Linux Audio

Check our new training course

Loading...
v5.9
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
 
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_SKCIPHER
  56	tristate
  57	select CRYPTO_SKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_SKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 124	select CRYPTO_AEAD2
 125	select CRYPTO_HASH2
 126	select CRYPTO_SKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139config CRYPTO_MANAGER_DISABLE_TESTS
 140	bool "Disable run-time self tests"
 141	default y
 142	help
 143	  Disable run-time self tests that normally take place at
 144	  algorithm registration.
 145
 146config CRYPTO_MANAGER_EXTRA_TESTS
 147	bool "Enable extra run-time crypto self tests"
 148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
 149	help
 150	  Enable extra run-time self tests of registered crypto algorithms,
 151	  including randomized fuzz tests.
 152
 153	  This is intended for developer use only, as these tests take much
 154	  longer to run than the normal self tests.
 155
 156config CRYPTO_GF128MUL
 157	tristate
 158
 159config CRYPTO_NULL
 160	tristate "Null algorithms"
 161	select CRYPTO_NULL2
 162	help
 163	  These are 'Null' algorithms, used by IPsec, which do nothing.
 164
 165config CRYPTO_NULL2
 166	tristate
 167	select CRYPTO_ALGAPI2
 168	select CRYPTO_SKCIPHER2
 169	select CRYPTO_HASH2
 170
 171config CRYPTO_PCRYPT
 172	tristate "Parallel crypto engine"
 173	depends on SMP
 174	select PADATA
 175	select CRYPTO_MANAGER
 176	select CRYPTO_AEAD
 177	help
 178	  This converts an arbitrary crypto algorithm into a parallel
 179	  algorithm that executes in kernel threads.
 180
 181config CRYPTO_CRYPTD
 182	tristate "Software async crypto daemon"
 183	select CRYPTO_SKCIPHER
 184	select CRYPTO_HASH
 185	select CRYPTO_MANAGER
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  converts an arbitrary synchronous software crypto algorithm
 189	  into an asynchronous algorithm that executes in a kernel thread.
 190
 191config CRYPTO_AUTHENC
 192	tristate "Authenc support"
 193	select CRYPTO_AEAD
 194	select CRYPTO_SKCIPHER
 195	select CRYPTO_MANAGER
 196	select CRYPTO_HASH
 197	select CRYPTO_NULL
 198	help
 199	  Authenc: Combined mode wrapper for IPsec.
 200	  This is required for IPSec.
 
 201
 202config CRYPTO_TEST
 203	tristate "Testing module"
 204	depends on m
 205	select CRYPTO_MANAGER
 206	help
 207	  Quick & dirty crypto test module.
 208
 209config CRYPTO_SIMD
 210	tristate
 211	select CRYPTO_CRYPTD
 212
 213config CRYPTO_GLUE_HELPER_X86
 214	tristate
 215	depends on X86
 216	select CRYPTO_SKCIPHER
 217
 218config CRYPTO_ENGINE
 219	tristate
 220
 221comment "Public-key cryptography"
 
 
 222
 223config CRYPTO_RSA
 224	tristate "RSA algorithm"
 225	select CRYPTO_AKCIPHER
 226	select CRYPTO_MANAGER
 227	select MPILIB
 228	select ASN1
 229	help
 230	  Generic implementation of the RSA public key algorithm.
 231
 232config CRYPTO_DH
 233	tristate "Diffie-Hellman algorithm"
 234	select CRYPTO_KPP
 235	select MPILIB
 236	help
 237	  Generic implementation of the Diffie-Hellman algorithm.
 
 
 
 
 
 
 
 
 
 
 
 
 
 238
 239config CRYPTO_ECC
 240	tristate
 
 241
 242config CRYPTO_ECDH
 243	tristate "ECDH algorithm"
 244	select CRYPTO_ECC
 245	select CRYPTO_KPP
 246	select CRYPTO_RNG_DEFAULT
 247	help
 248	  Generic implementation of the ECDH algorithm
 
 
 
 
 
 
 
 
 
 
 
 
 
 249
 250config CRYPTO_ECRDSA
 251	tristate "EC-RDSA (GOST 34.10) algorithm"
 252	select CRYPTO_ECC
 253	select CRYPTO_AKCIPHER
 254	select CRYPTO_STREEBOG
 255	select OID_REGISTRY
 256	select ASN1
 257	help
 258	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 259	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 260	  standard algorithms (called GOST algorithms). Only signature verification
 261	  is implemented.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262
 263config CRYPTO_CURVE25519
 264	tristate "Curve25519 algorithm"
 265	select CRYPTO_KPP
 266	select CRYPTO_LIB_CURVE25519_GENERIC
 
 
 267
 268config CRYPTO_CURVE25519_X86
 269	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
 270	depends on X86 && 64BIT
 271	select CRYPTO_LIB_CURVE25519_GENERIC
 272	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 273
 274comment "Authenticated Encryption with Associated Data"
 275
 276config CRYPTO_CCM
 277	tristate "CCM support"
 278	select CRYPTO_CTR
 279	select CRYPTO_HASH
 280	select CRYPTO_AEAD
 281	select CRYPTO_MANAGER
 282	help
 283	  Support for Counter with CBC MAC. Required for IPsec.
 284
 285config CRYPTO_GCM
 286	tristate "GCM/GMAC support"
 287	select CRYPTO_CTR
 288	select CRYPTO_AEAD
 289	select CRYPTO_GHASH
 290	select CRYPTO_NULL
 291	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 292	help
 293	  Support for Galois/Counter Mode (GCM) and Galois Message
 294	  Authentication Code (GMAC). Required for IPSec.
 295
 296config CRYPTO_CHACHA20POLY1305
 297	tristate "ChaCha20-Poly1305 AEAD support"
 298	select CRYPTO_CHACHA20
 299	select CRYPTO_POLY1305
 300	select CRYPTO_AEAD
 301	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 302	help
 303	  ChaCha20-Poly1305 AEAD support, RFC7539.
 304
 305	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 306	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 307	  IETF protocols.
 308
 309config CRYPTO_AEGIS128
 310	tristate "AEGIS-128 AEAD algorithm"
 311	select CRYPTO_AEAD
 312	select CRYPTO_AES  # for AES S-box tables
 
 
 313	help
 314	 Support for the AEGIS-128 dedicated AEAD algorithm.
 315
 316config CRYPTO_AEGIS128_SIMD
 317	bool "Support SIMD acceleration for AEGIS-128"
 318	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 319	default y
 
 320
 321config CRYPTO_AEGIS128_AESNI_SSE2
 322	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 323	depends on X86 && 64BIT
 324	select CRYPTO_AEAD
 325	select CRYPTO_SIMD
 
 
 326	help
 327	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 328
 329config CRYPTO_SEQIV
 330	tristate "Sequence Number IV Generator"
 331	select CRYPTO_AEAD
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 332	select CRYPTO_SKCIPHER
 333	select CRYPTO_NULL
 334	select CRYPTO_RNG_DEFAULT
 335	select CRYPTO_MANAGER
 336	help
 337	  This IV generator generates an IV based on a sequence number by
 338	  xoring it with a salt.  This algorithm is mainly useful for CTR
 339
 340config CRYPTO_ECHAINIV
 341	tristate "Encrypted Chain IV Generator"
 342	select CRYPTO_AEAD
 343	select CRYPTO_NULL
 344	select CRYPTO_RNG_DEFAULT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 345	select CRYPTO_MANAGER
 346	help
 347	  This IV generator generates an IV based on the encryption of
 348	  a sequence number xored with a salt.  This is the default
 349	  algorithm for CBC.
 350
 351comment "Block modes"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352
 353config CRYPTO_CBC
 354	tristate "CBC support"
 355	select CRYPTO_SKCIPHER
 356	select CRYPTO_MANAGER
 357	help
 358	  CBC: Cipher Block Chaining mode
 359	  This block cipher algorithm is required for IPSec.
 
 360
 361config CRYPTO_CFB
 362	tristate "CFB support"
 363	select CRYPTO_SKCIPHER
 364	select CRYPTO_MANAGER
 365	help
 366	  CFB: Cipher FeedBack mode
 367	  This block cipher algorithm is required for TPM2 Cryptography.
 
 368
 369config CRYPTO_CTR
 370	tristate "CTR support"
 371	select CRYPTO_SKCIPHER
 372	select CRYPTO_MANAGER
 373	help
 374	  CTR: Counter mode
 375	  This block cipher algorithm is required for IPSec.
 376
 377config CRYPTO_CTS
 378	tristate "CTS support"
 379	select CRYPTO_SKCIPHER
 380	select CRYPTO_MANAGER
 381	help
 382	  CTS: Cipher Text Stealing
 383	  This is the Cipher Text Stealing mode as described by
 384	  Section 8 of rfc2040 and referenced by rfc3962
 385	  (rfc3962 includes errata information in its Appendix A) or
 386	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 387	  This mode is required for Kerberos gss mechanism support
 388	  for AES encryption.
 389
 390	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 391
 392config CRYPTO_ECB
 393	tristate "ECB support"
 394	select CRYPTO_SKCIPHER
 395	select CRYPTO_MANAGER
 396	help
 397	  ECB: Electronic CodeBook mode
 398	  This is the simplest block cipher algorithm.  It simply encrypts
 399	  the input block by block.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400
 401config CRYPTO_LRW
 402	tristate "LRW support"
 
 403	select CRYPTO_SKCIPHER
 404	select CRYPTO_MANAGER
 405	select CRYPTO_GF128MUL
 406	help
 407	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 
 
 408	  narrow block cipher mode for dm-crypt.  Use it with cipher
 409	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 410	  The first 128, 192 or 256 bits in the key are used for AES and the
 411	  rest is used to tie each cipher block to its logical position.
 412
 
 
 413config CRYPTO_OFB
 414	tristate "OFB support"
 415	select CRYPTO_SKCIPHER
 416	select CRYPTO_MANAGER
 417	help
 418	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 
 
 419	  stream cipher. It generates keystream blocks, which are then XORed
 420	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 421	  ciphertext produces a flipped bit in the plaintext at the same
 422	  location. This property allows many error correcting codes to function
 423	  normally even when applied before encryption.
 424
 425config CRYPTO_PCBC
 426	tristate "PCBC support"
 427	select CRYPTO_SKCIPHER
 428	select CRYPTO_MANAGER
 429	help
 430	  PCBC: Propagating Cipher Block Chaining mode
 431	  This block cipher algorithm is required for RxRPC.
 432
 433config CRYPTO_XTS
 434	tristate "XTS support"
 
 
 435	select CRYPTO_SKCIPHER
 436	select CRYPTO_MANAGER
 437	select CRYPTO_ECB
 438	help
 439	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 440	  key size 256, 384 or 512 bits. This implementation currently
 441	  can't handle a sectorsize which is not a multiple of 16 bytes.
 442
 443config CRYPTO_KEYWRAP
 444	tristate "Key wrapping support"
 
 
 
 
 
 445	select CRYPTO_SKCIPHER
 446	select CRYPTO_MANAGER
 
 447	help
 448	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 449	  padding.
 
 
 
 
 450
 451config CRYPTO_NHPOLY1305
 452	tristate
 453	select CRYPTO_HASH
 454	select CRYPTO_LIB_POLY1305_GENERIC
 455
 456config CRYPTO_NHPOLY1305_SSE2
 457	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 458	depends on X86 && 64BIT
 459	select CRYPTO_NHPOLY1305
 
 
 
 
 460	help
 461	  SSE2 optimized implementation of the hash function used by the
 462	  Adiantum encryption mode.
 463
 464config CRYPTO_NHPOLY1305_AVX2
 465	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 466	depends on X86 && 64BIT
 467	select CRYPTO_NHPOLY1305
 468	help
 469	  AVX2 optimized implementation of the hash function used by the
 470	  Adiantum encryption mode.
 471
 472config CRYPTO_ADIANTUM
 473	tristate "Adiantum support"
 
 
 
 474	select CRYPTO_CHACHA20
 475	select CRYPTO_LIB_POLY1305_GENERIC
 476	select CRYPTO_NHPOLY1305
 477	select CRYPTO_MANAGER
 478	help
 479	  Adiantum is a tweakable, length-preserving encryption mode
 480	  designed for fast and secure disk encryption, especially on
 481	  CPUs without dedicated crypto instructions.  It encrypts
 482	  each sector using the XChaCha12 stream cipher, two passes of
 483	  an ε-almost-∆-universal hash function, and an invocation of
 484	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 485	  without AES instructions, Adiantum is much faster than
 486	  AES-XTS.
 487
 488	  Adiantum's security is provably reducible to that of its
 489	  underlying stream and block ciphers, subject to a security
 490	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 491	  mode, so it actually provides an even stronger notion of
 492	  security than XTS, subject to the security bound.
 
 
 
 
 493
 494	  If unsure, say N.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 495
 496config CRYPTO_ESSIV
 497	tristate "ESSIV support for block encryption"
 498	select CRYPTO_AUTHENC
 499	help
 500	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 501	  generation method that is used in some cases by fscrypt and/or
 
 502	  dm-crypt. It uses the hash of the block encryption key as the
 503	  symmetric key for a block encryption pass applied to the input
 504	  IV, making low entropy IV sources more suitable for block
 505	  encryption.
 506
 507	  This driver implements a crypto API template that can be
 508	  instantiated either as an skcipher or as an AEAD (depending on the
 509	  type of the first template argument), and which defers encryption
 510	  and decryption requests to the encapsulated cipher after applying
 511	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 512	  that the keys are presented in the same format used by the authenc
 513	  template, and that the IV appears at the end of the authenticated
 514	  associated data (AAD) region (which is how dm-crypt uses it.)
 515
 516	  Note that the use of ESSIV is not recommended for new deployments,
 517	  and so this only needs to be enabled when interoperability with
 518	  existing encrypted volumes of filesystems is required, or when
 519	  building for a particular system that requires it (e.g., when
 520	  the SoC in question has accelerated CBC but not XTS, making CBC
 521	  combined with ESSIV the only feasible mode for h/w accelerated
 522	  block encryption)
 523
 524comment "Hash modes"
 525
 526config CRYPTO_CMAC
 527	tristate "CMAC support"
 528	select CRYPTO_HASH
 529	select CRYPTO_MANAGER
 530	help
 531	  Cipher-based Message Authentication Code (CMAC) specified by
 532	  The National Institute of Standards and Technology (NIST).
 533
 534	  https://tools.ietf.org/html/rfc4493
 535	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 536
 537config CRYPTO_HMAC
 538	tristate "HMAC support"
 539	select CRYPTO_HASH
 540	select CRYPTO_MANAGER
 541	help
 542	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 543	  This is required for IPSec.
 544
 545config CRYPTO_XCBC
 546	tristate "XCBC support"
 547	select CRYPTO_HASH
 548	select CRYPTO_MANAGER
 549	help
 550	  XCBC: Keyed-Hashing with encryption algorithm
 551		https://www.ietf.org/rfc/rfc3566.txt
 552		http://csrc.nist.gov/encryption/modes/proposedmodes/
 553		 xcbc-mac/xcbc-mac-spec.pdf
 554
 555config CRYPTO_VMAC
 556	tristate "VMAC support"
 557	select CRYPTO_HASH
 558	select CRYPTO_MANAGER
 559	help
 560	  VMAC is a message authentication algorithm designed for
 561	  very high speed on 64-bit architectures.
 562
 563	  See also:
 564	  <https://fastcrypto.org/vmac>
 565
 566comment "Digest"
 567
 568config CRYPTO_CRC32C
 569	tristate "CRC32c CRC algorithm"
 570	select CRYPTO_HASH
 571	select CRC32
 572	help
 573	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 574	  by iSCSI for header and data digests and by others.
 575	  See Castagnoli93.  Module will be crc32c.
 576
 577config CRYPTO_CRC32C_INTEL
 578	tristate "CRC32c INTEL hardware acceleration"
 579	depends on X86
 580	select CRYPTO_HASH
 581	help
 582	  In Intel processor with SSE4.2 supported, the processor will
 583	  support CRC32C implementation using hardware accelerated CRC32
 584	  instruction. This option will create 'crc32c-intel' module,
 585	  which will enable any routine to use the CRC32 instruction to
 586	  gain performance compared with software implementation.
 587	  Module will be crc32c-intel.
 588
 589config CRYPTO_CRC32C_VPMSUM
 590	tristate "CRC32c CRC algorithm (powerpc64)"
 591	depends on PPC64 && ALTIVEC
 592	select CRYPTO_HASH
 593	select CRC32
 594	help
 595	  CRC32c algorithm implemented using vector polynomial multiply-sum
 596	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 597	  and newer processors for improved performance.
 598
 599
 600config CRYPTO_CRC32C_SPARC64
 601	tristate "CRC32c CRC algorithm (SPARC64)"
 602	depends on SPARC64
 603	select CRYPTO_HASH
 604	select CRC32
 605	help
 606	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 607	  when available.
 608
 609config CRYPTO_CRC32
 610	tristate "CRC32 CRC algorithm"
 611	select CRYPTO_HASH
 612	select CRC32
 613	help
 614	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 615	  Shash crypto api wrappers to crc32_le function.
 616
 617config CRYPTO_CRC32_PCLMUL
 618	tristate "CRC32 PCLMULQDQ hardware acceleration"
 619	depends on X86
 620	select CRYPTO_HASH
 621	select CRC32
 622	help
 623	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 624	  and PCLMULQDQ supported, the processor will support
 625	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 626	  instruction. This option will create 'crc32-pclmul' module,
 627	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 628	  and gain better performance as compared with the table implementation.
 629
 630config CRYPTO_CRC32_MIPS
 631	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 632	depends on MIPS_CRC_SUPPORT
 633	select CRYPTO_HASH
 634	help
 635	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 636	  instructions, when available.
 637
 638
 639config CRYPTO_XXHASH
 640	tristate "xxHash hash algorithm"
 641	select CRYPTO_HASH
 642	select XXHASH
 643	help
 644	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 645	  speeds close to RAM limits.
 646
 647config CRYPTO_BLAKE2B
 648	tristate "BLAKE2b digest algorithm"
 649	select CRYPTO_HASH
 650	help
 651	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
 652	  optimized for 64bit platforms and can produce digests of any size
 653	  between 1 to 64.  The keyed hash is also implemented.
 654
 655	  This module provides the following algorithms:
 
 656
 
 657	  - blake2b-160
 658	  - blake2b-256
 659	  - blake2b-384
 660	  - blake2b-512
 661
 662	  See https://blake2.net for further information.
 663
 664config CRYPTO_BLAKE2S
 665	tristate "BLAKE2s digest algorithm"
 666	select CRYPTO_LIB_BLAKE2S_GENERIC
 667	select CRYPTO_HASH
 668	help
 669	  Implementation of cryptographic hash function BLAKE2s
 670	  optimized for 8-32bit platforms and can produce digests of any size
 671	  between 1 to 32.  The keyed hash is also implemented.
 672
 673	  This module provides the following algorithms:
 674
 675	  - blake2s-128
 676	  - blake2s-160
 677	  - blake2s-224
 678	  - blake2s-256
 679
 680	  See https://blake2.net for further information.
 681
 682config CRYPTO_BLAKE2S_X86
 683	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
 684	depends on X86 && 64BIT
 685	select CRYPTO_LIB_BLAKE2S_GENERIC
 686	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 687
 688config CRYPTO_CRCT10DIF
 689	tristate "CRCT10DIF algorithm"
 690	select CRYPTO_HASH
 691	help
 692	  CRC T10 Data Integrity Field computation is being cast as
 693	  a crypto transform.  This allows for faster crc t10 diff
 694	  transforms to be used if they are available.
 695
 696config CRYPTO_CRCT10DIF_PCLMUL
 697	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 698	depends on X86 && 64BIT && CRC_T10DIF
 699	select CRYPTO_HASH
 700	help
 701	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 702	  CRC T10 DIF PCLMULQDQ computation can be hardware
 703	  accelerated PCLMULQDQ instruction. This option will create
 704	  'crct10dif-pclmul' module, which is faster when computing the
 705	  crct10dif checksum as compared with the generic table implementation.
 706
 707config CRYPTO_CRCT10DIF_VPMSUM
 708	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 709	depends on PPC64 && ALTIVEC && CRC_T10DIF
 710	select CRYPTO_HASH
 
 711	help
 712	  CRC10T10DIF algorithm implemented using vector polynomial
 713	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 714	  POWER8 and newer processors for improved performance.
 715
 716config CRYPTO_VPMSUM_TESTER
 717	tristate "Powerpc64 vpmsum hardware acceleration tester"
 718	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 719	help
 720	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 721	  POWER8 vpmsum instructions.
 722	  Unless you are testing these algorithms, you don't need this.
 723
 724config CRYPTO_GHASH
 725	tristate "GHASH hash function"
 726	select CRYPTO_GF128MUL
 727	select CRYPTO_HASH
 
 728	help
 729	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 730	  It is not a general-purpose cryptographic hash function.
 731
 732config CRYPTO_POLY1305
 733	tristate "Poly1305 authenticator algorithm"
 734	select CRYPTO_HASH
 735	select CRYPTO_LIB_POLY1305_GENERIC
 736	help
 737	  Poly1305 authenticator algorithm, RFC7539.
 738
 739	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 740	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 741	  in IETF protocols. This is the portable C implementation of Poly1305.
 742
 743config CRYPTO_POLY1305_X86_64
 744	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 745	depends on X86 && 64BIT
 746	select CRYPTO_LIB_POLY1305_GENERIC
 747	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 748	help
 749	  Poly1305 authenticator algorithm, RFC7539.
 750
 751	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 752	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 753	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 754	  instructions.
 755
 756config CRYPTO_POLY1305_MIPS
 757	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
 758	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
 759	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 760
 761config CRYPTO_MD4
 762	tristate "MD4 digest algorithm"
 763	select CRYPTO_HASH
 764	help
 765	  MD4 message digest algorithm (RFC1320).
 766
 767config CRYPTO_MD5
 768	tristate "MD5 digest algorithm"
 769	select CRYPTO_HASH
 770	help
 771	  MD5 message digest algorithm (RFC1321).
 772
 773config CRYPTO_MD5_OCTEON
 774	tristate "MD5 digest algorithm (OCTEON)"
 775	depends on CPU_CAVIUM_OCTEON
 776	select CRYPTO_MD5
 777	select CRYPTO_HASH
 778	help
 779	  MD5 message digest algorithm (RFC1321) implemented
 780	  using OCTEON crypto instructions, when available.
 781
 782config CRYPTO_MD5_PPC
 783	tristate "MD5 digest algorithm (PPC)"
 784	depends on PPC
 785	select CRYPTO_HASH
 786	help
 787	  MD5 message digest algorithm (RFC1321) implemented
 788	  in PPC assembler.
 789
 790config CRYPTO_MD5_SPARC64
 791	tristate "MD5 digest algorithm (SPARC64)"
 792	depends on SPARC64
 793	select CRYPTO_MD5
 794	select CRYPTO_HASH
 795	help
 796	  MD5 message digest algorithm (RFC1321) implemented
 797	  using sparc64 crypto instructions, when available.
 798
 799config CRYPTO_MICHAEL_MIC
 800	tristate "Michael MIC keyed digest algorithm"
 801	select CRYPTO_HASH
 
 802	help
 803	  Michael MIC is used for message integrity protection in TKIP
 804	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 805	  should not be used for other purposes because of the weakness
 806	  of the algorithm.
 807
 808config CRYPTO_RMD128
 809	tristate "RIPEMD-128 digest algorithm"
 810	select CRYPTO_HASH
 
 811	help
 812	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 813
 814	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 815	  be used as a secure replacement for RIPEMD. For other use cases,
 816	  RIPEMD-160 should be used.
 817
 818	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 819	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 820
 821config CRYPTO_RMD160
 822	tristate "RIPEMD-160 digest algorithm"
 823	select CRYPTO_HASH
 824	help
 825	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 826
 827	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 828	  to be used as a secure replacement for the 128-bit hash functions
 829	  MD4, MD5 and it's predecessor RIPEMD
 830	  (not to be confused with RIPEMD-128).
 831
 832	  It's speed is comparable to SHA1 and there are no known attacks
 833	  against RIPEMD-160.
 834
 835	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 836	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 837
 838config CRYPTO_RMD256
 839	tristate "RIPEMD-256 digest algorithm"
 840	select CRYPTO_HASH
 841	help
 842	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 843	  256 bit hash. It is intended for applications that require
 844	  longer hash-results, without needing a larger security level
 845	  (than RIPEMD-128).
 846
 847	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 848	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 849
 850config CRYPTO_RMD320
 851	tristate "RIPEMD-320 digest algorithm"
 852	select CRYPTO_HASH
 853	help
 854	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 855	  320 bit hash. It is intended for applications that require
 856	  longer hash-results, without needing a larger security level
 857	  (than RIPEMD-160).
 858
 859	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 860	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 861
 862config CRYPTO_SHA1
 863	tristate "SHA1 digest algorithm"
 864	select CRYPTO_HASH
 
 865	help
 866	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 867
 868config CRYPTO_SHA1_SSSE3
 869	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 870	depends on X86 && 64BIT
 871	select CRYPTO_SHA1
 872	select CRYPTO_HASH
 873	help
 874	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 875	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 876	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 877	  when available.
 878
 879config CRYPTO_SHA256_SSSE3
 880	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 881	depends on X86 && 64BIT
 882	select CRYPTO_SHA256
 883	select CRYPTO_HASH
 884	help
 885	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 886	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 887	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 888	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 889	  Instructions) when available.
 890
 891config CRYPTO_SHA512_SSSE3
 892	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 893	depends on X86 && 64BIT
 894	select CRYPTO_SHA512
 895	select CRYPTO_HASH
 896	help
 897	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 898	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 899	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 900	  version 2 (AVX2) instructions, when available.
 901
 902config CRYPTO_SHA1_OCTEON
 903	tristate "SHA1 digest algorithm (OCTEON)"
 904	depends on CPU_CAVIUM_OCTEON
 905	select CRYPTO_SHA1
 906	select CRYPTO_HASH
 907	help
 908	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 909	  using OCTEON crypto instructions, when available.
 910
 911config CRYPTO_SHA1_SPARC64
 912	tristate "SHA1 digest algorithm (SPARC64)"
 913	depends on SPARC64
 914	select CRYPTO_SHA1
 915	select CRYPTO_HASH
 916	help
 917	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 918	  using sparc64 crypto instructions, when available.
 919
 920config CRYPTO_SHA1_PPC
 921	tristate "SHA1 digest algorithm (powerpc)"
 922	depends on PPC
 923	help
 924	  This is the powerpc hardware accelerated implementation of the
 925	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 926
 927config CRYPTO_SHA1_PPC_SPE
 928	tristate "SHA1 digest algorithm (PPC SPE)"
 929	depends on PPC && SPE
 930	help
 931	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 932	  using powerpc SPE SIMD instruction set.
 933
 934config CRYPTO_SHA256
 935	tristate "SHA224 and SHA256 digest algorithm"
 936	select CRYPTO_HASH
 937	select CRYPTO_LIB_SHA256
 938	help
 939	  SHA256 secure hash standard (DFIPS 180-2).
 940
 941	  This version of SHA implements a 256 bit hash with 128 bits of
 942	  security against collision attacks.
 943
 944	  This code also includes SHA-224, a 224 bit hash with 112 bits
 945	  of security against collision attacks.
 946
 947config CRYPTO_SHA256_PPC_SPE
 948	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 949	depends on PPC && SPE
 950	select CRYPTO_SHA256
 951	select CRYPTO_HASH
 952	help
 953	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 954	  implemented using powerpc SPE SIMD instruction set.
 955
 956config CRYPTO_SHA256_OCTEON
 957	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 958	depends on CPU_CAVIUM_OCTEON
 959	select CRYPTO_SHA256
 960	select CRYPTO_HASH
 961	help
 962	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 963	  using OCTEON crypto instructions, when available.
 964
 965config CRYPTO_SHA256_SPARC64
 966	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 967	depends on SPARC64
 968	select CRYPTO_SHA256
 969	select CRYPTO_HASH
 970	help
 971	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 972	  using sparc64 crypto instructions, when available.
 973
 974config CRYPTO_SHA512
 975	tristate "SHA384 and SHA512 digest algorithms"
 976	select CRYPTO_HASH
 977	help
 978	  SHA512 secure hash standard (DFIPS 180-2).
 979
 980	  This version of SHA implements a 512 bit hash with 256 bits of
 981	  security against collision attacks.
 982
 983	  This code also includes SHA-384, a 384 bit hash with 192 bits
 984	  of security against collision attacks.
 985
 986config CRYPTO_SHA512_OCTEON
 987	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 988	depends on CPU_CAVIUM_OCTEON
 989	select CRYPTO_SHA512
 990	select CRYPTO_HASH
 991	help
 992	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 993	  using OCTEON crypto instructions, when available.
 994
 995config CRYPTO_SHA512_SPARC64
 996	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 997	depends on SPARC64
 998	select CRYPTO_SHA512
 999	select CRYPTO_HASH
1000	help
1001	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1002	  using sparc64 crypto instructions, when available.
1003
1004config CRYPTO_SHA3
1005	tristate "SHA3 digest algorithm"
1006	select CRYPTO_HASH
1007	help
1008	  SHA-3 secure hash standard (DFIPS 202). It's based on
1009	  cryptographic sponge function family called Keccak.
1010
1011	  References:
1012	  http://keccak.noekeon.org/
1013
1014config CRYPTO_SM3
1015	tristate "SM3 digest algorithm"
 
 
 
1016	select CRYPTO_HASH
 
1017	help
1018	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1019	  It is part of the Chinese Commercial Cryptography suite.
 
1020
1021	  References:
1022	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1023	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1024
1025config CRYPTO_STREEBOG
1026	tristate "Streebog Hash Function"
1027	select CRYPTO_HASH
1028	help
1029	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1030	  cryptographic standard algorithms (called GOST algorithms).
1031	  This setting enables two hash algorithms with 256 and 512 bits output.
 
 
1032
1033	  References:
1034	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1035	  https://tools.ietf.org/html/rfc6986
1036
1037config CRYPTO_TGR192
1038	tristate "Tiger digest algorithms"
1039	select CRYPTO_HASH
 
1040	help
1041	  Tiger hash algorithm 192, 160 and 128-bit hashes
1042
1043	  Tiger is a hash function optimized for 64-bit processors while
1044	  still having decent performance on 32-bit processors.
1045	  Tiger was developed by Ross Anderson and Eli Biham.
1046
1047	  See also:
1048	  <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1049
1050config CRYPTO_WP512
1051	tristate "Whirlpool digest algorithms"
1052	select CRYPTO_HASH
1053	help
1054	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1055
1056	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1057	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1058
1059	  See also:
1060	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1061
1062config CRYPTO_GHASH_CLMUL_NI_INTEL
1063	tristate "GHASH hash function (CLMUL-NI accelerated)"
1064	depends on X86 && 64BIT
1065	select CRYPTO_CRYPTD
1066	help
1067	  This is the x86_64 CLMUL-NI accelerated implementation of
1068	  GHASH, the hash function used in GCM (Galois/Counter mode).
1069
1070comment "Ciphers"
1071
1072config CRYPTO_AES
1073	tristate "AES cipher algorithms"
1074	select CRYPTO_ALGAPI
1075	select CRYPTO_LIB_AES
1076	help
1077	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1078	  algorithm.
1079
1080	  Rijndael appears to be consistently a very good performer in
1081	  both hardware and software across a wide range of computing
1082	  environments regardless of its use in feedback or non-feedback
1083	  modes. Its key setup time is excellent, and its key agility is
1084	  good. Rijndael's very low memory requirements make it very well
1085	  suited for restricted-space environments, in which it also
1086	  demonstrates excellent performance. Rijndael's operations are
1087	  among the easiest to defend against power and timing attacks.
1088
1089	  The AES specifies three key sizes: 128, 192 and 256 bits
1090
1091	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1092
1093config CRYPTO_AES_TI
1094	tristate "Fixed time AES cipher"
1095	select CRYPTO_ALGAPI
1096	select CRYPTO_LIB_AES
1097	help
1098	  This is a generic implementation of AES that attempts to eliminate
1099	  data dependent latencies as much as possible without affecting
1100	  performance too much. It is intended for use by the generic CCM
1101	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1102	  solely on encryption (although decryption is supported as well, but
1103	  with a more dramatic performance hit)
1104
1105	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1106	  8 for decryption), this implementation only uses just two S-boxes of
1107	  256 bytes each, and attempts to eliminate data dependent latencies by
1108	  prefetching the entire table into the cache at the start of each
1109	  block. Interrupts are also disabled to avoid races where cachelines
1110	  are evicted when the CPU is interrupted to do something else.
1111
1112config CRYPTO_AES_NI_INTEL
1113	tristate "AES cipher algorithms (AES-NI)"
1114	depends on X86
1115	select CRYPTO_AEAD
1116	select CRYPTO_LIB_AES
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_SKCIPHER
1119	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1120	select CRYPTO_SIMD
1121	help
1122	  Use Intel AES-NI instructions for AES algorithm.
1123
1124	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1125	  algorithm.
1126
1127	  Rijndael appears to be consistently a very good performer in
1128	  both hardware and software across a wide range of computing
1129	  environments regardless of its use in feedback or non-feedback
1130	  modes. Its key setup time is excellent, and its key agility is
1131	  good. Rijndael's very low memory requirements make it very well
1132	  suited for restricted-space environments, in which it also
1133	  demonstrates excellent performance. Rijndael's operations are
1134	  among the easiest to defend against power and timing attacks.
1135
1136	  The AES specifies three key sizes: 128, 192 and 256 bits
1137
1138	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1139
1140	  In addition to AES cipher algorithm support, the acceleration
1141	  for some popular block cipher mode is supported too, including
1142	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1143	  acceleration for CTR.
1144
1145config CRYPTO_AES_SPARC64
1146	tristate "AES cipher algorithms (SPARC64)"
1147	depends on SPARC64
1148	select CRYPTO_SKCIPHER
1149	help
1150	  Use SPARC64 crypto opcodes for AES algorithm.
1151
1152	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1153	  algorithm.
1154
1155	  Rijndael appears to be consistently a very good performer in
1156	  both hardware and software across a wide range of computing
1157	  environments regardless of its use in feedback or non-feedback
1158	  modes. Its key setup time is excellent, and its key agility is
1159	  good. Rijndael's very low memory requirements make it very well
1160	  suited for restricted-space environments, in which it also
1161	  demonstrates excellent performance. Rijndael's operations are
1162	  among the easiest to defend against power and timing attacks.
1163
1164	  The AES specifies three key sizes: 128, 192 and 256 bits
1165
1166	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1167
1168	  In addition to AES cipher algorithm support, the acceleration
1169	  for some popular block cipher mode is supported too, including
1170	  ECB and CBC.
1171
1172config CRYPTO_AES_PPC_SPE
1173	tristate "AES cipher algorithms (PPC SPE)"
1174	depends on PPC && SPE
1175	select CRYPTO_SKCIPHER
1176	help
1177	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1178	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1179	  This module should only be used for low power (router) devices
1180	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1181	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1182	  timining attacks. Nevertheless it might be not as secure as other
1183	  architecture specific assembler implementations that work on 1KB
1184	  tables or 256 bytes S-boxes.
1185
1186config CRYPTO_ANUBIS
1187	tristate "Anubis cipher algorithm"
1188	select CRYPTO_ALGAPI
1189	help
1190	  Anubis cipher algorithm.
1191
1192	  Anubis is a variable key length cipher which can use keys from
1193	  128 bits to 320 bits in length.  It was evaluated as a entrant
1194	  in the NESSIE competition.
1195
1196	  See also:
1197	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1198	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1199
1200config CRYPTO_ARC4
1201	tristate "ARC4 cipher algorithm"
1202	select CRYPTO_SKCIPHER
1203	select CRYPTO_LIB_ARC4
1204	help
1205	  ARC4 cipher algorithm.
1206
1207	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1208	  bits in length.  This algorithm is required for driver-based
1209	  WEP, but it should not be for other purposes because of the
1210	  weakness of the algorithm.
1211
1212config CRYPTO_BLOWFISH
1213	tristate "Blowfish cipher algorithm"
1214	select CRYPTO_ALGAPI
1215	select CRYPTO_BLOWFISH_COMMON
1216	help
1217	  Blowfish cipher algorithm, by Bruce Schneier.
1218
1219	  This is a variable key length cipher which can use keys from 32
1220	  bits to 448 bits in length.  It's fast, simple and specifically
1221	  designed for use on "large microprocessors".
1222
1223	  See also:
1224	  <https://www.schneier.com/blowfish.html>
1225
1226config CRYPTO_BLOWFISH_COMMON
1227	tristate
1228	help
1229	  Common parts of the Blowfish cipher algorithm shared by the
1230	  generic c and the assembler implementations.
1231
1232	  See also:
1233	  <https://www.schneier.com/blowfish.html>
1234
1235config CRYPTO_BLOWFISH_X86_64
1236	tristate "Blowfish cipher algorithm (x86_64)"
1237	depends on X86 && 64BIT
1238	select CRYPTO_SKCIPHER
1239	select CRYPTO_BLOWFISH_COMMON
1240	help
1241	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1242
1243	  This is a variable key length cipher which can use keys from 32
1244	  bits to 448 bits in length.  It's fast, simple and specifically
1245	  designed for use on "large microprocessors".
1246
1247	  See also:
1248	  <https://www.schneier.com/blowfish.html>
1249
1250config CRYPTO_CAMELLIA
1251	tristate "Camellia cipher algorithms"
1252	depends on CRYPTO
1253	select CRYPTO_ALGAPI
1254	help
1255	  Camellia cipher algorithms module.
1256
1257	  Camellia is a symmetric key block cipher developed jointly
1258	  at NTT and Mitsubishi Electric Corporation.
1259
1260	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1261
1262	  See also:
1263	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1264
1265config CRYPTO_CAMELLIA_X86_64
1266	tristate "Camellia cipher algorithm (x86_64)"
1267	depends on X86 && 64BIT
1268	depends on CRYPTO
1269	select CRYPTO_SKCIPHER
1270	select CRYPTO_GLUE_HELPER_X86
1271	help
1272	  Camellia cipher algorithm module (x86_64).
1273
1274	  Camellia is a symmetric key block cipher developed jointly
1275	  at NTT and Mitsubishi Electric Corporation.
1276
1277	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1278
1279	  See also:
1280	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1281
1282config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1283	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1284	depends on X86 && 64BIT
1285	depends on CRYPTO
1286	select CRYPTO_SKCIPHER
1287	select CRYPTO_CAMELLIA_X86_64
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SIMD
1290	select CRYPTO_XTS
1291	help
1292	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1293
1294	  Camellia is a symmetric key block cipher developed jointly
1295	  at NTT and Mitsubishi Electric Corporation.
1296
1297	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1298
1299	  See also:
1300	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1301
1302config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1303	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1304	depends on X86 && 64BIT
1305	depends on CRYPTO
1306	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1307	help
1308	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1309
1310	  Camellia is a symmetric key block cipher developed jointly
1311	  at NTT and Mitsubishi Electric Corporation.
1312
1313	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1314
1315	  See also:
1316	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1317
1318config CRYPTO_CAMELLIA_SPARC64
1319	tristate "Camellia cipher algorithm (SPARC64)"
1320	depends on SPARC64
1321	depends on CRYPTO
1322	select CRYPTO_ALGAPI
1323	select CRYPTO_SKCIPHER
1324	help
1325	  Camellia cipher algorithm module (SPARC64).
1326
1327	  Camellia is a symmetric key block cipher developed jointly
1328	  at NTT and Mitsubishi Electric Corporation.
1329
1330	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1331
1332	  See also:
1333	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1334
1335config CRYPTO_CAST_COMMON
1336	tristate
1337	help
1338	  Common parts of the CAST cipher algorithms shared by the
1339	  generic c and the assembler implementations.
1340
1341config CRYPTO_CAST5
1342	tristate "CAST5 (CAST-128) cipher algorithm"
1343	select CRYPTO_ALGAPI
1344	select CRYPTO_CAST_COMMON
1345	help
1346	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1347	  described in RFC2144.
1348
1349config CRYPTO_CAST5_AVX_X86_64
1350	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1351	depends on X86 && 64BIT
1352	select CRYPTO_SKCIPHER
1353	select CRYPTO_CAST5
1354	select CRYPTO_CAST_COMMON
1355	select CRYPTO_SIMD
1356	help
1357	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1358	  described in RFC2144.
1359
1360	  This module provides the Cast5 cipher algorithm that processes
1361	  sixteen blocks parallel using the AVX instruction set.
1362
1363config CRYPTO_CAST6
1364	tristate "CAST6 (CAST-256) cipher algorithm"
1365	select CRYPTO_ALGAPI
1366	select CRYPTO_CAST_COMMON
1367	help
1368	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1369	  described in RFC2612.
1370
1371config CRYPTO_CAST6_AVX_X86_64
1372	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1373	depends on X86 && 64BIT
1374	select CRYPTO_SKCIPHER
1375	select CRYPTO_CAST6
1376	select CRYPTO_CAST_COMMON
1377	select CRYPTO_GLUE_HELPER_X86
1378	select CRYPTO_SIMD
1379	select CRYPTO_XTS
1380	help
1381	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1382	  described in RFC2612.
1383
1384	  This module provides the Cast6 cipher algorithm that processes
1385	  eight blocks parallel using the AVX instruction set.
1386
1387config CRYPTO_DES
1388	tristate "DES and Triple DES EDE cipher algorithms"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_LIB_DES
1391	help
1392	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1393
1394config CRYPTO_DES_SPARC64
1395	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1396	depends on SPARC64
1397	select CRYPTO_ALGAPI
1398	select CRYPTO_LIB_DES
1399	select CRYPTO_SKCIPHER
1400	help
1401	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1402	  optimized using SPARC64 crypto opcodes.
1403
1404config CRYPTO_DES3_EDE_X86_64
1405	tristate "Triple DES EDE cipher algorithm (x86-64)"
1406	depends on X86 && 64BIT
1407	select CRYPTO_SKCIPHER
1408	select CRYPTO_LIB_DES
1409	help
1410	  Triple DES EDE (FIPS 46-3) algorithm.
1411
1412	  This module provides implementation of the Triple DES EDE cipher
1413	  algorithm that is optimized for x86-64 processors. Two versions of
1414	  algorithm are provided; regular processing one input block and
1415	  one that processes three blocks parallel.
1416
1417config CRYPTO_FCRYPT
1418	tristate "FCrypt cipher algorithm"
1419	select CRYPTO_ALGAPI
1420	select CRYPTO_SKCIPHER
1421	help
1422	  FCrypt algorithm used by RxRPC.
1423
1424config CRYPTO_KHAZAD
1425	tristate "Khazad cipher algorithm"
1426	select CRYPTO_ALGAPI
1427	help
1428	  Khazad cipher algorithm.
1429
1430	  Khazad was a finalist in the initial NESSIE competition.  It is
1431	  an algorithm optimized for 64-bit processors with good performance
1432	  on 32-bit processors.  Khazad uses an 128 bit key size.
1433
1434	  See also:
1435	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1436
1437config CRYPTO_SALSA20
1438	tristate "Salsa20 stream cipher algorithm"
1439	select CRYPTO_SKCIPHER
1440	help
1441	  Salsa20 stream cipher algorithm.
1442
1443	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1444	  Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
1445
1446	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1447	  Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
1448
1449config CRYPTO_CHACHA20
1450	tristate "ChaCha stream cipher algorithms"
1451	select CRYPTO_LIB_CHACHA_GENERIC
1452	select CRYPTO_SKCIPHER
1453	help
1454	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1455
1456	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1457	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1458	  This is the portable C implementation of ChaCha20.  See also:
1459	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1460
1461	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1462	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1463	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1464	  while provably retaining ChaCha20's security.  See also:
1465	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1466
1467	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1468	  reduced security margin but increased performance.  It can be needed
1469	  in some performance-sensitive scenarios.
1470
1471config CRYPTO_CHACHA20_X86_64
1472	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1473	depends on X86 && 64BIT
1474	select CRYPTO_SKCIPHER
1475	select CRYPTO_LIB_CHACHA_GENERIC
1476	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1477	help
1478	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1479	  XChaCha20, and XChaCha12 stream ciphers.
1480
1481config CRYPTO_CHACHA_MIPS
1482	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1483	depends on CPU_MIPS32_R2
1484	select CRYPTO_SKCIPHER
1485	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1486
1487config CRYPTO_SEED
1488	tristate "SEED cipher algorithm"
1489	select CRYPTO_ALGAPI
1490	help
1491	  SEED cipher algorithm (RFC4269).
1492
1493	  SEED is a 128-bit symmetric key block cipher that has been
1494	  developed by KISA (Korea Information Security Agency) as a
1495	  national standard encryption algorithm of the Republic of Korea.
1496	  It is a 16 round block cipher with the key size of 128 bit.
1497
1498	  See also:
1499	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1500
1501config CRYPTO_SERPENT
1502	tristate "Serpent cipher algorithm"
1503	select CRYPTO_ALGAPI
1504	help
1505	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1506
1507	  Keys are allowed to be from 0 to 256 bits in length, in steps
1508	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1509	  variant of Serpent for compatibility with old kerneli.org code.
1510
1511	  See also:
1512	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513
1514config CRYPTO_SERPENT_SSE2_X86_64
1515	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1516	depends on X86 && 64BIT
1517	select CRYPTO_SKCIPHER
1518	select CRYPTO_GLUE_HELPER_X86
1519	select CRYPTO_SERPENT
1520	select CRYPTO_SIMD
1521	help
1522	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523
1524	  Keys are allowed to be from 0 to 256 bits in length, in steps
1525	  of 8 bits.
1526
1527	  This module provides Serpent cipher algorithm that processes eight
1528	  blocks parallel using SSE2 instruction set.
1529
1530	  See also:
1531	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532
1533config CRYPTO_SERPENT_SSE2_586
1534	tristate "Serpent cipher algorithm (i586/SSE2)"
1535	depends on X86 && !64BIT
1536	select CRYPTO_SKCIPHER
1537	select CRYPTO_GLUE_HELPER_X86
1538	select CRYPTO_SERPENT
1539	select CRYPTO_SIMD
1540	help
1541	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542
1543	  Keys are allowed to be from 0 to 256 bits in length, in steps
1544	  of 8 bits.
1545
1546	  This module provides Serpent cipher algorithm that processes four
1547	  blocks parallel using SSE2 instruction set.
1548
1549	  See also:
1550	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1551
1552config CRYPTO_SERPENT_AVX_X86_64
1553	tristate "Serpent cipher algorithm (x86_64/AVX)"
1554	depends on X86 && 64BIT
1555	select CRYPTO_SKCIPHER
1556	select CRYPTO_GLUE_HELPER_X86
1557	select CRYPTO_SERPENT
1558	select CRYPTO_SIMD
1559	select CRYPTO_XTS
1560	help
1561	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1562
1563	  Keys are allowed to be from 0 to 256 bits in length, in steps
1564	  of 8 bits.
1565
1566	  This module provides the Serpent cipher algorithm that processes
1567	  eight blocks parallel using the AVX instruction set.
1568
1569	  See also:
1570	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1571
1572config CRYPTO_SERPENT_AVX2_X86_64
1573	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1574	depends on X86 && 64BIT
1575	select CRYPTO_SERPENT_AVX_X86_64
1576	help
1577	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1578
1579	  Keys are allowed to be from 0 to 256 bits in length, in steps
1580	  of 8 bits.
1581
1582	  This module provides Serpent cipher algorithm that processes 16
1583	  blocks parallel using AVX2 instruction set.
1584
1585	  See also:
1586	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1587
1588config CRYPTO_SM4
1589	tristate "SM4 cipher algorithm"
1590	select CRYPTO_ALGAPI
 
1591	help
1592	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1593
1594	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1595	  Organization of State Commercial Administration of China (OSCCA)
1596	  as an authorized cryptographic algorithms for the use within China.
1597
1598	  SMS4 was originally created for use in protecting wireless
1599	  networks, and is mandated in the Chinese National Standard for
1600	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1601	  (GB.15629.11-2003).
1602
1603	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1604	  standardized through TC 260 of the Standardization Administration
1605	  of the People's Republic of China (SAC).
1606
1607	  The input, output, and key of SMS4 are each 128 bits.
1608
1609	  See also: <https://eprint.iacr.org/2008/329.pdf>
1610
1611	  If unsure, say N.
1612
1613config CRYPTO_TEA
1614	tristate "TEA, XTEA and XETA cipher algorithms"
1615	select CRYPTO_ALGAPI
1616	help
1617	  TEA cipher algorithm.
1618
1619	  Tiny Encryption Algorithm is a simple cipher that uses
1620	  many rounds for security.  It is very fast and uses
1621	  little memory.
1622
1623	  Xtendend Tiny Encryption Algorithm is a modification to
1624	  the TEA algorithm to address a potential key weakness
1625	  in the TEA algorithm.
1626
1627	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1628	  of the XTEA algorithm for compatibility purposes.
1629
1630config CRYPTO_TWOFISH
1631	tristate "Twofish cipher algorithm"
1632	select CRYPTO_ALGAPI
1633	select CRYPTO_TWOFISH_COMMON
1634	help
1635	  Twofish cipher algorithm.
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_COMMON
1646	tristate
1647	help
1648	  Common parts of the Twofish cipher algorithm shared by the
1649	  generic c and the assembler implementations.
1650
1651config CRYPTO_TWOFISH_586
1652	tristate "Twofish cipher algorithms (i586)"
1653	depends on (X86 || UML_X86) && !64BIT
1654	select CRYPTO_ALGAPI
1655	select CRYPTO_TWOFISH_COMMON
1656	help
1657	  Twofish cipher algorithm.
1658
1659	  Twofish was submitted as an AES (Advanced Encryption Standard)
1660	  candidate cipher by researchers at CounterPane Systems.  It is a
1661	  16 round block cipher supporting key sizes of 128, 192, and 256
1662	  bits.
 
1663
1664	  See also:
1665	  <https://www.schneier.com/twofish.html>
1666
1667config CRYPTO_TWOFISH_X86_64
1668	tristate "Twofish cipher algorithm (x86_64)"
1669	depends on (X86 || UML_X86) && 64BIT
1670	select CRYPTO_ALGAPI
1671	select CRYPTO_TWOFISH_COMMON
1672	help
1673	  Twofish cipher algorithm (x86_64).
1674
1675	  Twofish was submitted as an AES (Advanced Encryption Standard)
1676	  candidate cipher by researchers at CounterPane Systems.  It is a
1677	  16 round block cipher supporting key sizes of 128, 192, and 256
1678	  bits.
1679
1680	  See also:
1681	  <https://www.schneier.com/twofish.html>
1682
1683config CRYPTO_TWOFISH_X86_64_3WAY
1684	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1685	depends on X86 && 64BIT
1686	select CRYPTO_SKCIPHER
1687	select CRYPTO_TWOFISH_COMMON
1688	select CRYPTO_TWOFISH_X86_64
1689	select CRYPTO_GLUE_HELPER_X86
1690	help
1691	  Twofish cipher algorithm (x86_64, 3-way parallel).
1692
1693	  Twofish was submitted as an AES (Advanced Encryption Standard)
1694	  candidate cipher by researchers at CounterPane Systems.  It is a
1695	  16 round block cipher supporting key sizes of 128, 192, and 256
1696	  bits.
1697
1698	  This module provides Twofish cipher algorithm that processes three
1699	  blocks parallel, utilizing resources of out-of-order CPUs better.
1700
1701	  See also:
1702	  <https://www.schneier.com/twofish.html>
1703
1704config CRYPTO_TWOFISH_AVX_X86_64
1705	tristate "Twofish cipher algorithm (x86_64/AVX)"
1706	depends on X86 && 64BIT
1707	select CRYPTO_SKCIPHER
1708	select CRYPTO_GLUE_HELPER_X86
1709	select CRYPTO_SIMD
1710	select CRYPTO_TWOFISH_COMMON
1711	select CRYPTO_TWOFISH_X86_64
1712	select CRYPTO_TWOFISH_X86_64_3WAY
1713	help
1714	  Twofish cipher algorithm (x86_64/AVX).
1715
1716	  Twofish was submitted as an AES (Advanced Encryption Standard)
1717	  candidate cipher by researchers at CounterPane Systems.  It is a
1718	  16 round block cipher supporting key sizes of 128, 192, and 256
1719	  bits.
1720
1721	  This module provides the Twofish cipher algorithm that processes
1722	  eight blocks parallel using the AVX Instruction Set.
1723
1724	  See also:
1725	  <https://www.schneier.com/twofish.html>
1726
1727comment "Compression"
1728
1729config CRYPTO_DEFLATE
1730	tristate "Deflate compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select ZLIB_INFLATE
1734	select ZLIB_DEFLATE
1735	help
1736	  This is the Deflate algorithm (RFC1951), specified for use in
1737	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1738
1739	  You will most probably want this if using IPSec.
1740
1741config CRYPTO_LZO
1742	tristate "LZO compression algorithm"
1743	select CRYPTO_ALGAPI
1744	select CRYPTO_ACOMP2
1745	select LZO_COMPRESS
1746	select LZO_DECOMPRESS
1747	help
1748	  This is the LZO algorithm.
 
 
1749
1750config CRYPTO_842
1751	tristate "842 compression algorithm"
1752	select CRYPTO_ALGAPI
1753	select CRYPTO_ACOMP2
1754	select 842_COMPRESS
1755	select 842_DECOMPRESS
1756	help
1757	  This is the 842 algorithm.
 
 
1758
1759config CRYPTO_LZ4
1760	tristate "LZ4 compression algorithm"
1761	select CRYPTO_ALGAPI
1762	select CRYPTO_ACOMP2
1763	select LZ4_COMPRESS
1764	select LZ4_DECOMPRESS
1765	help
1766	  This is the LZ4 algorithm.
 
 
1767
1768config CRYPTO_LZ4HC
1769	tristate "LZ4HC compression algorithm"
1770	select CRYPTO_ALGAPI
1771	select CRYPTO_ACOMP2
1772	select LZ4HC_COMPRESS
1773	select LZ4_DECOMPRESS
1774	help
1775	  This is the LZ4 high compression mode algorithm.
 
 
1776
1777config CRYPTO_ZSTD
1778	tristate "Zstd compression algorithm"
1779	select CRYPTO_ALGAPI
1780	select CRYPTO_ACOMP2
1781	select ZSTD_COMPRESS
1782	select ZSTD_DECOMPRESS
1783	help
1784	  This is the zstd algorithm.
1785
1786comment "Random Number Generation"
 
 
 
 
1787
1788config CRYPTO_ANSI_CPRNG
1789	tristate "Pseudo Random Number Generation for Cryptographic modules"
1790	select CRYPTO_AES
1791	select CRYPTO_RNG
1792	help
1793	  This option enables the generic pseudo random number generator
1794	  for cryptographic modules.  Uses the Algorithm specified in
1795	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1796	  CRYPTO_FIPS is selected
 
1797
1798menuconfig CRYPTO_DRBG_MENU
1799	tristate "NIST SP800-90A DRBG"
1800	help
1801	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1802	  more of the DRBG types must be selected.
 
1803
1804if CRYPTO_DRBG_MENU
1805
1806config CRYPTO_DRBG_HMAC
1807	bool
1808	default y
1809	select CRYPTO_HMAC
1810	select CRYPTO_SHA256
1811
1812config CRYPTO_DRBG_HASH
1813	bool "Enable Hash DRBG"
1814	select CRYPTO_SHA256
1815	help
1816	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
 
 
1817
1818config CRYPTO_DRBG_CTR
1819	bool "Enable CTR DRBG"
1820	select CRYPTO_AES
1821	select CRYPTO_CTR
1822	help
1823	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
 
 
1824
1825config CRYPTO_DRBG
1826	tristate
1827	default CRYPTO_DRBG_MENU
1828	select CRYPTO_RNG
1829	select CRYPTO_JITTERENTROPY
1830
1831endif	# if CRYPTO_DRBG_MENU
1832
1833config CRYPTO_JITTERENTROPY
1834	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1835	select CRYPTO_RNG
1836	help
1837	  The Jitterentropy RNG is a noise that is intended
1838	  to provide seed to another RNG. The RNG does not
1839	  perform any cryptographic whitening of the generated
1840	  random numbers. This Jitterentropy RNG registers with
1841	  the kernel crypto API and can be used by any caller.
 
 
 
 
 
 
 
 
 
 
 
1842
1843config CRYPTO_USER_API
1844	tristate
1845
1846config CRYPTO_USER_API_HASH
1847	tristate "User-space interface for hash algorithms"
1848	depends on NET
1849	select CRYPTO_HASH
1850	select CRYPTO_USER_API
1851	help
1852	  This option enables the user-spaces interface for hash
1853	  algorithms.
 
 
1854
1855config CRYPTO_USER_API_SKCIPHER
1856	tristate "User-space interface for symmetric key cipher algorithms"
1857	depends on NET
1858	select CRYPTO_SKCIPHER
1859	select CRYPTO_USER_API
1860	help
1861	  This option enables the user-spaces interface for symmetric
1862	  key cipher algorithms.
 
 
1863
1864config CRYPTO_USER_API_RNG
1865	tristate "User-space interface for random number generator algorithms"
1866	depends on NET
1867	select CRYPTO_RNG
1868	select CRYPTO_USER_API
1869	help
1870	  This option enables the user-spaces interface for random
1871	  number generator algorithms.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1872
1873config CRYPTO_USER_API_AEAD
1874	tristate "User-space interface for AEAD cipher algorithms"
1875	depends on NET
1876	select CRYPTO_AEAD
1877	select CRYPTO_SKCIPHER
1878	select CRYPTO_NULL
1879	select CRYPTO_USER_API
1880	help
1881	  This option enables the user-spaces interface for AEAD
1882	  cipher algorithms.
 
 
 
 
 
 
 
 
 
 
 
1883
1884config CRYPTO_STATS
1885	bool "Crypto usage statistics for User-space"
1886	depends on CRYPTO_USER
1887	help
1888	  This option enables the gathering of crypto stats.
1889	  This will collect:
1890	  - encrypt/decrypt size and numbers of symmeric operations
1891	  - compress/decompress size and numbers of compress operations
1892	  - size and numbers of hash operations
1893	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1894	  - generate/seed numbers for rng operations
 
 
 
 
 
 
 
1895
1896config CRYPTO_HASH_INFO
1897	bool
1898
1899source "lib/crypto/Kconfig"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900source "drivers/crypto/Kconfig"
1901source "crypto/asymmetric_keys/Kconfig"
1902source "certs/Kconfig"
1903
1904endif	# if CRYPTO
v6.2
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	select CRYPTO_LIB_UTILS
  19	help
  20	  This option provides the core Cryptographic API.
  21
  22if CRYPTO
  23
  24menu "Crypto core or helper"
  25
  26config CRYPTO_FIPS
  27	bool "FIPS 200 compliance"
  28	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  29	depends on (MODULE_SIG || !MODULES)
  30	help
  31	  This option enables the fips boot option which is
  32	  required if you want the system to operate in a FIPS 200
  33	  certification.  You should say no unless you know what
  34	  this is.
  35
  36config CRYPTO_FIPS_NAME
  37	string "FIPS Module Name"
  38	default "Linux Kernel Cryptographic API"
  39	depends on CRYPTO_FIPS
  40	help
  41	  This option sets the FIPS Module name reported by the Crypto API via
  42	  the /proc/sys/crypto/fips_name file.
  43
  44config CRYPTO_FIPS_CUSTOM_VERSION
  45	bool "Use Custom FIPS Module Version"
  46	depends on CRYPTO_FIPS
  47	default n
  48
  49config CRYPTO_FIPS_VERSION
  50	string "FIPS Module Version"
  51	default "(none)"
  52	depends on CRYPTO_FIPS_CUSTOM_VERSION
  53	help
  54	  This option provides the ability to override the FIPS Module Version.
  55	  By default the KERNELRELEASE value is used.
  56
  57config CRYPTO_ALGAPI
  58	tristate
  59	select CRYPTO_ALGAPI2
  60	help
  61	  This option provides the API for cryptographic algorithms.
  62
  63config CRYPTO_ALGAPI2
  64	tristate
  65
  66config CRYPTO_AEAD
  67	tristate
  68	select CRYPTO_AEAD2
  69	select CRYPTO_ALGAPI
  70
  71config CRYPTO_AEAD2
  72	tristate
  73	select CRYPTO_ALGAPI2
  74	select CRYPTO_NULL2
  75	select CRYPTO_RNG2
  76
  77config CRYPTO_SKCIPHER
  78	tristate
  79	select CRYPTO_SKCIPHER2
  80	select CRYPTO_ALGAPI
  81
  82config CRYPTO_SKCIPHER2
  83	tristate
  84	select CRYPTO_ALGAPI2
  85	select CRYPTO_RNG2
  86
  87config CRYPTO_HASH
  88	tristate
  89	select CRYPTO_HASH2
  90	select CRYPTO_ALGAPI
  91
  92config CRYPTO_HASH2
  93	tristate
  94	select CRYPTO_ALGAPI2
  95
  96config CRYPTO_RNG
  97	tristate
  98	select CRYPTO_RNG2
  99	select CRYPTO_ALGAPI
 100
 101config CRYPTO_RNG2
 102	tristate
 103	select CRYPTO_ALGAPI2
 104
 105config CRYPTO_RNG_DEFAULT
 106	tristate
 107	select CRYPTO_DRBG_MENU
 108
 109config CRYPTO_AKCIPHER2
 110	tristate
 111	select CRYPTO_ALGAPI2
 112
 113config CRYPTO_AKCIPHER
 114	tristate
 115	select CRYPTO_AKCIPHER2
 116	select CRYPTO_ALGAPI
 117
 118config CRYPTO_KPP2
 119	tristate
 120	select CRYPTO_ALGAPI2
 121
 122config CRYPTO_KPP
 123	tristate
 124	select CRYPTO_ALGAPI
 125	select CRYPTO_KPP2
 126
 127config CRYPTO_ACOMP2
 128	tristate
 129	select CRYPTO_ALGAPI2
 130	select SGL_ALLOC
 131
 132config CRYPTO_ACOMP
 133	tristate
 134	select CRYPTO_ALGAPI
 135	select CRYPTO_ACOMP2
 136
 137config CRYPTO_MANAGER
 138	tristate "Cryptographic algorithm manager"
 139	select CRYPTO_MANAGER2
 140	help
 141	  Create default cryptographic template instantiations such as
 142	  cbc(aes).
 143
 144config CRYPTO_MANAGER2
 145	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 146	select CRYPTO_AEAD2
 147	select CRYPTO_HASH2
 148	select CRYPTO_SKCIPHER2
 149	select CRYPTO_AKCIPHER2
 150	select CRYPTO_KPP2
 151	select CRYPTO_ACOMP2
 152
 153config CRYPTO_USER
 154	tristate "Userspace cryptographic algorithm configuration"
 155	depends on NET
 156	select CRYPTO_MANAGER
 157	help
 158	  Userspace configuration for cryptographic instantiations such as
 159	  cbc(aes).
 160
 161config CRYPTO_MANAGER_DISABLE_TESTS
 162	bool "Disable run-time self tests"
 163	default y
 164	help
 165	  Disable run-time self tests that normally take place at
 166	  algorithm registration.
 167
 168config CRYPTO_MANAGER_EXTRA_TESTS
 169	bool "Enable extra run-time crypto self tests"
 170	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 171	help
 172	  Enable extra run-time self tests of registered crypto algorithms,
 173	  including randomized fuzz tests.
 174
 175	  This is intended for developer use only, as these tests take much
 176	  longer to run than the normal self tests.
 177
 
 
 
 178config CRYPTO_NULL
 179	tristate "Null algorithms"
 180	select CRYPTO_NULL2
 181	help
 182	  These are 'Null' algorithms, used by IPsec, which do nothing.
 183
 184config CRYPTO_NULL2
 185	tristate
 186	select CRYPTO_ALGAPI2
 187	select CRYPTO_SKCIPHER2
 188	select CRYPTO_HASH2
 189
 190config CRYPTO_PCRYPT
 191	tristate "Parallel crypto engine"
 192	depends on SMP
 193	select PADATA
 194	select CRYPTO_MANAGER
 195	select CRYPTO_AEAD
 196	help
 197	  This converts an arbitrary crypto algorithm into a parallel
 198	  algorithm that executes in kernel threads.
 199
 200config CRYPTO_CRYPTD
 201	tristate "Software async crypto daemon"
 202	select CRYPTO_SKCIPHER
 203	select CRYPTO_HASH
 204	select CRYPTO_MANAGER
 205	help
 206	  This is a generic software asynchronous crypto daemon that
 207	  converts an arbitrary synchronous software crypto algorithm
 208	  into an asynchronous algorithm that executes in a kernel thread.
 209
 210config CRYPTO_AUTHENC
 211	tristate "Authenc support"
 212	select CRYPTO_AEAD
 213	select CRYPTO_SKCIPHER
 214	select CRYPTO_MANAGER
 215	select CRYPTO_HASH
 216	select CRYPTO_NULL
 217	help
 218	  Authenc: Combined mode wrapper for IPsec.
 219
 220	  This is required for IPSec ESP (XFRM_ESP).
 221
 222config CRYPTO_TEST
 223	tristate "Testing module"
 224	depends on m || EXPERT
 225	select CRYPTO_MANAGER
 226	help
 227	  Quick & dirty crypto test module.
 228
 229config CRYPTO_SIMD
 230	tristate
 231	select CRYPTO_CRYPTD
 232
 
 
 
 
 
 233config CRYPTO_ENGINE
 234	tristate
 235
 236endmenu
 237
 238menu "Public-key cryptography"
 239
 240config CRYPTO_RSA
 241	tristate "RSA (Rivest-Shamir-Adleman)"
 242	select CRYPTO_AKCIPHER
 243	select CRYPTO_MANAGER
 244	select MPILIB
 245	select ASN1
 246	help
 247	  RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
 248
 249config CRYPTO_DH
 250	tristate "DH (Diffie-Hellman)"
 251	select CRYPTO_KPP
 252	select MPILIB
 253	help
 254	  DH (Diffie-Hellman) key exchange algorithm
 255
 256config CRYPTO_DH_RFC7919_GROUPS
 257	bool "RFC 7919 FFDHE groups"
 258	depends on CRYPTO_DH
 259	select CRYPTO_RNG_DEFAULT
 260	help
 261	  FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
 262	  defined in RFC7919.
 263
 264	  Support these finite-field groups in DH key exchanges:
 265	  - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
 266
 267	  If unsure, say N.
 268
 269config CRYPTO_ECC
 270	tristate
 271	select CRYPTO_RNG_DEFAULT
 272
 273config CRYPTO_ECDH
 274	tristate "ECDH (Elliptic Curve Diffie-Hellman)"
 275	select CRYPTO_ECC
 276	select CRYPTO_KPP
 
 277	help
 278	  ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
 279	  using curves P-192, P-256, and P-384 (FIPS 186)
 280
 281config CRYPTO_ECDSA
 282	tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
 283	select CRYPTO_ECC
 284	select CRYPTO_AKCIPHER
 285	select ASN1
 286	help
 287	  ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
 288	  ISO/IEC 14888-3)
 289	  using curves P-192, P-256, and P-384
 290
 291	  Only signature verification is implemented.
 292
 293config CRYPTO_ECRDSA
 294	tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
 295	select CRYPTO_ECC
 296	select CRYPTO_AKCIPHER
 297	select CRYPTO_STREEBOG
 298	select OID_REGISTRY
 299	select ASN1
 300	help
 301	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 302	  RFC 7091, ISO/IEC 14888-3)
 303
 304	  One of the Russian cryptographic standard algorithms (called GOST
 305	  algorithms). Only signature verification is implemented.
 306
 307config CRYPTO_SM2
 308	tristate "SM2 (ShangMi 2)"
 309	select CRYPTO_SM3
 310	select CRYPTO_AKCIPHER
 311	select CRYPTO_MANAGER
 312	select MPILIB
 313	select ASN1
 314	help
 315	  SM2 (ShangMi 2) public key algorithm
 316
 317	  Published by State Encryption Management Bureau, China,
 318	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 319
 320	  References:
 321	  https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
 322	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 323	  http://www.gmbz.org.cn/main/bzlb.html
 324
 325config CRYPTO_CURVE25519
 326	tristate "Curve25519"
 327	select CRYPTO_KPP
 328	select CRYPTO_LIB_CURVE25519_GENERIC
 329	help
 330	  Curve25519 elliptic curve (RFC7748)
 331
 332endmenu
 
 
 
 
 333
 334menu "Block ciphers"
 335
 336config CRYPTO_AES
 337	tristate "AES (Advanced Encryption Standard)"
 338	select CRYPTO_ALGAPI
 339	select CRYPTO_LIB_AES
 
 
 340	help
 341	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 342
 343	  Rijndael appears to be consistently a very good performer in
 344	  both hardware and software across a wide range of computing
 345	  environments regardless of its use in feedback or non-feedback
 346	  modes. Its key setup time is excellent, and its key agility is
 347	  good. Rijndael's very low memory requirements make it very well
 348	  suited for restricted-space environments, in which it also
 349	  demonstrates excellent performance. Rijndael's operations are
 350	  among the easiest to defend against power and timing attacks.
 351
 352	  The AES specifies three key sizes: 128, 192 and 256 bits
 353
 354config CRYPTO_AES_TI
 355	tristate "AES (Advanced Encryption Standard) (fixed time)"
 356	select CRYPTO_ALGAPI
 357	select CRYPTO_LIB_AES
 358	help
 359	  AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
 
 360
 361	  This is a generic implementation of AES that attempts to eliminate
 362	  data dependent latencies as much as possible without affecting
 363	  performance too much. It is intended for use by the generic CCM
 364	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
 365	  solely on encryption (although decryption is supported as well, but
 366	  with a more dramatic performance hit)
 367
 368	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
 369	  8 for decryption), this implementation only uses just two S-boxes of
 370	  256 bytes each, and attempts to eliminate data dependent latencies by
 371	  prefetching the entire table into the cache at the start of each
 372	  block. Interrupts are also disabled to avoid races where cachelines
 373	  are evicted when the CPU is interrupted to do something else.
 374
 375config CRYPTO_ANUBIS
 376	tristate "Anubis"
 377	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 378	select CRYPTO_ALGAPI
 379	help
 380	  Anubis cipher algorithm
 381
 382	  Anubis is a variable key length cipher which can use keys from
 383	  128 bits to 320 bits in length.  It was evaluated as a entrant
 384	  in the NESSIE competition.
 385
 386	  See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
 387	  for further information.
 388
 389config CRYPTO_ARIA
 390	tristate "ARIA"
 391	select CRYPTO_ALGAPI
 392	help
 393	  ARIA cipher algorithm (RFC5794)
 394
 395	  ARIA is a standard encryption algorithm of the Republic of Korea.
 396	  The ARIA specifies three key sizes and rounds.
 397	  128-bit: 12 rounds.
 398	  192-bit: 14 rounds.
 399	  256-bit: 16 rounds.
 400
 401	  See:
 402	  https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
 403
 404config CRYPTO_BLOWFISH
 405	tristate "Blowfish"
 406	select CRYPTO_ALGAPI
 407	select CRYPTO_BLOWFISH_COMMON
 408	help
 409	  Blowfish cipher algorithm, by Bruce Schneier
 410
 411	  This is a variable key length cipher which can use keys from 32
 412	  bits to 448 bits in length.  It's fast, simple and specifically
 413	  designed for use on "large microprocessors".
 414
 415	  See https://www.schneier.com/blowfish.html for further information.
 416
 417config CRYPTO_BLOWFISH_COMMON
 418	tristate
 419	help
 420	  Common parts of the Blowfish cipher algorithm shared by the
 421	  generic c and the assembler implementations.
 422
 423config CRYPTO_CAMELLIA
 424	tristate "Camellia"
 425	select CRYPTO_ALGAPI
 426	help
 427	  Camellia cipher algorithms (ISO/IEC 18033-3)
 428
 429	  Camellia is a symmetric key block cipher developed jointly
 430	  at NTT and Mitsubishi Electric Corporation.
 431
 432	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
 433
 434	  See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
 435
 436config CRYPTO_CAST_COMMON
 437	tristate
 438	help
 439	  Common parts of the CAST cipher algorithms shared by the
 440	  generic c and the assembler implementations.
 441
 442config CRYPTO_CAST5
 443	tristate "CAST5 (CAST-128)"
 444	select CRYPTO_ALGAPI
 445	select CRYPTO_CAST_COMMON
 446	help
 447	  CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
 448
 449config CRYPTO_CAST6
 450	tristate "CAST6 (CAST-256)"
 451	select CRYPTO_ALGAPI
 452	select CRYPTO_CAST_COMMON
 453	help
 454	  CAST6 (CAST-256) encryption algorithm (RFC2612)
 455
 456config CRYPTO_DES
 457	tristate "DES and Triple DES EDE"
 458	select CRYPTO_ALGAPI
 459	select CRYPTO_LIB_DES
 460	help
 461	  DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
 462	  Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
 463	  cipher algorithms
 464
 465config CRYPTO_FCRYPT
 466	tristate "FCrypt"
 467	select CRYPTO_ALGAPI
 468	select CRYPTO_SKCIPHER
 
 
 
 469	help
 470	  FCrypt algorithm used by RxRPC
 
 471
 472	  See https://ota.polyonymo.us/fcrypt-paper.txt
 473
 474config CRYPTO_KHAZAD
 475	tristate "Khazad"
 476	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 477	select CRYPTO_ALGAPI
 478	help
 479	  Khazad cipher algorithm
 480
 481	  Khazad was a finalist in the initial NESSIE competition.  It is
 482	  an algorithm optimized for 64-bit processors with good performance
 483	  on 32-bit processors.  Khazad uses an 128 bit key size.
 484
 485	  See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
 486	  for further information.
 487
 488config CRYPTO_SEED
 489	tristate "SEED"
 490	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 491	select CRYPTO_ALGAPI
 492	help
 493	  SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
 494
 495	  SEED is a 128-bit symmetric key block cipher that has been
 496	  developed by KISA (Korea Information Security Agency) as a
 497	  national standard encryption algorithm of the Republic of Korea.
 498	  It is a 16 round block cipher with the key size of 128 bit.
 499
 500	  See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
 501	  for further information.
 502
 503config CRYPTO_SERPENT
 504	tristate "Serpent"
 505	select CRYPTO_ALGAPI
 506	help
 507	  Serpent cipher algorithm, by Anderson, Biham & Knudsen
 508
 509	  Keys are allowed to be from 0 to 256 bits in length, in steps
 510	  of 8 bits.
 511
 512	  See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
 513
 514config CRYPTO_SM4
 515	tristate
 516
 517config CRYPTO_SM4_GENERIC
 518	tristate "SM4 (ShangMi 4)"
 519	select CRYPTO_ALGAPI
 520	select CRYPTO_SM4
 521	help
 522	  SM4 cipher algorithms (OSCCA GB/T 32907-2016,
 523	  ISO/IEC 18033-3:2010/Amd 1:2021)
 524
 525	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
 526	  Organization of State Commercial Administration of China (OSCCA)
 527	  as an authorized cryptographic algorithms for the use within China.
 528
 529	  SMS4 was originally created for use in protecting wireless
 530	  networks, and is mandated in the Chinese National Standard for
 531	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
 532	  (GB.15629.11-2003).
 533
 534	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
 535	  standardized through TC 260 of the Standardization Administration
 536	  of the People's Republic of China (SAC).
 537
 538	  The input, output, and key of SMS4 are each 128 bits.
 539
 540	  See https://eprint.iacr.org/2008/329.pdf for further information.
 541
 542	  If unsure, say N.
 543
 544config CRYPTO_TEA
 545	tristate "TEA, XTEA and XETA"
 546	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 547	select CRYPTO_ALGAPI
 548	help
 549	  TEA (Tiny Encryption Algorithm) cipher algorithms
 550
 551	  Tiny Encryption Algorithm is a simple cipher that uses
 552	  many rounds for security.  It is very fast and uses
 553	  little memory.
 554
 555	  Xtendend Tiny Encryption Algorithm is a modification to
 556	  the TEA algorithm to address a potential key weakness
 557	  in the TEA algorithm.
 558
 559	  Xtendend Encryption Tiny Algorithm is a mis-implementation
 560	  of the XTEA algorithm for compatibility purposes.
 561
 562config CRYPTO_TWOFISH
 563	tristate "Twofish"
 564	select CRYPTO_ALGAPI
 565	select CRYPTO_TWOFISH_COMMON
 566	help
 567	  Twofish cipher algorithm
 568
 569	  Twofish was submitted as an AES (Advanced Encryption Standard)
 570	  candidate cipher by researchers at CounterPane Systems.  It is a
 571	  16 round block cipher supporting key sizes of 128, 192, and 256
 572	  bits.
 573
 574	  See https://www.schneier.com/twofish.html for further information.
 575
 576config CRYPTO_TWOFISH_COMMON
 577	tristate
 578	help
 579	  Common parts of the Twofish cipher algorithm shared by the
 580	  generic c and the assembler implementations.
 581
 582endmenu
 583
 584menu "Length-preserving ciphers and modes"
 585
 586config CRYPTO_ADIANTUM
 587	tristate "Adiantum"
 588	select CRYPTO_CHACHA20
 589	select CRYPTO_LIB_POLY1305_GENERIC
 590	select CRYPTO_NHPOLY1305
 591	select CRYPTO_MANAGER
 592	help
 593	  Adiantum tweakable, length-preserving encryption mode
 
 
 594
 595	  Designed for fast and secure disk encryption, especially on
 596	  CPUs without dedicated crypto instructions.  It encrypts
 597	  each sector using the XChaCha12 stream cipher, two passes of
 598	  an ε-almost-∆-universal hash function, and an invocation of
 599	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 600	  without AES instructions, Adiantum is much faster than
 601	  AES-XTS.
 602
 603	  Adiantum's security is provably reducible to that of its
 604	  underlying stream and block ciphers, subject to a security
 605	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 606	  mode, so it actually provides an even stronger notion of
 607	  security than XTS, subject to the security bound.
 608
 609	  If unsure, say N.
 610
 611config CRYPTO_ARC4
 612	tristate "ARC4 (Alleged Rivest Cipher 4)"
 613	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
 614	select CRYPTO_SKCIPHER
 615	select CRYPTO_LIB_ARC4
 616	help
 617	  ARC4 cipher algorithm
 618
 619	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
 620	  bits in length.  This algorithm is required for driver-based
 621	  WEP, but it should not be for other purposes because of the
 622	  weakness of the algorithm.
 623
 624config CRYPTO_CHACHA20
 625	tristate "ChaCha"
 626	select CRYPTO_LIB_CHACHA_GENERIC
 627	select CRYPTO_SKCIPHER
 628	help
 629	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
 630
 631	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
 632	  Bernstein and further specified in RFC7539 for use in IETF protocols.
 633	  This is the portable C implementation of ChaCha20.  See
 634	  https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
 635
 636	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
 637	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
 638	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
 639	  while provably retaining ChaCha20's security.  See
 640	  https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
 641
 642	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
 643	  reduced security margin but increased performance.  It can be needed
 644	  in some performance-sensitive scenarios.
 645
 646config CRYPTO_CBC
 647	tristate "CBC (Cipher Block Chaining)"
 648	select CRYPTO_SKCIPHER
 649	select CRYPTO_MANAGER
 650	help
 651	  CBC (Cipher Block Chaining) mode (NIST SP800-38A)
 652
 653	  This block cipher mode is required for IPSec ESP (XFRM_ESP).
 654
 655config CRYPTO_CFB
 656	tristate "CFB (Cipher Feedback)"
 657	select CRYPTO_SKCIPHER
 658	select CRYPTO_MANAGER
 659	help
 660	  CFB (Cipher Feedback) mode (NIST SP800-38A)
 661
 662	  This block cipher mode is required for TPM2 Cryptography.
 663
 664config CRYPTO_CTR
 665	tristate "CTR (Counter)"
 666	select CRYPTO_SKCIPHER
 667	select CRYPTO_MANAGER
 668	help
 669	  CTR (Counter) mode (NIST SP800-38A)
 
 670
 671config CRYPTO_CTS
 672	tristate "CTS (Cipher Text Stealing)"
 673	select CRYPTO_SKCIPHER
 674	select CRYPTO_MANAGER
 675	help
 676	  CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
 677	  Addendum to SP800-38A (October 2010))
 678
 
 
 679	  This mode is required for Kerberos gss mechanism support
 680	  for AES encryption.
 681
 
 
 682config CRYPTO_ECB
 683	tristate "ECB (Electronic Codebook)"
 684	select CRYPTO_SKCIPHER
 685	select CRYPTO_MANAGER
 686	help
 687	  ECB (Electronic Codebook) mode (NIST SP800-38A)
 688
 689config CRYPTO_HCTR2
 690	tristate "HCTR2"
 691	select CRYPTO_XCTR
 692	select CRYPTO_POLYVAL
 693	select CRYPTO_MANAGER
 694	help
 695	  HCTR2 length-preserving encryption mode
 696
 697	  A mode for storage encryption that is efficient on processors with
 698	  instructions to accelerate AES and carryless multiplication, e.g.
 699	  x86 processors with AES-NI and CLMUL, and ARM processors with the
 700	  ARMv8 crypto extensions.
 701
 702	  See https://eprint.iacr.org/2021/1441
 703
 704config CRYPTO_KEYWRAP
 705	tristate "KW (AES Key Wrap)"
 706	select CRYPTO_SKCIPHER
 707	select CRYPTO_MANAGER
 708	help
 709	  KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
 710	  and RFC3394) without padding.
 711
 712config CRYPTO_LRW
 713	tristate "LRW (Liskov Rivest Wagner)"
 714	select CRYPTO_LIB_GF128MUL
 715	select CRYPTO_SKCIPHER
 716	select CRYPTO_MANAGER
 717	select CRYPTO_ECB
 718	help
 719	  LRW (Liskov Rivest Wagner) mode
 720
 721	  A tweakable, non malleable, non movable
 722	  narrow block cipher mode for dm-crypt.  Use it with cipher
 723	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 724	  The first 128, 192 or 256 bits in the key are used for AES and the
 725	  rest is used to tie each cipher block to its logical position.
 726
 727	  See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
 728
 729config CRYPTO_OFB
 730	tristate "OFB (Output Feedback)"
 731	select CRYPTO_SKCIPHER
 732	select CRYPTO_MANAGER
 733	help
 734	  OFB (Output Feedback) mode (NIST SP800-38A)
 735
 736	  This mode makes a block cipher into a synchronous
 737	  stream cipher. It generates keystream blocks, which are then XORed
 738	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 739	  ciphertext produces a flipped bit in the plaintext at the same
 740	  location. This property allows many error correcting codes to function
 741	  normally even when applied before encryption.
 742
 743config CRYPTO_PCBC
 744	tristate "PCBC (Propagating Cipher Block Chaining)"
 745	select CRYPTO_SKCIPHER
 746	select CRYPTO_MANAGER
 747	help
 748	  PCBC (Propagating Cipher Block Chaining) mode
 
 749
 750	  This block cipher mode is required for RxRPC.
 751
 752config CRYPTO_XCTR
 753	tristate
 754	select CRYPTO_SKCIPHER
 755	select CRYPTO_MANAGER
 
 756	help
 757	  XCTR (XOR Counter) mode for HCTR2
 
 
 758
 759	  This blockcipher mode is a variant of CTR mode using XORs and little-endian
 760	  addition rather than big-endian arithmetic.
 761
 762	  XCTR mode is used to implement HCTR2.
 763
 764config CRYPTO_XTS
 765	tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
 766	select CRYPTO_SKCIPHER
 767	select CRYPTO_MANAGER
 768	select CRYPTO_ECB
 769	help
 770	  XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
 771	  and IEEE 1619)
 772
 773	  Use with aes-xts-plain, key size 256, 384 or 512 bits. This
 774	  implementation currently can't handle a sectorsize which is not a
 775	  multiple of 16 bytes.
 776
 777config CRYPTO_NHPOLY1305
 778	tristate
 779	select CRYPTO_HASH
 780	select CRYPTO_LIB_POLY1305_GENERIC
 781
 782endmenu
 783
 784menu "AEAD (authenticated encryption with associated data) ciphers"
 785
 786config CRYPTO_AEGIS128
 787	tristate "AEGIS-128"
 788	select CRYPTO_AEAD
 789	select CRYPTO_AES  # for AES S-box tables
 790	help
 791	  AEGIS-128 AEAD algorithm
 
 792
 793config CRYPTO_AEGIS128_SIMD
 794	bool "AEGIS-128 (arm NEON, arm64 NEON)"
 795	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 796	default y
 797	help
 798	  AEGIS-128 AEAD algorithm
 
 799
 800	  Architecture: arm or arm64 using:
 801	  - NEON (Advanced SIMD) extension
 802
 803config CRYPTO_CHACHA20POLY1305
 804	tristate "ChaCha20-Poly1305"
 805	select CRYPTO_CHACHA20
 806	select CRYPTO_POLY1305
 807	select CRYPTO_AEAD
 808	select CRYPTO_MANAGER
 809	help
 810	  ChaCha20 stream cipher and Poly1305 authenticator combined
 811	  mode (RFC8439)
 
 
 
 
 
 
 812
 813config CRYPTO_CCM
 814	tristate "CCM (Counter with Cipher Block Chaining-MAC)"
 815	select CRYPTO_CTR
 816	select CRYPTO_HASH
 817	select CRYPTO_AEAD
 818	select CRYPTO_MANAGER
 819	help
 820	  CCM (Counter with Cipher Block Chaining-Message Authentication Code)
 821	  authenticated encryption mode (NIST SP800-38C)
 822
 823config CRYPTO_GCM
 824	tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
 825	select CRYPTO_CTR
 826	select CRYPTO_AEAD
 827	select CRYPTO_GHASH
 828	select CRYPTO_NULL
 829	select CRYPTO_MANAGER
 830	help
 831	  GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
 832	  (GCM Message Authentication Code) (NIST SP800-38D)
 833
 834	  This is required for IPSec ESP (XFRM_ESP).
 835
 836config CRYPTO_SEQIV
 837	tristate "Sequence Number IV Generator"
 838	select CRYPTO_AEAD
 839	select CRYPTO_SKCIPHER
 840	select CRYPTO_NULL
 841	select CRYPTO_RNG_DEFAULT
 842	select CRYPTO_MANAGER
 843	help
 844	  Sequence Number IV generator
 845
 846	  This IV generator generates an IV based on a sequence number by
 847	  xoring it with a salt.  This algorithm is mainly useful for CTR.
 848
 849	  This is required for IPsec ESP (XFRM_ESP).
 850
 851config CRYPTO_ECHAINIV
 852	tristate "Encrypted Chain IV Generator"
 853	select CRYPTO_AEAD
 854	select CRYPTO_NULL
 855	select CRYPTO_RNG_DEFAULT
 856	select CRYPTO_MANAGER
 857	help
 858	  Encrypted Chain IV generator
 859
 860	  This IV generator generates an IV based on the encryption of
 861	  a sequence number xored with a salt.  This is the default
 862	  algorithm for CBC.
 863
 864config CRYPTO_ESSIV
 865	tristate "Encrypted Salt-Sector IV Generator"
 866	select CRYPTO_AUTHENC
 867	help
 868	  Encrypted Salt-Sector IV generator
 869
 870	  This IV generator is used in some cases by fscrypt and/or
 871	  dm-crypt. It uses the hash of the block encryption key as the
 872	  symmetric key for a block encryption pass applied to the input
 873	  IV, making low entropy IV sources more suitable for block
 874	  encryption.
 875
 876	  This driver implements a crypto API template that can be
 877	  instantiated either as an skcipher or as an AEAD (depending on the
 878	  type of the first template argument), and which defers encryption
 879	  and decryption requests to the encapsulated cipher after applying
 880	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 881	  that the keys are presented in the same format used by the authenc
 882	  template, and that the IV appears at the end of the authenticated
 883	  associated data (AAD) region (which is how dm-crypt uses it.)
 884
 885	  Note that the use of ESSIV is not recommended for new deployments,
 886	  and so this only needs to be enabled when interoperability with
 887	  existing encrypted volumes of filesystems is required, or when
 888	  building for a particular system that requires it (e.g., when
 889	  the SoC in question has accelerated CBC but not XTS, making CBC
 890	  combined with ESSIV the only feasible mode for h/w accelerated
 891	  block encryption)
 892
 893endmenu
 
 
 
 
 
 
 
 
 894
 895menu "Hashes, digests, and MACs"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 896
 897config CRYPTO_BLAKE2B
 898	tristate "BLAKE2b"
 899	select CRYPTO_HASH
 900	help
 901	  BLAKE2b cryptographic hash function (RFC 7693)
 
 
 902
 903	  BLAKE2b is optimized for 64-bit platforms and can produce digests
 904	  of any size between 1 and 64 bytes. The keyed hash is also implemented.
 905
 906	  This module provides the following algorithms:
 907	  - blake2b-160
 908	  - blake2b-256
 909	  - blake2b-384
 910	  - blake2b-512
 911
 912	  Used by the btrfs filesystem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 913
 914	  See https://blake2.net for further information.
 915
 916config CRYPTO_CMAC
 917	tristate "CMAC (Cipher-based MAC)"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 918	select CRYPTO_HASH
 919	select CRYPTO_MANAGER
 920	help
 921	  CMAC (Cipher-based Message Authentication Code) authentication
 922	  mode (NIST SP800-38B and IETF RFC4493)
 
 
 
 
 
 
 
 
 
 923
 924config CRYPTO_GHASH
 925	tristate "GHASH"
 
 926	select CRYPTO_HASH
 927	select CRYPTO_LIB_GF128MUL
 928	help
 929	  GCM GHASH function (NIST SP800-38D)
 
 930
 931config CRYPTO_HMAC
 932	tristate "HMAC (Keyed-Hash MAC)"
 933	select CRYPTO_HASH
 934	select CRYPTO_MANAGER
 
 
 
 
 
 
 
 
 
 
 
 
 935	help
 936	  HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
 937	  RFC2104)
 
 
 
 
 938
 939	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
 
 
 
 940
 941config CRYPTO_MD4
 942	tristate "MD4"
 943	select CRYPTO_HASH
 944	help
 945	  MD4 message digest algorithm (RFC1320)
 946
 947config CRYPTO_MD5
 948	tristate "MD5"
 949	select CRYPTO_HASH
 950	help
 951	  MD5 message digest algorithm (RFC1321)
 952
 953config CRYPTO_MICHAEL_MIC
 954	tristate "Michael MIC"
 
 
 955	select CRYPTO_HASH
 956	help
 957	  Michael MIC (Message Integrity Code) (IEEE 802.11i)
 
 958
 959	  Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
 960	  known as WPA (Wif-Fi Protected Access).
 
 
 
 
 
 961
 962	  This algorithm is required for TKIP, but it should not be used for
 963	  other purposes because of the weakness of the algorithm.
 
 
 
 
 
 
 964
 965config CRYPTO_POLYVAL
 966	tristate
 967	select CRYPTO_HASH
 968	select CRYPTO_LIB_GF128MUL
 969	help
 970	  POLYVAL hash function for HCTR2
 971
 972	  This is used in HCTR2.  It is not a general-purpose
 973	  cryptographic hash function.
 974
 975config CRYPTO_POLY1305
 976	tristate "Poly1305"
 977	select CRYPTO_HASH
 978	select CRYPTO_LIB_POLY1305_GENERIC
 979	help
 980	  Poly1305 authenticator algorithm (RFC7539)
 981
 982	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 983	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 984	  in IETF protocols. This is the portable C implementation of Poly1305.
 
 
 
 985
 986config CRYPTO_RMD160
 987	tristate "RIPEMD-160"
 988	select CRYPTO_HASH
 989	help
 990	  RIPEMD-160 hash function (ISO/IEC 10118-3)
 991
 992	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 993	  to be used as a secure replacement for the 128-bit hash functions
 994	  MD4, MD5 and its predecessor RIPEMD
 995	  (not to be confused with RIPEMD-128).
 996
 997	  Its speed is comparable to SHA-1 and there are no known attacks
 998	  against RIPEMD-160.
 999
1000	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
1001	  See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
1002	  for further information.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1003
1004config CRYPTO_SHA1
1005	tristate "SHA-1"
1006	select CRYPTO_HASH
1007	select CRYPTO_LIB_SHA1
1008	help
1009	  SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010
1011config CRYPTO_SHA256
1012	tristate "SHA-224 and SHA-256"
1013	select CRYPTO_HASH
1014	select CRYPTO_LIB_SHA256
1015	help
1016	  SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 
 
 
1017
1018	  This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1019	  Used by the btrfs filesystem, Ceph, NFS, and SMB.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1020
1021config CRYPTO_SHA512
1022	tristate "SHA-384 and SHA-512"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023	select CRYPTO_HASH
1024	help
1025	  SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
 
 
 
 
 
 
 
 
 
 
1026
1027config CRYPTO_SHA3
1028	tristate "SHA-3"
1029	select CRYPTO_HASH
1030	help
1031	  SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
 
 
 
 
1032
1033config CRYPTO_SM3
1034	tristate
1035
1036config CRYPTO_SM3_GENERIC
1037	tristate "SM3 (ShangMi 3)"
1038	select CRYPTO_HASH
1039	select CRYPTO_SM3
1040	help
1041	  SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1042
1043	  This is part of the Chinese Commercial Cryptography suite.
1044
1045	  References:
1046	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1047	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1048
1049config CRYPTO_STREEBOG
1050	tristate "Streebog"
1051	select CRYPTO_HASH
1052	help
1053	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1054
1055	  This is one of the Russian cryptographic standard algorithms (called
1056	  GOST algorithms). This setting enables two hash algorithms with
1057	  256 and 512 bits output.
1058
1059	  References:
1060	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1061	  https://tools.ietf.org/html/rfc6986
1062
1063config CRYPTO_VMAC
1064	tristate "VMAC"
1065	select CRYPTO_HASH
1066	select CRYPTO_MANAGER
1067	help
1068	  VMAC is a message authentication algorithm designed for
1069	  very high speed on 64-bit architectures.
 
 
 
1070
1071	  See https://fastcrypto.org/vmac for further information.
 
1072
1073config CRYPTO_WP512
1074	tristate "Whirlpool"
1075	select CRYPTO_HASH
1076	help
1077	  Whirlpool hash function (ISO/IEC 10118-3)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078
1079	  512, 384 and 256-bit hashes.
 
 
 
1080
1081	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082
1083	  See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1084	  for further information.
1085
1086config CRYPTO_XCBC
1087	tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1088	select CRYPTO_HASH
1089	select CRYPTO_MANAGER
1090	help
1091	  XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1092	  Code) (RFC3566)
 
 
 
1093
1094config CRYPTO_XXHASH
1095	tristate "xxHash"
1096	select CRYPTO_HASH
1097	select XXHASH
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1098	help
1099	  xxHash non-cryptographic hash algorithm
1100
1101	  Extremely fast, working at speeds close to RAM limits.
 
 
1102
1103	  Used by the btrfs filesystem.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1104
1105endmenu
 
1106
1107menu "CRCs (cyclic redundancy checks)"
 
 
 
 
1108
1109config CRYPTO_CRC32C
1110	tristate "CRC32c"
1111	select CRYPTO_HASH
1112	select CRC32
 
1113	help
1114	  CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1115
1116	  A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1117	  by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1118	  Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1119	  on Communications, Vol. 41, No. 6, June 1993, selected for use with
1120	  iSCSI.
1121
1122	  Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
 
1123
1124config CRYPTO_CRC32
1125	tristate "CRC32"
1126	select CRYPTO_HASH
1127	select CRC32
 
1128	help
1129	  CRC32 CRC algorithm (IEEE 802.3)
1130
1131	  Used by RoCEv2 and f2fs.
 
 
 
1132
1133config CRYPTO_CRCT10DIF
1134	tristate "CRCT10DIF"
1135	select CRYPTO_HASH
 
 
 
 
 
 
 
1136	help
1137	  CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
 
 
 
 
 
 
 
 
1138
1139	  CRC algorithm used by the SCSI Block Commands standard.
 
1140
1141config CRYPTO_CRC64_ROCKSOFT
1142	tristate "CRC64 based on Rocksoft Model algorithm"
1143	depends on CRC64
1144	select CRYPTO_HASH
 
 
 
 
 
1145	help
1146	  CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1147
1148	  Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
 
 
 
1149
1150	  See https://zlib.net/crc_v3.txt
 
1151
1152endmenu
 
1153
1154menu "Compression"
1155
1156config CRYPTO_DEFLATE
1157	tristate "Deflate"
1158	select CRYPTO_ALGAPI
1159	select CRYPTO_ACOMP2
1160	select ZLIB_INFLATE
1161	select ZLIB_DEFLATE
1162	help
1163	  Deflate compression algorithm (RFC1951)
 
1164
1165	  Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1166
1167config CRYPTO_LZO
1168	tristate "LZO"
1169	select CRYPTO_ALGAPI
1170	select CRYPTO_ACOMP2
1171	select LZO_COMPRESS
1172	select LZO_DECOMPRESS
1173	help
1174	  LZO compression algorithm
1175
1176	  See https://www.oberhumer.com/opensource/lzo/ for further information.
1177
1178config CRYPTO_842
1179	tristate "842"
1180	select CRYPTO_ALGAPI
1181	select CRYPTO_ACOMP2
1182	select 842_COMPRESS
1183	select 842_DECOMPRESS
1184	help
1185	  842 compression algorithm by IBM
1186
1187	  See https://github.com/plauth/lib842 for further information.
1188
1189config CRYPTO_LZ4
1190	tristate "LZ4"
1191	select CRYPTO_ALGAPI
1192	select CRYPTO_ACOMP2
1193	select LZ4_COMPRESS
1194	select LZ4_DECOMPRESS
1195	help
1196	  LZ4 compression algorithm
1197
1198	  See https://github.com/lz4/lz4 for further information.
1199
1200config CRYPTO_LZ4HC
1201	tristate "LZ4HC"
1202	select CRYPTO_ALGAPI
1203	select CRYPTO_ACOMP2
1204	select LZ4HC_COMPRESS
1205	select LZ4_DECOMPRESS
1206	help
1207	  LZ4 high compression mode algorithm
1208
1209	  See https://github.com/lz4/lz4 for further information.
1210
1211config CRYPTO_ZSTD
1212	tristate "Zstd"
1213	select CRYPTO_ALGAPI
1214	select CRYPTO_ACOMP2
1215	select ZSTD_COMPRESS
1216	select ZSTD_DECOMPRESS
1217	help
1218	  zstd compression algorithm
1219
1220	  See https://github.com/facebook/zstd for further information.
1221
1222endmenu
1223
1224menu "Random number generation"
1225
1226config CRYPTO_ANSI_CPRNG
1227	tristate "ANSI PRNG (Pseudo Random Number Generator)"
1228	select CRYPTO_AES
1229	select CRYPTO_RNG
1230	help
1231	  Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1232
1233	  This uses the AES cipher algorithm.
1234
1235	  Note that this option must be enabled if CRYPTO_FIPS is selected
1236
1237menuconfig CRYPTO_DRBG_MENU
1238	tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1239	help
1240	  DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1241
1242	  In the following submenu, one or more of the DRBG types must be selected.
1243
1244if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_DRBG_HMAC
1247	bool
1248	default y
1249	select CRYPTO_HMAC
1250	select CRYPTO_SHA512
1251
1252config CRYPTO_DRBG_HASH
1253	bool "Hash_DRBG"
1254	select CRYPTO_SHA256
1255	help
1256	  Hash_DRBG variant as defined in NIST SP800-90A.
1257
1258	  This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1259
1260config CRYPTO_DRBG_CTR
1261	bool "CTR_DRBG"
1262	select CRYPTO_AES
1263	select CRYPTO_CTR
1264	help
1265	  CTR_DRBG variant as defined in NIST SP800-90A.
1266
1267	  This uses the AES cipher algorithm with the counter block mode.
1268
1269config CRYPTO_DRBG
1270	tristate
1271	default CRYPTO_DRBG_MENU
1272	select CRYPTO_RNG
1273	select CRYPTO_JITTERENTROPY
1274
1275endif	# if CRYPTO_DRBG_MENU
1276
1277config CRYPTO_JITTERENTROPY
1278	tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1279	select CRYPTO_RNG
1280	help
1281	  CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1282
1283	  A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1284	  compliant with NIST SP800-90B) intended to provide a seed to a
1285	  deterministic RNG (e.g.  per NIST SP800-90C).
1286	  This RNG does not perform any cryptographic whitening of the generated
1287
1288	  See https://www.chronox.de/jent.html
1289
1290config CRYPTO_KDF800108_CTR
1291	tristate
1292	select CRYPTO_HMAC
1293	select CRYPTO_SHA256
1294
1295endmenu
1296menu "Userspace interface"
1297
1298config CRYPTO_USER_API
1299	tristate
1300
1301config CRYPTO_USER_API_HASH
1302	tristate "Hash algorithms"
1303	depends on NET
1304	select CRYPTO_HASH
1305	select CRYPTO_USER_API
1306	help
1307	  Enable the userspace interface for hash algorithms.
1308
1309	  See Documentation/crypto/userspace-if.rst and
1310	  https://www.chronox.de/libkcapi/html/index.html
1311
1312config CRYPTO_USER_API_SKCIPHER
1313	tristate "Symmetric key cipher algorithms"
1314	depends on NET
1315	select CRYPTO_SKCIPHER
1316	select CRYPTO_USER_API
1317	help
1318	  Enable the userspace interface for symmetric key cipher algorithms.
1319
1320	  See Documentation/crypto/userspace-if.rst and
1321	  https://www.chronox.de/libkcapi/html/index.html
1322
1323config CRYPTO_USER_API_RNG
1324	tristate "RNG (random number generator) algorithms"
1325	depends on NET
1326	select CRYPTO_RNG
1327	select CRYPTO_USER_API
1328	help
1329	  Enable the userspace interface for RNG (random number generator)
1330	  algorithms.
1331
1332	  See Documentation/crypto/userspace-if.rst and
1333	  https://www.chronox.de/libkcapi/html/index.html
1334
1335config CRYPTO_USER_API_RNG_CAVP
1336	bool "Enable CAVP testing of DRBG"
1337	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1338	help
1339	  Enable extra APIs in the userspace interface for NIST CAVP
1340	  (Cryptographic Algorithm Validation Program) testing:
1341	  - resetting DRBG entropy
1342	  - providing Additional Data
1343
1344	  This should only be enabled for CAVP testing. You should say
1345	  no unless you know what this is.
1346
1347config CRYPTO_USER_API_AEAD
1348	tristate "AEAD cipher algorithms"
1349	depends on NET
1350	select CRYPTO_AEAD
1351	select CRYPTO_SKCIPHER
1352	select CRYPTO_NULL
1353	select CRYPTO_USER_API
1354	help
1355	  Enable the userspace interface for AEAD cipher algorithms.
1356
1357	  See Documentation/crypto/userspace-if.rst and
1358	  https://www.chronox.de/libkcapi/html/index.html
1359
1360config CRYPTO_USER_API_ENABLE_OBSOLETE
1361	bool "Obsolete cryptographic algorithms"
1362	depends on CRYPTO_USER_API
1363	default y
1364	help
1365	  Allow obsolete cryptographic algorithms to be selected that have
1366	  already been phased out from internal use by the kernel, and are
1367	  only useful for userspace clients that still rely on them.
1368
1369config CRYPTO_STATS
1370	bool "Crypto usage statistics"
1371	depends on CRYPTO_USER
1372	help
1373	  Enable the gathering of crypto stats.
1374
1375	  This collects data sizes, numbers of requests, and numbers
1376	  of errors processed by:
1377	  - AEAD ciphers (encrypt, decrypt)
1378	  - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1379	  - symmetric key ciphers (encrypt, decrypt)
1380	  - compression algorithms (compress, decompress)
1381	  - hash algorithms (hash)
1382	  - key-agreement protocol primitives (setsecret, generate
1383	    public key, compute shared secret)
1384	  - RNG (generate, seed)
1385
1386endmenu
1387
1388config CRYPTO_HASH_INFO
1389	bool
1390
1391if !KMSAN # avoid false positives from assembly
1392if ARM
1393source "arch/arm/crypto/Kconfig"
1394endif
1395if ARM64
1396source "arch/arm64/crypto/Kconfig"
1397endif
1398if MIPS
1399source "arch/mips/crypto/Kconfig"
1400endif
1401if PPC
1402source "arch/powerpc/crypto/Kconfig"
1403endif
1404if S390
1405source "arch/s390/crypto/Kconfig"
1406endif
1407if SPARC
1408source "arch/sparc/crypto/Kconfig"
1409endif
1410if X86
1411source "arch/x86/crypto/Kconfig"
1412endif
1413endif
1414
1415source "drivers/crypto/Kconfig"
1416source "crypto/asymmetric_keys/Kconfig"
1417source "certs/Kconfig"
1418
1419endif	# if CRYPTO