_link_event(pf, &event))
1337				dev_err(dev, "Could not handle link event\n");
1338			break;
1339		case ice_aqc_opc_event_lan_overflow:
1340			ice_vf_lan_overflow_event(pf, &event);
1341			break;
1342		case ice_mbx_opc_send_msg_to_pf:
1343			if (!ice_is_malicious_vf(pf, &event, i, pending))
1344				ice_vc_process_vf_msg(pf, &event);
1345			break;
1346		case ice_aqc_opc_fw_logging:
1347			ice_output_fw_log(hw, &event.desc, event.msg_buf);
1348			break;
1349		case ice_aqc_opc_lldp_set_mib_change:
1350			ice_dcb_process_lldp_set_mib_change(pf, &event);
1351			break;
1352		default:
1353			dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1354				qtype, opcode);
1355			break;
1356		}
1357	} while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1358
1359	kfree(event.msg_buf);
1360
1361	return pending && (i == ICE_DFLT_IRQ_WORK);
1362}
1363
1364/**
1365 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1366 * @hw: pointer to hardware info
1367 * @cq: control queue information
1368 *
1369 * returns true if there are pending messages in a queue, false if there aren't
1370 */
1371static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1372{
1373	u16 ntu;
1374
1375	ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1376	return cq->rq.next_to_clean != ntu;
1377}
1378
1379/**
1380 * ice_clean_adminq_subtask - clean the AdminQ rings
1381 * @pf: board private structure
1382 */
1383static void ice_clean_adminq_subtask(struct ice_pf *pf)
1384{
1385	struct ice_hw *hw = &pf->hw;
1386
1387	if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1388		return;
1389
1390	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1391		return;
1392
1393	clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1394
1395	/* There might be a situation where new messages arrive to a control
1396	 * queue between processing the last message and clearing the
1397	 * EVENT_PENDING bit. So before exiting, check queue head again (using
1398	 * ice_ctrlq_pending) and process new messages if any.
1399	 */
1400	if (ice_ctrlq_pending(hw, &hw->adminq))
1401		__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1402
1403	ice_flush(hw);
1404}
1405
1406/**
1407 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1408 * @pf: board private structure
1409 */
1410static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1411{
1412	struct ice_hw *hw = &pf->hw;
1413
1414	if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1415		return;
1416
1417	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1418		return;
1419
1420	clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1421
1422	if (ice_ctrlq_pending(hw, &hw->mailboxq))
1423		__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1424
1425	ice_flush(hw);
1426}
1427
1428/**
1429 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1430 * @pf: board private structure
1431 */
1432static void ice_clean_sbq_subtask(struct ice_pf *pf)
1433{
1434	struct ice_hw *hw = &pf->hw;
1435
1436	/* Nothing to do here if sideband queue is not supported */
1437	if (!ice_is_sbq_supported(hw)) {
1438		clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1439		return;
1440	}
1441
1442	if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1443		return;
1444
1445	if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1446		return;
1447
1448	clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1449
1450	if (ice_ctrlq_pending(hw, &hw->sbq))
1451		__ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1452
1453	ice_flush(hw);
1454}
1455
1456/**
1457 * ice_service_task_schedule - schedule the service task to wake up
1458 * @pf: board private structure
1459 *
1460 * If not already scheduled, this puts the task into the work queue.
1461 */
1462void ice_service_task_schedule(struct ice_pf *pf)
1463{
1464	if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1465	    !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1466	    !test_bit(ICE_NEEDS_RESTART, pf->state))
1467		queue_work(ice_wq, &pf->serv_task);
1468}
1469
1470/**
1471 * ice_service_task_complete - finish up the service task
1472 * @pf: board private structure
1473 */
1474static void ice_service_task_complete(struct ice_pf *pf)
1475{
1476	WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1477
1478	/* force memory (pf->state) to sync before next service task */
1479	smp_mb__before_atomic();
1480	clear_bit(ICE_SERVICE_SCHED, pf->state);
1481}
1482
1483/**
1484 * ice_service_task_stop - stop service task and cancel works
1485 * @pf: board private structure
1486 *
1487 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1488 * 1 otherwise.
1489 */
1490static int ice_service_task_stop(struct ice_pf *pf)
1491{
1492	int ret;
1493
1494	ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1495
1496	if (pf->serv_tmr.function)
1497		del_timer_sync(&pf->serv_tmr);
1498	if (pf->serv_task.func)
1499		cancel_work_sync(&pf->serv_task);
1500
1501	clear_bit(ICE_SERVICE_SCHED, pf->state);
1502	return ret;
1503}
1504
1505/**
1506 * ice_service_task_restart - restart service task and schedule works
1507 * @pf: board private structure
1508 *
1509 * This function is needed for suspend and resume works (e.g WoL scenario)
1510 */
1511static void ice_service_task_restart(struct ice_pf *pf)
1512{
1513	clear_bit(ICE_SERVICE_DIS, pf->state);
1514	ice_service_task_schedule(pf);
1515}
1516
1517/**
1518 * ice_service_timer - timer callback to schedule service task
1519 * @t: pointer to timer_list
1520 */
1521static void ice_service_timer(struct timer_list *t)
1522{
1523	struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1524
1525	mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1526	ice_service_task_schedule(pf);
1527}
1528
1529/**
1530 * ice_handle_mdd_event - handle malicious driver detect event
1531 * @pf: pointer to the PF structure
1532 *
1533 * Called from service task. OICR interrupt handler indicates MDD event.
1534 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1535 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1536 * disable the queue, the PF can be configured to reset the VF using ethtool
1537 * private flag mdd-auto-reset-vf.
1538 */
1539static void ice_handle_mdd_event(struct ice_pf *pf)
1540{
1541	struct device *dev = ice_pf_to_dev(pf);
1542	struct ice_hw *hw = &pf->hw;
1543	unsigned int i;
1544	u32 reg;
1545
1546	if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1547		/* Since the VF MDD event logging is rate limited, check if
1548		 * there are pending MDD events.
1549		 */
1550		ice_print_vfs_mdd_events(pf);
1551		return;
1552	}
1553
1554	/* find what triggered an MDD event */
1555	reg = rd32(hw, GL_MDET_TX_PQM);
1556	if (reg & GL_MDET_TX_PQM_VALID_M) {
1557		u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1558				GL_MDET_TX_PQM_PF_NUM_S;
1559		u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1560				GL_MDET_TX_PQM_VF_NUM_S;
1561		u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1562				GL_MDET_TX_PQM_MAL_TYPE_S;
1563		u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1564				GL_MDET_TX_PQM_QNUM_S);
1565
1566		if (netif_msg_tx_err(pf))
1567			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1568				 event, queue, pf_num, vf_num);
1569		wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1570	}
1571
1572	reg = rd32(hw, GL_MDET_TX_TCLAN);
1573	if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1574		u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1575				GL_MDET_TX_TCLAN_PF_NUM_S;
1576		u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1577				GL_MDET_TX_TCLAN_VF_NUM_S;
1578		u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1579				GL_MDET_TX_TCLAN_MAL_TYPE_S;
1580		u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1581				GL_MDET_TX_TCLAN_QNUM_S);
1582
1583		if (netif_msg_tx_err(pf))
1584			dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1585				 event, queue, pf_num, vf_num);
1586		wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1587	}
1588
1589	reg = rd32(hw, GL_MDET_RX);
1590	if (reg & GL_MDET_RX_VALID_M) {
1591		u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1592				GL_MDET_RX_PF_NUM_S;
1593		u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1594				GL_MDET_RX_VF_NUM_S;
1595		u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1596				GL_MDET_RX_MAL_TYPE_S;
1597		u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1598				GL_MDET_RX_QNUM_S);
1599
1600		if (netif_msg_rx_err(pf))
1601			dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1602				 event, queue, pf_num, vf_num);
1603		wr32(hw, GL_MDET_RX, 0xffffffff);
1604	}
1605
1606	/* check to see if this PF caused an MDD event */
1607	reg = rd32(hw, PF_MDET_TX_PQM);
1608	if (reg & PF_MDET_TX_PQM_VALID_M) {
1609		wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1610		if (netif_msg_tx_err(pf))
1611			dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1612	}
1613
1614	reg = rd32(hw, PF_MDET_TX_TCLAN);
1615	if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1616		wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1617		if (netif_msg_tx_err(pf))
1618			dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1619	}
1620
1621	reg = rd32(hw, PF_MDET_RX);
1622	if (reg & PF_MDET_RX_VALID_M) {
1623		wr32(hw, PF_MDET_RX, 0xFFFF);
1624		if (netif_msg_rx_err(pf))
1625			dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1626	}
1627
1628	/* Check to see if one of the VFs caused an MDD event, and then
1629	 * increment counters and set print pending
1630	 */
1631	ice_for_each_vf(pf, i) {
1632		struct ice_vf *vf = &pf->vf[i];
1633
1634		reg = rd32(hw, VP_MDET_TX_PQM(i));
1635		if (reg & VP_MDET_TX_PQM_VALID_M) {
1636			wr32(hw, VP_MDET_TX_PQM(i), 0xFFFF);
1637			vf->mdd_tx_events.count++;
1638			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1639			if (netif_msg_tx_err(pf))
1640				dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1641					 i);
1642		}
1643
1644		reg = rd32(hw, VP_MDET_TX_TCLAN(i));
1645		if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1646			wr32(hw, VP_MDET_TX_TCLAN(i), 0xFFFF);
1647			vf->mdd_tx_events.count++;
1648			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1649			if (netif_msg_tx_err(pf))
1650				dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1651					 i);
1652		}
1653
1654		reg = rd32(hw, VP_MDET_TX_TDPU(i));
1655		if (reg & VP_MDET_TX_TDPU_VALID_M) {
1656			wr32(hw, VP_MDET_TX_TDPU(i), 0xFFFF);
1657			vf->mdd_tx_events.count++;
1658			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1659			if (netif_msg_tx_err(pf))
1660				dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1661					 i);
1662		}
1663
1664		reg = rd32(hw, VP_MDET_RX(i));
1665		if (reg & VP_MDET_RX_VALID_M) {
1666			wr32(hw, VP_MDET_RX(i), 0xFFFF);
1667			vf->mdd_rx_events.count++;
1668			set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1669			if (netif_msg_rx_err(pf))
1670				dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1671					 i);
1672
1673			/* Since the queue is disabled on VF Rx MDD events, the
1674			 * PF can be configured to reset the VF through ethtool
1675			 * private flag mdd-auto-reset-vf.
1676			 */
1677			if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1678				/* VF MDD event counters will be cleared by
1679				 * reset, so print the event prior to reset.
1680				 */
1681				ice_print_vf_rx_mdd_event(vf);
1682				ice_reset_vf(&pf->vf[i], false);
1683			}
1684		}
1685	}
1686
1687	ice_print_vfs_mdd_events(pf);
1688}
1689
1690/**
1691 * ice_force_phys_link_state - Force the physical link state
1692 * @vsi: VSI to force the physical link state to up/down
1693 * @link_up: true/false indicates to set the physical link to up/down
1694 *
1695 * Force the physical link state by getting the current PHY capabilities from
1696 * hardware and setting the PHY config based on the determined capabilities. If
1697 * link changes a link event will be triggered because both the Enable Automatic
1698 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1699 *
1700 * Returns 0 on success, negative on failure
1701 */
1702static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1703{
1704	struct ice_aqc_get_phy_caps_data *pcaps;
1705	struct ice_aqc_set_phy_cfg_data *cfg;
1706	struct ice_port_info *pi;
1707	struct device *dev;
1708	int retcode;
1709
1710	if (!vsi || !vsi->port_info || !vsi->back)
1711		return -EINVAL;
1712	if (vsi->type != ICE_VSI_PF)
1713		return 0;
1714
1715	dev = ice_pf_to_dev(vsi->back);
1716
1717	pi = vsi->port_info;
1718
1719	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1720	if (!pcaps)
1721		return -ENOMEM;
1722
1723	retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1724				      NULL);
1725	if (retcode) {
1726		dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1727			vsi->vsi_num, retcode);
1728		retcode = -EIO;
1729		goto out;
1730	}
1731
1732	/* No change in link */
1733	if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1734	    link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1735		goto out;
1736
1737	/* Use the current user PHY configuration. The current user PHY
1738	 * configuration is initialized during probe from PHY capabilities
1739	 * software mode, and updated on set PHY configuration.
1740	 */
1741	cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1742	if (!cfg) {
1743		retcode = -ENOMEM;
1744		goto out;
1745	}
1746
1747	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1748	if (link_up)
1749		cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1750	else
1751		cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1752
1753	retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1754	if (retcode) {
1755		dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1756			vsi->vsi_num, retcode);
1757		retcode = -EIO;
1758	}
1759
1760	kfree(cfg);
1761out:
1762	kfree(pcaps);
1763	return retcode;
1764}
1765
1766/**
1767 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1768 * @pi: port info structure
1769 *
1770 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1771 */
1772static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1773{
1774	struct ice_aqc_get_phy_caps_data *pcaps;
1775	struct ice_pf *pf = pi->hw->back;
1776	enum ice_status status;
1777	int err = 0;
1778
1779	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1780	if (!pcaps)
1781		return -ENOMEM;
1782
1783	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA, pcaps,
1784				     NULL);
1785
1786	if (status) {
1787		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1788		err = -EIO;
1789		goto out;
1790	}
1791
1792	pf->nvm_phy_type_hi = pcaps->phy_type_high;
1793	pf->nvm_phy_type_lo = pcaps->phy_type_low;
1794
1795out:
1796	kfree(pcaps);
1797	return err;
1798}
1799
1800/**
1801 * ice_init_link_dflt_override - Initialize link default override
1802 * @pi: port info structure
1803 *
1804 * Initialize link default override and PHY total port shutdown during probe
1805 */
1806static void ice_init_link_dflt_override(struct ice_port_info *pi)
1807{
1808	struct ice_link_default_override_tlv *ldo;
1809	struct ice_pf *pf = pi->hw->back;
1810
1811	ldo = &pf->link_dflt_override;
1812	if (ice_get_link_default_override(ldo, pi))
1813		return;
1814
1815	if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1816		return;
1817
1818	/* Enable Total Port Shutdown (override/replace link-down-on-close
1819	 * ethtool private flag) for ports with Port Disable bit set.
1820	 */
1821	set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1822	set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1823}
1824
1825/**
1826 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1827 * @pi: port info structure
1828 *
1829 * If default override is enabled, initialize the user PHY cfg speed and FEC
1830 * settings using the default override mask from the NVM.
1831 *
1832 * The PHY should only be configured with the default override settings the
1833 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1834 * is used to indicate that the user PHY cfg default override is initialized
1835 * and the PHY has not been configured with the default override settings. The
1836 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1837 * configured.
1838 *
1839 * This function should be called only if the FW doesn't support default
1840 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1841 */
1842static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1843{
1844	struct ice_link_default_override_tlv *ldo;
1845	struct ice_aqc_set_phy_cfg_data *cfg;
1846	struct ice_phy_info *phy = &pi->phy;
1847	struct ice_pf *pf = pi->hw->back;
1848
1849	ldo = &pf->link_dflt_override;
1850
1851	/* If link default override is enabled, use to mask NVM PHY capabilities
1852	 * for speed and FEC default configuration.
1853	 */
1854	cfg = &phy->curr_user_phy_cfg;
1855
1856	if (ldo->phy_type_low || ldo->phy_type_high) {
1857		cfg->phy_type_low = pf->nvm_phy_type_lo &
1858				    cpu_to_le64(ldo->phy_type_low);
1859		cfg->phy_type_high = pf->nvm_phy_type_hi &
1860				     cpu_to_le64(ldo->phy_type_high);
1861	}
1862	cfg->link_fec_opt = ldo->fec_options;
1863	phy->curr_user_fec_req = ICE_FEC_AUTO;
1864
1865	set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
1866}
1867
1868/**
1869 * ice_init_phy_user_cfg - Initialize the PHY user configuration
1870 * @pi: port info structure
1871 *
1872 * Initialize the current user PHY configuration, speed, FEC, and FC requested
1873 * mode to default. The PHY defaults are from get PHY capabilities topology
1874 * with media so call when media is first available. An error is returned if
1875 * called when media is not available. The PHY initialization completed state is
1876 * set here.
1877 *
1878 * These configurations are used when setting PHY
1879 * configuration. The user PHY configuration is updated on set PHY
1880 * configuration. Returns 0 on success, negative on failure
1881 */
1882static int ice_init_phy_user_cfg(struct ice_port_info *pi)
1883{
1884	struct ice_aqc_get_phy_caps_data *pcaps;
1885	struct ice_phy_info *phy = &pi->phy;
1886	struct ice_pf *pf = pi->hw->back;
1887	enum ice_status status;
 
1888	int err = 0;
1889
1890	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1891		return -EIO;
1892
 
 
 
 
1893	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1894	if (!pcaps)
1895		return -ENOMEM;
1896
1897	if (ice_fw_supports_report_dflt_cfg(pi->hw))
1898		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1899					     pcaps, NULL);
1900	else
1901		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
1902					     pcaps, NULL);
1903	if (status) {
1904		dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1905		err = -EIO;
1906		goto err_out;
1907	}
1908
1909	ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
1910
1911	/* check if lenient mode is supported and enabled */
1912	if (ice_fw_supports_link_override(pi->hw) &&
1913	    !(pcaps->module_compliance_enforcement &
1914	      ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
1915		set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
1916
1917		/* if the FW supports default PHY configuration mode, then the driver
1918		 * does not have to apply link override settings. If not,
1919		 * initialize user PHY configuration with link override values
1920		 */
1921		if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
1922		    (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
1923			ice_init_phy_cfg_dflt_override(pi);
1924			goto out;
1925		}
1926	}
1927
1928	/* if link default override is not enabled, set user flow control and
1929	 * FEC settings based on what get_phy_caps returned
1930	 */
1931	phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
1932						      pcaps->link_fec_options);
1933	phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
1934
1935out:
1936	phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
1937	set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
1938err_out:
1939	kfree(pcaps);
1940	return err;
1941}
1942
1943/**
1944 * ice_configure_phy - configure PHY
1945 * @vsi: VSI of PHY
1946 *
1947 * Set the PHY configuration. If the current PHY configuration is the same as
1948 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
1949 * configure the based get PHY capabilities for topology with media.
1950 */
1951static int ice_configure_phy(struct ice_vsi *vsi)
1952{
1953	struct device *dev = ice_pf_to_dev(vsi->back);
1954	struct ice_port_info *pi = vsi->port_info;
1955	struct ice_aqc_get_phy_caps_data *pcaps;
1956	struct ice_aqc_set_phy_cfg_data *cfg;
1957	struct ice_phy_info *phy = &pi->phy;
1958	struct ice_pf *pf = vsi->back;
1959	enum ice_status status;
1960	int err = 0;
1961
 
 
 
 
1962	/* Ensure we have media as we cannot configure a medialess port */
1963	if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
1964		return -EPERM;
1965
1966	ice_print_topo_conflict(vsi);
1967
1968	if (phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
 
1969		return -EPERM;
1970
1971	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
1972		return ice_force_phys_link_state(vsi, true);
1973
1974	pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1975	if (!pcaps)
1976		return -ENOMEM;
1977
1978	/* Get current PHY config */
1979	status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1980				     NULL);
1981	if (status) {
1982		dev_err(dev, "Failed to get PHY configuration, VSI %d error %s\n",
1983			vsi->vsi_num, ice_stat_str(status));
1984		err = -EIO;
1985		goto done;
1986	}
1987
1988	/* If PHY enable link is configured and configuration has not changed,
1989	 * there's nothing to do
1990	 */
1991	if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
1992	    ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
1993		goto done;
1994
1995	/* Use PHY topology as baseline for configuration */
1996	memset(pcaps, 0, sizeof(*pcaps));
1997	if (ice_fw_supports_report_dflt_cfg(pi->hw))
1998		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
1999					     pcaps, NULL);
2000	else
2001		status = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2002					     pcaps, NULL);
2003	if (status) {
2004		dev_err(dev, "Failed to get PHY caps, VSI %d error %s\n",
2005			vsi->vsi_num, ice_stat_str(status));
2006		err = -EIO;
2007		goto done;
2008	}
2009
2010	cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2011	if (!cfg) {
2012		err = -ENOMEM;
2013		goto done;
2014	}
2015
2016	ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2017
2018	/* Speed - If default override pending, use curr_user_phy_cfg set in
2019	 * ice_init_phy_user_cfg_ldo.
2020	 */
2021	if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2022			       vsi->back->state)) {
2023		cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2024		cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2025	} else {
2026		u64 phy_low = 0, phy_high = 0;
2027
2028		ice_update_phy_type(&phy_low, &phy_high,
2029				    pi->phy.curr_user_speed_req);
2030		cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2031		cfg->phy_type_high = pcaps->phy_type_high &
2032				     cpu_to_le64(phy_high);
2033	}
2034
2035	/* Can't provide what was requested; use PHY capabilities */
2036	if (!cfg->phy_type_low && !cfg->phy_type_high) {
2037		cfg->phy_type_low = pcaps->phy_type_low;
2038		cfg->phy_type_high = pcaps->phy_type_high;
2039	}
2040
2041	/* FEC */
2042	ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2043
2044	/* Can't provide what was requested; use PHY capabilities */
2045	if (cfg->link_fec_opt !=
2046	    (cfg->link_fec_opt & pcaps->link_fec_options)) {
2047		cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2048		cfg->link_fec_opt = pcaps->link_fec_options;
2049	}
2050
2051	/* Flow Control - always supported; no need to check against
2052	 * capabilities
2053	 */
2054	ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2055
2056	/* Enable link and link update */
2057	cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2058
2059	status = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2060	if (status) {
2061		dev_err(dev, "Failed to set phy config, VSI %d error %s\n",
2062			vsi->vsi_num, ice_stat_str(status));
2063		err = -EIO;
2064	}
2065
2066	kfree(cfg);
2067done:
2068	kfree(pcaps);
2069	return err;
2070}
2071
2072/**
2073 * ice_check_media_subtask - Check for media
2074 * @pf: pointer to PF struct
2075 *
2076 * If media is available, then initialize PHY user configuration if it is not
2077 * been, and configure the PHY if the interface is up.
2078 */
2079static void ice_check_media_subtask(struct ice_pf *pf)
2080{
2081	struct ice_port_info *pi;
2082	struct ice_vsi *vsi;
2083	int err;
2084
2085	/* No need to check for media if it's already present */
2086	if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2087		return;
2088
2089	vsi = ice_get_main_vsi(pf);
2090	if (!vsi)
2091		return;
2092
2093	/* Refresh link info and check if media is present */
2094	pi = vsi->port_info;
2095	err = ice_update_link_info(pi);
2096	if (err)
2097		return;
2098
2099	ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
2100
2101	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2102		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2103			ice_init_phy_user_cfg(pi);
2104
2105		/* PHY settings are reset on media insertion, reconfigure
2106		 * PHY to preserve settings.
2107		 */
2108		if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2109		    test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2110			return;
2111
2112		err = ice_configure_phy(vsi);
2113		if (!err)
2114			clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2115
2116		/* A Link Status Event will be generated; the event handler
2117		 * will complete bringing the interface up
2118		 */
2119	}
2120}
2121
2122/**
2123 * ice_service_task - manage and run subtasks
2124 * @work: pointer to work_struct contained by the PF struct
2125 */
2126static void ice_service_task(struct work_struct *work)
2127{
2128	struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2129	unsigned long start_time = jiffies;
2130
2131	/* subtasks */
2132
2133	/* process reset requests first */
2134	ice_reset_subtask(pf);
2135
2136	/* bail if a reset/recovery cycle is pending or rebuild failed */
2137	if (ice_is_reset_in_progress(pf->state) ||
2138	    test_bit(ICE_SUSPENDED, pf->state) ||
2139	    test_bit(ICE_NEEDS_RESTART, pf->state)) {
2140		ice_service_task_complete(pf);
2141		return;
2142	}
2143
2144	ice_clean_adminq_subtask(pf);
2145	ice_check_media_subtask(pf);
2146	ice_check_for_hang_subtask(pf);
2147	ice_sync_fltr_subtask(pf);
2148	ice_handle_mdd_event(pf);
2149	ice_watchdog_subtask(pf);
2150
2151	if (ice_is_safe_mode(pf)) {
2152		ice_service_task_complete(pf);
2153		return;
2154	}
2155
2156	ice_process_vflr_event(pf);
2157	ice_clean_mailboxq_subtask(pf);
2158	ice_clean_sbq_subtask(pf);
2159	ice_sync_arfs_fltrs(pf);
2160	ice_flush_fdir_ctx(pf);
2161
2162	/* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2163	ice_service_task_complete(pf);
2164
2165	/* If the tasks have taken longer than one service timer period
2166	 * or there is more work to be done, reset the service timer to
2167	 * schedule the service task now.
2168	 */
2169	if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2170	    test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2171	    test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2172	    test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2173	    test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2174	    test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2175	    test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2176		mod_timer(&pf->serv_tmr, jiffies);
2177}
2178
2179/**
2180 * ice_set_ctrlq_len - helper function to set controlq length
2181 * @hw: pointer to the HW instance
2182 */
2183static void ice_set_ctrlq_len(struct ice_hw *hw)
2184{
2185	hw->adminq.num_rq_entries = ICE_AQ_LEN;
2186	hw->adminq.num_sq_entries = ICE_AQ_LEN;
2187	hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2188	hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2189	hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2190	hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2191	hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2192	hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2193	hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2194	hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2195	hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2196	hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2197}
2198
2199/**
2200 * ice_schedule_reset - schedule a reset
2201 * @pf: board private structure
2202 * @reset: reset being requested
2203 */
2204int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2205{
2206	struct device *dev = ice_pf_to_dev(pf);
2207
2208	/* bail out if earlier reset has failed */
2209	if (test_bit(ICE_RESET_FAILED, pf->state)) {
2210		dev_dbg(dev, "earlier reset has failed\n");
2211		return -EIO;
2212	}
2213	/* bail if reset/recovery already in progress */
2214	if (ice_is_reset_in_progress(pf->state)) {
2215		dev_dbg(dev, "Reset already in progress\n");
2216		return -EBUSY;
2217	}
2218
2219	ice_unplug_aux_dev(pf);
2220
2221	switch (reset) {
2222	case ICE_RESET_PFR:
2223		set_bit(ICE_PFR_REQ, pf->state);
2224		break;
2225	case ICE_RESET_CORER:
2226		set_bit(ICE_CORER_REQ, pf->state);
2227		break;
2228	case ICE_RESET_GLOBR:
2229		set_bit(ICE_GLOBR_REQ, pf->state);
2230		break;
2231	default:
2232		return -EINVAL;
2233	}
2234
2235	ice_service_task_schedule(pf);
2236	return 0;
2237}
2238
2239/**
2240 * ice_irq_affinity_notify - Callback for affinity changes
2241 * @notify: context as to what irq was changed
2242 * @mask: the new affinity mask
2243 *
2244 * This is a callback function used by the irq_set_affinity_notifier function
2245 * so that we may register to receive changes to the irq affinity masks.
2246 */
2247static void
2248ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2249			const cpumask_t *mask)
2250{
2251	struct ice_q_vector *q_vector =
2252		container_of(notify, struct ice_q_vector, affinity_notify);
2253
2254	cpumask_copy(&q_vector->affinity_mask, mask);
2255}
2256
2257/**
2258 * ice_irq_affinity_release - Callback for affinity notifier release
2259 * @ref: internal core kernel usage
2260 *
2261 * This is a callback function used by the irq_set_affinity_notifier function
2262 * to inform the current notification subscriber that they will no longer
2263 * receive notifications.
2264 */
2265static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2266
2267/**
2268 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2269 * @vsi: the VSI being configured
2270 */
2271static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2272{
2273	struct ice_hw *hw = &vsi->back->hw;
2274	int i;
2275
2276	ice_for_each_q_vector(vsi, i)
2277		ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2278
2279	ice_flush(hw);
2280	return 0;
2281}
2282
2283/**
2284 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2285 * @vsi: the VSI being configured
2286 * @basename: name for the vector
2287 */
2288static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2289{
2290	int q_vectors = vsi->num_q_vectors;
2291	struct ice_pf *pf = vsi->back;
2292	int base = vsi->base_vector;
2293	struct device *dev;
2294	int rx_int_idx = 0;
2295	int tx_int_idx = 0;
2296	int vector, err;
2297	int irq_num;
2298
2299	dev = ice_pf_to_dev(pf);
2300	for (vector = 0; vector < q_vectors; vector++) {
2301		struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2302
2303		irq_num = pf->msix_entries[base + vector].vector;
2304
2305		if (q_vector->tx.ring && q_vector->rx.ring) {
2306			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2307				 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2308			tx_int_idx++;
2309		} else if (q_vector->rx.ring) {
2310			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2311				 "%s-%s-%d", basename, "rx", rx_int_idx++);
2312		} else if (q_vector->tx.ring) {
2313			snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2314				 "%s-%s-%d", basename, "tx", tx_int_idx++);
2315		} else {
2316			/* skip this unused q_vector */
2317			continue;
2318		}
2319		if (vsi->type == ICE_VSI_CTRL && vsi->vf_id != ICE_INVAL_VFID)
2320			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2321					       IRQF_SHARED, q_vector->name,
2322					       q_vector);
2323		else
2324			err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2325					       0, q_vector->name, q_vector);
2326		if (err) {
2327			netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2328				   err);
2329			goto free_q_irqs;
2330		}
2331
2332		/* register for affinity change notifications */
2333		if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2334			struct irq_affinity_notify *affinity_notify;
2335
2336			affinity_notify = &q_vector->affinity_notify;
2337			affinity_notify->notify = ice_irq_affinity_notify;
2338			affinity_notify->release = ice_irq_affinity_release;
2339			irq_set_affinity_notifier(irq_num, affinity_notify);
2340		}
2341
2342		/* assign the mask for this irq */
2343		irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2344	}
2345
2346	vsi->irqs_ready = true;
2347	return 0;
2348
2349free_q_irqs:
2350	while (vector) {
2351		vector--;
2352		irq_num = pf->msix_entries[base + vector].vector;
2353		if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2354			irq_set_affinity_notifier(irq_num, NULL);
2355		irq_set_affinity_hint(irq_num, NULL);
2356		devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2357	}
2358	return err;
2359}
2360
2361/**
2362 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2363 * @vsi: VSI to setup Tx rings used by XDP
2364 *
2365 * Return 0 on success and negative value on error
2366 */
2367static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2368{
2369	struct device *dev = ice_pf_to_dev(vsi->back);
2370	int i;
2371
2372	for (i = 0; i < vsi->num_xdp_txq; i++) {
2373		u16 xdp_q_idx = vsi->alloc_txq + i;
2374		struct ice_ring *xdp_ring;
2375
2376		xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2377
2378		if (!xdp_ring)
2379			goto free_xdp_rings;
2380
2381		xdp_ring->q_index = xdp_q_idx;
2382		xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2383		xdp_ring->ring_active = false;
2384		xdp_ring->vsi = vsi;
2385		xdp_ring->netdev = NULL;
2386		xdp_ring->dev = dev;
2387		xdp_ring->count = vsi->num_tx_desc;
2388		WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2389		if (ice_setup_tx_ring(xdp_ring))
2390			goto free_xdp_rings;
2391		ice_set_ring_xdp(xdp_ring);
2392		xdp_ring->xsk_pool = ice_xsk_pool(xdp_ring);
2393	}
2394
2395	return 0;
2396
2397free_xdp_rings:
2398	for (; i >= 0; i--)
2399		if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2400			ice_free_tx_ring(vsi->xdp_rings[i]);
2401	return -ENOMEM;
2402}
2403
2404/**
2405 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2406 * @vsi: VSI to set the bpf prog on
2407 * @prog: the bpf prog pointer
2408 */
2409static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2410{
2411	struct bpf_prog *old_prog;
2412	int i;
2413
2414	old_prog = xchg(&vsi->xdp_prog, prog);
2415	if (old_prog)
2416		bpf_prog_put(old_prog);
2417
2418	ice_for_each_rxq(vsi, i)
2419		WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2420}
2421
2422/**
2423 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2424 * @vsi: VSI to bring up Tx rings used by XDP
2425 * @prog: bpf program that will be assigned to VSI
2426 *
2427 * Return 0 on success and negative value on error
2428 */
2429int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2430{
2431	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2432	int xdp_rings_rem = vsi->num_xdp_txq;
2433	struct ice_pf *pf = vsi->back;
2434	struct ice_qs_cfg xdp_qs_cfg = {
2435		.qs_mutex = &pf->avail_q_mutex,
2436		.pf_map = pf->avail_txqs,
2437		.pf_map_size = pf->max_pf_txqs,
2438		.q_count = vsi->num_xdp_txq,
2439		.scatter_count = ICE_MAX_SCATTER_TXQS,
2440		.vsi_map = vsi->txq_map,
2441		.vsi_map_offset = vsi->alloc_txq,
2442		.mapping_mode = ICE_VSI_MAP_CONTIG
2443	};
2444	enum ice_status status;
2445	struct device *dev;
2446	int i, v_idx;
2447
2448	dev = ice_pf_to_dev(pf);
2449	vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2450				      sizeof(*vsi->xdp_rings), GFP_KERNEL);
2451	if (!vsi->xdp_rings)
2452		return -ENOMEM;
2453
2454	vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2455	if (__ice_vsi_get_qs(&xdp_qs_cfg))
2456		goto err_map_xdp;
2457
2458	if (ice_xdp_alloc_setup_rings(vsi))
2459		goto clear_xdp_rings;
2460
2461	/* follow the logic from ice_vsi_map_rings_to_vectors */
2462	ice_for_each_q_vector(vsi, v_idx) {
2463		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2464		int xdp_rings_per_v, q_id, q_base;
2465
2466		xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2467					       vsi->num_q_vectors - v_idx);
2468		q_base = vsi->num_xdp_txq - xdp_rings_rem;
2469
2470		for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2471			struct ice_ring *xdp_ring = vsi->xdp_rings[q_id];
2472
2473			xdp_ring->q_vector = q_vector;
2474			xdp_ring->next = q_vector->tx.ring;
2475			q_vector->tx.ring = xdp_ring;
2476		}
2477		xdp_rings_rem -= xdp_rings_per_v;
2478	}
2479
2480	/* omit the scheduler update if in reset path; XDP queues will be
2481	 * taken into account at the end of ice_vsi_rebuild, where
2482	 * ice_cfg_vsi_lan is being called
2483	 */
2484	if (ice_is_reset_in_progress(pf->state))
2485		return 0;
2486
2487	/* tell the Tx scheduler that right now we have
2488	 * additional queues
2489	 */
2490	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2491		max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2492
2493	status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2494				 max_txqs);
2495	if (status) {
2496		dev_err(dev, "Failed VSI LAN queue config for XDP, error: %s\n",
2497			ice_stat_str(status));
2498		goto clear_xdp_rings;
2499	}
2500	ice_vsi_assign_bpf_prog(vsi, prog);
2501
2502	return 0;
2503clear_xdp_rings:
2504	for (i = 0; i < vsi->num_xdp_txq; i++)
2505		if (vsi->xdp_rings[i]) {
2506			kfree_rcu(vsi->xdp_rings[i], rcu);
2507			vsi->xdp_rings[i] = NULL;
2508		}
2509
2510err_map_xdp:
2511	mutex_lock(&pf->avail_q_mutex);
2512	for (i = 0; i < vsi->num_xdp_txq; i++) {
2513		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2514		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2515	}
2516	mutex_unlock(&pf->avail_q_mutex);
2517
2518	devm_kfree(dev, vsi->xdp_rings);
2519	return -ENOMEM;
2520}
2521
2522/**
2523 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2524 * @vsi: VSI to remove XDP rings
2525 *
2526 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2527 * resources
2528 */
2529int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2530{
2531	u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2532	struct ice_pf *pf = vsi->back;
2533	int i, v_idx;
2534
2535	/* q_vectors are freed in reset path so there's no point in detaching
2536	 * rings; in case of rebuild being triggered not from reset bits
2537	 * in pf->state won't be set, so additionally check first q_vector
2538	 * against NULL
2539	 */
2540	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2541		goto free_qmap;
2542
2543	ice_for_each_q_vector(vsi, v_idx) {
2544		struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2545		struct ice_ring *ring;
2546
2547		ice_for_each_ring(ring, q_vector->tx)
2548			if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2549				break;
2550
2551		/* restore the value of last node prior to XDP setup */
2552		q_vector->tx.ring = ring;
2553	}
2554
2555free_qmap:
2556	mutex_lock(&pf->avail_q_mutex);
2557	for (i = 0; i < vsi->num_xdp_txq; i++) {
2558		clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2559		vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2560	}
2561	mutex_unlock(&pf->avail_q_mutex);
2562
2563	for (i = 0; i < vsi->num_xdp_txq; i++)
2564		if (vsi->xdp_rings[i]) {
2565			if (vsi->xdp_rings[i]->desc)
2566				ice_free_tx_ring(vsi->xdp_rings[i]);
2567			kfree_rcu(vsi->xdp_rings[i], rcu);
2568			vsi->xdp_rings[i] = NULL;
2569		}
2570
2571	devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2572	vsi->xdp_rings = NULL;
2573
2574	if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2575		return 0;
2576
2577	ice_vsi_assign_bpf_prog(vsi, NULL);
2578
2579	/* notify Tx scheduler that we destroyed XDP queues and bring
2580	 * back the old number of child nodes
2581	 */
2582	for (i = 0; i < vsi->tc_cfg.numtc; i++)
2583		max_txqs[i] = vsi->num_txq;
2584
2585	/* change number of XDP Tx queues to 0 */
2586	vsi->num_xdp_txq = 0;
2587
2588	return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2589			       max_txqs);
2590}
2591
2592/**
2593 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2594 * @vsi: VSI to schedule napi on
2595 */
2596static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2597{
2598	int i;
2599
2600	ice_for_each_rxq(vsi, i) {
2601		struct ice_ring *rx_ring = vsi->rx_rings[i];
2602
2603		if (rx_ring->xsk_pool)
2604			napi_schedule(&rx_ring->q_vector->napi);
2605	}
2606}
2607
2608/**
2609 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2610 * @vsi: VSI to setup XDP for
2611 * @prog: XDP program
2612 * @extack: netlink extended ack
2613 */
2614static int
2615ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2616		   struct netlink_ext_ack *extack)
2617{
2618	int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2619	bool if_running = netif_running(vsi->netdev);
2620	int ret = 0, xdp_ring_err = 0;
2621
2622	if (frame_size > vsi->rx_buf_len) {
2623		NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2624		return -EOPNOTSUPP;
2625	}
2626
2627	/* need to stop netdev while setting up the program for Rx rings */
2628	if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2629		ret = ice_down(vsi);
2630		if (ret) {
2631			NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2632			return ret;
2633		}
2634	}
2635
2636	if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2637		vsi->num_xdp_txq = vsi->alloc_rxq;
2638		xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2639		if (xdp_ring_err)
2640			NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2641	} else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2642		xdp_ring_err = ice_destroy_xdp_rings(vsi);
2643		if (xdp_ring_err)
2644			NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2645	} else {
2646		ice_vsi_assign_bpf_prog(vsi, prog);
2647	}
2648
2649	if (if_running)
2650		ret = ice_up(vsi);
2651
2652	if (!ret && prog)
2653		ice_vsi_rx_napi_schedule(vsi);
 
 
 
 
 
 
 
 
2654
2655	return (ret || xdp_ring_err) ? -ENOMEM : 0;
2656}
2657
2658/**
2659 * ice_xdp_safe_mode - XDP handler for safe mode
2660 * @dev: netdevice
2661 * @xdp: XDP command
2662 */
2663static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2664			     struct netdev_bpf *xdp)
2665{
2666	NL_SET_ERR_MSG_MOD(xdp->extack,
2667			   "Please provide working DDP firmware package in order to use XDP\n"
2668			   "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2669	return -EOPNOTSUPP;
2670}
2671
2672/**
2673 * ice_xdp - implements XDP handler
2674 * @dev: netdevice
2675 * @xdp: XDP command
2676 */
2677static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2678{
2679	struct ice_netdev_priv *np = netdev_priv(dev);
2680	struct ice_vsi *vsi = np->vsi;
2681
2682	if (vsi->type != ICE_VSI_PF) {
2683		NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2684		return -EINVAL;
2685	}
2686
2687	switch (xdp->command) {
2688	case XDP_SETUP_PROG:
2689		return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2690	case XDP_SETUP_XSK_POOL:
2691		return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2692					  xdp->xsk.queue_id);
2693	default:
2694		return -EINVAL;
2695	}
2696}
2697
2698/**
2699 * ice_ena_misc_vector - enable the non-queue interrupts
2700 * @pf: board private structure
2701 */
2702static void ice_ena_misc_vector(struct ice_pf *pf)
2703{
2704	struct ice_hw *hw = &pf->hw;
2705	u32 val;
2706
2707	/* Disable anti-spoof detection interrupt to prevent spurious event
2708	 * interrupts during a function reset. Anti-spoof functionally is
2709	 * still supported.
2710	 */
2711	val = rd32(hw, GL_MDCK_TX_TDPU);
2712	val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2713	wr32(hw, GL_MDCK_TX_TDPU, val);
2714
2715	/* clear things first */
2716	wr32(hw, PFINT_OICR_ENA, 0);	/* disable all */
2717	rd32(hw, PFINT_OICR);		/* read to clear */
2718
2719	val = (PFINT_OICR_ECC_ERR_M |
2720	       PFINT_OICR_MAL_DETECT_M |
2721	       PFINT_OICR_GRST_M |
2722	       PFINT_OICR_PCI_EXCEPTION_M |
2723	       PFINT_OICR_VFLR_M |
2724	       PFINT_OICR_HMC_ERR_M |
2725	       PFINT_OICR_PE_PUSH_M |
2726	       PFINT_OICR_PE_CRITERR_M);
2727
2728	wr32(hw, PFINT_OICR_ENA, val);
2729
2730	/* SW_ITR_IDX = 0, but don't change INTENA */
2731	wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
2732	     GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
2733}
2734
2735/**
2736 * ice_misc_intr - misc interrupt handler
2737 * @irq: interrupt number
2738 * @data: pointer to a q_vector
2739 */
2740static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
2741{
2742	struct ice_pf *pf = (struct ice_pf *)data;
2743	struct ice_hw *hw = &pf->hw;
2744	irqreturn_t ret = IRQ_NONE;
2745	struct device *dev;
2746	u32 oicr, ena_mask;
2747
2748	dev = ice_pf_to_dev(pf);
2749	set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
2750	set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
2751	set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
2752
2753	oicr = rd32(hw, PFINT_OICR);
2754	ena_mask = rd32(hw, PFINT_OICR_ENA);
2755
2756	if (oicr & PFINT_OICR_SWINT_M) {
2757		ena_mask &= ~PFINT_OICR_SWINT_M;
2758		pf->sw_int_count++;
2759	}
2760
2761	if (oicr & PFINT_OICR_MAL_DETECT_M) {
2762		ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
2763		set_bit(ICE_MDD_EVENT_PENDING, pf->state);
2764	}
2765	if (oicr & PFINT_OICR_VFLR_M) {
2766		/* disable any further VFLR event notifications */
2767		if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
2768			u32 reg = rd32(hw, PFINT_OICR_ENA);
2769
2770			reg &= ~PFINT_OICR_VFLR_M;
2771			wr32(hw, PFINT_OICR_ENA, reg);
2772		} else {
2773			ena_mask &= ~PFINT_OICR_VFLR_M;
2774			set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
2775		}
2776	}
2777
2778	if (oicr & PFINT_OICR_GRST_M) {
2779		u32 reset;
2780
2781		/* we have a reset warning */
2782		ena_mask &= ~PFINT_OICR_GRST_M;
2783		reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
2784			GLGEN_RSTAT_RESET_TYPE_S;
2785
2786		if (reset == ICE_RESET_CORER)
2787			pf->corer_count++;
2788		else if (reset == ICE_RESET_GLOBR)
2789			pf->globr_count++;
2790		else if (reset == ICE_RESET_EMPR)
2791			pf->empr_count++;
2792		else
2793			dev_dbg(dev, "Invalid reset type %d\n", reset);
2794
2795		/* If a reset cycle isn't already in progress, we set a bit in
2796		 * pf->state so that the service task can start a reset/rebuild.
 
 
2797		 */
2798		if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
2799			if (reset == ICE_RESET_CORER)
2800				set_bit(ICE_CORER_RECV, pf->state);
2801			else if (reset == ICE_RESET_GLOBR)
2802				set_bit(ICE_GLOBR_RECV, pf->state);
2803			else
2804				set_bit(ICE_EMPR_RECV, pf->state);
2805
2806			/* There are couple of different bits at play here.
2807			 * hw->reset_ongoing indicates whether the hardware is
2808			 * in reset. This is set to true when a reset interrupt
2809			 * is received and set back to false after the driver
2810			 * has determined that the hardware is out of reset.
2811			 *
2812			 * ICE_RESET_OICR_RECV in pf->state indicates
2813			 * that a post reset rebuild is required before the
2814			 * driver is operational again. This is set above.
2815			 *
2816			 * As this is the start of the reset/rebuild cycle, set
2817			 * both to indicate that.
2818			 */
2819			hw->reset_ongoing = true;
2820		}
2821	}
2822
2823	if (oicr & PFINT_OICR_TSYN_TX_M) {
2824		ena_mask &= ~PFINT_OICR_TSYN_TX_M;
2825		ice_ptp_process_ts(pf);
2826	}
2827
2828	if (oicr & PFINT_OICR_TSYN_EVNT_M) {
2829		u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
2830		u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
2831
2832		/* Save EVENTs from GTSYN register */
2833		pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
2834						     GLTSYN_STAT_EVENT1_M |
2835						     GLTSYN_STAT_EVENT2_M);
2836		ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
2837		kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
2838	}
2839
2840#define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
2841	if (oicr & ICE_AUX_CRIT_ERR) {
2842		struct iidc_event *event;
2843
2844		ena_mask &= ~ICE_AUX_CRIT_ERR;
2845		event = kzalloc(sizeof(*event), GFP_KERNEL);
2846		if (event) {
2847			set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2848			/* report the entire OICR value to AUX driver */
2849			event->reg = oicr;
2850			ice_send_event_to_aux(pf, event);
2851			kfree(event);
2852		}
2853	}
2854
2855	/* Report any remaining unexpected interrupts */
2856	oicr &= ena_mask;
2857	if (oicr) {
2858		dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
2859		/* If a critical error is pending there is no choice but to
2860		 * reset the device.
2861		 */
2862		if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
 
2863			    PFINT_OICR_ECC_ERR_M)) {
2864			set_bit(ICE_PFR_REQ, pf->state);
2865			ice_service_task_schedule(pf);
2866		}
2867	}
2868	ret = IRQ_HANDLED;
2869
2870	ice_service_task_schedule(pf);
2871	ice_irq_dynamic_ena(hw, NULL, NULL);
2872
2873	return ret;
2874}
2875
2876/**
2877 * ice_dis_ctrlq_interrupts - disable control queue interrupts
2878 * @hw: pointer to HW structure
2879 */
2880static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
2881{
2882	/* disable Admin queue Interrupt causes */
2883	wr32(hw, PFINT_FW_CTL,
2884	     rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
2885
2886	/* disable Mailbox queue Interrupt causes */
2887	wr32(hw, PFINT_MBX_CTL,
2888	     rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
2889
2890	wr32(hw, PFINT_SB_CTL,
2891	     rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
2892
2893	/* disable Control queue Interrupt causes */
2894	wr32(hw, PFINT_OICR_CTL,
2895	     rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
2896
2897	ice_flush(hw);
2898}
2899
2900/**
2901 * ice_free_irq_msix_misc - Unroll misc vector setup
2902 * @pf: board private structure
2903 */
2904static void ice_free_irq_msix_misc(struct ice_pf *pf)
2905{
2906	struct ice_hw *hw = &pf->hw;
2907
2908	ice_dis_ctrlq_interrupts(hw);
2909
2910	/* disable OICR interrupt */
2911	wr32(hw, PFINT_OICR_ENA, 0);
2912	ice_flush(hw);
2913
2914	if (pf->msix_entries) {
2915		synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
2916		devm_free_irq(ice_pf_to_dev(pf),
2917			      pf->msix_entries[pf->oicr_idx].vector, pf);
2918	}
2919
2920	pf->num_avail_sw_msix += 1;
2921	ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
2922}
2923
2924/**
2925 * ice_ena_ctrlq_interrupts - enable control queue interrupts
2926 * @hw: pointer to HW structure
2927 * @reg_idx: HW vector index to associate the control queue interrupts with
2928 */
2929static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
2930{
2931	u32 val;
2932
2933	val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
2934	       PFINT_OICR_CTL_CAUSE_ENA_M);
2935	wr32(hw, PFINT_OICR_CTL, val);
2936
2937	/* enable Admin queue Interrupt causes */
2938	val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
2939	       PFINT_FW_CTL_CAUSE_ENA_M);
2940	wr32(hw, PFINT_FW_CTL, val);
2941
2942	/* enable Mailbox queue Interrupt causes */
2943	val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
2944	       PFINT_MBX_CTL_CAUSE_ENA_M);
2945	wr32(hw, PFINT_MBX_CTL, val);
2946
2947	/* This enables Sideband queue Interrupt causes */
2948	val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
2949	       PFINT_SB_CTL_CAUSE_ENA_M);
2950	wr32(hw, PFINT_SB_CTL, val);
2951
2952	ice_flush(hw);
2953}
2954
2955/**
2956 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
2957 * @pf: board private structure
2958 *
2959 * This sets up the handler for MSIX 0, which is used to manage the
2960 * non-queue interrupts, e.g. AdminQ and errors. This is not used
2961 * when in MSI or Legacy interrupt mode.
2962 */
2963static int ice_req_irq_msix_misc(struct ice_pf *pf)
2964{
2965	struct device *dev = ice_pf_to_dev(pf);
2966	struct ice_hw *hw = &pf->hw;
2967	int oicr_idx, err = 0;
2968
2969	if (!pf->int_name[0])
2970		snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
2971			 dev_driver_string(dev), dev_name(dev));
2972
2973	/* Do not request IRQ but do enable OICR interrupt since settings are
2974	 * lost during reset. Note that this function is called only during
2975	 * rebuild path and not while reset is in progress.
2976	 */
2977	if (ice_is_reset_in_progress(pf->state))
2978		goto skip_req_irq;
2979
2980	/* reserve one vector in irq_tracker for misc interrupts */
2981	oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2982	if (oicr_idx < 0)
2983		return oicr_idx;
2984
2985	pf->num_avail_sw_msix -= 1;
2986	pf->oicr_idx = (u16)oicr_idx;
2987
2988	err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
2989			       ice_misc_intr, 0, pf->int_name, pf);
2990	if (err) {
2991		dev_err(dev, "devm_request_irq for %s failed: %d\n",
2992			pf->int_name, err);
2993		ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
2994		pf->num_avail_sw_msix += 1;
2995		return err;
2996	}
2997
2998skip_req_irq:
2999	ice_ena_misc_vector(pf);
3000
3001	ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3002	wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3003	     ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3004
3005	ice_flush(hw);
3006	ice_irq_dynamic_ena(hw, NULL, NULL);
3007
3008	return 0;
3009}
3010
3011/**
3012 * ice_napi_add - register NAPI handler for the VSI
3013 * @vsi: VSI for which NAPI handler is to be registered
3014 *
3015 * This function is only called in the driver's load path. Registering the NAPI
3016 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3017 * reset/rebuild, etc.)
3018 */
3019static void ice_napi_add(struct ice_vsi *vsi)
3020{
3021	int v_idx;
3022
3023	if (!vsi->netdev)
3024		return;
3025
3026	ice_for_each_q_vector(vsi, v_idx)
3027		netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3028			       ice_napi_poll, NAPI_POLL_WEIGHT);
3029}
3030
3031/**
3032 * ice_set_ops - set netdev and ethtools ops for the given netdev
3033 * @netdev: netdev instance
3034 */
3035static void ice_set_ops(struct net_device *netdev)
3036{
3037	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3038
3039	if (ice_is_safe_mode(pf)) {
3040		netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3041		ice_set_ethtool_safe_mode_ops(netdev);
3042		return;
3043	}
3044
3045	netdev->netdev_ops = &ice_netdev_ops;
3046	netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3047	ice_set_ethtool_ops(netdev);
3048}
3049
3050/**
3051 * ice_set_netdev_features - set features for the given netdev
3052 * @netdev: netdev instance
3053 */
3054static void ice_set_netdev_features(struct net_device *netdev)
3055{
3056	struct ice_pf *pf = ice_netdev_to_pf(netdev);
3057	netdev_features_t csumo_features;
3058	netdev_features_t vlano_features;
3059	netdev_features_t dflt_features;
3060	netdev_features_t tso_features;
3061
3062	if (ice_is_safe_mode(pf)) {
3063		/* safe mode */
3064		netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3065		netdev->hw_features = netdev->features;
3066		return;
3067	}
3068
3069	dflt_features = NETIF_F_SG	|
3070			NETIF_F_HIGHDMA	|
3071			NETIF_F_NTUPLE	|
3072			NETIF_F_RXHASH;
3073
3074	csumo_features = NETIF_F_RXCSUM	  |
3075			 NETIF_F_IP_CSUM  |
3076			 NETIF_F_SCTP_CRC |
3077			 NETIF_F_IPV6_CSUM;
3078
3079	vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3080			 NETIF_F_HW_VLAN_CTAG_TX     |
3081			 NETIF_F_HW_VLAN_CTAG_RX;
3082
3083	tso_features = NETIF_F_TSO			|
3084		       NETIF_F_TSO_ECN			|
3085		       NETIF_F_TSO6			|
3086		       NETIF_F_GSO_GRE			|
3087		       NETIF_F_GSO_UDP_TUNNEL		|
3088		       NETIF_F_GSO_GRE_CSUM		|
3089		       NETIF_F_GSO_UDP_TUNNEL_CSUM	|
3090		       NETIF_F_GSO_PARTIAL		|
3091		       NETIF_F_GSO_IPXIP4		|
3092		       NETIF_F_GSO_IPXIP6		|
3093		       NETIF_F_GSO_UDP_L4;
3094
3095	netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3096					NETIF_F_GSO_GRE_CSUM;
3097	/* set features that user can change */
3098	netdev->hw_features = dflt_features | csumo_features |
3099			      vlano_features | tso_features;
3100
3101	/* add support for HW_CSUM on packets with MPLS header */
3102	netdev->mpls_features =  NETIF_F_HW_CSUM;
3103
3104	/* enable features */
3105	netdev->features |= netdev->hw_features;
3106	/* encap and VLAN devices inherit default, csumo and tso features */
3107	netdev->hw_enc_features |= dflt_features | csumo_features |
3108				   tso_features;
3109	netdev->vlan_features |= dflt_features | csumo_features |
3110				 tso_features;
3111}
3112
3113/**
3114 * ice_cfg_netdev - Allocate, configure and register a netdev
3115 * @vsi: the VSI associated with the new netdev
3116 *
3117 * Returns 0 on success, negative value on failure
3118 */
3119static int ice_cfg_netdev(struct ice_vsi *vsi)
3120{
 
3121	struct ice_netdev_priv *np;
3122	struct net_device *netdev;
3123	u8 mac_addr[ETH_ALEN];
 
 
 
 
 
3124
3125	netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3126				    vsi->alloc_rxq);
3127	if (!netdev)
3128		return -ENOMEM;
 
 
3129
3130	set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3131	vsi->netdev = netdev;
3132	np = netdev_priv(netdev);
3133	np->vsi = vsi;
3134
3135	ice_set_netdev_features(netdev);
3136
3137	ice_set_ops(netdev);
3138
3139	if (vsi->type == ICE_VSI_PF) {
3140		SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3141		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3142		ether_addr_copy(netdev->dev_addr, mac_addr);
3143		ether_addr_copy(netdev->perm_addr, mac_addr);
3144	}
3145
3146	netdev->priv_flags |= IFF_UNICAST_FLT;
3147
3148	/* Setup netdev TC information */
3149	ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3150
3151	/* setup watchdog timeout value to be 5 second */
3152	netdev->watchdog_timeo = 5 * HZ;
3153
3154	netdev->min_mtu = ETH_MIN_MTU;
3155	netdev->max_mtu = ICE_MAX_MTU;
3156
 
 
 
 
 
 
 
 
 
 
 
3157	return 0;
 
 
 
 
 
 
 
3158}
3159
3160/**
3161 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3162 * @lut: Lookup table
3163 * @rss_table_size: Lookup table size
3164 * @rss_size: Range of queue number for hashing
3165 */
3166void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3167{
3168	u16 i;
3169
3170	for (i = 0; i < rss_table_size; i++)
3171		lut[i] = i % rss_size;
3172}
3173
3174/**
3175 * ice_pf_vsi_setup - Set up a PF VSI
3176 * @pf: board private structure
3177 * @pi: pointer to the port_info instance
3178 *
3179 * Returns pointer to the successfully allocated VSI software struct
3180 * on success, otherwise returns NULL on failure.
3181 */
3182static struct ice_vsi *
3183ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3184{
3185	return ice_vsi_setup(pf, pi, ICE_VSI_PF, ICE_INVAL_VFID);
3186}
3187
3188/**
3189 * ice_ctrl_vsi_setup - Set up a control VSI
3190 * @pf: board private structure
3191 * @pi: pointer to the port_info instance
3192 *
3193 * Returns pointer to the successfully allocated VSI software struct
3194 * on success, otherwise returns NULL on failure.
3195 */
3196static struct ice_vsi *
3197ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3198{
3199	return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, ICE_INVAL_VFID);
3200}
3201
3202/**
3203 * ice_lb_vsi_setup - Set up a loopback VSI
3204 * @pf: board private structure
3205 * @pi: pointer to the port_info instance
3206 *
3207 * Returns pointer to the successfully allocated VSI software struct
3208 * on success, otherwise returns NULL on failure.
3209 */
3210struct ice_vsi *
3211ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3212{
3213	return ice_vsi_setup(pf, pi, ICE_VSI_LB, ICE_INVAL_VFID);
3214}
3215
3216/**
3217 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3218 * @netdev: network interface to be adjusted
3219 * @proto: unused protocol
3220 * @vid: VLAN ID to be added
3221 *
3222 * net_device_ops implementation for adding VLAN IDs
3223 */
3224static int
3225ice_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto,
3226		    u16 vid)
3227{
3228	struct ice_netdev_priv *np = netdev_priv(netdev);
3229	struct ice_vsi *vsi = np->vsi;
3230	int ret;
3231
 
 
 
 
 
 
 
 
 
3232	/* VLAN 0 is added by default during load/reset */
3233	if (!vid)
3234		return 0;
3235
3236	/* Enable VLAN pruning when a VLAN other than 0 is added */
3237	if (!ice_vsi_is_vlan_pruning_ena(vsi)) {
3238		ret = ice_cfg_vlan_pruning(vsi, true, false);
3239		if (ret)
3240			return ret;
3241	}
3242
3243	/* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3244	 * packets aren't pruned by the device's internal switch on Rx
3245	 */
3246	ret = ice_vsi_add_vlan(vsi, vid, ICE_FWD_TO_VSI);
3247	if (!ret)
3248		set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 
 
3249
3250	return ret;
3251}
3252
3253/**
3254 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3255 * @netdev: network interface to be adjusted
3256 * @proto: unused protocol
3257 * @vid: VLAN ID to be removed
3258 *
3259 * net_device_ops implementation for removing VLAN IDs
3260 */
3261static int
3262ice_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto,
3263		     u16 vid)
3264{
3265	struct ice_netdev_priv *np = netdev_priv(netdev);
3266	struct ice_vsi *vsi = np->vsi;
3267	int ret;
3268
 
 
 
3269	/* don't allow removal of VLAN 0 */
3270	if (!vid)
3271		return 0;
3272
3273	/* Make sure ice_vsi_kill_vlan is successful before updating VLAN
3274	 * information
3275	 */
3276	ret = ice_vsi_kill_vlan(vsi, vid);
3277	if (ret)
3278		return ret;
3279
3280	/* Disable pruning when VLAN 0 is the only VLAN rule */
3281	if (vsi->num_vlan == 1 && ice_vsi_is_vlan_pruning_ena(vsi))
3282		ret = ice_cfg_vlan_pruning(vsi, false, false);
3283
3284	set_bit(ICE_VSI_VLAN_FLTR_CHANGED, vsi->state);
 
3285	return ret;
3286}
3287
3288/**
3289 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3290 * @pf: board private structure
3291 *
3292 * Returns 0 on success, negative value on failure
3293 */
3294static int ice_setup_pf_sw(struct ice_pf *pf)
3295{
3296	struct ice_vsi *vsi;
3297	int status = 0;
3298
3299	if (ice_is_reset_in_progress(pf->state))
3300		return -EBUSY;
3301
3302	vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3303	if (!vsi)
3304		return -ENOMEM;
3305
3306	status = ice_cfg_netdev(vsi);
3307	if (status) {
3308		status = -ENODEV;
3309		goto unroll_vsi_setup;
3310	}
3311	/* netdev has to be configured before setting frame size */
3312	ice_vsi_cfg_frame_size(vsi);
3313
3314	/* Setup DCB netlink interface */
3315	ice_dcbnl_setup(vsi);
3316
3317	/* registering the NAPI handler requires both the queues and
3318	 * netdev to be created, which are done in ice_pf_vsi_setup()
3319	 * and ice_cfg_netdev() respectively
3320	 */
3321	ice_napi_add(vsi);
3322
3323	status = ice_set_cpu_rx_rmap(vsi);
3324	if (status) {
3325		dev_err(ice_pf_to_dev(pf), "Failed to set CPU Rx map VSI %d error %d\n",
3326			vsi->vsi_num, status);
3327		status = -EINVAL;
3328		goto unroll_napi_add;
3329	}
3330	status = ice_init_mac_fltr(pf);
3331	if (status)
3332		goto free_cpu_rx_map;
3333
3334	return status;
3335
3336free_cpu_rx_map:
3337	ice_free_cpu_rx_rmap(vsi);
3338
3339unroll_napi_add:
3340	if (vsi) {
3341		ice_napi_del(vsi);
3342		if (vsi->netdev) {
3343			clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
 
3344			free_netdev(vsi->netdev);
3345			vsi->netdev = NULL;
3346		}
3347	}
3348
3349unroll_vsi_setup:
3350	ice_vsi_release(vsi);
3351	return status;
3352}
3353
3354/**
3355 * ice_get_avail_q_count - Get count of queues in use
3356 * @pf_qmap: bitmap to get queue use count from
3357 * @lock: pointer to a mutex that protects access to pf_qmap
3358 * @size: size of the bitmap
3359 */
3360static u16
3361ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3362{
3363	unsigned long bit;
3364	u16 count = 0;
3365
3366	mutex_lock(lock);
3367	for_each_clear_bit(bit, pf_qmap, size)
3368		count++;
3369	mutex_unlock(lock);
3370
3371	return count;
3372}
3373
3374/**
3375 * ice_get_avail_txq_count - Get count of Tx queues in use
3376 * @pf: pointer to an ice_pf instance
3377 */
3378u16 ice_get_avail_txq_count(struct ice_pf *pf)
3379{
3380	return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3381				     pf->max_pf_txqs);
3382}
3383
3384/**
3385 * ice_get_avail_rxq_count - Get count of Rx queues in use
3386 * @pf: pointer to an ice_pf instance
3387 */
3388u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3389{
3390	return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3391				     pf->max_pf_rxqs);
3392}
3393
3394/**
3395 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3396 * @pf: board private structure to initialize
3397 */
3398static void ice_deinit_pf(struct ice_pf *pf)
3399{
3400	ice_service_task_stop(pf);
3401	mutex_destroy(&pf->sw_mutex);
3402	mutex_destroy(&pf->tc_mutex);
3403	mutex_destroy(&pf->avail_q_mutex);
3404
3405	if (pf->avail_txqs) {
3406		bitmap_free(pf->avail_txqs);
3407		pf->avail_txqs = NULL;
3408	}
3409
3410	if (pf->avail_rxqs) {
3411		bitmap_free(pf->avail_rxqs);
3412		pf->avail_rxqs = NULL;
3413	}
3414
3415	if (pf->ptp.clock)
3416		ptp_clock_unregister(pf->ptp.clock);
3417}
3418
3419/**
3420 * ice_set_pf_caps - set PFs capability flags
3421 * @pf: pointer to the PF instance
3422 */
3423static void ice_set_pf_caps(struct ice_pf *pf)
3424{
3425	struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3426
3427	clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3428	clear_bit(ICE_FLAG_AUX_ENA, pf->flags);
3429	if (func_caps->common_cap.rdma) {
3430		set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3431		set_bit(ICE_FLAG_AUX_ENA, pf->flags);
3432	}
3433	clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3434	if (func_caps->common_cap.dcb)
3435		set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3436	clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3437	if (func_caps->common_cap.sr_iov_1_1) {
3438		set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3439		pf->num_vfs_supported = min_t(int, func_caps->num_allocd_vfs,
3440					      ICE_MAX_VF_COUNT);
3441	}
3442	clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3443	if (func_caps->common_cap.rss_table_size)
3444		set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3445
3446	clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3447	if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3448		u16 unused;
3449
3450		/* ctrl_vsi_idx will be set to a valid value when flow director
3451		 * is setup by ice_init_fdir
3452		 */
3453		pf->ctrl_vsi_idx = ICE_NO_VSI;
3454		set_bit(ICE_FLAG_FD_ENA, pf->flags);
3455		/* force guaranteed filter pool for PF */
3456		ice_alloc_fd_guar_item(&pf->hw, &unused,
3457				       func_caps->fd_fltr_guar);
3458		/* force shared filter pool for PF */
3459		ice_alloc_fd_shrd_item(&pf->hw, &unused,
3460				       func_caps->fd_fltr_best_effort);
3461	}
3462
3463	clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3464	if (func_caps->common_cap.ieee_1588)
3465		set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3466
3467	pf->max_pf_txqs = func_caps->common_cap.num_txq;
3468	pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3469}
3470
3471/**
3472 * ice_init_pf - Initialize general software structures (struct ice_pf)
3473 * @pf: board private structure to initialize
3474 */
3475static int ice_init_pf(struct ice_pf *pf)
3476{
3477	ice_set_pf_caps(pf);
3478
3479	mutex_init(&pf->sw_mutex);
3480	mutex_init(&pf->tc_mutex);
3481
3482	INIT_HLIST_HEAD(&pf->aq_wait_list);
3483	spin_lock_init(&pf->aq_wait_lock);
3484	init_waitqueue_head(&pf->aq_wait_queue);
3485
3486	init_waitqueue_head(&pf->reset_wait_queue);
3487
3488	/* setup service timer and periodic service task */
3489	timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3490	pf->serv_tmr_period = HZ;
3491	INIT_WORK(&pf->serv_task, ice_service_task);
3492	clear_bit(ICE_SERVICE_SCHED, pf->state);
3493
3494	mutex_init(&pf->avail_q_mutex);
3495	pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3496	if (!pf->avail_txqs)
3497		return -ENOMEM;
3498
3499	pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3500	if (!pf->avail_rxqs) {
3501		devm_kfree(ice_pf_to_dev(pf), pf->avail_txqs);
3502		pf->avail_txqs = NULL;
3503		return -ENOMEM;
3504	}
3505
3506	return 0;
3507}
3508
3509/**
3510 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3511 * @pf: board private structure
3512 *
3513 * compute the number of MSIX vectors required (v_budget) and request from
3514 * the OS. Return the number of vectors reserved or negative on failure
3515 */
3516static int ice_ena_msix_range(struct ice_pf *pf)
3517{
3518	int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3519	struct device *dev = ice_pf_to_dev(pf);
 
3520	int needed, err, i;
3521
3522	v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3523	num_cpus = num_online_cpus();
3524
3525	/* reserve for LAN miscellaneous handler */
3526	needed = ICE_MIN_LAN_OICR_MSIX;
3527	if (v_left < needed)
3528		goto no_hw_vecs_left_err;
3529	v_budget += needed;
3530	v_left -= needed;
3531
3532	/* reserve for flow director */
3533	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3534		needed = ICE_FDIR_MSIX;
3535		if (v_left < needed)
3536			goto no_hw_vecs_left_err;
3537		v_budget += needed;
3538		v_left -= needed;
3539	}
3540
3541	/* total used for non-traffic vectors */
3542	v_other = v_budget;
3543
3544	/* reserve vectors for LAN traffic */
3545	needed = num_cpus;
3546	if (v_left < needed)
3547		goto no_hw_vecs_left_err;
3548	pf->num_lan_msix = needed;
3549	v_budget += needed;
3550	v_left -= needed;
3551
3552	/* reserve vectors for RDMA auxiliary driver */
3553	if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3554		needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3555		if (v_left < needed)
3556			goto no_hw_vecs_left_err;
3557		pf->num_rdma_msix = needed;
3558		v_budget += needed;
3559		v_left -= needed;
3560	}
3561
3562	pf->msix_entries = devm_kcalloc(dev, v_budget,
3563					sizeof(*pf->msix_entries), GFP_KERNEL);
 
3564	if (!pf->msix_entries) {
3565		err = -ENOMEM;
3566		goto exit_err;
3567	}
3568
3569	for (i = 0; i < v_budget; i++)
3570		pf->msix_entries[i].entry = i;
3571
3572	/* actually reserve the vectors */
3573	v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3574					 ICE_MIN_MSIX, v_budget);
 
3575	if (v_actual < 0) {
3576		dev_err(dev, "unable to reserve MSI-X vectors\n");
3577		err = v_actual;
3578		goto msix_err;
3579	}
3580
3581	if (v_actual < v_budget) {
3582		dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
3583			 v_budget, v_actual);
 
 
 
 
3584
3585		if (v_actual < ICE_MIN_MSIX) {
3586			/* error if we can't get minimum vectors */
3587			pci_disable_msix(pf->pdev);
3588			err = -ERANGE;
3589			goto msix_err;
3590		} else {
3591			int v_remain = v_actual - v_other;
3592			int v_rdma = 0, v_min_rdma = 0;
3593
3594			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags)) {
3595				/* Need at least 1 interrupt in addition to
3596				 * AEQ MSIX
3597				 */
3598				v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
3599				v_min_rdma = ICE_MIN_RDMA_MSIX;
3600			}
3601
3602			if (v_actual == ICE_MIN_MSIX ||
3603			    v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
3604				dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
3605				clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3606
3607				pf->num_rdma_msix = 0;
3608				pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
3609			} else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
3610				   (v_remain - v_rdma < v_rdma)) {
3611				/* Support minimum RDMA and give remaining
3612				 * vectors to LAN MSIX
3613				 */
3614				pf->num_rdma_msix = v_min_rdma;
3615				pf->num_lan_msix = v_remain - v_min_rdma;
3616			} else {
3617				/* Split remaining MSIX with RDMA after
3618				 * accounting for AEQ MSIX
3619				 */
3620				pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
3621						    ICE_RDMA_NUM_AEQ_MSIX;
3622				pf->num_lan_msix = v_remain - pf->num_rdma_msix;
3623			}
3624
3625			dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
3626				   pf->num_lan_msix);
3627
3628			if (test_bit(ICE_FLAG_RDMA_ENA, pf->flags))
3629				dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
3630					   pf->num_rdma_msix);
3631		}
3632	}
3633
3634	return v_actual;
3635
3636msix_err:
3637	devm_kfree(dev, pf->msix_entries);
3638	goto exit_err;
3639
3640no_hw_vecs_left_err:
3641	dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
3642		needed, v_left);
3643	err = -ERANGE;
3644exit_err:
3645	pf->num_rdma_msix = 0;
3646	pf->num_lan_msix = 0;
3647	return err;
3648}
3649
3650/**
3651 * ice_dis_msix - Disable MSI-X interrupt setup in OS
3652 * @pf: board private structure
3653 */
3654static void ice_dis_msix(struct ice_pf *pf)
3655{
3656	pci_disable_msix(pf->pdev);
3657	devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
3658	pf->msix_entries = NULL;
3659}
3660
3661/**
3662 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
3663 * @pf: board private structure
3664 */
3665static void ice_clear_interrupt_scheme(struct ice_pf *pf)
3666{
3667	ice_dis_msix(pf);
3668
3669	if (pf->irq_tracker) {
3670		devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
3671		pf->irq_tracker = NULL;
3672	}
3673}
3674
3675/**
3676 * ice_init_interrupt_scheme - Determine proper interrupt scheme
3677 * @pf: board private structure to initialize
3678 */
3679static int ice_init_interrupt_scheme(struct ice_pf *pf)
3680{
3681	int vectors;
3682
3683	vectors = ice_ena_msix_range(pf);
3684
3685	if (vectors < 0)
3686		return vectors;
3687
3688	/* set up vector assignment tracking */
3689	pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
3690				       struct_size(pf->irq_tracker, list, vectors),
3691				       GFP_KERNEL);
3692	if (!pf->irq_tracker) {
3693		ice_dis_msix(pf);
3694		return -ENOMEM;
3695	}
3696
3697	/* populate SW interrupts pool with number of OS granted IRQs. */
3698	pf->num_avail_sw_msix = (u16)vectors;
3699	pf->irq_tracker->num_entries = (u16)vectors;
3700	pf->irq_tracker->end = pf->irq_tracker->num_entries;
3701
3702	return 0;
3703}
3704
3705/**
3706 * ice_is_wol_supported - check if WoL is supported
3707 * @hw: pointer to hardware info
3708 *
3709 * Check if WoL is supported based on the HW configuration.
3710 * Returns true if NVM supports and enables WoL for this port, false otherwise
3711 */
3712bool ice_is_wol_supported(struct ice_hw *hw)
3713{
 
3714	u16 wol_ctrl;
3715
3716	/* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
3717	 * word) indicates WoL is not supported on the corresponding PF ID.
3718	 */
3719	if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
3720		return false;
3721
3722	return !(BIT(hw->port_info->lport) & wol_ctrl);
3723}
3724
3725/**
3726 * ice_vsi_recfg_qs - Change the number of queues on a VSI
3727 * @vsi: VSI being changed
3728 * @new_rx: new number of Rx queues
3729 * @new_tx: new number of Tx queues
3730 *
3731 * Only change the number of queues if new_tx, or new_rx is non-0.
3732 *
3733 * Returns 0 on success.
3734 */
3735int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
3736{
3737	struct ice_pf *pf = vsi->back;
3738	int err = 0, timeout = 50;
3739
3740	if (!new_rx && !new_tx)
3741		return -EINVAL;
3742
3743	while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
3744		timeout--;
3745		if (!timeout)
3746			return -EBUSY;
3747		usleep_range(1000, 2000);
3748	}
3749
3750	if (new_tx)
3751		vsi->req_txq = (u16)new_tx;
3752	if (new_rx)
3753		vsi->req_rxq = (u16)new_rx;
3754
3755	/* set for the next time the netdev is started */
3756	if (!netif_running(vsi->netdev)) {
3757		ice_vsi_rebuild(vsi, false);
3758		dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
3759		goto done;
3760	}
3761
3762	ice_vsi_close(vsi);
3763	ice_vsi_rebuild(vsi, false);
3764	ice_pf_dcb_recfg(pf);
3765	ice_vsi_open(vsi);
3766done:
3767	clear_bit(ICE_CFG_BUSY, pf->state);
3768	return err;
3769}
3770
3771/**
3772 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
3773 * @pf: PF to configure
3774 *
3775 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
3776 * VSI can still Tx/Rx VLAN tagged packets.
3777 */
3778static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
3779{
3780	struct ice_vsi *vsi = ice_get_main_vsi(pf);
3781	struct ice_vsi_ctx *ctxt;
3782	enum ice_status status;
3783	struct ice_hw *hw;
3784
3785	if (!vsi)
3786		return;
3787
3788	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
3789	if (!ctxt)
3790		return;
3791
3792	hw = &pf->hw;
3793	ctxt->info = vsi->info;
3794
3795	ctxt->info.valid_sections =
3796		cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
3797			    ICE_AQ_VSI_PROP_SECURITY_VALID |
3798			    ICE_AQ_VSI_PROP_SW_VALID);
3799
3800	/* disable VLAN anti-spoof */
3801	ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3802				  ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3803
3804	/* disable VLAN pruning and keep all other settings */
3805	ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
3806
3807	/* allow all VLANs on Tx and don't strip on Rx */
3808	ctxt->info.vlan_flags = ICE_AQ_VSI_VLAN_MODE_ALL |
3809		ICE_AQ_VSI_VLAN_EMOD_NOTHING;
3810
3811	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
3812	if (status) {
3813		dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %s aq_err %s\n",
3814			ice_stat_str(status),
3815			ice_aq_str(hw->adminq.sq_last_status));
3816	} else {
3817		vsi->info.sec_flags = ctxt->info.sec_flags;
3818		vsi->info.sw_flags2 = ctxt->info.sw_flags2;
3819		vsi->info.vlan_flags = ctxt->info.vlan_flags;
3820	}
3821
3822	kfree(ctxt);
3823}
3824
3825/**
3826 * ice_log_pkg_init - log result of DDP package load
3827 * @hw: pointer to hardware info
3828 * @status: status of package load
3829 */
3830static void
3831ice_log_pkg_init(struct ice_hw *hw, enum ice_status *status)
3832{
3833	struct ice_pf *pf = (struct ice_pf *)hw->back;
3834	struct device *dev = ice_pf_to_dev(pf);
3835
3836	switch (*status) {
3837	case ICE_SUCCESS:
3838		/* The package download AdminQ command returned success because
3839		 * this download succeeded or ICE_ERR_AQ_NO_WORK since there is
3840		 * already a package loaded on the device.
3841		 */
3842		if (hw->pkg_ver.major == hw->active_pkg_ver.major &&
3843		    hw->pkg_ver.minor == hw->active_pkg_ver.minor &&
3844		    hw->pkg_ver.update == hw->active_pkg_ver.update &&
3845		    hw->pkg_ver.draft == hw->active_pkg_ver.draft &&
3846		    !memcmp(hw->pkg_name, hw->active_pkg_name,
3847			    sizeof(hw->pkg_name))) {
3848			if (hw->pkg_dwnld_status == ICE_AQ_RC_EEXIST)
3849				dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
3850					 hw->active_pkg_name,
3851					 hw->active_pkg_ver.major,
3852					 hw->active_pkg_ver.minor,
3853					 hw->active_pkg_ver.update,
3854					 hw->active_pkg_ver.draft);
3855			else
3856				dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
3857					 hw->active_pkg_name,
3858					 hw->active_pkg_ver.major,
3859					 hw->active_pkg_ver.minor,
3860					 hw->active_pkg_ver.update,
3861					 hw->active_pkg_ver.draft);
3862		} else if (hw->active_pkg_ver.major != ICE_PKG_SUPP_VER_MAJ ||
3863			   hw->active_pkg_ver.minor != ICE_PKG_SUPP_VER_MNR) {
3864			dev_err(dev, "The device has a DDP package that is not supported by the driver.  The device has package '%s' version %d.%d.x.x.  The driver requires version %d.%d.x.x.  Entering Safe Mode.\n",
3865				hw->active_pkg_name,
3866				hw->active_pkg_ver.major,
3867				hw->active_pkg_ver.minor,
3868				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3869			*status = ICE_ERR_NOT_SUPPORTED;
3870		} else if (hw->active_pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3871			   hw->active_pkg_ver.minor == ICE_PKG_SUPP_VER_MNR) {
3872			dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device.  The device has package '%s' version %d.%d.%d.%d.  The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
3873				 hw->active_pkg_name,
3874				 hw->active_pkg_ver.major,
3875				 hw->active_pkg_ver.minor,
3876				 hw->active_pkg_ver.update,
3877				 hw->active_pkg_ver.draft,
3878				 hw->pkg_name,
3879				 hw->pkg_ver.major,
3880				 hw->pkg_ver.minor,
3881				 hw->pkg_ver.update,
3882				 hw->pkg_ver.draft);
3883		} else {
3884			dev_err(dev, "An unknown error occurred when loading the DDP package, please reboot the system.  If the problem persists, update the NVM.  Entering Safe Mode.\n");
3885			*status = ICE_ERR_NOT_SUPPORTED;
3886		}
3887		break;
3888	case ICE_ERR_FW_DDP_MISMATCH:
3889		dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package.  Please update the device's NVM.  Entering safe mode.\n");
3890		break;
3891	case ICE_ERR_BUF_TOO_SHORT:
3892	case ICE_ERR_CFG:
3893		dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
3894		break;
3895	case ICE_ERR_NOT_SUPPORTED:
3896		/* Package File version not supported */
3897		if (hw->pkg_ver.major > ICE_PKG_SUPP_VER_MAJ ||
3898		    (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3899		     hw->pkg_ver.minor > ICE_PKG_SUPP_VER_MNR))
3900			dev_err(dev, "The DDP package file version is higher than the driver supports.  Please use an updated driver.  Entering Safe Mode.\n");
3901		else if (hw->pkg_ver.major < ICE_PKG_SUPP_VER_MAJ ||
3902			 (hw->pkg_ver.major == ICE_PKG_SUPP_VER_MAJ &&
3903			  hw->pkg_ver.minor < ICE_PKG_SUPP_VER_MNR))
3904			dev_err(dev, "The DDP package file version is lower than the driver supports.  The driver requires version %d.%d.x.x.  Please use an updated DDP Package file.  Entering Safe Mode.\n",
3905				ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
3906		break;
3907	case ICE_ERR_AQ_ERROR:
3908		switch (hw->pkg_dwnld_status) {
3909		case ICE_AQ_RC_ENOSEC:
3910		case ICE_AQ_RC_EBADSIG:
3911			dev_err(dev, "The DDP package could not be loaded because its signature is not valid.  Please use a valid DDP Package.  Entering Safe Mode.\n");
3912			return;
3913		case ICE_AQ_RC_ESVN:
3914			dev_err(dev, "The DDP Package could not be loaded because its security revision is too low.  Please use an updated DDP Package.  Entering Safe Mode.\n");
3915			return;
3916		case ICE_AQ_RC_EBADMAN:
3917		case ICE_AQ_RC_EBADBUF:
3918			dev_err(dev, "An error occurred on the device while loading the DDP package.  The device will be reset.\n");
3919			/* poll for reset to complete */
3920			if (ice_check_reset(hw))
3921				dev_err(dev, "Error resetting device. Please reload the driver\n");
3922			return;
3923		default:
3924			break;
3925		}
3926		fallthrough;
3927	default:
3928		dev_err(dev, "An unknown error (%d) occurred when loading the DDP package.  Entering Safe Mode.\n",
3929			*status);
3930		break;
3931	}
3932}
3933
3934/**
3935 * ice_load_pkg - load/reload the DDP Package file
3936 * @firmware: firmware structure when firmware requested or NULL for reload
3937 * @pf: pointer to the PF instance
3938 *
3939 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
3940 * initialize HW tables.
3941 */
3942static void
3943ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
3944{
3945	enum ice_status status = ICE_ERR_PARAM;
3946	struct device *dev = ice_pf_to_dev(pf);
3947	struct ice_hw *hw = &pf->hw;
3948
3949	/* Load DDP Package */
3950	if (firmware && !hw->pkg_copy) {
3951		status = ice_copy_and_init_pkg(hw, firmware->data,
3952					       firmware->size);
3953		ice_log_pkg_init(hw, &status);
3954	} else if (!firmware && hw->pkg_copy) {
3955		/* Reload package during rebuild after CORER/GLOBR reset */
3956		status = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
3957		ice_log_pkg_init(hw, &status);
3958	} else {
3959		dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
3960	}
3961
3962	if (status) {
3963		/* Safe Mode */
3964		clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3965		return;
3966	}
3967
3968	/* Successful download package is the precondition for advanced
3969	 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
3970	 */
3971	set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
3972}
3973
3974/**
3975 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
3976 * @pf: pointer to the PF structure
3977 *
3978 * There is no error returned here because the driver should be able to handle
3979 * 128 Byte cache lines, so we only print a warning in case issues are seen,
3980 * specifically with Tx.
3981 */
3982static void ice_verify_cacheline_size(struct ice_pf *pf)
3983{
3984	if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
3985		dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
3986			 ICE_CACHE_LINE_BYTES);
3987}
3988
3989/**
3990 * ice_send_version - update firmware with driver version
3991 * @pf: PF struct
3992 *
3993 * Returns ICE_SUCCESS on success, else error code
3994 */
3995static enum ice_status ice_send_version(struct ice_pf *pf)
3996{
3997	struct ice_driver_ver dv;
3998
3999	dv.major_ver = 0xff;
4000	dv.minor_ver = 0xff;
4001	dv.build_ver = 0xff;
4002	dv.subbuild_ver = 0;
4003	strscpy((char *)dv.driver_string, UTS_RELEASE,
4004		sizeof(dv.driver_string));
4005	return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4006}
4007
4008/**
4009 * ice_init_fdir - Initialize flow director VSI and configuration
4010 * @pf: pointer to the PF instance
4011 *
4012 * returns 0 on success, negative on error
4013 */
4014static int ice_init_fdir(struct ice_pf *pf)
4015{
4016	struct device *dev = ice_pf_to_dev(pf);
4017	struct ice_vsi *ctrl_vsi;
4018	int err;
4019
4020	/* Side Band Flow Director needs to have a control VSI.
4021	 * Allocate it and store it in the PF.
4022	 */
4023	ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4024	if (!ctrl_vsi) {
4025		dev_dbg(dev, "could not create control VSI\n");
4026		return -ENOMEM;
4027	}
4028
4029	err = ice_vsi_open_ctrl(ctrl_vsi);
4030	if (err) {
4031		dev_dbg(dev, "could not open control VSI\n");
4032		goto err_vsi_open;
4033	}
4034
4035	mutex_init(&pf->hw.fdir_fltr_lock);
4036
4037	err = ice_fdir_create_dflt_rules(pf);
4038	if (err)
4039		goto err_fdir_rule;
4040
4041	return 0;
4042
4043err_fdir_rule:
4044	ice_fdir_release_flows(&pf->hw);
4045	ice_vsi_close(ctrl_vsi);
4046err_vsi_open:
4047	ice_vsi_release(ctrl_vsi);
4048	if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4049		pf->vsi[pf->ctrl_vsi_idx] = NULL;
4050		pf->ctrl_vsi_idx = ICE_NO_VSI;
4051	}
4052	return err;
4053}
4054
4055/**
4056 * ice_get_opt_fw_name - return optional firmware file name or NULL
4057 * @pf: pointer to the PF instance
4058 */
4059static char *ice_get_opt_fw_name(struct ice_pf *pf)
4060{
4061	/* Optional firmware name same as default with additional dash
4062	 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4063	 */
4064	struct pci_dev *pdev = pf->pdev;
4065	char *opt_fw_filename;
4066	u64 dsn;
4067
4068	/* Determine the name of the optional file using the DSN (two
4069	 * dwords following the start of the DSN Capability).
4070	 */
4071	dsn = pci_get_dsn(pdev);
4072	if (!dsn)
4073		return NULL;
4074
4075	opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4076	if (!opt_fw_filename)
4077		return NULL;
4078
4079	snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4080		 ICE_DDP_PKG_PATH, dsn);
4081
4082	return opt_fw_filename;
4083}
4084
4085/**
4086 * ice_request_fw - Device initialization routine
4087 * @pf: pointer to the PF instance
4088 */
4089static void ice_request_fw(struct ice_pf *pf)
4090{
4091	char *opt_fw_filename = ice_get_opt_fw_name(pf);
4092	const struct firmware *firmware = NULL;
4093	struct device *dev = ice_pf_to_dev(pf);
4094	int err = 0;
4095
4096	/* optional device-specific DDP (if present) overrides the default DDP
4097	 * package file. kernel logs a debug message if the file doesn't exist,
4098	 * and warning messages for other errors.
4099	 */
4100	if (opt_fw_filename) {
4101		err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4102		if (err) {
4103			kfree(opt_fw_filename);
4104			goto dflt_pkg_load;
4105		}
4106
4107		/* request for firmware was successful. Download to device */
4108		ice_load_pkg(firmware, pf);
4109		kfree(opt_fw_filename);
4110		release_firmware(firmware);
4111		return;
4112	}
4113
4114dflt_pkg_load:
4115	err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4116	if (err) {
4117		dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4118		return;
4119	}
4120
4121	/* request for firmware was successful. Download to device */
4122	ice_load_pkg(firmware, pf);
4123	release_firmware(firmware);
4124}
4125
4126/**
4127 * ice_print_wake_reason - show the wake up cause in the log
4128 * @pf: pointer to the PF struct
4129 */
4130static void ice_print_wake_reason(struct ice_pf *pf)
4131{
4132	u32 wus = pf->wakeup_reason;
4133	const char *wake_str;
4134
4135	/* if no wake event, nothing to print */
4136	if (!wus)
4137		return;
4138
4139	if (wus & PFPM_WUS_LNKC_M)
4140		wake_str = "Link\n";
4141	else if (wus & PFPM_WUS_MAG_M)
4142		wake_str = "Magic Packet\n";
4143	else if (wus & PFPM_WUS_MNG_M)
4144		wake_str = "Management\n";
4145	else if (wus & PFPM_WUS_FW_RST_WK_M)
4146		wake_str = "Firmware Reset\n";
4147	else
4148		wake_str = "Unknown\n";
4149
4150	dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4151}
4152
4153/**
4154 * ice_register_netdev - register netdev and devlink port
4155 * @pf: pointer to the PF struct
4156 */
4157static int ice_register_netdev(struct ice_pf *pf)
4158{
4159	struct ice_vsi *vsi;
4160	int err = 0;
4161
4162	vsi = ice_get_main_vsi(pf);
4163	if (!vsi || !vsi->netdev)
4164		return -EIO;
4165
4166	err = register_netdev(vsi->netdev);
4167	if (err)
4168		goto err_register_netdev;
4169
4170	set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4171	netif_carrier_off(vsi->netdev);
4172	netif_tx_stop_all_queues(vsi->netdev);
4173	err = ice_devlink_create_port(vsi);
4174	if (err)
4175		goto err_devlink_create;
4176
4177	devlink_port_type_eth_set(&vsi->devlink_port, vsi->netdev);
4178
4179	return 0;
4180err_devlink_create:
4181	unregister_netdev(vsi->netdev);
4182	clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4183err_register_netdev:
4184	free_netdev(vsi->netdev);
4185	vsi->netdev = NULL;
4186	clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4187	return err;
4188}
4189
4190/**
4191 * ice_probe - Device initialization routine
4192 * @pdev: PCI device information struct
4193 * @ent: entry in ice_pci_tbl
4194 *
4195 * Returns 0 on success, negative on failure
4196 */
4197static int
4198ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4199{
4200	struct device *dev = &pdev->dev;
4201	struct ice_pf *pf;
4202	struct ice_hw *hw;
4203	int i, err;
4204
4205	if (pdev->is_virtfn) {
4206		dev_err(dev, "can't probe a virtual function\n");
4207		return -EINVAL;
4208	}
4209
4210	/* this driver uses devres, see
4211	 * Documentation/driver-api/driver-model/devres.rst
4212	 */
4213	err = pcim_enable_device(pdev);
4214	if (err)
4215		return err;
4216
4217	err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4218	if (err) {
4219		dev_err(dev, "BAR0 I/O map error %d\n", err);
4220		return err;
4221	}
4222
4223	pf = ice_allocate_pf(dev);
4224	if (!pf)
4225		return -ENOMEM;
4226
4227	/* initialize Auxiliary index to invalid value */
4228	pf->aux_idx = -1;
4229
4230	/* set up for high or low DMA */
4231	err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4232	if (err)
4233		err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
4234	if (err) {
4235		dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4236		return err;
4237	}
4238
4239	pci_enable_pcie_error_reporting(pdev);
4240	pci_set_master(pdev);
4241
4242	pf->pdev = pdev;
4243	pci_set_drvdata(pdev, pf);
4244	set_bit(ICE_DOWN, pf->state);
4245	/* Disable service task until DOWN bit is cleared */
4246	set_bit(ICE_SERVICE_DIS, pf->state);
4247
4248	hw = &pf->hw;
4249	hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4250	pci_save_state(pdev);
4251
4252	hw->back = pf;
4253	hw->vendor_id = pdev->vendor;
4254	hw->device_id = pdev->device;
4255	pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4256	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4257	hw->subsystem_device_id = pdev->subsystem_device;
4258	hw->bus.device = PCI_SLOT(pdev->devfn);
4259	hw->bus.func = PCI_FUNC(pdev->devfn);
4260	ice_set_ctrlq_len(hw);
4261
4262	pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4263
4264	err = ice_devlink_register(pf);
4265	if (err) {
4266		dev_err(dev, "ice_devlink_register failed: %d\n", err);
4267		goto err_exit_unroll;
4268	}
4269
4270#ifndef CONFIG_DYNAMIC_DEBUG
4271	if (debug < -1)
4272		hw->debug_mask = debug;
4273#endif
4274
4275	err = ice_init_hw(hw);
4276	if (err) {
4277		dev_err(dev, "ice_init_hw failed: %d\n", err);
4278		err = -EIO;
4279		goto err_exit_unroll;
4280	}
4281
4282	ice_request_fw(pf);
4283
4284	/* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4285	 * set in pf->state, which will cause ice_is_safe_mode to return
4286	 * true
4287	 */
4288	if (ice_is_safe_mode(pf)) {
4289		dev_err(dev, "Package download failed. Advanced features disabled - Device now in Safe Mode\n");
4290		/* we already got function/device capabilities but these don't
4291		 * reflect what the driver needs to do in safe mode. Instead of
4292		 * adding conditional logic everywhere to ignore these
4293		 * device/function capabilities, override them.
4294		 */
4295		ice_set_safe_mode_caps(hw);
4296	}
4297
4298	err = ice_init_pf(pf);
4299	if (err) {
4300		dev_err(dev, "ice_init_pf failed: %d\n", err);
4301		goto err_init_pf_unroll;
4302	}
4303
4304	ice_devlink_init_regions(pf);
4305
4306	pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4307	pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4308	pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4309	pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4310	i = 0;
4311	if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4312		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4313			pf->hw.tnl.valid_count[TNL_VXLAN];
4314		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4315			UDP_TUNNEL_TYPE_VXLAN;
4316		i++;
4317	}
4318	if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4319		pf->hw.udp_tunnel_nic.tables[i].n_entries =
4320			pf->hw.tnl.valid_count[TNL_GENEVE];
4321		pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4322			UDP_TUNNEL_TYPE_GENEVE;
4323		i++;
4324	}
4325
4326	pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4327	if (!pf->num_alloc_vsi) {
4328		err = -EIO;
4329		goto err_init_pf_unroll;
4330	}
4331	if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4332		dev_warn(&pf->pdev->dev,
4333			 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4334			 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4335		pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4336	}
4337
4338	pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4339			       GFP_KERNEL);
4340	if (!pf->vsi) {
4341		err = -ENOMEM;
4342		goto err_init_pf_unroll;
4343	}
4344
4345	err = ice_init_interrupt_scheme(pf);
4346	if (err) {
4347		dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4348		err = -EIO;
4349		goto err_init_vsi_unroll;
4350	}
4351
4352	/* In case of MSIX we are going to setup the misc vector right here
4353	 * to handle admin queue events etc. In case of legacy and MSI
4354	 * the misc functionality and queue processing is combined in
4355	 * the same vector and that gets setup at open.
4356	 */
4357	err = ice_req_irq_msix_misc(pf);
4358	if (err) {
4359		dev_err(dev, "setup of misc vector failed: %d\n", err);
4360		goto err_init_interrupt_unroll;
4361	}
4362
4363	/* create switch struct for the switch element created by FW on boot */
4364	pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4365	if (!pf->first_sw) {
4366		err = -ENOMEM;
4367		goto err_msix_misc_unroll;
4368	}
4369
4370	if (hw->evb_veb)
4371		pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4372	else
4373		pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4374
4375	pf->first_sw->pf = pf;
4376
4377	/* record the sw_id available for later use */
4378	pf->first_sw->sw_id = hw->port_info->sw_id;
4379
4380	err = ice_setup_pf_sw(pf);
4381	if (err) {
4382		dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4383		goto err_alloc_sw_unroll;
4384	}
4385
4386	clear_bit(ICE_SERVICE_DIS, pf->state);
4387
4388	/* tell the firmware we are up */
4389	err = ice_send_version(pf);
4390	if (err) {
4391		dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4392			UTS_RELEASE, err);
4393		goto err_send_version_unroll;
4394	}
4395
4396	/* since everything is good, start the service timer */
4397	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4398
4399	err = ice_init_link_events(pf->hw.port_info);
4400	if (err) {
4401		dev_err(dev, "ice_init_link_events failed: %d\n", err);
4402		goto err_send_version_unroll;
4403	}
4404
4405	/* not a fatal error if this fails */
4406	err = ice_init_nvm_phy_type(pf->hw.port_info);
4407	if (err)
4408		dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
 
 
4409
4410	/* not a fatal error if this fails */
4411	err = ice_update_link_info(pf->hw.port_info);
4412	if (err)
4413		dev_err(dev, "ice_update_link_info failed: %d\n", err);
 
 
4414
4415	ice_init_link_dflt_override(pf->hw.port_info);
4416
4417	ice_check_module_power(pf, pf->hw.port_info->phy.link_info.link_cfg_err);
4418
4419	/* if media available, initialize PHY settings */
4420	if (pf->hw.port_info->phy.link_info.link_info &
4421	    ICE_AQ_MEDIA_AVAILABLE) {
4422		/* not a fatal error if this fails */
4423		err = ice_init_phy_user_cfg(pf->hw.port_info);
4424		if (err)
4425			dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
 
 
4426
4427		if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4428			struct ice_vsi *vsi = ice_get_main_vsi(pf);
4429
4430			if (vsi)
4431				ice_configure_phy(vsi);
4432		}
4433	} else {
4434		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4435	}
4436
4437	ice_verify_cacheline_size(pf);
4438
4439	/* Save wakeup reason register for later use */
4440	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4441
4442	/* check for a power management event */
4443	ice_print_wake_reason(pf);
4444
4445	/* clear wake status, all bits */
4446	wr32(hw, PFPM_WUS, U32_MAX);
4447
4448	/* Disable WoL at init, wait for user to enable */
4449	device_set_wakeup_enable(dev, false);
4450
4451	if (ice_is_safe_mode(pf)) {
4452		ice_set_safe_mode_vlan_cfg(pf);
4453		goto probe_done;
4454	}
4455
4456	/* initialize DDP driven features */
4457	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4458		ice_ptp_init(pf);
4459
4460	/* Note: Flow director init failure is non-fatal to load */
4461	if (ice_init_fdir(pf))
4462		dev_err(dev, "could not initialize flow director\n");
4463
4464	/* Note: DCB init failure is non-fatal to load */
4465	if (ice_init_pf_dcb(pf, false)) {
4466		clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4467		clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4468	} else {
4469		ice_cfg_lldp_mib_change(&pf->hw, true);
4470	}
4471
4472	if (ice_init_lag(pf))
4473		dev_warn(dev, "Failed to init link aggregation support\n");
4474
4475	/* print PCI link speed and width */
4476	pcie_print_link_status(pf->pdev);
4477
4478probe_done:
4479	err = ice_register_netdev(pf);
4480	if (err)
4481		goto err_netdev_reg;
4482
4483	/* ready to go, so clear down state bit */
4484	clear_bit(ICE_DOWN, pf->state);
4485	if (ice_is_aux_ena(pf)) {
4486		pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4487		if (pf->aux_idx < 0) {
4488			dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4489			err = -ENOMEM;
4490			goto err_netdev_reg;
4491		}
4492
4493		err = ice_init_rdma(pf);
4494		if (err) {
4495			dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4496			err = -EIO;
4497			goto err_init_aux_unroll;
4498		}
4499	} else {
4500		dev_warn(dev, "RDMA is not supported on this device\n");
4501	}
4502
4503	return 0;
4504
4505err_init_aux_unroll:
4506	pf->adev = NULL;
4507	ida_free(&ice_aux_ida, pf->aux_idx);
4508err_netdev_reg:
4509err_send_version_unroll:
4510	ice_vsi_release_all(pf);
4511err_alloc_sw_unroll:
4512	set_bit(ICE_SERVICE_DIS, pf->state);
4513	set_bit(ICE_DOWN, pf->state);
 
4514	devm_kfree(dev, pf->first_sw);
4515err_msix_misc_unroll:
4516	ice_free_irq_msix_misc(pf);
4517err_init_interrupt_unroll:
4518	ice_clear_interrupt_scheme(pf);
4519err_init_vsi_unroll:
4520	devm_kfree(dev, pf->vsi);
4521err_init_pf_unroll:
4522	ice_deinit_pf(pf);
4523	ice_devlink_destroy_regions(pf);
4524	ice_deinit_hw(hw);
4525err_exit_unroll:
4526	ice_devlink_unregister(pf);
4527	pci_disable_pcie_error_reporting(pdev);
4528	pci_disable_device(pdev);
4529	return err;
4530}
4531
4532/**
4533 * ice_set_wake - enable or disable Wake on LAN
4534 * @pf: pointer to the PF struct
4535 *
4536 * Simple helper for WoL control
4537 */
4538static void ice_set_wake(struct ice_pf *pf)
4539{
4540	struct ice_hw *hw = &pf->hw;
4541	bool wol = pf->wol_ena;
4542
4543	/* clear wake state, otherwise new wake events won't fire */
4544	wr32(hw, PFPM_WUS, U32_MAX);
4545
4546	/* enable / disable APM wake up, no RMW needed */
4547	wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4548
4549	/* set magic packet filter enabled */
4550	wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4551}
4552
4553/**
4554 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4555 * @pf: pointer to the PF struct
4556 *
4557 * Issue firmware command to enable multicast magic wake, making
4558 * sure that any locally administered address (LAA) is used for
4559 * wake, and that PF reset doesn't undo the LAA.
4560 */
4561static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4562{
4563	struct device *dev = ice_pf_to_dev(pf);
4564	struct ice_hw *hw = &pf->hw;
4565	enum ice_status status;
4566	u8 mac_addr[ETH_ALEN];
4567	struct ice_vsi *vsi;
4568	u8 flags;
4569
4570	if (!pf->wol_ena)
4571		return;
4572
4573	vsi = ice_get_main_vsi(pf);
4574	if (!vsi)
4575		return;
4576
4577	/* Get current MAC address in case it's an LAA */
4578	if (vsi->netdev)
4579		ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4580	else
4581		ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4582
4583	flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4584		ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4585		ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4586
4587	status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4588	if (status)
4589		dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %s aq_err %s\n",
4590			ice_stat_str(status),
4591			ice_aq_str(hw->adminq.sq_last_status));
4592}
4593
4594/**
4595 * ice_remove - Device removal routine
4596 * @pdev: PCI device information struct
4597 */
4598static void ice_remove(struct pci_dev *pdev)
4599{
4600	struct ice_pf *pf = pci_get_drvdata(pdev);
4601	int i;
4602
4603	if (!pf)
4604		return;
4605
4606	for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
4607		if (!ice_is_reset_in_progress(pf->state))
4608			break;
4609		msleep(100);
4610	}
4611
4612	if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
4613		set_bit(ICE_VF_RESETS_DISABLED, pf->state);
4614		ice_free_vfs(pf);
4615	}
4616
 
4617	ice_service_task_stop(pf);
4618
4619	ice_aq_cancel_waiting_tasks(pf);
4620	ice_unplug_aux_dev(pf);
4621	if (pf->aux_idx >= 0)
4622		ida_free(&ice_aux_ida, pf->aux_idx);
4623	set_bit(ICE_DOWN, pf->state);
4624
4625	mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
4626	ice_deinit_lag(pf);
4627	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4628		ice_ptp_release(pf);
4629	if (!ice_is_safe_mode(pf))
4630		ice_remove_arfs(pf);
4631	ice_setup_mc_magic_wake(pf);
 
4632	ice_vsi_release_all(pf);
4633	ice_set_wake(pf);
4634	ice_free_irq_msix_misc(pf);
4635	ice_for_each_vsi(pf, i) {
4636		if (!pf->vsi[i])
4637			continue;
4638		ice_vsi_free_q_vectors(pf->vsi[i]);
4639	}
4640	ice_deinit_pf(pf);
4641	ice_devlink_destroy_regions(pf);
4642	ice_deinit_hw(&pf->hw);
4643	ice_devlink_unregister(pf);
4644
4645	/* Issue a PFR as part of the prescribed driver unload flow.  Do not
4646	 * do it via ice_schedule_reset() since there is no need to rebuild
4647	 * and the service task is already stopped.
4648	 */
4649	ice_reset(&pf->hw, ICE_RESET_PFR);
4650	pci_wait_for_pending_transaction(pdev);
4651	ice_clear_interrupt_scheme(pf);
4652	pci_disable_pcie_error_reporting(pdev);
4653	pci_disable_device(pdev);
4654}
4655
4656/**
4657 * ice_shutdown - PCI callback for shutting down device
4658 * @pdev: PCI device information struct
4659 */
4660static void ice_shutdown(struct pci_dev *pdev)
4661{
4662	struct ice_pf *pf = pci_get_drvdata(pdev);
4663
4664	ice_remove(pdev);
4665
4666	if (system_state == SYSTEM_POWER_OFF) {
4667		pci_wake_from_d3(pdev, pf->wol_ena);
4668		pci_set_power_state(pdev, PCI_D3hot);
4669	}
4670}
4671
4672#ifdef CONFIG_PM
4673/**
4674 * ice_prepare_for_shutdown - prep for PCI shutdown
4675 * @pf: board private structure
4676 *
4677 * Inform or close all dependent features in prep for PCI device shutdown
4678 */
4679static void ice_prepare_for_shutdown(struct ice_pf *pf)
4680{
4681	struct ice_hw *hw = &pf->hw;
4682	u32 v;
4683
4684	/* Notify VFs of impending reset */
4685	if (ice_check_sq_alive(hw, &hw->mailboxq))
4686		ice_vc_notify_reset(pf);
4687
4688	dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
4689
4690	/* disable the VSIs and their queues that are not already DOWN */
4691	ice_pf_dis_all_vsi(pf, false);
4692
4693	ice_for_each_vsi(pf, v)
4694		if (pf->vsi[v])
4695			pf->vsi[v]->vsi_num = 0;
4696
4697	ice_shutdown_all_ctrlq(hw);
4698}
4699
4700/**
4701 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
4702 * @pf: board private structure to reinitialize
4703 *
4704 * This routine reinitialize interrupt scheme that was cleared during
4705 * power management suspend callback.
4706 *
4707 * This should be called during resume routine to re-allocate the q_vectors
4708 * and reacquire interrupts.
4709 */
4710static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
4711{
4712	struct device *dev = ice_pf_to_dev(pf);
4713	int ret, v;
4714
4715	/* Since we clear MSIX flag during suspend, we need to
4716	 * set it back during resume...
4717	 */
4718
4719	ret = ice_init_interrupt_scheme(pf);
4720	if (ret) {
4721		dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
4722		return ret;
4723	}
4724
4725	/* Remap vectors and rings, after successful re-init interrupts */
4726	ice_for_each_vsi(pf, v) {
4727		if (!pf->vsi[v])
4728			continue;
4729
4730		ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
4731		if (ret)
4732			goto err_reinit;
4733		ice_vsi_map_rings_to_vectors(pf->vsi[v]);
4734	}
4735
4736	ret = ice_req_irq_msix_misc(pf);
4737	if (ret) {
4738		dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
4739			ret);
4740		goto err_reinit;
4741	}
4742
4743	return 0;
4744
4745err_reinit:
4746	while (v--)
4747		if (pf->vsi[v])
4748			ice_vsi_free_q_vectors(pf->vsi[v]);
4749
4750	return ret;
4751}
4752
4753/**
4754 * ice_suspend
4755 * @dev: generic device information structure
4756 *
4757 * Power Management callback to quiesce the device and prepare
4758 * for D3 transition.
4759 */
4760static int __maybe_unused ice_suspend(struct device *dev)
4761{
4762	struct pci_dev *pdev = to_pci_dev(dev);
4763	struct ice_pf *pf;
4764	int disabled, v;
4765
4766	pf = pci_get_drvdata(pdev);
4767
4768	if (!ice_pf_state_is_nominal(pf)) {
4769		dev_err(dev, "Device is not ready, no need to suspend it\n");
4770		return -EBUSY;
4771	}
4772
4773	/* Stop watchdog tasks until resume completion.
4774	 * Even though it is most likely that the service task is
4775	 * disabled if the device is suspended or down, the service task's
4776	 * state is controlled by a different state bit, and we should
4777	 * store and honor whatever state that bit is in at this point.
4778	 */
4779	disabled = ice_service_task_stop(pf);
4780
4781	ice_unplug_aux_dev(pf);
4782
4783	/* Already suspended?, then there is nothing to do */
4784	if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
4785		if (!disabled)
4786			ice_service_task_restart(pf);
4787		return 0;
4788	}
4789
4790	if (test_bit(ICE_DOWN, pf->state) ||
4791	    ice_is_reset_in_progress(pf->state)) {
4792		dev_err(dev, "can't suspend device in reset or already down\n");
4793		if (!disabled)
4794			ice_service_task_restart(pf);
4795		return 0;
4796	}
4797
4798	ice_setup_mc_magic_wake(pf);
4799
4800	ice_prepare_for_shutdown(pf);
4801
4802	ice_set_wake(pf);
4803
4804	/* Free vectors, clear the interrupt scheme and release IRQs
4805	 * for proper hibernation, especially with large number of CPUs.
4806	 * Otherwise hibernation might fail when mapping all the vectors back
4807	 * to CPU0.
4808	 */
4809	ice_free_irq_msix_misc(pf);
4810	ice_for_each_vsi(pf, v) {
4811		if (!pf->vsi[v])
4812			continue;
4813		ice_vsi_free_q_vectors(pf->vsi[v]);
4814	}
4815	ice_free_cpu_rx_rmap(ice_get_main_vsi(pf));
4816	ice_clear_interrupt_scheme(pf);
4817
4818	pci_save_state(pdev);
4819	pci_wake_from_d3(pdev, pf->wol_ena);
4820	pci_set_power_state(pdev, PCI_D3hot);
4821	return 0;
4822}
4823
4824/**
4825 * ice_resume - PM callback for waking up from D3
4826 * @dev: generic device information structure
4827 */
4828static int __maybe_unused ice_resume(struct device *dev)
4829{
4830	struct pci_dev *pdev = to_pci_dev(dev);
4831	enum ice_reset_req reset_type;
4832	struct ice_pf *pf;
4833	struct ice_hw *hw;
4834	int ret;
4835
4836	pci_set_power_state(pdev, PCI_D0);
4837	pci_restore_state(pdev);
4838	pci_save_state(pdev);
4839
4840	if (!pci_device_is_present(pdev))
4841		return -ENODEV;
4842
4843	ret = pci_enable_device_mem(pdev);
4844	if (ret) {
4845		dev_err(dev, "Cannot enable device after suspend\n");
4846		return ret;
4847	}
4848
4849	pf = pci_get_drvdata(pdev);
4850	hw = &pf->hw;
4851
4852	pf->wakeup_reason = rd32(hw, PFPM_WUS);
4853	ice_print_wake_reason(pf);
4854
4855	/* We cleared the interrupt scheme when we suspended, so we need to
4856	 * restore it now to resume device functionality.
4857	 */
4858	ret = ice_reinit_interrupt_scheme(pf);
4859	if (ret)
4860		dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
4861
4862	clear_bit(ICE_DOWN, pf->state);
4863	/* Now perform PF reset and rebuild */
4864	reset_type = ICE_RESET_PFR;
4865	/* re-enable service task for reset, but allow reset to schedule it */
4866	clear_bit(ICE_SERVICE_DIS, pf->state);
4867
4868	if (ice_schedule_reset(pf, reset_type))
4869		dev_err(dev, "Reset during resume failed.\n");
4870
4871	clear_bit(ICE_SUSPENDED, pf->state);
4872	ice_service_task_restart(pf);
4873
4874	/* Restart the service task */
4875	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4876
4877	return 0;
4878}
4879#endif /* CONFIG_PM */
4880
4881/**
4882 * ice_pci_err_detected - warning that PCI error has been detected
4883 * @pdev: PCI device information struct
4884 * @err: the type of PCI error
4885 *
4886 * Called to warn that something happened on the PCI bus and the error handling
4887 * is in progress.  Allows the driver to gracefully prepare/handle PCI errors.
4888 */
4889static pci_ers_result_t
4890ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
4891{
4892	struct ice_pf *pf = pci_get_drvdata(pdev);
4893
4894	if (!pf) {
4895		dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
4896			__func__, err);
4897		return PCI_ERS_RESULT_DISCONNECT;
4898	}
4899
4900	if (!test_bit(ICE_SUSPENDED, pf->state)) {
4901		ice_service_task_stop(pf);
4902
4903		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4904			set_bit(ICE_PFR_REQ, pf->state);
4905			ice_prepare_for_reset(pf);
4906		}
4907	}
4908
4909	return PCI_ERS_RESULT_NEED_RESET;
4910}
4911
4912/**
4913 * ice_pci_err_slot_reset - a PCI slot reset has just happened
4914 * @pdev: PCI device information struct
4915 *
4916 * Called to determine if the driver can recover from the PCI slot reset by
4917 * using a register read to determine if the device is recoverable.
4918 */
4919static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
4920{
4921	struct ice_pf *pf = pci_get_drvdata(pdev);
4922	pci_ers_result_t result;
4923	int err;
4924	u32 reg;
4925
4926	err = pci_enable_device_mem(pdev);
4927	if (err) {
4928		dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
4929			err);
4930		result = PCI_ERS_RESULT_DISCONNECT;
4931	} else {
4932		pci_set_master(pdev);
4933		pci_restore_state(pdev);
4934		pci_save_state(pdev);
4935		pci_wake_from_d3(pdev, false);
4936
4937		/* Check for life */
4938		reg = rd32(&pf->hw, GLGEN_RTRIG);
4939		if (!reg)
4940			result = PCI_ERS_RESULT_RECOVERED;
4941		else
4942			result = PCI_ERS_RESULT_DISCONNECT;
4943	}
4944
4945	err = pci_aer_clear_nonfatal_status(pdev);
4946	if (err)
4947		dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
4948			err);
4949		/* non-fatal, continue */
4950
4951	return result;
4952}
4953
4954/**
4955 * ice_pci_err_resume - restart operations after PCI error recovery
4956 * @pdev: PCI device information struct
4957 *
4958 * Called to allow the driver to bring things back up after PCI error and/or
4959 * reset recovery have finished
4960 */
4961static void ice_pci_err_resume(struct pci_dev *pdev)
4962{
4963	struct ice_pf *pf = pci_get_drvdata(pdev);
4964
4965	if (!pf) {
4966		dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
4967			__func__);
4968		return;
4969	}
4970
4971	if (test_bit(ICE_SUSPENDED, pf->state)) {
4972		dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
4973			__func__);
4974		return;
4975	}
4976
4977	ice_restore_all_vfs_msi_state(pdev);
4978
4979	ice_do_reset(pf, ICE_RESET_PFR);
4980	ice_service_task_restart(pf);
4981	mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4982}
4983
4984/**
4985 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
4986 * @pdev: PCI device information struct
4987 */
4988static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
4989{
4990	struct ice_pf *pf = pci_get_drvdata(pdev);
4991
4992	if (!test_bit(ICE_SUSPENDED, pf->state)) {
4993		ice_service_task_stop(pf);
4994
4995		if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
4996			set_bit(ICE_PFR_REQ, pf->state);
4997			ice_prepare_for_reset(pf);
4998		}
4999	}
5000}
5001
5002/**
5003 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5004 * @pdev: PCI device information struct
5005 */
5006static void ice_pci_err_reset_done(struct pci_dev *pdev)
5007{
5008	ice_pci_err_resume(pdev);
5009}
5010
5011/* ice_pci_tbl - PCI Device ID Table
5012 *
5013 * Wildcard entries (PCI_ANY_ID) should come last
5014 * Last entry must be all 0s
5015 *
5016 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5017 *   Class, Class Mask, private data (not used) }
5018 */
5019static const struct pci_device_id ice_pci_tbl[] = {
5020	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5021	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5022	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5023	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5024	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5025	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5026	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5027	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5028	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5029	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5030	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5031	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5032	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5033	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5034	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5035	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5036	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5037	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5038	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5039	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5040	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5041	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5042	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5043	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5044	{ PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5045	/* required last entry */
5046	{ 0, }
5047};
5048MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5049
5050static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5051
5052static const struct pci_error_handlers ice_pci_err_handler = {
5053	.error_detected = ice_pci_err_detected,
5054	.slot_reset = ice_pci_err_slot_reset,
5055	.reset_prepare = ice_pci_err_reset_prepare,
5056	.reset_done = ice_pci_err_reset_done,
5057	.resume = ice_pci_err_resume
5058};
5059
5060static struct pci_driver ice_driver = {
5061	.name = KBUILD_MODNAME,
5062	.id_table = ice_pci_tbl,
5063	.probe = ice_probe,
5064	.remove = ice_remove,
5065#ifdef CONFIG_PM
5066	.driver.pm = &ice_pm_ops,
5067#endif /* CONFIG_PM */
5068	.shutdown = ice_shutdown,
5069	.sriov_configure = ice_sriov_configure,
5070	.err_handler = &ice_pci_err_handler
5071};
5072
5073/**
5074 * ice_module_init - Driver registration routine
5075 *
5076 * ice_module_init is the first routine called when the driver is
5077 * loaded. All it does is register with the PCI subsystem.
5078 */
5079static int __init ice_module_init(void)
5080{
5081	int status;
5082
5083	pr_info("%s\n", ice_driver_string);
5084	pr_info("%s\n", ice_copyright);
5085
5086	ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5087	if (!ice_wq) {
5088		pr_err("Failed to create workqueue\n");
5089		return -ENOMEM;
5090	}
5091
5092	status = pci_register_driver(&ice_driver);
5093	if (status) {
5094		pr_err("failed to register PCI driver, err %d\n", status);
5095		destroy_workqueue(ice_wq);
5096	}
5097
5098	return status;
5099}
5100module_init(ice_module_init);
5101
5102/**
5103 * ice_module_exit - Driver exit cleanup routine
5104 *
5105 * ice_module_exit is called just before the driver is removed
5106 * from memory.
5107 */
5108static void __exit ice_module_exit(void)
5109{
5110	pci_unregister_driver(&ice_driver);
5111	destroy_workqueue(ice_wq);
5112	pr_info("module unloaded\n");
5113}
5114module_exit(ice_module_exit);
5115
5116/**
5117 * ice_set_mac_address - NDO callback to set MAC address
5118 * @netdev: network interface device structure
5119 * @pi: pointer to an address structure
5120 *
5121 * Returns 0 on success, negative on failure
5122 */
5123static int ice_set_mac_address(struct net_device *netdev, void *pi)
5124{
5125	struct ice_netdev_priv *np = netdev_priv(netdev);
5126	struct ice_vsi *vsi = np->vsi;
5127	struct ice_pf *pf = vsi->back;
5128	struct ice_hw *hw = &pf->hw;
5129	struct sockaddr *addr = pi;
5130	enum ice_status status;
5131	u8 old_mac[ETH_ALEN];
5132	u8 flags = 0;
5133	int err = 0;
5134	u8 *mac;
5135
5136	mac = (u8 *)addr->sa_data;
5137
5138	if (!is_valid_ether_addr(mac))
5139		return -EADDRNOTAVAIL;
5140
5141	if (ether_addr_equal(netdev->dev_addr, mac)) {
5142		netdev_dbg(netdev, "already using mac %pM\n", mac);
5143		return 0;
5144	}
5145
5146	if (test_bit(ICE_DOWN, pf->state) ||
5147	    ice_is_reset_in_progress(pf->state)) {
5148		netdev_err(netdev, "can't set mac %pM. device not ready\n",
5149			   mac);
5150		return -EBUSY;
5151	}
5152
5153	netif_addr_lock_bh(netdev);
5154	ether_addr_copy(old_mac, netdev->dev_addr);
5155	/* change the netdev's MAC address */
5156	memcpy(netdev->dev_addr, mac, netdev->addr_len);
5157	netif_addr_unlock_bh(netdev);
5158
5159	/* Clean up old MAC filter. Not an error if old filter doesn't exist */
5160	status = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5161	if (status && status != ICE_ERR_DOES_NOT_EXIST) {
5162		err = -EADDRNOTAVAIL;
5163		goto err_update_filters;
5164	}
5165
5166	/* Add filter for new MAC. If filter exists, return success */
5167	status = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5168	if (status == ICE_ERR_ALREADY_EXISTS)
5169		/* Although this MAC filter is already present in hardware it's
5170		 * possible in some cases (e.g. bonding) that dev_addr was
5171		 * modified outside of the driver and needs to be restored back
5172		 * to this value.
5173		 */
5174		netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5175	else if (status)
5176		/* error if the new filter addition failed */
 
 
 
5177		err = -EADDRNOTAVAIL;
5178
5179err_update_filters:
5180	if (err) {
5181		netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5182			   mac);
5183		netif_addr_lock_bh(netdev);
5184		ether_addr_copy(netdev->dev_addr, old_mac);
5185		netif_addr_unlock_bh(netdev);
5186		return err;
5187	}
5188
 
 
5189	netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5190		   netdev->dev_addr);
5191
5192	/* write new MAC address to the firmware */
5193	flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5194	status = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5195	if (status) {
5196		netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %s\n",
5197			   mac, ice_stat_str(status));
5198	}
5199	return 0;
5200}
5201
5202/**
5203 * ice_set_rx_mode - NDO callback to set the netdev filters
5204 * @netdev: network interface device structure
5205 */
5206static void ice_set_rx_mode(struct net_device *netdev)
5207{
5208	struct ice_netdev_priv *np = netdev_priv(netdev);
5209	struct ice_vsi *vsi = np->vsi;
5210
5211	if (!vsi)
5212		return;
5213
5214	/* Set the flags to synchronize filters
5215	 * ndo_set_rx_mode may be triggered even without a change in netdev
5216	 * flags
5217	 */
5218	set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5219	set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5220	set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5221
5222	/* schedule our worker thread which will take care of
5223	 * applying the new filter changes
5224	 */
5225	ice_service_task_schedule(vsi->back);
5226}
5227
5228/**
5229 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5230 * @netdev: network interface device structure
5231 * @queue_index: Queue ID
5232 * @maxrate: maximum bandwidth in Mbps
5233 */
5234static int
5235ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5236{
5237	struct ice_netdev_priv *np = netdev_priv(netdev);
5238	struct ice_vsi *vsi = np->vsi;
5239	enum ice_status status;
5240	u16 q_handle;
5241	u8 tc;
5242
5243	/* Validate maxrate requested is within permitted range */
5244	if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5245		netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5246			   maxrate, queue_index);
5247		return -EINVAL;
5248	}
5249
5250	q_handle = vsi->tx_rings[queue_index]->q_handle;
5251	tc = ice_dcb_get_tc(vsi, queue_index);
5252
5253	/* Set BW back to default, when user set maxrate to 0 */
5254	if (!maxrate)
5255		status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5256					       q_handle, ICE_MAX_BW);
5257	else
5258		status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5259					  q_handle, ICE_MAX_BW, maxrate * 1000);
5260	if (status) {
5261		netdev_err(netdev, "Unable to set Tx max rate, error %s\n",
5262			   ice_stat_str(status));
5263		return -EIO;
5264	}
5265
5266	return 0;
5267}
5268
5269/**
5270 * ice_fdb_add - add an entry to the hardware database
5271 * @ndm: the input from the stack
5272 * @tb: pointer to array of nladdr (unused)
5273 * @dev: the net device pointer
5274 * @addr: the MAC address entry being added
5275 * @vid: VLAN ID
5276 * @flags: instructions from stack about fdb operation
5277 * @extack: netlink extended ack
5278 */
5279static int
5280ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5281	    struct net_device *dev, const unsigned char *addr, u16 vid,
5282	    u16 flags, struct netlink_ext_ack __always_unused *extack)
5283{
5284	int err;
5285
5286	if (vid) {
5287		netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5288		return -EINVAL;
5289	}
5290	if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5291		netdev_err(dev, "FDB only supports static addresses\n");
5292		return -EINVAL;
5293	}
5294
5295	if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5296		err = dev_uc_add_excl(dev, addr);
5297	else if (is_multicast_ether_addr(addr))
5298		err = dev_mc_add_excl(dev, addr);
5299	else
5300		err = -EINVAL;
5301
5302	/* Only return duplicate errors if NLM_F_EXCL is set */
5303	if (err == -EEXIST && !(flags & NLM_F_EXCL))
5304		err = 0;
5305
5306	return err;
5307}
5308
5309/**
5310 * ice_fdb_del - delete an entry from the hardware database
5311 * @ndm: the input from the stack
5312 * @tb: pointer to array of nladdr (unused)
5313 * @dev: the net device pointer
5314 * @addr: the MAC address entry being added
5315 * @vid: VLAN ID
5316 */
5317static int
5318ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5319	    struct net_device *dev, const unsigned char *addr,
5320	    __always_unused u16 vid)
5321{
5322	int err;
5323
5324	if (ndm->ndm_state & NUD_PERMANENT) {
5325		netdev_err(dev, "FDB only supports static addresses\n");
5326		return -EINVAL;
5327	}
5328
5329	if (is_unicast_ether_addr(addr))
5330		err = dev_uc_del(dev, addr);
5331	else if (is_multicast_ether_addr(addr))
5332		err = dev_mc_del(dev, addr);
5333	else
5334		err = -EINVAL;
5335
5336	return err;
5337}
5338
5339/**
5340 * ice_set_features - set the netdev feature flags
5341 * @netdev: ptr to the netdev being adjusted
5342 * @features: the feature set that the stack is suggesting
5343 */
5344static int
5345ice_set_features(struct net_device *netdev, netdev_features_t features)
5346{
5347	struct ice_netdev_priv *np = netdev_priv(netdev);
5348	struct ice_vsi *vsi = np->vsi;
5349	struct ice_pf *pf = vsi->back;
5350	int ret = 0;
5351
5352	/* Don't set any netdev advanced features with device in Safe Mode */
5353	if (ice_is_safe_mode(vsi->back)) {
5354		dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5355		return ret;
5356	}
5357
5358	/* Do not change setting during reset */
5359	if (ice_is_reset_in_progress(pf->state)) {
5360		dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5361		return -EBUSY;
5362	}
5363
5364	/* Multiple features can be changed in one call so keep features in
5365	 * separate if/else statements to guarantee each feature is checked
5366	 */
5367	if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5368		ice_vsi_manage_rss_lut(vsi, true);
5369	else if (!(features & NETIF_F_RXHASH) &&
5370		 netdev->features & NETIF_F_RXHASH)
5371		ice_vsi_manage_rss_lut(vsi, false);
5372
5373	if ((features & NETIF_F_HW_VLAN_CTAG_RX) &&
5374	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5375		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5376	else if (!(features & NETIF_F_HW_VLAN_CTAG_RX) &&
5377		 (netdev->features & NETIF_F_HW_VLAN_CTAG_RX))
5378		ret = ice_vsi_manage_vlan_stripping(vsi, false);
5379
5380	if ((features & NETIF_F_HW_VLAN_CTAG_TX) &&
5381	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5382		ret = ice_vsi_manage_vlan_insertion(vsi);
5383	else if (!(features & NETIF_F_HW_VLAN_CTAG_TX) &&
5384		 (netdev->features & NETIF_F_HW_VLAN_CTAG_TX))
5385		ret = ice_vsi_manage_vlan_insertion(vsi);
5386
5387	if ((features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5388	    !(netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5389		ret = ice_cfg_vlan_pruning(vsi, true, false);
5390	else if (!(features & NETIF_F_HW_VLAN_CTAG_FILTER) &&
5391		 (netdev->features & NETIF_F_HW_VLAN_CTAG_FILTER))
5392		ret = ice_cfg_vlan_pruning(vsi, false, false);
5393
5394	if ((features & NETIF_F_NTUPLE) &&
5395	    !(netdev->features & NETIF_F_NTUPLE)) {
5396		ice_vsi_manage_fdir(vsi, true);
5397		ice_init_arfs(vsi);
5398	} else if (!(features & NETIF_F_NTUPLE) &&
5399		 (netdev->features & NETIF_F_NTUPLE)) {
5400		ice_vsi_manage_fdir(vsi, false);
5401		ice_clear_arfs(vsi);
5402	}
5403
5404	return ret;
5405}
5406
5407/**
5408 * ice_vsi_vlan_setup - Setup VLAN offload properties on a VSI
5409 * @vsi: VSI to setup VLAN properties for
5410 */
5411static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
5412{
5413	int ret = 0;
5414
5415	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
5416		ret = ice_vsi_manage_vlan_stripping(vsi, true);
5417	if (vsi->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)
5418		ret = ice_vsi_manage_vlan_insertion(vsi);
5419
5420	return ret;
5421}
5422
5423/**
5424 * ice_vsi_cfg - Setup the VSI
5425 * @vsi: the VSI being configured
5426 *
5427 * Return 0 on success and negative value on error
5428 */
5429int ice_vsi_cfg(struct ice_vsi *vsi)
5430{
5431	int err;
5432
5433	if (vsi->netdev) {
5434		ice_set_rx_mode(vsi->netdev);
5435
5436		err = ice_vsi_vlan_setup(vsi);
5437
5438		if (err)
5439			return err;
5440	}
5441	ice_vsi_cfg_dcb_rings(vsi);
5442
5443	err = ice_vsi_cfg_lan_txqs(vsi);
5444	if (!err && ice_is_xdp_ena_vsi(vsi))
5445		err = ice_vsi_cfg_xdp_txqs(vsi);
5446	if (!err)
5447		err = ice_vsi_cfg_rxqs(vsi);
5448
5449	return err;
5450}
5451
5452/* THEORY OF MODERATION:
5453 * The below code creates custom DIM profiles for use by this driver, because
5454 * the ice driver hardware works differently than the hardware that DIMLIB was
5455 * originally made for. ice hardware doesn't have packet count limits that
5456 * can trigger an interrupt, but it *does* have interrupt rate limit support,
5457 * and this code adds that capability to be used by the driver when it's using
5458 * DIMLIB. The DIMLIB code was always designed to be a suggestion to the driver
5459 * for how to "respond" to traffic and interrupts, so this driver uses a
5460 * slightly different set of moderation parameters to get best performance.
5461 */
5462struct ice_dim {
5463	/* the throttle rate for interrupts, basically worst case delay before
5464	 * an initial interrupt fires, value is stored in microseconds.
5465	 */
5466	u16 itr;
5467	/* the rate limit for interrupts, which can cap a delay from a small
5468	 * ITR at a certain amount of interrupts per second. f.e. a 2us ITR
5469	 * could yield as much as 500,000 interrupts per second, but with a
5470	 * 10us rate limit, it limits to 100,000 interrupts per second. Value
5471	 * is stored in microseconds.
5472	 */
5473	u16 intrl;
5474};
5475
5476/* Make a different profile for Rx that doesn't allow quite so aggressive
5477 * moderation at the high end (it maxes out at 128us or about 8k interrupts a
5478 * second. The INTRL/rate parameters here are only useful to cap small ITR
5479 * values, which is why for larger ITR's - like 128, which can only generate
5480 * 8k interrupts per second, there is no point to rate limit and the values
5481 * are set to zero. The rate limit values do affect latency, and so must
5482 * be reasonably small so to not impact latency sensitive tests.
5483 */
5484static const struct ice_dim rx_profile[] = {
5485	{2, 10},
5486	{8, 16},
5487	{32, 0},
5488	{96, 0},
5489	{128, 0}
5490};
5491
5492/* The transmit profile, which has the same sorts of values
5493 * as the previous struct
5494 */
5495static const struct ice_dim tx_profile[] = {
5496	{2, 10},
5497	{8, 16},
5498	{64, 0},
5499	{128, 0},
5500	{256, 0}
5501};
5502
5503static void ice_tx_dim_work(struct work_struct *work)
5504{
5505	struct ice_ring_container *rc;
5506	struct ice_q_vector *q_vector;
5507	struct dim *dim;
5508	u16 itr, intrl;
5509
5510	dim = container_of(work, struct dim, work);
5511	rc = container_of(dim, struct ice_ring_container, dim);
5512	q_vector = container_of(rc, struct ice_q_vector, tx);
5513
5514	if (dim->profile_ix >= ARRAY_SIZE(tx_profile))
5515		dim->profile_ix = ARRAY_SIZE(tx_profile) - 1;
5516
5517	/* look up the values in our local table */
5518	itr = tx_profile[dim->profile_ix].itr;
5519	intrl = tx_profile[dim->profile_ix].intrl;
5520
5521	ice_trace(tx_dim_work, q_vector, dim);
5522	ice_write_itr(rc, itr);
5523	ice_write_intrl(q_vector, intrl);
5524
5525	dim->state = DIM_START_MEASURE;
5526}
5527
5528static void ice_rx_dim_work(struct work_struct *work)
5529{
5530	struct ice_ring_container *rc;
5531	struct ice_q_vector *q_vector;
5532	struct dim *dim;
5533	u16 itr, intrl;
5534
5535	dim = container_of(work, struct dim, work);
5536	rc = container_of(dim, struct ice_ring_container, dim);
5537	q_vector = container_of(rc, struct ice_q_vector, rx);
5538
5539	if (dim->profile_ix >= ARRAY_SIZE(rx_profile))
5540		dim->profile_ix = ARRAY_SIZE(rx_profile) - 1;
5541
5542	/* look up the values in our local table */
5543	itr = rx_profile[dim->profile_ix].itr;
5544	intrl = rx_profile[dim->profile_ix].intrl;
5545
5546	ice_trace(rx_dim_work, q_vector, dim);
5547	ice_write_itr(rc, itr);
5548	ice_write_intrl(q_vector, intrl);
5549
5550	dim->state = DIM_START_MEASURE;
5551}
5552
5553/**
5554 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
5555 * @vsi: the VSI being configured
5556 */
5557static void ice_napi_enable_all(struct ice_vsi *vsi)
5558{
5559	int q_idx;
5560
5561	if (!vsi->netdev)
5562		return;
5563
5564	ice_for_each_q_vector(vsi, q_idx) {
5565		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5566
5567		INIT_WORK(&q_vector->tx.dim.work, ice_tx_dim_work);
5568		q_vector->tx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5569
5570		INIT_WORK(&q_vector->rx.dim.work, ice_rx_dim_work);
5571		q_vector->rx.dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
5572
5573		if (q_vector->rx.ring || q_vector->tx.ring)
5574			napi_enable(&q_vector->napi);
5575	}
5576}
5577
5578/**
5579 * ice_up_complete - Finish the last steps of bringing up a connection
5580 * @vsi: The VSI being configured
5581 *
5582 * Return 0 on success and negative value on error
5583 */
5584static int ice_up_complete(struct ice_vsi *vsi)
5585{
5586	struct ice_pf *pf = vsi->back;
5587	int err;
5588
5589	ice_vsi_cfg_msix(vsi);
5590
5591	/* Enable only Rx rings, Tx rings were enabled by the FW when the
5592	 * Tx queue group list was configured and the context bits were
5593	 * programmed using ice_vsi_cfg_txqs
5594	 */
5595	err = ice_vsi_start_all_rx_rings(vsi);
5596	if (err)
5597		return err;
5598
5599	clear_bit(ICE_VSI_DOWN, vsi->state);
5600	ice_napi_enable_all(vsi);
5601	ice_vsi_ena_irq(vsi);
5602
5603	if (vsi->port_info &&
5604	    (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
5605	    vsi->netdev) {
5606		ice_print_link_msg(vsi, true);
5607		netif_tx_start_all_queues(vsi->netdev);
5608		netif_carrier_on(vsi->netdev);
5609	}
5610
5611	ice_service_task_schedule(pf);
5612
5613	return 0;
5614}
5615
5616/**
5617 * ice_up - Bring the connection back up after being down
5618 * @vsi: VSI being configured
5619 */
5620int ice_up(struct ice_vsi *vsi)
5621{
5622	int err;
5623
5624	err = ice_vsi_cfg(vsi);
5625	if (!err)
5626		err = ice_up_complete(vsi);
5627
5628	return err;
5629}
5630
5631/**
5632 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
5633 * @ring: Tx or Rx ring to read stats from
5634 * @pkts: packets stats counter
5635 * @bytes: bytes stats counter
5636 *
5637 * This function fetches stats from the ring considering the atomic operations
5638 * that needs to be performed to read u64 values in 32 bit machine.
5639 */
5640static void
5641ice_fetch_u64_stats_per_ring(struct ice_ring *ring, u64 *pkts, u64 *bytes)
5642{
5643	unsigned int start;
5644	*pkts = 0;
5645	*bytes = 0;
5646
5647	if (!ring)
5648		return;
5649	do {
5650		start = u64_stats_fetch_begin_irq(&ring->syncp);
5651		*pkts = ring->stats.pkts;
5652		*bytes = ring->stats.bytes;
5653	} while (u64_stats_fetch_retry_irq(&ring->syncp, start));
5654}
5655
5656/**
5657 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
5658 * @vsi: the VSI to be updated
5659 * @rings: rings to work on
5660 * @count: number of rings
5661 */
5662static void
5663ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi, struct ice_ring **rings,
5664			     u16 count)
5665{
5666	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
5667	u16 i;
5668
5669	for (i = 0; i < count; i++) {
5670		struct ice_ring *ring;
5671		u64 pkts, bytes;
5672
5673		ring = READ_ONCE(rings[i]);
5674		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5675		vsi_stats->tx_packets += pkts;
5676		vsi_stats->tx_bytes += bytes;
5677		vsi->tx_restart += ring->tx_stats.restart_q;
5678		vsi->tx_busy += ring->tx_stats.tx_busy;
5679		vsi->tx_linearize += ring->tx_stats.tx_linearize;
5680	}
5681}
5682
5683/**
5684 * ice_update_vsi_ring_stats - Update VSI stats counters
5685 * @vsi: the VSI to be updated
5686 */
5687static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
5688{
5689	struct rtnl_link_stats64 *vsi_stats = &vsi->net_stats;
 
5690	u64 pkts, bytes;
5691	int i;
5692
5693	/* reset netdev stats */
5694	vsi_stats->tx_packets = 0;
5695	vsi_stats->tx_bytes = 0;
5696	vsi_stats->rx_packets = 0;
5697	vsi_stats->rx_bytes = 0;
5698
5699	/* reset non-netdev (extended) stats */
5700	vsi->tx_restart = 0;
5701	vsi->tx_busy = 0;
5702	vsi->tx_linearize = 0;
5703	vsi->rx_buf_failed = 0;
5704	vsi->rx_page_failed = 0;
 
5705
5706	rcu_read_lock();
5707
5708	/* update Tx rings counters */
5709	ice_update_vsi_tx_ring_stats(vsi, vsi->tx_rings, vsi->num_txq);
5710
5711	/* update Rx rings counters */
5712	ice_for_each_rxq(vsi, i) {
5713		struct ice_ring *ring = READ_ONCE(vsi->rx_rings[i]);
5714
5715		ice_fetch_u64_stats_per_ring(ring, &pkts, &bytes);
5716		vsi_stats->rx_packets += pkts;
5717		vsi_stats->rx_bytes += bytes;
5718		vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
5719		vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
 
5720	}
5721
5722	/* update XDP Tx rings counters */
5723	if (ice_is_xdp_ena_vsi(vsi))
5724		ice_update_vsi_tx_ring_stats(vsi, vsi->xdp_rings,
5725					     vsi->num_xdp_txq);
5726
5727	rcu_read_unlock();
5728}
5729
5730/**
5731 * ice_update_vsi_stats - Update VSI stats counters
5732 * @vsi: the VSI to be updated
5733 */
5734void ice_update_vsi_stats(struct ice_vsi *vsi)
5735{
5736	struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
5737	struct ice_eth_stats *cur_es = &vsi->eth_stats;
5738	struct ice_pf *pf = vsi->back;
5739
5740	if (test_bit(ICE_VSI_DOWN, vsi->state) ||
5741	    test_bit(ICE_CFG_BUSY, pf->state))
5742		return;
5743
5744	/* get stats as recorded by Tx/Rx rings */
5745	ice_update_vsi_ring_stats(vsi);
5746
5747	/* get VSI stats as recorded by the hardware */
5748	ice_update_eth_stats(vsi);
5749
5750	cur_ns->tx_errors = cur_es->tx_errors;
5751	cur_ns->rx_dropped = cur_es->rx_discards;
5752	cur_ns->tx_dropped = cur_es->tx_discards;
5753	cur_ns->multicast = cur_es->rx_multicast;
5754
5755	/* update some more netdev stats if this is main VSI */
5756	if (vsi->type == ICE_VSI_PF) {
5757		cur_ns->rx_crc_errors = pf->stats.crc_errors;
5758		cur_ns->rx_errors = pf->stats.crc_errors +
5759				    pf->stats.illegal_bytes +
5760				    pf->stats.rx_len_errors +
5761				    pf->stats.rx_undersize +
5762				    pf->hw_csum_rx_error +
5763				    pf->stats.rx_jabber +
5764				    pf->stats.rx_fragments +
5765				    pf->stats.rx_oversize;
5766		cur_ns->rx_length_errors = pf->stats.rx_len_errors;
5767		/* record drops from the port level */
5768		cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
5769	}
5770}
5771
5772/**
5773 * ice_update_pf_stats - Update PF port stats counters
5774 * @pf: PF whose stats needs to be updated
5775 */
5776void ice_update_pf_stats(struct ice_pf *pf)
5777{
5778	struct ice_hw_port_stats *prev_ps, *cur_ps;
5779	struct ice_hw *hw = &pf->hw;
5780	u16 fd_ctr_base;
5781	u8 port;
5782
5783	port = hw->port_info->lport;
5784	prev_ps = &pf->stats_prev;
5785	cur_ps = &pf->stats;
5786
5787	ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
5788			  &prev_ps->eth.rx_bytes,
5789			  &cur_ps->eth.rx_bytes);
5790
5791	ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
5792			  &prev_ps->eth.rx_unicast,
5793			  &cur_ps->eth.rx_unicast);
5794
5795	ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
5796			  &prev_ps->eth.rx_multicast,
5797			  &cur_ps->eth.rx_multicast);
5798
5799	ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
5800			  &prev_ps->eth.rx_broadcast,
5801			  &cur_ps->eth.rx_broadcast);
5802
5803	ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
5804			  &prev_ps->eth.rx_discards,
5805			  &cur_ps->eth.rx_discards);
5806
5807	ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
5808			  &prev_ps->eth.tx_bytes,
5809			  &cur_ps->eth.tx_bytes);
5810
5811	ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
5812			  &prev_ps->eth.tx_unicast,
5813			  &cur_ps->eth.tx_unicast);
5814
5815	ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
5816			  &prev_ps->eth.tx_multicast,
5817			  &cur_ps->eth.tx_multicast);
5818
5819	ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
5820			  &prev_ps->eth.tx_broadcast,
5821			  &cur_ps->eth.tx_broadcast);
5822
5823	ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
5824			  &prev_ps->tx_dropped_link_down,
5825			  &cur_ps->tx_dropped_link_down);
5826
5827	ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
5828			  &prev_ps->rx_size_64, &cur_ps->rx_size_64);
5829
5830	ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
5831			  &prev_ps->rx_size_127, &cur_ps->rx_size_127);
5832
5833	ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
5834			  &prev_ps->rx_size_255, &cur_ps->rx_size_255);
5835
5836	ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
5837			  &prev_ps->rx_size_511, &cur_ps->rx_size_511);
5838
5839	ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
5840			  &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
5841
5842	ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
5843			  &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
5844
5845	ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
5846			  &prev_ps->rx_size_big, &cur_ps->rx_size_big);
5847
5848	ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
5849			  &prev_ps->tx_size_64, &cur_ps->tx_size_64);
5850
5851	ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
5852			  &prev_ps->tx_size_127, &cur_ps->tx_size_127);
5853
5854	ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
5855			  &prev_ps->tx_size_255, &cur_ps->tx_size_255);
5856
5857	ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
5858			  &prev_ps->tx_size_511, &cur_ps->tx_size_511);
5859
5860	ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
5861			  &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
5862
5863	ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
5864			  &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
5865
5866	ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
5867			  &prev_ps->tx_size_big, &cur_ps->tx_size_big);
5868
5869	fd_ctr_base = hw->fd_ctr_base;
5870
5871	ice_stat_update40(hw,
5872			  GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
5873			  pf->stat_prev_loaded, &prev_ps->fd_sb_match,
5874			  &cur_ps->fd_sb_match);
5875	ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
5876			  &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
5877
5878	ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
5879			  &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
5880
5881	ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
5882			  &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
5883
5884	ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
5885			  &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
5886
5887	ice_update_dcb_stats(pf);
5888
5889	ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
5890			  &prev_ps->crc_errors, &cur_ps->crc_errors);
5891
5892	ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
5893			  &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
5894
5895	ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
5896			  &prev_ps->mac_local_faults,
5897			  &cur_ps->mac_local_faults);
5898
5899	ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
5900			  &prev_ps->mac_remote_faults,
5901			  &cur_ps->mac_remote_faults);
5902
5903	ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
5904			  &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
5905
5906	ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
5907			  &prev_ps->rx_undersize, &cur_ps->rx_undersize);
5908
5909	ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
5910			  &prev_ps->rx_fragments, &cur_ps->rx_fragments);
5911
5912	ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
5913			  &prev_ps->rx_oversize, &cur_ps->rx_oversize);
5914
5915	ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
5916			  &prev_ps->rx_jabber, &cur_ps->rx_jabber);
5917
5918	cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
5919
5920	pf->stat_prev_loaded = true;
5921}
5922
5923/**
5924 * ice_get_stats64 - get statistics for network device structure
5925 * @netdev: network interface device structure
5926 * @stats: main device statistics structure
5927 */
5928static
5929void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
5930{
5931	struct ice_netdev_priv *np = netdev_priv(netdev);
5932	struct rtnl_link_stats64 *vsi_stats;
5933	struct ice_vsi *vsi = np->vsi;
5934
5935	vsi_stats = &vsi->net_stats;
5936
5937	if (!vsi->num_txq || !vsi->num_rxq)
5938		return;
5939
5940	/* netdev packet/byte stats come from ring counter. These are obtained
5941	 * by summing up ring counters (done by ice_update_vsi_ring_stats).
5942	 * But, only call the update routine and read the registers if VSI is
5943	 * not down.
5944	 */
5945	if (!test_bit(ICE_VSI_DOWN, vsi->state))
5946		ice_update_vsi_ring_stats(vsi);
5947	stats->tx_packets = vsi_stats->tx_packets;
5948	stats->tx_bytes = vsi_stats->tx_bytes;
5949	stats->rx_packets = vsi_stats->rx_packets;
5950	stats->rx_bytes = vsi_stats->rx_bytes;
5951
5952	/* The rest of the stats can be read from the hardware but instead we
5953	 * just return values that the watchdog task has already obtained from
5954	 * the hardware.
5955	 */
5956	stats->multicast = vsi_stats->multicast;
5957	stats->tx_errors = vsi_stats->tx_errors;
5958	stats->tx_dropped = vsi_stats->tx_dropped;
5959	stats->rx_errors = vsi_stats->rx_errors;
5960	stats->rx_dropped = vsi_stats->rx_dropped;
5961	stats->rx_crc_errors = vsi_stats->rx_crc_errors;
5962	stats->rx_length_errors = vsi_stats->rx_length_errors;
5963}
5964
5965/**
5966 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
5967 * @vsi: VSI having NAPI disabled
5968 */
5969static void ice_napi_disable_all(struct ice_vsi *vsi)
5970{
5971	int q_idx;
5972
5973	if (!vsi->netdev)
5974		return;
5975
5976	ice_for_each_q_vector(vsi, q_idx) {
5977		struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
5978
5979		if (q_vector->rx.ring || q_vector->tx.ring)
5980			napi_disable(&q_vector->napi);
5981
5982		cancel_work_sync(&q_vector->tx.dim.work);
5983		cancel_work_sync(&q_vector->rx.dim.work);
5984	}
5985}
5986
5987/**
5988 * ice_down - Shutdown the connection
5989 * @vsi: The VSI being stopped
5990 */
5991int ice_down(struct ice_vsi *vsi)
5992{
5993	int i, tx_err, rx_err, link_err = 0;
5994
5995	/* Caller of this function is expected to set the
5996	 * vsi->state ICE_DOWN bit
5997	 */
5998	if (vsi->netdev) {
5999		netif_carrier_off(vsi->netdev);
6000		netif_tx_disable(vsi->netdev);
6001	}
6002
6003	ice_vsi_dis_irq(vsi);
6004
6005	tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6006	if (tx_err)
6007		netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6008			   vsi->vsi_num, tx_err);
6009	if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6010		tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6011		if (tx_err)
6012			netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6013				   vsi->vsi_num, tx_err);
6014	}
6015
6016	rx_err = ice_vsi_stop_all_rx_rings(vsi);
6017	if (rx_err)
6018		netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6019			   vsi->vsi_num, rx_err);
6020
6021	ice_napi_disable_all(vsi);
6022
6023	if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6024		link_err = ice_force_phys_link_state(vsi, false);
6025		if (link_err)
6026			netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6027				   vsi->vsi_num, link_err);
6028	}
6029
6030	ice_for_each_txq(vsi, i)
6031		ice_clean_tx_ring(vsi->tx_rings[i]);
6032
6033	ice_for_each_rxq(vsi, i)
6034		ice_clean_rx_ring(vsi->rx_rings[i]);
6035
6036	if (tx_err || rx_err || link_err) {
6037		netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6038			   vsi->vsi_num, vsi->vsw->sw_id);
6039		return -EIO;
6040	}
6041
6042	return 0;
6043}
6044
6045/**
6046 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6047 * @vsi: VSI having resources allocated
6048 *
6049 * Return 0 on success, negative on failure
6050 */
6051int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6052{
6053	int i, err = 0;
6054
6055	if (!vsi->num_txq) {
6056		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6057			vsi->vsi_num);
6058		return -EINVAL;
6059	}
6060
6061	ice_for_each_txq(vsi, i) {
6062		struct ice_ring *ring = vsi->tx_rings[i];
6063
6064		if (!ring)
6065			return -EINVAL;
6066
6067		ring->netdev = vsi->netdev;
6068		err = ice_setup_tx_ring(ring);
6069		if (err)
6070			break;
6071	}
6072
6073	return err;
6074}
6075
6076/**
6077 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6078 * @vsi: VSI having resources allocated
6079 *
6080 * Return 0 on success, negative on failure
6081 */
6082int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6083{
6084	int i, err = 0;
6085
6086	if (!vsi->num_rxq) {
6087		dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6088			vsi->vsi_num);
6089		return -EINVAL;
6090	}
6091
6092	ice_for_each_rxq(vsi, i) {
6093		struct ice_ring *ring = vsi->rx_rings[i];
6094
6095		if (!ring)
6096			return -EINVAL;
6097
6098		ring->netdev = vsi->netdev;
6099		err = ice_setup_rx_ring(ring);
6100		if (err)
6101			break;
6102	}
6103
6104	return err;
6105}
6106
6107/**
6108 * ice_vsi_open_ctrl - open control VSI for use
6109 * @vsi: the VSI to open
6110 *
6111 * Initialization of the Control VSI
6112 *
6113 * Returns 0 on success, negative value on error
6114 */
6115int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6116{
6117	char int_name[ICE_INT_NAME_STR_LEN];
6118	struct ice_pf *pf = vsi->back;
6119	struct device *dev;
6120	int err;
6121
6122	dev = ice_pf_to_dev(pf);
6123	/* allocate descriptors */
6124	err = ice_vsi_setup_tx_rings(vsi);
6125	if (err)
6126		goto err_setup_tx;
6127
6128	err = ice_vsi_setup_rx_rings(vsi);
6129	if (err)
6130		goto err_setup_rx;
6131
6132	err = ice_vsi_cfg(vsi);
6133	if (err)
6134		goto err_setup_rx;
6135
6136	snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6137		 dev_driver_string(dev), dev_name(dev));
6138	err = ice_vsi_req_irq_msix(vsi, int_name);
6139	if (err)
6140		goto err_setup_rx;
6141
6142	ice_vsi_cfg_msix(vsi);
6143
6144	err = ice_vsi_start_all_rx_rings(vsi);
6145	if (err)
6146		goto err_up_complete;
6147
6148	clear_bit(ICE_VSI_DOWN, vsi->state);
6149	ice_vsi_ena_irq(vsi);
6150
6151	return 0;
6152
6153err_up_complete:
6154	ice_down(vsi);
6155err_setup_rx:
6156	ice_vsi_free_rx_rings(vsi);
6157err_setup_tx:
6158	ice_vsi_free_tx_rings(vsi);
6159
6160	return err;
6161}
6162
6163/**
6164 * ice_vsi_open - Called when a network interface is made active
6165 * @vsi: the VSI to open
6166 *
6167 * Initialization of the VSI
6168 *
6169 * Returns 0 on success, negative value on error
6170 */
6171static int ice_vsi_open(struct ice_vsi *vsi)
6172{
6173	char int_name[ICE_INT_NAME_STR_LEN];
6174	struct ice_pf *pf = vsi->back;
6175	int err;
6176
6177	/* allocate descriptors */
6178	err = ice_vsi_setup_tx_rings(vsi);
6179	if (err)
6180		goto err_setup_tx;
6181
6182	err = ice_vsi_setup_rx_rings(vsi);
6183	if (err)
6184		goto err_setup_rx;
6185
6186	err = ice_vsi_cfg(vsi);
6187	if (err)
6188		goto err_setup_rx;
6189
6190	snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6191		 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6192	err = ice_vsi_req_irq_msix(vsi, int_name);
6193	if (err)
6194		goto err_setup_rx;
6195
6196	/* Notify the stack of the actual queue counts. */
6197	err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6198	if (err)
6199		goto err_set_qs;
6200
6201	err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6202	if (err)
6203		goto err_set_qs;
6204
6205	err = ice_up_complete(vsi);
6206	if (err)
6207		goto err_up_complete;
6208
6209	return 0;
6210
6211err_up_complete:
6212	ice_down(vsi);
6213err_set_qs:
6214	ice_vsi_free_irq(vsi);
6215err_setup_rx:
6216	ice_vsi_free_rx_rings(vsi);
6217err_setup_tx:
6218	ice_vsi_free_tx_rings(vsi);
6219
6220	return err;
6221}
6222
6223/**
6224 * ice_vsi_release_all - Delete all VSIs
6225 * @pf: PF from which all VSIs are being removed
6226 */
6227static void ice_vsi_release_all(struct ice_pf *pf)
6228{
6229	int err, i;
6230
6231	if (!pf->vsi)
6232		return;
6233
6234	ice_for_each_vsi(pf, i) {
6235		if (!pf->vsi[i])
6236			continue;
6237
6238		err = ice_vsi_release(pf->vsi[i]);
6239		if (err)
6240			dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6241				i, err, pf->vsi[i]->vsi_num);
6242	}
6243}
6244
6245/**
6246 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6247 * @pf: pointer to the PF instance
6248 * @type: VSI type to rebuild
6249 *
6250 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6251 */
6252static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6253{
6254	struct device *dev = ice_pf_to_dev(pf);
6255	enum ice_status status;
6256	int i, err;
6257
6258	ice_for_each_vsi(pf, i) {
6259		struct ice_vsi *vsi = pf->vsi[i];
6260
6261		if (!vsi || vsi->type != type)
6262			continue;
6263
6264		/* rebuild the VSI */
6265		err = ice_vsi_rebuild(vsi, true);
6266		if (err) {
6267			dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6268				err, vsi->idx, ice_vsi_type_str(type));
6269			return err;
6270		}
6271
6272		/* replay filters for the VSI */
6273		status = ice_replay_vsi(&pf->hw, vsi->idx);
6274		if (status) {
6275			dev_err(dev, "replay VSI failed, status %s, VSI index %d, type %s\n",
6276				ice_stat_str(status), vsi->idx,
6277				ice_vsi_type_str(type));
6278			return -EIO;
6279		}
6280
6281		/* Re-map HW VSI number, using VSI handle that has been
6282		 * previously validated in ice_replay_vsi() call above
6283		 */
6284		vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6285
6286		/* enable the VSI */
6287		err = ice_ena_vsi(vsi, false);
6288		if (err) {
6289			dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6290				err, vsi->idx, ice_vsi_type_str(type));
6291			return err;
6292		}
6293
6294		dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6295			 ice_vsi_type_str(type));
6296	}
6297
6298	return 0;
6299}
6300
6301/**
6302 * ice_update_pf_netdev_link - Update PF netdev link status
6303 * @pf: pointer to the PF instance
6304 */
6305static void ice_update_pf_netdev_link(struct ice_pf *pf)
6306{
6307	bool link_up;
6308	int i;
6309
6310	ice_for_each_vsi(pf, i) {
6311		struct ice_vsi *vsi = pf->vsi[i];
6312
6313		if (!vsi || vsi->type != ICE_VSI_PF)
6314			return;
6315
6316		ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6317		if (link_up) {
6318			netif_carrier_on(pf->vsi[i]->netdev);
6319			netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6320		} else {
6321			netif_carrier_off(pf->vsi[i]->netdev);
6322			netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6323		}
6324	}
6325}
6326
6327/**
6328 * ice_rebuild - rebuild after reset
6329 * @pf: PF to rebuild
6330 * @reset_type: type of reset
6331 *
6332 * Do not rebuild VF VSI in this flow because that is already handled via
6333 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6334 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6335 * to reset/rebuild all the VF VSI twice.
6336 */
6337static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6338{
6339	struct device *dev = ice_pf_to_dev(pf);
6340	struct ice_hw *hw = &pf->hw;
6341	enum ice_status ret;
6342	int err;
6343
6344	if (test_bit(ICE_DOWN, pf->state))
6345		goto clear_recovery;
6346
6347	dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6348
6349	ret = ice_init_all_ctrlq(hw);
6350	if (ret) {
6351		dev_err(dev, "control queues init failed %s\n",
6352			ice_stat_str(ret));
6353		goto err_init_ctrlq;
6354	}
6355
6356	/* if DDP was previously loaded successfully */
6357	if (!ice_is_safe_mode(pf)) {
6358		/* reload the SW DB of filter tables */
6359		if (reset_type == ICE_RESET_PFR)
6360			ice_fill_blk_tbls(hw);
6361		else
6362			/* Reload DDP Package after CORER/GLOBR reset */
6363			ice_load_pkg(NULL, pf);
6364	}
6365
6366	ret = ice_clear_pf_cfg(hw);
6367	if (ret) {
6368		dev_err(dev, "clear PF configuration failed %s\n",
6369			ice_stat_str(ret));
6370		goto err_init_ctrlq;
6371	}
6372
6373	if (pf->first_sw->dflt_vsi_ena)
6374		dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
6375	/* clear the default VSI configuration if it exists */
6376	pf->first_sw->dflt_vsi = NULL;
6377	pf->first_sw->dflt_vsi_ena = false;
6378
6379	ice_clear_pxe_mode(hw);
6380
6381	ret = ice_init_nvm(hw);
6382	if (ret) {
6383		dev_err(dev, "ice_init_nvm failed %s\n", ice_stat_str(ret));
6384		goto err_init_ctrlq;
6385	}
6386
6387	ret = ice_get_caps(hw);
6388	if (ret) {
6389		dev_err(dev, "ice_get_caps failed %s\n", ice_stat_str(ret));
6390		goto err_init_ctrlq;
6391	}
6392
6393	ret = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
6394	if (ret) {
6395		dev_err(dev, "set_mac_cfg failed %s\n", ice_stat_str(ret));
6396		goto err_init_ctrlq;
6397	}
6398
6399	err = ice_sched_init_port(hw->port_info);
6400	if (err)
6401		goto err_sched_init_port;
6402
6403	/* start misc vector */
6404	err = ice_req_irq_msix_misc(pf);
6405	if (err) {
6406		dev_err(dev, "misc vector setup failed: %d\n", err);
6407		goto err_sched_init_port;
6408	}
6409
6410	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6411		wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
6412		if (!rd32(hw, PFQF_FD_SIZE)) {
6413			u16 unused, guar, b_effort;
6414
6415			guar = hw->func_caps.fd_fltr_guar;
6416			b_effort = hw->func_caps.fd_fltr_best_effort;
6417
6418			/* force guaranteed filter pool for PF */
6419			ice_alloc_fd_guar_item(hw, &unused, guar);
6420			/* force shared filter pool for PF */
6421			ice_alloc_fd_shrd_item(hw, &unused, b_effort);
6422		}
6423	}
6424
6425	if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
6426		ice_dcb_rebuild(pf);
6427
6428	/* If the PF previously had enabled PTP, PTP init needs to happen before
6429	 * the VSI rebuild. If not, this causes the PTP link status events to
6430	 * fail.
6431	 */
6432	if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
6433		ice_ptp_init(pf);
6434
6435	/* rebuild PF VSI */
6436	err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
6437	if (err) {
6438		dev_err(dev, "PF VSI rebuild failed: %d\n", err);
6439		goto err_vsi_rebuild;
6440	}
6441
6442	/* If Flow Director is active */
6443	if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
6444		err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
6445		if (err) {
6446			dev_err(dev, "control VSI rebuild failed: %d\n", err);
6447			goto err_vsi_rebuild;
6448		}
6449
6450		/* replay HW Flow Director recipes */
6451		if (hw->fdir_prof)
6452			ice_fdir_replay_flows(hw);
6453
6454		/* replay Flow Director filters */
6455		ice_fdir_replay_fltrs(pf);
6456
6457		ice_rebuild_arfs(pf);
6458	}
6459
6460	ice_update_pf_netdev_link(pf);
6461
6462	/* tell the firmware we are up */
6463	ret = ice_send_version(pf);
6464	if (ret) {
6465		dev_err(dev, "Rebuild failed due to error sending driver version: %s\n",
6466			ice_stat_str(ret));
6467		goto err_vsi_rebuild;
6468	}
6469
6470	ice_replay_post(hw);
6471
6472	/* if we get here, reset flow is successful */
6473	clear_bit(ICE_RESET_FAILED, pf->state);
6474
6475	ice_plug_aux_dev(pf);
6476	return;
6477
6478err_vsi_rebuild:
6479err_sched_init_port:
6480	ice_sched_cleanup_all(hw);
6481err_init_ctrlq:
6482	ice_shutdown_all_ctrlq(hw);
6483	set_bit(ICE_RESET_FAILED, pf->state);
6484clear_recovery:
6485	/* set this bit in PF state to control service task scheduling */
6486	set_bit(ICE_NEEDS_RESTART, pf->state);
6487	dev_err(dev, "Rebuild failed, unload and reload driver\n");
6488}
6489
6490/**
6491 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
6492 * @vsi: Pointer to VSI structure
6493 */
6494static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
6495{
6496	if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
6497		return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
6498	else
6499		return ICE_RXBUF_3072;
6500}
6501
6502/**
6503 * ice_change_mtu - NDO callback to change the MTU
6504 * @netdev: network interface device structure
6505 * @new_mtu: new value for maximum frame size
6506 *
6507 * Returns 0 on success, negative on failure
6508 */
6509static int ice_change_mtu(struct net_device *netdev, int new_mtu)
6510{
6511	struct ice_netdev_priv *np = netdev_priv(netdev);
6512	struct ice_vsi *vsi = np->vsi;
6513	struct ice_pf *pf = vsi->back;
6514	struct iidc_event *event;
6515	u8 count = 0;
6516	int err = 0;
6517
6518	if (new_mtu == (int)netdev->mtu) {
6519		netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
6520		return 0;
6521	}
6522
6523	if (ice_is_xdp_ena_vsi(vsi)) {
6524		int frame_size = ice_max_xdp_frame_size(vsi);
6525
6526		if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
6527			netdev_err(netdev, "max MTU for XDP usage is %d\n",
6528				   frame_size - ICE_ETH_PKT_HDR_PAD);
6529			return -EINVAL;
6530		}
6531	}
6532
 
 
 
 
 
 
 
 
 
6533	/* if a reset is in progress, wait for some time for it to complete */
6534	do {
6535		if (ice_is_reset_in_progress(pf->state)) {
6536			count++;
6537			usleep_range(1000, 2000);
6538		} else {
6539			break;
6540		}
6541
6542	} while (count < 100);
6543
6544	if (count == 100) {
6545		netdev_err(netdev, "can't change MTU. Device is busy\n");
6546		return -EBUSY;
6547	}
6548
6549	event = kzalloc(sizeof(*event), GFP_KERNEL);
6550	if (!event)
6551		return -ENOMEM;
6552
6553	set_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6554	ice_send_event_to_aux(pf, event);
6555	clear_bit(IIDC_EVENT_BEFORE_MTU_CHANGE, event->type);
6556
6557	netdev->mtu = (unsigned int)new_mtu;
6558
6559	/* if VSI is up, bring it down and then back up */
6560	if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
 
 
6561		err = ice_down(vsi);
6562		if (err) {
6563			netdev_err(netdev, "change MTU if_down err %d\n", err);
6564			goto event_after;
6565		}
6566
6567		err = ice_up(vsi);
6568		if (err) {
6569			netdev_err(netdev, "change MTU if_up err %d\n", err);
6570			goto event_after;
6571		}
6572	}
6573
6574	netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
6575event_after:
6576	set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
6577	ice_send_event_to_aux(pf, event);
6578	kfree(event);
6579
6580	return err;
6581}
6582
6583/**
6584 * ice_do_ioctl - Access the hwtstamp interface
6585 * @netdev: network interface device structure
6586 * @ifr: interface request data
6587 * @cmd: ioctl command
6588 */
6589static int ice_do_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6590{
6591	struct ice_netdev_priv *np = netdev_priv(netdev);
6592	struct ice_pf *pf = np->vsi->back;
6593
6594	switch (cmd) {
6595	case SIOCGHWTSTAMP:
6596		return ice_ptp_get_ts_config(pf, ifr);
6597	case SIOCSHWTSTAMP:
6598		return ice_ptp_set_ts_config(pf, ifr);
6599	default:
6600		return -EOPNOTSUPP;
6601	}
6602}
6603
6604/**
6605 * ice_aq_str - convert AQ err code to a string
6606 * @aq_err: the AQ error code to convert
6607 */
6608const char *ice_aq_str(enum ice_aq_err aq_err)
6609{
6610	switch (aq_err) {
6611	case ICE_AQ_RC_OK:
6612		return "OK";
6613	case ICE_AQ_RC_EPERM:
6614		return "ICE_AQ_RC_EPERM";
6615	case ICE_AQ_RC_ENOENT:
6616		return "ICE_AQ_RC_ENOENT";
6617	case ICE_AQ_RC_ENOMEM:
6618		return "ICE_AQ_RC_ENOMEM";
6619	case ICE_AQ_RC_EBUSY:
6620		return "ICE_AQ_RC_EBUSY";
6621	case ICE_AQ_RC_EEXIST:
6622		return "ICE_AQ_RC_EEXIST";
6623	case ICE_AQ_RC_EINVAL:
6624		return "ICE_AQ_RC_EINVAL";
6625	case ICE_AQ_RC_ENOSPC:
6626		return "ICE_AQ_RC_ENOSPC";
6627	case ICE_AQ_RC_ENOSYS:
6628		return "ICE_AQ_RC_ENOSYS";
6629	case ICE_AQ_RC_EMODE:
6630		return "ICE_AQ_RC_EMODE";
6631	case ICE_AQ_RC_ENOSEC:
6632		return "ICE_AQ_RC_ENOSEC";
6633	case ICE_AQ_RC_EBADSIG:
6634		return "ICE_AQ_RC_EBADSIG";
6635	case ICE_AQ_RC_ESVN:
6636		return "ICE_AQ_RC_ESVN";
6637	case ICE_AQ_RC_EBADMAN:
6638		return "ICE_AQ_RC_EBADMAN";
6639	case ICE_AQ_RC_EBADBUF:
6640		return "ICE_AQ_RC_EBADBUF";
6641	}
6642
6643	return "ICE_AQ_RC_UNKNOWN";
6644}
6645
6646/**
6647 * ice_stat_str - convert status err code to a string
6648 * @stat_err: the status error code to convert
6649 */
6650const char *ice_stat_str(enum ice_status stat_err)
6651{
6652	switch (stat_err) {
6653	case ICE_SUCCESS:
6654		return "OK";
6655	case ICE_ERR_PARAM:
6656		return "ICE_ERR_PARAM";
6657	case ICE_ERR_NOT_IMPL:
6658		return "ICE_ERR_NOT_IMPL";
6659	case ICE_ERR_NOT_READY:
6660		return "ICE_ERR_NOT_READY";
6661	case ICE_ERR_NOT_SUPPORTED:
6662		return "ICE_ERR_NOT_SUPPORTED";
6663	case ICE_ERR_BAD_PTR:
6664		return "ICE_ERR_BAD_PTR";
6665	case ICE_ERR_INVAL_SIZE:
6666		return "ICE_ERR_INVAL_SIZE";
6667	case ICE_ERR_DEVICE_NOT_SUPPORTED:
6668		return "ICE_ERR_DEVICE_NOT_SUPPORTED";
6669	case ICE_ERR_RESET_FAILED:
6670		return "ICE_ERR_RESET_FAILED";
6671	case ICE_ERR_FW_API_VER:
6672		return "ICE_ERR_FW_API_VER";
6673	case ICE_ERR_NO_MEMORY:
6674		return "ICE_ERR_NO_MEMORY";
6675	case ICE_ERR_CFG:
6676		return "ICE_ERR_CFG";
6677	case ICE_ERR_OUT_OF_RANGE:
6678		return "ICE_ERR_OUT_OF_RANGE";
6679	case ICE_ERR_ALREADY_EXISTS:
6680		return "ICE_ERR_ALREADY_EXISTS";
6681	case ICE_ERR_NVM:
6682		return "ICE_ERR_NVM";
6683	case ICE_ERR_NVM_CHECKSUM:
6684		return "ICE_ERR_NVM_CHECKSUM";
6685	case ICE_ERR_BUF_TOO_SHORT:
6686		return "ICE_ERR_BUF_TOO_SHORT";
6687	case ICE_ERR_NVM_BLANK_MODE:
6688		return "ICE_ERR_NVM_BLANK_MODE";
6689	case ICE_ERR_IN_USE:
6690		return "ICE_ERR_IN_USE";
6691	case ICE_ERR_MAX_LIMIT:
6692		return "ICE_ERR_MAX_LIMIT";
6693	case ICE_ERR_RESET_ONGOING:
6694		return "ICE_ERR_RESET_ONGOING";
6695	case ICE_ERR_HW_TABLE:
6696		return "ICE_ERR_HW_TABLE";
6697	case ICE_ERR_DOES_NOT_EXIST:
6698		return "ICE_ERR_DOES_NOT_EXIST";
6699	case ICE_ERR_FW_DDP_MISMATCH:
6700		return "ICE_ERR_FW_DDP_MISMATCH";
6701	case ICE_ERR_AQ_ERROR:
6702		return "ICE_ERR_AQ_ERROR";
6703	case ICE_ERR_AQ_TIMEOUT:
6704		return "ICE_ERR_AQ_TIMEOUT";
6705	case ICE_ERR_AQ_FULL:
6706		return "ICE_ERR_AQ_FULL";
6707	case ICE_ERR_AQ_NO_WORK:
6708		return "ICE_ERR_AQ_NO_WORK";
6709	case ICE_ERR_AQ_EMPTY:
6710		return "ICE_ERR_AQ_EMPTY";
6711	case ICE_ERR_AQ_FW_CRITICAL:
6712		return "ICE_ERR_AQ_FW_CRITICAL";
6713	}
6714
6715	return "ICE_ERR_UNKNOWN";
6716}
6717
6718/**
6719 * ice_set_rss_lut - Set RSS LUT
6720 * @vsi: Pointer to VSI structure
 
6721 * @lut: Lookup table
6722 * @lut_size: Lookup table size
6723 *
6724 * Returns 0 on success, negative on failure
6725 */
6726int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6727{
6728	struct ice_aq_get_set_rss_lut_params params = {};
6729	struct ice_hw *hw = &vsi->back->hw;
6730	enum ice_status status;
 
6731
6732	if (!lut)
6733		return -EINVAL;
 
 
6734
6735	params.vsi_handle = vsi->idx;
6736	params.lut_size = lut_size;
6737	params.lut_type = vsi->rss_lut_type;
6738	params.lut = lut;
6739
6740	status = ice_aq_set_rss_lut(hw, &params);
6741	if (status) {
6742		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %s aq_err %s\n",
6743			ice_stat_str(status),
6744			ice_aq_str(hw->adminq.sq_last_status));
6745		return -EIO;
6746	}
6747
6748	return 0;
6749}
6750
6751/**
6752 * ice_set_rss_key - Set RSS key
6753 * @vsi: Pointer to the VSI structure
6754 * @seed: RSS hash seed
6755 *
6756 * Returns 0 on success, negative on failure
6757 */
6758int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
6759{
6760	struct ice_hw *hw = &vsi->back->hw;
6761	enum ice_status status;
6762
6763	if (!seed)
6764		return -EINVAL;
6765
6766	status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6767	if (status) {
6768		dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %s aq_err %s\n",
6769			ice_stat_str(status),
6770			ice_aq_str(hw->adminq.sq_last_status));
6771		return -EIO;
6772	}
6773
6774	return 0;
6775}
6776
6777/**
6778 * ice_get_rss_lut - Get RSS LUT
6779 * @vsi: Pointer to VSI structure
 
6780 * @lut: Buffer to store the lookup table entries
6781 * @lut_size: Size of buffer to store the lookup table entries
6782 *
6783 * Returns 0 on success, negative on failure
6784 */
6785int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
6786{
6787	struct ice_aq_get_set_rss_lut_params params = {};
6788	struct ice_hw *hw = &vsi->back->hw;
6789	enum ice_status status;
 
6790
6791	if (!lut)
6792		return -EINVAL;
 
 
6793
6794	params.vsi_handle = vsi->idx;
6795	params.lut_size = lut_size;
6796	params.lut_type = vsi->rss_lut_type;
6797	params.lut = lut;
6798
6799	status = ice_aq_get_rss_lut(hw, &params);
6800	if (status) {
6801		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %s aq_err %s\n",
6802			ice_stat_str(status),
6803			ice_aq_str(hw->adminq.sq_last_status));
6804		return -EIO;
6805	}
6806
6807	return 0;
6808}
6809
6810/**
6811 * ice_get_rss_key - Get RSS key
6812 * @vsi: Pointer to VSI structure
6813 * @seed: Buffer to store the key in
6814 *
6815 * Returns 0 on success, negative on failure
6816 */
6817int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
6818{
6819	struct ice_hw *hw = &vsi->back->hw;
6820	enum ice_status status;
6821
6822	if (!seed)
6823		return -EINVAL;
6824
6825	status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
6826	if (status) {
6827		dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %s aq_err %s\n",
6828			ice_stat_str(status),
6829			ice_aq_str(hw->adminq.sq_last_status));
6830		return -EIO;
6831	}
6832
6833	return 0;
6834}
6835
6836/**
6837 * ice_bridge_getlink - Get the hardware bridge mode
6838 * @skb: skb buff
6839 * @pid: process ID
6840 * @seq: RTNL message seq
6841 * @dev: the netdev being configured
6842 * @filter_mask: filter mask passed in
6843 * @nlflags: netlink flags passed in
6844 *
6845 * Return the bridge mode (VEB/VEPA)
6846 */
6847static int
6848ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
6849		   struct net_device *dev, u32 filter_mask, int nlflags)
6850{
6851	struct ice_netdev_priv *np = netdev_priv(dev);
6852	struct ice_vsi *vsi = np->vsi;
6853	struct ice_pf *pf = vsi->back;
6854	u16 bmode;
6855
6856	bmode = pf->first_sw->bridge_mode;
6857
6858	return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
6859				       filter_mask, NULL);
6860}
6861
6862/**
6863 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
6864 * @vsi: Pointer to VSI structure
6865 * @bmode: Hardware bridge mode (VEB/VEPA)
6866 *
6867 * Returns 0 on success, negative on failure
6868 */
6869static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
6870{
6871	struct ice_aqc_vsi_props *vsi_props;
6872	struct ice_hw *hw = &vsi->back->hw;
6873	struct ice_vsi_ctx *ctxt;
6874	enum ice_status status;
6875	int ret = 0;
6876
6877	vsi_props = &vsi->info;
6878
6879	ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
6880	if (!ctxt)
6881		return -ENOMEM;
6882
6883	ctxt->info = vsi->info;
6884
6885	if (bmode == BRIDGE_MODE_VEB)
6886		/* change from VEPA to VEB mode */
6887		ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6888	else
6889		/* change from VEB to VEPA mode */
6890		ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
6891	ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
6892
6893	status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
6894	if (status) {
6895		dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %s aq_err %s\n",
6896			bmode, ice_stat_str(status),
6897			ice_aq_str(hw->adminq.sq_last_status));
6898		ret = -EIO;
6899		goto out;
6900	}
6901	/* Update sw flags for book keeping */
6902	vsi_props->sw_flags = ctxt->info.sw_flags;
6903
6904out:
6905	kfree(ctxt);
6906	return ret;
6907}
6908
6909/**
6910 * ice_bridge_setlink - Set the hardware bridge mode
6911 * @dev: the netdev being configured
6912 * @nlh: RTNL message
6913 * @flags: bridge setlink flags
6914 * @extack: netlink extended ack
6915 *
6916 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
6917 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
6918 * not already set for all VSIs connected to this switch. And also update the
6919 * unicast switch filter rules for the corresponding switch of the netdev.
6920 */
6921static int
6922ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
6923		   u16 __always_unused flags,
6924		   struct netlink_ext_ack __always_unused *extack)
6925{
6926	struct ice_netdev_priv *np = netdev_priv(dev);
6927	struct ice_pf *pf = np->vsi->back;
6928	struct nlattr *attr, *br_spec;
6929	struct ice_hw *hw = &pf->hw;
6930	enum ice_status status;
6931	struct ice_sw *pf_sw;
6932	int rem, v, err = 0;
6933
6934	pf_sw = pf->first_sw;
6935	/* find the attribute in the netlink message */
6936	br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
6937
6938	nla_for_each_nested(attr, br_spec, rem) {
6939		__u16 mode;
6940
6941		if (nla_type(attr) != IFLA_BRIDGE_MODE)
6942			continue;
6943		mode = nla_get_u16(attr);
6944		if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
6945			return -EINVAL;
6946		/* Continue  if bridge mode is not being flipped */
6947		if (mode == pf_sw->bridge_mode)
6948			continue;
6949		/* Iterates through the PF VSI list and update the loopback
6950		 * mode of the VSI
6951		 */
6952		ice_for_each_vsi(pf, v) {
6953			if (!pf->vsi[v])
6954				continue;
6955			err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
6956			if (err)
6957				return err;
6958		}
6959
6960		hw->evb_veb = (mode == BRIDGE_MODE_VEB);
6961		/* Update the unicast switch filter rules for the corresponding
6962		 * switch of the netdev
6963		 */
6964		status = ice_update_sw_rule_bridge_mode(hw);
6965		if (status) {
6966			netdev_err(dev, "switch rule update failed, mode = %d err %s aq_err %s\n",
6967				   mode, ice_stat_str(status),
6968				   ice_aq_str(hw->adminq.sq_last_status));
6969			/* revert hw->evb_veb */
6970			hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
6971			return -EIO;
6972		}
6973
6974		pf_sw->bridge_mode = mode;
6975	}
6976
6977	return 0;
6978}
6979
6980/**
6981 * ice_tx_timeout - Respond to a Tx Hang
6982 * @netdev: network interface device structure
6983 * @txqueue: Tx queue
6984 */
6985static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
6986{
6987	struct ice_netdev_priv *np = netdev_priv(netdev);
6988	struct ice_ring *tx_ring = NULL;
6989	struct ice_vsi *vsi = np->vsi;
6990	struct ice_pf *pf = vsi->back;
6991	u32 i;
6992
6993	pf->tx_timeout_count++;
6994
6995	/* Check if PFC is enabled for the TC to which the queue belongs
6996	 * to. If yes then Tx timeout is not caused by a hung queue, no
6997	 * need to reset and rebuild
6998	 */
6999	if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7000		dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7001			 txqueue);
7002		return;
7003	}
7004
7005	/* now that we have an index, find the tx_ring struct */
7006	for (i = 0; i < vsi->num_txq; i++)
7007		if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7008			if (txqueue == vsi->tx_rings[i]->q_index) {
7009				tx_ring = vsi->tx_rings[i];
7010				break;
7011			}
7012
7013	/* Reset recovery level if enough time has elapsed after last timeout.
7014	 * Also ensure no new reset action happens before next timeout period.
7015	 */
7016	if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7017		pf->tx_timeout_recovery_level = 1;
7018	else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7019				       netdev->watchdog_timeo)))
7020		return;
7021
7022	if (tx_ring) {
7023		struct ice_hw *hw = &pf->hw;
7024		u32 head, val = 0;
7025
7026		head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7027			QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7028		/* Read interrupt register */
7029		val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7030
7031		netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7032			    vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7033			    head, tx_ring->next_to_use, val);
7034	}
7035
7036	pf->tx_timeout_last_recovery = jiffies;
7037	netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7038		    pf->tx_timeout_recovery_level, txqueue);
7039
7040	switch (pf->tx_timeout_recovery_level) {
7041	case 1:
7042		set_bit(ICE_PFR_REQ, pf->state);
7043		break;
7044	case 2:
7045		set_bit(ICE_CORER_REQ, pf->state);
7046		break;
7047	case 3:
7048		set_bit(ICE_GLOBR_REQ, pf->state);
7049		break;
7050	default:
7051		netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7052		set_bit(ICE_DOWN, pf->state);
7053		set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7054		set_bit(ICE_SERVICE_DIS, pf->state);
7055		break;
7056	}
7057
7058	ice_service_task_schedule(pf);
7059	pf->tx_timeout_recovery_level++;
7060}
7061
7062/**
7063 * ice_open - Called when a network interface becomes active
7064 * @netdev: network interface device structure
7065 *
7066 * The open entry point is called when a network interface is made
7067 * active by the system (IFF_UP). At this point all resources needed
7068 * for transmit and receive operations are allocated, the interrupt
7069 * handler is registered with the OS, the netdev watchdog is enabled,
7070 * and the stack is notified that the interface is ready.
7071 *
7072 * Returns 0 on success, negative value on failure
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7073 */
7074int ice_open(struct net_device *netdev)
 
7075{
7076	struct ice_netdev_priv *np = netdev_priv(netdev);
7077	struct ice_pf *pf = np->vsi->back;
 
 
 
 
7078
7079	if (ice_is_reset_in_progress(pf->state)) {
7080		netdev_err(netdev, "can't open net device while reset is in progress");
7081		return -EBUSY;
 
 
7082	}
7083
7084	return ice_open_internal(netdev);
 
 
 
7085}
7086
7087/**
7088 * ice_open_internal - Called when a network interface becomes active
7089 * @netdev: network interface device structure
7090 *
7091 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
7092 * handling routine
 
 
 
7093 *
7094 * Returns 0 on success, negative value on failure
7095 */
7096int ice_open_internal(struct net_device *netdev)
7097{
7098	struct ice_netdev_priv *np = netdev_priv(netdev);
7099	struct ice_vsi *vsi = np->vsi;
7100	struct ice_pf *pf = vsi->back;
7101	struct ice_port_info *pi;
7102	enum ice_status status;
7103	int err;
7104
7105	if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
7106		netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
7107		return -EIO;
7108	}
7109
 
 
 
 
 
7110	netif_carrier_off(netdev);
7111
7112	pi = vsi->port_info;
7113	status = ice_update_link_info(pi);
7114	if (status) {
7115		netdev_err(netdev, "Failed to get link info, error %s\n",
7116			   ice_stat_str(status));
7117		return -EIO;
7118	}
7119
7120	ice_check_module_power(pf, pi->phy.link_info.link_cfg_err);
7121
7122	/* Set PHY if there is media, otherwise, turn off PHY */
7123	if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
7124		clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7125		if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
7126			err = ice_init_phy_user_cfg(pi);
7127			if (err) {
7128				netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
7129					   err);
7130				return err;
7131			}
7132		}
7133
7134		err = ice_configure_phy(vsi);
7135		if (err) {
7136			netdev_err(netdev, "Failed to set physical link up, error %d\n",
7137				   err);
7138			return err;
7139		}
7140	} else {
7141		set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
7142		ice_set_link(vsi, false);
 
 
 
 
 
7143	}
7144
7145	err = ice_vsi_open(vsi);
7146	if (err)
7147		netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
7148			   vsi->vsi_num, vsi->vsw->sw_id);
7149
7150	/* Update existing tunnels information */
7151	udp_tunnel_get_rx_info(netdev);
7152
7153	return err;
7154}
7155
7156/**
7157 * ice_stop - Disables a network interface
7158 * @netdev: network interface device structure
7159 *
7160 * The stop entry point is called when an interface is de-activated by the OS,
7161 * and the netdevice enters the DOWN state. The hardware is still under the
7162 * driver's control, but the netdev interface is disabled.
7163 *
7164 * Returns success only - not allowed to fail
7165 */
7166int ice_stop(struct net_device *netdev)
7167{
7168	struct ice_netdev_priv *np = netdev_priv(netdev);
7169	struct ice_vsi *vsi = np->vsi;
7170	struct ice_pf *pf = vsi->back;
7171
7172	if (ice_is_reset_in_progress(pf->state)) {
7173		netdev_err(netdev, "can't stop net device while reset is in progress");
7174		return -EBUSY;
7175	}
7176
7177	ice_vsi_close(vsi);
7178
7179	return 0;
7180}
7181
7182/**
7183 * ice_features_check - Validate encapsulated packet conforms to limits
7184 * @skb: skb buffer
7185 * @netdev: This port's netdev
7186 * @features: Offload features that the stack believes apply
7187 */
7188static netdev_features_t
7189ice_features_check(struct sk_buff *skb,
7190		   struct net_device __always_unused *netdev,
7191		   netdev_features_t features)
7192{
7193	size_t len;
7194
7195	/* No point in doing any of this if neither checksum nor GSO are
7196	 * being requested for this frame. We can rule out both by just
7197	 * checking for CHECKSUM_PARTIAL
7198	 */
7199	if (skb->ip_summed != CHECKSUM_PARTIAL)
7200		return features;
7201
7202	/* We cannot support GSO if the MSS is going to be less than
7203	 * 64 bytes. If it is then we need to drop support for GSO.
7204	 */
7205	if (skb_is_gso(skb) && (skb_shinfo(skb)->gso_size < 64))
7206		features &= ~NETIF_F_GSO_MASK;
7207
7208	len = skb_network_header(skb) - skb->data;
7209	if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
7210		goto out_rm_features;
7211
7212	len = skb_transport_header(skb) - skb_network_header(skb);
7213	if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7214		goto out_rm_features;
7215
7216	if (skb->encapsulation) {
7217		len = skb_inner_network_header(skb) - skb_transport_header(skb);
7218		if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
7219			goto out_rm_features;
7220
7221		len = skb_inner_transport_header(skb) -
7222		      skb_inner_network_header(skb);
7223		if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
7224			goto out_rm_features;
7225	}
7226
7227	return features;
7228out_rm_features:
7229	return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
7230}
7231
7232static const struct net_device_ops ice_netdev_safe_mode_ops = {
7233	.ndo_open = ice_open,
7234	.ndo_stop = ice_stop,
7235	.ndo_start_xmit = ice_start_xmit,
7236	.ndo_set_mac_address = ice_set_mac_address,
7237	.ndo_validate_addr = eth_validate_addr,
7238	.ndo_change_mtu = ice_change_mtu,
7239	.ndo_get_stats64 = ice_get_stats64,
7240	.ndo_tx_timeout = ice_tx_timeout,
7241	.ndo_bpf = ice_xdp_safe_mode,
7242};
7243
7244static const struct net_device_ops ice_netdev_ops = {
7245	.ndo_open = ice_open,
7246	.ndo_stop = ice_stop,
7247	.ndo_start_xmit = ice_start_xmit,
7248	.ndo_features_check = ice_features_check,
7249	.ndo_set_rx_mode = ice_set_rx_mode,
7250	.ndo_set_mac_address = ice_set_mac_address,
7251	.ndo_validate_addr = eth_validate_addr,
7252	.ndo_change_mtu = ice_change_mtu,
7253	.ndo_get_stats64 = ice_get_stats64,
7254	.ndo_set_tx_maxrate = ice_set_tx_maxrate,
7255	.ndo_do_ioctl = ice_do_ioctl,
7256	.ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
7257	.ndo_set_vf_mac = ice_set_vf_mac,
7258	.ndo_get_vf_config = ice_get_vf_cfg,
7259	.ndo_set_vf_trust = ice_set_vf_trust,
7260	.ndo_set_vf_vlan = ice_set_vf_port_vlan,
7261	.ndo_set_vf_link_state = ice_set_vf_link_state,
7262	.ndo_get_vf_stats = ice_get_vf_stats,
7263	.ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
7264	.ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
7265	.ndo_set_features = ice_set_features,
7266	.ndo_bridge_getlink = ice_bridge_getlink,
7267	.ndo_bridge_setlink = ice_bridge_setlink,
7268	.ndo_fdb_add = ice_fdb_add,
7269	.ndo_fdb_del = ice_fdb_del,
7270#ifdef CONFIG_RFS_ACCEL
7271	.ndo_rx_flow_steer = ice_rx_flow_steer,
7272#endif
7273	.ndo_tx_timeout = ice_tx_timeout,
7274	.ndo_bpf = ice_xdp,
7275	.ndo_xdp_xmit = ice_xdp_xmit,
7276	.ndo_xsk_wakeup = ice_xsk_wakeup,
 
 
7277};