Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32/**
  33 * DOC: memblock overview
  34 *
  35 * Memblock is a method of managing memory regions during the early
  36 * boot period when the usual kernel memory allocators are not up and
  37 * running.
  38 *
  39 * Memblock views the system memory as collections of contiguous
  40 * regions. There are several types of these collections:
  41 *
  42 * * ``memory`` - describes the physical memory available to the
  43 *   kernel; this may differ from the actual physical memory installed
  44 *   in the system, for instance when the memory is restricted with
  45 *   ``mem=`` command line parameter
  46 * * ``reserved`` - describes the regions that were allocated
  47 * * ``physmem`` - describes the actual physical memory available during
  48 *   boot regardless of the possible restrictions and memory hot(un)plug;
  49 *   the ``physmem`` type is only available on some architectures.
  50 *
  51 * Each region is represented by :c:type:`struct memblock_region` that
  52 * defines the region extents, its attributes and NUMA node id on NUMA
  53 * systems. Every memory type is described by the :c:type:`struct
  54 * memblock_type` which contains an array of memory regions along with
  55 * the allocator metadata. The "memory" and "reserved" types are nicely
  56 * wrapped with :c:type:`struct memblock`. This structure is statically
  57 * initialized at build time. The region arrays are initially sized to
  58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
  59 * for "reserved". The region array for "physmem" is initially sized to
  60 * %INIT_PHYSMEM_REGIONS.
  61 * The memblock_allow_resize() enables automatic resizing of the region
  62 * arrays during addition of new regions. This feature should be used
  63 * with care so that memory allocated for the region array will not
  64 * overlap with areas that should be reserved, for example initrd.
  65 *
  66 * The early architecture setup should tell memblock what the physical
  67 * memory layout is by using memblock_add() or memblock_add_node()
  68 * functions. The first function does not assign the region to a NUMA
  69 * node and it is appropriate for UMA systems. Yet, it is possible to
  70 * use it on NUMA systems as well and assign the region to a NUMA node
  71 * later in the setup process using memblock_set_node(). The
  72 * memblock_add_node() performs such an assignment directly.
 
  73 *
  74 * Once memblock is setup the memory can be allocated using one of the
  75 * API variants:
  76 *
  77 * * memblock_phys_alloc*() - these functions return the **physical**
  78 *   address of the allocated memory
  79 * * memblock_alloc*() - these functions return the **virtual** address
  80 *   of the allocated memory.
  81 *
  82 * Note, that both API variants use implicit assumptions about allowed
  83 * memory ranges and the fallback methods. Consult the documentation
  84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  85 * functions for more elaborate description.
  86 *
  87 * As the system boot progresses, the architecture specific mem_init()
  88 * function frees all the memory to the buddy page allocator.
  89 *
  90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  91 * memblock data structures (except "physmem") will be discarded after the
  92 * system initialization completes.
 
 
  93 */
  94
  95#ifndef CONFIG_NEED_MULTIPLE_NODES
  96struct pglist_data __refdata contig_page_data;
  97EXPORT_SYMBOL(contig_page_data);
  98#endif
  99
 100unsigned long max_low_pfn;
 101unsigned long min_low_pfn;
 102unsigned long max_pfn;
 103unsigned long long max_possible_pfn;
 104
 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 109#endif
 110
 111struct memblock memblock __initdata_memblock = {
 112	.memory.regions		= memblock_memory_init_regions,
 113	.memory.cnt		= 1,	/* empty dummy entry */
 114	.memory.max		= INIT_MEMBLOCK_REGIONS,
 115	.memory.name		= "memory",
 116
 117	.reserved.regions	= memblock_reserved_init_regions,
 118	.reserved.cnt		= 1,	/* empty dummy entry */
 119	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 120	.reserved.name		= "reserved",
 121
 
 
 
 
 
 
 
 122	.bottom_up		= false,
 123	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 124};
 125
 126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 127struct memblock_type physmem = {
 128	.regions		= memblock_physmem_init_regions,
 129	.cnt			= 1,	/* empty dummy entry */
 130	.max			= INIT_PHYSMEM_REGIONS,
 131	.name			= "physmem",
 132};
 133#endif
 134
 135int memblock_debug __initdata_memblock;
 136static bool system_has_some_mirror __initdata_memblock = false;
 137static int memblock_can_resize __initdata_memblock;
 138static int memblock_memory_in_slab __initdata_memblock = 0;
 139static int memblock_reserved_in_slab __initdata_memblock = 0;
 140
 141static enum memblock_flags __init_memblock choose_memblock_flags(void)
 142{
 143	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 144}
 145
 146/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 147static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 148{
 149	return *size = min(*size, PHYS_ADDR_MAX - base);
 150}
 151
 152/*
 153 * Address comparison utilities
 154 */
 155static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 156				       phys_addr_t base2, phys_addr_t size2)
 157{
 158	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 159}
 160
 161bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 162					phys_addr_t base, phys_addr_t size)
 163{
 164	unsigned long i;
 165
 166	for (i = 0; i < type->cnt; i++)
 167		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 168					   type->regions[i].size))
 169			break;
 170	return i < type->cnt;
 171}
 172
 173/**
 174 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 175 * @start: start of candidate range
 176 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 177 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 178 * @size: size of free area to find
 179 * @align: alignment of free area to find
 180 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 181 * @flags: pick from blocks based on memory attributes
 182 *
 183 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 184 *
 185 * Return:
 186 * Found address on success, 0 on failure.
 187 */
 188static phys_addr_t __init_memblock
 189__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 190				phys_addr_t size, phys_addr_t align, int nid,
 191				enum memblock_flags flags)
 192{
 193	phys_addr_t this_start, this_end, cand;
 194	u64 i;
 195
 196	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 197		this_start = clamp(this_start, start, end);
 198		this_end = clamp(this_end, start, end);
 199
 200		cand = round_up(this_start, align);
 201		if (cand < this_end && this_end - cand >= size)
 202			return cand;
 203	}
 204
 205	return 0;
 206}
 207
 208/**
 209 * __memblock_find_range_top_down - find free area utility, in top-down
 210 * @start: start of candidate range
 211 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 212 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 213 * @size: size of free area to find
 214 * @align: alignment of free area to find
 215 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 216 * @flags: pick from blocks based on memory attributes
 217 *
 218 * Utility called from memblock_find_in_range_node(), find free area top-down.
 219 *
 220 * Return:
 221 * Found address on success, 0 on failure.
 222 */
 223static phys_addr_t __init_memblock
 224__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 225			       phys_addr_t size, phys_addr_t align, int nid,
 226			       enum memblock_flags flags)
 227{
 228	phys_addr_t this_start, this_end, cand;
 229	u64 i;
 230
 231	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 232					NULL) {
 233		this_start = clamp(this_start, start, end);
 234		this_end = clamp(this_end, start, end);
 235
 236		if (this_end < size)
 237			continue;
 238
 239		cand = round_down(this_end - size, align);
 240		if (cand >= this_start)
 241			return cand;
 242	}
 243
 244	return 0;
 245}
 246
 247/**
 248 * memblock_find_in_range_node - find free area in given range and node
 249 * @size: size of free area to find
 250 * @align: alignment of free area to find
 251 * @start: start of candidate range
 252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 253 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 254 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 255 * @flags: pick from blocks based on memory attributes
 256 *
 257 * Find @size free area aligned to @align in the specified range and node.
 258 *
 259 * When allocation direction is bottom-up, the @start should be greater
 260 * than the end of the kernel image. Otherwise, it will be trimmed. The
 261 * reason is that we want the bottom-up allocation just near the kernel
 262 * image so it is highly likely that the allocated memory and the kernel
 263 * will reside in the same node.
 264 *
 265 * If bottom-up allocation failed, will try to allocate memory top-down.
 266 *
 267 * Return:
 268 * Found address on success, 0 on failure.
 269 */
 270static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 271					phys_addr_t align, phys_addr_t start,
 272					phys_addr_t end, int nid,
 273					enum memblock_flags flags)
 274{
 275	phys_addr_t kernel_end, ret;
 276
 277	/* pump up @end */
 278	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 279	    end == MEMBLOCK_ALLOC_KASAN)
 280		end = memblock.current_limit;
 281
 282	/* avoid allocating the first page */
 283	start = max_t(phys_addr_t, start, PAGE_SIZE);
 284	end = max(start, end);
 285	kernel_end = __pa_symbol(_end);
 286
 287	/*
 288	 * try bottom-up allocation only when bottom-up mode
 289	 * is set and @end is above the kernel image.
 290	 */
 291	if (memblock_bottom_up() && end > kernel_end) {
 292		phys_addr_t bottom_up_start;
 293
 294		/* make sure we will allocate above the kernel */
 295		bottom_up_start = max(start, kernel_end);
 296
 297		/* ok, try bottom-up allocation first */
 298		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 299						      size, align, nid, flags);
 300		if (ret)
 301			return ret;
 302
 303		/*
 304		 * we always limit bottom-up allocation above the kernel,
 305		 * but top-down allocation doesn't have the limit, so
 306		 * retrying top-down allocation may succeed when bottom-up
 307		 * allocation failed.
 308		 *
 309		 * bottom-up allocation is expected to be fail very rarely,
 310		 * so we use WARN_ONCE() here to see the stack trace if
 311		 * fail happens.
 312		 */
 313		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
 314			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
 315	}
 316
 317	return __memblock_find_range_top_down(start, end, size, align, nid,
 318					      flags);
 319}
 320
 321/**
 322 * memblock_find_in_range - find free area in given range
 323 * @start: start of candidate range
 324 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 325 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 326 * @size: size of free area to find
 327 * @align: alignment of free area to find
 328 *
 329 * Find @size free area aligned to @align in the specified range.
 330 *
 331 * Return:
 332 * Found address on success, 0 on failure.
 333 */
 334phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 335					phys_addr_t end, phys_addr_t size,
 336					phys_addr_t align)
 337{
 338	phys_addr_t ret;
 339	enum memblock_flags flags = choose_memblock_flags();
 340
 341again:
 342	ret = memblock_find_in_range_node(size, align, start, end,
 343					    NUMA_NO_NODE, flags);
 344
 345	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 346		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 347			&size);
 348		flags &= ~MEMBLOCK_MIRROR;
 349		goto again;
 350	}
 351
 352	return ret;
 353}
 354
 355static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 356{
 357	type->total_size -= type->regions[r].size;
 358	memmove(&type->regions[r], &type->regions[r + 1],
 359		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 360	type->cnt--;
 361
 362	/* Special case for empty arrays */
 363	if (type->cnt == 0) {
 364		WARN_ON(type->total_size != 0);
 365		type->cnt = 1;
 366		type->regions[0].base = 0;
 367		type->regions[0].size = 0;
 368		type->regions[0].flags = 0;
 369		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 370	}
 371}
 372
 373#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 374/**
 375 * memblock_discard - discard memory and reserved arrays if they were allocated
 376 */
 377void __init memblock_discard(void)
 378{
 379	phys_addr_t addr, size;
 380
 381	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 382		addr = __pa(memblock.reserved.regions);
 383		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 384				  memblock.reserved.max);
 385		__memblock_free_late(addr, size);
 386	}
 387
 388	if (memblock.memory.regions != memblock_memory_init_regions) {
 389		addr = __pa(memblock.memory.regions);
 390		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 391				  memblock.memory.max);
 392		__memblock_free_late(addr, size);
 393	}
 394}
 395#endif
 396
 397/**
 398 * memblock_double_array - double the size of the memblock regions array
 399 * @type: memblock type of the regions array being doubled
 400 * @new_area_start: starting address of memory range to avoid overlap with
 401 * @new_area_size: size of memory range to avoid overlap with
 402 *
 403 * Double the size of the @type regions array. If memblock is being used to
 404 * allocate memory for a new reserved regions array and there is a previously
 405 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 406 * waiting to be reserved, ensure the memory used by the new array does
 407 * not overlap.
 408 *
 409 * Return:
 410 * 0 on success, -1 on failure.
 411 */
 412static int __init_memblock memblock_double_array(struct memblock_type *type,
 413						phys_addr_t new_area_start,
 414						phys_addr_t new_area_size)
 415{
 416	struct memblock_region *new_array, *old_array;
 417	phys_addr_t old_alloc_size, new_alloc_size;
 418	phys_addr_t old_size, new_size, addr, new_end;
 419	int use_slab = slab_is_available();
 420	int *in_slab;
 421
 422	/* We don't allow resizing until we know about the reserved regions
 423	 * of memory that aren't suitable for allocation
 424	 */
 425	if (!memblock_can_resize)
 426		return -1;
 427
 428	/* Calculate new doubled size */
 429	old_size = type->max * sizeof(struct memblock_region);
 430	new_size = old_size << 1;
 431	/*
 432	 * We need to allocated new one align to PAGE_SIZE,
 433	 *   so we can free them completely later.
 434	 */
 435	old_alloc_size = PAGE_ALIGN(old_size);
 436	new_alloc_size = PAGE_ALIGN(new_size);
 437
 438	/* Retrieve the slab flag */
 439	if (type == &memblock.memory)
 440		in_slab = &memblock_memory_in_slab;
 441	else
 442		in_slab = &memblock_reserved_in_slab;
 443
 444	/* Try to find some space for it */
 445	if (use_slab) {
 446		new_array = kmalloc(new_size, GFP_KERNEL);
 447		addr = new_array ? __pa(new_array) : 0;
 448	} else {
 449		/* only exclude range when trying to double reserved.regions */
 450		if (type != &memblock.reserved)
 451			new_area_start = new_area_size = 0;
 452
 453		addr = memblock_find_in_range(new_area_start + new_area_size,
 454						memblock.current_limit,
 455						new_alloc_size, PAGE_SIZE);
 456		if (!addr && new_area_size)
 457			addr = memblock_find_in_range(0,
 458				min(new_area_start, memblock.current_limit),
 459				new_alloc_size, PAGE_SIZE);
 460
 461		new_array = addr ? __va(addr) : NULL;
 462	}
 463	if (!addr) {
 464		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 465		       type->name, type->max, type->max * 2);
 466		return -1;
 467	}
 468
 469	new_end = addr + new_size - 1;
 470	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 471			type->name, type->max * 2, &addr, &new_end);
 472
 473	/*
 474	 * Found space, we now need to move the array over before we add the
 475	 * reserved region since it may be our reserved array itself that is
 476	 * full.
 477	 */
 478	memcpy(new_array, type->regions, old_size);
 479	memset(new_array + type->max, 0, old_size);
 480	old_array = type->regions;
 481	type->regions = new_array;
 482	type->max <<= 1;
 483
 484	/* Free old array. We needn't free it if the array is the static one */
 485	if (*in_slab)
 486		kfree(old_array);
 487	else if (old_array != memblock_memory_init_regions &&
 488		 old_array != memblock_reserved_init_regions)
 489		memblock_free(__pa(old_array), old_alloc_size);
 490
 491	/*
 492	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 493	 * needn't do it
 494	 */
 495	if (!use_slab)
 496		BUG_ON(memblock_reserve(addr, new_alloc_size));
 497
 498	/* Update slab flag */
 499	*in_slab = use_slab;
 500
 501	return 0;
 502}
 503
 504/**
 505 * memblock_merge_regions - merge neighboring compatible regions
 506 * @type: memblock type to scan
 507 *
 508 * Scan @type and merge neighboring compatible regions.
 509 */
 510static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 511{
 512	int i = 0;
 513
 514	/* cnt never goes below 1 */
 515	while (i < type->cnt - 1) {
 516		struct memblock_region *this = &type->regions[i];
 517		struct memblock_region *next = &type->regions[i + 1];
 518
 519		if (this->base + this->size != next->base ||
 520		    memblock_get_region_node(this) !=
 521		    memblock_get_region_node(next) ||
 522		    this->flags != next->flags) {
 523			BUG_ON(this->base + this->size > next->base);
 524			i++;
 525			continue;
 526		}
 527
 528		this->size += next->size;
 529		/* move forward from next + 1, index of which is i + 2 */
 530		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 531		type->cnt--;
 532	}
 533}
 534
 535/**
 536 * memblock_insert_region - insert new memblock region
 537 * @type:	memblock type to insert into
 538 * @idx:	index for the insertion point
 539 * @base:	base address of the new region
 540 * @size:	size of the new region
 541 * @nid:	node id of the new region
 542 * @flags:	flags of the new region
 543 *
 544 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 545 * @type must already have extra room to accommodate the new region.
 546 */
 547static void __init_memblock memblock_insert_region(struct memblock_type *type,
 548						   int idx, phys_addr_t base,
 549						   phys_addr_t size,
 550						   int nid,
 551						   enum memblock_flags flags)
 552{
 553	struct memblock_region *rgn = &type->regions[idx];
 554
 555	BUG_ON(type->cnt >= type->max);
 556	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 557	rgn->base = base;
 558	rgn->size = size;
 559	rgn->flags = flags;
 560	memblock_set_region_node(rgn, nid);
 561	type->cnt++;
 562	type->total_size += size;
 563}
 564
 565/**
 566 * memblock_add_range - add new memblock region
 567 * @type: memblock type to add new region into
 568 * @base: base address of the new region
 569 * @size: size of the new region
 570 * @nid: nid of the new region
 571 * @flags: flags of the new region
 572 *
 573 * Add new memblock region [@base, @base + @size) into @type.  The new region
 574 * is allowed to overlap with existing ones - overlaps don't affect already
 575 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 576 * compatible regions are merged) after the addition.
 577 *
 578 * Return:
 579 * 0 on success, -errno on failure.
 580 */
 581static int __init_memblock memblock_add_range(struct memblock_type *type,
 582				phys_addr_t base, phys_addr_t size,
 583				int nid, enum memblock_flags flags)
 584{
 585	bool insert = false;
 586	phys_addr_t obase = base;
 587	phys_addr_t end = base + memblock_cap_size(base, &size);
 588	int idx, nr_new;
 589	struct memblock_region *rgn;
 590
 591	if (!size)
 592		return 0;
 593
 594	/* special case for empty array */
 595	if (type->regions[0].size == 0) {
 596		WARN_ON(type->cnt != 1 || type->total_size);
 597		type->regions[0].base = base;
 598		type->regions[0].size = size;
 599		type->regions[0].flags = flags;
 600		memblock_set_region_node(&type->regions[0], nid);
 601		type->total_size = size;
 602		return 0;
 603	}
 604repeat:
 605	/*
 606	 * The following is executed twice.  Once with %false @insert and
 607	 * then with %true.  The first counts the number of regions needed
 608	 * to accommodate the new area.  The second actually inserts them.
 609	 */
 610	base = obase;
 611	nr_new = 0;
 612
 613	for_each_memblock_type(idx, type, rgn) {
 614		phys_addr_t rbase = rgn->base;
 615		phys_addr_t rend = rbase + rgn->size;
 616
 617		if (rbase >= end)
 618			break;
 619		if (rend <= base)
 620			continue;
 621		/*
 622		 * @rgn overlaps.  If it separates the lower part of new
 623		 * area, insert that portion.
 624		 */
 625		if (rbase > base) {
 626#ifdef CONFIG_NEED_MULTIPLE_NODES
 627			WARN_ON(nid != memblock_get_region_node(rgn));
 628#endif
 629			WARN_ON(flags != rgn->flags);
 630			nr_new++;
 631			if (insert)
 632				memblock_insert_region(type, idx++, base,
 633						       rbase - base, nid,
 634						       flags);
 635		}
 636		/* area below @rend is dealt with, forget about it */
 637		base = min(rend, end);
 638	}
 639
 640	/* insert the remaining portion */
 641	if (base < end) {
 642		nr_new++;
 643		if (insert)
 644			memblock_insert_region(type, idx, base, end - base,
 645					       nid, flags);
 646	}
 647
 648	if (!nr_new)
 649		return 0;
 650
 651	/*
 652	 * If this was the first round, resize array and repeat for actual
 653	 * insertions; otherwise, merge and return.
 654	 */
 655	if (!insert) {
 656		while (type->cnt + nr_new > type->max)
 657			if (memblock_double_array(type, obase, size) < 0)
 658				return -ENOMEM;
 659		insert = true;
 660		goto repeat;
 661	} else {
 662		memblock_merge_regions(type);
 663		return 0;
 664	}
 665}
 666
 667/**
 668 * memblock_add_node - add new memblock region within a NUMA node
 669 * @base: base address of the new region
 670 * @size: size of the new region
 671 * @nid: nid of the new region
 672 *
 673 * Add new memblock region [@base, @base + @size) to the "memory"
 674 * type. See memblock_add_range() description for mode details
 675 *
 676 * Return:
 677 * 0 on success, -errno on failure.
 678 */
 679int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 680				       int nid)
 681{
 682	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 683}
 684
 685/**
 686 * memblock_add - add new memblock region
 687 * @base: base address of the new region
 688 * @size: size of the new region
 689 *
 690 * Add new memblock region [@base, @base + @size) to the "memory"
 691 * type. See memblock_add_range() description for mode details
 692 *
 693 * Return:
 694 * 0 on success, -errno on failure.
 695 */
 696int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 697{
 698	phys_addr_t end = base + size - 1;
 699
 700	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 701		     &base, &end, (void *)_RET_IP_);
 702
 703	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 704}
 705
 706/**
 707 * memblock_isolate_range - isolate given range into disjoint memblocks
 708 * @type: memblock type to isolate range for
 709 * @base: base of range to isolate
 710 * @size: size of range to isolate
 711 * @start_rgn: out parameter for the start of isolated region
 712 * @end_rgn: out parameter for the end of isolated region
 713 *
 714 * Walk @type and ensure that regions don't cross the boundaries defined by
 715 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 716 * which may create at most two more regions.  The index of the first
 717 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 718 *
 719 * Return:
 720 * 0 on success, -errno on failure.
 721 */
 722static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 723					phys_addr_t base, phys_addr_t size,
 724					int *start_rgn, int *end_rgn)
 725{
 726	phys_addr_t end = base + memblock_cap_size(base, &size);
 727	int idx;
 728	struct memblock_region *rgn;
 729
 730	*start_rgn = *end_rgn = 0;
 731
 732	if (!size)
 733		return 0;
 734
 735	/* we'll create at most two more regions */
 736	while (type->cnt + 2 > type->max)
 737		if (memblock_double_array(type, base, size) < 0)
 738			return -ENOMEM;
 739
 740	for_each_memblock_type(idx, type, rgn) {
 741		phys_addr_t rbase = rgn->base;
 742		phys_addr_t rend = rbase + rgn->size;
 743
 744		if (rbase >= end)
 745			break;
 746		if (rend <= base)
 747			continue;
 748
 749		if (rbase < base) {
 750			/*
 751			 * @rgn intersects from below.  Split and continue
 752			 * to process the next region - the new top half.
 753			 */
 754			rgn->base = base;
 755			rgn->size -= base - rbase;
 756			type->total_size -= base - rbase;
 757			memblock_insert_region(type, idx, rbase, base - rbase,
 758					       memblock_get_region_node(rgn),
 759					       rgn->flags);
 760		} else if (rend > end) {
 761			/*
 762			 * @rgn intersects from above.  Split and redo the
 763			 * current region - the new bottom half.
 764			 */
 765			rgn->base = end;
 766			rgn->size -= end - rbase;
 767			type->total_size -= end - rbase;
 768			memblock_insert_region(type, idx--, rbase, end - rbase,
 769					       memblock_get_region_node(rgn),
 770					       rgn->flags);
 771		} else {
 772			/* @rgn is fully contained, record it */
 773			if (!*end_rgn)
 774				*start_rgn = idx;
 775			*end_rgn = idx + 1;
 776		}
 777	}
 778
 779	return 0;
 780}
 781
 782static int __init_memblock memblock_remove_range(struct memblock_type *type,
 783					  phys_addr_t base, phys_addr_t size)
 784{
 785	int start_rgn, end_rgn;
 786	int i, ret;
 787
 788	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 789	if (ret)
 790		return ret;
 791
 792	for (i = end_rgn - 1; i >= start_rgn; i--)
 793		memblock_remove_region(type, i);
 794	return 0;
 795}
 796
 797int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 798{
 799	phys_addr_t end = base + size - 1;
 800
 801	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 802		     &base, &end, (void *)_RET_IP_);
 803
 804	return memblock_remove_range(&memblock.memory, base, size);
 805}
 806
 807/**
 808 * memblock_free - free boot memory block
 809 * @base: phys starting address of the  boot memory block
 810 * @size: size of the boot memory block in bytes
 811 *
 812 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 813 * The freeing memory will not be released to the buddy allocator.
 814 */
 815int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 816{
 817	phys_addr_t end = base + size - 1;
 818
 819	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 820		     &base, &end, (void *)_RET_IP_);
 821
 822	kmemleak_free_part_phys(base, size);
 823	return memblock_remove_range(&memblock.reserved, base, size);
 824}
 825
 826int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 827{
 828	phys_addr_t end = base + size - 1;
 829
 830	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 831		     &base, &end, (void *)_RET_IP_);
 832
 833	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 834}
 835
 836#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 837int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 838{
 839	phys_addr_t end = base + size - 1;
 840
 841	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 842		     &base, &end, (void *)_RET_IP_);
 843
 844	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 845}
 846#endif
 847
 848/**
 849 * memblock_setclr_flag - set or clear flag for a memory region
 850 * @base: base address of the region
 851 * @size: size of the region
 852 * @set: set or clear the flag
 853 * @flag: the flag to udpate
 854 *
 855 * This function isolates region [@base, @base + @size), and sets/clears flag
 856 *
 857 * Return: 0 on success, -errno on failure.
 858 */
 859static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 860				phys_addr_t size, int set, int flag)
 861{
 862	struct memblock_type *type = &memblock.memory;
 863	int i, ret, start_rgn, end_rgn;
 864
 865	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 866	if (ret)
 867		return ret;
 868
 869	for (i = start_rgn; i < end_rgn; i++) {
 870		struct memblock_region *r = &type->regions[i];
 871
 872		if (set)
 873			r->flags |= flag;
 874		else
 875			r->flags &= ~flag;
 876	}
 877
 878	memblock_merge_regions(type);
 879	return 0;
 880}
 881
 882/**
 883 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 884 * @base: the base phys addr of the region
 885 * @size: the size of the region
 886 *
 887 * Return: 0 on success, -errno on failure.
 888 */
 889int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 890{
 891	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 892}
 893
 894/**
 895 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 896 * @base: the base phys addr of the region
 897 * @size: the size of the region
 898 *
 899 * Return: 0 on success, -errno on failure.
 900 */
 901int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 902{
 903	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 904}
 905
 906/**
 907 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 908 * @base: the base phys addr of the region
 909 * @size: the size of the region
 910 *
 911 * Return: 0 on success, -errno on failure.
 912 */
 913int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 914{
 915	system_has_some_mirror = true;
 916
 917	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 918}
 919
 920/**
 921 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 922 * @base: the base phys addr of the region
 923 * @size: the size of the region
 924 *
 925 * Return: 0 on success, -errno on failure.
 926 */
 927int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 928{
 929	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 930}
 931
 932/**
 933 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 934 * @base: the base phys addr of the region
 935 * @size: the size of the region
 936 *
 937 * Return: 0 on success, -errno on failure.
 938 */
 939int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 940{
 941	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 942}
 943
 944/**
 945 * __next_reserved_mem_region - next function for for_each_reserved_region()
 946 * @idx: pointer to u64 loop variable
 947 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 948 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 949 *
 950 * Iterate over all reserved memory regions.
 951 */
 952void __init_memblock __next_reserved_mem_region(u64 *idx,
 953					   phys_addr_t *out_start,
 954					   phys_addr_t *out_end)
 955{
 956	struct memblock_type *type = &memblock.reserved;
 957
 958	if (*idx < type->cnt) {
 959		struct memblock_region *r = &type->regions[*idx];
 960		phys_addr_t base = r->base;
 961		phys_addr_t size = r->size;
 962
 963		if (out_start)
 964			*out_start = base;
 965		if (out_end)
 966			*out_end = base + size - 1;
 967
 968		*idx += 1;
 969		return;
 970	}
 971
 972	/* signal end of iteration */
 973	*idx = ULLONG_MAX;
 974}
 975
 976static bool should_skip_region(struct memblock_region *m, int nid, int flags)
 977{
 978	int m_nid = memblock_get_region_node(m);
 979
 980	/* only memory regions are associated with nodes, check it */
 981	if (nid != NUMA_NO_NODE && nid != m_nid)
 982		return true;
 983
 984	/* skip hotpluggable memory regions if needed */
 985	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 986		return true;
 987
 988	/* if we want mirror memory skip non-mirror memory regions */
 989	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 990		return true;
 991
 992	/* skip nomap memory unless we were asked for it explicitly */
 993	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 994		return true;
 995
 996	return false;
 997}
 998
 999/**
1000 * __next_mem_range - next function for for_each_free_mem_range() etc.
1001 * @idx: pointer to u64 loop variable
1002 * @nid: node selector, %NUMA_NO_NODE for all nodes
1003 * @flags: pick from blocks based on memory attributes
1004 * @type_a: pointer to memblock_type from where the range is taken
1005 * @type_b: pointer to memblock_type which excludes memory from being taken
1006 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1007 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1008 * @out_nid: ptr to int for nid of the range, can be %NULL
1009 *
1010 * Find the first area from *@idx which matches @nid, fill the out
1011 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1012 * *@idx contains index into type_a and the upper 32bit indexes the
1013 * areas before each region in type_b.	For example, if type_b regions
1014 * look like the following,
1015 *
1016 *	0:[0-16), 1:[32-48), 2:[128-130)
1017 *
1018 * The upper 32bit indexes the following regions.
1019 *
1020 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1021 *
1022 * As both region arrays are sorted, the function advances the two indices
1023 * in lockstep and returns each intersection.
1024 */
1025void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1026		      struct memblock_type *type_a,
1027		      struct memblock_type *type_b, phys_addr_t *out_start,
1028		      phys_addr_t *out_end, int *out_nid)
 
 
1029{
1030	int idx_a = *idx & 0xffffffff;
1031	int idx_b = *idx >> 32;
1032
1033	if (WARN_ONCE(nid == MAX_NUMNODES,
1034	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1035		nid = NUMA_NO_NODE;
1036
1037	for (; idx_a < type_a->cnt; idx_a++) {
1038		struct memblock_region *m = &type_a->regions[idx_a];
1039
1040		phys_addr_t m_start = m->base;
1041		phys_addr_t m_end = m->base + m->size;
1042		int	    m_nid = memblock_get_region_node(m);
1043
1044		if (should_skip_region(m, nid, flags))
1045			continue;
1046
1047		if (!type_b) {
1048			if (out_start)
1049				*out_start = m_start;
1050			if (out_end)
1051				*out_end = m_end;
1052			if (out_nid)
1053				*out_nid = m_nid;
1054			idx_a++;
1055			*idx = (u32)idx_a | (u64)idx_b << 32;
1056			return;
1057		}
1058
1059		/* scan areas before each reservation */
1060		for (; idx_b < type_b->cnt + 1; idx_b++) {
1061			struct memblock_region *r;
1062			phys_addr_t r_start;
1063			phys_addr_t r_end;
1064
1065			r = &type_b->regions[idx_b];
1066			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1067			r_end = idx_b < type_b->cnt ?
1068				r->base : PHYS_ADDR_MAX;
1069
1070			/*
1071			 * if idx_b advanced past idx_a,
1072			 * break out to advance idx_a
1073			 */
1074			if (r_start >= m_end)
1075				break;
1076			/* if the two regions intersect, we're done */
1077			if (m_start < r_end) {
1078				if (out_start)
1079					*out_start =
1080						max(m_start, r_start);
1081				if (out_end)
1082					*out_end = min(m_end, r_end);
1083				if (out_nid)
1084					*out_nid = m_nid;
1085				/*
1086				 * The region which ends first is
1087				 * advanced for the next iteration.
1088				 */
1089				if (m_end <= r_end)
1090					idx_a++;
1091				else
1092					idx_b++;
1093				*idx = (u32)idx_a | (u64)idx_b << 32;
1094				return;
1095			}
1096		}
1097	}
1098
1099	/* signal end of iteration */
1100	*idx = ULLONG_MAX;
1101}
1102
1103/**
1104 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1105 *
1106 * @idx: pointer to u64 loop variable
1107 * @nid: node selector, %NUMA_NO_NODE for all nodes
1108 * @flags: pick from blocks based on memory attributes
1109 * @type_a: pointer to memblock_type from where the range is taken
1110 * @type_b: pointer to memblock_type which excludes memory from being taken
1111 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1112 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1113 * @out_nid: ptr to int for nid of the range, can be %NULL
1114 *
1115 * Finds the next range from type_a which is not marked as unsuitable
1116 * in type_b.
1117 *
1118 * Reverse of __next_mem_range().
1119 */
1120void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1121					  enum memblock_flags flags,
1122					  struct memblock_type *type_a,
1123					  struct memblock_type *type_b,
1124					  phys_addr_t *out_start,
1125					  phys_addr_t *out_end, int *out_nid)
1126{
1127	int idx_a = *idx & 0xffffffff;
1128	int idx_b = *idx >> 32;
1129
1130	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1131		nid = NUMA_NO_NODE;
1132
1133	if (*idx == (u64)ULLONG_MAX) {
1134		idx_a = type_a->cnt - 1;
1135		if (type_b != NULL)
1136			idx_b = type_b->cnt;
1137		else
1138			idx_b = 0;
1139	}
1140
1141	for (; idx_a >= 0; idx_a--) {
1142		struct memblock_region *m = &type_a->regions[idx_a];
1143
1144		phys_addr_t m_start = m->base;
1145		phys_addr_t m_end = m->base + m->size;
1146		int m_nid = memblock_get_region_node(m);
1147
1148		if (should_skip_region(m, nid, flags))
1149			continue;
1150
1151		if (!type_b) {
1152			if (out_start)
1153				*out_start = m_start;
1154			if (out_end)
1155				*out_end = m_end;
1156			if (out_nid)
1157				*out_nid = m_nid;
1158			idx_a--;
1159			*idx = (u32)idx_a | (u64)idx_b << 32;
1160			return;
1161		}
1162
1163		/* scan areas before each reservation */
1164		for (; idx_b >= 0; idx_b--) {
1165			struct memblock_region *r;
1166			phys_addr_t r_start;
1167			phys_addr_t r_end;
1168
1169			r = &type_b->regions[idx_b];
1170			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1171			r_end = idx_b < type_b->cnt ?
1172				r->base : PHYS_ADDR_MAX;
1173			/*
1174			 * if idx_b advanced past idx_a,
1175			 * break out to advance idx_a
1176			 */
1177
1178			if (r_end <= m_start)
1179				break;
1180			/* if the two regions intersect, we're done */
1181			if (m_end > r_start) {
1182				if (out_start)
1183					*out_start = max(m_start, r_start);
1184				if (out_end)
1185					*out_end = min(m_end, r_end);
1186				if (out_nid)
1187					*out_nid = m_nid;
1188				if (m_start >= r_start)
1189					idx_a--;
1190				else
1191					idx_b--;
1192				*idx = (u32)idx_a | (u64)idx_b << 32;
1193				return;
1194			}
1195		}
1196	}
1197	/* signal end of iteration */
1198	*idx = ULLONG_MAX;
1199}
1200
 
1201/*
1202 * Common iterator interface used to define for_each_mem_pfn_range().
1203 */
1204void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1205				unsigned long *out_start_pfn,
1206				unsigned long *out_end_pfn, int *out_nid)
1207{
1208	struct memblock_type *type = &memblock.memory;
1209	struct memblock_region *r;
1210	int r_nid;
1211
1212	while (++*idx < type->cnt) {
1213		r = &type->regions[*idx];
1214		r_nid = memblock_get_region_node(r);
1215
1216		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1217			continue;
1218		if (nid == MAX_NUMNODES || nid == r_nid)
1219			break;
1220	}
1221	if (*idx >= type->cnt) {
1222		*idx = -1;
1223		return;
1224	}
1225
1226	if (out_start_pfn)
1227		*out_start_pfn = PFN_UP(r->base);
1228	if (out_end_pfn)
1229		*out_end_pfn = PFN_DOWN(r->base + r->size);
1230	if (out_nid)
1231		*out_nid = r_nid;
1232}
1233
1234/**
1235 * memblock_set_node - set node ID on memblock regions
1236 * @base: base of area to set node ID for
1237 * @size: size of area to set node ID for
1238 * @type: memblock type to set node ID for
1239 * @nid: node ID to set
1240 *
1241 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1242 * Regions which cross the area boundaries are split as necessary.
1243 *
1244 * Return:
1245 * 0 on success, -errno on failure.
1246 */
1247int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1248				      struct memblock_type *type, int nid)
1249{
1250#ifdef CONFIG_NEED_MULTIPLE_NODES
1251	int start_rgn, end_rgn;
1252	int i, ret;
1253
1254	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1255	if (ret)
1256		return ret;
1257
1258	for (i = start_rgn; i < end_rgn; i++)
1259		memblock_set_region_node(&type->regions[i], nid);
1260
1261	memblock_merge_regions(type);
1262#endif
1263	return 0;
1264}
1265
1266#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1267/**
1268 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1269 *
1270 * @idx: pointer to u64 loop variable
1271 * @zone: zone in which all of the memory blocks reside
1272 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1273 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1274 *
1275 * This function is meant to be a zone/pfn specific wrapper for the
1276 * for_each_mem_range type iterators. Specifically they are used in the
1277 * deferred memory init routines and as such we were duplicating much of
1278 * this logic throughout the code. So instead of having it in multiple
1279 * locations it seemed like it would make more sense to centralize this to
1280 * one new iterator that does everything they need.
1281 */
1282void __init_memblock
1283__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1284			     unsigned long *out_spfn, unsigned long *out_epfn)
1285{
1286	int zone_nid = zone_to_nid(zone);
1287	phys_addr_t spa, epa;
1288	int nid;
1289
1290	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1291			 &memblock.memory, &memblock.reserved,
1292			 &spa, &epa, &nid);
1293
1294	while (*idx != U64_MAX) {
1295		unsigned long epfn = PFN_DOWN(epa);
1296		unsigned long spfn = PFN_UP(spa);
1297
1298		/*
1299		 * Verify the end is at least past the start of the zone and
1300		 * that we have at least one PFN to initialize.
1301		 */
1302		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1303			/* if we went too far just stop searching */
1304			if (zone_end_pfn(zone) <= spfn) {
1305				*idx = U64_MAX;
1306				break;
1307			}
1308
1309			if (out_spfn)
1310				*out_spfn = max(zone->zone_start_pfn, spfn);
1311			if (out_epfn)
1312				*out_epfn = min(zone_end_pfn(zone), epfn);
1313
1314			return;
1315		}
1316
1317		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1318				 &memblock.memory, &memblock.reserved,
1319				 &spa, &epa, &nid);
1320	}
1321
1322	/* signal end of iteration */
1323	if (out_spfn)
1324		*out_spfn = ULONG_MAX;
1325	if (out_epfn)
1326		*out_epfn = 0;
1327}
1328
1329#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1330
1331/**
1332 * memblock_alloc_range_nid - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @start: the lower bound of the memory region to allocate (phys address)
1336 * @end: the upper bound of the memory region to allocate (phys address)
1337 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1338 * @exact_nid: control the allocation fall back to other nodes
1339 *
1340 * The allocation is performed from memory region limited by
1341 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1342 *
1343 * If the specified node can not hold the requested memory and @exact_nid
1344 * is false, the allocation falls back to any node in the system.
1345 *
1346 * For systems with memory mirroring, the allocation is attempted first
1347 * from the regions with mirroring enabled and then retried from any
1348 * memory region.
1349 *
1350 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1351 * allocated boot memory block, so that it is never reported as leaks.
1352 *
1353 * Return:
1354 * Physical address of allocated memory block on success, %0 on failure.
1355 */
1356phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1357					phys_addr_t align, phys_addr_t start,
1358					phys_addr_t end, int nid,
1359					bool exact_nid)
1360{
1361	enum memblock_flags flags = choose_memblock_flags();
1362	phys_addr_t found;
1363
1364	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1365		nid = NUMA_NO_NODE;
1366
1367	if (!align) {
1368		/* Can't use WARNs this early in boot on powerpc */
1369		dump_stack();
1370		align = SMP_CACHE_BYTES;
1371	}
1372
1373again:
1374	found = memblock_find_in_range_node(size, align, start, end, nid,
1375					    flags);
1376	if (found && !memblock_reserve(found, size))
1377		goto done;
1378
1379	if (nid != NUMA_NO_NODE && !exact_nid) {
1380		found = memblock_find_in_range_node(size, align, start,
1381						    end, NUMA_NO_NODE,
1382						    flags);
1383		if (found && !memblock_reserve(found, size))
1384			goto done;
1385	}
1386
1387	if (flags & MEMBLOCK_MIRROR) {
1388		flags &= ~MEMBLOCK_MIRROR;
1389		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1390			&size);
1391		goto again;
1392	}
1393
1394	return 0;
1395
1396done:
1397	/* Skip kmemleak for kasan_init() due to high volume. */
1398	if (end != MEMBLOCK_ALLOC_KASAN)
1399		/*
1400		 * The min_count is set to 0 so that memblock allocated
1401		 * blocks are never reported as leaks. This is because many
1402		 * of these blocks are only referred via the physical
1403		 * address which is not looked up by kmemleak.
1404		 */
1405		kmemleak_alloc_phys(found, size, 0, 0);
1406
1407	return found;
1408}
1409
1410/**
1411 * memblock_phys_alloc_range - allocate a memory block inside specified range
1412 * @size: size of memory block to be allocated in bytes
1413 * @align: alignment of the region and block's size
1414 * @start: the lower bound of the memory region to allocate (physical address)
1415 * @end: the upper bound of the memory region to allocate (physical address)
1416 *
1417 * Allocate @size bytes in the between @start and @end.
1418 *
1419 * Return: physical address of the allocated memory block on success,
1420 * %0 on failure.
1421 */
1422phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1423					     phys_addr_t align,
1424					     phys_addr_t start,
1425					     phys_addr_t end)
1426{
1427	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1428					false);
1429}
1430
1431/**
1432 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1433 * @size: size of memory block to be allocated in bytes
1434 * @align: alignment of the region and block's size
1435 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1436 *
1437 * Allocates memory block from the specified NUMA node. If the node
1438 * has no available memory, attempts to allocated from any node in the
1439 * system.
1440 *
1441 * Return: physical address of the allocated memory block on success,
1442 * %0 on failure.
1443 */
1444phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1445{
1446	return memblock_alloc_range_nid(size, align, 0,
1447					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1448}
1449
1450/**
1451 * memblock_alloc_internal - allocate boot memory block
1452 * @size: size of memory block to be allocated in bytes
1453 * @align: alignment of the region and block's size
1454 * @min_addr: the lower bound of the memory region to allocate (phys address)
1455 * @max_addr: the upper bound of the memory region to allocate (phys address)
1456 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1457 * @exact_nid: control the allocation fall back to other nodes
1458 *
1459 * Allocates memory block using memblock_alloc_range_nid() and
1460 * converts the returned physical address to virtual.
1461 *
1462 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1463 * will fall back to memory below @min_addr. Other constraints, such
1464 * as node and mirrored memory will be handled again in
1465 * memblock_alloc_range_nid().
1466 *
1467 * Return:
1468 * Virtual address of allocated memory block on success, NULL on failure.
1469 */
1470static void * __init memblock_alloc_internal(
1471				phys_addr_t size, phys_addr_t align,
1472				phys_addr_t min_addr, phys_addr_t max_addr,
1473				int nid, bool exact_nid)
1474{
1475	phys_addr_t alloc;
1476
1477	/*
1478	 * Detect any accidental use of these APIs after slab is ready, as at
1479	 * this moment memblock may be deinitialized already and its
1480	 * internal data may be destroyed (after execution of memblock_free_all)
1481	 */
1482	if (WARN_ON_ONCE(slab_is_available()))
1483		return kzalloc_node(size, GFP_NOWAIT, nid);
1484
1485	if (max_addr > memblock.current_limit)
1486		max_addr = memblock.current_limit;
1487
1488	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1489					exact_nid);
1490
1491	/* retry allocation without lower limit */
1492	if (!alloc && min_addr)
1493		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1494						exact_nid);
1495
1496	if (!alloc)
1497		return NULL;
1498
1499	return phys_to_virt(alloc);
1500}
1501
1502/**
1503 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1504 * without zeroing memory
1505 * @size: size of memory block to be allocated in bytes
1506 * @align: alignment of the region and block's size
1507 * @min_addr: the lower bound of the memory region from where the allocation
1508 *	  is preferred (phys address)
1509 * @max_addr: the upper bound of the memory region from where the allocation
1510 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1511 *	      allocate only from memory limited by memblock.current_limit value
1512 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1513 *
1514 * Public function, provides additional debug information (including caller
1515 * info), if enabled. Does not zero allocated memory.
1516 *
1517 * Return:
1518 * Virtual address of allocated memory block on success, NULL on failure.
1519 */
1520void * __init memblock_alloc_exact_nid_raw(
1521			phys_addr_t size, phys_addr_t align,
1522			phys_addr_t min_addr, phys_addr_t max_addr,
1523			int nid)
1524{
1525	void *ptr;
1526
1527	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1528		     __func__, (u64)size, (u64)align, nid, &min_addr,
1529		     &max_addr, (void *)_RET_IP_);
1530
1531	ptr = memblock_alloc_internal(size, align,
1532					   min_addr, max_addr, nid, true);
1533	if (ptr && size > 0)
1534		page_init_poison(ptr, size);
1535
1536	return ptr;
1537}
1538
1539/**
1540 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1541 * memory and without panicking
1542 * @size: size of memory block to be allocated in bytes
1543 * @align: alignment of the region and block's size
1544 * @min_addr: the lower bound of the memory region from where the allocation
1545 *	  is preferred (phys address)
1546 * @max_addr: the upper bound of the memory region from where the allocation
1547 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1548 *	      allocate only from memory limited by memblock.current_limit value
1549 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1550 *
1551 * Public function, provides additional debug information (including caller
1552 * info), if enabled. Does not zero allocated memory, does not panic if request
1553 * cannot be satisfied.
1554 *
1555 * Return:
1556 * Virtual address of allocated memory block on success, NULL on failure.
1557 */
1558void * __init memblock_alloc_try_nid_raw(
1559			phys_addr_t size, phys_addr_t align,
1560			phys_addr_t min_addr, phys_addr_t max_addr,
1561			int nid)
1562{
1563	void *ptr;
1564
1565	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1566		     __func__, (u64)size, (u64)align, nid, &min_addr,
1567		     &max_addr, (void *)_RET_IP_);
1568
1569	ptr = memblock_alloc_internal(size, align,
1570					   min_addr, max_addr, nid, false);
1571	if (ptr && size > 0)
1572		page_init_poison(ptr, size);
1573
1574	return ptr;
1575}
1576
1577/**
1578 * memblock_alloc_try_nid - allocate boot memory block
1579 * @size: size of memory block to be allocated in bytes
1580 * @align: alignment of the region and block's size
1581 * @min_addr: the lower bound of the memory region from where the allocation
1582 *	  is preferred (phys address)
1583 * @max_addr: the upper bound of the memory region from where the allocation
1584 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585 *	      allocate only from memory limited by memblock.current_limit value
1586 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1587 *
1588 * Public function, provides additional debug information (including caller
1589 * info), if enabled. This function zeroes the allocated memory.
1590 *
1591 * Return:
1592 * Virtual address of allocated memory block on success, NULL on failure.
1593 */
1594void * __init memblock_alloc_try_nid(
1595			phys_addr_t size, phys_addr_t align,
1596			phys_addr_t min_addr, phys_addr_t max_addr,
1597			int nid)
1598{
1599	void *ptr;
1600
1601	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602		     __func__, (u64)size, (u64)align, nid, &min_addr,
1603		     &max_addr, (void *)_RET_IP_);
1604	ptr = memblock_alloc_internal(size, align,
1605					   min_addr, max_addr, nid, false);
1606	if (ptr)
1607		memset(ptr, 0, size);
1608
1609	return ptr;
1610}
1611
1612/**
1613 * __memblock_free_late - free pages directly to buddy allocator
1614 * @base: phys starting address of the  boot memory block
1615 * @size: size of the boot memory block in bytes
1616 *
1617 * This is only useful when the memblock allocator has already been torn
1618 * down, but we are still initializing the system.  Pages are released directly
1619 * to the buddy allocator.
1620 */
1621void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1622{
1623	phys_addr_t cursor, end;
1624
1625	end = base + size - 1;
1626	memblock_dbg("%s: [%pa-%pa] %pS\n",
1627		     __func__, &base, &end, (void *)_RET_IP_);
1628	kmemleak_free_part_phys(base, size);
1629	cursor = PFN_UP(base);
1630	end = PFN_DOWN(base + size);
1631
1632	for (; cursor < end; cursor++) {
1633		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1634		totalram_pages_inc();
1635	}
1636}
1637
1638/*
1639 * Remaining API functions
1640 */
1641
1642phys_addr_t __init_memblock memblock_phys_mem_size(void)
1643{
1644	return memblock.memory.total_size;
1645}
1646
1647phys_addr_t __init_memblock memblock_reserved_size(void)
1648{
1649	return memblock.reserved.total_size;
1650}
1651
1652phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1653{
1654	unsigned long pages = 0;
1655	struct memblock_region *r;
1656	unsigned long start_pfn, end_pfn;
1657
1658	for_each_memblock(memory, r) {
1659		start_pfn = memblock_region_memory_base_pfn(r);
1660		end_pfn = memblock_region_memory_end_pfn(r);
1661		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1662		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1663		pages += end_pfn - start_pfn;
1664	}
1665
1666	return PFN_PHYS(pages);
1667}
1668
1669/* lowest address */
1670phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1671{
1672	return memblock.memory.regions[0].base;
1673}
1674
1675phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1676{
1677	int idx = memblock.memory.cnt - 1;
1678
1679	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1680}
1681
1682static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1683{
1684	phys_addr_t max_addr = PHYS_ADDR_MAX;
1685	struct memblock_region *r;
1686
1687	/*
1688	 * translate the memory @limit size into the max address within one of
1689	 * the memory memblock regions, if the @limit exceeds the total size
1690	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1691	 */
1692	for_each_memblock(memory, r) {
1693		if (limit <= r->size) {
1694			max_addr = r->base + limit;
1695			break;
1696		}
1697		limit -= r->size;
1698	}
1699
1700	return max_addr;
1701}
1702
1703void __init memblock_enforce_memory_limit(phys_addr_t limit)
1704{
1705	phys_addr_t max_addr;
1706
1707	if (!limit)
1708		return;
1709
1710	max_addr = __find_max_addr(limit);
1711
1712	/* @limit exceeds the total size of the memory, do nothing */
1713	if (max_addr == PHYS_ADDR_MAX)
1714		return;
1715
1716	/* truncate both memory and reserved regions */
1717	memblock_remove_range(&memblock.memory, max_addr,
1718			      PHYS_ADDR_MAX);
1719	memblock_remove_range(&memblock.reserved, max_addr,
1720			      PHYS_ADDR_MAX);
1721}
1722
1723void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1724{
1725	int start_rgn, end_rgn;
1726	int i, ret;
1727
1728	if (!size)
1729		return;
1730
1731	ret = memblock_isolate_range(&memblock.memory, base, size,
1732						&start_rgn, &end_rgn);
1733	if (ret)
1734		return;
1735
1736	/* remove all the MAP regions */
1737	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1738		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1739			memblock_remove_region(&memblock.memory, i);
1740
1741	for (i = start_rgn - 1; i >= 0; i--)
1742		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1743			memblock_remove_region(&memblock.memory, i);
1744
1745	/* truncate the reserved regions */
1746	memblock_remove_range(&memblock.reserved, 0, base);
1747	memblock_remove_range(&memblock.reserved,
1748			base + size, PHYS_ADDR_MAX);
1749}
1750
1751void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1752{
1753	phys_addr_t max_addr;
1754
1755	if (!limit)
1756		return;
1757
1758	max_addr = __find_max_addr(limit);
1759
1760	/* @limit exceeds the total size of the memory, do nothing */
1761	if (max_addr == PHYS_ADDR_MAX)
1762		return;
1763
1764	memblock_cap_memory_range(0, max_addr);
1765}
1766
1767static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1768{
1769	unsigned int left = 0, right = type->cnt;
1770
1771	do {
1772		unsigned int mid = (right + left) / 2;
1773
1774		if (addr < type->regions[mid].base)
1775			right = mid;
1776		else if (addr >= (type->regions[mid].base +
1777				  type->regions[mid].size))
1778			left = mid + 1;
1779		else
1780			return mid;
1781	} while (left < right);
1782	return -1;
1783}
1784
1785bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1786{
1787	return memblock_search(&memblock.reserved, addr) != -1;
1788}
1789
1790bool __init_memblock memblock_is_memory(phys_addr_t addr)
1791{
1792	return memblock_search(&memblock.memory, addr) != -1;
1793}
1794
1795bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1796{
1797	int i = memblock_search(&memblock.memory, addr);
1798
1799	if (i == -1)
1800		return false;
1801	return !memblock_is_nomap(&memblock.memory.regions[i]);
1802}
1803
 
1804int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1805			 unsigned long *start_pfn, unsigned long *end_pfn)
1806{
1807	struct memblock_type *type = &memblock.memory;
1808	int mid = memblock_search(type, PFN_PHYS(pfn));
1809
1810	if (mid == -1)
1811		return -1;
1812
1813	*start_pfn = PFN_DOWN(type->regions[mid].base);
1814	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1815
1816	return memblock_get_region_node(&type->regions[mid]);
1817}
 
1818
1819/**
1820 * memblock_is_region_memory - check if a region is a subset of memory
1821 * @base: base of region to check
1822 * @size: size of region to check
1823 *
1824 * Check if the region [@base, @base + @size) is a subset of a memory block.
1825 *
1826 * Return:
1827 * 0 if false, non-zero if true
1828 */
1829bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1830{
1831	int idx = memblock_search(&memblock.memory, base);
1832	phys_addr_t end = base + memblock_cap_size(base, &size);
1833
1834	if (idx == -1)
1835		return false;
1836	return (memblock.memory.regions[idx].base +
1837		 memblock.memory.regions[idx].size) >= end;
1838}
1839
1840/**
1841 * memblock_is_region_reserved - check if a region intersects reserved memory
1842 * @base: base of region to check
1843 * @size: size of region to check
1844 *
1845 * Check if the region [@base, @base + @size) intersects a reserved
1846 * memory block.
1847 *
1848 * Return:
1849 * True if they intersect, false if not.
1850 */
1851bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1852{
1853	memblock_cap_size(base, &size);
1854	return memblock_overlaps_region(&memblock.reserved, base, size);
1855}
1856
1857void __init_memblock memblock_trim_memory(phys_addr_t align)
1858{
1859	phys_addr_t start, end, orig_start, orig_end;
1860	struct memblock_region *r;
1861
1862	for_each_memblock(memory, r) {
1863		orig_start = r->base;
1864		orig_end = r->base + r->size;
1865		start = round_up(orig_start, align);
1866		end = round_down(orig_end, align);
1867
1868		if (start == orig_start && end == orig_end)
1869			continue;
1870
1871		if (start < end) {
1872			r->base = start;
1873			r->size = end - start;
1874		} else {
1875			memblock_remove_region(&memblock.memory,
1876					       r - memblock.memory.regions);
1877			r--;
1878		}
1879	}
1880}
1881
1882void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1883{
1884	memblock.current_limit = limit;
1885}
1886
1887phys_addr_t __init_memblock memblock_get_current_limit(void)
1888{
1889	return memblock.current_limit;
1890}
1891
1892static void __init_memblock memblock_dump(struct memblock_type *type)
1893{
1894	phys_addr_t base, end, size;
1895	enum memblock_flags flags;
1896	int idx;
1897	struct memblock_region *rgn;
1898
1899	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1900
1901	for_each_memblock_type(idx, type, rgn) {
1902		char nid_buf[32] = "";
1903
1904		base = rgn->base;
1905		size = rgn->size;
1906		end = base + size - 1;
1907		flags = rgn->flags;
1908#ifdef CONFIG_NEED_MULTIPLE_NODES
1909		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1910			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1911				 memblock_get_region_node(rgn));
1912#endif
1913		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1914			type->name, idx, &base, &end, &size, nid_buf, flags);
1915	}
1916}
1917
1918void __init_memblock __memblock_dump_all(void)
1919{
1920	pr_info("MEMBLOCK configuration:\n");
1921	pr_info(" memory size = %pa reserved size = %pa\n",
1922		&memblock.memory.total_size,
1923		&memblock.reserved.total_size);
1924
1925	memblock_dump(&memblock.memory);
1926	memblock_dump(&memblock.reserved);
1927#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1928	memblock_dump(&physmem);
1929#endif
1930}
1931
1932void __init memblock_allow_resize(void)
1933{
1934	memblock_can_resize = 1;
1935}
1936
1937static int __init early_memblock(char *p)
1938{
1939	if (p && strstr(p, "debug"))
1940		memblock_debug = 1;
1941	return 0;
1942}
1943early_param("memblock", early_memblock);
1944
1945static void __init __free_pages_memory(unsigned long start, unsigned long end)
1946{
1947	int order;
1948
1949	while (start < end) {
1950		order = min(MAX_ORDER - 1UL, __ffs(start));
1951
1952		while (start + (1UL << order) > end)
1953			order--;
1954
1955		memblock_free_pages(pfn_to_page(start), start, order);
1956
1957		start += (1UL << order);
1958	}
1959}
1960
1961static unsigned long __init __free_memory_core(phys_addr_t start,
1962				 phys_addr_t end)
1963{
1964	unsigned long start_pfn = PFN_UP(start);
1965	unsigned long end_pfn = min_t(unsigned long,
1966				      PFN_DOWN(end), max_low_pfn);
1967
1968	if (start_pfn >= end_pfn)
1969		return 0;
1970
1971	__free_pages_memory(start_pfn, end_pfn);
1972
1973	return end_pfn - start_pfn;
1974}
1975
1976static unsigned long __init free_low_memory_core_early(void)
1977{
1978	unsigned long count = 0;
1979	phys_addr_t start, end;
1980	u64 i;
1981
1982	memblock_clear_hotplug(0, -1);
1983
1984	for_each_reserved_mem_region(i, &start, &end)
1985		reserve_bootmem_region(start, end);
1986
1987	/*
1988	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1989	 *  because in some case like Node0 doesn't have RAM installed
1990	 *  low ram will be on Node1
1991	 */
1992	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1993				NULL)
1994		count += __free_memory_core(start, end);
1995
1996	return count;
1997}
1998
1999static int reset_managed_pages_done __initdata;
2000
2001void reset_node_managed_pages(pg_data_t *pgdat)
2002{
2003	struct zone *z;
2004
2005	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2006		atomic_long_set(&z->managed_pages, 0);
2007}
2008
2009void __init reset_all_zones_managed_pages(void)
2010{
2011	struct pglist_data *pgdat;
2012
2013	if (reset_managed_pages_done)
2014		return;
2015
2016	for_each_online_pgdat(pgdat)
2017		reset_node_managed_pages(pgdat);
2018
2019	reset_managed_pages_done = 1;
2020}
2021
2022/**
2023 * memblock_free_all - release free pages to the buddy allocator
2024 *
2025 * Return: the number of pages actually released.
2026 */
2027unsigned long __init memblock_free_all(void)
2028{
2029	unsigned long pages;
2030
2031	reset_all_zones_managed_pages();
2032
2033	pages = free_low_memory_core_early();
2034	totalram_pages_add(pages);
2035
2036	return pages;
2037}
2038
2039#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2040
2041static int memblock_debug_show(struct seq_file *m, void *private)
2042{
2043	struct memblock_type *type = m->private;
2044	struct memblock_region *reg;
2045	int i;
2046	phys_addr_t end;
2047
2048	for (i = 0; i < type->cnt; i++) {
2049		reg = &type->regions[i];
2050		end = reg->base + reg->size - 1;
2051
2052		seq_printf(m, "%4d: ", i);
2053		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2054	}
2055	return 0;
2056}
2057DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2058
2059static int __init memblock_init_debugfs(void)
2060{
2061	struct dentry *root = debugfs_create_dir("memblock", NULL);
2062
2063	debugfs_create_file("memory", 0444, root,
2064			    &memblock.memory, &memblock_debug_fops);
2065	debugfs_create_file("reserved", 0444, root,
2066			    &memblock.reserved, &memblock_debug_fops);
2067#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2068	debugfs_create_file("physmem", 0444, root, &physmem,
2069			    &memblock_debug_fops);
2070#endif
2071
2072	return 0;
2073}
2074__initcall(memblock_init_debugfs);
2075
2076#endif /* CONFIG_DEBUG_FS */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32/**
  33 * DOC: memblock overview
  34 *
  35 * Memblock is a method of managing memory regions during the early
  36 * boot period when the usual kernel memory allocators are not up and
  37 * running.
  38 *
  39 * Memblock views the system memory as collections of contiguous
  40 * regions. There are several types of these collections:
  41 *
  42 * * ``memory`` - describes the physical memory available to the
  43 *   kernel; this may differ from the actual physical memory installed
  44 *   in the system, for instance when the memory is restricted with
  45 *   ``mem=`` command line parameter
  46 * * ``reserved`` - describes the regions that were allocated
  47 * * ``physmap`` - describes the actual physical memory regardless of
  48 *   the possible restrictions; the ``physmap`` type is only available
  49 *   on some architectures.
  50 *
  51 * Each region is represented by :c:type:`struct memblock_region` that
  52 * defines the region extents, its attributes and NUMA node id on NUMA
  53 * systems. Every memory type is described by the :c:type:`struct
  54 * memblock_type` which contains an array of memory regions along with
  55 * the allocator metadata. The memory types are nicely wrapped with
  56 * :c:type:`struct memblock`. This structure is statically initialzed
  57 * at build time. The region arrays for the "memory" and "reserved"
  58 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
  59 * "physmap" type to %INIT_PHYSMEM_REGIONS.
  60 * The :c:func:`memblock_allow_resize` enables automatic resizing of
  61 * the region arrays during addition of new regions. This feature
  62 * should be used with care so that memory allocated for the region
  63 * array will not overlap with areas that should be reserved, for
  64 * example initrd.
  65 *
  66 * The early architecture setup should tell memblock what the physical
  67 * memory layout is by using :c:func:`memblock_add` or
  68 * :c:func:`memblock_add_node` functions. The first function does not
  69 * assign the region to a NUMA node and it is appropriate for UMA
  70 * systems. Yet, it is possible to use it on NUMA systems as well and
  71 * assign the region to a NUMA node later in the setup process using
  72 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
  73 * performs such an assignment directly.
  74 *
  75 * Once memblock is setup the memory can be allocated using one of the
  76 * API variants:
  77 *
  78 * * :c:func:`memblock_phys_alloc*` - these functions return the
  79 *   **physical** address of the allocated memory
  80 * * :c:func:`memblock_alloc*` - these functions return the **virtual**
  81 *   address of the allocated memory.
  82 *
  83 * Note, that both API variants use implict assumptions about allowed
  84 * memory ranges and the fallback methods. Consult the documentation
  85 * of :c:func:`memblock_alloc_internal` and
  86 * :c:func:`memblock_alloc_range_nid` functions for more elaboarte
  87 * description.
  88 *
  89 * As the system boot progresses, the architecture specific
  90 * :c:func:`mem_init` function frees all the memory to the buddy page
  91 * allocator.
  92 *
  93 * Unless an architecure enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  94 * memblock data structures will be discarded after the system
  95 * initialization compltes.
  96 */
  97
  98#ifndef CONFIG_NEED_MULTIPLE_NODES
  99struct pglist_data __refdata contig_page_data;
 100EXPORT_SYMBOL(contig_page_data);
 101#endif
 102
 103unsigned long max_low_pfn;
 104unsigned long min_low_pfn;
 105unsigned long max_pfn;
 106unsigned long long max_possible_pfn;
 107
 108static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 109static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 110#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 111static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
 112#endif
 113
 114struct memblock memblock __initdata_memblock = {
 115	.memory.regions		= memblock_memory_init_regions,
 116	.memory.cnt		= 1,	/* empty dummy entry */
 117	.memory.max		= INIT_MEMBLOCK_REGIONS,
 118	.memory.name		= "memory",
 119
 120	.reserved.regions	= memblock_reserved_init_regions,
 121	.reserved.cnt		= 1,	/* empty dummy entry */
 122	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 123	.reserved.name		= "reserved",
 124
 125#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 126	.physmem.regions	= memblock_physmem_init_regions,
 127	.physmem.cnt		= 1,	/* empty dummy entry */
 128	.physmem.max		= INIT_PHYSMEM_REGIONS,
 129	.physmem.name		= "physmem",
 130#endif
 131
 132	.bottom_up		= false,
 133	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 134};
 135
 
 
 
 
 
 
 
 
 
 136int memblock_debug __initdata_memblock;
 137static bool system_has_some_mirror __initdata_memblock = false;
 138static int memblock_can_resize __initdata_memblock;
 139static int memblock_memory_in_slab __initdata_memblock = 0;
 140static int memblock_reserved_in_slab __initdata_memblock = 0;
 141
 142static enum memblock_flags __init_memblock choose_memblock_flags(void)
 143{
 144	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 145}
 146
 147/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 148static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 149{
 150	return *size = min(*size, PHYS_ADDR_MAX - base);
 151}
 152
 153/*
 154 * Address comparison utilities
 155 */
 156static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 157				       phys_addr_t base2, phys_addr_t size2)
 158{
 159	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 160}
 161
 162bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 163					phys_addr_t base, phys_addr_t size)
 164{
 165	unsigned long i;
 166
 167	for (i = 0; i < type->cnt; i++)
 168		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 169					   type->regions[i].size))
 170			break;
 171	return i < type->cnt;
 172}
 173
 174/**
 175 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 176 * @start: start of candidate range
 177 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 178 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 179 * @size: size of free area to find
 180 * @align: alignment of free area to find
 181 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 182 * @flags: pick from blocks based on memory attributes
 183 *
 184 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 185 *
 186 * Return:
 187 * Found address on success, 0 on failure.
 188 */
 189static phys_addr_t __init_memblock
 190__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 191				phys_addr_t size, phys_addr_t align, int nid,
 192				enum memblock_flags flags)
 193{
 194	phys_addr_t this_start, this_end, cand;
 195	u64 i;
 196
 197	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 198		this_start = clamp(this_start, start, end);
 199		this_end = clamp(this_end, start, end);
 200
 201		cand = round_up(this_start, align);
 202		if (cand < this_end && this_end - cand >= size)
 203			return cand;
 204	}
 205
 206	return 0;
 207}
 208
 209/**
 210 * __memblock_find_range_top_down - find free area utility, in top-down
 211 * @start: start of candidate range
 212 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 213 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 214 * @size: size of free area to find
 215 * @align: alignment of free area to find
 216 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 217 * @flags: pick from blocks based on memory attributes
 218 *
 219 * Utility called from memblock_find_in_range_node(), find free area top-down.
 220 *
 221 * Return:
 222 * Found address on success, 0 on failure.
 223 */
 224static phys_addr_t __init_memblock
 225__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 226			       phys_addr_t size, phys_addr_t align, int nid,
 227			       enum memblock_flags flags)
 228{
 229	phys_addr_t this_start, this_end, cand;
 230	u64 i;
 231
 232	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 233					NULL) {
 234		this_start = clamp(this_start, start, end);
 235		this_end = clamp(this_end, start, end);
 236
 237		if (this_end < size)
 238			continue;
 239
 240		cand = round_down(this_end - size, align);
 241		if (cand >= this_start)
 242			return cand;
 243	}
 244
 245	return 0;
 246}
 247
 248/**
 249 * memblock_find_in_range_node - find free area in given range and node
 250 * @size: size of free area to find
 251 * @align: alignment of free area to find
 252 * @start: start of candidate range
 253 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 254 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 255 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 256 * @flags: pick from blocks based on memory attributes
 257 *
 258 * Find @size free area aligned to @align in the specified range and node.
 259 *
 260 * When allocation direction is bottom-up, the @start should be greater
 261 * than the end of the kernel image. Otherwise, it will be trimmed. The
 262 * reason is that we want the bottom-up allocation just near the kernel
 263 * image so it is highly likely that the allocated memory and the kernel
 264 * will reside in the same node.
 265 *
 266 * If bottom-up allocation failed, will try to allocate memory top-down.
 267 *
 268 * Return:
 269 * Found address on success, 0 on failure.
 270 */
 271static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 272					phys_addr_t align, phys_addr_t start,
 273					phys_addr_t end, int nid,
 274					enum memblock_flags flags)
 275{
 276	phys_addr_t kernel_end, ret;
 277
 278	/* pump up @end */
 279	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 280	    end == MEMBLOCK_ALLOC_KASAN)
 281		end = memblock.current_limit;
 282
 283	/* avoid allocating the first page */
 284	start = max_t(phys_addr_t, start, PAGE_SIZE);
 285	end = max(start, end);
 286	kernel_end = __pa_symbol(_end);
 287
 288	/*
 289	 * try bottom-up allocation only when bottom-up mode
 290	 * is set and @end is above the kernel image.
 291	 */
 292	if (memblock_bottom_up() && end > kernel_end) {
 293		phys_addr_t bottom_up_start;
 294
 295		/* make sure we will allocate above the kernel */
 296		bottom_up_start = max(start, kernel_end);
 297
 298		/* ok, try bottom-up allocation first */
 299		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 300						      size, align, nid, flags);
 301		if (ret)
 302			return ret;
 303
 304		/*
 305		 * we always limit bottom-up allocation above the kernel,
 306		 * but top-down allocation doesn't have the limit, so
 307		 * retrying top-down allocation may succeed when bottom-up
 308		 * allocation failed.
 309		 *
 310		 * bottom-up allocation is expected to be fail very rarely,
 311		 * so we use WARN_ONCE() here to see the stack trace if
 312		 * fail happens.
 313		 */
 314		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
 315			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
 316	}
 317
 318	return __memblock_find_range_top_down(start, end, size, align, nid,
 319					      flags);
 320}
 321
 322/**
 323 * memblock_find_in_range - find free area in given range
 324 * @start: start of candidate range
 325 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 326 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 327 * @size: size of free area to find
 328 * @align: alignment of free area to find
 329 *
 330 * Find @size free area aligned to @align in the specified range.
 331 *
 332 * Return:
 333 * Found address on success, 0 on failure.
 334 */
 335phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 336					phys_addr_t end, phys_addr_t size,
 337					phys_addr_t align)
 338{
 339	phys_addr_t ret;
 340	enum memblock_flags flags = choose_memblock_flags();
 341
 342again:
 343	ret = memblock_find_in_range_node(size, align, start, end,
 344					    NUMA_NO_NODE, flags);
 345
 346	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 347		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 348			&size);
 349		flags &= ~MEMBLOCK_MIRROR;
 350		goto again;
 351	}
 352
 353	return ret;
 354}
 355
 356static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 357{
 358	type->total_size -= type->regions[r].size;
 359	memmove(&type->regions[r], &type->regions[r + 1],
 360		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 361	type->cnt--;
 362
 363	/* Special case for empty arrays */
 364	if (type->cnt == 0) {
 365		WARN_ON(type->total_size != 0);
 366		type->cnt = 1;
 367		type->regions[0].base = 0;
 368		type->regions[0].size = 0;
 369		type->regions[0].flags = 0;
 370		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 371	}
 372}
 373
 374#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 375/**
 376 * memblock_discard - discard memory and reserved arrays if they were allocated
 377 */
 378void __init memblock_discard(void)
 379{
 380	phys_addr_t addr, size;
 381
 382	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 383		addr = __pa(memblock.reserved.regions);
 384		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 385				  memblock.reserved.max);
 386		__memblock_free_late(addr, size);
 387	}
 388
 389	if (memblock.memory.regions != memblock_memory_init_regions) {
 390		addr = __pa(memblock.memory.regions);
 391		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 392				  memblock.memory.max);
 393		__memblock_free_late(addr, size);
 394	}
 395}
 396#endif
 397
 398/**
 399 * memblock_double_array - double the size of the memblock regions array
 400 * @type: memblock type of the regions array being doubled
 401 * @new_area_start: starting address of memory range to avoid overlap with
 402 * @new_area_size: size of memory range to avoid overlap with
 403 *
 404 * Double the size of the @type regions array. If memblock is being used to
 405 * allocate memory for a new reserved regions array and there is a previously
 406 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 407 * waiting to be reserved, ensure the memory used by the new array does
 408 * not overlap.
 409 *
 410 * Return:
 411 * 0 on success, -1 on failure.
 412 */
 413static int __init_memblock memblock_double_array(struct memblock_type *type,
 414						phys_addr_t new_area_start,
 415						phys_addr_t new_area_size)
 416{
 417	struct memblock_region *new_array, *old_array;
 418	phys_addr_t old_alloc_size, new_alloc_size;
 419	phys_addr_t old_size, new_size, addr, new_end;
 420	int use_slab = slab_is_available();
 421	int *in_slab;
 422
 423	/* We don't allow resizing until we know about the reserved regions
 424	 * of memory that aren't suitable for allocation
 425	 */
 426	if (!memblock_can_resize)
 427		return -1;
 428
 429	/* Calculate new doubled size */
 430	old_size = type->max * sizeof(struct memblock_region);
 431	new_size = old_size << 1;
 432	/*
 433	 * We need to allocated new one align to PAGE_SIZE,
 434	 *   so we can free them completely later.
 435	 */
 436	old_alloc_size = PAGE_ALIGN(old_size);
 437	new_alloc_size = PAGE_ALIGN(new_size);
 438
 439	/* Retrieve the slab flag */
 440	if (type == &memblock.memory)
 441		in_slab = &memblock_memory_in_slab;
 442	else
 443		in_slab = &memblock_reserved_in_slab;
 444
 445	/* Try to find some space for it */
 446	if (use_slab) {
 447		new_array = kmalloc(new_size, GFP_KERNEL);
 448		addr = new_array ? __pa(new_array) : 0;
 449	} else {
 450		/* only exclude range when trying to double reserved.regions */
 451		if (type != &memblock.reserved)
 452			new_area_start = new_area_size = 0;
 453
 454		addr = memblock_find_in_range(new_area_start + new_area_size,
 455						memblock.current_limit,
 456						new_alloc_size, PAGE_SIZE);
 457		if (!addr && new_area_size)
 458			addr = memblock_find_in_range(0,
 459				min(new_area_start, memblock.current_limit),
 460				new_alloc_size, PAGE_SIZE);
 461
 462		new_array = addr ? __va(addr) : NULL;
 463	}
 464	if (!addr) {
 465		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 466		       type->name, type->max, type->max * 2);
 467		return -1;
 468	}
 469
 470	new_end = addr + new_size - 1;
 471	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 472			type->name, type->max * 2, &addr, &new_end);
 473
 474	/*
 475	 * Found space, we now need to move the array over before we add the
 476	 * reserved region since it may be our reserved array itself that is
 477	 * full.
 478	 */
 479	memcpy(new_array, type->regions, old_size);
 480	memset(new_array + type->max, 0, old_size);
 481	old_array = type->regions;
 482	type->regions = new_array;
 483	type->max <<= 1;
 484
 485	/* Free old array. We needn't free it if the array is the static one */
 486	if (*in_slab)
 487		kfree(old_array);
 488	else if (old_array != memblock_memory_init_regions &&
 489		 old_array != memblock_reserved_init_regions)
 490		memblock_free(__pa(old_array), old_alloc_size);
 491
 492	/*
 493	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 494	 * needn't do it
 495	 */
 496	if (!use_slab)
 497		BUG_ON(memblock_reserve(addr, new_alloc_size));
 498
 499	/* Update slab flag */
 500	*in_slab = use_slab;
 501
 502	return 0;
 503}
 504
 505/**
 506 * memblock_merge_regions - merge neighboring compatible regions
 507 * @type: memblock type to scan
 508 *
 509 * Scan @type and merge neighboring compatible regions.
 510 */
 511static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 512{
 513	int i = 0;
 514
 515	/* cnt never goes below 1 */
 516	while (i < type->cnt - 1) {
 517		struct memblock_region *this = &type->regions[i];
 518		struct memblock_region *next = &type->regions[i + 1];
 519
 520		if (this->base + this->size != next->base ||
 521		    memblock_get_region_node(this) !=
 522		    memblock_get_region_node(next) ||
 523		    this->flags != next->flags) {
 524			BUG_ON(this->base + this->size > next->base);
 525			i++;
 526			continue;
 527		}
 528
 529		this->size += next->size;
 530		/* move forward from next + 1, index of which is i + 2 */
 531		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 532		type->cnt--;
 533	}
 534}
 535
 536/**
 537 * memblock_insert_region - insert new memblock region
 538 * @type:	memblock type to insert into
 539 * @idx:	index for the insertion point
 540 * @base:	base address of the new region
 541 * @size:	size of the new region
 542 * @nid:	node id of the new region
 543 * @flags:	flags of the new region
 544 *
 545 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 546 * @type must already have extra room to accommodate the new region.
 547 */
 548static void __init_memblock memblock_insert_region(struct memblock_type *type,
 549						   int idx, phys_addr_t base,
 550						   phys_addr_t size,
 551						   int nid,
 552						   enum memblock_flags flags)
 553{
 554	struct memblock_region *rgn = &type->regions[idx];
 555
 556	BUG_ON(type->cnt >= type->max);
 557	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 558	rgn->base = base;
 559	rgn->size = size;
 560	rgn->flags = flags;
 561	memblock_set_region_node(rgn, nid);
 562	type->cnt++;
 563	type->total_size += size;
 564}
 565
 566/**
 567 * memblock_add_range - add new memblock region
 568 * @type: memblock type to add new region into
 569 * @base: base address of the new region
 570 * @size: size of the new region
 571 * @nid: nid of the new region
 572 * @flags: flags of the new region
 573 *
 574 * Add new memblock region [@base, @base + @size) into @type.  The new region
 575 * is allowed to overlap with existing ones - overlaps don't affect already
 576 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 577 * compatible regions are merged) after the addition.
 578 *
 579 * Return:
 580 * 0 on success, -errno on failure.
 581 */
 582int __init_memblock memblock_add_range(struct memblock_type *type,
 583				phys_addr_t base, phys_addr_t size,
 584				int nid, enum memblock_flags flags)
 585{
 586	bool insert = false;
 587	phys_addr_t obase = base;
 588	phys_addr_t end = base + memblock_cap_size(base, &size);
 589	int idx, nr_new;
 590	struct memblock_region *rgn;
 591
 592	if (!size)
 593		return 0;
 594
 595	/* special case for empty array */
 596	if (type->regions[0].size == 0) {
 597		WARN_ON(type->cnt != 1 || type->total_size);
 598		type->regions[0].base = base;
 599		type->regions[0].size = size;
 600		type->regions[0].flags = flags;
 601		memblock_set_region_node(&type->regions[0], nid);
 602		type->total_size = size;
 603		return 0;
 604	}
 605repeat:
 606	/*
 607	 * The following is executed twice.  Once with %false @insert and
 608	 * then with %true.  The first counts the number of regions needed
 609	 * to accommodate the new area.  The second actually inserts them.
 610	 */
 611	base = obase;
 612	nr_new = 0;
 613
 614	for_each_memblock_type(idx, type, rgn) {
 615		phys_addr_t rbase = rgn->base;
 616		phys_addr_t rend = rbase + rgn->size;
 617
 618		if (rbase >= end)
 619			break;
 620		if (rend <= base)
 621			continue;
 622		/*
 623		 * @rgn overlaps.  If it separates the lower part of new
 624		 * area, insert that portion.
 625		 */
 626		if (rbase > base) {
 627#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 628			WARN_ON(nid != memblock_get_region_node(rgn));
 629#endif
 630			WARN_ON(flags != rgn->flags);
 631			nr_new++;
 632			if (insert)
 633				memblock_insert_region(type, idx++, base,
 634						       rbase - base, nid,
 635						       flags);
 636		}
 637		/* area below @rend is dealt with, forget about it */
 638		base = min(rend, end);
 639	}
 640
 641	/* insert the remaining portion */
 642	if (base < end) {
 643		nr_new++;
 644		if (insert)
 645			memblock_insert_region(type, idx, base, end - base,
 646					       nid, flags);
 647	}
 648
 649	if (!nr_new)
 650		return 0;
 651
 652	/*
 653	 * If this was the first round, resize array and repeat for actual
 654	 * insertions; otherwise, merge and return.
 655	 */
 656	if (!insert) {
 657		while (type->cnt + nr_new > type->max)
 658			if (memblock_double_array(type, obase, size) < 0)
 659				return -ENOMEM;
 660		insert = true;
 661		goto repeat;
 662	} else {
 663		memblock_merge_regions(type);
 664		return 0;
 665	}
 666}
 667
 668/**
 669 * memblock_add_node - add new memblock region within a NUMA node
 670 * @base: base address of the new region
 671 * @size: size of the new region
 672 * @nid: nid of the new region
 673 *
 674 * Add new memblock region [@base, @base + @size) to the "memory"
 675 * type. See memblock_add_range() description for mode details
 676 *
 677 * Return:
 678 * 0 on success, -errno on failure.
 679 */
 680int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 681				       int nid)
 682{
 683	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 684}
 685
 686/**
 687 * memblock_add - add new memblock region
 688 * @base: base address of the new region
 689 * @size: size of the new region
 690 *
 691 * Add new memblock region [@base, @base + @size) to the "memory"
 692 * type. See memblock_add_range() description for mode details
 693 *
 694 * Return:
 695 * 0 on success, -errno on failure.
 696 */
 697int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 698{
 699	phys_addr_t end = base + size - 1;
 700
 701	memblock_dbg("memblock_add: [%pa-%pa] %pS\n",
 702		     &base, &end, (void *)_RET_IP_);
 703
 704	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 705}
 706
 707/**
 708 * memblock_isolate_range - isolate given range into disjoint memblocks
 709 * @type: memblock type to isolate range for
 710 * @base: base of range to isolate
 711 * @size: size of range to isolate
 712 * @start_rgn: out parameter for the start of isolated region
 713 * @end_rgn: out parameter for the end of isolated region
 714 *
 715 * Walk @type and ensure that regions don't cross the boundaries defined by
 716 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 717 * which may create at most two more regions.  The index of the first
 718 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 719 *
 720 * Return:
 721 * 0 on success, -errno on failure.
 722 */
 723static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 724					phys_addr_t base, phys_addr_t size,
 725					int *start_rgn, int *end_rgn)
 726{
 727	phys_addr_t end = base + memblock_cap_size(base, &size);
 728	int idx;
 729	struct memblock_region *rgn;
 730
 731	*start_rgn = *end_rgn = 0;
 732
 733	if (!size)
 734		return 0;
 735
 736	/* we'll create at most two more regions */
 737	while (type->cnt + 2 > type->max)
 738		if (memblock_double_array(type, base, size) < 0)
 739			return -ENOMEM;
 740
 741	for_each_memblock_type(idx, type, rgn) {
 742		phys_addr_t rbase = rgn->base;
 743		phys_addr_t rend = rbase + rgn->size;
 744
 745		if (rbase >= end)
 746			break;
 747		if (rend <= base)
 748			continue;
 749
 750		if (rbase < base) {
 751			/*
 752			 * @rgn intersects from below.  Split and continue
 753			 * to process the next region - the new top half.
 754			 */
 755			rgn->base = base;
 756			rgn->size -= base - rbase;
 757			type->total_size -= base - rbase;
 758			memblock_insert_region(type, idx, rbase, base - rbase,
 759					       memblock_get_region_node(rgn),
 760					       rgn->flags);
 761		} else if (rend > end) {
 762			/*
 763			 * @rgn intersects from above.  Split and redo the
 764			 * current region - the new bottom half.
 765			 */
 766			rgn->base = end;
 767			rgn->size -= end - rbase;
 768			type->total_size -= end - rbase;
 769			memblock_insert_region(type, idx--, rbase, end - rbase,
 770					       memblock_get_region_node(rgn),
 771					       rgn->flags);
 772		} else {
 773			/* @rgn is fully contained, record it */
 774			if (!*end_rgn)
 775				*start_rgn = idx;
 776			*end_rgn = idx + 1;
 777		}
 778	}
 779
 780	return 0;
 781}
 782
 783static int __init_memblock memblock_remove_range(struct memblock_type *type,
 784					  phys_addr_t base, phys_addr_t size)
 785{
 786	int start_rgn, end_rgn;
 787	int i, ret;
 788
 789	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 790	if (ret)
 791		return ret;
 792
 793	for (i = end_rgn - 1; i >= start_rgn; i--)
 794		memblock_remove_region(type, i);
 795	return 0;
 796}
 797
 798int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 799{
 800	phys_addr_t end = base + size - 1;
 801
 802	memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
 803		     &base, &end, (void *)_RET_IP_);
 804
 805	return memblock_remove_range(&memblock.memory, base, size);
 806}
 807
 808/**
 809 * memblock_free - free boot memory block
 810 * @base: phys starting address of the  boot memory block
 811 * @size: size of the boot memory block in bytes
 812 *
 813 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 814 * The freeing memory will not be released to the buddy allocator.
 815 */
 816int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 817{
 818	phys_addr_t end = base + size - 1;
 819
 820	memblock_dbg("   memblock_free: [%pa-%pa] %pS\n",
 821		     &base, &end, (void *)_RET_IP_);
 822
 823	kmemleak_free_part_phys(base, size);
 824	return memblock_remove_range(&memblock.reserved, base, size);
 825}
 826
 827int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 828{
 829	phys_addr_t end = base + size - 1;
 830
 831	memblock_dbg("memblock_reserve: [%pa-%pa] %pS\n",
 832		     &base, &end, (void *)_RET_IP_);
 833
 834	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 835}
 836
 
 
 
 
 
 
 
 
 
 
 
 
 837/**
 838 * memblock_setclr_flag - set or clear flag for a memory region
 839 * @base: base address of the region
 840 * @size: size of the region
 841 * @set: set or clear the flag
 842 * @flag: the flag to udpate
 843 *
 844 * This function isolates region [@base, @base + @size), and sets/clears flag
 845 *
 846 * Return: 0 on success, -errno on failure.
 847 */
 848static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 849				phys_addr_t size, int set, int flag)
 850{
 851	struct memblock_type *type = &memblock.memory;
 852	int i, ret, start_rgn, end_rgn;
 853
 854	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 855	if (ret)
 856		return ret;
 857
 858	for (i = start_rgn; i < end_rgn; i++) {
 859		struct memblock_region *r = &type->regions[i];
 860
 861		if (set)
 862			r->flags |= flag;
 863		else
 864			r->flags &= ~flag;
 865	}
 866
 867	memblock_merge_regions(type);
 868	return 0;
 869}
 870
 871/**
 872 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 873 * @base: the base phys addr of the region
 874 * @size: the size of the region
 875 *
 876 * Return: 0 on success, -errno on failure.
 877 */
 878int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 879{
 880	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 881}
 882
 883/**
 884 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 885 * @base: the base phys addr of the region
 886 * @size: the size of the region
 887 *
 888 * Return: 0 on success, -errno on failure.
 889 */
 890int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 891{
 892	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 893}
 894
 895/**
 896 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 897 * @base: the base phys addr of the region
 898 * @size: the size of the region
 899 *
 900 * Return: 0 on success, -errno on failure.
 901 */
 902int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 903{
 904	system_has_some_mirror = true;
 905
 906	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 907}
 908
 909/**
 910 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 911 * @base: the base phys addr of the region
 912 * @size: the size of the region
 913 *
 914 * Return: 0 on success, -errno on failure.
 915 */
 916int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 917{
 918	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 919}
 920
 921/**
 922 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 923 * @base: the base phys addr of the region
 924 * @size: the size of the region
 925 *
 926 * Return: 0 on success, -errno on failure.
 927 */
 928int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 929{
 930	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 931}
 932
 933/**
 934 * __next_reserved_mem_region - next function for for_each_reserved_region()
 935 * @idx: pointer to u64 loop variable
 936 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 937 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 938 *
 939 * Iterate over all reserved memory regions.
 940 */
 941void __init_memblock __next_reserved_mem_region(u64 *idx,
 942					   phys_addr_t *out_start,
 943					   phys_addr_t *out_end)
 944{
 945	struct memblock_type *type = &memblock.reserved;
 946
 947	if (*idx < type->cnt) {
 948		struct memblock_region *r = &type->regions[*idx];
 949		phys_addr_t base = r->base;
 950		phys_addr_t size = r->size;
 951
 952		if (out_start)
 953			*out_start = base;
 954		if (out_end)
 955			*out_end = base + size - 1;
 956
 957		*idx += 1;
 958		return;
 959	}
 960
 961	/* signal end of iteration */
 962	*idx = ULLONG_MAX;
 963}
 964
 965static bool should_skip_region(struct memblock_region *m, int nid, int flags)
 966{
 967	int m_nid = memblock_get_region_node(m);
 968
 969	/* only memory regions are associated with nodes, check it */
 970	if (nid != NUMA_NO_NODE && nid != m_nid)
 971		return true;
 972
 973	/* skip hotpluggable memory regions if needed */
 974	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 975		return true;
 976
 977	/* if we want mirror memory skip non-mirror memory regions */
 978	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 979		return true;
 980
 981	/* skip nomap memory unless we were asked for it explicitly */
 982	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 983		return true;
 984
 985	return false;
 986}
 987
 988/**
 989 * __next_mem_range - next function for for_each_free_mem_range() etc.
 990 * @idx: pointer to u64 loop variable
 991 * @nid: node selector, %NUMA_NO_NODE for all nodes
 992 * @flags: pick from blocks based on memory attributes
 993 * @type_a: pointer to memblock_type from where the range is taken
 994 * @type_b: pointer to memblock_type which excludes memory from being taken
 995 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 996 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 997 * @out_nid: ptr to int for nid of the range, can be %NULL
 998 *
 999 * Find the first area from *@idx which matches @nid, fill the out
1000 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1001 * *@idx contains index into type_a and the upper 32bit indexes the
1002 * areas before each region in type_b.	For example, if type_b regions
1003 * look like the following,
1004 *
1005 *	0:[0-16), 1:[32-48), 2:[128-130)
1006 *
1007 * The upper 32bit indexes the following regions.
1008 *
1009 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1010 *
1011 * As both region arrays are sorted, the function advances the two indices
1012 * in lockstep and returns each intersection.
1013 */
1014void __init_memblock __next_mem_range(u64 *idx, int nid,
1015				      enum memblock_flags flags,
1016				      struct memblock_type *type_a,
1017				      struct memblock_type *type_b,
1018				      phys_addr_t *out_start,
1019				      phys_addr_t *out_end, int *out_nid)
1020{
1021	int idx_a = *idx & 0xffffffff;
1022	int idx_b = *idx >> 32;
1023
1024	if (WARN_ONCE(nid == MAX_NUMNODES,
1025	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1026		nid = NUMA_NO_NODE;
1027
1028	for (; idx_a < type_a->cnt; idx_a++) {
1029		struct memblock_region *m = &type_a->regions[idx_a];
1030
1031		phys_addr_t m_start = m->base;
1032		phys_addr_t m_end = m->base + m->size;
1033		int	    m_nid = memblock_get_region_node(m);
1034
1035		if (should_skip_region(m, nid, flags))
1036			continue;
1037
1038		if (!type_b) {
1039			if (out_start)
1040				*out_start = m_start;
1041			if (out_end)
1042				*out_end = m_end;
1043			if (out_nid)
1044				*out_nid = m_nid;
1045			idx_a++;
1046			*idx = (u32)idx_a | (u64)idx_b << 32;
1047			return;
1048		}
1049
1050		/* scan areas before each reservation */
1051		for (; idx_b < type_b->cnt + 1; idx_b++) {
1052			struct memblock_region *r;
1053			phys_addr_t r_start;
1054			phys_addr_t r_end;
1055
1056			r = &type_b->regions[idx_b];
1057			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1058			r_end = idx_b < type_b->cnt ?
1059				r->base : PHYS_ADDR_MAX;
1060
1061			/*
1062			 * if idx_b advanced past idx_a,
1063			 * break out to advance idx_a
1064			 */
1065			if (r_start >= m_end)
1066				break;
1067			/* if the two regions intersect, we're done */
1068			if (m_start < r_end) {
1069				if (out_start)
1070					*out_start =
1071						max(m_start, r_start);
1072				if (out_end)
1073					*out_end = min(m_end, r_end);
1074				if (out_nid)
1075					*out_nid = m_nid;
1076				/*
1077				 * The region which ends first is
1078				 * advanced for the next iteration.
1079				 */
1080				if (m_end <= r_end)
1081					idx_a++;
1082				else
1083					idx_b++;
1084				*idx = (u32)idx_a | (u64)idx_b << 32;
1085				return;
1086			}
1087		}
1088	}
1089
1090	/* signal end of iteration */
1091	*idx = ULLONG_MAX;
1092}
1093
1094/**
1095 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1096 *
1097 * @idx: pointer to u64 loop variable
1098 * @nid: node selector, %NUMA_NO_NODE for all nodes
1099 * @flags: pick from blocks based on memory attributes
1100 * @type_a: pointer to memblock_type from where the range is taken
1101 * @type_b: pointer to memblock_type which excludes memory from being taken
1102 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1103 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1104 * @out_nid: ptr to int for nid of the range, can be %NULL
1105 *
1106 * Finds the next range from type_a which is not marked as unsuitable
1107 * in type_b.
1108 *
1109 * Reverse of __next_mem_range().
1110 */
1111void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1112					  enum memblock_flags flags,
1113					  struct memblock_type *type_a,
1114					  struct memblock_type *type_b,
1115					  phys_addr_t *out_start,
1116					  phys_addr_t *out_end, int *out_nid)
1117{
1118	int idx_a = *idx & 0xffffffff;
1119	int idx_b = *idx >> 32;
1120
1121	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1122		nid = NUMA_NO_NODE;
1123
1124	if (*idx == (u64)ULLONG_MAX) {
1125		idx_a = type_a->cnt - 1;
1126		if (type_b != NULL)
1127			idx_b = type_b->cnt;
1128		else
1129			idx_b = 0;
1130	}
1131
1132	for (; idx_a >= 0; idx_a--) {
1133		struct memblock_region *m = &type_a->regions[idx_a];
1134
1135		phys_addr_t m_start = m->base;
1136		phys_addr_t m_end = m->base + m->size;
1137		int m_nid = memblock_get_region_node(m);
1138
1139		if (should_skip_region(m, nid, flags))
1140			continue;
1141
1142		if (!type_b) {
1143			if (out_start)
1144				*out_start = m_start;
1145			if (out_end)
1146				*out_end = m_end;
1147			if (out_nid)
1148				*out_nid = m_nid;
1149			idx_a--;
1150			*idx = (u32)idx_a | (u64)idx_b << 32;
1151			return;
1152		}
1153
1154		/* scan areas before each reservation */
1155		for (; idx_b >= 0; idx_b--) {
1156			struct memblock_region *r;
1157			phys_addr_t r_start;
1158			phys_addr_t r_end;
1159
1160			r = &type_b->regions[idx_b];
1161			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1162			r_end = idx_b < type_b->cnt ?
1163				r->base : PHYS_ADDR_MAX;
1164			/*
1165			 * if idx_b advanced past idx_a,
1166			 * break out to advance idx_a
1167			 */
1168
1169			if (r_end <= m_start)
1170				break;
1171			/* if the two regions intersect, we're done */
1172			if (m_end > r_start) {
1173				if (out_start)
1174					*out_start = max(m_start, r_start);
1175				if (out_end)
1176					*out_end = min(m_end, r_end);
1177				if (out_nid)
1178					*out_nid = m_nid;
1179				if (m_start >= r_start)
1180					idx_a--;
1181				else
1182					idx_b--;
1183				*idx = (u32)idx_a | (u64)idx_b << 32;
1184				return;
1185			}
1186		}
1187	}
1188	/* signal end of iteration */
1189	*idx = ULLONG_MAX;
1190}
1191
1192#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1193/*
1194 * Common iterator interface used to define for_each_mem_pfn_range().
1195 */
1196void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1197				unsigned long *out_start_pfn,
1198				unsigned long *out_end_pfn, int *out_nid)
1199{
1200	struct memblock_type *type = &memblock.memory;
1201	struct memblock_region *r;
 
1202
1203	while (++*idx < type->cnt) {
1204		r = &type->regions[*idx];
 
1205
1206		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1207			continue;
1208		if (nid == MAX_NUMNODES || nid == r->nid)
1209			break;
1210	}
1211	if (*idx >= type->cnt) {
1212		*idx = -1;
1213		return;
1214	}
1215
1216	if (out_start_pfn)
1217		*out_start_pfn = PFN_UP(r->base);
1218	if (out_end_pfn)
1219		*out_end_pfn = PFN_DOWN(r->base + r->size);
1220	if (out_nid)
1221		*out_nid = r->nid;
1222}
1223
1224/**
1225 * memblock_set_node - set node ID on memblock regions
1226 * @base: base of area to set node ID for
1227 * @size: size of area to set node ID for
1228 * @type: memblock type to set node ID for
1229 * @nid: node ID to set
1230 *
1231 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1232 * Regions which cross the area boundaries are split as necessary.
1233 *
1234 * Return:
1235 * 0 on success, -errno on failure.
1236 */
1237int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1238				      struct memblock_type *type, int nid)
1239{
 
1240	int start_rgn, end_rgn;
1241	int i, ret;
1242
1243	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1244	if (ret)
1245		return ret;
1246
1247	for (i = start_rgn; i < end_rgn; i++)
1248		memblock_set_region_node(&type->regions[i], nid);
1249
1250	memblock_merge_regions(type);
 
1251	return 0;
1252}
1253#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1254#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255/**
1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257 *
1258 * @idx: pointer to u64 loop variable
1259 * @zone: zone in which all of the memory blocks reside
1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262 *
1263 * This function is meant to be a zone/pfn specific wrapper for the
1264 * for_each_mem_range type iterators. Specifically they are used in the
1265 * deferred memory init routines and as such we were duplicating much of
1266 * this logic throughout the code. So instead of having it in multiple
1267 * locations it seemed like it would make more sense to centralize this to
1268 * one new iterator that does everything they need.
1269 */
1270void __init_memblock
1271__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272			     unsigned long *out_spfn, unsigned long *out_epfn)
1273{
1274	int zone_nid = zone_to_nid(zone);
1275	phys_addr_t spa, epa;
1276	int nid;
1277
1278	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279			 &memblock.memory, &memblock.reserved,
1280			 &spa, &epa, &nid);
1281
1282	while (*idx != U64_MAX) {
1283		unsigned long epfn = PFN_DOWN(epa);
1284		unsigned long spfn = PFN_UP(spa);
1285
1286		/*
1287		 * Verify the end is at least past the start of the zone and
1288		 * that we have at least one PFN to initialize.
1289		 */
1290		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291			/* if we went too far just stop searching */
1292			if (zone_end_pfn(zone) <= spfn) {
1293				*idx = U64_MAX;
1294				break;
1295			}
1296
1297			if (out_spfn)
1298				*out_spfn = max(zone->zone_start_pfn, spfn);
1299			if (out_epfn)
1300				*out_epfn = min(zone_end_pfn(zone), epfn);
1301
1302			return;
1303		}
1304
1305		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306				 &memblock.memory, &memblock.reserved,
1307				 &spa, &epa, &nid);
1308	}
1309
1310	/* signal end of iteration */
1311	if (out_spfn)
1312		*out_spfn = ULONG_MAX;
1313	if (out_epfn)
1314		*out_epfn = 0;
1315}
1316
1317#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318
1319/**
1320 * memblock_alloc_range_nid - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @start: the lower bound of the memory region to allocate (phys address)
1324 * @end: the upper bound of the memory region to allocate (phys address)
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
1326 *
1327 * The allocation is performed from memory region limited by
1328 * memblock.current_limit if @max_addr == %MEMBLOCK_ALLOC_ACCESSIBLE.
1329 *
1330 * If the specified node can not hold the requested memory the
1331 * allocation falls back to any node in the system
1332 *
1333 * For systems with memory mirroring, the allocation is attempted first
1334 * from the regions with mirroring enabled and then retried from any
1335 * memory region.
1336 *
1337 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1338 * allocated boot memory block, so that it is never reported as leaks.
1339 *
1340 * Return:
1341 * Physical address of allocated memory block on success, %0 on failure.
1342 */
1343static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1344					phys_addr_t align, phys_addr_t start,
1345					phys_addr_t end, int nid)
 
1346{
1347	enum memblock_flags flags = choose_memblock_flags();
1348	phys_addr_t found;
1349
1350	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1351		nid = NUMA_NO_NODE;
1352
1353	if (!align) {
1354		/* Can't use WARNs this early in boot on powerpc */
1355		dump_stack();
1356		align = SMP_CACHE_BYTES;
1357	}
1358
1359again:
1360	found = memblock_find_in_range_node(size, align, start, end, nid,
1361					    flags);
1362	if (found && !memblock_reserve(found, size))
1363		goto done;
1364
1365	if (nid != NUMA_NO_NODE) {
1366		found = memblock_find_in_range_node(size, align, start,
1367						    end, NUMA_NO_NODE,
1368						    flags);
1369		if (found && !memblock_reserve(found, size))
1370			goto done;
1371	}
1372
1373	if (flags & MEMBLOCK_MIRROR) {
1374		flags &= ~MEMBLOCK_MIRROR;
1375		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1376			&size);
1377		goto again;
1378	}
1379
1380	return 0;
1381
1382done:
1383	/* Skip kmemleak for kasan_init() due to high volume. */
1384	if (end != MEMBLOCK_ALLOC_KASAN)
1385		/*
1386		 * The min_count is set to 0 so that memblock allocated
1387		 * blocks are never reported as leaks. This is because many
1388		 * of these blocks are only referred via the physical
1389		 * address which is not looked up by kmemleak.
1390		 */
1391		kmemleak_alloc_phys(found, size, 0, 0);
1392
1393	return found;
1394}
1395
1396/**
1397 * memblock_phys_alloc_range - allocate a memory block inside specified range
1398 * @size: size of memory block to be allocated in bytes
1399 * @align: alignment of the region and block's size
1400 * @start: the lower bound of the memory region to allocate (physical address)
1401 * @end: the upper bound of the memory region to allocate (physical address)
1402 *
1403 * Allocate @size bytes in the between @start and @end.
1404 *
1405 * Return: physical address of the allocated memory block on success,
1406 * %0 on failure.
1407 */
1408phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1409					     phys_addr_t align,
1410					     phys_addr_t start,
1411					     phys_addr_t end)
1412{
1413	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE);
 
1414}
1415
1416/**
1417 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1421 *
1422 * Allocates memory block from the specified NUMA node. If the node
1423 * has no available memory, attempts to allocated from any node in the
1424 * system.
1425 *
1426 * Return: physical address of the allocated memory block on success,
1427 * %0 on failure.
1428 */
1429phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1430{
1431	return memblock_alloc_range_nid(size, align, 0,
1432					MEMBLOCK_ALLOC_ACCESSIBLE, nid);
1433}
1434
1435/**
1436 * memblock_alloc_internal - allocate boot memory block
1437 * @size: size of memory block to be allocated in bytes
1438 * @align: alignment of the region and block's size
1439 * @min_addr: the lower bound of the memory region to allocate (phys address)
1440 * @max_addr: the upper bound of the memory region to allocate (phys address)
1441 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 
1442 *
1443 * Allocates memory block using memblock_alloc_range_nid() and
1444 * converts the returned physical address to virtual.
1445 *
1446 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1447 * will fall back to memory below @min_addr. Other constraints, such
1448 * as node and mirrored memory will be handled again in
1449 * memblock_alloc_range_nid().
1450 *
1451 * Return:
1452 * Virtual address of allocated memory block on success, NULL on failure.
1453 */
1454static void * __init memblock_alloc_internal(
1455				phys_addr_t size, phys_addr_t align,
1456				phys_addr_t min_addr, phys_addr_t max_addr,
1457				int nid)
1458{
1459	phys_addr_t alloc;
1460
1461	/*
1462	 * Detect any accidental use of these APIs after slab is ready, as at
1463	 * this moment memblock may be deinitialized already and its
1464	 * internal data may be destroyed (after execution of memblock_free_all)
1465	 */
1466	if (WARN_ON_ONCE(slab_is_available()))
1467		return kzalloc_node(size, GFP_NOWAIT, nid);
1468
1469	if (max_addr > memblock.current_limit)
1470		max_addr = memblock.current_limit;
1471
1472	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid);
 
1473
1474	/* retry allocation without lower limit */
1475	if (!alloc && min_addr)
1476		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid);
 
1477
1478	if (!alloc)
1479		return NULL;
1480
1481	return phys_to_virt(alloc);
1482}
1483
1484/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1485 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1486 * memory and without panicking
1487 * @size: size of memory block to be allocated in bytes
1488 * @align: alignment of the region and block's size
1489 * @min_addr: the lower bound of the memory region from where the allocation
1490 *	  is preferred (phys address)
1491 * @max_addr: the upper bound of the memory region from where the allocation
1492 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1493 *	      allocate only from memory limited by memblock.current_limit value
1494 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1495 *
1496 * Public function, provides additional debug information (including caller
1497 * info), if enabled. Does not zero allocated memory, does not panic if request
1498 * cannot be satisfied.
1499 *
1500 * Return:
1501 * Virtual address of allocated memory block on success, NULL on failure.
1502 */
1503void * __init memblock_alloc_try_nid_raw(
1504			phys_addr_t size, phys_addr_t align,
1505			phys_addr_t min_addr, phys_addr_t max_addr,
1506			int nid)
1507{
1508	void *ptr;
1509
1510	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1511		     __func__, (u64)size, (u64)align, nid, &min_addr,
1512		     &max_addr, (void *)_RET_IP_);
1513
1514	ptr = memblock_alloc_internal(size, align,
1515					   min_addr, max_addr, nid);
1516	if (ptr && size > 0)
1517		page_init_poison(ptr, size);
1518
1519	return ptr;
1520}
1521
1522/**
1523 * memblock_alloc_try_nid - allocate boot memory block
1524 * @size: size of memory block to be allocated in bytes
1525 * @align: alignment of the region and block's size
1526 * @min_addr: the lower bound of the memory region from where the allocation
1527 *	  is preferred (phys address)
1528 * @max_addr: the upper bound of the memory region from where the allocation
1529 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1530 *	      allocate only from memory limited by memblock.current_limit value
1531 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1532 *
1533 * Public function, provides additional debug information (including caller
1534 * info), if enabled. This function zeroes the allocated memory.
1535 *
1536 * Return:
1537 * Virtual address of allocated memory block on success, NULL on failure.
1538 */
1539void * __init memblock_alloc_try_nid(
1540			phys_addr_t size, phys_addr_t align,
1541			phys_addr_t min_addr, phys_addr_t max_addr,
1542			int nid)
1543{
1544	void *ptr;
1545
1546	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1547		     __func__, (u64)size, (u64)align, nid, &min_addr,
1548		     &max_addr, (void *)_RET_IP_);
1549	ptr = memblock_alloc_internal(size, align,
1550					   min_addr, max_addr, nid);
1551	if (ptr)
1552		memset(ptr, 0, size);
1553
1554	return ptr;
1555}
1556
1557/**
1558 * __memblock_free_late - free pages directly to buddy allocator
1559 * @base: phys starting address of the  boot memory block
1560 * @size: size of the boot memory block in bytes
1561 *
1562 * This is only useful when the memblock allocator has already been torn
1563 * down, but we are still initializing the system.  Pages are released directly
1564 * to the buddy allocator.
1565 */
1566void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1567{
1568	phys_addr_t cursor, end;
1569
1570	end = base + size - 1;
1571	memblock_dbg("%s: [%pa-%pa] %pS\n",
1572		     __func__, &base, &end, (void *)_RET_IP_);
1573	kmemleak_free_part_phys(base, size);
1574	cursor = PFN_UP(base);
1575	end = PFN_DOWN(base + size);
1576
1577	for (; cursor < end; cursor++) {
1578		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1579		totalram_pages_inc();
1580	}
1581}
1582
1583/*
1584 * Remaining API functions
1585 */
1586
1587phys_addr_t __init_memblock memblock_phys_mem_size(void)
1588{
1589	return memblock.memory.total_size;
1590}
1591
1592phys_addr_t __init_memblock memblock_reserved_size(void)
1593{
1594	return memblock.reserved.total_size;
1595}
1596
1597phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1598{
1599	unsigned long pages = 0;
1600	struct memblock_region *r;
1601	unsigned long start_pfn, end_pfn;
1602
1603	for_each_memblock(memory, r) {
1604		start_pfn = memblock_region_memory_base_pfn(r);
1605		end_pfn = memblock_region_memory_end_pfn(r);
1606		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1607		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1608		pages += end_pfn - start_pfn;
1609	}
1610
1611	return PFN_PHYS(pages);
1612}
1613
1614/* lowest address */
1615phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1616{
1617	return memblock.memory.regions[0].base;
1618}
1619
1620phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1621{
1622	int idx = memblock.memory.cnt - 1;
1623
1624	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1625}
1626
1627static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1628{
1629	phys_addr_t max_addr = PHYS_ADDR_MAX;
1630	struct memblock_region *r;
1631
1632	/*
1633	 * translate the memory @limit size into the max address within one of
1634	 * the memory memblock regions, if the @limit exceeds the total size
1635	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1636	 */
1637	for_each_memblock(memory, r) {
1638		if (limit <= r->size) {
1639			max_addr = r->base + limit;
1640			break;
1641		}
1642		limit -= r->size;
1643	}
1644
1645	return max_addr;
1646}
1647
1648void __init memblock_enforce_memory_limit(phys_addr_t limit)
1649{
1650	phys_addr_t max_addr = PHYS_ADDR_MAX;
1651
1652	if (!limit)
1653		return;
1654
1655	max_addr = __find_max_addr(limit);
1656
1657	/* @limit exceeds the total size of the memory, do nothing */
1658	if (max_addr == PHYS_ADDR_MAX)
1659		return;
1660
1661	/* truncate both memory and reserved regions */
1662	memblock_remove_range(&memblock.memory, max_addr,
1663			      PHYS_ADDR_MAX);
1664	memblock_remove_range(&memblock.reserved, max_addr,
1665			      PHYS_ADDR_MAX);
1666}
1667
1668void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1669{
1670	int start_rgn, end_rgn;
1671	int i, ret;
1672
1673	if (!size)
1674		return;
1675
1676	ret = memblock_isolate_range(&memblock.memory, base, size,
1677						&start_rgn, &end_rgn);
1678	if (ret)
1679		return;
1680
1681	/* remove all the MAP regions */
1682	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1683		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1684			memblock_remove_region(&memblock.memory, i);
1685
1686	for (i = start_rgn - 1; i >= 0; i--)
1687		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1688			memblock_remove_region(&memblock.memory, i);
1689
1690	/* truncate the reserved regions */
1691	memblock_remove_range(&memblock.reserved, 0, base);
1692	memblock_remove_range(&memblock.reserved,
1693			base + size, PHYS_ADDR_MAX);
1694}
1695
1696void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1697{
1698	phys_addr_t max_addr;
1699
1700	if (!limit)
1701		return;
1702
1703	max_addr = __find_max_addr(limit);
1704
1705	/* @limit exceeds the total size of the memory, do nothing */
1706	if (max_addr == PHYS_ADDR_MAX)
1707		return;
1708
1709	memblock_cap_memory_range(0, max_addr);
1710}
1711
1712static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1713{
1714	unsigned int left = 0, right = type->cnt;
1715
1716	do {
1717		unsigned int mid = (right + left) / 2;
1718
1719		if (addr < type->regions[mid].base)
1720			right = mid;
1721		else if (addr >= (type->regions[mid].base +
1722				  type->regions[mid].size))
1723			left = mid + 1;
1724		else
1725			return mid;
1726	} while (left < right);
1727	return -1;
1728}
1729
1730bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1731{
1732	return memblock_search(&memblock.reserved, addr) != -1;
1733}
1734
1735bool __init_memblock memblock_is_memory(phys_addr_t addr)
1736{
1737	return memblock_search(&memblock.memory, addr) != -1;
1738}
1739
1740bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1741{
1742	int i = memblock_search(&memblock.memory, addr);
1743
1744	if (i == -1)
1745		return false;
1746	return !memblock_is_nomap(&memblock.memory.regions[i]);
1747}
1748
1749#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1750int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1751			 unsigned long *start_pfn, unsigned long *end_pfn)
1752{
1753	struct memblock_type *type = &memblock.memory;
1754	int mid = memblock_search(type, PFN_PHYS(pfn));
1755
1756	if (mid == -1)
1757		return -1;
1758
1759	*start_pfn = PFN_DOWN(type->regions[mid].base);
1760	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1761
1762	return type->regions[mid].nid;
1763}
1764#endif
1765
1766/**
1767 * memblock_is_region_memory - check if a region is a subset of memory
1768 * @base: base of region to check
1769 * @size: size of region to check
1770 *
1771 * Check if the region [@base, @base + @size) is a subset of a memory block.
1772 *
1773 * Return:
1774 * 0 if false, non-zero if true
1775 */
1776bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1777{
1778	int idx = memblock_search(&memblock.memory, base);
1779	phys_addr_t end = base + memblock_cap_size(base, &size);
1780
1781	if (idx == -1)
1782		return false;
1783	return (memblock.memory.regions[idx].base +
1784		 memblock.memory.regions[idx].size) >= end;
1785}
1786
1787/**
1788 * memblock_is_region_reserved - check if a region intersects reserved memory
1789 * @base: base of region to check
1790 * @size: size of region to check
1791 *
1792 * Check if the region [@base, @base + @size) intersects a reserved
1793 * memory block.
1794 *
1795 * Return:
1796 * True if they intersect, false if not.
1797 */
1798bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1799{
1800	memblock_cap_size(base, &size);
1801	return memblock_overlaps_region(&memblock.reserved, base, size);
1802}
1803
1804void __init_memblock memblock_trim_memory(phys_addr_t align)
1805{
1806	phys_addr_t start, end, orig_start, orig_end;
1807	struct memblock_region *r;
1808
1809	for_each_memblock(memory, r) {
1810		orig_start = r->base;
1811		orig_end = r->base + r->size;
1812		start = round_up(orig_start, align);
1813		end = round_down(orig_end, align);
1814
1815		if (start == orig_start && end == orig_end)
1816			continue;
1817
1818		if (start < end) {
1819			r->base = start;
1820			r->size = end - start;
1821		} else {
1822			memblock_remove_region(&memblock.memory,
1823					       r - memblock.memory.regions);
1824			r--;
1825		}
1826	}
1827}
1828
1829void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1830{
1831	memblock.current_limit = limit;
1832}
1833
1834phys_addr_t __init_memblock memblock_get_current_limit(void)
1835{
1836	return memblock.current_limit;
1837}
1838
1839static void __init_memblock memblock_dump(struct memblock_type *type)
1840{
1841	phys_addr_t base, end, size;
1842	enum memblock_flags flags;
1843	int idx;
1844	struct memblock_region *rgn;
1845
1846	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1847
1848	for_each_memblock_type(idx, type, rgn) {
1849		char nid_buf[32] = "";
1850
1851		base = rgn->base;
1852		size = rgn->size;
1853		end = base + size - 1;
1854		flags = rgn->flags;
1855#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1856		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1857			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1858				 memblock_get_region_node(rgn));
1859#endif
1860		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1861			type->name, idx, &base, &end, &size, nid_buf, flags);
1862	}
1863}
1864
1865void __init_memblock __memblock_dump_all(void)
1866{
1867	pr_info("MEMBLOCK configuration:\n");
1868	pr_info(" memory size = %pa reserved size = %pa\n",
1869		&memblock.memory.total_size,
1870		&memblock.reserved.total_size);
1871
1872	memblock_dump(&memblock.memory);
1873	memblock_dump(&memblock.reserved);
1874#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1875	memblock_dump(&memblock.physmem);
1876#endif
1877}
1878
1879void __init memblock_allow_resize(void)
1880{
1881	memblock_can_resize = 1;
1882}
1883
1884static int __init early_memblock(char *p)
1885{
1886	if (p && strstr(p, "debug"))
1887		memblock_debug = 1;
1888	return 0;
1889}
1890early_param("memblock", early_memblock);
1891
1892static void __init __free_pages_memory(unsigned long start, unsigned long end)
1893{
1894	int order;
1895
1896	while (start < end) {
1897		order = min(MAX_ORDER - 1UL, __ffs(start));
1898
1899		while (start + (1UL << order) > end)
1900			order--;
1901
1902		memblock_free_pages(pfn_to_page(start), start, order);
1903
1904		start += (1UL << order);
1905	}
1906}
1907
1908static unsigned long __init __free_memory_core(phys_addr_t start,
1909				 phys_addr_t end)
1910{
1911	unsigned long start_pfn = PFN_UP(start);
1912	unsigned long end_pfn = min_t(unsigned long,
1913				      PFN_DOWN(end), max_low_pfn);
1914
1915	if (start_pfn >= end_pfn)
1916		return 0;
1917
1918	__free_pages_memory(start_pfn, end_pfn);
1919
1920	return end_pfn - start_pfn;
1921}
1922
1923static unsigned long __init free_low_memory_core_early(void)
1924{
1925	unsigned long count = 0;
1926	phys_addr_t start, end;
1927	u64 i;
1928
1929	memblock_clear_hotplug(0, -1);
1930
1931	for_each_reserved_mem_region(i, &start, &end)
1932		reserve_bootmem_region(start, end);
1933
1934	/*
1935	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1936	 *  because in some case like Node0 doesn't have RAM installed
1937	 *  low ram will be on Node1
1938	 */
1939	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1940				NULL)
1941		count += __free_memory_core(start, end);
1942
1943	return count;
1944}
1945
1946static int reset_managed_pages_done __initdata;
1947
1948void reset_node_managed_pages(pg_data_t *pgdat)
1949{
1950	struct zone *z;
1951
1952	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1953		atomic_long_set(&z->managed_pages, 0);
1954}
1955
1956void __init reset_all_zones_managed_pages(void)
1957{
1958	struct pglist_data *pgdat;
1959
1960	if (reset_managed_pages_done)
1961		return;
1962
1963	for_each_online_pgdat(pgdat)
1964		reset_node_managed_pages(pgdat);
1965
1966	reset_managed_pages_done = 1;
1967}
1968
1969/**
1970 * memblock_free_all - release free pages to the buddy allocator
1971 *
1972 * Return: the number of pages actually released.
1973 */
1974unsigned long __init memblock_free_all(void)
1975{
1976	unsigned long pages;
1977
1978	reset_all_zones_managed_pages();
1979
1980	pages = free_low_memory_core_early();
1981	totalram_pages_add(pages);
1982
1983	return pages;
1984}
1985
1986#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1987
1988static int memblock_debug_show(struct seq_file *m, void *private)
1989{
1990	struct memblock_type *type = m->private;
1991	struct memblock_region *reg;
1992	int i;
1993	phys_addr_t end;
1994
1995	for (i = 0; i < type->cnt; i++) {
1996		reg = &type->regions[i];
1997		end = reg->base + reg->size - 1;
1998
1999		seq_printf(m, "%4d: ", i);
2000		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2001	}
2002	return 0;
2003}
2004DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2005
2006static int __init memblock_init_debugfs(void)
2007{
2008	struct dentry *root = debugfs_create_dir("memblock", NULL);
2009
2010	debugfs_create_file("memory", 0444, root,
2011			    &memblock.memory, &memblock_debug_fops);
2012	debugfs_create_file("reserved", 0444, root,
2013			    &memblock.reserved, &memblock_debug_fops);
2014#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2015	debugfs_create_file("physmem", 0444, root,
2016			    &memblock.physmem, &memblock_debug_fops);
2017#endif
2018
2019	return 0;
2020}
2021__initcall(memblock_init_debugfs);
2022
2023#endif /* CONFIG_DEBUG_FS */