Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
 
 
 
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/tracehook.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
 
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
 
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94
  95#include "avc.h"
  96#include "objsec.h"
  97#include "netif.h"
  98#include "netnode.h"
  99#include "netport.h"
 100#include "ibpkey.h"
 101#include "xfrm.h"
 102#include "netlabel.h"
 103#include "audit.h"
 104#include "avc_ss.h"
 105
 106struct selinux_state selinux_state;
 107
 108/* SECMARK reference count */
 109static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 110
 111#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 112static int selinux_enforcing_boot __initdata;
 113
 114static int __init enforcing_setup(char *str)
 115{
 116	unsigned long enforcing;
 117	if (!kstrtoul(str, 0, &enforcing))
 118		selinux_enforcing_boot = enforcing ? 1 : 0;
 119	return 1;
 120}
 121__setup("enforcing=", enforcing_setup);
 122#else
 123#define selinux_enforcing_boot 1
 124#endif
 125
 126int selinux_enabled_boot __initdata = 1;
 127#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 
 
 128static int __init selinux_enabled_setup(char *str)
 129{
 130	unsigned long enabled;
 131	if (!kstrtoul(str, 0, &enabled))
 132		selinux_enabled_boot = enabled ? 1 : 0;
 133	return 1;
 134}
 135__setup("selinux=", selinux_enabled_setup);
 
 
 136#endif
 137
 138static unsigned int selinux_checkreqprot_boot =
 139	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 140
 141static int __init checkreqprot_setup(char *str)
 142{
 143	unsigned long checkreqprot;
 144
 145	if (!kstrtoul(str, 0, &checkreqprot)) {
 146		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 147		if (checkreqprot)
 148			pr_warn("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 149	}
 150	return 1;
 151}
 152__setup("checkreqprot=", checkreqprot_setup);
 153
 154/**
 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 156 *
 157 * Description:
 158 * This function checks the SECMARK reference counter to see if any SECMARK
 159 * targets are currently configured, if the reference counter is greater than
 160 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 161 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 162 * policy capability is enabled, SECMARK is always considered enabled.
 163 *
 164 */
 165static int selinux_secmark_enabled(void)
 166{
 167	return (selinux_policycap_alwaysnetwork() ||
 168		atomic_read(&selinux_secmark_refcount));
 169}
 170
 171/**
 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 173 *
 174 * Description:
 175 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 176 * (1) if any are enabled or false (0) if neither are enabled.  If the
 177 * always_check_network policy capability is enabled, peer labeling
 178 * is always considered enabled.
 179 *
 180 */
 181static int selinux_peerlbl_enabled(void)
 182{
 183	return (selinux_policycap_alwaysnetwork() ||
 184		netlbl_enabled() || selinux_xfrm_enabled());
 185}
 186
 187static int selinux_netcache_avc_callback(u32 event)
 188{
 189	if (event == AVC_CALLBACK_RESET) {
 190		sel_netif_flush();
 191		sel_netnode_flush();
 192		sel_netport_flush();
 193		synchronize_net();
 194	}
 195	return 0;
 196}
 197
 198static int selinux_lsm_notifier_avc_callback(u32 event)
 199{
 200	if (event == AVC_CALLBACK_RESET) {
 201		sel_ib_pkey_flush();
 202		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 203	}
 204
 205	return 0;
 206}
 207
 208/*
 209 * initialise the security for the init task
 210 */
 211static void cred_init_security(void)
 212{
 213	struct cred *cred = (struct cred *) current->real_cred;
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(cred);
 
 
 
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231/*
 232 * get the objective security ID of a task
 233 */
 234static inline u32 task_sid(const struct task_struct *task)
 235{
 236	u32 sid;
 237
 238	rcu_read_lock();
 239	sid = cred_sid(__task_cred(task));
 240	rcu_read_unlock();
 241	return sid;
 242}
 243
 244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 245
 246/*
 247 * Try reloading inode security labels that have been marked as invalid.  The
 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 249 * allowed; when set to false, returns -ECHILD when the label is
 250 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 251 */
 252static int __inode_security_revalidate(struct inode *inode,
 253				       struct dentry *dentry,
 254				       bool may_sleep)
 255{
 256	struct inode_security_struct *isec = selinux_inode(inode);
 257
 258	might_sleep_if(may_sleep);
 259
 260	if (selinux_initialized(&selinux_state) &&
 261	    isec->initialized != LABEL_INITIALIZED) {
 262		if (!may_sleep)
 263			return -ECHILD;
 264
 265		/*
 266		 * Try reloading the inode security label.  This will fail if
 267		 * @opt_dentry is NULL and no dentry for this inode can be
 268		 * found; in that case, continue using the old label.
 269		 */
 270		inode_doinit_with_dentry(inode, dentry);
 271	}
 272	return 0;
 273}
 274
 275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 
 
 276{
 277	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 278}
 279
 280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 281{
 282	int error;
 283
 284	error = __inode_security_revalidate(inode, NULL, !rcu);
 285	if (error)
 286		return ERR_PTR(error);
 287	return selinux_inode(inode);
 288}
 289
 290/*
 291 * Get the security label of an inode.
 292 */
 293static struct inode_security_struct *inode_security(struct inode *inode)
 294{
 295	__inode_security_revalidate(inode, NULL, true);
 296	return selinux_inode(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 297}
 298
 299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 300{
 301	struct inode *inode = d_backing_inode(dentry);
 
 
 
 
 
 302
 303	return selinux_inode(inode);
 
 
 
 
 304}
 305
 306/*
 307 * Get the security label of a dentry's backing inode.
 308 */
 309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 310{
 311	struct inode *inode = d_backing_inode(dentry);
 312
 313	__inode_security_revalidate(inode, dentry, true);
 314	return selinux_inode(inode);
 315}
 316
 317static void inode_free_security(struct inode *inode)
 318{
 319	struct inode_security_struct *isec = selinux_inode(inode);
 320	struct superblock_security_struct *sbsec;
 321
 322	if (!isec)
 323		return;
 324	sbsec = inode->i_sb->s_security;
 325	/*
 326	 * As not all inode security structures are in a list, we check for
 327	 * empty list outside of the lock to make sure that we won't waste
 328	 * time taking a lock doing nothing.
 329	 *
 330	 * The list_del_init() function can be safely called more than once.
 331	 * It should not be possible for this function to be called with
 332	 * concurrent list_add(), but for better safety against future changes
 333	 * in the code, we use list_empty_careful() here.
 334	 */
 335	if (!list_empty_careful(&isec->list)) {
 336		spin_lock(&sbsec->isec_lock);
 337		list_del_init(&isec->list);
 338		spin_unlock(&sbsec->isec_lock);
 339	}
 340}
 341
 342static void superblock_free_security(struct super_block *sb)
 343{
 344	struct superblock_security_struct *sbsec = sb->s_security;
 345	sb->s_security = NULL;
 346	kfree(sbsec);
 347}
 348
 349struct selinux_mnt_opts {
 350	const char *fscontext, *context, *rootcontext, *defcontext;
 
 
 
 
 
 
 
 
 351};
 352
 353static void selinux_free_mnt_opts(void *mnt_opts)
 
 
 354{
 355	struct selinux_mnt_opts *opts = mnt_opts;
 356	kfree(opts->fscontext);
 357	kfree(opts->context);
 358	kfree(opts->rootcontext);
 359	kfree(opts->defcontext);
 360	kfree(opts);
 361}
 362
 363enum {
 364	Opt_error = -1,
 365	Opt_context = 0,
 366	Opt_defcontext = 1,
 367	Opt_fscontext = 2,
 368	Opt_rootcontext = 3,
 369	Opt_seclabel = 4,
 
 
 370};
 371
 372#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 373static struct {
 374	const char *name;
 375	int len;
 376	int opt;
 377	bool has_arg;
 378} tokens[] = {
 379	A(context, true),
 380	A(fscontext, true),
 381	A(defcontext, true),
 382	A(rootcontext, true),
 383	A(seclabel, false),
 384};
 385#undef A
 386
 387static int match_opt_prefix(char *s, int l, char **arg)
 388{
 389	int i;
 390
 391	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 392		size_t len = tokens[i].len;
 393		if (len > l || memcmp(s, tokens[i].name, len))
 394			continue;
 395		if (tokens[i].has_arg) {
 396			if (len == l || s[len] != '=')
 397				continue;
 398			*arg = s + len + 1;
 399		} else if (len != l)
 400			continue;
 401		return tokens[i].opt;
 402	}
 403	return Opt_error;
 404}
 405
 406#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 407
 408static int may_context_mount_sb_relabel(u32 sid,
 409			struct superblock_security_struct *sbsec,
 410			const struct cred *cred)
 411{
 412	const struct task_security_struct *tsec = selinux_cred(cred);
 413	int rc;
 414
 415	rc = avc_has_perm(&selinux_state,
 416			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 417			  FILESYSTEM__RELABELFROM, NULL);
 418	if (rc)
 419		return rc;
 420
 421	rc = avc_has_perm(&selinux_state,
 422			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 423			  FILESYSTEM__RELABELTO, NULL);
 424	return rc;
 425}
 426
 427static int may_context_mount_inode_relabel(u32 sid,
 428			struct superblock_security_struct *sbsec,
 429			const struct cred *cred)
 430{
 431	const struct task_security_struct *tsec = selinux_cred(cred);
 432	int rc;
 433	rc = avc_has_perm(&selinux_state,
 434			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 435			  FILESYSTEM__RELABELFROM, NULL);
 436	if (rc)
 437		return rc;
 438
 439	rc = avc_has_perm(&selinux_state,
 440			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 441			  FILESYSTEM__ASSOCIATE, NULL);
 442	return rc;
 443}
 444
 445static int selinux_is_genfs_special_handling(struct super_block *sb)
 446{
 447	/* Special handling. Genfs but also in-core setxattr handler */
 448	return	!strcmp(sb->s_type->name, "sysfs") ||
 449		!strcmp(sb->s_type->name, "pstore") ||
 450		!strcmp(sb->s_type->name, "debugfs") ||
 451		!strcmp(sb->s_type->name, "tracefs") ||
 452		!strcmp(sb->s_type->name, "rootfs") ||
 453		(selinux_policycap_cgroupseclabel() &&
 454		 (!strcmp(sb->s_type->name, "cgroup") ||
 455		  !strcmp(sb->s_type->name, "cgroup2")));
 456}
 457
 458static int selinux_is_sblabel_mnt(struct super_block *sb)
 459{
 460	struct superblock_security_struct *sbsec = sb->s_security;
 461
 462	/*
 463	 * IMPORTANT: Double-check logic in this function when adding a new
 464	 * SECURITY_FS_USE_* definition!
 465	 */
 466	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 467
 468	switch (sbsec->behavior) {
 469	case SECURITY_FS_USE_XATTR:
 470	case SECURITY_FS_USE_TRANS:
 471	case SECURITY_FS_USE_TASK:
 472	case SECURITY_FS_USE_NATIVE:
 473		return 1;
 474
 475	case SECURITY_FS_USE_GENFS:
 476		return selinux_is_genfs_special_handling(sb);
 
 
 
 
 477
 478	/* Never allow relabeling on context mounts */
 479	case SECURITY_FS_USE_MNTPOINT:
 480	case SECURITY_FS_USE_NONE:
 481	default:
 482		return 0;
 483	}
 484}
 485
 486static int sb_finish_set_opts(struct super_block *sb)
 487{
 488	struct superblock_security_struct *sbsec = sb->s_security;
 489	struct dentry *root = sb->s_root;
 490	struct inode *root_inode = d_backing_inode(root);
 491	int rc = 0;
 492
 493	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 494		/* Make sure that the xattr handler exists and that no
 495		   error other than -ENODATA is returned by getxattr on
 496		   the root directory.  -ENODATA is ok, as this may be
 497		   the first boot of the SELinux kernel before we have
 498		   assigned xattr values to the filesystem. */
 499		if (!(root_inode->i_opflags & IOP_XATTR)) {
 500			pr_warn("SELinux: (dev %s, type %s) has no "
 501			       "xattr support\n", sb->s_id, sb->s_type->name);
 502			rc = -EOPNOTSUPP;
 503			goto out;
 504		}
 505
 506		rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 507		if (rc < 0 && rc != -ENODATA) {
 508			if (rc == -EOPNOTSUPP)
 509				pr_warn("SELinux: (dev %s, type "
 510				       "%s) has no security xattr handler\n",
 511				       sb->s_id, sb->s_type->name);
 512			else
 513				pr_warn("SELinux: (dev %s, type "
 514				       "%s) getxattr errno %d\n", sb->s_id,
 515				       sb->s_type->name, -rc);
 516			goto out;
 517		}
 518	}
 519
 520	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 
 
 521
 522	/*
 523	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 524	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 525	 * us a superblock that needs the flag to be cleared.
 526	 */
 527	if (selinux_is_sblabel_mnt(sb))
 528		sbsec->flags |= SBLABEL_MNT;
 529	else
 530		sbsec->flags &= ~SBLABEL_MNT;
 531
 532	/* Initialize the root inode. */
 533	rc = inode_doinit_with_dentry(root_inode, root);
 534
 535	/* Initialize any other inodes associated with the superblock, e.g.
 536	   inodes created prior to initial policy load or inodes created
 537	   during get_sb by a pseudo filesystem that directly
 538	   populates itself. */
 539	spin_lock(&sbsec->isec_lock);
 540	while (!list_empty(&sbsec->isec_head)) {
 
 541		struct inode_security_struct *isec =
 542				list_first_entry(&sbsec->isec_head,
 543					   struct inode_security_struct, list);
 544		struct inode *inode = isec->inode;
 545		list_del_init(&isec->list);
 546		spin_unlock(&sbsec->isec_lock);
 547		inode = igrab(inode);
 548		if (inode) {
 549			if (!IS_PRIVATE(inode))
 550				inode_doinit_with_dentry(inode, NULL);
 551			iput(inode);
 552		}
 553		spin_lock(&sbsec->isec_lock);
 
 
 554	}
 555	spin_unlock(&sbsec->isec_lock);
 556out:
 557	return rc;
 558}
 559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 560static int bad_option(struct superblock_security_struct *sbsec, char flag,
 561		      u32 old_sid, u32 new_sid)
 562{
 563	char mnt_flags = sbsec->flags & SE_MNTMASK;
 564
 565	/* check if the old mount command had the same options */
 566	if (sbsec->flags & SE_SBINITIALIZED)
 567		if (!(sbsec->flags & flag) ||
 568		    (old_sid != new_sid))
 569			return 1;
 570
 571	/* check if we were passed the same options twice,
 572	 * aka someone passed context=a,context=b
 573	 */
 574	if (!(sbsec->flags & SE_SBINITIALIZED))
 575		if (mnt_flags & flag)
 576			return 1;
 577	return 0;
 578}
 579
 580static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
 581{
 582	int rc = security_context_str_to_sid(&selinux_state, s,
 583					     sid, GFP_KERNEL);
 584	if (rc)
 585		pr_warn("SELinux: security_context_str_to_sid"
 586		       "(%s) failed for (dev %s, type %s) errno=%d\n",
 587		       s, sb->s_id, sb->s_type->name, rc);
 588	return rc;
 589}
 590
 591/*
 592 * Allow filesystems with binary mount data to explicitly set mount point
 593 * labeling information.
 594 */
 595static int selinux_set_mnt_opts(struct super_block *sb,
 596				void *mnt_opts,
 597				unsigned long kern_flags,
 598				unsigned long *set_kern_flags)
 599{
 600	const struct cred *cred = current_cred();
 
 601	struct superblock_security_struct *sbsec = sb->s_security;
 602	struct dentry *root = sbsec->sb->s_root;
 603	struct selinux_mnt_opts *opts = mnt_opts;
 604	struct inode_security_struct *root_isec;
 605	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 606	u32 defcontext_sid = 0;
 607	int rc = 0;
 
 
 608
 609	mutex_lock(&sbsec->lock);
 610
 611	if (!selinux_initialized(&selinux_state)) {
 612		if (!opts) {
 613			/* Defer initialization until selinux_complete_init,
 614			   after the initial policy is loaded and the security
 615			   server is ready to handle calls. */
 616			goto out;
 617		}
 618		rc = -EINVAL;
 619		pr_warn("SELinux: Unable to set superblock options "
 620			"before the security server is initialized\n");
 621		goto out;
 622	}
 623	if (kern_flags && !set_kern_flags) {
 624		/* Specifying internal flags without providing a place to
 625		 * place the results is not allowed */
 626		rc = -EINVAL;
 627		goto out;
 628	}
 629
 630	/*
 631	 * Binary mount data FS will come through this function twice.  Once
 632	 * from an explicit call and once from the generic calls from the vfs.
 633	 * Since the generic VFS calls will not contain any security mount data
 634	 * we need to skip the double mount verification.
 635	 *
 636	 * This does open a hole in which we will not notice if the first
 637	 * mount using this sb set explict options and a second mount using
 638	 * this sb does not set any security options.  (The first options
 639	 * will be used for both mounts)
 640	 */
 641	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 642	    && !opts)
 643		goto out;
 644
 645	root_isec = backing_inode_security_novalidate(root);
 646
 647	/*
 648	 * parse the mount options, check if they are valid sids.
 649	 * also check if someone is trying to mount the same sb more
 650	 * than once with different security options.
 651	 */
 652	if (opts) {
 653		if (opts->fscontext) {
 654			rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
 655			if (rc)
 656				goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 657			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 658					fscontext_sid))
 659				goto out_double_mount;
 
 660			sbsec->flags |= FSCONTEXT_MNT;
 661		}
 662		if (opts->context) {
 663			rc = parse_sid(sb, opts->context, &context_sid);
 664			if (rc)
 665				goto out;
 666			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 667					context_sid))
 668				goto out_double_mount;
 
 669			sbsec->flags |= CONTEXT_MNT;
 670		}
 671		if (opts->rootcontext) {
 672			rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
 673			if (rc)
 674				goto out;
 675			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 676					rootcontext_sid))
 677				goto out_double_mount;
 
 678			sbsec->flags |= ROOTCONTEXT_MNT;
 679		}
 680		if (opts->defcontext) {
 681			rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
 682			if (rc)
 683				goto out;
 684			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 685					defcontext_sid))
 686				goto out_double_mount;
 
 687			sbsec->flags |= DEFCONTEXT_MNT;
 
 
 
 
 
 688		}
 689	}
 690
 691	if (sbsec->flags & SE_SBINITIALIZED) {
 692		/* previously mounted with options, but not on this attempt? */
 693		if ((sbsec->flags & SE_MNTMASK) && !opts)
 694			goto out_double_mount;
 695		rc = 0;
 696		goto out;
 697	}
 698
 699	if (strcmp(sb->s_type->name, "proc") == 0)
 700		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 701
 702	if (!strcmp(sb->s_type->name, "debugfs") ||
 703	    !strcmp(sb->s_type->name, "tracefs") ||
 704	    !strcmp(sb->s_type->name, "binder") ||
 705	    !strcmp(sb->s_type->name, "bpf") ||
 706	    !strcmp(sb->s_type->name, "pstore"))
 707		sbsec->flags |= SE_SBGENFS;
 708
 709	if (!strcmp(sb->s_type->name, "sysfs") ||
 710	    !strcmp(sb->s_type->name, "cgroup") ||
 711	    !strcmp(sb->s_type->name, "cgroup2"))
 712		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 713
 714	if (!sbsec->behavior) {
 715		/*
 716		 * Determine the labeling behavior to use for this
 717		 * filesystem type.
 718		 */
 719		rc = security_fs_use(&selinux_state, sb);
 720		if (rc) {
 721			pr_warn("%s: security_fs_use(%s) returned %d\n",
 
 722					__func__, sb->s_type->name, rc);
 723			goto out;
 724		}
 725	}
 726
 727	/*
 728	 * If this is a user namespace mount and the filesystem type is not
 729	 * explicitly whitelisted, then no contexts are allowed on the command
 730	 * line and security labels must be ignored.
 731	 */
 732	if (sb->s_user_ns != &init_user_ns &&
 733	    strcmp(sb->s_type->name, "tmpfs") &&
 734	    strcmp(sb->s_type->name, "ramfs") &&
 735	    strcmp(sb->s_type->name, "devpts")) {
 736		if (context_sid || fscontext_sid || rootcontext_sid ||
 737		    defcontext_sid) {
 738			rc = -EACCES;
 739			goto out;
 740		}
 741		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 742			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 743			rc = security_transition_sid(&selinux_state,
 744						     current_sid(),
 745						     current_sid(),
 746						     SECCLASS_FILE, NULL,
 747						     &sbsec->mntpoint_sid);
 748			if (rc)
 749				goto out;
 750		}
 751		goto out_set_opts;
 752	}
 753
 754	/* sets the context of the superblock for the fs being mounted. */
 755	if (fscontext_sid) {
 756		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 757		if (rc)
 758			goto out;
 759
 760		sbsec->sid = fscontext_sid;
 761	}
 762
 763	/*
 764	 * Switch to using mount point labeling behavior.
 765	 * sets the label used on all file below the mountpoint, and will set
 766	 * the superblock context if not already set.
 767	 */
 768	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 769		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 770		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 771	}
 772
 773	if (context_sid) {
 774		if (!fscontext_sid) {
 775			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 776							  cred);
 777			if (rc)
 778				goto out;
 779			sbsec->sid = context_sid;
 780		} else {
 781			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 782							     cred);
 783			if (rc)
 784				goto out;
 785		}
 786		if (!rootcontext_sid)
 787			rootcontext_sid = context_sid;
 788
 789		sbsec->mntpoint_sid = context_sid;
 790		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 791	}
 792
 793	if (rootcontext_sid) {
 794		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 795						     cred);
 796		if (rc)
 797			goto out;
 798
 799		root_isec->sid = rootcontext_sid;
 800		root_isec->initialized = LABEL_INITIALIZED;
 801	}
 802
 803	if (defcontext_sid) {
 804		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 805			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 806			rc = -EINVAL;
 807			pr_warn("SELinux: defcontext option is "
 808			       "invalid for this filesystem type\n");
 809			goto out;
 810		}
 811
 812		if (defcontext_sid != sbsec->def_sid) {
 813			rc = may_context_mount_inode_relabel(defcontext_sid,
 814							     sbsec, cred);
 815			if (rc)
 816				goto out;
 817		}
 818
 819		sbsec->def_sid = defcontext_sid;
 820	}
 821
 822out_set_opts:
 823	rc = sb_finish_set_opts(sb);
 824out:
 825	mutex_unlock(&sbsec->lock);
 826	return rc;
 827out_double_mount:
 828	rc = -EINVAL;
 829	pr_warn("SELinux: mount invalid.  Same superblock, different "
 830	       "security settings for (dev %s, type %s)\n", sb->s_id,
 831	       sb->s_type->name);
 832	goto out;
 833}
 834
 835static int selinux_cmp_sb_context(const struct super_block *oldsb,
 836				    const struct super_block *newsb)
 837{
 838	struct superblock_security_struct *old = oldsb->s_security;
 839	struct superblock_security_struct *new = newsb->s_security;
 840	char oldflags = old->flags & SE_MNTMASK;
 841	char newflags = new->flags & SE_MNTMASK;
 842
 843	if (oldflags != newflags)
 844		goto mismatch;
 845	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 846		goto mismatch;
 847	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 848		goto mismatch;
 849	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 850		goto mismatch;
 851	if (oldflags & ROOTCONTEXT_MNT) {
 852		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 853		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 854		if (oldroot->sid != newroot->sid)
 855			goto mismatch;
 856	}
 857	return 0;
 858mismatch:
 859	pr_warn("SELinux: mount invalid.  Same superblock, "
 860			    "different security settings for (dev %s, "
 861			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 862	return -EBUSY;
 863}
 864
 865static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 866					struct super_block *newsb,
 867					unsigned long kern_flags,
 868					unsigned long *set_kern_flags)
 869{
 870	int rc = 0;
 871	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 872	struct superblock_security_struct *newsbsec = newsb->s_security;
 873
 874	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 875	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 876	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 877
 878	/*
 879	 * if the parent was able to be mounted it clearly had no special lsm
 880	 * mount options.  thus we can safely deal with this superblock later
 881	 */
 882	if (!selinux_initialized(&selinux_state))
 883		return 0;
 884
 885	/*
 886	 * Specifying internal flags without providing a place to
 887	 * place the results is not allowed.
 888	 */
 889	if (kern_flags && !set_kern_flags)
 890		return -EINVAL;
 891
 892	/* how can we clone if the old one wasn't set up?? */
 893	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 894
 895	/* if fs is reusing a sb, make sure that the contexts match */
 896	if (newsbsec->flags & SE_SBINITIALIZED) {
 897		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 898			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 899		return selinux_cmp_sb_context(oldsb, newsb);
 900	}
 901
 902	mutex_lock(&newsbsec->lock);
 903
 904	newsbsec->flags = oldsbsec->flags;
 905
 906	newsbsec->sid = oldsbsec->sid;
 907	newsbsec->def_sid = oldsbsec->def_sid;
 908	newsbsec->behavior = oldsbsec->behavior;
 909
 910	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 911		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 912		rc = security_fs_use(&selinux_state, newsb);
 913		if (rc)
 914			goto out;
 915	}
 916
 917	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 918		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 919		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 920	}
 921
 922	if (set_context) {
 923		u32 sid = oldsbsec->mntpoint_sid;
 924
 925		if (!set_fscontext)
 926			newsbsec->sid = sid;
 927		if (!set_rootcontext) {
 928			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 929			newisec->sid = sid;
 930		}
 931		newsbsec->mntpoint_sid = sid;
 932	}
 933	if (set_rootcontext) {
 934		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 935		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 
 
 936
 937		newisec->sid = oldisec->sid;
 938	}
 939
 940	sb_finish_set_opts(newsb);
 941out:
 942	mutex_unlock(&newsbsec->lock);
 943	return rc;
 944}
 945
 946static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 
 947{
 948	struct selinux_mnt_opts *opts = *mnt_opts;
 
 
 
 949
 950	if (token == Opt_seclabel)	/* eaten and completely ignored */
 951		return 0;
 952
 953	if (!opts) {
 954		opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
 955		if (!opts)
 956			return -ENOMEM;
 957		*mnt_opts = opts;
 958	}
 959	if (!s)
 960		return -ENOMEM;
 961	switch (token) {
 962	case Opt_context:
 963		if (opts->context || opts->defcontext)
 964			goto Einval;
 965		opts->context = s;
 966		break;
 967	case Opt_fscontext:
 968		if (opts->fscontext)
 969			goto Einval;
 970		opts->fscontext = s;
 971		break;
 972	case Opt_rootcontext:
 973		if (opts->rootcontext)
 974			goto Einval;
 975		opts->rootcontext = s;
 976		break;
 977	case Opt_defcontext:
 978		if (opts->context || opts->defcontext)
 979			goto Einval;
 980		opts->defcontext = s;
 981		break;
 982	}
 983	return 0;
 984Einval:
 985	pr_warn(SEL_MOUNT_FAIL_MSG);
 986	return -EINVAL;
 987}
 988
 989static int selinux_add_mnt_opt(const char *option, const char *val, int len,
 990			       void **mnt_opts)
 991{
 992	int token = Opt_error;
 993	int rc, i;
 994
 995	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 996		if (strcmp(option, tokens[i].name) == 0) {
 997			token = tokens[i].opt;
 
 
 
 
 
 
 
 
 
 998			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 999		}
1000	}
1001
1002	if (token == Opt_error)
1003		return -EINVAL;
 
 
1004
1005	if (token != Opt_seclabel) {
1006		val = kmemdup_nul(val, len, GFP_KERNEL);
1007		if (!val) {
1008			rc = -ENOMEM;
1009			goto free_opt;
1010		}
 
 
 
 
 
 
 
 
 
 
 
1011	}
1012	rc = selinux_add_opt(token, val, mnt_opts);
1013	if (unlikely(rc)) {
1014		kfree(val);
1015		goto free_opt;
1016	}
 
 
 
 
 
 
 
 
 
1017	return rc;
 
 
 
 
 
 
 
 
 
1018
1019free_opt:
1020	if (*mnt_opts) {
1021		selinux_free_mnt_opts(*mnt_opts);
1022		*mnt_opts = NULL;
1023	}
 
 
 
 
 
 
 
 
 
 
 
1024	return rc;
1025}
1026
1027static int show_sid(struct seq_file *m, u32 sid)
 
1028{
1029	char *context = NULL;
1030	u32 len;
1031	int rc;
1032
1033	rc = security_sid_to_context(&selinux_state, sid,
1034					     &context, &len);
1035	if (!rc) {
1036		bool has_comma = context && strchr(context, ',');
1037
1038		seq_putc(m, '=');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039		if (has_comma)
1040			seq_putc(m, '\"');
1041		seq_escape(m, context, "\"\n\\");
1042		if (has_comma)
1043			seq_putc(m, '\"');
1044	}
1045	kfree(context);
1046	return rc;
1047}
1048
1049static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1050{
1051	struct superblock_security_struct *sbsec = sb->s_security;
1052	int rc;
1053
1054	if (!(sbsec->flags & SE_SBINITIALIZED))
1055		return 0;
 
 
 
 
 
1056
1057	if (!selinux_initialized(&selinux_state))
1058		return 0;
1059
1060	if (sbsec->flags & FSCONTEXT_MNT) {
1061		seq_putc(m, ',');
1062		seq_puts(m, FSCONTEXT_STR);
1063		rc = show_sid(m, sbsec->sid);
1064		if (rc)
1065			return rc;
1066	}
1067	if (sbsec->flags & CONTEXT_MNT) {
1068		seq_putc(m, ',');
1069		seq_puts(m, CONTEXT_STR);
1070		rc = show_sid(m, sbsec->mntpoint_sid);
1071		if (rc)
1072			return rc;
1073	}
1074	if (sbsec->flags & DEFCONTEXT_MNT) {
1075		seq_putc(m, ',');
1076		seq_puts(m, DEFCONTEXT_STR);
1077		rc = show_sid(m, sbsec->def_sid);
1078		if (rc)
1079			return rc;
1080	}
1081	if (sbsec->flags & ROOTCONTEXT_MNT) {
1082		struct dentry *root = sbsec->sb->s_root;
1083		struct inode_security_struct *isec = backing_inode_security(root);
1084		seq_putc(m, ',');
1085		seq_puts(m, ROOTCONTEXT_STR);
1086		rc = show_sid(m, isec->sid);
1087		if (rc)
1088			return rc;
1089	}
1090	if (sbsec->flags & SBLABEL_MNT) {
1091		seq_putc(m, ',');
1092		seq_puts(m, SECLABEL_STR);
1093	}
1094	return 0;
1095}
1096
1097static inline u16 inode_mode_to_security_class(umode_t mode)
1098{
1099	switch (mode & S_IFMT) {
1100	case S_IFSOCK:
1101		return SECCLASS_SOCK_FILE;
1102	case S_IFLNK:
1103		return SECCLASS_LNK_FILE;
1104	case S_IFREG:
1105		return SECCLASS_FILE;
1106	case S_IFBLK:
1107		return SECCLASS_BLK_FILE;
1108	case S_IFDIR:
1109		return SECCLASS_DIR;
1110	case S_IFCHR:
1111		return SECCLASS_CHR_FILE;
1112	case S_IFIFO:
1113		return SECCLASS_FIFO_FILE;
1114
1115	}
1116
1117	return SECCLASS_FILE;
1118}
1119
1120static inline int default_protocol_stream(int protocol)
1121{
1122	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1123}
1124
1125static inline int default_protocol_dgram(int protocol)
1126{
1127	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1128}
1129
1130static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1131{
1132	int extsockclass = selinux_policycap_extsockclass();
1133
1134	switch (family) {
1135	case PF_UNIX:
1136		switch (type) {
1137		case SOCK_STREAM:
1138		case SOCK_SEQPACKET:
1139			return SECCLASS_UNIX_STREAM_SOCKET;
1140		case SOCK_DGRAM:
1141		case SOCK_RAW:
1142			return SECCLASS_UNIX_DGRAM_SOCKET;
1143		}
1144		break;
1145	case PF_INET:
1146	case PF_INET6:
1147		switch (type) {
1148		case SOCK_STREAM:
1149		case SOCK_SEQPACKET:
1150			if (default_protocol_stream(protocol))
1151				return SECCLASS_TCP_SOCKET;
1152			else if (extsockclass && protocol == IPPROTO_SCTP)
1153				return SECCLASS_SCTP_SOCKET;
1154			else
1155				return SECCLASS_RAWIP_SOCKET;
1156		case SOCK_DGRAM:
1157			if (default_protocol_dgram(protocol))
1158				return SECCLASS_UDP_SOCKET;
1159			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1160						  protocol == IPPROTO_ICMPV6))
1161				return SECCLASS_ICMP_SOCKET;
1162			else
1163				return SECCLASS_RAWIP_SOCKET;
1164		case SOCK_DCCP:
1165			return SECCLASS_DCCP_SOCKET;
1166		default:
1167			return SECCLASS_RAWIP_SOCKET;
1168		}
1169		break;
1170	case PF_NETLINK:
1171		switch (protocol) {
1172		case NETLINK_ROUTE:
1173			return SECCLASS_NETLINK_ROUTE_SOCKET;
 
 
1174		case NETLINK_SOCK_DIAG:
1175			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1176		case NETLINK_NFLOG:
1177			return SECCLASS_NETLINK_NFLOG_SOCKET;
1178		case NETLINK_XFRM:
1179			return SECCLASS_NETLINK_XFRM_SOCKET;
1180		case NETLINK_SELINUX:
1181			return SECCLASS_NETLINK_SELINUX_SOCKET;
1182		case NETLINK_ISCSI:
1183			return SECCLASS_NETLINK_ISCSI_SOCKET;
1184		case NETLINK_AUDIT:
1185			return SECCLASS_NETLINK_AUDIT_SOCKET;
1186		case NETLINK_FIB_LOOKUP:
1187			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1188		case NETLINK_CONNECTOR:
1189			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1190		case NETLINK_NETFILTER:
1191			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1192		case NETLINK_DNRTMSG:
1193			return SECCLASS_NETLINK_DNRT_SOCKET;
1194		case NETLINK_KOBJECT_UEVENT:
1195			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1196		case NETLINK_GENERIC:
1197			return SECCLASS_NETLINK_GENERIC_SOCKET;
1198		case NETLINK_SCSITRANSPORT:
1199			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1200		case NETLINK_RDMA:
1201			return SECCLASS_NETLINK_RDMA_SOCKET;
1202		case NETLINK_CRYPTO:
1203			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1204		default:
1205			return SECCLASS_NETLINK_SOCKET;
1206		}
1207	case PF_PACKET:
1208		return SECCLASS_PACKET_SOCKET;
1209	case PF_KEY:
1210		return SECCLASS_KEY_SOCKET;
1211	case PF_APPLETALK:
1212		return SECCLASS_APPLETALK_SOCKET;
1213	}
1214
1215	if (extsockclass) {
1216		switch (family) {
1217		case PF_AX25:
1218			return SECCLASS_AX25_SOCKET;
1219		case PF_IPX:
1220			return SECCLASS_IPX_SOCKET;
1221		case PF_NETROM:
1222			return SECCLASS_NETROM_SOCKET;
1223		case PF_ATMPVC:
1224			return SECCLASS_ATMPVC_SOCKET;
1225		case PF_X25:
1226			return SECCLASS_X25_SOCKET;
1227		case PF_ROSE:
1228			return SECCLASS_ROSE_SOCKET;
1229		case PF_DECnet:
1230			return SECCLASS_DECNET_SOCKET;
1231		case PF_ATMSVC:
1232			return SECCLASS_ATMSVC_SOCKET;
1233		case PF_RDS:
1234			return SECCLASS_RDS_SOCKET;
1235		case PF_IRDA:
1236			return SECCLASS_IRDA_SOCKET;
1237		case PF_PPPOX:
1238			return SECCLASS_PPPOX_SOCKET;
1239		case PF_LLC:
1240			return SECCLASS_LLC_SOCKET;
1241		case PF_CAN:
1242			return SECCLASS_CAN_SOCKET;
1243		case PF_TIPC:
1244			return SECCLASS_TIPC_SOCKET;
1245		case PF_BLUETOOTH:
1246			return SECCLASS_BLUETOOTH_SOCKET;
1247		case PF_IUCV:
1248			return SECCLASS_IUCV_SOCKET;
1249		case PF_RXRPC:
1250			return SECCLASS_RXRPC_SOCKET;
1251		case PF_ISDN:
1252			return SECCLASS_ISDN_SOCKET;
1253		case PF_PHONET:
1254			return SECCLASS_PHONET_SOCKET;
1255		case PF_IEEE802154:
1256			return SECCLASS_IEEE802154_SOCKET;
1257		case PF_CAIF:
1258			return SECCLASS_CAIF_SOCKET;
1259		case PF_ALG:
1260			return SECCLASS_ALG_SOCKET;
1261		case PF_NFC:
1262			return SECCLASS_NFC_SOCKET;
1263		case PF_VSOCK:
1264			return SECCLASS_VSOCK_SOCKET;
1265		case PF_KCM:
1266			return SECCLASS_KCM_SOCKET;
1267		case PF_QIPCRTR:
1268			return SECCLASS_QIPCRTR_SOCKET;
1269		case PF_SMC:
1270			return SECCLASS_SMC_SOCKET;
1271		case PF_XDP:
1272			return SECCLASS_XDP_SOCKET;
1273#if PF_MAX > 45
1274#error New address family defined, please update this function.
1275#endif
1276		}
1277	}
1278
1279	return SECCLASS_SOCKET;
1280}
1281
1282static int selinux_genfs_get_sid(struct dentry *dentry,
1283				 u16 tclass,
1284				 u16 flags,
1285				 u32 *sid)
1286{
1287	int rc;
1288	struct super_block *sb = dentry->d_sb;
1289	char *buffer, *path;
1290
1291	buffer = (char *)__get_free_page(GFP_KERNEL);
1292	if (!buffer)
1293		return -ENOMEM;
1294
1295	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1296	if (IS_ERR(path))
1297		rc = PTR_ERR(path);
1298	else {
1299		if (flags & SE_SBPROC) {
1300			/* each process gets a /proc/PID/ entry. Strip off the
1301			 * PID part to get a valid selinux labeling.
1302			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1303			while (path[1] >= '0' && path[1] <= '9') {
1304				path[1] = '/';
1305				path++;
1306			}
1307		}
1308		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1309					path, tclass, sid);
1310		if (rc == -ENOENT) {
1311			/* No match in policy, mark as unlabeled. */
1312			*sid = SECINITSID_UNLABELED;
1313			rc = 0;
1314		}
 
1315	}
1316	free_page((unsigned long)buffer);
1317	return rc;
1318}
1319
1320static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1321				  u32 def_sid, u32 *sid)
 
1322{
1323#define INITCONTEXTLEN 255
1324	char *context;
1325	unsigned int len;
1326	int rc;
1327
1328	len = INITCONTEXTLEN;
1329	context = kmalloc(len + 1, GFP_NOFS);
1330	if (!context)
1331		return -ENOMEM;
1332
1333	context[len] = '\0';
1334	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1335	if (rc == -ERANGE) {
1336		kfree(context);
1337
1338		/* Need a larger buffer.  Query for the right size. */
1339		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1340		if (rc < 0)
1341			return rc;
1342
1343		len = rc;
1344		context = kmalloc(len + 1, GFP_NOFS);
1345		if (!context)
1346			return -ENOMEM;
1347
1348		context[len] = '\0';
1349		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1350				    context, len);
1351	}
1352	if (rc < 0) {
1353		kfree(context);
1354		if (rc != -ENODATA) {
1355			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1356				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1357			return rc;
1358		}
1359		*sid = def_sid;
1360		return 0;
1361	}
1362
1363	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1364					     def_sid, GFP_NOFS);
1365	if (rc) {
1366		char *dev = inode->i_sb->s_id;
1367		unsigned long ino = inode->i_ino;
1368
1369		if (rc == -EINVAL) {
1370			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1371					      ino, dev, context);
1372		} else {
1373			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1374				__func__, context, -rc, dev, ino);
1375		}
1376	}
1377	kfree(context);
1378	return 0;
1379}
 
1380
1381/* The inode's security attributes must be initialized before first use. */
1382static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1383{
1384	struct superblock_security_struct *sbsec = NULL;
1385	struct inode_security_struct *isec = selinux_inode(inode);
1386	u32 task_sid, sid = 0;
1387	u16 sclass;
1388	struct dentry *dentry;
 
 
 
1389	int rc = 0;
1390
1391	if (isec->initialized == LABEL_INITIALIZED)
1392		return 0;
1393
1394	spin_lock(&isec->lock);
1395	if (isec->initialized == LABEL_INITIALIZED)
1396		goto out_unlock;
1397
1398	if (isec->sclass == SECCLASS_FILE)
1399		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1400
1401	sbsec = inode->i_sb->s_security;
1402	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1403		/* Defer initialization until selinux_complete_init,
1404		   after the initial policy is loaded and the security
1405		   server is ready to handle calls. */
1406		spin_lock(&sbsec->isec_lock);
1407		if (list_empty(&isec->list))
1408			list_add(&isec->list, &sbsec->isec_head);
1409		spin_unlock(&sbsec->isec_lock);
1410		goto out_unlock;
1411	}
1412
1413	sclass = isec->sclass;
1414	task_sid = isec->task_sid;
1415	sid = isec->sid;
1416	isec->initialized = LABEL_PENDING;
1417	spin_unlock(&isec->lock);
1418
1419	switch (sbsec->behavior) {
1420	case SECURITY_FS_USE_NATIVE:
1421		break;
1422	case SECURITY_FS_USE_XATTR:
1423		if (!(inode->i_opflags & IOP_XATTR)) {
1424			sid = sbsec->def_sid;
1425			break;
1426		}
 
1427		/* Need a dentry, since the xattr API requires one.
1428		   Life would be simpler if we could just pass the inode. */
1429		if (opt_dentry) {
1430			/* Called from d_instantiate or d_splice_alias. */
1431			dentry = dget(opt_dentry);
1432		} else {
1433			/*
1434			 * Called from selinux_complete_init, try to find a dentry.
1435			 * Some filesystems really want a connected one, so try
1436			 * that first.  We could split SECURITY_FS_USE_XATTR in
1437			 * two, depending upon that...
1438			 */
1439			dentry = d_find_alias(inode);
1440			if (!dentry)
1441				dentry = d_find_any_alias(inode);
1442		}
1443		if (!dentry) {
1444			/*
1445			 * this is can be hit on boot when a file is accessed
1446			 * before the policy is loaded.  When we load policy we
1447			 * may find inodes that have no dentry on the
1448			 * sbsec->isec_head list.  No reason to complain as these
1449			 * will get fixed up the next time we go through
1450			 * inode_doinit with a dentry, before these inodes could
1451			 * be used again by userspace.
1452			 */
1453			goto out;
1454		}
1455
1456		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1457					    &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1458		dput(dentry);
1459		if (rc)
1460			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1461		break;
1462	case SECURITY_FS_USE_TASK:
1463		sid = task_sid;
1464		break;
1465	case SECURITY_FS_USE_TRANS:
1466		/* Default to the fs SID. */
1467		sid = sbsec->sid;
1468
1469		/* Try to obtain a transition SID. */
1470		rc = security_transition_sid(&selinux_state, task_sid, sid,
1471					     sclass, NULL, &sid);
 
1472		if (rc)
1473			goto out;
 
1474		break;
1475	case SECURITY_FS_USE_MNTPOINT:
1476		sid = sbsec->mntpoint_sid;
1477		break;
1478	default:
1479		/* Default to the fs superblock SID. */
1480		sid = sbsec->sid;
1481
1482		if ((sbsec->flags & SE_SBGENFS) &&
1483		     (!S_ISLNK(inode->i_mode) ||
1484		      selinux_policycap_genfs_seclabel_symlinks())) {
1485			/* We must have a dentry to determine the label on
1486			 * procfs inodes */
1487			if (opt_dentry) {
1488				/* Called from d_instantiate or
1489				 * d_splice_alias. */
1490				dentry = dget(opt_dentry);
1491			} else {
1492				/* Called from selinux_complete_init, try to
1493				 * find a dentry.  Some filesystems really want
1494				 * a connected one, so try that first.
1495				 */
1496				dentry = d_find_alias(inode);
1497				if (!dentry)
1498					dentry = d_find_any_alias(inode);
1499			}
1500			/*
1501			 * This can be hit on boot when a file is accessed
1502			 * before the policy is loaded.  When we load policy we
1503			 * may find inodes that have no dentry on the
1504			 * sbsec->isec_head list.  No reason to complain as
1505			 * these will get fixed up the next time we go through
1506			 * inode_doinit() with a dentry, before these inodes
1507			 * could be used again by userspace.
1508			 */
1509			if (!dentry)
1510				goto out;
1511			rc = selinux_genfs_get_sid(dentry, sclass,
1512						   sbsec->flags, &sid);
1513			if (rc) {
1514				dput(dentry);
1515				goto out;
1516			}
1517
1518			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1519			    (inode->i_opflags & IOP_XATTR)) {
1520				rc = inode_doinit_use_xattr(inode, dentry,
1521							    sid, &sid);
1522				if (rc) {
1523					dput(dentry);
1524					goto out;
1525				}
1526			}
1527			dput(dentry);
 
 
 
1528		}
1529		break;
1530	}
1531
1532out:
1533	spin_lock(&isec->lock);
1534	if (isec->initialized == LABEL_PENDING) {
1535		if (!sid || rc) {
1536			isec->initialized = LABEL_INVALID;
1537			goto out_unlock;
1538		}
1539
1540		isec->initialized = LABEL_INITIALIZED;
1541		isec->sid = sid;
1542	}
1543
1544out_unlock:
1545	spin_unlock(&isec->lock);
 
 
 
1546	return rc;
1547}
1548
1549/* Convert a Linux signal to an access vector. */
1550static inline u32 signal_to_av(int sig)
1551{
1552	u32 perm = 0;
1553
1554	switch (sig) {
1555	case SIGCHLD:
1556		/* Commonly granted from child to parent. */
1557		perm = PROCESS__SIGCHLD;
1558		break;
1559	case SIGKILL:
1560		/* Cannot be caught or ignored */
1561		perm = PROCESS__SIGKILL;
1562		break;
1563	case SIGSTOP:
1564		/* Cannot be caught or ignored */
1565		perm = PROCESS__SIGSTOP;
1566		break;
1567	default:
1568		/* All other signals. */
1569		perm = PROCESS__SIGNAL;
1570		break;
1571	}
1572
1573	return perm;
1574}
1575
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1576#if CAP_LAST_CAP > 63
1577#error Fix SELinux to handle capabilities > 63.
1578#endif
1579
1580/* Check whether a task is allowed to use a capability. */
1581static int cred_has_capability(const struct cred *cred,
1582			       int cap, unsigned int opts, bool initns)
1583{
1584	struct common_audit_data ad;
1585	struct av_decision avd;
1586	u16 sclass;
1587	u32 sid = cred_sid(cred);
1588	u32 av = CAP_TO_MASK(cap);
1589	int rc;
1590
1591	ad.type = LSM_AUDIT_DATA_CAP;
1592	ad.u.cap = cap;
1593
1594	switch (CAP_TO_INDEX(cap)) {
1595	case 0:
1596		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1597		break;
1598	case 1:
1599		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1600		break;
1601	default:
1602		pr_err("SELinux:  out of range capability %d\n", cap);
 
1603		BUG();
1604		return -EINVAL;
1605	}
1606
1607	rc = avc_has_perm_noaudit(&selinux_state,
1608				  sid, sid, sclass, av, 0, &avd);
1609	if (!(opts & CAP_OPT_NOAUDIT)) {
1610		int rc2 = avc_audit(&selinux_state,
1611				    sid, sid, sclass, av, &avd, rc, &ad, 0);
1612		if (rc2)
1613			return rc2;
1614	}
1615	return rc;
1616}
1617
 
 
 
 
 
 
 
 
 
 
1618/* Check whether a task has a particular permission to an inode.
1619   The 'adp' parameter is optional and allows other audit
1620   data to be passed (e.g. the dentry). */
1621static int inode_has_perm(const struct cred *cred,
1622			  struct inode *inode,
1623			  u32 perms,
1624			  struct common_audit_data *adp)
1625{
1626	struct inode_security_struct *isec;
1627	u32 sid;
1628
1629	validate_creds(cred);
1630
1631	if (unlikely(IS_PRIVATE(inode)))
1632		return 0;
1633
1634	sid = cred_sid(cred);
1635	isec = selinux_inode(inode);
1636
1637	return avc_has_perm(&selinux_state,
1638			    sid, isec->sid, isec->sclass, perms, adp);
1639}
1640
1641/* Same as inode_has_perm, but pass explicit audit data containing
1642   the dentry to help the auditing code to more easily generate the
1643   pathname if needed. */
1644static inline int dentry_has_perm(const struct cred *cred,
1645				  struct dentry *dentry,
1646				  u32 av)
1647{
1648	struct inode *inode = d_backing_inode(dentry);
1649	struct common_audit_data ad;
1650
1651	ad.type = LSM_AUDIT_DATA_DENTRY;
1652	ad.u.dentry = dentry;
1653	__inode_security_revalidate(inode, dentry, true);
1654	return inode_has_perm(cred, inode, av, &ad);
1655}
1656
1657/* Same as inode_has_perm, but pass explicit audit data containing
1658   the path to help the auditing code to more easily generate the
1659   pathname if needed. */
1660static inline int path_has_perm(const struct cred *cred,
1661				const struct path *path,
1662				u32 av)
1663{
1664	struct inode *inode = d_backing_inode(path->dentry);
1665	struct common_audit_data ad;
1666
1667	ad.type = LSM_AUDIT_DATA_PATH;
1668	ad.u.path = *path;
1669	__inode_security_revalidate(inode, path->dentry, true);
1670	return inode_has_perm(cred, inode, av, &ad);
1671}
1672
1673/* Same as path_has_perm, but uses the inode from the file struct. */
1674static inline int file_path_has_perm(const struct cred *cred,
1675				     struct file *file,
1676				     u32 av)
1677{
1678	struct common_audit_data ad;
1679
1680	ad.type = LSM_AUDIT_DATA_FILE;
1681	ad.u.file = file;
1682	return inode_has_perm(cred, file_inode(file), av, &ad);
1683}
1684
1685#ifdef CONFIG_BPF_SYSCALL
1686static int bpf_fd_pass(struct file *file, u32 sid);
1687#endif
1688
1689/* Check whether a task can use an open file descriptor to
1690   access an inode in a given way.  Check access to the
1691   descriptor itself, and then use dentry_has_perm to
1692   check a particular permission to the file.
1693   Access to the descriptor is implicitly granted if it
1694   has the same SID as the process.  If av is zero, then
1695   access to the file is not checked, e.g. for cases
1696   where only the descriptor is affected like seek. */
1697static int file_has_perm(const struct cred *cred,
1698			 struct file *file,
1699			 u32 av)
1700{
1701	struct file_security_struct *fsec = selinux_file(file);
1702	struct inode *inode = file_inode(file);
1703	struct common_audit_data ad;
1704	u32 sid = cred_sid(cred);
1705	int rc;
1706
1707	ad.type = LSM_AUDIT_DATA_FILE;
1708	ad.u.file = file;
1709
1710	if (sid != fsec->sid) {
1711		rc = avc_has_perm(&selinux_state,
1712				  sid, fsec->sid,
1713				  SECCLASS_FD,
1714				  FD__USE,
1715				  &ad);
1716		if (rc)
1717			goto out;
1718	}
1719
1720#ifdef CONFIG_BPF_SYSCALL
1721	rc = bpf_fd_pass(file, cred_sid(cred));
1722	if (rc)
1723		return rc;
1724#endif
1725
1726	/* av is zero if only checking access to the descriptor. */
1727	rc = 0;
1728	if (av)
1729		rc = inode_has_perm(cred, inode, av, &ad);
1730
1731out:
1732	return rc;
1733}
1734
1735/*
1736 * Determine the label for an inode that might be unioned.
1737 */
1738static int
1739selinux_determine_inode_label(const struct task_security_struct *tsec,
1740				 struct inode *dir,
1741				 const struct qstr *name, u16 tclass,
1742				 u32 *_new_isid)
1743{
1744	const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1745
1746	if ((sbsec->flags & SE_SBINITIALIZED) &&
1747	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1748		*_new_isid = sbsec->mntpoint_sid;
1749	} else if ((sbsec->flags & SBLABEL_MNT) &&
1750		   tsec->create_sid) {
1751		*_new_isid = tsec->create_sid;
1752	} else {
1753		const struct inode_security_struct *dsec = inode_security(dir);
1754		return security_transition_sid(&selinux_state, tsec->sid,
1755					       dsec->sid, tclass,
1756					       name, _new_isid);
1757	}
1758
1759	return 0;
1760}
1761
1762/* Check whether a task can create a file. */
1763static int may_create(struct inode *dir,
1764		      struct dentry *dentry,
1765		      u16 tclass)
1766{
1767	const struct task_security_struct *tsec = selinux_cred(current_cred());
1768	struct inode_security_struct *dsec;
1769	struct superblock_security_struct *sbsec;
1770	u32 sid, newsid;
1771	struct common_audit_data ad;
1772	int rc;
1773
1774	dsec = inode_security(dir);
1775	sbsec = dir->i_sb->s_security;
1776
1777	sid = tsec->sid;
 
1778
1779	ad.type = LSM_AUDIT_DATA_DENTRY;
1780	ad.u.dentry = dentry;
1781
1782	rc = avc_has_perm(&selinux_state,
1783			  sid, dsec->sid, SECCLASS_DIR,
1784			  DIR__ADD_NAME | DIR__SEARCH,
1785			  &ad);
1786	if (rc)
1787		return rc;
1788
1789	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1790					   &newsid);
1791	if (rc)
1792		return rc;
 
 
1793
1794	rc = avc_has_perm(&selinux_state,
1795			  sid, newsid, tclass, FILE__CREATE, &ad);
1796	if (rc)
1797		return rc;
1798
1799	return avc_has_perm(&selinux_state,
1800			    newsid, sbsec->sid,
1801			    SECCLASS_FILESYSTEM,
1802			    FILESYSTEM__ASSOCIATE, &ad);
1803}
1804
 
 
 
 
 
 
 
 
 
1805#define MAY_LINK	0
1806#define MAY_UNLINK	1
1807#define MAY_RMDIR	2
1808
1809/* Check whether a task can link, unlink, or rmdir a file/directory. */
1810static int may_link(struct inode *dir,
1811		    struct dentry *dentry,
1812		    int kind)
1813
1814{
1815	struct inode_security_struct *dsec, *isec;
1816	struct common_audit_data ad;
1817	u32 sid = current_sid();
1818	u32 av;
1819	int rc;
1820
1821	dsec = inode_security(dir);
1822	isec = backing_inode_security(dentry);
1823
1824	ad.type = LSM_AUDIT_DATA_DENTRY;
1825	ad.u.dentry = dentry;
1826
1827	av = DIR__SEARCH;
1828	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1829	rc = avc_has_perm(&selinux_state,
1830			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1831	if (rc)
1832		return rc;
1833
1834	switch (kind) {
1835	case MAY_LINK:
1836		av = FILE__LINK;
1837		break;
1838	case MAY_UNLINK:
1839		av = FILE__UNLINK;
1840		break;
1841	case MAY_RMDIR:
1842		av = DIR__RMDIR;
1843		break;
1844	default:
1845		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1846			__func__, kind);
1847		return 0;
1848	}
1849
1850	rc = avc_has_perm(&selinux_state,
1851			  sid, isec->sid, isec->sclass, av, &ad);
1852	return rc;
1853}
1854
1855static inline int may_rename(struct inode *old_dir,
1856			     struct dentry *old_dentry,
1857			     struct inode *new_dir,
1858			     struct dentry *new_dentry)
1859{
1860	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1861	struct common_audit_data ad;
1862	u32 sid = current_sid();
1863	u32 av;
1864	int old_is_dir, new_is_dir;
1865	int rc;
1866
1867	old_dsec = inode_security(old_dir);
1868	old_isec = backing_inode_security(old_dentry);
1869	old_is_dir = d_is_dir(old_dentry);
1870	new_dsec = inode_security(new_dir);
1871
1872	ad.type = LSM_AUDIT_DATA_DENTRY;
1873
1874	ad.u.dentry = old_dentry;
1875	rc = avc_has_perm(&selinux_state,
1876			  sid, old_dsec->sid, SECCLASS_DIR,
1877			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1878	if (rc)
1879		return rc;
1880	rc = avc_has_perm(&selinux_state,
1881			  sid, old_isec->sid,
1882			  old_isec->sclass, FILE__RENAME, &ad);
1883	if (rc)
1884		return rc;
1885	if (old_is_dir && new_dir != old_dir) {
1886		rc = avc_has_perm(&selinux_state,
1887				  sid, old_isec->sid,
1888				  old_isec->sclass, DIR__REPARENT, &ad);
1889		if (rc)
1890			return rc;
1891	}
1892
1893	ad.u.dentry = new_dentry;
1894	av = DIR__ADD_NAME | DIR__SEARCH;
1895	if (d_is_positive(new_dentry))
1896		av |= DIR__REMOVE_NAME;
1897	rc = avc_has_perm(&selinux_state,
1898			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1899	if (rc)
1900		return rc;
1901	if (d_is_positive(new_dentry)) {
1902		new_isec = backing_inode_security(new_dentry);
1903		new_is_dir = d_is_dir(new_dentry);
1904		rc = avc_has_perm(&selinux_state,
1905				  sid, new_isec->sid,
1906				  new_isec->sclass,
1907				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1908		if (rc)
1909			return rc;
1910	}
1911
1912	return 0;
1913}
1914
1915/* Check whether a task can perform a filesystem operation. */
1916static int superblock_has_perm(const struct cred *cred,
1917			       struct super_block *sb,
1918			       u32 perms,
1919			       struct common_audit_data *ad)
1920{
1921	struct superblock_security_struct *sbsec;
1922	u32 sid = cred_sid(cred);
1923
1924	sbsec = sb->s_security;
1925	return avc_has_perm(&selinux_state,
1926			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1927}
1928
1929/* Convert a Linux mode and permission mask to an access vector. */
1930static inline u32 file_mask_to_av(int mode, int mask)
1931{
1932	u32 av = 0;
1933
1934	if (!S_ISDIR(mode)) {
1935		if (mask & MAY_EXEC)
1936			av |= FILE__EXECUTE;
1937		if (mask & MAY_READ)
1938			av |= FILE__READ;
1939
1940		if (mask & MAY_APPEND)
1941			av |= FILE__APPEND;
1942		else if (mask & MAY_WRITE)
1943			av |= FILE__WRITE;
1944
1945	} else {
1946		if (mask & MAY_EXEC)
1947			av |= DIR__SEARCH;
1948		if (mask & MAY_WRITE)
1949			av |= DIR__WRITE;
1950		if (mask & MAY_READ)
1951			av |= DIR__READ;
1952	}
1953
1954	return av;
1955}
1956
1957/* Convert a Linux file to an access vector. */
1958static inline u32 file_to_av(struct file *file)
1959{
1960	u32 av = 0;
1961
1962	if (file->f_mode & FMODE_READ)
1963		av |= FILE__READ;
1964	if (file->f_mode & FMODE_WRITE) {
1965		if (file->f_flags & O_APPEND)
1966			av |= FILE__APPEND;
1967		else
1968			av |= FILE__WRITE;
1969	}
1970	if (!av) {
1971		/*
1972		 * Special file opened with flags 3 for ioctl-only use.
1973		 */
1974		av = FILE__IOCTL;
1975	}
1976
1977	return av;
1978}
1979
1980/*
1981 * Convert a file to an access vector and include the correct open
1982 * open permission.
1983 */
1984static inline u32 open_file_to_av(struct file *file)
1985{
1986	u32 av = file_to_av(file);
1987	struct inode *inode = file_inode(file);
1988
1989	if (selinux_policycap_openperm() &&
1990	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1991		av |= FILE__OPEN;
1992
1993	return av;
1994}
1995
1996/* Hook functions begin here. */
1997
1998static int selinux_binder_set_context_mgr(struct task_struct *mgr)
1999{
2000	u32 mysid = current_sid();
2001	u32 mgrsid = task_sid(mgr);
2002
2003	return avc_has_perm(&selinux_state,
2004			    mysid, mgrsid, SECCLASS_BINDER,
2005			    BINDER__SET_CONTEXT_MGR, NULL);
2006}
2007
2008static int selinux_binder_transaction(struct task_struct *from,
2009				      struct task_struct *to)
2010{
2011	u32 mysid = current_sid();
2012	u32 fromsid = task_sid(from);
2013	u32 tosid = task_sid(to);
2014	int rc;
2015
2016	if (mysid != fromsid) {
2017		rc = avc_has_perm(&selinux_state,
2018				  mysid, fromsid, SECCLASS_BINDER,
2019				  BINDER__IMPERSONATE, NULL);
2020		if (rc)
2021			return rc;
 
 
2022	}
2023
2024	return avc_has_perm(&selinux_state,
2025			    fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2026			    NULL);
2027}
2028
2029static int selinux_binder_transfer_binder(struct task_struct *from,
2030					  struct task_struct *to)
2031{
2032	u32 fromsid = task_sid(from);
2033	u32 tosid = task_sid(to);
2034
2035	return avc_has_perm(&selinux_state,
2036			    fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2037			    NULL);
2038}
2039
2040static int selinux_binder_transfer_file(struct task_struct *from,
2041					struct task_struct *to,
2042					struct file *file)
2043{
2044	u32 sid = task_sid(to);
2045	struct file_security_struct *fsec = selinux_file(file);
2046	struct dentry *dentry = file->f_path.dentry;
2047	struct inode_security_struct *isec;
2048	struct common_audit_data ad;
2049	int rc;
2050
2051	ad.type = LSM_AUDIT_DATA_PATH;
2052	ad.u.path = file->f_path;
2053
2054	if (sid != fsec->sid) {
2055		rc = avc_has_perm(&selinux_state,
2056				  sid, fsec->sid,
2057				  SECCLASS_FD,
2058				  FD__USE,
2059				  &ad);
2060		if (rc)
2061			return rc;
2062	}
2063
2064#ifdef CONFIG_BPF_SYSCALL
2065	rc = bpf_fd_pass(file, sid);
2066	if (rc)
2067		return rc;
2068#endif
2069
2070	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2071		return 0;
2072
2073	isec = backing_inode_security(dentry);
2074	return avc_has_perm(&selinux_state,
2075			    sid, isec->sid, isec->sclass, file_to_av(file),
2076			    &ad);
2077}
2078
2079static int selinux_ptrace_access_check(struct task_struct *child,
2080				     unsigned int mode)
2081{
2082	u32 sid = current_sid();
2083	u32 csid = task_sid(child);
2084
2085	if (mode & PTRACE_MODE_READ)
2086		return avc_has_perm(&selinux_state,
2087				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2088
2089	return avc_has_perm(&selinux_state,
2090			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2091}
2092
2093static int selinux_ptrace_traceme(struct task_struct *parent)
2094{
2095	return avc_has_perm(&selinux_state,
2096			    task_sid(parent), current_sid(), SECCLASS_PROCESS,
2097			    PROCESS__PTRACE, NULL);
2098}
2099
2100static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2101			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2102{
2103	return avc_has_perm(&selinux_state,
2104			    current_sid(), task_sid(target), SECCLASS_PROCESS,
2105			    PROCESS__GETCAP, NULL);
 
 
 
 
2106}
2107
2108static int selinux_capset(struct cred *new, const struct cred *old,
2109			  const kernel_cap_t *effective,
2110			  const kernel_cap_t *inheritable,
2111			  const kernel_cap_t *permitted)
2112{
2113	return avc_has_perm(&selinux_state,
2114			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2115			    PROCESS__SETCAP, NULL);
 
 
 
 
 
2116}
2117
2118/*
2119 * (This comment used to live with the selinux_task_setuid hook,
2120 * which was removed).
2121 *
2122 * Since setuid only affects the current process, and since the SELinux
2123 * controls are not based on the Linux identity attributes, SELinux does not
2124 * need to control this operation.  However, SELinux does control the use of
2125 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2126 */
2127
2128static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2129			   int cap, unsigned int opts)
2130{
2131	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
 
 
 
 
 
 
2132}
2133
2134static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2135{
2136	const struct cred *cred = current_cred();
2137	int rc = 0;
2138
2139	if (!sb)
2140		return 0;
2141
2142	switch (cmds) {
2143	case Q_SYNC:
2144	case Q_QUOTAON:
2145	case Q_QUOTAOFF:
2146	case Q_SETINFO:
2147	case Q_SETQUOTA:
2148	case Q_XQUOTAOFF:
2149	case Q_XQUOTAON:
2150	case Q_XSETQLIM:
2151		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2152		break;
2153	case Q_GETFMT:
2154	case Q_GETINFO:
2155	case Q_GETQUOTA:
2156	case Q_XGETQUOTA:
2157	case Q_XGETQSTAT:
2158	case Q_XGETQSTATV:
2159	case Q_XGETNEXTQUOTA:
2160		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2161		break;
2162	default:
2163		rc = 0;  /* let the kernel handle invalid cmds */
2164		break;
2165	}
2166	return rc;
2167}
2168
2169static int selinux_quota_on(struct dentry *dentry)
2170{
2171	const struct cred *cred = current_cred();
2172
2173	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2174}
2175
2176static int selinux_syslog(int type)
2177{
 
 
2178	switch (type) {
2179	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2180	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2181		return avc_has_perm(&selinux_state,
2182				    current_sid(), SECINITSID_KERNEL,
2183				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2184	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2185	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2186	/* Set level of messages printed to console */
2187	case SYSLOG_ACTION_CONSOLE_LEVEL:
2188		return avc_has_perm(&selinux_state,
2189				    current_sid(), SECINITSID_KERNEL,
2190				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2191				    NULL);
2192	}
2193	/* All other syslog types */
2194	return avc_has_perm(&selinux_state,
2195			    current_sid(), SECINITSID_KERNEL,
2196			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
 
 
 
2197}
2198
2199/*
2200 * Check that a process has enough memory to allocate a new virtual
2201 * mapping. 0 means there is enough memory for the allocation to
2202 * succeed and -ENOMEM implies there is not.
2203 *
2204 * Do not audit the selinux permission check, as this is applied to all
2205 * processes that allocate mappings.
2206 */
2207static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2208{
2209	int rc, cap_sys_admin = 0;
2210
2211	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2212				 CAP_OPT_NOAUDIT, true);
2213	if (rc == 0)
2214		cap_sys_admin = 1;
2215
2216	return cap_sys_admin;
2217}
2218
2219/* binprm security operations */
2220
2221static u32 ptrace_parent_sid(void)
2222{
2223	u32 sid = 0;
2224	struct task_struct *tracer;
2225
2226	rcu_read_lock();
2227	tracer = ptrace_parent(current);
2228	if (tracer)
2229		sid = task_sid(tracer);
2230	rcu_read_unlock();
2231
2232	return sid;
2233}
2234
2235static int check_nnp_nosuid(const struct linux_binprm *bprm,
2236			    const struct task_security_struct *old_tsec,
2237			    const struct task_security_struct *new_tsec)
2238{
2239	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2240	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2241	int rc;
2242	u32 av;
2243
2244	if (!nnp && !nosuid)
2245		return 0; /* neither NNP nor nosuid */
2246
2247	if (new_tsec->sid == old_tsec->sid)
2248		return 0; /* No change in credentials */
2249
2250	/*
2251	 * If the policy enables the nnp_nosuid_transition policy capability,
2252	 * then we permit transitions under NNP or nosuid if the
2253	 * policy allows the corresponding permission between
2254	 * the old and new contexts.
2255	 */
2256	if (selinux_policycap_nnp_nosuid_transition()) {
2257		av = 0;
2258		if (nnp)
2259			av |= PROCESS2__NNP_TRANSITION;
2260		if (nosuid)
2261			av |= PROCESS2__NOSUID_TRANSITION;
2262		rc = avc_has_perm(&selinux_state,
2263				  old_tsec->sid, new_tsec->sid,
2264				  SECCLASS_PROCESS2, av, NULL);
2265		if (!rc)
2266			return 0;
2267	}
2268
2269	/*
2270	 * We also permit NNP or nosuid transitions to bounded SIDs,
2271	 * i.e. SIDs that are guaranteed to only be allowed a subset
2272	 * of the permissions of the current SID.
2273	 */
2274	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2275					 new_tsec->sid);
2276	if (!rc)
2277		return 0;
2278
2279	/*
2280	 * On failure, preserve the errno values for NNP vs nosuid.
2281	 * NNP:  Operation not permitted for caller.
2282	 * nosuid:  Permission denied to file.
2283	 */
2284	if (nnp)
2285		return -EPERM;
2286	return -EACCES;
2287}
2288
2289static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2290{
2291	const struct task_security_struct *old_tsec;
2292	struct task_security_struct *new_tsec;
2293	struct inode_security_struct *isec;
2294	struct common_audit_data ad;
2295	struct inode *inode = file_inode(bprm->file);
2296	int rc;
2297
 
 
 
 
2298	/* SELinux context only depends on initial program or script and not
2299	 * the script interpreter */
 
 
2300
2301	old_tsec = selinux_cred(current_cred());
2302	new_tsec = selinux_cred(bprm->cred);
2303	isec = inode_security(inode);
2304
2305	/* Default to the current task SID. */
2306	new_tsec->sid = old_tsec->sid;
2307	new_tsec->osid = old_tsec->sid;
2308
2309	/* Reset fs, key, and sock SIDs on execve. */
2310	new_tsec->create_sid = 0;
2311	new_tsec->keycreate_sid = 0;
2312	new_tsec->sockcreate_sid = 0;
2313
2314	if (old_tsec->exec_sid) {
2315		new_tsec->sid = old_tsec->exec_sid;
2316		/* Reset exec SID on execve. */
2317		new_tsec->exec_sid = 0;
2318
2319		/* Fail on NNP or nosuid if not an allowed transition. */
2320		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2321		if (rc)
2322			return rc;
 
 
2323	} else {
2324		/* Check for a default transition on this program. */
2325		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2326					     isec->sid, SECCLASS_PROCESS, NULL,
2327					     &new_tsec->sid);
2328		if (rc)
2329			return rc;
2330
2331		/*
2332		 * Fallback to old SID on NNP or nosuid if not an allowed
2333		 * transition.
2334		 */
2335		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336		if (rc)
2337			new_tsec->sid = old_tsec->sid;
2338	}
2339
2340	ad.type = LSM_AUDIT_DATA_FILE;
2341	ad.u.file = bprm->file;
 
 
 
 
2342
2343	if (new_tsec->sid == old_tsec->sid) {
2344		rc = avc_has_perm(&selinux_state,
2345				  old_tsec->sid, isec->sid,
2346				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2347		if (rc)
2348			return rc;
2349	} else {
2350		/* Check permissions for the transition. */
2351		rc = avc_has_perm(&selinux_state,
2352				  old_tsec->sid, new_tsec->sid,
2353				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2354		if (rc)
2355			return rc;
2356
2357		rc = avc_has_perm(&selinux_state,
2358				  new_tsec->sid, isec->sid,
2359				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2360		if (rc)
2361			return rc;
2362
2363		/* Check for shared state */
2364		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2365			rc = avc_has_perm(&selinux_state,
2366					  old_tsec->sid, new_tsec->sid,
2367					  SECCLASS_PROCESS, PROCESS__SHARE,
2368					  NULL);
2369			if (rc)
2370				return -EPERM;
2371		}
2372
2373		/* Make sure that anyone attempting to ptrace over a task that
2374		 * changes its SID has the appropriate permit */
2375		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2376			u32 ptsid = ptrace_parent_sid();
 
 
 
 
 
 
 
 
 
 
 
 
2377			if (ptsid != 0) {
2378				rc = avc_has_perm(&selinux_state,
2379						  ptsid, new_tsec->sid,
2380						  SECCLASS_PROCESS,
2381						  PROCESS__PTRACE, NULL);
2382				if (rc)
2383					return -EPERM;
2384			}
2385		}
2386
2387		/* Clear any possibly unsafe personality bits on exec: */
2388		bprm->per_clear |= PER_CLEAR_ON_SETID;
 
 
 
 
2389
 
 
 
 
 
 
 
 
 
 
2390		/* Enable secure mode for SIDs transitions unless
2391		   the noatsecure permission is granted between
2392		   the two SIDs, i.e. ahp returns 0. */
2393		rc = avc_has_perm(&selinux_state,
2394				  old_tsec->sid, new_tsec->sid,
2395				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2396				  NULL);
2397		bprm->secureexec |= !!rc;
2398	}
2399
2400	return 0;
2401}
2402
2403static int match_file(const void *p, struct file *file, unsigned fd)
2404{
2405	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2406}
2407
2408/* Derived from fs/exec.c:flush_old_files. */
2409static inline void flush_unauthorized_files(const struct cred *cred,
2410					    struct files_struct *files)
2411{
2412	struct file *file, *devnull = NULL;
2413	struct tty_struct *tty;
2414	int drop_tty = 0;
2415	unsigned n;
2416
2417	tty = get_current_tty();
2418	if (tty) {
2419		spin_lock(&tty->files_lock);
2420		if (!list_empty(&tty->tty_files)) {
2421			struct tty_file_private *file_priv;
2422
2423			/* Revalidate access to controlling tty.
2424			   Use file_path_has_perm on the tty path directly
2425			   rather than using file_has_perm, as this particular
2426			   open file may belong to another process and we are
2427			   only interested in the inode-based check here. */
2428			file_priv = list_first_entry(&tty->tty_files,
2429						struct tty_file_private, list);
2430			file = file_priv->file;
2431			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2432				drop_tty = 1;
2433		}
2434		spin_unlock(&tty->files_lock);
2435		tty_kref_put(tty);
2436	}
2437	/* Reset controlling tty. */
2438	if (drop_tty)
2439		no_tty();
2440
2441	/* Revalidate access to inherited open files. */
2442	n = iterate_fd(files, 0, match_file, cred);
2443	if (!n) /* none found? */
2444		return;
2445
2446	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2447	if (IS_ERR(devnull))
2448		devnull = NULL;
2449	/* replace all the matching ones with this */
2450	do {
2451		replace_fd(n - 1, devnull, 0);
2452	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2453	if (devnull)
2454		fput(devnull);
2455}
2456
2457/*
2458 * Prepare a process for imminent new credential changes due to exec
2459 */
2460static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2461{
2462	struct task_security_struct *new_tsec;
2463	struct rlimit *rlim, *initrlim;
2464	int rc, i;
2465
2466	new_tsec = selinux_cred(bprm->cred);
2467	if (new_tsec->sid == new_tsec->osid)
2468		return;
2469
2470	/* Close files for which the new task SID is not authorized. */
2471	flush_unauthorized_files(bprm->cred, current->files);
2472
2473	/* Always clear parent death signal on SID transitions. */
2474	current->pdeath_signal = 0;
2475
2476	/* Check whether the new SID can inherit resource limits from the old
2477	 * SID.  If not, reset all soft limits to the lower of the current
2478	 * task's hard limit and the init task's soft limit.
2479	 *
2480	 * Note that the setting of hard limits (even to lower them) can be
2481	 * controlled by the setrlimit check.  The inclusion of the init task's
2482	 * soft limit into the computation is to avoid resetting soft limits
2483	 * higher than the default soft limit for cases where the default is
2484	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2485	 */
2486	rc = avc_has_perm(&selinux_state,
2487			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2488			  PROCESS__RLIMITINH, NULL);
2489	if (rc) {
2490		/* protect against do_prlimit() */
2491		task_lock(current);
2492		for (i = 0; i < RLIM_NLIMITS; i++) {
2493			rlim = current->signal->rlim + i;
2494			initrlim = init_task.signal->rlim + i;
2495			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2496		}
2497		task_unlock(current);
2498		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2499			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2500	}
2501}
2502
2503/*
2504 * Clean up the process immediately after the installation of new credentials
2505 * due to exec
2506 */
2507static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2508{
2509	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2510	u32 osid, sid;
2511	int rc;
2512
2513	osid = tsec->osid;
2514	sid = tsec->sid;
2515
2516	if (sid == osid)
2517		return;
2518
2519	/* Check whether the new SID can inherit signal state from the old SID.
2520	 * If not, clear itimers to avoid subsequent signal generation and
2521	 * flush and unblock signals.
2522	 *
2523	 * This must occur _after_ the task SID has been updated so that any
2524	 * kill done after the flush will be checked against the new SID.
2525	 */
2526	rc = avc_has_perm(&selinux_state,
2527			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2528	if (rc) {
2529		clear_itimer();
2530
 
2531		spin_lock_irq(&current->sighand->siglock);
2532		if (!fatal_signal_pending(current)) {
2533			flush_sigqueue(&current->pending);
2534			flush_sigqueue(&current->signal->shared_pending);
2535			flush_signal_handlers(current, 1);
2536			sigemptyset(&current->blocked);
2537			recalc_sigpending();
2538		}
2539		spin_unlock_irq(&current->sighand->siglock);
2540	}
2541
2542	/* Wake up the parent if it is waiting so that it can recheck
2543	 * wait permission to the new task SID. */
2544	read_lock(&tasklist_lock);
2545	__wake_up_parent(current, current->real_parent);
2546	read_unlock(&tasklist_lock);
2547}
2548
2549/* superblock security operations */
2550
2551static int selinux_sb_alloc_security(struct super_block *sb)
2552{
2553	struct superblock_security_struct *sbsec;
2554
2555	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
2556	if (!sbsec)
2557		return -ENOMEM;
2558
2559	mutex_init(&sbsec->lock);
2560	INIT_LIST_HEAD(&sbsec->isec_head);
2561	spin_lock_init(&sbsec->isec_lock);
2562	sbsec->sb = sb;
2563	sbsec->sid = SECINITSID_UNLABELED;
2564	sbsec->def_sid = SECINITSID_FILE;
2565	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2566	sb->s_security = sbsec;
2567
2568	return 0;
2569}
2570
2571static void selinux_sb_free_security(struct super_block *sb)
2572{
2573	superblock_free_security(sb);
2574}
2575
2576static inline int opt_len(const char *s)
2577{
2578	bool open_quote = false;
2579	int len;
2580	char c;
2581
2582	for (len = 0; (c = s[len]) != '\0'; len++) {
2583		if (c == '"')
2584			open_quote = !open_quote;
2585		if (c == ',' && !open_quote)
2586			break;
2587	}
2588	return len;
2589}
2590
2591static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2592{
2593	char *from = options;
2594	char *to = options;
2595	bool first = true;
2596	int rc;
 
 
2597
2598	while (1) {
2599		int len = opt_len(from);
2600		int token;
2601		char *arg = NULL;
 
 
 
 
 
 
2602
2603		token = match_opt_prefix(from, len, &arg);
 
 
 
2604
2605		if (token != Opt_error) {
2606			char *p, *q;
 
 
 
2607
2608			/* strip quotes */
2609			if (arg) {
2610				for (p = q = arg; p < from + len; p++) {
2611					char c = *p;
2612					if (c != '"')
2613						*q++ = c;
2614				}
2615				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2616				if (!arg) {
2617					rc = -ENOMEM;
2618					goto free_opt;
2619				}
2620			}
2621			rc = selinux_add_opt(token, arg, mnt_opts);
2622			if (unlikely(rc)) {
2623				kfree(arg);
2624				goto free_opt;
2625			}
2626		} else {
2627			if (!first) {	// copy with preceding comma
2628				from--;
2629				len++;
2630			}
2631			if (to != from)
2632				memmove(to, from, len);
2633			to += len;
2634			first = false;
2635		}
2636		if (!from[len])
2637			break;
2638		from += len + 1;
2639	}
2640	*to = '\0';
2641	return 0;
 
 
 
 
 
 
2642
2643free_opt:
2644	if (*mnt_opts) {
2645		selinux_free_mnt_opts(*mnt_opts);
2646		*mnt_opts = NULL;
 
 
 
2647	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2648	return rc;
2649}
2650
2651static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2652{
2653	struct selinux_mnt_opts *opts = mnt_opts;
 
 
2654	struct superblock_security_struct *sbsec = sb->s_security;
2655	u32 sid;
2656	int rc;
2657
2658	if (!(sbsec->flags & SE_SBINITIALIZED))
2659		return 0;
2660
2661	if (!opts)
2662		return 0;
2663
2664	if (opts->fscontext) {
2665		rc = parse_sid(sb, opts->fscontext, &sid);
2666		if (rc)
2667			return rc;
2668		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2669			goto out_bad_option;
2670	}
2671	if (opts->context) {
2672		rc = parse_sid(sb, opts->context, &sid);
2673		if (rc)
2674			return rc;
2675		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2676			goto out_bad_option;
2677	}
2678	if (opts->rootcontext) {
2679		struct inode_security_struct *root_isec;
2680		root_isec = backing_inode_security(sb->s_root);
2681		rc = parse_sid(sb, opts->rootcontext, &sid);
2682		if (rc)
2683			return rc;
2684		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2685			goto out_bad_option;
2686	}
2687	if (opts->defcontext) {
2688		rc = parse_sid(sb, opts->defcontext, &sid);
2689		if (rc)
2690			return rc;
2691		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2692			goto out_bad_option;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2693	}
2694	return 0;
2695
 
 
 
 
 
 
2696out_bad_option:
2697	pr_warn("SELinux: unable to change security options "
2698	       "during remount (dev %s, type=%s)\n", sb->s_id,
2699	       sb->s_type->name);
2700	return -EINVAL;
2701}
2702
2703static int selinux_sb_kern_mount(struct super_block *sb)
2704{
2705	const struct cred *cred = current_cred();
2706	struct common_audit_data ad;
 
 
 
 
 
 
 
 
 
2707
2708	ad.type = LSM_AUDIT_DATA_DENTRY;
2709	ad.u.dentry = sb->s_root;
2710	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2711}
2712
2713static int selinux_sb_statfs(struct dentry *dentry)
2714{
2715	const struct cred *cred = current_cred();
2716	struct common_audit_data ad;
2717
2718	ad.type = LSM_AUDIT_DATA_DENTRY;
2719	ad.u.dentry = dentry->d_sb->s_root;
2720	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2721}
2722
2723static int selinux_mount(const char *dev_name,
2724			 const struct path *path,
2725			 const char *type,
2726			 unsigned long flags,
2727			 void *data)
2728{
2729	const struct cred *cred = current_cred();
2730
2731	if (flags & MS_REMOUNT)
2732		return superblock_has_perm(cred, path->dentry->d_sb,
2733					   FILESYSTEM__REMOUNT, NULL);
2734	else
2735		return path_has_perm(cred, path, FILE__MOUNTON);
2736}
2737
2738static int selinux_move_mount(const struct path *from_path,
2739			      const struct path *to_path)
2740{
2741	const struct cred *cred = current_cred();
2742
2743	return path_has_perm(cred, to_path, FILE__MOUNTON);
2744}
2745
2746static int selinux_umount(struct vfsmount *mnt, int flags)
2747{
2748	const struct cred *cred = current_cred();
2749
2750	return superblock_has_perm(cred, mnt->mnt_sb,
2751				   FILESYSTEM__UNMOUNT, NULL);
2752}
2753
2754static int selinux_fs_context_dup(struct fs_context *fc,
2755				  struct fs_context *src_fc)
2756{
2757	const struct selinux_mnt_opts *src = src_fc->security;
2758	struct selinux_mnt_opts *opts;
2759
2760	if (!src)
2761		return 0;
2762
2763	fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2764	if (!fc->security)
2765		return -ENOMEM;
2766
2767	opts = fc->security;
2768
2769	if (src->fscontext) {
2770		opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2771		if (!opts->fscontext)
2772			return -ENOMEM;
2773	}
2774	if (src->context) {
2775		opts->context = kstrdup(src->context, GFP_KERNEL);
2776		if (!opts->context)
2777			return -ENOMEM;
2778	}
2779	if (src->rootcontext) {
2780		opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2781		if (!opts->rootcontext)
2782			return -ENOMEM;
2783	}
2784	if (src->defcontext) {
2785		opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2786		if (!opts->defcontext)
2787			return -ENOMEM;
2788	}
2789	return 0;
2790}
2791
2792static const struct fs_parameter_spec selinux_fs_parameters[] = {
2793	fsparam_string(CONTEXT_STR,	Opt_context),
2794	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2795	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2796	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2797	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2798	{}
2799};
2800
2801static int selinux_fs_context_parse_param(struct fs_context *fc,
2802					  struct fs_parameter *param)
2803{
2804	struct fs_parse_result result;
2805	int opt, rc;
2806
2807	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2808	if (opt < 0)
2809		return opt;
2810
2811	rc = selinux_add_opt(opt, param->string, &fc->security);
2812	if (!rc) {
2813		param->string = NULL;
2814		rc = 1;
2815	}
2816	return rc;
2817}
2818
2819/* inode security operations */
2820
2821static int selinux_inode_alloc_security(struct inode *inode)
2822{
2823	struct inode_security_struct *isec = selinux_inode(inode);
2824	u32 sid = current_sid();
2825
2826	spin_lock_init(&isec->lock);
2827	INIT_LIST_HEAD(&isec->list);
2828	isec->inode = inode;
2829	isec->sid = SECINITSID_UNLABELED;
2830	isec->sclass = SECCLASS_FILE;
2831	isec->task_sid = sid;
2832	isec->initialized = LABEL_INVALID;
2833
2834	return 0;
2835}
2836
2837static void selinux_inode_free_security(struct inode *inode)
2838{
2839	inode_free_security(inode);
2840}
2841
2842static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2843					const struct qstr *name, void **ctx,
2844					u32 *ctxlen)
2845{
 
 
 
 
 
2846	u32 newsid;
2847	int rc;
2848
2849	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2850					   d_inode(dentry->d_parent), name,
2851					   inode_mode_to_security_class(mode),
2852					   &newsid);
2853	if (rc)
2854		return rc;
2855
2856	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2857				       ctxlen);
2858}
2859
2860static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2861					  struct qstr *name,
2862					  const struct cred *old,
2863					  struct cred *new)
2864{
2865	u32 newsid;
2866	int rc;
2867	struct task_security_struct *tsec;
2868
2869	rc = selinux_determine_inode_label(selinux_cred(old),
2870					   d_inode(dentry->d_parent), name,
2871					   inode_mode_to_security_class(mode),
2872					   &newsid);
2873	if (rc)
2874		return rc;
 
 
 
 
 
 
 
 
2875
2876	tsec = selinux_cred(new);
2877	tsec->create_sid = newsid;
2878	return 0;
2879}
2880
2881static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2882				       const struct qstr *qstr,
2883				       const char **name,
2884				       void **value, size_t *len)
2885{
2886	const struct task_security_struct *tsec = selinux_cred(current_cred());
 
2887	struct superblock_security_struct *sbsec;
2888	u32 newsid, clen;
2889	int rc;
2890	char *context;
2891
 
2892	sbsec = dir->i_sb->s_security;
2893
 
2894	newsid = tsec->create_sid;
2895
2896	rc = selinux_determine_inode_label(tsec, dir, qstr,
2897		inode_mode_to_security_class(inode->i_mode),
2898		&newsid);
2899	if (rc)
2900		return rc;
 
 
 
 
 
 
 
 
 
 
 
2901
2902	/* Possibly defer initialization to selinux_complete_init. */
2903	if (sbsec->flags & SE_SBINITIALIZED) {
2904		struct inode_security_struct *isec = selinux_inode(inode);
2905		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2906		isec->sid = newsid;
2907		isec->initialized = LABEL_INITIALIZED;
2908	}
2909
2910	if (!selinux_initialized(&selinux_state) ||
2911	    !(sbsec->flags & SBLABEL_MNT))
2912		return -EOPNOTSUPP;
2913
2914	if (name)
2915		*name = XATTR_SELINUX_SUFFIX;
2916
2917	if (value && len) {
2918		rc = security_sid_to_context_force(&selinux_state, newsid,
2919						   &context, &clen);
2920		if (rc)
2921			return rc;
2922		*value = context;
2923		*len = clen;
2924	}
2925
2926	return 0;
2927}
2928
2929static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2930{
2931	return may_create(dir, dentry, SECCLASS_FILE);
2932}
2933
2934static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2935{
2936	return may_link(dir, old_dentry, MAY_LINK);
2937}
2938
2939static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2940{
2941	return may_link(dir, dentry, MAY_UNLINK);
2942}
2943
2944static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2945{
2946	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2947}
2948
2949static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2950{
2951	return may_create(dir, dentry, SECCLASS_DIR);
2952}
2953
2954static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2955{
2956	return may_link(dir, dentry, MAY_RMDIR);
2957}
2958
2959static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2960{
2961	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2962}
2963
2964static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2965				struct inode *new_inode, struct dentry *new_dentry)
2966{
2967	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2968}
2969
2970static int selinux_inode_readlink(struct dentry *dentry)
2971{
2972	const struct cred *cred = current_cred();
2973
2974	return dentry_has_perm(cred, dentry, FILE__READ);
2975}
2976
2977static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2978				     bool rcu)
2979{
2980	const struct cred *cred = current_cred();
2981	struct common_audit_data ad;
2982	struct inode_security_struct *isec;
2983	u32 sid;
2984
2985	validate_creds(cred);
2986
2987	ad.type = LSM_AUDIT_DATA_DENTRY;
2988	ad.u.dentry = dentry;
2989	sid = cred_sid(cred);
2990	isec = inode_security_rcu(inode, rcu);
2991	if (IS_ERR(isec))
2992		return PTR_ERR(isec);
2993
2994	return avc_has_perm_flags(&selinux_state,
2995				  sid, isec->sid, isec->sclass, FILE__READ, &ad,
2996				  rcu ? MAY_NOT_BLOCK : 0);
2997}
2998
2999static noinline int audit_inode_permission(struct inode *inode,
3000					   u32 perms, u32 audited, u32 denied,
3001					   int result)
3002{
3003	struct common_audit_data ad;
3004	struct inode_security_struct *isec = selinux_inode(inode);
3005	int rc;
3006
3007	ad.type = LSM_AUDIT_DATA_INODE;
3008	ad.u.inode = inode;
3009
3010	rc = slow_avc_audit(&selinux_state,
3011			    current_sid(), isec->sid, isec->sclass, perms,
3012			    audited, denied, result, &ad);
3013	if (rc)
3014		return rc;
3015	return 0;
3016}
3017
3018static int selinux_inode_permission(struct inode *inode, int mask)
3019{
3020	const struct cred *cred = current_cred();
3021	u32 perms;
3022	bool from_access;
3023	bool no_block = mask & MAY_NOT_BLOCK;
3024	struct inode_security_struct *isec;
3025	u32 sid;
3026	struct av_decision avd;
3027	int rc, rc2;
3028	u32 audited, denied;
3029
3030	from_access = mask & MAY_ACCESS;
3031	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3032
3033	/* No permission to check.  Existence test. */
3034	if (!mask)
3035		return 0;
3036
3037	validate_creds(cred);
3038
3039	if (unlikely(IS_PRIVATE(inode)))
3040		return 0;
3041
3042	perms = file_mask_to_av(inode->i_mode, mask);
3043
3044	sid = cred_sid(cred);
3045	isec = inode_security_rcu(inode, no_block);
3046	if (IS_ERR(isec))
3047		return PTR_ERR(isec);
3048
3049	rc = avc_has_perm_noaudit(&selinux_state,
3050				  sid, isec->sid, isec->sclass, perms,
3051				  no_block ? AVC_NONBLOCKING : 0,
3052				  &avd);
3053	audited = avc_audit_required(perms, &avd, rc,
3054				     from_access ? FILE__AUDIT_ACCESS : 0,
3055				     &denied);
3056	if (likely(!audited))
3057		return rc;
3058
3059	/* fall back to ref-walk if we have to generate audit */
3060	if (no_block)
3061		return -ECHILD;
3062
3063	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3064	if (rc2)
3065		return rc2;
3066	return rc;
3067}
3068
3069static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3070{
3071	const struct cred *cred = current_cred();
3072	struct inode *inode = d_backing_inode(dentry);
3073	unsigned int ia_valid = iattr->ia_valid;
3074	__u32 av = FILE__WRITE;
3075
3076	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3077	if (ia_valid & ATTR_FORCE) {
3078		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3079			      ATTR_FORCE);
3080		if (!ia_valid)
3081			return 0;
3082	}
3083
3084	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3085			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3086		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3087
3088	if (selinux_policycap_openperm() &&
3089	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3090	    (ia_valid & ATTR_SIZE) &&
3091	    !(ia_valid & ATTR_FILE))
3092		av |= FILE__OPEN;
3093
3094	return dentry_has_perm(cred, dentry, av);
3095}
3096
3097static int selinux_inode_getattr(const struct path *path)
3098{
3099	return path_has_perm(current_cred(), path, FILE__GETATTR);
 
 
 
 
 
 
3100}
3101
3102static bool has_cap_mac_admin(bool audit)
3103{
3104	const struct cred *cred = current_cred();
3105	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3106
3107	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3108		return false;
3109	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3110		return false;
3111	return true;
 
 
 
 
 
 
 
 
 
 
3112}
3113
3114static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3115				  const void *value, size_t size, int flags)
3116{
3117	struct inode *inode = d_backing_inode(dentry);
3118	struct inode_security_struct *isec;
3119	struct superblock_security_struct *sbsec;
3120	struct common_audit_data ad;
3121	u32 newsid, sid = current_sid();
3122	int rc = 0;
3123
3124	if (strcmp(name, XATTR_NAME_SELINUX)) {
3125		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3126		if (rc)
3127			return rc;
3128
3129		/* Not an attribute we recognize, so just check the
3130		   ordinary setattr permission. */
3131		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3132	}
3133
3134	if (!selinux_initialized(&selinux_state))
3135		return (inode_owner_or_capable(inode) ? 0 : -EPERM);
3136
3137	sbsec = inode->i_sb->s_security;
3138	if (!(sbsec->flags & SBLABEL_MNT))
3139		return -EOPNOTSUPP;
3140
3141	if (!inode_owner_or_capable(inode))
3142		return -EPERM;
3143
3144	ad.type = LSM_AUDIT_DATA_DENTRY;
3145	ad.u.dentry = dentry;
3146
3147	isec = backing_inode_security(dentry);
3148	rc = avc_has_perm(&selinux_state,
3149			  sid, isec->sid, isec->sclass,
3150			  FILE__RELABELFROM, &ad);
3151	if (rc)
3152		return rc;
3153
3154	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3155				     GFP_KERNEL);
3156	if (rc == -EINVAL) {
3157		if (!has_cap_mac_admin(true)) {
3158			struct audit_buffer *ab;
3159			size_t audit_size;
 
3160
3161			/* We strip a nul only if it is at the end, otherwise the
3162			 * context contains a nul and we should audit that */
3163			if (value) {
3164				const char *str = value;
3165
3166				if (str[size - 1] == '\0')
3167					audit_size = size - 1;
3168				else
3169					audit_size = size;
3170			} else {
 
3171				audit_size = 0;
3172			}
3173			ab = audit_log_start(audit_context(),
3174					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3175			audit_log_format(ab, "op=setxattr invalid_context=");
3176			audit_log_n_untrustedstring(ab, value, audit_size);
3177			audit_log_end(ab);
3178
3179			return rc;
3180		}
3181		rc = security_context_to_sid_force(&selinux_state, value,
3182						   size, &newsid);
3183	}
3184	if (rc)
3185		return rc;
3186
3187	rc = avc_has_perm(&selinux_state,
3188			  sid, newsid, isec->sclass,
3189			  FILE__RELABELTO, &ad);
3190	if (rc)
3191		return rc;
3192
3193	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3194					  sid, isec->sclass);
3195	if (rc)
3196		return rc;
3197
3198	return avc_has_perm(&selinux_state,
3199			    newsid,
3200			    sbsec->sid,
3201			    SECCLASS_FILESYSTEM,
3202			    FILESYSTEM__ASSOCIATE,
3203			    &ad);
3204}
3205
3206static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3207					const void *value, size_t size,
3208					int flags)
3209{
3210	struct inode *inode = d_backing_inode(dentry);
3211	struct inode_security_struct *isec;
3212	u32 newsid;
3213	int rc;
3214
3215	if (strcmp(name, XATTR_NAME_SELINUX)) {
3216		/* Not an attribute we recognize, so nothing to do. */
3217		return;
3218	}
3219
3220	if (!selinux_initialized(&selinux_state)) {
3221		/* If we haven't even been initialized, then we can't validate
3222		 * against a policy, so leave the label as invalid. It may
3223		 * resolve to a valid label on the next revalidation try if
3224		 * we've since initialized.
3225		 */
3226		return;
3227	}
3228
3229	rc = security_context_to_sid_force(&selinux_state, value, size,
3230					   &newsid);
3231	if (rc) {
3232		pr_err("SELinux:  unable to map context to SID"
3233		       "for (%s, %lu), rc=%d\n",
3234		       inode->i_sb->s_id, inode->i_ino, -rc);
3235		return;
3236	}
3237
3238	isec = backing_inode_security(dentry);
3239	spin_lock(&isec->lock);
3240	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3241	isec->sid = newsid;
3242	isec->initialized = LABEL_INITIALIZED;
3243	spin_unlock(&isec->lock);
3244
3245	return;
3246}
3247
3248static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3249{
3250	const struct cred *cred = current_cred();
3251
3252	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3253}
3254
3255static int selinux_inode_listxattr(struct dentry *dentry)
3256{
3257	const struct cred *cred = current_cred();
3258
3259	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3260}
3261
3262static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3263{
3264	if (strcmp(name, XATTR_NAME_SELINUX)) {
3265		int rc = cap_inode_removexattr(dentry, name);
3266		if (rc)
3267			return rc;
3268
3269		/* Not an attribute we recognize, so just check the
3270		   ordinary setattr permission. */
3271		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3272	}
3273
3274	/* No one is allowed to remove a SELinux security label.
3275	   You can change the label, but all data must be labeled. */
3276	return -EACCES;
3277}
3278
3279static int selinux_path_notify(const struct path *path, u64 mask,
3280						unsigned int obj_type)
3281{
3282	int ret;
3283	u32 perm;
3284
3285	struct common_audit_data ad;
3286
3287	ad.type = LSM_AUDIT_DATA_PATH;
3288	ad.u.path = *path;
3289
3290	/*
3291	 * Set permission needed based on the type of mark being set.
3292	 * Performs an additional check for sb watches.
3293	 */
3294	switch (obj_type) {
3295	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3296		perm = FILE__WATCH_MOUNT;
3297		break;
3298	case FSNOTIFY_OBJ_TYPE_SB:
3299		perm = FILE__WATCH_SB;
3300		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3301						FILESYSTEM__WATCH, &ad);
3302		if (ret)
3303			return ret;
3304		break;
3305	case FSNOTIFY_OBJ_TYPE_INODE:
3306		perm = FILE__WATCH;
3307		break;
3308	default:
3309		return -EINVAL;
3310	}
3311
3312	/* blocking watches require the file:watch_with_perm permission */
3313	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3314		perm |= FILE__WATCH_WITH_PERM;
3315
3316	/* watches on read-like events need the file:watch_reads permission */
3317	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3318		perm |= FILE__WATCH_READS;
3319
3320	return path_has_perm(current_cred(), path, perm);
3321}
3322
3323/*
3324 * Copy the inode security context value to the user.
3325 *
3326 * Permission check is handled by selinux_inode_getxattr hook.
3327 */
3328static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3329{
3330	u32 size;
3331	int error;
3332	char *context = NULL;
3333	struct inode_security_struct *isec;
3334
3335	/*
3336	 * If we're not initialized yet, then we can't validate contexts, so
3337	 * just let vfs_getxattr fall back to using the on-disk xattr.
3338	 */
3339	if (!selinux_initialized(&selinux_state) ||
3340	    strcmp(name, XATTR_SELINUX_SUFFIX))
3341		return -EOPNOTSUPP;
3342
3343	/*
3344	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3345	 * value even if it is not defined by current policy; otherwise,
3346	 * use the in-core value under current policy.
3347	 * Use the non-auditing forms of the permission checks since
3348	 * getxattr may be called by unprivileged processes commonly
3349	 * and lack of permission just means that we fall back to the
3350	 * in-core context value, not a denial.
3351	 */
3352	isec = inode_security(inode);
3353	if (has_cap_mac_admin(false))
3354		error = security_sid_to_context_force(&selinux_state,
3355						      isec->sid, &context,
3356						      &size);
3357	else
3358		error = security_sid_to_context(&selinux_state, isec->sid,
3359						&context, &size);
3360	if (error)
3361		return error;
3362	error = size;
3363	if (alloc) {
3364		*buffer = context;
3365		goto out_nofree;
3366	}
3367	kfree(context);
3368out_nofree:
3369	return error;
3370}
3371
3372static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3373				     const void *value, size_t size, int flags)
3374{
3375	struct inode_security_struct *isec = inode_security_novalidate(inode);
3376	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
3377	u32 newsid;
3378	int rc;
3379
3380	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3381		return -EOPNOTSUPP;
3382
3383	if (!(sbsec->flags & SBLABEL_MNT))
3384		return -EOPNOTSUPP;
3385
3386	if (!value || !size)
3387		return -EACCES;
3388
3389	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3390				     GFP_KERNEL);
3391	if (rc)
3392		return rc;
3393
3394	spin_lock(&isec->lock);
3395	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3396	isec->sid = newsid;
3397	isec->initialized = LABEL_INITIALIZED;
3398	spin_unlock(&isec->lock);
3399	return 0;
3400}
3401
3402static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3403{
3404	const int len = sizeof(XATTR_NAME_SELINUX);
3405	if (buffer && len <= buffer_size)
3406		memcpy(buffer, XATTR_NAME_SELINUX, len);
3407	return len;
3408}
3409
3410static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3411{
3412	struct inode_security_struct *isec = inode_security_novalidate(inode);
3413	*secid = isec->sid;
3414}
3415
3416static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3417{
3418	u32 sid;
3419	struct task_security_struct *tsec;
3420	struct cred *new_creds = *new;
3421
3422	if (new_creds == NULL) {
3423		new_creds = prepare_creds();
3424		if (!new_creds)
3425			return -ENOMEM;
3426	}
3427
3428	tsec = selinux_cred(new_creds);
3429	/* Get label from overlay inode and set it in create_sid */
3430	selinux_inode_getsecid(d_inode(src), &sid);
3431	tsec->create_sid = sid;
3432	*new = new_creds;
3433	return 0;
3434}
3435
3436static int selinux_inode_copy_up_xattr(const char *name)
3437{
3438	/* The copy_up hook above sets the initial context on an inode, but we
3439	 * don't then want to overwrite it by blindly copying all the lower
3440	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3441	 */
3442	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3443		return 1; /* Discard */
3444	/*
3445	 * Any other attribute apart from SELINUX is not claimed, supported
3446	 * by selinux.
3447	 */
3448	return -EOPNOTSUPP;
3449}
3450
3451/* kernfs node operations */
3452
3453static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3454					struct kernfs_node *kn)
3455{
3456	const struct task_security_struct *tsec = selinux_cred(current_cred());
3457	u32 parent_sid, newsid, clen;
3458	int rc;
3459	char *context;
3460
3461	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3462	if (rc == -ENODATA)
3463		return 0;
3464	else if (rc < 0)
3465		return rc;
3466
3467	clen = (u32)rc;
3468	context = kmalloc(clen, GFP_KERNEL);
3469	if (!context)
3470		return -ENOMEM;
3471
3472	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3473	if (rc < 0) {
3474		kfree(context);
3475		return rc;
3476	}
3477
3478	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3479				     GFP_KERNEL);
3480	kfree(context);
3481	if (rc)
3482		return rc;
3483
3484	if (tsec->create_sid) {
3485		newsid = tsec->create_sid;
3486	} else {
3487		u16 secclass = inode_mode_to_security_class(kn->mode);
3488		struct qstr q;
3489
3490		q.name = kn->name;
3491		q.hash_len = hashlen_string(kn_dir, kn->name);
3492
3493		rc = security_transition_sid(&selinux_state, tsec->sid,
3494					     parent_sid, secclass, &q,
3495					     &newsid);
3496		if (rc)
3497			return rc;
3498	}
3499
3500	rc = security_sid_to_context_force(&selinux_state, newsid,
3501					   &context, &clen);
3502	if (rc)
3503		return rc;
3504
3505	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3506			      XATTR_CREATE);
3507	kfree(context);
3508	return rc;
3509}
3510
3511
3512/* file security operations */
3513
3514static int selinux_revalidate_file_permission(struct file *file, int mask)
3515{
3516	const struct cred *cred = current_cred();
3517	struct inode *inode = file_inode(file);
3518
3519	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3520	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3521		mask |= MAY_APPEND;
3522
3523	return file_has_perm(cred, file,
3524			     file_mask_to_av(inode->i_mode, mask));
3525}
3526
3527static int selinux_file_permission(struct file *file, int mask)
3528{
3529	struct inode *inode = file_inode(file);
3530	struct file_security_struct *fsec = selinux_file(file);
3531	struct inode_security_struct *isec;
3532	u32 sid = current_sid();
3533
3534	if (!mask)
3535		/* No permission to check.  Existence test. */
3536		return 0;
3537
3538	isec = inode_security(inode);
3539	if (sid == fsec->sid && fsec->isid == isec->sid &&
3540	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3541		/* No change since file_open check. */
3542		return 0;
3543
3544	return selinux_revalidate_file_permission(file, mask);
3545}
3546
3547static int selinux_file_alloc_security(struct file *file)
3548{
3549	struct file_security_struct *fsec = selinux_file(file);
3550	u32 sid = current_sid();
3551
3552	fsec->sid = sid;
3553	fsec->fown_sid = sid;
3554
3555	return 0;
3556}
3557
3558/*
3559 * Check whether a task has the ioctl permission and cmd
3560 * operation to an inode.
3561 */
3562static int ioctl_has_perm(const struct cred *cred, struct file *file,
3563		u32 requested, u16 cmd)
3564{
3565	struct common_audit_data ad;
3566	struct file_security_struct *fsec = selinux_file(file);
3567	struct inode *inode = file_inode(file);
3568	struct inode_security_struct *isec;
3569	struct lsm_ioctlop_audit ioctl;
3570	u32 ssid = cred_sid(cred);
3571	int rc;
3572	u8 driver = cmd >> 8;
3573	u8 xperm = cmd & 0xff;
3574
3575	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3576	ad.u.op = &ioctl;
3577	ad.u.op->cmd = cmd;
3578	ad.u.op->path = file->f_path;
3579
3580	if (ssid != fsec->sid) {
3581		rc = avc_has_perm(&selinux_state,
3582				  ssid, fsec->sid,
3583				SECCLASS_FD,
3584				FD__USE,
3585				&ad);
3586		if (rc)
3587			goto out;
3588	}
3589
3590	if (unlikely(IS_PRIVATE(inode)))
3591		return 0;
3592
3593	isec = inode_security(inode);
3594	rc = avc_has_extended_perms(&selinux_state,
3595				    ssid, isec->sid, isec->sclass,
3596				    requested, driver, xperm, &ad);
3597out:
3598	return rc;
3599}
3600
3601static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3602			      unsigned long arg)
3603{
3604	const struct cred *cred = current_cred();
3605	int error = 0;
3606
3607	switch (cmd) {
3608	case FIONREAD:
 
3609	case FIBMAP:
 
3610	case FIGETBSZ:
 
3611	case FS_IOC_GETFLAGS:
 
3612	case FS_IOC_GETVERSION:
3613		error = file_has_perm(cred, file, FILE__GETATTR);
3614		break;
3615
3616	case FS_IOC_SETFLAGS:
 
3617	case FS_IOC_SETVERSION:
3618		error = file_has_perm(cred, file, FILE__SETATTR);
3619		break;
3620
3621	/* sys_ioctl() checks */
3622	case FIONBIO:
 
3623	case FIOASYNC:
3624		error = file_has_perm(cred, file, 0);
3625		break;
3626
3627	case KDSKBENT:
3628	case KDSKBSENT:
3629		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3630					    CAP_OPT_NONE, true);
3631		break;
3632
3633	/* default case assumes that the command will go
3634	 * to the file's ioctl() function.
3635	 */
3636	default:
3637		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3638	}
3639	return error;
3640}
3641
3642static int default_noexec __ro_after_init;
3643
3644static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3645{
3646	const struct cred *cred = current_cred();
3647	u32 sid = cred_sid(cred);
3648	int rc = 0;
3649
3650	if (default_noexec &&
3651	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3652				   (!shared && (prot & PROT_WRITE)))) {
3653		/*
3654		 * We are making executable an anonymous mapping or a
3655		 * private file mapping that will also be writable.
3656		 * This has an additional check.
3657		 */
3658		rc = avc_has_perm(&selinux_state,
3659				  sid, sid, SECCLASS_PROCESS,
3660				  PROCESS__EXECMEM, NULL);
3661		if (rc)
3662			goto error;
3663	}
3664
3665	if (file) {
3666		/* read access is always possible with a mapping */
3667		u32 av = FILE__READ;
3668
3669		/* write access only matters if the mapping is shared */
3670		if (shared && (prot & PROT_WRITE))
3671			av |= FILE__WRITE;
3672
3673		if (prot & PROT_EXEC)
3674			av |= FILE__EXECUTE;
3675
3676		return file_has_perm(cred, file, av);
3677	}
3678
3679error:
3680	return rc;
3681}
3682
3683static int selinux_mmap_addr(unsigned long addr)
3684{
3685	int rc = 0;
 
 
 
 
 
3686
3687	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3688		u32 sid = current_sid();
3689		rc = avc_has_perm(&selinux_state,
3690				  sid, sid, SECCLASS_MEMPROTECT,
3691				  MEMPROTECT__MMAP_ZERO, NULL);
3692	}
3693
3694	return rc;
3695}
3696
3697static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3698			     unsigned long prot, unsigned long flags)
3699{
3700	struct common_audit_data ad;
3701	int rc;
3702
3703	if (file) {
3704		ad.type = LSM_AUDIT_DATA_FILE;
3705		ad.u.file = file;
3706		rc = inode_has_perm(current_cred(), file_inode(file),
3707				    FILE__MAP, &ad);
3708		if (rc)
3709			return rc;
3710	}
3711
3712	if (selinux_state.checkreqprot)
3713		prot = reqprot;
3714
3715	return file_map_prot_check(file, prot,
3716				   (flags & MAP_TYPE) == MAP_SHARED);
3717}
3718
3719static int selinux_file_mprotect(struct vm_area_struct *vma,
3720				 unsigned long reqprot,
3721				 unsigned long prot)
3722{
3723	const struct cred *cred = current_cred();
3724	u32 sid = cred_sid(cred);
3725
3726	if (selinux_state.checkreqprot)
3727		prot = reqprot;
3728
3729	if (default_noexec &&
3730	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3731		int rc = 0;
3732		if (vma->vm_start >= vma->vm_mm->start_brk &&
3733		    vma->vm_end <= vma->vm_mm->brk) {
3734			rc = avc_has_perm(&selinux_state,
3735					  sid, sid, SECCLASS_PROCESS,
3736					  PROCESS__EXECHEAP, NULL);
3737		} else if (!vma->vm_file &&
3738			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3739			     vma->vm_end >= vma->vm_mm->start_stack) ||
3740			    vma_is_stack_for_current(vma))) {
3741			rc = avc_has_perm(&selinux_state,
3742					  sid, sid, SECCLASS_PROCESS,
3743					  PROCESS__EXECSTACK, NULL);
3744		} else if (vma->vm_file && vma->anon_vma) {
3745			/*
3746			 * We are making executable a file mapping that has
3747			 * had some COW done. Since pages might have been
3748			 * written, check ability to execute the possibly
3749			 * modified content.  This typically should only
3750			 * occur for text relocations.
3751			 */
3752			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3753		}
3754		if (rc)
3755			return rc;
3756	}
3757
3758	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3759}
3760
3761static int selinux_file_lock(struct file *file, unsigned int cmd)
3762{
3763	const struct cred *cred = current_cred();
3764
3765	return file_has_perm(cred, file, FILE__LOCK);
3766}
3767
3768static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3769			      unsigned long arg)
3770{
3771	const struct cred *cred = current_cred();
3772	int err = 0;
3773
3774	switch (cmd) {
3775	case F_SETFL:
3776		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3777			err = file_has_perm(cred, file, FILE__WRITE);
3778			break;
3779		}
3780		fallthrough;
3781	case F_SETOWN:
3782	case F_SETSIG:
3783	case F_GETFL:
3784	case F_GETOWN:
3785	case F_GETSIG:
3786	case F_GETOWNER_UIDS:
3787		/* Just check FD__USE permission */
3788		err = file_has_perm(cred, file, 0);
3789		break;
3790	case F_GETLK:
3791	case F_SETLK:
3792	case F_SETLKW:
3793	case F_OFD_GETLK:
3794	case F_OFD_SETLK:
3795	case F_OFD_SETLKW:
3796#if BITS_PER_LONG == 32
3797	case F_GETLK64:
3798	case F_SETLK64:
3799	case F_SETLKW64:
3800#endif
3801		err = file_has_perm(cred, file, FILE__LOCK);
3802		break;
3803	}
3804
3805	return err;
3806}
3807
3808static void selinux_file_set_fowner(struct file *file)
3809{
3810	struct file_security_struct *fsec;
3811
3812	fsec = selinux_file(file);
3813	fsec->fown_sid = current_sid();
 
 
3814}
3815
3816static int selinux_file_send_sigiotask(struct task_struct *tsk,
3817				       struct fown_struct *fown, int signum)
3818{
3819	struct file *file;
3820	u32 sid = task_sid(tsk);
3821	u32 perm;
3822	struct file_security_struct *fsec;
3823
3824	/* struct fown_struct is never outside the context of a struct file */
3825	file = container_of(fown, struct file, f_owner);
3826
3827	fsec = selinux_file(file);
3828
3829	if (!signum)
3830		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3831	else
3832		perm = signal_to_av(signum);
3833
3834	return avc_has_perm(&selinux_state,
3835			    fsec->fown_sid, sid,
3836			    SECCLASS_PROCESS, perm, NULL);
3837}
3838
3839static int selinux_file_receive(struct file *file)
3840{
3841	const struct cred *cred = current_cred();
3842
3843	return file_has_perm(cred, file, file_to_av(file));
3844}
3845
3846static int selinux_file_open(struct file *file)
3847{
3848	struct file_security_struct *fsec;
3849	struct inode_security_struct *isec;
3850
3851	fsec = selinux_file(file);
3852	isec = inode_security(file_inode(file));
3853	/*
3854	 * Save inode label and policy sequence number
3855	 * at open-time so that selinux_file_permission
3856	 * can determine whether revalidation is necessary.
3857	 * Task label is already saved in the file security
3858	 * struct as its SID.
3859	 */
3860	fsec->isid = isec->sid;
3861	fsec->pseqno = avc_policy_seqno(&selinux_state);
3862	/*
3863	 * Since the inode label or policy seqno may have changed
3864	 * between the selinux_inode_permission check and the saving
3865	 * of state above, recheck that access is still permitted.
3866	 * Otherwise, access might never be revalidated against the
3867	 * new inode label or new policy.
3868	 * This check is not redundant - do not remove.
3869	 */
3870	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3871}
3872
3873/* task security operations */
3874
3875static int selinux_task_alloc(struct task_struct *task,
3876			      unsigned long clone_flags)
3877{
3878	u32 sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
3879
3880	return avc_has_perm(&selinux_state,
3881			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3882}
3883
3884/*
3885 * prepare a new set of credentials for modification
3886 */
3887static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3888				gfp_t gfp)
3889{
3890	const struct task_security_struct *old_tsec = selinux_cred(old);
3891	struct task_security_struct *tsec = selinux_cred(new);
3892
3893	*tsec = *old_tsec;
 
 
 
 
 
 
3894	return 0;
3895}
3896
3897/*
3898 * transfer the SELinux data to a blank set of creds
3899 */
3900static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3901{
3902	const struct task_security_struct *old_tsec = selinux_cred(old);
3903	struct task_security_struct *tsec = selinux_cred(new);
3904
3905	*tsec = *old_tsec;
3906}
3907
3908static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3909{
3910	*secid = cred_sid(c);
3911}
3912
3913/*
3914 * set the security data for a kernel service
3915 * - all the creation contexts are set to unlabelled
3916 */
3917static int selinux_kernel_act_as(struct cred *new, u32 secid)
3918{
3919	struct task_security_struct *tsec = selinux_cred(new);
3920	u32 sid = current_sid();
3921	int ret;
3922
3923	ret = avc_has_perm(&selinux_state,
3924			   sid, secid,
3925			   SECCLASS_KERNEL_SERVICE,
3926			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3927			   NULL);
3928	if (ret == 0) {
3929		tsec->sid = secid;
3930		tsec->create_sid = 0;
3931		tsec->keycreate_sid = 0;
3932		tsec->sockcreate_sid = 0;
3933	}
3934	return ret;
3935}
3936
3937/*
3938 * set the file creation context in a security record to the same as the
3939 * objective context of the specified inode
3940 */
3941static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3942{
3943	struct inode_security_struct *isec = inode_security(inode);
3944	struct task_security_struct *tsec = selinux_cred(new);
3945	u32 sid = current_sid();
3946	int ret;
3947
3948	ret = avc_has_perm(&selinux_state,
3949			   sid, isec->sid,
3950			   SECCLASS_KERNEL_SERVICE,
3951			   KERNEL_SERVICE__CREATE_FILES_AS,
3952			   NULL);
3953
3954	if (ret == 0)
3955		tsec->create_sid = isec->sid;
3956	return ret;
3957}
3958
3959static int selinux_kernel_module_request(char *kmod_name)
3960{
 
3961	struct common_audit_data ad;
3962
 
 
3963	ad.type = LSM_AUDIT_DATA_KMOD;
3964	ad.u.kmod_name = kmod_name;
3965
3966	return avc_has_perm(&selinux_state,
3967			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
3968			    SYSTEM__MODULE_REQUEST, &ad);
3969}
3970
3971static int selinux_kernel_module_from_file(struct file *file)
3972{
3973	struct common_audit_data ad;
3974	struct inode_security_struct *isec;
3975	struct file_security_struct *fsec;
3976	u32 sid = current_sid();
3977	int rc;
3978
3979	/* init_module */
3980	if (file == NULL)
3981		return avc_has_perm(&selinux_state,
3982				    sid, sid, SECCLASS_SYSTEM,
3983					SYSTEM__MODULE_LOAD, NULL);
3984
3985	/* finit_module */
3986
3987	ad.type = LSM_AUDIT_DATA_FILE;
3988	ad.u.file = file;
3989
3990	fsec = selinux_file(file);
3991	if (sid != fsec->sid) {
3992		rc = avc_has_perm(&selinux_state,
3993				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
3994		if (rc)
3995			return rc;
3996	}
3997
3998	isec = inode_security(file_inode(file));
3999	return avc_has_perm(&selinux_state,
4000			    sid, isec->sid, SECCLASS_SYSTEM,
4001				SYSTEM__MODULE_LOAD, &ad);
4002}
4003
4004static int selinux_kernel_read_file(struct file *file,
4005				    enum kernel_read_file_id id)
4006{
4007	int rc = 0;
4008
4009	switch (id) {
4010	case READING_MODULE:
4011		rc = selinux_kernel_module_from_file(file);
4012		break;
4013	default:
4014		break;
4015	}
4016
4017	return rc;
4018}
4019
4020static int selinux_kernel_load_data(enum kernel_load_data_id id)
4021{
4022	int rc = 0;
4023
4024	switch (id) {
4025	case LOADING_MODULE:
4026		rc = selinux_kernel_module_from_file(NULL);
4027	default:
4028		break;
4029	}
4030
4031	return rc;
4032}
4033
4034static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4035{
4036	return avc_has_perm(&selinux_state,
4037			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4038			    PROCESS__SETPGID, NULL);
4039}
4040
4041static int selinux_task_getpgid(struct task_struct *p)
4042{
4043	return avc_has_perm(&selinux_state,
4044			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4045			    PROCESS__GETPGID, NULL);
4046}
4047
4048static int selinux_task_getsid(struct task_struct *p)
4049{
4050	return avc_has_perm(&selinux_state,
4051			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4052			    PROCESS__GETSESSION, NULL);
4053}
4054
4055static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
4056{
4057	*secid = task_sid(p);
4058}
4059
4060static int selinux_task_setnice(struct task_struct *p, int nice)
4061{
4062	return avc_has_perm(&selinux_state,
4063			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4064			    PROCESS__SETSCHED, NULL);
 
 
 
 
4065}
4066
4067static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4068{
4069	return avc_has_perm(&selinux_state,
4070			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4071			    PROCESS__SETSCHED, NULL);
4072}
4073
4074static int selinux_task_getioprio(struct task_struct *p)
4075{
4076	return avc_has_perm(&selinux_state,
4077			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4078			    PROCESS__GETSCHED, NULL);
4079}
4080
4081static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4082				unsigned int flags)
4083{
4084	u32 av = 0;
4085
4086	if (!flags)
4087		return 0;
4088	if (flags & LSM_PRLIMIT_WRITE)
4089		av |= PROCESS__SETRLIMIT;
4090	if (flags & LSM_PRLIMIT_READ)
4091		av |= PROCESS__GETRLIMIT;
4092	return avc_has_perm(&selinux_state,
4093			    cred_sid(cred), cred_sid(tcred),
4094			    SECCLASS_PROCESS, av, NULL);
4095}
4096
4097static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4098		struct rlimit *new_rlim)
4099{
4100	struct rlimit *old_rlim = p->signal->rlim + resource;
4101
4102	/* Control the ability to change the hard limit (whether
4103	   lowering or raising it), so that the hard limit can
4104	   later be used as a safe reset point for the soft limit
4105	   upon context transitions.  See selinux_bprm_committing_creds. */
4106	if (old_rlim->rlim_max != new_rlim->rlim_max)
4107		return avc_has_perm(&selinux_state,
4108				    current_sid(), task_sid(p),
4109				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4110
4111	return 0;
4112}
4113
4114static int selinux_task_setscheduler(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4118			    PROCESS__SETSCHED, NULL);
 
 
 
 
4119}
4120
4121static int selinux_task_getscheduler(struct task_struct *p)
4122{
4123	return avc_has_perm(&selinux_state,
4124			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4125			    PROCESS__GETSCHED, NULL);
4126}
4127
4128static int selinux_task_movememory(struct task_struct *p)
4129{
4130	return avc_has_perm(&selinux_state,
4131			    current_sid(), task_sid(p), SECCLASS_PROCESS,
4132			    PROCESS__SETSCHED, NULL);
4133}
4134
4135static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4136				int sig, const struct cred *cred)
4137{
4138	u32 secid;
4139	u32 perm;
 
4140
4141	if (!sig)
4142		perm = PROCESS__SIGNULL; /* null signal; existence test */
4143	else
4144		perm = signal_to_av(sig);
4145	if (!cred)
4146		secid = current_sid();
 
4147	else
4148		secid = cred_sid(cred);
4149	return avc_has_perm(&selinux_state,
4150			    secid, task_sid(p), SECCLASS_PROCESS, perm, NULL);
 
 
 
 
4151}
4152
4153static void selinux_task_to_inode(struct task_struct *p,
4154				  struct inode *inode)
4155{
4156	struct inode_security_struct *isec = selinux_inode(inode);
4157	u32 sid = task_sid(p);
4158
4159	spin_lock(&isec->lock);
4160	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4161	isec->sid = sid;
4162	isec->initialized = LABEL_INITIALIZED;
4163	spin_unlock(&isec->lock);
4164}
4165
4166/* Returns error only if unable to parse addresses */
4167static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4168			struct common_audit_data *ad, u8 *proto)
4169{
4170	int offset, ihlen, ret = -EINVAL;
4171	struct iphdr _iph, *ih;
4172
4173	offset = skb_network_offset(skb);
4174	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4175	if (ih == NULL)
4176		goto out;
4177
4178	ihlen = ih->ihl * 4;
4179	if (ihlen < sizeof(_iph))
4180		goto out;
4181
4182	ad->u.net->v4info.saddr = ih->saddr;
4183	ad->u.net->v4info.daddr = ih->daddr;
4184	ret = 0;
4185
4186	if (proto)
4187		*proto = ih->protocol;
4188
4189	switch (ih->protocol) {
4190	case IPPROTO_TCP: {
4191		struct tcphdr _tcph, *th;
4192
4193		if (ntohs(ih->frag_off) & IP_OFFSET)
4194			break;
4195
4196		offset += ihlen;
4197		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4198		if (th == NULL)
4199			break;
4200
4201		ad->u.net->sport = th->source;
4202		ad->u.net->dport = th->dest;
4203		break;
4204	}
4205
4206	case IPPROTO_UDP: {
4207		struct udphdr _udph, *uh;
4208
4209		if (ntohs(ih->frag_off) & IP_OFFSET)
4210			break;
4211
4212		offset += ihlen;
4213		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4214		if (uh == NULL)
4215			break;
4216
4217		ad->u.net->sport = uh->source;
4218		ad->u.net->dport = uh->dest;
4219		break;
4220	}
4221
4222	case IPPROTO_DCCP: {
4223		struct dccp_hdr _dccph, *dh;
4224
4225		if (ntohs(ih->frag_off) & IP_OFFSET)
4226			break;
4227
4228		offset += ihlen;
4229		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4230		if (dh == NULL)
4231			break;
4232
4233		ad->u.net->sport = dh->dccph_sport;
4234		ad->u.net->dport = dh->dccph_dport;
4235		break;
4236	}
4237
4238#if IS_ENABLED(CONFIG_IP_SCTP)
4239	case IPPROTO_SCTP: {
4240		struct sctphdr _sctph, *sh;
4241
4242		if (ntohs(ih->frag_off) & IP_OFFSET)
4243			break;
4244
4245		offset += ihlen;
4246		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4247		if (sh == NULL)
4248			break;
4249
4250		ad->u.net->sport = sh->source;
4251		ad->u.net->dport = sh->dest;
4252		break;
4253	}
4254#endif
4255	default:
4256		break;
4257	}
4258out:
4259	return ret;
4260}
4261
4262#if IS_ENABLED(CONFIG_IPV6)
4263
4264/* Returns error only if unable to parse addresses */
4265static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4266			struct common_audit_data *ad, u8 *proto)
4267{
4268	u8 nexthdr;
4269	int ret = -EINVAL, offset;
4270	struct ipv6hdr _ipv6h, *ip6;
4271	__be16 frag_off;
4272
4273	offset = skb_network_offset(skb);
4274	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4275	if (ip6 == NULL)
4276		goto out;
4277
4278	ad->u.net->v6info.saddr = ip6->saddr;
4279	ad->u.net->v6info.daddr = ip6->daddr;
4280	ret = 0;
4281
4282	nexthdr = ip6->nexthdr;
4283	offset += sizeof(_ipv6h);
4284	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4285	if (offset < 0)
4286		goto out;
4287
4288	if (proto)
4289		*proto = nexthdr;
4290
4291	switch (nexthdr) {
4292	case IPPROTO_TCP: {
4293		struct tcphdr _tcph, *th;
4294
4295		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4296		if (th == NULL)
4297			break;
4298
4299		ad->u.net->sport = th->source;
4300		ad->u.net->dport = th->dest;
4301		break;
4302	}
4303
4304	case IPPROTO_UDP: {
4305		struct udphdr _udph, *uh;
4306
4307		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4308		if (uh == NULL)
4309			break;
4310
4311		ad->u.net->sport = uh->source;
4312		ad->u.net->dport = uh->dest;
4313		break;
4314	}
4315
4316	case IPPROTO_DCCP: {
4317		struct dccp_hdr _dccph, *dh;
4318
4319		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4320		if (dh == NULL)
4321			break;
4322
4323		ad->u.net->sport = dh->dccph_sport;
4324		ad->u.net->dport = dh->dccph_dport;
4325		break;
4326	}
4327
4328#if IS_ENABLED(CONFIG_IP_SCTP)
4329	case IPPROTO_SCTP: {
4330		struct sctphdr _sctph, *sh;
4331
4332		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333		if (sh == NULL)
4334			break;
4335
4336		ad->u.net->sport = sh->source;
4337		ad->u.net->dport = sh->dest;
4338		break;
4339	}
4340#endif
4341	/* includes fragments */
4342	default:
4343		break;
4344	}
4345out:
4346	return ret;
4347}
4348
4349#endif /* IPV6 */
4350
4351static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4352			     char **_addrp, int src, u8 *proto)
4353{
4354	char *addrp;
4355	int ret;
4356
4357	switch (ad->u.net->family) {
4358	case PF_INET:
4359		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4360		if (ret)
4361			goto parse_error;
4362		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4363				       &ad->u.net->v4info.daddr);
4364		goto okay;
4365
4366#if IS_ENABLED(CONFIG_IPV6)
4367	case PF_INET6:
4368		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4369		if (ret)
4370			goto parse_error;
4371		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4372				       &ad->u.net->v6info.daddr);
4373		goto okay;
4374#endif	/* IPV6 */
4375	default:
4376		addrp = NULL;
4377		goto okay;
4378	}
4379
4380parse_error:
4381	pr_warn(
4382	       "SELinux: failure in selinux_parse_skb(),"
4383	       " unable to parse packet\n");
4384	return ret;
4385
4386okay:
4387	if (_addrp)
4388		*_addrp = addrp;
4389	return 0;
4390}
4391
4392/**
4393 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4394 * @skb: the packet
4395 * @family: protocol family
4396 * @sid: the packet's peer label SID
4397 *
4398 * Description:
4399 * Check the various different forms of network peer labeling and determine
4400 * the peer label/SID for the packet; most of the magic actually occurs in
4401 * the security server function security_net_peersid_cmp().  The function
4402 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4403 * or -EACCES if @sid is invalid due to inconsistencies with the different
4404 * peer labels.
4405 *
4406 */
4407static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4408{
4409	int err;
4410	u32 xfrm_sid;
4411	u32 nlbl_sid;
4412	u32 nlbl_type;
4413
4414	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4415	if (unlikely(err))
4416		return -EACCES;
4417	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4418	if (unlikely(err))
4419		return -EACCES;
4420
4421	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4422					   nlbl_type, xfrm_sid, sid);
4423	if (unlikely(err)) {
4424		pr_warn(
4425		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4426		       " unable to determine packet's peer label\n");
4427		return -EACCES;
4428	}
4429
4430	return 0;
4431}
4432
4433/**
4434 * selinux_conn_sid - Determine the child socket label for a connection
4435 * @sk_sid: the parent socket's SID
4436 * @skb_sid: the packet's SID
4437 * @conn_sid: the resulting connection SID
4438 *
4439 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4440 * combined with the MLS information from @skb_sid in order to create
4441 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
4442 * of @sk_sid.  Returns zero on success, negative values on failure.
4443 *
4444 */
4445static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4446{
4447	int err = 0;
4448
4449	if (skb_sid != SECSID_NULL)
4450		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4451					    conn_sid);
4452	else
4453		*conn_sid = sk_sid;
4454
4455	return err;
4456}
4457
4458/* socket security operations */
4459
4460static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4461				 u16 secclass, u32 *socksid)
4462{
4463	if (tsec->sockcreate_sid > SECSID_NULL) {
4464		*socksid = tsec->sockcreate_sid;
4465		return 0;
4466	}
4467
4468	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4469				       secclass, NULL, socksid);
4470}
4471
4472static int sock_has_perm(struct sock *sk, u32 perms)
4473{
4474	struct sk_security_struct *sksec = sk->sk_security;
4475	struct common_audit_data ad;
4476	struct lsm_network_audit net = {0,};
 
4477
4478	if (sksec->sid == SECINITSID_KERNEL)
4479		return 0;
4480
4481	ad.type = LSM_AUDIT_DATA_NET;
4482	ad.u.net = &net;
4483	ad.u.net->sk = sk;
4484
4485	return avc_has_perm(&selinux_state,
4486			    current_sid(), sksec->sid, sksec->sclass, perms,
4487			    &ad);
4488}
4489
4490static int selinux_socket_create(int family, int type,
4491				 int protocol, int kern)
4492{
4493	const struct task_security_struct *tsec = selinux_cred(current_cred());
4494	u32 newsid;
4495	u16 secclass;
4496	int rc;
4497
4498	if (kern)
4499		return 0;
4500
4501	secclass = socket_type_to_security_class(family, type, protocol);
4502	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4503	if (rc)
4504		return rc;
4505
4506	return avc_has_perm(&selinux_state,
4507			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4508}
4509
4510static int selinux_socket_post_create(struct socket *sock, int family,
4511				      int type, int protocol, int kern)
4512{
4513	const struct task_security_struct *tsec = selinux_cred(current_cred());
4514	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4515	struct sk_security_struct *sksec;
4516	u16 sclass = socket_type_to_security_class(family, type, protocol);
4517	u32 sid = SECINITSID_KERNEL;
4518	int err = 0;
4519
4520	if (!kern) {
4521		err = socket_sockcreate_sid(tsec, sclass, &sid);
 
 
 
 
4522		if (err)
4523			return err;
4524	}
4525
4526	isec->sclass = sclass;
4527	isec->sid = sid;
4528	isec->initialized = LABEL_INITIALIZED;
4529
4530	if (sock->sk) {
4531		sksec = sock->sk->sk_security;
4532		sksec->sclass = sclass;
4533		sksec->sid = sid;
4534		/* Allows detection of the first association on this socket */
4535		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4536			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4537
4538		err = selinux_netlbl_socket_post_create(sock->sk, family);
4539	}
4540
4541	return err;
4542}
4543
4544static int selinux_socket_socketpair(struct socket *socka,
4545				     struct socket *sockb)
4546{
4547	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4548	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4549
4550	sksec_a->peer_sid = sksec_b->sid;
4551	sksec_b->peer_sid = sksec_a->sid;
4552
4553	return 0;
4554}
4555
4556/* Range of port numbers used to automatically bind.
4557   Need to determine whether we should perform a name_bind
4558   permission check between the socket and the port number. */
4559
4560static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4561{
4562	struct sock *sk = sock->sk;
4563	struct sk_security_struct *sksec = sk->sk_security;
4564	u16 family;
4565	int err;
4566
4567	err = sock_has_perm(sk, SOCKET__BIND);
4568	if (err)
4569		goto out;
4570
4571	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
 
 
 
 
4572	family = sk->sk_family;
4573	if (family == PF_INET || family == PF_INET6) {
4574		char *addrp;
 
4575		struct common_audit_data ad;
4576		struct lsm_network_audit net = {0,};
4577		struct sockaddr_in *addr4 = NULL;
4578		struct sockaddr_in6 *addr6 = NULL;
4579		u16 family_sa;
4580		unsigned short snum;
4581		u32 sid, node_perm;
4582
4583		/*
4584		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4585		 * that validates multiple binding addresses. Because of this
4586		 * need to check address->sa_family as it is possible to have
4587		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4588		 */
4589		if (addrlen < offsetofend(struct sockaddr, sa_family))
4590			return -EINVAL;
4591		family_sa = address->sa_family;
4592		switch (family_sa) {
4593		case AF_UNSPEC:
4594		case AF_INET:
4595			if (addrlen < sizeof(struct sockaddr_in))
4596				return -EINVAL;
4597			addr4 = (struct sockaddr_in *)address;
4598			if (family_sa == AF_UNSPEC) {
4599				/* see __inet_bind(), we only want to allow
4600				 * AF_UNSPEC if the address is INADDR_ANY
4601				 */
4602				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4603					goto err_af;
4604				family_sa = AF_INET;
4605			}
4606			snum = ntohs(addr4->sin_port);
4607			addrp = (char *)&addr4->sin_addr.s_addr;
4608			break;
4609		case AF_INET6:
4610			if (addrlen < SIN6_LEN_RFC2133)
4611				return -EINVAL;
4612			addr6 = (struct sockaddr_in6 *)address;
4613			snum = ntohs(addr6->sin6_port);
4614			addrp = (char *)&addr6->sin6_addr.s6_addr;
4615			break;
4616		default:
4617			goto err_af;
4618		}
4619
4620		ad.type = LSM_AUDIT_DATA_NET;
4621		ad.u.net = &net;
4622		ad.u.net->sport = htons(snum);
4623		ad.u.net->family = family_sa;
4624
4625		if (snum) {
4626			int low, high;
4627
4628			inet_get_local_port_range(sock_net(sk), &low, &high);
4629
4630			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4631			    snum < low || snum > high) {
4632				err = sel_netport_sid(sk->sk_protocol,
4633						      snum, &sid);
4634				if (err)
4635					goto out;
4636				err = avc_has_perm(&selinux_state,
4637						   sksec->sid, sid,
 
 
 
4638						   sksec->sclass,
4639						   SOCKET__NAME_BIND, &ad);
4640				if (err)
4641					goto out;
4642			}
4643		}
4644
4645		switch (sksec->sclass) {
4646		case SECCLASS_TCP_SOCKET:
4647			node_perm = TCP_SOCKET__NODE_BIND;
4648			break;
4649
4650		case SECCLASS_UDP_SOCKET:
4651			node_perm = UDP_SOCKET__NODE_BIND;
4652			break;
4653
4654		case SECCLASS_DCCP_SOCKET:
4655			node_perm = DCCP_SOCKET__NODE_BIND;
4656			break;
4657
4658		case SECCLASS_SCTP_SOCKET:
4659			node_perm = SCTP_SOCKET__NODE_BIND;
4660			break;
4661
4662		default:
4663			node_perm = RAWIP_SOCKET__NODE_BIND;
4664			break;
4665		}
4666
4667		err = sel_netnode_sid(addrp, family_sa, &sid);
4668		if (err)
4669			goto out;
4670
4671		if (family_sa == AF_INET)
 
 
 
 
 
4672			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4673		else
4674			ad.u.net->v6info.saddr = addr6->sin6_addr;
4675
4676		err = avc_has_perm(&selinux_state,
4677				   sksec->sid, sid,
4678				   sksec->sclass, node_perm, &ad);
4679		if (err)
4680			goto out;
4681	}
4682out:
4683	return err;
4684err_af:
4685	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4686	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4687		return -EINVAL;
4688	return -EAFNOSUPPORT;
4689}
4690
4691/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4692 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4693 */
4694static int selinux_socket_connect_helper(struct socket *sock,
4695					 struct sockaddr *address, int addrlen)
4696{
4697	struct sock *sk = sock->sk;
4698	struct sk_security_struct *sksec = sk->sk_security;
4699	int err;
4700
4701	err = sock_has_perm(sk, SOCKET__CONNECT);
4702	if (err)
4703		return err;
4704	if (addrlen < offsetofend(struct sockaddr, sa_family))
4705		return -EINVAL;
4706
4707	/* connect(AF_UNSPEC) has special handling, as it is a documented
4708	 * way to disconnect the socket
4709	 */
4710	if (address->sa_family == AF_UNSPEC)
4711		return 0;
4712
4713	/*
4714	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4715	 * for the port.
4716	 */
4717	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4718	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4719	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4720		struct common_audit_data ad;
4721		struct lsm_network_audit net = {0,};
4722		struct sockaddr_in *addr4 = NULL;
4723		struct sockaddr_in6 *addr6 = NULL;
4724		unsigned short snum;
4725		u32 sid, perm;
4726
4727		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4728		 * that validates multiple connect addresses. Because of this
4729		 * need to check address->sa_family as it is possible to have
4730		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4731		 */
4732		switch (address->sa_family) {
4733		case AF_INET:
4734			addr4 = (struct sockaddr_in *)address;
4735			if (addrlen < sizeof(struct sockaddr_in))
4736				return -EINVAL;
4737			snum = ntohs(addr4->sin_port);
4738			break;
4739		case AF_INET6:
4740			addr6 = (struct sockaddr_in6 *)address;
4741			if (addrlen < SIN6_LEN_RFC2133)
4742				return -EINVAL;
4743			snum = ntohs(addr6->sin6_port);
4744			break;
4745		default:
4746			/* Note that SCTP services expect -EINVAL, whereas
4747			 * others expect -EAFNOSUPPORT.
4748			 */
4749			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4750				return -EINVAL;
4751			else
4752				return -EAFNOSUPPORT;
4753		}
4754
4755		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4756		if (err)
4757			return err;
4758
4759		switch (sksec->sclass) {
4760		case SECCLASS_TCP_SOCKET:
4761			perm = TCP_SOCKET__NAME_CONNECT;
4762			break;
4763		case SECCLASS_DCCP_SOCKET:
4764			perm = DCCP_SOCKET__NAME_CONNECT;
4765			break;
4766		case SECCLASS_SCTP_SOCKET:
4767			perm = SCTP_SOCKET__NAME_CONNECT;
4768			break;
4769		}
4770
4771		ad.type = LSM_AUDIT_DATA_NET;
4772		ad.u.net = &net;
4773		ad.u.net->dport = htons(snum);
4774		ad.u.net->family = address->sa_family;
4775		err = avc_has_perm(&selinux_state,
4776				   sksec->sid, sid, sksec->sclass, perm, &ad);
4777		if (err)
4778			return err;
4779	}
4780
4781	return 0;
4782}
4783
4784/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4785static int selinux_socket_connect(struct socket *sock,
4786				  struct sockaddr *address, int addrlen)
4787{
4788	int err;
4789	struct sock *sk = sock->sk;
4790
4791	err = selinux_socket_connect_helper(sock, address, addrlen);
4792	if (err)
4793		return err;
4794
4795	return selinux_netlbl_socket_connect(sk, address);
 
4796}
4797
4798static int selinux_socket_listen(struct socket *sock, int backlog)
4799{
4800	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4801}
4802
4803static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4804{
4805	int err;
4806	struct inode_security_struct *isec;
4807	struct inode_security_struct *newisec;
4808	u16 sclass;
4809	u32 sid;
4810
4811	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4812	if (err)
4813		return err;
4814
4815	isec = inode_security_novalidate(SOCK_INODE(sock));
4816	spin_lock(&isec->lock);
4817	sclass = isec->sclass;
4818	sid = isec->sid;
4819	spin_unlock(&isec->lock);
4820
4821	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4822	newisec->sclass = sclass;
4823	newisec->sid = sid;
4824	newisec->initialized = LABEL_INITIALIZED;
4825
4826	return 0;
4827}
4828
4829static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4830				  int size)
4831{
4832	return sock_has_perm(sock->sk, SOCKET__WRITE);
4833}
4834
4835static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4836				  int size, int flags)
4837{
4838	return sock_has_perm(sock->sk, SOCKET__READ);
4839}
4840
4841static int selinux_socket_getsockname(struct socket *sock)
4842{
4843	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4844}
4845
4846static int selinux_socket_getpeername(struct socket *sock)
4847{
4848	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4849}
4850
4851static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4852{
4853	int err;
4854
4855	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4856	if (err)
4857		return err;
4858
4859	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4860}
4861
4862static int selinux_socket_getsockopt(struct socket *sock, int level,
4863				     int optname)
4864{
4865	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4866}
4867
4868static int selinux_socket_shutdown(struct socket *sock, int how)
4869{
4870	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4871}
4872
4873static int selinux_socket_unix_stream_connect(struct sock *sock,
4874					      struct sock *other,
4875					      struct sock *newsk)
4876{
4877	struct sk_security_struct *sksec_sock = sock->sk_security;
4878	struct sk_security_struct *sksec_other = other->sk_security;
4879	struct sk_security_struct *sksec_new = newsk->sk_security;
4880	struct common_audit_data ad;
4881	struct lsm_network_audit net = {0,};
4882	int err;
4883
4884	ad.type = LSM_AUDIT_DATA_NET;
4885	ad.u.net = &net;
4886	ad.u.net->sk = other;
4887
4888	err = avc_has_perm(&selinux_state,
4889			   sksec_sock->sid, sksec_other->sid,
4890			   sksec_other->sclass,
4891			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4892	if (err)
4893		return err;
4894
4895	/* server child socket */
4896	sksec_new->peer_sid = sksec_sock->sid;
4897	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4898				    sksec_sock->sid, &sksec_new->sid);
4899	if (err)
4900		return err;
4901
4902	/* connecting socket */
4903	sksec_sock->peer_sid = sksec_new->sid;
4904
4905	return 0;
4906}
4907
4908static int selinux_socket_unix_may_send(struct socket *sock,
4909					struct socket *other)
4910{
4911	struct sk_security_struct *ssec = sock->sk->sk_security;
4912	struct sk_security_struct *osec = other->sk->sk_security;
4913	struct common_audit_data ad;
4914	struct lsm_network_audit net = {0,};
4915
4916	ad.type = LSM_AUDIT_DATA_NET;
4917	ad.u.net = &net;
4918	ad.u.net->sk = other->sk;
4919
4920	return avc_has_perm(&selinux_state,
4921			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4922			    &ad);
4923}
4924
4925static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4926				    char *addrp, u16 family, u32 peer_sid,
4927				    struct common_audit_data *ad)
4928{
4929	int err;
4930	u32 if_sid;
4931	u32 node_sid;
4932
4933	err = sel_netif_sid(ns, ifindex, &if_sid);
4934	if (err)
4935		return err;
4936	err = avc_has_perm(&selinux_state,
4937			   peer_sid, if_sid,
4938			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4939	if (err)
4940		return err;
4941
4942	err = sel_netnode_sid(addrp, family, &node_sid);
4943	if (err)
4944		return err;
4945	return avc_has_perm(&selinux_state,
4946			    peer_sid, node_sid,
4947			    SECCLASS_NODE, NODE__RECVFROM, ad);
4948}
4949
4950static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4951				       u16 family)
4952{
4953	int err = 0;
4954	struct sk_security_struct *sksec = sk->sk_security;
4955	u32 sk_sid = sksec->sid;
4956	struct common_audit_data ad;
4957	struct lsm_network_audit net = {0,};
4958	char *addrp;
4959
4960	ad.type = LSM_AUDIT_DATA_NET;
4961	ad.u.net = &net;
4962	ad.u.net->netif = skb->skb_iif;
4963	ad.u.net->family = family;
4964	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4965	if (err)
4966		return err;
4967
4968	if (selinux_secmark_enabled()) {
4969		err = avc_has_perm(&selinux_state,
4970				   sk_sid, skb->secmark, SECCLASS_PACKET,
4971				   PACKET__RECV, &ad);
4972		if (err)
4973			return err;
4974	}
4975
4976	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4977	if (err)
4978		return err;
4979	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4980
4981	return err;
4982}
4983
4984static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4985{
4986	int err;
4987	struct sk_security_struct *sksec = sk->sk_security;
4988	u16 family = sk->sk_family;
4989	u32 sk_sid = sksec->sid;
4990	struct common_audit_data ad;
4991	struct lsm_network_audit net = {0,};
4992	char *addrp;
4993	u8 secmark_active;
4994	u8 peerlbl_active;
4995
4996	if (family != PF_INET && family != PF_INET6)
4997		return 0;
4998
4999	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5000	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5001		family = PF_INET;
5002
5003	/* If any sort of compatibility mode is enabled then handoff processing
5004	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5005	 * special handling.  We do this in an attempt to keep this function
5006	 * as fast and as clean as possible. */
5007	if (!selinux_policycap_netpeer())
5008		return selinux_sock_rcv_skb_compat(sk, skb, family);
5009
5010	secmark_active = selinux_secmark_enabled();
5011	peerlbl_active = selinux_peerlbl_enabled();
5012	if (!secmark_active && !peerlbl_active)
5013		return 0;
5014
5015	ad.type = LSM_AUDIT_DATA_NET;
5016	ad.u.net = &net;
5017	ad.u.net->netif = skb->skb_iif;
5018	ad.u.net->family = family;
5019	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5020	if (err)
5021		return err;
5022
5023	if (peerlbl_active) {
5024		u32 peer_sid;
5025
5026		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5027		if (err)
5028			return err;
5029		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5030					       addrp, family, peer_sid, &ad);
5031		if (err) {
5032			selinux_netlbl_err(skb, family, err, 0);
5033			return err;
5034		}
5035		err = avc_has_perm(&selinux_state,
5036				   sk_sid, peer_sid, SECCLASS_PEER,
5037				   PEER__RECV, &ad);
5038		if (err) {
5039			selinux_netlbl_err(skb, family, err, 0);
5040			return err;
5041		}
5042	}
5043
5044	if (secmark_active) {
5045		err = avc_has_perm(&selinux_state,
5046				   sk_sid, skb->secmark, SECCLASS_PACKET,
5047				   PACKET__RECV, &ad);
5048		if (err)
5049			return err;
5050	}
5051
5052	return err;
5053}
5054
5055static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5056					    int __user *optlen, unsigned len)
5057{
5058	int err = 0;
5059	char *scontext;
5060	u32 scontext_len;
5061	struct sk_security_struct *sksec = sock->sk->sk_security;
5062	u32 peer_sid = SECSID_NULL;
5063
5064	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5065	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5066	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5067		peer_sid = sksec->peer_sid;
5068	if (peer_sid == SECSID_NULL)
5069		return -ENOPROTOOPT;
5070
5071	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5072				      &scontext_len);
5073	if (err)
5074		return err;
5075
5076	if (scontext_len > len) {
5077		err = -ERANGE;
5078		goto out_len;
5079	}
5080
5081	if (copy_to_user(optval, scontext, scontext_len))
5082		err = -EFAULT;
5083
5084out_len:
5085	if (put_user(scontext_len, optlen))
5086		err = -EFAULT;
5087	kfree(scontext);
5088	return err;
5089}
5090
5091static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5092{
5093	u32 peer_secid = SECSID_NULL;
5094	u16 family;
5095	struct inode_security_struct *isec;
5096
5097	if (skb && skb->protocol == htons(ETH_P_IP))
5098		family = PF_INET;
5099	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5100		family = PF_INET6;
5101	else if (sock)
5102		family = sock->sk->sk_family;
5103	else
5104		goto out;
5105
5106	if (sock && family == PF_UNIX) {
5107		isec = inode_security_novalidate(SOCK_INODE(sock));
5108		peer_secid = isec->sid;
5109	} else if (skb)
5110		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5111
5112out:
5113	*secid = peer_secid;
5114	if (peer_secid == SECSID_NULL)
5115		return -EINVAL;
5116	return 0;
5117}
5118
5119static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5120{
5121	struct sk_security_struct *sksec;
5122
5123	sksec = kzalloc(sizeof(*sksec), priority);
5124	if (!sksec)
5125		return -ENOMEM;
5126
5127	sksec->peer_sid = SECINITSID_UNLABELED;
5128	sksec->sid = SECINITSID_UNLABELED;
5129	sksec->sclass = SECCLASS_SOCKET;
5130	selinux_netlbl_sk_security_reset(sksec);
5131	sk->sk_security = sksec;
5132
5133	return 0;
5134}
5135
5136static void selinux_sk_free_security(struct sock *sk)
5137{
5138	struct sk_security_struct *sksec = sk->sk_security;
5139
5140	sk->sk_security = NULL;
5141	selinux_netlbl_sk_security_free(sksec);
5142	kfree(sksec);
5143}
5144
5145static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5146{
5147	struct sk_security_struct *sksec = sk->sk_security;
5148	struct sk_security_struct *newsksec = newsk->sk_security;
5149
5150	newsksec->sid = sksec->sid;
5151	newsksec->peer_sid = sksec->peer_sid;
5152	newsksec->sclass = sksec->sclass;
5153
5154	selinux_netlbl_sk_security_reset(newsksec);
5155}
5156
5157static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5158{
5159	if (!sk)
5160		*secid = SECINITSID_ANY_SOCKET;
5161	else {
5162		struct sk_security_struct *sksec = sk->sk_security;
5163
5164		*secid = sksec->sid;
5165	}
5166}
5167
5168static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5169{
5170	struct inode_security_struct *isec =
5171		inode_security_novalidate(SOCK_INODE(parent));
5172	struct sk_security_struct *sksec = sk->sk_security;
5173
5174	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5175	    sk->sk_family == PF_UNIX)
5176		isec->sid = sksec->sid;
5177	sksec->sclass = isec->sclass;
5178}
5179
5180/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5181 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5182 * already present).
5183 */
5184static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5185				      struct sk_buff *skb)
5186{
5187	struct sk_security_struct *sksec = ep->base.sk->sk_security;
5188	struct common_audit_data ad;
5189	struct lsm_network_audit net = {0,};
5190	u8 peerlbl_active;
5191	u32 peer_sid = SECINITSID_UNLABELED;
5192	u32 conn_sid;
5193	int err = 0;
5194
5195	if (!selinux_policycap_extsockclass())
5196		return 0;
5197
5198	peerlbl_active = selinux_peerlbl_enabled();
5199
5200	if (peerlbl_active) {
5201		/* This will return peer_sid = SECSID_NULL if there are
5202		 * no peer labels, see security_net_peersid_resolve().
5203		 */
5204		err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5205					      &peer_sid);
5206		if (err)
5207			return err;
5208
5209		if (peer_sid == SECSID_NULL)
5210			peer_sid = SECINITSID_UNLABELED;
5211	}
5212
5213	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5214		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5215
5216		/* Here as first association on socket. As the peer SID
5217		 * was allowed by peer recv (and the netif/node checks),
5218		 * then it is approved by policy and used as the primary
5219		 * peer SID for getpeercon(3).
5220		 */
5221		sksec->peer_sid = peer_sid;
5222	} else if  (sksec->peer_sid != peer_sid) {
5223		/* Other association peer SIDs are checked to enforce
5224		 * consistency among the peer SIDs.
5225		 */
5226		ad.type = LSM_AUDIT_DATA_NET;
5227		ad.u.net = &net;
5228		ad.u.net->sk = ep->base.sk;
5229		err = avc_has_perm(&selinux_state,
5230				   sksec->peer_sid, peer_sid, sksec->sclass,
5231				   SCTP_SOCKET__ASSOCIATION, &ad);
5232		if (err)
5233			return err;
5234	}
5235
5236	/* Compute the MLS component for the connection and store
5237	 * the information in ep. This will be used by SCTP TCP type
5238	 * sockets and peeled off connections as they cause a new
5239	 * socket to be generated. selinux_sctp_sk_clone() will then
5240	 * plug this into the new socket.
5241	 */
5242	err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5243	if (err)
5244		return err;
5245
5246	ep->secid = conn_sid;
5247	ep->peer_secid = peer_sid;
5248
5249	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5250	return selinux_netlbl_sctp_assoc_request(ep, skb);
5251}
5252
5253/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5254 * based on their @optname.
5255 */
5256static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5257				     struct sockaddr *address,
5258				     int addrlen)
5259{
5260	int len, err = 0, walk_size = 0;
5261	void *addr_buf;
5262	struct sockaddr *addr;
5263	struct socket *sock;
5264
5265	if (!selinux_policycap_extsockclass())
5266		return 0;
5267
5268	/* Process one or more addresses that may be IPv4 or IPv6 */
5269	sock = sk->sk_socket;
5270	addr_buf = address;
5271
5272	while (walk_size < addrlen) {
5273		if (walk_size + sizeof(sa_family_t) > addrlen)
5274			return -EINVAL;
5275
5276		addr = addr_buf;
5277		switch (addr->sa_family) {
5278		case AF_UNSPEC:
5279		case AF_INET:
5280			len = sizeof(struct sockaddr_in);
5281			break;
5282		case AF_INET6:
5283			len = sizeof(struct sockaddr_in6);
5284			break;
5285		default:
5286			return -EINVAL;
5287		}
5288
5289		if (walk_size + len > addrlen)
5290			return -EINVAL;
5291
5292		err = -EINVAL;
5293		switch (optname) {
5294		/* Bind checks */
5295		case SCTP_PRIMARY_ADDR:
5296		case SCTP_SET_PEER_PRIMARY_ADDR:
5297		case SCTP_SOCKOPT_BINDX_ADD:
5298			err = selinux_socket_bind(sock, addr, len);
5299			break;
5300		/* Connect checks */
5301		case SCTP_SOCKOPT_CONNECTX:
5302		case SCTP_PARAM_SET_PRIMARY:
5303		case SCTP_PARAM_ADD_IP:
5304		case SCTP_SENDMSG_CONNECT:
5305			err = selinux_socket_connect_helper(sock, addr, len);
5306			if (err)
5307				return err;
5308
5309			/* As selinux_sctp_bind_connect() is called by the
5310			 * SCTP protocol layer, the socket is already locked,
5311			 * therefore selinux_netlbl_socket_connect_locked() is
5312			 * is called here. The situations handled are:
5313			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5314			 * whenever a new IP address is added or when a new
5315			 * primary address is selected.
5316			 * Note that an SCTP connect(2) call happens before
5317			 * the SCTP protocol layer and is handled via
5318			 * selinux_socket_connect().
5319			 */
5320			err = selinux_netlbl_socket_connect_locked(sk, addr);
5321			break;
5322		}
5323
5324		if (err)
5325			return err;
5326
5327		addr_buf += len;
5328		walk_size += len;
5329	}
5330
5331	return 0;
5332}
5333
5334/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5335static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5336				  struct sock *newsk)
5337{
5338	struct sk_security_struct *sksec = sk->sk_security;
5339	struct sk_security_struct *newsksec = newsk->sk_security;
5340
5341	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5342	 * the non-sctp clone version.
5343	 */
5344	if (!selinux_policycap_extsockclass())
5345		return selinux_sk_clone_security(sk, newsk);
5346
5347	newsksec->sid = ep->secid;
5348	newsksec->peer_sid = ep->peer_secid;
5349	newsksec->sclass = sksec->sclass;
5350	selinux_netlbl_sctp_sk_clone(sk, newsk);
5351}
5352
5353static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
5354				     struct request_sock *req)
5355{
5356	struct sk_security_struct *sksec = sk->sk_security;
5357	int err;
5358	u16 family = req->rsk_ops->family;
5359	u32 connsid;
5360	u32 peersid;
5361
5362	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5363	if (err)
5364		return err;
5365	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5366	if (err)
5367		return err;
5368	req->secid = connsid;
5369	req->peer_secid = peersid;
5370
5371	return selinux_netlbl_inet_conn_request(req, family);
5372}
5373
5374static void selinux_inet_csk_clone(struct sock *newsk,
5375				   const struct request_sock *req)
5376{
5377	struct sk_security_struct *newsksec = newsk->sk_security;
5378
5379	newsksec->sid = req->secid;
5380	newsksec->peer_sid = req->peer_secid;
5381	/* NOTE: Ideally, we should also get the isec->sid for the
5382	   new socket in sync, but we don't have the isec available yet.
5383	   So we will wait until sock_graft to do it, by which
5384	   time it will have been created and available. */
5385
5386	/* We don't need to take any sort of lock here as we are the only
5387	 * thread with access to newsksec */
5388	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5389}
5390
5391static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5392{
5393	u16 family = sk->sk_family;
5394	struct sk_security_struct *sksec = sk->sk_security;
5395
5396	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5397	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5398		family = PF_INET;
5399
5400	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5401}
5402
 
 
 
 
 
5403static int selinux_secmark_relabel_packet(u32 sid)
5404{
5405	const struct task_security_struct *__tsec;
5406	u32 tsid;
5407
5408	__tsec = selinux_cred(current_cred());
5409	tsid = __tsec->sid;
5410
5411	return avc_has_perm(&selinux_state,
5412			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5413			    NULL);
5414}
5415
5416static void selinux_secmark_refcount_inc(void)
5417{
5418	atomic_inc(&selinux_secmark_refcount);
5419}
5420
5421static void selinux_secmark_refcount_dec(void)
5422{
5423	atomic_dec(&selinux_secmark_refcount);
5424}
5425
5426static void selinux_req_classify_flow(const struct request_sock *req,
5427				      struct flowi *fl)
5428{
5429	fl->flowi_secid = req->secid;
5430}
5431
5432static int selinux_tun_dev_alloc_security(void **security)
5433{
5434	struct tun_security_struct *tunsec;
5435
5436	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5437	if (!tunsec)
5438		return -ENOMEM;
5439	tunsec->sid = current_sid();
5440
5441	*security = tunsec;
5442	return 0;
5443}
5444
5445static void selinux_tun_dev_free_security(void *security)
5446{
5447	kfree(security);
5448}
5449
5450static int selinux_tun_dev_create(void)
5451{
5452	u32 sid = current_sid();
5453
5454	/* we aren't taking into account the "sockcreate" SID since the socket
5455	 * that is being created here is not a socket in the traditional sense,
5456	 * instead it is a private sock, accessible only to the kernel, and
5457	 * representing a wide range of network traffic spanning multiple
5458	 * connections unlike traditional sockets - check the TUN driver to
5459	 * get a better understanding of why this socket is special */
5460
5461	return avc_has_perm(&selinux_state,
5462			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5463			    NULL);
5464}
5465
5466static int selinux_tun_dev_attach_queue(void *security)
5467{
5468	struct tun_security_struct *tunsec = security;
5469
5470	return avc_has_perm(&selinux_state,
5471			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5472			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5473}
5474
5475static int selinux_tun_dev_attach(struct sock *sk, void *security)
5476{
5477	struct tun_security_struct *tunsec = security;
5478	struct sk_security_struct *sksec = sk->sk_security;
5479
5480	/* we don't currently perform any NetLabel based labeling here and it
5481	 * isn't clear that we would want to do so anyway; while we could apply
5482	 * labeling without the support of the TUN user the resulting labeled
5483	 * traffic from the other end of the connection would almost certainly
5484	 * cause confusion to the TUN user that had no idea network labeling
5485	 * protocols were being used */
5486
5487	sksec->sid = tunsec->sid;
5488	sksec->sclass = SECCLASS_TUN_SOCKET;
5489
5490	return 0;
5491}
5492
5493static int selinux_tun_dev_open(void *security)
5494{
5495	struct tun_security_struct *tunsec = security;
5496	u32 sid = current_sid();
5497	int err;
5498
5499	err = avc_has_perm(&selinux_state,
5500			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5501			   TUN_SOCKET__RELABELFROM, NULL);
5502	if (err)
5503		return err;
5504	err = avc_has_perm(&selinux_state,
5505			   sid, sid, SECCLASS_TUN_SOCKET,
5506			   TUN_SOCKET__RELABELTO, NULL);
5507	if (err)
5508		return err;
5509	tunsec->sid = sid;
5510
5511	return 0;
5512}
5513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5514#ifdef CONFIG_NETFILTER
5515
5516static unsigned int selinux_ip_forward(struct sk_buff *skb,
5517				       const struct net_device *indev,
5518				       u16 family)
5519{
5520	int err;
5521	char *addrp;
5522	u32 peer_sid;
5523	struct common_audit_data ad;
5524	struct lsm_network_audit net = {0,};
5525	u8 secmark_active;
5526	u8 netlbl_active;
5527	u8 peerlbl_active;
5528
5529	if (!selinux_policycap_netpeer())
5530		return NF_ACCEPT;
5531
5532	secmark_active = selinux_secmark_enabled();
5533	netlbl_active = netlbl_enabled();
5534	peerlbl_active = selinux_peerlbl_enabled();
5535	if (!secmark_active && !peerlbl_active)
5536		return NF_ACCEPT;
5537
5538	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5539		return NF_DROP;
5540
5541	ad.type = LSM_AUDIT_DATA_NET;
5542	ad.u.net = &net;
5543	ad.u.net->netif = indev->ifindex;
5544	ad.u.net->family = family;
5545	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5546		return NF_DROP;
5547
5548	if (peerlbl_active) {
5549		err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5550					       addrp, family, peer_sid, &ad);
5551		if (err) {
5552			selinux_netlbl_err(skb, family, err, 1);
5553			return NF_DROP;
5554		}
5555	}
5556
5557	if (secmark_active)
5558		if (avc_has_perm(&selinux_state,
5559				 peer_sid, skb->secmark,
5560				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5561			return NF_DROP;
5562
5563	if (netlbl_active)
5564		/* we do this in the FORWARD path and not the POST_ROUTING
5565		 * path because we want to make sure we apply the necessary
5566		 * labeling before IPsec is applied so we can leverage AH
5567		 * protection */
5568		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5569			return NF_DROP;
5570
5571	return NF_ACCEPT;
5572}
5573
5574static unsigned int selinux_ipv4_forward(void *priv,
5575					 struct sk_buff *skb,
5576					 const struct nf_hook_state *state)
 
 
5577{
5578	return selinux_ip_forward(skb, state->in, PF_INET);
5579}
5580
5581#if IS_ENABLED(CONFIG_IPV6)
5582static unsigned int selinux_ipv6_forward(void *priv,
5583					 struct sk_buff *skb,
5584					 const struct nf_hook_state *state)
 
 
5585{
5586	return selinux_ip_forward(skb, state->in, PF_INET6);
5587}
5588#endif	/* IPV6 */
5589
5590static unsigned int selinux_ip_output(struct sk_buff *skb,
5591				      u16 family)
5592{
5593	struct sock *sk;
5594	u32 sid;
5595
5596	if (!netlbl_enabled())
5597		return NF_ACCEPT;
5598
5599	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5600	 * because we want to make sure we apply the necessary labeling
5601	 * before IPsec is applied so we can leverage AH protection */
5602	sk = skb->sk;
5603	if (sk) {
5604		struct sk_security_struct *sksec;
5605
5606		if (sk_listener(sk))
5607			/* if the socket is the listening state then this
5608			 * packet is a SYN-ACK packet which means it needs to
5609			 * be labeled based on the connection/request_sock and
5610			 * not the parent socket.  unfortunately, we can't
5611			 * lookup the request_sock yet as it isn't queued on
5612			 * the parent socket until after the SYN-ACK is sent.
5613			 * the "solution" is to simply pass the packet as-is
5614			 * as any IP option based labeling should be copied
5615			 * from the initial connection request (in the IP
5616			 * layer).  it is far from ideal, but until we get a
5617			 * security label in the packet itself this is the
5618			 * best we can do. */
5619			return NF_ACCEPT;
5620
5621		/* standard practice, label using the parent socket */
5622		sksec = sk->sk_security;
5623		sid = sksec->sid;
5624	} else
5625		sid = SECINITSID_KERNEL;
5626	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5627		return NF_DROP;
5628
5629	return NF_ACCEPT;
5630}
5631
5632static unsigned int selinux_ipv4_output(void *priv,
5633					struct sk_buff *skb,
5634					const struct nf_hook_state *state)
 
 
5635{
5636	return selinux_ip_output(skb, PF_INET);
5637}
5638
5639#if IS_ENABLED(CONFIG_IPV6)
5640static unsigned int selinux_ipv6_output(void *priv,
5641					struct sk_buff *skb,
5642					const struct nf_hook_state *state)
5643{
5644	return selinux_ip_output(skb, PF_INET6);
5645}
5646#endif	/* IPV6 */
5647
5648static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5649						int ifindex,
5650						u16 family)
5651{
5652	struct sock *sk = skb_to_full_sk(skb);
5653	struct sk_security_struct *sksec;
5654	struct common_audit_data ad;
5655	struct lsm_network_audit net = {0,};
5656	char *addrp;
5657	u8 proto;
5658
5659	if (sk == NULL)
5660		return NF_ACCEPT;
5661	sksec = sk->sk_security;
5662
5663	ad.type = LSM_AUDIT_DATA_NET;
5664	ad.u.net = &net;
5665	ad.u.net->netif = ifindex;
5666	ad.u.net->family = family;
5667	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5668		return NF_DROP;
5669
5670	if (selinux_secmark_enabled())
5671		if (avc_has_perm(&selinux_state,
5672				 sksec->sid, skb->secmark,
5673				 SECCLASS_PACKET, PACKET__SEND, &ad))
5674			return NF_DROP_ERR(-ECONNREFUSED);
5675
5676	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5677		return NF_DROP_ERR(-ECONNREFUSED);
5678
5679	return NF_ACCEPT;
5680}
5681
5682static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5683					 const struct net_device *outdev,
5684					 u16 family)
5685{
5686	u32 secmark_perm;
5687	u32 peer_sid;
5688	int ifindex = outdev->ifindex;
5689	struct sock *sk;
5690	struct common_audit_data ad;
5691	struct lsm_network_audit net = {0,};
5692	char *addrp;
5693	u8 secmark_active;
5694	u8 peerlbl_active;
5695
5696	/* If any sort of compatibility mode is enabled then handoff processing
5697	 * to the selinux_ip_postroute_compat() function to deal with the
5698	 * special handling.  We do this in an attempt to keep this function
5699	 * as fast and as clean as possible. */
5700	if (!selinux_policycap_netpeer())
5701		return selinux_ip_postroute_compat(skb, ifindex, family);
5702
5703	secmark_active = selinux_secmark_enabled();
5704	peerlbl_active = selinux_peerlbl_enabled();
5705	if (!secmark_active && !peerlbl_active)
5706		return NF_ACCEPT;
5707
5708	sk = skb_to_full_sk(skb);
5709
5710#ifdef CONFIG_XFRM
5711	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5712	 * packet transformation so allow the packet to pass without any checks
5713	 * since we'll have another chance to perform access control checks
5714	 * when the packet is on it's final way out.
5715	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5716	 *       is NULL, in this case go ahead and apply access control.
5717	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5718	 *       TCP listening state we cannot wait until the XFRM processing
5719	 *       is done as we will miss out on the SA label if we do;
5720	 *       unfortunately, this means more work, but it is only once per
5721	 *       connection. */
5722	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5723	    !(sk && sk_listener(sk)))
5724		return NF_ACCEPT;
5725#endif
5726
5727	if (sk == NULL) {
5728		/* Without an associated socket the packet is either coming
5729		 * from the kernel or it is being forwarded; check the packet
5730		 * to determine which and if the packet is being forwarded
5731		 * query the packet directly to determine the security label. */
5732		if (skb->skb_iif) {
5733			secmark_perm = PACKET__FORWARD_OUT;
5734			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5735				return NF_DROP;
5736		} else {
5737			secmark_perm = PACKET__SEND;
5738			peer_sid = SECINITSID_KERNEL;
5739		}
5740	} else if (sk_listener(sk)) {
5741		/* Locally generated packet but the associated socket is in the
5742		 * listening state which means this is a SYN-ACK packet.  In
5743		 * this particular case the correct security label is assigned
5744		 * to the connection/request_sock but unfortunately we can't
5745		 * query the request_sock as it isn't queued on the parent
5746		 * socket until after the SYN-ACK packet is sent; the only
5747		 * viable choice is to regenerate the label like we do in
5748		 * selinux_inet_conn_request().  See also selinux_ip_output()
5749		 * for similar problems. */
5750		u32 skb_sid;
5751		struct sk_security_struct *sksec;
5752
5753		sksec = sk->sk_security;
5754		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5755			return NF_DROP;
5756		/* At this point, if the returned skb peerlbl is SECSID_NULL
5757		 * and the packet has been through at least one XFRM
5758		 * transformation then we must be dealing with the "final"
5759		 * form of labeled IPsec packet; since we've already applied
5760		 * all of our access controls on this packet we can safely
5761		 * pass the packet. */
5762		if (skb_sid == SECSID_NULL) {
5763			switch (family) {
5764			case PF_INET:
5765				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5766					return NF_ACCEPT;
5767				break;
5768			case PF_INET6:
5769				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5770					return NF_ACCEPT;
5771				break;
5772			default:
5773				return NF_DROP_ERR(-ECONNREFUSED);
5774			}
5775		}
5776		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5777			return NF_DROP;
5778		secmark_perm = PACKET__SEND;
5779	} else {
5780		/* Locally generated packet, fetch the security label from the
5781		 * associated socket. */
5782		struct sk_security_struct *sksec = sk->sk_security;
5783		peer_sid = sksec->sid;
5784		secmark_perm = PACKET__SEND;
5785	}
5786
5787	ad.type = LSM_AUDIT_DATA_NET;
5788	ad.u.net = &net;
5789	ad.u.net->netif = ifindex;
5790	ad.u.net->family = family;
5791	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5792		return NF_DROP;
5793
5794	if (secmark_active)
5795		if (avc_has_perm(&selinux_state,
5796				 peer_sid, skb->secmark,
5797				 SECCLASS_PACKET, secmark_perm, &ad))
5798			return NF_DROP_ERR(-ECONNREFUSED);
5799
5800	if (peerlbl_active) {
5801		u32 if_sid;
5802		u32 node_sid;
5803
5804		if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5805			return NF_DROP;
5806		if (avc_has_perm(&selinux_state,
5807				 peer_sid, if_sid,
5808				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5809			return NF_DROP_ERR(-ECONNREFUSED);
5810
5811		if (sel_netnode_sid(addrp, family, &node_sid))
5812			return NF_DROP;
5813		if (avc_has_perm(&selinux_state,
5814				 peer_sid, node_sid,
5815				 SECCLASS_NODE, NODE__SENDTO, &ad))
5816			return NF_DROP_ERR(-ECONNREFUSED);
5817	}
5818
5819	return NF_ACCEPT;
5820}
5821
5822static unsigned int selinux_ipv4_postroute(void *priv,
5823					   struct sk_buff *skb,
5824					   const struct nf_hook_state *state)
 
 
5825{
5826	return selinux_ip_postroute(skb, state->out, PF_INET);
5827}
5828
5829#if IS_ENABLED(CONFIG_IPV6)
5830static unsigned int selinux_ipv6_postroute(void *priv,
5831					   struct sk_buff *skb,
5832					   const struct nf_hook_state *state)
 
 
5833{
5834	return selinux_ip_postroute(skb, state->out, PF_INET6);
5835}
5836#endif	/* IPV6 */
5837
5838#endif	/* CONFIG_NETFILTER */
5839
5840static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5841{
5842	int rc = 0;
5843	unsigned int msg_len;
5844	unsigned int data_len = skb->len;
5845	unsigned char *data = skb->data;
5846	struct nlmsghdr *nlh;
5847	struct sk_security_struct *sksec = sk->sk_security;
5848	u16 sclass = sksec->sclass;
5849	u32 perm;
5850
5851	while (data_len >= nlmsg_total_size(0)) {
5852		nlh = (struct nlmsghdr *)data;
 
5853
5854		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5855		 *       users which means we can't reject skb's with bogus
5856		 *       length fields; our solution is to follow what
5857		 *       netlink_rcv_skb() does and simply skip processing at
5858		 *       messages with length fields that are clearly junk
5859		 */
5860		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5861			return 0;
5862
5863		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5864		if (rc == 0) {
5865			rc = sock_has_perm(sk, perm);
5866			if (rc)
5867				return rc;
5868		} else if (rc == -EINVAL) {
5869			/* -EINVAL is a missing msg/perm mapping */
5870			pr_warn_ratelimited("SELinux: unrecognized netlink"
5871				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5872				" pid=%d comm=%s\n",
5873				sk->sk_protocol, nlh->nlmsg_type,
5874				secclass_map[sclass - 1].name,
5875				task_pid_nr(current), current->comm);
5876			if (enforcing_enabled(&selinux_state) &&
5877			    !security_get_allow_unknown(&selinux_state))
5878				return rc;
5879			rc = 0;
5880		} else if (rc == -ENOENT) {
5881			/* -ENOENT is a missing socket/class mapping, ignore */
5882			rc = 0;
5883		} else {
5884			return rc;
5885		}
5886
5887		/* move to the next message after applying netlink padding */
5888		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5889		if (msg_len >= data_len)
5890			return 0;
5891		data_len -= msg_len;
5892		data += msg_len;
5893	}
5894
5895	return rc;
 
 
 
 
 
5896}
5897
5898static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5899{
5900	isec->sclass = sclass;
5901	isec->sid = current_sid();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5902}
5903
5904static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5905			u32 perms)
5906{
5907	struct ipc_security_struct *isec;
5908	struct common_audit_data ad;
5909	u32 sid = current_sid();
5910
5911	isec = selinux_ipc(ipc_perms);
5912
5913	ad.type = LSM_AUDIT_DATA_IPC;
5914	ad.u.ipc_id = ipc_perms->key;
5915
5916	return avc_has_perm(&selinux_state,
5917			    sid, isec->sid, isec->sclass, perms, &ad);
5918}
5919
5920static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5921{
5922	struct msg_security_struct *msec;
5923
5924	msec = selinux_msg_msg(msg);
5925	msec->sid = SECINITSID_UNLABELED;
5926
5927	return 0;
 
 
5928}
5929
5930/* message queue security operations */
5931static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
5932{
5933	struct ipc_security_struct *isec;
5934	struct common_audit_data ad;
5935	u32 sid = current_sid();
5936	int rc;
5937
5938	isec = selinux_ipc(msq);
5939	ipc_init_security(isec, SECCLASS_MSGQ);
 
 
 
5940
5941	ad.type = LSM_AUDIT_DATA_IPC;
5942	ad.u.ipc_id = msq->key;
5943
5944	rc = avc_has_perm(&selinux_state,
5945			  sid, isec->sid, SECCLASS_MSGQ,
5946			  MSGQ__CREATE, &ad);
5947	return rc;
 
 
 
 
 
 
 
 
 
5948}
5949
5950static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
5951{
5952	struct ipc_security_struct *isec;
5953	struct common_audit_data ad;
5954	u32 sid = current_sid();
5955
5956	isec = selinux_ipc(msq);
5957
5958	ad.type = LSM_AUDIT_DATA_IPC;
5959	ad.u.ipc_id = msq->key;
5960
5961	return avc_has_perm(&selinux_state,
5962			    sid, isec->sid, SECCLASS_MSGQ,
5963			    MSGQ__ASSOCIATE, &ad);
5964}
5965
5966static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
5967{
5968	int err;
5969	int perms;
5970
5971	switch (cmd) {
5972	case IPC_INFO:
5973	case MSG_INFO:
5974		/* No specific object, just general system-wide information. */
5975		return avc_has_perm(&selinux_state,
5976				    current_sid(), SECINITSID_KERNEL,
5977				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
5978	case IPC_STAT:
5979	case MSG_STAT:
5980	case MSG_STAT_ANY:
5981		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5982		break;
5983	case IPC_SET:
5984		perms = MSGQ__SETATTR;
5985		break;
5986	case IPC_RMID:
5987		perms = MSGQ__DESTROY;
5988		break;
5989	default:
5990		return 0;
5991	}
5992
5993	err = ipc_has_perm(msq, perms);
5994	return err;
5995}
5996
5997static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
5998{
5999	struct ipc_security_struct *isec;
6000	struct msg_security_struct *msec;
6001	struct common_audit_data ad;
6002	u32 sid = current_sid();
6003	int rc;
6004
6005	isec = selinux_ipc(msq);
6006	msec = selinux_msg_msg(msg);
6007
6008	/*
6009	 * First time through, need to assign label to the message
6010	 */
6011	if (msec->sid == SECINITSID_UNLABELED) {
6012		/*
6013		 * Compute new sid based on current process and
6014		 * message queue this message will be stored in
6015		 */
6016		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6017					     SECCLASS_MSG, NULL, &msec->sid);
6018		if (rc)
6019			return rc;
6020	}
6021
6022	ad.type = LSM_AUDIT_DATA_IPC;
6023	ad.u.ipc_id = msq->key;
6024
6025	/* Can this process write to the queue? */
6026	rc = avc_has_perm(&selinux_state,
6027			  sid, isec->sid, SECCLASS_MSGQ,
6028			  MSGQ__WRITE, &ad);
6029	if (!rc)
6030		/* Can this process send the message */
6031		rc = avc_has_perm(&selinux_state,
6032				  sid, msec->sid, SECCLASS_MSG,
6033				  MSG__SEND, &ad);
6034	if (!rc)
6035		/* Can the message be put in the queue? */
6036		rc = avc_has_perm(&selinux_state,
6037				  msec->sid, isec->sid, SECCLASS_MSGQ,
6038				  MSGQ__ENQUEUE, &ad);
6039
6040	return rc;
6041}
6042
6043static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6044				    struct task_struct *target,
6045				    long type, int mode)
6046{
6047	struct ipc_security_struct *isec;
6048	struct msg_security_struct *msec;
6049	struct common_audit_data ad;
6050	u32 sid = task_sid(target);
6051	int rc;
6052
6053	isec = selinux_ipc(msq);
6054	msec = selinux_msg_msg(msg);
6055
6056	ad.type = LSM_AUDIT_DATA_IPC;
6057	ad.u.ipc_id = msq->key;
6058
6059	rc = avc_has_perm(&selinux_state,
6060			  sid, isec->sid,
6061			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6062	if (!rc)
6063		rc = avc_has_perm(&selinux_state,
6064				  sid, msec->sid,
6065				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6066	return rc;
6067}
6068
6069/* Shared Memory security operations */
6070static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6071{
6072	struct ipc_security_struct *isec;
6073	struct common_audit_data ad;
6074	u32 sid = current_sid();
6075	int rc;
6076
6077	isec = selinux_ipc(shp);
6078	ipc_init_security(isec, SECCLASS_SHM);
 
 
 
6079
6080	ad.type = LSM_AUDIT_DATA_IPC;
6081	ad.u.ipc_id = shp->key;
6082
6083	rc = avc_has_perm(&selinux_state,
6084			  sid, isec->sid, SECCLASS_SHM,
6085			  SHM__CREATE, &ad);
6086	return rc;
 
 
 
 
6087}
6088
6089static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
 
 
 
 
 
6090{
6091	struct ipc_security_struct *isec;
6092	struct common_audit_data ad;
6093	u32 sid = current_sid();
6094
6095	isec = selinux_ipc(shp);
6096
6097	ad.type = LSM_AUDIT_DATA_IPC;
6098	ad.u.ipc_id = shp->key;
6099
6100	return avc_has_perm(&selinux_state,
6101			    sid, isec->sid, SECCLASS_SHM,
6102			    SHM__ASSOCIATE, &ad);
6103}
6104
6105/* Note, at this point, shp is locked down */
6106static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6107{
6108	int perms;
6109	int err;
6110
6111	switch (cmd) {
6112	case IPC_INFO:
6113	case SHM_INFO:
6114		/* No specific object, just general system-wide information. */
6115		return avc_has_perm(&selinux_state,
6116				    current_sid(), SECINITSID_KERNEL,
6117				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6118	case IPC_STAT:
6119	case SHM_STAT:
6120	case SHM_STAT_ANY:
6121		perms = SHM__GETATTR | SHM__ASSOCIATE;
6122		break;
6123	case IPC_SET:
6124		perms = SHM__SETATTR;
6125		break;
6126	case SHM_LOCK:
6127	case SHM_UNLOCK:
6128		perms = SHM__LOCK;
6129		break;
6130	case IPC_RMID:
6131		perms = SHM__DESTROY;
6132		break;
6133	default:
6134		return 0;
6135	}
6136
6137	err = ipc_has_perm(shp, perms);
6138	return err;
6139}
6140
6141static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6142			     char __user *shmaddr, int shmflg)
6143{
6144	u32 perms;
6145
6146	if (shmflg & SHM_RDONLY)
6147		perms = SHM__READ;
6148	else
6149		perms = SHM__READ | SHM__WRITE;
6150
6151	return ipc_has_perm(shp, perms);
6152}
6153
6154/* Semaphore security operations */
6155static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6156{
6157	struct ipc_security_struct *isec;
6158	struct common_audit_data ad;
6159	u32 sid = current_sid();
6160	int rc;
6161
6162	isec = selinux_ipc(sma);
6163	ipc_init_security(isec, SECCLASS_SEM);
 
 
 
6164
6165	ad.type = LSM_AUDIT_DATA_IPC;
6166	ad.u.ipc_id = sma->key;
6167
6168	rc = avc_has_perm(&selinux_state,
6169			  sid, isec->sid, SECCLASS_SEM,
6170			  SEM__CREATE, &ad);
6171	return rc;
 
 
 
 
6172}
6173
6174static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
 
 
 
 
 
6175{
6176	struct ipc_security_struct *isec;
6177	struct common_audit_data ad;
6178	u32 sid = current_sid();
6179
6180	isec = selinux_ipc(sma);
6181
6182	ad.type = LSM_AUDIT_DATA_IPC;
6183	ad.u.ipc_id = sma->key;
6184
6185	return avc_has_perm(&selinux_state,
6186			    sid, isec->sid, SECCLASS_SEM,
6187			    SEM__ASSOCIATE, &ad);
6188}
6189
6190/* Note, at this point, sma is locked down */
6191static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6192{
6193	int err;
6194	u32 perms;
6195
6196	switch (cmd) {
6197	case IPC_INFO:
6198	case SEM_INFO:
6199		/* No specific object, just general system-wide information. */
6200		return avc_has_perm(&selinux_state,
6201				    current_sid(), SECINITSID_KERNEL,
6202				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6203	case GETPID:
6204	case GETNCNT:
6205	case GETZCNT:
6206		perms = SEM__GETATTR;
6207		break;
6208	case GETVAL:
6209	case GETALL:
6210		perms = SEM__READ;
6211		break;
6212	case SETVAL:
6213	case SETALL:
6214		perms = SEM__WRITE;
6215		break;
6216	case IPC_RMID:
6217		perms = SEM__DESTROY;
6218		break;
6219	case IPC_SET:
6220		perms = SEM__SETATTR;
6221		break;
6222	case IPC_STAT:
6223	case SEM_STAT:
6224	case SEM_STAT_ANY:
6225		perms = SEM__GETATTR | SEM__ASSOCIATE;
6226		break;
6227	default:
6228		return 0;
6229	}
6230
6231	err = ipc_has_perm(sma, perms);
6232	return err;
6233}
6234
6235static int selinux_sem_semop(struct kern_ipc_perm *sma,
6236			     struct sembuf *sops, unsigned nsops, int alter)
6237{
6238	u32 perms;
6239
6240	if (alter)
6241		perms = SEM__READ | SEM__WRITE;
6242	else
6243		perms = SEM__READ;
6244
6245	return ipc_has_perm(sma, perms);
6246}
6247
6248static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6249{
6250	u32 av = 0;
6251
6252	av = 0;
6253	if (flag & S_IRUGO)
6254		av |= IPC__UNIX_READ;
6255	if (flag & S_IWUGO)
6256		av |= IPC__UNIX_WRITE;
6257
6258	if (av == 0)
6259		return 0;
6260
6261	return ipc_has_perm(ipcp, av);
6262}
6263
6264static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6265{
6266	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6267	*secid = isec->sid;
6268}
6269
6270static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6271{
6272	if (inode)
6273		inode_doinit_with_dentry(inode, dentry);
6274}
6275
6276static int selinux_getprocattr(struct task_struct *p,
6277			       char *name, char **value)
6278{
6279	const struct task_security_struct *__tsec;
6280	u32 sid;
6281	int error;
6282	unsigned len;
6283
6284	rcu_read_lock();
6285	__tsec = selinux_cred(__task_cred(p));
6286
6287	if (current != p) {
6288		error = avc_has_perm(&selinux_state,
6289				     current_sid(), __tsec->sid,
6290				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6291		if (error)
6292			goto bad;
6293	}
6294
 
 
 
6295	if (!strcmp(name, "current"))
6296		sid = __tsec->sid;
6297	else if (!strcmp(name, "prev"))
6298		sid = __tsec->osid;
6299	else if (!strcmp(name, "exec"))
6300		sid = __tsec->exec_sid;
6301	else if (!strcmp(name, "fscreate"))
6302		sid = __tsec->create_sid;
6303	else if (!strcmp(name, "keycreate"))
6304		sid = __tsec->keycreate_sid;
6305	else if (!strcmp(name, "sockcreate"))
6306		sid = __tsec->sockcreate_sid;
6307	else {
6308		error = -EINVAL;
6309		goto bad;
6310	}
6311	rcu_read_unlock();
6312
6313	if (!sid)
6314		return 0;
6315
6316	error = security_sid_to_context(&selinux_state, sid, value, &len);
6317	if (error)
6318		return error;
6319	return len;
6320
6321bad:
6322	rcu_read_unlock();
6323	return error;
6324}
6325
6326static int selinux_setprocattr(const char *name, void *value, size_t size)
 
6327{
6328	struct task_security_struct *tsec;
 
6329	struct cred *new;
6330	u32 mysid = current_sid(), sid = 0, ptsid;
6331	int error;
6332	char *str = value;
6333
 
 
 
 
 
 
6334	/*
6335	 * Basic control over ability to set these attributes at all.
 
 
6336	 */
6337	if (!strcmp(name, "exec"))
6338		error = avc_has_perm(&selinux_state,
6339				     mysid, mysid, SECCLASS_PROCESS,
6340				     PROCESS__SETEXEC, NULL);
6341	else if (!strcmp(name, "fscreate"))
6342		error = avc_has_perm(&selinux_state,
6343				     mysid, mysid, SECCLASS_PROCESS,
6344				     PROCESS__SETFSCREATE, NULL);
6345	else if (!strcmp(name, "keycreate"))
6346		error = avc_has_perm(&selinux_state,
6347				     mysid, mysid, SECCLASS_PROCESS,
6348				     PROCESS__SETKEYCREATE, NULL);
6349	else if (!strcmp(name, "sockcreate"))
6350		error = avc_has_perm(&selinux_state,
6351				     mysid, mysid, SECCLASS_PROCESS,
6352				     PROCESS__SETSOCKCREATE, NULL);
6353	else if (!strcmp(name, "current"))
6354		error = avc_has_perm(&selinux_state,
6355				     mysid, mysid, SECCLASS_PROCESS,
6356				     PROCESS__SETCURRENT, NULL);
6357	else
6358		error = -EINVAL;
6359	if (error)
6360		return error;
6361
6362	/* Obtain a SID for the context, if one was specified. */
6363	if (size && str[0] && str[0] != '\n') {
6364		if (str[size-1] == '\n') {
6365			str[size-1] = 0;
6366			size--;
6367		}
6368		error = security_context_to_sid(&selinux_state, value, size,
6369						&sid, GFP_KERNEL);
6370		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6371			if (!has_cap_mac_admin(true)) {
6372				struct audit_buffer *ab;
6373				size_t audit_size;
6374
6375				/* We strip a nul only if it is at the end, otherwise the
6376				 * context contains a nul and we should audit that */
6377				if (str[size - 1] == '\0')
6378					audit_size = size - 1;
6379				else
6380					audit_size = size;
6381				ab = audit_log_start(audit_context(),
6382						     GFP_ATOMIC,
6383						     AUDIT_SELINUX_ERR);
6384				audit_log_format(ab, "op=fscreate invalid_context=");
6385				audit_log_n_untrustedstring(ab, value, audit_size);
6386				audit_log_end(ab);
6387
6388				return error;
6389			}
6390			error = security_context_to_sid_force(
6391						      &selinux_state,
6392						      value, size, &sid);
6393		}
6394		if (error)
6395			return error;
6396	}
6397
6398	new = prepare_creds();
6399	if (!new)
6400		return -ENOMEM;
6401
6402	/* Permission checking based on the specified context is
6403	   performed during the actual operation (execve,
6404	   open/mkdir/...), when we know the full context of the
6405	   operation.  See selinux_bprm_creds_for_exec for the execve
6406	   checks and may_create for the file creation checks. The
6407	   operation will then fail if the context is not permitted. */
6408	tsec = selinux_cred(new);
6409	if (!strcmp(name, "exec")) {
6410		tsec->exec_sid = sid;
6411	} else if (!strcmp(name, "fscreate")) {
6412		tsec->create_sid = sid;
6413	} else if (!strcmp(name, "keycreate")) {
6414		if (sid) {
6415			error = avc_has_perm(&selinux_state, mysid, sid,
6416					     SECCLASS_KEY, KEY__CREATE, NULL);
6417			if (error)
6418				goto abort_change;
6419		}
6420		tsec->keycreate_sid = sid;
6421	} else if (!strcmp(name, "sockcreate")) {
6422		tsec->sockcreate_sid = sid;
6423	} else if (!strcmp(name, "current")) {
6424		error = -EINVAL;
6425		if (sid == 0)
6426			goto abort_change;
6427
6428		/* Only allow single threaded processes to change context */
6429		error = -EPERM;
6430		if (!current_is_single_threaded()) {
6431			error = security_bounded_transition(&selinux_state,
6432							    tsec->sid, sid);
6433			if (error)
6434				goto abort_change;
6435		}
6436
6437		/* Check permissions for the transition. */
6438		error = avc_has_perm(&selinux_state,
6439				     tsec->sid, sid, SECCLASS_PROCESS,
6440				     PROCESS__DYNTRANSITION, NULL);
6441		if (error)
6442			goto abort_change;
6443
6444		/* Check for ptracing, and update the task SID if ok.
6445		   Otherwise, leave SID unchanged and fail. */
6446		ptsid = ptrace_parent_sid();
6447		if (ptsid != 0) {
6448			error = avc_has_perm(&selinux_state,
6449					     ptsid, sid, SECCLASS_PROCESS,
 
 
 
 
 
6450					     PROCESS__PTRACE, NULL);
6451			if (error)
6452				goto abort_change;
6453		}
6454
6455		tsec->sid = sid;
6456	} else {
6457		error = -EINVAL;
6458		goto abort_change;
6459	}
6460
6461	commit_creds(new);
6462	return size;
6463
6464abort_change:
6465	abort_creds(new);
6466	return error;
6467}
6468
6469static int selinux_ismaclabel(const char *name)
6470{
6471	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6472}
6473
6474static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6475{
6476	return security_sid_to_context(&selinux_state, secid,
6477				       secdata, seclen);
6478}
6479
6480static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6481{
6482	return security_context_to_sid(&selinux_state, secdata, seclen,
6483				       secid, GFP_KERNEL);
6484}
6485
6486static void selinux_release_secctx(char *secdata, u32 seclen)
6487{
6488	kfree(secdata);
6489}
6490
6491static void selinux_inode_invalidate_secctx(struct inode *inode)
6492{
6493	struct inode_security_struct *isec = selinux_inode(inode);
6494
6495	spin_lock(&isec->lock);
6496	isec->initialized = LABEL_INVALID;
6497	spin_unlock(&isec->lock);
6498}
6499
6500/*
6501 *	called with inode->i_mutex locked
6502 */
6503static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6504{
6505	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6506					   ctx, ctxlen, 0);
6507	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6508	return rc == -EOPNOTSUPP ? 0 : rc;
6509}
6510
6511/*
6512 *	called with inode->i_mutex locked
6513 */
6514static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6515{
6516	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
6517}
6518
6519static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6520{
6521	int len = 0;
6522	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
6523						ctx, true);
6524	if (len < 0)
6525		return len;
6526	*ctxlen = len;
6527	return 0;
6528}
6529#ifdef CONFIG_KEYS
6530
6531static int selinux_key_alloc(struct key *k, const struct cred *cred,
6532			     unsigned long flags)
6533{
6534	const struct task_security_struct *tsec;
6535	struct key_security_struct *ksec;
6536
6537	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6538	if (!ksec)
6539		return -ENOMEM;
6540
6541	tsec = selinux_cred(cred);
6542	if (tsec->keycreate_sid)
6543		ksec->sid = tsec->keycreate_sid;
6544	else
6545		ksec->sid = tsec->sid;
6546
6547	k->security = ksec;
6548	return 0;
6549}
6550
6551static void selinux_key_free(struct key *k)
6552{
6553	struct key_security_struct *ksec = k->security;
6554
6555	k->security = NULL;
6556	kfree(ksec);
6557}
6558
6559static int selinux_key_permission(key_ref_t key_ref,
6560				  const struct cred *cred,
6561				  enum key_need_perm need_perm)
6562{
6563	struct key *key;
6564	struct key_security_struct *ksec;
6565	u32 perm, sid;
6566
6567	switch (need_perm) {
6568	case KEY_NEED_VIEW:
6569		perm = KEY__VIEW;
6570		break;
6571	case KEY_NEED_READ:
6572		perm = KEY__READ;
6573		break;
6574	case KEY_NEED_WRITE:
6575		perm = KEY__WRITE;
6576		break;
6577	case KEY_NEED_SEARCH:
6578		perm = KEY__SEARCH;
6579		break;
6580	case KEY_NEED_LINK:
6581		perm = KEY__LINK;
6582		break;
6583	case KEY_NEED_SETATTR:
6584		perm = KEY__SETATTR;
6585		break;
6586	case KEY_NEED_UNLINK:
6587	case KEY_SYSADMIN_OVERRIDE:
6588	case KEY_AUTHTOKEN_OVERRIDE:
6589	case KEY_DEFER_PERM_CHECK:
6590		return 0;
6591	default:
6592		WARN_ON(1);
6593		return -EPERM;
6594
6595	}
6596
6597	sid = cred_sid(cred);
 
6598	key = key_ref_to_ptr(key_ref);
6599	ksec = key->security;
6600
6601	return avc_has_perm(&selinux_state,
6602			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6603}
6604
6605static int selinux_key_getsecurity(struct key *key, char **_buffer)
6606{
6607	struct key_security_struct *ksec = key->security;
6608	char *context = NULL;
6609	unsigned len;
6610	int rc;
6611
6612	rc = security_sid_to_context(&selinux_state, ksec->sid,
6613				     &context, &len);
6614	if (!rc)
6615		rc = len;
6616	*_buffer = context;
6617	return rc;
6618}
6619
6620#ifdef CONFIG_KEY_NOTIFICATIONS
6621static int selinux_watch_key(struct key *key)
6622{
6623	struct key_security_struct *ksec = key->security;
6624	u32 sid = current_sid();
6625
6626	return avc_has_perm(&selinux_state,
6627			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6628}
6629#endif
6630#endif
6631
6632#ifdef CONFIG_SECURITY_INFINIBAND
6633static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6634{
6635	struct common_audit_data ad;
6636	int err;
6637	u32 sid = 0;
6638	struct ib_security_struct *sec = ib_sec;
6639	struct lsm_ibpkey_audit ibpkey;
6640
6641	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6642	if (err)
6643		return err;
6644
6645	ad.type = LSM_AUDIT_DATA_IBPKEY;
6646	ibpkey.subnet_prefix = subnet_prefix;
6647	ibpkey.pkey = pkey_val;
6648	ad.u.ibpkey = &ibpkey;
6649	return avc_has_perm(&selinux_state,
6650			    sec->sid, sid,
6651			    SECCLASS_INFINIBAND_PKEY,
6652			    INFINIBAND_PKEY__ACCESS, &ad);
6653}
6654
6655static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6656					    u8 port_num)
6657{
6658	struct common_audit_data ad;
6659	int err;
6660	u32 sid = 0;
6661	struct ib_security_struct *sec = ib_sec;
6662	struct lsm_ibendport_audit ibendport;
6663
6664	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6665				      &sid);
6666
6667	if (err)
6668		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6669
6670	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6671	strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name));
6672	ibendport.port = port_num;
6673	ad.u.ibendport = &ibendport;
6674	return avc_has_perm(&selinux_state,
6675			    sec->sid, sid,
6676			    SECCLASS_INFINIBAND_ENDPORT,
6677			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6678}
6679
6680static int selinux_ib_alloc_security(void **ib_sec)
6681{
6682	struct ib_security_struct *sec;
6683
6684	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6685	if (!sec)
6686		return -ENOMEM;
6687	sec->sid = current_sid();
6688
6689	*ib_sec = sec;
6690	return 0;
6691}
6692
6693static void selinux_ib_free_security(void *ib_sec)
6694{
6695	kfree(ib_sec);
6696}
6697#endif
6698
6699#ifdef CONFIG_BPF_SYSCALL
6700static int selinux_bpf(int cmd, union bpf_attr *attr,
6701				     unsigned int size)
6702{
6703	u32 sid = current_sid();
6704	int ret;
6705
6706	switch (cmd) {
6707	case BPF_MAP_CREATE:
6708		ret = avc_has_perm(&selinux_state,
6709				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6710				   NULL);
6711		break;
6712	case BPF_PROG_LOAD:
6713		ret = avc_has_perm(&selinux_state,
6714				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6715				   NULL);
6716		break;
6717	default:
6718		ret = 0;
6719		break;
6720	}
6721
6722	return ret;
6723}
6724
6725static u32 bpf_map_fmode_to_av(fmode_t fmode)
6726{
6727	u32 av = 0;
6728
6729	if (fmode & FMODE_READ)
6730		av |= BPF__MAP_READ;
6731	if (fmode & FMODE_WRITE)
6732		av |= BPF__MAP_WRITE;
6733	return av;
6734}
6735
6736/* This function will check the file pass through unix socket or binder to see
6737 * if it is a bpf related object. And apply correspinding checks on the bpf
6738 * object based on the type. The bpf maps and programs, not like other files and
6739 * socket, are using a shared anonymous inode inside the kernel as their inode.
6740 * So checking that inode cannot identify if the process have privilege to
6741 * access the bpf object and that's why we have to add this additional check in
6742 * selinux_file_receive and selinux_binder_transfer_files.
6743 */
6744static int bpf_fd_pass(struct file *file, u32 sid)
6745{
6746	struct bpf_security_struct *bpfsec;
6747	struct bpf_prog *prog;
6748	struct bpf_map *map;
6749	int ret;
6750
6751	if (file->f_op == &bpf_map_fops) {
6752		map = file->private_data;
6753		bpfsec = map->security;
6754		ret = avc_has_perm(&selinux_state,
6755				   sid, bpfsec->sid, SECCLASS_BPF,
6756				   bpf_map_fmode_to_av(file->f_mode), NULL);
6757		if (ret)
6758			return ret;
6759	} else if (file->f_op == &bpf_prog_fops) {
6760		prog = file->private_data;
6761		bpfsec = prog->aux->security;
6762		ret = avc_has_perm(&selinux_state,
6763				   sid, bpfsec->sid, SECCLASS_BPF,
6764				   BPF__PROG_RUN, NULL);
6765		if (ret)
6766			return ret;
6767	}
6768	return 0;
6769}
6770
6771static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6772{
6773	u32 sid = current_sid();
6774	struct bpf_security_struct *bpfsec;
6775
6776	bpfsec = map->security;
6777	return avc_has_perm(&selinux_state,
6778			    sid, bpfsec->sid, SECCLASS_BPF,
6779			    bpf_map_fmode_to_av(fmode), NULL);
6780}
6781
6782static int selinux_bpf_prog(struct bpf_prog *prog)
6783{
6784	u32 sid = current_sid();
6785	struct bpf_security_struct *bpfsec;
6786
6787	bpfsec = prog->aux->security;
6788	return avc_has_perm(&selinux_state,
6789			    sid, bpfsec->sid, SECCLASS_BPF,
6790			    BPF__PROG_RUN, NULL);
6791}
6792
6793static int selinux_bpf_map_alloc(struct bpf_map *map)
6794{
6795	struct bpf_security_struct *bpfsec;
6796
6797	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6798	if (!bpfsec)
6799		return -ENOMEM;
6800
6801	bpfsec->sid = current_sid();
6802	map->security = bpfsec;
6803
6804	return 0;
6805}
6806
6807static void selinux_bpf_map_free(struct bpf_map *map)
6808{
6809	struct bpf_security_struct *bpfsec = map->security;
6810
6811	map->security = NULL;
6812	kfree(bpfsec);
6813}
6814
6815static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6816{
6817	struct bpf_security_struct *bpfsec;
6818
6819	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6820	if (!bpfsec)
6821		return -ENOMEM;
6822
6823	bpfsec->sid = current_sid();
6824	aux->security = bpfsec;
6825
6826	return 0;
6827}
6828
6829static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6830{
6831	struct bpf_security_struct *bpfsec = aux->security;
6832
6833	aux->security = NULL;
6834	kfree(bpfsec);
6835}
6836#endif
6837
6838static int selinux_lockdown(enum lockdown_reason what)
6839{
6840	struct common_audit_data ad;
6841	u32 sid = current_sid();
6842	int invalid_reason = (what <= LOCKDOWN_NONE) ||
6843			     (what == LOCKDOWN_INTEGRITY_MAX) ||
6844			     (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
6845
6846	if (WARN(invalid_reason, "Invalid lockdown reason")) {
6847		audit_log(audit_context(),
6848			  GFP_ATOMIC, AUDIT_SELINUX_ERR,
6849			  "lockdown_reason=invalid");
6850		return -EINVAL;
6851	}
6852
6853	ad.type = LSM_AUDIT_DATA_LOCKDOWN;
6854	ad.u.reason = what;
6855
6856	if (what <= LOCKDOWN_INTEGRITY_MAX)
6857		return avc_has_perm(&selinux_state,
6858				    sid, sid, SECCLASS_LOCKDOWN,
6859				    LOCKDOWN__INTEGRITY, &ad);
6860	else
6861		return avc_has_perm(&selinux_state,
6862				    sid, sid, SECCLASS_LOCKDOWN,
6863				    LOCKDOWN__CONFIDENTIALITY, &ad);
6864}
6865
6866struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6867	.lbs_cred = sizeof(struct task_security_struct),
6868	.lbs_file = sizeof(struct file_security_struct),
6869	.lbs_inode = sizeof(struct inode_security_struct),
6870	.lbs_ipc = sizeof(struct ipc_security_struct),
6871	.lbs_msg_msg = sizeof(struct msg_security_struct),
6872};
6873
6874#ifdef CONFIG_PERF_EVENTS
6875static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6876{
6877	u32 requested, sid = current_sid();
6878
6879	if (type == PERF_SECURITY_OPEN)
6880		requested = PERF_EVENT__OPEN;
6881	else if (type == PERF_SECURITY_CPU)
6882		requested = PERF_EVENT__CPU;
6883	else if (type == PERF_SECURITY_KERNEL)
6884		requested = PERF_EVENT__KERNEL;
6885	else if (type == PERF_SECURITY_TRACEPOINT)
6886		requested = PERF_EVENT__TRACEPOINT;
6887	else
6888		return -EINVAL;
6889
6890	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6891			    requested, NULL);
6892}
6893
6894static int selinux_perf_event_alloc(struct perf_event *event)
6895{
6896	struct perf_event_security_struct *perfsec;
6897
6898	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6899	if (!perfsec)
6900		return -ENOMEM;
6901
6902	perfsec->sid = current_sid();
6903	event->security = perfsec;
6904
6905	return 0;
6906}
6907
6908static void selinux_perf_event_free(struct perf_event *event)
6909{
6910	struct perf_event_security_struct *perfsec = event->security;
6911
6912	event->security = NULL;
6913	kfree(perfsec);
6914}
6915
6916static int selinux_perf_event_read(struct perf_event *event)
6917{
6918	struct perf_event_security_struct *perfsec = event->security;
6919	u32 sid = current_sid();
6920
6921	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6922			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6923}
6924
6925static int selinux_perf_event_write(struct perf_event *event)
6926{
6927	struct perf_event_security_struct *perfsec = event->security;
6928	u32 sid = current_sid();
6929
6930	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6931			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6932}
6933#endif
6934
6935/*
6936 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
6937 * 1. any hooks that don't belong to (2.) or (3.) below,
6938 * 2. hooks that both access structures allocated by other hooks, and allocate
6939 *    structures that can be later accessed by other hooks (mostly "cloning"
6940 *    hooks),
6941 * 3. hooks that only allocate structures that can be later accessed by other
6942 *    hooks ("allocating" hooks).
6943 *
6944 * Please follow block comment delimiters in the list to keep this order.
6945 *
6946 * This ordering is needed for SELinux runtime disable to work at least somewhat
6947 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
6948 * when disabling SELinux at runtime.
6949 */
6950static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
6951	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
6952	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
6953	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
6954	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
6955
6956	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
6957	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
6958	LSM_HOOK_INIT(capget, selinux_capget),
6959	LSM_HOOK_INIT(capset, selinux_capset),
6960	LSM_HOOK_INIT(capable, selinux_capable),
6961	LSM_HOOK_INIT(quotactl, selinux_quotactl),
6962	LSM_HOOK_INIT(quota_on, selinux_quota_on),
6963	LSM_HOOK_INIT(syslog, selinux_syslog),
6964	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
6965
6966	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
6967
6968	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
6969	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
6970	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
6971
6972	LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
6973	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
6974	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
6975	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
6976	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
6977	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
6978	LSM_HOOK_INIT(sb_mount, selinux_mount),
6979	LSM_HOOK_INIT(sb_umount, selinux_umount),
6980	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
6981	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
6982
6983	LSM_HOOK_INIT(move_mount, selinux_move_mount),
6984
6985	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
6986	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
6987
6988	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
6989	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
6990	LSM_HOOK_INIT(inode_create, selinux_inode_create),
6991	LSM_HOOK_INIT(inode_link, selinux_inode_link),
6992	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
6993	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
6994	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
6995	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
6996	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
6997	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
6998	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
6999	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7000	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7001	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7002	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7003	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7004	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7005	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7006	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7007	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7008	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7009	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7010	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7011	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7012	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7013	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7014	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7015
7016	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7017
7018	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7019	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7020	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7021	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7022	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7023	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7024	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7025	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7026	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7027	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7028	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7029
7030	LSM_HOOK_INIT(file_open, selinux_file_open),
7031
7032	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7033	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7034	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7035	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7036	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7037	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7038	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7039	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7040	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7041	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7042	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7043	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7044	LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
7045	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7046	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7047	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7048	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7049	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7050	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7051	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7052	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7053	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7054	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7055
7056	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7057	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7058
7059	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7060	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7061	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7062	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7063
7064	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7065	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7066	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7067
7068	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7069	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7070	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7071
7072	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7073
7074	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7075	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7076
7077	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7078	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7079	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7080	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7081	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7082	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7083
7084	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7085	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7086
7087	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7088	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7089	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7090	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7091	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7092	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7093	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7094	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7095	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7096	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7097	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7098	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7099	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7100	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7101	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7102	LSM_HOOK_INIT(socket_getpeersec_stream,
7103			selinux_socket_getpeersec_stream),
7104	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7105	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7106	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7107	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7108	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7109	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7110	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7111	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7112	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7113	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7114	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7115	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7116	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7117	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7118	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7119	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7120	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7121	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7122	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7123	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7124#ifdef CONFIG_SECURITY_INFINIBAND
7125	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7126	LSM_HOOK_INIT(ib_endport_manage_subnet,
7127		      selinux_ib_endport_manage_subnet),
7128	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7129#endif
7130#ifdef CONFIG_SECURITY_NETWORK_XFRM
7131	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7132	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7133	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7134	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7135	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7136	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7137			selinux_xfrm_state_pol_flow_match),
7138	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
 
 
 
7139#endif
7140
7141#ifdef CONFIG_KEYS
7142	LSM_HOOK_INIT(key_free, selinux_key_free),
7143	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7144	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7145#ifdef CONFIG_KEY_NOTIFICATIONS
7146	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7147#endif
7148#endif
7149
7150#ifdef CONFIG_AUDIT
7151	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7152	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7153	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7154#endif
7155
7156#ifdef CONFIG_BPF_SYSCALL
7157	LSM_HOOK_INIT(bpf, selinux_bpf),
7158	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7159	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7160	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7161	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7162#endif
7163
7164#ifdef CONFIG_PERF_EVENTS
7165	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7166	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7167	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7168	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7169#endif
7170
7171	LSM_HOOK_INIT(locked_down, selinux_lockdown),
7172
7173	/*
7174	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7175	 */
7176	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7177	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7178	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7179	LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7180#ifdef CONFIG_SECURITY_NETWORK_XFRM
7181	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7182#endif
7183
7184	/*
7185	 * PUT "ALLOCATING" HOOKS HERE
7186	 */
7187	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7188	LSM_HOOK_INIT(msg_queue_alloc_security,
7189		      selinux_msg_queue_alloc_security),
7190	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7191	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7192	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7193	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7194	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7195	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7196	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7197	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7198#ifdef CONFIG_SECURITY_INFINIBAND
7199	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7200#endif
7201#ifdef CONFIG_SECURITY_NETWORK_XFRM
7202	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7203	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7204	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7205		      selinux_xfrm_state_alloc_acquire),
7206#endif
7207#ifdef CONFIG_KEYS
7208	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7209#endif
7210#ifdef CONFIG_AUDIT
7211	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7212#endif
7213#ifdef CONFIG_BPF_SYSCALL
7214	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7215	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7216#endif
7217#ifdef CONFIG_PERF_EVENTS
7218	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7219#endif
7220};
7221
7222static __init int selinux_init(void)
7223{
7224	pr_info("SELinux:  Initializing.\n");
 
 
 
7225
7226	memset(&selinux_state, 0, sizeof(selinux_state));
7227	enforcing_set(&selinux_state, selinux_enforcing_boot);
7228	selinux_state.checkreqprot = selinux_checkreqprot_boot;
7229	selinux_ss_init(&selinux_state.ss);
7230	selinux_avc_init(&selinux_state.avc);
7231	mutex_init(&selinux_state.status_lock);
7232
7233	/* Set the security state for the initial task. */
7234	cred_init_security();
7235
7236	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7237
 
 
 
7238	avc_init();
7239
7240	avtab_cache_init();
7241
7242	ebitmap_cache_init();
7243
7244	hashtab_cache_init();
7245
7246	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7247
7248	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7249		panic("SELinux: Unable to register AVC netcache callback\n");
7250
7251	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7252		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7253
7254	if (selinux_enforcing_boot)
7255		pr_debug("SELinux:  Starting in enforcing mode\n");
7256	else
7257		pr_debug("SELinux:  Starting in permissive mode\n");
7258
7259	fs_validate_description("selinux", selinux_fs_parameters);
7260
7261	return 0;
7262}
7263
7264static void delayed_superblock_init(struct super_block *sb, void *unused)
7265{
7266	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7267}
7268
7269void selinux_complete_init(void)
7270{
7271	pr_debug("SELinux:  Completing initialization.\n");
7272
7273	/* Set up any superblocks initialized prior to the policy load. */
7274	pr_debug("SELinux:  Setting up existing superblocks.\n");
7275	iterate_supers(delayed_superblock_init, NULL);
7276}
7277
7278/* SELinux requires early initialization in order to label
7279   all processes and objects when they are created. */
7280DEFINE_LSM(selinux) = {
7281	.name = "selinux",
7282	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7283	.enabled = &selinux_enabled_boot,
7284	.blobs = &selinux_blob_sizes,
7285	.init = selinux_init,
7286};
7287
7288#if defined(CONFIG_NETFILTER)
7289
7290static const struct nf_hook_ops selinux_nf_ops[] = {
7291	{
7292		.hook =		selinux_ipv4_postroute,
 
7293		.pf =		NFPROTO_IPV4,
7294		.hooknum =	NF_INET_POST_ROUTING,
7295		.priority =	NF_IP_PRI_SELINUX_LAST,
7296	},
7297	{
7298		.hook =		selinux_ipv4_forward,
 
7299		.pf =		NFPROTO_IPV4,
7300		.hooknum =	NF_INET_FORWARD,
7301		.priority =	NF_IP_PRI_SELINUX_FIRST,
7302	},
7303	{
7304		.hook =		selinux_ipv4_output,
 
7305		.pf =		NFPROTO_IPV4,
7306		.hooknum =	NF_INET_LOCAL_OUT,
7307		.priority =	NF_IP_PRI_SELINUX_FIRST,
7308	},
7309#if IS_ENABLED(CONFIG_IPV6)
 
 
 
 
7310	{
7311		.hook =		selinux_ipv6_postroute,
 
7312		.pf =		NFPROTO_IPV6,
7313		.hooknum =	NF_INET_POST_ROUTING,
7314		.priority =	NF_IP6_PRI_SELINUX_LAST,
7315	},
7316	{
7317		.hook =		selinux_ipv6_forward,
 
7318		.pf =		NFPROTO_IPV6,
7319		.hooknum =	NF_INET_FORWARD,
7320		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7321	},
7322	{
7323		.hook =		selinux_ipv6_output,
7324		.pf =		NFPROTO_IPV6,
7325		.hooknum =	NF_INET_LOCAL_OUT,
7326		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7327	},
7328#endif	/* IPV6 */
7329};
7330
7331static int __net_init selinux_nf_register(struct net *net)
7332{
7333	return nf_register_net_hooks(net, selinux_nf_ops,
7334				     ARRAY_SIZE(selinux_nf_ops));
7335}
7336
7337static void __net_exit selinux_nf_unregister(struct net *net)
7338{
7339	nf_unregister_net_hooks(net, selinux_nf_ops,
7340				ARRAY_SIZE(selinux_nf_ops));
7341}
7342
7343static struct pernet_operations selinux_net_ops = {
7344	.init = selinux_nf_register,
7345	.exit = selinux_nf_unregister,
7346};
7347
7348static int __init selinux_nf_ip_init(void)
7349{
7350	int err;
7351
7352	if (!selinux_enabled_boot)
7353		return 0;
7354
7355	pr_debug("SELinux:  Registering netfilter hooks\n");
7356
7357	err = register_pernet_subsys(&selinux_net_ops);
7358	if (err)
7359		panic("SELinux: register_pernet_subsys: error %d\n", err);
7360
7361	return 0;
 
 
 
 
 
 
 
7362}
 
7363__initcall(selinux_nf_ip_init);
7364
7365#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7366static void selinux_nf_ip_exit(void)
7367{
7368	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7369
7370	unregister_pernet_subsys(&selinux_net_ops);
 
 
 
7371}
7372#endif
7373
7374#else /* CONFIG_NETFILTER */
7375
7376#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7377#define selinux_nf_ip_exit()
7378#endif
7379
7380#endif /* CONFIG_NETFILTER */
7381
7382#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7383int selinux_disable(struct selinux_state *state)
 
 
7384{
7385	if (selinux_initialized(state)) {
7386		/* Not permitted after initial policy load. */
7387		return -EINVAL;
7388	}
7389
7390	if (selinux_disabled(state)) {
7391		/* Only do this once. */
7392		return -EINVAL;
7393	}
7394
7395	selinux_mark_disabled(state);
7396
7397	pr_info("SELinux:  Disabled at runtime.\n");
 
7398
7399	/*
7400	 * Unregister netfilter hooks.
7401	 * Must be done before security_delete_hooks() to avoid breaking
7402	 * runtime disable.
7403	 */
7404	selinux_nf_ip_exit();
7405
7406	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7407
7408	/* Try to destroy the avc node cache */
7409	avc_disable();
 
 
 
7410
7411	/* Unregister selinuxfs. */
7412	exit_sel_fs();
7413
7414	return 0;
7415}
7416#endif
v3.15
 
   1/*
   2 *  NSA Security-Enhanced Linux (SELinux) security module
   3 *
   4 *  This file contains the SELinux hook function implementations.
   5 *
   6 *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
   7 *	      Chris Vance, <cvance@nai.com>
   8 *	      Wayne Salamon, <wsalamon@nai.com>
   9 *	      James Morris <jmorris@redhat.com>
  10 *
  11 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  12 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  13 *					   Eric Paris <eparis@redhat.com>
  14 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  15 *			    <dgoeddel@trustedcs.com>
  16 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  17 *	Paul Moore <paul@paul-moore.com>
  18 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  19 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  20 *
  21 *	This program is free software; you can redistribute it and/or modify
  22 *	it under the terms of the GNU General Public License version 2,
  23 *	as published by the Free Software Foundation.
  24 */
  25
  26#include <linux/init.h>
  27#include <linux/kd.h>
  28#include <linux/kernel.h>
  29#include <linux/tracehook.h>
  30#include <linux/errno.h>
  31#include <linux/sched.h>
  32#include <linux/security.h>
 
  33#include <linux/xattr.h>
  34#include <linux/capability.h>
  35#include <linux/unistd.h>
  36#include <linux/mm.h>
  37#include <linux/mman.h>
  38#include <linux/slab.h>
  39#include <linux/pagemap.h>
  40#include <linux/proc_fs.h>
  41#include <linux/swap.h>
  42#include <linux/spinlock.h>
  43#include <linux/syscalls.h>
  44#include <linux/dcache.h>
  45#include <linux/file.h>
  46#include <linux/fdtable.h>
  47#include <linux/namei.h>
  48#include <linux/mount.h>
 
 
  49#include <linux/netfilter_ipv4.h>
  50#include <linux/netfilter_ipv6.h>
  51#include <linux/tty.h>
  52#include <net/icmp.h>
  53#include <net/ip.h>		/* for local_port_range[] */
  54#include <net/sock.h>
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
 
 
  69#include <linux/quota.h>
  70#include <linux/un.h>		/* for Unix socket types */
  71#include <net/af_unix.h>	/* for Unix socket types */
  72#include <linux/parser.h>
  73#include <linux/nfs_mount.h>
  74#include <net/ipv6.h>
  75#include <linux/hugetlb.h>
  76#include <linux/personality.h>
  77#include <linux/audit.h>
  78#include <linux/string.h>
  79#include <linux/selinux.h>
  80#include <linux/mutex.h>
  81#include <linux/posix-timers.h>
  82#include <linux/syslog.h>
  83#include <linux/user_namespace.h>
  84#include <linux/export.h>
  85#include <linux/msg.h>
  86#include <linux/shm.h>
 
 
 
 
 
 
  87
  88#include "avc.h"
  89#include "objsec.h"
  90#include "netif.h"
  91#include "netnode.h"
  92#include "netport.h"
 
  93#include "xfrm.h"
  94#include "netlabel.h"
  95#include "audit.h"
  96#include "avc_ss.h"
  97
  98extern struct security_operations *security_ops;
  99
 100/* SECMARK reference count */
 101static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 102
 103#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 104int selinux_enforcing;
 105
 106static int __init enforcing_setup(char *str)
 107{
 108	unsigned long enforcing;
 109	if (!kstrtoul(str, 0, &enforcing))
 110		selinux_enforcing = enforcing ? 1 : 0;
 111	return 1;
 112}
 113__setup("enforcing=", enforcing_setup);
 
 
 114#endif
 115
 
 116#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 117int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
 118
 119static int __init selinux_enabled_setup(char *str)
 120{
 121	unsigned long enabled;
 122	if (!kstrtoul(str, 0, &enabled))
 123		selinux_enabled = enabled ? 1 : 0;
 124	return 1;
 125}
 126__setup("selinux=", selinux_enabled_setup);
 127#else
 128int selinux_enabled = 1;
 129#endif
 130
 131static struct kmem_cache *sel_inode_cache;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 133/**
 134 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 135 *
 136 * Description:
 137 * This function checks the SECMARK reference counter to see if any SECMARK
 138 * targets are currently configured, if the reference counter is greater than
 139 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 140 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 141 * policy capability is enabled, SECMARK is always considered enabled.
 142 *
 143 */
 144static int selinux_secmark_enabled(void)
 145{
 146	return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
 
 147}
 148
 149/**
 150 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 151 *
 152 * Description:
 153 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 154 * (1) if any are enabled or false (0) if neither are enabled.  If the
 155 * always_check_network policy capability is enabled, peer labeling
 156 * is always considered enabled.
 157 *
 158 */
 159static int selinux_peerlbl_enabled(void)
 160{
 161	return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 162}
 163
 164/*
 165 * initialise the security for the init task
 166 */
 167static void cred_init_security(void)
 168{
 169	struct cred *cred = (struct cred *) current->real_cred;
 170	struct task_security_struct *tsec;
 171
 172	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
 173	if (!tsec)
 174		panic("SELinux:  Failed to initialize initial task.\n");
 175
 176	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 177	cred->security = tsec;
 178}
 179
 180/*
 181 * get the security ID of a set of credentials
 182 */
 183static inline u32 cred_sid(const struct cred *cred)
 184{
 185	const struct task_security_struct *tsec;
 186
 187	tsec = cred->security;
 188	return tsec->sid;
 189}
 190
 191/*
 192 * get the objective security ID of a task
 193 */
 194static inline u32 task_sid(const struct task_struct *task)
 195{
 196	u32 sid;
 197
 198	rcu_read_lock();
 199	sid = cred_sid(__task_cred(task));
 200	rcu_read_unlock();
 201	return sid;
 202}
 203
 
 
 204/*
 205 * get the subjective security ID of the current task
 
 
 
 206 */
 207static inline u32 current_sid(void)
 208{
 209	const struct task_security_struct *tsec = current_security();
 
 
 
 
 
 
 
 
 
 210
 211	return tsec->sid;
 
 
 
 
 
 
 
 212}
 213
 214/* Allocate and free functions for each kind of security blob. */
 215
 216static int inode_alloc_security(struct inode *inode)
 217{
 218	struct inode_security_struct *isec;
 219	u32 sid = current_sid();
 220
 221	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
 222	if (!isec)
 223		return -ENOMEM;
 224
 225	mutex_init(&isec->lock);
 226	INIT_LIST_HEAD(&isec->list);
 227	isec->inode = inode;
 228	isec->sid = SECINITSID_UNLABELED;
 229	isec->sclass = SECCLASS_FILE;
 230	isec->task_sid = sid;
 231	inode->i_security = isec;
 232
 233	return 0;
 234}
 235
 236static void inode_free_rcu(struct rcu_head *head)
 237{
 238	struct inode_security_struct *isec;
 239
 240	isec = container_of(head, struct inode_security_struct, rcu);
 241	kmem_cache_free(sel_inode_cache, isec);
 
 
 242}
 243
 244static void inode_free_security(struct inode *inode)
 
 
 
 245{
 246	struct inode_security_struct *isec = inode->i_security;
 247	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
 248
 249	spin_lock(&sbsec->isec_lock);
 250	if (!list_empty(&isec->list))
 251		list_del_init(&isec->list);
 252	spin_unlock(&sbsec->isec_lock);
 253
 254	/*
 255	 * The inode may still be referenced in a path walk and
 256	 * a call to selinux_inode_permission() can be made
 257	 * after inode_free_security() is called. Ideally, the VFS
 258	 * wouldn't do this, but fixing that is a much harder
 259	 * job. For now, simply free the i_security via RCU, and
 260	 * leave the current inode->i_security pointer intact.
 261	 * The inode will be freed after the RCU grace period too.
 262	 */
 263	call_rcu(&isec->rcu, inode_free_rcu);
 264}
 265
 266static int file_alloc_security(struct file *file)
 267{
 268	struct file_security_struct *fsec;
 269	u32 sid = current_sid();
 270
 271	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
 272	if (!fsec)
 273		return -ENOMEM;
 274
 275	fsec->sid = sid;
 276	fsec->fown_sid = sid;
 277	file->f_security = fsec;
 278
 279	return 0;
 280}
 281
 282static void file_free_security(struct file *file)
 
 
 
 283{
 284	struct file_security_struct *fsec = file->f_security;
 285	file->f_security = NULL;
 286	kfree(fsec);
 
 287}
 288
 289static int superblock_alloc_security(struct super_block *sb)
 290{
 
 291	struct superblock_security_struct *sbsec;
 292
 293	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
 294	if (!sbsec)
 295		return -ENOMEM;
 296
 297	mutex_init(&sbsec->lock);
 298	INIT_LIST_HEAD(&sbsec->isec_head);
 299	spin_lock_init(&sbsec->isec_lock);
 300	sbsec->sb = sb;
 301	sbsec->sid = SECINITSID_UNLABELED;
 302	sbsec->def_sid = SECINITSID_FILE;
 303	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
 304	sb->s_security = sbsec;
 305
 306	return 0;
 
 
 
 
 307}
 308
 309static void superblock_free_security(struct super_block *sb)
 310{
 311	struct superblock_security_struct *sbsec = sb->s_security;
 312	sb->s_security = NULL;
 313	kfree(sbsec);
 314}
 315
 316/* The file system's label must be initialized prior to use. */
 317
 318static const char *labeling_behaviors[7] = {
 319	"uses xattr",
 320	"uses transition SIDs",
 321	"uses task SIDs",
 322	"uses genfs_contexts",
 323	"not configured for labeling",
 324	"uses mountpoint labeling",
 325	"uses native labeling",
 326};
 327
 328static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 329
 330static inline int inode_doinit(struct inode *inode)
 331{
 332	return inode_doinit_with_dentry(inode, NULL);
 
 
 
 
 
 333}
 334
 335enum {
 336	Opt_error = -1,
 337	Opt_context = 1,
 
 338	Opt_fscontext = 2,
 339	Opt_defcontext = 3,
 340	Opt_rootcontext = 4,
 341	Opt_labelsupport = 5,
 342	Opt_nextmntopt = 6,
 343};
 344
 345#define NUM_SEL_MNT_OPTS	(Opt_nextmntopt - 1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 346
 347static const match_table_t tokens = {
 348	{Opt_context, CONTEXT_STR "%s"},
 349	{Opt_fscontext, FSCONTEXT_STR "%s"},
 350	{Opt_defcontext, DEFCONTEXT_STR "%s"},
 351	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
 352	{Opt_labelsupport, LABELSUPP_STR},
 353	{Opt_error, NULL},
 354};
 
 
 
 
 
 
 
 
 
 
 355
 356#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 357
 358static int may_context_mount_sb_relabel(u32 sid,
 359			struct superblock_security_struct *sbsec,
 360			const struct cred *cred)
 361{
 362	const struct task_security_struct *tsec = cred->security;
 363	int rc;
 364
 365	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 366			  FILESYSTEM__RELABELFROM, NULL);
 367	if (rc)
 368		return rc;
 369
 370	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 371			  FILESYSTEM__RELABELTO, NULL);
 372	return rc;
 373}
 374
 375static int may_context_mount_inode_relabel(u32 sid,
 376			struct superblock_security_struct *sbsec,
 377			const struct cred *cred)
 378{
 379	const struct task_security_struct *tsec = cred->security;
 380	int rc;
 381	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 382			  FILESYSTEM__RELABELFROM, NULL);
 383	if (rc)
 384		return rc;
 385
 386	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 387			  FILESYSTEM__ASSOCIATE, NULL);
 388	return rc;
 389}
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 391static int selinux_is_sblabel_mnt(struct super_block *sb)
 392{
 393	struct superblock_security_struct *sbsec = sb->s_security;
 394
 395	if (sbsec->behavior == SECURITY_FS_USE_XATTR ||
 396	    sbsec->behavior == SECURITY_FS_USE_TRANS ||
 397	    sbsec->behavior == SECURITY_FS_USE_TASK)
 398		return 1;
 
 399
 400	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
 401	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
 
 
 
 402		return 1;
 403
 404	/*
 405	 * Special handling for rootfs. Is genfs but supports
 406	 * setting SELinux context on in-core inodes.
 407	 */
 408	if (strncmp(sb->s_type->name, "rootfs", sizeof("rootfs")) == 0)
 409		return 1;
 410
 411	return 0;
 
 
 
 
 
 412}
 413
 414static int sb_finish_set_opts(struct super_block *sb)
 415{
 416	struct superblock_security_struct *sbsec = sb->s_security;
 417	struct dentry *root = sb->s_root;
 418	struct inode *root_inode = root->d_inode;
 419	int rc = 0;
 420
 421	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 422		/* Make sure that the xattr handler exists and that no
 423		   error other than -ENODATA is returned by getxattr on
 424		   the root directory.  -ENODATA is ok, as this may be
 425		   the first boot of the SELinux kernel before we have
 426		   assigned xattr values to the filesystem. */
 427		if (!root_inode->i_op->getxattr) {
 428			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
 429			       "xattr support\n", sb->s_id, sb->s_type->name);
 430			rc = -EOPNOTSUPP;
 431			goto out;
 432		}
 433		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
 
 434		if (rc < 0 && rc != -ENODATA) {
 435			if (rc == -EOPNOTSUPP)
 436				printk(KERN_WARNING "SELinux: (dev %s, type "
 437				       "%s) has no security xattr handler\n",
 438				       sb->s_id, sb->s_type->name);
 439			else
 440				printk(KERN_WARNING "SELinux: (dev %s, type "
 441				       "%s) getxattr errno %d\n", sb->s_id,
 442				       sb->s_type->name, -rc);
 443			goto out;
 444		}
 445	}
 446
 447	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
 448		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
 449		       sb->s_id, sb->s_type->name);
 450	else
 451		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
 452		       sb->s_id, sb->s_type->name,
 453		       labeling_behaviors[sbsec->behavior-1]);
 454
 455	sbsec->flags |= SE_SBINITIALIZED;
 
 
 
 
 456	if (selinux_is_sblabel_mnt(sb))
 457		sbsec->flags |= SBLABEL_MNT;
 
 
 458
 459	/* Initialize the root inode. */
 460	rc = inode_doinit_with_dentry(root_inode, root);
 461
 462	/* Initialize any other inodes associated with the superblock, e.g.
 463	   inodes created prior to initial policy load or inodes created
 464	   during get_sb by a pseudo filesystem that directly
 465	   populates itself. */
 466	spin_lock(&sbsec->isec_lock);
 467next_inode:
 468	if (!list_empty(&sbsec->isec_head)) {
 469		struct inode_security_struct *isec =
 470				list_entry(sbsec->isec_head.next,
 471					   struct inode_security_struct, list);
 472		struct inode *inode = isec->inode;
 
 473		spin_unlock(&sbsec->isec_lock);
 474		inode = igrab(inode);
 475		if (inode) {
 476			if (!IS_PRIVATE(inode))
 477				inode_doinit(inode);
 478			iput(inode);
 479		}
 480		spin_lock(&sbsec->isec_lock);
 481		list_del_init(&isec->list);
 482		goto next_inode;
 483	}
 484	spin_unlock(&sbsec->isec_lock);
 485out:
 486	return rc;
 487}
 488
 489/*
 490 * This function should allow an FS to ask what it's mount security
 491 * options were so it can use those later for submounts, displaying
 492 * mount options, or whatever.
 493 */
 494static int selinux_get_mnt_opts(const struct super_block *sb,
 495				struct security_mnt_opts *opts)
 496{
 497	int rc = 0, i;
 498	struct superblock_security_struct *sbsec = sb->s_security;
 499	char *context = NULL;
 500	u32 len;
 501	char tmp;
 502
 503	security_init_mnt_opts(opts);
 504
 505	if (!(sbsec->flags & SE_SBINITIALIZED))
 506		return -EINVAL;
 507
 508	if (!ss_initialized)
 509		return -EINVAL;
 510
 511	/* make sure we always check enough bits to cover the mask */
 512	BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
 513
 514	tmp = sbsec->flags & SE_MNTMASK;
 515	/* count the number of mount options for this sb */
 516	for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
 517		if (tmp & 0x01)
 518			opts->num_mnt_opts++;
 519		tmp >>= 1;
 520	}
 521	/* Check if the Label support flag is set */
 522	if (sbsec->flags & SBLABEL_MNT)
 523		opts->num_mnt_opts++;
 524
 525	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
 526	if (!opts->mnt_opts) {
 527		rc = -ENOMEM;
 528		goto out_free;
 529	}
 530
 531	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
 532	if (!opts->mnt_opts_flags) {
 533		rc = -ENOMEM;
 534		goto out_free;
 535	}
 536
 537	i = 0;
 538	if (sbsec->flags & FSCONTEXT_MNT) {
 539		rc = security_sid_to_context(sbsec->sid, &context, &len);
 540		if (rc)
 541			goto out_free;
 542		opts->mnt_opts[i] = context;
 543		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
 544	}
 545	if (sbsec->flags & CONTEXT_MNT) {
 546		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
 547		if (rc)
 548			goto out_free;
 549		opts->mnt_opts[i] = context;
 550		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
 551	}
 552	if (sbsec->flags & DEFCONTEXT_MNT) {
 553		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
 554		if (rc)
 555			goto out_free;
 556		opts->mnt_opts[i] = context;
 557		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
 558	}
 559	if (sbsec->flags & ROOTCONTEXT_MNT) {
 560		struct inode *root = sbsec->sb->s_root->d_inode;
 561		struct inode_security_struct *isec = root->i_security;
 562
 563		rc = security_sid_to_context(isec->sid, &context, &len);
 564		if (rc)
 565			goto out_free;
 566		opts->mnt_opts[i] = context;
 567		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
 568	}
 569	if (sbsec->flags & SBLABEL_MNT) {
 570		opts->mnt_opts[i] = NULL;
 571		opts->mnt_opts_flags[i++] = SBLABEL_MNT;
 572	}
 573
 574	BUG_ON(i != opts->num_mnt_opts);
 575
 576	return 0;
 577
 578out_free:
 579	security_free_mnt_opts(opts);
 580	return rc;
 581}
 582
 583static int bad_option(struct superblock_security_struct *sbsec, char flag,
 584		      u32 old_sid, u32 new_sid)
 585{
 586	char mnt_flags = sbsec->flags & SE_MNTMASK;
 587
 588	/* check if the old mount command had the same options */
 589	if (sbsec->flags & SE_SBINITIALIZED)
 590		if (!(sbsec->flags & flag) ||
 591		    (old_sid != new_sid))
 592			return 1;
 593
 594	/* check if we were passed the same options twice,
 595	 * aka someone passed context=a,context=b
 596	 */
 597	if (!(sbsec->flags & SE_SBINITIALIZED))
 598		if (mnt_flags & flag)
 599			return 1;
 600	return 0;
 601}
 602
 
 
 
 
 
 
 
 
 
 
 
 603/*
 604 * Allow filesystems with binary mount data to explicitly set mount point
 605 * labeling information.
 606 */
 607static int selinux_set_mnt_opts(struct super_block *sb,
 608				struct security_mnt_opts *opts,
 609				unsigned long kern_flags,
 610				unsigned long *set_kern_flags)
 611{
 612	const struct cred *cred = current_cred();
 613	int rc = 0, i;
 614	struct superblock_security_struct *sbsec = sb->s_security;
 615	const char *name = sb->s_type->name;
 616	struct inode *inode = sbsec->sb->s_root->d_inode;
 617	struct inode_security_struct *root_isec = inode->i_security;
 618	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 619	u32 defcontext_sid = 0;
 620	char **mount_options = opts->mnt_opts;
 621	int *flags = opts->mnt_opts_flags;
 622	int num_opts = opts->num_mnt_opts;
 623
 624	mutex_lock(&sbsec->lock);
 625
 626	if (!ss_initialized) {
 627		if (!num_opts) {
 628			/* Defer initialization until selinux_complete_init,
 629			   after the initial policy is loaded and the security
 630			   server is ready to handle calls. */
 631			goto out;
 632		}
 633		rc = -EINVAL;
 634		printk(KERN_WARNING "SELinux: Unable to set superblock options "
 635			"before the security server is initialized\n");
 636		goto out;
 637	}
 638	if (kern_flags && !set_kern_flags) {
 639		/* Specifying internal flags without providing a place to
 640		 * place the results is not allowed */
 641		rc = -EINVAL;
 642		goto out;
 643	}
 644
 645	/*
 646	 * Binary mount data FS will come through this function twice.  Once
 647	 * from an explicit call and once from the generic calls from the vfs.
 648	 * Since the generic VFS calls will not contain any security mount data
 649	 * we need to skip the double mount verification.
 650	 *
 651	 * This does open a hole in which we will not notice if the first
 652	 * mount using this sb set explict options and a second mount using
 653	 * this sb does not set any security options.  (The first options
 654	 * will be used for both mounts)
 655	 */
 656	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 657	    && (num_opts == 0))
 658		goto out;
 659
 
 
 660	/*
 661	 * parse the mount options, check if they are valid sids.
 662	 * also check if someone is trying to mount the same sb more
 663	 * than once with different security options.
 664	 */
 665	for (i = 0; i < num_opts; i++) {
 666		u32 sid;
 667
 668		if (flags[i] == SBLABEL_MNT)
 669			continue;
 670		rc = security_context_to_sid(mount_options[i],
 671					     strlen(mount_options[i]), &sid, GFP_KERNEL);
 672		if (rc) {
 673			printk(KERN_WARNING "SELinux: security_context_to_sid"
 674			       "(%s) failed for (dev %s, type %s) errno=%d\n",
 675			       mount_options[i], sb->s_id, name, rc);
 676			goto out;
 677		}
 678		switch (flags[i]) {
 679		case FSCONTEXT_MNT:
 680			fscontext_sid = sid;
 681
 682			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 683					fscontext_sid))
 684				goto out_double_mount;
 685
 686			sbsec->flags |= FSCONTEXT_MNT;
 687			break;
 688		case CONTEXT_MNT:
 689			context_sid = sid;
 690
 
 691			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 692					context_sid))
 693				goto out_double_mount;
 694
 695			sbsec->flags |= CONTEXT_MNT;
 696			break;
 697		case ROOTCONTEXT_MNT:
 698			rootcontext_sid = sid;
 699
 
 700			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 701					rootcontext_sid))
 702				goto out_double_mount;
 703
 704			sbsec->flags |= ROOTCONTEXT_MNT;
 705
 706			break;
 707		case DEFCONTEXT_MNT:
 708			defcontext_sid = sid;
 709
 710			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 711					defcontext_sid))
 712				goto out_double_mount;
 713
 714			sbsec->flags |= DEFCONTEXT_MNT;
 715
 716			break;
 717		default:
 718			rc = -EINVAL;
 719			goto out;
 720		}
 721	}
 722
 723	if (sbsec->flags & SE_SBINITIALIZED) {
 724		/* previously mounted with options, but not on this attempt? */
 725		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
 726			goto out_double_mount;
 727		rc = 0;
 728		goto out;
 729	}
 730
 731	if (strcmp(sb->s_type->name, "proc") == 0)
 732		sbsec->flags |= SE_SBPROC;
 
 
 
 
 
 
 
 
 
 
 
 
 733
 734	if (!sbsec->behavior) {
 735		/*
 736		 * Determine the labeling behavior to use for this
 737		 * filesystem type.
 738		 */
 739		rc = security_fs_use(sb);
 740		if (rc) {
 741			printk(KERN_WARNING
 742				"%s: security_fs_use(%s) returned %d\n",
 743					__func__, sb->s_type->name, rc);
 744			goto out;
 745		}
 746	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747	/* sets the context of the superblock for the fs being mounted. */
 748	if (fscontext_sid) {
 749		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 750		if (rc)
 751			goto out;
 752
 753		sbsec->sid = fscontext_sid;
 754	}
 755
 756	/*
 757	 * Switch to using mount point labeling behavior.
 758	 * sets the label used on all file below the mountpoint, and will set
 759	 * the superblock context if not already set.
 760	 */
 761	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 762		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 763		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 764	}
 765
 766	if (context_sid) {
 767		if (!fscontext_sid) {
 768			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 769							  cred);
 770			if (rc)
 771				goto out;
 772			sbsec->sid = context_sid;
 773		} else {
 774			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 775							     cred);
 776			if (rc)
 777				goto out;
 778		}
 779		if (!rootcontext_sid)
 780			rootcontext_sid = context_sid;
 781
 782		sbsec->mntpoint_sid = context_sid;
 783		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 784	}
 785
 786	if (rootcontext_sid) {
 787		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 788						     cred);
 789		if (rc)
 790			goto out;
 791
 792		root_isec->sid = rootcontext_sid;
 793		root_isec->initialized = 1;
 794	}
 795
 796	if (defcontext_sid) {
 797		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 798			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 799			rc = -EINVAL;
 800			printk(KERN_WARNING "SELinux: defcontext option is "
 801			       "invalid for this filesystem type\n");
 802			goto out;
 803		}
 804
 805		if (defcontext_sid != sbsec->def_sid) {
 806			rc = may_context_mount_inode_relabel(defcontext_sid,
 807							     sbsec, cred);
 808			if (rc)
 809				goto out;
 810		}
 811
 812		sbsec->def_sid = defcontext_sid;
 813	}
 814
 
 815	rc = sb_finish_set_opts(sb);
 816out:
 817	mutex_unlock(&sbsec->lock);
 818	return rc;
 819out_double_mount:
 820	rc = -EINVAL;
 821	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
 822	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
 
 823	goto out;
 824}
 825
 826static int selinux_cmp_sb_context(const struct super_block *oldsb,
 827				    const struct super_block *newsb)
 828{
 829	struct superblock_security_struct *old = oldsb->s_security;
 830	struct superblock_security_struct *new = newsb->s_security;
 831	char oldflags = old->flags & SE_MNTMASK;
 832	char newflags = new->flags & SE_MNTMASK;
 833
 834	if (oldflags != newflags)
 835		goto mismatch;
 836	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 837		goto mismatch;
 838	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 839		goto mismatch;
 840	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 841		goto mismatch;
 842	if (oldflags & ROOTCONTEXT_MNT) {
 843		struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
 844		struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
 845		if (oldroot->sid != newroot->sid)
 846			goto mismatch;
 847	}
 848	return 0;
 849mismatch:
 850	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
 851			    "different security settings for (dev %s, "
 852			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 853	return -EBUSY;
 854}
 855
 856static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 857					struct super_block *newsb)
 
 
 858{
 
 859	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
 860	struct superblock_security_struct *newsbsec = newsb->s_security;
 861
 862	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 863	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 864	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 865
 866	/*
 867	 * if the parent was able to be mounted it clearly had no special lsm
 868	 * mount options.  thus we can safely deal with this superblock later
 869	 */
 870	if (!ss_initialized)
 871		return 0;
 872
 
 
 
 
 
 
 
 873	/* how can we clone if the old one wasn't set up?? */
 874	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 875
 876	/* if fs is reusing a sb, make sure that the contexts match */
 877	if (newsbsec->flags & SE_SBINITIALIZED)
 
 
 878		return selinux_cmp_sb_context(oldsb, newsb);
 
 879
 880	mutex_lock(&newsbsec->lock);
 881
 882	newsbsec->flags = oldsbsec->flags;
 883
 884	newsbsec->sid = oldsbsec->sid;
 885	newsbsec->def_sid = oldsbsec->def_sid;
 886	newsbsec->behavior = oldsbsec->behavior;
 887
 
 
 
 
 
 
 
 
 
 
 
 
 888	if (set_context) {
 889		u32 sid = oldsbsec->mntpoint_sid;
 890
 891		if (!set_fscontext)
 892			newsbsec->sid = sid;
 893		if (!set_rootcontext) {
 894			struct inode *newinode = newsb->s_root->d_inode;
 895			struct inode_security_struct *newisec = newinode->i_security;
 896			newisec->sid = sid;
 897		}
 898		newsbsec->mntpoint_sid = sid;
 899	}
 900	if (set_rootcontext) {
 901		const struct inode *oldinode = oldsb->s_root->d_inode;
 902		const struct inode_security_struct *oldisec = oldinode->i_security;
 903		struct inode *newinode = newsb->s_root->d_inode;
 904		struct inode_security_struct *newisec = newinode->i_security;
 905
 906		newisec->sid = oldisec->sid;
 907	}
 908
 909	sb_finish_set_opts(newsb);
 
 910	mutex_unlock(&newsbsec->lock);
 911	return 0;
 912}
 913
 914static int selinux_parse_opts_str(char *options,
 915				  struct security_mnt_opts *opts)
 916{
 917	char *p;
 918	char *context = NULL, *defcontext = NULL;
 919	char *fscontext = NULL, *rootcontext = NULL;
 920	int rc, num_mnt_opts = 0;
 921
 922	opts->num_mnt_opts = 0;
 
 923
 924	/* Standard string-based options. */
 925	while ((p = strsep(&options, "|")) != NULL) {
 926		int token;
 927		substring_t args[MAX_OPT_ARGS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928
 929		if (!*p)
 930			continue;
 931
 932		token = match_token(p, tokens, args);
 
 933
 934		switch (token) {
 935		case Opt_context:
 936			if (context || defcontext) {
 937				rc = -EINVAL;
 938				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 939				goto out_err;
 940			}
 941			context = match_strdup(&args[0]);
 942			if (!context) {
 943				rc = -ENOMEM;
 944				goto out_err;
 945			}
 946			break;
 947
 948		case Opt_fscontext:
 949			if (fscontext) {
 950				rc = -EINVAL;
 951				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 952				goto out_err;
 953			}
 954			fscontext = match_strdup(&args[0]);
 955			if (!fscontext) {
 956				rc = -ENOMEM;
 957				goto out_err;
 958			}
 959			break;
 960
 961		case Opt_rootcontext:
 962			if (rootcontext) {
 963				rc = -EINVAL;
 964				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 965				goto out_err;
 966			}
 967			rootcontext = match_strdup(&args[0]);
 968			if (!rootcontext) {
 969				rc = -ENOMEM;
 970				goto out_err;
 971			}
 972			break;
 973
 974		case Opt_defcontext:
 975			if (context || defcontext) {
 976				rc = -EINVAL;
 977				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
 978				goto out_err;
 979			}
 980			defcontext = match_strdup(&args[0]);
 981			if (!defcontext) {
 982				rc = -ENOMEM;
 983				goto out_err;
 984			}
 985			break;
 986		case Opt_labelsupport:
 987			break;
 988		default:
 989			rc = -EINVAL;
 990			printk(KERN_WARNING "SELinux:  unknown mount option\n");
 991			goto out_err;
 992
 993		}
 994	}
 995
 996	rc = -ENOMEM;
 997	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
 998	if (!opts->mnt_opts)
 999		goto out_err;
1000
1001	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1002	if (!opts->mnt_opts_flags) {
1003		kfree(opts->mnt_opts);
1004		goto out_err;
1005	}
1006
1007	if (fscontext) {
1008		opts->mnt_opts[num_mnt_opts] = fscontext;
1009		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1010	}
1011	if (context) {
1012		opts->mnt_opts[num_mnt_opts] = context;
1013		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1014	}
1015	if (rootcontext) {
1016		opts->mnt_opts[num_mnt_opts] = rootcontext;
1017		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1018	}
1019	if (defcontext) {
1020		opts->mnt_opts[num_mnt_opts] = defcontext;
1021		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
 
1022	}
1023
1024	opts->num_mnt_opts = num_mnt_opts;
1025	return 0;
1026
1027out_err:
1028	kfree(context);
1029	kfree(defcontext);
1030	kfree(fscontext);
1031	kfree(rootcontext);
1032	return rc;
1033}
1034/*
1035 * string mount options parsing and call set the sbsec
1036 */
1037static int superblock_doinit(struct super_block *sb, void *data)
1038{
1039	int rc = 0;
1040	char *options = data;
1041	struct security_mnt_opts opts;
1042
1043	security_init_mnt_opts(&opts);
1044
1045	if (!data)
1046		goto out;
1047
1048	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1049
1050	rc = selinux_parse_opts_str(options, &opts);
1051	if (rc)
1052		goto out_err;
1053
1054out:
1055	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1056
1057out_err:
1058	security_free_mnt_opts(&opts);
1059	return rc;
1060}
1061
1062static void selinux_write_opts(struct seq_file *m,
1063			       struct security_mnt_opts *opts)
1064{
1065	int i;
1066	char *prefix;
 
1067
1068	for (i = 0; i < opts->num_mnt_opts; i++) {
1069		char *has_comma;
 
 
1070
1071		if (opts->mnt_opts[i])
1072			has_comma = strchr(opts->mnt_opts[i], ',');
1073		else
1074			has_comma = NULL;
1075
1076		switch (opts->mnt_opts_flags[i]) {
1077		case CONTEXT_MNT:
1078			prefix = CONTEXT_STR;
1079			break;
1080		case FSCONTEXT_MNT:
1081			prefix = FSCONTEXT_STR;
1082			break;
1083		case ROOTCONTEXT_MNT:
1084			prefix = ROOTCONTEXT_STR;
1085			break;
1086		case DEFCONTEXT_MNT:
1087			prefix = DEFCONTEXT_STR;
1088			break;
1089		case SBLABEL_MNT:
1090			seq_putc(m, ',');
1091			seq_puts(m, LABELSUPP_STR);
1092			continue;
1093		default:
1094			BUG();
1095			return;
1096		};
1097		/* we need a comma before each option */
1098		seq_putc(m, ',');
1099		seq_puts(m, prefix);
1100		if (has_comma)
1101			seq_putc(m, '\"');
1102		seq_puts(m, opts->mnt_opts[i]);
1103		if (has_comma)
1104			seq_putc(m, '\"');
1105	}
 
 
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110	struct security_mnt_opts opts;
1111	int rc;
1112
1113	rc = selinux_get_mnt_opts(sb, &opts);
1114	if (rc) {
1115		/* before policy load we may get EINVAL, don't show anything */
1116		if (rc == -EINVAL)
1117			rc = 0;
1118		return rc;
1119	}
1120
1121	selinux_write_opts(m, &opts);
 
1122
1123	security_free_mnt_opts(&opts);
1124
1125	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126}
1127
1128static inline u16 inode_mode_to_security_class(umode_t mode)
1129{
1130	switch (mode & S_IFMT) {
1131	case S_IFSOCK:
1132		return SECCLASS_SOCK_FILE;
1133	case S_IFLNK:
1134		return SECCLASS_LNK_FILE;
1135	case S_IFREG:
1136		return SECCLASS_FILE;
1137	case S_IFBLK:
1138		return SECCLASS_BLK_FILE;
1139	case S_IFDIR:
1140		return SECCLASS_DIR;
1141	case S_IFCHR:
1142		return SECCLASS_CHR_FILE;
1143	case S_IFIFO:
1144		return SECCLASS_FIFO_FILE;
1145
1146	}
1147
1148	return SECCLASS_FILE;
1149}
1150
1151static inline int default_protocol_stream(int protocol)
1152{
1153	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1154}
1155
1156static inline int default_protocol_dgram(int protocol)
1157{
1158	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1159}
1160
1161static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1162{
 
 
1163	switch (family) {
1164	case PF_UNIX:
1165		switch (type) {
1166		case SOCK_STREAM:
1167		case SOCK_SEQPACKET:
1168			return SECCLASS_UNIX_STREAM_SOCKET;
1169		case SOCK_DGRAM:
 
1170			return SECCLASS_UNIX_DGRAM_SOCKET;
1171		}
1172		break;
1173	case PF_INET:
1174	case PF_INET6:
1175		switch (type) {
1176		case SOCK_STREAM:
 
1177			if (default_protocol_stream(protocol))
1178				return SECCLASS_TCP_SOCKET;
 
 
1179			else
1180				return SECCLASS_RAWIP_SOCKET;
1181		case SOCK_DGRAM:
1182			if (default_protocol_dgram(protocol))
1183				return SECCLASS_UDP_SOCKET;
 
 
 
1184			else
1185				return SECCLASS_RAWIP_SOCKET;
1186		case SOCK_DCCP:
1187			return SECCLASS_DCCP_SOCKET;
1188		default:
1189			return SECCLASS_RAWIP_SOCKET;
1190		}
1191		break;
1192	case PF_NETLINK:
1193		switch (protocol) {
1194		case NETLINK_ROUTE:
1195			return SECCLASS_NETLINK_ROUTE_SOCKET;
1196		case NETLINK_FIREWALL:
1197			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1198		case NETLINK_SOCK_DIAG:
1199			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1200		case NETLINK_NFLOG:
1201			return SECCLASS_NETLINK_NFLOG_SOCKET;
1202		case NETLINK_XFRM:
1203			return SECCLASS_NETLINK_XFRM_SOCKET;
1204		case NETLINK_SELINUX:
1205			return SECCLASS_NETLINK_SELINUX_SOCKET;
 
 
1206		case NETLINK_AUDIT:
1207			return SECCLASS_NETLINK_AUDIT_SOCKET;
1208		case NETLINK_IP6_FW:
1209			return SECCLASS_NETLINK_IP6FW_SOCKET;
 
 
 
 
1210		case NETLINK_DNRTMSG:
1211			return SECCLASS_NETLINK_DNRT_SOCKET;
1212		case NETLINK_KOBJECT_UEVENT:
1213			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
 
 
 
 
 
 
 
 
1214		default:
1215			return SECCLASS_NETLINK_SOCKET;
1216		}
1217	case PF_PACKET:
1218		return SECCLASS_PACKET_SOCKET;
1219	case PF_KEY:
1220		return SECCLASS_KEY_SOCKET;
1221	case PF_APPLETALK:
1222		return SECCLASS_APPLETALK_SOCKET;
1223	}
1224
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1225	return SECCLASS_SOCKET;
1226}
1227
1228#ifdef CONFIG_PROC_FS
1229static int selinux_proc_get_sid(struct dentry *dentry,
1230				u16 tclass,
1231				u32 *sid)
1232{
1233	int rc;
 
1234	char *buffer, *path;
1235
1236	buffer = (char *)__get_free_page(GFP_KERNEL);
1237	if (!buffer)
1238		return -ENOMEM;
1239
1240	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1241	if (IS_ERR(path))
1242		rc = PTR_ERR(path);
1243	else {
1244		/* each process gets a /proc/PID/ entry. Strip off the
1245		 * PID part to get a valid selinux labeling.
1246		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1247		while (path[1] >= '0' && path[1] <= '9') {
1248			path[1] = '/';
1249			path++;
 
 
 
 
 
 
 
 
 
1250		}
1251		rc = security_genfs_sid("proc", path, tclass, sid);
1252	}
1253	free_page((unsigned long)buffer);
1254	return rc;
1255}
1256#else
1257static int selinux_proc_get_sid(struct dentry *dentry,
1258				u16 tclass,
1259				u32 *sid)
1260{
1261	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262}
1263#endif
1264
1265/* The inode's security attributes must be initialized before first use. */
1266static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1267{
1268	struct superblock_security_struct *sbsec = NULL;
1269	struct inode_security_struct *isec = inode->i_security;
1270	u32 sid;
 
1271	struct dentry *dentry;
1272#define INITCONTEXTLEN 255
1273	char *context = NULL;
1274	unsigned len = 0;
1275	int rc = 0;
1276
1277	if (isec->initialized)
1278		goto out;
1279
1280	mutex_lock(&isec->lock);
1281	if (isec->initialized)
1282		goto out_unlock;
1283
 
 
 
1284	sbsec = inode->i_sb->s_security;
1285	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1286		/* Defer initialization until selinux_complete_init,
1287		   after the initial policy is loaded and the security
1288		   server is ready to handle calls. */
1289		spin_lock(&sbsec->isec_lock);
1290		if (list_empty(&isec->list))
1291			list_add(&isec->list, &sbsec->isec_head);
1292		spin_unlock(&sbsec->isec_lock);
1293		goto out_unlock;
1294	}
1295
 
 
 
 
 
 
1296	switch (sbsec->behavior) {
1297	case SECURITY_FS_USE_NATIVE:
1298		break;
1299	case SECURITY_FS_USE_XATTR:
1300		if (!inode->i_op->getxattr) {
1301			isec->sid = sbsec->def_sid;
1302			break;
1303		}
1304
1305		/* Need a dentry, since the xattr API requires one.
1306		   Life would be simpler if we could just pass the inode. */
1307		if (opt_dentry) {
1308			/* Called from d_instantiate or d_splice_alias. */
1309			dentry = dget(opt_dentry);
1310		} else {
1311			/* Called from selinux_complete_init, try to find a dentry. */
 
 
 
 
 
1312			dentry = d_find_alias(inode);
 
 
1313		}
1314		if (!dentry) {
1315			/*
1316			 * this is can be hit on boot when a file is accessed
1317			 * before the policy is loaded.  When we load policy we
1318			 * may find inodes that have no dentry on the
1319			 * sbsec->isec_head list.  No reason to complain as these
1320			 * will get fixed up the next time we go through
1321			 * inode_doinit with a dentry, before these inodes could
1322			 * be used again by userspace.
1323			 */
1324			goto out_unlock;
1325		}
1326
1327		len = INITCONTEXTLEN;
1328		context = kmalloc(len+1, GFP_NOFS);
1329		if (!context) {
1330			rc = -ENOMEM;
1331			dput(dentry);
1332			goto out_unlock;
1333		}
1334		context[len] = '\0';
1335		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1336					   context, len);
1337		if (rc == -ERANGE) {
1338			kfree(context);
1339
1340			/* Need a larger buffer.  Query for the right size. */
1341			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1342						   NULL, 0);
1343			if (rc < 0) {
1344				dput(dentry);
1345				goto out_unlock;
1346			}
1347			len = rc;
1348			context = kmalloc(len+1, GFP_NOFS);
1349			if (!context) {
1350				rc = -ENOMEM;
1351				dput(dentry);
1352				goto out_unlock;
1353			}
1354			context[len] = '\0';
1355			rc = inode->i_op->getxattr(dentry,
1356						   XATTR_NAME_SELINUX,
1357						   context, len);
1358		}
1359		dput(dentry);
1360		if (rc < 0) {
1361			if (rc != -ENODATA) {
1362				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1363				       "%d for dev=%s ino=%ld\n", __func__,
1364				       -rc, inode->i_sb->s_id, inode->i_ino);
1365				kfree(context);
1366				goto out_unlock;
1367			}
1368			/* Map ENODATA to the default file SID */
1369			sid = sbsec->def_sid;
1370			rc = 0;
1371		} else {
1372			rc = security_context_to_sid_default(context, rc, &sid,
1373							     sbsec->def_sid,
1374							     GFP_NOFS);
1375			if (rc) {
1376				char *dev = inode->i_sb->s_id;
1377				unsigned long ino = inode->i_ino;
1378
1379				if (rc == -EINVAL) {
1380					if (printk_ratelimit())
1381						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1382							"context=%s.  This indicates you may need to relabel the inode or the "
1383							"filesystem in question.\n", ino, dev, context);
1384				} else {
1385					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1386					       "returned %d for dev=%s ino=%ld\n",
1387					       __func__, context, -rc, dev, ino);
1388				}
1389				kfree(context);
1390				/* Leave with the unlabeled SID */
1391				rc = 0;
1392				break;
1393			}
1394		}
1395		kfree(context);
1396		isec->sid = sid;
1397		break;
1398	case SECURITY_FS_USE_TASK:
1399		isec->sid = isec->task_sid;
1400		break;
1401	case SECURITY_FS_USE_TRANS:
1402		/* Default to the fs SID. */
1403		isec->sid = sbsec->sid;
1404
1405		/* Try to obtain a transition SID. */
1406		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1407		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1408					     isec->sclass, NULL, &sid);
1409		if (rc)
1410			goto out_unlock;
1411		isec->sid = sid;
1412		break;
1413	case SECURITY_FS_USE_MNTPOINT:
1414		isec->sid = sbsec->mntpoint_sid;
1415		break;
1416	default:
1417		/* Default to the fs superblock SID. */
1418		isec->sid = sbsec->sid;
1419
1420		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
 
 
1421			/* We must have a dentry to determine the label on
1422			 * procfs inodes */
1423			if (opt_dentry)
1424				/* Called from d_instantiate or
1425				 * d_splice_alias. */
1426				dentry = dget(opt_dentry);
1427			else
1428				/* Called from selinux_complete_init, try to
1429				 * find a dentry. */
 
 
1430				dentry = d_find_alias(inode);
 
 
 
1431			/*
1432			 * This can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as
1436			 * these will get fixed up the next time we go through
1437			 * inode_doinit() with a dentry, before these inodes
1438			 * could be used again by userspace.
1439			 */
1440			if (!dentry)
1441				goto out_unlock;
1442			isec->sclass = inode_mode_to_security_class(inode->i_mode);
1443			rc = selinux_proc_get_sid(dentry, isec->sclass, &sid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444			dput(dentry);
1445			if (rc)
1446				goto out_unlock;
1447			isec->sid = sid;
1448		}
1449		break;
1450	}
1451
1452	isec->initialized = 1;
 
 
 
 
 
 
 
 
 
 
1453
1454out_unlock:
1455	mutex_unlock(&isec->lock);
1456out:
1457	if (isec->sclass == SECCLASS_FILE)
1458		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1459	return rc;
1460}
1461
1462/* Convert a Linux signal to an access vector. */
1463static inline u32 signal_to_av(int sig)
1464{
1465	u32 perm = 0;
1466
1467	switch (sig) {
1468	case SIGCHLD:
1469		/* Commonly granted from child to parent. */
1470		perm = PROCESS__SIGCHLD;
1471		break;
1472	case SIGKILL:
1473		/* Cannot be caught or ignored */
1474		perm = PROCESS__SIGKILL;
1475		break;
1476	case SIGSTOP:
1477		/* Cannot be caught or ignored */
1478		perm = PROCESS__SIGSTOP;
1479		break;
1480	default:
1481		/* All other signals. */
1482		perm = PROCESS__SIGNAL;
1483		break;
1484	}
1485
1486	return perm;
1487}
1488
1489/*
1490 * Check permission between a pair of credentials
1491 * fork check, ptrace check, etc.
1492 */
1493static int cred_has_perm(const struct cred *actor,
1494			 const struct cred *target,
1495			 u32 perms)
1496{
1497	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1498
1499	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1500}
1501
1502/*
1503 * Check permission between a pair of tasks, e.g. signal checks,
1504 * fork check, ptrace check, etc.
1505 * tsk1 is the actor and tsk2 is the target
1506 * - this uses the default subjective creds of tsk1
1507 */
1508static int task_has_perm(const struct task_struct *tsk1,
1509			 const struct task_struct *tsk2,
1510			 u32 perms)
1511{
1512	const struct task_security_struct *__tsec1, *__tsec2;
1513	u32 sid1, sid2;
1514
1515	rcu_read_lock();
1516	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1517	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1518	rcu_read_unlock();
1519	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1520}
1521
1522/*
1523 * Check permission between current and another task, e.g. signal checks,
1524 * fork check, ptrace check, etc.
1525 * current is the actor and tsk2 is the target
1526 * - this uses current's subjective creds
1527 */
1528static int current_has_perm(const struct task_struct *tsk,
1529			    u32 perms)
1530{
1531	u32 sid, tsid;
1532
1533	sid = current_sid();
1534	tsid = task_sid(tsk);
1535	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1536}
1537
1538#if CAP_LAST_CAP > 63
1539#error Fix SELinux to handle capabilities > 63.
1540#endif
1541
1542/* Check whether a task is allowed to use a capability. */
1543static int cred_has_capability(const struct cred *cred,
1544			       int cap, int audit)
1545{
1546	struct common_audit_data ad;
1547	struct av_decision avd;
1548	u16 sclass;
1549	u32 sid = cred_sid(cred);
1550	u32 av = CAP_TO_MASK(cap);
1551	int rc;
1552
1553	ad.type = LSM_AUDIT_DATA_CAP;
1554	ad.u.cap = cap;
1555
1556	switch (CAP_TO_INDEX(cap)) {
1557	case 0:
1558		sclass = SECCLASS_CAPABILITY;
1559		break;
1560	case 1:
1561		sclass = SECCLASS_CAPABILITY2;
1562		break;
1563	default:
1564		printk(KERN_ERR
1565		       "SELinux:  out of range capability %d\n", cap);
1566		BUG();
1567		return -EINVAL;
1568	}
1569
1570	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1571	if (audit == SECURITY_CAP_AUDIT) {
1572		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
 
 
1573		if (rc2)
1574			return rc2;
1575	}
1576	return rc;
1577}
1578
1579/* Check whether a task is allowed to use a system operation. */
1580static int task_has_system(struct task_struct *tsk,
1581			   u32 perms)
1582{
1583	u32 sid = task_sid(tsk);
1584
1585	return avc_has_perm(sid, SECINITSID_KERNEL,
1586			    SECCLASS_SYSTEM, perms, NULL);
1587}
1588
1589/* Check whether a task has a particular permission to an inode.
1590   The 'adp' parameter is optional and allows other audit
1591   data to be passed (e.g. the dentry). */
1592static int inode_has_perm(const struct cred *cred,
1593			  struct inode *inode,
1594			  u32 perms,
1595			  struct common_audit_data *adp)
1596{
1597	struct inode_security_struct *isec;
1598	u32 sid;
1599
1600	validate_creds(cred);
1601
1602	if (unlikely(IS_PRIVATE(inode)))
1603		return 0;
1604
1605	sid = cred_sid(cred);
1606	isec = inode->i_security;
1607
1608	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1609}
1610
1611/* Same as inode_has_perm, but pass explicit audit data containing
1612   the dentry to help the auditing code to more easily generate the
1613   pathname if needed. */
1614static inline int dentry_has_perm(const struct cred *cred,
1615				  struct dentry *dentry,
1616				  u32 av)
1617{
1618	struct inode *inode = dentry->d_inode;
1619	struct common_audit_data ad;
1620
1621	ad.type = LSM_AUDIT_DATA_DENTRY;
1622	ad.u.dentry = dentry;
 
1623	return inode_has_perm(cred, inode, av, &ad);
1624}
1625
1626/* Same as inode_has_perm, but pass explicit audit data containing
1627   the path to help the auditing code to more easily generate the
1628   pathname if needed. */
1629static inline int path_has_perm(const struct cred *cred,
1630				struct path *path,
1631				u32 av)
1632{
1633	struct inode *inode = path->dentry->d_inode;
1634	struct common_audit_data ad;
1635
1636	ad.type = LSM_AUDIT_DATA_PATH;
1637	ad.u.path = *path;
 
1638	return inode_has_perm(cred, inode, av, &ad);
1639}
1640
1641/* Same as path_has_perm, but uses the inode from the file struct. */
1642static inline int file_path_has_perm(const struct cred *cred,
1643				     struct file *file,
1644				     u32 av)
1645{
1646	struct common_audit_data ad;
1647
1648	ad.type = LSM_AUDIT_DATA_PATH;
1649	ad.u.path = file->f_path;
1650	return inode_has_perm(cred, file_inode(file), av, &ad);
1651}
1652
 
 
 
 
1653/* Check whether a task can use an open file descriptor to
1654   access an inode in a given way.  Check access to the
1655   descriptor itself, and then use dentry_has_perm to
1656   check a particular permission to the file.
1657   Access to the descriptor is implicitly granted if it
1658   has the same SID as the process.  If av is zero, then
1659   access to the file is not checked, e.g. for cases
1660   where only the descriptor is affected like seek. */
1661static int file_has_perm(const struct cred *cred,
1662			 struct file *file,
1663			 u32 av)
1664{
1665	struct file_security_struct *fsec = file->f_security;
1666	struct inode *inode = file_inode(file);
1667	struct common_audit_data ad;
1668	u32 sid = cred_sid(cred);
1669	int rc;
1670
1671	ad.type = LSM_AUDIT_DATA_PATH;
1672	ad.u.path = file->f_path;
1673
1674	if (sid != fsec->sid) {
1675		rc = avc_has_perm(sid, fsec->sid,
 
1676				  SECCLASS_FD,
1677				  FD__USE,
1678				  &ad);
1679		if (rc)
1680			goto out;
1681	}
1682
 
 
 
 
 
 
1683	/* av is zero if only checking access to the descriptor. */
1684	rc = 0;
1685	if (av)
1686		rc = inode_has_perm(cred, inode, av, &ad);
1687
1688out:
1689	return rc;
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692/* Check whether a task can create a file. */
1693static int may_create(struct inode *dir,
1694		      struct dentry *dentry,
1695		      u16 tclass)
1696{
1697	const struct task_security_struct *tsec = current_security();
1698	struct inode_security_struct *dsec;
1699	struct superblock_security_struct *sbsec;
1700	u32 sid, newsid;
1701	struct common_audit_data ad;
1702	int rc;
1703
1704	dsec = dir->i_security;
1705	sbsec = dir->i_sb->s_security;
1706
1707	sid = tsec->sid;
1708	newsid = tsec->create_sid;
1709
1710	ad.type = LSM_AUDIT_DATA_DENTRY;
1711	ad.u.dentry = dentry;
1712
1713	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1714			  DIR__ADD_NAME | DIR__SEARCH,
1715			  &ad);
1716	if (rc)
1717		return rc;
1718
1719	if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
1720		rc = security_transition_sid(sid, dsec->sid, tclass,
1721					     &dentry->d_name, &newsid);
1722		if (rc)
1723			return rc;
1724	}
1725
1726	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1727	if (rc)
1728		return rc;
1729
1730	return avc_has_perm(newsid, sbsec->sid,
 
1731			    SECCLASS_FILESYSTEM,
1732			    FILESYSTEM__ASSOCIATE, &ad);
1733}
1734
1735/* Check whether a task can create a key. */
1736static int may_create_key(u32 ksid,
1737			  struct task_struct *ctx)
1738{
1739	u32 sid = task_sid(ctx);
1740
1741	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1742}
1743
1744#define MAY_LINK	0
1745#define MAY_UNLINK	1
1746#define MAY_RMDIR	2
1747
1748/* Check whether a task can link, unlink, or rmdir a file/directory. */
1749static int may_link(struct inode *dir,
1750		    struct dentry *dentry,
1751		    int kind)
1752
1753{
1754	struct inode_security_struct *dsec, *isec;
1755	struct common_audit_data ad;
1756	u32 sid = current_sid();
1757	u32 av;
1758	int rc;
1759
1760	dsec = dir->i_security;
1761	isec = dentry->d_inode->i_security;
1762
1763	ad.type = LSM_AUDIT_DATA_DENTRY;
1764	ad.u.dentry = dentry;
1765
1766	av = DIR__SEARCH;
1767	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1768	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1769	if (rc)
1770		return rc;
1771
1772	switch (kind) {
1773	case MAY_LINK:
1774		av = FILE__LINK;
1775		break;
1776	case MAY_UNLINK:
1777		av = FILE__UNLINK;
1778		break;
1779	case MAY_RMDIR:
1780		av = DIR__RMDIR;
1781		break;
1782	default:
1783		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1784			__func__, kind);
1785		return 0;
1786	}
1787
1788	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1789	return rc;
1790}
1791
1792static inline int may_rename(struct inode *old_dir,
1793			     struct dentry *old_dentry,
1794			     struct inode *new_dir,
1795			     struct dentry *new_dentry)
1796{
1797	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1798	struct common_audit_data ad;
1799	u32 sid = current_sid();
1800	u32 av;
1801	int old_is_dir, new_is_dir;
1802	int rc;
1803
1804	old_dsec = old_dir->i_security;
1805	old_isec = old_dentry->d_inode->i_security;
1806	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1807	new_dsec = new_dir->i_security;
1808
1809	ad.type = LSM_AUDIT_DATA_DENTRY;
1810
1811	ad.u.dentry = old_dentry;
1812	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1813			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1814	if (rc)
1815		return rc;
1816	rc = avc_has_perm(sid, old_isec->sid,
 
1817			  old_isec->sclass, FILE__RENAME, &ad);
1818	if (rc)
1819		return rc;
1820	if (old_is_dir && new_dir != old_dir) {
1821		rc = avc_has_perm(sid, old_isec->sid,
 
1822				  old_isec->sclass, DIR__REPARENT, &ad);
1823		if (rc)
1824			return rc;
1825	}
1826
1827	ad.u.dentry = new_dentry;
1828	av = DIR__ADD_NAME | DIR__SEARCH;
1829	if (new_dentry->d_inode)
1830		av |= DIR__REMOVE_NAME;
1831	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1832	if (rc)
1833		return rc;
1834	if (new_dentry->d_inode) {
1835		new_isec = new_dentry->d_inode->i_security;
1836		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1837		rc = avc_has_perm(sid, new_isec->sid,
 
1838				  new_isec->sclass,
1839				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1840		if (rc)
1841			return rc;
1842	}
1843
1844	return 0;
1845}
1846
1847/* Check whether a task can perform a filesystem operation. */
1848static int superblock_has_perm(const struct cred *cred,
1849			       struct super_block *sb,
1850			       u32 perms,
1851			       struct common_audit_data *ad)
1852{
1853	struct superblock_security_struct *sbsec;
1854	u32 sid = cred_sid(cred);
1855
1856	sbsec = sb->s_security;
1857	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1858}
1859
1860/* Convert a Linux mode and permission mask to an access vector. */
1861static inline u32 file_mask_to_av(int mode, int mask)
1862{
1863	u32 av = 0;
1864
1865	if (!S_ISDIR(mode)) {
1866		if (mask & MAY_EXEC)
1867			av |= FILE__EXECUTE;
1868		if (mask & MAY_READ)
1869			av |= FILE__READ;
1870
1871		if (mask & MAY_APPEND)
1872			av |= FILE__APPEND;
1873		else if (mask & MAY_WRITE)
1874			av |= FILE__WRITE;
1875
1876	} else {
1877		if (mask & MAY_EXEC)
1878			av |= DIR__SEARCH;
1879		if (mask & MAY_WRITE)
1880			av |= DIR__WRITE;
1881		if (mask & MAY_READ)
1882			av |= DIR__READ;
1883	}
1884
1885	return av;
1886}
1887
1888/* Convert a Linux file to an access vector. */
1889static inline u32 file_to_av(struct file *file)
1890{
1891	u32 av = 0;
1892
1893	if (file->f_mode & FMODE_READ)
1894		av |= FILE__READ;
1895	if (file->f_mode & FMODE_WRITE) {
1896		if (file->f_flags & O_APPEND)
1897			av |= FILE__APPEND;
1898		else
1899			av |= FILE__WRITE;
1900	}
1901	if (!av) {
1902		/*
1903		 * Special file opened with flags 3 for ioctl-only use.
1904		 */
1905		av = FILE__IOCTL;
1906	}
1907
1908	return av;
1909}
1910
1911/*
1912 * Convert a file to an access vector and include the correct open
1913 * open permission.
1914 */
1915static inline u32 open_file_to_av(struct file *file)
1916{
1917	u32 av = file_to_av(file);
 
1918
1919	if (selinux_policycap_openperm)
 
1920		av |= FILE__OPEN;
1921
1922	return av;
1923}
1924
1925/* Hook functions begin here. */
1926
1927static int selinux_ptrace_access_check(struct task_struct *child,
1928				     unsigned int mode)
 
 
 
 
 
 
 
 
 
 
1929{
 
 
 
1930	int rc;
1931
1932	rc = cap_ptrace_access_check(child, mode);
1933	if (rc)
1934		return rc;
1935
1936	if (mode & PTRACE_MODE_READ) {
1937		u32 sid = current_sid();
1938		u32 csid = task_sid(child);
1939		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1940	}
1941
1942	return current_has_perm(child, PROCESS__PTRACE);
 
 
1943}
1944
1945static int selinux_ptrace_traceme(struct task_struct *parent)
 
1946{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1947	int rc;
1948
1949	rc = cap_ptrace_traceme(parent);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950	if (rc)
1951		return rc;
 
 
 
 
1952
1953	return task_has_perm(parent, current, PROCESS__PTRACE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954}
1955
1956static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1957			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1958{
1959	int error;
1960
1961	error = current_has_perm(target, PROCESS__GETCAP);
1962	if (error)
1963		return error;
1964
1965	return cap_capget(target, effective, inheritable, permitted);
1966}
1967
1968static int selinux_capset(struct cred *new, const struct cred *old,
1969			  const kernel_cap_t *effective,
1970			  const kernel_cap_t *inheritable,
1971			  const kernel_cap_t *permitted)
1972{
1973	int error;
1974
1975	error = cap_capset(new, old,
1976				      effective, inheritable, permitted);
1977	if (error)
1978		return error;
1979
1980	return cred_has_perm(old, new, PROCESS__SETCAP);
1981}
1982
1983/*
1984 * (This comment used to live with the selinux_task_setuid hook,
1985 * which was removed).
1986 *
1987 * Since setuid only affects the current process, and since the SELinux
1988 * controls are not based on the Linux identity attributes, SELinux does not
1989 * need to control this operation.  However, SELinux does control the use of
1990 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1991 */
1992
1993static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1994			   int cap, int audit)
1995{
1996	int rc;
1997
1998	rc = cap_capable(cred, ns, cap, audit);
1999	if (rc)
2000		return rc;
2001
2002	return cred_has_capability(cred, cap, audit);
2003}
2004
2005static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2006{
2007	const struct cred *cred = current_cred();
2008	int rc = 0;
2009
2010	if (!sb)
2011		return 0;
2012
2013	switch (cmds) {
2014	case Q_SYNC:
2015	case Q_QUOTAON:
2016	case Q_QUOTAOFF:
2017	case Q_SETINFO:
2018	case Q_SETQUOTA:
 
 
 
2019		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2020		break;
2021	case Q_GETFMT:
2022	case Q_GETINFO:
2023	case Q_GETQUOTA:
 
 
 
 
2024		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2025		break;
2026	default:
2027		rc = 0;  /* let the kernel handle invalid cmds */
2028		break;
2029	}
2030	return rc;
2031}
2032
2033static int selinux_quota_on(struct dentry *dentry)
2034{
2035	const struct cred *cred = current_cred();
2036
2037	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2038}
2039
2040static int selinux_syslog(int type)
2041{
2042	int rc;
2043
2044	switch (type) {
2045	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2046	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2047		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2048		break;
 
2049	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2050	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2051	/* Set level of messages printed to console */
2052	case SYSLOG_ACTION_CONSOLE_LEVEL:
2053		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2054		break;
2055	case SYSLOG_ACTION_CLOSE:	/* Close log */
2056	case SYSLOG_ACTION_OPEN:	/* Open log */
2057	case SYSLOG_ACTION_READ:	/* Read from log */
2058	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
2059	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
2060	default:
2061		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2062		break;
2063	}
2064	return rc;
2065}
2066
2067/*
2068 * Check that a process has enough memory to allocate a new virtual
2069 * mapping. 0 means there is enough memory for the allocation to
2070 * succeed and -ENOMEM implies there is not.
2071 *
2072 * Do not audit the selinux permission check, as this is applied to all
2073 * processes that allocate mappings.
2074 */
2075static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2076{
2077	int rc, cap_sys_admin = 0;
2078
2079	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2080			     SECURITY_CAP_NOAUDIT);
2081	if (rc == 0)
2082		cap_sys_admin = 1;
2083
2084	return __vm_enough_memory(mm, pages, cap_sys_admin);
2085}
2086
2087/* binprm security operations */
2088
2089static int selinux_bprm_set_creds(struct linux_binprm *bprm)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090{
2091	const struct task_security_struct *old_tsec;
2092	struct task_security_struct *new_tsec;
2093	struct inode_security_struct *isec;
2094	struct common_audit_data ad;
2095	struct inode *inode = file_inode(bprm->file);
2096	int rc;
2097
2098	rc = cap_bprm_set_creds(bprm);
2099	if (rc)
2100		return rc;
2101
2102	/* SELinux context only depends on initial program or script and not
2103	 * the script interpreter */
2104	if (bprm->cred_prepared)
2105		return 0;
2106
2107	old_tsec = current_security();
2108	new_tsec = bprm->cred->security;
2109	isec = inode->i_security;
2110
2111	/* Default to the current task SID. */
2112	new_tsec->sid = old_tsec->sid;
2113	new_tsec->osid = old_tsec->sid;
2114
2115	/* Reset fs, key, and sock SIDs on execve. */
2116	new_tsec->create_sid = 0;
2117	new_tsec->keycreate_sid = 0;
2118	new_tsec->sockcreate_sid = 0;
2119
2120	if (old_tsec->exec_sid) {
2121		new_tsec->sid = old_tsec->exec_sid;
2122		/* Reset exec SID on execve. */
2123		new_tsec->exec_sid = 0;
2124
2125		/*
2126		 * Minimize confusion: if no_new_privs and a transition is
2127		 * explicitly requested, then fail the exec.
2128		 */
2129		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2130			return -EPERM;
2131	} else {
2132		/* Check for a default transition on this program. */
2133		rc = security_transition_sid(old_tsec->sid, isec->sid,
2134					     SECCLASS_PROCESS, NULL,
2135					     &new_tsec->sid);
2136		if (rc)
2137			return rc;
 
 
 
 
 
 
 
 
2138	}
2139
2140	ad.type = LSM_AUDIT_DATA_PATH;
2141	ad.u.path = bprm->file->f_path;
2142
2143	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2144	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2145		new_tsec->sid = old_tsec->sid;
2146
2147	if (new_tsec->sid == old_tsec->sid) {
2148		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2149				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2150		if (rc)
2151			return rc;
2152	} else {
2153		/* Check permissions for the transition. */
2154		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2155				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2156		if (rc)
2157			return rc;
2158
2159		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2160				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2161		if (rc)
2162			return rc;
2163
2164		/* Check for shared state */
2165		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2166			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2167					  SECCLASS_PROCESS, PROCESS__SHARE,
2168					  NULL);
2169			if (rc)
2170				return -EPERM;
2171		}
2172
2173		/* Make sure that anyone attempting to ptrace over a task that
2174		 * changes its SID has the appropriate permit */
2175		if (bprm->unsafe &
2176		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2177			struct task_struct *tracer;
2178			struct task_security_struct *sec;
2179			u32 ptsid = 0;
2180
2181			rcu_read_lock();
2182			tracer = ptrace_parent(current);
2183			if (likely(tracer != NULL)) {
2184				sec = __task_cred(tracer)->security;
2185				ptsid = sec->sid;
2186			}
2187			rcu_read_unlock();
2188
2189			if (ptsid != 0) {
2190				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2191						  SECCLASS_PROCESS,
2192						  PROCESS__PTRACE, NULL);
2193				if (rc)
2194					return -EPERM;
2195			}
2196		}
2197
2198		/* Clear any possibly unsafe personality bits on exec: */
2199		bprm->per_clear |= PER_CLEAR_ON_SETID;
2200	}
2201
2202	return 0;
2203}
2204
2205static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2206{
2207	const struct task_security_struct *tsec = current_security();
2208	u32 sid, osid;
2209	int atsecure = 0;
2210
2211	sid = tsec->sid;
2212	osid = tsec->osid;
2213
2214	if (osid != sid) {
2215		/* Enable secure mode for SIDs transitions unless
2216		   the noatsecure permission is granted between
2217		   the two SIDs, i.e. ahp returns 0. */
2218		atsecure = avc_has_perm(osid, sid,
2219					SECCLASS_PROCESS,
2220					PROCESS__NOATSECURE, NULL);
 
 
2221	}
2222
2223	return (atsecure || cap_bprm_secureexec(bprm));
2224}
2225
2226static int match_file(const void *p, struct file *file, unsigned fd)
2227{
2228	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2229}
2230
2231/* Derived from fs/exec.c:flush_old_files. */
2232static inline void flush_unauthorized_files(const struct cred *cred,
2233					    struct files_struct *files)
2234{
2235	struct file *file, *devnull = NULL;
2236	struct tty_struct *tty;
2237	int drop_tty = 0;
2238	unsigned n;
2239
2240	tty = get_current_tty();
2241	if (tty) {
2242		spin_lock(&tty_files_lock);
2243		if (!list_empty(&tty->tty_files)) {
2244			struct tty_file_private *file_priv;
2245
2246			/* Revalidate access to controlling tty.
2247			   Use file_path_has_perm on the tty path directly
2248			   rather than using file_has_perm, as this particular
2249			   open file may belong to another process and we are
2250			   only interested in the inode-based check here. */
2251			file_priv = list_first_entry(&tty->tty_files,
2252						struct tty_file_private, list);
2253			file = file_priv->file;
2254			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2255				drop_tty = 1;
2256		}
2257		spin_unlock(&tty_files_lock);
2258		tty_kref_put(tty);
2259	}
2260	/* Reset controlling tty. */
2261	if (drop_tty)
2262		no_tty();
2263
2264	/* Revalidate access to inherited open files. */
2265	n = iterate_fd(files, 0, match_file, cred);
2266	if (!n) /* none found? */
2267		return;
2268
2269	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2270	if (IS_ERR(devnull))
2271		devnull = NULL;
2272	/* replace all the matching ones with this */
2273	do {
2274		replace_fd(n - 1, devnull, 0);
2275	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2276	if (devnull)
2277		fput(devnull);
2278}
2279
2280/*
2281 * Prepare a process for imminent new credential changes due to exec
2282 */
2283static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2284{
2285	struct task_security_struct *new_tsec;
2286	struct rlimit *rlim, *initrlim;
2287	int rc, i;
2288
2289	new_tsec = bprm->cred->security;
2290	if (new_tsec->sid == new_tsec->osid)
2291		return;
2292
2293	/* Close files for which the new task SID is not authorized. */
2294	flush_unauthorized_files(bprm->cred, current->files);
2295
2296	/* Always clear parent death signal on SID transitions. */
2297	current->pdeath_signal = 0;
2298
2299	/* Check whether the new SID can inherit resource limits from the old
2300	 * SID.  If not, reset all soft limits to the lower of the current
2301	 * task's hard limit and the init task's soft limit.
2302	 *
2303	 * Note that the setting of hard limits (even to lower them) can be
2304	 * controlled by the setrlimit check.  The inclusion of the init task's
2305	 * soft limit into the computation is to avoid resetting soft limits
2306	 * higher than the default soft limit for cases where the default is
2307	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2308	 */
2309	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2310			  PROCESS__RLIMITINH, NULL);
2311	if (rc) {
2312		/* protect against do_prlimit() */
2313		task_lock(current);
2314		for (i = 0; i < RLIM_NLIMITS; i++) {
2315			rlim = current->signal->rlim + i;
2316			initrlim = init_task.signal->rlim + i;
2317			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2318		}
2319		task_unlock(current);
2320		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
 
2321	}
2322}
2323
2324/*
2325 * Clean up the process immediately after the installation of new credentials
2326 * due to exec
2327 */
2328static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2329{
2330	const struct task_security_struct *tsec = current_security();
2331	struct itimerval itimer;
2332	u32 osid, sid;
2333	int rc, i;
2334
2335	osid = tsec->osid;
2336	sid = tsec->sid;
2337
2338	if (sid == osid)
2339		return;
2340
2341	/* Check whether the new SID can inherit signal state from the old SID.
2342	 * If not, clear itimers to avoid subsequent signal generation and
2343	 * flush and unblock signals.
2344	 *
2345	 * This must occur _after_ the task SID has been updated so that any
2346	 * kill done after the flush will be checked against the new SID.
2347	 */
2348	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2349	if (rc) {
2350		memset(&itimer, 0, sizeof itimer);
2351		for (i = 0; i < 3; i++)
2352			do_setitimer(i, &itimer, NULL);
2353		spin_lock_irq(&current->sighand->siglock);
2354		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2355			__flush_signals(current);
 
2356			flush_signal_handlers(current, 1);
2357			sigemptyset(&current->blocked);
 
2358		}
2359		spin_unlock_irq(&current->sighand->siglock);
2360	}
2361
2362	/* Wake up the parent if it is waiting so that it can recheck
2363	 * wait permission to the new task SID. */
2364	read_lock(&tasklist_lock);
2365	__wake_up_parent(current, current->real_parent);
2366	read_unlock(&tasklist_lock);
2367}
2368
2369/* superblock security operations */
2370
2371static int selinux_sb_alloc_security(struct super_block *sb)
2372{
2373	return superblock_alloc_security(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2374}
2375
2376static void selinux_sb_free_security(struct super_block *sb)
2377{
2378	superblock_free_security(sb);
2379}
2380
2381static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2382{
2383	if (plen > olen)
2384		return 0;
 
2385
2386	return !memcmp(prefix, option, plen);
 
 
 
 
 
 
2387}
2388
2389static inline int selinux_option(char *option, int len)
2390{
2391	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2392		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2393		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2394		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2395		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2396}
2397
2398static inline void take_option(char **to, char *from, int *first, int len)
2399{
2400	if (!*first) {
2401		**to = ',';
2402		*to += 1;
2403	} else
2404		*first = 0;
2405	memcpy(*to, from, len);
2406	*to += len;
2407}
2408
2409static inline void take_selinux_option(char **to, char *from, int *first,
2410				       int len)
2411{
2412	int current_size = 0;
2413
2414	if (!*first) {
2415		**to = '|';
2416		*to += 1;
2417	} else
2418		*first = 0;
2419
2420	while (current_size < len) {
2421		if (*from != '"') {
2422			**to = *from;
2423			*to += 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2424		}
2425		from += 1;
2426		current_size += 1;
 
2427	}
2428}
2429
2430static int selinux_sb_copy_data(char *orig, char *copy)
2431{
2432	int fnosec, fsec, rc = 0;
2433	char *in_save, *in_curr, *in_end;
2434	char *sec_curr, *nosec_save, *nosec;
2435	int open_quote = 0;
2436
2437	in_curr = orig;
2438	sec_curr = copy;
2439
2440	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2441	if (!nosec) {
2442		rc = -ENOMEM;
2443		goto out;
2444	}
2445
2446	nosec_save = nosec;
2447	fnosec = fsec = 1;
2448	in_save = in_end = orig;
2449
2450	do {
2451		if (*in_end == '"')
2452			open_quote = !open_quote;
2453		if ((*in_end == ',' && open_quote == 0) ||
2454				*in_end == '\0') {
2455			int len = in_end - in_curr;
2456
2457			if (selinux_option(in_curr, len))
2458				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2459			else
2460				take_option(&nosec, in_curr, &fnosec, len);
2461
2462			in_curr = in_end + 1;
2463		}
2464	} while (*in_end++);
2465
2466	strcpy(in_save, nosec_save);
2467	free_page((unsigned long)nosec_save);
2468out:
2469	return rc;
2470}
2471
2472static int selinux_sb_remount(struct super_block *sb, void *data)
2473{
2474	int rc, i, *flags;
2475	struct security_mnt_opts opts;
2476	char *secdata, **mount_options;
2477	struct superblock_security_struct *sbsec = sb->s_security;
 
 
2478
2479	if (!(sbsec->flags & SE_SBINITIALIZED))
2480		return 0;
2481
2482	if (!data)
2483		return 0;
2484
2485	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2486		return 0;
2487
2488	security_init_mnt_opts(&opts);
2489	secdata = alloc_secdata();
2490	if (!secdata)
2491		return -ENOMEM;
2492	rc = selinux_sb_copy_data(data, secdata);
2493	if (rc)
2494		goto out_free_secdata;
2495
2496	rc = selinux_parse_opts_str(secdata, &opts);
2497	if (rc)
2498		goto out_free_secdata;
2499
2500	mount_options = opts.mnt_opts;
2501	flags = opts.mnt_opts_flags;
2502
2503	for (i = 0; i < opts.num_mnt_opts; i++) {
2504		u32 sid;
2505		size_t len;
2506
2507		if (flags[i] == SBLABEL_MNT)
2508			continue;
2509		len = strlen(mount_options[i]);
2510		rc = security_context_to_sid(mount_options[i], len, &sid,
2511					     GFP_KERNEL);
2512		if (rc) {
2513			printk(KERN_WARNING "SELinux: security_context_to_sid"
2514			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2515			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2516			goto out_free_opts;
2517		}
2518		rc = -EINVAL;
2519		switch (flags[i]) {
2520		case FSCONTEXT_MNT:
2521			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2522				goto out_bad_option;
2523			break;
2524		case CONTEXT_MNT:
2525			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2526				goto out_bad_option;
2527			break;
2528		case ROOTCONTEXT_MNT: {
2529			struct inode_security_struct *root_isec;
2530			root_isec = sb->s_root->d_inode->i_security;
2531
2532			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2533				goto out_bad_option;
2534			break;
2535		}
2536		case DEFCONTEXT_MNT:
2537			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2538				goto out_bad_option;
2539			break;
2540		default:
2541			goto out_free_opts;
2542		}
2543	}
 
2544
2545	rc = 0;
2546out_free_opts:
2547	security_free_mnt_opts(&opts);
2548out_free_secdata:
2549	free_secdata(secdata);
2550	return rc;
2551out_bad_option:
2552	printk(KERN_WARNING "SELinux: unable to change security options "
2553	       "during remount (dev %s, type=%s)\n", sb->s_id,
2554	       sb->s_type->name);
2555	goto out_free_opts;
2556}
2557
2558static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2559{
2560	const struct cred *cred = current_cred();
2561	struct common_audit_data ad;
2562	int rc;
2563
2564	rc = superblock_doinit(sb, data);
2565	if (rc)
2566		return rc;
2567
2568	/* Allow all mounts performed by the kernel */
2569	if (flags & MS_KERNMOUNT)
2570		return 0;
2571
2572	ad.type = LSM_AUDIT_DATA_DENTRY;
2573	ad.u.dentry = sb->s_root;
2574	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2575}
2576
2577static int selinux_sb_statfs(struct dentry *dentry)
2578{
2579	const struct cred *cred = current_cred();
2580	struct common_audit_data ad;
2581
2582	ad.type = LSM_AUDIT_DATA_DENTRY;
2583	ad.u.dentry = dentry->d_sb->s_root;
2584	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2585}
2586
2587static int selinux_mount(const char *dev_name,
2588			 struct path *path,
2589			 const char *type,
2590			 unsigned long flags,
2591			 void *data)
2592{
2593	const struct cred *cred = current_cred();
2594
2595	if (flags & MS_REMOUNT)
2596		return superblock_has_perm(cred, path->dentry->d_sb,
2597					   FILESYSTEM__REMOUNT, NULL);
2598	else
2599		return path_has_perm(cred, path, FILE__MOUNTON);
2600}
2601
 
 
 
 
 
 
 
 
2602static int selinux_umount(struct vfsmount *mnt, int flags)
2603{
2604	const struct cred *cred = current_cred();
2605
2606	return superblock_has_perm(cred, mnt->mnt_sb,
2607				   FILESYSTEM__UNMOUNT, NULL);
2608}
2609
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2610/* inode security operations */
2611
2612static int selinux_inode_alloc_security(struct inode *inode)
2613{
2614	return inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
2615}
2616
2617static void selinux_inode_free_security(struct inode *inode)
2618{
2619	inode_free_security(inode);
2620}
2621
2622static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2623					struct qstr *name, void **ctx,
2624					u32 *ctxlen)
2625{
2626	const struct cred *cred = current_cred();
2627	struct task_security_struct *tsec;
2628	struct inode_security_struct *dsec;
2629	struct superblock_security_struct *sbsec;
2630	struct inode *dir = dentry->d_parent->d_inode;
2631	u32 newsid;
2632	int rc;
2633
2634	tsec = cred->security;
2635	dsec = dir->i_security;
2636	sbsec = dir->i_sb->s_security;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2637
2638	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2639		newsid = tsec->create_sid;
2640	} else {
2641		rc = security_transition_sid(tsec->sid, dsec->sid,
2642					     inode_mode_to_security_class(mode),
2643					     name,
2644					     &newsid);
2645		if (rc) {
2646			printk(KERN_WARNING
2647				"%s: security_transition_sid failed, rc=%d\n",
2648			       __func__, -rc);
2649			return rc;
2650		}
2651	}
2652
2653	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
 
 
2654}
2655
2656static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2657				       const struct qstr *qstr,
2658				       const char **name,
2659				       void **value, size_t *len)
2660{
2661	const struct task_security_struct *tsec = current_security();
2662	struct inode_security_struct *dsec;
2663	struct superblock_security_struct *sbsec;
2664	u32 sid, newsid, clen;
2665	int rc;
2666	char *context;
2667
2668	dsec = dir->i_security;
2669	sbsec = dir->i_sb->s_security;
2670
2671	sid = tsec->sid;
2672	newsid = tsec->create_sid;
2673
2674	if ((sbsec->flags & SE_SBINITIALIZED) &&
2675	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2676		newsid = sbsec->mntpoint_sid;
2677	else if (!newsid || !(sbsec->flags & SBLABEL_MNT)) {
2678		rc = security_transition_sid(sid, dsec->sid,
2679					     inode_mode_to_security_class(inode->i_mode),
2680					     qstr, &newsid);
2681		if (rc) {
2682			printk(KERN_WARNING "%s:  "
2683			       "security_transition_sid failed, rc=%d (dev=%s "
2684			       "ino=%ld)\n",
2685			       __func__,
2686			       -rc, inode->i_sb->s_id, inode->i_ino);
2687			return rc;
2688		}
2689	}
2690
2691	/* Possibly defer initialization to selinux_complete_init. */
2692	if (sbsec->flags & SE_SBINITIALIZED) {
2693		struct inode_security_struct *isec = inode->i_security;
2694		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2695		isec->sid = newsid;
2696		isec->initialized = 1;
2697	}
2698
2699	if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
 
2700		return -EOPNOTSUPP;
2701
2702	if (name)
2703		*name = XATTR_SELINUX_SUFFIX;
2704
2705	if (value && len) {
2706		rc = security_sid_to_context_force(newsid, &context, &clen);
 
2707		if (rc)
2708			return rc;
2709		*value = context;
2710		*len = clen;
2711	}
2712
2713	return 0;
2714}
2715
2716static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2717{
2718	return may_create(dir, dentry, SECCLASS_FILE);
2719}
2720
2721static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2722{
2723	return may_link(dir, old_dentry, MAY_LINK);
2724}
2725
2726static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2727{
2728	return may_link(dir, dentry, MAY_UNLINK);
2729}
2730
2731static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2732{
2733	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2734}
2735
2736static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2737{
2738	return may_create(dir, dentry, SECCLASS_DIR);
2739}
2740
2741static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2742{
2743	return may_link(dir, dentry, MAY_RMDIR);
2744}
2745
2746static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2747{
2748	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2749}
2750
2751static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2752				struct inode *new_inode, struct dentry *new_dentry)
2753{
2754	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2755}
2756
2757static int selinux_inode_readlink(struct dentry *dentry)
2758{
2759	const struct cred *cred = current_cred();
2760
2761	return dentry_has_perm(cred, dentry, FILE__READ);
2762}
2763
2764static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
 
2765{
2766	const struct cred *cred = current_cred();
 
 
 
 
 
2767
2768	return dentry_has_perm(cred, dentry, FILE__READ);
 
 
 
 
 
 
 
 
 
2769}
2770
2771static noinline int audit_inode_permission(struct inode *inode,
2772					   u32 perms, u32 audited, u32 denied,
2773					   unsigned flags)
2774{
2775	struct common_audit_data ad;
2776	struct inode_security_struct *isec = inode->i_security;
2777	int rc;
2778
2779	ad.type = LSM_AUDIT_DATA_INODE;
2780	ad.u.inode = inode;
2781
2782	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2783			    audited, denied, &ad, flags);
 
2784	if (rc)
2785		return rc;
2786	return 0;
2787}
2788
2789static int selinux_inode_permission(struct inode *inode, int mask)
2790{
2791	const struct cred *cred = current_cred();
2792	u32 perms;
2793	bool from_access;
2794	unsigned flags = mask & MAY_NOT_BLOCK;
2795	struct inode_security_struct *isec;
2796	u32 sid;
2797	struct av_decision avd;
2798	int rc, rc2;
2799	u32 audited, denied;
2800
2801	from_access = mask & MAY_ACCESS;
2802	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2803
2804	/* No permission to check.  Existence test. */
2805	if (!mask)
2806		return 0;
2807
2808	validate_creds(cred);
2809
2810	if (unlikely(IS_PRIVATE(inode)))
2811		return 0;
2812
2813	perms = file_mask_to_av(inode->i_mode, mask);
2814
2815	sid = cred_sid(cred);
2816	isec = inode->i_security;
2817
2818	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
 
 
 
 
 
2819	audited = avc_audit_required(perms, &avd, rc,
2820				     from_access ? FILE__AUDIT_ACCESS : 0,
2821				     &denied);
2822	if (likely(!audited))
2823		return rc;
2824
2825	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
 
 
 
 
2826	if (rc2)
2827		return rc2;
2828	return rc;
2829}
2830
2831static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2832{
2833	const struct cred *cred = current_cred();
 
2834	unsigned int ia_valid = iattr->ia_valid;
2835	__u32 av = FILE__WRITE;
2836
2837	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2838	if (ia_valid & ATTR_FORCE) {
2839		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2840			      ATTR_FORCE);
2841		if (!ia_valid)
2842			return 0;
2843	}
2844
2845	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2846			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2847		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2848
2849	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
 
 
 
2850		av |= FILE__OPEN;
2851
2852	return dentry_has_perm(cred, dentry, av);
2853}
2854
2855static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2856{
2857	const struct cred *cred = current_cred();
2858	struct path path;
2859
2860	path.dentry = dentry;
2861	path.mnt = mnt;
2862
2863	return path_has_perm(cred, &path, FILE__GETATTR);
2864}
2865
2866static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2867{
2868	const struct cred *cred = current_cred();
 
2869
2870	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2871		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2872		if (!strcmp(name, XATTR_NAME_CAPS)) {
2873			if (!capable(CAP_SETFCAP))
2874				return -EPERM;
2875		} else if (!capable(CAP_SYS_ADMIN)) {
2876			/* A different attribute in the security namespace.
2877			   Restrict to administrator. */
2878			return -EPERM;
2879		}
2880	}
2881
2882	/* Not an attribute we recognize, so just check the
2883	   ordinary setattr permission. */
2884	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2885}
2886
2887static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2888				  const void *value, size_t size, int flags)
2889{
2890	struct inode *inode = dentry->d_inode;
2891	struct inode_security_struct *isec = inode->i_security;
2892	struct superblock_security_struct *sbsec;
2893	struct common_audit_data ad;
2894	u32 newsid, sid = current_sid();
2895	int rc = 0;
2896
2897	if (strcmp(name, XATTR_NAME_SELINUX))
2898		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
 
 
 
2899
2900	sbsec = inode->i_sb->s_security;
2901	if (!(sbsec->flags & SBLABEL_MNT))
2902		return -EOPNOTSUPP;
2903
2904	if (!inode_owner_or_capable(inode))
2905		return -EPERM;
2906
2907	ad.type = LSM_AUDIT_DATA_DENTRY;
2908	ad.u.dentry = dentry;
2909
2910	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
 
2911			  FILE__RELABELFROM, &ad);
2912	if (rc)
2913		return rc;
2914
2915	rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
 
2916	if (rc == -EINVAL) {
2917		if (!capable(CAP_MAC_ADMIN)) {
2918			struct audit_buffer *ab;
2919			size_t audit_size;
2920			const char *str;
2921
2922			/* We strip a nul only if it is at the end, otherwise the
2923			 * context contains a nul and we should audit that */
2924			if (value) {
2925				str = value;
 
2926				if (str[size - 1] == '\0')
2927					audit_size = size - 1;
2928				else
2929					audit_size = size;
2930			} else {
2931				str = "";
2932				audit_size = 0;
2933			}
2934			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
2935			audit_log_format(ab, "op=setxattr invalid_context=");
2936			audit_log_n_untrustedstring(ab, value, audit_size);
2937			audit_log_end(ab);
2938
2939			return rc;
2940		}
2941		rc = security_context_to_sid_force(value, size, &newsid);
 
2942	}
2943	if (rc)
2944		return rc;
2945
2946	rc = avc_has_perm(sid, newsid, isec->sclass,
 
2947			  FILE__RELABELTO, &ad);
2948	if (rc)
2949		return rc;
2950
2951	rc = security_validate_transition(isec->sid, newsid, sid,
2952					  isec->sclass);
2953	if (rc)
2954		return rc;
2955
2956	return avc_has_perm(newsid,
 
2957			    sbsec->sid,
2958			    SECCLASS_FILESYSTEM,
2959			    FILESYSTEM__ASSOCIATE,
2960			    &ad);
2961}
2962
2963static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2964					const void *value, size_t size,
2965					int flags)
2966{
2967	struct inode *inode = dentry->d_inode;
2968	struct inode_security_struct *isec = inode->i_security;
2969	u32 newsid;
2970	int rc;
2971
2972	if (strcmp(name, XATTR_NAME_SELINUX)) {
2973		/* Not an attribute we recognize, so nothing to do. */
2974		return;
2975	}
2976
2977	rc = security_context_to_sid_force(value, size, &newsid);
 
 
 
 
 
 
 
 
 
 
2978	if (rc) {
2979		printk(KERN_ERR "SELinux:  unable to map context to SID"
2980		       "for (%s, %lu), rc=%d\n",
2981		       inode->i_sb->s_id, inode->i_ino, -rc);
2982		return;
2983	}
2984
 
 
2985	isec->sclass = inode_mode_to_security_class(inode->i_mode);
2986	isec->sid = newsid;
2987	isec->initialized = 1;
 
2988
2989	return;
2990}
2991
2992static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2993{
2994	const struct cred *cred = current_cred();
2995
2996	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2997}
2998
2999static int selinux_inode_listxattr(struct dentry *dentry)
3000{
3001	const struct cred *cred = current_cred();
3002
3003	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3004}
3005
3006static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3007{
3008	if (strcmp(name, XATTR_NAME_SELINUX))
3009		return selinux_inode_setotherxattr(dentry, name);
 
 
 
 
 
 
 
3010
3011	/* No one is allowed to remove a SELinux security label.
3012	   You can change the label, but all data must be labeled. */
3013	return -EACCES;
3014}
3015
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016/*
3017 * Copy the inode security context value to the user.
3018 *
3019 * Permission check is handled by selinux_inode_getxattr hook.
3020 */
3021static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
3022{
3023	u32 size;
3024	int error;
3025	char *context = NULL;
3026	struct inode_security_struct *isec = inode->i_security;
3027
3028	if (strcmp(name, XATTR_SELINUX_SUFFIX))
 
 
 
 
 
3029		return -EOPNOTSUPP;
3030
3031	/*
3032	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3033	 * value even if it is not defined by current policy; otherwise,
3034	 * use the in-core value under current policy.
3035	 * Use the non-auditing forms of the permission checks since
3036	 * getxattr may be called by unprivileged processes commonly
3037	 * and lack of permission just means that we fall back to the
3038	 * in-core context value, not a denial.
3039	 */
3040	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3041				SECURITY_CAP_NOAUDIT);
3042	if (!error)
3043		error = security_sid_to_context_force(isec->sid, &context,
3044						      &size);
3045	else
3046		error = security_sid_to_context(isec->sid, &context, &size);
 
3047	if (error)
3048		return error;
3049	error = size;
3050	if (alloc) {
3051		*buffer = context;
3052		goto out_nofree;
3053	}
3054	kfree(context);
3055out_nofree:
3056	return error;
3057}
3058
3059static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3060				     const void *value, size_t size, int flags)
3061{
3062	struct inode_security_struct *isec = inode->i_security;
 
3063	u32 newsid;
3064	int rc;
3065
3066	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3067		return -EOPNOTSUPP;
3068
 
 
 
3069	if (!value || !size)
3070		return -EACCES;
3071
3072	rc = security_context_to_sid((void *)value, size, &newsid, GFP_KERNEL);
 
3073	if (rc)
3074		return rc;
3075
 
3076	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3077	isec->sid = newsid;
3078	isec->initialized = 1;
 
3079	return 0;
3080}
3081
3082static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3083{
3084	const int len = sizeof(XATTR_NAME_SELINUX);
3085	if (buffer && len <= buffer_size)
3086		memcpy(buffer, XATTR_NAME_SELINUX, len);
3087	return len;
3088}
3089
3090static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3091{
3092	struct inode_security_struct *isec = inode->i_security;
3093	*secid = isec->sid;
3094}
3095
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096/* file security operations */
3097
3098static int selinux_revalidate_file_permission(struct file *file, int mask)
3099{
3100	const struct cred *cred = current_cred();
3101	struct inode *inode = file_inode(file);
3102
3103	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3104	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3105		mask |= MAY_APPEND;
3106
3107	return file_has_perm(cred, file,
3108			     file_mask_to_av(inode->i_mode, mask));
3109}
3110
3111static int selinux_file_permission(struct file *file, int mask)
3112{
3113	struct inode *inode = file_inode(file);
3114	struct file_security_struct *fsec = file->f_security;
3115	struct inode_security_struct *isec = inode->i_security;
3116	u32 sid = current_sid();
3117
3118	if (!mask)
3119		/* No permission to check.  Existence test. */
3120		return 0;
3121
 
3122	if (sid == fsec->sid && fsec->isid == isec->sid &&
3123	    fsec->pseqno == avc_policy_seqno())
3124		/* No change since file_open check. */
3125		return 0;
3126
3127	return selinux_revalidate_file_permission(file, mask);
3128}
3129
3130static int selinux_file_alloc_security(struct file *file)
3131{
3132	return file_alloc_security(file);
 
 
 
 
 
 
3133}
3134
3135static void selinux_file_free_security(struct file *file)
 
 
 
 
 
3136{
3137	file_free_security(file);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138}
3139
3140static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3141			      unsigned long arg)
3142{
3143	const struct cred *cred = current_cred();
3144	int error = 0;
3145
3146	switch (cmd) {
3147	case FIONREAD:
3148	/* fall through */
3149	case FIBMAP:
3150	/* fall through */
3151	case FIGETBSZ:
3152	/* fall through */
3153	case FS_IOC_GETFLAGS:
3154	/* fall through */
3155	case FS_IOC_GETVERSION:
3156		error = file_has_perm(cred, file, FILE__GETATTR);
3157		break;
3158
3159	case FS_IOC_SETFLAGS:
3160	/* fall through */
3161	case FS_IOC_SETVERSION:
3162		error = file_has_perm(cred, file, FILE__SETATTR);
3163		break;
3164
3165	/* sys_ioctl() checks */
3166	case FIONBIO:
3167	/* fall through */
3168	case FIOASYNC:
3169		error = file_has_perm(cred, file, 0);
3170		break;
3171
3172	case KDSKBENT:
3173	case KDSKBSENT:
3174		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3175					    SECURITY_CAP_AUDIT);
3176		break;
3177
3178	/* default case assumes that the command will go
3179	 * to the file's ioctl() function.
3180	 */
3181	default:
3182		error = file_has_perm(cred, file, FILE__IOCTL);
3183	}
3184	return error;
3185}
3186
3187static int default_noexec;
3188
3189static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3190{
3191	const struct cred *cred = current_cred();
 
3192	int rc = 0;
3193
3194	if (default_noexec &&
3195	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
 
3196		/*
3197		 * We are making executable an anonymous mapping or a
3198		 * private file mapping that will also be writable.
3199		 * This has an additional check.
3200		 */
3201		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
 
 
3202		if (rc)
3203			goto error;
3204	}
3205
3206	if (file) {
3207		/* read access is always possible with a mapping */
3208		u32 av = FILE__READ;
3209
3210		/* write access only matters if the mapping is shared */
3211		if (shared && (prot & PROT_WRITE))
3212			av |= FILE__WRITE;
3213
3214		if (prot & PROT_EXEC)
3215			av |= FILE__EXECUTE;
3216
3217		return file_has_perm(cred, file, av);
3218	}
3219
3220error:
3221	return rc;
3222}
3223
3224static int selinux_mmap_addr(unsigned long addr)
3225{
3226	int rc;
3227
3228	/* do DAC check on address space usage */
3229	rc = cap_mmap_addr(addr);
3230	if (rc)
3231		return rc;
3232
3233	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3234		u32 sid = current_sid();
3235		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3236				  MEMPROTECT__MMAP_ZERO, NULL);
3237	}
3238
3239	return rc;
3240}
3241
3242static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3243			     unsigned long prot, unsigned long flags)
3244{
3245	if (selinux_checkreqprot)
 
 
 
 
 
 
 
 
 
 
 
 
3246		prot = reqprot;
3247
3248	return file_map_prot_check(file, prot,
3249				   (flags & MAP_TYPE) == MAP_SHARED);
3250}
3251
3252static int selinux_file_mprotect(struct vm_area_struct *vma,
3253				 unsigned long reqprot,
3254				 unsigned long prot)
3255{
3256	const struct cred *cred = current_cred();
 
3257
3258	if (selinux_checkreqprot)
3259		prot = reqprot;
3260
3261	if (default_noexec &&
3262	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3263		int rc = 0;
3264		if (vma->vm_start >= vma->vm_mm->start_brk &&
3265		    vma->vm_end <= vma->vm_mm->brk) {
3266			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
 
 
3267		} else if (!vma->vm_file &&
3268			   vma->vm_start <= vma->vm_mm->start_stack &&
3269			   vma->vm_end >= vma->vm_mm->start_stack) {
3270			rc = current_has_perm(current, PROCESS__EXECSTACK);
 
 
 
3271		} else if (vma->vm_file && vma->anon_vma) {
3272			/*
3273			 * We are making executable a file mapping that has
3274			 * had some COW done. Since pages might have been
3275			 * written, check ability to execute the possibly
3276			 * modified content.  This typically should only
3277			 * occur for text relocations.
3278			 */
3279			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3280		}
3281		if (rc)
3282			return rc;
3283	}
3284
3285	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3286}
3287
3288static int selinux_file_lock(struct file *file, unsigned int cmd)
3289{
3290	const struct cred *cred = current_cred();
3291
3292	return file_has_perm(cred, file, FILE__LOCK);
3293}
3294
3295static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3296			      unsigned long arg)
3297{
3298	const struct cred *cred = current_cred();
3299	int err = 0;
3300
3301	switch (cmd) {
3302	case F_SETFL:
3303		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3304			err = file_has_perm(cred, file, FILE__WRITE);
3305			break;
3306		}
3307		/* fall through */
3308	case F_SETOWN:
3309	case F_SETSIG:
3310	case F_GETFL:
3311	case F_GETOWN:
3312	case F_GETSIG:
3313	case F_GETOWNER_UIDS:
3314		/* Just check FD__USE permission */
3315		err = file_has_perm(cred, file, 0);
3316		break;
3317	case F_GETLK:
3318	case F_SETLK:
3319	case F_SETLKW:
3320	case F_OFD_GETLK:
3321	case F_OFD_SETLK:
3322	case F_OFD_SETLKW:
3323#if BITS_PER_LONG == 32
3324	case F_GETLK64:
3325	case F_SETLK64:
3326	case F_SETLKW64:
3327#endif
3328		err = file_has_perm(cred, file, FILE__LOCK);
3329		break;
3330	}
3331
3332	return err;
3333}
3334
3335static int selinux_file_set_fowner(struct file *file)
3336{
3337	struct file_security_struct *fsec;
3338
3339	fsec = file->f_security;
3340	fsec->fown_sid = current_sid();
3341
3342	return 0;
3343}
3344
3345static int selinux_file_send_sigiotask(struct task_struct *tsk,
3346				       struct fown_struct *fown, int signum)
3347{
3348	struct file *file;
3349	u32 sid = task_sid(tsk);
3350	u32 perm;
3351	struct file_security_struct *fsec;
3352
3353	/* struct fown_struct is never outside the context of a struct file */
3354	file = container_of(fown, struct file, f_owner);
3355
3356	fsec = file->f_security;
3357
3358	if (!signum)
3359		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3360	else
3361		perm = signal_to_av(signum);
3362
3363	return avc_has_perm(fsec->fown_sid, sid,
 
3364			    SECCLASS_PROCESS, perm, NULL);
3365}
3366
3367static int selinux_file_receive(struct file *file)
3368{
3369	const struct cred *cred = current_cred();
3370
3371	return file_has_perm(cred, file, file_to_av(file));
3372}
3373
3374static int selinux_file_open(struct file *file, const struct cred *cred)
3375{
3376	struct file_security_struct *fsec;
3377	struct inode_security_struct *isec;
3378
3379	fsec = file->f_security;
3380	isec = file_inode(file)->i_security;
3381	/*
3382	 * Save inode label and policy sequence number
3383	 * at open-time so that selinux_file_permission
3384	 * can determine whether revalidation is necessary.
3385	 * Task label is already saved in the file security
3386	 * struct as its SID.
3387	 */
3388	fsec->isid = isec->sid;
3389	fsec->pseqno = avc_policy_seqno();
3390	/*
3391	 * Since the inode label or policy seqno may have changed
3392	 * between the selinux_inode_permission check and the saving
3393	 * of state above, recheck that access is still permitted.
3394	 * Otherwise, access might never be revalidated against the
3395	 * new inode label or new policy.
3396	 * This check is not redundant - do not remove.
3397	 */
3398	return file_path_has_perm(cred, file, open_file_to_av(file));
3399}
3400
3401/* task security operations */
3402
3403static int selinux_task_create(unsigned long clone_flags)
 
3404{
3405	return current_has_perm(current, PROCESS__FORK);
3406}
3407
3408/*
3409 * allocate the SELinux part of blank credentials
3410 */
3411static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3412{
3413	struct task_security_struct *tsec;
3414
3415	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3416	if (!tsec)
3417		return -ENOMEM;
3418
3419	cred->security = tsec;
3420	return 0;
3421}
3422
3423/*
3424 * detach and free the LSM part of a set of credentials
3425 */
3426static void selinux_cred_free(struct cred *cred)
3427{
3428	struct task_security_struct *tsec = cred->security;
3429
3430	/*
3431	 * cred->security == NULL if security_cred_alloc_blank() or
3432	 * security_prepare_creds() returned an error.
3433	 */
3434	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3435	cred->security = (void *) 0x7UL;
3436	kfree(tsec);
3437}
3438
3439/*
3440 * prepare a new set of credentials for modification
3441 */
3442static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3443				gfp_t gfp)
3444{
3445	const struct task_security_struct *old_tsec;
3446	struct task_security_struct *tsec;
3447
3448	old_tsec = old->security;
3449
3450	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3451	if (!tsec)
3452		return -ENOMEM;
3453
3454	new->security = tsec;
3455	return 0;
3456}
3457
3458/*
3459 * transfer the SELinux data to a blank set of creds
3460 */
3461static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3462{
3463	const struct task_security_struct *old_tsec = old->security;
3464	struct task_security_struct *tsec = new->security;
3465
3466	*tsec = *old_tsec;
3467}
3468
 
 
 
 
 
3469/*
3470 * set the security data for a kernel service
3471 * - all the creation contexts are set to unlabelled
3472 */
3473static int selinux_kernel_act_as(struct cred *new, u32 secid)
3474{
3475	struct task_security_struct *tsec = new->security;
3476	u32 sid = current_sid();
3477	int ret;
3478
3479	ret = avc_has_perm(sid, secid,
 
3480			   SECCLASS_KERNEL_SERVICE,
3481			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3482			   NULL);
3483	if (ret == 0) {
3484		tsec->sid = secid;
3485		tsec->create_sid = 0;
3486		tsec->keycreate_sid = 0;
3487		tsec->sockcreate_sid = 0;
3488	}
3489	return ret;
3490}
3491
3492/*
3493 * set the file creation context in a security record to the same as the
3494 * objective context of the specified inode
3495 */
3496static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3497{
3498	struct inode_security_struct *isec = inode->i_security;
3499	struct task_security_struct *tsec = new->security;
3500	u32 sid = current_sid();
3501	int ret;
3502
3503	ret = avc_has_perm(sid, isec->sid,
 
3504			   SECCLASS_KERNEL_SERVICE,
3505			   KERNEL_SERVICE__CREATE_FILES_AS,
3506			   NULL);
3507
3508	if (ret == 0)
3509		tsec->create_sid = isec->sid;
3510	return ret;
3511}
3512
3513static int selinux_kernel_module_request(char *kmod_name)
3514{
3515	u32 sid;
3516	struct common_audit_data ad;
3517
3518	sid = task_sid(current);
3519
3520	ad.type = LSM_AUDIT_DATA_KMOD;
3521	ad.u.kmod_name = kmod_name;
3522
3523	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
3524			    SYSTEM__MODULE_REQUEST, &ad);
3525}
3526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3528{
3529	return current_has_perm(p, PROCESS__SETPGID);
 
 
3530}
3531
3532static int selinux_task_getpgid(struct task_struct *p)
3533{
3534	return current_has_perm(p, PROCESS__GETPGID);
 
 
3535}
3536
3537static int selinux_task_getsid(struct task_struct *p)
3538{
3539	return current_has_perm(p, PROCESS__GETSESSION);
 
 
3540}
3541
3542static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3543{
3544	*secid = task_sid(p);
3545}
3546
3547static int selinux_task_setnice(struct task_struct *p, int nice)
3548{
3549	int rc;
3550
3551	rc = cap_task_setnice(p, nice);
3552	if (rc)
3553		return rc;
3554
3555	return current_has_perm(p, PROCESS__SETSCHED);
3556}
3557
3558static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3559{
3560	int rc;
 
 
 
3561
3562	rc = cap_task_setioprio(p, ioprio);
3563	if (rc)
3564		return rc;
3565
3566	return current_has_perm(p, PROCESS__SETSCHED);
3567}
3568
3569static int selinux_task_getioprio(struct task_struct *p)
 
3570{
3571	return current_has_perm(p, PROCESS__GETSCHED);
 
 
 
 
 
 
 
 
 
 
3572}
3573
3574static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3575		struct rlimit *new_rlim)
3576{
3577	struct rlimit *old_rlim = p->signal->rlim + resource;
3578
3579	/* Control the ability to change the hard limit (whether
3580	   lowering or raising it), so that the hard limit can
3581	   later be used as a safe reset point for the soft limit
3582	   upon context transitions.  See selinux_bprm_committing_creds. */
3583	if (old_rlim->rlim_max != new_rlim->rlim_max)
3584		return current_has_perm(p, PROCESS__SETRLIMIT);
 
 
3585
3586	return 0;
3587}
3588
3589static int selinux_task_setscheduler(struct task_struct *p)
3590{
3591	int rc;
3592
3593	rc = cap_task_setscheduler(p);
3594	if (rc)
3595		return rc;
3596
3597	return current_has_perm(p, PROCESS__SETSCHED);
3598}
3599
3600static int selinux_task_getscheduler(struct task_struct *p)
3601{
3602	return current_has_perm(p, PROCESS__GETSCHED);
 
 
3603}
3604
3605static int selinux_task_movememory(struct task_struct *p)
3606{
3607	return current_has_perm(p, PROCESS__SETSCHED);
 
 
3608}
3609
3610static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3611				int sig, u32 secid)
3612{
 
3613	u32 perm;
3614	int rc;
3615
3616	if (!sig)
3617		perm = PROCESS__SIGNULL; /* null signal; existence test */
3618	else
3619		perm = signal_to_av(sig);
3620	if (secid)
3621		rc = avc_has_perm(secid, task_sid(p),
3622				  SECCLASS_PROCESS, perm, NULL);
3623	else
3624		rc = current_has_perm(p, perm);
3625	return rc;
3626}
3627
3628static int selinux_task_wait(struct task_struct *p)
3629{
3630	return task_has_perm(p, current, PROCESS__SIGCHLD);
3631}
3632
3633static void selinux_task_to_inode(struct task_struct *p,
3634				  struct inode *inode)
3635{
3636	struct inode_security_struct *isec = inode->i_security;
3637	u32 sid = task_sid(p);
3638
 
 
3639	isec->sid = sid;
3640	isec->initialized = 1;
 
3641}
3642
3643/* Returns error only if unable to parse addresses */
3644static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3645			struct common_audit_data *ad, u8 *proto)
3646{
3647	int offset, ihlen, ret = -EINVAL;
3648	struct iphdr _iph, *ih;
3649
3650	offset = skb_network_offset(skb);
3651	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3652	if (ih == NULL)
3653		goto out;
3654
3655	ihlen = ih->ihl * 4;
3656	if (ihlen < sizeof(_iph))
3657		goto out;
3658
3659	ad->u.net->v4info.saddr = ih->saddr;
3660	ad->u.net->v4info.daddr = ih->daddr;
3661	ret = 0;
3662
3663	if (proto)
3664		*proto = ih->protocol;
3665
3666	switch (ih->protocol) {
3667	case IPPROTO_TCP: {
3668		struct tcphdr _tcph, *th;
3669
3670		if (ntohs(ih->frag_off) & IP_OFFSET)
3671			break;
3672
3673		offset += ihlen;
3674		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3675		if (th == NULL)
3676			break;
3677
3678		ad->u.net->sport = th->source;
3679		ad->u.net->dport = th->dest;
3680		break;
3681	}
3682
3683	case IPPROTO_UDP: {
3684		struct udphdr _udph, *uh;
3685
3686		if (ntohs(ih->frag_off) & IP_OFFSET)
3687			break;
3688
3689		offset += ihlen;
3690		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3691		if (uh == NULL)
3692			break;
3693
3694		ad->u.net->sport = uh->source;
3695		ad->u.net->dport = uh->dest;
3696		break;
3697	}
3698
3699	case IPPROTO_DCCP: {
3700		struct dccp_hdr _dccph, *dh;
3701
3702		if (ntohs(ih->frag_off) & IP_OFFSET)
3703			break;
3704
3705		offset += ihlen;
3706		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3707		if (dh == NULL)
3708			break;
3709
3710		ad->u.net->sport = dh->dccph_sport;
3711		ad->u.net->dport = dh->dccph_dport;
3712		break;
3713	}
3714
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3715	default:
3716		break;
3717	}
3718out:
3719	return ret;
3720}
3721
3722#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3723
3724/* Returns error only if unable to parse addresses */
3725static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3726			struct common_audit_data *ad, u8 *proto)
3727{
3728	u8 nexthdr;
3729	int ret = -EINVAL, offset;
3730	struct ipv6hdr _ipv6h, *ip6;
3731	__be16 frag_off;
3732
3733	offset = skb_network_offset(skb);
3734	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3735	if (ip6 == NULL)
3736		goto out;
3737
3738	ad->u.net->v6info.saddr = ip6->saddr;
3739	ad->u.net->v6info.daddr = ip6->daddr;
3740	ret = 0;
3741
3742	nexthdr = ip6->nexthdr;
3743	offset += sizeof(_ipv6h);
3744	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3745	if (offset < 0)
3746		goto out;
3747
3748	if (proto)
3749		*proto = nexthdr;
3750
3751	switch (nexthdr) {
3752	case IPPROTO_TCP: {
3753		struct tcphdr _tcph, *th;
3754
3755		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3756		if (th == NULL)
3757			break;
3758
3759		ad->u.net->sport = th->source;
3760		ad->u.net->dport = th->dest;
3761		break;
3762	}
3763
3764	case IPPROTO_UDP: {
3765		struct udphdr _udph, *uh;
3766
3767		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3768		if (uh == NULL)
3769			break;
3770
3771		ad->u.net->sport = uh->source;
3772		ad->u.net->dport = uh->dest;
3773		break;
3774	}
3775
3776	case IPPROTO_DCCP: {
3777		struct dccp_hdr _dccph, *dh;
3778
3779		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3780		if (dh == NULL)
3781			break;
3782
3783		ad->u.net->sport = dh->dccph_sport;
3784		ad->u.net->dport = dh->dccph_dport;
3785		break;
3786	}
3787
 
 
 
 
 
 
 
 
 
 
 
 
 
3788	/* includes fragments */
3789	default:
3790		break;
3791	}
3792out:
3793	return ret;
3794}
3795
3796#endif /* IPV6 */
3797
3798static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3799			     char **_addrp, int src, u8 *proto)
3800{
3801	char *addrp;
3802	int ret;
3803
3804	switch (ad->u.net->family) {
3805	case PF_INET:
3806		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3807		if (ret)
3808			goto parse_error;
3809		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3810				       &ad->u.net->v4info.daddr);
3811		goto okay;
3812
3813#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3814	case PF_INET6:
3815		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3816		if (ret)
3817			goto parse_error;
3818		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3819				       &ad->u.net->v6info.daddr);
3820		goto okay;
3821#endif	/* IPV6 */
3822	default:
3823		addrp = NULL;
3824		goto okay;
3825	}
3826
3827parse_error:
3828	printk(KERN_WARNING
3829	       "SELinux: failure in selinux_parse_skb(),"
3830	       " unable to parse packet\n");
3831	return ret;
3832
3833okay:
3834	if (_addrp)
3835		*_addrp = addrp;
3836	return 0;
3837}
3838
3839/**
3840 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3841 * @skb: the packet
3842 * @family: protocol family
3843 * @sid: the packet's peer label SID
3844 *
3845 * Description:
3846 * Check the various different forms of network peer labeling and determine
3847 * the peer label/SID for the packet; most of the magic actually occurs in
3848 * the security server function security_net_peersid_cmp().  The function
3849 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3850 * or -EACCES if @sid is invalid due to inconsistencies with the different
3851 * peer labels.
3852 *
3853 */
3854static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3855{
3856	int err;
3857	u32 xfrm_sid;
3858	u32 nlbl_sid;
3859	u32 nlbl_type;
3860
3861	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
3862	if (unlikely(err))
3863		return -EACCES;
3864	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3865	if (unlikely(err))
3866		return -EACCES;
3867
3868	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
 
3869	if (unlikely(err)) {
3870		printk(KERN_WARNING
3871		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3872		       " unable to determine packet's peer label\n");
3873		return -EACCES;
3874	}
3875
3876	return 0;
3877}
3878
3879/**
3880 * selinux_conn_sid - Determine the child socket label for a connection
3881 * @sk_sid: the parent socket's SID
3882 * @skb_sid: the packet's SID
3883 * @conn_sid: the resulting connection SID
3884 *
3885 * If @skb_sid is valid then the user:role:type information from @sk_sid is
3886 * combined with the MLS information from @skb_sid in order to create
3887 * @conn_sid.  If @skb_sid is not valid then then @conn_sid is simply a copy
3888 * of @sk_sid.  Returns zero on success, negative values on failure.
3889 *
3890 */
3891static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
3892{
3893	int err = 0;
3894
3895	if (skb_sid != SECSID_NULL)
3896		err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
 
3897	else
3898		*conn_sid = sk_sid;
3899
3900	return err;
3901}
3902
3903/* socket security operations */
3904
3905static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3906				 u16 secclass, u32 *socksid)
3907{
3908	if (tsec->sockcreate_sid > SECSID_NULL) {
3909		*socksid = tsec->sockcreate_sid;
3910		return 0;
3911	}
3912
3913	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3914				       socksid);
3915}
3916
3917static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3918{
3919	struct sk_security_struct *sksec = sk->sk_security;
3920	struct common_audit_data ad;
3921	struct lsm_network_audit net = {0,};
3922	u32 tsid = task_sid(task);
3923
3924	if (sksec->sid == SECINITSID_KERNEL)
3925		return 0;
3926
3927	ad.type = LSM_AUDIT_DATA_NET;
3928	ad.u.net = &net;
3929	ad.u.net->sk = sk;
3930
3931	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
 
 
3932}
3933
3934static int selinux_socket_create(int family, int type,
3935				 int protocol, int kern)
3936{
3937	const struct task_security_struct *tsec = current_security();
3938	u32 newsid;
3939	u16 secclass;
3940	int rc;
3941
3942	if (kern)
3943		return 0;
3944
3945	secclass = socket_type_to_security_class(family, type, protocol);
3946	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3947	if (rc)
3948		return rc;
3949
3950	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
3951}
3952
3953static int selinux_socket_post_create(struct socket *sock, int family,
3954				      int type, int protocol, int kern)
3955{
3956	const struct task_security_struct *tsec = current_security();
3957	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3958	struct sk_security_struct *sksec;
 
 
3959	int err = 0;
3960
3961	isec->sclass = socket_type_to_security_class(family, type, protocol);
3962
3963	if (kern)
3964		isec->sid = SECINITSID_KERNEL;
3965	else {
3966		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3967		if (err)
3968			return err;
3969	}
3970
3971	isec->initialized = 1;
 
 
3972
3973	if (sock->sk) {
3974		sksec = sock->sk->sk_security;
3975		sksec->sid = isec->sid;
3976		sksec->sclass = isec->sclass;
 
 
 
 
3977		err = selinux_netlbl_socket_post_create(sock->sk, family);
3978	}
3979
3980	return err;
3981}
3982
 
 
 
 
 
 
 
 
 
 
 
 
3983/* Range of port numbers used to automatically bind.
3984   Need to determine whether we should perform a name_bind
3985   permission check between the socket and the port number. */
3986
3987static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3988{
3989	struct sock *sk = sock->sk;
 
3990	u16 family;
3991	int err;
3992
3993	err = sock_has_perm(current, sk, SOCKET__BIND);
3994	if (err)
3995		goto out;
3996
3997	/*
3998	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3999	 * Multiple address binding for SCTP is not supported yet: we just
4000	 * check the first address now.
4001	 */
4002	family = sk->sk_family;
4003	if (family == PF_INET || family == PF_INET6) {
4004		char *addrp;
4005		struct sk_security_struct *sksec = sk->sk_security;
4006		struct common_audit_data ad;
4007		struct lsm_network_audit net = {0,};
4008		struct sockaddr_in *addr4 = NULL;
4009		struct sockaddr_in6 *addr6 = NULL;
 
4010		unsigned short snum;
4011		u32 sid, node_perm;
4012
4013		if (family == PF_INET) {
 
 
 
 
 
 
 
 
 
 
 
 
 
4014			addr4 = (struct sockaddr_in *)address;
 
 
 
 
 
 
 
 
4015			snum = ntohs(addr4->sin_port);
4016			addrp = (char *)&addr4->sin_addr.s_addr;
4017		} else {
 
 
 
4018			addr6 = (struct sockaddr_in6 *)address;
4019			snum = ntohs(addr6->sin6_port);
4020			addrp = (char *)&addr6->sin6_addr.s6_addr;
 
 
 
4021		}
4022
 
 
 
 
 
4023		if (snum) {
4024			int low, high;
4025
4026			inet_get_local_port_range(sock_net(sk), &low, &high);
4027
4028			if (snum < max(PROT_SOCK, low) || snum > high) {
 
4029				err = sel_netport_sid(sk->sk_protocol,
4030						      snum, &sid);
4031				if (err)
4032					goto out;
4033				ad.type = LSM_AUDIT_DATA_NET;
4034				ad.u.net = &net;
4035				ad.u.net->sport = htons(snum);
4036				ad.u.net->family = family;
4037				err = avc_has_perm(sksec->sid, sid,
4038						   sksec->sclass,
4039						   SOCKET__NAME_BIND, &ad);
4040				if (err)
4041					goto out;
4042			}
4043		}
4044
4045		switch (sksec->sclass) {
4046		case SECCLASS_TCP_SOCKET:
4047			node_perm = TCP_SOCKET__NODE_BIND;
4048			break;
4049
4050		case SECCLASS_UDP_SOCKET:
4051			node_perm = UDP_SOCKET__NODE_BIND;
4052			break;
4053
4054		case SECCLASS_DCCP_SOCKET:
4055			node_perm = DCCP_SOCKET__NODE_BIND;
4056			break;
4057
 
 
 
 
4058		default:
4059			node_perm = RAWIP_SOCKET__NODE_BIND;
4060			break;
4061		}
4062
4063		err = sel_netnode_sid(addrp, family, &sid);
4064		if (err)
4065			goto out;
4066
4067		ad.type = LSM_AUDIT_DATA_NET;
4068		ad.u.net = &net;
4069		ad.u.net->sport = htons(snum);
4070		ad.u.net->family = family;
4071
4072		if (family == PF_INET)
4073			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4074		else
4075			ad.u.net->v6info.saddr = addr6->sin6_addr;
4076
4077		err = avc_has_perm(sksec->sid, sid,
 
4078				   sksec->sclass, node_perm, &ad);
4079		if (err)
4080			goto out;
4081	}
4082out:
4083	return err;
 
 
 
 
 
4084}
4085
4086static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
 
 
 
 
4087{
4088	struct sock *sk = sock->sk;
4089	struct sk_security_struct *sksec = sk->sk_security;
4090	int err;
4091
4092	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4093	if (err)
4094		return err;
 
 
 
 
 
 
 
 
4095
4096	/*
4097	 * If a TCP or DCCP socket, check name_connect permission for the port.
 
4098	 */
4099	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4100	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
 
4101		struct common_audit_data ad;
4102		struct lsm_network_audit net = {0,};
4103		struct sockaddr_in *addr4 = NULL;
4104		struct sockaddr_in6 *addr6 = NULL;
4105		unsigned short snum;
4106		u32 sid, perm;
4107
4108		if (sk->sk_family == PF_INET) {
 
 
 
 
 
 
4109			addr4 = (struct sockaddr_in *)address;
4110			if (addrlen < sizeof(struct sockaddr_in))
4111				return -EINVAL;
4112			snum = ntohs(addr4->sin_port);
4113		} else {
 
4114			addr6 = (struct sockaddr_in6 *)address;
4115			if (addrlen < SIN6_LEN_RFC2133)
4116				return -EINVAL;
4117			snum = ntohs(addr6->sin6_port);
 
 
 
 
 
 
 
 
 
4118		}
4119
4120		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4121		if (err)
4122			goto out;
4123
4124		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4125		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
 
 
 
 
 
 
 
 
 
4126
4127		ad.type = LSM_AUDIT_DATA_NET;
4128		ad.u.net = &net;
4129		ad.u.net->dport = htons(snum);
4130		ad.u.net->family = sk->sk_family;
4131		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4132		if (err)
4133			goto out;
4134	}
4135
4136	err = selinux_netlbl_socket_connect(sk, address);
 
 
 
 
 
 
 
 
 
 
 
 
4137
4138out:
4139	return err;
4140}
4141
4142static int selinux_socket_listen(struct socket *sock, int backlog)
4143{
4144	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4145}
4146
4147static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4148{
4149	int err;
4150	struct inode_security_struct *isec;
4151	struct inode_security_struct *newisec;
 
 
4152
4153	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4154	if (err)
4155		return err;
4156
4157	newisec = SOCK_INODE(newsock)->i_security;
4158
4159	isec = SOCK_INODE(sock)->i_security;
4160	newisec->sclass = isec->sclass;
4161	newisec->sid = isec->sid;
4162	newisec->initialized = 1;
 
 
 
 
4163
4164	return 0;
4165}
4166
4167static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4168				  int size)
4169{
4170	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4171}
4172
4173static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4174				  int size, int flags)
4175{
4176	return sock_has_perm(current, sock->sk, SOCKET__READ);
4177}
4178
4179static int selinux_socket_getsockname(struct socket *sock)
4180{
4181	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4182}
4183
4184static int selinux_socket_getpeername(struct socket *sock)
4185{
4186	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4187}
4188
4189static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4190{
4191	int err;
4192
4193	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4194	if (err)
4195		return err;
4196
4197	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4198}
4199
4200static int selinux_socket_getsockopt(struct socket *sock, int level,
4201				     int optname)
4202{
4203	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4204}
4205
4206static int selinux_socket_shutdown(struct socket *sock, int how)
4207{
4208	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4209}
4210
4211static int selinux_socket_unix_stream_connect(struct sock *sock,
4212					      struct sock *other,
4213					      struct sock *newsk)
4214{
4215	struct sk_security_struct *sksec_sock = sock->sk_security;
4216	struct sk_security_struct *sksec_other = other->sk_security;
4217	struct sk_security_struct *sksec_new = newsk->sk_security;
4218	struct common_audit_data ad;
4219	struct lsm_network_audit net = {0,};
4220	int err;
4221
4222	ad.type = LSM_AUDIT_DATA_NET;
4223	ad.u.net = &net;
4224	ad.u.net->sk = other;
4225
4226	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
4227			   sksec_other->sclass,
4228			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4229	if (err)
4230		return err;
4231
4232	/* server child socket */
4233	sksec_new->peer_sid = sksec_sock->sid;
4234	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4235				    &sksec_new->sid);
4236	if (err)
4237		return err;
4238
4239	/* connecting socket */
4240	sksec_sock->peer_sid = sksec_new->sid;
4241
4242	return 0;
4243}
4244
4245static int selinux_socket_unix_may_send(struct socket *sock,
4246					struct socket *other)
4247{
4248	struct sk_security_struct *ssec = sock->sk->sk_security;
4249	struct sk_security_struct *osec = other->sk->sk_security;
4250	struct common_audit_data ad;
4251	struct lsm_network_audit net = {0,};
4252
4253	ad.type = LSM_AUDIT_DATA_NET;
4254	ad.u.net = &net;
4255	ad.u.net->sk = other->sk;
4256
4257	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
4258			    &ad);
4259}
4260
4261static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4262				    u32 peer_sid,
4263				    struct common_audit_data *ad)
4264{
4265	int err;
4266	u32 if_sid;
4267	u32 node_sid;
4268
4269	err = sel_netif_sid(ifindex, &if_sid);
4270	if (err)
4271		return err;
4272	err = avc_has_perm(peer_sid, if_sid,
 
4273			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4274	if (err)
4275		return err;
4276
4277	err = sel_netnode_sid(addrp, family, &node_sid);
4278	if (err)
4279		return err;
4280	return avc_has_perm(peer_sid, node_sid,
 
4281			    SECCLASS_NODE, NODE__RECVFROM, ad);
4282}
4283
4284static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4285				       u16 family)
4286{
4287	int err = 0;
4288	struct sk_security_struct *sksec = sk->sk_security;
4289	u32 sk_sid = sksec->sid;
4290	struct common_audit_data ad;
4291	struct lsm_network_audit net = {0,};
4292	char *addrp;
4293
4294	ad.type = LSM_AUDIT_DATA_NET;
4295	ad.u.net = &net;
4296	ad.u.net->netif = skb->skb_iif;
4297	ad.u.net->family = family;
4298	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4299	if (err)
4300		return err;
4301
4302	if (selinux_secmark_enabled()) {
4303		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4304				   PACKET__RECV, &ad);
4305		if (err)
4306			return err;
4307	}
4308
4309	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4310	if (err)
4311		return err;
4312	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4313
4314	return err;
4315}
4316
4317static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4318{
4319	int err;
4320	struct sk_security_struct *sksec = sk->sk_security;
4321	u16 family = sk->sk_family;
4322	u32 sk_sid = sksec->sid;
4323	struct common_audit_data ad;
4324	struct lsm_network_audit net = {0,};
4325	char *addrp;
4326	u8 secmark_active;
4327	u8 peerlbl_active;
4328
4329	if (family != PF_INET && family != PF_INET6)
4330		return 0;
4331
4332	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4333	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4334		family = PF_INET;
4335
4336	/* If any sort of compatibility mode is enabled then handoff processing
4337	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4338	 * special handling.  We do this in an attempt to keep this function
4339	 * as fast and as clean as possible. */
4340	if (!selinux_policycap_netpeer)
4341		return selinux_sock_rcv_skb_compat(sk, skb, family);
4342
4343	secmark_active = selinux_secmark_enabled();
4344	peerlbl_active = selinux_peerlbl_enabled();
4345	if (!secmark_active && !peerlbl_active)
4346		return 0;
4347
4348	ad.type = LSM_AUDIT_DATA_NET;
4349	ad.u.net = &net;
4350	ad.u.net->netif = skb->skb_iif;
4351	ad.u.net->family = family;
4352	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4353	if (err)
4354		return err;
4355
4356	if (peerlbl_active) {
4357		u32 peer_sid;
4358
4359		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4360		if (err)
4361			return err;
4362		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4363					       peer_sid, &ad);
4364		if (err) {
4365			selinux_netlbl_err(skb, err, 0);
4366			return err;
4367		}
4368		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
4369				   PEER__RECV, &ad);
4370		if (err) {
4371			selinux_netlbl_err(skb, err, 0);
4372			return err;
4373		}
4374	}
4375
4376	if (secmark_active) {
4377		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
4378				   PACKET__RECV, &ad);
4379		if (err)
4380			return err;
4381	}
4382
4383	return err;
4384}
4385
4386static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4387					    int __user *optlen, unsigned len)
4388{
4389	int err = 0;
4390	char *scontext;
4391	u32 scontext_len;
4392	struct sk_security_struct *sksec = sock->sk->sk_security;
4393	u32 peer_sid = SECSID_NULL;
4394
4395	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4396	    sksec->sclass == SECCLASS_TCP_SOCKET)
 
4397		peer_sid = sksec->peer_sid;
4398	if (peer_sid == SECSID_NULL)
4399		return -ENOPROTOOPT;
4400
4401	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
 
4402	if (err)
4403		return err;
4404
4405	if (scontext_len > len) {
4406		err = -ERANGE;
4407		goto out_len;
4408	}
4409
4410	if (copy_to_user(optval, scontext, scontext_len))
4411		err = -EFAULT;
4412
4413out_len:
4414	if (put_user(scontext_len, optlen))
4415		err = -EFAULT;
4416	kfree(scontext);
4417	return err;
4418}
4419
4420static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4421{
4422	u32 peer_secid = SECSID_NULL;
4423	u16 family;
 
4424
4425	if (skb && skb->protocol == htons(ETH_P_IP))
4426		family = PF_INET;
4427	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4428		family = PF_INET6;
4429	else if (sock)
4430		family = sock->sk->sk_family;
4431	else
4432		goto out;
4433
4434	if (sock && family == PF_UNIX)
4435		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4436	else if (skb)
 
4437		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4438
4439out:
4440	*secid = peer_secid;
4441	if (peer_secid == SECSID_NULL)
4442		return -EINVAL;
4443	return 0;
4444}
4445
4446static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4447{
4448	struct sk_security_struct *sksec;
4449
4450	sksec = kzalloc(sizeof(*sksec), priority);
4451	if (!sksec)
4452		return -ENOMEM;
4453
4454	sksec->peer_sid = SECINITSID_UNLABELED;
4455	sksec->sid = SECINITSID_UNLABELED;
 
4456	selinux_netlbl_sk_security_reset(sksec);
4457	sk->sk_security = sksec;
4458
4459	return 0;
4460}
4461
4462static void selinux_sk_free_security(struct sock *sk)
4463{
4464	struct sk_security_struct *sksec = sk->sk_security;
4465
4466	sk->sk_security = NULL;
4467	selinux_netlbl_sk_security_free(sksec);
4468	kfree(sksec);
4469}
4470
4471static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4472{
4473	struct sk_security_struct *sksec = sk->sk_security;
4474	struct sk_security_struct *newsksec = newsk->sk_security;
4475
4476	newsksec->sid = sksec->sid;
4477	newsksec->peer_sid = sksec->peer_sid;
4478	newsksec->sclass = sksec->sclass;
4479
4480	selinux_netlbl_sk_security_reset(newsksec);
4481}
4482
4483static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4484{
4485	if (!sk)
4486		*secid = SECINITSID_ANY_SOCKET;
4487	else {
4488		struct sk_security_struct *sksec = sk->sk_security;
4489
4490		*secid = sksec->sid;
4491	}
4492}
4493
4494static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4495{
4496	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
 
4497	struct sk_security_struct *sksec = sk->sk_security;
4498
4499	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4500	    sk->sk_family == PF_UNIX)
4501		isec->sid = sksec->sid;
4502	sksec->sclass = isec->sclass;
4503}
4504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4505static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4506				     struct request_sock *req)
4507{
4508	struct sk_security_struct *sksec = sk->sk_security;
4509	int err;
4510	u16 family = req->rsk_ops->family;
4511	u32 connsid;
4512	u32 peersid;
4513
4514	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4515	if (err)
4516		return err;
4517	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4518	if (err)
4519		return err;
4520	req->secid = connsid;
4521	req->peer_secid = peersid;
4522
4523	return selinux_netlbl_inet_conn_request(req, family);
4524}
4525
4526static void selinux_inet_csk_clone(struct sock *newsk,
4527				   const struct request_sock *req)
4528{
4529	struct sk_security_struct *newsksec = newsk->sk_security;
4530
4531	newsksec->sid = req->secid;
4532	newsksec->peer_sid = req->peer_secid;
4533	/* NOTE: Ideally, we should also get the isec->sid for the
4534	   new socket in sync, but we don't have the isec available yet.
4535	   So we will wait until sock_graft to do it, by which
4536	   time it will have been created and available. */
4537
4538	/* We don't need to take any sort of lock here as we are the only
4539	 * thread with access to newsksec */
4540	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4541}
4542
4543static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4544{
4545	u16 family = sk->sk_family;
4546	struct sk_security_struct *sksec = sk->sk_security;
4547
4548	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4549	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4550		family = PF_INET;
4551
4552	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4553}
4554
4555static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4556{
4557	skb_set_owner_w(skb, sk);
4558}
4559
4560static int selinux_secmark_relabel_packet(u32 sid)
4561{
4562	const struct task_security_struct *__tsec;
4563	u32 tsid;
4564
4565	__tsec = current_security();
4566	tsid = __tsec->sid;
4567
4568	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
 
 
4569}
4570
4571static void selinux_secmark_refcount_inc(void)
4572{
4573	atomic_inc(&selinux_secmark_refcount);
4574}
4575
4576static void selinux_secmark_refcount_dec(void)
4577{
4578	atomic_dec(&selinux_secmark_refcount);
4579}
4580
4581static void selinux_req_classify_flow(const struct request_sock *req,
4582				      struct flowi *fl)
4583{
4584	fl->flowi_secid = req->secid;
4585}
4586
4587static int selinux_tun_dev_alloc_security(void **security)
4588{
4589	struct tun_security_struct *tunsec;
4590
4591	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4592	if (!tunsec)
4593		return -ENOMEM;
4594	tunsec->sid = current_sid();
4595
4596	*security = tunsec;
4597	return 0;
4598}
4599
4600static void selinux_tun_dev_free_security(void *security)
4601{
4602	kfree(security);
4603}
4604
4605static int selinux_tun_dev_create(void)
4606{
4607	u32 sid = current_sid();
4608
4609	/* we aren't taking into account the "sockcreate" SID since the socket
4610	 * that is being created here is not a socket in the traditional sense,
4611	 * instead it is a private sock, accessible only to the kernel, and
4612	 * representing a wide range of network traffic spanning multiple
4613	 * connections unlike traditional sockets - check the TUN driver to
4614	 * get a better understanding of why this socket is special */
4615
4616	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
4617			    NULL);
4618}
4619
4620static int selinux_tun_dev_attach_queue(void *security)
4621{
4622	struct tun_security_struct *tunsec = security;
4623
4624	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
4625			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4626}
4627
4628static int selinux_tun_dev_attach(struct sock *sk, void *security)
4629{
4630	struct tun_security_struct *tunsec = security;
4631	struct sk_security_struct *sksec = sk->sk_security;
4632
4633	/* we don't currently perform any NetLabel based labeling here and it
4634	 * isn't clear that we would want to do so anyway; while we could apply
4635	 * labeling without the support of the TUN user the resulting labeled
4636	 * traffic from the other end of the connection would almost certainly
4637	 * cause confusion to the TUN user that had no idea network labeling
4638	 * protocols were being used */
4639
4640	sksec->sid = tunsec->sid;
4641	sksec->sclass = SECCLASS_TUN_SOCKET;
4642
4643	return 0;
4644}
4645
4646static int selinux_tun_dev_open(void *security)
4647{
4648	struct tun_security_struct *tunsec = security;
4649	u32 sid = current_sid();
4650	int err;
4651
4652	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
4653			   TUN_SOCKET__RELABELFROM, NULL);
4654	if (err)
4655		return err;
4656	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
4657			   TUN_SOCKET__RELABELTO, NULL);
4658	if (err)
4659		return err;
4660	tunsec->sid = sid;
4661
4662	return 0;
4663}
4664
4665static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4666{
4667	int err = 0;
4668	u32 perm;
4669	struct nlmsghdr *nlh;
4670	struct sk_security_struct *sksec = sk->sk_security;
4671
4672	if (skb->len < NLMSG_HDRLEN) {
4673		err = -EINVAL;
4674		goto out;
4675	}
4676	nlh = nlmsg_hdr(skb);
4677
4678	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4679	if (err) {
4680		if (err == -EINVAL) {
4681			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4682				  "SELinux:  unrecognized netlink message"
4683				  " type=%hu for sclass=%hu\n",
4684				  nlh->nlmsg_type, sksec->sclass);
4685			if (!selinux_enforcing || security_get_allow_unknown())
4686				err = 0;
4687		}
4688
4689		/* Ignore */
4690		if (err == -ENOENT)
4691			err = 0;
4692		goto out;
4693	}
4694
4695	err = sock_has_perm(current, sk, perm);
4696out:
4697	return err;
4698}
4699
4700#ifdef CONFIG_NETFILTER
4701
4702static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
 
4703				       u16 family)
4704{
4705	int err;
4706	char *addrp;
4707	u32 peer_sid;
4708	struct common_audit_data ad;
4709	struct lsm_network_audit net = {0,};
4710	u8 secmark_active;
4711	u8 netlbl_active;
4712	u8 peerlbl_active;
4713
4714	if (!selinux_policycap_netpeer)
4715		return NF_ACCEPT;
4716
4717	secmark_active = selinux_secmark_enabled();
4718	netlbl_active = netlbl_enabled();
4719	peerlbl_active = selinux_peerlbl_enabled();
4720	if (!secmark_active && !peerlbl_active)
4721		return NF_ACCEPT;
4722
4723	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4724		return NF_DROP;
4725
4726	ad.type = LSM_AUDIT_DATA_NET;
4727	ad.u.net = &net;
4728	ad.u.net->netif = ifindex;
4729	ad.u.net->family = family;
4730	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4731		return NF_DROP;
4732
4733	if (peerlbl_active) {
4734		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4735					       peer_sid, &ad);
4736		if (err) {
4737			selinux_netlbl_err(skb, err, 1);
4738			return NF_DROP;
4739		}
4740	}
4741
4742	if (secmark_active)
4743		if (avc_has_perm(peer_sid, skb->secmark,
 
4744				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4745			return NF_DROP;
4746
4747	if (netlbl_active)
4748		/* we do this in the FORWARD path and not the POST_ROUTING
4749		 * path because we want to make sure we apply the necessary
4750		 * labeling before IPsec is applied so we can leverage AH
4751		 * protection */
4752		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4753			return NF_DROP;
4754
4755	return NF_ACCEPT;
4756}
4757
4758static unsigned int selinux_ipv4_forward(const struct nf_hook_ops *ops,
4759					 struct sk_buff *skb,
4760					 const struct net_device *in,
4761					 const struct net_device *out,
4762					 int (*okfn)(struct sk_buff *))
4763{
4764	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4765}
4766
4767#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4768static unsigned int selinux_ipv6_forward(const struct nf_hook_ops *ops,
4769					 struct sk_buff *skb,
4770					 const struct net_device *in,
4771					 const struct net_device *out,
4772					 int (*okfn)(struct sk_buff *))
4773{
4774	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4775}
4776#endif	/* IPV6 */
4777
4778static unsigned int selinux_ip_output(struct sk_buff *skb,
4779				      u16 family)
4780{
4781	struct sock *sk;
4782	u32 sid;
4783
4784	if (!netlbl_enabled())
4785		return NF_ACCEPT;
4786
4787	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4788	 * because we want to make sure we apply the necessary labeling
4789	 * before IPsec is applied so we can leverage AH protection */
4790	sk = skb->sk;
4791	if (sk) {
4792		struct sk_security_struct *sksec;
4793
4794		if (sk->sk_state == TCP_LISTEN)
4795			/* if the socket is the listening state then this
4796			 * packet is a SYN-ACK packet which means it needs to
4797			 * be labeled based on the connection/request_sock and
4798			 * not the parent socket.  unfortunately, we can't
4799			 * lookup the request_sock yet as it isn't queued on
4800			 * the parent socket until after the SYN-ACK is sent.
4801			 * the "solution" is to simply pass the packet as-is
4802			 * as any IP option based labeling should be copied
4803			 * from the initial connection request (in the IP
4804			 * layer).  it is far from ideal, but until we get a
4805			 * security label in the packet itself this is the
4806			 * best we can do. */
4807			return NF_ACCEPT;
4808
4809		/* standard practice, label using the parent socket */
4810		sksec = sk->sk_security;
4811		sid = sksec->sid;
4812	} else
4813		sid = SECINITSID_KERNEL;
4814	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4815		return NF_DROP;
4816
4817	return NF_ACCEPT;
4818}
4819
4820static unsigned int selinux_ipv4_output(const struct nf_hook_ops *ops,
4821					struct sk_buff *skb,
4822					const struct net_device *in,
4823					const struct net_device *out,
4824					int (*okfn)(struct sk_buff *))
4825{
4826	return selinux_ip_output(skb, PF_INET);
4827}
4828
 
 
 
 
 
 
 
 
 
4829static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4830						int ifindex,
4831						u16 family)
4832{
4833	struct sock *sk = skb->sk;
4834	struct sk_security_struct *sksec;
4835	struct common_audit_data ad;
4836	struct lsm_network_audit net = {0,};
4837	char *addrp;
4838	u8 proto;
4839
4840	if (sk == NULL)
4841		return NF_ACCEPT;
4842	sksec = sk->sk_security;
4843
4844	ad.type = LSM_AUDIT_DATA_NET;
4845	ad.u.net = &net;
4846	ad.u.net->netif = ifindex;
4847	ad.u.net->family = family;
4848	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4849		return NF_DROP;
4850
4851	if (selinux_secmark_enabled())
4852		if (avc_has_perm(sksec->sid, skb->secmark,
 
4853				 SECCLASS_PACKET, PACKET__SEND, &ad))
4854			return NF_DROP_ERR(-ECONNREFUSED);
4855
4856	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4857		return NF_DROP_ERR(-ECONNREFUSED);
4858
4859	return NF_ACCEPT;
4860}
4861
4862static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
 
4863					 u16 family)
4864{
4865	u32 secmark_perm;
4866	u32 peer_sid;
 
4867	struct sock *sk;
4868	struct common_audit_data ad;
4869	struct lsm_network_audit net = {0,};
4870	char *addrp;
4871	u8 secmark_active;
4872	u8 peerlbl_active;
4873
4874	/* If any sort of compatibility mode is enabled then handoff processing
4875	 * to the selinux_ip_postroute_compat() function to deal with the
4876	 * special handling.  We do this in an attempt to keep this function
4877	 * as fast and as clean as possible. */
4878	if (!selinux_policycap_netpeer)
4879		return selinux_ip_postroute_compat(skb, ifindex, family);
4880
4881	secmark_active = selinux_secmark_enabled();
4882	peerlbl_active = selinux_peerlbl_enabled();
4883	if (!secmark_active && !peerlbl_active)
4884		return NF_ACCEPT;
4885
4886	sk = skb->sk;
4887
4888#ifdef CONFIG_XFRM
4889	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4890	 * packet transformation so allow the packet to pass without any checks
4891	 * since we'll have another chance to perform access control checks
4892	 * when the packet is on it's final way out.
4893	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4894	 *       is NULL, in this case go ahead and apply access control.
4895	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
4896	 *       TCP listening state we cannot wait until the XFRM processing
4897	 *       is done as we will miss out on the SA label if we do;
4898	 *       unfortunately, this means more work, but it is only once per
4899	 *       connection. */
4900	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
4901	    !(sk != NULL && sk->sk_state == TCP_LISTEN))
4902		return NF_ACCEPT;
4903#endif
4904
4905	if (sk == NULL) {
4906		/* Without an associated socket the packet is either coming
4907		 * from the kernel or it is being forwarded; check the packet
4908		 * to determine which and if the packet is being forwarded
4909		 * query the packet directly to determine the security label. */
4910		if (skb->skb_iif) {
4911			secmark_perm = PACKET__FORWARD_OUT;
4912			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4913				return NF_DROP;
4914		} else {
4915			secmark_perm = PACKET__SEND;
4916			peer_sid = SECINITSID_KERNEL;
4917		}
4918	} else if (sk->sk_state == TCP_LISTEN) {
4919		/* Locally generated packet but the associated socket is in the
4920		 * listening state which means this is a SYN-ACK packet.  In
4921		 * this particular case the correct security label is assigned
4922		 * to the connection/request_sock but unfortunately we can't
4923		 * query the request_sock as it isn't queued on the parent
4924		 * socket until after the SYN-ACK packet is sent; the only
4925		 * viable choice is to regenerate the label like we do in
4926		 * selinux_inet_conn_request().  See also selinux_ip_output()
4927		 * for similar problems. */
4928		u32 skb_sid;
4929		struct sk_security_struct *sksec = sk->sk_security;
 
 
4930		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
4931			return NF_DROP;
4932		/* At this point, if the returned skb peerlbl is SECSID_NULL
4933		 * and the packet has been through at least one XFRM
4934		 * transformation then we must be dealing with the "final"
4935		 * form of labeled IPsec packet; since we've already applied
4936		 * all of our access controls on this packet we can safely
4937		 * pass the packet. */
4938		if (skb_sid == SECSID_NULL) {
4939			switch (family) {
4940			case PF_INET:
4941				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
4942					return NF_ACCEPT;
4943				break;
4944			case PF_INET6:
4945				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
4946					return NF_ACCEPT;
 
4947			default:
4948				return NF_DROP_ERR(-ECONNREFUSED);
4949			}
4950		}
4951		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
4952			return NF_DROP;
4953		secmark_perm = PACKET__SEND;
4954	} else {
4955		/* Locally generated packet, fetch the security label from the
4956		 * associated socket. */
4957		struct sk_security_struct *sksec = sk->sk_security;
4958		peer_sid = sksec->sid;
4959		secmark_perm = PACKET__SEND;
4960	}
4961
4962	ad.type = LSM_AUDIT_DATA_NET;
4963	ad.u.net = &net;
4964	ad.u.net->netif = ifindex;
4965	ad.u.net->family = family;
4966	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4967		return NF_DROP;
4968
4969	if (secmark_active)
4970		if (avc_has_perm(peer_sid, skb->secmark,
 
4971				 SECCLASS_PACKET, secmark_perm, &ad))
4972			return NF_DROP_ERR(-ECONNREFUSED);
4973
4974	if (peerlbl_active) {
4975		u32 if_sid;
4976		u32 node_sid;
4977
4978		if (sel_netif_sid(ifindex, &if_sid))
4979			return NF_DROP;
4980		if (avc_has_perm(peer_sid, if_sid,
 
4981				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4982			return NF_DROP_ERR(-ECONNREFUSED);
4983
4984		if (sel_netnode_sid(addrp, family, &node_sid))
4985			return NF_DROP;
4986		if (avc_has_perm(peer_sid, node_sid,
 
4987				 SECCLASS_NODE, NODE__SENDTO, &ad))
4988			return NF_DROP_ERR(-ECONNREFUSED);
4989	}
4990
4991	return NF_ACCEPT;
4992}
4993
4994static unsigned int selinux_ipv4_postroute(const struct nf_hook_ops *ops,
4995					   struct sk_buff *skb,
4996					   const struct net_device *in,
4997					   const struct net_device *out,
4998					   int (*okfn)(struct sk_buff *))
4999{
5000	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
5001}
5002
5003#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5004static unsigned int selinux_ipv6_postroute(const struct nf_hook_ops *ops,
5005					   struct sk_buff *skb,
5006					   const struct net_device *in,
5007					   const struct net_device *out,
5008					   int (*okfn)(struct sk_buff *))
5009{
5010	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
5011}
5012#endif	/* IPV6 */
5013
5014#endif	/* CONFIG_NETFILTER */
5015
5016static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5017{
5018	int err;
 
 
 
 
 
 
 
5019
5020	err = cap_netlink_send(sk, skb);
5021	if (err)
5022		return err;
5023
5024	return selinux_nlmsg_perm(sk, skb);
5025}
 
 
 
 
 
 
5026
5027static int ipc_alloc_security(struct task_struct *task,
5028			      struct kern_ipc_perm *perm,
5029			      u16 sclass)
5030{
5031	struct ipc_security_struct *isec;
5032	u32 sid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5033
5034	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5035	if (!isec)
5036		return -ENOMEM;
 
 
 
 
5037
5038	sid = task_sid(task);
5039	isec->sclass = sclass;
5040	isec->sid = sid;
5041	perm->security = isec;
5042
5043	return 0;
5044}
5045
5046static void ipc_free_security(struct kern_ipc_perm *perm)
5047{
5048	struct ipc_security_struct *isec = perm->security;
5049	perm->security = NULL;
5050	kfree(isec);
5051}
5052
5053static int msg_msg_alloc_security(struct msg_msg *msg)
5054{
5055	struct msg_security_struct *msec;
5056
5057	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5058	if (!msec)
5059		return -ENOMEM;
5060
5061	msec->sid = SECINITSID_UNLABELED;
5062	msg->security = msec;
5063
5064	return 0;
5065}
5066
5067static void msg_msg_free_security(struct msg_msg *msg)
5068{
5069	struct msg_security_struct *msec = msg->security;
5070
5071	msg->security = NULL;
5072	kfree(msec);
5073}
5074
5075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5076			u32 perms)
5077{
5078	struct ipc_security_struct *isec;
5079	struct common_audit_data ad;
5080	u32 sid = current_sid();
5081
5082	isec = ipc_perms->security;
5083
5084	ad.type = LSM_AUDIT_DATA_IPC;
5085	ad.u.ipc_id = ipc_perms->key;
5086
5087	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
5088}
5089
5090static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5091{
5092	return msg_msg_alloc_security(msg);
5093}
 
 
5094
5095static void selinux_msg_msg_free_security(struct msg_msg *msg)
5096{
5097	msg_msg_free_security(msg);
5098}
5099
5100/* message queue security operations */
5101static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5102{
5103	struct ipc_security_struct *isec;
5104	struct common_audit_data ad;
5105	u32 sid = current_sid();
5106	int rc;
5107
5108	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5109	if (rc)
5110		return rc;
5111
5112	isec = msq->q_perm.security;
5113
5114	ad.type = LSM_AUDIT_DATA_IPC;
5115	ad.u.ipc_id = msq->q_perm.key;
5116
5117	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5118			  MSGQ__CREATE, &ad);
5119	if (rc) {
5120		ipc_free_security(&msq->q_perm);
5121		return rc;
5122	}
5123	return 0;
5124}
5125
5126static void selinux_msg_queue_free_security(struct msg_queue *msq)
5127{
5128	ipc_free_security(&msq->q_perm);
5129}
5130
5131static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5132{
5133	struct ipc_security_struct *isec;
5134	struct common_audit_data ad;
5135	u32 sid = current_sid();
5136
5137	isec = msq->q_perm.security;
5138
5139	ad.type = LSM_AUDIT_DATA_IPC;
5140	ad.u.ipc_id = msq->q_perm.key;
5141
5142	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5143			    MSGQ__ASSOCIATE, &ad);
5144}
5145
5146static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5147{
5148	int err;
5149	int perms;
5150
5151	switch (cmd) {
5152	case IPC_INFO:
5153	case MSG_INFO:
5154		/* No specific object, just general system-wide information. */
5155		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5156	case IPC_STAT:
5157	case MSG_STAT:
 
5158		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5159		break;
5160	case IPC_SET:
5161		perms = MSGQ__SETATTR;
5162		break;
5163	case IPC_RMID:
5164		perms = MSGQ__DESTROY;
5165		break;
5166	default:
5167		return 0;
5168	}
5169
5170	err = ipc_has_perm(&msq->q_perm, perms);
5171	return err;
5172}
5173
5174static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5175{
5176	struct ipc_security_struct *isec;
5177	struct msg_security_struct *msec;
5178	struct common_audit_data ad;
5179	u32 sid = current_sid();
5180	int rc;
5181
5182	isec = msq->q_perm.security;
5183	msec = msg->security;
5184
5185	/*
5186	 * First time through, need to assign label to the message
5187	 */
5188	if (msec->sid == SECINITSID_UNLABELED) {
5189		/*
5190		 * Compute new sid based on current process and
5191		 * message queue this message will be stored in
5192		 */
5193		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5194					     NULL, &msec->sid);
5195		if (rc)
5196			return rc;
5197	}
5198
5199	ad.type = LSM_AUDIT_DATA_IPC;
5200	ad.u.ipc_id = msq->q_perm.key;
5201
5202	/* Can this process write to the queue? */
5203	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
5204			  MSGQ__WRITE, &ad);
5205	if (!rc)
5206		/* Can this process send the message */
5207		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
5208				  MSG__SEND, &ad);
5209	if (!rc)
5210		/* Can the message be put in the queue? */
5211		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
5212				  MSGQ__ENQUEUE, &ad);
5213
5214	return rc;
5215}
5216
5217static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5218				    struct task_struct *target,
5219				    long type, int mode)
5220{
5221	struct ipc_security_struct *isec;
5222	struct msg_security_struct *msec;
5223	struct common_audit_data ad;
5224	u32 sid = task_sid(target);
5225	int rc;
5226
5227	isec = msq->q_perm.security;
5228	msec = msg->security;
5229
5230	ad.type = LSM_AUDIT_DATA_IPC;
5231	ad.u.ipc_id = msq->q_perm.key;
5232
5233	rc = avc_has_perm(sid, isec->sid,
 
5234			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5235	if (!rc)
5236		rc = avc_has_perm(sid, msec->sid,
 
5237				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5238	return rc;
5239}
5240
5241/* Shared Memory security operations */
5242static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5243{
5244	struct ipc_security_struct *isec;
5245	struct common_audit_data ad;
5246	u32 sid = current_sid();
5247	int rc;
5248
5249	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5250	if (rc)
5251		return rc;
5252
5253	isec = shp->shm_perm.security;
5254
5255	ad.type = LSM_AUDIT_DATA_IPC;
5256	ad.u.ipc_id = shp->shm_perm.key;
5257
5258	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5259			  SHM__CREATE, &ad);
5260	if (rc) {
5261		ipc_free_security(&shp->shm_perm);
5262		return rc;
5263	}
5264	return 0;
5265}
5266
5267static void selinux_shm_free_security(struct shmid_kernel *shp)
5268{
5269	ipc_free_security(&shp->shm_perm);
5270}
5271
5272static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5273{
5274	struct ipc_security_struct *isec;
5275	struct common_audit_data ad;
5276	u32 sid = current_sid();
5277
5278	isec = shp->shm_perm.security;
5279
5280	ad.type = LSM_AUDIT_DATA_IPC;
5281	ad.u.ipc_id = shp->shm_perm.key;
5282
5283	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
5284			    SHM__ASSOCIATE, &ad);
5285}
5286
5287/* Note, at this point, shp is locked down */
5288static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5289{
5290	int perms;
5291	int err;
5292
5293	switch (cmd) {
5294	case IPC_INFO:
5295	case SHM_INFO:
5296		/* No specific object, just general system-wide information. */
5297		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5298	case IPC_STAT:
5299	case SHM_STAT:
 
5300		perms = SHM__GETATTR | SHM__ASSOCIATE;
5301		break;
5302	case IPC_SET:
5303		perms = SHM__SETATTR;
5304		break;
5305	case SHM_LOCK:
5306	case SHM_UNLOCK:
5307		perms = SHM__LOCK;
5308		break;
5309	case IPC_RMID:
5310		perms = SHM__DESTROY;
5311		break;
5312	default:
5313		return 0;
5314	}
5315
5316	err = ipc_has_perm(&shp->shm_perm, perms);
5317	return err;
5318}
5319
5320static int selinux_shm_shmat(struct shmid_kernel *shp,
5321			     char __user *shmaddr, int shmflg)
5322{
5323	u32 perms;
5324
5325	if (shmflg & SHM_RDONLY)
5326		perms = SHM__READ;
5327	else
5328		perms = SHM__READ | SHM__WRITE;
5329
5330	return ipc_has_perm(&shp->shm_perm, perms);
5331}
5332
5333/* Semaphore security operations */
5334static int selinux_sem_alloc_security(struct sem_array *sma)
5335{
5336	struct ipc_security_struct *isec;
5337	struct common_audit_data ad;
5338	u32 sid = current_sid();
5339	int rc;
5340
5341	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5342	if (rc)
5343		return rc;
5344
5345	isec = sma->sem_perm.security;
5346
5347	ad.type = LSM_AUDIT_DATA_IPC;
5348	ad.u.ipc_id = sma->sem_perm.key;
5349
5350	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5351			  SEM__CREATE, &ad);
5352	if (rc) {
5353		ipc_free_security(&sma->sem_perm);
5354		return rc;
5355	}
5356	return 0;
5357}
5358
5359static void selinux_sem_free_security(struct sem_array *sma)
5360{
5361	ipc_free_security(&sma->sem_perm);
5362}
5363
5364static int selinux_sem_associate(struct sem_array *sma, int semflg)
5365{
5366	struct ipc_security_struct *isec;
5367	struct common_audit_data ad;
5368	u32 sid = current_sid();
5369
5370	isec = sma->sem_perm.security;
5371
5372	ad.type = LSM_AUDIT_DATA_IPC;
5373	ad.u.ipc_id = sma->sem_perm.key;
5374
5375	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
5376			    SEM__ASSOCIATE, &ad);
5377}
5378
5379/* Note, at this point, sma is locked down */
5380static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5381{
5382	int err;
5383	u32 perms;
5384
5385	switch (cmd) {
5386	case IPC_INFO:
5387	case SEM_INFO:
5388		/* No specific object, just general system-wide information. */
5389		return task_has_system(current, SYSTEM__IPC_INFO);
 
 
5390	case GETPID:
5391	case GETNCNT:
5392	case GETZCNT:
5393		perms = SEM__GETATTR;
5394		break;
5395	case GETVAL:
5396	case GETALL:
5397		perms = SEM__READ;
5398		break;
5399	case SETVAL:
5400	case SETALL:
5401		perms = SEM__WRITE;
5402		break;
5403	case IPC_RMID:
5404		perms = SEM__DESTROY;
5405		break;
5406	case IPC_SET:
5407		perms = SEM__SETATTR;
5408		break;
5409	case IPC_STAT:
5410	case SEM_STAT:
 
5411		perms = SEM__GETATTR | SEM__ASSOCIATE;
5412		break;
5413	default:
5414		return 0;
5415	}
5416
5417	err = ipc_has_perm(&sma->sem_perm, perms);
5418	return err;
5419}
5420
5421static int selinux_sem_semop(struct sem_array *sma,
5422			     struct sembuf *sops, unsigned nsops, int alter)
5423{
5424	u32 perms;
5425
5426	if (alter)
5427		perms = SEM__READ | SEM__WRITE;
5428	else
5429		perms = SEM__READ;
5430
5431	return ipc_has_perm(&sma->sem_perm, perms);
5432}
5433
5434static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5435{
5436	u32 av = 0;
5437
5438	av = 0;
5439	if (flag & S_IRUGO)
5440		av |= IPC__UNIX_READ;
5441	if (flag & S_IWUGO)
5442		av |= IPC__UNIX_WRITE;
5443
5444	if (av == 0)
5445		return 0;
5446
5447	return ipc_has_perm(ipcp, av);
5448}
5449
5450static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5451{
5452	struct ipc_security_struct *isec = ipcp->security;
5453	*secid = isec->sid;
5454}
5455
5456static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5457{
5458	if (inode)
5459		inode_doinit_with_dentry(inode, dentry);
5460}
5461
5462static int selinux_getprocattr(struct task_struct *p,
5463			       char *name, char **value)
5464{
5465	const struct task_security_struct *__tsec;
5466	u32 sid;
5467	int error;
5468	unsigned len;
5469
 
 
 
5470	if (current != p) {
5471		error = current_has_perm(p, PROCESS__GETATTR);
 
 
5472		if (error)
5473			return error;
5474	}
5475
5476	rcu_read_lock();
5477	__tsec = __task_cred(p)->security;
5478
5479	if (!strcmp(name, "current"))
5480		sid = __tsec->sid;
5481	else if (!strcmp(name, "prev"))
5482		sid = __tsec->osid;
5483	else if (!strcmp(name, "exec"))
5484		sid = __tsec->exec_sid;
5485	else if (!strcmp(name, "fscreate"))
5486		sid = __tsec->create_sid;
5487	else if (!strcmp(name, "keycreate"))
5488		sid = __tsec->keycreate_sid;
5489	else if (!strcmp(name, "sockcreate"))
5490		sid = __tsec->sockcreate_sid;
5491	else
5492		goto invalid;
 
 
5493	rcu_read_unlock();
5494
5495	if (!sid)
5496		return 0;
5497
5498	error = security_sid_to_context(sid, value, &len);
5499	if (error)
5500		return error;
5501	return len;
5502
5503invalid:
5504	rcu_read_unlock();
5505	return -EINVAL;
5506}
5507
5508static int selinux_setprocattr(struct task_struct *p,
5509			       char *name, void *value, size_t size)
5510{
5511	struct task_security_struct *tsec;
5512	struct task_struct *tracer;
5513	struct cred *new;
5514	u32 sid = 0, ptsid;
5515	int error;
5516	char *str = value;
5517
5518	if (current != p) {
5519		/* SELinux only allows a process to change its own
5520		   security attributes. */
5521		return -EACCES;
5522	}
5523
5524	/*
5525	 * Basic control over ability to set these attributes at all.
5526	 * current == p, but we'll pass them separately in case the
5527	 * above restriction is ever removed.
5528	 */
5529	if (!strcmp(name, "exec"))
5530		error = current_has_perm(p, PROCESS__SETEXEC);
 
 
5531	else if (!strcmp(name, "fscreate"))
5532		error = current_has_perm(p, PROCESS__SETFSCREATE);
 
 
5533	else if (!strcmp(name, "keycreate"))
5534		error = current_has_perm(p, PROCESS__SETKEYCREATE);
 
 
5535	else if (!strcmp(name, "sockcreate"))
5536		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
 
 
5537	else if (!strcmp(name, "current"))
5538		error = current_has_perm(p, PROCESS__SETCURRENT);
 
 
5539	else
5540		error = -EINVAL;
5541	if (error)
5542		return error;
5543
5544	/* Obtain a SID for the context, if one was specified. */
5545	if (size && str[1] && str[1] != '\n') {
5546		if (str[size-1] == '\n') {
5547			str[size-1] = 0;
5548			size--;
5549		}
5550		error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
 
5551		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5552			if (!capable(CAP_MAC_ADMIN)) {
5553				struct audit_buffer *ab;
5554				size_t audit_size;
5555
5556				/* We strip a nul only if it is at the end, otherwise the
5557				 * context contains a nul and we should audit that */
5558				if (str[size - 1] == '\0')
5559					audit_size = size - 1;
5560				else
5561					audit_size = size;
5562				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
 
 
5563				audit_log_format(ab, "op=fscreate invalid_context=");
5564				audit_log_n_untrustedstring(ab, value, audit_size);
5565				audit_log_end(ab);
5566
5567				return error;
5568			}
5569			error = security_context_to_sid_force(value, size,
5570							      &sid);
 
5571		}
5572		if (error)
5573			return error;
5574	}
5575
5576	new = prepare_creds();
5577	if (!new)
5578		return -ENOMEM;
5579
5580	/* Permission checking based on the specified context is
5581	   performed during the actual operation (execve,
5582	   open/mkdir/...), when we know the full context of the
5583	   operation.  See selinux_bprm_set_creds for the execve
5584	   checks and may_create for the file creation checks. The
5585	   operation will then fail if the context is not permitted. */
5586	tsec = new->security;
5587	if (!strcmp(name, "exec")) {
5588		tsec->exec_sid = sid;
5589	} else if (!strcmp(name, "fscreate")) {
5590		tsec->create_sid = sid;
5591	} else if (!strcmp(name, "keycreate")) {
5592		error = may_create_key(sid, p);
5593		if (error)
5594			goto abort_change;
 
 
 
5595		tsec->keycreate_sid = sid;
5596	} else if (!strcmp(name, "sockcreate")) {
5597		tsec->sockcreate_sid = sid;
5598	} else if (!strcmp(name, "current")) {
5599		error = -EINVAL;
5600		if (sid == 0)
5601			goto abort_change;
5602
5603		/* Only allow single threaded processes to change context */
5604		error = -EPERM;
5605		if (!current_is_single_threaded()) {
5606			error = security_bounded_transition(tsec->sid, sid);
 
5607			if (error)
5608				goto abort_change;
5609		}
5610
5611		/* Check permissions for the transition. */
5612		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
5613				     PROCESS__DYNTRANSITION, NULL);
5614		if (error)
5615			goto abort_change;
5616
5617		/* Check for ptracing, and update the task SID if ok.
5618		   Otherwise, leave SID unchanged and fail. */
5619		ptsid = 0;
5620		rcu_read_lock();
5621		tracer = ptrace_parent(p);
5622		if (tracer)
5623			ptsid = task_sid(tracer);
5624		rcu_read_unlock();
5625
5626		if (tracer) {
5627			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5628					     PROCESS__PTRACE, NULL);
5629			if (error)
5630				goto abort_change;
5631		}
5632
5633		tsec->sid = sid;
5634	} else {
5635		error = -EINVAL;
5636		goto abort_change;
5637	}
5638
5639	commit_creds(new);
5640	return size;
5641
5642abort_change:
5643	abort_creds(new);
5644	return error;
5645}
5646
5647static int selinux_ismaclabel(const char *name)
5648{
5649	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5650}
5651
5652static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5653{
5654	return security_sid_to_context(secid, secdata, seclen);
 
5655}
5656
5657static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5658{
5659	return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
 
5660}
5661
5662static void selinux_release_secctx(char *secdata, u32 seclen)
5663{
5664	kfree(secdata);
5665}
5666
 
 
 
 
 
 
 
 
 
5667/*
5668 *	called with inode->i_mutex locked
5669 */
5670static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5671{
5672	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
 
 
 
5673}
5674
5675/*
5676 *	called with inode->i_mutex locked
5677 */
5678static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5679{
5680	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5681}
5682
5683static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5684{
5685	int len = 0;
5686	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5687						ctx, true);
5688	if (len < 0)
5689		return len;
5690	*ctxlen = len;
5691	return 0;
5692}
5693#ifdef CONFIG_KEYS
5694
5695static int selinux_key_alloc(struct key *k, const struct cred *cred,
5696			     unsigned long flags)
5697{
5698	const struct task_security_struct *tsec;
5699	struct key_security_struct *ksec;
5700
5701	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5702	if (!ksec)
5703		return -ENOMEM;
5704
5705	tsec = cred->security;
5706	if (tsec->keycreate_sid)
5707		ksec->sid = tsec->keycreate_sid;
5708	else
5709		ksec->sid = tsec->sid;
5710
5711	k->security = ksec;
5712	return 0;
5713}
5714
5715static void selinux_key_free(struct key *k)
5716{
5717	struct key_security_struct *ksec = k->security;
5718
5719	k->security = NULL;
5720	kfree(ksec);
5721}
5722
5723static int selinux_key_permission(key_ref_t key_ref,
5724				  const struct cred *cred,
5725				  key_perm_t perm)
5726{
5727	struct key *key;
5728	struct key_security_struct *ksec;
5729	u32 sid;
5730
5731	/* if no specific permissions are requested, we skip the
5732	   permission check. No serious, additional covert channels
5733	   appear to be created. */
5734	if (perm == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5735		return 0;
 
 
 
 
 
5736
5737	sid = cred_sid(cred);
5738
5739	key = key_ref_to_ptr(key_ref);
5740	ksec = key->security;
5741
5742	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
5743}
5744
5745static int selinux_key_getsecurity(struct key *key, char **_buffer)
5746{
5747	struct key_security_struct *ksec = key->security;
5748	char *context = NULL;
5749	unsigned len;
5750	int rc;
5751
5752	rc = security_sid_to_context(ksec->sid, &context, &len);
 
5753	if (!rc)
5754		rc = len;
5755	*_buffer = context;
5756	return rc;
5757}
5758
 
 
 
 
 
 
 
 
 
 
5759#endif
5760
5761static struct security_operations selinux_ops = {
5762	.name =				"selinux",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5763
5764	.ptrace_access_check =		selinux_ptrace_access_check,
5765	.ptrace_traceme =		selinux_ptrace_traceme,
5766	.capget =			selinux_capget,
5767	.capset =			selinux_capset,
5768	.capable =			selinux_capable,
5769	.quotactl =			selinux_quotactl,
5770	.quota_on =			selinux_quota_on,
5771	.syslog =			selinux_syslog,
5772	.vm_enough_memory =		selinux_vm_enough_memory,
5773
5774	.netlink_send =			selinux_netlink_send,
5775
5776	.bprm_set_creds =		selinux_bprm_set_creds,
5777	.bprm_committing_creds =	selinux_bprm_committing_creds,
5778	.bprm_committed_creds =		selinux_bprm_committed_creds,
5779	.bprm_secureexec =		selinux_bprm_secureexec,
5780
5781	.sb_alloc_security =		selinux_sb_alloc_security,
5782	.sb_free_security =		selinux_sb_free_security,
5783	.sb_copy_data =			selinux_sb_copy_data,
5784	.sb_remount =			selinux_sb_remount,
5785	.sb_kern_mount =		selinux_sb_kern_mount,
5786	.sb_show_options =		selinux_sb_show_options,
5787	.sb_statfs =			selinux_sb_statfs,
5788	.sb_mount =			selinux_mount,
5789	.sb_umount =			selinux_umount,
5790	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5791	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5792	.sb_parse_opts_str = 		selinux_parse_opts_str,
5793
5794	.dentry_init_security =		selinux_dentry_init_security,
5795
5796	.inode_alloc_security =		selinux_inode_alloc_security,
5797	.inode_free_security =		selinux_inode_free_security,
5798	.inode_init_security =		selinux_inode_init_security,
5799	.inode_create =			selinux_inode_create,
5800	.inode_link =			selinux_inode_link,
5801	.inode_unlink =			selinux_inode_unlink,
5802	.inode_symlink =		selinux_inode_symlink,
5803	.inode_mkdir =			selinux_inode_mkdir,
5804	.inode_rmdir =			selinux_inode_rmdir,
5805	.inode_mknod =			selinux_inode_mknod,
5806	.inode_rename =			selinux_inode_rename,
5807	.inode_readlink =		selinux_inode_readlink,
5808	.inode_follow_link =		selinux_inode_follow_link,
5809	.inode_permission =		selinux_inode_permission,
5810	.inode_setattr =		selinux_inode_setattr,
5811	.inode_getattr =		selinux_inode_getattr,
5812	.inode_setxattr =		selinux_inode_setxattr,
5813	.inode_post_setxattr =		selinux_inode_post_setxattr,
5814	.inode_getxattr =		selinux_inode_getxattr,
5815	.inode_listxattr =		selinux_inode_listxattr,
5816	.inode_removexattr =		selinux_inode_removexattr,
5817	.inode_getsecurity =		selinux_inode_getsecurity,
5818	.inode_setsecurity =		selinux_inode_setsecurity,
5819	.inode_listsecurity =		selinux_inode_listsecurity,
5820	.inode_getsecid =		selinux_inode_getsecid,
5821
5822	.file_permission =		selinux_file_permission,
5823	.file_alloc_security =		selinux_file_alloc_security,
5824	.file_free_security =		selinux_file_free_security,
5825	.file_ioctl =			selinux_file_ioctl,
5826	.mmap_file =			selinux_mmap_file,
5827	.mmap_addr =			selinux_mmap_addr,
5828	.file_mprotect =		selinux_file_mprotect,
5829	.file_lock =			selinux_file_lock,
5830	.file_fcntl =			selinux_file_fcntl,
5831	.file_set_fowner =		selinux_file_set_fowner,
5832	.file_send_sigiotask =		selinux_file_send_sigiotask,
5833	.file_receive =			selinux_file_receive,
5834
5835	.file_open =			selinux_file_open,
5836
5837	.task_create =			selinux_task_create,
5838	.cred_alloc_blank =		selinux_cred_alloc_blank,
5839	.cred_free =			selinux_cred_free,
5840	.cred_prepare =			selinux_cred_prepare,
5841	.cred_transfer =		selinux_cred_transfer,
5842	.kernel_act_as =		selinux_kernel_act_as,
5843	.kernel_create_files_as =	selinux_kernel_create_files_as,
5844	.kernel_module_request =	selinux_kernel_module_request,
5845	.task_setpgid =			selinux_task_setpgid,
5846	.task_getpgid =			selinux_task_getpgid,
5847	.task_getsid =			selinux_task_getsid,
5848	.task_getsecid =		selinux_task_getsecid,
5849	.task_setnice =			selinux_task_setnice,
5850	.task_setioprio =		selinux_task_setioprio,
5851	.task_getioprio =		selinux_task_getioprio,
5852	.task_setrlimit =		selinux_task_setrlimit,
5853	.task_setscheduler =		selinux_task_setscheduler,
5854	.task_getscheduler =		selinux_task_getscheduler,
5855	.task_movememory =		selinux_task_movememory,
5856	.task_kill =			selinux_task_kill,
5857	.task_wait =			selinux_task_wait,
5858	.task_to_inode =		selinux_task_to_inode,
5859
5860	.ipc_permission =		selinux_ipc_permission,
5861	.ipc_getsecid =			selinux_ipc_getsecid,
5862
5863	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5864	.msg_msg_free_security =	selinux_msg_msg_free_security,
5865
5866	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5867	.msg_queue_free_security =	selinux_msg_queue_free_security,
5868	.msg_queue_associate =		selinux_msg_queue_associate,
5869	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5870	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5871	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5872
5873	.shm_alloc_security =		selinux_shm_alloc_security,
5874	.shm_free_security =		selinux_shm_free_security,
5875	.shm_associate =		selinux_shm_associate,
5876	.shm_shmctl =			selinux_shm_shmctl,
5877	.shm_shmat =			selinux_shm_shmat,
5878
5879	.sem_alloc_security =		selinux_sem_alloc_security,
5880	.sem_free_security =		selinux_sem_free_security,
5881	.sem_associate =		selinux_sem_associate,
5882	.sem_semctl =			selinux_sem_semctl,
5883	.sem_semop =			selinux_sem_semop,
5884
5885	.d_instantiate =		selinux_d_instantiate,
5886
5887	.getprocattr =			selinux_getprocattr,
5888	.setprocattr =			selinux_setprocattr,
5889
5890	.ismaclabel =			selinux_ismaclabel,
5891	.secid_to_secctx =		selinux_secid_to_secctx,
5892	.secctx_to_secid =		selinux_secctx_to_secid,
5893	.release_secctx =		selinux_release_secctx,
5894	.inode_notifysecctx =		selinux_inode_notifysecctx,
5895	.inode_setsecctx =		selinux_inode_setsecctx,
5896	.inode_getsecctx =		selinux_inode_getsecctx,
5897
5898	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5899	.unix_may_send =		selinux_socket_unix_may_send,
5900
5901	.socket_create =		selinux_socket_create,
5902	.socket_post_create =		selinux_socket_post_create,
5903	.socket_bind =			selinux_socket_bind,
5904	.socket_connect =		selinux_socket_connect,
5905	.socket_listen =		selinux_socket_listen,
5906	.socket_accept =		selinux_socket_accept,
5907	.socket_sendmsg =		selinux_socket_sendmsg,
5908	.socket_recvmsg =		selinux_socket_recvmsg,
5909	.socket_getsockname =		selinux_socket_getsockname,
5910	.socket_getpeername =		selinux_socket_getpeername,
5911	.socket_getsockopt =		selinux_socket_getsockopt,
5912	.socket_setsockopt =		selinux_socket_setsockopt,
5913	.socket_shutdown =		selinux_socket_shutdown,
5914	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5915	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5916	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5917	.sk_alloc_security =		selinux_sk_alloc_security,
5918	.sk_free_security =		selinux_sk_free_security,
5919	.sk_clone_security =		selinux_sk_clone_security,
5920	.sk_getsecid =			selinux_sk_getsecid,
5921	.sock_graft =			selinux_sock_graft,
5922	.inet_conn_request =		selinux_inet_conn_request,
5923	.inet_csk_clone =		selinux_inet_csk_clone,
5924	.inet_conn_established =	selinux_inet_conn_established,
5925	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5926	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5927	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5928	.req_classify_flow =		selinux_req_classify_flow,
5929	.tun_dev_alloc_security =	selinux_tun_dev_alloc_security,
5930	.tun_dev_free_security =	selinux_tun_dev_free_security,
5931	.tun_dev_create =		selinux_tun_dev_create,
5932	.tun_dev_attach_queue =		selinux_tun_dev_attach_queue,
5933	.tun_dev_attach =		selinux_tun_dev_attach,
5934	.tun_dev_open =			selinux_tun_dev_open,
5935	.skb_owned_by =			selinux_skb_owned_by,
5936
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5937#ifdef CONFIG_SECURITY_NETWORK_XFRM
5938	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5939	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5940	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5941	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5942	.xfrm_state_alloc =		selinux_xfrm_state_alloc,
5943	.xfrm_state_alloc_acquire =	selinux_xfrm_state_alloc_acquire,
5944	.xfrm_state_free_security =	selinux_xfrm_state_free,
5945	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5946	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5947	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5948	.xfrm_decode_session =		selinux_xfrm_decode_session,
5949#endif
5950
5951#ifdef CONFIG_KEYS
5952	.key_alloc =			selinux_key_alloc,
5953	.key_free =			selinux_key_free,
5954	.key_permission =		selinux_key_permission,
5955	.key_getsecurity =		selinux_key_getsecurity,
 
 
5956#endif
5957
5958#ifdef CONFIG_AUDIT
5959	.audit_rule_init =		selinux_audit_rule_init,
5960	.audit_rule_known =		selinux_audit_rule_known,
5961	.audit_rule_match =		selinux_audit_rule_match,
5962	.audit_rule_free =		selinux_audit_rule_free,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5963#endif
5964};
5965
5966static __init int selinux_init(void)
5967{
5968	if (!security_module_enable(&selinux_ops)) {
5969		selinux_enabled = 0;
5970		return 0;
5971	}
5972
5973	if (!selinux_enabled) {
5974		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5975		return 0;
5976	}
5977
5978	printk(KERN_INFO "SELinux:  Initializing.\n");
5979
5980	/* Set the security state for the initial task. */
5981	cred_init_security();
5982
5983	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5984
5985	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5986					    sizeof(struct inode_security_struct),
5987					    0, SLAB_PANIC, NULL);
5988	avc_init();
5989
5990	if (register_security(&selinux_ops))
5991		panic("SELinux: Unable to register with kernel.\n");
 
 
 
 
 
 
 
 
 
 
 
5992
5993	if (selinux_enforcing)
5994		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5995	else
5996		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
 
 
5997
5998	return 0;
5999}
6000
6001static void delayed_superblock_init(struct super_block *sb, void *unused)
6002{
6003	superblock_doinit(sb, NULL);
6004}
6005
6006void selinux_complete_init(void)
6007{
6008	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
6009
6010	/* Set up any superblocks initialized prior to the policy load. */
6011	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
6012	iterate_supers(delayed_superblock_init, NULL);
6013}
6014
6015/* SELinux requires early initialization in order to label
6016   all processes and objects when they are created. */
6017security_initcall(selinux_init);
 
 
 
 
 
 
6018
6019#if defined(CONFIG_NETFILTER)
6020
6021static struct nf_hook_ops selinux_ipv4_ops[] = {
6022	{
6023		.hook =		selinux_ipv4_postroute,
6024		.owner =	THIS_MODULE,
6025		.pf =		NFPROTO_IPV4,
6026		.hooknum =	NF_INET_POST_ROUTING,
6027		.priority =	NF_IP_PRI_SELINUX_LAST,
6028	},
6029	{
6030		.hook =		selinux_ipv4_forward,
6031		.owner =	THIS_MODULE,
6032		.pf =		NFPROTO_IPV4,
6033		.hooknum =	NF_INET_FORWARD,
6034		.priority =	NF_IP_PRI_SELINUX_FIRST,
6035	},
6036	{
6037		.hook =		selinux_ipv4_output,
6038		.owner =	THIS_MODULE,
6039		.pf =		NFPROTO_IPV4,
6040		.hooknum =	NF_INET_LOCAL_OUT,
6041		.priority =	NF_IP_PRI_SELINUX_FIRST,
6042	}
6043};
6044
6045#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6046
6047static struct nf_hook_ops selinux_ipv6_ops[] = {
6048	{
6049		.hook =		selinux_ipv6_postroute,
6050		.owner =	THIS_MODULE,
6051		.pf =		NFPROTO_IPV6,
6052		.hooknum =	NF_INET_POST_ROUTING,
6053		.priority =	NF_IP6_PRI_SELINUX_LAST,
6054	},
6055	{
6056		.hook =		selinux_ipv6_forward,
6057		.owner =	THIS_MODULE,
6058		.pf =		NFPROTO_IPV6,
6059		.hooknum =	NF_INET_FORWARD,
6060		.priority =	NF_IP6_PRI_SELINUX_FIRST,
6061	}
 
 
 
 
 
 
 
6062};
6063
6064#endif	/* IPV6 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6065
6066static int __init selinux_nf_ip_init(void)
6067{
6068	int err = 0;
6069
6070	if (!selinux_enabled)
6071		goto out;
6072
6073	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
6074
6075	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6076	if (err)
6077		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
6078
6079#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6080	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6081	if (err)
6082		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
6083#endif	/* IPV6 */
6084
6085out:
6086	return err;
6087}
6088
6089__initcall(selinux_nf_ip_init);
6090
6091#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6092static void selinux_nf_ip_exit(void)
6093{
6094	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
6095
6096	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
6097#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6098	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
6099#endif	/* IPV6 */
6100}
6101#endif
6102
6103#else /* CONFIG_NETFILTER */
6104
6105#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6106#define selinux_nf_ip_exit()
6107#endif
6108
6109#endif /* CONFIG_NETFILTER */
6110
6111#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6112static int selinux_disabled;
6113
6114int selinux_disable(void)
6115{
6116	if (ss_initialized) {
6117		/* Not permitted after initial policy load. */
6118		return -EINVAL;
6119	}
6120
6121	if (selinux_disabled) {
6122		/* Only do this once. */
6123		return -EINVAL;
6124	}
6125
6126	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
6127
6128	selinux_disabled = 1;
6129	selinux_enabled = 0;
6130
6131	reset_security_ops();
 
 
 
 
 
 
 
6132
6133	/* Try to destroy the avc node cache */
6134	avc_disable();
6135
6136	/* Unregister netfilter hooks. */
6137	selinux_nf_ip_exit();
6138
6139	/* Unregister selinuxfs. */
6140	exit_sel_fs();
6141
6142	return 0;
6143}
6144#endif