Linux Audio

Check our new training course

Loading...
v5.9
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_SKCIPHER
  56	tristate
  57	select CRYPTO_SKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_SKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 124	select CRYPTO_AEAD2
 125	select CRYPTO_HASH2
 126	select CRYPTO_SKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139config CRYPTO_MANAGER_DISABLE_TESTS
 140	bool "Disable run-time self tests"
 141	default y
 142	help
 143	  Disable run-time self tests that normally take place at
 144	  algorithm registration.
 145
 146config CRYPTO_MANAGER_EXTRA_TESTS
 147	bool "Enable extra run-time crypto self tests"
 148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS
 149	help
 150	  Enable extra run-time self tests of registered crypto algorithms,
 151	  including randomized fuzz tests.
 152
 153	  This is intended for developer use only, as these tests take much
 154	  longer to run than the normal self tests.
 155
 156config CRYPTO_GF128MUL
 157	tristate
 158
 159config CRYPTO_NULL
 160	tristate "Null algorithms"
 161	select CRYPTO_NULL2
 162	help
 163	  These are 'Null' algorithms, used by IPsec, which do nothing.
 164
 165config CRYPTO_NULL2
 166	tristate
 167	select CRYPTO_ALGAPI2
 168	select CRYPTO_SKCIPHER2
 169	select CRYPTO_HASH2
 170
 171config CRYPTO_PCRYPT
 172	tristate "Parallel crypto engine"
 173	depends on SMP
 174	select PADATA
 175	select CRYPTO_MANAGER
 176	select CRYPTO_AEAD
 177	help
 178	  This converts an arbitrary crypto algorithm into a parallel
 179	  algorithm that executes in kernel threads.
 180
 181config CRYPTO_CRYPTD
 182	tristate "Software async crypto daemon"
 183	select CRYPTO_SKCIPHER
 184	select CRYPTO_HASH
 185	select CRYPTO_MANAGER
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  converts an arbitrary synchronous software crypto algorithm
 189	  into an asynchronous algorithm that executes in a kernel thread.
 190
 191config CRYPTO_AUTHENC
 192	tristate "Authenc support"
 193	select CRYPTO_AEAD
 194	select CRYPTO_SKCIPHER
 195	select CRYPTO_MANAGER
 196	select CRYPTO_HASH
 197	select CRYPTO_NULL
 198	help
 199	  Authenc: Combined mode wrapper for IPsec.
 200	  This is required for IPSec.
 201
 202config CRYPTO_TEST
 203	tristate "Testing module"
 204	depends on m
 205	select CRYPTO_MANAGER
 206	help
 207	  Quick & dirty crypto test module.
 208
 209config CRYPTO_SIMD
 210	tristate
 211	select CRYPTO_CRYPTD
 212
 213config CRYPTO_GLUE_HELPER_X86
 214	tristate
 215	depends on X86
 216	select CRYPTO_SKCIPHER
 217
 218config CRYPTO_ENGINE
 219	tristate
 220
 221comment "Public-key cryptography"
 222
 223config CRYPTO_RSA
 224	tristate "RSA algorithm"
 225	select CRYPTO_AKCIPHER
 226	select CRYPTO_MANAGER
 227	select MPILIB
 228	select ASN1
 229	help
 230	  Generic implementation of the RSA public key algorithm.
 231
 232config CRYPTO_DH
 233	tristate "Diffie-Hellman algorithm"
 234	select CRYPTO_KPP
 235	select MPILIB
 236	help
 237	  Generic implementation of the Diffie-Hellman algorithm.
 238
 239config CRYPTO_ECC
 240	tristate
 241
 242config CRYPTO_ECDH
 243	tristate "ECDH algorithm"
 244	select CRYPTO_ECC
 245	select CRYPTO_KPP
 246	select CRYPTO_RNG_DEFAULT
 247	help
 248	  Generic implementation of the ECDH algorithm
 249
 
 
 
 
 
 
 
 
 
 
 250config CRYPTO_ECRDSA
 251	tristate "EC-RDSA (GOST 34.10) algorithm"
 252	select CRYPTO_ECC
 253	select CRYPTO_AKCIPHER
 254	select CRYPTO_STREEBOG
 255	select OID_REGISTRY
 256	select ASN1
 257	help
 258	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 259	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 260	  standard algorithms (called GOST algorithms). Only signature verification
 261	  is implemented.
 262
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 263config CRYPTO_CURVE25519
 264	tristate "Curve25519 algorithm"
 265	select CRYPTO_KPP
 266	select CRYPTO_LIB_CURVE25519_GENERIC
 267
 268config CRYPTO_CURVE25519_X86
 269	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
 270	depends on X86 && 64BIT
 271	select CRYPTO_LIB_CURVE25519_GENERIC
 272	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 273
 274comment "Authenticated Encryption with Associated Data"
 275
 276config CRYPTO_CCM
 277	tristate "CCM support"
 278	select CRYPTO_CTR
 279	select CRYPTO_HASH
 280	select CRYPTO_AEAD
 281	select CRYPTO_MANAGER
 282	help
 283	  Support for Counter with CBC MAC. Required for IPsec.
 284
 285config CRYPTO_GCM
 286	tristate "GCM/GMAC support"
 287	select CRYPTO_CTR
 288	select CRYPTO_AEAD
 289	select CRYPTO_GHASH
 290	select CRYPTO_NULL
 291	select CRYPTO_MANAGER
 292	help
 293	  Support for Galois/Counter Mode (GCM) and Galois Message
 294	  Authentication Code (GMAC). Required for IPSec.
 295
 296config CRYPTO_CHACHA20POLY1305
 297	tristate "ChaCha20-Poly1305 AEAD support"
 298	select CRYPTO_CHACHA20
 299	select CRYPTO_POLY1305
 300	select CRYPTO_AEAD
 301	select CRYPTO_MANAGER
 302	help
 303	  ChaCha20-Poly1305 AEAD support, RFC7539.
 304
 305	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 306	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 307	  IETF protocols.
 308
 309config CRYPTO_AEGIS128
 310	tristate "AEGIS-128 AEAD algorithm"
 311	select CRYPTO_AEAD
 312	select CRYPTO_AES  # for AES S-box tables
 313	help
 314	 Support for the AEGIS-128 dedicated AEAD algorithm.
 315
 316config CRYPTO_AEGIS128_SIMD
 317	bool "Support SIMD acceleration for AEGIS-128"
 318	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 319	default y
 320
 321config CRYPTO_AEGIS128_AESNI_SSE2
 322	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 323	depends on X86 && 64BIT
 324	select CRYPTO_AEAD
 325	select CRYPTO_SIMD
 326	help
 327	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 328
 329config CRYPTO_SEQIV
 330	tristate "Sequence Number IV Generator"
 331	select CRYPTO_AEAD
 332	select CRYPTO_SKCIPHER
 333	select CRYPTO_NULL
 334	select CRYPTO_RNG_DEFAULT
 335	select CRYPTO_MANAGER
 336	help
 337	  This IV generator generates an IV based on a sequence number by
 338	  xoring it with a salt.  This algorithm is mainly useful for CTR
 339
 340config CRYPTO_ECHAINIV
 341	tristate "Encrypted Chain IV Generator"
 342	select CRYPTO_AEAD
 343	select CRYPTO_NULL
 344	select CRYPTO_RNG_DEFAULT
 345	select CRYPTO_MANAGER
 346	help
 347	  This IV generator generates an IV based on the encryption of
 348	  a sequence number xored with a salt.  This is the default
 349	  algorithm for CBC.
 350
 351comment "Block modes"
 352
 353config CRYPTO_CBC
 354	tristate "CBC support"
 355	select CRYPTO_SKCIPHER
 356	select CRYPTO_MANAGER
 357	help
 358	  CBC: Cipher Block Chaining mode
 359	  This block cipher algorithm is required for IPSec.
 360
 361config CRYPTO_CFB
 362	tristate "CFB support"
 363	select CRYPTO_SKCIPHER
 364	select CRYPTO_MANAGER
 365	help
 366	  CFB: Cipher FeedBack mode
 367	  This block cipher algorithm is required for TPM2 Cryptography.
 368
 369config CRYPTO_CTR
 370	tristate "CTR support"
 371	select CRYPTO_SKCIPHER
 372	select CRYPTO_MANAGER
 373	help
 374	  CTR: Counter mode
 375	  This block cipher algorithm is required for IPSec.
 376
 377config CRYPTO_CTS
 378	tristate "CTS support"
 379	select CRYPTO_SKCIPHER
 380	select CRYPTO_MANAGER
 381	help
 382	  CTS: Cipher Text Stealing
 383	  This is the Cipher Text Stealing mode as described by
 384	  Section 8 of rfc2040 and referenced by rfc3962
 385	  (rfc3962 includes errata information in its Appendix A) or
 386	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 387	  This mode is required for Kerberos gss mechanism support
 388	  for AES encryption.
 389
 390	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 391
 392config CRYPTO_ECB
 393	tristate "ECB support"
 394	select CRYPTO_SKCIPHER
 395	select CRYPTO_MANAGER
 396	help
 397	  ECB: Electronic CodeBook mode
 398	  This is the simplest block cipher algorithm.  It simply encrypts
 399	  the input block by block.
 400
 401config CRYPTO_LRW
 402	tristate "LRW support"
 403	select CRYPTO_SKCIPHER
 404	select CRYPTO_MANAGER
 405	select CRYPTO_GF128MUL
 406	help
 407	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 408	  narrow block cipher mode for dm-crypt.  Use it with cipher
 409	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 410	  The first 128, 192 or 256 bits in the key are used for AES and the
 411	  rest is used to tie each cipher block to its logical position.
 412
 413config CRYPTO_OFB
 414	tristate "OFB support"
 415	select CRYPTO_SKCIPHER
 416	select CRYPTO_MANAGER
 417	help
 418	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 419	  stream cipher. It generates keystream blocks, which are then XORed
 420	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 421	  ciphertext produces a flipped bit in the plaintext at the same
 422	  location. This property allows many error correcting codes to function
 423	  normally even when applied before encryption.
 424
 425config CRYPTO_PCBC
 426	tristate "PCBC support"
 427	select CRYPTO_SKCIPHER
 428	select CRYPTO_MANAGER
 429	help
 430	  PCBC: Propagating Cipher Block Chaining mode
 431	  This block cipher algorithm is required for RxRPC.
 432
 433config CRYPTO_XTS
 434	tristate "XTS support"
 435	select CRYPTO_SKCIPHER
 436	select CRYPTO_MANAGER
 437	select CRYPTO_ECB
 438	help
 439	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 440	  key size 256, 384 or 512 bits. This implementation currently
 441	  can't handle a sectorsize which is not a multiple of 16 bytes.
 442
 443config CRYPTO_KEYWRAP
 444	tristate "Key wrapping support"
 445	select CRYPTO_SKCIPHER
 446	select CRYPTO_MANAGER
 447	help
 448	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 449	  padding.
 450
 451config CRYPTO_NHPOLY1305
 452	tristate
 453	select CRYPTO_HASH
 454	select CRYPTO_LIB_POLY1305_GENERIC
 455
 456config CRYPTO_NHPOLY1305_SSE2
 457	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 458	depends on X86 && 64BIT
 459	select CRYPTO_NHPOLY1305
 460	help
 461	  SSE2 optimized implementation of the hash function used by the
 462	  Adiantum encryption mode.
 463
 464config CRYPTO_NHPOLY1305_AVX2
 465	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 466	depends on X86 && 64BIT
 467	select CRYPTO_NHPOLY1305
 468	help
 469	  AVX2 optimized implementation of the hash function used by the
 470	  Adiantum encryption mode.
 471
 472config CRYPTO_ADIANTUM
 473	tristate "Adiantum support"
 474	select CRYPTO_CHACHA20
 475	select CRYPTO_LIB_POLY1305_GENERIC
 476	select CRYPTO_NHPOLY1305
 477	select CRYPTO_MANAGER
 478	help
 479	  Adiantum is a tweakable, length-preserving encryption mode
 480	  designed for fast and secure disk encryption, especially on
 481	  CPUs without dedicated crypto instructions.  It encrypts
 482	  each sector using the XChaCha12 stream cipher, two passes of
 483	  an ε-almost-∆-universal hash function, and an invocation of
 484	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 485	  without AES instructions, Adiantum is much faster than
 486	  AES-XTS.
 487
 488	  Adiantum's security is provably reducible to that of its
 489	  underlying stream and block ciphers, subject to a security
 490	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 491	  mode, so it actually provides an even stronger notion of
 492	  security than XTS, subject to the security bound.
 493
 494	  If unsure, say N.
 495
 496config CRYPTO_ESSIV
 497	tristate "ESSIV support for block encryption"
 498	select CRYPTO_AUTHENC
 499	help
 500	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 501	  generation method that is used in some cases by fscrypt and/or
 502	  dm-crypt. It uses the hash of the block encryption key as the
 503	  symmetric key for a block encryption pass applied to the input
 504	  IV, making low entropy IV sources more suitable for block
 505	  encryption.
 506
 507	  This driver implements a crypto API template that can be
 508	  instantiated either as an skcipher or as an AEAD (depending on the
 509	  type of the first template argument), and which defers encryption
 510	  and decryption requests to the encapsulated cipher after applying
 511	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 512	  that the keys are presented in the same format used by the authenc
 513	  template, and that the IV appears at the end of the authenticated
 514	  associated data (AAD) region (which is how dm-crypt uses it.)
 515
 516	  Note that the use of ESSIV is not recommended for new deployments,
 517	  and so this only needs to be enabled when interoperability with
 518	  existing encrypted volumes of filesystems is required, or when
 519	  building for a particular system that requires it (e.g., when
 520	  the SoC in question has accelerated CBC but not XTS, making CBC
 521	  combined with ESSIV the only feasible mode for h/w accelerated
 522	  block encryption)
 523
 524comment "Hash modes"
 525
 526config CRYPTO_CMAC
 527	tristate "CMAC support"
 528	select CRYPTO_HASH
 529	select CRYPTO_MANAGER
 530	help
 531	  Cipher-based Message Authentication Code (CMAC) specified by
 532	  The National Institute of Standards and Technology (NIST).
 533
 534	  https://tools.ietf.org/html/rfc4493
 535	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 536
 537config CRYPTO_HMAC
 538	tristate "HMAC support"
 539	select CRYPTO_HASH
 540	select CRYPTO_MANAGER
 541	help
 542	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 543	  This is required for IPSec.
 544
 545config CRYPTO_XCBC
 546	tristate "XCBC support"
 547	select CRYPTO_HASH
 548	select CRYPTO_MANAGER
 549	help
 550	  XCBC: Keyed-Hashing with encryption algorithm
 551		https://www.ietf.org/rfc/rfc3566.txt
 552		http://csrc.nist.gov/encryption/modes/proposedmodes/
 553		 xcbc-mac/xcbc-mac-spec.pdf
 554
 555config CRYPTO_VMAC
 556	tristate "VMAC support"
 557	select CRYPTO_HASH
 558	select CRYPTO_MANAGER
 559	help
 560	  VMAC is a message authentication algorithm designed for
 561	  very high speed on 64-bit architectures.
 562
 563	  See also:
 564	  <https://fastcrypto.org/vmac>
 565
 566comment "Digest"
 567
 568config CRYPTO_CRC32C
 569	tristate "CRC32c CRC algorithm"
 570	select CRYPTO_HASH
 571	select CRC32
 572	help
 573	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 574	  by iSCSI for header and data digests and by others.
 575	  See Castagnoli93.  Module will be crc32c.
 576
 577config CRYPTO_CRC32C_INTEL
 578	tristate "CRC32c INTEL hardware acceleration"
 579	depends on X86
 580	select CRYPTO_HASH
 581	help
 582	  In Intel processor with SSE4.2 supported, the processor will
 583	  support CRC32C implementation using hardware accelerated CRC32
 584	  instruction. This option will create 'crc32c-intel' module,
 585	  which will enable any routine to use the CRC32 instruction to
 586	  gain performance compared with software implementation.
 587	  Module will be crc32c-intel.
 588
 589config CRYPTO_CRC32C_VPMSUM
 590	tristate "CRC32c CRC algorithm (powerpc64)"
 591	depends on PPC64 && ALTIVEC
 592	select CRYPTO_HASH
 593	select CRC32
 594	help
 595	  CRC32c algorithm implemented using vector polynomial multiply-sum
 596	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 597	  and newer processors for improved performance.
 598
 599
 600config CRYPTO_CRC32C_SPARC64
 601	tristate "CRC32c CRC algorithm (SPARC64)"
 602	depends on SPARC64
 603	select CRYPTO_HASH
 604	select CRC32
 605	help
 606	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 607	  when available.
 608
 609config CRYPTO_CRC32
 610	tristate "CRC32 CRC algorithm"
 611	select CRYPTO_HASH
 612	select CRC32
 613	help
 614	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 615	  Shash crypto api wrappers to crc32_le function.
 616
 617config CRYPTO_CRC32_PCLMUL
 618	tristate "CRC32 PCLMULQDQ hardware acceleration"
 619	depends on X86
 620	select CRYPTO_HASH
 621	select CRC32
 622	help
 623	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 624	  and PCLMULQDQ supported, the processor will support
 625	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 626	  instruction. This option will create 'crc32-pclmul' module,
 627	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 628	  and gain better performance as compared with the table implementation.
 629
 630config CRYPTO_CRC32_MIPS
 631	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 632	depends on MIPS_CRC_SUPPORT
 633	select CRYPTO_HASH
 634	help
 635	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 636	  instructions, when available.
 637
 638
 639config CRYPTO_XXHASH
 640	tristate "xxHash hash algorithm"
 641	select CRYPTO_HASH
 642	select XXHASH
 643	help
 644	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 645	  speeds close to RAM limits.
 646
 647config CRYPTO_BLAKE2B
 648	tristate "BLAKE2b digest algorithm"
 649	select CRYPTO_HASH
 650	help
 651	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
 652	  optimized for 64bit platforms and can produce digests of any size
 653	  between 1 to 64.  The keyed hash is also implemented.
 654
 655	  This module provides the following algorithms:
 656
 657	  - blake2b-160
 658	  - blake2b-256
 659	  - blake2b-384
 660	  - blake2b-512
 661
 662	  See https://blake2.net for further information.
 663
 664config CRYPTO_BLAKE2S
 665	tristate "BLAKE2s digest algorithm"
 666	select CRYPTO_LIB_BLAKE2S_GENERIC
 667	select CRYPTO_HASH
 668	help
 669	  Implementation of cryptographic hash function BLAKE2s
 670	  optimized for 8-32bit platforms and can produce digests of any size
 671	  between 1 to 32.  The keyed hash is also implemented.
 672
 673	  This module provides the following algorithms:
 674
 675	  - blake2s-128
 676	  - blake2s-160
 677	  - blake2s-224
 678	  - blake2s-256
 679
 680	  See https://blake2.net for further information.
 681
 682config CRYPTO_BLAKE2S_X86
 683	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
 684	depends on X86 && 64BIT
 685	select CRYPTO_LIB_BLAKE2S_GENERIC
 686	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 687
 688config CRYPTO_CRCT10DIF
 689	tristate "CRCT10DIF algorithm"
 690	select CRYPTO_HASH
 691	help
 692	  CRC T10 Data Integrity Field computation is being cast as
 693	  a crypto transform.  This allows for faster crc t10 diff
 694	  transforms to be used if they are available.
 695
 696config CRYPTO_CRCT10DIF_PCLMUL
 697	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 698	depends on X86 && 64BIT && CRC_T10DIF
 699	select CRYPTO_HASH
 700	help
 701	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 702	  CRC T10 DIF PCLMULQDQ computation can be hardware
 703	  accelerated PCLMULQDQ instruction. This option will create
 704	  'crct10dif-pclmul' module, which is faster when computing the
 705	  crct10dif checksum as compared with the generic table implementation.
 706
 707config CRYPTO_CRCT10DIF_VPMSUM
 708	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 709	depends on PPC64 && ALTIVEC && CRC_T10DIF
 710	select CRYPTO_HASH
 711	help
 712	  CRC10T10DIF algorithm implemented using vector polynomial
 713	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 714	  POWER8 and newer processors for improved performance.
 715
 716config CRYPTO_VPMSUM_TESTER
 717	tristate "Powerpc64 vpmsum hardware acceleration tester"
 718	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 719	help
 720	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 721	  POWER8 vpmsum instructions.
 722	  Unless you are testing these algorithms, you don't need this.
 723
 724config CRYPTO_GHASH
 725	tristate "GHASH hash function"
 726	select CRYPTO_GF128MUL
 727	select CRYPTO_HASH
 728	help
 729	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 730	  It is not a general-purpose cryptographic hash function.
 731
 732config CRYPTO_POLY1305
 733	tristate "Poly1305 authenticator algorithm"
 734	select CRYPTO_HASH
 735	select CRYPTO_LIB_POLY1305_GENERIC
 736	help
 737	  Poly1305 authenticator algorithm, RFC7539.
 738
 739	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 740	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 741	  in IETF protocols. This is the portable C implementation of Poly1305.
 742
 743config CRYPTO_POLY1305_X86_64
 744	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 745	depends on X86 && 64BIT
 746	select CRYPTO_LIB_POLY1305_GENERIC
 747	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 748	help
 749	  Poly1305 authenticator algorithm, RFC7539.
 750
 751	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 752	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 753	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 754	  instructions.
 755
 756config CRYPTO_POLY1305_MIPS
 757	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
 758	depends on CPU_MIPS32 || (CPU_MIPS64 && 64BIT)
 759	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 760
 761config CRYPTO_MD4
 762	tristate "MD4 digest algorithm"
 763	select CRYPTO_HASH
 764	help
 765	  MD4 message digest algorithm (RFC1320).
 766
 767config CRYPTO_MD5
 768	tristate "MD5 digest algorithm"
 769	select CRYPTO_HASH
 770	help
 771	  MD5 message digest algorithm (RFC1321).
 772
 773config CRYPTO_MD5_OCTEON
 774	tristate "MD5 digest algorithm (OCTEON)"
 775	depends on CPU_CAVIUM_OCTEON
 776	select CRYPTO_MD5
 777	select CRYPTO_HASH
 778	help
 779	  MD5 message digest algorithm (RFC1321) implemented
 780	  using OCTEON crypto instructions, when available.
 781
 782config CRYPTO_MD5_PPC
 783	tristate "MD5 digest algorithm (PPC)"
 784	depends on PPC
 785	select CRYPTO_HASH
 786	help
 787	  MD5 message digest algorithm (RFC1321) implemented
 788	  in PPC assembler.
 789
 790config CRYPTO_MD5_SPARC64
 791	tristate "MD5 digest algorithm (SPARC64)"
 792	depends on SPARC64
 793	select CRYPTO_MD5
 794	select CRYPTO_HASH
 795	help
 796	  MD5 message digest algorithm (RFC1321) implemented
 797	  using sparc64 crypto instructions, when available.
 798
 799config CRYPTO_MICHAEL_MIC
 800	tristate "Michael MIC keyed digest algorithm"
 801	select CRYPTO_HASH
 802	help
 803	  Michael MIC is used for message integrity protection in TKIP
 804	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 805	  should not be used for other purposes because of the weakness
 806	  of the algorithm.
 807
 808config CRYPTO_RMD128
 809	tristate "RIPEMD-128 digest algorithm"
 810	select CRYPTO_HASH
 811	help
 812	  RIPEMD-128 (ISO/IEC 10118-3:2004).
 813
 814	  RIPEMD-128 is a 128-bit cryptographic hash function. It should only
 815	  be used as a secure replacement for RIPEMD. For other use cases,
 816	  RIPEMD-160 should be used.
 817
 818	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 819	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 820
 821config CRYPTO_RMD160
 822	tristate "RIPEMD-160 digest algorithm"
 823	select CRYPTO_HASH
 824	help
 825	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 826
 827	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 828	  to be used as a secure replacement for the 128-bit hash functions
 829	  MD4, MD5 and it's predecessor RIPEMD
 830	  (not to be confused with RIPEMD-128).
 831
 832	  It's speed is comparable to SHA1 and there are no known attacks
 833	  against RIPEMD-160.
 834
 835	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 836	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 837
 838config CRYPTO_RMD256
 839	tristate "RIPEMD-256 digest algorithm"
 840	select CRYPTO_HASH
 841	help
 842	  RIPEMD-256 is an optional extension of RIPEMD-128 with a
 843	  256 bit hash. It is intended for applications that require
 844	  longer hash-results, without needing a larger security level
 845	  (than RIPEMD-128).
 846
 847	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 848	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 849
 850config CRYPTO_RMD320
 851	tristate "RIPEMD-320 digest algorithm"
 852	select CRYPTO_HASH
 853	help
 854	  RIPEMD-320 is an optional extension of RIPEMD-160 with a
 855	  320 bit hash. It is intended for applications that require
 856	  longer hash-results, without needing a larger security level
 857	  (than RIPEMD-160).
 858
 859	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 860	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 861
 862config CRYPTO_SHA1
 863	tristate "SHA1 digest algorithm"
 864	select CRYPTO_HASH
 865	help
 866	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 867
 868config CRYPTO_SHA1_SSSE3
 869	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 870	depends on X86 && 64BIT
 871	select CRYPTO_SHA1
 872	select CRYPTO_HASH
 873	help
 874	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 875	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 876	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 877	  when available.
 878
 879config CRYPTO_SHA256_SSSE3
 880	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 881	depends on X86 && 64BIT
 882	select CRYPTO_SHA256
 883	select CRYPTO_HASH
 884	help
 885	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 886	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 887	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 888	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 889	  Instructions) when available.
 890
 891config CRYPTO_SHA512_SSSE3
 892	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 893	depends on X86 && 64BIT
 894	select CRYPTO_SHA512
 895	select CRYPTO_HASH
 896	help
 897	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 898	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 899	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 900	  version 2 (AVX2) instructions, when available.
 901
 902config CRYPTO_SHA1_OCTEON
 903	tristate "SHA1 digest algorithm (OCTEON)"
 904	depends on CPU_CAVIUM_OCTEON
 905	select CRYPTO_SHA1
 906	select CRYPTO_HASH
 907	help
 908	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 909	  using OCTEON crypto instructions, when available.
 910
 911config CRYPTO_SHA1_SPARC64
 912	tristate "SHA1 digest algorithm (SPARC64)"
 913	depends on SPARC64
 914	select CRYPTO_SHA1
 915	select CRYPTO_HASH
 916	help
 917	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 918	  using sparc64 crypto instructions, when available.
 919
 920config CRYPTO_SHA1_PPC
 921	tristate "SHA1 digest algorithm (powerpc)"
 922	depends on PPC
 923	help
 924	  This is the powerpc hardware accelerated implementation of the
 925	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 926
 927config CRYPTO_SHA1_PPC_SPE
 928	tristate "SHA1 digest algorithm (PPC SPE)"
 929	depends on PPC && SPE
 930	help
 931	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 932	  using powerpc SPE SIMD instruction set.
 933
 934config CRYPTO_SHA256
 935	tristate "SHA224 and SHA256 digest algorithm"
 936	select CRYPTO_HASH
 937	select CRYPTO_LIB_SHA256
 938	help
 939	  SHA256 secure hash standard (DFIPS 180-2).
 940
 941	  This version of SHA implements a 256 bit hash with 128 bits of
 942	  security against collision attacks.
 943
 944	  This code also includes SHA-224, a 224 bit hash with 112 bits
 945	  of security against collision attacks.
 946
 947config CRYPTO_SHA256_PPC_SPE
 948	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 949	depends on PPC && SPE
 950	select CRYPTO_SHA256
 951	select CRYPTO_HASH
 952	help
 953	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 954	  implemented using powerpc SPE SIMD instruction set.
 955
 956config CRYPTO_SHA256_OCTEON
 957	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 958	depends on CPU_CAVIUM_OCTEON
 959	select CRYPTO_SHA256
 960	select CRYPTO_HASH
 961	help
 962	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 963	  using OCTEON crypto instructions, when available.
 964
 965config CRYPTO_SHA256_SPARC64
 966	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 967	depends on SPARC64
 968	select CRYPTO_SHA256
 969	select CRYPTO_HASH
 970	help
 971	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 972	  using sparc64 crypto instructions, when available.
 973
 974config CRYPTO_SHA512
 975	tristate "SHA384 and SHA512 digest algorithms"
 976	select CRYPTO_HASH
 977	help
 978	  SHA512 secure hash standard (DFIPS 180-2).
 979
 980	  This version of SHA implements a 512 bit hash with 256 bits of
 981	  security against collision attacks.
 982
 983	  This code also includes SHA-384, a 384 bit hash with 192 bits
 984	  of security against collision attacks.
 985
 986config CRYPTO_SHA512_OCTEON
 987	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 988	depends on CPU_CAVIUM_OCTEON
 989	select CRYPTO_SHA512
 990	select CRYPTO_HASH
 991	help
 992	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 993	  using OCTEON crypto instructions, when available.
 994
 995config CRYPTO_SHA512_SPARC64
 996	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 997	depends on SPARC64
 998	select CRYPTO_SHA512
 999	select CRYPTO_HASH
1000	help
1001	  SHA-512 secure hash standard (DFIPS 180-2) implemented
1002	  using sparc64 crypto instructions, when available.
1003
1004config CRYPTO_SHA3
1005	tristate "SHA3 digest algorithm"
1006	select CRYPTO_HASH
1007	help
1008	  SHA-3 secure hash standard (DFIPS 202). It's based on
1009	  cryptographic sponge function family called Keccak.
1010
1011	  References:
1012	  http://keccak.noekeon.org/
1013
1014config CRYPTO_SM3
1015	tristate "SM3 digest algorithm"
1016	select CRYPTO_HASH
1017	help
1018	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1019	  It is part of the Chinese Commercial Cryptography suite.
1020
1021	  References:
1022	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1023	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1024
1025config CRYPTO_STREEBOG
1026	tristate "Streebog Hash Function"
1027	select CRYPTO_HASH
1028	help
1029	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1030	  cryptographic standard algorithms (called GOST algorithms).
1031	  This setting enables two hash algorithms with 256 and 512 bits output.
1032
1033	  References:
1034	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1035	  https://tools.ietf.org/html/rfc6986
1036
1037config CRYPTO_TGR192
1038	tristate "Tiger digest algorithms"
1039	select CRYPTO_HASH
1040	help
1041	  Tiger hash algorithm 192, 160 and 128-bit hashes
1042
1043	  Tiger is a hash function optimized for 64-bit processors while
1044	  still having decent performance on 32-bit processors.
1045	  Tiger was developed by Ross Anderson and Eli Biham.
1046
1047	  See also:
1048	  <https://www.cs.technion.ac.il/~biham/Reports/Tiger/>.
1049
1050config CRYPTO_WP512
1051	tristate "Whirlpool digest algorithms"
1052	select CRYPTO_HASH
1053	help
1054	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1055
1056	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1057	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1058
1059	  See also:
1060	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1061
1062config CRYPTO_GHASH_CLMUL_NI_INTEL
1063	tristate "GHASH hash function (CLMUL-NI accelerated)"
1064	depends on X86 && 64BIT
1065	select CRYPTO_CRYPTD
1066	help
1067	  This is the x86_64 CLMUL-NI accelerated implementation of
1068	  GHASH, the hash function used in GCM (Galois/Counter mode).
1069
1070comment "Ciphers"
1071
1072config CRYPTO_AES
1073	tristate "AES cipher algorithms"
1074	select CRYPTO_ALGAPI
1075	select CRYPTO_LIB_AES
1076	help
1077	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1078	  algorithm.
1079
1080	  Rijndael appears to be consistently a very good performer in
1081	  both hardware and software across a wide range of computing
1082	  environments regardless of its use in feedback or non-feedback
1083	  modes. Its key setup time is excellent, and its key agility is
1084	  good. Rijndael's very low memory requirements make it very well
1085	  suited for restricted-space environments, in which it also
1086	  demonstrates excellent performance. Rijndael's operations are
1087	  among the easiest to defend against power and timing attacks.
1088
1089	  The AES specifies three key sizes: 128, 192 and 256 bits
1090
1091	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1092
1093config CRYPTO_AES_TI
1094	tristate "Fixed time AES cipher"
1095	select CRYPTO_ALGAPI
1096	select CRYPTO_LIB_AES
1097	help
1098	  This is a generic implementation of AES that attempts to eliminate
1099	  data dependent latencies as much as possible without affecting
1100	  performance too much. It is intended for use by the generic CCM
1101	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1102	  solely on encryption (although decryption is supported as well, but
1103	  with a more dramatic performance hit)
1104
1105	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1106	  8 for decryption), this implementation only uses just two S-boxes of
1107	  256 bytes each, and attempts to eliminate data dependent latencies by
1108	  prefetching the entire table into the cache at the start of each
1109	  block. Interrupts are also disabled to avoid races where cachelines
1110	  are evicted when the CPU is interrupted to do something else.
1111
1112config CRYPTO_AES_NI_INTEL
1113	tristate "AES cipher algorithms (AES-NI)"
1114	depends on X86
1115	select CRYPTO_AEAD
1116	select CRYPTO_LIB_AES
1117	select CRYPTO_ALGAPI
1118	select CRYPTO_SKCIPHER
1119	select CRYPTO_GLUE_HELPER_X86 if 64BIT
1120	select CRYPTO_SIMD
1121	help
1122	  Use Intel AES-NI instructions for AES algorithm.
1123
1124	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1125	  algorithm.
1126
1127	  Rijndael appears to be consistently a very good performer in
1128	  both hardware and software across a wide range of computing
1129	  environments regardless of its use in feedback or non-feedback
1130	  modes. Its key setup time is excellent, and its key agility is
1131	  good. Rijndael's very low memory requirements make it very well
1132	  suited for restricted-space environments, in which it also
1133	  demonstrates excellent performance. Rijndael's operations are
1134	  among the easiest to defend against power and timing attacks.
1135
1136	  The AES specifies three key sizes: 128, 192 and 256 bits
1137
1138	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1139
1140	  In addition to AES cipher algorithm support, the acceleration
1141	  for some popular block cipher mode is supported too, including
1142	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1143	  acceleration for CTR.
1144
1145config CRYPTO_AES_SPARC64
1146	tristate "AES cipher algorithms (SPARC64)"
1147	depends on SPARC64
1148	select CRYPTO_SKCIPHER
1149	help
1150	  Use SPARC64 crypto opcodes for AES algorithm.
1151
1152	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1153	  algorithm.
1154
1155	  Rijndael appears to be consistently a very good performer in
1156	  both hardware and software across a wide range of computing
1157	  environments regardless of its use in feedback or non-feedback
1158	  modes. Its key setup time is excellent, and its key agility is
1159	  good. Rijndael's very low memory requirements make it very well
1160	  suited for restricted-space environments, in which it also
1161	  demonstrates excellent performance. Rijndael's operations are
1162	  among the easiest to defend against power and timing attacks.
1163
1164	  The AES specifies three key sizes: 128, 192 and 256 bits
1165
1166	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1167
1168	  In addition to AES cipher algorithm support, the acceleration
1169	  for some popular block cipher mode is supported too, including
1170	  ECB and CBC.
1171
1172config CRYPTO_AES_PPC_SPE
1173	tristate "AES cipher algorithms (PPC SPE)"
1174	depends on PPC && SPE
1175	select CRYPTO_SKCIPHER
1176	help
1177	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1178	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1179	  This module should only be used for low power (router) devices
1180	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1181	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1182	  timining attacks. Nevertheless it might be not as secure as other
1183	  architecture specific assembler implementations that work on 1KB
1184	  tables or 256 bytes S-boxes.
1185
1186config CRYPTO_ANUBIS
1187	tristate "Anubis cipher algorithm"
 
1188	select CRYPTO_ALGAPI
1189	help
1190	  Anubis cipher algorithm.
1191
1192	  Anubis is a variable key length cipher which can use keys from
1193	  128 bits to 320 bits in length.  It was evaluated as a entrant
1194	  in the NESSIE competition.
1195
1196	  See also:
1197	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1198	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1199
1200config CRYPTO_ARC4
1201	tristate "ARC4 cipher algorithm"
 
1202	select CRYPTO_SKCIPHER
1203	select CRYPTO_LIB_ARC4
1204	help
1205	  ARC4 cipher algorithm.
1206
1207	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1208	  bits in length.  This algorithm is required for driver-based
1209	  WEP, but it should not be for other purposes because of the
1210	  weakness of the algorithm.
1211
1212config CRYPTO_BLOWFISH
1213	tristate "Blowfish cipher algorithm"
1214	select CRYPTO_ALGAPI
1215	select CRYPTO_BLOWFISH_COMMON
1216	help
1217	  Blowfish cipher algorithm, by Bruce Schneier.
1218
1219	  This is a variable key length cipher which can use keys from 32
1220	  bits to 448 bits in length.  It's fast, simple and specifically
1221	  designed for use on "large microprocessors".
1222
1223	  See also:
1224	  <https://www.schneier.com/blowfish.html>
1225
1226config CRYPTO_BLOWFISH_COMMON
1227	tristate
1228	help
1229	  Common parts of the Blowfish cipher algorithm shared by the
1230	  generic c and the assembler implementations.
1231
1232	  See also:
1233	  <https://www.schneier.com/blowfish.html>
1234
1235config CRYPTO_BLOWFISH_X86_64
1236	tristate "Blowfish cipher algorithm (x86_64)"
1237	depends on X86 && 64BIT
1238	select CRYPTO_SKCIPHER
1239	select CRYPTO_BLOWFISH_COMMON
 
1240	help
1241	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1242
1243	  This is a variable key length cipher which can use keys from 32
1244	  bits to 448 bits in length.  It's fast, simple and specifically
1245	  designed for use on "large microprocessors".
1246
1247	  See also:
1248	  <https://www.schneier.com/blowfish.html>
1249
1250config CRYPTO_CAMELLIA
1251	tristate "Camellia cipher algorithms"
1252	depends on CRYPTO
1253	select CRYPTO_ALGAPI
1254	help
1255	  Camellia cipher algorithms module.
1256
1257	  Camellia is a symmetric key block cipher developed jointly
1258	  at NTT and Mitsubishi Electric Corporation.
1259
1260	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1261
1262	  See also:
1263	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1264
1265config CRYPTO_CAMELLIA_X86_64
1266	tristate "Camellia cipher algorithm (x86_64)"
1267	depends on X86 && 64BIT
1268	depends on CRYPTO
1269	select CRYPTO_SKCIPHER
1270	select CRYPTO_GLUE_HELPER_X86
1271	help
1272	  Camellia cipher algorithm module (x86_64).
1273
1274	  Camellia is a symmetric key block cipher developed jointly
1275	  at NTT and Mitsubishi Electric Corporation.
1276
1277	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1278
1279	  See also:
1280	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1281
1282config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1283	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1284	depends on X86 && 64BIT
1285	depends on CRYPTO
1286	select CRYPTO_SKCIPHER
1287	select CRYPTO_CAMELLIA_X86_64
1288	select CRYPTO_GLUE_HELPER_X86
1289	select CRYPTO_SIMD
1290	select CRYPTO_XTS
1291	help
1292	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1293
1294	  Camellia is a symmetric key block cipher developed jointly
1295	  at NTT and Mitsubishi Electric Corporation.
1296
1297	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1298
1299	  See also:
1300	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1301
1302config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1303	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1304	depends on X86 && 64BIT
1305	depends on CRYPTO
1306	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1307	help
1308	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1309
1310	  Camellia is a symmetric key block cipher developed jointly
1311	  at NTT and Mitsubishi Electric Corporation.
1312
1313	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1314
1315	  See also:
1316	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1317
1318config CRYPTO_CAMELLIA_SPARC64
1319	tristate "Camellia cipher algorithm (SPARC64)"
1320	depends on SPARC64
1321	depends on CRYPTO
1322	select CRYPTO_ALGAPI
1323	select CRYPTO_SKCIPHER
1324	help
1325	  Camellia cipher algorithm module (SPARC64).
1326
1327	  Camellia is a symmetric key block cipher developed jointly
1328	  at NTT and Mitsubishi Electric Corporation.
1329
1330	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1331
1332	  See also:
1333	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1334
1335config CRYPTO_CAST_COMMON
1336	tristate
1337	help
1338	  Common parts of the CAST cipher algorithms shared by the
1339	  generic c and the assembler implementations.
1340
1341config CRYPTO_CAST5
1342	tristate "CAST5 (CAST-128) cipher algorithm"
1343	select CRYPTO_ALGAPI
1344	select CRYPTO_CAST_COMMON
1345	help
1346	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1347	  described in RFC2144.
1348
1349config CRYPTO_CAST5_AVX_X86_64
1350	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1351	depends on X86 && 64BIT
1352	select CRYPTO_SKCIPHER
1353	select CRYPTO_CAST5
1354	select CRYPTO_CAST_COMMON
1355	select CRYPTO_SIMD
 
1356	help
1357	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1358	  described in RFC2144.
1359
1360	  This module provides the Cast5 cipher algorithm that processes
1361	  sixteen blocks parallel using the AVX instruction set.
1362
1363config CRYPTO_CAST6
1364	tristate "CAST6 (CAST-256) cipher algorithm"
1365	select CRYPTO_ALGAPI
1366	select CRYPTO_CAST_COMMON
1367	help
1368	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1369	  described in RFC2612.
1370
1371config CRYPTO_CAST6_AVX_X86_64
1372	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1373	depends on X86 && 64BIT
1374	select CRYPTO_SKCIPHER
1375	select CRYPTO_CAST6
1376	select CRYPTO_CAST_COMMON
1377	select CRYPTO_GLUE_HELPER_X86
1378	select CRYPTO_SIMD
1379	select CRYPTO_XTS
 
1380	help
1381	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1382	  described in RFC2612.
1383
1384	  This module provides the Cast6 cipher algorithm that processes
1385	  eight blocks parallel using the AVX instruction set.
1386
1387config CRYPTO_DES
1388	tristate "DES and Triple DES EDE cipher algorithms"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_LIB_DES
1391	help
1392	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1393
1394config CRYPTO_DES_SPARC64
1395	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1396	depends on SPARC64
1397	select CRYPTO_ALGAPI
1398	select CRYPTO_LIB_DES
1399	select CRYPTO_SKCIPHER
1400	help
1401	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1402	  optimized using SPARC64 crypto opcodes.
1403
1404config CRYPTO_DES3_EDE_X86_64
1405	tristate "Triple DES EDE cipher algorithm (x86-64)"
1406	depends on X86 && 64BIT
1407	select CRYPTO_SKCIPHER
1408	select CRYPTO_LIB_DES
 
1409	help
1410	  Triple DES EDE (FIPS 46-3) algorithm.
1411
1412	  This module provides implementation of the Triple DES EDE cipher
1413	  algorithm that is optimized for x86-64 processors. Two versions of
1414	  algorithm are provided; regular processing one input block and
1415	  one that processes three blocks parallel.
1416
1417config CRYPTO_FCRYPT
1418	tristate "FCrypt cipher algorithm"
1419	select CRYPTO_ALGAPI
1420	select CRYPTO_SKCIPHER
1421	help
1422	  FCrypt algorithm used by RxRPC.
1423
1424config CRYPTO_KHAZAD
1425	tristate "Khazad cipher algorithm"
 
1426	select CRYPTO_ALGAPI
1427	help
1428	  Khazad cipher algorithm.
1429
1430	  Khazad was a finalist in the initial NESSIE competition.  It is
1431	  an algorithm optimized for 64-bit processors with good performance
1432	  on 32-bit processors.  Khazad uses an 128 bit key size.
1433
1434	  See also:
1435	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1436
1437config CRYPTO_SALSA20
1438	tristate "Salsa20 stream cipher algorithm"
1439	select CRYPTO_SKCIPHER
1440	help
1441	  Salsa20 stream cipher algorithm.
1442
1443	  Salsa20 is a stream cipher submitted to eSTREAM, the ECRYPT
1444	  Stream Cipher Project. See <https://www.ecrypt.eu.org/stream/>
1445
1446	  The Salsa20 stream cipher algorithm is designed by Daniel J.
1447	  Bernstein <djb@cr.yp.to>. See <https://cr.yp.to/snuffle.html>
1448
1449config CRYPTO_CHACHA20
1450	tristate "ChaCha stream cipher algorithms"
1451	select CRYPTO_LIB_CHACHA_GENERIC
1452	select CRYPTO_SKCIPHER
1453	help
1454	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1455
1456	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1457	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1458	  This is the portable C implementation of ChaCha20.  See also:
1459	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1460
1461	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1462	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1463	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1464	  while provably retaining ChaCha20's security.  See also:
1465	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1466
1467	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1468	  reduced security margin but increased performance.  It can be needed
1469	  in some performance-sensitive scenarios.
1470
1471config CRYPTO_CHACHA20_X86_64
1472	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1473	depends on X86 && 64BIT
1474	select CRYPTO_SKCIPHER
1475	select CRYPTO_LIB_CHACHA_GENERIC
1476	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1477	help
1478	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1479	  XChaCha20, and XChaCha12 stream ciphers.
1480
1481config CRYPTO_CHACHA_MIPS
1482	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1483	depends on CPU_MIPS32_R2
1484	select CRYPTO_SKCIPHER
1485	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1486
1487config CRYPTO_SEED
1488	tristate "SEED cipher algorithm"
 
1489	select CRYPTO_ALGAPI
1490	help
1491	  SEED cipher algorithm (RFC4269).
1492
1493	  SEED is a 128-bit symmetric key block cipher that has been
1494	  developed by KISA (Korea Information Security Agency) as a
1495	  national standard encryption algorithm of the Republic of Korea.
1496	  It is a 16 round block cipher with the key size of 128 bit.
1497
1498	  See also:
1499	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1500
1501config CRYPTO_SERPENT
1502	tristate "Serpent cipher algorithm"
1503	select CRYPTO_ALGAPI
1504	help
1505	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1506
1507	  Keys are allowed to be from 0 to 256 bits in length, in steps
1508	  of 8 bits.  Also includes the 'Tnepres' algorithm, a reversed
1509	  variant of Serpent for compatibility with old kerneli.org code.
1510
1511	  See also:
1512	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1513
1514config CRYPTO_SERPENT_SSE2_X86_64
1515	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1516	depends on X86 && 64BIT
1517	select CRYPTO_SKCIPHER
1518	select CRYPTO_GLUE_HELPER_X86
1519	select CRYPTO_SERPENT
1520	select CRYPTO_SIMD
 
1521	help
1522	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1523
1524	  Keys are allowed to be from 0 to 256 bits in length, in steps
1525	  of 8 bits.
1526
1527	  This module provides Serpent cipher algorithm that processes eight
1528	  blocks parallel using SSE2 instruction set.
1529
1530	  See also:
1531	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1532
1533config CRYPTO_SERPENT_SSE2_586
1534	tristate "Serpent cipher algorithm (i586/SSE2)"
1535	depends on X86 && !64BIT
1536	select CRYPTO_SKCIPHER
1537	select CRYPTO_GLUE_HELPER_X86
1538	select CRYPTO_SERPENT
1539	select CRYPTO_SIMD
 
1540	help
1541	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1542
1543	  Keys are allowed to be from 0 to 256 bits in length, in steps
1544	  of 8 bits.
1545
1546	  This module provides Serpent cipher algorithm that processes four
1547	  blocks parallel using SSE2 instruction set.
1548
1549	  See also:
1550	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1551
1552config CRYPTO_SERPENT_AVX_X86_64
1553	tristate "Serpent cipher algorithm (x86_64/AVX)"
1554	depends on X86 && 64BIT
1555	select CRYPTO_SKCIPHER
1556	select CRYPTO_GLUE_HELPER_X86
1557	select CRYPTO_SERPENT
1558	select CRYPTO_SIMD
1559	select CRYPTO_XTS
 
1560	help
1561	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1562
1563	  Keys are allowed to be from 0 to 256 bits in length, in steps
1564	  of 8 bits.
1565
1566	  This module provides the Serpent cipher algorithm that processes
1567	  eight blocks parallel using the AVX instruction set.
1568
1569	  See also:
1570	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1571
1572config CRYPTO_SERPENT_AVX2_X86_64
1573	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1574	depends on X86 && 64BIT
1575	select CRYPTO_SERPENT_AVX_X86_64
1576	help
1577	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1578
1579	  Keys are allowed to be from 0 to 256 bits in length, in steps
1580	  of 8 bits.
1581
1582	  This module provides Serpent cipher algorithm that processes 16
1583	  blocks parallel using AVX2 instruction set.
1584
1585	  See also:
1586	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1587
1588config CRYPTO_SM4
1589	tristate "SM4 cipher algorithm"
1590	select CRYPTO_ALGAPI
1591	help
1592	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1593
1594	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1595	  Organization of State Commercial Administration of China (OSCCA)
1596	  as an authorized cryptographic algorithms for the use within China.
1597
1598	  SMS4 was originally created for use in protecting wireless
1599	  networks, and is mandated in the Chinese National Standard for
1600	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1601	  (GB.15629.11-2003).
1602
1603	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1604	  standardized through TC 260 of the Standardization Administration
1605	  of the People's Republic of China (SAC).
1606
1607	  The input, output, and key of SMS4 are each 128 bits.
1608
1609	  See also: <https://eprint.iacr.org/2008/329.pdf>
1610
1611	  If unsure, say N.
1612
1613config CRYPTO_TEA
1614	tristate "TEA, XTEA and XETA cipher algorithms"
 
1615	select CRYPTO_ALGAPI
1616	help
1617	  TEA cipher algorithm.
1618
1619	  Tiny Encryption Algorithm is a simple cipher that uses
1620	  many rounds for security.  It is very fast and uses
1621	  little memory.
1622
1623	  Xtendend Tiny Encryption Algorithm is a modification to
1624	  the TEA algorithm to address a potential key weakness
1625	  in the TEA algorithm.
1626
1627	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1628	  of the XTEA algorithm for compatibility purposes.
1629
1630config CRYPTO_TWOFISH
1631	tristate "Twofish cipher algorithm"
1632	select CRYPTO_ALGAPI
1633	select CRYPTO_TWOFISH_COMMON
1634	help
1635	  Twofish cipher algorithm.
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_COMMON
1646	tristate
1647	help
1648	  Common parts of the Twofish cipher algorithm shared by the
1649	  generic c and the assembler implementations.
1650
1651config CRYPTO_TWOFISH_586
1652	tristate "Twofish cipher algorithms (i586)"
1653	depends on (X86 || UML_X86) && !64BIT
1654	select CRYPTO_ALGAPI
1655	select CRYPTO_TWOFISH_COMMON
 
1656	help
1657	  Twofish cipher algorithm.
1658
1659	  Twofish was submitted as an AES (Advanced Encryption Standard)
1660	  candidate cipher by researchers at CounterPane Systems.  It is a
1661	  16 round block cipher supporting key sizes of 128, 192, and 256
1662	  bits.
1663
1664	  See also:
1665	  <https://www.schneier.com/twofish.html>
1666
1667config CRYPTO_TWOFISH_X86_64
1668	tristate "Twofish cipher algorithm (x86_64)"
1669	depends on (X86 || UML_X86) && 64BIT
1670	select CRYPTO_ALGAPI
1671	select CRYPTO_TWOFISH_COMMON
 
1672	help
1673	  Twofish cipher algorithm (x86_64).
1674
1675	  Twofish was submitted as an AES (Advanced Encryption Standard)
1676	  candidate cipher by researchers at CounterPane Systems.  It is a
1677	  16 round block cipher supporting key sizes of 128, 192, and 256
1678	  bits.
1679
1680	  See also:
1681	  <https://www.schneier.com/twofish.html>
1682
1683config CRYPTO_TWOFISH_X86_64_3WAY
1684	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1685	depends on X86 && 64BIT
1686	select CRYPTO_SKCIPHER
1687	select CRYPTO_TWOFISH_COMMON
1688	select CRYPTO_TWOFISH_X86_64
1689	select CRYPTO_GLUE_HELPER_X86
1690	help
1691	  Twofish cipher algorithm (x86_64, 3-way parallel).
1692
1693	  Twofish was submitted as an AES (Advanced Encryption Standard)
1694	  candidate cipher by researchers at CounterPane Systems.  It is a
1695	  16 round block cipher supporting key sizes of 128, 192, and 256
1696	  bits.
1697
1698	  This module provides Twofish cipher algorithm that processes three
1699	  blocks parallel, utilizing resources of out-of-order CPUs better.
1700
1701	  See also:
1702	  <https://www.schneier.com/twofish.html>
1703
1704config CRYPTO_TWOFISH_AVX_X86_64
1705	tristate "Twofish cipher algorithm (x86_64/AVX)"
1706	depends on X86 && 64BIT
1707	select CRYPTO_SKCIPHER
1708	select CRYPTO_GLUE_HELPER_X86
1709	select CRYPTO_SIMD
1710	select CRYPTO_TWOFISH_COMMON
1711	select CRYPTO_TWOFISH_X86_64
1712	select CRYPTO_TWOFISH_X86_64_3WAY
 
1713	help
1714	  Twofish cipher algorithm (x86_64/AVX).
1715
1716	  Twofish was submitted as an AES (Advanced Encryption Standard)
1717	  candidate cipher by researchers at CounterPane Systems.  It is a
1718	  16 round block cipher supporting key sizes of 128, 192, and 256
1719	  bits.
1720
1721	  This module provides the Twofish cipher algorithm that processes
1722	  eight blocks parallel using the AVX Instruction Set.
1723
1724	  See also:
1725	  <https://www.schneier.com/twofish.html>
1726
1727comment "Compression"
1728
1729config CRYPTO_DEFLATE
1730	tristate "Deflate compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select ZLIB_INFLATE
1734	select ZLIB_DEFLATE
1735	help
1736	  This is the Deflate algorithm (RFC1951), specified for use in
1737	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1738
1739	  You will most probably want this if using IPSec.
1740
1741config CRYPTO_LZO
1742	tristate "LZO compression algorithm"
1743	select CRYPTO_ALGAPI
1744	select CRYPTO_ACOMP2
1745	select LZO_COMPRESS
1746	select LZO_DECOMPRESS
1747	help
1748	  This is the LZO algorithm.
1749
1750config CRYPTO_842
1751	tristate "842 compression algorithm"
1752	select CRYPTO_ALGAPI
1753	select CRYPTO_ACOMP2
1754	select 842_COMPRESS
1755	select 842_DECOMPRESS
1756	help
1757	  This is the 842 algorithm.
1758
1759config CRYPTO_LZ4
1760	tristate "LZ4 compression algorithm"
1761	select CRYPTO_ALGAPI
1762	select CRYPTO_ACOMP2
1763	select LZ4_COMPRESS
1764	select LZ4_DECOMPRESS
1765	help
1766	  This is the LZ4 algorithm.
1767
1768config CRYPTO_LZ4HC
1769	tristate "LZ4HC compression algorithm"
1770	select CRYPTO_ALGAPI
1771	select CRYPTO_ACOMP2
1772	select LZ4HC_COMPRESS
1773	select LZ4_DECOMPRESS
1774	help
1775	  This is the LZ4 high compression mode algorithm.
1776
1777config CRYPTO_ZSTD
1778	tristate "Zstd compression algorithm"
1779	select CRYPTO_ALGAPI
1780	select CRYPTO_ACOMP2
1781	select ZSTD_COMPRESS
1782	select ZSTD_DECOMPRESS
1783	help
1784	  This is the zstd algorithm.
1785
1786comment "Random Number Generation"
1787
1788config CRYPTO_ANSI_CPRNG
1789	tristate "Pseudo Random Number Generation for Cryptographic modules"
1790	select CRYPTO_AES
1791	select CRYPTO_RNG
1792	help
1793	  This option enables the generic pseudo random number generator
1794	  for cryptographic modules.  Uses the Algorithm specified in
1795	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1796	  CRYPTO_FIPS is selected
1797
1798menuconfig CRYPTO_DRBG_MENU
1799	tristate "NIST SP800-90A DRBG"
1800	help
1801	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1802	  more of the DRBG types must be selected.
1803
1804if CRYPTO_DRBG_MENU
1805
1806config CRYPTO_DRBG_HMAC
1807	bool
1808	default y
1809	select CRYPTO_HMAC
1810	select CRYPTO_SHA256
1811
1812config CRYPTO_DRBG_HASH
1813	bool "Enable Hash DRBG"
1814	select CRYPTO_SHA256
1815	help
1816	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1817
1818config CRYPTO_DRBG_CTR
1819	bool "Enable CTR DRBG"
1820	select CRYPTO_AES
1821	select CRYPTO_CTR
1822	help
1823	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1824
1825config CRYPTO_DRBG
1826	tristate
1827	default CRYPTO_DRBG_MENU
1828	select CRYPTO_RNG
1829	select CRYPTO_JITTERENTROPY
1830
1831endif	# if CRYPTO_DRBG_MENU
1832
1833config CRYPTO_JITTERENTROPY
1834	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1835	select CRYPTO_RNG
1836	help
1837	  The Jitterentropy RNG is a noise that is intended
1838	  to provide seed to another RNG. The RNG does not
1839	  perform any cryptographic whitening of the generated
1840	  random numbers. This Jitterentropy RNG registers with
1841	  the kernel crypto API and can be used by any caller.
1842
1843config CRYPTO_USER_API
1844	tristate
1845
1846config CRYPTO_USER_API_HASH
1847	tristate "User-space interface for hash algorithms"
1848	depends on NET
1849	select CRYPTO_HASH
1850	select CRYPTO_USER_API
1851	help
1852	  This option enables the user-spaces interface for hash
1853	  algorithms.
1854
1855config CRYPTO_USER_API_SKCIPHER
1856	tristate "User-space interface for symmetric key cipher algorithms"
1857	depends on NET
1858	select CRYPTO_SKCIPHER
1859	select CRYPTO_USER_API
1860	help
1861	  This option enables the user-spaces interface for symmetric
1862	  key cipher algorithms.
1863
1864config CRYPTO_USER_API_RNG
1865	tristate "User-space interface for random number generator algorithms"
1866	depends on NET
1867	select CRYPTO_RNG
1868	select CRYPTO_USER_API
1869	help
1870	  This option enables the user-spaces interface for random
1871	  number generator algorithms.
1872
 
 
 
 
 
 
 
 
 
1873config CRYPTO_USER_API_AEAD
1874	tristate "User-space interface for AEAD cipher algorithms"
1875	depends on NET
1876	select CRYPTO_AEAD
1877	select CRYPTO_SKCIPHER
1878	select CRYPTO_NULL
1879	select CRYPTO_USER_API
1880	help
1881	  This option enables the user-spaces interface for AEAD
1882	  cipher algorithms.
 
 
 
 
 
 
 
 
 
1883
1884config CRYPTO_STATS
1885	bool "Crypto usage statistics for User-space"
1886	depends on CRYPTO_USER
1887	help
1888	  This option enables the gathering of crypto stats.
1889	  This will collect:
1890	  - encrypt/decrypt size and numbers of symmeric operations
1891	  - compress/decompress size and numbers of compress operations
1892	  - size and numbers of hash operations
1893	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1894	  - generate/seed numbers for rng operations
1895
1896config CRYPTO_HASH_INFO
1897	bool
1898
1899source "lib/crypto/Kconfig"
1900source "drivers/crypto/Kconfig"
1901source "crypto/asymmetric_keys/Kconfig"
1902source "certs/Kconfig"
1903
1904endif	# if CRYPTO
v5.14.15
   1# SPDX-License-Identifier: GPL-2.0
   2#
   3# Generic algorithms support
   4#
   5config XOR_BLOCKS
   6	tristate
   7
   8#
   9# async_tx api: hardware offloaded memory transfer/transform support
  10#
  11source "crypto/async_tx/Kconfig"
  12
  13#
  14# Cryptographic API Configuration
  15#
  16menuconfig CRYPTO
  17	tristate "Cryptographic API"
  18	help
  19	  This option provides the core Cryptographic API.
  20
  21if CRYPTO
  22
  23comment "Crypto core or helper"
  24
  25config CRYPTO_FIPS
  26	bool "FIPS 200 compliance"
  27	depends on (CRYPTO_ANSI_CPRNG || CRYPTO_DRBG) && !CRYPTO_MANAGER_DISABLE_TESTS
  28	depends on (MODULE_SIG || !MODULES)
  29	help
  30	  This option enables the fips boot option which is
  31	  required if you want the system to operate in a FIPS 200
  32	  certification.  You should say no unless you know what
  33	  this is.
  34
  35config CRYPTO_ALGAPI
  36	tristate
  37	select CRYPTO_ALGAPI2
  38	help
  39	  This option provides the API for cryptographic algorithms.
  40
  41config CRYPTO_ALGAPI2
  42	tristate
  43
  44config CRYPTO_AEAD
  45	tristate
  46	select CRYPTO_AEAD2
  47	select CRYPTO_ALGAPI
  48
  49config CRYPTO_AEAD2
  50	tristate
  51	select CRYPTO_ALGAPI2
  52	select CRYPTO_NULL2
  53	select CRYPTO_RNG2
  54
  55config CRYPTO_SKCIPHER
  56	tristate
  57	select CRYPTO_SKCIPHER2
  58	select CRYPTO_ALGAPI
  59
  60config CRYPTO_SKCIPHER2
  61	tristate
  62	select CRYPTO_ALGAPI2
  63	select CRYPTO_RNG2
  64
  65config CRYPTO_HASH
  66	tristate
  67	select CRYPTO_HASH2
  68	select CRYPTO_ALGAPI
  69
  70config CRYPTO_HASH2
  71	tristate
  72	select CRYPTO_ALGAPI2
  73
  74config CRYPTO_RNG
  75	tristate
  76	select CRYPTO_RNG2
  77	select CRYPTO_ALGAPI
  78
  79config CRYPTO_RNG2
  80	tristate
  81	select CRYPTO_ALGAPI2
  82
  83config CRYPTO_RNG_DEFAULT
  84	tristate
  85	select CRYPTO_DRBG_MENU
  86
  87config CRYPTO_AKCIPHER2
  88	tristate
  89	select CRYPTO_ALGAPI2
  90
  91config CRYPTO_AKCIPHER
  92	tristate
  93	select CRYPTO_AKCIPHER2
  94	select CRYPTO_ALGAPI
  95
  96config CRYPTO_KPP2
  97	tristate
  98	select CRYPTO_ALGAPI2
  99
 100config CRYPTO_KPP
 101	tristate
 102	select CRYPTO_ALGAPI
 103	select CRYPTO_KPP2
 104
 105config CRYPTO_ACOMP2
 106	tristate
 107	select CRYPTO_ALGAPI2
 108	select SGL_ALLOC
 109
 110config CRYPTO_ACOMP
 111	tristate
 112	select CRYPTO_ALGAPI
 113	select CRYPTO_ACOMP2
 114
 115config CRYPTO_MANAGER
 116	tristate "Cryptographic algorithm manager"
 117	select CRYPTO_MANAGER2
 118	help
 119	  Create default cryptographic template instantiations such as
 120	  cbc(aes).
 121
 122config CRYPTO_MANAGER2
 123	def_tristate CRYPTO_MANAGER || (CRYPTO_MANAGER!=n && CRYPTO_ALGAPI=y)
 124	select CRYPTO_AEAD2
 125	select CRYPTO_HASH2
 126	select CRYPTO_SKCIPHER2
 127	select CRYPTO_AKCIPHER2
 128	select CRYPTO_KPP2
 129	select CRYPTO_ACOMP2
 130
 131config CRYPTO_USER
 132	tristate "Userspace cryptographic algorithm configuration"
 133	depends on NET
 134	select CRYPTO_MANAGER
 135	help
 136	  Userspace configuration for cryptographic instantiations such as
 137	  cbc(aes).
 138
 139config CRYPTO_MANAGER_DISABLE_TESTS
 140	bool "Disable run-time self tests"
 141	default y
 142	help
 143	  Disable run-time self tests that normally take place at
 144	  algorithm registration.
 145
 146config CRYPTO_MANAGER_EXTRA_TESTS
 147	bool "Enable extra run-time crypto self tests"
 148	depends on DEBUG_KERNEL && !CRYPTO_MANAGER_DISABLE_TESTS && CRYPTO_MANAGER
 149	help
 150	  Enable extra run-time self tests of registered crypto algorithms,
 151	  including randomized fuzz tests.
 152
 153	  This is intended for developer use only, as these tests take much
 154	  longer to run than the normal self tests.
 155
 156config CRYPTO_GF128MUL
 157	tristate
 158
 159config CRYPTO_NULL
 160	tristate "Null algorithms"
 161	select CRYPTO_NULL2
 162	help
 163	  These are 'Null' algorithms, used by IPsec, which do nothing.
 164
 165config CRYPTO_NULL2
 166	tristate
 167	select CRYPTO_ALGAPI2
 168	select CRYPTO_SKCIPHER2
 169	select CRYPTO_HASH2
 170
 171config CRYPTO_PCRYPT
 172	tristate "Parallel crypto engine"
 173	depends on SMP
 174	select PADATA
 175	select CRYPTO_MANAGER
 176	select CRYPTO_AEAD
 177	help
 178	  This converts an arbitrary crypto algorithm into a parallel
 179	  algorithm that executes in kernel threads.
 180
 181config CRYPTO_CRYPTD
 182	tristate "Software async crypto daemon"
 183	select CRYPTO_SKCIPHER
 184	select CRYPTO_HASH
 185	select CRYPTO_MANAGER
 186	help
 187	  This is a generic software asynchronous crypto daemon that
 188	  converts an arbitrary synchronous software crypto algorithm
 189	  into an asynchronous algorithm that executes in a kernel thread.
 190
 191config CRYPTO_AUTHENC
 192	tristate "Authenc support"
 193	select CRYPTO_AEAD
 194	select CRYPTO_SKCIPHER
 195	select CRYPTO_MANAGER
 196	select CRYPTO_HASH
 197	select CRYPTO_NULL
 198	help
 199	  Authenc: Combined mode wrapper for IPsec.
 200	  This is required for IPSec.
 201
 202config CRYPTO_TEST
 203	tristate "Testing module"
 204	depends on m || EXPERT
 205	select CRYPTO_MANAGER
 206	help
 207	  Quick & dirty crypto test module.
 208
 209config CRYPTO_SIMD
 210	tristate
 211	select CRYPTO_CRYPTD
 212
 
 
 
 
 
 213config CRYPTO_ENGINE
 214	tristate
 215
 216comment "Public-key cryptography"
 217
 218config CRYPTO_RSA
 219	tristate "RSA algorithm"
 220	select CRYPTO_AKCIPHER
 221	select CRYPTO_MANAGER
 222	select MPILIB
 223	select ASN1
 224	help
 225	  Generic implementation of the RSA public key algorithm.
 226
 227config CRYPTO_DH
 228	tristate "Diffie-Hellman algorithm"
 229	select CRYPTO_KPP
 230	select MPILIB
 231	help
 232	  Generic implementation of the Diffie-Hellman algorithm.
 233
 234config CRYPTO_ECC
 235	tristate
 236
 237config CRYPTO_ECDH
 238	tristate "ECDH algorithm"
 239	select CRYPTO_ECC
 240	select CRYPTO_KPP
 241	select CRYPTO_RNG_DEFAULT
 242	help
 243	  Generic implementation of the ECDH algorithm
 244
 245config CRYPTO_ECDSA
 246	tristate "ECDSA (NIST P192, P256 etc.) algorithm"
 247	select CRYPTO_ECC
 248	select CRYPTO_AKCIPHER
 249	select ASN1
 250	help
 251	  Elliptic Curve Digital Signature Algorithm (NIST P192, P256 etc.)
 252	  is A NIST cryptographic standard algorithm. Only signature verification
 253	  is implemented.
 254
 255config CRYPTO_ECRDSA
 256	tristate "EC-RDSA (GOST 34.10) algorithm"
 257	select CRYPTO_ECC
 258	select CRYPTO_AKCIPHER
 259	select CRYPTO_STREEBOG
 260	select OID_REGISTRY
 261	select ASN1
 262	help
 263	  Elliptic Curve Russian Digital Signature Algorithm (GOST R 34.10-2012,
 264	  RFC 7091, ISO/IEC 14888-3:2018) is one of the Russian cryptographic
 265	  standard algorithms (called GOST algorithms). Only signature verification
 266	  is implemented.
 267
 268config CRYPTO_SM2
 269	tristate "SM2 algorithm"
 270	select CRYPTO_SM3
 271	select CRYPTO_AKCIPHER
 272	select CRYPTO_MANAGER
 273	select MPILIB
 274	select ASN1
 275	help
 276	  Generic implementation of the SM2 public key algorithm. It was
 277	  published by State Encryption Management Bureau, China.
 278	  as specified by OSCCA GM/T 0003.1-2012 -- 0003.5-2012.
 279
 280	  References:
 281	  https://tools.ietf.org/html/draft-shen-sm2-ecdsa-02
 282	  http://www.oscca.gov.cn/sca/xxgk/2010-12/17/content_1002386.shtml
 283	  http://www.gmbz.org.cn/main/bzlb.html
 284
 285config CRYPTO_CURVE25519
 286	tristate "Curve25519 algorithm"
 287	select CRYPTO_KPP
 288	select CRYPTO_LIB_CURVE25519_GENERIC
 289
 290config CRYPTO_CURVE25519_X86
 291	tristate "x86_64 accelerated Curve25519 scalar multiplication library"
 292	depends on X86 && 64BIT
 293	select CRYPTO_LIB_CURVE25519_GENERIC
 294	select CRYPTO_ARCH_HAVE_LIB_CURVE25519
 295
 296comment "Authenticated Encryption with Associated Data"
 297
 298config CRYPTO_CCM
 299	tristate "CCM support"
 300	select CRYPTO_CTR
 301	select CRYPTO_HASH
 302	select CRYPTO_AEAD
 303	select CRYPTO_MANAGER
 304	help
 305	  Support for Counter with CBC MAC. Required for IPsec.
 306
 307config CRYPTO_GCM
 308	tristate "GCM/GMAC support"
 309	select CRYPTO_CTR
 310	select CRYPTO_AEAD
 311	select CRYPTO_GHASH
 312	select CRYPTO_NULL
 313	select CRYPTO_MANAGER
 314	help
 315	  Support for Galois/Counter Mode (GCM) and Galois Message
 316	  Authentication Code (GMAC). Required for IPSec.
 317
 318config CRYPTO_CHACHA20POLY1305
 319	tristate "ChaCha20-Poly1305 AEAD support"
 320	select CRYPTO_CHACHA20
 321	select CRYPTO_POLY1305
 322	select CRYPTO_AEAD
 323	select CRYPTO_MANAGER
 324	help
 325	  ChaCha20-Poly1305 AEAD support, RFC7539.
 326
 327	  Support for the AEAD wrapper using the ChaCha20 stream cipher combined
 328	  with the Poly1305 authenticator. It is defined in RFC7539 for use in
 329	  IETF protocols.
 330
 331config CRYPTO_AEGIS128
 332	tristate "AEGIS-128 AEAD algorithm"
 333	select CRYPTO_AEAD
 334	select CRYPTO_AES  # for AES S-box tables
 335	help
 336	 Support for the AEGIS-128 dedicated AEAD algorithm.
 337
 338config CRYPTO_AEGIS128_SIMD
 339	bool "Support SIMD acceleration for AEGIS-128"
 340	depends on CRYPTO_AEGIS128 && ((ARM || ARM64) && KERNEL_MODE_NEON)
 341	default y
 342
 343config CRYPTO_AEGIS128_AESNI_SSE2
 344	tristate "AEGIS-128 AEAD algorithm (x86_64 AESNI+SSE2 implementation)"
 345	depends on X86 && 64BIT
 346	select CRYPTO_AEAD
 347	select CRYPTO_SIMD
 348	help
 349	 AESNI+SSE2 implementation of the AEGIS-128 dedicated AEAD algorithm.
 350
 351config CRYPTO_SEQIV
 352	tristate "Sequence Number IV Generator"
 353	select CRYPTO_AEAD
 354	select CRYPTO_SKCIPHER
 355	select CRYPTO_NULL
 356	select CRYPTO_RNG_DEFAULT
 357	select CRYPTO_MANAGER
 358	help
 359	  This IV generator generates an IV based on a sequence number by
 360	  xoring it with a salt.  This algorithm is mainly useful for CTR
 361
 362config CRYPTO_ECHAINIV
 363	tristate "Encrypted Chain IV Generator"
 364	select CRYPTO_AEAD
 365	select CRYPTO_NULL
 366	select CRYPTO_RNG_DEFAULT
 367	select CRYPTO_MANAGER
 368	help
 369	  This IV generator generates an IV based on the encryption of
 370	  a sequence number xored with a salt.  This is the default
 371	  algorithm for CBC.
 372
 373comment "Block modes"
 374
 375config CRYPTO_CBC
 376	tristate "CBC support"
 377	select CRYPTO_SKCIPHER
 378	select CRYPTO_MANAGER
 379	help
 380	  CBC: Cipher Block Chaining mode
 381	  This block cipher algorithm is required for IPSec.
 382
 383config CRYPTO_CFB
 384	tristate "CFB support"
 385	select CRYPTO_SKCIPHER
 386	select CRYPTO_MANAGER
 387	help
 388	  CFB: Cipher FeedBack mode
 389	  This block cipher algorithm is required for TPM2 Cryptography.
 390
 391config CRYPTO_CTR
 392	tristate "CTR support"
 393	select CRYPTO_SKCIPHER
 394	select CRYPTO_MANAGER
 395	help
 396	  CTR: Counter mode
 397	  This block cipher algorithm is required for IPSec.
 398
 399config CRYPTO_CTS
 400	tristate "CTS support"
 401	select CRYPTO_SKCIPHER
 402	select CRYPTO_MANAGER
 403	help
 404	  CTS: Cipher Text Stealing
 405	  This is the Cipher Text Stealing mode as described by
 406	  Section 8 of rfc2040 and referenced by rfc3962
 407	  (rfc3962 includes errata information in its Appendix A) or
 408	  CBC-CS3 as defined by NIST in Sp800-38A addendum from Oct 2010.
 409	  This mode is required for Kerberos gss mechanism support
 410	  for AES encryption.
 411
 412	  See: https://csrc.nist.gov/publications/detail/sp/800-38a/addendum/final
 413
 414config CRYPTO_ECB
 415	tristate "ECB support"
 416	select CRYPTO_SKCIPHER
 417	select CRYPTO_MANAGER
 418	help
 419	  ECB: Electronic CodeBook mode
 420	  This is the simplest block cipher algorithm.  It simply encrypts
 421	  the input block by block.
 422
 423config CRYPTO_LRW
 424	tristate "LRW support"
 425	select CRYPTO_SKCIPHER
 426	select CRYPTO_MANAGER
 427	select CRYPTO_GF128MUL
 428	help
 429	  LRW: Liskov Rivest Wagner, a tweakable, non malleable, non movable
 430	  narrow block cipher mode for dm-crypt.  Use it with cipher
 431	  specification string aes-lrw-benbi, the key must be 256, 320 or 384.
 432	  The first 128, 192 or 256 bits in the key are used for AES and the
 433	  rest is used to tie each cipher block to its logical position.
 434
 435config CRYPTO_OFB
 436	tristate "OFB support"
 437	select CRYPTO_SKCIPHER
 438	select CRYPTO_MANAGER
 439	help
 440	  OFB: the Output Feedback mode makes a block cipher into a synchronous
 441	  stream cipher. It generates keystream blocks, which are then XORed
 442	  with the plaintext blocks to get the ciphertext. Flipping a bit in the
 443	  ciphertext produces a flipped bit in the plaintext at the same
 444	  location. This property allows many error correcting codes to function
 445	  normally even when applied before encryption.
 446
 447config CRYPTO_PCBC
 448	tristate "PCBC support"
 449	select CRYPTO_SKCIPHER
 450	select CRYPTO_MANAGER
 451	help
 452	  PCBC: Propagating Cipher Block Chaining mode
 453	  This block cipher algorithm is required for RxRPC.
 454
 455config CRYPTO_XTS
 456	tristate "XTS support"
 457	select CRYPTO_SKCIPHER
 458	select CRYPTO_MANAGER
 459	select CRYPTO_ECB
 460	help
 461	  XTS: IEEE1619/D16 narrow block cipher use with aes-xts-plain,
 462	  key size 256, 384 or 512 bits. This implementation currently
 463	  can't handle a sectorsize which is not a multiple of 16 bytes.
 464
 465config CRYPTO_KEYWRAP
 466	tristate "Key wrapping support"
 467	select CRYPTO_SKCIPHER
 468	select CRYPTO_MANAGER
 469	help
 470	  Support for key wrapping (NIST SP800-38F / RFC3394) without
 471	  padding.
 472
 473config CRYPTO_NHPOLY1305
 474	tristate
 475	select CRYPTO_HASH
 476	select CRYPTO_LIB_POLY1305_GENERIC
 477
 478config CRYPTO_NHPOLY1305_SSE2
 479	tristate "NHPoly1305 hash function (x86_64 SSE2 implementation)"
 480	depends on X86 && 64BIT
 481	select CRYPTO_NHPOLY1305
 482	help
 483	  SSE2 optimized implementation of the hash function used by the
 484	  Adiantum encryption mode.
 485
 486config CRYPTO_NHPOLY1305_AVX2
 487	tristate "NHPoly1305 hash function (x86_64 AVX2 implementation)"
 488	depends on X86 && 64BIT
 489	select CRYPTO_NHPOLY1305
 490	help
 491	  AVX2 optimized implementation of the hash function used by the
 492	  Adiantum encryption mode.
 493
 494config CRYPTO_ADIANTUM
 495	tristate "Adiantum support"
 496	select CRYPTO_CHACHA20
 497	select CRYPTO_LIB_POLY1305_GENERIC
 498	select CRYPTO_NHPOLY1305
 499	select CRYPTO_MANAGER
 500	help
 501	  Adiantum is a tweakable, length-preserving encryption mode
 502	  designed for fast and secure disk encryption, especially on
 503	  CPUs without dedicated crypto instructions.  It encrypts
 504	  each sector using the XChaCha12 stream cipher, two passes of
 505	  an ε-almost-∆-universal hash function, and an invocation of
 506	  the AES-256 block cipher on a single 16-byte block.  On CPUs
 507	  without AES instructions, Adiantum is much faster than
 508	  AES-XTS.
 509
 510	  Adiantum's security is provably reducible to that of its
 511	  underlying stream and block ciphers, subject to a security
 512	  bound.  Unlike XTS, Adiantum is a true wide-block encryption
 513	  mode, so it actually provides an even stronger notion of
 514	  security than XTS, subject to the security bound.
 515
 516	  If unsure, say N.
 517
 518config CRYPTO_ESSIV
 519	tristate "ESSIV support for block encryption"
 520	select CRYPTO_AUTHENC
 521	help
 522	  Encrypted salt-sector initialization vector (ESSIV) is an IV
 523	  generation method that is used in some cases by fscrypt and/or
 524	  dm-crypt. It uses the hash of the block encryption key as the
 525	  symmetric key for a block encryption pass applied to the input
 526	  IV, making low entropy IV sources more suitable for block
 527	  encryption.
 528
 529	  This driver implements a crypto API template that can be
 530	  instantiated either as an skcipher or as an AEAD (depending on the
 531	  type of the first template argument), and which defers encryption
 532	  and decryption requests to the encapsulated cipher after applying
 533	  ESSIV to the input IV. Note that in the AEAD case, it is assumed
 534	  that the keys are presented in the same format used by the authenc
 535	  template, and that the IV appears at the end of the authenticated
 536	  associated data (AAD) region (which is how dm-crypt uses it.)
 537
 538	  Note that the use of ESSIV is not recommended for new deployments,
 539	  and so this only needs to be enabled when interoperability with
 540	  existing encrypted volumes of filesystems is required, or when
 541	  building for a particular system that requires it (e.g., when
 542	  the SoC in question has accelerated CBC but not XTS, making CBC
 543	  combined with ESSIV the only feasible mode for h/w accelerated
 544	  block encryption)
 545
 546comment "Hash modes"
 547
 548config CRYPTO_CMAC
 549	tristate "CMAC support"
 550	select CRYPTO_HASH
 551	select CRYPTO_MANAGER
 552	help
 553	  Cipher-based Message Authentication Code (CMAC) specified by
 554	  The National Institute of Standards and Technology (NIST).
 555
 556	  https://tools.ietf.org/html/rfc4493
 557	  http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
 558
 559config CRYPTO_HMAC
 560	tristate "HMAC support"
 561	select CRYPTO_HASH
 562	select CRYPTO_MANAGER
 563	help
 564	  HMAC: Keyed-Hashing for Message Authentication (RFC2104).
 565	  This is required for IPSec.
 566
 567config CRYPTO_XCBC
 568	tristate "XCBC support"
 569	select CRYPTO_HASH
 570	select CRYPTO_MANAGER
 571	help
 572	  XCBC: Keyed-Hashing with encryption algorithm
 573		https://www.ietf.org/rfc/rfc3566.txt
 574		http://csrc.nist.gov/encryption/modes/proposedmodes/
 575		 xcbc-mac/xcbc-mac-spec.pdf
 576
 577config CRYPTO_VMAC
 578	tristate "VMAC support"
 579	select CRYPTO_HASH
 580	select CRYPTO_MANAGER
 581	help
 582	  VMAC is a message authentication algorithm designed for
 583	  very high speed on 64-bit architectures.
 584
 585	  See also:
 586	  <https://fastcrypto.org/vmac>
 587
 588comment "Digest"
 589
 590config CRYPTO_CRC32C
 591	tristate "CRC32c CRC algorithm"
 592	select CRYPTO_HASH
 593	select CRC32
 594	help
 595	  Castagnoli, et al Cyclic Redundancy-Check Algorithm.  Used
 596	  by iSCSI for header and data digests and by others.
 597	  See Castagnoli93.  Module will be crc32c.
 598
 599config CRYPTO_CRC32C_INTEL
 600	tristate "CRC32c INTEL hardware acceleration"
 601	depends on X86
 602	select CRYPTO_HASH
 603	help
 604	  In Intel processor with SSE4.2 supported, the processor will
 605	  support CRC32C implementation using hardware accelerated CRC32
 606	  instruction. This option will create 'crc32c-intel' module,
 607	  which will enable any routine to use the CRC32 instruction to
 608	  gain performance compared with software implementation.
 609	  Module will be crc32c-intel.
 610
 611config CRYPTO_CRC32C_VPMSUM
 612	tristate "CRC32c CRC algorithm (powerpc64)"
 613	depends on PPC64 && ALTIVEC
 614	select CRYPTO_HASH
 615	select CRC32
 616	help
 617	  CRC32c algorithm implemented using vector polynomial multiply-sum
 618	  (vpmsum) instructions, introduced in POWER8. Enable on POWER8
 619	  and newer processors for improved performance.
 620
 621
 622config CRYPTO_CRC32C_SPARC64
 623	tristate "CRC32c CRC algorithm (SPARC64)"
 624	depends on SPARC64
 625	select CRYPTO_HASH
 626	select CRC32
 627	help
 628	  CRC32c CRC algorithm implemented using sparc64 crypto instructions,
 629	  when available.
 630
 631config CRYPTO_CRC32
 632	tristate "CRC32 CRC algorithm"
 633	select CRYPTO_HASH
 634	select CRC32
 635	help
 636	  CRC-32-IEEE 802.3 cyclic redundancy-check algorithm.
 637	  Shash crypto api wrappers to crc32_le function.
 638
 639config CRYPTO_CRC32_PCLMUL
 640	tristate "CRC32 PCLMULQDQ hardware acceleration"
 641	depends on X86
 642	select CRYPTO_HASH
 643	select CRC32
 644	help
 645	  From Intel Westmere and AMD Bulldozer processor with SSE4.2
 646	  and PCLMULQDQ supported, the processor will support
 647	  CRC32 PCLMULQDQ implementation using hardware accelerated PCLMULQDQ
 648	  instruction. This option will create 'crc32-pclmul' module,
 649	  which will enable any routine to use the CRC-32-IEEE 802.3 checksum
 650	  and gain better performance as compared with the table implementation.
 651
 652config CRYPTO_CRC32_MIPS
 653	tristate "CRC32c and CRC32 CRC algorithm (MIPS)"
 654	depends on MIPS_CRC_SUPPORT
 655	select CRYPTO_HASH
 656	help
 657	  CRC32c and CRC32 CRC algorithms implemented using mips crypto
 658	  instructions, when available.
 659
 660
 661config CRYPTO_XXHASH
 662	tristate "xxHash hash algorithm"
 663	select CRYPTO_HASH
 664	select XXHASH
 665	help
 666	  xxHash non-cryptographic hash algorithm. Extremely fast, working at
 667	  speeds close to RAM limits.
 668
 669config CRYPTO_BLAKE2B
 670	tristate "BLAKE2b digest algorithm"
 671	select CRYPTO_HASH
 672	help
 673	  Implementation of cryptographic hash function BLAKE2b (or just BLAKE2),
 674	  optimized for 64bit platforms and can produce digests of any size
 675	  between 1 to 64.  The keyed hash is also implemented.
 676
 677	  This module provides the following algorithms:
 678
 679	  - blake2b-160
 680	  - blake2b-256
 681	  - blake2b-384
 682	  - blake2b-512
 683
 684	  See https://blake2.net for further information.
 685
 686config CRYPTO_BLAKE2S
 687	tristate "BLAKE2s digest algorithm"
 688	select CRYPTO_LIB_BLAKE2S_GENERIC
 689	select CRYPTO_HASH
 690	help
 691	  Implementation of cryptographic hash function BLAKE2s
 692	  optimized for 8-32bit platforms and can produce digests of any size
 693	  between 1 to 32.  The keyed hash is also implemented.
 694
 695	  This module provides the following algorithms:
 696
 697	  - blake2s-128
 698	  - blake2s-160
 699	  - blake2s-224
 700	  - blake2s-256
 701
 702	  See https://blake2.net for further information.
 703
 704config CRYPTO_BLAKE2S_X86
 705	tristate "BLAKE2s digest algorithm (x86 accelerated version)"
 706	depends on X86 && 64BIT
 707	select CRYPTO_LIB_BLAKE2S_GENERIC
 708	select CRYPTO_ARCH_HAVE_LIB_BLAKE2S
 709
 710config CRYPTO_CRCT10DIF
 711	tristate "CRCT10DIF algorithm"
 712	select CRYPTO_HASH
 713	help
 714	  CRC T10 Data Integrity Field computation is being cast as
 715	  a crypto transform.  This allows for faster crc t10 diff
 716	  transforms to be used if they are available.
 717
 718config CRYPTO_CRCT10DIF_PCLMUL
 719	tristate "CRCT10DIF PCLMULQDQ hardware acceleration"
 720	depends on X86 && 64BIT && CRC_T10DIF
 721	select CRYPTO_HASH
 722	help
 723	  For x86_64 processors with SSE4.2 and PCLMULQDQ supported,
 724	  CRC T10 DIF PCLMULQDQ computation can be hardware
 725	  accelerated PCLMULQDQ instruction. This option will create
 726	  'crct10dif-pclmul' module, which is faster when computing the
 727	  crct10dif checksum as compared with the generic table implementation.
 728
 729config CRYPTO_CRCT10DIF_VPMSUM
 730	tristate "CRC32T10DIF powerpc64 hardware acceleration"
 731	depends on PPC64 && ALTIVEC && CRC_T10DIF
 732	select CRYPTO_HASH
 733	help
 734	  CRC10T10DIF algorithm implemented using vector polynomial
 735	  multiply-sum (vpmsum) instructions, introduced in POWER8. Enable on
 736	  POWER8 and newer processors for improved performance.
 737
 738config CRYPTO_VPMSUM_TESTER
 739	tristate "Powerpc64 vpmsum hardware acceleration tester"
 740	depends on CRYPTO_CRCT10DIF_VPMSUM && CRYPTO_CRC32C_VPMSUM
 741	help
 742	  Stress test for CRC32c and CRC-T10DIF algorithms implemented with
 743	  POWER8 vpmsum instructions.
 744	  Unless you are testing these algorithms, you don't need this.
 745
 746config CRYPTO_GHASH
 747	tristate "GHASH hash function"
 748	select CRYPTO_GF128MUL
 749	select CRYPTO_HASH
 750	help
 751	  GHASH is the hash function used in GCM (Galois/Counter Mode).
 752	  It is not a general-purpose cryptographic hash function.
 753
 754config CRYPTO_POLY1305
 755	tristate "Poly1305 authenticator algorithm"
 756	select CRYPTO_HASH
 757	select CRYPTO_LIB_POLY1305_GENERIC
 758	help
 759	  Poly1305 authenticator algorithm, RFC7539.
 760
 761	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 762	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 763	  in IETF protocols. This is the portable C implementation of Poly1305.
 764
 765config CRYPTO_POLY1305_X86_64
 766	tristate "Poly1305 authenticator algorithm (x86_64/SSE2/AVX2)"
 767	depends on X86 && 64BIT
 768	select CRYPTO_LIB_POLY1305_GENERIC
 769	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 770	help
 771	  Poly1305 authenticator algorithm, RFC7539.
 772
 773	  Poly1305 is an authenticator algorithm designed by Daniel J. Bernstein.
 774	  It is used for the ChaCha20-Poly1305 AEAD, specified in RFC7539 for use
 775	  in IETF protocols. This is the x86_64 assembler implementation using SIMD
 776	  instructions.
 777
 778config CRYPTO_POLY1305_MIPS
 779	tristate "Poly1305 authenticator algorithm (MIPS optimized)"
 780	depends on MIPS
 781	select CRYPTO_ARCH_HAVE_LIB_POLY1305
 782
 783config CRYPTO_MD4
 784	tristate "MD4 digest algorithm"
 785	select CRYPTO_HASH
 786	help
 787	  MD4 message digest algorithm (RFC1320).
 788
 789config CRYPTO_MD5
 790	tristate "MD5 digest algorithm"
 791	select CRYPTO_HASH
 792	help
 793	  MD5 message digest algorithm (RFC1321).
 794
 795config CRYPTO_MD5_OCTEON
 796	tristate "MD5 digest algorithm (OCTEON)"
 797	depends on CPU_CAVIUM_OCTEON
 798	select CRYPTO_MD5
 799	select CRYPTO_HASH
 800	help
 801	  MD5 message digest algorithm (RFC1321) implemented
 802	  using OCTEON crypto instructions, when available.
 803
 804config CRYPTO_MD5_PPC
 805	tristate "MD5 digest algorithm (PPC)"
 806	depends on PPC
 807	select CRYPTO_HASH
 808	help
 809	  MD5 message digest algorithm (RFC1321) implemented
 810	  in PPC assembler.
 811
 812config CRYPTO_MD5_SPARC64
 813	tristate "MD5 digest algorithm (SPARC64)"
 814	depends on SPARC64
 815	select CRYPTO_MD5
 816	select CRYPTO_HASH
 817	help
 818	  MD5 message digest algorithm (RFC1321) implemented
 819	  using sparc64 crypto instructions, when available.
 820
 821config CRYPTO_MICHAEL_MIC
 822	tristate "Michael MIC keyed digest algorithm"
 823	select CRYPTO_HASH
 824	help
 825	  Michael MIC is used for message integrity protection in TKIP
 826	  (IEEE 802.11i). This algorithm is required for TKIP, but it
 827	  should not be used for other purposes because of the weakness
 828	  of the algorithm.
 829
 
 
 
 
 
 
 
 
 
 
 
 
 
 830config CRYPTO_RMD160
 831	tristate "RIPEMD-160 digest algorithm"
 832	select CRYPTO_HASH
 833	help
 834	  RIPEMD-160 (ISO/IEC 10118-3:2004).
 835
 836	  RIPEMD-160 is a 160-bit cryptographic hash function. It is intended
 837	  to be used as a secure replacement for the 128-bit hash functions
 838	  MD4, MD5 and it's predecessor RIPEMD
 839	  (not to be confused with RIPEMD-128).
 840
 841	  It's speed is comparable to SHA1 and there are no known attacks
 842	  against RIPEMD-160.
 843
 844	  Developed by Hans Dobbertin, Antoon Bosselaers and Bart Preneel.
 845	  See <https://homes.esat.kuleuven.be/~bosselae/ripemd160.html>
 846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 847config CRYPTO_SHA1
 848	tristate "SHA1 digest algorithm"
 849	select CRYPTO_HASH
 850	help
 851	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 852
 853config CRYPTO_SHA1_SSSE3
 854	tristate "SHA1 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 855	depends on X86 && 64BIT
 856	select CRYPTO_SHA1
 857	select CRYPTO_HASH
 858	help
 859	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 860	  using Supplemental SSE3 (SSSE3) instructions or Advanced Vector
 861	  Extensions (AVX/AVX2) or SHA-NI(SHA Extensions New Instructions),
 862	  when available.
 863
 864config CRYPTO_SHA256_SSSE3
 865	tristate "SHA256 digest algorithm (SSSE3/AVX/AVX2/SHA-NI)"
 866	depends on X86 && 64BIT
 867	select CRYPTO_SHA256
 868	select CRYPTO_HASH
 869	help
 870	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 871	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 872	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 873	  version 2 (AVX2) instructions, or SHA-NI (SHA Extensions New
 874	  Instructions) when available.
 875
 876config CRYPTO_SHA512_SSSE3
 877	tristate "SHA512 digest algorithm (SSSE3/AVX/AVX2)"
 878	depends on X86 && 64BIT
 879	select CRYPTO_SHA512
 880	select CRYPTO_HASH
 881	help
 882	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 883	  using Supplemental SSE3 (SSSE3) instructions, or Advanced Vector
 884	  Extensions version 1 (AVX1), or Advanced Vector Extensions
 885	  version 2 (AVX2) instructions, when available.
 886
 887config CRYPTO_SHA1_OCTEON
 888	tristate "SHA1 digest algorithm (OCTEON)"
 889	depends on CPU_CAVIUM_OCTEON
 890	select CRYPTO_SHA1
 891	select CRYPTO_HASH
 892	help
 893	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 894	  using OCTEON crypto instructions, when available.
 895
 896config CRYPTO_SHA1_SPARC64
 897	tristate "SHA1 digest algorithm (SPARC64)"
 898	depends on SPARC64
 899	select CRYPTO_SHA1
 900	select CRYPTO_HASH
 901	help
 902	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2) implemented
 903	  using sparc64 crypto instructions, when available.
 904
 905config CRYPTO_SHA1_PPC
 906	tristate "SHA1 digest algorithm (powerpc)"
 907	depends on PPC
 908	help
 909	  This is the powerpc hardware accelerated implementation of the
 910	  SHA-1 secure hash standard (FIPS 180-1/DFIPS 180-2).
 911
 912config CRYPTO_SHA1_PPC_SPE
 913	tristate "SHA1 digest algorithm (PPC SPE)"
 914	depends on PPC && SPE
 915	help
 916	  SHA-1 secure hash standard (DFIPS 180-4) implemented
 917	  using powerpc SPE SIMD instruction set.
 918
 919config CRYPTO_SHA256
 920	tristate "SHA224 and SHA256 digest algorithm"
 921	select CRYPTO_HASH
 922	select CRYPTO_LIB_SHA256
 923	help
 924	  SHA256 secure hash standard (DFIPS 180-2).
 925
 926	  This version of SHA implements a 256 bit hash with 128 bits of
 927	  security against collision attacks.
 928
 929	  This code also includes SHA-224, a 224 bit hash with 112 bits
 930	  of security against collision attacks.
 931
 932config CRYPTO_SHA256_PPC_SPE
 933	tristate "SHA224 and SHA256 digest algorithm (PPC SPE)"
 934	depends on PPC && SPE
 935	select CRYPTO_SHA256
 936	select CRYPTO_HASH
 937	help
 938	  SHA224 and SHA256 secure hash standard (DFIPS 180-2)
 939	  implemented using powerpc SPE SIMD instruction set.
 940
 941config CRYPTO_SHA256_OCTEON
 942	tristate "SHA224 and SHA256 digest algorithm (OCTEON)"
 943	depends on CPU_CAVIUM_OCTEON
 944	select CRYPTO_SHA256
 945	select CRYPTO_HASH
 946	help
 947	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 948	  using OCTEON crypto instructions, when available.
 949
 950config CRYPTO_SHA256_SPARC64
 951	tristate "SHA224 and SHA256 digest algorithm (SPARC64)"
 952	depends on SPARC64
 953	select CRYPTO_SHA256
 954	select CRYPTO_HASH
 955	help
 956	  SHA-256 secure hash standard (DFIPS 180-2) implemented
 957	  using sparc64 crypto instructions, when available.
 958
 959config CRYPTO_SHA512
 960	tristate "SHA384 and SHA512 digest algorithms"
 961	select CRYPTO_HASH
 962	help
 963	  SHA512 secure hash standard (DFIPS 180-2).
 964
 965	  This version of SHA implements a 512 bit hash with 256 bits of
 966	  security against collision attacks.
 967
 968	  This code also includes SHA-384, a 384 bit hash with 192 bits
 969	  of security against collision attacks.
 970
 971config CRYPTO_SHA512_OCTEON
 972	tristate "SHA384 and SHA512 digest algorithms (OCTEON)"
 973	depends on CPU_CAVIUM_OCTEON
 974	select CRYPTO_SHA512
 975	select CRYPTO_HASH
 976	help
 977	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 978	  using OCTEON crypto instructions, when available.
 979
 980config CRYPTO_SHA512_SPARC64
 981	tristate "SHA384 and SHA512 digest algorithm (SPARC64)"
 982	depends on SPARC64
 983	select CRYPTO_SHA512
 984	select CRYPTO_HASH
 985	help
 986	  SHA-512 secure hash standard (DFIPS 180-2) implemented
 987	  using sparc64 crypto instructions, when available.
 988
 989config CRYPTO_SHA3
 990	tristate "SHA3 digest algorithm"
 991	select CRYPTO_HASH
 992	help
 993	  SHA-3 secure hash standard (DFIPS 202). It's based on
 994	  cryptographic sponge function family called Keccak.
 995
 996	  References:
 997	  http://keccak.noekeon.org/
 998
 999config CRYPTO_SM3
1000	tristate "SM3 digest algorithm"
1001	select CRYPTO_HASH
1002	help
1003	  SM3 secure hash function as defined by OSCCA GM/T 0004-2012 SM3).
1004	  It is part of the Chinese Commercial Cryptography suite.
1005
1006	  References:
1007	  http://www.oscca.gov.cn/UpFile/20101222141857786.pdf
1008	  https://datatracker.ietf.org/doc/html/draft-shen-sm3-hash
1009
1010config CRYPTO_STREEBOG
1011	tristate "Streebog Hash Function"
1012	select CRYPTO_HASH
1013	help
1014	  Streebog Hash Function (GOST R 34.11-2012, RFC 6986) is one of the Russian
1015	  cryptographic standard algorithms (called GOST algorithms).
1016	  This setting enables two hash algorithms with 256 and 512 bits output.
1017
1018	  References:
1019	  https://tc26.ru/upload/iblock/fed/feddbb4d26b685903faa2ba11aea43f6.pdf
1020	  https://tools.ietf.org/html/rfc6986
1021
 
 
 
 
 
 
 
 
 
 
 
 
 
1022config CRYPTO_WP512
1023	tristate "Whirlpool digest algorithms"
1024	select CRYPTO_HASH
1025	help
1026	  Whirlpool hash algorithm 512, 384 and 256-bit hashes
1027
1028	  Whirlpool-512 is part of the NESSIE cryptographic primitives.
1029	  Whirlpool will be part of the ISO/IEC 10118-3:2003(E) standard
1030
1031	  See also:
1032	  <http://www.larc.usp.br/~pbarreto/WhirlpoolPage.html>
1033
1034config CRYPTO_GHASH_CLMUL_NI_INTEL
1035	tristate "GHASH hash function (CLMUL-NI accelerated)"
1036	depends on X86 && 64BIT
1037	select CRYPTO_CRYPTD
1038	help
1039	  This is the x86_64 CLMUL-NI accelerated implementation of
1040	  GHASH, the hash function used in GCM (Galois/Counter mode).
1041
1042comment "Ciphers"
1043
1044config CRYPTO_AES
1045	tristate "AES cipher algorithms"
1046	select CRYPTO_ALGAPI
1047	select CRYPTO_LIB_AES
1048	help
1049	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1050	  algorithm.
1051
1052	  Rijndael appears to be consistently a very good performer in
1053	  both hardware and software across a wide range of computing
1054	  environments regardless of its use in feedback or non-feedback
1055	  modes. Its key setup time is excellent, and its key agility is
1056	  good. Rijndael's very low memory requirements make it very well
1057	  suited for restricted-space environments, in which it also
1058	  demonstrates excellent performance. Rijndael's operations are
1059	  among the easiest to defend against power and timing attacks.
1060
1061	  The AES specifies three key sizes: 128, 192 and 256 bits
1062
1063	  See <http://csrc.nist.gov/CryptoToolkit/aes/> for more information.
1064
1065config CRYPTO_AES_TI
1066	tristate "Fixed time AES cipher"
1067	select CRYPTO_ALGAPI
1068	select CRYPTO_LIB_AES
1069	help
1070	  This is a generic implementation of AES that attempts to eliminate
1071	  data dependent latencies as much as possible without affecting
1072	  performance too much. It is intended for use by the generic CCM
1073	  and GCM drivers, and other CTR or CMAC/XCBC based modes that rely
1074	  solely on encryption (although decryption is supported as well, but
1075	  with a more dramatic performance hit)
1076
1077	  Instead of using 16 lookup tables of 1 KB each, (8 for encryption and
1078	  8 for decryption), this implementation only uses just two S-boxes of
1079	  256 bytes each, and attempts to eliminate data dependent latencies by
1080	  prefetching the entire table into the cache at the start of each
1081	  block. Interrupts are also disabled to avoid races where cachelines
1082	  are evicted when the CPU is interrupted to do something else.
1083
1084config CRYPTO_AES_NI_INTEL
1085	tristate "AES cipher algorithms (AES-NI)"
1086	depends on X86
1087	select CRYPTO_AEAD
1088	select CRYPTO_LIB_AES
1089	select CRYPTO_ALGAPI
1090	select CRYPTO_SKCIPHER
 
1091	select CRYPTO_SIMD
1092	help
1093	  Use Intel AES-NI instructions for AES algorithm.
1094
1095	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1096	  algorithm.
1097
1098	  Rijndael appears to be consistently a very good performer in
1099	  both hardware and software across a wide range of computing
1100	  environments regardless of its use in feedback or non-feedback
1101	  modes. Its key setup time is excellent, and its key agility is
1102	  good. Rijndael's very low memory requirements make it very well
1103	  suited for restricted-space environments, in which it also
1104	  demonstrates excellent performance. Rijndael's operations are
1105	  among the easiest to defend against power and timing attacks.
1106
1107	  The AES specifies three key sizes: 128, 192 and 256 bits
1108
1109	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1110
1111	  In addition to AES cipher algorithm support, the acceleration
1112	  for some popular block cipher mode is supported too, including
1113	  ECB, CBC, LRW, XTS. The 64 bit version has additional
1114	  acceleration for CTR.
1115
1116config CRYPTO_AES_SPARC64
1117	tristate "AES cipher algorithms (SPARC64)"
1118	depends on SPARC64
1119	select CRYPTO_SKCIPHER
1120	help
1121	  Use SPARC64 crypto opcodes for AES algorithm.
1122
1123	  AES cipher algorithms (FIPS-197). AES uses the Rijndael
1124	  algorithm.
1125
1126	  Rijndael appears to be consistently a very good performer in
1127	  both hardware and software across a wide range of computing
1128	  environments regardless of its use in feedback or non-feedback
1129	  modes. Its key setup time is excellent, and its key agility is
1130	  good. Rijndael's very low memory requirements make it very well
1131	  suited for restricted-space environments, in which it also
1132	  demonstrates excellent performance. Rijndael's operations are
1133	  among the easiest to defend against power and timing attacks.
1134
1135	  The AES specifies three key sizes: 128, 192 and 256 bits
1136
1137	  See <http://csrc.nist.gov/encryption/aes/> for more information.
1138
1139	  In addition to AES cipher algorithm support, the acceleration
1140	  for some popular block cipher mode is supported too, including
1141	  ECB and CBC.
1142
1143config CRYPTO_AES_PPC_SPE
1144	tristate "AES cipher algorithms (PPC SPE)"
1145	depends on PPC && SPE
1146	select CRYPTO_SKCIPHER
1147	help
1148	  AES cipher algorithms (FIPS-197). Additionally the acceleration
1149	  for popular block cipher modes ECB, CBC, CTR and XTS is supported.
1150	  This module should only be used for low power (router) devices
1151	  without hardware AES acceleration (e.g. caam crypto). It reduces the
1152	  size of the AES tables from 16KB to 8KB + 256 bytes and mitigates
1153	  timining attacks. Nevertheless it might be not as secure as other
1154	  architecture specific assembler implementations that work on 1KB
1155	  tables or 256 bytes S-boxes.
1156
1157config CRYPTO_ANUBIS
1158	tristate "Anubis cipher algorithm"
1159	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1160	select CRYPTO_ALGAPI
1161	help
1162	  Anubis cipher algorithm.
1163
1164	  Anubis is a variable key length cipher which can use keys from
1165	  128 bits to 320 bits in length.  It was evaluated as a entrant
1166	  in the NESSIE competition.
1167
1168	  See also:
1169	  <https://www.cosic.esat.kuleuven.be/nessie/reports/>
1170	  <http://www.larc.usp.br/~pbarreto/AnubisPage.html>
1171
1172config CRYPTO_ARC4
1173	tristate "ARC4 cipher algorithm"
1174	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1175	select CRYPTO_SKCIPHER
1176	select CRYPTO_LIB_ARC4
1177	help
1178	  ARC4 cipher algorithm.
1179
1180	  ARC4 is a stream cipher using keys ranging from 8 bits to 2048
1181	  bits in length.  This algorithm is required for driver-based
1182	  WEP, but it should not be for other purposes because of the
1183	  weakness of the algorithm.
1184
1185config CRYPTO_BLOWFISH
1186	tristate "Blowfish cipher algorithm"
1187	select CRYPTO_ALGAPI
1188	select CRYPTO_BLOWFISH_COMMON
1189	help
1190	  Blowfish cipher algorithm, by Bruce Schneier.
1191
1192	  This is a variable key length cipher which can use keys from 32
1193	  bits to 448 bits in length.  It's fast, simple and specifically
1194	  designed for use on "large microprocessors".
1195
1196	  See also:
1197	  <https://www.schneier.com/blowfish.html>
1198
1199config CRYPTO_BLOWFISH_COMMON
1200	tristate
1201	help
1202	  Common parts of the Blowfish cipher algorithm shared by the
1203	  generic c and the assembler implementations.
1204
1205	  See also:
1206	  <https://www.schneier.com/blowfish.html>
1207
1208config CRYPTO_BLOWFISH_X86_64
1209	tristate "Blowfish cipher algorithm (x86_64)"
1210	depends on X86 && 64BIT
1211	select CRYPTO_SKCIPHER
1212	select CRYPTO_BLOWFISH_COMMON
1213	imply CRYPTO_CTR
1214	help
1215	  Blowfish cipher algorithm (x86_64), by Bruce Schneier.
1216
1217	  This is a variable key length cipher which can use keys from 32
1218	  bits to 448 bits in length.  It's fast, simple and specifically
1219	  designed for use on "large microprocessors".
1220
1221	  See also:
1222	  <https://www.schneier.com/blowfish.html>
1223
1224config CRYPTO_CAMELLIA
1225	tristate "Camellia cipher algorithms"
 
1226	select CRYPTO_ALGAPI
1227	help
1228	  Camellia cipher algorithms module.
1229
1230	  Camellia is a symmetric key block cipher developed jointly
1231	  at NTT and Mitsubishi Electric Corporation.
1232
1233	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1234
1235	  See also:
1236	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1237
1238config CRYPTO_CAMELLIA_X86_64
1239	tristate "Camellia cipher algorithm (x86_64)"
1240	depends on X86 && 64BIT
 
1241	select CRYPTO_SKCIPHER
1242	imply CRYPTO_CTR
1243	help
1244	  Camellia cipher algorithm module (x86_64).
1245
1246	  Camellia is a symmetric key block cipher developed jointly
1247	  at NTT and Mitsubishi Electric Corporation.
1248
1249	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1250
1251	  See also:
1252	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1253
1254config CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1255	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX)"
1256	depends on X86 && 64BIT
 
1257	select CRYPTO_SKCIPHER
1258	select CRYPTO_CAMELLIA_X86_64
 
1259	select CRYPTO_SIMD
1260	imply CRYPTO_XTS
1261	help
1262	  Camellia cipher algorithm module (x86_64/AES-NI/AVX).
1263
1264	  Camellia is a symmetric key block cipher developed jointly
1265	  at NTT and Mitsubishi Electric Corporation.
1266
1267	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1268
1269	  See also:
1270	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1271
1272config CRYPTO_CAMELLIA_AESNI_AVX2_X86_64
1273	tristate "Camellia cipher algorithm (x86_64/AES-NI/AVX2)"
1274	depends on X86 && 64BIT
 
1275	select CRYPTO_CAMELLIA_AESNI_AVX_X86_64
1276	help
1277	  Camellia cipher algorithm module (x86_64/AES-NI/AVX2).
1278
1279	  Camellia is a symmetric key block cipher developed jointly
1280	  at NTT and Mitsubishi Electric Corporation.
1281
1282	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1283
1284	  See also:
1285	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1286
1287config CRYPTO_CAMELLIA_SPARC64
1288	tristate "Camellia cipher algorithm (SPARC64)"
1289	depends on SPARC64
 
1290	select CRYPTO_ALGAPI
1291	select CRYPTO_SKCIPHER
1292	help
1293	  Camellia cipher algorithm module (SPARC64).
1294
1295	  Camellia is a symmetric key block cipher developed jointly
1296	  at NTT and Mitsubishi Electric Corporation.
1297
1298	  The Camellia specifies three key sizes: 128, 192 and 256 bits.
1299
1300	  See also:
1301	  <https://info.isl.ntt.co.jp/crypt/eng/camellia/index_s.html>
1302
1303config CRYPTO_CAST_COMMON
1304	tristate
1305	help
1306	  Common parts of the CAST cipher algorithms shared by the
1307	  generic c and the assembler implementations.
1308
1309config CRYPTO_CAST5
1310	tristate "CAST5 (CAST-128) cipher algorithm"
1311	select CRYPTO_ALGAPI
1312	select CRYPTO_CAST_COMMON
1313	help
1314	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1315	  described in RFC2144.
1316
1317config CRYPTO_CAST5_AVX_X86_64
1318	tristate "CAST5 (CAST-128) cipher algorithm (x86_64/AVX)"
1319	depends on X86 && 64BIT
1320	select CRYPTO_SKCIPHER
1321	select CRYPTO_CAST5
1322	select CRYPTO_CAST_COMMON
1323	select CRYPTO_SIMD
1324	imply CRYPTO_CTR
1325	help
1326	  The CAST5 encryption algorithm (synonymous with CAST-128) is
1327	  described in RFC2144.
1328
1329	  This module provides the Cast5 cipher algorithm that processes
1330	  sixteen blocks parallel using the AVX instruction set.
1331
1332config CRYPTO_CAST6
1333	tristate "CAST6 (CAST-256) cipher algorithm"
1334	select CRYPTO_ALGAPI
1335	select CRYPTO_CAST_COMMON
1336	help
1337	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1338	  described in RFC2612.
1339
1340config CRYPTO_CAST6_AVX_X86_64
1341	tristate "CAST6 (CAST-256) cipher algorithm (x86_64/AVX)"
1342	depends on X86 && 64BIT
1343	select CRYPTO_SKCIPHER
1344	select CRYPTO_CAST6
1345	select CRYPTO_CAST_COMMON
 
1346	select CRYPTO_SIMD
1347	imply CRYPTO_XTS
1348	imply CRYPTO_CTR
1349	help
1350	  The CAST6 encryption algorithm (synonymous with CAST-256) is
1351	  described in RFC2612.
1352
1353	  This module provides the Cast6 cipher algorithm that processes
1354	  eight blocks parallel using the AVX instruction set.
1355
1356config CRYPTO_DES
1357	tristate "DES and Triple DES EDE cipher algorithms"
1358	select CRYPTO_ALGAPI
1359	select CRYPTO_LIB_DES
1360	help
1361	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3).
1362
1363config CRYPTO_DES_SPARC64
1364	tristate "DES and Triple DES EDE cipher algorithms (SPARC64)"
1365	depends on SPARC64
1366	select CRYPTO_ALGAPI
1367	select CRYPTO_LIB_DES
1368	select CRYPTO_SKCIPHER
1369	help
1370	  DES cipher algorithm (FIPS 46-2), and Triple DES EDE (FIPS 46-3),
1371	  optimized using SPARC64 crypto opcodes.
1372
1373config CRYPTO_DES3_EDE_X86_64
1374	tristate "Triple DES EDE cipher algorithm (x86-64)"
1375	depends on X86 && 64BIT
1376	select CRYPTO_SKCIPHER
1377	select CRYPTO_LIB_DES
1378	imply CRYPTO_CTR
1379	help
1380	  Triple DES EDE (FIPS 46-3) algorithm.
1381
1382	  This module provides implementation of the Triple DES EDE cipher
1383	  algorithm that is optimized for x86-64 processors. Two versions of
1384	  algorithm are provided; regular processing one input block and
1385	  one that processes three blocks parallel.
1386
1387config CRYPTO_FCRYPT
1388	tristate "FCrypt cipher algorithm"
1389	select CRYPTO_ALGAPI
1390	select CRYPTO_SKCIPHER
1391	help
1392	  FCrypt algorithm used by RxRPC.
1393
1394config CRYPTO_KHAZAD
1395	tristate "Khazad cipher algorithm"
1396	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1397	select CRYPTO_ALGAPI
1398	help
1399	  Khazad cipher algorithm.
1400
1401	  Khazad was a finalist in the initial NESSIE competition.  It is
1402	  an algorithm optimized for 64-bit processors with good performance
1403	  on 32-bit processors.  Khazad uses an 128 bit key size.
1404
1405	  See also:
1406	  <http://www.larc.usp.br/~pbarreto/KhazadPage.html>
1407
 
 
 
 
 
 
 
 
 
 
 
 
1408config CRYPTO_CHACHA20
1409	tristate "ChaCha stream cipher algorithms"
1410	select CRYPTO_LIB_CHACHA_GENERIC
1411	select CRYPTO_SKCIPHER
1412	help
1413	  The ChaCha20, XChaCha20, and XChaCha12 stream cipher algorithms.
1414
1415	  ChaCha20 is a 256-bit high-speed stream cipher designed by Daniel J.
1416	  Bernstein and further specified in RFC7539 for use in IETF protocols.
1417	  This is the portable C implementation of ChaCha20.  See also:
1418	  <https://cr.yp.to/chacha/chacha-20080128.pdf>
1419
1420	  XChaCha20 is the application of the XSalsa20 construction to ChaCha20
1421	  rather than to Salsa20.  XChaCha20 extends ChaCha20's nonce length
1422	  from 64 bits (or 96 bits using the RFC7539 convention) to 192 bits,
1423	  while provably retaining ChaCha20's security.  See also:
1424	  <https://cr.yp.to/snuffle/xsalsa-20081128.pdf>
1425
1426	  XChaCha12 is XChaCha20 reduced to 12 rounds, with correspondingly
1427	  reduced security margin but increased performance.  It can be needed
1428	  in some performance-sensitive scenarios.
1429
1430config CRYPTO_CHACHA20_X86_64
1431	tristate "ChaCha stream cipher algorithms (x86_64/SSSE3/AVX2/AVX-512VL)"
1432	depends on X86 && 64BIT
1433	select CRYPTO_SKCIPHER
1434	select CRYPTO_LIB_CHACHA_GENERIC
1435	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1436	help
1437	  SSSE3, AVX2, and AVX-512VL optimized implementations of the ChaCha20,
1438	  XChaCha20, and XChaCha12 stream ciphers.
1439
1440config CRYPTO_CHACHA_MIPS
1441	tristate "ChaCha stream cipher algorithms (MIPS 32r2 optimized)"
1442	depends on CPU_MIPS32_R2
1443	select CRYPTO_SKCIPHER
1444	select CRYPTO_ARCH_HAVE_LIB_CHACHA
1445
1446config CRYPTO_SEED
1447	tristate "SEED cipher algorithm"
1448	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1449	select CRYPTO_ALGAPI
1450	help
1451	  SEED cipher algorithm (RFC4269).
1452
1453	  SEED is a 128-bit symmetric key block cipher that has been
1454	  developed by KISA (Korea Information Security Agency) as a
1455	  national standard encryption algorithm of the Republic of Korea.
1456	  It is a 16 round block cipher with the key size of 128 bit.
1457
1458	  See also:
1459	  <http://www.kisa.or.kr/kisa/seed/jsp/seed_eng.jsp>
1460
1461config CRYPTO_SERPENT
1462	tristate "Serpent cipher algorithm"
1463	select CRYPTO_ALGAPI
1464	help
1465	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1466
1467	  Keys are allowed to be from 0 to 256 bits in length, in steps
1468	  of 8 bits.
 
1469
1470	  See also:
1471	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1472
1473config CRYPTO_SERPENT_SSE2_X86_64
1474	tristate "Serpent cipher algorithm (x86_64/SSE2)"
1475	depends on X86 && 64BIT
1476	select CRYPTO_SKCIPHER
 
1477	select CRYPTO_SERPENT
1478	select CRYPTO_SIMD
1479	imply CRYPTO_CTR
1480	help
1481	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1482
1483	  Keys are allowed to be from 0 to 256 bits in length, in steps
1484	  of 8 bits.
1485
1486	  This module provides Serpent cipher algorithm that processes eight
1487	  blocks parallel using SSE2 instruction set.
1488
1489	  See also:
1490	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1491
1492config CRYPTO_SERPENT_SSE2_586
1493	tristate "Serpent cipher algorithm (i586/SSE2)"
1494	depends on X86 && !64BIT
1495	select CRYPTO_SKCIPHER
 
1496	select CRYPTO_SERPENT
1497	select CRYPTO_SIMD
1498	imply CRYPTO_CTR
1499	help
1500	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1501
1502	  Keys are allowed to be from 0 to 256 bits in length, in steps
1503	  of 8 bits.
1504
1505	  This module provides Serpent cipher algorithm that processes four
1506	  blocks parallel using SSE2 instruction set.
1507
1508	  See also:
1509	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1510
1511config CRYPTO_SERPENT_AVX_X86_64
1512	tristate "Serpent cipher algorithm (x86_64/AVX)"
1513	depends on X86 && 64BIT
1514	select CRYPTO_SKCIPHER
 
1515	select CRYPTO_SERPENT
1516	select CRYPTO_SIMD
1517	imply CRYPTO_XTS
1518	imply CRYPTO_CTR
1519	help
1520	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1521
1522	  Keys are allowed to be from 0 to 256 bits in length, in steps
1523	  of 8 bits.
1524
1525	  This module provides the Serpent cipher algorithm that processes
1526	  eight blocks parallel using the AVX instruction set.
1527
1528	  See also:
1529	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1530
1531config CRYPTO_SERPENT_AVX2_X86_64
1532	tristate "Serpent cipher algorithm (x86_64/AVX2)"
1533	depends on X86 && 64BIT
1534	select CRYPTO_SERPENT_AVX_X86_64
1535	help
1536	  Serpent cipher algorithm, by Anderson, Biham & Knudsen.
1537
1538	  Keys are allowed to be from 0 to 256 bits in length, in steps
1539	  of 8 bits.
1540
1541	  This module provides Serpent cipher algorithm that processes 16
1542	  blocks parallel using AVX2 instruction set.
1543
1544	  See also:
1545	  <https://www.cl.cam.ac.uk/~rja14/serpent.html>
1546
1547config CRYPTO_SM4
1548	tristate "SM4 cipher algorithm"
1549	select CRYPTO_ALGAPI
1550	help
1551	  SM4 cipher algorithms (OSCCA GB/T 32907-2016).
1552
1553	  SM4 (GBT.32907-2016) is a cryptographic standard issued by the
1554	  Organization of State Commercial Administration of China (OSCCA)
1555	  as an authorized cryptographic algorithms for the use within China.
1556
1557	  SMS4 was originally created for use in protecting wireless
1558	  networks, and is mandated in the Chinese National Standard for
1559	  Wireless LAN WAPI (Wired Authentication and Privacy Infrastructure)
1560	  (GB.15629.11-2003).
1561
1562	  The latest SM4 standard (GBT.32907-2016) was proposed by OSCCA and
1563	  standardized through TC 260 of the Standardization Administration
1564	  of the People's Republic of China (SAC).
1565
1566	  The input, output, and key of SMS4 are each 128 bits.
1567
1568	  See also: <https://eprint.iacr.org/2008/329.pdf>
1569
1570	  If unsure, say N.
1571
1572config CRYPTO_TEA
1573	tristate "TEA, XTEA and XETA cipher algorithms"
1574	depends on CRYPTO_USER_API_ENABLE_OBSOLETE
1575	select CRYPTO_ALGAPI
1576	help
1577	  TEA cipher algorithm.
1578
1579	  Tiny Encryption Algorithm is a simple cipher that uses
1580	  many rounds for security.  It is very fast and uses
1581	  little memory.
1582
1583	  Xtendend Tiny Encryption Algorithm is a modification to
1584	  the TEA algorithm to address a potential key weakness
1585	  in the TEA algorithm.
1586
1587	  Xtendend Encryption Tiny Algorithm is a mis-implementation
1588	  of the XTEA algorithm for compatibility purposes.
1589
1590config CRYPTO_TWOFISH
1591	tristate "Twofish cipher algorithm"
1592	select CRYPTO_ALGAPI
1593	select CRYPTO_TWOFISH_COMMON
1594	help
1595	  Twofish cipher algorithm.
1596
1597	  Twofish was submitted as an AES (Advanced Encryption Standard)
1598	  candidate cipher by researchers at CounterPane Systems.  It is a
1599	  16 round block cipher supporting key sizes of 128, 192, and 256
1600	  bits.
1601
1602	  See also:
1603	  <https://www.schneier.com/twofish.html>
1604
1605config CRYPTO_TWOFISH_COMMON
1606	tristate
1607	help
1608	  Common parts of the Twofish cipher algorithm shared by the
1609	  generic c and the assembler implementations.
1610
1611config CRYPTO_TWOFISH_586
1612	tristate "Twofish cipher algorithms (i586)"
1613	depends on (X86 || UML_X86) && !64BIT
1614	select CRYPTO_ALGAPI
1615	select CRYPTO_TWOFISH_COMMON
1616	imply CRYPTO_CTR
1617	help
1618	  Twofish cipher algorithm.
1619
1620	  Twofish was submitted as an AES (Advanced Encryption Standard)
1621	  candidate cipher by researchers at CounterPane Systems.  It is a
1622	  16 round block cipher supporting key sizes of 128, 192, and 256
1623	  bits.
1624
1625	  See also:
1626	  <https://www.schneier.com/twofish.html>
1627
1628config CRYPTO_TWOFISH_X86_64
1629	tristate "Twofish cipher algorithm (x86_64)"
1630	depends on (X86 || UML_X86) && 64BIT
1631	select CRYPTO_ALGAPI
1632	select CRYPTO_TWOFISH_COMMON
1633	imply CRYPTO_CTR
1634	help
1635	  Twofish cipher algorithm (x86_64).
1636
1637	  Twofish was submitted as an AES (Advanced Encryption Standard)
1638	  candidate cipher by researchers at CounterPane Systems.  It is a
1639	  16 round block cipher supporting key sizes of 128, 192, and 256
1640	  bits.
1641
1642	  See also:
1643	  <https://www.schneier.com/twofish.html>
1644
1645config CRYPTO_TWOFISH_X86_64_3WAY
1646	tristate "Twofish cipher algorithm (x86_64, 3-way parallel)"
1647	depends on X86 && 64BIT
1648	select CRYPTO_SKCIPHER
1649	select CRYPTO_TWOFISH_COMMON
1650	select CRYPTO_TWOFISH_X86_64
 
1651	help
1652	  Twofish cipher algorithm (x86_64, 3-way parallel).
1653
1654	  Twofish was submitted as an AES (Advanced Encryption Standard)
1655	  candidate cipher by researchers at CounterPane Systems.  It is a
1656	  16 round block cipher supporting key sizes of 128, 192, and 256
1657	  bits.
1658
1659	  This module provides Twofish cipher algorithm that processes three
1660	  blocks parallel, utilizing resources of out-of-order CPUs better.
1661
1662	  See also:
1663	  <https://www.schneier.com/twofish.html>
1664
1665config CRYPTO_TWOFISH_AVX_X86_64
1666	tristate "Twofish cipher algorithm (x86_64/AVX)"
1667	depends on X86 && 64BIT
1668	select CRYPTO_SKCIPHER
 
1669	select CRYPTO_SIMD
1670	select CRYPTO_TWOFISH_COMMON
1671	select CRYPTO_TWOFISH_X86_64
1672	select CRYPTO_TWOFISH_X86_64_3WAY
1673	imply CRYPTO_XTS
1674	help
1675	  Twofish cipher algorithm (x86_64/AVX).
1676
1677	  Twofish was submitted as an AES (Advanced Encryption Standard)
1678	  candidate cipher by researchers at CounterPane Systems.  It is a
1679	  16 round block cipher supporting key sizes of 128, 192, and 256
1680	  bits.
1681
1682	  This module provides the Twofish cipher algorithm that processes
1683	  eight blocks parallel using the AVX Instruction Set.
1684
1685	  See also:
1686	  <https://www.schneier.com/twofish.html>
1687
1688comment "Compression"
1689
1690config CRYPTO_DEFLATE
1691	tristate "Deflate compression algorithm"
1692	select CRYPTO_ALGAPI
1693	select CRYPTO_ACOMP2
1694	select ZLIB_INFLATE
1695	select ZLIB_DEFLATE
1696	help
1697	  This is the Deflate algorithm (RFC1951), specified for use in
1698	  IPSec with the IPCOMP protocol (RFC3173, RFC2394).
1699
1700	  You will most probably want this if using IPSec.
1701
1702config CRYPTO_LZO
1703	tristate "LZO compression algorithm"
1704	select CRYPTO_ALGAPI
1705	select CRYPTO_ACOMP2
1706	select LZO_COMPRESS
1707	select LZO_DECOMPRESS
1708	help
1709	  This is the LZO algorithm.
1710
1711config CRYPTO_842
1712	tristate "842 compression algorithm"
1713	select CRYPTO_ALGAPI
1714	select CRYPTO_ACOMP2
1715	select 842_COMPRESS
1716	select 842_DECOMPRESS
1717	help
1718	  This is the 842 algorithm.
1719
1720config CRYPTO_LZ4
1721	tristate "LZ4 compression algorithm"
1722	select CRYPTO_ALGAPI
1723	select CRYPTO_ACOMP2
1724	select LZ4_COMPRESS
1725	select LZ4_DECOMPRESS
1726	help
1727	  This is the LZ4 algorithm.
1728
1729config CRYPTO_LZ4HC
1730	tristate "LZ4HC compression algorithm"
1731	select CRYPTO_ALGAPI
1732	select CRYPTO_ACOMP2
1733	select LZ4HC_COMPRESS
1734	select LZ4_DECOMPRESS
1735	help
1736	  This is the LZ4 high compression mode algorithm.
1737
1738config CRYPTO_ZSTD
1739	tristate "Zstd compression algorithm"
1740	select CRYPTO_ALGAPI
1741	select CRYPTO_ACOMP2
1742	select ZSTD_COMPRESS
1743	select ZSTD_DECOMPRESS
1744	help
1745	  This is the zstd algorithm.
1746
1747comment "Random Number Generation"
1748
1749config CRYPTO_ANSI_CPRNG
1750	tristate "Pseudo Random Number Generation for Cryptographic modules"
1751	select CRYPTO_AES
1752	select CRYPTO_RNG
1753	help
1754	  This option enables the generic pseudo random number generator
1755	  for cryptographic modules.  Uses the Algorithm specified in
1756	  ANSI X9.31 A.2.4. Note that this option must be enabled if
1757	  CRYPTO_FIPS is selected
1758
1759menuconfig CRYPTO_DRBG_MENU
1760	tristate "NIST SP800-90A DRBG"
1761	help
1762	  NIST SP800-90A compliant DRBG. In the following submenu, one or
1763	  more of the DRBG types must be selected.
1764
1765if CRYPTO_DRBG_MENU
1766
1767config CRYPTO_DRBG_HMAC
1768	bool
1769	default y
1770	select CRYPTO_HMAC
1771	select CRYPTO_SHA512
1772
1773config CRYPTO_DRBG_HASH
1774	bool "Enable Hash DRBG"
1775	select CRYPTO_SHA256
1776	help
1777	  Enable the Hash DRBG variant as defined in NIST SP800-90A.
1778
1779config CRYPTO_DRBG_CTR
1780	bool "Enable CTR DRBG"
1781	select CRYPTO_AES
1782	select CRYPTO_CTR
1783	help
1784	  Enable the CTR DRBG variant as defined in NIST SP800-90A.
1785
1786config CRYPTO_DRBG
1787	tristate
1788	default CRYPTO_DRBG_MENU
1789	select CRYPTO_RNG
1790	select CRYPTO_JITTERENTROPY
1791
1792endif	# if CRYPTO_DRBG_MENU
1793
1794config CRYPTO_JITTERENTROPY
1795	tristate "Jitterentropy Non-Deterministic Random Number Generator"
1796	select CRYPTO_RNG
1797	help
1798	  The Jitterentropy RNG is a noise that is intended
1799	  to provide seed to another RNG. The RNG does not
1800	  perform any cryptographic whitening of the generated
1801	  random numbers. This Jitterentropy RNG registers with
1802	  the kernel crypto API and can be used by any caller.
1803
1804config CRYPTO_USER_API
1805	tristate
1806
1807config CRYPTO_USER_API_HASH
1808	tristate "User-space interface for hash algorithms"
1809	depends on NET
1810	select CRYPTO_HASH
1811	select CRYPTO_USER_API
1812	help
1813	  This option enables the user-spaces interface for hash
1814	  algorithms.
1815
1816config CRYPTO_USER_API_SKCIPHER
1817	tristate "User-space interface for symmetric key cipher algorithms"
1818	depends on NET
1819	select CRYPTO_SKCIPHER
1820	select CRYPTO_USER_API
1821	help
1822	  This option enables the user-spaces interface for symmetric
1823	  key cipher algorithms.
1824
1825config CRYPTO_USER_API_RNG
1826	tristate "User-space interface for random number generator algorithms"
1827	depends on NET
1828	select CRYPTO_RNG
1829	select CRYPTO_USER_API
1830	help
1831	  This option enables the user-spaces interface for random
1832	  number generator algorithms.
1833
1834config CRYPTO_USER_API_RNG_CAVP
1835	bool "Enable CAVP testing of DRBG"
1836	depends on CRYPTO_USER_API_RNG && CRYPTO_DRBG
1837	help
1838	  This option enables extra API for CAVP testing via the user-space
1839	  interface: resetting of DRBG entropy, and providing Additional Data.
1840	  This should only be enabled for CAVP testing. You should say
1841	  no unless you know what this is.
1842
1843config CRYPTO_USER_API_AEAD
1844	tristate "User-space interface for AEAD cipher algorithms"
1845	depends on NET
1846	select CRYPTO_AEAD
1847	select CRYPTO_SKCIPHER
1848	select CRYPTO_NULL
1849	select CRYPTO_USER_API
1850	help
1851	  This option enables the user-spaces interface for AEAD
1852	  cipher algorithms.
1853
1854config CRYPTO_USER_API_ENABLE_OBSOLETE
1855	bool "Enable obsolete cryptographic algorithms for userspace"
1856	depends on CRYPTO_USER_API
1857	default y
1858	help
1859	  Allow obsolete cryptographic algorithms to be selected that have
1860	  already been phased out from internal use by the kernel, and are
1861	  only useful for userspace clients that still rely on them.
1862
1863config CRYPTO_STATS
1864	bool "Crypto usage statistics for User-space"
1865	depends on CRYPTO_USER
1866	help
1867	  This option enables the gathering of crypto stats.
1868	  This will collect:
1869	  - encrypt/decrypt size and numbers of symmeric operations
1870	  - compress/decompress size and numbers of compress operations
1871	  - size and numbers of hash operations
1872	  - encrypt/decrypt/sign/verify numbers for asymmetric operations
1873	  - generate/seed numbers for rng operations
1874
1875config CRYPTO_HASH_INFO
1876	bool
1877
1878source "lib/crypto/Kconfig"
1879source "drivers/crypto/Kconfig"
1880source "crypto/asymmetric_keys/Kconfig"
1881source "certs/Kconfig"
1882
1883endif	# if CRYPTO