Loading...
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 help
19 This option provides the core Cryptographic API.
20
21if CRYPTO
22
23comment "Crypto core or helper"
24
25config CRYPTO_FIPS
26 bool "FIPS 200 compliance"
27 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
28 depends on (MODULE_SIG || !MODULES)
29 help
30 This option enables the fips boot option which is
31 required if you want the system to operate in a FIPS 200
32 certification. You should say no unless you know what
33 this is.
34
35config CRYPTO_ALGAPI
36 tristate
37 select CRYPTO_ALGAPI2
38 help
39 This option provides the API for cryptographic algorithms.
40
41config CRYPTO_ALGAPI2
42 tristate
43
44config CRYPTO_AEAD
45 tristate
46 select CRYPTO_AEAD2
47 select CRYPTO_ALGAPI
48
49config CRYPTO_AEAD2
50 tristate
51 select CRYPTO_ALGAPI2
52 select CRYPTO_NULL2
53 select CRYPTO_RNG2
54
55config CRYPTO_SKCIPHER
56 tristate
57 select CRYPTO_SKCIPHER2
58 select CRYPTO_ALGAPI
59
60config CRYPTO_SKCIPHER2
61 tristate
62 select CRYPTO_ALGAPI2
63 select CRYPTO_RNG2
64
65config CRYPTO_HASH
66 tristate
67 select CRYPTO_HASH2
68 select CRYPTO_ALGAPI
69
70config CRYPTO_HASH2
71 tristate
72 select CRYPTO_ALGAPI2
73
74config CRYPTO_RNG
75 tristate
76 select CRYPTO_RNG2
77 select CRYPTO_ALGAPI
78
79config CRYPTO_RNG2
80 tristate
81 select CRYPTO_ALGAPI2
82
83config CRYPTO_RNG_DEFAULT
84 tristate
85 select CRYPTO_DRBG_MENU
86
87config CRYPTO_AKCIPHER2
88 tristate
89 select CRYPTO_ALGAPI2
90
91config CRYPTO_AKCIPHER
92 tristate
93 select CRYPTO_AKCIPHER2
94 select CRYPTO_ALGAPI
95
96config CRYPTO_KPP2
97 tristate
98 select CRYPTO_ALGAPI2
99
100config CRYPTO_KPP
101 tristate
102 select CRYPTO_ALGAPI
103 select CRYPTO_KPP2
104
105config CRYPTO_ACOMP2
106 tristate
107 select CRYPTO_ALGAPI2
108 select SGL_ALLOC
109
110config CRYPTO_ACOMP
111 tristate
112 select CRYPTO_ALGAPI
113 select CRYPTO_ACOMP2
114
115config CRYPTO_MANAGER
116 tristate "Cryptographic algorithm manager"
117 select CRYPTO_MANAGER2
118 help
119 Create default cryptographic template instantiations such as
120 cbc(aes).
121
122config CRYPTO_MANAGER2
123 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
124 select CRYPTO_AEAD2
125 select CRYPTO_HASH2
126 select CRYPTO_SKCIPHER2
127 select CRYPTO_AKCIPHER2
128 select CRYPTO_KPP2
129 select CRYPTO_ACOMP2
130
131config CRYPTO_USER
132 tristate "Userspace cryptographic algorithm configuration"
133 depends on NET
134 select CRYPTO_MANAGER
135 help
136 Userspace configuration for cryptographic instantiations such as
137 cbc(aes).
138
139config CRYPTO_MANAGER_DISABLE_TESTS
140 bool "Disable run-time self tests"
141 default y
142 help
143 Disable run-time self tests that normally take place at
144 algorithm registration.
145
146config CRYPTO_MANAGER_EXTRA_TESTS
147 bool "Enable extra run-time crypto self tests"
148 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
149 help
150 Enable extra run-time self tests of registered crypto algorithms,
151 including randomized fuzz tests.
152
153 This is intended for developer use only, as these tests take much
154 longer to run than the normal self tests.
155
156config CRYPTO_GF128MUL
157 tristate
158
159config CRYPTO_NULL
160 tristate "Null algorithms"
161 select CRYPTO_NULL2
162 help
163 These are 'Null' algorithms, used by IPsec, which do nothing.
164
165config CRYPTO_NULL2
166 tristate
167 select CRYPTO_ALGAPI2
168 select CRYPTO_SKCIPHER2
169 select CRYPTO_HASH2
170
171config CRYPTO_PCRYPT
172 tristate "Parallel crypto engine"
173 depends on SMP
174 select PADATA
175 select CRYPTO_MANAGER
176 select CRYPTO_AEAD
177 help
178 This converts an arbitrary crypto algorithm into a parallel
179 algorithm that executes in kernel threads.
180
181config CRYPTO_CRYPTD
182 tristate "Software async crypto daemon"
183 select CRYPTO_SKCIPHER
184 select CRYPTO_HASH
185 select CRYPTO_MANAGER
186 help
187 This is a generic software asynchronous crypto daemon that
188 converts an arbitrary synchronous software crypto algorithm
189 into an asynchronous algorithm that executes in a kernel thread.
190
191config CRYPTO_AUTHENC
192 tristate "Authenc support"
193 select CRYPTO_AEAD
194 select CRYPTO_SKCIPHER
195 select CRYPTO_MANAGER
196 select CRYPTO_HASH
197 select CRYPTO_NULL
198 help
199 Authenc: Combined mode wrapper for IPsec.
200 This is required for IPSec.
201
202config CRYPTO_TEST
203 tristate "Testing module"
204 depends on m
205 select CRYPTO_MANAGER
206 help
207 Quick & dirty crypto test module.
208
209config CRYPTO_SIMD
210 tristate
211 select CRYPTO_CRYPTD
212
213config CRYPTO_GLUE_HELPER_X86
214 tristate
215 depends on X86
216 select CRYPTO_SKCIPHER
217
218config CRYPTO_ENGINE
219 tristate
220
221comment "Public-key cryptography"
222
223config CRYPTO_RSA
224 tristate "RSA algorithm"
225 select CRYPTO_AKCIPHER
226 select CRYPTO_MANAGER
227 select MPILIB
228 select ASN1
229 help
230 Generic implementation of the RSA public key algorithm.
231
232config CRYPTO_DH
233 tristate "Diffie-Hellman algorithm"
234 select CRYPTO_KPP
235 select MPILIB
236 help
237 Generic implementation of the Diffie-Hellman algorithm.
238
239config CRYPTO_ECC
240 tristate
241
242config CRYPTO_ECDH
243 tristate "ECDH algorithm"
244 select CRYPTO_ECC
245 select CRYPTO_KPP
246 select CRYPTO_RNG_DEFAULT
247 help
248 Generic implementation of the ECDH algorithm
249
250config CRYPTO_ECRDSA
251 tristate "EC-RDSA (GOST 34.10) algorithm"
252 select CRYPTO_ECC
253 select CRYPTO_AKCIPHER
254 select CRYPTO_STREEBOG
255 select OID_REGISTRY
256 select ASN1
257 help
258 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
259 RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
260 standard algorithms (called GOST algorithms). Only signature verification
261 is implemented.
262
263config CRYPTO_CURVE25519
264 tristate "Curve25519 algorithm"
265 select CRYPTO_KPP
266 select CRYPTO_LIB_CURVE25519_GENERIC
267
268config CRYPTO_CURVE25519_X86
269 tristate "x86_64 accelerated Curve25519 scalar multiplication library"
270 depends on X86 && 64BIT
271 select CRYPTO_LIB_CURVE25519_GENERIC
272 select CRYPTO_ARCH_HAVE_LIB_CURVE25519
273
274comment "Authenticated Encryption with Associated Data"
275
276config CRYPTO_CCM
277 tristate "CCM support"
278 select CRYPTO_CTR
279 select CRYPTO_HASH
280 select CRYPTO_AEAD
281 select CRYPTO_MANAGER
282 help
283 Support for Counter with CBC MAC. Required for IPsec.
284
285config CRYPTO_GCM
286 tristate "GCM/GMAC support"
287 select CRYPTO_CTR
288 select CRYPTO_AEAD
289 select CRYPTO_GHASH
290 select CRYPTO_NULL
291 select CRYPTO_MANAGER
292 help
293 Support for Galois/Counter Mode (GCM) and Galois Message
294 Authentication Code (GMAC). Required for IPSec.
295
296config CRYPTO_CHACHA20POLY1305
297 tristate "ChaCha20-Poly1305 AEAD support"
298 select CRYPTO_CHACHA20
299 select CRYPTO_POLY1305
300 select CRYPTO_AEAD
301 select CRYPTO_MANAGER
302 help
303 ChaCha20-Poly1305 AEAD support, RFC7539.
304
305 Support for the AEAD wrapper using the ChaCha20 stream cipher combined
306 with the Poly1305 authenticator. It is defined in RFC7539 for use in
307 IETF protocols.
308
309config CRYPTO_AEGIS128
310 tristate "AEGIS-128 AEAD algorithm"
311 select CRYPTO_AEAD
312 select CRYPTO_AES # for AES S-box tables
313 help
314 Support for the AEGIS-128 dedicated AEAD algorithm.
315
316config CRYPTO_AEGIS128_SIMD
317 bool "Support SIMD acceleration for AEGIS-128"
318 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
319 default y
320
321config CRYPTO_AEGIS128_AESNI_SSE2
322 tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
323 depends on X86 && 64BIT
324 select CRYPTO_AEAD
325 select CRYPTO_SIMD
326 help
327 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
328
329config CRYPTO_SEQIV
330 tristate "Sequence Number IV Generator"
331 select CRYPTO_AEAD
332 select CRYPTO_SKCIPHER
333 select CRYPTO_NULL
334 select CRYPTO_RNG_DEFAULT
335 select CRYPTO_MANAGER
336 help
337 This IV generator generates an IV based on a sequence number by
338 xoring it with a salt. This algorithm is mainly useful for CTR
339
340config CRYPTO_ECHAINIV
341 tristate "Encrypted Chain IV Generator"
342 select CRYPTO_AEAD
343 select CRYPTO_NULL
344 select CRYPTO_RNG_DEFAULT
345 select CRYPTO_MANAGER
346 help
347 This IV generator generates an IV based on the encryption of
348 a sequence number xored with a salt. This is the default
349 algorithm for CBC.
350
351comment "Block modes"
352
353config CRYPTO_CBC
354 tristate "CBC support"
355 select CRYPTO_SKCIPHER
356 select CRYPTO_MANAGER
357 help
358 CBC: Cipher Block Chaining mode
359 This block cipher algorithm is required for IPSec.
360
361config CRYPTO_CFB
362 tristate "CFB support"
363 select CRYPTO_SKCIPHER
364 select CRYPTO_MANAGER
365 help
366 CFB: Cipher FeedBack mode
367 This block cipher algorithm is required for TPM2 Cryptography.
368
369config CRYPTO_CTR
370 tristate "CTR support"
371 select CRYPTO_SKCIPHER
372 select CRYPTO_MANAGER
373 help
374 CTR: Counter mode
375 This block cipher algorithm is required for IPSec.
376
377config CRYPTO_CTS
378 tristate "CTS support"
379 select CRYPTO_SKCIPHER
380 select CRYPTO_MANAGER
381 help
382 CTS: Cipher Text Stealing
383 This is the Cipher Text Stealing mode as described by
384 Section 8 of rfc2040 and referenced by rfc3962
385 (rfc3962 includes errata information in its Appendix A) or
386 CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
387 This mode is required for Kerberos gss mechanism support
388 for AES encryption.
389
390 See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
391
392config CRYPTO_ECB
393 tristate "ECB support"
394 select CRYPTO_SKCIPHER
395 select CRYPTO_MANAGER
396 help
397 ECB: Electronic CodeBook mode
398 This is the simplest block cipher algorithm. It simply encrypts
399 the input block by block.
400
401config CRYPTO_LRW
402 tristate "LRW support"
403 select CRYPTO_SKCIPHER
404 select CRYPTO_MANAGER
405 select CRYPTO_GF128MUL
406 help
407 LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
408 narrow block cipher mode for dm-crypt. Use it with cipher
409 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
410 The first 128, 192 or 256 bits in the key are used for AES and the
411 rest is used to tie each cipher block to its logical position.
412
413config CRYPTO_OFB
414 tristate "OFB support"
415 select CRYPTO_SKCIPHER
416 select CRYPTO_MANAGER
417 help
418 OFB: the Output Feedback mode makes a block cipher into a synchronous
419 stream cipher. It generates keystream blocks, which are then XORed
420 with the plaintext blocks to get the ciphertext. Flipping a bit in the
421 ciphertext produces a flipped bit in the plaintext at the same
422 location. This property allows many error correcting codes to function
423 normally even when applied before encryption.
424
425config CRYPTO_PCBC
426 tristate "PCBC support"
427 select CRYPTO_SKCIPHER
428 select CRYPTO_MANAGER
429 help
430 PCBC: Propagating Cipher Block Chaining mode
431 This block cipher algorithm is required for RxRPC.
432
433config CRYPTO_XTS
434 tristate "XTS support"
435 select CRYPTO_SKCIPHER
436 select CRYPTO_MANAGER
437 select CRYPTO_ECB
438 help
439 XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
440 key size 256, 384 or 512 bits. This implementation currently
441 can't handle a sectorsize which is not a multiple of 16 bytes.
442
443config CRYPTO_KEYWRAP
444 tristate "Key wrapping support"
445 select CRYPTO_SKCIPHER
446 select CRYPTO_MANAGER
447 help
448 Support for key wrapping (NIST SP800-38F / RFC3394) without
449 padding.
450
451config CRYPTO_NHPOLY1305
452 tristate
453 select CRYPTO_HASH
454 select CRYPTO_LIB_POLY1305_GENERIC
455
456config CRYPTO_NHPOLY1305_SSE2
457 tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
458 depends on X86 && 64BIT
459 select CRYPTO_NHPOLY1305
460 help
461 SSE2 optimized implementation of the hash function used by the
462 Adiantum encryption mode.
463
464config CRYPTO_NHPOLY1305_AVX2
465 tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
466 depends on X86 && 64BIT
467 select CRYPTO_NHPOLY1305
468 help
469 AVX2 optimized implementation of the hash function used by the
470 Adiantum encryption mode.
471
472config CRYPTO_ADIANTUM
473 tristate "Adiantum support"
474 select CRYPTO_CHACHA20
475 select CRYPTO_LIB_POLY1305_GENERIC
476 select CRYPTO_NHPOLY1305
477 select CRYPTO_MANAGER
478 help
479 Adiantum is a tweakable, length-preserving encryption mode
480 designed for fast and secure disk encryption, especially on
481 CPUs without dedicated crypto instructions. It encrypts
482 each sector using the XChaCha12 stream cipher, two passes of
483 an ε-almost-∆-universal hash function, and an invocation of
484 the AES-256 block cipher on a single 16-byte block. On CPUs
485 without AES instructions, Adiantum is much faster than
486 AES-XTS.
487
488 Adiantum's security is provably reducible to that of its
489 underlying stream and block ciphers, subject to a security
490 bound. Unlike XTS, Adiantum is a true wide-block encryption
491 mode, so it actually provides an even stronger notion of
492 security than XTS, subject to the security bound.
493
494 If unsure, say N.
495
496config CRYPTO_ESSIV
497 tristate "ESSIV support for block encryption"
498 select CRYPTO_AUTHENC
499 help
500 Encrypted salt-sector initialization vector (ESSIV) is an IV
501 generation method that is used in some cases by fscrypt and/or
502 dm-crypt. It uses the hash of the block encryption key as the
503 symmetric key for a block encryption pass applied to the input
504 IV, making low entropy IV sources more suitable for block
505 encryption.
506
507 This driver implements a crypto API template that can be
508 instantiated either as an skcipher or as an AEAD (depending on the
509 type of the first template argument), and which defers encryption
510 and decryption requests to the encapsulated cipher after applying
511 ESSIV to the input IV. Note that in the AEAD case, it is assumed
512 that the keys are presented in the same format used by the authenc
513 template, and that the IV appears at the end of the authenticated
514 associated data (AAD) region (which is how dm-crypt uses it.)
515
516 Note that the use of ESSIV is not recommended for new deployments,
517 and so this only needs to be enabled when interoperability with
518 existing encrypted volumes of filesystems is required, or when
519 building for a particular system that requires it (e.g., when
520 the SoC in question has accelerated CBC but not XTS, making CBC
521 combined with ESSIV the only feasible mode for h/w accelerated
522 block encryption)
523
524comment "Hash modes"
525
526config CRYPTO_CMAC
527 tristate "CMAC support"
528 select CRYPTO_HASH
529 select CRYPTO_MANAGER
530 help
531 Cipher-based Message Authentication Code (CMAC) specified by
532 The National Institute of Standards and Technology (NIST).
533
534 https://tools.ietf.org/html/rfc4493
535 http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
536
537config CRYPTO_HMAC
538 tristate "HMAC support"
539 select CRYPTO_HASH
540 select CRYPTO_MANAGER
541 help
542 HMAC: Keyed-Hashing for Message Authentication (RFC2104).
543 This is required for IPSec.
544
545config CRYPTO_XCBC
546 tristate "XCBC support"
547 select CRYPTO_HASH
548 select CRYPTO_MANAGER
549 help
550 XCBC: Keyed-Hashing with encryption algorithm
551 https://www.ietf.org/rfc/rfc3566.txt
552 http://csrc.nist.gov/encryption/modes/proposedmodes/
553 xcbc-mac/xcbc-mac-spec.pdf
554
555config CRYPTO_VMAC
556 tristate "VMAC support"
557 select CRYPTO_HASH
558 select CRYPTO_MANAGER
559 help
560 VMAC is a message authentication algorithm designed for
561 very high speed on 64-bit architectures.
562
563 See also:
564 <https://fastcrypto.org/vmac>
565
566comment "Digest"
567
568config CRYPTO_CRC32C
569 tristate "CRC32c CRC algorithm"
570 select CRYPTO_HASH
571 select CRC32
572 help
573 Castagnoli, et al Cyclic Redundancy-Check Algorithm. Used
574 by iSCSI for header and data digests and by others.
575 See Castagnoli93. Module will be crc32c.
576
577config CRYPTO_CRC32C_INTEL
578 tristate "CRC32c INTEL hardware acceleration"
579 depends on X86
580 select CRYPTO_HASH
581 help
582 In Intel processor with SSE4.2 supported, the processor will
583 support CRC32C implementation using hardware accelerated CRC32
584 instruction. This option will create 'crc32c-intel' module,
585 which will enable any routine to use the CRC32 instruction to
586 gain performance compared with software implementation.
587 Module will be crc32c-intel.
588
589config CRYPTO_CRC32C_VPMSUM
590 tristate "CRC32c CRC algorithm (powerpc64)"
591 depends on PPC64 && ALTIVEC
592 select CRYPTO_HASH
593 select CRC32
594 help
595 CRC32c algorithm implemented using vector polynomial multiply-sum
596 (vpmsum) instructions, introduced in POWER8. Enable on POWER8
597 and newer processors for improved performance.
598
599
600config CRYPTO_CRC32C_SPARC64
601 tristate "CRC32c CRC algorithm (SPARC64)"
602 depends on SPARC64
603 select CRYPTO_HASH
604 select CRC32
605 help
606 CRC32c CRC algorithm implemented using sparc64 crypto instructions,
607 when available.
608
609config CRYPTO_CRC32
610 tristate "CRC32 CRC algorithm"
611 select CRYPTO_HASH
612 select CRC32
613 help
614 CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
615 Shash crypto api wrappers to crc32_le function.
616
617config CRYPTO_CRC32_PCLMUL
618 tristate "CRC32 PCLMULQDQ hardware acceleration"
619 depends on X86
620 select CRYPTO_HASH
621 select CRC32
622 help
623 From Intel Westmere and AMD Bulldozer processor with SSE4.2
624 and PCLMULQDQ supported, the processor will support
625 CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
626 instruction. This option will create 'crc32-pclmul' module,
627 which will enable any routine to use the CRC-32-IEEE 802.3 checksum
628 and gain better performance as compared with the table implementation.
629
630config CRYPTO_CRC32_MIPS
631 tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
632 depends on MIPS_CRC_SUPPORT
633 select CRYPTO_HASH
634 help
635 CRC32c and CRC32 CRC algorithms implemented using mips crypto
636 instructions, when available.
637
638
639config CRYPTO_XXHASH
640 tristate "xxHash hash algorithm"
641 select CRYPTO_HASH
642 select XXHASH
643 help
644 xxHash non-cryptographic hash algorithm. Extremely fast, working at
645 speeds close to RAM limits.
646
647config CRYPTO_BLAKE2B
648 tristate "BLAKE2b digest algorithm"
649 select CRYPTO_HASH
650 help
651 Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
652 optimized for 64bit platforms and can produce digests of any size
653 between 1 to 64. The keyed hash is also implemented.
654
655 This module provides the following algorithms:
656
657 - blake2b-160
658 - blake2b-256
659 - blake2b-384
660 - blake2b-512
661
662 See https://blake2.net for further information.
663
664config CRYPTO_BLAKE2S
665 tristate "BLAKE2s digest algorithm"
666 select CRYPTO_LIB_BLAKE2S_GENERIC
667 select CRYPTO_HASH
668 help
669 Implementation of cryptographic hash function BLAKE2s
670 optimized for 8-32bit platforms and can produce digests of any size
671 between 1 to 32. The keyed hash is also implemented.
672
673 This module provides the following algorithms:
674
675 - blake2s-128
676 - blake2s-160
677 - blake2s-224
678 - blake2s-256
679
680 See https://blake2.net for further information.
681
682config CRYPTO_BLAKE2S_X86
683 tristate "BLAKE2s digest algorithm (x86 accelerated version)"
684 depends on X86 && 64BIT
685 select CRYPTO_LIB_BLAKE2S_GENERIC
686 select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
687
688config CRYPTO_CRCT10DIF
689 tristate "CRCT10DIF algorithm"
690 select CRYPTO_HASH
691 help
692 CRC T10 Data Integrity Field computation is being cast as
693 a crypto transform. This allows for faster crc t10 diff
694 transforms to be used if they are available.
695
696config CRYPTO_CRCT10DIF_PCLMUL
697 tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
698 depends on X86 && 64BIT && CRC_T10DIF
699 select CRYPTO_HASH
700 help
701 For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
702 CRC T10 DIF PCLMULQDQ computation can be hardware
703 accelerated PCLMULQDQ instruction. This option will create
704 'crct10dif-pclmul' module, which is faster when computing the
705 crct10dif checksum as compared with the generic table implementation.
706
707config CRYPTO_CRCT10DIF_VPMSUM
708 tristate "CRC32T10DIF powerpc64 hardware acceleration"
709 depends on PPC64 && ALTIVEC && CRC_T10DIF
710 select CRYPTO_HASH
711 help
712 CRC10T10DIF algorithm implemented using vector polynomial
713 multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
714 POWER8 and newer processors for improved performance.
715
716config CRYPTO_VPMSUM_TESTER
717 tristate "Powerpc64 vpmsum hardware acceleration tester"
718 depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
719 help
720 Stress test for CRC32c and CRC-T10DIF algorithms implemented with
721 POWER8 vpmsum instructions.
722 Unless you are testing these algorithms, you don't need this.
723
724config CRYPTO_GHASH
725 tristate "GHASH hash function"
726 select CRYPTO_GF128MUL
727 select CRYPTO_HASH
728 help
729 GHASH is the hash function used in GCM (Galois/Counter Mode).
730 It is not a general-purpose cryptographic hash function.
731
732config CRYPTO_POLY1305
733 tristate "Poly1305 authenticator algorithm"
734 select CRYPTO_HASH
735 select CRYPTO_LIB_POLY1305_GENERIC
736 help
737 Poly1305 authenticator algorithm, RFC7539.
738
739 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
740 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
741 in IETF protocols. This is the portable C implementation of Poly1305.
742
743config CRYPTO_POLY1305_X86_64
744 tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
745 depends on X86 && 64BIT
746 select CRYPTO_LIB_POLY1305_GENERIC
747 select CRYPTO_ARCH_HAVE_LIB_POLY1305
748 help
749 Poly1305 authenticator algorithm, RFC7539.
750
751 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
752 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
753 in IETF protocols. This is the x86_64 assembler implementation using SIMD
754 instructions.
755
756config CRYPTO_POLY1305_MIPS
757 tristate "Poly1305 authenticator algorithm (MIPS optimized)"
758 depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
759 select CRYPTO_ARCH_HAVE_LIB_POLY1305
760
761config CRYPTO_MD4
762 tristate "MD4 digest algorithm"
763 select CRYPTO_HASH
764 help
765 MD4 message digest algorithm (RFC1320).
766
767config CRYPTO_MD5
768 tristate "MD5 digest algorithm"
769 select CRYPTO_HASH
770 help
771 MD5 message digest algorithm (RFC1321).
772
773config CRYPTO_MD5_OCTEON
774 tristate "MD5 digest algorithm (OCTEON)"
775 depends on CPU_CAVIUM_OCTEON
776 select CRYPTO_MD5
777 select CRYPTO_HASH
778 help
779 MD5 message digest algorithm (RFC1321) implemented
780 using OCTEON crypto instructions, when available.
781
782config CRYPTO_MD5_PPC
783 tristate "MD5 digest algorithm (PPC)"
784 depends on PPC
785 select CRYPTO_HASH
786 help
787 MD5 message digest algorithm (RFC1321) implemented
788 in PPC assembler.
789
790config CRYPTO_MD5_SPARC64
791 tristate "MD5 digest algorithm (SPARC64)"
792 depends on SPARC64
793 select CRYPTO_MD5
794 select CRYPTO_HASH
795 help
796 MD5 message digest algorithm (RFC1321) implemented
797 using sparc64 crypto instructions, when available.
798
799config CRYPTO_MICHAEL_MIC
800 tristate "Michael MIC keyed digest algorithm"
801 select CRYPTO_HASH
802 help
803 Michael MIC is used for message integrity protection in TKIP
804 (IEEE 802.11i). This algorithm is required for TKIP, but it
805 should not be used for other purposes because of the weakness
806 of the algorithm.
807
808config CRYPTO_RMD128
809 tristate "RIPEMD-128 digest algorithm"
810 select CRYPTO_HASH
811 help
812 RIPEMD-128 (ISO/IEC 10118-3:2004).
813
814 RIPEMD-128 is a 128-bit cryptographic hash function. It should only
815 be used as a secure replacement for RIPEMD. For other use cases,
816 RIPEMD-160 should be used.
817
818 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
819 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
820
821config CRYPTO_RMD160
822 tristate "RIPEMD-160 digest algorithm"
823 select CRYPTO_HASH
824 help
825 RIPEMD-160 (ISO/IEC 10118-3:2004).
826
827 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
828 to be used as a secure replacement for the 128-bit hash functions
829 MD4, MD5 and it's predecessor RIPEMD
830 (not to be confused with RIPEMD-128).
831
832 It's speed is comparable to SHA1 and there are no known attacks
833 against RIPEMD-160.
834
835 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
836 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
837
838config CRYPTO_RMD256
839 tristate "RIPEMD-256 digest algorithm"
840 select CRYPTO_HASH
841 help
842 RIPEMD-256 is an optional extension of RIPEMD-128 with a
843 256 bit hash. It is intended for applications that require
844 longer hash-results, without needing a larger security level
845 (than RIPEMD-128).
846
847 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
848 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
849
850config CRYPTO_RMD320
851 tristate "RIPEMD-320 digest algorithm"
852 select CRYPTO_HASH
853 help
854 RIPEMD-320 is an optional extension of RIPEMD-160 with a
855 320 bit hash. It is intended for applications that require
856 longer hash-results, without needing a larger security level
857 (than RIPEMD-160).
858
859 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
860 See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
861
862config CRYPTO_SHA1
863 tristate "SHA1 digest algorithm"
864 select CRYPTO_HASH
865 help
866 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
867
868config CRYPTO_SHA1_SSSE3
869 tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
870 depends on X86 && 64BIT
871 select CRYPTO_SHA1
872 select CRYPTO_HASH
873 help
874 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
875 using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
876 Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
877 when available.
878
879config CRYPTO_SHA256_SSSE3
880 tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
881 depends on X86 && 64BIT
882 select CRYPTO_SHA256
883 select CRYPTO_HASH
884 help
885 SHA-256 secure hash standard (DFIPS 180-2) implemented
886 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
887 Extensions version 1 (AVX1), or Advanced Vector Extensions
888 version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
889 Instructions) when available.
890
891config CRYPTO_SHA512_SSSE3
892 tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
893 depends on X86 && 64BIT
894 select CRYPTO_SHA512
895 select CRYPTO_HASH
896 help
897 SHA-512 secure hash standard (DFIPS 180-2) implemented
898 using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
899 Extensions version 1 (AVX1), or Advanced Vector Extensions
900 version 2 (AVX2) instructions, when available.
901
902config CRYPTO_SHA1_OCTEON
903 tristate "SHA1 digest algorithm (OCTEON)"
904 depends on CPU_CAVIUM_OCTEON
905 select CRYPTO_SHA1
906 select CRYPTO_HASH
907 help
908 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
909 using OCTEON crypto instructions, when available.
910
911config CRYPTO_SHA1_SPARC64
912 tristate "SHA1 digest algorithm (SPARC64)"
913 depends on SPARC64
914 select CRYPTO_SHA1
915 select CRYPTO_HASH
916 help
917 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
918 using sparc64 crypto instructions, when available.
919
920config CRYPTO_SHA1_PPC
921 tristate "SHA1 digest algorithm (powerpc)"
922 depends on PPC
923 help
924 This is the powerpc hardware accelerated implementation of the
925 SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
926
927config CRYPTO_SHA1_PPC_SPE
928 tristate "SHA1 digest algorithm (PPC SPE)"
929 depends on PPC && SPE
930 help
931 SHA-1 secure hash standard (DFIPS 180-4) implemented
932 using powerpc SPE SIMD instruction set.
933
934config CRYPTO_SHA256
935 tristate "SHA224 and SHA256 digest algorithm"
936 select CRYPTO_HASH
937 select CRYPTO_LIB_SHA256
938 help
939 SHA256 secure hash standard (DFIPS 180-2).
940
941 This version of SHA implements a 256 bit hash with 128 bits of
942 security against collision attacks.
943
944 This code also includes SHA-224, a 224 bit hash with 112 bits
945 of security against collision attacks.
946
947config CRYPTO_SHA256_PPC_SPE
948 tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
949 depends on PPC && SPE
950 select CRYPTO_SHA256
951 select CRYPTO_HASH
952 help
953 SHA224 and SHA256 secure hash standard (DFIPS 180-2)
954 implemented using powerpc SPE SIMD instruction set.
955
956config CRYPTO_SHA256_OCTEON
957 tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
958 depends on CPU_CAVIUM_OCTEON
959 select CRYPTO_SHA256
960 select CRYPTO_HASH
961 help
962 SHA-256 secure hash standard (DFIPS 180-2) implemented
963 using OCTEON crypto instructions, when available.
964
965config CRYPTO_SHA256_SPARC64
966 tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
967 depends on SPARC64
968 select CRYPTO_SHA256
969 select CRYPTO_HASH
970 help
971 SHA-256 secure hash standard (DFIPS 180-2) implemented
972 using sparc64 crypto instructions, when available.
973
974config CRYPTO_SHA512
975 tristate "SHA384 and SHA512 digest algorithms"
976 select CRYPTO_HASH
977 help
978 SHA512 secure hash standard (DFIPS 180-2).
979
980 This version of SHA implements a 512 bit hash with 256 bits of
981 security against collision attacks.
982
983 This code also includes SHA-384, a 384 bit hash with 192 bits
984 of security against collision attacks.
985
986config CRYPTO_SHA512_OCTEON
987 tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
988 depends on CPU_CAVIUM_OCTEON
989 select CRYPTO_SHA512
990 select CRYPTO_HASH
991 help
992 SHA-512 secure hash standard (DFIPS 180-2) implemented
993 using OCTEON crypto instructions, when available.
994
995config CRYPTO_SHA512_SPARC64
996 tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
997 depends on SPARC64
998 select CRYPTO_SHA512
999 select CRYPTO_HASH
1000 help
1001 SHA-512 secure hash standard (DFIPS 180-2) implemented
1002 using sparc64 crypto instructions, when available.
1003
1004config CRYPTO_SHA3
1005 tristate "SHA3 digest algorithm"
1006 select CRYPTO_HASH
1007 help
1008 SHA-3 secure hash standard (DFIPS 202). It's based on
1009 cryptographic sponge function family called Keccak.
1010
1011 References:
1012 http://keccak.noekeon.org/
1013
1014config CRYPTO_SM3
1015 tristate "SM3 digest algorithm"
1016 select CRYPTO_HASH
1017 help
1018 SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1019 It is part of the Chinese Commercial Cryptography suite.
1020
1021 References:
1022 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1023 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1024
1025config CRYPTO_STREEBOG
1026 tristate "Streebog Hash Function"
1027 select CRYPTO_HASH
1028 help
1029 Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1030 cryptographic standard algorithms (called GOST algorithms).
1031 This setting enables two hash algorithms with 256 and 512 bits output.
1032
1033 References:
1034 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1035 https://tools.ietf.org/html/rfc6986
1036
1037config CRYPTO_TGR192
1038 tristate "Tiger digest algorithms"
1039 select CRYPTO_HASH
1040 help
1041 Tiger hash algorithm 192, 160 and 128-bit hashes
1042
1043 Tiger is a hash function optimized for 64-bit processors while
1044 still having decent performance on 32-bit processors.
1045 Tiger was developed by Ross Anderson and Eli Biham.
1046
1047 See also:
1048 <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1049
1050config CRYPTO_WP512
1051 tristate "Whirlpool digest algorithms"
1052 select CRYPTO_HASH
1053 help
1054 Whirlpool hash algorithm 512, 384 and 256-bit hashes
1055
1056 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1057 Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1058
1059 See also:
1060 <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1061
1062config CRYPTO_GHASH_CLMUL_NI_INTEL
1063 tristate "GHASH hash function (CLMUL-NI accelerated)"
1064 depends on X86 && 64BIT
1065 select CRYPTO_CRYPTD
1066 help
1067 This is the x86_64 CLMUL-NI accelerated implementation of
1068 GHASH, the hash function used in GCM (Galois/Counter mode).
1069
1070comment "Ciphers"
1071
1072config CRYPTO_AES
1073 tristate "AES cipher algorithms"
1074 select CRYPTO_ALGAPI
1075 select CRYPTO_LIB_AES
1076 help
1077 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1078 algorithm.
1079
1080 Rijndael appears to be consistently a very good performer in
1081 both hardware and software across a wide range of computing
1082 environments regardless of its use in feedback or non-feedback
1083 modes. Its key setup time is excellent, and its key agility is
1084 good. Rijndael's very low memory requirements make it very well
1085 suited for restricted-space environments, in which it also
1086 demonstrates excellent performance. Rijndael's operations are
1087 among the easiest to defend against power and timing attacks.
1088
1089 The AES specifies three key sizes: 128, 192 and 256 bits
1090
1091 See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1092
1093config CRYPTO_AES_TI
1094 tristate "Fixed time AES cipher"
1095 select CRYPTO_ALGAPI
1096 select CRYPTO_LIB_AES
1097 help
1098 This is a generic implementation of AES that attempts to eliminate
1099 data dependent latencies as much as possible without affecting
1100 performance too much. It is intended for use by the generic CCM
1101 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1102 solely on encryption (although decryption is supported as well, but
1103 with a more dramatic performance hit)
1104
1105 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1106 8 for decryption), this implementation only uses just two S-boxes of
1107 256 bytes each, and attempts to eliminate data dependent latencies by
1108 prefetching the entire table into the cache at the start of each
1109 block. Interrupts are also disabled to avoid races where cachelines
1110 are evicted when the CPU is interrupted to do something else.
1111
1112config CRYPTO_AES_NI_INTEL
1113 tristate "AES cipher algorithms (AES-NI)"
1114 depends on X86
1115 select CRYPTO_AEAD
1116 select CRYPTO_LIB_AES
1117 select CRYPTO_ALGAPI
1118 select CRYPTO_SKCIPHER
1119 select CRYPTO_GLUE_HELPER_X86 if 64BIT
1120 select CRYPTO_SIMD
1121 help
1122 Use Intel AES-NI instructions for AES algorithm.
1123
1124 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1125 algorithm.
1126
1127 Rijndael appears to be consistently a very good performer in
1128 both hardware and software across a wide range of computing
1129 environments regardless of its use in feedback or non-feedback
1130 modes. Its key setup time is excellent, and its key agility is
1131 good. Rijndael's very low memory requirements make it very well
1132 suited for restricted-space environments, in which it also
1133 demonstrates excellent performance. Rijndael's operations are
1134 among the easiest to defend against power and timing attacks.
1135
1136 The AES specifies three key sizes: 128, 192 and 256 bits
1137
1138 See <http://csrc.nist.gov/encryption/aes/> for more information.
1139
1140 In addition to AES cipher algorithm support, the acceleration
1141 for some popular block cipher mode is supported too, including
1142 ECB, CBC, LRW, XTS. The 64 bit version has additional
1143 acceleration for CTR.
1144
1145config CRYPTO_AES_SPARC64
1146 tristate "AES cipher algorithms (SPARC64)"
1147 depends on SPARC64
1148 select CRYPTO_SKCIPHER
1149 help
1150 Use SPARC64 crypto opcodes for AES algorithm.
1151
1152 AES cipher algorithms (FIPS-197). AES uses the Rijndael
1153 algorithm.
1154
1155 Rijndael appears to be consistently a very good performer in
1156 both hardware and software across a wide range of computing
1157 environments regardless of its use in feedback or non-feedback
1158 modes. Its key setup time is excellent, and its key agility is
1159 good. Rijndael's very low memory requirements make it very well
1160 suited for restricted-space environments, in which it also
1161 demonstrates excellent performance. Rijndael's operations are
1162 among the easiest to defend against power and timing attacks.
1163
1164 The AES specifies three key sizes: 128, 192 and 256 bits
1165
1166 See <http://csrc.nist.gov/encryption/aes/> for more information.
1167
1168 In addition to AES cipher algorithm support, the acceleration
1169 for some popular block cipher mode is supported too, including
1170 ECB and CBC.
1171
1172config CRYPTO_AES_PPC_SPE
1173 tristate "AES cipher algorithms (PPC SPE)"
1174 depends on PPC && SPE
1175 select CRYPTO_SKCIPHER
1176 help
1177 AES cipher algorithms (FIPS-197). Additionally the acceleration
1178 for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1179 This module should only be used for low power (router) devices
1180 without hardware AES acceleration (e.g. caam crypto). It reduces the
1181 size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1182 timining attacks. Nevertheless it might be not as secure as other
1183 architecture specific assembler implementations that work on 1KB
1184 tables or 256 bytes S-boxes.
1185
1186config CRYPTO_ANUBIS
1187 tristate "Anubis cipher algorithm"
1188 select CRYPTO_ALGAPI
1189 help
1190 Anubis cipher algorithm.
1191
1192 Anubis is a variable key length cipher which can use keys from
1193 128 bits to 320 bits in length. It was evaluated as a entrant
1194 in the NESSIE competition.
1195
1196 See also:
1197 <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1198 <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1199
1200config CRYPTO_ARC4
1201 tristate "ARC4 cipher algorithm"
1202 select CRYPTO_SKCIPHER
1203 select CRYPTO_LIB_ARC4
1204 help
1205 ARC4 cipher algorithm.
1206
1207 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1208 bits in length. This algorithm is required for driver-based
1209 WEP, but it should not be for other purposes because of the
1210 weakness of the algorithm.
1211
1212config CRYPTO_BLOWFISH
1213 tristate "Blowfish cipher algorithm"
1214 select CRYPTO_ALGAPI
1215 select CRYPTO_BLOWFISH_COMMON
1216 help
1217 Blowfish cipher algorithm, by Bruce Schneier.
1218
1219 This is a variable key length cipher which can use keys from 32
1220 bits to 448 bits in length. It's fast, simple and specifically
1221 designed for use on "large microprocessors".
1222
1223 See also:
1224 <https://www.schneier.com/blowfish.html>
1225
1226config CRYPTO_BLOWFISH_COMMON
1227 tristate
1228 help
1229 Common parts of the Blowfish cipher algorithm shared by the
1230 generic c and the assembler implementations.
1231
1232 See also:
1233 <https://www.schneier.com/blowfish.html>
1234
1235config CRYPTO_BLOWFISH_X86_64
1236 tristate "Blowfish cipher algorithm (x86_64)"
1237 depends on X86 && 64BIT
1238 select CRYPTO_SKCIPHER
1239 select CRYPTO_BLOWFISH_COMMON
1240 help
1241 Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1242
1243 This is a variable key length cipher which can use keys from 32
1244 bits to 448 bits in length. It's fast, simple and specifically
1245 designed for use on "large microprocessors".
1246
1247 See also:
1248 <https://www.schneier.com/blowfish.html>
1249
1250config CRYPTO_CAMELLIA
1251 tristate "Camellia cipher algorithms"
1252 depends on CRYPTO
1253 select CRYPTO_ALGAPI
1254 help
1255 Camellia cipher algorithms module.
1256
1257 Camellia is a symmetric key block cipher developed jointly
1258 at NTT and Mitsubishi Electric Corporation.
1259
1260 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1261
1262 See also:
1263 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1264
1265config CRYPTO_CAMELLIA_X86_64
1266 tristate "Camellia cipher algorithm (x86_64)"
1267 depends on X86 && 64BIT
1268 depends on CRYPTO
1269 select CRYPTO_SKCIPHER
1270 select CRYPTO_GLUE_HELPER_X86
1271 help
1272 Camellia cipher algorithm module (x86_64).
1273
1274 Camellia is a symmetric key block cipher developed jointly
1275 at NTT and Mitsubishi Electric Corporation.
1276
1277 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1278
1279 See also:
1280 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1281
1282config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1283 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1284 depends on X86 && 64BIT
1285 depends on CRYPTO
1286 select CRYPTO_SKCIPHER
1287 select CRYPTO_CAMELLIA_X86_64
1288 select CRYPTO_GLUE_HELPER_X86
1289 select CRYPTO_SIMD
1290 select CRYPTO_XTS
1291 help
1292 Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1293
1294 Camellia is a symmetric key block cipher developed jointly
1295 at NTT and Mitsubishi Electric Corporation.
1296
1297 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1298
1299 See also:
1300 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1301
1302config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1303 tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1304 depends on X86 && 64BIT
1305 depends on CRYPTO
1306 select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1307 help
1308 Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1309
1310 Camellia is a symmetric key block cipher developed jointly
1311 at NTT and Mitsubishi Electric Corporation.
1312
1313 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1314
1315 See also:
1316 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1317
1318config CRYPTO_CAMELLIA_SPARC64
1319 tristate "Camellia cipher algorithm (SPARC64)"
1320 depends on SPARC64
1321 depends on CRYPTO
1322 select CRYPTO_ALGAPI
1323 select CRYPTO_SKCIPHER
1324 help
1325 Camellia cipher algorithm module (SPARC64).
1326
1327 Camellia is a symmetric key block cipher developed jointly
1328 at NTT and Mitsubishi Electric Corporation.
1329
1330 The Camellia specifies three key sizes: 128, 192 and 256 bits.
1331
1332 See also:
1333 <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1334
1335config CRYPTO_CAST_COMMON
1336 tristate
1337 help
1338 Common parts of the CAST cipher algorithms shared by the
1339 generic c and the assembler implementations.
1340
1341config CRYPTO_CAST5
1342 tristate "CAST5 (CAST-128) cipher algorithm"
1343 select CRYPTO_ALGAPI
1344 select CRYPTO_CAST_COMMON
1345 help
1346 The CAST5 encryption algorithm (synonymous with CAST-128) is
1347 described in RFC2144.
1348
1349config CRYPTO_CAST5_AVX_X86_64
1350 tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1351 depends on X86 && 64BIT
1352 select CRYPTO_SKCIPHER
1353 select CRYPTO_CAST5
1354 select CRYPTO_CAST_COMMON
1355 select CRYPTO_SIMD
1356 help
1357 The CAST5 encryption algorithm (synonymous with CAST-128) is
1358 described in RFC2144.
1359
1360 This module provides the Cast5 cipher algorithm that processes
1361 sixteen blocks parallel using the AVX instruction set.
1362
1363config CRYPTO_CAST6
1364 tristate "CAST6 (CAST-256) cipher algorithm"
1365 select CRYPTO_ALGAPI
1366 select CRYPTO_CAST_COMMON
1367 help
1368 The CAST6 encryption algorithm (synonymous with CAST-256) is
1369 described in RFC2612.
1370
1371config CRYPTO_CAST6_AVX_X86_64
1372 tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1373 depends on X86 && 64BIT
1374 select CRYPTO_SKCIPHER
1375 select CRYPTO_CAST6
1376 select CRYPTO_CAST_COMMON
1377 select CRYPTO_GLUE_HELPER_X86
1378 select CRYPTO_SIMD
1379 select CRYPTO_XTS
1380 help
1381 The CAST6 encryption algorithm (synonymous with CAST-256) is
1382 described in RFC2612.
1383
1384 This module provides the Cast6 cipher algorithm that processes
1385 eight blocks parallel using the AVX instruction set.
1386
1387config CRYPTO_DES
1388 tristate "DES and Triple DES EDE cipher algorithms"
1389 select CRYPTO_ALGAPI
1390 select CRYPTO_LIB_DES
1391 help
1392 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1393
1394config CRYPTO_DES_SPARC64
1395 tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1396 depends on SPARC64
1397 select CRYPTO_ALGAPI
1398 select CRYPTO_LIB_DES
1399 select CRYPTO_SKCIPHER
1400 help
1401 DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1402 optimized using SPARC64 crypto opcodes.
1403
1404config CRYPTO_DES3_EDE_X86_64
1405 tristate "Triple DES EDE cipher algorithm (x86-64)"
1406 depends on X86 && 64BIT
1407 select CRYPTO_SKCIPHER
1408 select CRYPTO_LIB_DES
1409 help
1410 Triple DES EDE (FIPS 46-3) algorithm.
1411
1412 This module provides implementation of the Triple DES EDE cipher
1413 algorithm that is optimized for x86-64 processors. Two versions of
1414 algorithm are provided; regular processing one input block and
1415 one that processes three blocks parallel.
1416
1417config CRYPTO_FCRYPT
1418 tristate "FCrypt cipher algorithm"
1419 select CRYPTO_ALGAPI
1420 select CRYPTO_SKCIPHER
1421 help
1422 FCrypt algorithm used by RxRPC.
1423
1424config CRYPTO_KHAZAD
1425 tristate "Khazad cipher algorithm"
1426 select CRYPTO_ALGAPI
1427 help
1428 Khazad cipher algorithm.
1429
1430 Khazad was a finalist in the initial NESSIE competition. It is
1431 an algorithm optimized for 64-bit processors with good performance
1432 on 32-bit processors. Khazad uses an 128 bit key size.
1433
1434 See also:
1435 <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1436
1437config CRYPTO_SALSA20
1438 tristate "Salsa20 stream cipher algorithm"
1439 select CRYPTO_SKCIPHER
1440 help
1441 Salsa20 stream cipher algorithm.
1442
1443 Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1444 Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
1445
1446 The Salsa20 stream cipher algorithm is designed by Daniel J.
1447 Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
1448
1449config CRYPTO_CHACHA20
1450 tristate "ChaCha stream cipher algorithms"
1451 select CRYPTO_LIB_CHACHA_GENERIC
1452 select CRYPTO_SKCIPHER
1453 help
1454 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1455
1456 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1457 Bernstein and further specified in RFC7539 for use in IETF protocols.
1458 This is the portable C implementation of ChaCha20. See also:
1459 <https://cr.yp.to/chacha/chacha-20080128.pdf>
1460
1461 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1462 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
1463 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1464 while provably retaining ChaCha20's security. See also:
1465 <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1466
1467 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1468 reduced security margin but increased performance. It can be needed
1469 in some performance-sensitive scenarios.
1470
1471config CRYPTO_CHACHA20_X86_64
1472 tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1473 depends on X86 && 64BIT
1474 select CRYPTO_SKCIPHER
1475 select CRYPTO_LIB_CHACHA_GENERIC
1476 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1477 help
1478 SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1479 XChaCha20, and XChaCha12 stream ciphers.
1480
1481config CRYPTO_CHACHA_MIPS
1482 tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1483 depends on CPU_MIPS32_R2
1484 select CRYPTO_SKCIPHER
1485 select CRYPTO_ARCH_HAVE_LIB_CHACHA
1486
1487config CRYPTO_SEED
1488 tristate "SEED cipher algorithm"
1489 select CRYPTO_ALGAPI
1490 help
1491 SEED cipher algorithm (RFC4269).
1492
1493 SEED is a 128-bit symmetric key block cipher that has been
1494 developed by KISA (Korea Information Security Agency) as a
1495 national standard encryption algorithm of the Republic of Korea.
1496 It is a 16 round block cipher with the key size of 128 bit.
1497
1498 See also:
1499 <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1500
1501config CRYPTO_SERPENT
1502 tristate "Serpent cipher algorithm"
1503 select CRYPTO_ALGAPI
1504 help
1505 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1506
1507 Keys are allowed to be from 0 to 256 bits in length, in steps
1508 of 8 bits. Also includes the 'Tnepres' algorithm, a reversed
1509 variant of Serpent for compatibility with old kerneli.org code.
1510
1511 See also:
1512 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513
1514config CRYPTO_SERPENT_SSE2_X86_64
1515 tristate "Serpent cipher algorithm (x86_64/SSE2)"
1516 depends on X86 && 64BIT
1517 select CRYPTO_SKCIPHER
1518 select CRYPTO_GLUE_HELPER_X86
1519 select CRYPTO_SERPENT
1520 select CRYPTO_SIMD
1521 help
1522 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523
1524 Keys are allowed to be from 0 to 256 bits in length, in steps
1525 of 8 bits.
1526
1527 This module provides Serpent cipher algorithm that processes eight
1528 blocks parallel using SSE2 instruction set.
1529
1530 See also:
1531 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532
1533config CRYPTO_SERPENT_SSE2_586
1534 tristate "Serpent cipher algorithm (i586/SSE2)"
1535 depends on X86 && !64BIT
1536 select CRYPTO_SKCIPHER
1537 select CRYPTO_GLUE_HELPER_X86
1538 select CRYPTO_SERPENT
1539 select CRYPTO_SIMD
1540 help
1541 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542
1543 Keys are allowed to be from 0 to 256 bits in length, in steps
1544 of 8 bits.
1545
1546 This module provides Serpent cipher algorithm that processes four
1547 blocks parallel using SSE2 instruction set.
1548
1549 See also:
1550 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1551
1552config CRYPTO_SERPENT_AVX_X86_64
1553 tristate "Serpent cipher algorithm (x86_64/AVX)"
1554 depends on X86 && 64BIT
1555 select CRYPTO_SKCIPHER
1556 select CRYPTO_GLUE_HELPER_X86
1557 select CRYPTO_SERPENT
1558 select CRYPTO_SIMD
1559 select CRYPTO_XTS
1560 help
1561 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1562
1563 Keys are allowed to be from 0 to 256 bits in length, in steps
1564 of 8 bits.
1565
1566 This module provides the Serpent cipher algorithm that processes
1567 eight blocks parallel using the AVX instruction set.
1568
1569 See also:
1570 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1571
1572config CRYPTO_SERPENT_AVX2_X86_64
1573 tristate "Serpent cipher algorithm (x86_64/AVX2)"
1574 depends on X86 && 64BIT
1575 select CRYPTO_SERPENT_AVX_X86_64
1576 help
1577 Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1578
1579 Keys are allowed to be from 0 to 256 bits in length, in steps
1580 of 8 bits.
1581
1582 This module provides Serpent cipher algorithm that processes 16
1583 blocks parallel using AVX2 instruction set.
1584
1585 See also:
1586 <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1587
1588config CRYPTO_SM4
1589 tristate "SM4 cipher algorithm"
1590 select CRYPTO_ALGAPI
1591 help
1592 SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1593
1594 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1595 Organization of State Commercial Administration of China (OSCCA)
1596 as an authorized cryptographic algorithms for the use within China.
1597
1598 SMS4 was originally created for use in protecting wireless
1599 networks, and is mandated in the Chinese National Standard for
1600 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1601 (GB.15629.11-2003).
1602
1603 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1604 standardized through TC 260 of the Standardization Administration
1605 of the People's Republic of China (SAC).
1606
1607 The input, output, and key of SMS4 are each 128 bits.
1608
1609 See also: <https://eprint.iacr.org/2008/329.pdf>
1610
1611 If unsure, say N.
1612
1613config CRYPTO_TEA
1614 tristate "TEA, XTEA and XETA cipher algorithms"
1615 select CRYPTO_ALGAPI
1616 help
1617 TEA cipher algorithm.
1618
1619 Tiny Encryption Algorithm is a simple cipher that uses
1620 many rounds for security. It is very fast and uses
1621 little memory.
1622
1623 Xtendend Tiny Encryption Algorithm is a modification to
1624 the TEA algorithm to address a potential key weakness
1625 in the TEA algorithm.
1626
1627 Xtendend Encryption Tiny Algorithm is a mis-implementation
1628 of the XTEA algorithm for compatibility purposes.
1629
1630config CRYPTO_TWOFISH
1631 tristate "Twofish cipher algorithm"
1632 select CRYPTO_ALGAPI
1633 select CRYPTO_TWOFISH_COMMON
1634 help
1635 Twofish cipher algorithm.
1636
1637 Twofish was submitted as an AES (Advanced Encryption Standard)
1638 candidate cipher by researchers at CounterPane Systems. It is a
1639 16 round block cipher supporting key sizes of 128, 192, and 256
1640 bits.
1641
1642 See also:
1643 <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_COMMON
1646 tristate
1647 help
1648 Common parts of the Twofish cipher algorithm shared by the
1649 generic c and the assembler implementations.
1650
1651config CRYPTO_TWOFISH_586
1652 tristate "Twofish cipher algorithms (i586)"
1653 depends on (X86 || UML_X86) && !64BIT
1654 select CRYPTO_ALGAPI
1655 select CRYPTO_TWOFISH_COMMON
1656 help
1657 Twofish cipher algorithm.
1658
1659 Twofish was submitted as an AES (Advanced Encryption Standard)
1660 candidate cipher by researchers at CounterPane Systems. It is a
1661 16 round block cipher supporting key sizes of 128, 192, and 256
1662 bits.
1663
1664 See also:
1665 <https://www.schneier.com/twofish.html>
1666
1667config CRYPTO_TWOFISH_X86_64
1668 tristate "Twofish cipher algorithm (x86_64)"
1669 depends on (X86 || UML_X86) && 64BIT
1670 select CRYPTO_ALGAPI
1671 select CRYPTO_TWOFISH_COMMON
1672 help
1673 Twofish cipher algorithm (x86_64).
1674
1675 Twofish was submitted as an AES (Advanced Encryption Standard)
1676 candidate cipher by researchers at CounterPane Systems. It is a
1677 16 round block cipher supporting key sizes of 128, 192, and 256
1678 bits.
1679
1680 See also:
1681 <https://www.schneier.com/twofish.html>
1682
1683config CRYPTO_TWOFISH_X86_64_3WAY
1684 tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1685 depends on X86 && 64BIT
1686 select CRYPTO_SKCIPHER
1687 select CRYPTO_TWOFISH_COMMON
1688 select CRYPTO_TWOFISH_X86_64
1689 select CRYPTO_GLUE_HELPER_X86
1690 help
1691 Twofish cipher algorithm (x86_64, 3-way parallel).
1692
1693 Twofish was submitted as an AES (Advanced Encryption Standard)
1694 candidate cipher by researchers at CounterPane Systems. It is a
1695 16 round block cipher supporting key sizes of 128, 192, and 256
1696 bits.
1697
1698 This module provides Twofish cipher algorithm that processes three
1699 blocks parallel, utilizing resources of out-of-order CPUs better.
1700
1701 See also:
1702 <https://www.schneier.com/twofish.html>
1703
1704config CRYPTO_TWOFISH_AVX_X86_64
1705 tristate "Twofish cipher algorithm (x86_64/AVX)"
1706 depends on X86 && 64BIT
1707 select CRYPTO_SKCIPHER
1708 select CRYPTO_GLUE_HELPER_X86
1709 select CRYPTO_SIMD
1710 select CRYPTO_TWOFISH_COMMON
1711 select CRYPTO_TWOFISH_X86_64
1712 select CRYPTO_TWOFISH_X86_64_3WAY
1713 help
1714 Twofish cipher algorithm (x86_64/AVX).
1715
1716 Twofish was submitted as an AES (Advanced Encryption Standard)
1717 candidate cipher by researchers at CounterPane Systems. It is a
1718 16 round block cipher supporting key sizes of 128, 192, and 256
1719 bits.
1720
1721 This module provides the Twofish cipher algorithm that processes
1722 eight blocks parallel using the AVX Instruction Set.
1723
1724 See also:
1725 <https://www.schneier.com/twofish.html>
1726
1727comment "Compression"
1728
1729config CRYPTO_DEFLATE
1730 tristate "Deflate compression algorithm"
1731 select CRYPTO_ALGAPI
1732 select CRYPTO_ACOMP2
1733 select ZLIB_INFLATE
1734 select ZLIB_DEFLATE
1735 help
1736 This is the Deflate algorithm (RFC1951), specified for use in
1737 IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1738
1739 You will most probably want this if using IPSec.
1740
1741config CRYPTO_LZO
1742 tristate "LZO compression algorithm"
1743 select CRYPTO_ALGAPI
1744 select CRYPTO_ACOMP2
1745 select LZO_COMPRESS
1746 select LZO_DECOMPRESS
1747 help
1748 This is the LZO algorithm.
1749
1750config CRYPTO_842
1751 tristate "842 compression algorithm"
1752 select CRYPTO_ALGAPI
1753 select CRYPTO_ACOMP2
1754 select 842_COMPRESS
1755 select 842_DECOMPRESS
1756 help
1757 This is the 842 algorithm.
1758
1759config CRYPTO_LZ4
1760 tristate "LZ4 compression algorithm"
1761 select CRYPTO_ALGAPI
1762 select CRYPTO_ACOMP2
1763 select LZ4_COMPRESS
1764 select LZ4_DECOMPRESS
1765 help
1766 This is the LZ4 algorithm.
1767
1768config CRYPTO_LZ4HC
1769 tristate "LZ4HC compression algorithm"
1770 select CRYPTO_ALGAPI
1771 select CRYPTO_ACOMP2
1772 select LZ4HC_COMPRESS
1773 select LZ4_DECOMPRESS
1774 help
1775 This is the LZ4 high compression mode algorithm.
1776
1777config CRYPTO_ZSTD
1778 tristate "Zstd compression algorithm"
1779 select CRYPTO_ALGAPI
1780 select CRYPTO_ACOMP2
1781 select ZSTD_COMPRESS
1782 select ZSTD_DECOMPRESS
1783 help
1784 This is the zstd algorithm.
1785
1786comment "Random Number Generation"
1787
1788config CRYPTO_ANSI_CPRNG
1789 tristate "Pseudo Random Number Generation for Cryptographic modules"
1790 select CRYPTO_AES
1791 select CRYPTO_RNG
1792 help
1793 This option enables the generic pseudo random number generator
1794 for cryptographic modules. Uses the Algorithm specified in
1795 ANSI X9.31 A.2.4. Note that this option must be enabled if
1796 CRYPTO_FIPS is selected
1797
1798menuconfig CRYPTO_DRBG_MENU
1799 tristate "NIST SP800-90A DRBG"
1800 help
1801 NIST SP800-90A compliant DRBG. In the following submenu, one or
1802 more of the DRBG types must be selected.
1803
1804if CRYPTO_DRBG_MENU
1805
1806config CRYPTO_DRBG_HMAC
1807 bool
1808 default y
1809 select CRYPTO_HMAC
1810 select CRYPTO_SHA256
1811
1812config CRYPTO_DRBG_HASH
1813 bool "Enable Hash DRBG"
1814 select CRYPTO_SHA256
1815 help
1816 Enable the Hash DRBG variant as defined in NIST SP800-90A.
1817
1818config CRYPTO_DRBG_CTR
1819 bool "Enable CTR DRBG"
1820 select CRYPTO_AES
1821 select CRYPTO_CTR
1822 help
1823 Enable the CTR DRBG variant as defined in NIST SP800-90A.
1824
1825config CRYPTO_DRBG
1826 tristate
1827 default CRYPTO_DRBG_MENU
1828 select CRYPTO_RNG
1829 select CRYPTO_JITTERENTROPY
1830
1831endif # if CRYPTO_DRBG_MENU
1832
1833config CRYPTO_JITTERENTROPY
1834 tristate "Jitterentropy Non-Deterministic Random Number Generator"
1835 select CRYPTO_RNG
1836 help
1837 The Jitterentropy RNG is a noise that is intended
1838 to provide seed to another RNG. The RNG does not
1839 perform any cryptographic whitening of the generated
1840 random numbers. This Jitterentropy RNG registers with
1841 the kernel crypto API and can be used by any caller.
1842
1843config CRYPTO_USER_API
1844 tristate
1845
1846config CRYPTO_USER_API_HASH
1847 tristate "User-space interface for hash algorithms"
1848 depends on NET
1849 select CRYPTO_HASH
1850 select CRYPTO_USER_API
1851 help
1852 This option enables the user-spaces interface for hash
1853 algorithms.
1854
1855config CRYPTO_USER_API_SKCIPHER
1856 tristate "User-space interface for symmetric key cipher algorithms"
1857 depends on NET
1858 select CRYPTO_SKCIPHER
1859 select CRYPTO_USER_API
1860 help
1861 This option enables the user-spaces interface for symmetric
1862 key cipher algorithms.
1863
1864config CRYPTO_USER_API_RNG
1865 tristate "User-space interface for random number generator algorithms"
1866 depends on NET
1867 select CRYPTO_RNG
1868 select CRYPTO_USER_API
1869 help
1870 This option enables the user-spaces interface for random
1871 number generator algorithms.
1872
1873config CRYPTO_USER_API_AEAD
1874 tristate "User-space interface for AEAD cipher algorithms"
1875 depends on NET
1876 select CRYPTO_AEAD
1877 select CRYPTO_SKCIPHER
1878 select CRYPTO_NULL
1879 select CRYPTO_USER_API
1880 help
1881 This option enables the user-spaces interface for AEAD
1882 cipher algorithms.
1883
1884config CRYPTO_STATS
1885 bool "Crypto usage statistics for User-space"
1886 depends on CRYPTO_USER
1887 help
1888 This option enables the gathering of crypto stats.
1889 This will collect:
1890 - encrypt/decrypt size and numbers of symmeric operations
1891 - compress/decompress size and numbers of compress operations
1892 - size and numbers of hash operations
1893 - encrypt/decrypt/sign/verify numbers for asymmetric operations
1894 - generate/seed numbers for rng operations
1895
1896config CRYPTO_HASH_INFO
1897 bool
1898
1899source "lib/crypto/Kconfig"
1900source "drivers/crypto/Kconfig"
1901source "crypto/asymmetric_keys/Kconfig"
1902source "certs/Kconfig"
1903
1904endif # if CRYPTO
1# SPDX-License-Identifier: GPL-2.0
2#
3# Generic algorithms support
4#
5config XOR_BLOCKS
6 tristate
7
8#
9# async_tx api: hardware offloaded memory transfer/transform support
10#
11source "crypto/async_tx/Kconfig"
12
13#
14# Cryptographic API Configuration
15#
16menuconfig CRYPTO
17 tristate "Cryptographic API"
18 select CRYPTO_LIB_UTILS
19 help
20 This option provides the core Cryptographic API.
21
22if CRYPTO
23
24menu "Crypto core or helper"
25
26config CRYPTO_FIPS
27 bool "FIPS 200 compliance"
28 depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
29 depends on (MODULE_SIG || !MODULES)
30 help
31 This option enables the fips boot option which is
32 required if you want the system to operate in a FIPS 200
33 certification. You should say no unless you know what
34 this is.
35
36config CRYPTO_FIPS_NAME
37 string "FIPS Module Name"
38 default "Linux Kernel Cryptographic API"
39 depends on CRYPTO_FIPS
40 help
41 This option sets the FIPS Module name reported by the Crypto API via
42 the /proc/sys/crypto/fips_name file.
43
44config CRYPTO_FIPS_CUSTOM_VERSION
45 bool "Use Custom FIPS Module Version"
46 depends on CRYPTO_FIPS
47 default n
48
49config CRYPTO_FIPS_VERSION
50 string "FIPS Module Version"
51 default "(none)"
52 depends on CRYPTO_FIPS_CUSTOM_VERSION
53 help
54 This option provides the ability to override the FIPS Module Version.
55 By default the KERNELRELEASE value is used.
56
57config CRYPTO_ALGAPI
58 tristate
59 select CRYPTO_ALGAPI2
60 help
61 This option provides the API for cryptographic algorithms.
62
63config CRYPTO_ALGAPI2
64 tristate
65
66config CRYPTO_AEAD
67 tristate
68 select CRYPTO_AEAD2
69 select CRYPTO_ALGAPI
70
71config CRYPTO_AEAD2
72 tristate
73 select CRYPTO_ALGAPI2
74 select CRYPTO_NULL2
75 select CRYPTO_RNG2
76
77config CRYPTO_SKCIPHER
78 tristate
79 select CRYPTO_SKCIPHER2
80 select CRYPTO_ALGAPI
81
82config CRYPTO_SKCIPHER2
83 tristate
84 select CRYPTO_ALGAPI2
85 select CRYPTO_RNG2
86
87config CRYPTO_HASH
88 tristate
89 select CRYPTO_HASH2
90 select CRYPTO_ALGAPI
91
92config CRYPTO_HASH2
93 tristate
94 select CRYPTO_ALGAPI2
95
96config CRYPTO_RNG
97 tristate
98 select CRYPTO_RNG2
99 select CRYPTO_ALGAPI
100
101config CRYPTO_RNG2
102 tristate
103 select CRYPTO_ALGAPI2
104
105config CRYPTO_RNG_DEFAULT
106 tristate
107 select CRYPTO_DRBG_MENU
108
109config CRYPTO_AKCIPHER2
110 tristate
111 select CRYPTO_ALGAPI2
112
113config CRYPTO_AKCIPHER
114 tristate
115 select CRYPTO_AKCIPHER2
116 select CRYPTO_ALGAPI
117
118config CRYPTO_KPP2
119 tristate
120 select CRYPTO_ALGAPI2
121
122config CRYPTO_KPP
123 tristate
124 select CRYPTO_ALGAPI
125 select CRYPTO_KPP2
126
127config CRYPTO_ACOMP2
128 tristate
129 select CRYPTO_ALGAPI2
130 select SGL_ALLOC
131
132config CRYPTO_ACOMP
133 tristate
134 select CRYPTO_ALGAPI
135 select CRYPTO_ACOMP2
136
137config CRYPTO_MANAGER
138 tristate "Cryptographic algorithm manager"
139 select CRYPTO_MANAGER2
140 help
141 Create default cryptographic template instantiations such as
142 cbc(aes).
143
144config CRYPTO_MANAGER2
145 def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
146 select CRYPTO_AEAD2
147 select CRYPTO_HASH2
148 select CRYPTO_SKCIPHER2
149 select CRYPTO_AKCIPHER2
150 select CRYPTO_KPP2
151 select CRYPTO_ACOMP2
152
153config CRYPTO_USER
154 tristate "Userspace cryptographic algorithm configuration"
155 depends on NET
156 select CRYPTO_MANAGER
157 help
158 Userspace configuration for cryptographic instantiations such as
159 cbc(aes).
160
161config CRYPTO_MANAGER_DISABLE_TESTS
162 bool "Disable run-time self tests"
163 default y
164 help
165 Disable run-time self tests that normally take place at
166 algorithm registration.
167
168config CRYPTO_MANAGER_EXTRA_TESTS
169 bool "Enable extra run-time crypto self tests"
170 depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
171 help
172 Enable extra run-time self tests of registered crypto algorithms,
173 including randomized fuzz tests.
174
175 This is intended for developer use only, as these tests take much
176 longer to run than the normal self tests.
177
178config CRYPTO_NULL
179 tristate "Null algorithms"
180 select CRYPTO_NULL2
181 help
182 These are 'Null' algorithms, used by IPsec, which do nothing.
183
184config CRYPTO_NULL2
185 tristate
186 select CRYPTO_ALGAPI2
187 select CRYPTO_SKCIPHER2
188 select CRYPTO_HASH2
189
190config CRYPTO_PCRYPT
191 tristate "Parallel crypto engine"
192 depends on SMP
193 select PADATA
194 select CRYPTO_MANAGER
195 select CRYPTO_AEAD
196 help
197 This converts an arbitrary crypto algorithm into a parallel
198 algorithm that executes in kernel threads.
199
200config CRYPTO_CRYPTD
201 tristate "Software async crypto daemon"
202 select CRYPTO_SKCIPHER
203 select CRYPTO_HASH
204 select CRYPTO_MANAGER
205 help
206 This is a generic software asynchronous crypto daemon that
207 converts an arbitrary synchronous software crypto algorithm
208 into an asynchronous algorithm that executes in a kernel thread.
209
210config CRYPTO_AUTHENC
211 tristate "Authenc support"
212 select CRYPTO_AEAD
213 select CRYPTO_SKCIPHER
214 select CRYPTO_MANAGER
215 select CRYPTO_HASH
216 select CRYPTO_NULL
217 help
218 Authenc: Combined mode wrapper for IPsec.
219
220 This is required for IPSec ESP (XFRM_ESP).
221
222config CRYPTO_TEST
223 tristate "Testing module"
224 depends on m || EXPERT
225 select CRYPTO_MANAGER
226 help
227 Quick & dirty crypto test module.
228
229config CRYPTO_SIMD
230 tristate
231 select CRYPTO_CRYPTD
232
233config CRYPTO_ENGINE
234 tristate
235
236endmenu
237
238menu "Public-key cryptography"
239
240config CRYPTO_RSA
241 tristate "RSA (Rivest-Shamir-Adleman)"
242 select CRYPTO_AKCIPHER
243 select CRYPTO_MANAGER
244 select MPILIB
245 select ASN1
246 help
247 RSA (Rivest-Shamir-Adleman) public key algorithm (RFC8017)
248
249config CRYPTO_DH
250 tristate "DH (Diffie-Hellman)"
251 select CRYPTO_KPP
252 select MPILIB
253 help
254 DH (Diffie-Hellman) key exchange algorithm
255
256config CRYPTO_DH_RFC7919_GROUPS
257 bool "RFC 7919 FFDHE groups"
258 depends on CRYPTO_DH
259 select CRYPTO_RNG_DEFAULT
260 help
261 FFDHE (Finite-Field-based Diffie-Hellman Ephemeral) groups
262 defined in RFC7919.
263
264 Support these finite-field groups in DH key exchanges:
265 - ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144, ffdhe8192
266
267 If unsure, say N.
268
269config CRYPTO_ECC
270 tristate
271 select CRYPTO_RNG_DEFAULT
272
273config CRYPTO_ECDH
274 tristate "ECDH (Elliptic Curve Diffie-Hellman)"
275 select CRYPTO_ECC
276 select CRYPTO_KPP
277 help
278 ECDH (Elliptic Curve Diffie-Hellman) key exchange algorithm
279 using curves P-192, P-256, and P-384 (FIPS 186)
280
281config CRYPTO_ECDSA
282 tristate "ECDSA (Elliptic Curve Digital Signature Algorithm)"
283 select CRYPTO_ECC
284 select CRYPTO_AKCIPHER
285 select ASN1
286 help
287 ECDSA (Elliptic Curve Digital Signature Algorithm) (FIPS 186,
288 ISO/IEC 14888-3)
289 using curves P-192, P-256, and P-384
290
291 Only signature verification is implemented.
292
293config CRYPTO_ECRDSA
294 tristate "EC-RDSA (Elliptic Curve Russian Digital Signature Algorithm)"
295 select CRYPTO_ECC
296 select CRYPTO_AKCIPHER
297 select CRYPTO_STREEBOG
298 select OID_REGISTRY
299 select ASN1
300 help
301 Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
302 RFC 7091, ISO/IEC 14888-3)
303
304 One of the Russian cryptographic standard algorithms (called GOST
305 algorithms). Only signature verification is implemented.
306
307config CRYPTO_SM2
308 tristate "SM2 (ShangMi 2)"
309 select CRYPTO_SM3
310 select CRYPTO_AKCIPHER
311 select CRYPTO_MANAGER
312 select MPILIB
313 select ASN1
314 help
315 SM2 (ShangMi 2) public key algorithm
316
317 Published by State Encryption Management Bureau, China,
318 as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
319
320 References:
321 https://datatracker.ietf.org/doc/draft-shen-sm2-ecdsa/
322 http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
323 http://www.gmbz.org.cn/main/bzlb.html
324
325config CRYPTO_CURVE25519
326 tristate "Curve25519"
327 select CRYPTO_KPP
328 select CRYPTO_LIB_CURVE25519_GENERIC
329 help
330 Curve25519 elliptic curve (RFC7748)
331
332endmenu
333
334menu "Block ciphers"
335
336config CRYPTO_AES
337 tristate "AES (Advanced Encryption Standard)"
338 select CRYPTO_ALGAPI
339 select CRYPTO_LIB_AES
340 help
341 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
342
343 Rijndael appears to be consistently a very good performer in
344 both hardware and software across a wide range of computing
345 environments regardless of its use in feedback or non-feedback
346 modes. Its key setup time is excellent, and its key agility is
347 good. Rijndael's very low memory requirements make it very well
348 suited for restricted-space environments, in which it also
349 demonstrates excellent performance. Rijndael's operations are
350 among the easiest to defend against power and timing attacks.
351
352 The AES specifies three key sizes: 128, 192 and 256 bits
353
354config CRYPTO_AES_TI
355 tristate "AES (Advanced Encryption Standard) (fixed time)"
356 select CRYPTO_ALGAPI
357 select CRYPTO_LIB_AES
358 help
359 AES cipher algorithms (Rijndael)(FIPS-197, ISO/IEC 18033-3)
360
361 This is a generic implementation of AES that attempts to eliminate
362 data dependent latencies as much as possible without affecting
363 performance too much. It is intended for use by the generic CCM
364 and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
365 solely on encryption (although decryption is supported as well, but
366 with a more dramatic performance hit)
367
368 Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
369 8 for decryption), this implementation only uses just two S-boxes of
370 256 bytes each, and attempts to eliminate data dependent latencies by
371 prefetching the entire table into the cache at the start of each
372 block. Interrupts are also disabled to avoid races where cachelines
373 are evicted when the CPU is interrupted to do something else.
374
375config CRYPTO_ANUBIS
376 tristate "Anubis"
377 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
378 select CRYPTO_ALGAPI
379 help
380 Anubis cipher algorithm
381
382 Anubis is a variable key length cipher which can use keys from
383 128 bits to 320 bits in length. It was evaluated as a entrant
384 in the NESSIE competition.
385
386 See https://web.archive.org/web/20160606112246/http://www.larc.usp.br/~pbarreto/AnubisPage.html
387 for further information.
388
389config CRYPTO_ARIA
390 tristate "ARIA"
391 select CRYPTO_ALGAPI
392 help
393 ARIA cipher algorithm (RFC5794)
394
395 ARIA is a standard encryption algorithm of the Republic of Korea.
396 The ARIA specifies three key sizes and rounds.
397 128-bit: 12 rounds.
398 192-bit: 14 rounds.
399 256-bit: 16 rounds.
400
401 See:
402 https://seed.kisa.or.kr/kisa/algorithm/EgovAriaInfo.do
403
404config CRYPTO_BLOWFISH
405 tristate "Blowfish"
406 select CRYPTO_ALGAPI
407 select CRYPTO_BLOWFISH_COMMON
408 help
409 Blowfish cipher algorithm, by Bruce Schneier
410
411 This is a variable key length cipher which can use keys from 32
412 bits to 448 bits in length. It's fast, simple and specifically
413 designed for use on "large microprocessors".
414
415 See https://www.schneier.com/blowfish.html for further information.
416
417config CRYPTO_BLOWFISH_COMMON
418 tristate
419 help
420 Common parts of the Blowfish cipher algorithm shared by the
421 generic c and the assembler implementations.
422
423config CRYPTO_CAMELLIA
424 tristate "Camellia"
425 select CRYPTO_ALGAPI
426 help
427 Camellia cipher algorithms (ISO/IEC 18033-3)
428
429 Camellia is a symmetric key block cipher developed jointly
430 at NTT and Mitsubishi Electric Corporation.
431
432 The Camellia specifies three key sizes: 128, 192 and 256 bits.
433
434 See https://info.isl.ntt.co.jp/crypt/eng/camellia/ for further information.
435
436config CRYPTO_CAST_COMMON
437 tristate
438 help
439 Common parts of the CAST cipher algorithms shared by the
440 generic c and the assembler implementations.
441
442config CRYPTO_CAST5
443 tristate "CAST5 (CAST-128)"
444 select CRYPTO_ALGAPI
445 select CRYPTO_CAST_COMMON
446 help
447 CAST5 (CAST-128) cipher algorithm (RFC2144, ISO/IEC 18033-3)
448
449config CRYPTO_CAST6
450 tristate "CAST6 (CAST-256)"
451 select CRYPTO_ALGAPI
452 select CRYPTO_CAST_COMMON
453 help
454 CAST6 (CAST-256) encryption algorithm (RFC2612)
455
456config CRYPTO_DES
457 tristate "DES and Triple DES EDE"
458 select CRYPTO_ALGAPI
459 select CRYPTO_LIB_DES
460 help
461 DES (Data Encryption Standard)(FIPS 46-2, ISO/IEC 18033-3) and
462 Triple DES EDE (Encrypt/Decrypt/Encrypt) (FIPS 46-3, ISO/IEC 18033-3)
463 cipher algorithms
464
465config CRYPTO_FCRYPT
466 tristate "FCrypt"
467 select CRYPTO_ALGAPI
468 select CRYPTO_SKCIPHER
469 help
470 FCrypt algorithm used by RxRPC
471
472 See https://ota.polyonymo.us/fcrypt-paper.txt
473
474config CRYPTO_KHAZAD
475 tristate "Khazad"
476 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
477 select CRYPTO_ALGAPI
478 help
479 Khazad cipher algorithm
480
481 Khazad was a finalist in the initial NESSIE competition. It is
482 an algorithm optimized for 64-bit processors with good performance
483 on 32-bit processors. Khazad uses an 128 bit key size.
484
485 See https://web.archive.org/web/20171011071731/http://www.larc.usp.br/~pbarreto/KhazadPage.html
486 for further information.
487
488config CRYPTO_SEED
489 tristate "SEED"
490 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
491 select CRYPTO_ALGAPI
492 help
493 SEED cipher algorithm (RFC4269, ISO/IEC 18033-3)
494
495 SEED is a 128-bit symmetric key block cipher that has been
496 developed by KISA (Korea Information Security Agency) as a
497 national standard encryption algorithm of the Republic of Korea.
498 It is a 16 round block cipher with the key size of 128 bit.
499
500 See https://seed.kisa.or.kr/kisa/algorithm/EgovSeedInfo.do
501 for further information.
502
503config CRYPTO_SERPENT
504 tristate "Serpent"
505 select CRYPTO_ALGAPI
506 help
507 Serpent cipher algorithm, by Anderson, Biham & Knudsen
508
509 Keys are allowed to be from 0 to 256 bits in length, in steps
510 of 8 bits.
511
512 See https://www.cl.cam.ac.uk/~rja14/serpent.html for further information.
513
514config CRYPTO_SM4
515 tristate
516
517config CRYPTO_SM4_GENERIC
518 tristate "SM4 (ShangMi 4)"
519 select CRYPTO_ALGAPI
520 select CRYPTO_SM4
521 help
522 SM4 cipher algorithms (OSCCA GB/T 32907-2016,
523 ISO/IEC 18033-3:2010/Amd 1:2021)
524
525 SM4 (GBT.32907-2016) is a cryptographic standard issued by the
526 Organization of State Commercial Administration of China (OSCCA)
527 as an authorized cryptographic algorithms for the use within China.
528
529 SMS4 was originally created for use in protecting wireless
530 networks, and is mandated in the Chinese National Standard for
531 Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
532 (GB.15629.11-2003).
533
534 The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
535 standardized through TC 260 of the Standardization Administration
536 of the People's Republic of China (SAC).
537
538 The input, output, and key of SMS4 are each 128 bits.
539
540 See https://eprint.iacr.org/2008/329.pdf for further information.
541
542 If unsure, say N.
543
544config CRYPTO_TEA
545 tristate "TEA, XTEA and XETA"
546 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
547 select CRYPTO_ALGAPI
548 help
549 TEA (Tiny Encryption Algorithm) cipher algorithms
550
551 Tiny Encryption Algorithm is a simple cipher that uses
552 many rounds for security. It is very fast and uses
553 little memory.
554
555 Xtendend Tiny Encryption Algorithm is a modification to
556 the TEA algorithm to address a potential key weakness
557 in the TEA algorithm.
558
559 Xtendend Encryption Tiny Algorithm is a mis-implementation
560 of the XTEA algorithm for compatibility purposes.
561
562config CRYPTO_TWOFISH
563 tristate "Twofish"
564 select CRYPTO_ALGAPI
565 select CRYPTO_TWOFISH_COMMON
566 help
567 Twofish cipher algorithm
568
569 Twofish was submitted as an AES (Advanced Encryption Standard)
570 candidate cipher by researchers at CounterPane Systems. It is a
571 16 round block cipher supporting key sizes of 128, 192, and 256
572 bits.
573
574 See https://www.schneier.com/twofish.html for further information.
575
576config CRYPTO_TWOFISH_COMMON
577 tristate
578 help
579 Common parts of the Twofish cipher algorithm shared by the
580 generic c and the assembler implementations.
581
582endmenu
583
584menu "Length-preserving ciphers and modes"
585
586config CRYPTO_ADIANTUM
587 tristate "Adiantum"
588 select CRYPTO_CHACHA20
589 select CRYPTO_LIB_POLY1305_GENERIC
590 select CRYPTO_NHPOLY1305
591 select CRYPTO_MANAGER
592 help
593 Adiantum tweakable, length-preserving encryption mode
594
595 Designed for fast and secure disk encryption, especially on
596 CPUs without dedicated crypto instructions. It encrypts
597 each sector using the XChaCha12 stream cipher, two passes of
598 an ε-almost-∆-universal hash function, and an invocation of
599 the AES-256 block cipher on a single 16-byte block. On CPUs
600 without AES instructions, Adiantum is much faster than
601 AES-XTS.
602
603 Adiantum's security is provably reducible to that of its
604 underlying stream and block ciphers, subject to a security
605 bound. Unlike XTS, Adiantum is a true wide-block encryption
606 mode, so it actually provides an even stronger notion of
607 security than XTS, subject to the security bound.
608
609 If unsure, say N.
610
611config CRYPTO_ARC4
612 tristate "ARC4 (Alleged Rivest Cipher 4)"
613 depends on CRYPTO_USER_API_ENABLE_OBSOLETE
614 select CRYPTO_SKCIPHER
615 select CRYPTO_LIB_ARC4
616 help
617 ARC4 cipher algorithm
618
619 ARC4 is a stream cipher using keys ranging from 8 bits to 2048
620 bits in length. This algorithm is required for driver-based
621 WEP, but it should not be for other purposes because of the
622 weakness of the algorithm.
623
624config CRYPTO_CHACHA20
625 tristate "ChaCha"
626 select CRYPTO_LIB_CHACHA_GENERIC
627 select CRYPTO_SKCIPHER
628 help
629 The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms
630
631 ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
632 Bernstein and further specified in RFC7539 for use in IETF protocols.
633 This is the portable C implementation of ChaCha20. See
634 https://cr.yp.to/chacha/chacha-20080128.pdf for further information.
635
636 XChaCha20 is the application of the XSalsa20 construction to ChaCha20
637 rather than to Salsa20. XChaCha20 extends ChaCha20's nonce length
638 from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
639 while provably retaining ChaCha20's security. See
640 https://cr.yp.to/snuffle/xsalsa-20081128.pdf for further information.
641
642 XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
643 reduced security margin but increased performance. It can be needed
644 in some performance-sensitive scenarios.
645
646config CRYPTO_CBC
647 tristate "CBC (Cipher Block Chaining)"
648 select CRYPTO_SKCIPHER
649 select CRYPTO_MANAGER
650 help
651 CBC (Cipher Block Chaining) mode (NIST SP800-38A)
652
653 This block cipher mode is required for IPSec ESP (XFRM_ESP).
654
655config CRYPTO_CFB
656 tristate "CFB (Cipher Feedback)"
657 select CRYPTO_SKCIPHER
658 select CRYPTO_MANAGER
659 help
660 CFB (Cipher Feedback) mode (NIST SP800-38A)
661
662 This block cipher mode is required for TPM2 Cryptography.
663
664config CRYPTO_CTR
665 tristate "CTR (Counter)"
666 select CRYPTO_SKCIPHER
667 select CRYPTO_MANAGER
668 help
669 CTR (Counter) mode (NIST SP800-38A)
670
671config CRYPTO_CTS
672 tristate "CTS (Cipher Text Stealing)"
673 select CRYPTO_SKCIPHER
674 select CRYPTO_MANAGER
675 help
676 CBC-CS3 variant of CTS (Cipher Text Stealing) (NIST
677 Addendum to SP800-38A (October 2010))
678
679 This mode is required for Kerberos gss mechanism support
680 for AES encryption.
681
682config CRYPTO_ECB
683 tristate "ECB (Electronic Codebook)"
684 select CRYPTO_SKCIPHER
685 select CRYPTO_MANAGER
686 help
687 ECB (Electronic Codebook) mode (NIST SP800-38A)
688
689config CRYPTO_HCTR2
690 tristate "HCTR2"
691 select CRYPTO_XCTR
692 select CRYPTO_POLYVAL
693 select CRYPTO_MANAGER
694 help
695 HCTR2 length-preserving encryption mode
696
697 A mode for storage encryption that is efficient on processors with
698 instructions to accelerate AES and carryless multiplication, e.g.
699 x86 processors with AES-NI and CLMUL, and ARM processors with the
700 ARMv8 crypto extensions.
701
702 See https://eprint.iacr.org/2021/1441
703
704config CRYPTO_KEYWRAP
705 tristate "KW (AES Key Wrap)"
706 select CRYPTO_SKCIPHER
707 select CRYPTO_MANAGER
708 help
709 KW (AES Key Wrap) authenticated encryption mode (NIST SP800-38F
710 and RFC3394) without padding.
711
712config CRYPTO_LRW
713 tristate "LRW (Liskov Rivest Wagner)"
714 select CRYPTO_LIB_GF128MUL
715 select CRYPTO_SKCIPHER
716 select CRYPTO_MANAGER
717 select CRYPTO_ECB
718 help
719 LRW (Liskov Rivest Wagner) mode
720
721 A tweakable, non malleable, non movable
722 narrow block cipher mode for dm-crypt. Use it with cipher
723 specification string aes-lrw-benbi, the key must be 256, 320 or 384.
724 The first 128, 192 or 256 bits in the key are used for AES and the
725 rest is used to tie each cipher block to its logical position.
726
727 See https://people.csail.mit.edu/rivest/pubs/LRW02.pdf
728
729config CRYPTO_OFB
730 tristate "OFB (Output Feedback)"
731 select CRYPTO_SKCIPHER
732 select CRYPTO_MANAGER
733 help
734 OFB (Output Feedback) mode (NIST SP800-38A)
735
736 This mode makes a block cipher into a synchronous
737 stream cipher. It generates keystream blocks, which are then XORed
738 with the plaintext blocks to get the ciphertext. Flipping a bit in the
739 ciphertext produces a flipped bit in the plaintext at the same
740 location. This property allows many error correcting codes to function
741 normally even when applied before encryption.
742
743config CRYPTO_PCBC
744 tristate "PCBC (Propagating Cipher Block Chaining)"
745 select CRYPTO_SKCIPHER
746 select CRYPTO_MANAGER
747 help
748 PCBC (Propagating Cipher Block Chaining) mode
749
750 This block cipher mode is required for RxRPC.
751
752config CRYPTO_XCTR
753 tristate
754 select CRYPTO_SKCIPHER
755 select CRYPTO_MANAGER
756 help
757 XCTR (XOR Counter) mode for HCTR2
758
759 This blockcipher mode is a variant of CTR mode using XORs and little-endian
760 addition rather than big-endian arithmetic.
761
762 XCTR mode is used to implement HCTR2.
763
764config CRYPTO_XTS
765 tristate "XTS (XOR Encrypt XOR with ciphertext stealing)"
766 select CRYPTO_SKCIPHER
767 select CRYPTO_MANAGER
768 select CRYPTO_ECB
769 help
770 XTS (XOR Encrypt XOR with ciphertext stealing) mode (NIST SP800-38E
771 and IEEE 1619)
772
773 Use with aes-xts-plain, key size 256, 384 or 512 bits. This
774 implementation currently can't handle a sectorsize which is not a
775 multiple of 16 bytes.
776
777config CRYPTO_NHPOLY1305
778 tristate
779 select CRYPTO_HASH
780 select CRYPTO_LIB_POLY1305_GENERIC
781
782endmenu
783
784menu "AEAD (authenticated encryption with associated data) ciphers"
785
786config CRYPTO_AEGIS128
787 tristate "AEGIS-128"
788 select CRYPTO_AEAD
789 select CRYPTO_AES # for AES S-box tables
790 help
791 AEGIS-128 AEAD algorithm
792
793config CRYPTO_AEGIS128_SIMD
794 bool "AEGIS-128 (arm NEON, arm64 NEON)"
795 depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
796 default y
797 help
798 AEGIS-128 AEAD algorithm
799
800 Architecture: arm or arm64 using:
801 - NEON (Advanced SIMD) extension
802
803config CRYPTO_CHACHA20POLY1305
804 tristate "ChaCha20-Poly1305"
805 select CRYPTO_CHACHA20
806 select CRYPTO_POLY1305
807 select CRYPTO_AEAD
808 select CRYPTO_MANAGER
809 help
810 ChaCha20 stream cipher and Poly1305 authenticator combined
811 mode (RFC8439)
812
813config CRYPTO_CCM
814 tristate "CCM (Counter with Cipher Block Chaining-MAC)"
815 select CRYPTO_CTR
816 select CRYPTO_HASH
817 select CRYPTO_AEAD
818 select CRYPTO_MANAGER
819 help
820 CCM (Counter with Cipher Block Chaining-Message Authentication Code)
821 authenticated encryption mode (NIST SP800-38C)
822
823config CRYPTO_GCM
824 tristate "GCM (Galois/Counter Mode) and GMAC (GCM MAC)"
825 select CRYPTO_CTR
826 select CRYPTO_AEAD
827 select CRYPTO_GHASH
828 select CRYPTO_NULL
829 select CRYPTO_MANAGER
830 help
831 GCM (Galois/Counter Mode) authenticated encryption mode and GMAC
832 (GCM Message Authentication Code) (NIST SP800-38D)
833
834 This is required for IPSec ESP (XFRM_ESP).
835
836config CRYPTO_SEQIV
837 tristate "Sequence Number IV Generator"
838 select CRYPTO_AEAD
839 select CRYPTO_SKCIPHER
840 select CRYPTO_NULL
841 select CRYPTO_RNG_DEFAULT
842 select CRYPTO_MANAGER
843 help
844 Sequence Number IV generator
845
846 This IV generator generates an IV based on a sequence number by
847 xoring it with a salt. This algorithm is mainly useful for CTR.
848
849 This is required for IPsec ESP (XFRM_ESP).
850
851config CRYPTO_ECHAINIV
852 tristate "Encrypted Chain IV Generator"
853 select CRYPTO_AEAD
854 select CRYPTO_NULL
855 select CRYPTO_RNG_DEFAULT
856 select CRYPTO_MANAGER
857 help
858 Encrypted Chain IV generator
859
860 This IV generator generates an IV based on the encryption of
861 a sequence number xored with a salt. This is the default
862 algorithm for CBC.
863
864config CRYPTO_ESSIV
865 tristate "Encrypted Salt-Sector IV Generator"
866 select CRYPTO_AUTHENC
867 help
868 Encrypted Salt-Sector IV generator
869
870 This IV generator is used in some cases by fscrypt and/or
871 dm-crypt. It uses the hash of the block encryption key as the
872 symmetric key for a block encryption pass applied to the input
873 IV, making low entropy IV sources more suitable for block
874 encryption.
875
876 This driver implements a crypto API template that can be
877 instantiated either as an skcipher or as an AEAD (depending on the
878 type of the first template argument), and which defers encryption
879 and decryption requests to the encapsulated cipher after applying
880 ESSIV to the input IV. Note that in the AEAD case, it is assumed
881 that the keys are presented in the same format used by the authenc
882 template, and that the IV appears at the end of the authenticated
883 associated data (AAD) region (which is how dm-crypt uses it.)
884
885 Note that the use of ESSIV is not recommended for new deployments,
886 and so this only needs to be enabled when interoperability with
887 existing encrypted volumes of filesystems is required, or when
888 building for a particular system that requires it (e.g., when
889 the SoC in question has accelerated CBC but not XTS, making CBC
890 combined with ESSIV the only feasible mode for h/w accelerated
891 block encryption)
892
893endmenu
894
895menu "Hashes, digests, and MACs"
896
897config CRYPTO_BLAKE2B
898 tristate "BLAKE2b"
899 select CRYPTO_HASH
900 help
901 BLAKE2b cryptographic hash function (RFC 7693)
902
903 BLAKE2b is optimized for 64-bit platforms and can produce digests
904 of any size between 1 and 64 bytes. The keyed hash is also implemented.
905
906 This module provides the following algorithms:
907 - blake2b-160
908 - blake2b-256
909 - blake2b-384
910 - blake2b-512
911
912 Used by the btrfs filesystem.
913
914 See https://blake2.net for further information.
915
916config CRYPTO_CMAC
917 tristate "CMAC (Cipher-based MAC)"
918 select CRYPTO_HASH
919 select CRYPTO_MANAGER
920 help
921 CMAC (Cipher-based Message Authentication Code) authentication
922 mode (NIST SP800-38B and IETF RFC4493)
923
924config CRYPTO_GHASH
925 tristate "GHASH"
926 select CRYPTO_HASH
927 select CRYPTO_LIB_GF128MUL
928 help
929 GCM GHASH function (NIST SP800-38D)
930
931config CRYPTO_HMAC
932 tristate "HMAC (Keyed-Hash MAC)"
933 select CRYPTO_HASH
934 select CRYPTO_MANAGER
935 help
936 HMAC (Keyed-Hash Message Authentication Code) (FIPS 198 and
937 RFC2104)
938
939 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
940
941config CRYPTO_MD4
942 tristate "MD4"
943 select CRYPTO_HASH
944 help
945 MD4 message digest algorithm (RFC1320)
946
947config CRYPTO_MD5
948 tristate "MD5"
949 select CRYPTO_HASH
950 help
951 MD5 message digest algorithm (RFC1321)
952
953config CRYPTO_MICHAEL_MIC
954 tristate "Michael MIC"
955 select CRYPTO_HASH
956 help
957 Michael MIC (Message Integrity Code) (IEEE 802.11i)
958
959 Defined by the IEEE 802.11i TKIP (Temporal Key Integrity Protocol),
960 known as WPA (Wif-Fi Protected Access).
961
962 This algorithm is required for TKIP, but it should not be used for
963 other purposes because of the weakness of the algorithm.
964
965config CRYPTO_POLYVAL
966 tristate
967 select CRYPTO_HASH
968 select CRYPTO_LIB_GF128MUL
969 help
970 POLYVAL hash function for HCTR2
971
972 This is used in HCTR2. It is not a general-purpose
973 cryptographic hash function.
974
975config CRYPTO_POLY1305
976 tristate "Poly1305"
977 select CRYPTO_HASH
978 select CRYPTO_LIB_POLY1305_GENERIC
979 help
980 Poly1305 authenticator algorithm (RFC7539)
981
982 Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
983 It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
984 in IETF protocols. This is the portable C implementation of Poly1305.
985
986config CRYPTO_RMD160
987 tristate "RIPEMD-160"
988 select CRYPTO_HASH
989 help
990 RIPEMD-160 hash function (ISO/IEC 10118-3)
991
992 RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
993 to be used as a secure replacement for the 128-bit hash functions
994 MD4, MD5 and its predecessor RIPEMD
995 (not to be confused with RIPEMD-128).
996
997 Its speed is comparable to SHA-1 and there are no known attacks
998 against RIPEMD-160.
999
1000 Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
1001 See https://homes.esat.kuleuven.be/~bosselae/ripemd160.html
1002 for further information.
1003
1004config CRYPTO_SHA1
1005 tristate "SHA-1"
1006 select CRYPTO_HASH
1007 select CRYPTO_LIB_SHA1
1008 help
1009 SHA-1 secure hash algorithm (FIPS 180, ISO/IEC 10118-3)
1010
1011config CRYPTO_SHA256
1012 tristate "SHA-224 and SHA-256"
1013 select CRYPTO_HASH
1014 select CRYPTO_LIB_SHA256
1015 help
1016 SHA-224 and SHA-256 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1017
1018 This is required for IPsec AH (XFRM_AH) and IPsec ESP (XFRM_ESP).
1019 Used by the btrfs filesystem, Ceph, NFS, and SMB.
1020
1021config CRYPTO_SHA512
1022 tristate "SHA-384 and SHA-512"
1023 select CRYPTO_HASH
1024 help
1025 SHA-384 and SHA-512 secure hash algorithms (FIPS 180, ISO/IEC 10118-3)
1026
1027config CRYPTO_SHA3
1028 tristate "SHA-3"
1029 select CRYPTO_HASH
1030 help
1031 SHA-3 secure hash algorithms (FIPS 202, ISO/IEC 10118-3)
1032
1033config CRYPTO_SM3
1034 tristate
1035
1036config CRYPTO_SM3_GENERIC
1037 tristate "SM3 (ShangMi 3)"
1038 select CRYPTO_HASH
1039 select CRYPTO_SM3
1040 help
1041 SM3 (ShangMi 3) secure hash function (OSCCA GM/T 0004-2012, ISO/IEC 10118-3)
1042
1043 This is part of the Chinese Commercial Cryptography suite.
1044
1045 References:
1046 http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1047 https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1048
1049config CRYPTO_STREEBOG
1050 tristate "Streebog"
1051 select CRYPTO_HASH
1052 help
1053 Streebog Hash Function (GOST R 34.11-2012, RFC 6986, ISO/IEC 10118-3)
1054
1055 This is one of the Russian cryptographic standard algorithms (called
1056 GOST algorithms). This setting enables two hash algorithms with
1057 256 and 512 bits output.
1058
1059 References:
1060 https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1061 https://tools.ietf.org/html/rfc6986
1062
1063config CRYPTO_VMAC
1064 tristate "VMAC"
1065 select CRYPTO_HASH
1066 select CRYPTO_MANAGER
1067 help
1068 VMAC is a message authentication algorithm designed for
1069 very high speed on 64-bit architectures.
1070
1071 See https://fastcrypto.org/vmac for further information.
1072
1073config CRYPTO_WP512
1074 tristate "Whirlpool"
1075 select CRYPTO_HASH
1076 help
1077 Whirlpool hash function (ISO/IEC 10118-3)
1078
1079 512, 384 and 256-bit hashes.
1080
1081 Whirlpool-512 is part of the NESSIE cryptographic primitives.
1082
1083 See https://web.archive.org/web/20171129084214/http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html
1084 for further information.
1085
1086config CRYPTO_XCBC
1087 tristate "XCBC-MAC (Extended Cipher Block Chaining MAC)"
1088 select CRYPTO_HASH
1089 select CRYPTO_MANAGER
1090 help
1091 XCBC-MAC (Extended Cipher Block Chaining Message Authentication
1092 Code) (RFC3566)
1093
1094config CRYPTO_XXHASH
1095 tristate "xxHash"
1096 select CRYPTO_HASH
1097 select XXHASH
1098 help
1099 xxHash non-cryptographic hash algorithm
1100
1101 Extremely fast, working at speeds close to RAM limits.
1102
1103 Used by the btrfs filesystem.
1104
1105endmenu
1106
1107menu "CRCs (cyclic redundancy checks)"
1108
1109config CRYPTO_CRC32C
1110 tristate "CRC32c"
1111 select CRYPTO_HASH
1112 select CRC32
1113 help
1114 CRC32c CRC algorithm with the iSCSI polynomial (RFC 3385 and RFC 3720)
1115
1116 A 32-bit CRC (cyclic redundancy check) with a polynomial defined
1117 by G. Castagnoli, S. Braeuer and M. Herrman in "Optimization of Cyclic
1118 Redundancy-Check Codes with 24 and 32 Parity Bits", IEEE Transactions
1119 on Communications, Vol. 41, No. 6, June 1993, selected for use with
1120 iSCSI.
1121
1122 Used by btrfs, ext4, jbd2, NVMeoF/TCP, and iSCSI.
1123
1124config CRYPTO_CRC32
1125 tristate "CRC32"
1126 select CRYPTO_HASH
1127 select CRC32
1128 help
1129 CRC32 CRC algorithm (IEEE 802.3)
1130
1131 Used by RoCEv2 and f2fs.
1132
1133config CRYPTO_CRCT10DIF
1134 tristate "CRCT10DIF"
1135 select CRYPTO_HASH
1136 help
1137 CRC16 CRC algorithm used for the T10 (SCSI) Data Integrity Field (DIF)
1138
1139 CRC algorithm used by the SCSI Block Commands standard.
1140
1141config CRYPTO_CRC64_ROCKSOFT
1142 tristate "CRC64 based on Rocksoft Model algorithm"
1143 depends on CRC64
1144 select CRYPTO_HASH
1145 help
1146 CRC64 CRC algorithm based on the Rocksoft Model CRC Algorithm
1147
1148 Used by the NVMe implementation of T10 DIF (BLK_DEV_INTEGRITY)
1149
1150 See https://zlib.net/crc_v3.txt
1151
1152endmenu
1153
1154menu "Compression"
1155
1156config CRYPTO_DEFLATE
1157 tristate "Deflate"
1158 select CRYPTO_ALGAPI
1159 select CRYPTO_ACOMP2
1160 select ZLIB_INFLATE
1161 select ZLIB_DEFLATE
1162 help
1163 Deflate compression algorithm (RFC1951)
1164
1165 Used by IPSec with the IPCOMP protocol (RFC3173, RFC2394)
1166
1167config CRYPTO_LZO
1168 tristate "LZO"
1169 select CRYPTO_ALGAPI
1170 select CRYPTO_ACOMP2
1171 select LZO_COMPRESS
1172 select LZO_DECOMPRESS
1173 help
1174 LZO compression algorithm
1175
1176 See https://www.oberhumer.com/opensource/lzo/ for further information.
1177
1178config CRYPTO_842
1179 tristate "842"
1180 select CRYPTO_ALGAPI
1181 select CRYPTO_ACOMP2
1182 select 842_COMPRESS
1183 select 842_DECOMPRESS
1184 help
1185 842 compression algorithm by IBM
1186
1187 See https://github.com/plauth/lib842 for further information.
1188
1189config CRYPTO_LZ4
1190 tristate "LZ4"
1191 select CRYPTO_ALGAPI
1192 select CRYPTO_ACOMP2
1193 select LZ4_COMPRESS
1194 select LZ4_DECOMPRESS
1195 help
1196 LZ4 compression algorithm
1197
1198 See https://github.com/lz4/lz4 for further information.
1199
1200config CRYPTO_LZ4HC
1201 tristate "LZ4HC"
1202 select CRYPTO_ALGAPI
1203 select CRYPTO_ACOMP2
1204 select LZ4HC_COMPRESS
1205 select LZ4_DECOMPRESS
1206 help
1207 LZ4 high compression mode algorithm
1208
1209 See https://github.com/lz4/lz4 for further information.
1210
1211config CRYPTO_ZSTD
1212 tristate "Zstd"
1213 select CRYPTO_ALGAPI
1214 select CRYPTO_ACOMP2
1215 select ZSTD_COMPRESS
1216 select ZSTD_DECOMPRESS
1217 help
1218 zstd compression algorithm
1219
1220 See https://github.com/facebook/zstd for further information.
1221
1222endmenu
1223
1224menu "Random number generation"
1225
1226config CRYPTO_ANSI_CPRNG
1227 tristate "ANSI PRNG (Pseudo Random Number Generator)"
1228 select CRYPTO_AES
1229 select CRYPTO_RNG
1230 help
1231 Pseudo RNG (random number generator) (ANSI X9.31 Appendix A.2.4)
1232
1233 This uses the AES cipher algorithm.
1234
1235 Note that this option must be enabled if CRYPTO_FIPS is selected
1236
1237menuconfig CRYPTO_DRBG_MENU
1238 tristate "NIST SP800-90A DRBG (Deterministic Random Bit Generator)"
1239 help
1240 DRBG (Deterministic Random Bit Generator) (NIST SP800-90A)
1241
1242 In the following submenu, one or more of the DRBG types must be selected.
1243
1244if CRYPTO_DRBG_MENU
1245
1246config CRYPTO_DRBG_HMAC
1247 bool
1248 default y
1249 select CRYPTO_HMAC
1250 select CRYPTO_SHA512
1251
1252config CRYPTO_DRBG_HASH
1253 bool "Hash_DRBG"
1254 select CRYPTO_SHA256
1255 help
1256 Hash_DRBG variant as defined in NIST SP800-90A.
1257
1258 This uses the SHA-1, SHA-256, SHA-384, or SHA-512 hash algorithms.
1259
1260config CRYPTO_DRBG_CTR
1261 bool "CTR_DRBG"
1262 select CRYPTO_AES
1263 select CRYPTO_CTR
1264 help
1265 CTR_DRBG variant as defined in NIST SP800-90A.
1266
1267 This uses the AES cipher algorithm with the counter block mode.
1268
1269config CRYPTO_DRBG
1270 tristate
1271 default CRYPTO_DRBG_MENU
1272 select CRYPTO_RNG
1273 select CRYPTO_JITTERENTROPY
1274
1275endif # if CRYPTO_DRBG_MENU
1276
1277config CRYPTO_JITTERENTROPY
1278 tristate "CPU Jitter Non-Deterministic RNG (Random Number Generator)"
1279 select CRYPTO_RNG
1280 help
1281 CPU Jitter RNG (Random Number Generator) from the Jitterentropy library
1282
1283 A non-physical non-deterministic ("true") RNG (e.g., an entropy source
1284 compliant with NIST SP800-90B) intended to provide a seed to a
1285 deterministic RNG (e.g. per NIST SP800-90C).
1286 This RNG does not perform any cryptographic whitening of the generated
1287
1288 See https://www.chronox.de/jent.html
1289
1290config CRYPTO_KDF800108_CTR
1291 tristate
1292 select CRYPTO_HMAC
1293 select CRYPTO_SHA256
1294
1295endmenu
1296menu "Userspace interface"
1297
1298config CRYPTO_USER_API
1299 tristate
1300
1301config CRYPTO_USER_API_HASH
1302 tristate "Hash algorithms"
1303 depends on NET
1304 select CRYPTO_HASH
1305 select CRYPTO_USER_API
1306 help
1307 Enable the userspace interface for hash algorithms.
1308
1309 See Documentation/crypto/userspace-if.rst and
1310 https://www.chronox.de/libkcapi/html/index.html
1311
1312config CRYPTO_USER_API_SKCIPHER
1313 tristate "Symmetric key cipher algorithms"
1314 depends on NET
1315 select CRYPTO_SKCIPHER
1316 select CRYPTO_USER_API
1317 help
1318 Enable the userspace interface for symmetric key cipher algorithms.
1319
1320 See Documentation/crypto/userspace-if.rst and
1321 https://www.chronox.de/libkcapi/html/index.html
1322
1323config CRYPTO_USER_API_RNG
1324 tristate "RNG (random number generator) algorithms"
1325 depends on NET
1326 select CRYPTO_RNG
1327 select CRYPTO_USER_API
1328 help
1329 Enable the userspace interface for RNG (random number generator)
1330 algorithms.
1331
1332 See Documentation/crypto/userspace-if.rst and
1333 https://www.chronox.de/libkcapi/html/index.html
1334
1335config CRYPTO_USER_API_RNG_CAVP
1336 bool "Enable CAVP testing of DRBG"
1337 depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1338 help
1339 Enable extra APIs in the userspace interface for NIST CAVP
1340 (Cryptographic Algorithm Validation Program) testing:
1341 - resetting DRBG entropy
1342 - providing Additional Data
1343
1344 This should only be enabled for CAVP testing. You should say
1345 no unless you know what this is.
1346
1347config CRYPTO_USER_API_AEAD
1348 tristate "AEAD cipher algorithms"
1349 depends on NET
1350 select CRYPTO_AEAD
1351 select CRYPTO_SKCIPHER
1352 select CRYPTO_NULL
1353 select CRYPTO_USER_API
1354 help
1355 Enable the userspace interface for AEAD cipher algorithms.
1356
1357 See Documentation/crypto/userspace-if.rst and
1358 https://www.chronox.de/libkcapi/html/index.html
1359
1360config CRYPTO_USER_API_ENABLE_OBSOLETE
1361 bool "Obsolete cryptographic algorithms"
1362 depends on CRYPTO_USER_API
1363 default y
1364 help
1365 Allow obsolete cryptographic algorithms to be selected that have
1366 already been phased out from internal use by the kernel, and are
1367 only useful for userspace clients that still rely on them.
1368
1369config CRYPTO_STATS
1370 bool "Crypto usage statistics"
1371 depends on CRYPTO_USER
1372 help
1373 Enable the gathering of crypto stats.
1374
1375 This collects data sizes, numbers of requests, and numbers
1376 of errors processed by:
1377 - AEAD ciphers (encrypt, decrypt)
1378 - asymmetric key ciphers (encrypt, decrypt, verify, sign)
1379 - symmetric key ciphers (encrypt, decrypt)
1380 - compression algorithms (compress, decompress)
1381 - hash algorithms (hash)
1382 - key-agreement protocol primitives (setsecret, generate
1383 public key, compute shared secret)
1384 - RNG (generate, seed)
1385
1386endmenu
1387
1388config CRYPTO_HASH_INFO
1389 bool
1390
1391if !KMSAN # avoid false positives from assembly
1392if ARM
1393source "arch/arm/crypto/Kconfig"
1394endif
1395if ARM64
1396source "arch/arm64/crypto/Kconfig"
1397endif
1398if MIPS
1399source "arch/mips/crypto/Kconfig"
1400endif
1401if PPC
1402source "arch/powerpc/crypto/Kconfig"
1403endif
1404if S390
1405source "arch/s390/crypto/Kconfig"
1406endif
1407if SPARC
1408source "arch/sparc/crypto/Kconfig"
1409endif
1410if X86
1411source "arch/x86/crypto/Kconfig"
1412endif
1413endif
1414
1415source "drivers/crypto/Kconfig"
1416source "crypto/asymmetric_keys/Kconfig"
1417source "certs/Kconfig"
1418
1419endif # if CRYPTO