Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/tracehook.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <linux/bpf.h>
89#include <linux/kernfs.h>
90#include <linux/stringhash.h> /* for hashlen_string() */
91#include <uapi/linux/mount.h>
92#include <linux/fsnotify.h>
93#include <linux/fanotify.h>
94
95#include "avc.h"
96#include "objsec.h"
97#include "netif.h"
98#include "netnode.h"
99#include "netport.h"
100#include "ibpkey.h"
101#include "xfrm.h"
102#include "netlabel.h"
103#include "audit.h"
104#include "avc_ss.h"
105
106struct selinux_state selinux_state;
107
108/* SECMARK reference count */
109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112static int selinux_enforcing_boot __initdata;
113
114static int __init enforcing_setup(char *str)
115{
116 unsigned long enforcing;
117 if (!kstrtoul(str, 0, &enforcing))
118 selinux_enforcing_boot = enforcing ? 1 : 0;
119 return 1;
120}
121__setup("enforcing=", enforcing_setup);
122#else
123#define selinux_enforcing_boot 1
124#endif
125
126int selinux_enabled_boot __initdata = 1;
127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128static int __init selinux_enabled_setup(char *str)
129{
130 unsigned long enabled;
131 if (!kstrtoul(str, 0, &enabled))
132 selinux_enabled_boot = enabled ? 1 : 0;
133 return 1;
134}
135__setup("selinux=", selinux_enabled_setup);
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot)) {
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 if (checkreqprot)
148 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
149 }
150 return 1;
151}
152__setup("checkreqprot=", checkreqprot_setup);
153
154/**
155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
156 *
157 * Description:
158 * This function checks the SECMARK reference counter to see if any SECMARK
159 * targets are currently configured, if the reference counter is greater than
160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
161 * enabled, false (0) if SECMARK is disabled. If the always_check_network
162 * policy capability is enabled, SECMARK is always considered enabled.
163 *
164 */
165static int selinux_secmark_enabled(void)
166{
167 return (selinux_policycap_alwaysnetwork() ||
168 atomic_read(&selinux_secmark_refcount));
169}
170
171/**
172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
173 *
174 * Description:
175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
176 * (1) if any are enabled or false (0) if neither are enabled. If the
177 * always_check_network policy capability is enabled, peer labeling
178 * is always considered enabled.
179 *
180 */
181static int selinux_peerlbl_enabled(void)
182{
183 return (selinux_policycap_alwaysnetwork() ||
184 netlbl_enabled() || selinux_xfrm_enabled());
185}
186
187static int selinux_netcache_avc_callback(u32 event)
188{
189 if (event == AVC_CALLBACK_RESET) {
190 sel_netif_flush();
191 sel_netnode_flush();
192 sel_netport_flush();
193 synchronize_net();
194 }
195 return 0;
196}
197
198static int selinux_lsm_notifier_avc_callback(u32 event)
199{
200 if (event == AVC_CALLBACK_RESET) {
201 sel_ib_pkey_flush();
202 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
203 }
204
205 return 0;
206}
207
208/*
209 * initialise the security for the init task
210 */
211static void cred_init_security(void)
212{
213 struct cred *cred = (struct cred *) current->real_cred;
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(cred);
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231/*
232 * get the objective security ID of a task
233 */
234static inline u32 task_sid(const struct task_struct *task)
235{
236 u32 sid;
237
238 rcu_read_lock();
239 sid = cred_sid(__task_cred(task));
240 rcu_read_unlock();
241 return sid;
242}
243
244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
245
246/*
247 * Try reloading inode security labels that have been marked as invalid. The
248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
249 * allowed; when set to false, returns -ECHILD when the label is
250 * invalid. The @dentry parameter should be set to a dentry of the inode.
251 */
252static int __inode_security_revalidate(struct inode *inode,
253 struct dentry *dentry,
254 bool may_sleep)
255{
256 struct inode_security_struct *isec = selinux_inode(inode);
257
258 might_sleep_if(may_sleep);
259
260 if (selinux_initialized(&selinux_state) &&
261 isec->initialized != LABEL_INITIALIZED) {
262 if (!may_sleep)
263 return -ECHILD;
264
265 /*
266 * Try reloading the inode security label. This will fail if
267 * @opt_dentry is NULL and no dentry for this inode can be
268 * found; in that case, continue using the old label.
269 */
270 inode_doinit_with_dentry(inode, dentry);
271 }
272 return 0;
273}
274
275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
276{
277 return selinux_inode(inode);
278}
279
280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
281{
282 int error;
283
284 error = __inode_security_revalidate(inode, NULL, !rcu);
285 if (error)
286 return ERR_PTR(error);
287 return selinux_inode(inode);
288}
289
290/*
291 * Get the security label of an inode.
292 */
293static struct inode_security_struct *inode_security(struct inode *inode)
294{
295 __inode_security_revalidate(inode, NULL, true);
296 return selinux_inode(inode);
297}
298
299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
300{
301 struct inode *inode = d_backing_inode(dentry);
302
303 return selinux_inode(inode);
304}
305
306/*
307 * Get the security label of a dentry's backing inode.
308 */
309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
310{
311 struct inode *inode = d_backing_inode(dentry);
312
313 __inode_security_revalidate(inode, dentry, true);
314 return selinux_inode(inode);
315}
316
317static void inode_free_security(struct inode *inode)
318{
319 struct inode_security_struct *isec = selinux_inode(inode);
320 struct superblock_security_struct *sbsec;
321
322 if (!isec)
323 return;
324 sbsec = inode->i_sb->s_security;
325 /*
326 * As not all inode security structures are in a list, we check for
327 * empty list outside of the lock to make sure that we won't waste
328 * time taking a lock doing nothing.
329 *
330 * The list_del_init() function can be safely called more than once.
331 * It should not be possible for this function to be called with
332 * concurrent list_add(), but for better safety against future changes
333 * in the code, we use list_empty_careful() here.
334 */
335 if (!list_empty_careful(&isec->list)) {
336 spin_lock(&sbsec->isec_lock);
337 list_del_init(&isec->list);
338 spin_unlock(&sbsec->isec_lock);
339 }
340}
341
342static void superblock_free_security(struct super_block *sb)
343{
344 struct superblock_security_struct *sbsec = sb->s_security;
345 sb->s_security = NULL;
346 kfree(sbsec);
347}
348
349struct selinux_mnt_opts {
350 const char *fscontext, *context, *rootcontext, *defcontext;
351};
352
353static void selinux_free_mnt_opts(void *mnt_opts)
354{
355 struct selinux_mnt_opts *opts = mnt_opts;
356 kfree(opts->fscontext);
357 kfree(opts->context);
358 kfree(opts->rootcontext);
359 kfree(opts->defcontext);
360 kfree(opts);
361}
362
363enum {
364 Opt_error = -1,
365 Opt_context = 0,
366 Opt_defcontext = 1,
367 Opt_fscontext = 2,
368 Opt_rootcontext = 3,
369 Opt_seclabel = 4,
370};
371
372#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
373static struct {
374 const char *name;
375 int len;
376 int opt;
377 bool has_arg;
378} tokens[] = {
379 A(context, true),
380 A(fscontext, true),
381 A(defcontext, true),
382 A(rootcontext, true),
383 A(seclabel, false),
384};
385#undef A
386
387static int match_opt_prefix(char *s, int l, char **arg)
388{
389 int i;
390
391 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
392 size_t len = tokens[i].len;
393 if (len > l || memcmp(s, tokens[i].name, len))
394 continue;
395 if (tokens[i].has_arg) {
396 if (len == l || s[len] != '=')
397 continue;
398 *arg = s + len + 1;
399 } else if (len != l)
400 continue;
401 return tokens[i].opt;
402 }
403 return Opt_error;
404}
405
406#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
407
408static int may_context_mount_sb_relabel(u32 sid,
409 struct superblock_security_struct *sbsec,
410 const struct cred *cred)
411{
412 const struct task_security_struct *tsec = selinux_cred(cred);
413 int rc;
414
415 rc = avc_has_perm(&selinux_state,
416 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
417 FILESYSTEM__RELABELFROM, NULL);
418 if (rc)
419 return rc;
420
421 rc = avc_has_perm(&selinux_state,
422 tsec->sid, sid, SECCLASS_FILESYSTEM,
423 FILESYSTEM__RELABELTO, NULL);
424 return rc;
425}
426
427static int may_context_mount_inode_relabel(u32 sid,
428 struct superblock_security_struct *sbsec,
429 const struct cred *cred)
430{
431 const struct task_security_struct *tsec = selinux_cred(cred);
432 int rc;
433 rc = avc_has_perm(&selinux_state,
434 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
435 FILESYSTEM__RELABELFROM, NULL);
436 if (rc)
437 return rc;
438
439 rc = avc_has_perm(&selinux_state,
440 sid, sbsec->sid, SECCLASS_FILESYSTEM,
441 FILESYSTEM__ASSOCIATE, NULL);
442 return rc;
443}
444
445static int selinux_is_genfs_special_handling(struct super_block *sb)
446{
447 /* Special handling. Genfs but also in-core setxattr handler */
448 return !strcmp(sb->s_type->name, "sysfs") ||
449 !strcmp(sb->s_type->name, "pstore") ||
450 !strcmp(sb->s_type->name, "debugfs") ||
451 !strcmp(sb->s_type->name, "tracefs") ||
452 !strcmp(sb->s_type->name, "rootfs") ||
453 (selinux_policycap_cgroupseclabel() &&
454 (!strcmp(sb->s_type->name, "cgroup") ||
455 !strcmp(sb->s_type->name, "cgroup2")));
456}
457
458static int selinux_is_sblabel_mnt(struct super_block *sb)
459{
460 struct superblock_security_struct *sbsec = sb->s_security;
461
462 /*
463 * IMPORTANT: Double-check logic in this function when adding a new
464 * SECURITY_FS_USE_* definition!
465 */
466 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
467
468 switch (sbsec->behavior) {
469 case SECURITY_FS_USE_XATTR:
470 case SECURITY_FS_USE_TRANS:
471 case SECURITY_FS_USE_TASK:
472 case SECURITY_FS_USE_NATIVE:
473 return 1;
474
475 case SECURITY_FS_USE_GENFS:
476 return selinux_is_genfs_special_handling(sb);
477
478 /* Never allow relabeling on context mounts */
479 case SECURITY_FS_USE_MNTPOINT:
480 case SECURITY_FS_USE_NONE:
481 default:
482 return 0;
483 }
484}
485
486static int sb_finish_set_opts(struct super_block *sb)
487{
488 struct superblock_security_struct *sbsec = sb->s_security;
489 struct dentry *root = sb->s_root;
490 struct inode *root_inode = d_backing_inode(root);
491 int rc = 0;
492
493 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
494 /* Make sure that the xattr handler exists and that no
495 error other than -ENODATA is returned by getxattr on
496 the root directory. -ENODATA is ok, as this may be
497 the first boot of the SELinux kernel before we have
498 assigned xattr values to the filesystem. */
499 if (!(root_inode->i_opflags & IOP_XATTR)) {
500 pr_warn("SELinux: (dev %s, type %s) has no "
501 "xattr support\n", sb->s_id, sb->s_type->name);
502 rc = -EOPNOTSUPP;
503 goto out;
504 }
505
506 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
507 if (rc < 0 && rc != -ENODATA) {
508 if (rc == -EOPNOTSUPP)
509 pr_warn("SELinux: (dev %s, type "
510 "%s) has no security xattr handler\n",
511 sb->s_id, sb->s_type->name);
512 else
513 pr_warn("SELinux: (dev %s, type "
514 "%s) getxattr errno %d\n", sb->s_id,
515 sb->s_type->name, -rc);
516 goto out;
517 }
518 }
519
520 sbsec->flags |= SE_SBINITIALIZED;
521
522 /*
523 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
524 * leave the flag untouched because sb_clone_mnt_opts might be handing
525 * us a superblock that needs the flag to be cleared.
526 */
527 if (selinux_is_sblabel_mnt(sb))
528 sbsec->flags |= SBLABEL_MNT;
529 else
530 sbsec->flags &= ~SBLABEL_MNT;
531
532 /* Initialize the root inode. */
533 rc = inode_doinit_with_dentry(root_inode, root);
534
535 /* Initialize any other inodes associated with the superblock, e.g.
536 inodes created prior to initial policy load or inodes created
537 during get_sb by a pseudo filesystem that directly
538 populates itself. */
539 spin_lock(&sbsec->isec_lock);
540 while (!list_empty(&sbsec->isec_head)) {
541 struct inode_security_struct *isec =
542 list_first_entry(&sbsec->isec_head,
543 struct inode_security_struct, list);
544 struct inode *inode = isec->inode;
545 list_del_init(&isec->list);
546 spin_unlock(&sbsec->isec_lock);
547 inode = igrab(inode);
548 if (inode) {
549 if (!IS_PRIVATE(inode))
550 inode_doinit_with_dentry(inode, NULL);
551 iput(inode);
552 }
553 spin_lock(&sbsec->isec_lock);
554 }
555 spin_unlock(&sbsec->isec_lock);
556out:
557 return rc;
558}
559
560static int bad_option(struct superblock_security_struct *sbsec, char flag,
561 u32 old_sid, u32 new_sid)
562{
563 char mnt_flags = sbsec->flags & SE_MNTMASK;
564
565 /* check if the old mount command had the same options */
566 if (sbsec->flags & SE_SBINITIALIZED)
567 if (!(sbsec->flags & flag) ||
568 (old_sid != new_sid))
569 return 1;
570
571 /* check if we were passed the same options twice,
572 * aka someone passed context=a,context=b
573 */
574 if (!(sbsec->flags & SE_SBINITIALIZED))
575 if (mnt_flags & flag)
576 return 1;
577 return 0;
578}
579
580static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
581{
582 int rc = security_context_str_to_sid(&selinux_state, s,
583 sid, GFP_KERNEL);
584 if (rc)
585 pr_warn("SELinux: security_context_str_to_sid"
586 "(%s) failed for (dev %s, type %s) errno=%d\n",
587 s, sb->s_id, sb->s_type->name, rc);
588 return rc;
589}
590
591/*
592 * Allow filesystems with binary mount data to explicitly set mount point
593 * labeling information.
594 */
595static int selinux_set_mnt_opts(struct super_block *sb,
596 void *mnt_opts,
597 unsigned long kern_flags,
598 unsigned long *set_kern_flags)
599{
600 const struct cred *cred = current_cred();
601 struct superblock_security_struct *sbsec = sb->s_security;
602 struct dentry *root = sbsec->sb->s_root;
603 struct selinux_mnt_opts *opts = mnt_opts;
604 struct inode_security_struct *root_isec;
605 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
606 u32 defcontext_sid = 0;
607 int rc = 0;
608
609 mutex_lock(&sbsec->lock);
610
611 if (!selinux_initialized(&selinux_state)) {
612 if (!opts) {
613 /* Defer initialization until selinux_complete_init,
614 after the initial policy is loaded and the security
615 server is ready to handle calls. */
616 goto out;
617 }
618 rc = -EINVAL;
619 pr_warn("SELinux: Unable to set superblock options "
620 "before the security server is initialized\n");
621 goto out;
622 }
623 if (kern_flags && !set_kern_flags) {
624 /* Specifying internal flags without providing a place to
625 * place the results is not allowed */
626 rc = -EINVAL;
627 goto out;
628 }
629
630 /*
631 * Binary mount data FS will come through this function twice. Once
632 * from an explicit call and once from the generic calls from the vfs.
633 * Since the generic VFS calls will not contain any security mount data
634 * we need to skip the double mount verification.
635 *
636 * This does open a hole in which we will not notice if the first
637 * mount using this sb set explict options and a second mount using
638 * this sb does not set any security options. (The first options
639 * will be used for both mounts)
640 */
641 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
642 && !opts)
643 goto out;
644
645 root_isec = backing_inode_security_novalidate(root);
646
647 /*
648 * parse the mount options, check if they are valid sids.
649 * also check if someone is trying to mount the same sb more
650 * than once with different security options.
651 */
652 if (opts) {
653 if (opts->fscontext) {
654 rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
655 if (rc)
656 goto out;
657 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
658 fscontext_sid))
659 goto out_double_mount;
660 sbsec->flags |= FSCONTEXT_MNT;
661 }
662 if (opts->context) {
663 rc = parse_sid(sb, opts->context, &context_sid);
664 if (rc)
665 goto out;
666 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
667 context_sid))
668 goto out_double_mount;
669 sbsec->flags |= CONTEXT_MNT;
670 }
671 if (opts->rootcontext) {
672 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
673 if (rc)
674 goto out;
675 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
676 rootcontext_sid))
677 goto out_double_mount;
678 sbsec->flags |= ROOTCONTEXT_MNT;
679 }
680 if (opts->defcontext) {
681 rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
682 if (rc)
683 goto out;
684 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
685 defcontext_sid))
686 goto out_double_mount;
687 sbsec->flags |= DEFCONTEXT_MNT;
688 }
689 }
690
691 if (sbsec->flags & SE_SBINITIALIZED) {
692 /* previously mounted with options, but not on this attempt? */
693 if ((sbsec->flags & SE_MNTMASK) && !opts)
694 goto out_double_mount;
695 rc = 0;
696 goto out;
697 }
698
699 if (strcmp(sb->s_type->name, "proc") == 0)
700 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
701
702 if (!strcmp(sb->s_type->name, "debugfs") ||
703 !strcmp(sb->s_type->name, "tracefs") ||
704 !strcmp(sb->s_type->name, "binder") ||
705 !strcmp(sb->s_type->name, "bpf") ||
706 !strcmp(sb->s_type->name, "pstore"))
707 sbsec->flags |= SE_SBGENFS;
708
709 if (!strcmp(sb->s_type->name, "sysfs") ||
710 !strcmp(sb->s_type->name, "cgroup") ||
711 !strcmp(sb->s_type->name, "cgroup2"))
712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
713
714 if (!sbsec->behavior) {
715 /*
716 * Determine the labeling behavior to use for this
717 * filesystem type.
718 */
719 rc = security_fs_use(&selinux_state, sb);
720 if (rc) {
721 pr_warn("%s: security_fs_use(%s) returned %d\n",
722 __func__, sb->s_type->name, rc);
723 goto out;
724 }
725 }
726
727 /*
728 * If this is a user namespace mount and the filesystem type is not
729 * explicitly whitelisted, then no contexts are allowed on the command
730 * line and security labels must be ignored.
731 */
732 if (sb->s_user_ns != &init_user_ns &&
733 strcmp(sb->s_type->name, "tmpfs") &&
734 strcmp(sb->s_type->name, "ramfs") &&
735 strcmp(sb->s_type->name, "devpts")) {
736 if (context_sid || fscontext_sid || rootcontext_sid ||
737 defcontext_sid) {
738 rc = -EACCES;
739 goto out;
740 }
741 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
742 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
743 rc = security_transition_sid(&selinux_state,
744 current_sid(),
745 current_sid(),
746 SECCLASS_FILE, NULL,
747 &sbsec->mntpoint_sid);
748 if (rc)
749 goto out;
750 }
751 goto out_set_opts;
752 }
753
754 /* sets the context of the superblock for the fs being mounted. */
755 if (fscontext_sid) {
756 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
757 if (rc)
758 goto out;
759
760 sbsec->sid = fscontext_sid;
761 }
762
763 /*
764 * Switch to using mount point labeling behavior.
765 * sets the label used on all file below the mountpoint, and will set
766 * the superblock context if not already set.
767 */
768 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
769 sbsec->behavior = SECURITY_FS_USE_NATIVE;
770 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
771 }
772
773 if (context_sid) {
774 if (!fscontext_sid) {
775 rc = may_context_mount_sb_relabel(context_sid, sbsec,
776 cred);
777 if (rc)
778 goto out;
779 sbsec->sid = context_sid;
780 } else {
781 rc = may_context_mount_inode_relabel(context_sid, sbsec,
782 cred);
783 if (rc)
784 goto out;
785 }
786 if (!rootcontext_sid)
787 rootcontext_sid = context_sid;
788
789 sbsec->mntpoint_sid = context_sid;
790 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
791 }
792
793 if (rootcontext_sid) {
794 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
795 cred);
796 if (rc)
797 goto out;
798
799 root_isec->sid = rootcontext_sid;
800 root_isec->initialized = LABEL_INITIALIZED;
801 }
802
803 if (defcontext_sid) {
804 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
805 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
806 rc = -EINVAL;
807 pr_warn("SELinux: defcontext option is "
808 "invalid for this filesystem type\n");
809 goto out;
810 }
811
812 if (defcontext_sid != sbsec->def_sid) {
813 rc = may_context_mount_inode_relabel(defcontext_sid,
814 sbsec, cred);
815 if (rc)
816 goto out;
817 }
818
819 sbsec->def_sid = defcontext_sid;
820 }
821
822out_set_opts:
823 rc = sb_finish_set_opts(sb);
824out:
825 mutex_unlock(&sbsec->lock);
826 return rc;
827out_double_mount:
828 rc = -EINVAL;
829 pr_warn("SELinux: mount invalid. Same superblock, different "
830 "security settings for (dev %s, type %s)\n", sb->s_id,
831 sb->s_type->name);
832 goto out;
833}
834
835static int selinux_cmp_sb_context(const struct super_block *oldsb,
836 const struct super_block *newsb)
837{
838 struct superblock_security_struct *old = oldsb->s_security;
839 struct superblock_security_struct *new = newsb->s_security;
840 char oldflags = old->flags & SE_MNTMASK;
841 char newflags = new->flags & SE_MNTMASK;
842
843 if (oldflags != newflags)
844 goto mismatch;
845 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
846 goto mismatch;
847 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
848 goto mismatch;
849 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
850 goto mismatch;
851 if (oldflags & ROOTCONTEXT_MNT) {
852 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
853 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
854 if (oldroot->sid != newroot->sid)
855 goto mismatch;
856 }
857 return 0;
858mismatch:
859 pr_warn("SELinux: mount invalid. Same superblock, "
860 "different security settings for (dev %s, "
861 "type %s)\n", newsb->s_id, newsb->s_type->name);
862 return -EBUSY;
863}
864
865static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
866 struct super_block *newsb,
867 unsigned long kern_flags,
868 unsigned long *set_kern_flags)
869{
870 int rc = 0;
871 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
872 struct superblock_security_struct *newsbsec = newsb->s_security;
873
874 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
875 int set_context = (oldsbsec->flags & CONTEXT_MNT);
876 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
877
878 /*
879 * if the parent was able to be mounted it clearly had no special lsm
880 * mount options. thus we can safely deal with this superblock later
881 */
882 if (!selinux_initialized(&selinux_state))
883 return 0;
884
885 /*
886 * Specifying internal flags without providing a place to
887 * place the results is not allowed.
888 */
889 if (kern_flags && !set_kern_flags)
890 return -EINVAL;
891
892 /* how can we clone if the old one wasn't set up?? */
893 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
894
895 /* if fs is reusing a sb, make sure that the contexts match */
896 if (newsbsec->flags & SE_SBINITIALIZED) {
897 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
898 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
899 return selinux_cmp_sb_context(oldsb, newsb);
900 }
901
902 mutex_lock(&newsbsec->lock);
903
904 newsbsec->flags = oldsbsec->flags;
905
906 newsbsec->sid = oldsbsec->sid;
907 newsbsec->def_sid = oldsbsec->def_sid;
908 newsbsec->behavior = oldsbsec->behavior;
909
910 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
911 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
912 rc = security_fs_use(&selinux_state, newsb);
913 if (rc)
914 goto out;
915 }
916
917 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
918 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
919 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
920 }
921
922 if (set_context) {
923 u32 sid = oldsbsec->mntpoint_sid;
924
925 if (!set_fscontext)
926 newsbsec->sid = sid;
927 if (!set_rootcontext) {
928 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
929 newisec->sid = sid;
930 }
931 newsbsec->mntpoint_sid = sid;
932 }
933 if (set_rootcontext) {
934 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
935 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
936
937 newisec->sid = oldisec->sid;
938 }
939
940 sb_finish_set_opts(newsb);
941out:
942 mutex_unlock(&newsbsec->lock);
943 return rc;
944}
945
946static int selinux_add_opt(int token, const char *s, void **mnt_opts)
947{
948 struct selinux_mnt_opts *opts = *mnt_opts;
949
950 if (token == Opt_seclabel) /* eaten and completely ignored */
951 return 0;
952
953 if (!opts) {
954 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
955 if (!opts)
956 return -ENOMEM;
957 *mnt_opts = opts;
958 }
959 if (!s)
960 return -ENOMEM;
961 switch (token) {
962 case Opt_context:
963 if (opts->context || opts->defcontext)
964 goto Einval;
965 opts->context = s;
966 break;
967 case Opt_fscontext:
968 if (opts->fscontext)
969 goto Einval;
970 opts->fscontext = s;
971 break;
972 case Opt_rootcontext:
973 if (opts->rootcontext)
974 goto Einval;
975 opts->rootcontext = s;
976 break;
977 case Opt_defcontext:
978 if (opts->context || opts->defcontext)
979 goto Einval;
980 opts->defcontext = s;
981 break;
982 }
983 return 0;
984Einval:
985 pr_warn(SEL_MOUNT_FAIL_MSG);
986 return -EINVAL;
987}
988
989static int selinux_add_mnt_opt(const char *option, const char *val, int len,
990 void **mnt_opts)
991{
992 int token = Opt_error;
993 int rc, i;
994
995 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
996 if (strcmp(option, tokens[i].name) == 0) {
997 token = tokens[i].opt;
998 break;
999 }
1000 }
1001
1002 if (token == Opt_error)
1003 return -EINVAL;
1004
1005 if (token != Opt_seclabel) {
1006 val = kmemdup_nul(val, len, GFP_KERNEL);
1007 if (!val) {
1008 rc = -ENOMEM;
1009 goto free_opt;
1010 }
1011 }
1012 rc = selinux_add_opt(token, val, mnt_opts);
1013 if (unlikely(rc)) {
1014 kfree(val);
1015 goto free_opt;
1016 }
1017 return rc;
1018
1019free_opt:
1020 if (*mnt_opts) {
1021 selinux_free_mnt_opts(*mnt_opts);
1022 *mnt_opts = NULL;
1023 }
1024 return rc;
1025}
1026
1027static int show_sid(struct seq_file *m, u32 sid)
1028{
1029 char *context = NULL;
1030 u32 len;
1031 int rc;
1032
1033 rc = security_sid_to_context(&selinux_state, sid,
1034 &context, &len);
1035 if (!rc) {
1036 bool has_comma = context && strchr(context, ',');
1037
1038 seq_putc(m, '=');
1039 if (has_comma)
1040 seq_putc(m, '\"');
1041 seq_escape(m, context, "\"\n\\");
1042 if (has_comma)
1043 seq_putc(m, '\"');
1044 }
1045 kfree(context);
1046 return rc;
1047}
1048
1049static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050{
1051 struct superblock_security_struct *sbsec = sb->s_security;
1052 int rc;
1053
1054 if (!(sbsec->flags & SE_SBINITIALIZED))
1055 return 0;
1056
1057 if (!selinux_initialized(&selinux_state))
1058 return 0;
1059
1060 if (sbsec->flags & FSCONTEXT_MNT) {
1061 seq_putc(m, ',');
1062 seq_puts(m, FSCONTEXT_STR);
1063 rc = show_sid(m, sbsec->sid);
1064 if (rc)
1065 return rc;
1066 }
1067 if (sbsec->flags & CONTEXT_MNT) {
1068 seq_putc(m, ',');
1069 seq_puts(m, CONTEXT_STR);
1070 rc = show_sid(m, sbsec->mntpoint_sid);
1071 if (rc)
1072 return rc;
1073 }
1074 if (sbsec->flags & DEFCONTEXT_MNT) {
1075 seq_putc(m, ',');
1076 seq_puts(m, DEFCONTEXT_STR);
1077 rc = show_sid(m, sbsec->def_sid);
1078 if (rc)
1079 return rc;
1080 }
1081 if (sbsec->flags & ROOTCONTEXT_MNT) {
1082 struct dentry *root = sbsec->sb->s_root;
1083 struct inode_security_struct *isec = backing_inode_security(root);
1084 seq_putc(m, ',');
1085 seq_puts(m, ROOTCONTEXT_STR);
1086 rc = show_sid(m, isec->sid);
1087 if (rc)
1088 return rc;
1089 }
1090 if (sbsec->flags & SBLABEL_MNT) {
1091 seq_putc(m, ',');
1092 seq_puts(m, SECLABEL_STR);
1093 }
1094 return 0;
1095}
1096
1097static inline u16 inode_mode_to_security_class(umode_t mode)
1098{
1099 switch (mode & S_IFMT) {
1100 case S_IFSOCK:
1101 return SECCLASS_SOCK_FILE;
1102 case S_IFLNK:
1103 return SECCLASS_LNK_FILE;
1104 case S_IFREG:
1105 return SECCLASS_FILE;
1106 case S_IFBLK:
1107 return SECCLASS_BLK_FILE;
1108 case S_IFDIR:
1109 return SECCLASS_DIR;
1110 case S_IFCHR:
1111 return SECCLASS_CHR_FILE;
1112 case S_IFIFO:
1113 return SECCLASS_FIFO_FILE;
1114
1115 }
1116
1117 return SECCLASS_FILE;
1118}
1119
1120static inline int default_protocol_stream(int protocol)
1121{
1122 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123}
1124
1125static inline int default_protocol_dgram(int protocol)
1126{
1127 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128}
1129
1130static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131{
1132 int extsockclass = selinux_policycap_extsockclass();
1133
1134 switch (family) {
1135 case PF_UNIX:
1136 switch (type) {
1137 case SOCK_STREAM:
1138 case SOCK_SEQPACKET:
1139 return SECCLASS_UNIX_STREAM_SOCKET;
1140 case SOCK_DGRAM:
1141 case SOCK_RAW:
1142 return SECCLASS_UNIX_DGRAM_SOCKET;
1143 }
1144 break;
1145 case PF_INET:
1146 case PF_INET6:
1147 switch (type) {
1148 case SOCK_STREAM:
1149 case SOCK_SEQPACKET:
1150 if (default_protocol_stream(protocol))
1151 return SECCLASS_TCP_SOCKET;
1152 else if (extsockclass && protocol == IPPROTO_SCTP)
1153 return SECCLASS_SCTP_SOCKET;
1154 else
1155 return SECCLASS_RAWIP_SOCKET;
1156 case SOCK_DGRAM:
1157 if (default_protocol_dgram(protocol))
1158 return SECCLASS_UDP_SOCKET;
1159 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160 protocol == IPPROTO_ICMPV6))
1161 return SECCLASS_ICMP_SOCKET;
1162 else
1163 return SECCLASS_RAWIP_SOCKET;
1164 case SOCK_DCCP:
1165 return SECCLASS_DCCP_SOCKET;
1166 default:
1167 return SECCLASS_RAWIP_SOCKET;
1168 }
1169 break;
1170 case PF_NETLINK:
1171 switch (protocol) {
1172 case NETLINK_ROUTE:
1173 return SECCLASS_NETLINK_ROUTE_SOCKET;
1174 case NETLINK_SOCK_DIAG:
1175 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176 case NETLINK_NFLOG:
1177 return SECCLASS_NETLINK_NFLOG_SOCKET;
1178 case NETLINK_XFRM:
1179 return SECCLASS_NETLINK_XFRM_SOCKET;
1180 case NETLINK_SELINUX:
1181 return SECCLASS_NETLINK_SELINUX_SOCKET;
1182 case NETLINK_ISCSI:
1183 return SECCLASS_NETLINK_ISCSI_SOCKET;
1184 case NETLINK_AUDIT:
1185 return SECCLASS_NETLINK_AUDIT_SOCKET;
1186 case NETLINK_FIB_LOOKUP:
1187 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188 case NETLINK_CONNECTOR:
1189 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190 case NETLINK_NETFILTER:
1191 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192 case NETLINK_DNRTMSG:
1193 return SECCLASS_NETLINK_DNRT_SOCKET;
1194 case NETLINK_KOBJECT_UEVENT:
1195 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196 case NETLINK_GENERIC:
1197 return SECCLASS_NETLINK_GENERIC_SOCKET;
1198 case NETLINK_SCSITRANSPORT:
1199 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200 case NETLINK_RDMA:
1201 return SECCLASS_NETLINK_RDMA_SOCKET;
1202 case NETLINK_CRYPTO:
1203 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204 default:
1205 return SECCLASS_NETLINK_SOCKET;
1206 }
1207 case PF_PACKET:
1208 return SECCLASS_PACKET_SOCKET;
1209 case PF_KEY:
1210 return SECCLASS_KEY_SOCKET;
1211 case PF_APPLETALK:
1212 return SECCLASS_APPLETALK_SOCKET;
1213 }
1214
1215 if (extsockclass) {
1216 switch (family) {
1217 case PF_AX25:
1218 return SECCLASS_AX25_SOCKET;
1219 case PF_IPX:
1220 return SECCLASS_IPX_SOCKET;
1221 case PF_NETROM:
1222 return SECCLASS_NETROM_SOCKET;
1223 case PF_ATMPVC:
1224 return SECCLASS_ATMPVC_SOCKET;
1225 case PF_X25:
1226 return SECCLASS_X25_SOCKET;
1227 case PF_ROSE:
1228 return SECCLASS_ROSE_SOCKET;
1229 case PF_DECnet:
1230 return SECCLASS_DECNET_SOCKET;
1231 case PF_ATMSVC:
1232 return SECCLASS_ATMSVC_SOCKET;
1233 case PF_RDS:
1234 return SECCLASS_RDS_SOCKET;
1235 case PF_IRDA:
1236 return SECCLASS_IRDA_SOCKET;
1237 case PF_PPPOX:
1238 return SECCLASS_PPPOX_SOCKET;
1239 case PF_LLC:
1240 return SECCLASS_LLC_SOCKET;
1241 case PF_CAN:
1242 return SECCLASS_CAN_SOCKET;
1243 case PF_TIPC:
1244 return SECCLASS_TIPC_SOCKET;
1245 case PF_BLUETOOTH:
1246 return SECCLASS_BLUETOOTH_SOCKET;
1247 case PF_IUCV:
1248 return SECCLASS_IUCV_SOCKET;
1249 case PF_RXRPC:
1250 return SECCLASS_RXRPC_SOCKET;
1251 case PF_ISDN:
1252 return SECCLASS_ISDN_SOCKET;
1253 case PF_PHONET:
1254 return SECCLASS_PHONET_SOCKET;
1255 case PF_IEEE802154:
1256 return SECCLASS_IEEE802154_SOCKET;
1257 case PF_CAIF:
1258 return SECCLASS_CAIF_SOCKET;
1259 case PF_ALG:
1260 return SECCLASS_ALG_SOCKET;
1261 case PF_NFC:
1262 return SECCLASS_NFC_SOCKET;
1263 case PF_VSOCK:
1264 return SECCLASS_VSOCK_SOCKET;
1265 case PF_KCM:
1266 return SECCLASS_KCM_SOCKET;
1267 case PF_QIPCRTR:
1268 return SECCLASS_QIPCRTR_SOCKET;
1269 case PF_SMC:
1270 return SECCLASS_SMC_SOCKET;
1271 case PF_XDP:
1272 return SECCLASS_XDP_SOCKET;
1273#if PF_MAX > 45
1274#error New address family defined, please update this function.
1275#endif
1276 }
1277 }
1278
1279 return SECCLASS_SOCKET;
1280}
1281
1282static int selinux_genfs_get_sid(struct dentry *dentry,
1283 u16 tclass,
1284 u16 flags,
1285 u32 *sid)
1286{
1287 int rc;
1288 struct super_block *sb = dentry->d_sb;
1289 char *buffer, *path;
1290
1291 buffer = (char *)__get_free_page(GFP_KERNEL);
1292 if (!buffer)
1293 return -ENOMEM;
1294
1295 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296 if (IS_ERR(path))
1297 rc = PTR_ERR(path);
1298 else {
1299 if (flags & SE_SBPROC) {
1300 /* each process gets a /proc/PID/ entry. Strip off the
1301 * PID part to get a valid selinux labeling.
1302 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303 while (path[1] >= '0' && path[1] <= '9') {
1304 path[1] = '/';
1305 path++;
1306 }
1307 }
1308 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309 path, tclass, sid);
1310 if (rc == -ENOENT) {
1311 /* No match in policy, mark as unlabeled. */
1312 *sid = SECINITSID_UNLABELED;
1313 rc = 0;
1314 }
1315 }
1316 free_page((unsigned long)buffer);
1317 return rc;
1318}
1319
1320static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321 u32 def_sid, u32 *sid)
1322{
1323#define INITCONTEXTLEN 255
1324 char *context;
1325 unsigned int len;
1326 int rc;
1327
1328 len = INITCONTEXTLEN;
1329 context = kmalloc(len + 1, GFP_NOFS);
1330 if (!context)
1331 return -ENOMEM;
1332
1333 context[len] = '\0';
1334 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335 if (rc == -ERANGE) {
1336 kfree(context);
1337
1338 /* Need a larger buffer. Query for the right size. */
1339 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340 if (rc < 0)
1341 return rc;
1342
1343 len = rc;
1344 context = kmalloc(len + 1, GFP_NOFS);
1345 if (!context)
1346 return -ENOMEM;
1347
1348 context[len] = '\0';
1349 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350 context, len);
1351 }
1352 if (rc < 0) {
1353 kfree(context);
1354 if (rc != -ENODATA) {
1355 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1356 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357 return rc;
1358 }
1359 *sid = def_sid;
1360 return 0;
1361 }
1362
1363 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364 def_sid, GFP_NOFS);
1365 if (rc) {
1366 char *dev = inode->i_sb->s_id;
1367 unsigned long ino = inode->i_ino;
1368
1369 if (rc == -EINVAL) {
1370 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1371 ino, dev, context);
1372 } else {
1373 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374 __func__, context, -rc, dev, ino);
1375 }
1376 }
1377 kfree(context);
1378 return 0;
1379}
1380
1381/* The inode's security attributes must be initialized before first use. */
1382static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383{
1384 struct superblock_security_struct *sbsec = NULL;
1385 struct inode_security_struct *isec = selinux_inode(inode);
1386 u32 task_sid, sid = 0;
1387 u16 sclass;
1388 struct dentry *dentry;
1389 int rc = 0;
1390
1391 if (isec->initialized == LABEL_INITIALIZED)
1392 return 0;
1393
1394 spin_lock(&isec->lock);
1395 if (isec->initialized == LABEL_INITIALIZED)
1396 goto out_unlock;
1397
1398 if (isec->sclass == SECCLASS_FILE)
1399 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400
1401 sbsec = inode->i_sb->s_security;
1402 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403 /* Defer initialization until selinux_complete_init,
1404 after the initial policy is loaded and the security
1405 server is ready to handle calls. */
1406 spin_lock(&sbsec->isec_lock);
1407 if (list_empty(&isec->list))
1408 list_add(&isec->list, &sbsec->isec_head);
1409 spin_unlock(&sbsec->isec_lock);
1410 goto out_unlock;
1411 }
1412
1413 sclass = isec->sclass;
1414 task_sid = isec->task_sid;
1415 sid = isec->sid;
1416 isec->initialized = LABEL_PENDING;
1417 spin_unlock(&isec->lock);
1418
1419 switch (sbsec->behavior) {
1420 case SECURITY_FS_USE_NATIVE:
1421 break;
1422 case SECURITY_FS_USE_XATTR:
1423 if (!(inode->i_opflags & IOP_XATTR)) {
1424 sid = sbsec->def_sid;
1425 break;
1426 }
1427 /* Need a dentry, since the xattr API requires one.
1428 Life would be simpler if we could just pass the inode. */
1429 if (opt_dentry) {
1430 /* Called from d_instantiate or d_splice_alias. */
1431 dentry = dget(opt_dentry);
1432 } else {
1433 /*
1434 * Called from selinux_complete_init, try to find a dentry.
1435 * Some filesystems really want a connected one, so try
1436 * that first. We could split SECURITY_FS_USE_XATTR in
1437 * two, depending upon that...
1438 */
1439 dentry = d_find_alias(inode);
1440 if (!dentry)
1441 dentry = d_find_any_alias(inode);
1442 }
1443 if (!dentry) {
1444 /*
1445 * this is can be hit on boot when a file is accessed
1446 * before the policy is loaded. When we load policy we
1447 * may find inodes that have no dentry on the
1448 * sbsec->isec_head list. No reason to complain as these
1449 * will get fixed up the next time we go through
1450 * inode_doinit with a dentry, before these inodes could
1451 * be used again by userspace.
1452 */
1453 goto out;
1454 }
1455
1456 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457 &sid);
1458 dput(dentry);
1459 if (rc)
1460 goto out;
1461 break;
1462 case SECURITY_FS_USE_TASK:
1463 sid = task_sid;
1464 break;
1465 case SECURITY_FS_USE_TRANS:
1466 /* Default to the fs SID. */
1467 sid = sbsec->sid;
1468
1469 /* Try to obtain a transition SID. */
1470 rc = security_transition_sid(&selinux_state, task_sid, sid,
1471 sclass, NULL, &sid);
1472 if (rc)
1473 goto out;
1474 break;
1475 case SECURITY_FS_USE_MNTPOINT:
1476 sid = sbsec->mntpoint_sid;
1477 break;
1478 default:
1479 /* Default to the fs superblock SID. */
1480 sid = sbsec->sid;
1481
1482 if ((sbsec->flags & SE_SBGENFS) &&
1483 (!S_ISLNK(inode->i_mode) ||
1484 selinux_policycap_genfs_seclabel_symlinks())) {
1485 /* We must have a dentry to determine the label on
1486 * procfs inodes */
1487 if (opt_dentry) {
1488 /* Called from d_instantiate or
1489 * d_splice_alias. */
1490 dentry = dget(opt_dentry);
1491 } else {
1492 /* Called from selinux_complete_init, try to
1493 * find a dentry. Some filesystems really want
1494 * a connected one, so try that first.
1495 */
1496 dentry = d_find_alias(inode);
1497 if (!dentry)
1498 dentry = d_find_any_alias(inode);
1499 }
1500 /*
1501 * This can be hit on boot when a file is accessed
1502 * before the policy is loaded. When we load policy we
1503 * may find inodes that have no dentry on the
1504 * sbsec->isec_head list. No reason to complain as
1505 * these will get fixed up the next time we go through
1506 * inode_doinit() with a dentry, before these inodes
1507 * could be used again by userspace.
1508 */
1509 if (!dentry)
1510 goto out;
1511 rc = selinux_genfs_get_sid(dentry, sclass,
1512 sbsec->flags, &sid);
1513 if (rc) {
1514 dput(dentry);
1515 goto out;
1516 }
1517
1518 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519 (inode->i_opflags & IOP_XATTR)) {
1520 rc = inode_doinit_use_xattr(inode, dentry,
1521 sid, &sid);
1522 if (rc) {
1523 dput(dentry);
1524 goto out;
1525 }
1526 }
1527 dput(dentry);
1528 }
1529 break;
1530 }
1531
1532out:
1533 spin_lock(&isec->lock);
1534 if (isec->initialized == LABEL_PENDING) {
1535 if (!sid || rc) {
1536 isec->initialized = LABEL_INVALID;
1537 goto out_unlock;
1538 }
1539
1540 isec->initialized = LABEL_INITIALIZED;
1541 isec->sid = sid;
1542 }
1543
1544out_unlock:
1545 spin_unlock(&isec->lock);
1546 return rc;
1547}
1548
1549/* Convert a Linux signal to an access vector. */
1550static inline u32 signal_to_av(int sig)
1551{
1552 u32 perm = 0;
1553
1554 switch (sig) {
1555 case SIGCHLD:
1556 /* Commonly granted from child to parent. */
1557 perm = PROCESS__SIGCHLD;
1558 break;
1559 case SIGKILL:
1560 /* Cannot be caught or ignored */
1561 perm = PROCESS__SIGKILL;
1562 break;
1563 case SIGSTOP:
1564 /* Cannot be caught or ignored */
1565 perm = PROCESS__SIGSTOP;
1566 break;
1567 default:
1568 /* All other signals. */
1569 perm = PROCESS__SIGNAL;
1570 break;
1571 }
1572
1573 return perm;
1574}
1575
1576#if CAP_LAST_CAP > 63
1577#error Fix SELinux to handle capabilities > 63.
1578#endif
1579
1580/* Check whether a task is allowed to use a capability. */
1581static int cred_has_capability(const struct cred *cred,
1582 int cap, unsigned int opts, bool initns)
1583{
1584 struct common_audit_data ad;
1585 struct av_decision avd;
1586 u16 sclass;
1587 u32 sid = cred_sid(cred);
1588 u32 av = CAP_TO_MASK(cap);
1589 int rc;
1590
1591 ad.type = LSM_AUDIT_DATA_CAP;
1592 ad.u.cap = cap;
1593
1594 switch (CAP_TO_INDEX(cap)) {
1595 case 0:
1596 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597 break;
1598 case 1:
1599 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600 break;
1601 default:
1602 pr_err("SELinux: out of range capability %d\n", cap);
1603 BUG();
1604 return -EINVAL;
1605 }
1606
1607 rc = avc_has_perm_noaudit(&selinux_state,
1608 sid, sid, sclass, av, 0, &avd);
1609 if (!(opts & CAP_OPT_NOAUDIT)) {
1610 int rc2 = avc_audit(&selinux_state,
1611 sid, sid, sclass, av, &avd, rc, &ad, 0);
1612 if (rc2)
1613 return rc2;
1614 }
1615 return rc;
1616}
1617
1618/* Check whether a task has a particular permission to an inode.
1619 The 'adp' parameter is optional and allows other audit
1620 data to be passed (e.g. the dentry). */
1621static int inode_has_perm(const struct cred *cred,
1622 struct inode *inode,
1623 u32 perms,
1624 struct common_audit_data *adp)
1625{
1626 struct inode_security_struct *isec;
1627 u32 sid;
1628
1629 validate_creds(cred);
1630
1631 if (unlikely(IS_PRIVATE(inode)))
1632 return 0;
1633
1634 sid = cred_sid(cred);
1635 isec = selinux_inode(inode);
1636
1637 return avc_has_perm(&selinux_state,
1638 sid, isec->sid, isec->sclass, perms, adp);
1639}
1640
1641/* Same as inode_has_perm, but pass explicit audit data containing
1642 the dentry to help the auditing code to more easily generate the
1643 pathname if needed. */
1644static inline int dentry_has_perm(const struct cred *cred,
1645 struct dentry *dentry,
1646 u32 av)
1647{
1648 struct inode *inode = d_backing_inode(dentry);
1649 struct common_audit_data ad;
1650
1651 ad.type = LSM_AUDIT_DATA_DENTRY;
1652 ad.u.dentry = dentry;
1653 __inode_security_revalidate(inode, dentry, true);
1654 return inode_has_perm(cred, inode, av, &ad);
1655}
1656
1657/* Same as inode_has_perm, but pass explicit audit data containing
1658 the path to help the auditing code to more easily generate the
1659 pathname if needed. */
1660static inline int path_has_perm(const struct cred *cred,
1661 const struct path *path,
1662 u32 av)
1663{
1664 struct inode *inode = d_backing_inode(path->dentry);
1665 struct common_audit_data ad;
1666
1667 ad.type = LSM_AUDIT_DATA_PATH;
1668 ad.u.path = *path;
1669 __inode_security_revalidate(inode, path->dentry, true);
1670 return inode_has_perm(cred, inode, av, &ad);
1671}
1672
1673/* Same as path_has_perm, but uses the inode from the file struct. */
1674static inline int file_path_has_perm(const struct cred *cred,
1675 struct file *file,
1676 u32 av)
1677{
1678 struct common_audit_data ad;
1679
1680 ad.type = LSM_AUDIT_DATA_FILE;
1681 ad.u.file = file;
1682 return inode_has_perm(cred, file_inode(file), av, &ad);
1683}
1684
1685#ifdef CONFIG_BPF_SYSCALL
1686static int bpf_fd_pass(struct file *file, u32 sid);
1687#endif
1688
1689/* Check whether a task can use an open file descriptor to
1690 access an inode in a given way. Check access to the
1691 descriptor itself, and then use dentry_has_perm to
1692 check a particular permission to the file.
1693 Access to the descriptor is implicitly granted if it
1694 has the same SID as the process. If av is zero, then
1695 access to the file is not checked, e.g. for cases
1696 where only the descriptor is affected like seek. */
1697static int file_has_perm(const struct cred *cred,
1698 struct file *file,
1699 u32 av)
1700{
1701 struct file_security_struct *fsec = selinux_file(file);
1702 struct inode *inode = file_inode(file);
1703 struct common_audit_data ad;
1704 u32 sid = cred_sid(cred);
1705 int rc;
1706
1707 ad.type = LSM_AUDIT_DATA_FILE;
1708 ad.u.file = file;
1709
1710 if (sid != fsec->sid) {
1711 rc = avc_has_perm(&selinux_state,
1712 sid, fsec->sid,
1713 SECCLASS_FD,
1714 FD__USE,
1715 &ad);
1716 if (rc)
1717 goto out;
1718 }
1719
1720#ifdef CONFIG_BPF_SYSCALL
1721 rc = bpf_fd_pass(file, cred_sid(cred));
1722 if (rc)
1723 return rc;
1724#endif
1725
1726 /* av is zero if only checking access to the descriptor. */
1727 rc = 0;
1728 if (av)
1729 rc = inode_has_perm(cred, inode, av, &ad);
1730
1731out:
1732 return rc;
1733}
1734
1735/*
1736 * Determine the label for an inode that might be unioned.
1737 */
1738static int
1739selinux_determine_inode_label(const struct task_security_struct *tsec,
1740 struct inode *dir,
1741 const struct qstr *name, u16 tclass,
1742 u32 *_new_isid)
1743{
1744 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745
1746 if ((sbsec->flags & SE_SBINITIALIZED) &&
1747 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748 *_new_isid = sbsec->mntpoint_sid;
1749 } else if ((sbsec->flags & SBLABEL_MNT) &&
1750 tsec->create_sid) {
1751 *_new_isid = tsec->create_sid;
1752 } else {
1753 const struct inode_security_struct *dsec = inode_security(dir);
1754 return security_transition_sid(&selinux_state, tsec->sid,
1755 dsec->sid, tclass,
1756 name, _new_isid);
1757 }
1758
1759 return 0;
1760}
1761
1762/* Check whether a task can create a file. */
1763static int may_create(struct inode *dir,
1764 struct dentry *dentry,
1765 u16 tclass)
1766{
1767 const struct task_security_struct *tsec = selinux_cred(current_cred());
1768 struct inode_security_struct *dsec;
1769 struct superblock_security_struct *sbsec;
1770 u32 sid, newsid;
1771 struct common_audit_data ad;
1772 int rc;
1773
1774 dsec = inode_security(dir);
1775 sbsec = dir->i_sb->s_security;
1776
1777 sid = tsec->sid;
1778
1779 ad.type = LSM_AUDIT_DATA_DENTRY;
1780 ad.u.dentry = dentry;
1781
1782 rc = avc_has_perm(&selinux_state,
1783 sid, dsec->sid, SECCLASS_DIR,
1784 DIR__ADD_NAME | DIR__SEARCH,
1785 &ad);
1786 if (rc)
1787 return rc;
1788
1789 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790 &newsid);
1791 if (rc)
1792 return rc;
1793
1794 rc = avc_has_perm(&selinux_state,
1795 sid, newsid, tclass, FILE__CREATE, &ad);
1796 if (rc)
1797 return rc;
1798
1799 return avc_has_perm(&selinux_state,
1800 newsid, sbsec->sid,
1801 SECCLASS_FILESYSTEM,
1802 FILESYSTEM__ASSOCIATE, &ad);
1803}
1804
1805#define MAY_LINK 0
1806#define MAY_UNLINK 1
1807#define MAY_RMDIR 2
1808
1809/* Check whether a task can link, unlink, or rmdir a file/directory. */
1810static int may_link(struct inode *dir,
1811 struct dentry *dentry,
1812 int kind)
1813
1814{
1815 struct inode_security_struct *dsec, *isec;
1816 struct common_audit_data ad;
1817 u32 sid = current_sid();
1818 u32 av;
1819 int rc;
1820
1821 dsec = inode_security(dir);
1822 isec = backing_inode_security(dentry);
1823
1824 ad.type = LSM_AUDIT_DATA_DENTRY;
1825 ad.u.dentry = dentry;
1826
1827 av = DIR__SEARCH;
1828 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829 rc = avc_has_perm(&selinux_state,
1830 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831 if (rc)
1832 return rc;
1833
1834 switch (kind) {
1835 case MAY_LINK:
1836 av = FILE__LINK;
1837 break;
1838 case MAY_UNLINK:
1839 av = FILE__UNLINK;
1840 break;
1841 case MAY_RMDIR:
1842 av = DIR__RMDIR;
1843 break;
1844 default:
1845 pr_warn("SELinux: %s: unrecognized kind %d\n",
1846 __func__, kind);
1847 return 0;
1848 }
1849
1850 rc = avc_has_perm(&selinux_state,
1851 sid, isec->sid, isec->sclass, av, &ad);
1852 return rc;
1853}
1854
1855static inline int may_rename(struct inode *old_dir,
1856 struct dentry *old_dentry,
1857 struct inode *new_dir,
1858 struct dentry *new_dentry)
1859{
1860 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861 struct common_audit_data ad;
1862 u32 sid = current_sid();
1863 u32 av;
1864 int old_is_dir, new_is_dir;
1865 int rc;
1866
1867 old_dsec = inode_security(old_dir);
1868 old_isec = backing_inode_security(old_dentry);
1869 old_is_dir = d_is_dir(old_dentry);
1870 new_dsec = inode_security(new_dir);
1871
1872 ad.type = LSM_AUDIT_DATA_DENTRY;
1873
1874 ad.u.dentry = old_dentry;
1875 rc = avc_has_perm(&selinux_state,
1876 sid, old_dsec->sid, SECCLASS_DIR,
1877 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878 if (rc)
1879 return rc;
1880 rc = avc_has_perm(&selinux_state,
1881 sid, old_isec->sid,
1882 old_isec->sclass, FILE__RENAME, &ad);
1883 if (rc)
1884 return rc;
1885 if (old_is_dir && new_dir != old_dir) {
1886 rc = avc_has_perm(&selinux_state,
1887 sid, old_isec->sid,
1888 old_isec->sclass, DIR__REPARENT, &ad);
1889 if (rc)
1890 return rc;
1891 }
1892
1893 ad.u.dentry = new_dentry;
1894 av = DIR__ADD_NAME | DIR__SEARCH;
1895 if (d_is_positive(new_dentry))
1896 av |= DIR__REMOVE_NAME;
1897 rc = avc_has_perm(&selinux_state,
1898 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899 if (rc)
1900 return rc;
1901 if (d_is_positive(new_dentry)) {
1902 new_isec = backing_inode_security(new_dentry);
1903 new_is_dir = d_is_dir(new_dentry);
1904 rc = avc_has_perm(&selinux_state,
1905 sid, new_isec->sid,
1906 new_isec->sclass,
1907 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908 if (rc)
1909 return rc;
1910 }
1911
1912 return 0;
1913}
1914
1915/* Check whether a task can perform a filesystem operation. */
1916static int superblock_has_perm(const struct cred *cred,
1917 struct super_block *sb,
1918 u32 perms,
1919 struct common_audit_data *ad)
1920{
1921 struct superblock_security_struct *sbsec;
1922 u32 sid = cred_sid(cred);
1923
1924 sbsec = sb->s_security;
1925 return avc_has_perm(&selinux_state,
1926 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927}
1928
1929/* Convert a Linux mode and permission mask to an access vector. */
1930static inline u32 file_mask_to_av(int mode, int mask)
1931{
1932 u32 av = 0;
1933
1934 if (!S_ISDIR(mode)) {
1935 if (mask & MAY_EXEC)
1936 av |= FILE__EXECUTE;
1937 if (mask & MAY_READ)
1938 av |= FILE__READ;
1939
1940 if (mask & MAY_APPEND)
1941 av |= FILE__APPEND;
1942 else if (mask & MAY_WRITE)
1943 av |= FILE__WRITE;
1944
1945 } else {
1946 if (mask & MAY_EXEC)
1947 av |= DIR__SEARCH;
1948 if (mask & MAY_WRITE)
1949 av |= DIR__WRITE;
1950 if (mask & MAY_READ)
1951 av |= DIR__READ;
1952 }
1953
1954 return av;
1955}
1956
1957/* Convert a Linux file to an access vector. */
1958static inline u32 file_to_av(struct file *file)
1959{
1960 u32 av = 0;
1961
1962 if (file->f_mode & FMODE_READ)
1963 av |= FILE__READ;
1964 if (file->f_mode & FMODE_WRITE) {
1965 if (file->f_flags & O_APPEND)
1966 av |= FILE__APPEND;
1967 else
1968 av |= FILE__WRITE;
1969 }
1970 if (!av) {
1971 /*
1972 * Special file opened with flags 3 for ioctl-only use.
1973 */
1974 av = FILE__IOCTL;
1975 }
1976
1977 return av;
1978}
1979
1980/*
1981 * Convert a file to an access vector and include the correct open
1982 * open permission.
1983 */
1984static inline u32 open_file_to_av(struct file *file)
1985{
1986 u32 av = file_to_av(file);
1987 struct inode *inode = file_inode(file);
1988
1989 if (selinux_policycap_openperm() &&
1990 inode->i_sb->s_magic != SOCKFS_MAGIC)
1991 av |= FILE__OPEN;
1992
1993 return av;
1994}
1995
1996/* Hook functions begin here. */
1997
1998static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999{
2000 u32 mysid = current_sid();
2001 u32 mgrsid = task_sid(mgr);
2002
2003 return avc_has_perm(&selinux_state,
2004 mysid, mgrsid, SECCLASS_BINDER,
2005 BINDER__SET_CONTEXT_MGR, NULL);
2006}
2007
2008static int selinux_binder_transaction(struct task_struct *from,
2009 struct task_struct *to)
2010{
2011 u32 mysid = current_sid();
2012 u32 fromsid = task_sid(from);
2013 u32 tosid = task_sid(to);
2014 int rc;
2015
2016 if (mysid != fromsid) {
2017 rc = avc_has_perm(&selinux_state,
2018 mysid, fromsid, SECCLASS_BINDER,
2019 BINDER__IMPERSONATE, NULL);
2020 if (rc)
2021 return rc;
2022 }
2023
2024 return avc_has_perm(&selinux_state,
2025 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026 NULL);
2027}
2028
2029static int selinux_binder_transfer_binder(struct task_struct *from,
2030 struct task_struct *to)
2031{
2032 u32 fromsid = task_sid(from);
2033 u32 tosid = task_sid(to);
2034
2035 return avc_has_perm(&selinux_state,
2036 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037 NULL);
2038}
2039
2040static int selinux_binder_transfer_file(struct task_struct *from,
2041 struct task_struct *to,
2042 struct file *file)
2043{
2044 u32 sid = task_sid(to);
2045 struct file_security_struct *fsec = selinux_file(file);
2046 struct dentry *dentry = file->f_path.dentry;
2047 struct inode_security_struct *isec;
2048 struct common_audit_data ad;
2049 int rc;
2050
2051 ad.type = LSM_AUDIT_DATA_PATH;
2052 ad.u.path = file->f_path;
2053
2054 if (sid != fsec->sid) {
2055 rc = avc_has_perm(&selinux_state,
2056 sid, fsec->sid,
2057 SECCLASS_FD,
2058 FD__USE,
2059 &ad);
2060 if (rc)
2061 return rc;
2062 }
2063
2064#ifdef CONFIG_BPF_SYSCALL
2065 rc = bpf_fd_pass(file, sid);
2066 if (rc)
2067 return rc;
2068#endif
2069
2070 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071 return 0;
2072
2073 isec = backing_inode_security(dentry);
2074 return avc_has_perm(&selinux_state,
2075 sid, isec->sid, isec->sclass, file_to_av(file),
2076 &ad);
2077}
2078
2079static int selinux_ptrace_access_check(struct task_struct *child,
2080 unsigned int mode)
2081{
2082 u32 sid = current_sid();
2083 u32 csid = task_sid(child);
2084
2085 if (mode & PTRACE_MODE_READ)
2086 return avc_has_perm(&selinux_state,
2087 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088
2089 return avc_has_perm(&selinux_state,
2090 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091}
2092
2093static int selinux_ptrace_traceme(struct task_struct *parent)
2094{
2095 return avc_has_perm(&selinux_state,
2096 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097 PROCESS__PTRACE, NULL);
2098}
2099
2100static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102{
2103 return avc_has_perm(&selinux_state,
2104 current_sid(), task_sid(target), SECCLASS_PROCESS,
2105 PROCESS__GETCAP, NULL);
2106}
2107
2108static int selinux_capset(struct cred *new, const struct cred *old,
2109 const kernel_cap_t *effective,
2110 const kernel_cap_t *inheritable,
2111 const kernel_cap_t *permitted)
2112{
2113 return avc_has_perm(&selinux_state,
2114 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115 PROCESS__SETCAP, NULL);
2116}
2117
2118/*
2119 * (This comment used to live with the selinux_task_setuid hook,
2120 * which was removed).
2121 *
2122 * Since setuid only affects the current process, and since the SELinux
2123 * controls are not based on the Linux identity attributes, SELinux does not
2124 * need to control this operation. However, SELinux does control the use of
2125 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126 */
2127
2128static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129 int cap, unsigned int opts)
2130{
2131 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2132}
2133
2134static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135{
2136 const struct cred *cred = current_cred();
2137 int rc = 0;
2138
2139 if (!sb)
2140 return 0;
2141
2142 switch (cmds) {
2143 case Q_SYNC:
2144 case Q_QUOTAON:
2145 case Q_QUOTAOFF:
2146 case Q_SETINFO:
2147 case Q_SETQUOTA:
2148 case Q_XQUOTAOFF:
2149 case Q_XQUOTAON:
2150 case Q_XSETQLIM:
2151 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152 break;
2153 case Q_GETFMT:
2154 case Q_GETINFO:
2155 case Q_GETQUOTA:
2156 case Q_XGETQUOTA:
2157 case Q_XGETQSTAT:
2158 case Q_XGETQSTATV:
2159 case Q_XGETNEXTQUOTA:
2160 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161 break;
2162 default:
2163 rc = 0; /* let the kernel handle invalid cmds */
2164 break;
2165 }
2166 return rc;
2167}
2168
2169static int selinux_quota_on(struct dentry *dentry)
2170{
2171 const struct cred *cred = current_cred();
2172
2173 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174}
2175
2176static int selinux_syslog(int type)
2177{
2178 switch (type) {
2179 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2180 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2181 return avc_has_perm(&selinux_state,
2182 current_sid(), SECINITSID_KERNEL,
2183 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2185 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2186 /* Set level of messages printed to console */
2187 case SYSLOG_ACTION_CONSOLE_LEVEL:
2188 return avc_has_perm(&selinux_state,
2189 current_sid(), SECINITSID_KERNEL,
2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191 NULL);
2192 }
2193 /* All other syslog types */
2194 return avc_has_perm(&selinux_state,
2195 current_sid(), SECINITSID_KERNEL,
2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2197}
2198
2199/*
2200 * Check that a process has enough memory to allocate a new virtual
2201 * mapping. 0 means there is enough memory for the allocation to
2202 * succeed and -ENOMEM implies there is not.
2203 *
2204 * Do not audit the selinux permission check, as this is applied to all
2205 * processes that allocate mappings.
2206 */
2207static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208{
2209 int rc, cap_sys_admin = 0;
2210
2211 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212 CAP_OPT_NOAUDIT, true);
2213 if (rc == 0)
2214 cap_sys_admin = 1;
2215
2216 return cap_sys_admin;
2217}
2218
2219/* binprm security operations */
2220
2221static u32 ptrace_parent_sid(void)
2222{
2223 u32 sid = 0;
2224 struct task_struct *tracer;
2225
2226 rcu_read_lock();
2227 tracer = ptrace_parent(current);
2228 if (tracer)
2229 sid = task_sid(tracer);
2230 rcu_read_unlock();
2231
2232 return sid;
2233}
2234
2235static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236 const struct task_security_struct *old_tsec,
2237 const struct task_security_struct *new_tsec)
2238{
2239 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241 int rc;
2242 u32 av;
2243
2244 if (!nnp && !nosuid)
2245 return 0; /* neither NNP nor nosuid */
2246
2247 if (new_tsec->sid == old_tsec->sid)
2248 return 0; /* No change in credentials */
2249
2250 /*
2251 * If the policy enables the nnp_nosuid_transition policy capability,
2252 * then we permit transitions under NNP or nosuid if the
2253 * policy allows the corresponding permission between
2254 * the old and new contexts.
2255 */
2256 if (selinux_policycap_nnp_nosuid_transition()) {
2257 av = 0;
2258 if (nnp)
2259 av |= PROCESS2__NNP_TRANSITION;
2260 if (nosuid)
2261 av |= PROCESS2__NOSUID_TRANSITION;
2262 rc = avc_has_perm(&selinux_state,
2263 old_tsec->sid, new_tsec->sid,
2264 SECCLASS_PROCESS2, av, NULL);
2265 if (!rc)
2266 return 0;
2267 }
2268
2269 /*
2270 * We also permit NNP or nosuid transitions to bounded SIDs,
2271 * i.e. SIDs that are guaranteed to only be allowed a subset
2272 * of the permissions of the current SID.
2273 */
2274 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275 new_tsec->sid);
2276 if (!rc)
2277 return 0;
2278
2279 /*
2280 * On failure, preserve the errno values for NNP vs nosuid.
2281 * NNP: Operation not permitted for caller.
2282 * nosuid: Permission denied to file.
2283 */
2284 if (nnp)
2285 return -EPERM;
2286 return -EACCES;
2287}
2288
2289static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2290{
2291 const struct task_security_struct *old_tsec;
2292 struct task_security_struct *new_tsec;
2293 struct inode_security_struct *isec;
2294 struct common_audit_data ad;
2295 struct inode *inode = file_inode(bprm->file);
2296 int rc;
2297
2298 /* SELinux context only depends on initial program or script and not
2299 * the script interpreter */
2300
2301 old_tsec = selinux_cred(current_cred());
2302 new_tsec = selinux_cred(bprm->cred);
2303 isec = inode_security(inode);
2304
2305 /* Default to the current task SID. */
2306 new_tsec->sid = old_tsec->sid;
2307 new_tsec->osid = old_tsec->sid;
2308
2309 /* Reset fs, key, and sock SIDs on execve. */
2310 new_tsec->create_sid = 0;
2311 new_tsec->keycreate_sid = 0;
2312 new_tsec->sockcreate_sid = 0;
2313
2314 if (old_tsec->exec_sid) {
2315 new_tsec->sid = old_tsec->exec_sid;
2316 /* Reset exec SID on execve. */
2317 new_tsec->exec_sid = 0;
2318
2319 /* Fail on NNP or nosuid if not an allowed transition. */
2320 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2321 if (rc)
2322 return rc;
2323 } else {
2324 /* Check for a default transition on this program. */
2325 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2326 isec->sid, SECCLASS_PROCESS, NULL,
2327 &new_tsec->sid);
2328 if (rc)
2329 return rc;
2330
2331 /*
2332 * Fallback to old SID on NNP or nosuid if not an allowed
2333 * transition.
2334 */
2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 if (rc)
2337 new_tsec->sid = old_tsec->sid;
2338 }
2339
2340 ad.type = LSM_AUDIT_DATA_FILE;
2341 ad.u.file = bprm->file;
2342
2343 if (new_tsec->sid == old_tsec->sid) {
2344 rc = avc_has_perm(&selinux_state,
2345 old_tsec->sid, isec->sid,
2346 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2347 if (rc)
2348 return rc;
2349 } else {
2350 /* Check permissions for the transition. */
2351 rc = avc_has_perm(&selinux_state,
2352 old_tsec->sid, new_tsec->sid,
2353 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2354 if (rc)
2355 return rc;
2356
2357 rc = avc_has_perm(&selinux_state,
2358 new_tsec->sid, isec->sid,
2359 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360 if (rc)
2361 return rc;
2362
2363 /* Check for shared state */
2364 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365 rc = avc_has_perm(&selinux_state,
2366 old_tsec->sid, new_tsec->sid,
2367 SECCLASS_PROCESS, PROCESS__SHARE,
2368 NULL);
2369 if (rc)
2370 return -EPERM;
2371 }
2372
2373 /* Make sure that anyone attempting to ptrace over a task that
2374 * changes its SID has the appropriate permit */
2375 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2376 u32 ptsid = ptrace_parent_sid();
2377 if (ptsid != 0) {
2378 rc = avc_has_perm(&selinux_state,
2379 ptsid, new_tsec->sid,
2380 SECCLASS_PROCESS,
2381 PROCESS__PTRACE, NULL);
2382 if (rc)
2383 return -EPERM;
2384 }
2385 }
2386
2387 /* Clear any possibly unsafe personality bits on exec: */
2388 bprm->per_clear |= PER_CLEAR_ON_SETID;
2389
2390 /* Enable secure mode for SIDs transitions unless
2391 the noatsecure permission is granted between
2392 the two SIDs, i.e. ahp returns 0. */
2393 rc = avc_has_perm(&selinux_state,
2394 old_tsec->sid, new_tsec->sid,
2395 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2396 NULL);
2397 bprm->secureexec |= !!rc;
2398 }
2399
2400 return 0;
2401}
2402
2403static int match_file(const void *p, struct file *file, unsigned fd)
2404{
2405 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2406}
2407
2408/* Derived from fs/exec.c:flush_old_files. */
2409static inline void flush_unauthorized_files(const struct cred *cred,
2410 struct files_struct *files)
2411{
2412 struct file *file, *devnull = NULL;
2413 struct tty_struct *tty;
2414 int drop_tty = 0;
2415 unsigned n;
2416
2417 tty = get_current_tty();
2418 if (tty) {
2419 spin_lock(&tty->files_lock);
2420 if (!list_empty(&tty->tty_files)) {
2421 struct tty_file_private *file_priv;
2422
2423 /* Revalidate access to controlling tty.
2424 Use file_path_has_perm on the tty path directly
2425 rather than using file_has_perm, as this particular
2426 open file may belong to another process and we are
2427 only interested in the inode-based check here. */
2428 file_priv = list_first_entry(&tty->tty_files,
2429 struct tty_file_private, list);
2430 file = file_priv->file;
2431 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2432 drop_tty = 1;
2433 }
2434 spin_unlock(&tty->files_lock);
2435 tty_kref_put(tty);
2436 }
2437 /* Reset controlling tty. */
2438 if (drop_tty)
2439 no_tty();
2440
2441 /* Revalidate access to inherited open files. */
2442 n = iterate_fd(files, 0, match_file, cred);
2443 if (!n) /* none found? */
2444 return;
2445
2446 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2447 if (IS_ERR(devnull))
2448 devnull = NULL;
2449 /* replace all the matching ones with this */
2450 do {
2451 replace_fd(n - 1, devnull, 0);
2452 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2453 if (devnull)
2454 fput(devnull);
2455}
2456
2457/*
2458 * Prepare a process for imminent new credential changes due to exec
2459 */
2460static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2461{
2462 struct task_security_struct *new_tsec;
2463 struct rlimit *rlim, *initrlim;
2464 int rc, i;
2465
2466 new_tsec = selinux_cred(bprm->cred);
2467 if (new_tsec->sid == new_tsec->osid)
2468 return;
2469
2470 /* Close files for which the new task SID is not authorized. */
2471 flush_unauthorized_files(bprm->cred, current->files);
2472
2473 /* Always clear parent death signal on SID transitions. */
2474 current->pdeath_signal = 0;
2475
2476 /* Check whether the new SID can inherit resource limits from the old
2477 * SID. If not, reset all soft limits to the lower of the current
2478 * task's hard limit and the init task's soft limit.
2479 *
2480 * Note that the setting of hard limits (even to lower them) can be
2481 * controlled by the setrlimit check. The inclusion of the init task's
2482 * soft limit into the computation is to avoid resetting soft limits
2483 * higher than the default soft limit for cases where the default is
2484 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2485 */
2486 rc = avc_has_perm(&selinux_state,
2487 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2488 PROCESS__RLIMITINH, NULL);
2489 if (rc) {
2490 /* protect against do_prlimit() */
2491 task_lock(current);
2492 for (i = 0; i < RLIM_NLIMITS; i++) {
2493 rlim = current->signal->rlim + i;
2494 initrlim = init_task.signal->rlim + i;
2495 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2496 }
2497 task_unlock(current);
2498 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2499 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2500 }
2501}
2502
2503/*
2504 * Clean up the process immediately after the installation of new credentials
2505 * due to exec
2506 */
2507static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2508{
2509 const struct task_security_struct *tsec = selinux_cred(current_cred());
2510 u32 osid, sid;
2511 int rc;
2512
2513 osid = tsec->osid;
2514 sid = tsec->sid;
2515
2516 if (sid == osid)
2517 return;
2518
2519 /* Check whether the new SID can inherit signal state from the old SID.
2520 * If not, clear itimers to avoid subsequent signal generation and
2521 * flush and unblock signals.
2522 *
2523 * This must occur _after_ the task SID has been updated so that any
2524 * kill done after the flush will be checked against the new SID.
2525 */
2526 rc = avc_has_perm(&selinux_state,
2527 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2528 if (rc) {
2529 clear_itimer();
2530
2531 spin_lock_irq(¤t->sighand->siglock);
2532 if (!fatal_signal_pending(current)) {
2533 flush_sigqueue(¤t->pending);
2534 flush_sigqueue(¤t->signal->shared_pending);
2535 flush_signal_handlers(current, 1);
2536 sigemptyset(¤t->blocked);
2537 recalc_sigpending();
2538 }
2539 spin_unlock_irq(¤t->sighand->siglock);
2540 }
2541
2542 /* Wake up the parent if it is waiting so that it can recheck
2543 * wait permission to the new task SID. */
2544 read_lock(&tasklist_lock);
2545 __wake_up_parent(current, current->real_parent);
2546 read_unlock(&tasklist_lock);
2547}
2548
2549/* superblock security operations */
2550
2551static int selinux_sb_alloc_security(struct super_block *sb)
2552{
2553 struct superblock_security_struct *sbsec;
2554
2555 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2556 if (!sbsec)
2557 return -ENOMEM;
2558
2559 mutex_init(&sbsec->lock);
2560 INIT_LIST_HEAD(&sbsec->isec_head);
2561 spin_lock_init(&sbsec->isec_lock);
2562 sbsec->sb = sb;
2563 sbsec->sid = SECINITSID_UNLABELED;
2564 sbsec->def_sid = SECINITSID_FILE;
2565 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2566 sb->s_security = sbsec;
2567
2568 return 0;
2569}
2570
2571static void selinux_sb_free_security(struct super_block *sb)
2572{
2573 superblock_free_security(sb);
2574}
2575
2576static inline int opt_len(const char *s)
2577{
2578 bool open_quote = false;
2579 int len;
2580 char c;
2581
2582 for (len = 0; (c = s[len]) != '\0'; len++) {
2583 if (c == '"')
2584 open_quote = !open_quote;
2585 if (c == ',' && !open_quote)
2586 break;
2587 }
2588 return len;
2589}
2590
2591static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2592{
2593 char *from = options;
2594 char *to = options;
2595 bool first = true;
2596 int rc;
2597
2598 while (1) {
2599 int len = opt_len(from);
2600 int token;
2601 char *arg = NULL;
2602
2603 token = match_opt_prefix(from, len, &arg);
2604
2605 if (token != Opt_error) {
2606 char *p, *q;
2607
2608 /* strip quotes */
2609 if (arg) {
2610 for (p = q = arg; p < from + len; p++) {
2611 char c = *p;
2612 if (c != '"')
2613 *q++ = c;
2614 }
2615 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2616 if (!arg) {
2617 rc = -ENOMEM;
2618 goto free_opt;
2619 }
2620 }
2621 rc = selinux_add_opt(token, arg, mnt_opts);
2622 if (unlikely(rc)) {
2623 kfree(arg);
2624 goto free_opt;
2625 }
2626 } else {
2627 if (!first) { // copy with preceding comma
2628 from--;
2629 len++;
2630 }
2631 if (to != from)
2632 memmove(to, from, len);
2633 to += len;
2634 first = false;
2635 }
2636 if (!from[len])
2637 break;
2638 from += len + 1;
2639 }
2640 *to = '\0';
2641 return 0;
2642
2643free_opt:
2644 if (*mnt_opts) {
2645 selinux_free_mnt_opts(*mnt_opts);
2646 *mnt_opts = NULL;
2647 }
2648 return rc;
2649}
2650
2651static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2652{
2653 struct selinux_mnt_opts *opts = mnt_opts;
2654 struct superblock_security_struct *sbsec = sb->s_security;
2655 u32 sid;
2656 int rc;
2657
2658 if (!(sbsec->flags & SE_SBINITIALIZED))
2659 return 0;
2660
2661 if (!opts)
2662 return 0;
2663
2664 if (opts->fscontext) {
2665 rc = parse_sid(sb, opts->fscontext, &sid);
2666 if (rc)
2667 return rc;
2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2669 goto out_bad_option;
2670 }
2671 if (opts->context) {
2672 rc = parse_sid(sb, opts->context, &sid);
2673 if (rc)
2674 return rc;
2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2676 goto out_bad_option;
2677 }
2678 if (opts->rootcontext) {
2679 struct inode_security_struct *root_isec;
2680 root_isec = backing_inode_security(sb->s_root);
2681 rc = parse_sid(sb, opts->rootcontext, &sid);
2682 if (rc)
2683 return rc;
2684 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2685 goto out_bad_option;
2686 }
2687 if (opts->defcontext) {
2688 rc = parse_sid(sb, opts->defcontext, &sid);
2689 if (rc)
2690 return rc;
2691 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2692 goto out_bad_option;
2693 }
2694 return 0;
2695
2696out_bad_option:
2697 pr_warn("SELinux: unable to change security options "
2698 "during remount (dev %s, type=%s)\n", sb->s_id,
2699 sb->s_type->name);
2700 return -EINVAL;
2701}
2702
2703static int selinux_sb_kern_mount(struct super_block *sb)
2704{
2705 const struct cred *cred = current_cred();
2706 struct common_audit_data ad;
2707
2708 ad.type = LSM_AUDIT_DATA_DENTRY;
2709 ad.u.dentry = sb->s_root;
2710 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2711}
2712
2713static int selinux_sb_statfs(struct dentry *dentry)
2714{
2715 const struct cred *cred = current_cred();
2716 struct common_audit_data ad;
2717
2718 ad.type = LSM_AUDIT_DATA_DENTRY;
2719 ad.u.dentry = dentry->d_sb->s_root;
2720 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2721}
2722
2723static int selinux_mount(const char *dev_name,
2724 const struct path *path,
2725 const char *type,
2726 unsigned long flags,
2727 void *data)
2728{
2729 const struct cred *cred = current_cred();
2730
2731 if (flags & MS_REMOUNT)
2732 return superblock_has_perm(cred, path->dentry->d_sb,
2733 FILESYSTEM__REMOUNT, NULL);
2734 else
2735 return path_has_perm(cred, path, FILE__MOUNTON);
2736}
2737
2738static int selinux_move_mount(const struct path *from_path,
2739 const struct path *to_path)
2740{
2741 const struct cred *cred = current_cred();
2742
2743 return path_has_perm(cred, to_path, FILE__MOUNTON);
2744}
2745
2746static int selinux_umount(struct vfsmount *mnt, int flags)
2747{
2748 const struct cred *cred = current_cred();
2749
2750 return superblock_has_perm(cred, mnt->mnt_sb,
2751 FILESYSTEM__UNMOUNT, NULL);
2752}
2753
2754static int selinux_fs_context_dup(struct fs_context *fc,
2755 struct fs_context *src_fc)
2756{
2757 const struct selinux_mnt_opts *src = src_fc->security;
2758 struct selinux_mnt_opts *opts;
2759
2760 if (!src)
2761 return 0;
2762
2763 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2764 if (!fc->security)
2765 return -ENOMEM;
2766
2767 opts = fc->security;
2768
2769 if (src->fscontext) {
2770 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2771 if (!opts->fscontext)
2772 return -ENOMEM;
2773 }
2774 if (src->context) {
2775 opts->context = kstrdup(src->context, GFP_KERNEL);
2776 if (!opts->context)
2777 return -ENOMEM;
2778 }
2779 if (src->rootcontext) {
2780 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2781 if (!opts->rootcontext)
2782 return -ENOMEM;
2783 }
2784 if (src->defcontext) {
2785 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2786 if (!opts->defcontext)
2787 return -ENOMEM;
2788 }
2789 return 0;
2790}
2791
2792static const struct fs_parameter_spec selinux_fs_parameters[] = {
2793 fsparam_string(CONTEXT_STR, Opt_context),
2794 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2795 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2796 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2797 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2798 {}
2799};
2800
2801static int selinux_fs_context_parse_param(struct fs_context *fc,
2802 struct fs_parameter *param)
2803{
2804 struct fs_parse_result result;
2805 int opt, rc;
2806
2807 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2808 if (opt < 0)
2809 return opt;
2810
2811 rc = selinux_add_opt(opt, param->string, &fc->security);
2812 if (!rc) {
2813 param->string = NULL;
2814 rc = 1;
2815 }
2816 return rc;
2817}
2818
2819/* inode security operations */
2820
2821static int selinux_inode_alloc_security(struct inode *inode)
2822{
2823 struct inode_security_struct *isec = selinux_inode(inode);
2824 u32 sid = current_sid();
2825
2826 spin_lock_init(&isec->lock);
2827 INIT_LIST_HEAD(&isec->list);
2828 isec->inode = inode;
2829 isec->sid = SECINITSID_UNLABELED;
2830 isec->sclass = SECCLASS_FILE;
2831 isec->task_sid = sid;
2832 isec->initialized = LABEL_INVALID;
2833
2834 return 0;
2835}
2836
2837static void selinux_inode_free_security(struct inode *inode)
2838{
2839 inode_free_security(inode);
2840}
2841
2842static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2843 const struct qstr *name, void **ctx,
2844 u32 *ctxlen)
2845{
2846 u32 newsid;
2847 int rc;
2848
2849 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2850 d_inode(dentry->d_parent), name,
2851 inode_mode_to_security_class(mode),
2852 &newsid);
2853 if (rc)
2854 return rc;
2855
2856 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2857 ctxlen);
2858}
2859
2860static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2861 struct qstr *name,
2862 const struct cred *old,
2863 struct cred *new)
2864{
2865 u32 newsid;
2866 int rc;
2867 struct task_security_struct *tsec;
2868
2869 rc = selinux_determine_inode_label(selinux_cred(old),
2870 d_inode(dentry->d_parent), name,
2871 inode_mode_to_security_class(mode),
2872 &newsid);
2873 if (rc)
2874 return rc;
2875
2876 tsec = selinux_cred(new);
2877 tsec->create_sid = newsid;
2878 return 0;
2879}
2880
2881static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2882 const struct qstr *qstr,
2883 const char **name,
2884 void **value, size_t *len)
2885{
2886 const struct task_security_struct *tsec = selinux_cred(current_cred());
2887 struct superblock_security_struct *sbsec;
2888 u32 newsid, clen;
2889 int rc;
2890 char *context;
2891
2892 sbsec = dir->i_sb->s_security;
2893
2894 newsid = tsec->create_sid;
2895
2896 rc = selinux_determine_inode_label(tsec, dir, qstr,
2897 inode_mode_to_security_class(inode->i_mode),
2898 &newsid);
2899 if (rc)
2900 return rc;
2901
2902 /* Possibly defer initialization to selinux_complete_init. */
2903 if (sbsec->flags & SE_SBINITIALIZED) {
2904 struct inode_security_struct *isec = selinux_inode(inode);
2905 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2906 isec->sid = newsid;
2907 isec->initialized = LABEL_INITIALIZED;
2908 }
2909
2910 if (!selinux_initialized(&selinux_state) ||
2911 !(sbsec->flags & SBLABEL_MNT))
2912 return -EOPNOTSUPP;
2913
2914 if (name)
2915 *name = XATTR_SELINUX_SUFFIX;
2916
2917 if (value && len) {
2918 rc = security_sid_to_context_force(&selinux_state, newsid,
2919 &context, &clen);
2920 if (rc)
2921 return rc;
2922 *value = context;
2923 *len = clen;
2924 }
2925
2926 return 0;
2927}
2928
2929static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2930{
2931 return may_create(dir, dentry, SECCLASS_FILE);
2932}
2933
2934static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2935{
2936 return may_link(dir, old_dentry, MAY_LINK);
2937}
2938
2939static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2940{
2941 return may_link(dir, dentry, MAY_UNLINK);
2942}
2943
2944static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2945{
2946 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2947}
2948
2949static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2950{
2951 return may_create(dir, dentry, SECCLASS_DIR);
2952}
2953
2954static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2955{
2956 return may_link(dir, dentry, MAY_RMDIR);
2957}
2958
2959static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960{
2961 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2962}
2963
2964static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2965 struct inode *new_inode, struct dentry *new_dentry)
2966{
2967 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2968}
2969
2970static int selinux_inode_readlink(struct dentry *dentry)
2971{
2972 const struct cred *cred = current_cred();
2973
2974 return dentry_has_perm(cred, dentry, FILE__READ);
2975}
2976
2977static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2978 bool rcu)
2979{
2980 const struct cred *cred = current_cred();
2981 struct common_audit_data ad;
2982 struct inode_security_struct *isec;
2983 u32 sid;
2984
2985 validate_creds(cred);
2986
2987 ad.type = LSM_AUDIT_DATA_DENTRY;
2988 ad.u.dentry = dentry;
2989 sid = cred_sid(cred);
2990 isec = inode_security_rcu(inode, rcu);
2991 if (IS_ERR(isec))
2992 return PTR_ERR(isec);
2993
2994 return avc_has_perm_flags(&selinux_state,
2995 sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996 rcu ? MAY_NOT_BLOCK : 0);
2997}
2998
2999static noinline int audit_inode_permission(struct inode *inode,
3000 u32 perms, u32 audited, u32 denied,
3001 int result)
3002{
3003 struct common_audit_data ad;
3004 struct inode_security_struct *isec = selinux_inode(inode);
3005 int rc;
3006
3007 ad.type = LSM_AUDIT_DATA_INODE;
3008 ad.u.inode = inode;
3009
3010 rc = slow_avc_audit(&selinux_state,
3011 current_sid(), isec->sid, isec->sclass, perms,
3012 audited, denied, result, &ad);
3013 if (rc)
3014 return rc;
3015 return 0;
3016}
3017
3018static int selinux_inode_permission(struct inode *inode, int mask)
3019{
3020 const struct cred *cred = current_cred();
3021 u32 perms;
3022 bool from_access;
3023 bool no_block = mask & MAY_NOT_BLOCK;
3024 struct inode_security_struct *isec;
3025 u32 sid;
3026 struct av_decision avd;
3027 int rc, rc2;
3028 u32 audited, denied;
3029
3030 from_access = mask & MAY_ACCESS;
3031 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032
3033 /* No permission to check. Existence test. */
3034 if (!mask)
3035 return 0;
3036
3037 validate_creds(cred);
3038
3039 if (unlikely(IS_PRIVATE(inode)))
3040 return 0;
3041
3042 perms = file_mask_to_av(inode->i_mode, mask);
3043
3044 sid = cred_sid(cred);
3045 isec = inode_security_rcu(inode, no_block);
3046 if (IS_ERR(isec))
3047 return PTR_ERR(isec);
3048
3049 rc = avc_has_perm_noaudit(&selinux_state,
3050 sid, isec->sid, isec->sclass, perms,
3051 no_block ? AVC_NONBLOCKING : 0,
3052 &avd);
3053 audited = avc_audit_required(perms, &avd, rc,
3054 from_access ? FILE__AUDIT_ACCESS : 0,
3055 &denied);
3056 if (likely(!audited))
3057 return rc;
3058
3059 /* fall back to ref-walk if we have to generate audit */
3060 if (no_block)
3061 return -ECHILD;
3062
3063 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3064 if (rc2)
3065 return rc2;
3066 return rc;
3067}
3068
3069static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3070{
3071 const struct cred *cred = current_cred();
3072 struct inode *inode = d_backing_inode(dentry);
3073 unsigned int ia_valid = iattr->ia_valid;
3074 __u32 av = FILE__WRITE;
3075
3076 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3077 if (ia_valid & ATTR_FORCE) {
3078 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3079 ATTR_FORCE);
3080 if (!ia_valid)
3081 return 0;
3082 }
3083
3084 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3085 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3086 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3087
3088 if (selinux_policycap_openperm() &&
3089 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3090 (ia_valid & ATTR_SIZE) &&
3091 !(ia_valid & ATTR_FILE))
3092 av |= FILE__OPEN;
3093
3094 return dentry_has_perm(cred, dentry, av);
3095}
3096
3097static int selinux_inode_getattr(const struct path *path)
3098{
3099 return path_has_perm(current_cred(), path, FILE__GETATTR);
3100}
3101
3102static bool has_cap_mac_admin(bool audit)
3103{
3104 const struct cred *cred = current_cred();
3105 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3106
3107 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3108 return false;
3109 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3110 return false;
3111 return true;
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115 const void *value, size_t size, int flags)
3116{
3117 struct inode *inode = d_backing_inode(dentry);
3118 struct inode_security_struct *isec;
3119 struct superblock_security_struct *sbsec;
3120 struct common_audit_data ad;
3121 u32 newsid, sid = current_sid();
3122 int rc = 0;
3123
3124 if (strcmp(name, XATTR_NAME_SELINUX)) {
3125 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3126 if (rc)
3127 return rc;
3128
3129 /* Not an attribute we recognize, so just check the
3130 ordinary setattr permission. */
3131 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3132 }
3133
3134 if (!selinux_initialized(&selinux_state))
3135 return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3136
3137 sbsec = inode->i_sb->s_security;
3138 if (!(sbsec->flags & SBLABEL_MNT))
3139 return -EOPNOTSUPP;
3140
3141 if (!inode_owner_or_capable(inode))
3142 return -EPERM;
3143
3144 ad.type = LSM_AUDIT_DATA_DENTRY;
3145 ad.u.dentry = dentry;
3146
3147 isec = backing_inode_security(dentry);
3148 rc = avc_has_perm(&selinux_state,
3149 sid, isec->sid, isec->sclass,
3150 FILE__RELABELFROM, &ad);
3151 if (rc)
3152 return rc;
3153
3154 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3155 GFP_KERNEL);
3156 if (rc == -EINVAL) {
3157 if (!has_cap_mac_admin(true)) {
3158 struct audit_buffer *ab;
3159 size_t audit_size;
3160
3161 /* We strip a nul only if it is at the end, otherwise the
3162 * context contains a nul and we should audit that */
3163 if (value) {
3164 const char *str = value;
3165
3166 if (str[size - 1] == '\0')
3167 audit_size = size - 1;
3168 else
3169 audit_size = size;
3170 } else {
3171 audit_size = 0;
3172 }
3173 ab = audit_log_start(audit_context(),
3174 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3175 audit_log_format(ab, "op=setxattr invalid_context=");
3176 audit_log_n_untrustedstring(ab, value, audit_size);
3177 audit_log_end(ab);
3178
3179 return rc;
3180 }
3181 rc = security_context_to_sid_force(&selinux_state, value,
3182 size, &newsid);
3183 }
3184 if (rc)
3185 return rc;
3186
3187 rc = avc_has_perm(&selinux_state,
3188 sid, newsid, isec->sclass,
3189 FILE__RELABELTO, &ad);
3190 if (rc)
3191 return rc;
3192
3193 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3194 sid, isec->sclass);
3195 if (rc)
3196 return rc;
3197
3198 return avc_has_perm(&selinux_state,
3199 newsid,
3200 sbsec->sid,
3201 SECCLASS_FILESYSTEM,
3202 FILESYSTEM__ASSOCIATE,
3203 &ad);
3204}
3205
3206static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3207 const void *value, size_t size,
3208 int flags)
3209{
3210 struct inode *inode = d_backing_inode(dentry);
3211 struct inode_security_struct *isec;
3212 u32 newsid;
3213 int rc;
3214
3215 if (strcmp(name, XATTR_NAME_SELINUX)) {
3216 /* Not an attribute we recognize, so nothing to do. */
3217 return;
3218 }
3219
3220 if (!selinux_initialized(&selinux_state)) {
3221 /* If we haven't even been initialized, then we can't validate
3222 * against a policy, so leave the label as invalid. It may
3223 * resolve to a valid label on the next revalidation try if
3224 * we've since initialized.
3225 */
3226 return;
3227 }
3228
3229 rc = security_context_to_sid_force(&selinux_state, value, size,
3230 &newsid);
3231 if (rc) {
3232 pr_err("SELinux: unable to map context to SID"
3233 "for (%s, %lu), rc=%d\n",
3234 inode->i_sb->s_id, inode->i_ino, -rc);
3235 return;
3236 }
3237
3238 isec = backing_inode_security(dentry);
3239 spin_lock(&isec->lock);
3240 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3241 isec->sid = newsid;
3242 isec->initialized = LABEL_INITIALIZED;
3243 spin_unlock(&isec->lock);
3244
3245 return;
3246}
3247
3248static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3249{
3250 const struct cred *cred = current_cred();
3251
3252 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3253}
3254
3255static int selinux_inode_listxattr(struct dentry *dentry)
3256{
3257 const struct cred *cred = current_cred();
3258
3259 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3260}
3261
3262static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3263{
3264 if (strcmp(name, XATTR_NAME_SELINUX)) {
3265 int rc = cap_inode_removexattr(dentry, name);
3266 if (rc)
3267 return rc;
3268
3269 /* Not an attribute we recognize, so just check the
3270 ordinary setattr permission. */
3271 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272 }
3273
3274 /* No one is allowed to remove a SELinux security label.
3275 You can change the label, but all data must be labeled. */
3276 return -EACCES;
3277}
3278
3279static int selinux_path_notify(const struct path *path, u64 mask,
3280 unsigned int obj_type)
3281{
3282 int ret;
3283 u32 perm;
3284
3285 struct common_audit_data ad;
3286
3287 ad.type = LSM_AUDIT_DATA_PATH;
3288 ad.u.path = *path;
3289
3290 /*
3291 * Set permission needed based on the type of mark being set.
3292 * Performs an additional check for sb watches.
3293 */
3294 switch (obj_type) {
3295 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3296 perm = FILE__WATCH_MOUNT;
3297 break;
3298 case FSNOTIFY_OBJ_TYPE_SB:
3299 perm = FILE__WATCH_SB;
3300 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3301 FILESYSTEM__WATCH, &ad);
3302 if (ret)
3303 return ret;
3304 break;
3305 case FSNOTIFY_OBJ_TYPE_INODE:
3306 perm = FILE__WATCH;
3307 break;
3308 default:
3309 return -EINVAL;
3310 }
3311
3312 /* blocking watches require the file:watch_with_perm permission */
3313 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3314 perm |= FILE__WATCH_WITH_PERM;
3315
3316 /* watches on read-like events need the file:watch_reads permission */
3317 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3318 perm |= FILE__WATCH_READS;
3319
3320 return path_has_perm(current_cred(), path, perm);
3321}
3322
3323/*
3324 * Copy the inode security context value to the user.
3325 *
3326 * Permission check is handled by selinux_inode_getxattr hook.
3327 */
3328static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3329{
3330 u32 size;
3331 int error;
3332 char *context = NULL;
3333 struct inode_security_struct *isec;
3334
3335 /*
3336 * If we're not initialized yet, then we can't validate contexts, so
3337 * just let vfs_getxattr fall back to using the on-disk xattr.
3338 */
3339 if (!selinux_initialized(&selinux_state) ||
3340 strcmp(name, XATTR_SELINUX_SUFFIX))
3341 return -EOPNOTSUPP;
3342
3343 /*
3344 * If the caller has CAP_MAC_ADMIN, then get the raw context
3345 * value even if it is not defined by current policy; otherwise,
3346 * use the in-core value under current policy.
3347 * Use the non-auditing forms of the permission checks since
3348 * getxattr may be called by unprivileged processes commonly
3349 * and lack of permission just means that we fall back to the
3350 * in-core context value, not a denial.
3351 */
3352 isec = inode_security(inode);
3353 if (has_cap_mac_admin(false))
3354 error = security_sid_to_context_force(&selinux_state,
3355 isec->sid, &context,
3356 &size);
3357 else
3358 error = security_sid_to_context(&selinux_state, isec->sid,
3359 &context, &size);
3360 if (error)
3361 return error;
3362 error = size;
3363 if (alloc) {
3364 *buffer = context;
3365 goto out_nofree;
3366 }
3367 kfree(context);
3368out_nofree:
3369 return error;
3370}
3371
3372static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3373 const void *value, size_t size, int flags)
3374{
3375 struct inode_security_struct *isec = inode_security_novalidate(inode);
3376 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3377 u32 newsid;
3378 int rc;
3379
3380 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3381 return -EOPNOTSUPP;
3382
3383 if (!(sbsec->flags & SBLABEL_MNT))
3384 return -EOPNOTSUPP;
3385
3386 if (!value || !size)
3387 return -EACCES;
3388
3389 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3390 GFP_KERNEL);
3391 if (rc)
3392 return rc;
3393
3394 spin_lock(&isec->lock);
3395 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3396 isec->sid = newsid;
3397 isec->initialized = LABEL_INITIALIZED;
3398 spin_unlock(&isec->lock);
3399 return 0;
3400}
3401
3402static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3403{
3404 const int len = sizeof(XATTR_NAME_SELINUX);
3405 if (buffer && len <= buffer_size)
3406 memcpy(buffer, XATTR_NAME_SELINUX, len);
3407 return len;
3408}
3409
3410static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3411{
3412 struct inode_security_struct *isec = inode_security_novalidate(inode);
3413 *secid = isec->sid;
3414}
3415
3416static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3417{
3418 u32 sid;
3419 struct task_security_struct *tsec;
3420 struct cred *new_creds = *new;
3421
3422 if (new_creds == NULL) {
3423 new_creds = prepare_creds();
3424 if (!new_creds)
3425 return -ENOMEM;
3426 }
3427
3428 tsec = selinux_cred(new_creds);
3429 /* Get label from overlay inode and set it in create_sid */
3430 selinux_inode_getsecid(d_inode(src), &sid);
3431 tsec->create_sid = sid;
3432 *new = new_creds;
3433 return 0;
3434}
3435
3436static int selinux_inode_copy_up_xattr(const char *name)
3437{
3438 /* The copy_up hook above sets the initial context on an inode, but we
3439 * don't then want to overwrite it by blindly copying all the lower
3440 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3441 */
3442 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3443 return 1; /* Discard */
3444 /*
3445 * Any other attribute apart from SELINUX is not claimed, supported
3446 * by selinux.
3447 */
3448 return -EOPNOTSUPP;
3449}
3450
3451/* kernfs node operations */
3452
3453static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3454 struct kernfs_node *kn)
3455{
3456 const struct task_security_struct *tsec = selinux_cred(current_cred());
3457 u32 parent_sid, newsid, clen;
3458 int rc;
3459 char *context;
3460
3461 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3462 if (rc == -ENODATA)
3463 return 0;
3464 else if (rc < 0)
3465 return rc;
3466
3467 clen = (u32)rc;
3468 context = kmalloc(clen, GFP_KERNEL);
3469 if (!context)
3470 return -ENOMEM;
3471
3472 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3473 if (rc < 0) {
3474 kfree(context);
3475 return rc;
3476 }
3477
3478 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3479 GFP_KERNEL);
3480 kfree(context);
3481 if (rc)
3482 return rc;
3483
3484 if (tsec->create_sid) {
3485 newsid = tsec->create_sid;
3486 } else {
3487 u16 secclass = inode_mode_to_security_class(kn->mode);
3488 struct qstr q;
3489
3490 q.name = kn->name;
3491 q.hash_len = hashlen_string(kn_dir, kn->name);
3492
3493 rc = security_transition_sid(&selinux_state, tsec->sid,
3494 parent_sid, secclass, &q,
3495 &newsid);
3496 if (rc)
3497 return rc;
3498 }
3499
3500 rc = security_sid_to_context_force(&selinux_state, newsid,
3501 &context, &clen);
3502 if (rc)
3503 return rc;
3504
3505 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3506 XATTR_CREATE);
3507 kfree(context);
3508 return rc;
3509}
3510
3511
3512/* file security operations */
3513
3514static int selinux_revalidate_file_permission(struct file *file, int mask)
3515{
3516 const struct cred *cred = current_cred();
3517 struct inode *inode = file_inode(file);
3518
3519 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521 mask |= MAY_APPEND;
3522
3523 return file_has_perm(cred, file,
3524 file_mask_to_av(inode->i_mode, mask));
3525}
3526
3527static int selinux_file_permission(struct file *file, int mask)
3528{
3529 struct inode *inode = file_inode(file);
3530 struct file_security_struct *fsec = selinux_file(file);
3531 struct inode_security_struct *isec;
3532 u32 sid = current_sid();
3533
3534 if (!mask)
3535 /* No permission to check. Existence test. */
3536 return 0;
3537
3538 isec = inode_security(inode);
3539 if (sid == fsec->sid && fsec->isid == isec->sid &&
3540 fsec->pseqno == avc_policy_seqno(&selinux_state))
3541 /* No change since file_open check. */
3542 return 0;
3543
3544 return selinux_revalidate_file_permission(file, mask);
3545}
3546
3547static int selinux_file_alloc_security(struct file *file)
3548{
3549 struct file_security_struct *fsec = selinux_file(file);
3550 u32 sid = current_sid();
3551
3552 fsec->sid = sid;
3553 fsec->fown_sid = sid;
3554
3555 return 0;
3556}
3557
3558/*
3559 * Check whether a task has the ioctl permission and cmd
3560 * operation to an inode.
3561 */
3562static int ioctl_has_perm(const struct cred *cred, struct file *file,
3563 u32 requested, u16 cmd)
3564{
3565 struct common_audit_data ad;
3566 struct file_security_struct *fsec = selinux_file(file);
3567 struct inode *inode = file_inode(file);
3568 struct inode_security_struct *isec;
3569 struct lsm_ioctlop_audit ioctl;
3570 u32 ssid = cred_sid(cred);
3571 int rc;
3572 u8 driver = cmd >> 8;
3573 u8 xperm = cmd & 0xff;
3574
3575 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3576 ad.u.op = &ioctl;
3577 ad.u.op->cmd = cmd;
3578 ad.u.op->path = file->f_path;
3579
3580 if (ssid != fsec->sid) {
3581 rc = avc_has_perm(&selinux_state,
3582 ssid, fsec->sid,
3583 SECCLASS_FD,
3584 FD__USE,
3585 &ad);
3586 if (rc)
3587 goto out;
3588 }
3589
3590 if (unlikely(IS_PRIVATE(inode)))
3591 return 0;
3592
3593 isec = inode_security(inode);
3594 rc = avc_has_extended_perms(&selinux_state,
3595 ssid, isec->sid, isec->sclass,
3596 requested, driver, xperm, &ad);
3597out:
3598 return rc;
3599}
3600
3601static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3602 unsigned long arg)
3603{
3604 const struct cred *cred = current_cred();
3605 int error = 0;
3606
3607 switch (cmd) {
3608 case FIONREAD:
3609 case FIBMAP:
3610 case FIGETBSZ:
3611 case FS_IOC_GETFLAGS:
3612 case FS_IOC_GETVERSION:
3613 error = file_has_perm(cred, file, FILE__GETATTR);
3614 break;
3615
3616 case FS_IOC_SETFLAGS:
3617 case FS_IOC_SETVERSION:
3618 error = file_has_perm(cred, file, FILE__SETATTR);
3619 break;
3620
3621 /* sys_ioctl() checks */
3622 case FIONBIO:
3623 case FIOASYNC:
3624 error = file_has_perm(cred, file, 0);
3625 break;
3626
3627 case KDSKBENT:
3628 case KDSKBSENT:
3629 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3630 CAP_OPT_NONE, true);
3631 break;
3632
3633 /* default case assumes that the command will go
3634 * to the file's ioctl() function.
3635 */
3636 default:
3637 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3638 }
3639 return error;
3640}
3641
3642static int default_noexec __ro_after_init;
3643
3644static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3645{
3646 const struct cred *cred = current_cred();
3647 u32 sid = cred_sid(cred);
3648 int rc = 0;
3649
3650 if (default_noexec &&
3651 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3652 (!shared && (prot & PROT_WRITE)))) {
3653 /*
3654 * We are making executable an anonymous mapping or a
3655 * private file mapping that will also be writable.
3656 * This has an additional check.
3657 */
3658 rc = avc_has_perm(&selinux_state,
3659 sid, sid, SECCLASS_PROCESS,
3660 PROCESS__EXECMEM, NULL);
3661 if (rc)
3662 goto error;
3663 }
3664
3665 if (file) {
3666 /* read access is always possible with a mapping */
3667 u32 av = FILE__READ;
3668
3669 /* write access only matters if the mapping is shared */
3670 if (shared && (prot & PROT_WRITE))
3671 av |= FILE__WRITE;
3672
3673 if (prot & PROT_EXEC)
3674 av |= FILE__EXECUTE;
3675
3676 return file_has_perm(cred, file, av);
3677 }
3678
3679error:
3680 return rc;
3681}
3682
3683static int selinux_mmap_addr(unsigned long addr)
3684{
3685 int rc = 0;
3686
3687 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3688 u32 sid = current_sid();
3689 rc = avc_has_perm(&selinux_state,
3690 sid, sid, SECCLASS_MEMPROTECT,
3691 MEMPROTECT__MMAP_ZERO, NULL);
3692 }
3693
3694 return rc;
3695}
3696
3697static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3698 unsigned long prot, unsigned long flags)
3699{
3700 struct common_audit_data ad;
3701 int rc;
3702
3703 if (file) {
3704 ad.type = LSM_AUDIT_DATA_FILE;
3705 ad.u.file = file;
3706 rc = inode_has_perm(current_cred(), file_inode(file),
3707 FILE__MAP, &ad);
3708 if (rc)
3709 return rc;
3710 }
3711
3712 if (selinux_state.checkreqprot)
3713 prot = reqprot;
3714
3715 return file_map_prot_check(file, prot,
3716 (flags & MAP_TYPE) == MAP_SHARED);
3717}
3718
3719static int selinux_file_mprotect(struct vm_area_struct *vma,
3720 unsigned long reqprot,
3721 unsigned long prot)
3722{
3723 const struct cred *cred = current_cred();
3724 u32 sid = cred_sid(cred);
3725
3726 if (selinux_state.checkreqprot)
3727 prot = reqprot;
3728
3729 if (default_noexec &&
3730 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3731 int rc = 0;
3732 if (vma->vm_start >= vma->vm_mm->start_brk &&
3733 vma->vm_end <= vma->vm_mm->brk) {
3734 rc = avc_has_perm(&selinux_state,
3735 sid, sid, SECCLASS_PROCESS,
3736 PROCESS__EXECHEAP, NULL);
3737 } else if (!vma->vm_file &&
3738 ((vma->vm_start <= vma->vm_mm->start_stack &&
3739 vma->vm_end >= vma->vm_mm->start_stack) ||
3740 vma_is_stack_for_current(vma))) {
3741 rc = avc_has_perm(&selinux_state,
3742 sid, sid, SECCLASS_PROCESS,
3743 PROCESS__EXECSTACK, NULL);
3744 } else if (vma->vm_file && vma->anon_vma) {
3745 /*
3746 * We are making executable a file mapping that has
3747 * had some COW done. Since pages might have been
3748 * written, check ability to execute the possibly
3749 * modified content. This typically should only
3750 * occur for text relocations.
3751 */
3752 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3753 }
3754 if (rc)
3755 return rc;
3756 }
3757
3758 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3759}
3760
3761static int selinux_file_lock(struct file *file, unsigned int cmd)
3762{
3763 const struct cred *cred = current_cred();
3764
3765 return file_has_perm(cred, file, FILE__LOCK);
3766}
3767
3768static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3769 unsigned long arg)
3770{
3771 const struct cred *cred = current_cred();
3772 int err = 0;
3773
3774 switch (cmd) {
3775 case F_SETFL:
3776 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3777 err = file_has_perm(cred, file, FILE__WRITE);
3778 break;
3779 }
3780 fallthrough;
3781 case F_SETOWN:
3782 case F_SETSIG:
3783 case F_GETFL:
3784 case F_GETOWN:
3785 case F_GETSIG:
3786 case F_GETOWNER_UIDS:
3787 /* Just check FD__USE permission */
3788 err = file_has_perm(cred, file, 0);
3789 break;
3790 case F_GETLK:
3791 case F_SETLK:
3792 case F_SETLKW:
3793 case F_OFD_GETLK:
3794 case F_OFD_SETLK:
3795 case F_OFD_SETLKW:
3796#if BITS_PER_LONG == 32
3797 case F_GETLK64:
3798 case F_SETLK64:
3799 case F_SETLKW64:
3800#endif
3801 err = file_has_perm(cred, file, FILE__LOCK);
3802 break;
3803 }
3804
3805 return err;
3806}
3807
3808static void selinux_file_set_fowner(struct file *file)
3809{
3810 struct file_security_struct *fsec;
3811
3812 fsec = selinux_file(file);
3813 fsec->fown_sid = current_sid();
3814}
3815
3816static int selinux_file_send_sigiotask(struct task_struct *tsk,
3817 struct fown_struct *fown, int signum)
3818{
3819 struct file *file;
3820 u32 sid = task_sid(tsk);
3821 u32 perm;
3822 struct file_security_struct *fsec;
3823
3824 /* struct fown_struct is never outside the context of a struct file */
3825 file = container_of(fown, struct file, f_owner);
3826
3827 fsec = selinux_file(file);
3828
3829 if (!signum)
3830 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3831 else
3832 perm = signal_to_av(signum);
3833
3834 return avc_has_perm(&selinux_state,
3835 fsec->fown_sid, sid,
3836 SECCLASS_PROCESS, perm, NULL);
3837}
3838
3839static int selinux_file_receive(struct file *file)
3840{
3841 const struct cred *cred = current_cred();
3842
3843 return file_has_perm(cred, file, file_to_av(file));
3844}
3845
3846static int selinux_file_open(struct file *file)
3847{
3848 struct file_security_struct *fsec;
3849 struct inode_security_struct *isec;
3850
3851 fsec = selinux_file(file);
3852 isec = inode_security(file_inode(file));
3853 /*
3854 * Save inode label and policy sequence number
3855 * at open-time so that selinux_file_permission
3856 * can determine whether revalidation is necessary.
3857 * Task label is already saved in the file security
3858 * struct as its SID.
3859 */
3860 fsec->isid = isec->sid;
3861 fsec->pseqno = avc_policy_seqno(&selinux_state);
3862 /*
3863 * Since the inode label or policy seqno may have changed
3864 * between the selinux_inode_permission check and the saving
3865 * of state above, recheck that access is still permitted.
3866 * Otherwise, access might never be revalidated against the
3867 * new inode label or new policy.
3868 * This check is not redundant - do not remove.
3869 */
3870 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3871}
3872
3873/* task security operations */
3874
3875static int selinux_task_alloc(struct task_struct *task,
3876 unsigned long clone_flags)
3877{
3878 u32 sid = current_sid();
3879
3880 return avc_has_perm(&selinux_state,
3881 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3882}
3883
3884/*
3885 * prepare a new set of credentials for modification
3886 */
3887static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3888 gfp_t gfp)
3889{
3890 const struct task_security_struct *old_tsec = selinux_cred(old);
3891 struct task_security_struct *tsec = selinux_cred(new);
3892
3893 *tsec = *old_tsec;
3894 return 0;
3895}
3896
3897/*
3898 * transfer the SELinux data to a blank set of creds
3899 */
3900static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3901{
3902 const struct task_security_struct *old_tsec = selinux_cred(old);
3903 struct task_security_struct *tsec = selinux_cred(new);
3904
3905 *tsec = *old_tsec;
3906}
3907
3908static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3909{
3910 *secid = cred_sid(c);
3911}
3912
3913/*
3914 * set the security data for a kernel service
3915 * - all the creation contexts are set to unlabelled
3916 */
3917static int selinux_kernel_act_as(struct cred *new, u32 secid)
3918{
3919 struct task_security_struct *tsec = selinux_cred(new);
3920 u32 sid = current_sid();
3921 int ret;
3922
3923 ret = avc_has_perm(&selinux_state,
3924 sid, secid,
3925 SECCLASS_KERNEL_SERVICE,
3926 KERNEL_SERVICE__USE_AS_OVERRIDE,
3927 NULL);
3928 if (ret == 0) {
3929 tsec->sid = secid;
3930 tsec->create_sid = 0;
3931 tsec->keycreate_sid = 0;
3932 tsec->sockcreate_sid = 0;
3933 }
3934 return ret;
3935}
3936
3937/*
3938 * set the file creation context in a security record to the same as the
3939 * objective context of the specified inode
3940 */
3941static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3942{
3943 struct inode_security_struct *isec = inode_security(inode);
3944 struct task_security_struct *tsec = selinux_cred(new);
3945 u32 sid = current_sid();
3946 int ret;
3947
3948 ret = avc_has_perm(&selinux_state,
3949 sid, isec->sid,
3950 SECCLASS_KERNEL_SERVICE,
3951 KERNEL_SERVICE__CREATE_FILES_AS,
3952 NULL);
3953
3954 if (ret == 0)
3955 tsec->create_sid = isec->sid;
3956 return ret;
3957}
3958
3959static int selinux_kernel_module_request(char *kmod_name)
3960{
3961 struct common_audit_data ad;
3962
3963 ad.type = LSM_AUDIT_DATA_KMOD;
3964 ad.u.kmod_name = kmod_name;
3965
3966 return avc_has_perm(&selinux_state,
3967 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3968 SYSTEM__MODULE_REQUEST, &ad);
3969}
3970
3971static int selinux_kernel_module_from_file(struct file *file)
3972{
3973 struct common_audit_data ad;
3974 struct inode_security_struct *isec;
3975 struct file_security_struct *fsec;
3976 u32 sid = current_sid();
3977 int rc;
3978
3979 /* init_module */
3980 if (file == NULL)
3981 return avc_has_perm(&selinux_state,
3982 sid, sid, SECCLASS_SYSTEM,
3983 SYSTEM__MODULE_LOAD, NULL);
3984
3985 /* finit_module */
3986
3987 ad.type = LSM_AUDIT_DATA_FILE;
3988 ad.u.file = file;
3989
3990 fsec = selinux_file(file);
3991 if (sid != fsec->sid) {
3992 rc = avc_has_perm(&selinux_state,
3993 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3994 if (rc)
3995 return rc;
3996 }
3997
3998 isec = inode_security(file_inode(file));
3999 return avc_has_perm(&selinux_state,
4000 sid, isec->sid, SECCLASS_SYSTEM,
4001 SYSTEM__MODULE_LOAD, &ad);
4002}
4003
4004static int selinux_kernel_read_file(struct file *file,
4005 enum kernel_read_file_id id)
4006{
4007 int rc = 0;
4008
4009 switch (id) {
4010 case READING_MODULE:
4011 rc = selinux_kernel_module_from_file(file);
4012 break;
4013 default:
4014 break;
4015 }
4016
4017 return rc;
4018}
4019
4020static int selinux_kernel_load_data(enum kernel_load_data_id id)
4021{
4022 int rc = 0;
4023
4024 switch (id) {
4025 case LOADING_MODULE:
4026 rc = selinux_kernel_module_from_file(NULL);
4027 default:
4028 break;
4029 }
4030
4031 return rc;
4032}
4033
4034static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4035{
4036 return avc_has_perm(&selinux_state,
4037 current_sid(), task_sid(p), SECCLASS_PROCESS,
4038 PROCESS__SETPGID, NULL);
4039}
4040
4041static int selinux_task_getpgid(struct task_struct *p)
4042{
4043 return avc_has_perm(&selinux_state,
4044 current_sid(), task_sid(p), SECCLASS_PROCESS,
4045 PROCESS__GETPGID, NULL);
4046}
4047
4048static int selinux_task_getsid(struct task_struct *p)
4049{
4050 return avc_has_perm(&selinux_state,
4051 current_sid(), task_sid(p), SECCLASS_PROCESS,
4052 PROCESS__GETSESSION, NULL);
4053}
4054
4055static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4056{
4057 *secid = task_sid(p);
4058}
4059
4060static int selinux_task_setnice(struct task_struct *p, int nice)
4061{
4062 return avc_has_perm(&selinux_state,
4063 current_sid(), task_sid(p), SECCLASS_PROCESS,
4064 PROCESS__SETSCHED, NULL);
4065}
4066
4067static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4068{
4069 return avc_has_perm(&selinux_state,
4070 current_sid(), task_sid(p), SECCLASS_PROCESS,
4071 PROCESS__SETSCHED, NULL);
4072}
4073
4074static int selinux_task_getioprio(struct task_struct *p)
4075{
4076 return avc_has_perm(&selinux_state,
4077 current_sid(), task_sid(p), SECCLASS_PROCESS,
4078 PROCESS__GETSCHED, NULL);
4079}
4080
4081static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4082 unsigned int flags)
4083{
4084 u32 av = 0;
4085
4086 if (!flags)
4087 return 0;
4088 if (flags & LSM_PRLIMIT_WRITE)
4089 av |= PROCESS__SETRLIMIT;
4090 if (flags & LSM_PRLIMIT_READ)
4091 av |= PROCESS__GETRLIMIT;
4092 return avc_has_perm(&selinux_state,
4093 cred_sid(cred), cred_sid(tcred),
4094 SECCLASS_PROCESS, av, NULL);
4095}
4096
4097static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4098 struct rlimit *new_rlim)
4099{
4100 struct rlimit *old_rlim = p->signal->rlim + resource;
4101
4102 /* Control the ability to change the hard limit (whether
4103 lowering or raising it), so that the hard limit can
4104 later be used as a safe reset point for the soft limit
4105 upon context transitions. See selinux_bprm_committing_creds. */
4106 if (old_rlim->rlim_max != new_rlim->rlim_max)
4107 return avc_has_perm(&selinux_state,
4108 current_sid(), task_sid(p),
4109 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4110
4111 return 0;
4112}
4113
4114static int selinux_task_setscheduler(struct task_struct *p)
4115{
4116 return avc_has_perm(&selinux_state,
4117 current_sid(), task_sid(p), SECCLASS_PROCESS,
4118 PROCESS__SETSCHED, NULL);
4119}
4120
4121static int selinux_task_getscheduler(struct task_struct *p)
4122{
4123 return avc_has_perm(&selinux_state,
4124 current_sid(), task_sid(p), SECCLASS_PROCESS,
4125 PROCESS__GETSCHED, NULL);
4126}
4127
4128static int selinux_task_movememory(struct task_struct *p)
4129{
4130 return avc_has_perm(&selinux_state,
4131 current_sid(), task_sid(p), SECCLASS_PROCESS,
4132 PROCESS__SETSCHED, NULL);
4133}
4134
4135static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4136 int sig, const struct cred *cred)
4137{
4138 u32 secid;
4139 u32 perm;
4140
4141 if (!sig)
4142 perm = PROCESS__SIGNULL; /* null signal; existence test */
4143 else
4144 perm = signal_to_av(sig);
4145 if (!cred)
4146 secid = current_sid();
4147 else
4148 secid = cred_sid(cred);
4149 return avc_has_perm(&selinux_state,
4150 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4151}
4152
4153static void selinux_task_to_inode(struct task_struct *p,
4154 struct inode *inode)
4155{
4156 struct inode_security_struct *isec = selinux_inode(inode);
4157 u32 sid = task_sid(p);
4158
4159 spin_lock(&isec->lock);
4160 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4161 isec->sid = sid;
4162 isec->initialized = LABEL_INITIALIZED;
4163 spin_unlock(&isec->lock);
4164}
4165
4166/* Returns error only if unable to parse addresses */
4167static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4168 struct common_audit_data *ad, u8 *proto)
4169{
4170 int offset, ihlen, ret = -EINVAL;
4171 struct iphdr _iph, *ih;
4172
4173 offset = skb_network_offset(skb);
4174 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4175 if (ih == NULL)
4176 goto out;
4177
4178 ihlen = ih->ihl * 4;
4179 if (ihlen < sizeof(_iph))
4180 goto out;
4181
4182 ad->u.net->v4info.saddr = ih->saddr;
4183 ad->u.net->v4info.daddr = ih->daddr;
4184 ret = 0;
4185
4186 if (proto)
4187 *proto = ih->protocol;
4188
4189 switch (ih->protocol) {
4190 case IPPROTO_TCP: {
4191 struct tcphdr _tcph, *th;
4192
4193 if (ntohs(ih->frag_off) & IP_OFFSET)
4194 break;
4195
4196 offset += ihlen;
4197 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4198 if (th == NULL)
4199 break;
4200
4201 ad->u.net->sport = th->source;
4202 ad->u.net->dport = th->dest;
4203 break;
4204 }
4205
4206 case IPPROTO_UDP: {
4207 struct udphdr _udph, *uh;
4208
4209 if (ntohs(ih->frag_off) & IP_OFFSET)
4210 break;
4211
4212 offset += ihlen;
4213 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4214 if (uh == NULL)
4215 break;
4216
4217 ad->u.net->sport = uh->source;
4218 ad->u.net->dport = uh->dest;
4219 break;
4220 }
4221
4222 case IPPROTO_DCCP: {
4223 struct dccp_hdr _dccph, *dh;
4224
4225 if (ntohs(ih->frag_off) & IP_OFFSET)
4226 break;
4227
4228 offset += ihlen;
4229 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4230 if (dh == NULL)
4231 break;
4232
4233 ad->u.net->sport = dh->dccph_sport;
4234 ad->u.net->dport = dh->dccph_dport;
4235 break;
4236 }
4237
4238#if IS_ENABLED(CONFIG_IP_SCTP)
4239 case IPPROTO_SCTP: {
4240 struct sctphdr _sctph, *sh;
4241
4242 if (ntohs(ih->frag_off) & IP_OFFSET)
4243 break;
4244
4245 offset += ihlen;
4246 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4247 if (sh == NULL)
4248 break;
4249
4250 ad->u.net->sport = sh->source;
4251 ad->u.net->dport = sh->dest;
4252 break;
4253 }
4254#endif
4255 default:
4256 break;
4257 }
4258out:
4259 return ret;
4260}
4261
4262#if IS_ENABLED(CONFIG_IPV6)
4263
4264/* Returns error only if unable to parse addresses */
4265static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4266 struct common_audit_data *ad, u8 *proto)
4267{
4268 u8 nexthdr;
4269 int ret = -EINVAL, offset;
4270 struct ipv6hdr _ipv6h, *ip6;
4271 __be16 frag_off;
4272
4273 offset = skb_network_offset(skb);
4274 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4275 if (ip6 == NULL)
4276 goto out;
4277
4278 ad->u.net->v6info.saddr = ip6->saddr;
4279 ad->u.net->v6info.daddr = ip6->daddr;
4280 ret = 0;
4281
4282 nexthdr = ip6->nexthdr;
4283 offset += sizeof(_ipv6h);
4284 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4285 if (offset < 0)
4286 goto out;
4287
4288 if (proto)
4289 *proto = nexthdr;
4290
4291 switch (nexthdr) {
4292 case IPPROTO_TCP: {
4293 struct tcphdr _tcph, *th;
4294
4295 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4296 if (th == NULL)
4297 break;
4298
4299 ad->u.net->sport = th->source;
4300 ad->u.net->dport = th->dest;
4301 break;
4302 }
4303
4304 case IPPROTO_UDP: {
4305 struct udphdr _udph, *uh;
4306
4307 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4308 if (uh == NULL)
4309 break;
4310
4311 ad->u.net->sport = uh->source;
4312 ad->u.net->dport = uh->dest;
4313 break;
4314 }
4315
4316 case IPPROTO_DCCP: {
4317 struct dccp_hdr _dccph, *dh;
4318
4319 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4320 if (dh == NULL)
4321 break;
4322
4323 ad->u.net->sport = dh->dccph_sport;
4324 ad->u.net->dport = dh->dccph_dport;
4325 break;
4326 }
4327
4328#if IS_ENABLED(CONFIG_IP_SCTP)
4329 case IPPROTO_SCTP: {
4330 struct sctphdr _sctph, *sh;
4331
4332 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333 if (sh == NULL)
4334 break;
4335
4336 ad->u.net->sport = sh->source;
4337 ad->u.net->dport = sh->dest;
4338 break;
4339 }
4340#endif
4341 /* includes fragments */
4342 default:
4343 break;
4344 }
4345out:
4346 return ret;
4347}
4348
4349#endif /* IPV6 */
4350
4351static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4352 char **_addrp, int src, u8 *proto)
4353{
4354 char *addrp;
4355 int ret;
4356
4357 switch (ad->u.net->family) {
4358 case PF_INET:
4359 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4360 if (ret)
4361 goto parse_error;
4362 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4363 &ad->u.net->v4info.daddr);
4364 goto okay;
4365
4366#if IS_ENABLED(CONFIG_IPV6)
4367 case PF_INET6:
4368 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4369 if (ret)
4370 goto parse_error;
4371 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4372 &ad->u.net->v6info.daddr);
4373 goto okay;
4374#endif /* IPV6 */
4375 default:
4376 addrp = NULL;
4377 goto okay;
4378 }
4379
4380parse_error:
4381 pr_warn(
4382 "SELinux: failure in selinux_parse_skb(),"
4383 " unable to parse packet\n");
4384 return ret;
4385
4386okay:
4387 if (_addrp)
4388 *_addrp = addrp;
4389 return 0;
4390}
4391
4392/**
4393 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4394 * @skb: the packet
4395 * @family: protocol family
4396 * @sid: the packet's peer label SID
4397 *
4398 * Description:
4399 * Check the various different forms of network peer labeling and determine
4400 * the peer label/SID for the packet; most of the magic actually occurs in
4401 * the security server function security_net_peersid_cmp(). The function
4402 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4403 * or -EACCES if @sid is invalid due to inconsistencies with the different
4404 * peer labels.
4405 *
4406 */
4407static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4408{
4409 int err;
4410 u32 xfrm_sid;
4411 u32 nlbl_sid;
4412 u32 nlbl_type;
4413
4414 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4415 if (unlikely(err))
4416 return -EACCES;
4417 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4418 if (unlikely(err))
4419 return -EACCES;
4420
4421 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4422 nlbl_type, xfrm_sid, sid);
4423 if (unlikely(err)) {
4424 pr_warn(
4425 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4426 " unable to determine packet's peer label\n");
4427 return -EACCES;
4428 }
4429
4430 return 0;
4431}
4432
4433/**
4434 * selinux_conn_sid - Determine the child socket label for a connection
4435 * @sk_sid: the parent socket's SID
4436 * @skb_sid: the packet's SID
4437 * @conn_sid: the resulting connection SID
4438 *
4439 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4440 * combined with the MLS information from @skb_sid in order to create
4441 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4442 * of @sk_sid. Returns zero on success, negative values on failure.
4443 *
4444 */
4445static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4446{
4447 int err = 0;
4448
4449 if (skb_sid != SECSID_NULL)
4450 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4451 conn_sid);
4452 else
4453 *conn_sid = sk_sid;
4454
4455 return err;
4456}
4457
4458/* socket security operations */
4459
4460static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4461 u16 secclass, u32 *socksid)
4462{
4463 if (tsec->sockcreate_sid > SECSID_NULL) {
4464 *socksid = tsec->sockcreate_sid;
4465 return 0;
4466 }
4467
4468 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4469 secclass, NULL, socksid);
4470}
4471
4472static int sock_has_perm(struct sock *sk, u32 perms)
4473{
4474 struct sk_security_struct *sksec = sk->sk_security;
4475 struct common_audit_data ad;
4476 struct lsm_network_audit net = {0,};
4477
4478 if (sksec->sid == SECINITSID_KERNEL)
4479 return 0;
4480
4481 ad.type = LSM_AUDIT_DATA_NET;
4482 ad.u.net = &net;
4483 ad.u.net->sk = sk;
4484
4485 return avc_has_perm(&selinux_state,
4486 current_sid(), sksec->sid, sksec->sclass, perms,
4487 &ad);
4488}
4489
4490static int selinux_socket_create(int family, int type,
4491 int protocol, int kern)
4492{
4493 const struct task_security_struct *tsec = selinux_cred(current_cred());
4494 u32 newsid;
4495 u16 secclass;
4496 int rc;
4497
4498 if (kern)
4499 return 0;
4500
4501 secclass = socket_type_to_security_class(family, type, protocol);
4502 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4503 if (rc)
4504 return rc;
4505
4506 return avc_has_perm(&selinux_state,
4507 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4508}
4509
4510static int selinux_socket_post_create(struct socket *sock, int family,
4511 int type, int protocol, int kern)
4512{
4513 const struct task_security_struct *tsec = selinux_cred(current_cred());
4514 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4515 struct sk_security_struct *sksec;
4516 u16 sclass = socket_type_to_security_class(family, type, protocol);
4517 u32 sid = SECINITSID_KERNEL;
4518 int err = 0;
4519
4520 if (!kern) {
4521 err = socket_sockcreate_sid(tsec, sclass, &sid);
4522 if (err)
4523 return err;
4524 }
4525
4526 isec->sclass = sclass;
4527 isec->sid = sid;
4528 isec->initialized = LABEL_INITIALIZED;
4529
4530 if (sock->sk) {
4531 sksec = sock->sk->sk_security;
4532 sksec->sclass = sclass;
4533 sksec->sid = sid;
4534 /* Allows detection of the first association on this socket */
4535 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4536 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4537
4538 err = selinux_netlbl_socket_post_create(sock->sk, family);
4539 }
4540
4541 return err;
4542}
4543
4544static int selinux_socket_socketpair(struct socket *socka,
4545 struct socket *sockb)
4546{
4547 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4548 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4549
4550 sksec_a->peer_sid = sksec_b->sid;
4551 sksec_b->peer_sid = sksec_a->sid;
4552
4553 return 0;
4554}
4555
4556/* Range of port numbers used to automatically bind.
4557 Need to determine whether we should perform a name_bind
4558 permission check between the socket and the port number. */
4559
4560static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4561{
4562 struct sock *sk = sock->sk;
4563 struct sk_security_struct *sksec = sk->sk_security;
4564 u16 family;
4565 int err;
4566
4567 err = sock_has_perm(sk, SOCKET__BIND);
4568 if (err)
4569 goto out;
4570
4571 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4572 family = sk->sk_family;
4573 if (family == PF_INET || family == PF_INET6) {
4574 char *addrp;
4575 struct common_audit_data ad;
4576 struct lsm_network_audit net = {0,};
4577 struct sockaddr_in *addr4 = NULL;
4578 struct sockaddr_in6 *addr6 = NULL;
4579 u16 family_sa;
4580 unsigned short snum;
4581 u32 sid, node_perm;
4582
4583 /*
4584 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4585 * that validates multiple binding addresses. Because of this
4586 * need to check address->sa_family as it is possible to have
4587 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4588 */
4589 if (addrlen < offsetofend(struct sockaddr, sa_family))
4590 return -EINVAL;
4591 family_sa = address->sa_family;
4592 switch (family_sa) {
4593 case AF_UNSPEC:
4594 case AF_INET:
4595 if (addrlen < sizeof(struct sockaddr_in))
4596 return -EINVAL;
4597 addr4 = (struct sockaddr_in *)address;
4598 if (family_sa == AF_UNSPEC) {
4599 /* see __inet_bind(), we only want to allow
4600 * AF_UNSPEC if the address is INADDR_ANY
4601 */
4602 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4603 goto err_af;
4604 family_sa = AF_INET;
4605 }
4606 snum = ntohs(addr4->sin_port);
4607 addrp = (char *)&addr4->sin_addr.s_addr;
4608 break;
4609 case AF_INET6:
4610 if (addrlen < SIN6_LEN_RFC2133)
4611 return -EINVAL;
4612 addr6 = (struct sockaddr_in6 *)address;
4613 snum = ntohs(addr6->sin6_port);
4614 addrp = (char *)&addr6->sin6_addr.s6_addr;
4615 break;
4616 default:
4617 goto err_af;
4618 }
4619
4620 ad.type = LSM_AUDIT_DATA_NET;
4621 ad.u.net = &net;
4622 ad.u.net->sport = htons(snum);
4623 ad.u.net->family = family_sa;
4624
4625 if (snum) {
4626 int low, high;
4627
4628 inet_get_local_port_range(sock_net(sk), &low, &high);
4629
4630 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4631 snum < low || snum > high) {
4632 err = sel_netport_sid(sk->sk_protocol,
4633 snum, &sid);
4634 if (err)
4635 goto out;
4636 err = avc_has_perm(&selinux_state,
4637 sksec->sid, sid,
4638 sksec->sclass,
4639 SOCKET__NAME_BIND, &ad);
4640 if (err)
4641 goto out;
4642 }
4643 }
4644
4645 switch (sksec->sclass) {
4646 case SECCLASS_TCP_SOCKET:
4647 node_perm = TCP_SOCKET__NODE_BIND;
4648 break;
4649
4650 case SECCLASS_UDP_SOCKET:
4651 node_perm = UDP_SOCKET__NODE_BIND;
4652 break;
4653
4654 case SECCLASS_DCCP_SOCKET:
4655 node_perm = DCCP_SOCKET__NODE_BIND;
4656 break;
4657
4658 case SECCLASS_SCTP_SOCKET:
4659 node_perm = SCTP_SOCKET__NODE_BIND;
4660 break;
4661
4662 default:
4663 node_perm = RAWIP_SOCKET__NODE_BIND;
4664 break;
4665 }
4666
4667 err = sel_netnode_sid(addrp, family_sa, &sid);
4668 if (err)
4669 goto out;
4670
4671 if (family_sa == AF_INET)
4672 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4673 else
4674 ad.u.net->v6info.saddr = addr6->sin6_addr;
4675
4676 err = avc_has_perm(&selinux_state,
4677 sksec->sid, sid,
4678 sksec->sclass, node_perm, &ad);
4679 if (err)
4680 goto out;
4681 }
4682out:
4683 return err;
4684err_af:
4685 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4686 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4687 return -EINVAL;
4688 return -EAFNOSUPPORT;
4689}
4690
4691/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4692 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4693 */
4694static int selinux_socket_connect_helper(struct socket *sock,
4695 struct sockaddr *address, int addrlen)
4696{
4697 struct sock *sk = sock->sk;
4698 struct sk_security_struct *sksec = sk->sk_security;
4699 int err;
4700
4701 err = sock_has_perm(sk, SOCKET__CONNECT);
4702 if (err)
4703 return err;
4704 if (addrlen < offsetofend(struct sockaddr, sa_family))
4705 return -EINVAL;
4706
4707 /* connect(AF_UNSPEC) has special handling, as it is a documented
4708 * way to disconnect the socket
4709 */
4710 if (address->sa_family == AF_UNSPEC)
4711 return 0;
4712
4713 /*
4714 * If a TCP, DCCP or SCTP socket, check name_connect permission
4715 * for the port.
4716 */
4717 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4718 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4719 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4720 struct common_audit_data ad;
4721 struct lsm_network_audit net = {0,};
4722 struct sockaddr_in *addr4 = NULL;
4723 struct sockaddr_in6 *addr6 = NULL;
4724 unsigned short snum;
4725 u32 sid, perm;
4726
4727 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4728 * that validates multiple connect addresses. Because of this
4729 * need to check address->sa_family as it is possible to have
4730 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4731 */
4732 switch (address->sa_family) {
4733 case AF_INET:
4734 addr4 = (struct sockaddr_in *)address;
4735 if (addrlen < sizeof(struct sockaddr_in))
4736 return -EINVAL;
4737 snum = ntohs(addr4->sin_port);
4738 break;
4739 case AF_INET6:
4740 addr6 = (struct sockaddr_in6 *)address;
4741 if (addrlen < SIN6_LEN_RFC2133)
4742 return -EINVAL;
4743 snum = ntohs(addr6->sin6_port);
4744 break;
4745 default:
4746 /* Note that SCTP services expect -EINVAL, whereas
4747 * others expect -EAFNOSUPPORT.
4748 */
4749 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4750 return -EINVAL;
4751 else
4752 return -EAFNOSUPPORT;
4753 }
4754
4755 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4756 if (err)
4757 return err;
4758
4759 switch (sksec->sclass) {
4760 case SECCLASS_TCP_SOCKET:
4761 perm = TCP_SOCKET__NAME_CONNECT;
4762 break;
4763 case SECCLASS_DCCP_SOCKET:
4764 perm = DCCP_SOCKET__NAME_CONNECT;
4765 break;
4766 case SECCLASS_SCTP_SOCKET:
4767 perm = SCTP_SOCKET__NAME_CONNECT;
4768 break;
4769 }
4770
4771 ad.type = LSM_AUDIT_DATA_NET;
4772 ad.u.net = &net;
4773 ad.u.net->dport = htons(snum);
4774 ad.u.net->family = address->sa_family;
4775 err = avc_has_perm(&selinux_state,
4776 sksec->sid, sid, sksec->sclass, perm, &ad);
4777 if (err)
4778 return err;
4779 }
4780
4781 return 0;
4782}
4783
4784/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4785static int selinux_socket_connect(struct socket *sock,
4786 struct sockaddr *address, int addrlen)
4787{
4788 int err;
4789 struct sock *sk = sock->sk;
4790
4791 err = selinux_socket_connect_helper(sock, address, addrlen);
4792 if (err)
4793 return err;
4794
4795 return selinux_netlbl_socket_connect(sk, address);
4796}
4797
4798static int selinux_socket_listen(struct socket *sock, int backlog)
4799{
4800 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4801}
4802
4803static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4804{
4805 int err;
4806 struct inode_security_struct *isec;
4807 struct inode_security_struct *newisec;
4808 u16 sclass;
4809 u32 sid;
4810
4811 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4812 if (err)
4813 return err;
4814
4815 isec = inode_security_novalidate(SOCK_INODE(sock));
4816 spin_lock(&isec->lock);
4817 sclass = isec->sclass;
4818 sid = isec->sid;
4819 spin_unlock(&isec->lock);
4820
4821 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4822 newisec->sclass = sclass;
4823 newisec->sid = sid;
4824 newisec->initialized = LABEL_INITIALIZED;
4825
4826 return 0;
4827}
4828
4829static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4830 int size)
4831{
4832 return sock_has_perm(sock->sk, SOCKET__WRITE);
4833}
4834
4835static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4836 int size, int flags)
4837{
4838 return sock_has_perm(sock->sk, SOCKET__READ);
4839}
4840
4841static int selinux_socket_getsockname(struct socket *sock)
4842{
4843 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4844}
4845
4846static int selinux_socket_getpeername(struct socket *sock)
4847{
4848 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4849}
4850
4851static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4852{
4853 int err;
4854
4855 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4856 if (err)
4857 return err;
4858
4859 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4860}
4861
4862static int selinux_socket_getsockopt(struct socket *sock, int level,
4863 int optname)
4864{
4865 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4866}
4867
4868static int selinux_socket_shutdown(struct socket *sock, int how)
4869{
4870 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4871}
4872
4873static int selinux_socket_unix_stream_connect(struct sock *sock,
4874 struct sock *other,
4875 struct sock *newsk)
4876{
4877 struct sk_security_struct *sksec_sock = sock->sk_security;
4878 struct sk_security_struct *sksec_other = other->sk_security;
4879 struct sk_security_struct *sksec_new = newsk->sk_security;
4880 struct common_audit_data ad;
4881 struct lsm_network_audit net = {0,};
4882 int err;
4883
4884 ad.type = LSM_AUDIT_DATA_NET;
4885 ad.u.net = &net;
4886 ad.u.net->sk = other;
4887
4888 err = avc_has_perm(&selinux_state,
4889 sksec_sock->sid, sksec_other->sid,
4890 sksec_other->sclass,
4891 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4892 if (err)
4893 return err;
4894
4895 /* server child socket */
4896 sksec_new->peer_sid = sksec_sock->sid;
4897 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4898 sksec_sock->sid, &sksec_new->sid);
4899 if (err)
4900 return err;
4901
4902 /* connecting socket */
4903 sksec_sock->peer_sid = sksec_new->sid;
4904
4905 return 0;
4906}
4907
4908static int selinux_socket_unix_may_send(struct socket *sock,
4909 struct socket *other)
4910{
4911 struct sk_security_struct *ssec = sock->sk->sk_security;
4912 struct sk_security_struct *osec = other->sk->sk_security;
4913 struct common_audit_data ad;
4914 struct lsm_network_audit net = {0,};
4915
4916 ad.type = LSM_AUDIT_DATA_NET;
4917 ad.u.net = &net;
4918 ad.u.net->sk = other->sk;
4919
4920 return avc_has_perm(&selinux_state,
4921 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4922 &ad);
4923}
4924
4925static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4926 char *addrp, u16 family, u32 peer_sid,
4927 struct common_audit_data *ad)
4928{
4929 int err;
4930 u32 if_sid;
4931 u32 node_sid;
4932
4933 err = sel_netif_sid(ns, ifindex, &if_sid);
4934 if (err)
4935 return err;
4936 err = avc_has_perm(&selinux_state,
4937 peer_sid, if_sid,
4938 SECCLASS_NETIF, NETIF__INGRESS, ad);
4939 if (err)
4940 return err;
4941
4942 err = sel_netnode_sid(addrp, family, &node_sid);
4943 if (err)
4944 return err;
4945 return avc_has_perm(&selinux_state,
4946 peer_sid, node_sid,
4947 SECCLASS_NODE, NODE__RECVFROM, ad);
4948}
4949
4950static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4951 u16 family)
4952{
4953 int err = 0;
4954 struct sk_security_struct *sksec = sk->sk_security;
4955 u32 sk_sid = sksec->sid;
4956 struct common_audit_data ad;
4957 struct lsm_network_audit net = {0,};
4958 char *addrp;
4959
4960 ad.type = LSM_AUDIT_DATA_NET;
4961 ad.u.net = &net;
4962 ad.u.net->netif = skb->skb_iif;
4963 ad.u.net->family = family;
4964 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4965 if (err)
4966 return err;
4967
4968 if (selinux_secmark_enabled()) {
4969 err = avc_has_perm(&selinux_state,
4970 sk_sid, skb->secmark, SECCLASS_PACKET,
4971 PACKET__RECV, &ad);
4972 if (err)
4973 return err;
4974 }
4975
4976 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4977 if (err)
4978 return err;
4979 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4980
4981 return err;
4982}
4983
4984static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4985{
4986 int err;
4987 struct sk_security_struct *sksec = sk->sk_security;
4988 u16 family = sk->sk_family;
4989 u32 sk_sid = sksec->sid;
4990 struct common_audit_data ad;
4991 struct lsm_network_audit net = {0,};
4992 char *addrp;
4993 u8 secmark_active;
4994 u8 peerlbl_active;
4995
4996 if (family != PF_INET && family != PF_INET6)
4997 return 0;
4998
4999 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5000 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5001 family = PF_INET;
5002
5003 /* If any sort of compatibility mode is enabled then handoff processing
5004 * to the selinux_sock_rcv_skb_compat() function to deal with the
5005 * special handling. We do this in an attempt to keep this function
5006 * as fast and as clean as possible. */
5007 if (!selinux_policycap_netpeer())
5008 return selinux_sock_rcv_skb_compat(sk, skb, family);
5009
5010 secmark_active = selinux_secmark_enabled();
5011 peerlbl_active = selinux_peerlbl_enabled();
5012 if (!secmark_active && !peerlbl_active)
5013 return 0;
5014
5015 ad.type = LSM_AUDIT_DATA_NET;
5016 ad.u.net = &net;
5017 ad.u.net->netif = skb->skb_iif;
5018 ad.u.net->family = family;
5019 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5020 if (err)
5021 return err;
5022
5023 if (peerlbl_active) {
5024 u32 peer_sid;
5025
5026 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5027 if (err)
5028 return err;
5029 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5030 addrp, family, peer_sid, &ad);
5031 if (err) {
5032 selinux_netlbl_err(skb, family, err, 0);
5033 return err;
5034 }
5035 err = avc_has_perm(&selinux_state,
5036 sk_sid, peer_sid, SECCLASS_PEER,
5037 PEER__RECV, &ad);
5038 if (err) {
5039 selinux_netlbl_err(skb, family, err, 0);
5040 return err;
5041 }
5042 }
5043
5044 if (secmark_active) {
5045 err = avc_has_perm(&selinux_state,
5046 sk_sid, skb->secmark, SECCLASS_PACKET,
5047 PACKET__RECV, &ad);
5048 if (err)
5049 return err;
5050 }
5051
5052 return err;
5053}
5054
5055static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5056 int __user *optlen, unsigned len)
5057{
5058 int err = 0;
5059 char *scontext;
5060 u32 scontext_len;
5061 struct sk_security_struct *sksec = sock->sk->sk_security;
5062 u32 peer_sid = SECSID_NULL;
5063
5064 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5065 sksec->sclass == SECCLASS_TCP_SOCKET ||
5066 sksec->sclass == SECCLASS_SCTP_SOCKET)
5067 peer_sid = sksec->peer_sid;
5068 if (peer_sid == SECSID_NULL)
5069 return -ENOPROTOOPT;
5070
5071 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5072 &scontext_len);
5073 if (err)
5074 return err;
5075
5076 if (scontext_len > len) {
5077 err = -ERANGE;
5078 goto out_len;
5079 }
5080
5081 if (copy_to_user(optval, scontext, scontext_len))
5082 err = -EFAULT;
5083
5084out_len:
5085 if (put_user(scontext_len, optlen))
5086 err = -EFAULT;
5087 kfree(scontext);
5088 return err;
5089}
5090
5091static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5092{
5093 u32 peer_secid = SECSID_NULL;
5094 u16 family;
5095 struct inode_security_struct *isec;
5096
5097 if (skb && skb->protocol == htons(ETH_P_IP))
5098 family = PF_INET;
5099 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5100 family = PF_INET6;
5101 else if (sock)
5102 family = sock->sk->sk_family;
5103 else
5104 goto out;
5105
5106 if (sock && family == PF_UNIX) {
5107 isec = inode_security_novalidate(SOCK_INODE(sock));
5108 peer_secid = isec->sid;
5109 } else if (skb)
5110 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5111
5112out:
5113 *secid = peer_secid;
5114 if (peer_secid == SECSID_NULL)
5115 return -EINVAL;
5116 return 0;
5117}
5118
5119static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5120{
5121 struct sk_security_struct *sksec;
5122
5123 sksec = kzalloc(sizeof(*sksec), priority);
5124 if (!sksec)
5125 return -ENOMEM;
5126
5127 sksec->peer_sid = SECINITSID_UNLABELED;
5128 sksec->sid = SECINITSID_UNLABELED;
5129 sksec->sclass = SECCLASS_SOCKET;
5130 selinux_netlbl_sk_security_reset(sksec);
5131 sk->sk_security = sksec;
5132
5133 return 0;
5134}
5135
5136static void selinux_sk_free_security(struct sock *sk)
5137{
5138 struct sk_security_struct *sksec = sk->sk_security;
5139
5140 sk->sk_security = NULL;
5141 selinux_netlbl_sk_security_free(sksec);
5142 kfree(sksec);
5143}
5144
5145static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5146{
5147 struct sk_security_struct *sksec = sk->sk_security;
5148 struct sk_security_struct *newsksec = newsk->sk_security;
5149
5150 newsksec->sid = sksec->sid;
5151 newsksec->peer_sid = sksec->peer_sid;
5152 newsksec->sclass = sksec->sclass;
5153
5154 selinux_netlbl_sk_security_reset(newsksec);
5155}
5156
5157static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5158{
5159 if (!sk)
5160 *secid = SECINITSID_ANY_SOCKET;
5161 else {
5162 struct sk_security_struct *sksec = sk->sk_security;
5163
5164 *secid = sksec->sid;
5165 }
5166}
5167
5168static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5169{
5170 struct inode_security_struct *isec =
5171 inode_security_novalidate(SOCK_INODE(parent));
5172 struct sk_security_struct *sksec = sk->sk_security;
5173
5174 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5175 sk->sk_family == PF_UNIX)
5176 isec->sid = sksec->sid;
5177 sksec->sclass = isec->sclass;
5178}
5179
5180/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5181 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5182 * already present).
5183 */
5184static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5185 struct sk_buff *skb)
5186{
5187 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5188 struct common_audit_data ad;
5189 struct lsm_network_audit net = {0,};
5190 u8 peerlbl_active;
5191 u32 peer_sid = SECINITSID_UNLABELED;
5192 u32 conn_sid;
5193 int err = 0;
5194
5195 if (!selinux_policycap_extsockclass())
5196 return 0;
5197
5198 peerlbl_active = selinux_peerlbl_enabled();
5199
5200 if (peerlbl_active) {
5201 /* This will return peer_sid = SECSID_NULL if there are
5202 * no peer labels, see security_net_peersid_resolve().
5203 */
5204 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5205 &peer_sid);
5206 if (err)
5207 return err;
5208
5209 if (peer_sid == SECSID_NULL)
5210 peer_sid = SECINITSID_UNLABELED;
5211 }
5212
5213 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5214 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5215
5216 /* Here as first association on socket. As the peer SID
5217 * was allowed by peer recv (and the netif/node checks),
5218 * then it is approved by policy and used as the primary
5219 * peer SID for getpeercon(3).
5220 */
5221 sksec->peer_sid = peer_sid;
5222 } else if (sksec->peer_sid != peer_sid) {
5223 /* Other association peer SIDs are checked to enforce
5224 * consistency among the peer SIDs.
5225 */
5226 ad.type = LSM_AUDIT_DATA_NET;
5227 ad.u.net = &net;
5228 ad.u.net->sk = ep->base.sk;
5229 err = avc_has_perm(&selinux_state,
5230 sksec->peer_sid, peer_sid, sksec->sclass,
5231 SCTP_SOCKET__ASSOCIATION, &ad);
5232 if (err)
5233 return err;
5234 }
5235
5236 /* Compute the MLS component for the connection and store
5237 * the information in ep. This will be used by SCTP TCP type
5238 * sockets and peeled off connections as they cause a new
5239 * socket to be generated. selinux_sctp_sk_clone() will then
5240 * plug this into the new socket.
5241 */
5242 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5243 if (err)
5244 return err;
5245
5246 ep->secid = conn_sid;
5247 ep->peer_secid = peer_sid;
5248
5249 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5250 return selinux_netlbl_sctp_assoc_request(ep, skb);
5251}
5252
5253/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5254 * based on their @optname.
5255 */
5256static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5257 struct sockaddr *address,
5258 int addrlen)
5259{
5260 int len, err = 0, walk_size = 0;
5261 void *addr_buf;
5262 struct sockaddr *addr;
5263 struct socket *sock;
5264
5265 if (!selinux_policycap_extsockclass())
5266 return 0;
5267
5268 /* Process one or more addresses that may be IPv4 or IPv6 */
5269 sock = sk->sk_socket;
5270 addr_buf = address;
5271
5272 while (walk_size < addrlen) {
5273 if (walk_size + sizeof(sa_family_t) > addrlen)
5274 return -EINVAL;
5275
5276 addr = addr_buf;
5277 switch (addr->sa_family) {
5278 case AF_UNSPEC:
5279 case AF_INET:
5280 len = sizeof(struct sockaddr_in);
5281 break;
5282 case AF_INET6:
5283 len = sizeof(struct sockaddr_in6);
5284 break;
5285 default:
5286 return -EINVAL;
5287 }
5288
5289 if (walk_size + len > addrlen)
5290 return -EINVAL;
5291
5292 err = -EINVAL;
5293 switch (optname) {
5294 /* Bind checks */
5295 case SCTP_PRIMARY_ADDR:
5296 case SCTP_SET_PEER_PRIMARY_ADDR:
5297 case SCTP_SOCKOPT_BINDX_ADD:
5298 err = selinux_socket_bind(sock, addr, len);
5299 break;
5300 /* Connect checks */
5301 case SCTP_SOCKOPT_CONNECTX:
5302 case SCTP_PARAM_SET_PRIMARY:
5303 case SCTP_PARAM_ADD_IP:
5304 case SCTP_SENDMSG_CONNECT:
5305 err = selinux_socket_connect_helper(sock, addr, len);
5306 if (err)
5307 return err;
5308
5309 /* As selinux_sctp_bind_connect() is called by the
5310 * SCTP protocol layer, the socket is already locked,
5311 * therefore selinux_netlbl_socket_connect_locked() is
5312 * is called here. The situations handled are:
5313 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5314 * whenever a new IP address is added or when a new
5315 * primary address is selected.
5316 * Note that an SCTP connect(2) call happens before
5317 * the SCTP protocol layer and is handled via
5318 * selinux_socket_connect().
5319 */
5320 err = selinux_netlbl_socket_connect_locked(sk, addr);
5321 break;
5322 }
5323
5324 if (err)
5325 return err;
5326
5327 addr_buf += len;
5328 walk_size += len;
5329 }
5330
5331 return 0;
5332}
5333
5334/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5335static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5336 struct sock *newsk)
5337{
5338 struct sk_security_struct *sksec = sk->sk_security;
5339 struct sk_security_struct *newsksec = newsk->sk_security;
5340
5341 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5342 * the non-sctp clone version.
5343 */
5344 if (!selinux_policycap_extsockclass())
5345 return selinux_sk_clone_security(sk, newsk);
5346
5347 newsksec->sid = ep->secid;
5348 newsksec->peer_sid = ep->peer_secid;
5349 newsksec->sclass = sksec->sclass;
5350 selinux_netlbl_sctp_sk_clone(sk, newsk);
5351}
5352
5353static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5354 struct request_sock *req)
5355{
5356 struct sk_security_struct *sksec = sk->sk_security;
5357 int err;
5358 u16 family = req->rsk_ops->family;
5359 u32 connsid;
5360 u32 peersid;
5361
5362 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5363 if (err)
5364 return err;
5365 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5366 if (err)
5367 return err;
5368 req->secid = connsid;
5369 req->peer_secid = peersid;
5370
5371 return selinux_netlbl_inet_conn_request(req, family);
5372}
5373
5374static void selinux_inet_csk_clone(struct sock *newsk,
5375 const struct request_sock *req)
5376{
5377 struct sk_security_struct *newsksec = newsk->sk_security;
5378
5379 newsksec->sid = req->secid;
5380 newsksec->peer_sid = req->peer_secid;
5381 /* NOTE: Ideally, we should also get the isec->sid for the
5382 new socket in sync, but we don't have the isec available yet.
5383 So we will wait until sock_graft to do it, by which
5384 time it will have been created and available. */
5385
5386 /* We don't need to take any sort of lock here as we are the only
5387 * thread with access to newsksec */
5388 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5389}
5390
5391static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5392{
5393 u16 family = sk->sk_family;
5394 struct sk_security_struct *sksec = sk->sk_security;
5395
5396 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5397 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5398 family = PF_INET;
5399
5400 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5401}
5402
5403static int selinux_secmark_relabel_packet(u32 sid)
5404{
5405 const struct task_security_struct *__tsec;
5406 u32 tsid;
5407
5408 __tsec = selinux_cred(current_cred());
5409 tsid = __tsec->sid;
5410
5411 return avc_has_perm(&selinux_state,
5412 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5413 NULL);
5414}
5415
5416static void selinux_secmark_refcount_inc(void)
5417{
5418 atomic_inc(&selinux_secmark_refcount);
5419}
5420
5421static void selinux_secmark_refcount_dec(void)
5422{
5423 atomic_dec(&selinux_secmark_refcount);
5424}
5425
5426static void selinux_req_classify_flow(const struct request_sock *req,
5427 struct flowi *fl)
5428{
5429 fl->flowi_secid = req->secid;
5430}
5431
5432static int selinux_tun_dev_alloc_security(void **security)
5433{
5434 struct tun_security_struct *tunsec;
5435
5436 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5437 if (!tunsec)
5438 return -ENOMEM;
5439 tunsec->sid = current_sid();
5440
5441 *security = tunsec;
5442 return 0;
5443}
5444
5445static void selinux_tun_dev_free_security(void *security)
5446{
5447 kfree(security);
5448}
5449
5450static int selinux_tun_dev_create(void)
5451{
5452 u32 sid = current_sid();
5453
5454 /* we aren't taking into account the "sockcreate" SID since the socket
5455 * that is being created here is not a socket in the traditional sense,
5456 * instead it is a private sock, accessible only to the kernel, and
5457 * representing a wide range of network traffic spanning multiple
5458 * connections unlike traditional sockets - check the TUN driver to
5459 * get a better understanding of why this socket is special */
5460
5461 return avc_has_perm(&selinux_state,
5462 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5463 NULL);
5464}
5465
5466static int selinux_tun_dev_attach_queue(void *security)
5467{
5468 struct tun_security_struct *tunsec = security;
5469
5470 return avc_has_perm(&selinux_state,
5471 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5472 TUN_SOCKET__ATTACH_QUEUE, NULL);
5473}
5474
5475static int selinux_tun_dev_attach(struct sock *sk, void *security)
5476{
5477 struct tun_security_struct *tunsec = security;
5478 struct sk_security_struct *sksec = sk->sk_security;
5479
5480 /* we don't currently perform any NetLabel based labeling here and it
5481 * isn't clear that we would want to do so anyway; while we could apply
5482 * labeling without the support of the TUN user the resulting labeled
5483 * traffic from the other end of the connection would almost certainly
5484 * cause confusion to the TUN user that had no idea network labeling
5485 * protocols were being used */
5486
5487 sksec->sid = tunsec->sid;
5488 sksec->sclass = SECCLASS_TUN_SOCKET;
5489
5490 return 0;
5491}
5492
5493static int selinux_tun_dev_open(void *security)
5494{
5495 struct tun_security_struct *tunsec = security;
5496 u32 sid = current_sid();
5497 int err;
5498
5499 err = avc_has_perm(&selinux_state,
5500 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5501 TUN_SOCKET__RELABELFROM, NULL);
5502 if (err)
5503 return err;
5504 err = avc_has_perm(&selinux_state,
5505 sid, sid, SECCLASS_TUN_SOCKET,
5506 TUN_SOCKET__RELABELTO, NULL);
5507 if (err)
5508 return err;
5509 tunsec->sid = sid;
5510
5511 return 0;
5512}
5513
5514#ifdef CONFIG_NETFILTER
5515
5516static unsigned int selinux_ip_forward(struct sk_buff *skb,
5517 const struct net_device *indev,
5518 u16 family)
5519{
5520 int err;
5521 char *addrp;
5522 u32 peer_sid;
5523 struct common_audit_data ad;
5524 struct lsm_network_audit net = {0,};
5525 u8 secmark_active;
5526 u8 netlbl_active;
5527 u8 peerlbl_active;
5528
5529 if (!selinux_policycap_netpeer())
5530 return NF_ACCEPT;
5531
5532 secmark_active = selinux_secmark_enabled();
5533 netlbl_active = netlbl_enabled();
5534 peerlbl_active = selinux_peerlbl_enabled();
5535 if (!secmark_active && !peerlbl_active)
5536 return NF_ACCEPT;
5537
5538 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5539 return NF_DROP;
5540
5541 ad.type = LSM_AUDIT_DATA_NET;
5542 ad.u.net = &net;
5543 ad.u.net->netif = indev->ifindex;
5544 ad.u.net->family = family;
5545 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5546 return NF_DROP;
5547
5548 if (peerlbl_active) {
5549 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5550 addrp, family, peer_sid, &ad);
5551 if (err) {
5552 selinux_netlbl_err(skb, family, err, 1);
5553 return NF_DROP;
5554 }
5555 }
5556
5557 if (secmark_active)
5558 if (avc_has_perm(&selinux_state,
5559 peer_sid, skb->secmark,
5560 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5561 return NF_DROP;
5562
5563 if (netlbl_active)
5564 /* we do this in the FORWARD path and not the POST_ROUTING
5565 * path because we want to make sure we apply the necessary
5566 * labeling before IPsec is applied so we can leverage AH
5567 * protection */
5568 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5569 return NF_DROP;
5570
5571 return NF_ACCEPT;
5572}
5573
5574static unsigned int selinux_ipv4_forward(void *priv,
5575 struct sk_buff *skb,
5576 const struct nf_hook_state *state)
5577{
5578 return selinux_ip_forward(skb, state->in, PF_INET);
5579}
5580
5581#if IS_ENABLED(CONFIG_IPV6)
5582static unsigned int selinux_ipv6_forward(void *priv,
5583 struct sk_buff *skb,
5584 const struct nf_hook_state *state)
5585{
5586 return selinux_ip_forward(skb, state->in, PF_INET6);
5587}
5588#endif /* IPV6 */
5589
5590static unsigned int selinux_ip_output(struct sk_buff *skb,
5591 u16 family)
5592{
5593 struct sock *sk;
5594 u32 sid;
5595
5596 if (!netlbl_enabled())
5597 return NF_ACCEPT;
5598
5599 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5600 * because we want to make sure we apply the necessary labeling
5601 * before IPsec is applied so we can leverage AH protection */
5602 sk = skb->sk;
5603 if (sk) {
5604 struct sk_security_struct *sksec;
5605
5606 if (sk_listener(sk))
5607 /* if the socket is the listening state then this
5608 * packet is a SYN-ACK packet which means it needs to
5609 * be labeled based on the connection/request_sock and
5610 * not the parent socket. unfortunately, we can't
5611 * lookup the request_sock yet as it isn't queued on
5612 * the parent socket until after the SYN-ACK is sent.
5613 * the "solution" is to simply pass the packet as-is
5614 * as any IP option based labeling should be copied
5615 * from the initial connection request (in the IP
5616 * layer). it is far from ideal, but until we get a
5617 * security label in the packet itself this is the
5618 * best we can do. */
5619 return NF_ACCEPT;
5620
5621 /* standard practice, label using the parent socket */
5622 sksec = sk->sk_security;
5623 sid = sksec->sid;
5624 } else
5625 sid = SECINITSID_KERNEL;
5626 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5627 return NF_DROP;
5628
5629 return NF_ACCEPT;
5630}
5631
5632static unsigned int selinux_ipv4_output(void *priv,
5633 struct sk_buff *skb,
5634 const struct nf_hook_state *state)
5635{
5636 return selinux_ip_output(skb, PF_INET);
5637}
5638
5639#if IS_ENABLED(CONFIG_IPV6)
5640static unsigned int selinux_ipv6_output(void *priv,
5641 struct sk_buff *skb,
5642 const struct nf_hook_state *state)
5643{
5644 return selinux_ip_output(skb, PF_INET6);
5645}
5646#endif /* IPV6 */
5647
5648static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5649 int ifindex,
5650 u16 family)
5651{
5652 struct sock *sk = skb_to_full_sk(skb);
5653 struct sk_security_struct *sksec;
5654 struct common_audit_data ad;
5655 struct lsm_network_audit net = {0,};
5656 char *addrp;
5657 u8 proto;
5658
5659 if (sk == NULL)
5660 return NF_ACCEPT;
5661 sksec = sk->sk_security;
5662
5663 ad.type = LSM_AUDIT_DATA_NET;
5664 ad.u.net = &net;
5665 ad.u.net->netif = ifindex;
5666 ad.u.net->family = family;
5667 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5668 return NF_DROP;
5669
5670 if (selinux_secmark_enabled())
5671 if (avc_has_perm(&selinux_state,
5672 sksec->sid, skb->secmark,
5673 SECCLASS_PACKET, PACKET__SEND, &ad))
5674 return NF_DROP_ERR(-ECONNREFUSED);
5675
5676 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5677 return NF_DROP_ERR(-ECONNREFUSED);
5678
5679 return NF_ACCEPT;
5680}
5681
5682static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5683 const struct net_device *outdev,
5684 u16 family)
5685{
5686 u32 secmark_perm;
5687 u32 peer_sid;
5688 int ifindex = outdev->ifindex;
5689 struct sock *sk;
5690 struct common_audit_data ad;
5691 struct lsm_network_audit net = {0,};
5692 char *addrp;
5693 u8 secmark_active;
5694 u8 peerlbl_active;
5695
5696 /* If any sort of compatibility mode is enabled then handoff processing
5697 * to the selinux_ip_postroute_compat() function to deal with the
5698 * special handling. We do this in an attempt to keep this function
5699 * as fast and as clean as possible. */
5700 if (!selinux_policycap_netpeer())
5701 return selinux_ip_postroute_compat(skb, ifindex, family);
5702
5703 secmark_active = selinux_secmark_enabled();
5704 peerlbl_active = selinux_peerlbl_enabled();
5705 if (!secmark_active && !peerlbl_active)
5706 return NF_ACCEPT;
5707
5708 sk = skb_to_full_sk(skb);
5709
5710#ifdef CONFIG_XFRM
5711 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5712 * packet transformation so allow the packet to pass without any checks
5713 * since we'll have another chance to perform access control checks
5714 * when the packet is on it's final way out.
5715 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5716 * is NULL, in this case go ahead and apply access control.
5717 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5718 * TCP listening state we cannot wait until the XFRM processing
5719 * is done as we will miss out on the SA label if we do;
5720 * unfortunately, this means more work, but it is only once per
5721 * connection. */
5722 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5723 !(sk && sk_listener(sk)))
5724 return NF_ACCEPT;
5725#endif
5726
5727 if (sk == NULL) {
5728 /* Without an associated socket the packet is either coming
5729 * from the kernel or it is being forwarded; check the packet
5730 * to determine which and if the packet is being forwarded
5731 * query the packet directly to determine the security label. */
5732 if (skb->skb_iif) {
5733 secmark_perm = PACKET__FORWARD_OUT;
5734 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5735 return NF_DROP;
5736 } else {
5737 secmark_perm = PACKET__SEND;
5738 peer_sid = SECINITSID_KERNEL;
5739 }
5740 } else if (sk_listener(sk)) {
5741 /* Locally generated packet but the associated socket is in the
5742 * listening state which means this is a SYN-ACK packet. In
5743 * this particular case the correct security label is assigned
5744 * to the connection/request_sock but unfortunately we can't
5745 * query the request_sock as it isn't queued on the parent
5746 * socket until after the SYN-ACK packet is sent; the only
5747 * viable choice is to regenerate the label like we do in
5748 * selinux_inet_conn_request(). See also selinux_ip_output()
5749 * for similar problems. */
5750 u32 skb_sid;
5751 struct sk_security_struct *sksec;
5752
5753 sksec = sk->sk_security;
5754 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5755 return NF_DROP;
5756 /* At this point, if the returned skb peerlbl is SECSID_NULL
5757 * and the packet has been through at least one XFRM
5758 * transformation then we must be dealing with the "final"
5759 * form of labeled IPsec packet; since we've already applied
5760 * all of our access controls on this packet we can safely
5761 * pass the packet. */
5762 if (skb_sid == SECSID_NULL) {
5763 switch (family) {
5764 case PF_INET:
5765 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5766 return NF_ACCEPT;
5767 break;
5768 case PF_INET6:
5769 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5770 return NF_ACCEPT;
5771 break;
5772 default:
5773 return NF_DROP_ERR(-ECONNREFUSED);
5774 }
5775 }
5776 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5777 return NF_DROP;
5778 secmark_perm = PACKET__SEND;
5779 } else {
5780 /* Locally generated packet, fetch the security label from the
5781 * associated socket. */
5782 struct sk_security_struct *sksec = sk->sk_security;
5783 peer_sid = sksec->sid;
5784 secmark_perm = PACKET__SEND;
5785 }
5786
5787 ad.type = LSM_AUDIT_DATA_NET;
5788 ad.u.net = &net;
5789 ad.u.net->netif = ifindex;
5790 ad.u.net->family = family;
5791 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5792 return NF_DROP;
5793
5794 if (secmark_active)
5795 if (avc_has_perm(&selinux_state,
5796 peer_sid, skb->secmark,
5797 SECCLASS_PACKET, secmark_perm, &ad))
5798 return NF_DROP_ERR(-ECONNREFUSED);
5799
5800 if (peerlbl_active) {
5801 u32 if_sid;
5802 u32 node_sid;
5803
5804 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5805 return NF_DROP;
5806 if (avc_has_perm(&selinux_state,
5807 peer_sid, if_sid,
5808 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5809 return NF_DROP_ERR(-ECONNREFUSED);
5810
5811 if (sel_netnode_sid(addrp, family, &node_sid))
5812 return NF_DROP;
5813 if (avc_has_perm(&selinux_state,
5814 peer_sid, node_sid,
5815 SECCLASS_NODE, NODE__SENDTO, &ad))
5816 return NF_DROP_ERR(-ECONNREFUSED);
5817 }
5818
5819 return NF_ACCEPT;
5820}
5821
5822static unsigned int selinux_ipv4_postroute(void *priv,
5823 struct sk_buff *skb,
5824 const struct nf_hook_state *state)
5825{
5826 return selinux_ip_postroute(skb, state->out, PF_INET);
5827}
5828
5829#if IS_ENABLED(CONFIG_IPV6)
5830static unsigned int selinux_ipv6_postroute(void *priv,
5831 struct sk_buff *skb,
5832 const struct nf_hook_state *state)
5833{
5834 return selinux_ip_postroute(skb, state->out, PF_INET6);
5835}
5836#endif /* IPV6 */
5837
5838#endif /* CONFIG_NETFILTER */
5839
5840static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5841{
5842 int rc = 0;
5843 unsigned int msg_len;
5844 unsigned int data_len = skb->len;
5845 unsigned char *data = skb->data;
5846 struct nlmsghdr *nlh;
5847 struct sk_security_struct *sksec = sk->sk_security;
5848 u16 sclass = sksec->sclass;
5849 u32 perm;
5850
5851 while (data_len >= nlmsg_total_size(0)) {
5852 nlh = (struct nlmsghdr *)data;
5853
5854 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5855 * users which means we can't reject skb's with bogus
5856 * length fields; our solution is to follow what
5857 * netlink_rcv_skb() does and simply skip processing at
5858 * messages with length fields that are clearly junk
5859 */
5860 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5861 return 0;
5862
5863 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5864 if (rc == 0) {
5865 rc = sock_has_perm(sk, perm);
5866 if (rc)
5867 return rc;
5868 } else if (rc == -EINVAL) {
5869 /* -EINVAL is a missing msg/perm mapping */
5870 pr_warn_ratelimited("SELinux: unrecognized netlink"
5871 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5872 " pid=%d comm=%s\n",
5873 sk->sk_protocol, nlh->nlmsg_type,
5874 secclass_map[sclass - 1].name,
5875 task_pid_nr(current), current->comm);
5876 if (enforcing_enabled(&selinux_state) &&
5877 !security_get_allow_unknown(&selinux_state))
5878 return rc;
5879 rc = 0;
5880 } else if (rc == -ENOENT) {
5881 /* -ENOENT is a missing socket/class mapping, ignore */
5882 rc = 0;
5883 } else {
5884 return rc;
5885 }
5886
5887 /* move to the next message after applying netlink padding */
5888 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5889 if (msg_len >= data_len)
5890 return 0;
5891 data_len -= msg_len;
5892 data += msg_len;
5893 }
5894
5895 return rc;
5896}
5897
5898static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5899{
5900 isec->sclass = sclass;
5901 isec->sid = current_sid();
5902}
5903
5904static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5905 u32 perms)
5906{
5907 struct ipc_security_struct *isec;
5908 struct common_audit_data ad;
5909 u32 sid = current_sid();
5910
5911 isec = selinux_ipc(ipc_perms);
5912
5913 ad.type = LSM_AUDIT_DATA_IPC;
5914 ad.u.ipc_id = ipc_perms->key;
5915
5916 return avc_has_perm(&selinux_state,
5917 sid, isec->sid, isec->sclass, perms, &ad);
5918}
5919
5920static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5921{
5922 struct msg_security_struct *msec;
5923
5924 msec = selinux_msg_msg(msg);
5925 msec->sid = SECINITSID_UNLABELED;
5926
5927 return 0;
5928}
5929
5930/* message queue security operations */
5931static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5932{
5933 struct ipc_security_struct *isec;
5934 struct common_audit_data ad;
5935 u32 sid = current_sid();
5936 int rc;
5937
5938 isec = selinux_ipc(msq);
5939 ipc_init_security(isec, SECCLASS_MSGQ);
5940
5941 ad.type = LSM_AUDIT_DATA_IPC;
5942 ad.u.ipc_id = msq->key;
5943
5944 rc = avc_has_perm(&selinux_state,
5945 sid, isec->sid, SECCLASS_MSGQ,
5946 MSGQ__CREATE, &ad);
5947 return rc;
5948}
5949
5950static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5951{
5952 struct ipc_security_struct *isec;
5953 struct common_audit_data ad;
5954 u32 sid = current_sid();
5955
5956 isec = selinux_ipc(msq);
5957
5958 ad.type = LSM_AUDIT_DATA_IPC;
5959 ad.u.ipc_id = msq->key;
5960
5961 return avc_has_perm(&selinux_state,
5962 sid, isec->sid, SECCLASS_MSGQ,
5963 MSGQ__ASSOCIATE, &ad);
5964}
5965
5966static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5967{
5968 int err;
5969 int perms;
5970
5971 switch (cmd) {
5972 case IPC_INFO:
5973 case MSG_INFO:
5974 /* No specific object, just general system-wide information. */
5975 return avc_has_perm(&selinux_state,
5976 current_sid(), SECINITSID_KERNEL,
5977 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5978 case IPC_STAT:
5979 case MSG_STAT:
5980 case MSG_STAT_ANY:
5981 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5982 break;
5983 case IPC_SET:
5984 perms = MSGQ__SETATTR;
5985 break;
5986 case IPC_RMID:
5987 perms = MSGQ__DESTROY;
5988 break;
5989 default:
5990 return 0;
5991 }
5992
5993 err = ipc_has_perm(msq, perms);
5994 return err;
5995}
5996
5997static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5998{
5999 struct ipc_security_struct *isec;
6000 struct msg_security_struct *msec;
6001 struct common_audit_data ad;
6002 u32 sid = current_sid();
6003 int rc;
6004
6005 isec = selinux_ipc(msq);
6006 msec = selinux_msg_msg(msg);
6007
6008 /*
6009 * First time through, need to assign label to the message
6010 */
6011 if (msec->sid == SECINITSID_UNLABELED) {
6012 /*
6013 * Compute new sid based on current process and
6014 * message queue this message will be stored in
6015 */
6016 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6017 SECCLASS_MSG, NULL, &msec->sid);
6018 if (rc)
6019 return rc;
6020 }
6021
6022 ad.type = LSM_AUDIT_DATA_IPC;
6023 ad.u.ipc_id = msq->key;
6024
6025 /* Can this process write to the queue? */
6026 rc = avc_has_perm(&selinux_state,
6027 sid, isec->sid, SECCLASS_MSGQ,
6028 MSGQ__WRITE, &ad);
6029 if (!rc)
6030 /* Can this process send the message */
6031 rc = avc_has_perm(&selinux_state,
6032 sid, msec->sid, SECCLASS_MSG,
6033 MSG__SEND, &ad);
6034 if (!rc)
6035 /* Can the message be put in the queue? */
6036 rc = avc_has_perm(&selinux_state,
6037 msec->sid, isec->sid, SECCLASS_MSGQ,
6038 MSGQ__ENQUEUE, &ad);
6039
6040 return rc;
6041}
6042
6043static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6044 struct task_struct *target,
6045 long type, int mode)
6046{
6047 struct ipc_security_struct *isec;
6048 struct msg_security_struct *msec;
6049 struct common_audit_data ad;
6050 u32 sid = task_sid(target);
6051 int rc;
6052
6053 isec = selinux_ipc(msq);
6054 msec = selinux_msg_msg(msg);
6055
6056 ad.type = LSM_AUDIT_DATA_IPC;
6057 ad.u.ipc_id = msq->key;
6058
6059 rc = avc_has_perm(&selinux_state,
6060 sid, isec->sid,
6061 SECCLASS_MSGQ, MSGQ__READ, &ad);
6062 if (!rc)
6063 rc = avc_has_perm(&selinux_state,
6064 sid, msec->sid,
6065 SECCLASS_MSG, MSG__RECEIVE, &ad);
6066 return rc;
6067}
6068
6069/* Shared Memory security operations */
6070static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6071{
6072 struct ipc_security_struct *isec;
6073 struct common_audit_data ad;
6074 u32 sid = current_sid();
6075 int rc;
6076
6077 isec = selinux_ipc(shp);
6078 ipc_init_security(isec, SECCLASS_SHM);
6079
6080 ad.type = LSM_AUDIT_DATA_IPC;
6081 ad.u.ipc_id = shp->key;
6082
6083 rc = avc_has_perm(&selinux_state,
6084 sid, isec->sid, SECCLASS_SHM,
6085 SHM__CREATE, &ad);
6086 return rc;
6087}
6088
6089static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6090{
6091 struct ipc_security_struct *isec;
6092 struct common_audit_data ad;
6093 u32 sid = current_sid();
6094
6095 isec = selinux_ipc(shp);
6096
6097 ad.type = LSM_AUDIT_DATA_IPC;
6098 ad.u.ipc_id = shp->key;
6099
6100 return avc_has_perm(&selinux_state,
6101 sid, isec->sid, SECCLASS_SHM,
6102 SHM__ASSOCIATE, &ad);
6103}
6104
6105/* Note, at this point, shp is locked down */
6106static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6107{
6108 int perms;
6109 int err;
6110
6111 switch (cmd) {
6112 case IPC_INFO:
6113 case SHM_INFO:
6114 /* No specific object, just general system-wide information. */
6115 return avc_has_perm(&selinux_state,
6116 current_sid(), SECINITSID_KERNEL,
6117 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6118 case IPC_STAT:
6119 case SHM_STAT:
6120 case SHM_STAT_ANY:
6121 perms = SHM__GETATTR | SHM__ASSOCIATE;
6122 break;
6123 case IPC_SET:
6124 perms = SHM__SETATTR;
6125 break;
6126 case SHM_LOCK:
6127 case SHM_UNLOCK:
6128 perms = SHM__LOCK;
6129 break;
6130 case IPC_RMID:
6131 perms = SHM__DESTROY;
6132 break;
6133 default:
6134 return 0;
6135 }
6136
6137 err = ipc_has_perm(shp, perms);
6138 return err;
6139}
6140
6141static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6142 char __user *shmaddr, int shmflg)
6143{
6144 u32 perms;
6145
6146 if (shmflg & SHM_RDONLY)
6147 perms = SHM__READ;
6148 else
6149 perms = SHM__READ | SHM__WRITE;
6150
6151 return ipc_has_perm(shp, perms);
6152}
6153
6154/* Semaphore security operations */
6155static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6156{
6157 struct ipc_security_struct *isec;
6158 struct common_audit_data ad;
6159 u32 sid = current_sid();
6160 int rc;
6161
6162 isec = selinux_ipc(sma);
6163 ipc_init_security(isec, SECCLASS_SEM);
6164
6165 ad.type = LSM_AUDIT_DATA_IPC;
6166 ad.u.ipc_id = sma->key;
6167
6168 rc = avc_has_perm(&selinux_state,
6169 sid, isec->sid, SECCLASS_SEM,
6170 SEM__CREATE, &ad);
6171 return rc;
6172}
6173
6174static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6175{
6176 struct ipc_security_struct *isec;
6177 struct common_audit_data ad;
6178 u32 sid = current_sid();
6179
6180 isec = selinux_ipc(sma);
6181
6182 ad.type = LSM_AUDIT_DATA_IPC;
6183 ad.u.ipc_id = sma->key;
6184
6185 return avc_has_perm(&selinux_state,
6186 sid, isec->sid, SECCLASS_SEM,
6187 SEM__ASSOCIATE, &ad);
6188}
6189
6190/* Note, at this point, sma is locked down */
6191static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6192{
6193 int err;
6194 u32 perms;
6195
6196 switch (cmd) {
6197 case IPC_INFO:
6198 case SEM_INFO:
6199 /* No specific object, just general system-wide information. */
6200 return avc_has_perm(&selinux_state,
6201 current_sid(), SECINITSID_KERNEL,
6202 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6203 case GETPID:
6204 case GETNCNT:
6205 case GETZCNT:
6206 perms = SEM__GETATTR;
6207 break;
6208 case GETVAL:
6209 case GETALL:
6210 perms = SEM__READ;
6211 break;
6212 case SETVAL:
6213 case SETALL:
6214 perms = SEM__WRITE;
6215 break;
6216 case IPC_RMID:
6217 perms = SEM__DESTROY;
6218 break;
6219 case IPC_SET:
6220 perms = SEM__SETATTR;
6221 break;
6222 case IPC_STAT:
6223 case SEM_STAT:
6224 case SEM_STAT_ANY:
6225 perms = SEM__GETATTR | SEM__ASSOCIATE;
6226 break;
6227 default:
6228 return 0;
6229 }
6230
6231 err = ipc_has_perm(sma, perms);
6232 return err;
6233}
6234
6235static int selinux_sem_semop(struct kern_ipc_perm *sma,
6236 struct sembuf *sops, unsigned nsops, int alter)
6237{
6238 u32 perms;
6239
6240 if (alter)
6241 perms = SEM__READ | SEM__WRITE;
6242 else
6243 perms = SEM__READ;
6244
6245 return ipc_has_perm(sma, perms);
6246}
6247
6248static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6249{
6250 u32 av = 0;
6251
6252 av = 0;
6253 if (flag & S_IRUGO)
6254 av |= IPC__UNIX_READ;
6255 if (flag & S_IWUGO)
6256 av |= IPC__UNIX_WRITE;
6257
6258 if (av == 0)
6259 return 0;
6260
6261 return ipc_has_perm(ipcp, av);
6262}
6263
6264static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6265{
6266 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6267 *secid = isec->sid;
6268}
6269
6270static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6271{
6272 if (inode)
6273 inode_doinit_with_dentry(inode, dentry);
6274}
6275
6276static int selinux_getprocattr(struct task_struct *p,
6277 char *name, char **value)
6278{
6279 const struct task_security_struct *__tsec;
6280 u32 sid;
6281 int error;
6282 unsigned len;
6283
6284 rcu_read_lock();
6285 __tsec = selinux_cred(__task_cred(p));
6286
6287 if (current != p) {
6288 error = avc_has_perm(&selinux_state,
6289 current_sid(), __tsec->sid,
6290 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6291 if (error)
6292 goto bad;
6293 }
6294
6295 if (!strcmp(name, "current"))
6296 sid = __tsec->sid;
6297 else if (!strcmp(name, "prev"))
6298 sid = __tsec->osid;
6299 else if (!strcmp(name, "exec"))
6300 sid = __tsec->exec_sid;
6301 else if (!strcmp(name, "fscreate"))
6302 sid = __tsec->create_sid;
6303 else if (!strcmp(name, "keycreate"))
6304 sid = __tsec->keycreate_sid;
6305 else if (!strcmp(name, "sockcreate"))
6306 sid = __tsec->sockcreate_sid;
6307 else {
6308 error = -EINVAL;
6309 goto bad;
6310 }
6311 rcu_read_unlock();
6312
6313 if (!sid)
6314 return 0;
6315
6316 error = security_sid_to_context(&selinux_state, sid, value, &len);
6317 if (error)
6318 return error;
6319 return len;
6320
6321bad:
6322 rcu_read_unlock();
6323 return error;
6324}
6325
6326static int selinux_setprocattr(const char *name, void *value, size_t size)
6327{
6328 struct task_security_struct *tsec;
6329 struct cred *new;
6330 u32 mysid = current_sid(), sid = 0, ptsid;
6331 int error;
6332 char *str = value;
6333
6334 /*
6335 * Basic control over ability to set these attributes at all.
6336 */
6337 if (!strcmp(name, "exec"))
6338 error = avc_has_perm(&selinux_state,
6339 mysid, mysid, SECCLASS_PROCESS,
6340 PROCESS__SETEXEC, NULL);
6341 else if (!strcmp(name, "fscreate"))
6342 error = avc_has_perm(&selinux_state,
6343 mysid, mysid, SECCLASS_PROCESS,
6344 PROCESS__SETFSCREATE, NULL);
6345 else if (!strcmp(name, "keycreate"))
6346 error = avc_has_perm(&selinux_state,
6347 mysid, mysid, SECCLASS_PROCESS,
6348 PROCESS__SETKEYCREATE, NULL);
6349 else if (!strcmp(name, "sockcreate"))
6350 error = avc_has_perm(&selinux_state,
6351 mysid, mysid, SECCLASS_PROCESS,
6352 PROCESS__SETSOCKCREATE, NULL);
6353 else if (!strcmp(name, "current"))
6354 error = avc_has_perm(&selinux_state,
6355 mysid, mysid, SECCLASS_PROCESS,
6356 PROCESS__SETCURRENT, NULL);
6357 else
6358 error = -EINVAL;
6359 if (error)
6360 return error;
6361
6362 /* Obtain a SID for the context, if one was specified. */
6363 if (size && str[0] && str[0] != '\n') {
6364 if (str[size-1] == '\n') {
6365 str[size-1] = 0;
6366 size--;
6367 }
6368 error = security_context_to_sid(&selinux_state, value, size,
6369 &sid, GFP_KERNEL);
6370 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6371 if (!has_cap_mac_admin(true)) {
6372 struct audit_buffer *ab;
6373 size_t audit_size;
6374
6375 /* We strip a nul only if it is at the end, otherwise the
6376 * context contains a nul and we should audit that */
6377 if (str[size - 1] == '\0')
6378 audit_size = size - 1;
6379 else
6380 audit_size = size;
6381 ab = audit_log_start(audit_context(),
6382 GFP_ATOMIC,
6383 AUDIT_SELINUX_ERR);
6384 audit_log_format(ab, "op=fscreate invalid_context=");
6385 audit_log_n_untrustedstring(ab, value, audit_size);
6386 audit_log_end(ab);
6387
6388 return error;
6389 }
6390 error = security_context_to_sid_force(
6391 &selinux_state,
6392 value, size, &sid);
6393 }
6394 if (error)
6395 return error;
6396 }
6397
6398 new = prepare_creds();
6399 if (!new)
6400 return -ENOMEM;
6401
6402 /* Permission checking based on the specified context is
6403 performed during the actual operation (execve,
6404 open/mkdir/...), when we know the full context of the
6405 operation. See selinux_bprm_creds_for_exec for the execve
6406 checks and may_create for the file creation checks. The
6407 operation will then fail if the context is not permitted. */
6408 tsec = selinux_cred(new);
6409 if (!strcmp(name, "exec")) {
6410 tsec->exec_sid = sid;
6411 } else if (!strcmp(name, "fscreate")) {
6412 tsec->create_sid = sid;
6413 } else if (!strcmp(name, "keycreate")) {
6414 if (sid) {
6415 error = avc_has_perm(&selinux_state, mysid, sid,
6416 SECCLASS_KEY, KEY__CREATE, NULL);
6417 if (error)
6418 goto abort_change;
6419 }
6420 tsec->keycreate_sid = sid;
6421 } else if (!strcmp(name, "sockcreate")) {
6422 tsec->sockcreate_sid = sid;
6423 } else if (!strcmp(name, "current")) {
6424 error = -EINVAL;
6425 if (sid == 0)
6426 goto abort_change;
6427
6428 /* Only allow single threaded processes to change context */
6429 error = -EPERM;
6430 if (!current_is_single_threaded()) {
6431 error = security_bounded_transition(&selinux_state,
6432 tsec->sid, sid);
6433 if (error)
6434 goto abort_change;
6435 }
6436
6437 /* Check permissions for the transition. */
6438 error = avc_has_perm(&selinux_state,
6439 tsec->sid, sid, SECCLASS_PROCESS,
6440 PROCESS__DYNTRANSITION, NULL);
6441 if (error)
6442 goto abort_change;
6443
6444 /* Check for ptracing, and update the task SID if ok.
6445 Otherwise, leave SID unchanged and fail. */
6446 ptsid = ptrace_parent_sid();
6447 if (ptsid != 0) {
6448 error = avc_has_perm(&selinux_state,
6449 ptsid, sid, SECCLASS_PROCESS,
6450 PROCESS__PTRACE, NULL);
6451 if (error)
6452 goto abort_change;
6453 }
6454
6455 tsec->sid = sid;
6456 } else {
6457 error = -EINVAL;
6458 goto abort_change;
6459 }
6460
6461 commit_creds(new);
6462 return size;
6463
6464abort_change:
6465 abort_creds(new);
6466 return error;
6467}
6468
6469static int selinux_ismaclabel(const char *name)
6470{
6471 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6472}
6473
6474static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6475{
6476 return security_sid_to_context(&selinux_state, secid,
6477 secdata, seclen);
6478}
6479
6480static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6481{
6482 return security_context_to_sid(&selinux_state, secdata, seclen,
6483 secid, GFP_KERNEL);
6484}
6485
6486static void selinux_release_secctx(char *secdata, u32 seclen)
6487{
6488 kfree(secdata);
6489}
6490
6491static void selinux_inode_invalidate_secctx(struct inode *inode)
6492{
6493 struct inode_security_struct *isec = selinux_inode(inode);
6494
6495 spin_lock(&isec->lock);
6496 isec->initialized = LABEL_INVALID;
6497 spin_unlock(&isec->lock);
6498}
6499
6500/*
6501 * called with inode->i_mutex locked
6502 */
6503static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6504{
6505 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6506 ctx, ctxlen, 0);
6507 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6508 return rc == -EOPNOTSUPP ? 0 : rc;
6509}
6510
6511/*
6512 * called with inode->i_mutex locked
6513 */
6514static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6515{
6516 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6517}
6518
6519static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6520{
6521 int len = 0;
6522 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6523 ctx, true);
6524 if (len < 0)
6525 return len;
6526 *ctxlen = len;
6527 return 0;
6528}
6529#ifdef CONFIG_KEYS
6530
6531static int selinux_key_alloc(struct key *k, const struct cred *cred,
6532 unsigned long flags)
6533{
6534 const struct task_security_struct *tsec;
6535 struct key_security_struct *ksec;
6536
6537 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6538 if (!ksec)
6539 return -ENOMEM;
6540
6541 tsec = selinux_cred(cred);
6542 if (tsec->keycreate_sid)
6543 ksec->sid = tsec->keycreate_sid;
6544 else
6545 ksec->sid = tsec->sid;
6546
6547 k->security = ksec;
6548 return 0;
6549}
6550
6551static void selinux_key_free(struct key *k)
6552{
6553 struct key_security_struct *ksec = k->security;
6554
6555 k->security = NULL;
6556 kfree(ksec);
6557}
6558
6559static int selinux_key_permission(key_ref_t key_ref,
6560 const struct cred *cred,
6561 enum key_need_perm need_perm)
6562{
6563 struct key *key;
6564 struct key_security_struct *ksec;
6565 u32 perm, sid;
6566
6567 switch (need_perm) {
6568 case KEY_NEED_VIEW:
6569 perm = KEY__VIEW;
6570 break;
6571 case KEY_NEED_READ:
6572 perm = KEY__READ;
6573 break;
6574 case KEY_NEED_WRITE:
6575 perm = KEY__WRITE;
6576 break;
6577 case KEY_NEED_SEARCH:
6578 perm = KEY__SEARCH;
6579 break;
6580 case KEY_NEED_LINK:
6581 perm = KEY__LINK;
6582 break;
6583 case KEY_NEED_SETATTR:
6584 perm = KEY__SETATTR;
6585 break;
6586 case KEY_NEED_UNLINK:
6587 case KEY_SYSADMIN_OVERRIDE:
6588 case KEY_AUTHTOKEN_OVERRIDE:
6589 case KEY_DEFER_PERM_CHECK:
6590 return 0;
6591 default:
6592 WARN_ON(1);
6593 return -EPERM;
6594
6595 }
6596
6597 sid = cred_sid(cred);
6598 key = key_ref_to_ptr(key_ref);
6599 ksec = key->security;
6600
6601 return avc_has_perm(&selinux_state,
6602 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6603}
6604
6605static int selinux_key_getsecurity(struct key *key, char **_buffer)
6606{
6607 struct key_security_struct *ksec = key->security;
6608 char *context = NULL;
6609 unsigned len;
6610 int rc;
6611
6612 rc = security_sid_to_context(&selinux_state, ksec->sid,
6613 &context, &len);
6614 if (!rc)
6615 rc = len;
6616 *_buffer = context;
6617 return rc;
6618}
6619
6620#ifdef CONFIG_KEY_NOTIFICATIONS
6621static int selinux_watch_key(struct key *key)
6622{
6623 struct key_security_struct *ksec = key->security;
6624 u32 sid = current_sid();
6625
6626 return avc_has_perm(&selinux_state,
6627 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6628}
6629#endif
6630#endif
6631
6632#ifdef CONFIG_SECURITY_INFINIBAND
6633static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6634{
6635 struct common_audit_data ad;
6636 int err;
6637 u32 sid = 0;
6638 struct ib_security_struct *sec = ib_sec;
6639 struct lsm_ibpkey_audit ibpkey;
6640
6641 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6642 if (err)
6643 return err;
6644
6645 ad.type = LSM_AUDIT_DATA_IBPKEY;
6646 ibpkey.subnet_prefix = subnet_prefix;
6647 ibpkey.pkey = pkey_val;
6648 ad.u.ibpkey = &ibpkey;
6649 return avc_has_perm(&selinux_state,
6650 sec->sid, sid,
6651 SECCLASS_INFINIBAND_PKEY,
6652 INFINIBAND_PKEY__ACCESS, &ad);
6653}
6654
6655static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6656 u8 port_num)
6657{
6658 struct common_audit_data ad;
6659 int err;
6660 u32 sid = 0;
6661 struct ib_security_struct *sec = ib_sec;
6662 struct lsm_ibendport_audit ibendport;
6663
6664 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6665 &sid);
6666
6667 if (err)
6668 return err;
6669
6670 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6671 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6672 ibendport.port = port_num;
6673 ad.u.ibendport = &ibendport;
6674 return avc_has_perm(&selinux_state,
6675 sec->sid, sid,
6676 SECCLASS_INFINIBAND_ENDPORT,
6677 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6678}
6679
6680static int selinux_ib_alloc_security(void **ib_sec)
6681{
6682 struct ib_security_struct *sec;
6683
6684 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6685 if (!sec)
6686 return -ENOMEM;
6687 sec->sid = current_sid();
6688
6689 *ib_sec = sec;
6690 return 0;
6691}
6692
6693static void selinux_ib_free_security(void *ib_sec)
6694{
6695 kfree(ib_sec);
6696}
6697#endif
6698
6699#ifdef CONFIG_BPF_SYSCALL
6700static int selinux_bpf(int cmd, union bpf_attr *attr,
6701 unsigned int size)
6702{
6703 u32 sid = current_sid();
6704 int ret;
6705
6706 switch (cmd) {
6707 case BPF_MAP_CREATE:
6708 ret = avc_has_perm(&selinux_state,
6709 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6710 NULL);
6711 break;
6712 case BPF_PROG_LOAD:
6713 ret = avc_has_perm(&selinux_state,
6714 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6715 NULL);
6716 break;
6717 default:
6718 ret = 0;
6719 break;
6720 }
6721
6722 return ret;
6723}
6724
6725static u32 bpf_map_fmode_to_av(fmode_t fmode)
6726{
6727 u32 av = 0;
6728
6729 if (fmode & FMODE_READ)
6730 av |= BPF__MAP_READ;
6731 if (fmode & FMODE_WRITE)
6732 av |= BPF__MAP_WRITE;
6733 return av;
6734}
6735
6736/* This function will check the file pass through unix socket or binder to see
6737 * if it is a bpf related object. And apply correspinding checks on the bpf
6738 * object based on the type. The bpf maps and programs, not like other files and
6739 * socket, are using a shared anonymous inode inside the kernel as their inode.
6740 * So checking that inode cannot identify if the process have privilege to
6741 * access the bpf object and that's why we have to add this additional check in
6742 * selinux_file_receive and selinux_binder_transfer_files.
6743 */
6744static int bpf_fd_pass(struct file *file, u32 sid)
6745{
6746 struct bpf_security_struct *bpfsec;
6747 struct bpf_prog *prog;
6748 struct bpf_map *map;
6749 int ret;
6750
6751 if (file->f_op == &bpf_map_fops) {
6752 map = file->private_data;
6753 bpfsec = map->security;
6754 ret = avc_has_perm(&selinux_state,
6755 sid, bpfsec->sid, SECCLASS_BPF,
6756 bpf_map_fmode_to_av(file->f_mode), NULL);
6757 if (ret)
6758 return ret;
6759 } else if (file->f_op == &bpf_prog_fops) {
6760 prog = file->private_data;
6761 bpfsec = prog->aux->security;
6762 ret = avc_has_perm(&selinux_state,
6763 sid, bpfsec->sid, SECCLASS_BPF,
6764 BPF__PROG_RUN, NULL);
6765 if (ret)
6766 return ret;
6767 }
6768 return 0;
6769}
6770
6771static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6772{
6773 u32 sid = current_sid();
6774 struct bpf_security_struct *bpfsec;
6775
6776 bpfsec = map->security;
6777 return avc_has_perm(&selinux_state,
6778 sid, bpfsec->sid, SECCLASS_BPF,
6779 bpf_map_fmode_to_av(fmode), NULL);
6780}
6781
6782static int selinux_bpf_prog(struct bpf_prog *prog)
6783{
6784 u32 sid = current_sid();
6785 struct bpf_security_struct *bpfsec;
6786
6787 bpfsec = prog->aux->security;
6788 return avc_has_perm(&selinux_state,
6789 sid, bpfsec->sid, SECCLASS_BPF,
6790 BPF__PROG_RUN, NULL);
6791}
6792
6793static int selinux_bpf_map_alloc(struct bpf_map *map)
6794{
6795 struct bpf_security_struct *bpfsec;
6796
6797 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6798 if (!bpfsec)
6799 return -ENOMEM;
6800
6801 bpfsec->sid = current_sid();
6802 map->security = bpfsec;
6803
6804 return 0;
6805}
6806
6807static void selinux_bpf_map_free(struct bpf_map *map)
6808{
6809 struct bpf_security_struct *bpfsec = map->security;
6810
6811 map->security = NULL;
6812 kfree(bpfsec);
6813}
6814
6815static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6816{
6817 struct bpf_security_struct *bpfsec;
6818
6819 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6820 if (!bpfsec)
6821 return -ENOMEM;
6822
6823 bpfsec->sid = current_sid();
6824 aux->security = bpfsec;
6825
6826 return 0;
6827}
6828
6829static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6830{
6831 struct bpf_security_struct *bpfsec = aux->security;
6832
6833 aux->security = NULL;
6834 kfree(bpfsec);
6835}
6836#endif
6837
6838static int selinux_lockdown(enum lockdown_reason what)
6839{
6840 struct common_audit_data ad;
6841 u32 sid = current_sid();
6842 int invalid_reason = (what <= LOCKDOWN_NONE) ||
6843 (what == LOCKDOWN_INTEGRITY_MAX) ||
6844 (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6845
6846 if (WARN(invalid_reason, "Invalid lockdown reason")) {
6847 audit_log(audit_context(),
6848 GFP_ATOMIC, AUDIT_SELINUX_ERR,
6849 "lockdown_reason=invalid");
6850 return -EINVAL;
6851 }
6852
6853 ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6854 ad.u.reason = what;
6855
6856 if (what <= LOCKDOWN_INTEGRITY_MAX)
6857 return avc_has_perm(&selinux_state,
6858 sid, sid, SECCLASS_LOCKDOWN,
6859 LOCKDOWN__INTEGRITY, &ad);
6860 else
6861 return avc_has_perm(&selinux_state,
6862 sid, sid, SECCLASS_LOCKDOWN,
6863 LOCKDOWN__CONFIDENTIALITY, &ad);
6864}
6865
6866struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6867 .lbs_cred = sizeof(struct task_security_struct),
6868 .lbs_file = sizeof(struct file_security_struct),
6869 .lbs_inode = sizeof(struct inode_security_struct),
6870 .lbs_ipc = sizeof(struct ipc_security_struct),
6871 .lbs_msg_msg = sizeof(struct msg_security_struct),
6872};
6873
6874#ifdef CONFIG_PERF_EVENTS
6875static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6876{
6877 u32 requested, sid = current_sid();
6878
6879 if (type == PERF_SECURITY_OPEN)
6880 requested = PERF_EVENT__OPEN;
6881 else if (type == PERF_SECURITY_CPU)
6882 requested = PERF_EVENT__CPU;
6883 else if (type == PERF_SECURITY_KERNEL)
6884 requested = PERF_EVENT__KERNEL;
6885 else if (type == PERF_SECURITY_TRACEPOINT)
6886 requested = PERF_EVENT__TRACEPOINT;
6887 else
6888 return -EINVAL;
6889
6890 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6891 requested, NULL);
6892}
6893
6894static int selinux_perf_event_alloc(struct perf_event *event)
6895{
6896 struct perf_event_security_struct *perfsec;
6897
6898 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6899 if (!perfsec)
6900 return -ENOMEM;
6901
6902 perfsec->sid = current_sid();
6903 event->security = perfsec;
6904
6905 return 0;
6906}
6907
6908static void selinux_perf_event_free(struct perf_event *event)
6909{
6910 struct perf_event_security_struct *perfsec = event->security;
6911
6912 event->security = NULL;
6913 kfree(perfsec);
6914}
6915
6916static int selinux_perf_event_read(struct perf_event *event)
6917{
6918 struct perf_event_security_struct *perfsec = event->security;
6919 u32 sid = current_sid();
6920
6921 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6922 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6923}
6924
6925static int selinux_perf_event_write(struct perf_event *event)
6926{
6927 struct perf_event_security_struct *perfsec = event->security;
6928 u32 sid = current_sid();
6929
6930 return avc_has_perm(&selinux_state, sid, perfsec->sid,
6931 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6932}
6933#endif
6934
6935/*
6936 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6937 * 1. any hooks that don't belong to (2.) or (3.) below,
6938 * 2. hooks that both access structures allocated by other hooks, and allocate
6939 * structures that can be later accessed by other hooks (mostly "cloning"
6940 * hooks),
6941 * 3. hooks that only allocate structures that can be later accessed by other
6942 * hooks ("allocating" hooks).
6943 *
6944 * Please follow block comment delimiters in the list to keep this order.
6945 *
6946 * This ordering is needed for SELinux runtime disable to work at least somewhat
6947 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6948 * when disabling SELinux at runtime.
6949 */
6950static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6951 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6952 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6953 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6954 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6955
6956 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6957 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6958 LSM_HOOK_INIT(capget, selinux_capget),
6959 LSM_HOOK_INIT(capset, selinux_capset),
6960 LSM_HOOK_INIT(capable, selinux_capable),
6961 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6962 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6963 LSM_HOOK_INIT(syslog, selinux_syslog),
6964 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6965
6966 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6967
6968 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6969 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6970 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6971
6972 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6973 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6974 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6975 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6976 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6977 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6978 LSM_HOOK_INIT(sb_mount, selinux_mount),
6979 LSM_HOOK_INIT(sb_umount, selinux_umount),
6980 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6981 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6982
6983 LSM_HOOK_INIT(move_mount, selinux_move_mount),
6984
6985 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6986 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6987
6988 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6989 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6990 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6991 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6992 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6993 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6994 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6995 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6996 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6997 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6998 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6999 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7000 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7001 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7002 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7003 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7004 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7005 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7006 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7007 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7008 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7009 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7010 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7011 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7012 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7013 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7014 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7015
7016 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7017
7018 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7019 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7020 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7021 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7022 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7023 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7024 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7025 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7026 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7027 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7028 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7029
7030 LSM_HOOK_INIT(file_open, selinux_file_open),
7031
7032 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7033 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7034 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7035 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7036 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7037 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7038 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7039 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7040 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7041 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7042 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7043 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7044 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7045 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7046 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7047 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7048 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7049 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7050 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7051 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7052 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7053 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7054 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7055
7056 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7057 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7058
7059 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7060 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7061 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7062 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7063
7064 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7065 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7066 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7067
7068 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7069 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7070 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7071
7072 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7073
7074 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7075 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7076
7077 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7078 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7079 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7080 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7081 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7082 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7083
7084 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7085 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7086
7087 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7088 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7089 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7090 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7091 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7092 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7093 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7094 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7095 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7096 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7097 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7098 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7099 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7100 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7101 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7102 LSM_HOOK_INIT(socket_getpeersec_stream,
7103 selinux_socket_getpeersec_stream),
7104 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7105 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7106 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7107 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7108 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7109 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7110 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7111 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7112 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7113 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7114 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7115 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7116 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7117 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7118 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7119 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7120 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7121 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7122 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7123 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7124#ifdef CONFIG_SECURITY_INFINIBAND
7125 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7126 LSM_HOOK_INIT(ib_endport_manage_subnet,
7127 selinux_ib_endport_manage_subnet),
7128 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7129#endif
7130#ifdef CONFIG_SECURITY_NETWORK_XFRM
7131 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7132 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7133 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7134 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7135 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7136 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7137 selinux_xfrm_state_pol_flow_match),
7138 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7139#endif
7140
7141#ifdef CONFIG_KEYS
7142 LSM_HOOK_INIT(key_free, selinux_key_free),
7143 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7144 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7145#ifdef CONFIG_KEY_NOTIFICATIONS
7146 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7147#endif
7148#endif
7149
7150#ifdef CONFIG_AUDIT
7151 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7152 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7153 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7154#endif
7155
7156#ifdef CONFIG_BPF_SYSCALL
7157 LSM_HOOK_INIT(bpf, selinux_bpf),
7158 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7159 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7160 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7161 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7162#endif
7163
7164#ifdef CONFIG_PERF_EVENTS
7165 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7166 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7167 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7168 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7169#endif
7170
7171 LSM_HOOK_INIT(locked_down, selinux_lockdown),
7172
7173 /*
7174 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7175 */
7176 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7177 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7178 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7179 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7180#ifdef CONFIG_SECURITY_NETWORK_XFRM
7181 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7182#endif
7183
7184 /*
7185 * PUT "ALLOCATING" HOOKS HERE
7186 */
7187 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7188 LSM_HOOK_INIT(msg_queue_alloc_security,
7189 selinux_msg_queue_alloc_security),
7190 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7191 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7192 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7193 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7194 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7195 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7196 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7197 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7198#ifdef CONFIG_SECURITY_INFINIBAND
7199 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7200#endif
7201#ifdef CONFIG_SECURITY_NETWORK_XFRM
7202 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7203 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7204 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7205 selinux_xfrm_state_alloc_acquire),
7206#endif
7207#ifdef CONFIG_KEYS
7208 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7209#endif
7210#ifdef CONFIG_AUDIT
7211 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7212#endif
7213#ifdef CONFIG_BPF_SYSCALL
7214 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7215 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7216#endif
7217#ifdef CONFIG_PERF_EVENTS
7218 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7219#endif
7220};
7221
7222static __init int selinux_init(void)
7223{
7224 pr_info("SELinux: Initializing.\n");
7225
7226 memset(&selinux_state, 0, sizeof(selinux_state));
7227 enforcing_set(&selinux_state, selinux_enforcing_boot);
7228 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7229 selinux_ss_init(&selinux_state.ss);
7230 selinux_avc_init(&selinux_state.avc);
7231 mutex_init(&selinux_state.status_lock);
7232
7233 /* Set the security state for the initial task. */
7234 cred_init_security();
7235
7236 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7237
7238 avc_init();
7239
7240 avtab_cache_init();
7241
7242 ebitmap_cache_init();
7243
7244 hashtab_cache_init();
7245
7246 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7247
7248 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7249 panic("SELinux: Unable to register AVC netcache callback\n");
7250
7251 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7252 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7253
7254 if (selinux_enforcing_boot)
7255 pr_debug("SELinux: Starting in enforcing mode\n");
7256 else
7257 pr_debug("SELinux: Starting in permissive mode\n");
7258
7259 fs_validate_description("selinux", selinux_fs_parameters);
7260
7261 return 0;
7262}
7263
7264static void delayed_superblock_init(struct super_block *sb, void *unused)
7265{
7266 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7267}
7268
7269void selinux_complete_init(void)
7270{
7271 pr_debug("SELinux: Completing initialization.\n");
7272
7273 /* Set up any superblocks initialized prior to the policy load. */
7274 pr_debug("SELinux: Setting up existing superblocks.\n");
7275 iterate_supers(delayed_superblock_init, NULL);
7276}
7277
7278/* SELinux requires early initialization in order to label
7279 all processes and objects when they are created. */
7280DEFINE_LSM(selinux) = {
7281 .name = "selinux",
7282 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7283 .enabled = &selinux_enabled_boot,
7284 .blobs = &selinux_blob_sizes,
7285 .init = selinux_init,
7286};
7287
7288#if defined(CONFIG_NETFILTER)
7289
7290static const struct nf_hook_ops selinux_nf_ops[] = {
7291 {
7292 .hook = selinux_ipv4_postroute,
7293 .pf = NFPROTO_IPV4,
7294 .hooknum = NF_INET_POST_ROUTING,
7295 .priority = NF_IP_PRI_SELINUX_LAST,
7296 },
7297 {
7298 .hook = selinux_ipv4_forward,
7299 .pf = NFPROTO_IPV4,
7300 .hooknum = NF_INET_FORWARD,
7301 .priority = NF_IP_PRI_SELINUX_FIRST,
7302 },
7303 {
7304 .hook = selinux_ipv4_output,
7305 .pf = NFPROTO_IPV4,
7306 .hooknum = NF_INET_LOCAL_OUT,
7307 .priority = NF_IP_PRI_SELINUX_FIRST,
7308 },
7309#if IS_ENABLED(CONFIG_IPV6)
7310 {
7311 .hook = selinux_ipv6_postroute,
7312 .pf = NFPROTO_IPV6,
7313 .hooknum = NF_INET_POST_ROUTING,
7314 .priority = NF_IP6_PRI_SELINUX_LAST,
7315 },
7316 {
7317 .hook = selinux_ipv6_forward,
7318 .pf = NFPROTO_IPV6,
7319 .hooknum = NF_INET_FORWARD,
7320 .priority = NF_IP6_PRI_SELINUX_FIRST,
7321 },
7322 {
7323 .hook = selinux_ipv6_output,
7324 .pf = NFPROTO_IPV6,
7325 .hooknum = NF_INET_LOCAL_OUT,
7326 .priority = NF_IP6_PRI_SELINUX_FIRST,
7327 },
7328#endif /* IPV6 */
7329};
7330
7331static int __net_init selinux_nf_register(struct net *net)
7332{
7333 return nf_register_net_hooks(net, selinux_nf_ops,
7334 ARRAY_SIZE(selinux_nf_ops));
7335}
7336
7337static void __net_exit selinux_nf_unregister(struct net *net)
7338{
7339 nf_unregister_net_hooks(net, selinux_nf_ops,
7340 ARRAY_SIZE(selinux_nf_ops));
7341}
7342
7343static struct pernet_operations selinux_net_ops = {
7344 .init = selinux_nf_register,
7345 .exit = selinux_nf_unregister,
7346};
7347
7348static int __init selinux_nf_ip_init(void)
7349{
7350 int err;
7351
7352 if (!selinux_enabled_boot)
7353 return 0;
7354
7355 pr_debug("SELinux: Registering netfilter hooks\n");
7356
7357 err = register_pernet_subsys(&selinux_net_ops);
7358 if (err)
7359 panic("SELinux: register_pernet_subsys: error %d\n", err);
7360
7361 return 0;
7362}
7363__initcall(selinux_nf_ip_init);
7364
7365#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7366static void selinux_nf_ip_exit(void)
7367{
7368 pr_debug("SELinux: Unregistering netfilter hooks\n");
7369
7370 unregister_pernet_subsys(&selinux_net_ops);
7371}
7372#endif
7373
7374#else /* CONFIG_NETFILTER */
7375
7376#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7377#define selinux_nf_ip_exit()
7378#endif
7379
7380#endif /* CONFIG_NETFILTER */
7381
7382#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7383int selinux_disable(struct selinux_state *state)
7384{
7385 if (selinux_initialized(state)) {
7386 /* Not permitted after initial policy load. */
7387 return -EINVAL;
7388 }
7389
7390 if (selinux_disabled(state)) {
7391 /* Only do this once. */
7392 return -EINVAL;
7393 }
7394
7395 selinux_mark_disabled(state);
7396
7397 pr_info("SELinux: Disabled at runtime.\n");
7398
7399 /*
7400 * Unregister netfilter hooks.
7401 * Must be done before security_delete_hooks() to avoid breaking
7402 * runtime disable.
7403 */
7404 selinux_nf_ip_exit();
7405
7406 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7407
7408 /* Try to destroy the avc node cache */
7409 avc_disable();
7410
7411 /* Unregister selinuxfs. */
7412 exit_sel_fs();
7413
7414 return 0;
7415}
7416#endif
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/tracehook.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <linux/bpf.h>
89#include <linux/kernfs.h>
90#include <linux/stringhash.h> /* for hashlen_string() */
91#include <uapi/linux/mount.h>
92#include <linux/fsnotify.h>
93#include <linux/fanotify.h>
94
95#include "avc.h"
96#include "objsec.h"
97#include "netif.h"
98#include "netnode.h"
99#include "netport.h"
100#include "ibpkey.h"
101#include "xfrm.h"
102#include "netlabel.h"
103#include "audit.h"
104#include "avc_ss.h"
105
106struct selinux_state selinux_state;
107
108/* SECMARK reference count */
109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
110
111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
112static int selinux_enforcing_boot;
113
114static int __init enforcing_setup(char *str)
115{
116 unsigned long enforcing;
117 if (!kstrtoul(str, 0, &enforcing))
118 selinux_enforcing_boot = enforcing ? 1 : 0;
119 return 1;
120}
121__setup("enforcing=", enforcing_setup);
122#else
123#define selinux_enforcing_boot 1
124#endif
125
126int selinux_enabled __lsm_ro_after_init = 1;
127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
128static int __init selinux_enabled_setup(char *str)
129{
130 unsigned long enabled;
131 if (!kstrtoul(str, 0, &enabled))
132 selinux_enabled = enabled ? 1 : 0;
133 return 1;
134}
135__setup("selinux=", selinux_enabled_setup);
136#endif
137
138static unsigned int selinux_checkreqprot_boot =
139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
140
141static int __init checkreqprot_setup(char *str)
142{
143 unsigned long checkreqprot;
144
145 if (!kstrtoul(str, 0, &checkreqprot))
146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
147 return 1;
148}
149__setup("checkreqprot=", checkreqprot_setup);
150
151/**
152 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
153 *
154 * Description:
155 * This function checks the SECMARK reference counter to see if any SECMARK
156 * targets are currently configured, if the reference counter is greater than
157 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
158 * enabled, false (0) if SECMARK is disabled. If the always_check_network
159 * policy capability is enabled, SECMARK is always considered enabled.
160 *
161 */
162static int selinux_secmark_enabled(void)
163{
164 return (selinux_policycap_alwaysnetwork() ||
165 atomic_read(&selinux_secmark_refcount));
166}
167
168/**
169 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
170 *
171 * Description:
172 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
173 * (1) if any are enabled or false (0) if neither are enabled. If the
174 * always_check_network policy capability is enabled, peer labeling
175 * is always considered enabled.
176 *
177 */
178static int selinux_peerlbl_enabled(void)
179{
180 return (selinux_policycap_alwaysnetwork() ||
181 netlbl_enabled() || selinux_xfrm_enabled());
182}
183
184static int selinux_netcache_avc_callback(u32 event)
185{
186 if (event == AVC_CALLBACK_RESET) {
187 sel_netif_flush();
188 sel_netnode_flush();
189 sel_netport_flush();
190 synchronize_net();
191 }
192 return 0;
193}
194
195static int selinux_lsm_notifier_avc_callback(u32 event)
196{
197 if (event == AVC_CALLBACK_RESET) {
198 sel_ib_pkey_flush();
199 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
200 }
201
202 return 0;
203}
204
205/*
206 * initialise the security for the init task
207 */
208static void cred_init_security(void)
209{
210 struct cred *cred = (struct cred *) current->real_cred;
211 struct task_security_struct *tsec;
212
213 tsec = selinux_cred(cred);
214 tsec->osid = tsec->sid = SECINITSID_KERNEL;
215}
216
217/*
218 * get the security ID of a set of credentials
219 */
220static inline u32 cred_sid(const struct cred *cred)
221{
222 const struct task_security_struct *tsec;
223
224 tsec = selinux_cred(cred);
225 return tsec->sid;
226}
227
228/*
229 * get the objective security ID of a task
230 */
231static inline u32 task_sid(const struct task_struct *task)
232{
233 u32 sid;
234
235 rcu_read_lock();
236 sid = cred_sid(__task_cred(task));
237 rcu_read_unlock();
238 return sid;
239}
240
241/* Allocate and free functions for each kind of security blob. */
242
243static int inode_alloc_security(struct inode *inode)
244{
245 struct inode_security_struct *isec = selinux_inode(inode);
246 u32 sid = current_sid();
247
248 spin_lock_init(&isec->lock);
249 INIT_LIST_HEAD(&isec->list);
250 isec->inode = inode;
251 isec->sid = SECINITSID_UNLABELED;
252 isec->sclass = SECCLASS_FILE;
253 isec->task_sid = sid;
254 isec->initialized = LABEL_INVALID;
255
256 return 0;
257}
258
259static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
260
261/*
262 * Try reloading inode security labels that have been marked as invalid. The
263 * @may_sleep parameter indicates when sleeping and thus reloading labels is
264 * allowed; when set to false, returns -ECHILD when the label is
265 * invalid. The @dentry parameter should be set to a dentry of the inode.
266 */
267static int __inode_security_revalidate(struct inode *inode,
268 struct dentry *dentry,
269 bool may_sleep)
270{
271 struct inode_security_struct *isec = selinux_inode(inode);
272
273 might_sleep_if(may_sleep);
274
275 if (selinux_state.initialized &&
276 isec->initialized != LABEL_INITIALIZED) {
277 if (!may_sleep)
278 return -ECHILD;
279
280 /*
281 * Try reloading the inode security label. This will fail if
282 * @opt_dentry is NULL and no dentry for this inode can be
283 * found; in that case, continue using the old label.
284 */
285 inode_doinit_with_dentry(inode, dentry);
286 }
287 return 0;
288}
289
290static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
291{
292 return selinux_inode(inode);
293}
294
295static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
296{
297 int error;
298
299 error = __inode_security_revalidate(inode, NULL, !rcu);
300 if (error)
301 return ERR_PTR(error);
302 return selinux_inode(inode);
303}
304
305/*
306 * Get the security label of an inode.
307 */
308static struct inode_security_struct *inode_security(struct inode *inode)
309{
310 __inode_security_revalidate(inode, NULL, true);
311 return selinux_inode(inode);
312}
313
314static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
315{
316 struct inode *inode = d_backing_inode(dentry);
317
318 return selinux_inode(inode);
319}
320
321/*
322 * Get the security label of a dentry's backing inode.
323 */
324static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
325{
326 struct inode *inode = d_backing_inode(dentry);
327
328 __inode_security_revalidate(inode, dentry, true);
329 return selinux_inode(inode);
330}
331
332static void inode_free_security(struct inode *inode)
333{
334 struct inode_security_struct *isec = selinux_inode(inode);
335 struct superblock_security_struct *sbsec;
336
337 if (!isec)
338 return;
339 sbsec = inode->i_sb->s_security;
340 /*
341 * As not all inode security structures are in a list, we check for
342 * empty list outside of the lock to make sure that we won't waste
343 * time taking a lock doing nothing.
344 *
345 * The list_del_init() function can be safely called more than once.
346 * It should not be possible for this function to be called with
347 * concurrent list_add(), but for better safety against future changes
348 * in the code, we use list_empty_careful() here.
349 */
350 if (!list_empty_careful(&isec->list)) {
351 spin_lock(&sbsec->isec_lock);
352 list_del_init(&isec->list);
353 spin_unlock(&sbsec->isec_lock);
354 }
355}
356
357static int file_alloc_security(struct file *file)
358{
359 struct file_security_struct *fsec = selinux_file(file);
360 u32 sid = current_sid();
361
362 fsec->sid = sid;
363 fsec->fown_sid = sid;
364
365 return 0;
366}
367
368static int superblock_alloc_security(struct super_block *sb)
369{
370 struct superblock_security_struct *sbsec;
371
372 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
373 if (!sbsec)
374 return -ENOMEM;
375
376 mutex_init(&sbsec->lock);
377 INIT_LIST_HEAD(&sbsec->isec_head);
378 spin_lock_init(&sbsec->isec_lock);
379 sbsec->sb = sb;
380 sbsec->sid = SECINITSID_UNLABELED;
381 sbsec->def_sid = SECINITSID_FILE;
382 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
383 sb->s_security = sbsec;
384
385 return 0;
386}
387
388static void superblock_free_security(struct super_block *sb)
389{
390 struct superblock_security_struct *sbsec = sb->s_security;
391 sb->s_security = NULL;
392 kfree(sbsec);
393}
394
395struct selinux_mnt_opts {
396 const char *fscontext, *context, *rootcontext, *defcontext;
397};
398
399static void selinux_free_mnt_opts(void *mnt_opts)
400{
401 struct selinux_mnt_opts *opts = mnt_opts;
402 kfree(opts->fscontext);
403 kfree(opts->context);
404 kfree(opts->rootcontext);
405 kfree(opts->defcontext);
406 kfree(opts);
407}
408
409static inline int inode_doinit(struct inode *inode)
410{
411 return inode_doinit_with_dentry(inode, NULL);
412}
413
414enum {
415 Opt_error = -1,
416 Opt_context = 0,
417 Opt_defcontext = 1,
418 Opt_fscontext = 2,
419 Opt_rootcontext = 3,
420 Opt_seclabel = 4,
421};
422
423#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
424static struct {
425 const char *name;
426 int len;
427 int opt;
428 bool has_arg;
429} tokens[] = {
430 A(context, true),
431 A(fscontext, true),
432 A(defcontext, true),
433 A(rootcontext, true),
434 A(seclabel, false),
435};
436#undef A
437
438static int match_opt_prefix(char *s, int l, char **arg)
439{
440 int i;
441
442 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
443 size_t len = tokens[i].len;
444 if (len > l || memcmp(s, tokens[i].name, len))
445 continue;
446 if (tokens[i].has_arg) {
447 if (len == l || s[len] != '=')
448 continue;
449 *arg = s + len + 1;
450 } else if (len != l)
451 continue;
452 return tokens[i].opt;
453 }
454 return Opt_error;
455}
456
457#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
458
459static int may_context_mount_sb_relabel(u32 sid,
460 struct superblock_security_struct *sbsec,
461 const struct cred *cred)
462{
463 const struct task_security_struct *tsec = selinux_cred(cred);
464 int rc;
465
466 rc = avc_has_perm(&selinux_state,
467 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
468 FILESYSTEM__RELABELFROM, NULL);
469 if (rc)
470 return rc;
471
472 rc = avc_has_perm(&selinux_state,
473 tsec->sid, sid, SECCLASS_FILESYSTEM,
474 FILESYSTEM__RELABELTO, NULL);
475 return rc;
476}
477
478static int may_context_mount_inode_relabel(u32 sid,
479 struct superblock_security_struct *sbsec,
480 const struct cred *cred)
481{
482 const struct task_security_struct *tsec = selinux_cred(cred);
483 int rc;
484 rc = avc_has_perm(&selinux_state,
485 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
486 FILESYSTEM__RELABELFROM, NULL);
487 if (rc)
488 return rc;
489
490 rc = avc_has_perm(&selinux_state,
491 sid, sbsec->sid, SECCLASS_FILESYSTEM,
492 FILESYSTEM__ASSOCIATE, NULL);
493 return rc;
494}
495
496static int selinux_is_genfs_special_handling(struct super_block *sb)
497{
498 /* Special handling. Genfs but also in-core setxattr handler */
499 return !strcmp(sb->s_type->name, "sysfs") ||
500 !strcmp(sb->s_type->name, "pstore") ||
501 !strcmp(sb->s_type->name, "debugfs") ||
502 !strcmp(sb->s_type->name, "tracefs") ||
503 !strcmp(sb->s_type->name, "rootfs") ||
504 (selinux_policycap_cgroupseclabel() &&
505 (!strcmp(sb->s_type->name, "cgroup") ||
506 !strcmp(sb->s_type->name, "cgroup2")));
507}
508
509static int selinux_is_sblabel_mnt(struct super_block *sb)
510{
511 struct superblock_security_struct *sbsec = sb->s_security;
512
513 /*
514 * IMPORTANT: Double-check logic in this function when adding a new
515 * SECURITY_FS_USE_* definition!
516 */
517 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
518
519 switch (sbsec->behavior) {
520 case SECURITY_FS_USE_XATTR:
521 case SECURITY_FS_USE_TRANS:
522 case SECURITY_FS_USE_TASK:
523 case SECURITY_FS_USE_NATIVE:
524 return 1;
525
526 case SECURITY_FS_USE_GENFS:
527 return selinux_is_genfs_special_handling(sb);
528
529 /* Never allow relabeling on context mounts */
530 case SECURITY_FS_USE_MNTPOINT:
531 case SECURITY_FS_USE_NONE:
532 default:
533 return 0;
534 }
535}
536
537static int sb_finish_set_opts(struct super_block *sb)
538{
539 struct superblock_security_struct *sbsec = sb->s_security;
540 struct dentry *root = sb->s_root;
541 struct inode *root_inode = d_backing_inode(root);
542 int rc = 0;
543
544 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
545 /* Make sure that the xattr handler exists and that no
546 error other than -ENODATA is returned by getxattr on
547 the root directory. -ENODATA is ok, as this may be
548 the first boot of the SELinux kernel before we have
549 assigned xattr values to the filesystem. */
550 if (!(root_inode->i_opflags & IOP_XATTR)) {
551 pr_warn("SELinux: (dev %s, type %s) has no "
552 "xattr support\n", sb->s_id, sb->s_type->name);
553 rc = -EOPNOTSUPP;
554 goto out;
555 }
556
557 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
558 if (rc < 0 && rc != -ENODATA) {
559 if (rc == -EOPNOTSUPP)
560 pr_warn("SELinux: (dev %s, type "
561 "%s) has no security xattr handler\n",
562 sb->s_id, sb->s_type->name);
563 else
564 pr_warn("SELinux: (dev %s, type "
565 "%s) getxattr errno %d\n", sb->s_id,
566 sb->s_type->name, -rc);
567 goto out;
568 }
569 }
570
571 sbsec->flags |= SE_SBINITIALIZED;
572
573 /*
574 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
575 * leave the flag untouched because sb_clone_mnt_opts might be handing
576 * us a superblock that needs the flag to be cleared.
577 */
578 if (selinux_is_sblabel_mnt(sb))
579 sbsec->flags |= SBLABEL_MNT;
580 else
581 sbsec->flags &= ~SBLABEL_MNT;
582
583 /* Initialize the root inode. */
584 rc = inode_doinit_with_dentry(root_inode, root);
585
586 /* Initialize any other inodes associated with the superblock, e.g.
587 inodes created prior to initial policy load or inodes created
588 during get_sb by a pseudo filesystem that directly
589 populates itself. */
590 spin_lock(&sbsec->isec_lock);
591 while (!list_empty(&sbsec->isec_head)) {
592 struct inode_security_struct *isec =
593 list_first_entry(&sbsec->isec_head,
594 struct inode_security_struct, list);
595 struct inode *inode = isec->inode;
596 list_del_init(&isec->list);
597 spin_unlock(&sbsec->isec_lock);
598 inode = igrab(inode);
599 if (inode) {
600 if (!IS_PRIVATE(inode))
601 inode_doinit(inode);
602 iput(inode);
603 }
604 spin_lock(&sbsec->isec_lock);
605 }
606 spin_unlock(&sbsec->isec_lock);
607out:
608 return rc;
609}
610
611static int bad_option(struct superblock_security_struct *sbsec, char flag,
612 u32 old_sid, u32 new_sid)
613{
614 char mnt_flags = sbsec->flags & SE_MNTMASK;
615
616 /* check if the old mount command had the same options */
617 if (sbsec->flags & SE_SBINITIALIZED)
618 if (!(sbsec->flags & flag) ||
619 (old_sid != new_sid))
620 return 1;
621
622 /* check if we were passed the same options twice,
623 * aka someone passed context=a,context=b
624 */
625 if (!(sbsec->flags & SE_SBINITIALIZED))
626 if (mnt_flags & flag)
627 return 1;
628 return 0;
629}
630
631static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
632{
633 int rc = security_context_str_to_sid(&selinux_state, s,
634 sid, GFP_KERNEL);
635 if (rc)
636 pr_warn("SELinux: security_context_str_to_sid"
637 "(%s) failed for (dev %s, type %s) errno=%d\n",
638 s, sb->s_id, sb->s_type->name, rc);
639 return rc;
640}
641
642/*
643 * Allow filesystems with binary mount data to explicitly set mount point
644 * labeling information.
645 */
646static int selinux_set_mnt_opts(struct super_block *sb,
647 void *mnt_opts,
648 unsigned long kern_flags,
649 unsigned long *set_kern_flags)
650{
651 const struct cred *cred = current_cred();
652 struct superblock_security_struct *sbsec = sb->s_security;
653 struct dentry *root = sbsec->sb->s_root;
654 struct selinux_mnt_opts *opts = mnt_opts;
655 struct inode_security_struct *root_isec;
656 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
657 u32 defcontext_sid = 0;
658 int rc = 0;
659
660 mutex_lock(&sbsec->lock);
661
662 if (!selinux_state.initialized) {
663 if (!opts) {
664 /* Defer initialization until selinux_complete_init,
665 after the initial policy is loaded and the security
666 server is ready to handle calls. */
667 goto out;
668 }
669 rc = -EINVAL;
670 pr_warn("SELinux: Unable to set superblock options "
671 "before the security server is initialized\n");
672 goto out;
673 }
674 if (kern_flags && !set_kern_flags) {
675 /* Specifying internal flags without providing a place to
676 * place the results is not allowed */
677 rc = -EINVAL;
678 goto out;
679 }
680
681 /*
682 * Binary mount data FS will come through this function twice. Once
683 * from an explicit call and once from the generic calls from the vfs.
684 * Since the generic VFS calls will not contain any security mount data
685 * we need to skip the double mount verification.
686 *
687 * This does open a hole in which we will not notice if the first
688 * mount using this sb set explict options and a second mount using
689 * this sb does not set any security options. (The first options
690 * will be used for both mounts)
691 */
692 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
693 && !opts)
694 goto out;
695
696 root_isec = backing_inode_security_novalidate(root);
697
698 /*
699 * parse the mount options, check if they are valid sids.
700 * also check if someone is trying to mount the same sb more
701 * than once with different security options.
702 */
703 if (opts) {
704 if (opts->fscontext) {
705 rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
706 if (rc)
707 goto out;
708 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
709 fscontext_sid))
710 goto out_double_mount;
711 sbsec->flags |= FSCONTEXT_MNT;
712 }
713 if (opts->context) {
714 rc = parse_sid(sb, opts->context, &context_sid);
715 if (rc)
716 goto out;
717 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
718 context_sid))
719 goto out_double_mount;
720 sbsec->flags |= CONTEXT_MNT;
721 }
722 if (opts->rootcontext) {
723 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
724 if (rc)
725 goto out;
726 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
727 rootcontext_sid))
728 goto out_double_mount;
729 sbsec->flags |= ROOTCONTEXT_MNT;
730 }
731 if (opts->defcontext) {
732 rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
733 if (rc)
734 goto out;
735 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
736 defcontext_sid))
737 goto out_double_mount;
738 sbsec->flags |= DEFCONTEXT_MNT;
739 }
740 }
741
742 if (sbsec->flags & SE_SBINITIALIZED) {
743 /* previously mounted with options, but not on this attempt? */
744 if ((sbsec->flags & SE_MNTMASK) && !opts)
745 goto out_double_mount;
746 rc = 0;
747 goto out;
748 }
749
750 if (strcmp(sb->s_type->name, "proc") == 0)
751 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
752
753 if (!strcmp(sb->s_type->name, "debugfs") ||
754 !strcmp(sb->s_type->name, "tracefs") ||
755 !strcmp(sb->s_type->name, "pstore"))
756 sbsec->flags |= SE_SBGENFS;
757
758 if (!strcmp(sb->s_type->name, "sysfs") ||
759 !strcmp(sb->s_type->name, "cgroup") ||
760 !strcmp(sb->s_type->name, "cgroup2"))
761 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
762
763 if (!sbsec->behavior) {
764 /*
765 * Determine the labeling behavior to use for this
766 * filesystem type.
767 */
768 rc = security_fs_use(&selinux_state, sb);
769 if (rc) {
770 pr_warn("%s: security_fs_use(%s) returned %d\n",
771 __func__, sb->s_type->name, rc);
772 goto out;
773 }
774 }
775
776 /*
777 * If this is a user namespace mount and the filesystem type is not
778 * explicitly whitelisted, then no contexts are allowed on the command
779 * line and security labels must be ignored.
780 */
781 if (sb->s_user_ns != &init_user_ns &&
782 strcmp(sb->s_type->name, "tmpfs") &&
783 strcmp(sb->s_type->name, "ramfs") &&
784 strcmp(sb->s_type->name, "devpts")) {
785 if (context_sid || fscontext_sid || rootcontext_sid ||
786 defcontext_sid) {
787 rc = -EACCES;
788 goto out;
789 }
790 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
791 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
792 rc = security_transition_sid(&selinux_state,
793 current_sid(),
794 current_sid(),
795 SECCLASS_FILE, NULL,
796 &sbsec->mntpoint_sid);
797 if (rc)
798 goto out;
799 }
800 goto out_set_opts;
801 }
802
803 /* sets the context of the superblock for the fs being mounted. */
804 if (fscontext_sid) {
805 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
806 if (rc)
807 goto out;
808
809 sbsec->sid = fscontext_sid;
810 }
811
812 /*
813 * Switch to using mount point labeling behavior.
814 * sets the label used on all file below the mountpoint, and will set
815 * the superblock context if not already set.
816 */
817 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
818 sbsec->behavior = SECURITY_FS_USE_NATIVE;
819 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
820 }
821
822 if (context_sid) {
823 if (!fscontext_sid) {
824 rc = may_context_mount_sb_relabel(context_sid, sbsec,
825 cred);
826 if (rc)
827 goto out;
828 sbsec->sid = context_sid;
829 } else {
830 rc = may_context_mount_inode_relabel(context_sid, sbsec,
831 cred);
832 if (rc)
833 goto out;
834 }
835 if (!rootcontext_sid)
836 rootcontext_sid = context_sid;
837
838 sbsec->mntpoint_sid = context_sid;
839 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
840 }
841
842 if (rootcontext_sid) {
843 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
844 cred);
845 if (rc)
846 goto out;
847
848 root_isec->sid = rootcontext_sid;
849 root_isec->initialized = LABEL_INITIALIZED;
850 }
851
852 if (defcontext_sid) {
853 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
854 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
855 rc = -EINVAL;
856 pr_warn("SELinux: defcontext option is "
857 "invalid for this filesystem type\n");
858 goto out;
859 }
860
861 if (defcontext_sid != sbsec->def_sid) {
862 rc = may_context_mount_inode_relabel(defcontext_sid,
863 sbsec, cred);
864 if (rc)
865 goto out;
866 }
867
868 sbsec->def_sid = defcontext_sid;
869 }
870
871out_set_opts:
872 rc = sb_finish_set_opts(sb);
873out:
874 mutex_unlock(&sbsec->lock);
875 return rc;
876out_double_mount:
877 rc = -EINVAL;
878 pr_warn("SELinux: mount invalid. Same superblock, different "
879 "security settings for (dev %s, type %s)\n", sb->s_id,
880 sb->s_type->name);
881 goto out;
882}
883
884static int selinux_cmp_sb_context(const struct super_block *oldsb,
885 const struct super_block *newsb)
886{
887 struct superblock_security_struct *old = oldsb->s_security;
888 struct superblock_security_struct *new = newsb->s_security;
889 char oldflags = old->flags & SE_MNTMASK;
890 char newflags = new->flags & SE_MNTMASK;
891
892 if (oldflags != newflags)
893 goto mismatch;
894 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
895 goto mismatch;
896 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
897 goto mismatch;
898 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
899 goto mismatch;
900 if (oldflags & ROOTCONTEXT_MNT) {
901 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
902 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
903 if (oldroot->sid != newroot->sid)
904 goto mismatch;
905 }
906 return 0;
907mismatch:
908 pr_warn("SELinux: mount invalid. Same superblock, "
909 "different security settings for (dev %s, "
910 "type %s)\n", newsb->s_id, newsb->s_type->name);
911 return -EBUSY;
912}
913
914static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
915 struct super_block *newsb,
916 unsigned long kern_flags,
917 unsigned long *set_kern_flags)
918{
919 int rc = 0;
920 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
921 struct superblock_security_struct *newsbsec = newsb->s_security;
922
923 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
924 int set_context = (oldsbsec->flags & CONTEXT_MNT);
925 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
926
927 /*
928 * if the parent was able to be mounted it clearly had no special lsm
929 * mount options. thus we can safely deal with this superblock later
930 */
931 if (!selinux_state.initialized)
932 return 0;
933
934 /*
935 * Specifying internal flags without providing a place to
936 * place the results is not allowed.
937 */
938 if (kern_flags && !set_kern_flags)
939 return -EINVAL;
940
941 /* how can we clone if the old one wasn't set up?? */
942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944 /* if fs is reusing a sb, make sure that the contexts match */
945 if (newsbsec->flags & SE_SBINITIALIZED) {
946 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
947 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
948 return selinux_cmp_sb_context(oldsb, newsb);
949 }
950
951 mutex_lock(&newsbsec->lock);
952
953 newsbsec->flags = oldsbsec->flags;
954
955 newsbsec->sid = oldsbsec->sid;
956 newsbsec->def_sid = oldsbsec->def_sid;
957 newsbsec->behavior = oldsbsec->behavior;
958
959 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
960 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
961 rc = security_fs_use(&selinux_state, newsb);
962 if (rc)
963 goto out;
964 }
965
966 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
967 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
968 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
969 }
970
971 if (set_context) {
972 u32 sid = oldsbsec->mntpoint_sid;
973
974 if (!set_fscontext)
975 newsbsec->sid = sid;
976 if (!set_rootcontext) {
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978 newisec->sid = sid;
979 }
980 newsbsec->mntpoint_sid = sid;
981 }
982 if (set_rootcontext) {
983 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
984 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
985
986 newisec->sid = oldisec->sid;
987 }
988
989 sb_finish_set_opts(newsb);
990out:
991 mutex_unlock(&newsbsec->lock);
992 return rc;
993}
994
995static int selinux_add_opt(int token, const char *s, void **mnt_opts)
996{
997 struct selinux_mnt_opts *opts = *mnt_opts;
998
999 if (token == Opt_seclabel) /* eaten and completely ignored */
1000 return 0;
1001
1002 if (!opts) {
1003 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1004 if (!opts)
1005 return -ENOMEM;
1006 *mnt_opts = opts;
1007 }
1008 if (!s)
1009 return -ENOMEM;
1010 switch (token) {
1011 case Opt_context:
1012 if (opts->context || opts->defcontext)
1013 goto Einval;
1014 opts->context = s;
1015 break;
1016 case Opt_fscontext:
1017 if (opts->fscontext)
1018 goto Einval;
1019 opts->fscontext = s;
1020 break;
1021 case Opt_rootcontext:
1022 if (opts->rootcontext)
1023 goto Einval;
1024 opts->rootcontext = s;
1025 break;
1026 case Opt_defcontext:
1027 if (opts->context || opts->defcontext)
1028 goto Einval;
1029 opts->defcontext = s;
1030 break;
1031 }
1032 return 0;
1033Einval:
1034 pr_warn(SEL_MOUNT_FAIL_MSG);
1035 return -EINVAL;
1036}
1037
1038static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1039 void **mnt_opts)
1040{
1041 int token = Opt_error;
1042 int rc, i;
1043
1044 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1045 if (strcmp(option, tokens[i].name) == 0) {
1046 token = tokens[i].opt;
1047 break;
1048 }
1049 }
1050
1051 if (token == Opt_error)
1052 return -EINVAL;
1053
1054 if (token != Opt_seclabel) {
1055 val = kmemdup_nul(val, len, GFP_KERNEL);
1056 if (!val) {
1057 rc = -ENOMEM;
1058 goto free_opt;
1059 }
1060 }
1061 rc = selinux_add_opt(token, val, mnt_opts);
1062 if (unlikely(rc)) {
1063 kfree(val);
1064 goto free_opt;
1065 }
1066 return rc;
1067
1068free_opt:
1069 if (*mnt_opts) {
1070 selinux_free_mnt_opts(*mnt_opts);
1071 *mnt_opts = NULL;
1072 }
1073 return rc;
1074}
1075
1076static int show_sid(struct seq_file *m, u32 sid)
1077{
1078 char *context = NULL;
1079 u32 len;
1080 int rc;
1081
1082 rc = security_sid_to_context(&selinux_state, sid,
1083 &context, &len);
1084 if (!rc) {
1085 bool has_comma = context && strchr(context, ',');
1086
1087 seq_putc(m, '=');
1088 if (has_comma)
1089 seq_putc(m, '\"');
1090 seq_escape(m, context, "\"\n\\");
1091 if (has_comma)
1092 seq_putc(m, '\"');
1093 }
1094 kfree(context);
1095 return rc;
1096}
1097
1098static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1099{
1100 struct superblock_security_struct *sbsec = sb->s_security;
1101 int rc;
1102
1103 if (!(sbsec->flags & SE_SBINITIALIZED))
1104 return 0;
1105
1106 if (!selinux_state.initialized)
1107 return 0;
1108
1109 if (sbsec->flags & FSCONTEXT_MNT) {
1110 seq_putc(m, ',');
1111 seq_puts(m, FSCONTEXT_STR);
1112 rc = show_sid(m, sbsec->sid);
1113 if (rc)
1114 return rc;
1115 }
1116 if (sbsec->flags & CONTEXT_MNT) {
1117 seq_putc(m, ',');
1118 seq_puts(m, CONTEXT_STR);
1119 rc = show_sid(m, sbsec->mntpoint_sid);
1120 if (rc)
1121 return rc;
1122 }
1123 if (sbsec->flags & DEFCONTEXT_MNT) {
1124 seq_putc(m, ',');
1125 seq_puts(m, DEFCONTEXT_STR);
1126 rc = show_sid(m, sbsec->def_sid);
1127 if (rc)
1128 return rc;
1129 }
1130 if (sbsec->flags & ROOTCONTEXT_MNT) {
1131 struct dentry *root = sbsec->sb->s_root;
1132 struct inode_security_struct *isec = backing_inode_security(root);
1133 seq_putc(m, ',');
1134 seq_puts(m, ROOTCONTEXT_STR);
1135 rc = show_sid(m, isec->sid);
1136 if (rc)
1137 return rc;
1138 }
1139 if (sbsec->flags & SBLABEL_MNT) {
1140 seq_putc(m, ',');
1141 seq_puts(m, SECLABEL_STR);
1142 }
1143 return 0;
1144}
1145
1146static inline u16 inode_mode_to_security_class(umode_t mode)
1147{
1148 switch (mode & S_IFMT) {
1149 case S_IFSOCK:
1150 return SECCLASS_SOCK_FILE;
1151 case S_IFLNK:
1152 return SECCLASS_LNK_FILE;
1153 case S_IFREG:
1154 return SECCLASS_FILE;
1155 case S_IFBLK:
1156 return SECCLASS_BLK_FILE;
1157 case S_IFDIR:
1158 return SECCLASS_DIR;
1159 case S_IFCHR:
1160 return SECCLASS_CHR_FILE;
1161 case S_IFIFO:
1162 return SECCLASS_FIFO_FILE;
1163
1164 }
1165
1166 return SECCLASS_FILE;
1167}
1168
1169static inline int default_protocol_stream(int protocol)
1170{
1171 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1172}
1173
1174static inline int default_protocol_dgram(int protocol)
1175{
1176 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1177}
1178
1179static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1180{
1181 int extsockclass = selinux_policycap_extsockclass();
1182
1183 switch (family) {
1184 case PF_UNIX:
1185 switch (type) {
1186 case SOCK_STREAM:
1187 case SOCK_SEQPACKET:
1188 return SECCLASS_UNIX_STREAM_SOCKET;
1189 case SOCK_DGRAM:
1190 case SOCK_RAW:
1191 return SECCLASS_UNIX_DGRAM_SOCKET;
1192 }
1193 break;
1194 case PF_INET:
1195 case PF_INET6:
1196 switch (type) {
1197 case SOCK_STREAM:
1198 case SOCK_SEQPACKET:
1199 if (default_protocol_stream(protocol))
1200 return SECCLASS_TCP_SOCKET;
1201 else if (extsockclass && protocol == IPPROTO_SCTP)
1202 return SECCLASS_SCTP_SOCKET;
1203 else
1204 return SECCLASS_RAWIP_SOCKET;
1205 case SOCK_DGRAM:
1206 if (default_protocol_dgram(protocol))
1207 return SECCLASS_UDP_SOCKET;
1208 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1209 protocol == IPPROTO_ICMPV6))
1210 return SECCLASS_ICMP_SOCKET;
1211 else
1212 return SECCLASS_RAWIP_SOCKET;
1213 case SOCK_DCCP:
1214 return SECCLASS_DCCP_SOCKET;
1215 default:
1216 return SECCLASS_RAWIP_SOCKET;
1217 }
1218 break;
1219 case PF_NETLINK:
1220 switch (protocol) {
1221 case NETLINK_ROUTE:
1222 return SECCLASS_NETLINK_ROUTE_SOCKET;
1223 case NETLINK_SOCK_DIAG:
1224 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1225 case NETLINK_NFLOG:
1226 return SECCLASS_NETLINK_NFLOG_SOCKET;
1227 case NETLINK_XFRM:
1228 return SECCLASS_NETLINK_XFRM_SOCKET;
1229 case NETLINK_SELINUX:
1230 return SECCLASS_NETLINK_SELINUX_SOCKET;
1231 case NETLINK_ISCSI:
1232 return SECCLASS_NETLINK_ISCSI_SOCKET;
1233 case NETLINK_AUDIT:
1234 return SECCLASS_NETLINK_AUDIT_SOCKET;
1235 case NETLINK_FIB_LOOKUP:
1236 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1237 case NETLINK_CONNECTOR:
1238 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1239 case NETLINK_NETFILTER:
1240 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1241 case NETLINK_DNRTMSG:
1242 return SECCLASS_NETLINK_DNRT_SOCKET;
1243 case NETLINK_KOBJECT_UEVENT:
1244 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1245 case NETLINK_GENERIC:
1246 return SECCLASS_NETLINK_GENERIC_SOCKET;
1247 case NETLINK_SCSITRANSPORT:
1248 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1249 case NETLINK_RDMA:
1250 return SECCLASS_NETLINK_RDMA_SOCKET;
1251 case NETLINK_CRYPTO:
1252 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1253 default:
1254 return SECCLASS_NETLINK_SOCKET;
1255 }
1256 case PF_PACKET:
1257 return SECCLASS_PACKET_SOCKET;
1258 case PF_KEY:
1259 return SECCLASS_KEY_SOCKET;
1260 case PF_APPLETALK:
1261 return SECCLASS_APPLETALK_SOCKET;
1262 }
1263
1264 if (extsockclass) {
1265 switch (family) {
1266 case PF_AX25:
1267 return SECCLASS_AX25_SOCKET;
1268 case PF_IPX:
1269 return SECCLASS_IPX_SOCKET;
1270 case PF_NETROM:
1271 return SECCLASS_NETROM_SOCKET;
1272 case PF_ATMPVC:
1273 return SECCLASS_ATMPVC_SOCKET;
1274 case PF_X25:
1275 return SECCLASS_X25_SOCKET;
1276 case PF_ROSE:
1277 return SECCLASS_ROSE_SOCKET;
1278 case PF_DECnet:
1279 return SECCLASS_DECNET_SOCKET;
1280 case PF_ATMSVC:
1281 return SECCLASS_ATMSVC_SOCKET;
1282 case PF_RDS:
1283 return SECCLASS_RDS_SOCKET;
1284 case PF_IRDA:
1285 return SECCLASS_IRDA_SOCKET;
1286 case PF_PPPOX:
1287 return SECCLASS_PPPOX_SOCKET;
1288 case PF_LLC:
1289 return SECCLASS_LLC_SOCKET;
1290 case PF_CAN:
1291 return SECCLASS_CAN_SOCKET;
1292 case PF_TIPC:
1293 return SECCLASS_TIPC_SOCKET;
1294 case PF_BLUETOOTH:
1295 return SECCLASS_BLUETOOTH_SOCKET;
1296 case PF_IUCV:
1297 return SECCLASS_IUCV_SOCKET;
1298 case PF_RXRPC:
1299 return SECCLASS_RXRPC_SOCKET;
1300 case PF_ISDN:
1301 return SECCLASS_ISDN_SOCKET;
1302 case PF_PHONET:
1303 return SECCLASS_PHONET_SOCKET;
1304 case PF_IEEE802154:
1305 return SECCLASS_IEEE802154_SOCKET;
1306 case PF_CAIF:
1307 return SECCLASS_CAIF_SOCKET;
1308 case PF_ALG:
1309 return SECCLASS_ALG_SOCKET;
1310 case PF_NFC:
1311 return SECCLASS_NFC_SOCKET;
1312 case PF_VSOCK:
1313 return SECCLASS_VSOCK_SOCKET;
1314 case PF_KCM:
1315 return SECCLASS_KCM_SOCKET;
1316 case PF_QIPCRTR:
1317 return SECCLASS_QIPCRTR_SOCKET;
1318 case PF_SMC:
1319 return SECCLASS_SMC_SOCKET;
1320 case PF_XDP:
1321 return SECCLASS_XDP_SOCKET;
1322#if PF_MAX > 45
1323#error New address family defined, please update this function.
1324#endif
1325 }
1326 }
1327
1328 return SECCLASS_SOCKET;
1329}
1330
1331static int selinux_genfs_get_sid(struct dentry *dentry,
1332 u16 tclass,
1333 u16 flags,
1334 u32 *sid)
1335{
1336 int rc;
1337 struct super_block *sb = dentry->d_sb;
1338 char *buffer, *path;
1339
1340 buffer = (char *)__get_free_page(GFP_KERNEL);
1341 if (!buffer)
1342 return -ENOMEM;
1343
1344 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1345 if (IS_ERR(path))
1346 rc = PTR_ERR(path);
1347 else {
1348 if (flags & SE_SBPROC) {
1349 /* each process gets a /proc/PID/ entry. Strip off the
1350 * PID part to get a valid selinux labeling.
1351 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1352 while (path[1] >= '0' && path[1] <= '9') {
1353 path[1] = '/';
1354 path++;
1355 }
1356 }
1357 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1358 path, tclass, sid);
1359 if (rc == -ENOENT) {
1360 /* No match in policy, mark as unlabeled. */
1361 *sid = SECINITSID_UNLABELED;
1362 rc = 0;
1363 }
1364 }
1365 free_page((unsigned long)buffer);
1366 return rc;
1367}
1368
1369static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1370 u32 def_sid, u32 *sid)
1371{
1372#define INITCONTEXTLEN 255
1373 char *context;
1374 unsigned int len;
1375 int rc;
1376
1377 len = INITCONTEXTLEN;
1378 context = kmalloc(len + 1, GFP_NOFS);
1379 if (!context)
1380 return -ENOMEM;
1381
1382 context[len] = '\0';
1383 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1384 if (rc == -ERANGE) {
1385 kfree(context);
1386
1387 /* Need a larger buffer. Query for the right size. */
1388 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1389 if (rc < 0)
1390 return rc;
1391
1392 len = rc;
1393 context = kmalloc(len + 1, GFP_NOFS);
1394 if (!context)
1395 return -ENOMEM;
1396
1397 context[len] = '\0';
1398 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1399 context, len);
1400 }
1401 if (rc < 0) {
1402 kfree(context);
1403 if (rc != -ENODATA) {
1404 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1405 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1406 return rc;
1407 }
1408 *sid = def_sid;
1409 return 0;
1410 }
1411
1412 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1413 def_sid, GFP_NOFS);
1414 if (rc) {
1415 char *dev = inode->i_sb->s_id;
1416 unsigned long ino = inode->i_ino;
1417
1418 if (rc == -EINVAL) {
1419 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1420 ino, dev, context);
1421 } else {
1422 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1423 __func__, context, -rc, dev, ino);
1424 }
1425 }
1426 kfree(context);
1427 return 0;
1428}
1429
1430/* The inode's security attributes must be initialized before first use. */
1431static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1432{
1433 struct superblock_security_struct *sbsec = NULL;
1434 struct inode_security_struct *isec = selinux_inode(inode);
1435 u32 task_sid, sid = 0;
1436 u16 sclass;
1437 struct dentry *dentry;
1438 int rc = 0;
1439
1440 if (isec->initialized == LABEL_INITIALIZED)
1441 return 0;
1442
1443 spin_lock(&isec->lock);
1444 if (isec->initialized == LABEL_INITIALIZED)
1445 goto out_unlock;
1446
1447 if (isec->sclass == SECCLASS_FILE)
1448 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1449
1450 sbsec = inode->i_sb->s_security;
1451 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1452 /* Defer initialization until selinux_complete_init,
1453 after the initial policy is loaded and the security
1454 server is ready to handle calls. */
1455 spin_lock(&sbsec->isec_lock);
1456 if (list_empty(&isec->list))
1457 list_add(&isec->list, &sbsec->isec_head);
1458 spin_unlock(&sbsec->isec_lock);
1459 goto out_unlock;
1460 }
1461
1462 sclass = isec->sclass;
1463 task_sid = isec->task_sid;
1464 sid = isec->sid;
1465 isec->initialized = LABEL_PENDING;
1466 spin_unlock(&isec->lock);
1467
1468 switch (sbsec->behavior) {
1469 case SECURITY_FS_USE_NATIVE:
1470 break;
1471 case SECURITY_FS_USE_XATTR:
1472 if (!(inode->i_opflags & IOP_XATTR)) {
1473 sid = sbsec->def_sid;
1474 break;
1475 }
1476 /* Need a dentry, since the xattr API requires one.
1477 Life would be simpler if we could just pass the inode. */
1478 if (opt_dentry) {
1479 /* Called from d_instantiate or d_splice_alias. */
1480 dentry = dget(opt_dentry);
1481 } else {
1482 /*
1483 * Called from selinux_complete_init, try to find a dentry.
1484 * Some filesystems really want a connected one, so try
1485 * that first. We could split SECURITY_FS_USE_XATTR in
1486 * two, depending upon that...
1487 */
1488 dentry = d_find_alias(inode);
1489 if (!dentry)
1490 dentry = d_find_any_alias(inode);
1491 }
1492 if (!dentry) {
1493 /*
1494 * this is can be hit on boot when a file is accessed
1495 * before the policy is loaded. When we load policy we
1496 * may find inodes that have no dentry on the
1497 * sbsec->isec_head list. No reason to complain as these
1498 * will get fixed up the next time we go through
1499 * inode_doinit with a dentry, before these inodes could
1500 * be used again by userspace.
1501 */
1502 goto out;
1503 }
1504
1505 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1506 &sid);
1507 dput(dentry);
1508 if (rc)
1509 goto out;
1510 break;
1511 case SECURITY_FS_USE_TASK:
1512 sid = task_sid;
1513 break;
1514 case SECURITY_FS_USE_TRANS:
1515 /* Default to the fs SID. */
1516 sid = sbsec->sid;
1517
1518 /* Try to obtain a transition SID. */
1519 rc = security_transition_sid(&selinux_state, task_sid, sid,
1520 sclass, NULL, &sid);
1521 if (rc)
1522 goto out;
1523 break;
1524 case SECURITY_FS_USE_MNTPOINT:
1525 sid = sbsec->mntpoint_sid;
1526 break;
1527 default:
1528 /* Default to the fs superblock SID. */
1529 sid = sbsec->sid;
1530
1531 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1532 /* We must have a dentry to determine the label on
1533 * procfs inodes */
1534 if (opt_dentry) {
1535 /* Called from d_instantiate or
1536 * d_splice_alias. */
1537 dentry = dget(opt_dentry);
1538 } else {
1539 /* Called from selinux_complete_init, try to
1540 * find a dentry. Some filesystems really want
1541 * a connected one, so try that first.
1542 */
1543 dentry = d_find_alias(inode);
1544 if (!dentry)
1545 dentry = d_find_any_alias(inode);
1546 }
1547 /*
1548 * This can be hit on boot when a file is accessed
1549 * before the policy is loaded. When we load policy we
1550 * may find inodes that have no dentry on the
1551 * sbsec->isec_head list. No reason to complain as
1552 * these will get fixed up the next time we go through
1553 * inode_doinit() with a dentry, before these inodes
1554 * could be used again by userspace.
1555 */
1556 if (!dentry)
1557 goto out;
1558 rc = selinux_genfs_get_sid(dentry, sclass,
1559 sbsec->flags, &sid);
1560 if (rc) {
1561 dput(dentry);
1562 goto out;
1563 }
1564
1565 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1566 (inode->i_opflags & IOP_XATTR)) {
1567 rc = inode_doinit_use_xattr(inode, dentry,
1568 sid, &sid);
1569 if (rc) {
1570 dput(dentry);
1571 goto out;
1572 }
1573 }
1574 dput(dentry);
1575 }
1576 break;
1577 }
1578
1579out:
1580 spin_lock(&isec->lock);
1581 if (isec->initialized == LABEL_PENDING) {
1582 if (!sid || rc) {
1583 isec->initialized = LABEL_INVALID;
1584 goto out_unlock;
1585 }
1586
1587 isec->initialized = LABEL_INITIALIZED;
1588 isec->sid = sid;
1589 }
1590
1591out_unlock:
1592 spin_unlock(&isec->lock);
1593 return rc;
1594}
1595
1596/* Convert a Linux signal to an access vector. */
1597static inline u32 signal_to_av(int sig)
1598{
1599 u32 perm = 0;
1600
1601 switch (sig) {
1602 case SIGCHLD:
1603 /* Commonly granted from child to parent. */
1604 perm = PROCESS__SIGCHLD;
1605 break;
1606 case SIGKILL:
1607 /* Cannot be caught or ignored */
1608 perm = PROCESS__SIGKILL;
1609 break;
1610 case SIGSTOP:
1611 /* Cannot be caught or ignored */
1612 perm = PROCESS__SIGSTOP;
1613 break;
1614 default:
1615 /* All other signals. */
1616 perm = PROCESS__SIGNAL;
1617 break;
1618 }
1619
1620 return perm;
1621}
1622
1623#if CAP_LAST_CAP > 63
1624#error Fix SELinux to handle capabilities > 63.
1625#endif
1626
1627/* Check whether a task is allowed to use a capability. */
1628static int cred_has_capability(const struct cred *cred,
1629 int cap, unsigned int opts, bool initns)
1630{
1631 struct common_audit_data ad;
1632 struct av_decision avd;
1633 u16 sclass;
1634 u32 sid = cred_sid(cred);
1635 u32 av = CAP_TO_MASK(cap);
1636 int rc;
1637
1638 ad.type = LSM_AUDIT_DATA_CAP;
1639 ad.u.cap = cap;
1640
1641 switch (CAP_TO_INDEX(cap)) {
1642 case 0:
1643 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1644 break;
1645 case 1:
1646 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1647 break;
1648 default:
1649 pr_err("SELinux: out of range capability %d\n", cap);
1650 BUG();
1651 return -EINVAL;
1652 }
1653
1654 rc = avc_has_perm_noaudit(&selinux_state,
1655 sid, sid, sclass, av, 0, &avd);
1656 if (!(opts & CAP_OPT_NOAUDIT)) {
1657 int rc2 = avc_audit(&selinux_state,
1658 sid, sid, sclass, av, &avd, rc, &ad, 0);
1659 if (rc2)
1660 return rc2;
1661 }
1662 return rc;
1663}
1664
1665/* Check whether a task has a particular permission to an inode.
1666 The 'adp' parameter is optional and allows other audit
1667 data to be passed (e.g. the dentry). */
1668static int inode_has_perm(const struct cred *cred,
1669 struct inode *inode,
1670 u32 perms,
1671 struct common_audit_data *adp)
1672{
1673 struct inode_security_struct *isec;
1674 u32 sid;
1675
1676 validate_creds(cred);
1677
1678 if (unlikely(IS_PRIVATE(inode)))
1679 return 0;
1680
1681 sid = cred_sid(cred);
1682 isec = selinux_inode(inode);
1683
1684 return avc_has_perm(&selinux_state,
1685 sid, isec->sid, isec->sclass, perms, adp);
1686}
1687
1688/* Same as inode_has_perm, but pass explicit audit data containing
1689 the dentry to help the auditing code to more easily generate the
1690 pathname if needed. */
1691static inline int dentry_has_perm(const struct cred *cred,
1692 struct dentry *dentry,
1693 u32 av)
1694{
1695 struct inode *inode = d_backing_inode(dentry);
1696 struct common_audit_data ad;
1697
1698 ad.type = LSM_AUDIT_DATA_DENTRY;
1699 ad.u.dentry = dentry;
1700 __inode_security_revalidate(inode, dentry, true);
1701 return inode_has_perm(cred, inode, av, &ad);
1702}
1703
1704/* Same as inode_has_perm, but pass explicit audit data containing
1705 the path to help the auditing code to more easily generate the
1706 pathname if needed. */
1707static inline int path_has_perm(const struct cred *cred,
1708 const struct path *path,
1709 u32 av)
1710{
1711 struct inode *inode = d_backing_inode(path->dentry);
1712 struct common_audit_data ad;
1713
1714 ad.type = LSM_AUDIT_DATA_PATH;
1715 ad.u.path = *path;
1716 __inode_security_revalidate(inode, path->dentry, true);
1717 return inode_has_perm(cred, inode, av, &ad);
1718}
1719
1720/* Same as path_has_perm, but uses the inode from the file struct. */
1721static inline int file_path_has_perm(const struct cred *cred,
1722 struct file *file,
1723 u32 av)
1724{
1725 struct common_audit_data ad;
1726
1727 ad.type = LSM_AUDIT_DATA_FILE;
1728 ad.u.file = file;
1729 return inode_has_perm(cred, file_inode(file), av, &ad);
1730}
1731
1732#ifdef CONFIG_BPF_SYSCALL
1733static int bpf_fd_pass(struct file *file, u32 sid);
1734#endif
1735
1736/* Check whether a task can use an open file descriptor to
1737 access an inode in a given way. Check access to the
1738 descriptor itself, and then use dentry_has_perm to
1739 check a particular permission to the file.
1740 Access to the descriptor is implicitly granted if it
1741 has the same SID as the process. If av is zero, then
1742 access to the file is not checked, e.g. for cases
1743 where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745 struct file *file,
1746 u32 av)
1747{
1748 struct file_security_struct *fsec = selinux_file(file);
1749 struct inode *inode = file_inode(file);
1750 struct common_audit_data ad;
1751 u32 sid = cred_sid(cred);
1752 int rc;
1753
1754 ad.type = LSM_AUDIT_DATA_FILE;
1755 ad.u.file = file;
1756
1757 if (sid != fsec->sid) {
1758 rc = avc_has_perm(&selinux_state,
1759 sid, fsec->sid,
1760 SECCLASS_FD,
1761 FD__USE,
1762 &ad);
1763 if (rc)
1764 goto out;
1765 }
1766
1767#ifdef CONFIG_BPF_SYSCALL
1768 rc = bpf_fd_pass(file, cred_sid(cred));
1769 if (rc)
1770 return rc;
1771#endif
1772
1773 /* av is zero if only checking access to the descriptor. */
1774 rc = 0;
1775 if (av)
1776 rc = inode_has_perm(cred, inode, av, &ad);
1777
1778out:
1779 return rc;
1780}
1781
1782/*
1783 * Determine the label for an inode that might be unioned.
1784 */
1785static int
1786selinux_determine_inode_label(const struct task_security_struct *tsec,
1787 struct inode *dir,
1788 const struct qstr *name, u16 tclass,
1789 u32 *_new_isid)
1790{
1791 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1792
1793 if ((sbsec->flags & SE_SBINITIALIZED) &&
1794 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1795 *_new_isid = sbsec->mntpoint_sid;
1796 } else if ((sbsec->flags & SBLABEL_MNT) &&
1797 tsec->create_sid) {
1798 *_new_isid = tsec->create_sid;
1799 } else {
1800 const struct inode_security_struct *dsec = inode_security(dir);
1801 return security_transition_sid(&selinux_state, tsec->sid,
1802 dsec->sid, tclass,
1803 name, _new_isid);
1804 }
1805
1806 return 0;
1807}
1808
1809/* Check whether a task can create a file. */
1810static int may_create(struct inode *dir,
1811 struct dentry *dentry,
1812 u16 tclass)
1813{
1814 const struct task_security_struct *tsec = selinux_cred(current_cred());
1815 struct inode_security_struct *dsec;
1816 struct superblock_security_struct *sbsec;
1817 u32 sid, newsid;
1818 struct common_audit_data ad;
1819 int rc;
1820
1821 dsec = inode_security(dir);
1822 sbsec = dir->i_sb->s_security;
1823
1824 sid = tsec->sid;
1825
1826 ad.type = LSM_AUDIT_DATA_DENTRY;
1827 ad.u.dentry = dentry;
1828
1829 rc = avc_has_perm(&selinux_state,
1830 sid, dsec->sid, SECCLASS_DIR,
1831 DIR__ADD_NAME | DIR__SEARCH,
1832 &ad);
1833 if (rc)
1834 return rc;
1835
1836 rc = selinux_determine_inode_label(selinux_cred(current_cred()), dir,
1837 &dentry->d_name, tclass, &newsid);
1838 if (rc)
1839 return rc;
1840
1841 rc = avc_has_perm(&selinux_state,
1842 sid, newsid, tclass, FILE__CREATE, &ad);
1843 if (rc)
1844 return rc;
1845
1846 return avc_has_perm(&selinux_state,
1847 newsid, sbsec->sid,
1848 SECCLASS_FILESYSTEM,
1849 FILESYSTEM__ASSOCIATE, &ad);
1850}
1851
1852#define MAY_LINK 0
1853#define MAY_UNLINK 1
1854#define MAY_RMDIR 2
1855
1856/* Check whether a task can link, unlink, or rmdir a file/directory. */
1857static int may_link(struct inode *dir,
1858 struct dentry *dentry,
1859 int kind)
1860
1861{
1862 struct inode_security_struct *dsec, *isec;
1863 struct common_audit_data ad;
1864 u32 sid = current_sid();
1865 u32 av;
1866 int rc;
1867
1868 dsec = inode_security(dir);
1869 isec = backing_inode_security(dentry);
1870
1871 ad.type = LSM_AUDIT_DATA_DENTRY;
1872 ad.u.dentry = dentry;
1873
1874 av = DIR__SEARCH;
1875 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1876 rc = avc_has_perm(&selinux_state,
1877 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1878 if (rc)
1879 return rc;
1880
1881 switch (kind) {
1882 case MAY_LINK:
1883 av = FILE__LINK;
1884 break;
1885 case MAY_UNLINK:
1886 av = FILE__UNLINK;
1887 break;
1888 case MAY_RMDIR:
1889 av = DIR__RMDIR;
1890 break;
1891 default:
1892 pr_warn("SELinux: %s: unrecognized kind %d\n",
1893 __func__, kind);
1894 return 0;
1895 }
1896
1897 rc = avc_has_perm(&selinux_state,
1898 sid, isec->sid, isec->sclass, av, &ad);
1899 return rc;
1900}
1901
1902static inline int may_rename(struct inode *old_dir,
1903 struct dentry *old_dentry,
1904 struct inode *new_dir,
1905 struct dentry *new_dentry)
1906{
1907 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1908 struct common_audit_data ad;
1909 u32 sid = current_sid();
1910 u32 av;
1911 int old_is_dir, new_is_dir;
1912 int rc;
1913
1914 old_dsec = inode_security(old_dir);
1915 old_isec = backing_inode_security(old_dentry);
1916 old_is_dir = d_is_dir(old_dentry);
1917 new_dsec = inode_security(new_dir);
1918
1919 ad.type = LSM_AUDIT_DATA_DENTRY;
1920
1921 ad.u.dentry = old_dentry;
1922 rc = avc_has_perm(&selinux_state,
1923 sid, old_dsec->sid, SECCLASS_DIR,
1924 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1925 if (rc)
1926 return rc;
1927 rc = avc_has_perm(&selinux_state,
1928 sid, old_isec->sid,
1929 old_isec->sclass, FILE__RENAME, &ad);
1930 if (rc)
1931 return rc;
1932 if (old_is_dir && new_dir != old_dir) {
1933 rc = avc_has_perm(&selinux_state,
1934 sid, old_isec->sid,
1935 old_isec->sclass, DIR__REPARENT, &ad);
1936 if (rc)
1937 return rc;
1938 }
1939
1940 ad.u.dentry = new_dentry;
1941 av = DIR__ADD_NAME | DIR__SEARCH;
1942 if (d_is_positive(new_dentry))
1943 av |= DIR__REMOVE_NAME;
1944 rc = avc_has_perm(&selinux_state,
1945 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1946 if (rc)
1947 return rc;
1948 if (d_is_positive(new_dentry)) {
1949 new_isec = backing_inode_security(new_dentry);
1950 new_is_dir = d_is_dir(new_dentry);
1951 rc = avc_has_perm(&selinux_state,
1952 sid, new_isec->sid,
1953 new_isec->sclass,
1954 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1955 if (rc)
1956 return rc;
1957 }
1958
1959 return 0;
1960}
1961
1962/* Check whether a task can perform a filesystem operation. */
1963static int superblock_has_perm(const struct cred *cred,
1964 struct super_block *sb,
1965 u32 perms,
1966 struct common_audit_data *ad)
1967{
1968 struct superblock_security_struct *sbsec;
1969 u32 sid = cred_sid(cred);
1970
1971 sbsec = sb->s_security;
1972 return avc_has_perm(&selinux_state,
1973 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1974}
1975
1976/* Convert a Linux mode and permission mask to an access vector. */
1977static inline u32 file_mask_to_av(int mode, int mask)
1978{
1979 u32 av = 0;
1980
1981 if (!S_ISDIR(mode)) {
1982 if (mask & MAY_EXEC)
1983 av |= FILE__EXECUTE;
1984 if (mask & MAY_READ)
1985 av |= FILE__READ;
1986
1987 if (mask & MAY_APPEND)
1988 av |= FILE__APPEND;
1989 else if (mask & MAY_WRITE)
1990 av |= FILE__WRITE;
1991
1992 } else {
1993 if (mask & MAY_EXEC)
1994 av |= DIR__SEARCH;
1995 if (mask & MAY_WRITE)
1996 av |= DIR__WRITE;
1997 if (mask & MAY_READ)
1998 av |= DIR__READ;
1999 }
2000
2001 return av;
2002}
2003
2004/* Convert a Linux file to an access vector. */
2005static inline u32 file_to_av(struct file *file)
2006{
2007 u32 av = 0;
2008
2009 if (file->f_mode & FMODE_READ)
2010 av |= FILE__READ;
2011 if (file->f_mode & FMODE_WRITE) {
2012 if (file->f_flags & O_APPEND)
2013 av |= FILE__APPEND;
2014 else
2015 av |= FILE__WRITE;
2016 }
2017 if (!av) {
2018 /*
2019 * Special file opened with flags 3 for ioctl-only use.
2020 */
2021 av = FILE__IOCTL;
2022 }
2023
2024 return av;
2025}
2026
2027/*
2028 * Convert a file to an access vector and include the correct open
2029 * open permission.
2030 */
2031static inline u32 open_file_to_av(struct file *file)
2032{
2033 u32 av = file_to_av(file);
2034 struct inode *inode = file_inode(file);
2035
2036 if (selinux_policycap_openperm() &&
2037 inode->i_sb->s_magic != SOCKFS_MAGIC)
2038 av |= FILE__OPEN;
2039
2040 return av;
2041}
2042
2043/* Hook functions begin here. */
2044
2045static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2046{
2047 u32 mysid = current_sid();
2048 u32 mgrsid = task_sid(mgr);
2049
2050 return avc_has_perm(&selinux_state,
2051 mysid, mgrsid, SECCLASS_BINDER,
2052 BINDER__SET_CONTEXT_MGR, NULL);
2053}
2054
2055static int selinux_binder_transaction(struct task_struct *from,
2056 struct task_struct *to)
2057{
2058 u32 mysid = current_sid();
2059 u32 fromsid = task_sid(from);
2060 u32 tosid = task_sid(to);
2061 int rc;
2062
2063 if (mysid != fromsid) {
2064 rc = avc_has_perm(&selinux_state,
2065 mysid, fromsid, SECCLASS_BINDER,
2066 BINDER__IMPERSONATE, NULL);
2067 if (rc)
2068 return rc;
2069 }
2070
2071 return avc_has_perm(&selinux_state,
2072 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2073 NULL);
2074}
2075
2076static int selinux_binder_transfer_binder(struct task_struct *from,
2077 struct task_struct *to)
2078{
2079 u32 fromsid = task_sid(from);
2080 u32 tosid = task_sid(to);
2081
2082 return avc_has_perm(&selinux_state,
2083 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2084 NULL);
2085}
2086
2087static int selinux_binder_transfer_file(struct task_struct *from,
2088 struct task_struct *to,
2089 struct file *file)
2090{
2091 u32 sid = task_sid(to);
2092 struct file_security_struct *fsec = selinux_file(file);
2093 struct dentry *dentry = file->f_path.dentry;
2094 struct inode_security_struct *isec;
2095 struct common_audit_data ad;
2096 int rc;
2097
2098 ad.type = LSM_AUDIT_DATA_PATH;
2099 ad.u.path = file->f_path;
2100
2101 if (sid != fsec->sid) {
2102 rc = avc_has_perm(&selinux_state,
2103 sid, fsec->sid,
2104 SECCLASS_FD,
2105 FD__USE,
2106 &ad);
2107 if (rc)
2108 return rc;
2109 }
2110
2111#ifdef CONFIG_BPF_SYSCALL
2112 rc = bpf_fd_pass(file, sid);
2113 if (rc)
2114 return rc;
2115#endif
2116
2117 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2118 return 0;
2119
2120 isec = backing_inode_security(dentry);
2121 return avc_has_perm(&selinux_state,
2122 sid, isec->sid, isec->sclass, file_to_av(file),
2123 &ad);
2124}
2125
2126static int selinux_ptrace_access_check(struct task_struct *child,
2127 unsigned int mode)
2128{
2129 u32 sid = current_sid();
2130 u32 csid = task_sid(child);
2131
2132 if (mode & PTRACE_MODE_READ)
2133 return avc_has_perm(&selinux_state,
2134 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2135
2136 return avc_has_perm(&selinux_state,
2137 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2138}
2139
2140static int selinux_ptrace_traceme(struct task_struct *parent)
2141{
2142 return avc_has_perm(&selinux_state,
2143 task_sid(parent), current_sid(), SECCLASS_PROCESS,
2144 PROCESS__PTRACE, NULL);
2145}
2146
2147static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2148 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2149{
2150 return avc_has_perm(&selinux_state,
2151 current_sid(), task_sid(target), SECCLASS_PROCESS,
2152 PROCESS__GETCAP, NULL);
2153}
2154
2155static int selinux_capset(struct cred *new, const struct cred *old,
2156 const kernel_cap_t *effective,
2157 const kernel_cap_t *inheritable,
2158 const kernel_cap_t *permitted)
2159{
2160 return avc_has_perm(&selinux_state,
2161 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2162 PROCESS__SETCAP, NULL);
2163}
2164
2165/*
2166 * (This comment used to live with the selinux_task_setuid hook,
2167 * which was removed).
2168 *
2169 * Since setuid only affects the current process, and since the SELinux
2170 * controls are not based on the Linux identity attributes, SELinux does not
2171 * need to control this operation. However, SELinux does control the use of
2172 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2173 */
2174
2175static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2176 int cap, unsigned int opts)
2177{
2178 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2179}
2180
2181static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2182{
2183 const struct cred *cred = current_cred();
2184 int rc = 0;
2185
2186 if (!sb)
2187 return 0;
2188
2189 switch (cmds) {
2190 case Q_SYNC:
2191 case Q_QUOTAON:
2192 case Q_QUOTAOFF:
2193 case Q_SETINFO:
2194 case Q_SETQUOTA:
2195 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2196 break;
2197 case Q_GETFMT:
2198 case Q_GETINFO:
2199 case Q_GETQUOTA:
2200 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2201 break;
2202 default:
2203 rc = 0; /* let the kernel handle invalid cmds */
2204 break;
2205 }
2206 return rc;
2207}
2208
2209static int selinux_quota_on(struct dentry *dentry)
2210{
2211 const struct cred *cred = current_cred();
2212
2213 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2214}
2215
2216static int selinux_syslog(int type)
2217{
2218 switch (type) {
2219 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2220 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2221 return avc_has_perm(&selinux_state,
2222 current_sid(), SECINITSID_KERNEL,
2223 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2224 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2225 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2226 /* Set level of messages printed to console */
2227 case SYSLOG_ACTION_CONSOLE_LEVEL:
2228 return avc_has_perm(&selinux_state,
2229 current_sid(), SECINITSID_KERNEL,
2230 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2231 NULL);
2232 }
2233 /* All other syslog types */
2234 return avc_has_perm(&selinux_state,
2235 current_sid(), SECINITSID_KERNEL,
2236 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2237}
2238
2239/*
2240 * Check that a process has enough memory to allocate a new virtual
2241 * mapping. 0 means there is enough memory for the allocation to
2242 * succeed and -ENOMEM implies there is not.
2243 *
2244 * Do not audit the selinux permission check, as this is applied to all
2245 * processes that allocate mappings.
2246 */
2247static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2248{
2249 int rc, cap_sys_admin = 0;
2250
2251 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2252 CAP_OPT_NOAUDIT, true);
2253 if (rc == 0)
2254 cap_sys_admin = 1;
2255
2256 return cap_sys_admin;
2257}
2258
2259/* binprm security operations */
2260
2261static u32 ptrace_parent_sid(void)
2262{
2263 u32 sid = 0;
2264 struct task_struct *tracer;
2265
2266 rcu_read_lock();
2267 tracer = ptrace_parent(current);
2268 if (tracer)
2269 sid = task_sid(tracer);
2270 rcu_read_unlock();
2271
2272 return sid;
2273}
2274
2275static int check_nnp_nosuid(const struct linux_binprm *bprm,
2276 const struct task_security_struct *old_tsec,
2277 const struct task_security_struct *new_tsec)
2278{
2279 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2280 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2281 int rc;
2282 u32 av;
2283
2284 if (!nnp && !nosuid)
2285 return 0; /* neither NNP nor nosuid */
2286
2287 if (new_tsec->sid == old_tsec->sid)
2288 return 0; /* No change in credentials */
2289
2290 /*
2291 * If the policy enables the nnp_nosuid_transition policy capability,
2292 * then we permit transitions under NNP or nosuid if the
2293 * policy allows the corresponding permission between
2294 * the old and new contexts.
2295 */
2296 if (selinux_policycap_nnp_nosuid_transition()) {
2297 av = 0;
2298 if (nnp)
2299 av |= PROCESS2__NNP_TRANSITION;
2300 if (nosuid)
2301 av |= PROCESS2__NOSUID_TRANSITION;
2302 rc = avc_has_perm(&selinux_state,
2303 old_tsec->sid, new_tsec->sid,
2304 SECCLASS_PROCESS2, av, NULL);
2305 if (!rc)
2306 return 0;
2307 }
2308
2309 /*
2310 * We also permit NNP or nosuid transitions to bounded SIDs,
2311 * i.e. SIDs that are guaranteed to only be allowed a subset
2312 * of the permissions of the current SID.
2313 */
2314 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2315 new_tsec->sid);
2316 if (!rc)
2317 return 0;
2318
2319 /*
2320 * On failure, preserve the errno values for NNP vs nosuid.
2321 * NNP: Operation not permitted for caller.
2322 * nosuid: Permission denied to file.
2323 */
2324 if (nnp)
2325 return -EPERM;
2326 return -EACCES;
2327}
2328
2329static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2330{
2331 const struct task_security_struct *old_tsec;
2332 struct task_security_struct *new_tsec;
2333 struct inode_security_struct *isec;
2334 struct common_audit_data ad;
2335 struct inode *inode = file_inode(bprm->file);
2336 int rc;
2337
2338 /* SELinux context only depends on initial program or script and not
2339 * the script interpreter */
2340 if (bprm->called_set_creds)
2341 return 0;
2342
2343 old_tsec = selinux_cred(current_cred());
2344 new_tsec = selinux_cred(bprm->cred);
2345 isec = inode_security(inode);
2346
2347 /* Default to the current task SID. */
2348 new_tsec->sid = old_tsec->sid;
2349 new_tsec->osid = old_tsec->sid;
2350
2351 /* Reset fs, key, and sock SIDs on execve. */
2352 new_tsec->create_sid = 0;
2353 new_tsec->keycreate_sid = 0;
2354 new_tsec->sockcreate_sid = 0;
2355
2356 if (old_tsec->exec_sid) {
2357 new_tsec->sid = old_tsec->exec_sid;
2358 /* Reset exec SID on execve. */
2359 new_tsec->exec_sid = 0;
2360
2361 /* Fail on NNP or nosuid if not an allowed transition. */
2362 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2363 if (rc)
2364 return rc;
2365 } else {
2366 /* Check for a default transition on this program. */
2367 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2368 isec->sid, SECCLASS_PROCESS, NULL,
2369 &new_tsec->sid);
2370 if (rc)
2371 return rc;
2372
2373 /*
2374 * Fallback to old SID on NNP or nosuid if not an allowed
2375 * transition.
2376 */
2377 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2378 if (rc)
2379 new_tsec->sid = old_tsec->sid;
2380 }
2381
2382 ad.type = LSM_AUDIT_DATA_FILE;
2383 ad.u.file = bprm->file;
2384
2385 if (new_tsec->sid == old_tsec->sid) {
2386 rc = avc_has_perm(&selinux_state,
2387 old_tsec->sid, isec->sid,
2388 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2389 if (rc)
2390 return rc;
2391 } else {
2392 /* Check permissions for the transition. */
2393 rc = avc_has_perm(&selinux_state,
2394 old_tsec->sid, new_tsec->sid,
2395 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2396 if (rc)
2397 return rc;
2398
2399 rc = avc_has_perm(&selinux_state,
2400 new_tsec->sid, isec->sid,
2401 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2402 if (rc)
2403 return rc;
2404
2405 /* Check for shared state */
2406 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2407 rc = avc_has_perm(&selinux_state,
2408 old_tsec->sid, new_tsec->sid,
2409 SECCLASS_PROCESS, PROCESS__SHARE,
2410 NULL);
2411 if (rc)
2412 return -EPERM;
2413 }
2414
2415 /* Make sure that anyone attempting to ptrace over a task that
2416 * changes its SID has the appropriate permit */
2417 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2418 u32 ptsid = ptrace_parent_sid();
2419 if (ptsid != 0) {
2420 rc = avc_has_perm(&selinux_state,
2421 ptsid, new_tsec->sid,
2422 SECCLASS_PROCESS,
2423 PROCESS__PTRACE, NULL);
2424 if (rc)
2425 return -EPERM;
2426 }
2427 }
2428
2429 /* Clear any possibly unsafe personality bits on exec: */
2430 bprm->per_clear |= PER_CLEAR_ON_SETID;
2431
2432 /* Enable secure mode for SIDs transitions unless
2433 the noatsecure permission is granted between
2434 the two SIDs, i.e. ahp returns 0. */
2435 rc = avc_has_perm(&selinux_state,
2436 old_tsec->sid, new_tsec->sid,
2437 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2438 NULL);
2439 bprm->secureexec |= !!rc;
2440 }
2441
2442 return 0;
2443}
2444
2445static int match_file(const void *p, struct file *file, unsigned fd)
2446{
2447 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2448}
2449
2450/* Derived from fs/exec.c:flush_old_files. */
2451static inline void flush_unauthorized_files(const struct cred *cred,
2452 struct files_struct *files)
2453{
2454 struct file *file, *devnull = NULL;
2455 struct tty_struct *tty;
2456 int drop_tty = 0;
2457 unsigned n;
2458
2459 tty = get_current_tty();
2460 if (tty) {
2461 spin_lock(&tty->files_lock);
2462 if (!list_empty(&tty->tty_files)) {
2463 struct tty_file_private *file_priv;
2464
2465 /* Revalidate access to controlling tty.
2466 Use file_path_has_perm on the tty path directly
2467 rather than using file_has_perm, as this particular
2468 open file may belong to another process and we are
2469 only interested in the inode-based check here. */
2470 file_priv = list_first_entry(&tty->tty_files,
2471 struct tty_file_private, list);
2472 file = file_priv->file;
2473 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2474 drop_tty = 1;
2475 }
2476 spin_unlock(&tty->files_lock);
2477 tty_kref_put(tty);
2478 }
2479 /* Reset controlling tty. */
2480 if (drop_tty)
2481 no_tty();
2482
2483 /* Revalidate access to inherited open files. */
2484 n = iterate_fd(files, 0, match_file, cred);
2485 if (!n) /* none found? */
2486 return;
2487
2488 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2489 if (IS_ERR(devnull))
2490 devnull = NULL;
2491 /* replace all the matching ones with this */
2492 do {
2493 replace_fd(n - 1, devnull, 0);
2494 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2495 if (devnull)
2496 fput(devnull);
2497}
2498
2499/*
2500 * Prepare a process for imminent new credential changes due to exec
2501 */
2502static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2503{
2504 struct task_security_struct *new_tsec;
2505 struct rlimit *rlim, *initrlim;
2506 int rc, i;
2507
2508 new_tsec = selinux_cred(bprm->cred);
2509 if (new_tsec->sid == new_tsec->osid)
2510 return;
2511
2512 /* Close files for which the new task SID is not authorized. */
2513 flush_unauthorized_files(bprm->cred, current->files);
2514
2515 /* Always clear parent death signal on SID transitions. */
2516 current->pdeath_signal = 0;
2517
2518 /* Check whether the new SID can inherit resource limits from the old
2519 * SID. If not, reset all soft limits to the lower of the current
2520 * task's hard limit and the init task's soft limit.
2521 *
2522 * Note that the setting of hard limits (even to lower them) can be
2523 * controlled by the setrlimit check. The inclusion of the init task's
2524 * soft limit into the computation is to avoid resetting soft limits
2525 * higher than the default soft limit for cases where the default is
2526 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2527 */
2528 rc = avc_has_perm(&selinux_state,
2529 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2530 PROCESS__RLIMITINH, NULL);
2531 if (rc) {
2532 /* protect against do_prlimit() */
2533 task_lock(current);
2534 for (i = 0; i < RLIM_NLIMITS; i++) {
2535 rlim = current->signal->rlim + i;
2536 initrlim = init_task.signal->rlim + i;
2537 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2538 }
2539 task_unlock(current);
2540 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2541 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2542 }
2543}
2544
2545/*
2546 * Clean up the process immediately after the installation of new credentials
2547 * due to exec
2548 */
2549static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2550{
2551 const struct task_security_struct *tsec = selinux_cred(current_cred());
2552 struct itimerval itimer;
2553 u32 osid, sid;
2554 int rc, i;
2555
2556 osid = tsec->osid;
2557 sid = tsec->sid;
2558
2559 if (sid == osid)
2560 return;
2561
2562 /* Check whether the new SID can inherit signal state from the old SID.
2563 * If not, clear itimers to avoid subsequent signal generation and
2564 * flush and unblock signals.
2565 *
2566 * This must occur _after_ the task SID has been updated so that any
2567 * kill done after the flush will be checked against the new SID.
2568 */
2569 rc = avc_has_perm(&selinux_state,
2570 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2571 if (rc) {
2572 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) {
2573 memset(&itimer, 0, sizeof itimer);
2574 for (i = 0; i < 3; i++)
2575 do_setitimer(i, &itimer, NULL);
2576 }
2577 spin_lock_irq(¤t->sighand->siglock);
2578 if (!fatal_signal_pending(current)) {
2579 flush_sigqueue(¤t->pending);
2580 flush_sigqueue(¤t->signal->shared_pending);
2581 flush_signal_handlers(current, 1);
2582 sigemptyset(¤t->blocked);
2583 recalc_sigpending();
2584 }
2585 spin_unlock_irq(¤t->sighand->siglock);
2586 }
2587
2588 /* Wake up the parent if it is waiting so that it can recheck
2589 * wait permission to the new task SID. */
2590 read_lock(&tasklist_lock);
2591 __wake_up_parent(current, current->real_parent);
2592 read_unlock(&tasklist_lock);
2593}
2594
2595/* superblock security operations */
2596
2597static int selinux_sb_alloc_security(struct super_block *sb)
2598{
2599 return superblock_alloc_security(sb);
2600}
2601
2602static void selinux_sb_free_security(struct super_block *sb)
2603{
2604 superblock_free_security(sb);
2605}
2606
2607static inline int opt_len(const char *s)
2608{
2609 bool open_quote = false;
2610 int len;
2611 char c;
2612
2613 for (len = 0; (c = s[len]) != '\0'; len++) {
2614 if (c == '"')
2615 open_quote = !open_quote;
2616 if (c == ',' && !open_quote)
2617 break;
2618 }
2619 return len;
2620}
2621
2622static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2623{
2624 char *from = options;
2625 char *to = options;
2626 bool first = true;
2627 int rc;
2628
2629 while (1) {
2630 int len = opt_len(from);
2631 int token;
2632 char *arg = NULL;
2633
2634 token = match_opt_prefix(from, len, &arg);
2635
2636 if (token != Opt_error) {
2637 char *p, *q;
2638
2639 /* strip quotes */
2640 if (arg) {
2641 for (p = q = arg; p < from + len; p++) {
2642 char c = *p;
2643 if (c != '"')
2644 *q++ = c;
2645 }
2646 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2647 if (!arg) {
2648 rc = -ENOMEM;
2649 goto free_opt;
2650 }
2651 }
2652 rc = selinux_add_opt(token, arg, mnt_opts);
2653 if (unlikely(rc)) {
2654 kfree(arg);
2655 goto free_opt;
2656 }
2657 } else {
2658 if (!first) { // copy with preceding comma
2659 from--;
2660 len++;
2661 }
2662 if (to != from)
2663 memmove(to, from, len);
2664 to += len;
2665 first = false;
2666 }
2667 if (!from[len])
2668 break;
2669 from += len + 1;
2670 }
2671 *to = '\0';
2672 return 0;
2673
2674free_opt:
2675 if (*mnt_opts) {
2676 selinux_free_mnt_opts(*mnt_opts);
2677 *mnt_opts = NULL;
2678 }
2679 return rc;
2680}
2681
2682static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2683{
2684 struct selinux_mnt_opts *opts = mnt_opts;
2685 struct superblock_security_struct *sbsec = sb->s_security;
2686 u32 sid;
2687 int rc;
2688
2689 if (!(sbsec->flags & SE_SBINITIALIZED))
2690 return 0;
2691
2692 if (!opts)
2693 return 0;
2694
2695 if (opts->fscontext) {
2696 rc = parse_sid(sb, opts->fscontext, &sid);
2697 if (rc)
2698 return rc;
2699 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2700 goto out_bad_option;
2701 }
2702 if (opts->context) {
2703 rc = parse_sid(sb, opts->context, &sid);
2704 if (rc)
2705 return rc;
2706 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2707 goto out_bad_option;
2708 }
2709 if (opts->rootcontext) {
2710 struct inode_security_struct *root_isec;
2711 root_isec = backing_inode_security(sb->s_root);
2712 rc = parse_sid(sb, opts->rootcontext, &sid);
2713 if (rc)
2714 return rc;
2715 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2716 goto out_bad_option;
2717 }
2718 if (opts->defcontext) {
2719 rc = parse_sid(sb, opts->defcontext, &sid);
2720 if (rc)
2721 return rc;
2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2723 goto out_bad_option;
2724 }
2725 return 0;
2726
2727out_bad_option:
2728 pr_warn("SELinux: unable to change security options "
2729 "during remount (dev %s, type=%s)\n", sb->s_id,
2730 sb->s_type->name);
2731 return -EINVAL;
2732}
2733
2734static int selinux_sb_kern_mount(struct super_block *sb)
2735{
2736 const struct cred *cred = current_cred();
2737 struct common_audit_data ad;
2738
2739 ad.type = LSM_AUDIT_DATA_DENTRY;
2740 ad.u.dentry = sb->s_root;
2741 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2742}
2743
2744static int selinux_sb_statfs(struct dentry *dentry)
2745{
2746 const struct cred *cred = current_cred();
2747 struct common_audit_data ad;
2748
2749 ad.type = LSM_AUDIT_DATA_DENTRY;
2750 ad.u.dentry = dentry->d_sb->s_root;
2751 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2752}
2753
2754static int selinux_mount(const char *dev_name,
2755 const struct path *path,
2756 const char *type,
2757 unsigned long flags,
2758 void *data)
2759{
2760 const struct cred *cred = current_cred();
2761
2762 if (flags & MS_REMOUNT)
2763 return superblock_has_perm(cred, path->dentry->d_sb,
2764 FILESYSTEM__REMOUNT, NULL);
2765 else
2766 return path_has_perm(cred, path, FILE__MOUNTON);
2767}
2768
2769static int selinux_umount(struct vfsmount *mnt, int flags)
2770{
2771 const struct cred *cred = current_cred();
2772
2773 return superblock_has_perm(cred, mnt->mnt_sb,
2774 FILESYSTEM__UNMOUNT, NULL);
2775}
2776
2777static int selinux_fs_context_dup(struct fs_context *fc,
2778 struct fs_context *src_fc)
2779{
2780 const struct selinux_mnt_opts *src = src_fc->security;
2781 struct selinux_mnt_opts *opts;
2782
2783 if (!src)
2784 return 0;
2785
2786 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2787 if (!fc->security)
2788 return -ENOMEM;
2789
2790 opts = fc->security;
2791
2792 if (src->fscontext) {
2793 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2794 if (!opts->fscontext)
2795 return -ENOMEM;
2796 }
2797 if (src->context) {
2798 opts->context = kstrdup(src->context, GFP_KERNEL);
2799 if (!opts->context)
2800 return -ENOMEM;
2801 }
2802 if (src->rootcontext) {
2803 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2804 if (!opts->rootcontext)
2805 return -ENOMEM;
2806 }
2807 if (src->defcontext) {
2808 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2809 if (!opts->defcontext)
2810 return -ENOMEM;
2811 }
2812 return 0;
2813}
2814
2815static const struct fs_parameter_spec selinux_param_specs[] = {
2816 fsparam_string(CONTEXT_STR, Opt_context),
2817 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2818 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2819 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2820 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2821 {}
2822};
2823
2824static const struct fs_parameter_description selinux_fs_parameters = {
2825 .name = "SELinux",
2826 .specs = selinux_param_specs,
2827};
2828
2829static int selinux_fs_context_parse_param(struct fs_context *fc,
2830 struct fs_parameter *param)
2831{
2832 struct fs_parse_result result;
2833 int opt, rc;
2834
2835 opt = fs_parse(fc, &selinux_fs_parameters, param, &result);
2836 if (opt < 0)
2837 return opt;
2838
2839 rc = selinux_add_opt(opt, param->string, &fc->security);
2840 if (!rc) {
2841 param->string = NULL;
2842 rc = 1;
2843 }
2844 return rc;
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851 return inode_alloc_security(inode);
2852}
2853
2854static void selinux_inode_free_security(struct inode *inode)
2855{
2856 inode_free_security(inode);
2857}
2858
2859static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2860 const struct qstr *name, void **ctx,
2861 u32 *ctxlen)
2862{
2863 u32 newsid;
2864 int rc;
2865
2866 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2867 d_inode(dentry->d_parent), name,
2868 inode_mode_to_security_class(mode),
2869 &newsid);
2870 if (rc)
2871 return rc;
2872
2873 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2874 ctxlen);
2875}
2876
2877static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2878 struct qstr *name,
2879 const struct cred *old,
2880 struct cred *new)
2881{
2882 u32 newsid;
2883 int rc;
2884 struct task_security_struct *tsec;
2885
2886 rc = selinux_determine_inode_label(selinux_cred(old),
2887 d_inode(dentry->d_parent), name,
2888 inode_mode_to_security_class(mode),
2889 &newsid);
2890 if (rc)
2891 return rc;
2892
2893 tsec = selinux_cred(new);
2894 tsec->create_sid = newsid;
2895 return 0;
2896}
2897
2898static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2899 const struct qstr *qstr,
2900 const char **name,
2901 void **value, size_t *len)
2902{
2903 const struct task_security_struct *tsec = selinux_cred(current_cred());
2904 struct superblock_security_struct *sbsec;
2905 u32 newsid, clen;
2906 int rc;
2907 char *context;
2908
2909 sbsec = dir->i_sb->s_security;
2910
2911 newsid = tsec->create_sid;
2912
2913 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2914 dir, qstr,
2915 inode_mode_to_security_class(inode->i_mode),
2916 &newsid);
2917 if (rc)
2918 return rc;
2919
2920 /* Possibly defer initialization to selinux_complete_init. */
2921 if (sbsec->flags & SE_SBINITIALIZED) {
2922 struct inode_security_struct *isec = selinux_inode(inode);
2923 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924 isec->sid = newsid;
2925 isec->initialized = LABEL_INITIALIZED;
2926 }
2927
2928 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT))
2929 return -EOPNOTSUPP;
2930
2931 if (name)
2932 *name = XATTR_SELINUX_SUFFIX;
2933
2934 if (value && len) {
2935 rc = security_sid_to_context_force(&selinux_state, newsid,
2936 &context, &clen);
2937 if (rc)
2938 return rc;
2939 *value = context;
2940 *len = clen;
2941 }
2942
2943 return 0;
2944}
2945
2946static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2947{
2948 return may_create(dir, dentry, SECCLASS_FILE);
2949}
2950
2951static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2952{
2953 return may_link(dir, old_dentry, MAY_LINK);
2954}
2955
2956static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2957{
2958 return may_link(dir, dentry, MAY_UNLINK);
2959}
2960
2961static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2962{
2963 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2964}
2965
2966static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2967{
2968 return may_create(dir, dentry, SECCLASS_DIR);
2969}
2970
2971static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2972{
2973 return may_link(dir, dentry, MAY_RMDIR);
2974}
2975
2976static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2977{
2978 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2979}
2980
2981static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2982 struct inode *new_inode, struct dentry *new_dentry)
2983{
2984 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2985}
2986
2987static int selinux_inode_readlink(struct dentry *dentry)
2988{
2989 const struct cred *cred = current_cred();
2990
2991 return dentry_has_perm(cred, dentry, FILE__READ);
2992}
2993
2994static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2995 bool rcu)
2996{
2997 const struct cred *cred = current_cred();
2998 struct common_audit_data ad;
2999 struct inode_security_struct *isec;
3000 u32 sid;
3001
3002 validate_creds(cred);
3003
3004 ad.type = LSM_AUDIT_DATA_DENTRY;
3005 ad.u.dentry = dentry;
3006 sid = cred_sid(cred);
3007 isec = inode_security_rcu(inode, rcu);
3008 if (IS_ERR(isec))
3009 return PTR_ERR(isec);
3010
3011 return avc_has_perm(&selinux_state,
3012 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3013}
3014
3015static noinline int audit_inode_permission(struct inode *inode,
3016 u32 perms, u32 audited, u32 denied,
3017 int result,
3018 unsigned flags)
3019{
3020 struct common_audit_data ad;
3021 struct inode_security_struct *isec = selinux_inode(inode);
3022 int rc;
3023
3024 ad.type = LSM_AUDIT_DATA_INODE;
3025 ad.u.inode = inode;
3026
3027 rc = slow_avc_audit(&selinux_state,
3028 current_sid(), isec->sid, isec->sclass, perms,
3029 audited, denied, result, &ad, flags);
3030 if (rc)
3031 return rc;
3032 return 0;
3033}
3034
3035static int selinux_inode_permission(struct inode *inode, int mask)
3036{
3037 const struct cred *cred = current_cred();
3038 u32 perms;
3039 bool from_access;
3040 unsigned flags = mask & MAY_NOT_BLOCK;
3041 struct inode_security_struct *isec;
3042 u32 sid;
3043 struct av_decision avd;
3044 int rc, rc2;
3045 u32 audited, denied;
3046
3047 from_access = mask & MAY_ACCESS;
3048 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3049
3050 /* No permission to check. Existence test. */
3051 if (!mask)
3052 return 0;
3053
3054 validate_creds(cred);
3055
3056 if (unlikely(IS_PRIVATE(inode)))
3057 return 0;
3058
3059 perms = file_mask_to_av(inode->i_mode, mask);
3060
3061 sid = cred_sid(cred);
3062 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
3063 if (IS_ERR(isec))
3064 return PTR_ERR(isec);
3065
3066 rc = avc_has_perm_noaudit(&selinux_state,
3067 sid, isec->sid, isec->sclass, perms,
3068 (flags & MAY_NOT_BLOCK) ? AVC_NONBLOCKING : 0,
3069 &avd);
3070 audited = avc_audit_required(perms, &avd, rc,
3071 from_access ? FILE__AUDIT_ACCESS : 0,
3072 &denied);
3073 if (likely(!audited))
3074 return rc;
3075
3076 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
3077 if (rc2)
3078 return rc2;
3079 return rc;
3080}
3081
3082static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3083{
3084 const struct cred *cred = current_cred();
3085 struct inode *inode = d_backing_inode(dentry);
3086 unsigned int ia_valid = iattr->ia_valid;
3087 __u32 av = FILE__WRITE;
3088
3089 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3090 if (ia_valid & ATTR_FORCE) {
3091 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3092 ATTR_FORCE);
3093 if (!ia_valid)
3094 return 0;
3095 }
3096
3097 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3098 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3099 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3100
3101 if (selinux_policycap_openperm() &&
3102 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3103 (ia_valid & ATTR_SIZE) &&
3104 !(ia_valid & ATTR_FILE))
3105 av |= FILE__OPEN;
3106
3107 return dentry_has_perm(cred, dentry, av);
3108}
3109
3110static int selinux_inode_getattr(const struct path *path)
3111{
3112 return path_has_perm(current_cred(), path, FILE__GETATTR);
3113}
3114
3115static bool has_cap_mac_admin(bool audit)
3116{
3117 const struct cred *cred = current_cred();
3118 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3119
3120 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3121 return false;
3122 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3123 return false;
3124 return true;
3125}
3126
3127static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3128 const void *value, size_t size, int flags)
3129{
3130 struct inode *inode = d_backing_inode(dentry);
3131 struct inode_security_struct *isec;
3132 struct superblock_security_struct *sbsec;
3133 struct common_audit_data ad;
3134 u32 newsid, sid = current_sid();
3135 int rc = 0;
3136
3137 if (strcmp(name, XATTR_NAME_SELINUX)) {
3138 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3139 if (rc)
3140 return rc;
3141
3142 /* Not an attribute we recognize, so just check the
3143 ordinary setattr permission. */
3144 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3145 }
3146
3147 sbsec = inode->i_sb->s_security;
3148 if (!(sbsec->flags & SBLABEL_MNT))
3149 return -EOPNOTSUPP;
3150
3151 if (!inode_owner_or_capable(inode))
3152 return -EPERM;
3153
3154 ad.type = LSM_AUDIT_DATA_DENTRY;
3155 ad.u.dentry = dentry;
3156
3157 isec = backing_inode_security(dentry);
3158 rc = avc_has_perm(&selinux_state,
3159 sid, isec->sid, isec->sclass,
3160 FILE__RELABELFROM, &ad);
3161 if (rc)
3162 return rc;
3163
3164 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3165 GFP_KERNEL);
3166 if (rc == -EINVAL) {
3167 if (!has_cap_mac_admin(true)) {
3168 struct audit_buffer *ab;
3169 size_t audit_size;
3170
3171 /* We strip a nul only if it is at the end, otherwise the
3172 * context contains a nul and we should audit that */
3173 if (value) {
3174 const char *str = value;
3175
3176 if (str[size - 1] == '\0')
3177 audit_size = size - 1;
3178 else
3179 audit_size = size;
3180 } else {
3181 audit_size = 0;
3182 }
3183 ab = audit_log_start(audit_context(),
3184 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3185 audit_log_format(ab, "op=setxattr invalid_context=");
3186 audit_log_n_untrustedstring(ab, value, audit_size);
3187 audit_log_end(ab);
3188
3189 return rc;
3190 }
3191 rc = security_context_to_sid_force(&selinux_state, value,
3192 size, &newsid);
3193 }
3194 if (rc)
3195 return rc;
3196
3197 rc = avc_has_perm(&selinux_state,
3198 sid, newsid, isec->sclass,
3199 FILE__RELABELTO, &ad);
3200 if (rc)
3201 return rc;
3202
3203 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3204 sid, isec->sclass);
3205 if (rc)
3206 return rc;
3207
3208 return avc_has_perm(&selinux_state,
3209 newsid,
3210 sbsec->sid,
3211 SECCLASS_FILESYSTEM,
3212 FILESYSTEM__ASSOCIATE,
3213 &ad);
3214}
3215
3216static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3217 const void *value, size_t size,
3218 int flags)
3219{
3220 struct inode *inode = d_backing_inode(dentry);
3221 struct inode_security_struct *isec;
3222 u32 newsid;
3223 int rc;
3224
3225 if (strcmp(name, XATTR_NAME_SELINUX)) {
3226 /* Not an attribute we recognize, so nothing to do. */
3227 return;
3228 }
3229
3230 rc = security_context_to_sid_force(&selinux_state, value, size,
3231 &newsid);
3232 if (rc) {
3233 pr_err("SELinux: unable to map context to SID"
3234 "for (%s, %lu), rc=%d\n",
3235 inode->i_sb->s_id, inode->i_ino, -rc);
3236 return;
3237 }
3238
3239 isec = backing_inode_security(dentry);
3240 spin_lock(&isec->lock);
3241 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3242 isec->sid = newsid;
3243 isec->initialized = LABEL_INITIALIZED;
3244 spin_unlock(&isec->lock);
3245
3246 return;
3247}
3248
3249static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3250{
3251 const struct cred *cred = current_cred();
3252
3253 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_listxattr(struct dentry *dentry)
3257{
3258 const struct cred *cred = current_cred();
3259
3260 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3261}
3262
3263static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3264{
3265 if (strcmp(name, XATTR_NAME_SELINUX)) {
3266 int rc = cap_inode_removexattr(dentry, name);
3267 if (rc)
3268 return rc;
3269
3270 /* Not an attribute we recognize, so just check the
3271 ordinary setattr permission. */
3272 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3273 }
3274
3275 /* No one is allowed to remove a SELinux security label.
3276 You can change the label, but all data must be labeled. */
3277 return -EACCES;
3278}
3279
3280static int selinux_path_notify(const struct path *path, u64 mask,
3281 unsigned int obj_type)
3282{
3283 int ret;
3284 u32 perm;
3285
3286 struct common_audit_data ad;
3287
3288 ad.type = LSM_AUDIT_DATA_PATH;
3289 ad.u.path = *path;
3290
3291 /*
3292 * Set permission needed based on the type of mark being set.
3293 * Performs an additional check for sb watches.
3294 */
3295 switch (obj_type) {
3296 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3297 perm = FILE__WATCH_MOUNT;
3298 break;
3299 case FSNOTIFY_OBJ_TYPE_SB:
3300 perm = FILE__WATCH_SB;
3301 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3302 FILESYSTEM__WATCH, &ad);
3303 if (ret)
3304 return ret;
3305 break;
3306 case FSNOTIFY_OBJ_TYPE_INODE:
3307 perm = FILE__WATCH;
3308 break;
3309 default:
3310 return -EINVAL;
3311 }
3312
3313 /* blocking watches require the file:watch_with_perm permission */
3314 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3315 perm |= FILE__WATCH_WITH_PERM;
3316
3317 /* watches on read-like events need the file:watch_reads permission */
3318 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3319 perm |= FILE__WATCH_READS;
3320
3321 return path_has_perm(current_cred(), path, perm);
3322}
3323
3324/*
3325 * Copy the inode security context value to the user.
3326 *
3327 * Permission check is handled by selinux_inode_getxattr hook.
3328 */
3329static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3330{
3331 u32 size;
3332 int error;
3333 char *context = NULL;
3334 struct inode_security_struct *isec;
3335
3336 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3337 return -EOPNOTSUPP;
3338
3339 /*
3340 * If the caller has CAP_MAC_ADMIN, then get the raw context
3341 * value even if it is not defined by current policy; otherwise,
3342 * use the in-core value under current policy.
3343 * Use the non-auditing forms of the permission checks since
3344 * getxattr may be called by unprivileged processes commonly
3345 * and lack of permission just means that we fall back to the
3346 * in-core context value, not a denial.
3347 */
3348 isec = inode_security(inode);
3349 if (has_cap_mac_admin(false))
3350 error = security_sid_to_context_force(&selinux_state,
3351 isec->sid, &context,
3352 &size);
3353 else
3354 error = security_sid_to_context(&selinux_state, isec->sid,
3355 &context, &size);
3356 if (error)
3357 return error;
3358 error = size;
3359 if (alloc) {
3360 *buffer = context;
3361 goto out_nofree;
3362 }
3363 kfree(context);
3364out_nofree:
3365 return error;
3366}
3367
3368static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3369 const void *value, size_t size, int flags)
3370{
3371 struct inode_security_struct *isec = inode_security_novalidate(inode);
3372 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3373 u32 newsid;
3374 int rc;
3375
3376 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3377 return -EOPNOTSUPP;
3378
3379 if (!(sbsec->flags & SBLABEL_MNT))
3380 return -EOPNOTSUPP;
3381
3382 if (!value || !size)
3383 return -EACCES;
3384
3385 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3386 GFP_KERNEL);
3387 if (rc)
3388 return rc;
3389
3390 spin_lock(&isec->lock);
3391 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3392 isec->sid = newsid;
3393 isec->initialized = LABEL_INITIALIZED;
3394 spin_unlock(&isec->lock);
3395 return 0;
3396}
3397
3398static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3399{
3400 const int len = sizeof(XATTR_NAME_SELINUX);
3401 if (buffer && len <= buffer_size)
3402 memcpy(buffer, XATTR_NAME_SELINUX, len);
3403 return len;
3404}
3405
3406static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3407{
3408 struct inode_security_struct *isec = inode_security_novalidate(inode);
3409 *secid = isec->sid;
3410}
3411
3412static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3413{
3414 u32 sid;
3415 struct task_security_struct *tsec;
3416 struct cred *new_creds = *new;
3417
3418 if (new_creds == NULL) {
3419 new_creds = prepare_creds();
3420 if (!new_creds)
3421 return -ENOMEM;
3422 }
3423
3424 tsec = selinux_cred(new_creds);
3425 /* Get label from overlay inode and set it in create_sid */
3426 selinux_inode_getsecid(d_inode(src), &sid);
3427 tsec->create_sid = sid;
3428 *new = new_creds;
3429 return 0;
3430}
3431
3432static int selinux_inode_copy_up_xattr(const char *name)
3433{
3434 /* The copy_up hook above sets the initial context on an inode, but we
3435 * don't then want to overwrite it by blindly copying all the lower
3436 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3437 */
3438 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3439 return 1; /* Discard */
3440 /*
3441 * Any other attribute apart from SELINUX is not claimed, supported
3442 * by selinux.
3443 */
3444 return -EOPNOTSUPP;
3445}
3446
3447/* kernfs node operations */
3448
3449static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3450 struct kernfs_node *kn)
3451{
3452 const struct task_security_struct *tsec = selinux_cred(current_cred());
3453 u32 parent_sid, newsid, clen;
3454 int rc;
3455 char *context;
3456
3457 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3458 if (rc == -ENODATA)
3459 return 0;
3460 else if (rc < 0)
3461 return rc;
3462
3463 clen = (u32)rc;
3464 context = kmalloc(clen, GFP_KERNEL);
3465 if (!context)
3466 return -ENOMEM;
3467
3468 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3469 if (rc < 0) {
3470 kfree(context);
3471 return rc;
3472 }
3473
3474 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3475 GFP_KERNEL);
3476 kfree(context);
3477 if (rc)
3478 return rc;
3479
3480 if (tsec->create_sid) {
3481 newsid = tsec->create_sid;
3482 } else {
3483 u16 secclass = inode_mode_to_security_class(kn->mode);
3484 struct qstr q;
3485
3486 q.name = kn->name;
3487 q.hash_len = hashlen_string(kn_dir, kn->name);
3488
3489 rc = security_transition_sid(&selinux_state, tsec->sid,
3490 parent_sid, secclass, &q,
3491 &newsid);
3492 if (rc)
3493 return rc;
3494 }
3495
3496 rc = security_sid_to_context_force(&selinux_state, newsid,
3497 &context, &clen);
3498 if (rc)
3499 return rc;
3500
3501 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3502 XATTR_CREATE);
3503 kfree(context);
3504 return rc;
3505}
3506
3507
3508/* file security operations */
3509
3510static int selinux_revalidate_file_permission(struct file *file, int mask)
3511{
3512 const struct cred *cred = current_cred();
3513 struct inode *inode = file_inode(file);
3514
3515 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3516 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3517 mask |= MAY_APPEND;
3518
3519 return file_has_perm(cred, file,
3520 file_mask_to_av(inode->i_mode, mask));
3521}
3522
3523static int selinux_file_permission(struct file *file, int mask)
3524{
3525 struct inode *inode = file_inode(file);
3526 struct file_security_struct *fsec = selinux_file(file);
3527 struct inode_security_struct *isec;
3528 u32 sid = current_sid();
3529
3530 if (!mask)
3531 /* No permission to check. Existence test. */
3532 return 0;
3533
3534 isec = inode_security(inode);
3535 if (sid == fsec->sid && fsec->isid == isec->sid &&
3536 fsec->pseqno == avc_policy_seqno(&selinux_state))
3537 /* No change since file_open check. */
3538 return 0;
3539
3540 return selinux_revalidate_file_permission(file, mask);
3541}
3542
3543static int selinux_file_alloc_security(struct file *file)
3544{
3545 return file_alloc_security(file);
3546}
3547
3548/*
3549 * Check whether a task has the ioctl permission and cmd
3550 * operation to an inode.
3551 */
3552static int ioctl_has_perm(const struct cred *cred, struct file *file,
3553 u32 requested, u16 cmd)
3554{
3555 struct common_audit_data ad;
3556 struct file_security_struct *fsec = selinux_file(file);
3557 struct inode *inode = file_inode(file);
3558 struct inode_security_struct *isec;
3559 struct lsm_ioctlop_audit ioctl;
3560 u32 ssid = cred_sid(cred);
3561 int rc;
3562 u8 driver = cmd >> 8;
3563 u8 xperm = cmd & 0xff;
3564
3565 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3566 ad.u.op = &ioctl;
3567 ad.u.op->cmd = cmd;
3568 ad.u.op->path = file->f_path;
3569
3570 if (ssid != fsec->sid) {
3571 rc = avc_has_perm(&selinux_state,
3572 ssid, fsec->sid,
3573 SECCLASS_FD,
3574 FD__USE,
3575 &ad);
3576 if (rc)
3577 goto out;
3578 }
3579
3580 if (unlikely(IS_PRIVATE(inode)))
3581 return 0;
3582
3583 isec = inode_security(inode);
3584 rc = avc_has_extended_perms(&selinux_state,
3585 ssid, isec->sid, isec->sclass,
3586 requested, driver, xperm, &ad);
3587out:
3588 return rc;
3589}
3590
3591static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3592 unsigned long arg)
3593{
3594 const struct cred *cred = current_cred();
3595 int error = 0;
3596
3597 switch (cmd) {
3598 case FIONREAD:
3599 /* fall through */
3600 case FIBMAP:
3601 /* fall through */
3602 case FIGETBSZ:
3603 /* fall through */
3604 case FS_IOC_GETFLAGS:
3605 /* fall through */
3606 case FS_IOC_GETVERSION:
3607 error = file_has_perm(cred, file, FILE__GETATTR);
3608 break;
3609
3610 case FS_IOC_SETFLAGS:
3611 /* fall through */
3612 case FS_IOC_SETVERSION:
3613 error = file_has_perm(cred, file, FILE__SETATTR);
3614 break;
3615
3616 /* sys_ioctl() checks */
3617 case FIONBIO:
3618 /* fall through */
3619 case FIOASYNC:
3620 error = file_has_perm(cred, file, 0);
3621 break;
3622
3623 case KDSKBENT:
3624 case KDSKBSENT:
3625 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3626 CAP_OPT_NONE, true);
3627 break;
3628
3629 /* default case assumes that the command will go
3630 * to the file's ioctl() function.
3631 */
3632 default:
3633 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3634 }
3635 return error;
3636}
3637
3638static int default_noexec;
3639
3640static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3641{
3642 const struct cred *cred = current_cred();
3643 u32 sid = cred_sid(cred);
3644 int rc = 0;
3645
3646 if (default_noexec &&
3647 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3648 (!shared && (prot & PROT_WRITE)))) {
3649 /*
3650 * We are making executable an anonymous mapping or a
3651 * private file mapping that will also be writable.
3652 * This has an additional check.
3653 */
3654 rc = avc_has_perm(&selinux_state,
3655 sid, sid, SECCLASS_PROCESS,
3656 PROCESS__EXECMEM, NULL);
3657 if (rc)
3658 goto error;
3659 }
3660
3661 if (file) {
3662 /* read access is always possible with a mapping */
3663 u32 av = FILE__READ;
3664
3665 /* write access only matters if the mapping is shared */
3666 if (shared && (prot & PROT_WRITE))
3667 av |= FILE__WRITE;
3668
3669 if (prot & PROT_EXEC)
3670 av |= FILE__EXECUTE;
3671
3672 return file_has_perm(cred, file, av);
3673 }
3674
3675error:
3676 return rc;
3677}
3678
3679static int selinux_mmap_addr(unsigned long addr)
3680{
3681 int rc = 0;
3682
3683 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3684 u32 sid = current_sid();
3685 rc = avc_has_perm(&selinux_state,
3686 sid, sid, SECCLASS_MEMPROTECT,
3687 MEMPROTECT__MMAP_ZERO, NULL);
3688 }
3689
3690 return rc;
3691}
3692
3693static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3694 unsigned long prot, unsigned long flags)
3695{
3696 struct common_audit_data ad;
3697 int rc;
3698
3699 if (file) {
3700 ad.type = LSM_AUDIT_DATA_FILE;
3701 ad.u.file = file;
3702 rc = inode_has_perm(current_cred(), file_inode(file),
3703 FILE__MAP, &ad);
3704 if (rc)
3705 return rc;
3706 }
3707
3708 if (selinux_state.checkreqprot)
3709 prot = reqprot;
3710
3711 return file_map_prot_check(file, prot,
3712 (flags & MAP_TYPE) == MAP_SHARED);
3713}
3714
3715static int selinux_file_mprotect(struct vm_area_struct *vma,
3716 unsigned long reqprot,
3717 unsigned long prot)
3718{
3719 const struct cred *cred = current_cred();
3720 u32 sid = cred_sid(cred);
3721
3722 if (selinux_state.checkreqprot)
3723 prot = reqprot;
3724
3725 if (default_noexec &&
3726 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3727 int rc = 0;
3728 if (vma->vm_start >= vma->vm_mm->start_brk &&
3729 vma->vm_end <= vma->vm_mm->brk) {
3730 rc = avc_has_perm(&selinux_state,
3731 sid, sid, SECCLASS_PROCESS,
3732 PROCESS__EXECHEAP, NULL);
3733 } else if (!vma->vm_file &&
3734 ((vma->vm_start <= vma->vm_mm->start_stack &&
3735 vma->vm_end >= vma->vm_mm->start_stack) ||
3736 vma_is_stack_for_current(vma))) {
3737 rc = avc_has_perm(&selinux_state,
3738 sid, sid, SECCLASS_PROCESS,
3739 PROCESS__EXECSTACK, NULL);
3740 } else if (vma->vm_file && vma->anon_vma) {
3741 /*
3742 * We are making executable a file mapping that has
3743 * had some COW done. Since pages might have been
3744 * written, check ability to execute the possibly
3745 * modified content. This typically should only
3746 * occur for text relocations.
3747 */
3748 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3749 }
3750 if (rc)
3751 return rc;
3752 }
3753
3754 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3755}
3756
3757static int selinux_file_lock(struct file *file, unsigned int cmd)
3758{
3759 const struct cred *cred = current_cred();
3760
3761 return file_has_perm(cred, file, FILE__LOCK);
3762}
3763
3764static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3765 unsigned long arg)
3766{
3767 const struct cred *cred = current_cred();
3768 int err = 0;
3769
3770 switch (cmd) {
3771 case F_SETFL:
3772 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3773 err = file_has_perm(cred, file, FILE__WRITE);
3774 break;
3775 }
3776 /* fall through */
3777 case F_SETOWN:
3778 case F_SETSIG:
3779 case F_GETFL:
3780 case F_GETOWN:
3781 case F_GETSIG:
3782 case F_GETOWNER_UIDS:
3783 /* Just check FD__USE permission */
3784 err = file_has_perm(cred, file, 0);
3785 break;
3786 case F_GETLK:
3787 case F_SETLK:
3788 case F_SETLKW:
3789 case F_OFD_GETLK:
3790 case F_OFD_SETLK:
3791 case F_OFD_SETLKW:
3792#if BITS_PER_LONG == 32
3793 case F_GETLK64:
3794 case F_SETLK64:
3795 case F_SETLKW64:
3796#endif
3797 err = file_has_perm(cred, file, FILE__LOCK);
3798 break;
3799 }
3800
3801 return err;
3802}
3803
3804static void selinux_file_set_fowner(struct file *file)
3805{
3806 struct file_security_struct *fsec;
3807
3808 fsec = selinux_file(file);
3809 fsec->fown_sid = current_sid();
3810}
3811
3812static int selinux_file_send_sigiotask(struct task_struct *tsk,
3813 struct fown_struct *fown, int signum)
3814{
3815 struct file *file;
3816 u32 sid = task_sid(tsk);
3817 u32 perm;
3818 struct file_security_struct *fsec;
3819
3820 /* struct fown_struct is never outside the context of a struct file */
3821 file = container_of(fown, struct file, f_owner);
3822
3823 fsec = selinux_file(file);
3824
3825 if (!signum)
3826 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3827 else
3828 perm = signal_to_av(signum);
3829
3830 return avc_has_perm(&selinux_state,
3831 fsec->fown_sid, sid,
3832 SECCLASS_PROCESS, perm, NULL);
3833}
3834
3835static int selinux_file_receive(struct file *file)
3836{
3837 const struct cred *cred = current_cred();
3838
3839 return file_has_perm(cred, file, file_to_av(file));
3840}
3841
3842static int selinux_file_open(struct file *file)
3843{
3844 struct file_security_struct *fsec;
3845 struct inode_security_struct *isec;
3846
3847 fsec = selinux_file(file);
3848 isec = inode_security(file_inode(file));
3849 /*
3850 * Save inode label and policy sequence number
3851 * at open-time so that selinux_file_permission
3852 * can determine whether revalidation is necessary.
3853 * Task label is already saved in the file security
3854 * struct as its SID.
3855 */
3856 fsec->isid = isec->sid;
3857 fsec->pseqno = avc_policy_seqno(&selinux_state);
3858 /*
3859 * Since the inode label or policy seqno may have changed
3860 * between the selinux_inode_permission check and the saving
3861 * of state above, recheck that access is still permitted.
3862 * Otherwise, access might never be revalidated against the
3863 * new inode label or new policy.
3864 * This check is not redundant - do not remove.
3865 */
3866 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3867}
3868
3869/* task security operations */
3870
3871static int selinux_task_alloc(struct task_struct *task,
3872 unsigned long clone_flags)
3873{
3874 u32 sid = current_sid();
3875
3876 return avc_has_perm(&selinux_state,
3877 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3878}
3879
3880/*
3881 * prepare a new set of credentials for modification
3882 */
3883static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3884 gfp_t gfp)
3885{
3886 const struct task_security_struct *old_tsec = selinux_cred(old);
3887 struct task_security_struct *tsec = selinux_cred(new);
3888
3889 *tsec = *old_tsec;
3890 return 0;
3891}
3892
3893/*
3894 * transfer the SELinux data to a blank set of creds
3895 */
3896static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3897{
3898 const struct task_security_struct *old_tsec = selinux_cred(old);
3899 struct task_security_struct *tsec = selinux_cred(new);
3900
3901 *tsec = *old_tsec;
3902}
3903
3904static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3905{
3906 *secid = cred_sid(c);
3907}
3908
3909/*
3910 * set the security data for a kernel service
3911 * - all the creation contexts are set to unlabelled
3912 */
3913static int selinux_kernel_act_as(struct cred *new, u32 secid)
3914{
3915 struct task_security_struct *tsec = selinux_cred(new);
3916 u32 sid = current_sid();
3917 int ret;
3918
3919 ret = avc_has_perm(&selinux_state,
3920 sid, secid,
3921 SECCLASS_KERNEL_SERVICE,
3922 KERNEL_SERVICE__USE_AS_OVERRIDE,
3923 NULL);
3924 if (ret == 0) {
3925 tsec->sid = secid;
3926 tsec->create_sid = 0;
3927 tsec->keycreate_sid = 0;
3928 tsec->sockcreate_sid = 0;
3929 }
3930 return ret;
3931}
3932
3933/*
3934 * set the file creation context in a security record to the same as the
3935 * objective context of the specified inode
3936 */
3937static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3938{
3939 struct inode_security_struct *isec = inode_security(inode);
3940 struct task_security_struct *tsec = selinux_cred(new);
3941 u32 sid = current_sid();
3942 int ret;
3943
3944 ret = avc_has_perm(&selinux_state,
3945 sid, isec->sid,
3946 SECCLASS_KERNEL_SERVICE,
3947 KERNEL_SERVICE__CREATE_FILES_AS,
3948 NULL);
3949
3950 if (ret == 0)
3951 tsec->create_sid = isec->sid;
3952 return ret;
3953}
3954
3955static int selinux_kernel_module_request(char *kmod_name)
3956{
3957 struct common_audit_data ad;
3958
3959 ad.type = LSM_AUDIT_DATA_KMOD;
3960 ad.u.kmod_name = kmod_name;
3961
3962 return avc_has_perm(&selinux_state,
3963 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3964 SYSTEM__MODULE_REQUEST, &ad);
3965}
3966
3967static int selinux_kernel_module_from_file(struct file *file)
3968{
3969 struct common_audit_data ad;
3970 struct inode_security_struct *isec;
3971 struct file_security_struct *fsec;
3972 u32 sid = current_sid();
3973 int rc;
3974
3975 /* init_module */
3976 if (file == NULL)
3977 return avc_has_perm(&selinux_state,
3978 sid, sid, SECCLASS_SYSTEM,
3979 SYSTEM__MODULE_LOAD, NULL);
3980
3981 /* finit_module */
3982
3983 ad.type = LSM_AUDIT_DATA_FILE;
3984 ad.u.file = file;
3985
3986 fsec = selinux_file(file);
3987 if (sid != fsec->sid) {
3988 rc = avc_has_perm(&selinux_state,
3989 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3990 if (rc)
3991 return rc;
3992 }
3993
3994 isec = inode_security(file_inode(file));
3995 return avc_has_perm(&selinux_state,
3996 sid, isec->sid, SECCLASS_SYSTEM,
3997 SYSTEM__MODULE_LOAD, &ad);
3998}
3999
4000static int selinux_kernel_read_file(struct file *file,
4001 enum kernel_read_file_id id)
4002{
4003 int rc = 0;
4004
4005 switch (id) {
4006 case READING_MODULE:
4007 rc = selinux_kernel_module_from_file(file);
4008 break;
4009 default:
4010 break;
4011 }
4012
4013 return rc;
4014}
4015
4016static int selinux_kernel_load_data(enum kernel_load_data_id id)
4017{
4018 int rc = 0;
4019
4020 switch (id) {
4021 case LOADING_MODULE:
4022 rc = selinux_kernel_module_from_file(NULL);
4023 default:
4024 break;
4025 }
4026
4027 return rc;
4028}
4029
4030static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4031{
4032 return avc_has_perm(&selinux_state,
4033 current_sid(), task_sid(p), SECCLASS_PROCESS,
4034 PROCESS__SETPGID, NULL);
4035}
4036
4037static int selinux_task_getpgid(struct task_struct *p)
4038{
4039 return avc_has_perm(&selinux_state,
4040 current_sid(), task_sid(p), SECCLASS_PROCESS,
4041 PROCESS__GETPGID, NULL);
4042}
4043
4044static int selinux_task_getsid(struct task_struct *p)
4045{
4046 return avc_has_perm(&selinux_state,
4047 current_sid(), task_sid(p), SECCLASS_PROCESS,
4048 PROCESS__GETSESSION, NULL);
4049}
4050
4051static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4052{
4053 *secid = task_sid(p);
4054}
4055
4056static int selinux_task_setnice(struct task_struct *p, int nice)
4057{
4058 return avc_has_perm(&selinux_state,
4059 current_sid(), task_sid(p), SECCLASS_PROCESS,
4060 PROCESS__SETSCHED, NULL);
4061}
4062
4063static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4064{
4065 return avc_has_perm(&selinux_state,
4066 current_sid(), task_sid(p), SECCLASS_PROCESS,
4067 PROCESS__SETSCHED, NULL);
4068}
4069
4070static int selinux_task_getioprio(struct task_struct *p)
4071{
4072 return avc_has_perm(&selinux_state,
4073 current_sid(), task_sid(p), SECCLASS_PROCESS,
4074 PROCESS__GETSCHED, NULL);
4075}
4076
4077static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4078 unsigned int flags)
4079{
4080 u32 av = 0;
4081
4082 if (!flags)
4083 return 0;
4084 if (flags & LSM_PRLIMIT_WRITE)
4085 av |= PROCESS__SETRLIMIT;
4086 if (flags & LSM_PRLIMIT_READ)
4087 av |= PROCESS__GETRLIMIT;
4088 return avc_has_perm(&selinux_state,
4089 cred_sid(cred), cred_sid(tcred),
4090 SECCLASS_PROCESS, av, NULL);
4091}
4092
4093static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4094 struct rlimit *new_rlim)
4095{
4096 struct rlimit *old_rlim = p->signal->rlim + resource;
4097
4098 /* Control the ability to change the hard limit (whether
4099 lowering or raising it), so that the hard limit can
4100 later be used as a safe reset point for the soft limit
4101 upon context transitions. See selinux_bprm_committing_creds. */
4102 if (old_rlim->rlim_max != new_rlim->rlim_max)
4103 return avc_has_perm(&selinux_state,
4104 current_sid(), task_sid(p),
4105 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4106
4107 return 0;
4108}
4109
4110static int selinux_task_setscheduler(struct task_struct *p)
4111{
4112 return avc_has_perm(&selinux_state,
4113 current_sid(), task_sid(p), SECCLASS_PROCESS,
4114 PROCESS__SETSCHED, NULL);
4115}
4116
4117static int selinux_task_getscheduler(struct task_struct *p)
4118{
4119 return avc_has_perm(&selinux_state,
4120 current_sid(), task_sid(p), SECCLASS_PROCESS,
4121 PROCESS__GETSCHED, NULL);
4122}
4123
4124static int selinux_task_movememory(struct task_struct *p)
4125{
4126 return avc_has_perm(&selinux_state,
4127 current_sid(), task_sid(p), SECCLASS_PROCESS,
4128 PROCESS__SETSCHED, NULL);
4129}
4130
4131static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4132 int sig, const struct cred *cred)
4133{
4134 u32 secid;
4135 u32 perm;
4136
4137 if (!sig)
4138 perm = PROCESS__SIGNULL; /* null signal; existence test */
4139 else
4140 perm = signal_to_av(sig);
4141 if (!cred)
4142 secid = current_sid();
4143 else
4144 secid = cred_sid(cred);
4145 return avc_has_perm(&selinux_state,
4146 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
4147}
4148
4149static void selinux_task_to_inode(struct task_struct *p,
4150 struct inode *inode)
4151{
4152 struct inode_security_struct *isec = selinux_inode(inode);
4153 u32 sid = task_sid(p);
4154
4155 spin_lock(&isec->lock);
4156 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4157 isec->sid = sid;
4158 isec->initialized = LABEL_INITIALIZED;
4159 spin_unlock(&isec->lock);
4160}
4161
4162/* Returns error only if unable to parse addresses */
4163static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4164 struct common_audit_data *ad, u8 *proto)
4165{
4166 int offset, ihlen, ret = -EINVAL;
4167 struct iphdr _iph, *ih;
4168
4169 offset = skb_network_offset(skb);
4170 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4171 if (ih == NULL)
4172 goto out;
4173
4174 ihlen = ih->ihl * 4;
4175 if (ihlen < sizeof(_iph))
4176 goto out;
4177
4178 ad->u.net->v4info.saddr = ih->saddr;
4179 ad->u.net->v4info.daddr = ih->daddr;
4180 ret = 0;
4181
4182 if (proto)
4183 *proto = ih->protocol;
4184
4185 switch (ih->protocol) {
4186 case IPPROTO_TCP: {
4187 struct tcphdr _tcph, *th;
4188
4189 if (ntohs(ih->frag_off) & IP_OFFSET)
4190 break;
4191
4192 offset += ihlen;
4193 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4194 if (th == NULL)
4195 break;
4196
4197 ad->u.net->sport = th->source;
4198 ad->u.net->dport = th->dest;
4199 break;
4200 }
4201
4202 case IPPROTO_UDP: {
4203 struct udphdr _udph, *uh;
4204
4205 if (ntohs(ih->frag_off) & IP_OFFSET)
4206 break;
4207
4208 offset += ihlen;
4209 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4210 if (uh == NULL)
4211 break;
4212
4213 ad->u.net->sport = uh->source;
4214 ad->u.net->dport = uh->dest;
4215 break;
4216 }
4217
4218 case IPPROTO_DCCP: {
4219 struct dccp_hdr _dccph, *dh;
4220
4221 if (ntohs(ih->frag_off) & IP_OFFSET)
4222 break;
4223
4224 offset += ihlen;
4225 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4226 if (dh == NULL)
4227 break;
4228
4229 ad->u.net->sport = dh->dccph_sport;
4230 ad->u.net->dport = dh->dccph_dport;
4231 break;
4232 }
4233
4234#if IS_ENABLED(CONFIG_IP_SCTP)
4235 case IPPROTO_SCTP: {
4236 struct sctphdr _sctph, *sh;
4237
4238 if (ntohs(ih->frag_off) & IP_OFFSET)
4239 break;
4240
4241 offset += ihlen;
4242 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4243 if (sh == NULL)
4244 break;
4245
4246 ad->u.net->sport = sh->source;
4247 ad->u.net->dport = sh->dest;
4248 break;
4249 }
4250#endif
4251 default:
4252 break;
4253 }
4254out:
4255 return ret;
4256}
4257
4258#if IS_ENABLED(CONFIG_IPV6)
4259
4260/* Returns error only if unable to parse addresses */
4261static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4262 struct common_audit_data *ad, u8 *proto)
4263{
4264 u8 nexthdr;
4265 int ret = -EINVAL, offset;
4266 struct ipv6hdr _ipv6h, *ip6;
4267 __be16 frag_off;
4268
4269 offset = skb_network_offset(skb);
4270 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4271 if (ip6 == NULL)
4272 goto out;
4273
4274 ad->u.net->v6info.saddr = ip6->saddr;
4275 ad->u.net->v6info.daddr = ip6->daddr;
4276 ret = 0;
4277
4278 nexthdr = ip6->nexthdr;
4279 offset += sizeof(_ipv6h);
4280 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4281 if (offset < 0)
4282 goto out;
4283
4284 if (proto)
4285 *proto = nexthdr;
4286
4287 switch (nexthdr) {
4288 case IPPROTO_TCP: {
4289 struct tcphdr _tcph, *th;
4290
4291 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4292 if (th == NULL)
4293 break;
4294
4295 ad->u.net->sport = th->source;
4296 ad->u.net->dport = th->dest;
4297 break;
4298 }
4299
4300 case IPPROTO_UDP: {
4301 struct udphdr _udph, *uh;
4302
4303 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4304 if (uh == NULL)
4305 break;
4306
4307 ad->u.net->sport = uh->source;
4308 ad->u.net->dport = uh->dest;
4309 break;
4310 }
4311
4312 case IPPROTO_DCCP: {
4313 struct dccp_hdr _dccph, *dh;
4314
4315 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316 if (dh == NULL)
4317 break;
4318
4319 ad->u.net->sport = dh->dccph_sport;
4320 ad->u.net->dport = dh->dccph_dport;
4321 break;
4322 }
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325 case IPPROTO_SCTP: {
4326 struct sctphdr _sctph, *sh;
4327
4328 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4329 if (sh == NULL)
4330 break;
4331
4332 ad->u.net->sport = sh->source;
4333 ad->u.net->dport = sh->dest;
4334 break;
4335 }
4336#endif
4337 /* includes fragments */
4338 default:
4339 break;
4340 }
4341out:
4342 return ret;
4343}
4344
4345#endif /* IPV6 */
4346
4347static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4348 char **_addrp, int src, u8 *proto)
4349{
4350 char *addrp;
4351 int ret;
4352
4353 switch (ad->u.net->family) {
4354 case PF_INET:
4355 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4356 if (ret)
4357 goto parse_error;
4358 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4359 &ad->u.net->v4info.daddr);
4360 goto okay;
4361
4362#if IS_ENABLED(CONFIG_IPV6)
4363 case PF_INET6:
4364 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4365 if (ret)
4366 goto parse_error;
4367 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4368 &ad->u.net->v6info.daddr);
4369 goto okay;
4370#endif /* IPV6 */
4371 default:
4372 addrp = NULL;
4373 goto okay;
4374 }
4375
4376parse_error:
4377 pr_warn(
4378 "SELinux: failure in selinux_parse_skb(),"
4379 " unable to parse packet\n");
4380 return ret;
4381
4382okay:
4383 if (_addrp)
4384 *_addrp = addrp;
4385 return 0;
4386}
4387
4388/**
4389 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4390 * @skb: the packet
4391 * @family: protocol family
4392 * @sid: the packet's peer label SID
4393 *
4394 * Description:
4395 * Check the various different forms of network peer labeling and determine
4396 * the peer label/SID for the packet; most of the magic actually occurs in
4397 * the security server function security_net_peersid_cmp(). The function
4398 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4399 * or -EACCES if @sid is invalid due to inconsistencies with the different
4400 * peer labels.
4401 *
4402 */
4403static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4404{
4405 int err;
4406 u32 xfrm_sid;
4407 u32 nlbl_sid;
4408 u32 nlbl_type;
4409
4410 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4411 if (unlikely(err))
4412 return -EACCES;
4413 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4414 if (unlikely(err))
4415 return -EACCES;
4416
4417 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4418 nlbl_type, xfrm_sid, sid);
4419 if (unlikely(err)) {
4420 pr_warn(
4421 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4422 " unable to determine packet's peer label\n");
4423 return -EACCES;
4424 }
4425
4426 return 0;
4427}
4428
4429/**
4430 * selinux_conn_sid - Determine the child socket label for a connection
4431 * @sk_sid: the parent socket's SID
4432 * @skb_sid: the packet's SID
4433 * @conn_sid: the resulting connection SID
4434 *
4435 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4436 * combined with the MLS information from @skb_sid in order to create
4437 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4438 * of @sk_sid. Returns zero on success, negative values on failure.
4439 *
4440 */
4441static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4442{
4443 int err = 0;
4444
4445 if (skb_sid != SECSID_NULL)
4446 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4447 conn_sid);
4448 else
4449 *conn_sid = sk_sid;
4450
4451 return err;
4452}
4453
4454/* socket security operations */
4455
4456static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4457 u16 secclass, u32 *socksid)
4458{
4459 if (tsec->sockcreate_sid > SECSID_NULL) {
4460 *socksid = tsec->sockcreate_sid;
4461 return 0;
4462 }
4463
4464 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4465 secclass, NULL, socksid);
4466}
4467
4468static int sock_has_perm(struct sock *sk, u32 perms)
4469{
4470 struct sk_security_struct *sksec = sk->sk_security;
4471 struct common_audit_data ad;
4472 struct lsm_network_audit net = {0,};
4473
4474 if (sksec->sid == SECINITSID_KERNEL)
4475 return 0;
4476
4477 ad.type = LSM_AUDIT_DATA_NET;
4478 ad.u.net = &net;
4479 ad.u.net->sk = sk;
4480
4481 return avc_has_perm(&selinux_state,
4482 current_sid(), sksec->sid, sksec->sclass, perms,
4483 &ad);
4484}
4485
4486static int selinux_socket_create(int family, int type,
4487 int protocol, int kern)
4488{
4489 const struct task_security_struct *tsec = selinux_cred(current_cred());
4490 u32 newsid;
4491 u16 secclass;
4492 int rc;
4493
4494 if (kern)
4495 return 0;
4496
4497 secclass = socket_type_to_security_class(family, type, protocol);
4498 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4499 if (rc)
4500 return rc;
4501
4502 return avc_has_perm(&selinux_state,
4503 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4504}
4505
4506static int selinux_socket_post_create(struct socket *sock, int family,
4507 int type, int protocol, int kern)
4508{
4509 const struct task_security_struct *tsec = selinux_cred(current_cred());
4510 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4511 struct sk_security_struct *sksec;
4512 u16 sclass = socket_type_to_security_class(family, type, protocol);
4513 u32 sid = SECINITSID_KERNEL;
4514 int err = 0;
4515
4516 if (!kern) {
4517 err = socket_sockcreate_sid(tsec, sclass, &sid);
4518 if (err)
4519 return err;
4520 }
4521
4522 isec->sclass = sclass;
4523 isec->sid = sid;
4524 isec->initialized = LABEL_INITIALIZED;
4525
4526 if (sock->sk) {
4527 sksec = sock->sk->sk_security;
4528 sksec->sclass = sclass;
4529 sksec->sid = sid;
4530 /* Allows detection of the first association on this socket */
4531 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4532 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4533
4534 err = selinux_netlbl_socket_post_create(sock->sk, family);
4535 }
4536
4537 return err;
4538}
4539
4540static int selinux_socket_socketpair(struct socket *socka,
4541 struct socket *sockb)
4542{
4543 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4544 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4545
4546 sksec_a->peer_sid = sksec_b->sid;
4547 sksec_b->peer_sid = sksec_a->sid;
4548
4549 return 0;
4550}
4551
4552/* Range of port numbers used to automatically bind.
4553 Need to determine whether we should perform a name_bind
4554 permission check between the socket and the port number. */
4555
4556static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4557{
4558 struct sock *sk = sock->sk;
4559 struct sk_security_struct *sksec = sk->sk_security;
4560 u16 family;
4561 int err;
4562
4563 err = sock_has_perm(sk, SOCKET__BIND);
4564 if (err)
4565 goto out;
4566
4567 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4568 family = sk->sk_family;
4569 if (family == PF_INET || family == PF_INET6) {
4570 char *addrp;
4571 struct common_audit_data ad;
4572 struct lsm_network_audit net = {0,};
4573 struct sockaddr_in *addr4 = NULL;
4574 struct sockaddr_in6 *addr6 = NULL;
4575 u16 family_sa;
4576 unsigned short snum;
4577 u32 sid, node_perm;
4578
4579 /*
4580 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4581 * that validates multiple binding addresses. Because of this
4582 * need to check address->sa_family as it is possible to have
4583 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4584 */
4585 if (addrlen < offsetofend(struct sockaddr, sa_family))
4586 return -EINVAL;
4587 family_sa = address->sa_family;
4588 switch (family_sa) {
4589 case AF_UNSPEC:
4590 case AF_INET:
4591 if (addrlen < sizeof(struct sockaddr_in))
4592 return -EINVAL;
4593 addr4 = (struct sockaddr_in *)address;
4594 if (family_sa == AF_UNSPEC) {
4595 /* see __inet_bind(), we only want to allow
4596 * AF_UNSPEC if the address is INADDR_ANY
4597 */
4598 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4599 goto err_af;
4600 family_sa = AF_INET;
4601 }
4602 snum = ntohs(addr4->sin_port);
4603 addrp = (char *)&addr4->sin_addr.s_addr;
4604 break;
4605 case AF_INET6:
4606 if (addrlen < SIN6_LEN_RFC2133)
4607 return -EINVAL;
4608 addr6 = (struct sockaddr_in6 *)address;
4609 snum = ntohs(addr6->sin6_port);
4610 addrp = (char *)&addr6->sin6_addr.s6_addr;
4611 break;
4612 default:
4613 goto err_af;
4614 }
4615
4616 ad.type = LSM_AUDIT_DATA_NET;
4617 ad.u.net = &net;
4618 ad.u.net->sport = htons(snum);
4619 ad.u.net->family = family_sa;
4620
4621 if (snum) {
4622 int low, high;
4623
4624 inet_get_local_port_range(sock_net(sk), &low, &high);
4625
4626 if (snum < max(inet_prot_sock(sock_net(sk)), low) ||
4627 snum > high) {
4628 err = sel_netport_sid(sk->sk_protocol,
4629 snum, &sid);
4630 if (err)
4631 goto out;
4632 err = avc_has_perm(&selinux_state,
4633 sksec->sid, sid,
4634 sksec->sclass,
4635 SOCKET__NAME_BIND, &ad);
4636 if (err)
4637 goto out;
4638 }
4639 }
4640
4641 switch (sksec->sclass) {
4642 case SECCLASS_TCP_SOCKET:
4643 node_perm = TCP_SOCKET__NODE_BIND;
4644 break;
4645
4646 case SECCLASS_UDP_SOCKET:
4647 node_perm = UDP_SOCKET__NODE_BIND;
4648 break;
4649
4650 case SECCLASS_DCCP_SOCKET:
4651 node_perm = DCCP_SOCKET__NODE_BIND;
4652 break;
4653
4654 case SECCLASS_SCTP_SOCKET:
4655 node_perm = SCTP_SOCKET__NODE_BIND;
4656 break;
4657
4658 default:
4659 node_perm = RAWIP_SOCKET__NODE_BIND;
4660 break;
4661 }
4662
4663 err = sel_netnode_sid(addrp, family_sa, &sid);
4664 if (err)
4665 goto out;
4666
4667 if (family_sa == AF_INET)
4668 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4669 else
4670 ad.u.net->v6info.saddr = addr6->sin6_addr;
4671
4672 err = avc_has_perm(&selinux_state,
4673 sksec->sid, sid,
4674 sksec->sclass, node_perm, &ad);
4675 if (err)
4676 goto out;
4677 }
4678out:
4679 return err;
4680err_af:
4681 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683 return -EINVAL;
4684 return -EAFNOSUPPORT;
4685}
4686
4687/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4688 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4689 */
4690static int selinux_socket_connect_helper(struct socket *sock,
4691 struct sockaddr *address, int addrlen)
4692{
4693 struct sock *sk = sock->sk;
4694 struct sk_security_struct *sksec = sk->sk_security;
4695 int err;
4696
4697 err = sock_has_perm(sk, SOCKET__CONNECT);
4698 if (err)
4699 return err;
4700 if (addrlen < offsetofend(struct sockaddr, sa_family))
4701 return -EINVAL;
4702
4703 /* connect(AF_UNSPEC) has special handling, as it is a documented
4704 * way to disconnect the socket
4705 */
4706 if (address->sa_family == AF_UNSPEC)
4707 return 0;
4708
4709 /*
4710 * If a TCP, DCCP or SCTP socket, check name_connect permission
4711 * for the port.
4712 */
4713 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4714 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4715 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4716 struct common_audit_data ad;
4717 struct lsm_network_audit net = {0,};
4718 struct sockaddr_in *addr4 = NULL;
4719 struct sockaddr_in6 *addr6 = NULL;
4720 unsigned short snum;
4721 u32 sid, perm;
4722
4723 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4724 * that validates multiple connect addresses. Because of this
4725 * need to check address->sa_family as it is possible to have
4726 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4727 */
4728 switch (address->sa_family) {
4729 case AF_INET:
4730 addr4 = (struct sockaddr_in *)address;
4731 if (addrlen < sizeof(struct sockaddr_in))
4732 return -EINVAL;
4733 snum = ntohs(addr4->sin_port);
4734 break;
4735 case AF_INET6:
4736 addr6 = (struct sockaddr_in6 *)address;
4737 if (addrlen < SIN6_LEN_RFC2133)
4738 return -EINVAL;
4739 snum = ntohs(addr6->sin6_port);
4740 break;
4741 default:
4742 /* Note that SCTP services expect -EINVAL, whereas
4743 * others expect -EAFNOSUPPORT.
4744 */
4745 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4746 return -EINVAL;
4747 else
4748 return -EAFNOSUPPORT;
4749 }
4750
4751 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4752 if (err)
4753 return err;
4754
4755 switch (sksec->sclass) {
4756 case SECCLASS_TCP_SOCKET:
4757 perm = TCP_SOCKET__NAME_CONNECT;
4758 break;
4759 case SECCLASS_DCCP_SOCKET:
4760 perm = DCCP_SOCKET__NAME_CONNECT;
4761 break;
4762 case SECCLASS_SCTP_SOCKET:
4763 perm = SCTP_SOCKET__NAME_CONNECT;
4764 break;
4765 }
4766
4767 ad.type = LSM_AUDIT_DATA_NET;
4768 ad.u.net = &net;
4769 ad.u.net->dport = htons(snum);
4770 ad.u.net->family = address->sa_family;
4771 err = avc_has_perm(&selinux_state,
4772 sksec->sid, sid, sksec->sclass, perm, &ad);
4773 if (err)
4774 return err;
4775 }
4776
4777 return 0;
4778}
4779
4780/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4781static int selinux_socket_connect(struct socket *sock,
4782 struct sockaddr *address, int addrlen)
4783{
4784 int err;
4785 struct sock *sk = sock->sk;
4786
4787 err = selinux_socket_connect_helper(sock, address, addrlen);
4788 if (err)
4789 return err;
4790
4791 return selinux_netlbl_socket_connect(sk, address);
4792}
4793
4794static int selinux_socket_listen(struct socket *sock, int backlog)
4795{
4796 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4797}
4798
4799static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4800{
4801 int err;
4802 struct inode_security_struct *isec;
4803 struct inode_security_struct *newisec;
4804 u16 sclass;
4805 u32 sid;
4806
4807 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4808 if (err)
4809 return err;
4810
4811 isec = inode_security_novalidate(SOCK_INODE(sock));
4812 spin_lock(&isec->lock);
4813 sclass = isec->sclass;
4814 sid = isec->sid;
4815 spin_unlock(&isec->lock);
4816
4817 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4818 newisec->sclass = sclass;
4819 newisec->sid = sid;
4820 newisec->initialized = LABEL_INITIALIZED;
4821
4822 return 0;
4823}
4824
4825static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4826 int size)
4827{
4828 return sock_has_perm(sock->sk, SOCKET__WRITE);
4829}
4830
4831static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4832 int size, int flags)
4833{
4834 return sock_has_perm(sock->sk, SOCKET__READ);
4835}
4836
4837static int selinux_socket_getsockname(struct socket *sock)
4838{
4839 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4840}
4841
4842static int selinux_socket_getpeername(struct socket *sock)
4843{
4844 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4845}
4846
4847static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4848{
4849 int err;
4850
4851 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4852 if (err)
4853 return err;
4854
4855 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4856}
4857
4858static int selinux_socket_getsockopt(struct socket *sock, int level,
4859 int optname)
4860{
4861 return sock_has_perm(sock->sk, SOCKET__GETOPT);
4862}
4863
4864static int selinux_socket_shutdown(struct socket *sock, int how)
4865{
4866 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4867}
4868
4869static int selinux_socket_unix_stream_connect(struct sock *sock,
4870 struct sock *other,
4871 struct sock *newsk)
4872{
4873 struct sk_security_struct *sksec_sock = sock->sk_security;
4874 struct sk_security_struct *sksec_other = other->sk_security;
4875 struct sk_security_struct *sksec_new = newsk->sk_security;
4876 struct common_audit_data ad;
4877 struct lsm_network_audit net = {0,};
4878 int err;
4879
4880 ad.type = LSM_AUDIT_DATA_NET;
4881 ad.u.net = &net;
4882 ad.u.net->sk = other;
4883
4884 err = avc_has_perm(&selinux_state,
4885 sksec_sock->sid, sksec_other->sid,
4886 sksec_other->sclass,
4887 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4888 if (err)
4889 return err;
4890
4891 /* server child socket */
4892 sksec_new->peer_sid = sksec_sock->sid;
4893 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4894 sksec_sock->sid, &sksec_new->sid);
4895 if (err)
4896 return err;
4897
4898 /* connecting socket */
4899 sksec_sock->peer_sid = sksec_new->sid;
4900
4901 return 0;
4902}
4903
4904static int selinux_socket_unix_may_send(struct socket *sock,
4905 struct socket *other)
4906{
4907 struct sk_security_struct *ssec = sock->sk->sk_security;
4908 struct sk_security_struct *osec = other->sk->sk_security;
4909 struct common_audit_data ad;
4910 struct lsm_network_audit net = {0,};
4911
4912 ad.type = LSM_AUDIT_DATA_NET;
4913 ad.u.net = &net;
4914 ad.u.net->sk = other->sk;
4915
4916 return avc_has_perm(&selinux_state,
4917 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4918 &ad);
4919}
4920
4921static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4922 char *addrp, u16 family, u32 peer_sid,
4923 struct common_audit_data *ad)
4924{
4925 int err;
4926 u32 if_sid;
4927 u32 node_sid;
4928
4929 err = sel_netif_sid(ns, ifindex, &if_sid);
4930 if (err)
4931 return err;
4932 err = avc_has_perm(&selinux_state,
4933 peer_sid, if_sid,
4934 SECCLASS_NETIF, NETIF__INGRESS, ad);
4935 if (err)
4936 return err;
4937
4938 err = sel_netnode_sid(addrp, family, &node_sid);
4939 if (err)
4940 return err;
4941 return avc_has_perm(&selinux_state,
4942 peer_sid, node_sid,
4943 SECCLASS_NODE, NODE__RECVFROM, ad);
4944}
4945
4946static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4947 u16 family)
4948{
4949 int err = 0;
4950 struct sk_security_struct *sksec = sk->sk_security;
4951 u32 sk_sid = sksec->sid;
4952 struct common_audit_data ad;
4953 struct lsm_network_audit net = {0,};
4954 char *addrp;
4955
4956 ad.type = LSM_AUDIT_DATA_NET;
4957 ad.u.net = &net;
4958 ad.u.net->netif = skb->skb_iif;
4959 ad.u.net->family = family;
4960 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4961 if (err)
4962 return err;
4963
4964 if (selinux_secmark_enabled()) {
4965 err = avc_has_perm(&selinux_state,
4966 sk_sid, skb->secmark, SECCLASS_PACKET,
4967 PACKET__RECV, &ad);
4968 if (err)
4969 return err;
4970 }
4971
4972 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4973 if (err)
4974 return err;
4975 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4976
4977 return err;
4978}
4979
4980static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4981{
4982 int err;
4983 struct sk_security_struct *sksec = sk->sk_security;
4984 u16 family = sk->sk_family;
4985 u32 sk_sid = sksec->sid;
4986 struct common_audit_data ad;
4987 struct lsm_network_audit net = {0,};
4988 char *addrp;
4989 u8 secmark_active;
4990 u8 peerlbl_active;
4991
4992 if (family != PF_INET && family != PF_INET6)
4993 return 0;
4994
4995 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4996 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4997 family = PF_INET;
4998
4999 /* If any sort of compatibility mode is enabled then handoff processing
5000 * to the selinux_sock_rcv_skb_compat() function to deal with the
5001 * special handling. We do this in an attempt to keep this function
5002 * as fast and as clean as possible. */
5003 if (!selinux_policycap_netpeer())
5004 return selinux_sock_rcv_skb_compat(sk, skb, family);
5005
5006 secmark_active = selinux_secmark_enabled();
5007 peerlbl_active = selinux_peerlbl_enabled();
5008 if (!secmark_active && !peerlbl_active)
5009 return 0;
5010
5011 ad.type = LSM_AUDIT_DATA_NET;
5012 ad.u.net = &net;
5013 ad.u.net->netif = skb->skb_iif;
5014 ad.u.net->family = family;
5015 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5016 if (err)
5017 return err;
5018
5019 if (peerlbl_active) {
5020 u32 peer_sid;
5021
5022 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5023 if (err)
5024 return err;
5025 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5026 addrp, family, peer_sid, &ad);
5027 if (err) {
5028 selinux_netlbl_err(skb, family, err, 0);
5029 return err;
5030 }
5031 err = avc_has_perm(&selinux_state,
5032 sk_sid, peer_sid, SECCLASS_PEER,
5033 PEER__RECV, &ad);
5034 if (err) {
5035 selinux_netlbl_err(skb, family, err, 0);
5036 return err;
5037 }
5038 }
5039
5040 if (secmark_active) {
5041 err = avc_has_perm(&selinux_state,
5042 sk_sid, skb->secmark, SECCLASS_PACKET,
5043 PACKET__RECV, &ad);
5044 if (err)
5045 return err;
5046 }
5047
5048 return err;
5049}
5050
5051static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5052 int __user *optlen, unsigned len)
5053{
5054 int err = 0;
5055 char *scontext;
5056 u32 scontext_len;
5057 struct sk_security_struct *sksec = sock->sk->sk_security;
5058 u32 peer_sid = SECSID_NULL;
5059
5060 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5061 sksec->sclass == SECCLASS_TCP_SOCKET ||
5062 sksec->sclass == SECCLASS_SCTP_SOCKET)
5063 peer_sid = sksec->peer_sid;
5064 if (peer_sid == SECSID_NULL)
5065 return -ENOPROTOOPT;
5066
5067 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5068 &scontext_len);
5069 if (err)
5070 return err;
5071
5072 if (scontext_len > len) {
5073 err = -ERANGE;
5074 goto out_len;
5075 }
5076
5077 if (copy_to_user(optval, scontext, scontext_len))
5078 err = -EFAULT;
5079
5080out_len:
5081 if (put_user(scontext_len, optlen))
5082 err = -EFAULT;
5083 kfree(scontext);
5084 return err;
5085}
5086
5087static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5088{
5089 u32 peer_secid = SECSID_NULL;
5090 u16 family;
5091 struct inode_security_struct *isec;
5092
5093 if (skb && skb->protocol == htons(ETH_P_IP))
5094 family = PF_INET;
5095 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5096 family = PF_INET6;
5097 else if (sock)
5098 family = sock->sk->sk_family;
5099 else
5100 goto out;
5101
5102 if (sock && family == PF_UNIX) {
5103 isec = inode_security_novalidate(SOCK_INODE(sock));
5104 peer_secid = isec->sid;
5105 } else if (skb)
5106 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5107
5108out:
5109 *secid = peer_secid;
5110 if (peer_secid == SECSID_NULL)
5111 return -EINVAL;
5112 return 0;
5113}
5114
5115static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5116{
5117 struct sk_security_struct *sksec;
5118
5119 sksec = kzalloc(sizeof(*sksec), priority);
5120 if (!sksec)
5121 return -ENOMEM;
5122
5123 sksec->peer_sid = SECINITSID_UNLABELED;
5124 sksec->sid = SECINITSID_UNLABELED;
5125 sksec->sclass = SECCLASS_SOCKET;
5126 selinux_netlbl_sk_security_reset(sksec);
5127 sk->sk_security = sksec;
5128
5129 return 0;
5130}
5131
5132static void selinux_sk_free_security(struct sock *sk)
5133{
5134 struct sk_security_struct *sksec = sk->sk_security;
5135
5136 sk->sk_security = NULL;
5137 selinux_netlbl_sk_security_free(sksec);
5138 kfree(sksec);
5139}
5140
5141static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5142{
5143 struct sk_security_struct *sksec = sk->sk_security;
5144 struct sk_security_struct *newsksec = newsk->sk_security;
5145
5146 newsksec->sid = sksec->sid;
5147 newsksec->peer_sid = sksec->peer_sid;
5148 newsksec->sclass = sksec->sclass;
5149
5150 selinux_netlbl_sk_security_reset(newsksec);
5151}
5152
5153static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5154{
5155 if (!sk)
5156 *secid = SECINITSID_ANY_SOCKET;
5157 else {
5158 struct sk_security_struct *sksec = sk->sk_security;
5159
5160 *secid = sksec->sid;
5161 }
5162}
5163
5164static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5165{
5166 struct inode_security_struct *isec =
5167 inode_security_novalidate(SOCK_INODE(parent));
5168 struct sk_security_struct *sksec = sk->sk_security;
5169
5170 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5171 sk->sk_family == PF_UNIX)
5172 isec->sid = sksec->sid;
5173 sksec->sclass = isec->sclass;
5174}
5175
5176/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5177 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5178 * already present).
5179 */
5180static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5181 struct sk_buff *skb)
5182{
5183 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5184 struct common_audit_data ad;
5185 struct lsm_network_audit net = {0,};
5186 u8 peerlbl_active;
5187 u32 peer_sid = SECINITSID_UNLABELED;
5188 u32 conn_sid;
5189 int err = 0;
5190
5191 if (!selinux_policycap_extsockclass())
5192 return 0;
5193
5194 peerlbl_active = selinux_peerlbl_enabled();
5195
5196 if (peerlbl_active) {
5197 /* This will return peer_sid = SECSID_NULL if there are
5198 * no peer labels, see security_net_peersid_resolve().
5199 */
5200 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5201 &peer_sid);
5202 if (err)
5203 return err;
5204
5205 if (peer_sid == SECSID_NULL)
5206 peer_sid = SECINITSID_UNLABELED;
5207 }
5208
5209 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5210 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5211
5212 /* Here as first association on socket. As the peer SID
5213 * was allowed by peer recv (and the netif/node checks),
5214 * then it is approved by policy and used as the primary
5215 * peer SID for getpeercon(3).
5216 */
5217 sksec->peer_sid = peer_sid;
5218 } else if (sksec->peer_sid != peer_sid) {
5219 /* Other association peer SIDs are checked to enforce
5220 * consistency among the peer SIDs.
5221 */
5222 ad.type = LSM_AUDIT_DATA_NET;
5223 ad.u.net = &net;
5224 ad.u.net->sk = ep->base.sk;
5225 err = avc_has_perm(&selinux_state,
5226 sksec->peer_sid, peer_sid, sksec->sclass,
5227 SCTP_SOCKET__ASSOCIATION, &ad);
5228 if (err)
5229 return err;
5230 }
5231
5232 /* Compute the MLS component for the connection and store
5233 * the information in ep. This will be used by SCTP TCP type
5234 * sockets and peeled off connections as they cause a new
5235 * socket to be generated. selinux_sctp_sk_clone() will then
5236 * plug this into the new socket.
5237 */
5238 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5239 if (err)
5240 return err;
5241
5242 ep->secid = conn_sid;
5243 ep->peer_secid = peer_sid;
5244
5245 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5246 return selinux_netlbl_sctp_assoc_request(ep, skb);
5247}
5248
5249/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5250 * based on their @optname.
5251 */
5252static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5253 struct sockaddr *address,
5254 int addrlen)
5255{
5256 int len, err = 0, walk_size = 0;
5257 void *addr_buf;
5258 struct sockaddr *addr;
5259 struct socket *sock;
5260
5261 if (!selinux_policycap_extsockclass())
5262 return 0;
5263
5264 /* Process one or more addresses that may be IPv4 or IPv6 */
5265 sock = sk->sk_socket;
5266 addr_buf = address;
5267
5268 while (walk_size < addrlen) {
5269 if (walk_size + sizeof(sa_family_t) > addrlen)
5270 return -EINVAL;
5271
5272 addr = addr_buf;
5273 switch (addr->sa_family) {
5274 case AF_UNSPEC:
5275 case AF_INET:
5276 len = sizeof(struct sockaddr_in);
5277 break;
5278 case AF_INET6:
5279 len = sizeof(struct sockaddr_in6);
5280 break;
5281 default:
5282 return -EINVAL;
5283 }
5284
5285 if (walk_size + len > addrlen)
5286 return -EINVAL;
5287
5288 err = -EINVAL;
5289 switch (optname) {
5290 /* Bind checks */
5291 case SCTP_PRIMARY_ADDR:
5292 case SCTP_SET_PEER_PRIMARY_ADDR:
5293 case SCTP_SOCKOPT_BINDX_ADD:
5294 err = selinux_socket_bind(sock, addr, len);
5295 break;
5296 /* Connect checks */
5297 case SCTP_SOCKOPT_CONNECTX:
5298 case SCTP_PARAM_SET_PRIMARY:
5299 case SCTP_PARAM_ADD_IP:
5300 case SCTP_SENDMSG_CONNECT:
5301 err = selinux_socket_connect_helper(sock, addr, len);
5302 if (err)
5303 return err;
5304
5305 /* As selinux_sctp_bind_connect() is called by the
5306 * SCTP protocol layer, the socket is already locked,
5307 * therefore selinux_netlbl_socket_connect_locked() is
5308 * is called here. The situations handled are:
5309 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5310 * whenever a new IP address is added or when a new
5311 * primary address is selected.
5312 * Note that an SCTP connect(2) call happens before
5313 * the SCTP protocol layer and is handled via
5314 * selinux_socket_connect().
5315 */
5316 err = selinux_netlbl_socket_connect_locked(sk, addr);
5317 break;
5318 }
5319
5320 if (err)
5321 return err;
5322
5323 addr_buf += len;
5324 walk_size += len;
5325 }
5326
5327 return 0;
5328}
5329
5330/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5331static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5332 struct sock *newsk)
5333{
5334 struct sk_security_struct *sksec = sk->sk_security;
5335 struct sk_security_struct *newsksec = newsk->sk_security;
5336
5337 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5338 * the non-sctp clone version.
5339 */
5340 if (!selinux_policycap_extsockclass())
5341 return selinux_sk_clone_security(sk, newsk);
5342
5343 newsksec->sid = ep->secid;
5344 newsksec->peer_sid = ep->peer_secid;
5345 newsksec->sclass = sksec->sclass;
5346 selinux_netlbl_sctp_sk_clone(sk, newsk);
5347}
5348
5349static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5350 struct request_sock *req)
5351{
5352 struct sk_security_struct *sksec = sk->sk_security;
5353 int err;
5354 u16 family = req->rsk_ops->family;
5355 u32 connsid;
5356 u32 peersid;
5357
5358 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5359 if (err)
5360 return err;
5361 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5362 if (err)
5363 return err;
5364 req->secid = connsid;
5365 req->peer_secid = peersid;
5366
5367 return selinux_netlbl_inet_conn_request(req, family);
5368}
5369
5370static void selinux_inet_csk_clone(struct sock *newsk,
5371 const struct request_sock *req)
5372{
5373 struct sk_security_struct *newsksec = newsk->sk_security;
5374
5375 newsksec->sid = req->secid;
5376 newsksec->peer_sid = req->peer_secid;
5377 /* NOTE: Ideally, we should also get the isec->sid for the
5378 new socket in sync, but we don't have the isec available yet.
5379 So we will wait until sock_graft to do it, by which
5380 time it will have been created and available. */
5381
5382 /* We don't need to take any sort of lock here as we are the only
5383 * thread with access to newsksec */
5384 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5385}
5386
5387static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5388{
5389 u16 family = sk->sk_family;
5390 struct sk_security_struct *sksec = sk->sk_security;
5391
5392 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5393 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5394 family = PF_INET;
5395
5396 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5397}
5398
5399static int selinux_secmark_relabel_packet(u32 sid)
5400{
5401 const struct task_security_struct *__tsec;
5402 u32 tsid;
5403
5404 __tsec = selinux_cred(current_cred());
5405 tsid = __tsec->sid;
5406
5407 return avc_has_perm(&selinux_state,
5408 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5409 NULL);
5410}
5411
5412static void selinux_secmark_refcount_inc(void)
5413{
5414 atomic_inc(&selinux_secmark_refcount);
5415}
5416
5417static void selinux_secmark_refcount_dec(void)
5418{
5419 atomic_dec(&selinux_secmark_refcount);
5420}
5421
5422static void selinux_req_classify_flow(const struct request_sock *req,
5423 struct flowi *fl)
5424{
5425 fl->flowi_secid = req->secid;
5426}
5427
5428static int selinux_tun_dev_alloc_security(void **security)
5429{
5430 struct tun_security_struct *tunsec;
5431
5432 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5433 if (!tunsec)
5434 return -ENOMEM;
5435 tunsec->sid = current_sid();
5436
5437 *security = tunsec;
5438 return 0;
5439}
5440
5441static void selinux_tun_dev_free_security(void *security)
5442{
5443 kfree(security);
5444}
5445
5446static int selinux_tun_dev_create(void)
5447{
5448 u32 sid = current_sid();
5449
5450 /* we aren't taking into account the "sockcreate" SID since the socket
5451 * that is being created here is not a socket in the traditional sense,
5452 * instead it is a private sock, accessible only to the kernel, and
5453 * representing a wide range of network traffic spanning multiple
5454 * connections unlike traditional sockets - check the TUN driver to
5455 * get a better understanding of why this socket is special */
5456
5457 return avc_has_perm(&selinux_state,
5458 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5459 NULL);
5460}
5461
5462static int selinux_tun_dev_attach_queue(void *security)
5463{
5464 struct tun_security_struct *tunsec = security;
5465
5466 return avc_has_perm(&selinux_state,
5467 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5468 TUN_SOCKET__ATTACH_QUEUE, NULL);
5469}
5470
5471static int selinux_tun_dev_attach(struct sock *sk, void *security)
5472{
5473 struct tun_security_struct *tunsec = security;
5474 struct sk_security_struct *sksec = sk->sk_security;
5475
5476 /* we don't currently perform any NetLabel based labeling here and it
5477 * isn't clear that we would want to do so anyway; while we could apply
5478 * labeling without the support of the TUN user the resulting labeled
5479 * traffic from the other end of the connection would almost certainly
5480 * cause confusion to the TUN user that had no idea network labeling
5481 * protocols were being used */
5482
5483 sksec->sid = tunsec->sid;
5484 sksec->sclass = SECCLASS_TUN_SOCKET;
5485
5486 return 0;
5487}
5488
5489static int selinux_tun_dev_open(void *security)
5490{
5491 struct tun_security_struct *tunsec = security;
5492 u32 sid = current_sid();
5493 int err;
5494
5495 err = avc_has_perm(&selinux_state,
5496 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5497 TUN_SOCKET__RELABELFROM, NULL);
5498 if (err)
5499 return err;
5500 err = avc_has_perm(&selinux_state,
5501 sid, sid, SECCLASS_TUN_SOCKET,
5502 TUN_SOCKET__RELABELTO, NULL);
5503 if (err)
5504 return err;
5505 tunsec->sid = sid;
5506
5507 return 0;
5508}
5509
5510static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
5511{
5512 int err = 0;
5513 u32 perm;
5514 struct nlmsghdr *nlh;
5515 struct sk_security_struct *sksec = sk->sk_security;
5516
5517 if (skb->len < NLMSG_HDRLEN) {
5518 err = -EINVAL;
5519 goto out;
5520 }
5521 nlh = nlmsg_hdr(skb);
5522
5523 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
5524 if (err) {
5525 if (err == -EINVAL) {
5526 pr_warn_ratelimited("SELinux: unrecognized netlink"
5527 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5528 " pig=%d comm=%s\n",
5529 sk->sk_protocol, nlh->nlmsg_type,
5530 secclass_map[sksec->sclass - 1].name,
5531 task_pid_nr(current), current->comm);
5532 if (!enforcing_enabled(&selinux_state) ||
5533 security_get_allow_unknown(&selinux_state))
5534 err = 0;
5535 }
5536
5537 /* Ignore */
5538 if (err == -ENOENT)
5539 err = 0;
5540 goto out;
5541 }
5542
5543 err = sock_has_perm(sk, perm);
5544out:
5545 return err;
5546}
5547
5548#ifdef CONFIG_NETFILTER
5549
5550static unsigned int selinux_ip_forward(struct sk_buff *skb,
5551 const struct net_device *indev,
5552 u16 family)
5553{
5554 int err;
5555 char *addrp;
5556 u32 peer_sid;
5557 struct common_audit_data ad;
5558 struct lsm_network_audit net = {0,};
5559 u8 secmark_active;
5560 u8 netlbl_active;
5561 u8 peerlbl_active;
5562
5563 if (!selinux_policycap_netpeer())
5564 return NF_ACCEPT;
5565
5566 secmark_active = selinux_secmark_enabled();
5567 netlbl_active = netlbl_enabled();
5568 peerlbl_active = selinux_peerlbl_enabled();
5569 if (!secmark_active && !peerlbl_active)
5570 return NF_ACCEPT;
5571
5572 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5573 return NF_DROP;
5574
5575 ad.type = LSM_AUDIT_DATA_NET;
5576 ad.u.net = &net;
5577 ad.u.net->netif = indev->ifindex;
5578 ad.u.net->family = family;
5579 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5580 return NF_DROP;
5581
5582 if (peerlbl_active) {
5583 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5584 addrp, family, peer_sid, &ad);
5585 if (err) {
5586 selinux_netlbl_err(skb, family, err, 1);
5587 return NF_DROP;
5588 }
5589 }
5590
5591 if (secmark_active)
5592 if (avc_has_perm(&selinux_state,
5593 peer_sid, skb->secmark,
5594 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5595 return NF_DROP;
5596
5597 if (netlbl_active)
5598 /* we do this in the FORWARD path and not the POST_ROUTING
5599 * path because we want to make sure we apply the necessary
5600 * labeling before IPsec is applied so we can leverage AH
5601 * protection */
5602 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5603 return NF_DROP;
5604
5605 return NF_ACCEPT;
5606}
5607
5608static unsigned int selinux_ipv4_forward(void *priv,
5609 struct sk_buff *skb,
5610 const struct nf_hook_state *state)
5611{
5612 return selinux_ip_forward(skb, state->in, PF_INET);
5613}
5614
5615#if IS_ENABLED(CONFIG_IPV6)
5616static unsigned int selinux_ipv6_forward(void *priv,
5617 struct sk_buff *skb,
5618 const struct nf_hook_state *state)
5619{
5620 return selinux_ip_forward(skb, state->in, PF_INET6);
5621}
5622#endif /* IPV6 */
5623
5624static unsigned int selinux_ip_output(struct sk_buff *skb,
5625 u16 family)
5626{
5627 struct sock *sk;
5628 u32 sid;
5629
5630 if (!netlbl_enabled())
5631 return NF_ACCEPT;
5632
5633 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5634 * because we want to make sure we apply the necessary labeling
5635 * before IPsec is applied so we can leverage AH protection */
5636 sk = skb->sk;
5637 if (sk) {
5638 struct sk_security_struct *sksec;
5639
5640 if (sk_listener(sk))
5641 /* if the socket is the listening state then this
5642 * packet is a SYN-ACK packet which means it needs to
5643 * be labeled based on the connection/request_sock and
5644 * not the parent socket. unfortunately, we can't
5645 * lookup the request_sock yet as it isn't queued on
5646 * the parent socket until after the SYN-ACK is sent.
5647 * the "solution" is to simply pass the packet as-is
5648 * as any IP option based labeling should be copied
5649 * from the initial connection request (in the IP
5650 * layer). it is far from ideal, but until we get a
5651 * security label in the packet itself this is the
5652 * best we can do. */
5653 return NF_ACCEPT;
5654
5655 /* standard practice, label using the parent socket */
5656 sksec = sk->sk_security;
5657 sid = sksec->sid;
5658 } else
5659 sid = SECINITSID_KERNEL;
5660 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5661 return NF_DROP;
5662
5663 return NF_ACCEPT;
5664}
5665
5666static unsigned int selinux_ipv4_output(void *priv,
5667 struct sk_buff *skb,
5668 const struct nf_hook_state *state)
5669{
5670 return selinux_ip_output(skb, PF_INET);
5671}
5672
5673#if IS_ENABLED(CONFIG_IPV6)
5674static unsigned int selinux_ipv6_output(void *priv,
5675 struct sk_buff *skb,
5676 const struct nf_hook_state *state)
5677{
5678 return selinux_ip_output(skb, PF_INET6);
5679}
5680#endif /* IPV6 */
5681
5682static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5683 int ifindex,
5684 u16 family)
5685{
5686 struct sock *sk = skb_to_full_sk(skb);
5687 struct sk_security_struct *sksec;
5688 struct common_audit_data ad;
5689 struct lsm_network_audit net = {0,};
5690 char *addrp;
5691 u8 proto;
5692
5693 if (sk == NULL)
5694 return NF_ACCEPT;
5695 sksec = sk->sk_security;
5696
5697 ad.type = LSM_AUDIT_DATA_NET;
5698 ad.u.net = &net;
5699 ad.u.net->netif = ifindex;
5700 ad.u.net->family = family;
5701 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5702 return NF_DROP;
5703
5704 if (selinux_secmark_enabled())
5705 if (avc_has_perm(&selinux_state,
5706 sksec->sid, skb->secmark,
5707 SECCLASS_PACKET, PACKET__SEND, &ad))
5708 return NF_DROP_ERR(-ECONNREFUSED);
5709
5710 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5711 return NF_DROP_ERR(-ECONNREFUSED);
5712
5713 return NF_ACCEPT;
5714}
5715
5716static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5717 const struct net_device *outdev,
5718 u16 family)
5719{
5720 u32 secmark_perm;
5721 u32 peer_sid;
5722 int ifindex = outdev->ifindex;
5723 struct sock *sk;
5724 struct common_audit_data ad;
5725 struct lsm_network_audit net = {0,};
5726 char *addrp;
5727 u8 secmark_active;
5728 u8 peerlbl_active;
5729
5730 /* If any sort of compatibility mode is enabled then handoff processing
5731 * to the selinux_ip_postroute_compat() function to deal with the
5732 * special handling. We do this in an attempt to keep this function
5733 * as fast and as clean as possible. */
5734 if (!selinux_policycap_netpeer())
5735 return selinux_ip_postroute_compat(skb, ifindex, family);
5736
5737 secmark_active = selinux_secmark_enabled();
5738 peerlbl_active = selinux_peerlbl_enabled();
5739 if (!secmark_active && !peerlbl_active)
5740 return NF_ACCEPT;
5741
5742 sk = skb_to_full_sk(skb);
5743
5744#ifdef CONFIG_XFRM
5745 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5746 * packet transformation so allow the packet to pass without any checks
5747 * since we'll have another chance to perform access control checks
5748 * when the packet is on it's final way out.
5749 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5750 * is NULL, in this case go ahead and apply access control.
5751 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5752 * TCP listening state we cannot wait until the XFRM processing
5753 * is done as we will miss out on the SA label if we do;
5754 * unfortunately, this means more work, but it is only once per
5755 * connection. */
5756 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5757 !(sk && sk_listener(sk)))
5758 return NF_ACCEPT;
5759#endif
5760
5761 if (sk == NULL) {
5762 /* Without an associated socket the packet is either coming
5763 * from the kernel or it is being forwarded; check the packet
5764 * to determine which and if the packet is being forwarded
5765 * query the packet directly to determine the security label. */
5766 if (skb->skb_iif) {
5767 secmark_perm = PACKET__FORWARD_OUT;
5768 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5769 return NF_DROP;
5770 } else {
5771 secmark_perm = PACKET__SEND;
5772 peer_sid = SECINITSID_KERNEL;
5773 }
5774 } else if (sk_listener(sk)) {
5775 /* Locally generated packet but the associated socket is in the
5776 * listening state which means this is a SYN-ACK packet. In
5777 * this particular case the correct security label is assigned
5778 * to the connection/request_sock but unfortunately we can't
5779 * query the request_sock as it isn't queued on the parent
5780 * socket until after the SYN-ACK packet is sent; the only
5781 * viable choice is to regenerate the label like we do in
5782 * selinux_inet_conn_request(). See also selinux_ip_output()
5783 * for similar problems. */
5784 u32 skb_sid;
5785 struct sk_security_struct *sksec;
5786
5787 sksec = sk->sk_security;
5788 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5789 return NF_DROP;
5790 /* At this point, if the returned skb peerlbl is SECSID_NULL
5791 * and the packet has been through at least one XFRM
5792 * transformation then we must be dealing with the "final"
5793 * form of labeled IPsec packet; since we've already applied
5794 * all of our access controls on this packet we can safely
5795 * pass the packet. */
5796 if (skb_sid == SECSID_NULL) {
5797 switch (family) {
5798 case PF_INET:
5799 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5800 return NF_ACCEPT;
5801 break;
5802 case PF_INET6:
5803 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5804 return NF_ACCEPT;
5805 break;
5806 default:
5807 return NF_DROP_ERR(-ECONNREFUSED);
5808 }
5809 }
5810 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5811 return NF_DROP;
5812 secmark_perm = PACKET__SEND;
5813 } else {
5814 /* Locally generated packet, fetch the security label from the
5815 * associated socket. */
5816 struct sk_security_struct *sksec = sk->sk_security;
5817 peer_sid = sksec->sid;
5818 secmark_perm = PACKET__SEND;
5819 }
5820
5821 ad.type = LSM_AUDIT_DATA_NET;
5822 ad.u.net = &net;
5823 ad.u.net->netif = ifindex;
5824 ad.u.net->family = family;
5825 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5826 return NF_DROP;
5827
5828 if (secmark_active)
5829 if (avc_has_perm(&selinux_state,
5830 peer_sid, skb->secmark,
5831 SECCLASS_PACKET, secmark_perm, &ad))
5832 return NF_DROP_ERR(-ECONNREFUSED);
5833
5834 if (peerlbl_active) {
5835 u32 if_sid;
5836 u32 node_sid;
5837
5838 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5839 return NF_DROP;
5840 if (avc_has_perm(&selinux_state,
5841 peer_sid, if_sid,
5842 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5843 return NF_DROP_ERR(-ECONNREFUSED);
5844
5845 if (sel_netnode_sid(addrp, family, &node_sid))
5846 return NF_DROP;
5847 if (avc_has_perm(&selinux_state,
5848 peer_sid, node_sid,
5849 SECCLASS_NODE, NODE__SENDTO, &ad))
5850 return NF_DROP_ERR(-ECONNREFUSED);
5851 }
5852
5853 return NF_ACCEPT;
5854}
5855
5856static unsigned int selinux_ipv4_postroute(void *priv,
5857 struct sk_buff *skb,
5858 const struct nf_hook_state *state)
5859{
5860 return selinux_ip_postroute(skb, state->out, PF_INET);
5861}
5862
5863#if IS_ENABLED(CONFIG_IPV6)
5864static unsigned int selinux_ipv6_postroute(void *priv,
5865 struct sk_buff *skb,
5866 const struct nf_hook_state *state)
5867{
5868 return selinux_ip_postroute(skb, state->out, PF_INET6);
5869}
5870#endif /* IPV6 */
5871
5872#endif /* CONFIG_NETFILTER */
5873
5874static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5875{
5876 return selinux_nlmsg_perm(sk, skb);
5877}
5878
5879static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5880{
5881 isec->sclass = sclass;
5882 isec->sid = current_sid();
5883}
5884
5885static int msg_msg_alloc_security(struct msg_msg *msg)
5886{
5887 struct msg_security_struct *msec;
5888
5889 msec = selinux_msg_msg(msg);
5890 msec->sid = SECINITSID_UNLABELED;
5891
5892 return 0;
5893}
5894
5895static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5896 u32 perms)
5897{
5898 struct ipc_security_struct *isec;
5899 struct common_audit_data ad;
5900 u32 sid = current_sid();
5901
5902 isec = selinux_ipc(ipc_perms);
5903
5904 ad.type = LSM_AUDIT_DATA_IPC;
5905 ad.u.ipc_id = ipc_perms->key;
5906
5907 return avc_has_perm(&selinux_state,
5908 sid, isec->sid, isec->sclass, perms, &ad);
5909}
5910
5911static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5912{
5913 return msg_msg_alloc_security(msg);
5914}
5915
5916/* message queue security operations */
5917static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5918{
5919 struct ipc_security_struct *isec;
5920 struct common_audit_data ad;
5921 u32 sid = current_sid();
5922 int rc;
5923
5924 isec = selinux_ipc(msq);
5925 ipc_init_security(isec, SECCLASS_MSGQ);
5926
5927 ad.type = LSM_AUDIT_DATA_IPC;
5928 ad.u.ipc_id = msq->key;
5929
5930 rc = avc_has_perm(&selinux_state,
5931 sid, isec->sid, SECCLASS_MSGQ,
5932 MSGQ__CREATE, &ad);
5933 return rc;
5934}
5935
5936static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5937{
5938 struct ipc_security_struct *isec;
5939 struct common_audit_data ad;
5940 u32 sid = current_sid();
5941
5942 isec = selinux_ipc(msq);
5943
5944 ad.type = LSM_AUDIT_DATA_IPC;
5945 ad.u.ipc_id = msq->key;
5946
5947 return avc_has_perm(&selinux_state,
5948 sid, isec->sid, SECCLASS_MSGQ,
5949 MSGQ__ASSOCIATE, &ad);
5950}
5951
5952static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5953{
5954 int err;
5955 int perms;
5956
5957 switch (cmd) {
5958 case IPC_INFO:
5959 case MSG_INFO:
5960 /* No specific object, just general system-wide information. */
5961 return avc_has_perm(&selinux_state,
5962 current_sid(), SECINITSID_KERNEL,
5963 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5964 case IPC_STAT:
5965 case MSG_STAT:
5966 case MSG_STAT_ANY:
5967 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5968 break;
5969 case IPC_SET:
5970 perms = MSGQ__SETATTR;
5971 break;
5972 case IPC_RMID:
5973 perms = MSGQ__DESTROY;
5974 break;
5975 default:
5976 return 0;
5977 }
5978
5979 err = ipc_has_perm(msq, perms);
5980 return err;
5981}
5982
5983static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5984{
5985 struct ipc_security_struct *isec;
5986 struct msg_security_struct *msec;
5987 struct common_audit_data ad;
5988 u32 sid = current_sid();
5989 int rc;
5990
5991 isec = selinux_ipc(msq);
5992 msec = selinux_msg_msg(msg);
5993
5994 /*
5995 * First time through, need to assign label to the message
5996 */
5997 if (msec->sid == SECINITSID_UNLABELED) {
5998 /*
5999 * Compute new sid based on current process and
6000 * message queue this message will be stored in
6001 */
6002 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6003 SECCLASS_MSG, NULL, &msec->sid);
6004 if (rc)
6005 return rc;
6006 }
6007
6008 ad.type = LSM_AUDIT_DATA_IPC;
6009 ad.u.ipc_id = msq->key;
6010
6011 /* Can this process write to the queue? */
6012 rc = avc_has_perm(&selinux_state,
6013 sid, isec->sid, SECCLASS_MSGQ,
6014 MSGQ__WRITE, &ad);
6015 if (!rc)
6016 /* Can this process send the message */
6017 rc = avc_has_perm(&selinux_state,
6018 sid, msec->sid, SECCLASS_MSG,
6019 MSG__SEND, &ad);
6020 if (!rc)
6021 /* Can the message be put in the queue? */
6022 rc = avc_has_perm(&selinux_state,
6023 msec->sid, isec->sid, SECCLASS_MSGQ,
6024 MSGQ__ENQUEUE, &ad);
6025
6026 return rc;
6027}
6028
6029static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6030 struct task_struct *target,
6031 long type, int mode)
6032{
6033 struct ipc_security_struct *isec;
6034 struct msg_security_struct *msec;
6035 struct common_audit_data ad;
6036 u32 sid = task_sid(target);
6037 int rc;
6038
6039 isec = selinux_ipc(msq);
6040 msec = selinux_msg_msg(msg);
6041
6042 ad.type = LSM_AUDIT_DATA_IPC;
6043 ad.u.ipc_id = msq->key;
6044
6045 rc = avc_has_perm(&selinux_state,
6046 sid, isec->sid,
6047 SECCLASS_MSGQ, MSGQ__READ, &ad);
6048 if (!rc)
6049 rc = avc_has_perm(&selinux_state,
6050 sid, msec->sid,
6051 SECCLASS_MSG, MSG__RECEIVE, &ad);
6052 return rc;
6053}
6054
6055/* Shared Memory security operations */
6056static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6057{
6058 struct ipc_security_struct *isec;
6059 struct common_audit_data ad;
6060 u32 sid = current_sid();
6061 int rc;
6062
6063 isec = selinux_ipc(shp);
6064 ipc_init_security(isec, SECCLASS_SHM);
6065
6066 ad.type = LSM_AUDIT_DATA_IPC;
6067 ad.u.ipc_id = shp->key;
6068
6069 rc = avc_has_perm(&selinux_state,
6070 sid, isec->sid, SECCLASS_SHM,
6071 SHM__CREATE, &ad);
6072 return rc;
6073}
6074
6075static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6076{
6077 struct ipc_security_struct *isec;
6078 struct common_audit_data ad;
6079 u32 sid = current_sid();
6080
6081 isec = selinux_ipc(shp);
6082
6083 ad.type = LSM_AUDIT_DATA_IPC;
6084 ad.u.ipc_id = shp->key;
6085
6086 return avc_has_perm(&selinux_state,
6087 sid, isec->sid, SECCLASS_SHM,
6088 SHM__ASSOCIATE, &ad);
6089}
6090
6091/* Note, at this point, shp is locked down */
6092static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6093{
6094 int perms;
6095 int err;
6096
6097 switch (cmd) {
6098 case IPC_INFO:
6099 case SHM_INFO:
6100 /* No specific object, just general system-wide information. */
6101 return avc_has_perm(&selinux_state,
6102 current_sid(), SECINITSID_KERNEL,
6103 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6104 case IPC_STAT:
6105 case SHM_STAT:
6106 case SHM_STAT_ANY:
6107 perms = SHM__GETATTR | SHM__ASSOCIATE;
6108 break;
6109 case IPC_SET:
6110 perms = SHM__SETATTR;
6111 break;
6112 case SHM_LOCK:
6113 case SHM_UNLOCK:
6114 perms = SHM__LOCK;
6115 break;
6116 case IPC_RMID:
6117 perms = SHM__DESTROY;
6118 break;
6119 default:
6120 return 0;
6121 }
6122
6123 err = ipc_has_perm(shp, perms);
6124 return err;
6125}
6126
6127static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6128 char __user *shmaddr, int shmflg)
6129{
6130 u32 perms;
6131
6132 if (shmflg & SHM_RDONLY)
6133 perms = SHM__READ;
6134 else
6135 perms = SHM__READ | SHM__WRITE;
6136
6137 return ipc_has_perm(shp, perms);
6138}
6139
6140/* Semaphore security operations */
6141static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6142{
6143 struct ipc_security_struct *isec;
6144 struct common_audit_data ad;
6145 u32 sid = current_sid();
6146 int rc;
6147
6148 isec = selinux_ipc(sma);
6149 ipc_init_security(isec, SECCLASS_SEM);
6150
6151 ad.type = LSM_AUDIT_DATA_IPC;
6152 ad.u.ipc_id = sma->key;
6153
6154 rc = avc_has_perm(&selinux_state,
6155 sid, isec->sid, SECCLASS_SEM,
6156 SEM__CREATE, &ad);
6157 return rc;
6158}
6159
6160static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6161{
6162 struct ipc_security_struct *isec;
6163 struct common_audit_data ad;
6164 u32 sid = current_sid();
6165
6166 isec = selinux_ipc(sma);
6167
6168 ad.type = LSM_AUDIT_DATA_IPC;
6169 ad.u.ipc_id = sma->key;
6170
6171 return avc_has_perm(&selinux_state,
6172 sid, isec->sid, SECCLASS_SEM,
6173 SEM__ASSOCIATE, &ad);
6174}
6175
6176/* Note, at this point, sma is locked down */
6177static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6178{
6179 int err;
6180 u32 perms;
6181
6182 switch (cmd) {
6183 case IPC_INFO:
6184 case SEM_INFO:
6185 /* No specific object, just general system-wide information. */
6186 return avc_has_perm(&selinux_state,
6187 current_sid(), SECINITSID_KERNEL,
6188 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6189 case GETPID:
6190 case GETNCNT:
6191 case GETZCNT:
6192 perms = SEM__GETATTR;
6193 break;
6194 case GETVAL:
6195 case GETALL:
6196 perms = SEM__READ;
6197 break;
6198 case SETVAL:
6199 case SETALL:
6200 perms = SEM__WRITE;
6201 break;
6202 case IPC_RMID:
6203 perms = SEM__DESTROY;
6204 break;
6205 case IPC_SET:
6206 perms = SEM__SETATTR;
6207 break;
6208 case IPC_STAT:
6209 case SEM_STAT:
6210 case SEM_STAT_ANY:
6211 perms = SEM__GETATTR | SEM__ASSOCIATE;
6212 break;
6213 default:
6214 return 0;
6215 }
6216
6217 err = ipc_has_perm(sma, perms);
6218 return err;
6219}
6220
6221static int selinux_sem_semop(struct kern_ipc_perm *sma,
6222 struct sembuf *sops, unsigned nsops, int alter)
6223{
6224 u32 perms;
6225
6226 if (alter)
6227 perms = SEM__READ | SEM__WRITE;
6228 else
6229 perms = SEM__READ;
6230
6231 return ipc_has_perm(sma, perms);
6232}
6233
6234static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6235{
6236 u32 av = 0;
6237
6238 av = 0;
6239 if (flag & S_IRUGO)
6240 av |= IPC__UNIX_READ;
6241 if (flag & S_IWUGO)
6242 av |= IPC__UNIX_WRITE;
6243
6244 if (av == 0)
6245 return 0;
6246
6247 return ipc_has_perm(ipcp, av);
6248}
6249
6250static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6251{
6252 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6253 *secid = isec->sid;
6254}
6255
6256static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6257{
6258 if (inode)
6259 inode_doinit_with_dentry(inode, dentry);
6260}
6261
6262static int selinux_getprocattr(struct task_struct *p,
6263 char *name, char **value)
6264{
6265 const struct task_security_struct *__tsec;
6266 u32 sid;
6267 int error;
6268 unsigned len;
6269
6270 rcu_read_lock();
6271 __tsec = selinux_cred(__task_cred(p));
6272
6273 if (current != p) {
6274 error = avc_has_perm(&selinux_state,
6275 current_sid(), __tsec->sid,
6276 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6277 if (error)
6278 goto bad;
6279 }
6280
6281 if (!strcmp(name, "current"))
6282 sid = __tsec->sid;
6283 else if (!strcmp(name, "prev"))
6284 sid = __tsec->osid;
6285 else if (!strcmp(name, "exec"))
6286 sid = __tsec->exec_sid;
6287 else if (!strcmp(name, "fscreate"))
6288 sid = __tsec->create_sid;
6289 else if (!strcmp(name, "keycreate"))
6290 sid = __tsec->keycreate_sid;
6291 else if (!strcmp(name, "sockcreate"))
6292 sid = __tsec->sockcreate_sid;
6293 else {
6294 error = -EINVAL;
6295 goto bad;
6296 }
6297 rcu_read_unlock();
6298
6299 if (!sid)
6300 return 0;
6301
6302 error = security_sid_to_context(&selinux_state, sid, value, &len);
6303 if (error)
6304 return error;
6305 return len;
6306
6307bad:
6308 rcu_read_unlock();
6309 return error;
6310}
6311
6312static int selinux_setprocattr(const char *name, void *value, size_t size)
6313{
6314 struct task_security_struct *tsec;
6315 struct cred *new;
6316 u32 mysid = current_sid(), sid = 0, ptsid;
6317 int error;
6318 char *str = value;
6319
6320 /*
6321 * Basic control over ability to set these attributes at all.
6322 */
6323 if (!strcmp(name, "exec"))
6324 error = avc_has_perm(&selinux_state,
6325 mysid, mysid, SECCLASS_PROCESS,
6326 PROCESS__SETEXEC, NULL);
6327 else if (!strcmp(name, "fscreate"))
6328 error = avc_has_perm(&selinux_state,
6329 mysid, mysid, SECCLASS_PROCESS,
6330 PROCESS__SETFSCREATE, NULL);
6331 else if (!strcmp(name, "keycreate"))
6332 error = avc_has_perm(&selinux_state,
6333 mysid, mysid, SECCLASS_PROCESS,
6334 PROCESS__SETKEYCREATE, NULL);
6335 else if (!strcmp(name, "sockcreate"))
6336 error = avc_has_perm(&selinux_state,
6337 mysid, mysid, SECCLASS_PROCESS,
6338 PROCESS__SETSOCKCREATE, NULL);
6339 else if (!strcmp(name, "current"))
6340 error = avc_has_perm(&selinux_state,
6341 mysid, mysid, SECCLASS_PROCESS,
6342 PROCESS__SETCURRENT, NULL);
6343 else
6344 error = -EINVAL;
6345 if (error)
6346 return error;
6347
6348 /* Obtain a SID for the context, if one was specified. */
6349 if (size && str[0] && str[0] != '\n') {
6350 if (str[size-1] == '\n') {
6351 str[size-1] = 0;
6352 size--;
6353 }
6354 error = security_context_to_sid(&selinux_state, value, size,
6355 &sid, GFP_KERNEL);
6356 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6357 if (!has_cap_mac_admin(true)) {
6358 struct audit_buffer *ab;
6359 size_t audit_size;
6360
6361 /* We strip a nul only if it is at the end, otherwise the
6362 * context contains a nul and we should audit that */
6363 if (str[size - 1] == '\0')
6364 audit_size = size - 1;
6365 else
6366 audit_size = size;
6367 ab = audit_log_start(audit_context(),
6368 GFP_ATOMIC,
6369 AUDIT_SELINUX_ERR);
6370 audit_log_format(ab, "op=fscreate invalid_context=");
6371 audit_log_n_untrustedstring(ab, value, audit_size);
6372 audit_log_end(ab);
6373
6374 return error;
6375 }
6376 error = security_context_to_sid_force(
6377 &selinux_state,
6378 value, size, &sid);
6379 }
6380 if (error)
6381 return error;
6382 }
6383
6384 new = prepare_creds();
6385 if (!new)
6386 return -ENOMEM;
6387
6388 /* Permission checking based on the specified context is
6389 performed during the actual operation (execve,
6390 open/mkdir/...), when we know the full context of the
6391 operation. See selinux_bprm_set_creds for the execve
6392 checks and may_create for the file creation checks. The
6393 operation will then fail if the context is not permitted. */
6394 tsec = selinux_cred(new);
6395 if (!strcmp(name, "exec")) {
6396 tsec->exec_sid = sid;
6397 } else if (!strcmp(name, "fscreate")) {
6398 tsec->create_sid = sid;
6399 } else if (!strcmp(name, "keycreate")) {
6400 if (sid) {
6401 error = avc_has_perm(&selinux_state, mysid, sid,
6402 SECCLASS_KEY, KEY__CREATE, NULL);
6403 if (error)
6404 goto abort_change;
6405 }
6406 tsec->keycreate_sid = sid;
6407 } else if (!strcmp(name, "sockcreate")) {
6408 tsec->sockcreate_sid = sid;
6409 } else if (!strcmp(name, "current")) {
6410 error = -EINVAL;
6411 if (sid == 0)
6412 goto abort_change;
6413
6414 /* Only allow single threaded processes to change context */
6415 error = -EPERM;
6416 if (!current_is_single_threaded()) {
6417 error = security_bounded_transition(&selinux_state,
6418 tsec->sid, sid);
6419 if (error)
6420 goto abort_change;
6421 }
6422
6423 /* Check permissions for the transition. */
6424 error = avc_has_perm(&selinux_state,
6425 tsec->sid, sid, SECCLASS_PROCESS,
6426 PROCESS__DYNTRANSITION, NULL);
6427 if (error)
6428 goto abort_change;
6429
6430 /* Check for ptracing, and update the task SID if ok.
6431 Otherwise, leave SID unchanged and fail. */
6432 ptsid = ptrace_parent_sid();
6433 if (ptsid != 0) {
6434 error = avc_has_perm(&selinux_state,
6435 ptsid, sid, SECCLASS_PROCESS,
6436 PROCESS__PTRACE, NULL);
6437 if (error)
6438 goto abort_change;
6439 }
6440
6441 tsec->sid = sid;
6442 } else {
6443 error = -EINVAL;
6444 goto abort_change;
6445 }
6446
6447 commit_creds(new);
6448 return size;
6449
6450abort_change:
6451 abort_creds(new);
6452 return error;
6453}
6454
6455static int selinux_ismaclabel(const char *name)
6456{
6457 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6458}
6459
6460static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6461{
6462 return security_sid_to_context(&selinux_state, secid,
6463 secdata, seclen);
6464}
6465
6466static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6467{
6468 return security_context_to_sid(&selinux_state, secdata, seclen,
6469 secid, GFP_KERNEL);
6470}
6471
6472static void selinux_release_secctx(char *secdata, u32 seclen)
6473{
6474 kfree(secdata);
6475}
6476
6477static void selinux_inode_invalidate_secctx(struct inode *inode)
6478{
6479 struct inode_security_struct *isec = selinux_inode(inode);
6480
6481 spin_lock(&isec->lock);
6482 isec->initialized = LABEL_INVALID;
6483 spin_unlock(&isec->lock);
6484}
6485
6486/*
6487 * called with inode->i_mutex locked
6488 */
6489static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6490{
6491 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6492 ctx, ctxlen, 0);
6493 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6494 return rc == -EOPNOTSUPP ? 0 : rc;
6495}
6496
6497/*
6498 * called with inode->i_mutex locked
6499 */
6500static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6501{
6502 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6503}
6504
6505static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6506{
6507 int len = 0;
6508 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6509 ctx, true);
6510 if (len < 0)
6511 return len;
6512 *ctxlen = len;
6513 return 0;
6514}
6515#ifdef CONFIG_KEYS
6516
6517static int selinux_key_alloc(struct key *k, const struct cred *cred,
6518 unsigned long flags)
6519{
6520 const struct task_security_struct *tsec;
6521 struct key_security_struct *ksec;
6522
6523 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6524 if (!ksec)
6525 return -ENOMEM;
6526
6527 tsec = selinux_cred(cred);
6528 if (tsec->keycreate_sid)
6529 ksec->sid = tsec->keycreate_sid;
6530 else
6531 ksec->sid = tsec->sid;
6532
6533 k->security = ksec;
6534 return 0;
6535}
6536
6537static void selinux_key_free(struct key *k)
6538{
6539 struct key_security_struct *ksec = k->security;
6540
6541 k->security = NULL;
6542 kfree(ksec);
6543}
6544
6545static int selinux_key_permission(key_ref_t key_ref,
6546 const struct cred *cred,
6547 unsigned perm)
6548{
6549 struct key *key;
6550 struct key_security_struct *ksec;
6551 u32 sid;
6552
6553 /* if no specific permissions are requested, we skip the
6554 permission check. No serious, additional covert channels
6555 appear to be created. */
6556 if (perm == 0)
6557 return 0;
6558
6559 sid = cred_sid(cred);
6560
6561 key = key_ref_to_ptr(key_ref);
6562 ksec = key->security;
6563
6564 return avc_has_perm(&selinux_state,
6565 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6566}
6567
6568static int selinux_key_getsecurity(struct key *key, char **_buffer)
6569{
6570 struct key_security_struct *ksec = key->security;
6571 char *context = NULL;
6572 unsigned len;
6573 int rc;
6574
6575 rc = security_sid_to_context(&selinux_state, ksec->sid,
6576 &context, &len);
6577 if (!rc)
6578 rc = len;
6579 *_buffer = context;
6580 return rc;
6581}
6582#endif
6583
6584#ifdef CONFIG_SECURITY_INFINIBAND
6585static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6586{
6587 struct common_audit_data ad;
6588 int err;
6589 u32 sid = 0;
6590 struct ib_security_struct *sec = ib_sec;
6591 struct lsm_ibpkey_audit ibpkey;
6592
6593 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6594 if (err)
6595 return err;
6596
6597 ad.type = LSM_AUDIT_DATA_IBPKEY;
6598 ibpkey.subnet_prefix = subnet_prefix;
6599 ibpkey.pkey = pkey_val;
6600 ad.u.ibpkey = &ibpkey;
6601 return avc_has_perm(&selinux_state,
6602 sec->sid, sid,
6603 SECCLASS_INFINIBAND_PKEY,
6604 INFINIBAND_PKEY__ACCESS, &ad);
6605}
6606
6607static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6608 u8 port_num)
6609{
6610 struct common_audit_data ad;
6611 int err;
6612 u32 sid = 0;
6613 struct ib_security_struct *sec = ib_sec;
6614 struct lsm_ibendport_audit ibendport;
6615
6616 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6617 &sid);
6618
6619 if (err)
6620 return err;
6621
6622 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6623 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6624 ibendport.port = port_num;
6625 ad.u.ibendport = &ibendport;
6626 return avc_has_perm(&selinux_state,
6627 sec->sid, sid,
6628 SECCLASS_INFINIBAND_ENDPORT,
6629 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6630}
6631
6632static int selinux_ib_alloc_security(void **ib_sec)
6633{
6634 struct ib_security_struct *sec;
6635
6636 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6637 if (!sec)
6638 return -ENOMEM;
6639 sec->sid = current_sid();
6640
6641 *ib_sec = sec;
6642 return 0;
6643}
6644
6645static void selinux_ib_free_security(void *ib_sec)
6646{
6647 kfree(ib_sec);
6648}
6649#endif
6650
6651#ifdef CONFIG_BPF_SYSCALL
6652static int selinux_bpf(int cmd, union bpf_attr *attr,
6653 unsigned int size)
6654{
6655 u32 sid = current_sid();
6656 int ret;
6657
6658 switch (cmd) {
6659 case BPF_MAP_CREATE:
6660 ret = avc_has_perm(&selinux_state,
6661 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6662 NULL);
6663 break;
6664 case BPF_PROG_LOAD:
6665 ret = avc_has_perm(&selinux_state,
6666 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6667 NULL);
6668 break;
6669 default:
6670 ret = 0;
6671 break;
6672 }
6673
6674 return ret;
6675}
6676
6677static u32 bpf_map_fmode_to_av(fmode_t fmode)
6678{
6679 u32 av = 0;
6680
6681 if (fmode & FMODE_READ)
6682 av |= BPF__MAP_READ;
6683 if (fmode & FMODE_WRITE)
6684 av |= BPF__MAP_WRITE;
6685 return av;
6686}
6687
6688/* This function will check the file pass through unix socket or binder to see
6689 * if it is a bpf related object. And apply correspinding checks on the bpf
6690 * object based on the type. The bpf maps and programs, not like other files and
6691 * socket, are using a shared anonymous inode inside the kernel as their inode.
6692 * So checking that inode cannot identify if the process have privilege to
6693 * access the bpf object and that's why we have to add this additional check in
6694 * selinux_file_receive and selinux_binder_transfer_files.
6695 */
6696static int bpf_fd_pass(struct file *file, u32 sid)
6697{
6698 struct bpf_security_struct *bpfsec;
6699 struct bpf_prog *prog;
6700 struct bpf_map *map;
6701 int ret;
6702
6703 if (file->f_op == &bpf_map_fops) {
6704 map = file->private_data;
6705 bpfsec = map->security;
6706 ret = avc_has_perm(&selinux_state,
6707 sid, bpfsec->sid, SECCLASS_BPF,
6708 bpf_map_fmode_to_av(file->f_mode), NULL);
6709 if (ret)
6710 return ret;
6711 } else if (file->f_op == &bpf_prog_fops) {
6712 prog = file->private_data;
6713 bpfsec = prog->aux->security;
6714 ret = avc_has_perm(&selinux_state,
6715 sid, bpfsec->sid, SECCLASS_BPF,
6716 BPF__PROG_RUN, NULL);
6717 if (ret)
6718 return ret;
6719 }
6720 return 0;
6721}
6722
6723static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6724{
6725 u32 sid = current_sid();
6726 struct bpf_security_struct *bpfsec;
6727
6728 bpfsec = map->security;
6729 return avc_has_perm(&selinux_state,
6730 sid, bpfsec->sid, SECCLASS_BPF,
6731 bpf_map_fmode_to_av(fmode), NULL);
6732}
6733
6734static int selinux_bpf_prog(struct bpf_prog *prog)
6735{
6736 u32 sid = current_sid();
6737 struct bpf_security_struct *bpfsec;
6738
6739 bpfsec = prog->aux->security;
6740 return avc_has_perm(&selinux_state,
6741 sid, bpfsec->sid, SECCLASS_BPF,
6742 BPF__PROG_RUN, NULL);
6743}
6744
6745static int selinux_bpf_map_alloc(struct bpf_map *map)
6746{
6747 struct bpf_security_struct *bpfsec;
6748
6749 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6750 if (!bpfsec)
6751 return -ENOMEM;
6752
6753 bpfsec->sid = current_sid();
6754 map->security = bpfsec;
6755
6756 return 0;
6757}
6758
6759static void selinux_bpf_map_free(struct bpf_map *map)
6760{
6761 struct bpf_security_struct *bpfsec = map->security;
6762
6763 map->security = NULL;
6764 kfree(bpfsec);
6765}
6766
6767static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6768{
6769 struct bpf_security_struct *bpfsec;
6770
6771 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6772 if (!bpfsec)
6773 return -ENOMEM;
6774
6775 bpfsec->sid = current_sid();
6776 aux->security = bpfsec;
6777
6778 return 0;
6779}
6780
6781static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6782{
6783 struct bpf_security_struct *bpfsec = aux->security;
6784
6785 aux->security = NULL;
6786 kfree(bpfsec);
6787}
6788#endif
6789
6790struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6791 .lbs_cred = sizeof(struct task_security_struct),
6792 .lbs_file = sizeof(struct file_security_struct),
6793 .lbs_inode = sizeof(struct inode_security_struct),
6794 .lbs_ipc = sizeof(struct ipc_security_struct),
6795 .lbs_msg_msg = sizeof(struct msg_security_struct),
6796};
6797
6798static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6799 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6800 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6801 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6802 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6803
6804 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6805 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6806 LSM_HOOK_INIT(capget, selinux_capget),
6807 LSM_HOOK_INIT(capset, selinux_capset),
6808 LSM_HOOK_INIT(capable, selinux_capable),
6809 LSM_HOOK_INIT(quotactl, selinux_quotactl),
6810 LSM_HOOK_INIT(quota_on, selinux_quota_on),
6811 LSM_HOOK_INIT(syslog, selinux_syslog),
6812 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6813
6814 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6815
6816 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
6817 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6818 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6819
6820 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
6821 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
6822
6823 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
6824 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6825 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
6826 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6827 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6828 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6829 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6830 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6831 LSM_HOOK_INIT(sb_mount, selinux_mount),
6832 LSM_HOOK_INIT(sb_umount, selinux_umount),
6833 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6834 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6835 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
6836
6837 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6838 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6839
6840 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
6841 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6842 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6843 LSM_HOOK_INIT(inode_create, selinux_inode_create),
6844 LSM_HOOK_INIT(inode_link, selinux_inode_link),
6845 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6846 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6847 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6848 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6849 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6850 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6851 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6852 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
6853 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
6854 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
6855 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
6856 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
6857 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
6858 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
6859 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
6860 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
6861 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
6862 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
6863 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
6864 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
6865 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
6866 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
6867 LSM_HOOK_INIT(path_notify, selinux_path_notify),
6868
6869 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
6870
6871 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6872 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6873 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6874 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6875 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6876 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6877 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6878 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6879 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6880 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6881 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6882
6883 LSM_HOOK_INIT(file_open, selinux_file_open),
6884
6885 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
6886 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6887 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6888 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
6889 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6890 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6891 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6892 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
6893 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
6894 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6895 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6896 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6897 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6898 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6899 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6900 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6901 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
6902 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6903 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6904 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6905 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6906 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6907 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6908
6909 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6910 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6911
6912 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6913
6914 LSM_HOOK_INIT(msg_queue_alloc_security,
6915 selinux_msg_queue_alloc_security),
6916 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6917 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6918 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6919 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6920
6921 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6922 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6923 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6924 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6925
6926 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6927 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6928 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6929 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6930
6931 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6932
6933 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6934 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6935
6936 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6937 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6938 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6939 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6940 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6941 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6942 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6943 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6944
6945 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6946 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6947
6948 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6949 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6950 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
6951 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6952 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6953 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6954 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6955 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6956 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6957 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6958 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6959 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6960 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6961 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6962 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6963 LSM_HOOK_INIT(socket_getpeersec_stream,
6964 selinux_socket_getpeersec_stream),
6965 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6966 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6967 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6968 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6969 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6970 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6971 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
6972 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
6973 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
6974 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6975 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6976 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6977 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6978 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6979 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6980 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6981 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6982 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6983 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6984 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6985 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6986 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6987#ifdef CONFIG_SECURITY_INFINIBAND
6988 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
6989 LSM_HOOK_INIT(ib_endport_manage_subnet,
6990 selinux_ib_endport_manage_subnet),
6991 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
6992 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
6993#endif
6994#ifdef CONFIG_SECURITY_NETWORK_XFRM
6995 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6996 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6997 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6998 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6999 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7000 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7001 selinux_xfrm_state_alloc_acquire),
7002 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7003 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7004 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7005 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7006 selinux_xfrm_state_pol_flow_match),
7007 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7008#endif
7009
7010#ifdef CONFIG_KEYS
7011 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7012 LSM_HOOK_INIT(key_free, selinux_key_free),
7013 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7014 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7015#endif
7016
7017#ifdef CONFIG_AUDIT
7018 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7019 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7020 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7021 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7022#endif
7023
7024#ifdef CONFIG_BPF_SYSCALL
7025 LSM_HOOK_INIT(bpf, selinux_bpf),
7026 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7027 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7028 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7029 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7030 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7031 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7032#endif
7033};
7034
7035static __init int selinux_init(void)
7036{
7037 pr_info("SELinux: Initializing.\n");
7038
7039 memset(&selinux_state, 0, sizeof(selinux_state));
7040 enforcing_set(&selinux_state, selinux_enforcing_boot);
7041 selinux_state.checkreqprot = selinux_checkreqprot_boot;
7042 selinux_ss_init(&selinux_state.ss);
7043 selinux_avc_init(&selinux_state.avc);
7044
7045 /* Set the security state for the initial task. */
7046 cred_init_security();
7047
7048 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7049
7050 avc_init();
7051
7052 avtab_cache_init();
7053
7054 ebitmap_cache_init();
7055
7056 hashtab_cache_init();
7057
7058 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7059
7060 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7061 panic("SELinux: Unable to register AVC netcache callback\n");
7062
7063 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7064 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7065
7066 if (selinux_enforcing_boot)
7067 pr_debug("SELinux: Starting in enforcing mode\n");
7068 else
7069 pr_debug("SELinux: Starting in permissive mode\n");
7070
7071 fs_validate_description(&selinux_fs_parameters);
7072
7073 return 0;
7074}
7075
7076static void delayed_superblock_init(struct super_block *sb, void *unused)
7077{
7078 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7079}
7080
7081void selinux_complete_init(void)
7082{
7083 pr_debug("SELinux: Completing initialization.\n");
7084
7085 /* Set up any superblocks initialized prior to the policy load. */
7086 pr_debug("SELinux: Setting up existing superblocks.\n");
7087 iterate_supers(delayed_superblock_init, NULL);
7088}
7089
7090/* SELinux requires early initialization in order to label
7091 all processes and objects when they are created. */
7092DEFINE_LSM(selinux) = {
7093 .name = "selinux",
7094 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7095 .enabled = &selinux_enabled,
7096 .blobs = &selinux_blob_sizes,
7097 .init = selinux_init,
7098};
7099
7100#if defined(CONFIG_NETFILTER)
7101
7102static const struct nf_hook_ops selinux_nf_ops[] = {
7103 {
7104 .hook = selinux_ipv4_postroute,
7105 .pf = NFPROTO_IPV4,
7106 .hooknum = NF_INET_POST_ROUTING,
7107 .priority = NF_IP_PRI_SELINUX_LAST,
7108 },
7109 {
7110 .hook = selinux_ipv4_forward,
7111 .pf = NFPROTO_IPV4,
7112 .hooknum = NF_INET_FORWARD,
7113 .priority = NF_IP_PRI_SELINUX_FIRST,
7114 },
7115 {
7116 .hook = selinux_ipv4_output,
7117 .pf = NFPROTO_IPV4,
7118 .hooknum = NF_INET_LOCAL_OUT,
7119 .priority = NF_IP_PRI_SELINUX_FIRST,
7120 },
7121#if IS_ENABLED(CONFIG_IPV6)
7122 {
7123 .hook = selinux_ipv6_postroute,
7124 .pf = NFPROTO_IPV6,
7125 .hooknum = NF_INET_POST_ROUTING,
7126 .priority = NF_IP6_PRI_SELINUX_LAST,
7127 },
7128 {
7129 .hook = selinux_ipv6_forward,
7130 .pf = NFPROTO_IPV6,
7131 .hooknum = NF_INET_FORWARD,
7132 .priority = NF_IP6_PRI_SELINUX_FIRST,
7133 },
7134 {
7135 .hook = selinux_ipv6_output,
7136 .pf = NFPROTO_IPV6,
7137 .hooknum = NF_INET_LOCAL_OUT,
7138 .priority = NF_IP6_PRI_SELINUX_FIRST,
7139 },
7140#endif /* IPV6 */
7141};
7142
7143static int __net_init selinux_nf_register(struct net *net)
7144{
7145 return nf_register_net_hooks(net, selinux_nf_ops,
7146 ARRAY_SIZE(selinux_nf_ops));
7147}
7148
7149static void __net_exit selinux_nf_unregister(struct net *net)
7150{
7151 nf_unregister_net_hooks(net, selinux_nf_ops,
7152 ARRAY_SIZE(selinux_nf_ops));
7153}
7154
7155static struct pernet_operations selinux_net_ops = {
7156 .init = selinux_nf_register,
7157 .exit = selinux_nf_unregister,
7158};
7159
7160static int __init selinux_nf_ip_init(void)
7161{
7162 int err;
7163
7164 if (!selinux_enabled)
7165 return 0;
7166
7167 pr_debug("SELinux: Registering netfilter hooks\n");
7168
7169 err = register_pernet_subsys(&selinux_net_ops);
7170 if (err)
7171 panic("SELinux: register_pernet_subsys: error %d\n", err);
7172
7173 return 0;
7174}
7175__initcall(selinux_nf_ip_init);
7176
7177#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7178static void selinux_nf_ip_exit(void)
7179{
7180 pr_debug("SELinux: Unregistering netfilter hooks\n");
7181
7182 unregister_pernet_subsys(&selinux_net_ops);
7183}
7184#endif
7185
7186#else /* CONFIG_NETFILTER */
7187
7188#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7189#define selinux_nf_ip_exit()
7190#endif
7191
7192#endif /* CONFIG_NETFILTER */
7193
7194#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7195int selinux_disable(struct selinux_state *state)
7196{
7197 if (state->initialized) {
7198 /* Not permitted after initial policy load. */
7199 return -EINVAL;
7200 }
7201
7202 if (state->disabled) {
7203 /* Only do this once. */
7204 return -EINVAL;
7205 }
7206
7207 state->disabled = 1;
7208
7209 pr_info("SELinux: Disabled at runtime.\n");
7210
7211 selinux_enabled = 0;
7212
7213 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7214
7215 /* Try to destroy the avc node cache */
7216 avc_disable();
7217
7218 /* Unregister netfilter hooks. */
7219 selinux_nf_ip_exit();
7220
7221 /* Unregister selinuxfs. */
7222 exit_sel_fs();
7223
7224 return 0;
7225}
7226#endif