Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9#include <linux/kernel.h>
10#include <linux/slab.h>
11#include <linux/init.h>
12#include <linux/bitops.h>
13#include <linux/poison.h>
14#include <linux/pfn.h>
15#include <linux/debugfs.h>
16#include <linux/kmemleak.h>
17#include <linux/seq_file.h>
18#include <linux/memblock.h>
19
20#include <asm/sections.h>
21#include <linux/io.h>
22
23#include "internal.h"
24
25#define INIT_MEMBLOCK_REGIONS 128
26#define INIT_PHYSMEM_REGIONS 4
27
28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29# define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30#endif
31
32/**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by :c:type:`struct memblock_region` that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the :c:type:`struct
54 * memblock_type` which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with :c:type:`struct memblock`. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95#ifndef CONFIG_NEED_MULTIPLE_NODES
96struct pglist_data __refdata contig_page_data;
97EXPORT_SYMBOL(contig_page_data);
98#endif
99
100unsigned long max_low_pfn;
101unsigned long min_low_pfn;
102unsigned long max_pfn;
103unsigned long long max_possible_pfn;
104
105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109#endif
110
111struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124};
125
126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132};
133#endif
134
135int memblock_debug __initdata_memblock;
136static bool system_has_some_mirror __initdata_memblock = false;
137static int memblock_can_resize __initdata_memblock;
138static int memblock_memory_in_slab __initdata_memblock = 0;
139static int memblock_reserved_in_slab __initdata_memblock = 0;
140
141static enum memblock_flags __init_memblock choose_memblock_flags(void)
142{
143 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
144}
145
146/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
147static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
148{
149 return *size = min(*size, PHYS_ADDR_MAX - base);
150}
151
152/*
153 * Address comparison utilities
154 */
155static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
156 phys_addr_t base2, phys_addr_t size2)
157{
158 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
159}
160
161bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
162 phys_addr_t base, phys_addr_t size)
163{
164 unsigned long i;
165
166 for (i = 0; i < type->cnt; i++)
167 if (memblock_addrs_overlap(base, size, type->regions[i].base,
168 type->regions[i].size))
169 break;
170 return i < type->cnt;
171}
172
173/**
174 * __memblock_find_range_bottom_up - find free area utility in bottom-up
175 * @start: start of candidate range
176 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
177 * %MEMBLOCK_ALLOC_ACCESSIBLE
178 * @size: size of free area to find
179 * @align: alignment of free area to find
180 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
181 * @flags: pick from blocks based on memory attributes
182 *
183 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
184 *
185 * Return:
186 * Found address on success, 0 on failure.
187 */
188static phys_addr_t __init_memblock
189__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
190 phys_addr_t size, phys_addr_t align, int nid,
191 enum memblock_flags flags)
192{
193 phys_addr_t this_start, this_end, cand;
194 u64 i;
195
196 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
197 this_start = clamp(this_start, start, end);
198 this_end = clamp(this_end, start, end);
199
200 cand = round_up(this_start, align);
201 if (cand < this_end && this_end - cand >= size)
202 return cand;
203 }
204
205 return 0;
206}
207
208/**
209 * __memblock_find_range_top_down - find free area utility, in top-down
210 * @start: start of candidate range
211 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
212 * %MEMBLOCK_ALLOC_ACCESSIBLE
213 * @size: size of free area to find
214 * @align: alignment of free area to find
215 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
216 * @flags: pick from blocks based on memory attributes
217 *
218 * Utility called from memblock_find_in_range_node(), find free area top-down.
219 *
220 * Return:
221 * Found address on success, 0 on failure.
222 */
223static phys_addr_t __init_memblock
224__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
225 phys_addr_t size, phys_addr_t align, int nid,
226 enum memblock_flags flags)
227{
228 phys_addr_t this_start, this_end, cand;
229 u64 i;
230
231 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
232 NULL) {
233 this_start = clamp(this_start, start, end);
234 this_end = clamp(this_end, start, end);
235
236 if (this_end < size)
237 continue;
238
239 cand = round_down(this_end - size, align);
240 if (cand >= this_start)
241 return cand;
242 }
243
244 return 0;
245}
246
247/**
248 * memblock_find_in_range_node - find free area in given range and node
249 * @size: size of free area to find
250 * @align: alignment of free area to find
251 * @start: start of candidate range
252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
253 * %MEMBLOCK_ALLOC_ACCESSIBLE
254 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
255 * @flags: pick from blocks based on memory attributes
256 *
257 * Find @size free area aligned to @align in the specified range and node.
258 *
259 * When allocation direction is bottom-up, the @start should be greater
260 * than the end of the kernel image. Otherwise, it will be trimmed. The
261 * reason is that we want the bottom-up allocation just near the kernel
262 * image so it is highly likely that the allocated memory and the kernel
263 * will reside in the same node.
264 *
265 * If bottom-up allocation failed, will try to allocate memory top-down.
266 *
267 * Return:
268 * Found address on success, 0 on failure.
269 */
270static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
271 phys_addr_t align, phys_addr_t start,
272 phys_addr_t end, int nid,
273 enum memblock_flags flags)
274{
275 phys_addr_t kernel_end, ret;
276
277 /* pump up @end */
278 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
279 end == MEMBLOCK_ALLOC_KASAN)
280 end = memblock.current_limit;
281
282 /* avoid allocating the first page */
283 start = max_t(phys_addr_t, start, PAGE_SIZE);
284 end = max(start, end);
285 kernel_end = __pa_symbol(_end);
286
287 /*
288 * try bottom-up allocation only when bottom-up mode
289 * is set and @end is above the kernel image.
290 */
291 if (memblock_bottom_up() && end > kernel_end) {
292 phys_addr_t bottom_up_start;
293
294 /* make sure we will allocate above the kernel */
295 bottom_up_start = max(start, kernel_end);
296
297 /* ok, try bottom-up allocation first */
298 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
299 size, align, nid, flags);
300 if (ret)
301 return ret;
302
303 /*
304 * we always limit bottom-up allocation above the kernel,
305 * but top-down allocation doesn't have the limit, so
306 * retrying top-down allocation may succeed when bottom-up
307 * allocation failed.
308 *
309 * bottom-up allocation is expected to be fail very rarely,
310 * so we use WARN_ONCE() here to see the stack trace if
311 * fail happens.
312 */
313 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
314 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
315 }
316
317 return __memblock_find_range_top_down(start, end, size, align, nid,
318 flags);
319}
320
321/**
322 * memblock_find_in_range - find free area in given range
323 * @start: start of candidate range
324 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
325 * %MEMBLOCK_ALLOC_ACCESSIBLE
326 * @size: size of free area to find
327 * @align: alignment of free area to find
328 *
329 * Find @size free area aligned to @align in the specified range.
330 *
331 * Return:
332 * Found address on success, 0 on failure.
333 */
334phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
335 phys_addr_t end, phys_addr_t size,
336 phys_addr_t align)
337{
338 phys_addr_t ret;
339 enum memblock_flags flags = choose_memblock_flags();
340
341again:
342 ret = memblock_find_in_range_node(size, align, start, end,
343 NUMA_NO_NODE, flags);
344
345 if (!ret && (flags & MEMBLOCK_MIRROR)) {
346 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
347 &size);
348 flags &= ~MEMBLOCK_MIRROR;
349 goto again;
350 }
351
352 return ret;
353}
354
355static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
356{
357 type->total_size -= type->regions[r].size;
358 memmove(&type->regions[r], &type->regions[r + 1],
359 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
360 type->cnt--;
361
362 /* Special case for empty arrays */
363 if (type->cnt == 0) {
364 WARN_ON(type->total_size != 0);
365 type->cnt = 1;
366 type->regions[0].base = 0;
367 type->regions[0].size = 0;
368 type->regions[0].flags = 0;
369 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
370 }
371}
372
373#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
374/**
375 * memblock_discard - discard memory and reserved arrays if they were allocated
376 */
377void __init memblock_discard(void)
378{
379 phys_addr_t addr, size;
380
381 if (memblock.reserved.regions != memblock_reserved_init_regions) {
382 addr = __pa(memblock.reserved.regions);
383 size = PAGE_ALIGN(sizeof(struct memblock_region) *
384 memblock.reserved.max);
385 __memblock_free_late(addr, size);
386 }
387
388 if (memblock.memory.regions != memblock_memory_init_regions) {
389 addr = __pa(memblock.memory.regions);
390 size = PAGE_ALIGN(sizeof(struct memblock_region) *
391 memblock.memory.max);
392 __memblock_free_late(addr, size);
393 }
394}
395#endif
396
397/**
398 * memblock_double_array - double the size of the memblock regions array
399 * @type: memblock type of the regions array being doubled
400 * @new_area_start: starting address of memory range to avoid overlap with
401 * @new_area_size: size of memory range to avoid overlap with
402 *
403 * Double the size of the @type regions array. If memblock is being used to
404 * allocate memory for a new reserved regions array and there is a previously
405 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
406 * waiting to be reserved, ensure the memory used by the new array does
407 * not overlap.
408 *
409 * Return:
410 * 0 on success, -1 on failure.
411 */
412static int __init_memblock memblock_double_array(struct memblock_type *type,
413 phys_addr_t new_area_start,
414 phys_addr_t new_area_size)
415{
416 struct memblock_region *new_array, *old_array;
417 phys_addr_t old_alloc_size, new_alloc_size;
418 phys_addr_t old_size, new_size, addr, new_end;
419 int use_slab = slab_is_available();
420 int *in_slab;
421
422 /* We don't allow resizing until we know about the reserved regions
423 * of memory that aren't suitable for allocation
424 */
425 if (!memblock_can_resize)
426 return -1;
427
428 /* Calculate new doubled size */
429 old_size = type->max * sizeof(struct memblock_region);
430 new_size = old_size << 1;
431 /*
432 * We need to allocated new one align to PAGE_SIZE,
433 * so we can free them completely later.
434 */
435 old_alloc_size = PAGE_ALIGN(old_size);
436 new_alloc_size = PAGE_ALIGN(new_size);
437
438 /* Retrieve the slab flag */
439 if (type == &memblock.memory)
440 in_slab = &memblock_memory_in_slab;
441 else
442 in_slab = &memblock_reserved_in_slab;
443
444 /* Try to find some space for it */
445 if (use_slab) {
446 new_array = kmalloc(new_size, GFP_KERNEL);
447 addr = new_array ? __pa(new_array) : 0;
448 } else {
449 /* only exclude range when trying to double reserved.regions */
450 if (type != &memblock.reserved)
451 new_area_start = new_area_size = 0;
452
453 addr = memblock_find_in_range(new_area_start + new_area_size,
454 memblock.current_limit,
455 new_alloc_size, PAGE_SIZE);
456 if (!addr && new_area_size)
457 addr = memblock_find_in_range(0,
458 min(new_area_start, memblock.current_limit),
459 new_alloc_size, PAGE_SIZE);
460
461 new_array = addr ? __va(addr) : NULL;
462 }
463 if (!addr) {
464 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
465 type->name, type->max, type->max * 2);
466 return -1;
467 }
468
469 new_end = addr + new_size - 1;
470 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
471 type->name, type->max * 2, &addr, &new_end);
472
473 /*
474 * Found space, we now need to move the array over before we add the
475 * reserved region since it may be our reserved array itself that is
476 * full.
477 */
478 memcpy(new_array, type->regions, old_size);
479 memset(new_array + type->max, 0, old_size);
480 old_array = type->regions;
481 type->regions = new_array;
482 type->max <<= 1;
483
484 /* Free old array. We needn't free it if the array is the static one */
485 if (*in_slab)
486 kfree(old_array);
487 else if (old_array != memblock_memory_init_regions &&
488 old_array != memblock_reserved_init_regions)
489 memblock_free(__pa(old_array), old_alloc_size);
490
491 /*
492 * Reserve the new array if that comes from the memblock. Otherwise, we
493 * needn't do it
494 */
495 if (!use_slab)
496 BUG_ON(memblock_reserve(addr, new_alloc_size));
497
498 /* Update slab flag */
499 *in_slab = use_slab;
500
501 return 0;
502}
503
504/**
505 * memblock_merge_regions - merge neighboring compatible regions
506 * @type: memblock type to scan
507 *
508 * Scan @type and merge neighboring compatible regions.
509 */
510static void __init_memblock memblock_merge_regions(struct memblock_type *type)
511{
512 int i = 0;
513
514 /* cnt never goes below 1 */
515 while (i < type->cnt - 1) {
516 struct memblock_region *this = &type->regions[i];
517 struct memblock_region *next = &type->regions[i + 1];
518
519 if (this->base + this->size != next->base ||
520 memblock_get_region_node(this) !=
521 memblock_get_region_node(next) ||
522 this->flags != next->flags) {
523 BUG_ON(this->base + this->size > next->base);
524 i++;
525 continue;
526 }
527
528 this->size += next->size;
529 /* move forward from next + 1, index of which is i + 2 */
530 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
531 type->cnt--;
532 }
533}
534
535/**
536 * memblock_insert_region - insert new memblock region
537 * @type: memblock type to insert into
538 * @idx: index for the insertion point
539 * @base: base address of the new region
540 * @size: size of the new region
541 * @nid: node id of the new region
542 * @flags: flags of the new region
543 *
544 * Insert new memblock region [@base, @base + @size) into @type at @idx.
545 * @type must already have extra room to accommodate the new region.
546 */
547static void __init_memblock memblock_insert_region(struct memblock_type *type,
548 int idx, phys_addr_t base,
549 phys_addr_t size,
550 int nid,
551 enum memblock_flags flags)
552{
553 struct memblock_region *rgn = &type->regions[idx];
554
555 BUG_ON(type->cnt >= type->max);
556 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
557 rgn->base = base;
558 rgn->size = size;
559 rgn->flags = flags;
560 memblock_set_region_node(rgn, nid);
561 type->cnt++;
562 type->total_size += size;
563}
564
565/**
566 * memblock_add_range - add new memblock region
567 * @type: memblock type to add new region into
568 * @base: base address of the new region
569 * @size: size of the new region
570 * @nid: nid of the new region
571 * @flags: flags of the new region
572 *
573 * Add new memblock region [@base, @base + @size) into @type. The new region
574 * is allowed to overlap with existing ones - overlaps don't affect already
575 * existing regions. @type is guaranteed to be minimal (all neighbouring
576 * compatible regions are merged) after the addition.
577 *
578 * Return:
579 * 0 on success, -errno on failure.
580 */
581static int __init_memblock memblock_add_range(struct memblock_type *type,
582 phys_addr_t base, phys_addr_t size,
583 int nid, enum memblock_flags flags)
584{
585 bool insert = false;
586 phys_addr_t obase = base;
587 phys_addr_t end = base + memblock_cap_size(base, &size);
588 int idx, nr_new;
589 struct memblock_region *rgn;
590
591 if (!size)
592 return 0;
593
594 /* special case for empty array */
595 if (type->regions[0].size == 0) {
596 WARN_ON(type->cnt != 1 || type->total_size);
597 type->regions[0].base = base;
598 type->regions[0].size = size;
599 type->regions[0].flags = flags;
600 memblock_set_region_node(&type->regions[0], nid);
601 type->total_size = size;
602 return 0;
603 }
604repeat:
605 /*
606 * The following is executed twice. Once with %false @insert and
607 * then with %true. The first counts the number of regions needed
608 * to accommodate the new area. The second actually inserts them.
609 */
610 base = obase;
611 nr_new = 0;
612
613 for_each_memblock_type(idx, type, rgn) {
614 phys_addr_t rbase = rgn->base;
615 phys_addr_t rend = rbase + rgn->size;
616
617 if (rbase >= end)
618 break;
619 if (rend <= base)
620 continue;
621 /*
622 * @rgn overlaps. If it separates the lower part of new
623 * area, insert that portion.
624 */
625 if (rbase > base) {
626#ifdef CONFIG_NEED_MULTIPLE_NODES
627 WARN_ON(nid != memblock_get_region_node(rgn));
628#endif
629 WARN_ON(flags != rgn->flags);
630 nr_new++;
631 if (insert)
632 memblock_insert_region(type, idx++, base,
633 rbase - base, nid,
634 flags);
635 }
636 /* area below @rend is dealt with, forget about it */
637 base = min(rend, end);
638 }
639
640 /* insert the remaining portion */
641 if (base < end) {
642 nr_new++;
643 if (insert)
644 memblock_insert_region(type, idx, base, end - base,
645 nid, flags);
646 }
647
648 if (!nr_new)
649 return 0;
650
651 /*
652 * If this was the first round, resize array and repeat for actual
653 * insertions; otherwise, merge and return.
654 */
655 if (!insert) {
656 while (type->cnt + nr_new > type->max)
657 if (memblock_double_array(type, obase, size) < 0)
658 return -ENOMEM;
659 insert = true;
660 goto repeat;
661 } else {
662 memblock_merge_regions(type);
663 return 0;
664 }
665}
666
667/**
668 * memblock_add_node - add new memblock region within a NUMA node
669 * @base: base address of the new region
670 * @size: size of the new region
671 * @nid: nid of the new region
672 *
673 * Add new memblock region [@base, @base + @size) to the "memory"
674 * type. See memblock_add_range() description for mode details
675 *
676 * Return:
677 * 0 on success, -errno on failure.
678 */
679int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
680 int nid)
681{
682 return memblock_add_range(&memblock.memory, base, size, nid, 0);
683}
684
685/**
686 * memblock_add - add new memblock region
687 * @base: base address of the new region
688 * @size: size of the new region
689 *
690 * Add new memblock region [@base, @base + @size) to the "memory"
691 * type. See memblock_add_range() description for mode details
692 *
693 * Return:
694 * 0 on success, -errno on failure.
695 */
696int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
697{
698 phys_addr_t end = base + size - 1;
699
700 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
701 &base, &end, (void *)_RET_IP_);
702
703 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
704}
705
706/**
707 * memblock_isolate_range - isolate given range into disjoint memblocks
708 * @type: memblock type to isolate range for
709 * @base: base of range to isolate
710 * @size: size of range to isolate
711 * @start_rgn: out parameter for the start of isolated region
712 * @end_rgn: out parameter for the end of isolated region
713 *
714 * Walk @type and ensure that regions don't cross the boundaries defined by
715 * [@base, @base + @size). Crossing regions are split at the boundaries,
716 * which may create at most two more regions. The index of the first
717 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
718 *
719 * Return:
720 * 0 on success, -errno on failure.
721 */
722static int __init_memblock memblock_isolate_range(struct memblock_type *type,
723 phys_addr_t base, phys_addr_t size,
724 int *start_rgn, int *end_rgn)
725{
726 phys_addr_t end = base + memblock_cap_size(base, &size);
727 int idx;
728 struct memblock_region *rgn;
729
730 *start_rgn = *end_rgn = 0;
731
732 if (!size)
733 return 0;
734
735 /* we'll create at most two more regions */
736 while (type->cnt + 2 > type->max)
737 if (memblock_double_array(type, base, size) < 0)
738 return -ENOMEM;
739
740 for_each_memblock_type(idx, type, rgn) {
741 phys_addr_t rbase = rgn->base;
742 phys_addr_t rend = rbase + rgn->size;
743
744 if (rbase >= end)
745 break;
746 if (rend <= base)
747 continue;
748
749 if (rbase < base) {
750 /*
751 * @rgn intersects from below. Split and continue
752 * to process the next region - the new top half.
753 */
754 rgn->base = base;
755 rgn->size -= base - rbase;
756 type->total_size -= base - rbase;
757 memblock_insert_region(type, idx, rbase, base - rbase,
758 memblock_get_region_node(rgn),
759 rgn->flags);
760 } else if (rend > end) {
761 /*
762 * @rgn intersects from above. Split and redo the
763 * current region - the new bottom half.
764 */
765 rgn->base = end;
766 rgn->size -= end - rbase;
767 type->total_size -= end - rbase;
768 memblock_insert_region(type, idx--, rbase, end - rbase,
769 memblock_get_region_node(rgn),
770 rgn->flags);
771 } else {
772 /* @rgn is fully contained, record it */
773 if (!*end_rgn)
774 *start_rgn = idx;
775 *end_rgn = idx + 1;
776 }
777 }
778
779 return 0;
780}
781
782static int __init_memblock memblock_remove_range(struct memblock_type *type,
783 phys_addr_t base, phys_addr_t size)
784{
785 int start_rgn, end_rgn;
786 int i, ret;
787
788 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
789 if (ret)
790 return ret;
791
792 for (i = end_rgn - 1; i >= start_rgn; i--)
793 memblock_remove_region(type, i);
794 return 0;
795}
796
797int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
798{
799 phys_addr_t end = base + size - 1;
800
801 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
802 &base, &end, (void *)_RET_IP_);
803
804 return memblock_remove_range(&memblock.memory, base, size);
805}
806
807/**
808 * memblock_free - free boot memory block
809 * @base: phys starting address of the boot memory block
810 * @size: size of the boot memory block in bytes
811 *
812 * Free boot memory block previously allocated by memblock_alloc_xx() API.
813 * The freeing memory will not be released to the buddy allocator.
814 */
815int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
816{
817 phys_addr_t end = base + size - 1;
818
819 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
820 &base, &end, (void *)_RET_IP_);
821
822 kmemleak_free_part_phys(base, size);
823 return memblock_remove_range(&memblock.reserved, base, size);
824}
825
826int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
827{
828 phys_addr_t end = base + size - 1;
829
830 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
831 &base, &end, (void *)_RET_IP_);
832
833 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
834}
835
836#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
837int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
838{
839 phys_addr_t end = base + size - 1;
840
841 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
842 &base, &end, (void *)_RET_IP_);
843
844 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
845}
846#endif
847
848/**
849 * memblock_setclr_flag - set or clear flag for a memory region
850 * @base: base address of the region
851 * @size: size of the region
852 * @set: set or clear the flag
853 * @flag: the flag to udpate
854 *
855 * This function isolates region [@base, @base + @size), and sets/clears flag
856 *
857 * Return: 0 on success, -errno on failure.
858 */
859static int __init_memblock memblock_setclr_flag(phys_addr_t base,
860 phys_addr_t size, int set, int flag)
861{
862 struct memblock_type *type = &memblock.memory;
863 int i, ret, start_rgn, end_rgn;
864
865 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
866 if (ret)
867 return ret;
868
869 for (i = start_rgn; i < end_rgn; i++) {
870 struct memblock_region *r = &type->regions[i];
871
872 if (set)
873 r->flags |= flag;
874 else
875 r->flags &= ~flag;
876 }
877
878 memblock_merge_regions(type);
879 return 0;
880}
881
882/**
883 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
884 * @base: the base phys addr of the region
885 * @size: the size of the region
886 *
887 * Return: 0 on success, -errno on failure.
888 */
889int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
890{
891 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
892}
893
894/**
895 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
896 * @base: the base phys addr of the region
897 * @size: the size of the region
898 *
899 * Return: 0 on success, -errno on failure.
900 */
901int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
902{
903 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
904}
905
906/**
907 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
908 * @base: the base phys addr of the region
909 * @size: the size of the region
910 *
911 * Return: 0 on success, -errno on failure.
912 */
913int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
914{
915 system_has_some_mirror = true;
916
917 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
918}
919
920/**
921 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
922 * @base: the base phys addr of the region
923 * @size: the size of the region
924 *
925 * Return: 0 on success, -errno on failure.
926 */
927int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
928{
929 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
930}
931
932/**
933 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
934 * @base: the base phys addr of the region
935 * @size: the size of the region
936 *
937 * Return: 0 on success, -errno on failure.
938 */
939int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
940{
941 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
942}
943
944/**
945 * __next_reserved_mem_region - next function for for_each_reserved_region()
946 * @idx: pointer to u64 loop variable
947 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
948 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
949 *
950 * Iterate over all reserved memory regions.
951 */
952void __init_memblock __next_reserved_mem_region(u64 *idx,
953 phys_addr_t *out_start,
954 phys_addr_t *out_end)
955{
956 struct memblock_type *type = &memblock.reserved;
957
958 if (*idx < type->cnt) {
959 struct memblock_region *r = &type->regions[*idx];
960 phys_addr_t base = r->base;
961 phys_addr_t size = r->size;
962
963 if (out_start)
964 *out_start = base;
965 if (out_end)
966 *out_end = base + size - 1;
967
968 *idx += 1;
969 return;
970 }
971
972 /* signal end of iteration */
973 *idx = ULLONG_MAX;
974}
975
976static bool should_skip_region(struct memblock_region *m, int nid, int flags)
977{
978 int m_nid = memblock_get_region_node(m);
979
980 /* only memory regions are associated with nodes, check it */
981 if (nid != NUMA_NO_NODE && nid != m_nid)
982 return true;
983
984 /* skip hotpluggable memory regions if needed */
985 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
986 return true;
987
988 /* if we want mirror memory skip non-mirror memory regions */
989 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
990 return true;
991
992 /* skip nomap memory unless we were asked for it explicitly */
993 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
994 return true;
995
996 return false;
997}
998
999/**
1000 * __next_mem_range - next function for for_each_free_mem_range() etc.
1001 * @idx: pointer to u64 loop variable
1002 * @nid: node selector, %NUMA_NO_NODE for all nodes
1003 * @flags: pick from blocks based on memory attributes
1004 * @type_a: pointer to memblock_type from where the range is taken
1005 * @type_b: pointer to memblock_type which excludes memory from being taken
1006 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1007 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1008 * @out_nid: ptr to int for nid of the range, can be %NULL
1009 *
1010 * Find the first area from *@idx which matches @nid, fill the out
1011 * parameters, and update *@idx for the next iteration. The lower 32bit of
1012 * *@idx contains index into type_a and the upper 32bit indexes the
1013 * areas before each region in type_b. For example, if type_b regions
1014 * look like the following,
1015 *
1016 * 0:[0-16), 1:[32-48), 2:[128-130)
1017 *
1018 * The upper 32bit indexes the following regions.
1019 *
1020 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1021 *
1022 * As both region arrays are sorted, the function advances the two indices
1023 * in lockstep and returns each intersection.
1024 */
1025void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1026 struct memblock_type *type_a,
1027 struct memblock_type *type_b, phys_addr_t *out_start,
1028 phys_addr_t *out_end, int *out_nid)
1029{
1030 int idx_a = *idx & 0xffffffff;
1031 int idx_b = *idx >> 32;
1032
1033 if (WARN_ONCE(nid == MAX_NUMNODES,
1034 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1035 nid = NUMA_NO_NODE;
1036
1037 for (; idx_a < type_a->cnt; idx_a++) {
1038 struct memblock_region *m = &type_a->regions[idx_a];
1039
1040 phys_addr_t m_start = m->base;
1041 phys_addr_t m_end = m->base + m->size;
1042 int m_nid = memblock_get_region_node(m);
1043
1044 if (should_skip_region(m, nid, flags))
1045 continue;
1046
1047 if (!type_b) {
1048 if (out_start)
1049 *out_start = m_start;
1050 if (out_end)
1051 *out_end = m_end;
1052 if (out_nid)
1053 *out_nid = m_nid;
1054 idx_a++;
1055 *idx = (u32)idx_a | (u64)idx_b << 32;
1056 return;
1057 }
1058
1059 /* scan areas before each reservation */
1060 for (; idx_b < type_b->cnt + 1; idx_b++) {
1061 struct memblock_region *r;
1062 phys_addr_t r_start;
1063 phys_addr_t r_end;
1064
1065 r = &type_b->regions[idx_b];
1066 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1067 r_end = idx_b < type_b->cnt ?
1068 r->base : PHYS_ADDR_MAX;
1069
1070 /*
1071 * if idx_b advanced past idx_a,
1072 * break out to advance idx_a
1073 */
1074 if (r_start >= m_end)
1075 break;
1076 /* if the two regions intersect, we're done */
1077 if (m_start < r_end) {
1078 if (out_start)
1079 *out_start =
1080 max(m_start, r_start);
1081 if (out_end)
1082 *out_end = min(m_end, r_end);
1083 if (out_nid)
1084 *out_nid = m_nid;
1085 /*
1086 * The region which ends first is
1087 * advanced for the next iteration.
1088 */
1089 if (m_end <= r_end)
1090 idx_a++;
1091 else
1092 idx_b++;
1093 *idx = (u32)idx_a | (u64)idx_b << 32;
1094 return;
1095 }
1096 }
1097 }
1098
1099 /* signal end of iteration */
1100 *idx = ULLONG_MAX;
1101}
1102
1103/**
1104 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1105 *
1106 * @idx: pointer to u64 loop variable
1107 * @nid: node selector, %NUMA_NO_NODE for all nodes
1108 * @flags: pick from blocks based on memory attributes
1109 * @type_a: pointer to memblock_type from where the range is taken
1110 * @type_b: pointer to memblock_type which excludes memory from being taken
1111 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1112 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1113 * @out_nid: ptr to int for nid of the range, can be %NULL
1114 *
1115 * Finds the next range from type_a which is not marked as unsuitable
1116 * in type_b.
1117 *
1118 * Reverse of __next_mem_range().
1119 */
1120void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1121 enum memblock_flags flags,
1122 struct memblock_type *type_a,
1123 struct memblock_type *type_b,
1124 phys_addr_t *out_start,
1125 phys_addr_t *out_end, int *out_nid)
1126{
1127 int idx_a = *idx & 0xffffffff;
1128 int idx_b = *idx >> 32;
1129
1130 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1131 nid = NUMA_NO_NODE;
1132
1133 if (*idx == (u64)ULLONG_MAX) {
1134 idx_a = type_a->cnt - 1;
1135 if (type_b != NULL)
1136 idx_b = type_b->cnt;
1137 else
1138 idx_b = 0;
1139 }
1140
1141 for (; idx_a >= 0; idx_a--) {
1142 struct memblock_region *m = &type_a->regions[idx_a];
1143
1144 phys_addr_t m_start = m->base;
1145 phys_addr_t m_end = m->base + m->size;
1146 int m_nid = memblock_get_region_node(m);
1147
1148 if (should_skip_region(m, nid, flags))
1149 continue;
1150
1151 if (!type_b) {
1152 if (out_start)
1153 *out_start = m_start;
1154 if (out_end)
1155 *out_end = m_end;
1156 if (out_nid)
1157 *out_nid = m_nid;
1158 idx_a--;
1159 *idx = (u32)idx_a | (u64)idx_b << 32;
1160 return;
1161 }
1162
1163 /* scan areas before each reservation */
1164 for (; idx_b >= 0; idx_b--) {
1165 struct memblock_region *r;
1166 phys_addr_t r_start;
1167 phys_addr_t r_end;
1168
1169 r = &type_b->regions[idx_b];
1170 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1171 r_end = idx_b < type_b->cnt ?
1172 r->base : PHYS_ADDR_MAX;
1173 /*
1174 * if idx_b advanced past idx_a,
1175 * break out to advance idx_a
1176 */
1177
1178 if (r_end <= m_start)
1179 break;
1180 /* if the two regions intersect, we're done */
1181 if (m_end > r_start) {
1182 if (out_start)
1183 *out_start = max(m_start, r_start);
1184 if (out_end)
1185 *out_end = min(m_end, r_end);
1186 if (out_nid)
1187 *out_nid = m_nid;
1188 if (m_start >= r_start)
1189 idx_a--;
1190 else
1191 idx_b--;
1192 *idx = (u32)idx_a | (u64)idx_b << 32;
1193 return;
1194 }
1195 }
1196 }
1197 /* signal end of iteration */
1198 *idx = ULLONG_MAX;
1199}
1200
1201/*
1202 * Common iterator interface used to define for_each_mem_pfn_range().
1203 */
1204void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1205 unsigned long *out_start_pfn,
1206 unsigned long *out_end_pfn, int *out_nid)
1207{
1208 struct memblock_type *type = &memblock.memory;
1209 struct memblock_region *r;
1210 int r_nid;
1211
1212 while (++*idx < type->cnt) {
1213 r = &type->regions[*idx];
1214 r_nid = memblock_get_region_node(r);
1215
1216 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1217 continue;
1218 if (nid == MAX_NUMNODES || nid == r_nid)
1219 break;
1220 }
1221 if (*idx >= type->cnt) {
1222 *idx = -1;
1223 return;
1224 }
1225
1226 if (out_start_pfn)
1227 *out_start_pfn = PFN_UP(r->base);
1228 if (out_end_pfn)
1229 *out_end_pfn = PFN_DOWN(r->base + r->size);
1230 if (out_nid)
1231 *out_nid = r_nid;
1232}
1233
1234/**
1235 * memblock_set_node - set node ID on memblock regions
1236 * @base: base of area to set node ID for
1237 * @size: size of area to set node ID for
1238 * @type: memblock type to set node ID for
1239 * @nid: node ID to set
1240 *
1241 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1242 * Regions which cross the area boundaries are split as necessary.
1243 *
1244 * Return:
1245 * 0 on success, -errno on failure.
1246 */
1247int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1248 struct memblock_type *type, int nid)
1249{
1250#ifdef CONFIG_NEED_MULTIPLE_NODES
1251 int start_rgn, end_rgn;
1252 int i, ret;
1253
1254 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1255 if (ret)
1256 return ret;
1257
1258 for (i = start_rgn; i < end_rgn; i++)
1259 memblock_set_region_node(&type->regions[i], nid);
1260
1261 memblock_merge_regions(type);
1262#endif
1263 return 0;
1264}
1265
1266#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1267/**
1268 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1269 *
1270 * @idx: pointer to u64 loop variable
1271 * @zone: zone in which all of the memory blocks reside
1272 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1273 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1274 *
1275 * This function is meant to be a zone/pfn specific wrapper for the
1276 * for_each_mem_range type iterators. Specifically they are used in the
1277 * deferred memory init routines and as such we were duplicating much of
1278 * this logic throughout the code. So instead of having it in multiple
1279 * locations it seemed like it would make more sense to centralize this to
1280 * one new iterator that does everything they need.
1281 */
1282void __init_memblock
1283__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1284 unsigned long *out_spfn, unsigned long *out_epfn)
1285{
1286 int zone_nid = zone_to_nid(zone);
1287 phys_addr_t spa, epa;
1288 int nid;
1289
1290 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1291 &memblock.memory, &memblock.reserved,
1292 &spa, &epa, &nid);
1293
1294 while (*idx != U64_MAX) {
1295 unsigned long epfn = PFN_DOWN(epa);
1296 unsigned long spfn = PFN_UP(spa);
1297
1298 /*
1299 * Verify the end is at least past the start of the zone and
1300 * that we have at least one PFN to initialize.
1301 */
1302 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1303 /* if we went too far just stop searching */
1304 if (zone_end_pfn(zone) <= spfn) {
1305 *idx = U64_MAX;
1306 break;
1307 }
1308
1309 if (out_spfn)
1310 *out_spfn = max(zone->zone_start_pfn, spfn);
1311 if (out_epfn)
1312 *out_epfn = min(zone_end_pfn(zone), epfn);
1313
1314 return;
1315 }
1316
1317 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1318 &memblock.memory, &memblock.reserved,
1319 &spa, &epa, &nid);
1320 }
1321
1322 /* signal end of iteration */
1323 if (out_spfn)
1324 *out_spfn = ULONG_MAX;
1325 if (out_epfn)
1326 *out_epfn = 0;
1327}
1328
1329#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1330
1331/**
1332 * memblock_alloc_range_nid - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @start: the lower bound of the memory region to allocate (phys address)
1336 * @end: the upper bound of the memory region to allocate (phys address)
1337 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1338 * @exact_nid: control the allocation fall back to other nodes
1339 *
1340 * The allocation is performed from memory region limited by
1341 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1342 *
1343 * If the specified node can not hold the requested memory and @exact_nid
1344 * is false, the allocation falls back to any node in the system.
1345 *
1346 * For systems with memory mirroring, the allocation is attempted first
1347 * from the regions with mirroring enabled and then retried from any
1348 * memory region.
1349 *
1350 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1351 * allocated boot memory block, so that it is never reported as leaks.
1352 *
1353 * Return:
1354 * Physical address of allocated memory block on success, %0 on failure.
1355 */
1356phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1357 phys_addr_t align, phys_addr_t start,
1358 phys_addr_t end, int nid,
1359 bool exact_nid)
1360{
1361 enum memblock_flags flags = choose_memblock_flags();
1362 phys_addr_t found;
1363
1364 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1365 nid = NUMA_NO_NODE;
1366
1367 if (!align) {
1368 /* Can't use WARNs this early in boot on powerpc */
1369 dump_stack();
1370 align = SMP_CACHE_BYTES;
1371 }
1372
1373again:
1374 found = memblock_find_in_range_node(size, align, start, end, nid,
1375 flags);
1376 if (found && !memblock_reserve(found, size))
1377 goto done;
1378
1379 if (nid != NUMA_NO_NODE && !exact_nid) {
1380 found = memblock_find_in_range_node(size, align, start,
1381 end, NUMA_NO_NODE,
1382 flags);
1383 if (found && !memblock_reserve(found, size))
1384 goto done;
1385 }
1386
1387 if (flags & MEMBLOCK_MIRROR) {
1388 flags &= ~MEMBLOCK_MIRROR;
1389 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1390 &size);
1391 goto again;
1392 }
1393
1394 return 0;
1395
1396done:
1397 /* Skip kmemleak for kasan_init() due to high volume. */
1398 if (end != MEMBLOCK_ALLOC_KASAN)
1399 /*
1400 * The min_count is set to 0 so that memblock allocated
1401 * blocks are never reported as leaks. This is because many
1402 * of these blocks are only referred via the physical
1403 * address which is not looked up by kmemleak.
1404 */
1405 kmemleak_alloc_phys(found, size, 0, 0);
1406
1407 return found;
1408}
1409
1410/**
1411 * memblock_phys_alloc_range - allocate a memory block inside specified range
1412 * @size: size of memory block to be allocated in bytes
1413 * @align: alignment of the region and block's size
1414 * @start: the lower bound of the memory region to allocate (physical address)
1415 * @end: the upper bound of the memory region to allocate (physical address)
1416 *
1417 * Allocate @size bytes in the between @start and @end.
1418 *
1419 * Return: physical address of the allocated memory block on success,
1420 * %0 on failure.
1421 */
1422phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1423 phys_addr_t align,
1424 phys_addr_t start,
1425 phys_addr_t end)
1426{
1427 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1428 false);
1429}
1430
1431/**
1432 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1433 * @size: size of memory block to be allocated in bytes
1434 * @align: alignment of the region and block's size
1435 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1436 *
1437 * Allocates memory block from the specified NUMA node. If the node
1438 * has no available memory, attempts to allocated from any node in the
1439 * system.
1440 *
1441 * Return: physical address of the allocated memory block on success,
1442 * %0 on failure.
1443 */
1444phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1445{
1446 return memblock_alloc_range_nid(size, align, 0,
1447 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1448}
1449
1450/**
1451 * memblock_alloc_internal - allocate boot memory block
1452 * @size: size of memory block to be allocated in bytes
1453 * @align: alignment of the region and block's size
1454 * @min_addr: the lower bound of the memory region to allocate (phys address)
1455 * @max_addr: the upper bound of the memory region to allocate (phys address)
1456 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1457 * @exact_nid: control the allocation fall back to other nodes
1458 *
1459 * Allocates memory block using memblock_alloc_range_nid() and
1460 * converts the returned physical address to virtual.
1461 *
1462 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1463 * will fall back to memory below @min_addr. Other constraints, such
1464 * as node and mirrored memory will be handled again in
1465 * memblock_alloc_range_nid().
1466 *
1467 * Return:
1468 * Virtual address of allocated memory block on success, NULL on failure.
1469 */
1470static void * __init memblock_alloc_internal(
1471 phys_addr_t size, phys_addr_t align,
1472 phys_addr_t min_addr, phys_addr_t max_addr,
1473 int nid, bool exact_nid)
1474{
1475 phys_addr_t alloc;
1476
1477 /*
1478 * Detect any accidental use of these APIs after slab is ready, as at
1479 * this moment memblock may be deinitialized already and its
1480 * internal data may be destroyed (after execution of memblock_free_all)
1481 */
1482 if (WARN_ON_ONCE(slab_is_available()))
1483 return kzalloc_node(size, GFP_NOWAIT, nid);
1484
1485 if (max_addr > memblock.current_limit)
1486 max_addr = memblock.current_limit;
1487
1488 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1489 exact_nid);
1490
1491 /* retry allocation without lower limit */
1492 if (!alloc && min_addr)
1493 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1494 exact_nid);
1495
1496 if (!alloc)
1497 return NULL;
1498
1499 return phys_to_virt(alloc);
1500}
1501
1502/**
1503 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1504 * without zeroing memory
1505 * @size: size of memory block to be allocated in bytes
1506 * @align: alignment of the region and block's size
1507 * @min_addr: the lower bound of the memory region from where the allocation
1508 * is preferred (phys address)
1509 * @max_addr: the upper bound of the memory region from where the allocation
1510 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1511 * allocate only from memory limited by memblock.current_limit value
1512 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1513 *
1514 * Public function, provides additional debug information (including caller
1515 * info), if enabled. Does not zero allocated memory.
1516 *
1517 * Return:
1518 * Virtual address of allocated memory block on success, NULL on failure.
1519 */
1520void * __init memblock_alloc_exact_nid_raw(
1521 phys_addr_t size, phys_addr_t align,
1522 phys_addr_t min_addr, phys_addr_t max_addr,
1523 int nid)
1524{
1525 void *ptr;
1526
1527 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1528 __func__, (u64)size, (u64)align, nid, &min_addr,
1529 &max_addr, (void *)_RET_IP_);
1530
1531 ptr = memblock_alloc_internal(size, align,
1532 min_addr, max_addr, nid, true);
1533 if (ptr && size > 0)
1534 page_init_poison(ptr, size);
1535
1536 return ptr;
1537}
1538
1539/**
1540 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1541 * memory and without panicking
1542 * @size: size of memory block to be allocated in bytes
1543 * @align: alignment of the region and block's size
1544 * @min_addr: the lower bound of the memory region from where the allocation
1545 * is preferred (phys address)
1546 * @max_addr: the upper bound of the memory region from where the allocation
1547 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1548 * allocate only from memory limited by memblock.current_limit value
1549 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1550 *
1551 * Public function, provides additional debug information (including caller
1552 * info), if enabled. Does not zero allocated memory, does not panic if request
1553 * cannot be satisfied.
1554 *
1555 * Return:
1556 * Virtual address of allocated memory block on success, NULL on failure.
1557 */
1558void * __init memblock_alloc_try_nid_raw(
1559 phys_addr_t size, phys_addr_t align,
1560 phys_addr_t min_addr, phys_addr_t max_addr,
1561 int nid)
1562{
1563 void *ptr;
1564
1565 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1566 __func__, (u64)size, (u64)align, nid, &min_addr,
1567 &max_addr, (void *)_RET_IP_);
1568
1569 ptr = memblock_alloc_internal(size, align,
1570 min_addr, max_addr, nid, false);
1571 if (ptr && size > 0)
1572 page_init_poison(ptr, size);
1573
1574 return ptr;
1575}
1576
1577/**
1578 * memblock_alloc_try_nid - allocate boot memory block
1579 * @size: size of memory block to be allocated in bytes
1580 * @align: alignment of the region and block's size
1581 * @min_addr: the lower bound of the memory region from where the allocation
1582 * is preferred (phys address)
1583 * @max_addr: the upper bound of the memory region from where the allocation
1584 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585 * allocate only from memory limited by memblock.current_limit value
1586 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1587 *
1588 * Public function, provides additional debug information (including caller
1589 * info), if enabled. This function zeroes the allocated memory.
1590 *
1591 * Return:
1592 * Virtual address of allocated memory block on success, NULL on failure.
1593 */
1594void * __init memblock_alloc_try_nid(
1595 phys_addr_t size, phys_addr_t align,
1596 phys_addr_t min_addr, phys_addr_t max_addr,
1597 int nid)
1598{
1599 void *ptr;
1600
1601 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602 __func__, (u64)size, (u64)align, nid, &min_addr,
1603 &max_addr, (void *)_RET_IP_);
1604 ptr = memblock_alloc_internal(size, align,
1605 min_addr, max_addr, nid, false);
1606 if (ptr)
1607 memset(ptr, 0, size);
1608
1609 return ptr;
1610}
1611
1612/**
1613 * __memblock_free_late - free pages directly to buddy allocator
1614 * @base: phys starting address of the boot memory block
1615 * @size: size of the boot memory block in bytes
1616 *
1617 * This is only useful when the memblock allocator has already been torn
1618 * down, but we are still initializing the system. Pages are released directly
1619 * to the buddy allocator.
1620 */
1621void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1622{
1623 phys_addr_t cursor, end;
1624
1625 end = base + size - 1;
1626 memblock_dbg("%s: [%pa-%pa] %pS\n",
1627 __func__, &base, &end, (void *)_RET_IP_);
1628 kmemleak_free_part_phys(base, size);
1629 cursor = PFN_UP(base);
1630 end = PFN_DOWN(base + size);
1631
1632 for (; cursor < end; cursor++) {
1633 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1634 totalram_pages_inc();
1635 }
1636}
1637
1638/*
1639 * Remaining API functions
1640 */
1641
1642phys_addr_t __init_memblock memblock_phys_mem_size(void)
1643{
1644 return memblock.memory.total_size;
1645}
1646
1647phys_addr_t __init_memblock memblock_reserved_size(void)
1648{
1649 return memblock.reserved.total_size;
1650}
1651
1652phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1653{
1654 unsigned long pages = 0;
1655 struct memblock_region *r;
1656 unsigned long start_pfn, end_pfn;
1657
1658 for_each_memblock(memory, r) {
1659 start_pfn = memblock_region_memory_base_pfn(r);
1660 end_pfn = memblock_region_memory_end_pfn(r);
1661 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1662 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1663 pages += end_pfn - start_pfn;
1664 }
1665
1666 return PFN_PHYS(pages);
1667}
1668
1669/* lowest address */
1670phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1671{
1672 return memblock.memory.regions[0].base;
1673}
1674
1675phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1676{
1677 int idx = memblock.memory.cnt - 1;
1678
1679 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1680}
1681
1682static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1683{
1684 phys_addr_t max_addr = PHYS_ADDR_MAX;
1685 struct memblock_region *r;
1686
1687 /*
1688 * translate the memory @limit size into the max address within one of
1689 * the memory memblock regions, if the @limit exceeds the total size
1690 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1691 */
1692 for_each_memblock(memory, r) {
1693 if (limit <= r->size) {
1694 max_addr = r->base + limit;
1695 break;
1696 }
1697 limit -= r->size;
1698 }
1699
1700 return max_addr;
1701}
1702
1703void __init memblock_enforce_memory_limit(phys_addr_t limit)
1704{
1705 phys_addr_t max_addr;
1706
1707 if (!limit)
1708 return;
1709
1710 max_addr = __find_max_addr(limit);
1711
1712 /* @limit exceeds the total size of the memory, do nothing */
1713 if (max_addr == PHYS_ADDR_MAX)
1714 return;
1715
1716 /* truncate both memory and reserved regions */
1717 memblock_remove_range(&memblock.memory, max_addr,
1718 PHYS_ADDR_MAX);
1719 memblock_remove_range(&memblock.reserved, max_addr,
1720 PHYS_ADDR_MAX);
1721}
1722
1723void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1724{
1725 int start_rgn, end_rgn;
1726 int i, ret;
1727
1728 if (!size)
1729 return;
1730
1731 ret = memblock_isolate_range(&memblock.memory, base, size,
1732 &start_rgn, &end_rgn);
1733 if (ret)
1734 return;
1735
1736 /* remove all the MAP regions */
1737 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1738 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1739 memblock_remove_region(&memblock.memory, i);
1740
1741 for (i = start_rgn - 1; i >= 0; i--)
1742 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1743 memblock_remove_region(&memblock.memory, i);
1744
1745 /* truncate the reserved regions */
1746 memblock_remove_range(&memblock.reserved, 0, base);
1747 memblock_remove_range(&memblock.reserved,
1748 base + size, PHYS_ADDR_MAX);
1749}
1750
1751void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1752{
1753 phys_addr_t max_addr;
1754
1755 if (!limit)
1756 return;
1757
1758 max_addr = __find_max_addr(limit);
1759
1760 /* @limit exceeds the total size of the memory, do nothing */
1761 if (max_addr == PHYS_ADDR_MAX)
1762 return;
1763
1764 memblock_cap_memory_range(0, max_addr);
1765}
1766
1767static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1768{
1769 unsigned int left = 0, right = type->cnt;
1770
1771 do {
1772 unsigned int mid = (right + left) / 2;
1773
1774 if (addr < type->regions[mid].base)
1775 right = mid;
1776 else if (addr >= (type->regions[mid].base +
1777 type->regions[mid].size))
1778 left = mid + 1;
1779 else
1780 return mid;
1781 } while (left < right);
1782 return -1;
1783}
1784
1785bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1786{
1787 return memblock_search(&memblock.reserved, addr) != -1;
1788}
1789
1790bool __init_memblock memblock_is_memory(phys_addr_t addr)
1791{
1792 return memblock_search(&memblock.memory, addr) != -1;
1793}
1794
1795bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1796{
1797 int i = memblock_search(&memblock.memory, addr);
1798
1799 if (i == -1)
1800 return false;
1801 return !memblock_is_nomap(&memblock.memory.regions[i]);
1802}
1803
1804int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1805 unsigned long *start_pfn, unsigned long *end_pfn)
1806{
1807 struct memblock_type *type = &memblock.memory;
1808 int mid = memblock_search(type, PFN_PHYS(pfn));
1809
1810 if (mid == -1)
1811 return -1;
1812
1813 *start_pfn = PFN_DOWN(type->regions[mid].base);
1814 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1815
1816 return memblock_get_region_node(&type->regions[mid]);
1817}
1818
1819/**
1820 * memblock_is_region_memory - check if a region is a subset of memory
1821 * @base: base of region to check
1822 * @size: size of region to check
1823 *
1824 * Check if the region [@base, @base + @size) is a subset of a memory block.
1825 *
1826 * Return:
1827 * 0 if false, non-zero if true
1828 */
1829bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1830{
1831 int idx = memblock_search(&memblock.memory, base);
1832 phys_addr_t end = base + memblock_cap_size(base, &size);
1833
1834 if (idx == -1)
1835 return false;
1836 return (memblock.memory.regions[idx].base +
1837 memblock.memory.regions[idx].size) >= end;
1838}
1839
1840/**
1841 * memblock_is_region_reserved - check if a region intersects reserved memory
1842 * @base: base of region to check
1843 * @size: size of region to check
1844 *
1845 * Check if the region [@base, @base + @size) intersects a reserved
1846 * memory block.
1847 *
1848 * Return:
1849 * True if they intersect, false if not.
1850 */
1851bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1852{
1853 memblock_cap_size(base, &size);
1854 return memblock_overlaps_region(&memblock.reserved, base, size);
1855}
1856
1857void __init_memblock memblock_trim_memory(phys_addr_t align)
1858{
1859 phys_addr_t start, end, orig_start, orig_end;
1860 struct memblock_region *r;
1861
1862 for_each_memblock(memory, r) {
1863 orig_start = r->base;
1864 orig_end = r->base + r->size;
1865 start = round_up(orig_start, align);
1866 end = round_down(orig_end, align);
1867
1868 if (start == orig_start && end == orig_end)
1869 continue;
1870
1871 if (start < end) {
1872 r->base = start;
1873 r->size = end - start;
1874 } else {
1875 memblock_remove_region(&memblock.memory,
1876 r - memblock.memory.regions);
1877 r--;
1878 }
1879 }
1880}
1881
1882void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1883{
1884 memblock.current_limit = limit;
1885}
1886
1887phys_addr_t __init_memblock memblock_get_current_limit(void)
1888{
1889 return memblock.current_limit;
1890}
1891
1892static void __init_memblock memblock_dump(struct memblock_type *type)
1893{
1894 phys_addr_t base, end, size;
1895 enum memblock_flags flags;
1896 int idx;
1897 struct memblock_region *rgn;
1898
1899 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1900
1901 for_each_memblock_type(idx, type, rgn) {
1902 char nid_buf[32] = "";
1903
1904 base = rgn->base;
1905 size = rgn->size;
1906 end = base + size - 1;
1907 flags = rgn->flags;
1908#ifdef CONFIG_NEED_MULTIPLE_NODES
1909 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1910 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1911 memblock_get_region_node(rgn));
1912#endif
1913 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1914 type->name, idx, &base, &end, &size, nid_buf, flags);
1915 }
1916}
1917
1918void __init_memblock __memblock_dump_all(void)
1919{
1920 pr_info("MEMBLOCK configuration:\n");
1921 pr_info(" memory size = %pa reserved size = %pa\n",
1922 &memblock.memory.total_size,
1923 &memblock.reserved.total_size);
1924
1925 memblock_dump(&memblock.memory);
1926 memblock_dump(&memblock.reserved);
1927#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1928 memblock_dump(&physmem);
1929#endif
1930}
1931
1932void __init memblock_allow_resize(void)
1933{
1934 memblock_can_resize = 1;
1935}
1936
1937static int __init early_memblock(char *p)
1938{
1939 if (p && strstr(p, "debug"))
1940 memblock_debug = 1;
1941 return 0;
1942}
1943early_param("memblock", early_memblock);
1944
1945static void __init __free_pages_memory(unsigned long start, unsigned long end)
1946{
1947 int order;
1948
1949 while (start < end) {
1950 order = min(MAX_ORDER - 1UL, __ffs(start));
1951
1952 while (start + (1UL << order) > end)
1953 order--;
1954
1955 memblock_free_pages(pfn_to_page(start), start, order);
1956
1957 start += (1UL << order);
1958 }
1959}
1960
1961static unsigned long __init __free_memory_core(phys_addr_t start,
1962 phys_addr_t end)
1963{
1964 unsigned long start_pfn = PFN_UP(start);
1965 unsigned long end_pfn = min_t(unsigned long,
1966 PFN_DOWN(end), max_low_pfn);
1967
1968 if (start_pfn >= end_pfn)
1969 return 0;
1970
1971 __free_pages_memory(start_pfn, end_pfn);
1972
1973 return end_pfn - start_pfn;
1974}
1975
1976static unsigned long __init free_low_memory_core_early(void)
1977{
1978 unsigned long count = 0;
1979 phys_addr_t start, end;
1980 u64 i;
1981
1982 memblock_clear_hotplug(0, -1);
1983
1984 for_each_reserved_mem_region(i, &start, &end)
1985 reserve_bootmem_region(start, end);
1986
1987 /*
1988 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1989 * because in some case like Node0 doesn't have RAM installed
1990 * low ram will be on Node1
1991 */
1992 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1993 NULL)
1994 count += __free_memory_core(start, end);
1995
1996 return count;
1997}
1998
1999static int reset_managed_pages_done __initdata;
2000
2001void reset_node_managed_pages(pg_data_t *pgdat)
2002{
2003 struct zone *z;
2004
2005 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2006 atomic_long_set(&z->managed_pages, 0);
2007}
2008
2009void __init reset_all_zones_managed_pages(void)
2010{
2011 struct pglist_data *pgdat;
2012
2013 if (reset_managed_pages_done)
2014 return;
2015
2016 for_each_online_pgdat(pgdat)
2017 reset_node_managed_pages(pgdat);
2018
2019 reset_managed_pages_done = 1;
2020}
2021
2022/**
2023 * memblock_free_all - release free pages to the buddy allocator
2024 *
2025 * Return: the number of pages actually released.
2026 */
2027unsigned long __init memblock_free_all(void)
2028{
2029 unsigned long pages;
2030
2031 reset_all_zones_managed_pages();
2032
2033 pages = free_low_memory_core_early();
2034 totalram_pages_add(pages);
2035
2036 return pages;
2037}
2038
2039#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2040
2041static int memblock_debug_show(struct seq_file *m, void *private)
2042{
2043 struct memblock_type *type = m->private;
2044 struct memblock_region *reg;
2045 int i;
2046 phys_addr_t end;
2047
2048 for (i = 0; i < type->cnt; i++) {
2049 reg = &type->regions[i];
2050 end = reg->base + reg->size - 1;
2051
2052 seq_printf(m, "%4d: ", i);
2053 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2054 }
2055 return 0;
2056}
2057DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2058
2059static int __init memblock_init_debugfs(void)
2060{
2061 struct dentry *root = debugfs_create_dir("memblock", NULL);
2062
2063 debugfs_create_file("memory", 0444, root,
2064 &memblock.memory, &memblock_debug_fops);
2065 debugfs_create_file("reserved", 0444, root,
2066 &memblock.reserved, &memblock_debug_fops);
2067#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2068 debugfs_create_file("physmem", 0444, root, &physmem,
2069 &memblock_debug_fops);
2070#endif
2071
2072 return 0;
2073}
2074__initcall(memblock_init_debugfs);
2075
2076#endif /* CONFIG_DEBUG_FS */
1/*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13#include <linux/kernel.h>
14#include <linux/slab.h>
15#include <linux/init.h>
16#include <linux/bitops.h>
17#include <linux/poison.h>
18#include <linux/pfn.h>
19#include <linux/debugfs.h>
20#include <linux/kmemleak.h>
21#include <linux/seq_file.h>
22#include <linux/memblock.h>
23
24#include <asm/sections.h>
25#include <linux/io.h>
26
27#include "internal.h"
28
29static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
31#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
32static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
33#endif
34
35struct memblock memblock __initdata_memblock = {
36 .memory.regions = memblock_memory_init_regions,
37 .memory.cnt = 1, /* empty dummy entry */
38 .memory.max = INIT_MEMBLOCK_REGIONS,
39 .memory.name = "memory",
40
41 .reserved.regions = memblock_reserved_init_regions,
42 .reserved.cnt = 1, /* empty dummy entry */
43 .reserved.max = INIT_MEMBLOCK_REGIONS,
44 .reserved.name = "reserved",
45
46#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
47 .physmem.regions = memblock_physmem_init_regions,
48 .physmem.cnt = 1, /* empty dummy entry */
49 .physmem.max = INIT_PHYSMEM_REGIONS,
50 .physmem.name = "physmem",
51#endif
52
53 .bottom_up = false,
54 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
55};
56
57int memblock_debug __initdata_memblock;
58static bool system_has_some_mirror __initdata_memblock = false;
59static int memblock_can_resize __initdata_memblock;
60static int memblock_memory_in_slab __initdata_memblock = 0;
61static int memblock_reserved_in_slab __initdata_memblock = 0;
62
63ulong __init_memblock choose_memblock_flags(void)
64{
65 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
66}
67
68/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
69static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
70{
71 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
72}
73
74/*
75 * Address comparison utilities
76 */
77static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
78 phys_addr_t base2, phys_addr_t size2)
79{
80 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
81}
82
83bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
84 phys_addr_t base, phys_addr_t size)
85{
86 unsigned long i;
87
88 for (i = 0; i < type->cnt; i++)
89 if (memblock_addrs_overlap(base, size, type->regions[i].base,
90 type->regions[i].size))
91 break;
92 return i < type->cnt;
93}
94
95/*
96 * __memblock_find_range_bottom_up - find free area utility in bottom-up
97 * @start: start of candidate range
98 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
99 * @size: size of free area to find
100 * @align: alignment of free area to find
101 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
102 * @flags: pick from blocks based on memory attributes
103 *
104 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
105 *
106 * RETURNS:
107 * Found address on success, 0 on failure.
108 */
109static phys_addr_t __init_memblock
110__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
111 phys_addr_t size, phys_addr_t align, int nid,
112 ulong flags)
113{
114 phys_addr_t this_start, this_end, cand;
115 u64 i;
116
117 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
118 this_start = clamp(this_start, start, end);
119 this_end = clamp(this_end, start, end);
120
121 cand = round_up(this_start, align);
122 if (cand < this_end && this_end - cand >= size)
123 return cand;
124 }
125
126 return 0;
127}
128
129/**
130 * __memblock_find_range_top_down - find free area utility, in top-down
131 * @start: start of candidate range
132 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
133 * @size: size of free area to find
134 * @align: alignment of free area to find
135 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
136 * @flags: pick from blocks based on memory attributes
137 *
138 * Utility called from memblock_find_in_range_node(), find free area top-down.
139 *
140 * RETURNS:
141 * Found address on success, 0 on failure.
142 */
143static phys_addr_t __init_memblock
144__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
145 phys_addr_t size, phys_addr_t align, int nid,
146 ulong flags)
147{
148 phys_addr_t this_start, this_end, cand;
149 u64 i;
150
151 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
152 NULL) {
153 this_start = clamp(this_start, start, end);
154 this_end = clamp(this_end, start, end);
155
156 if (this_end < size)
157 continue;
158
159 cand = round_down(this_end - size, align);
160 if (cand >= this_start)
161 return cand;
162 }
163
164 return 0;
165}
166
167/**
168 * memblock_find_in_range_node - find free area in given range and node
169 * @size: size of free area to find
170 * @align: alignment of free area to find
171 * @start: start of candidate range
172 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
173 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
174 * @flags: pick from blocks based on memory attributes
175 *
176 * Find @size free area aligned to @align in the specified range and node.
177 *
178 * When allocation direction is bottom-up, the @start should be greater
179 * than the end of the kernel image. Otherwise, it will be trimmed. The
180 * reason is that we want the bottom-up allocation just near the kernel
181 * image so it is highly likely that the allocated memory and the kernel
182 * will reside in the same node.
183 *
184 * If bottom-up allocation failed, will try to allocate memory top-down.
185 *
186 * RETURNS:
187 * Found address on success, 0 on failure.
188 */
189phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
190 phys_addr_t align, phys_addr_t start,
191 phys_addr_t end, int nid, ulong flags)
192{
193 phys_addr_t kernel_end, ret;
194
195 /* pump up @end */
196 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
197 end = memblock.current_limit;
198
199 /* avoid allocating the first page */
200 start = max_t(phys_addr_t, start, PAGE_SIZE);
201 end = max(start, end);
202 kernel_end = __pa_symbol(_end);
203
204 /*
205 * try bottom-up allocation only when bottom-up mode
206 * is set and @end is above the kernel image.
207 */
208 if (memblock_bottom_up() && end > kernel_end) {
209 phys_addr_t bottom_up_start;
210
211 /* make sure we will allocate above the kernel */
212 bottom_up_start = max(start, kernel_end);
213
214 /* ok, try bottom-up allocation first */
215 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
216 size, align, nid, flags);
217 if (ret)
218 return ret;
219
220 /*
221 * we always limit bottom-up allocation above the kernel,
222 * but top-down allocation doesn't have the limit, so
223 * retrying top-down allocation may succeed when bottom-up
224 * allocation failed.
225 *
226 * bottom-up allocation is expected to be fail very rarely,
227 * so we use WARN_ONCE() here to see the stack trace if
228 * fail happens.
229 */
230 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
231 }
232
233 return __memblock_find_range_top_down(start, end, size, align, nid,
234 flags);
235}
236
237/**
238 * memblock_find_in_range - find free area in given range
239 * @start: start of candidate range
240 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
241 * @size: size of free area to find
242 * @align: alignment of free area to find
243 *
244 * Find @size free area aligned to @align in the specified range.
245 *
246 * RETURNS:
247 * Found address on success, 0 on failure.
248 */
249phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
250 phys_addr_t end, phys_addr_t size,
251 phys_addr_t align)
252{
253 phys_addr_t ret;
254 ulong flags = choose_memblock_flags();
255
256again:
257 ret = memblock_find_in_range_node(size, align, start, end,
258 NUMA_NO_NODE, flags);
259
260 if (!ret && (flags & MEMBLOCK_MIRROR)) {
261 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 &size);
263 flags &= ~MEMBLOCK_MIRROR;
264 goto again;
265 }
266
267 return ret;
268}
269
270static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
271{
272 type->total_size -= type->regions[r].size;
273 memmove(&type->regions[r], &type->regions[r + 1],
274 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
275 type->cnt--;
276
277 /* Special case for empty arrays */
278 if (type->cnt == 0) {
279 WARN_ON(type->total_size != 0);
280 type->cnt = 1;
281 type->regions[0].base = 0;
282 type->regions[0].size = 0;
283 type->regions[0].flags = 0;
284 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
285 }
286}
287
288#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289/**
290 * Discard memory and reserved arrays if they were allocated
291 */
292void __init memblock_discard(void)
293{
294 phys_addr_t addr, size;
295
296 if (memblock.reserved.regions != memblock_reserved_init_regions) {
297 addr = __pa(memblock.reserved.regions);
298 size = PAGE_ALIGN(sizeof(struct memblock_region) *
299 memblock.reserved.max);
300 __memblock_free_late(addr, size);
301 }
302
303 if (memblock.memory.regions != memblock_memory_init_regions) {
304 addr = __pa(memblock.memory.regions);
305 size = PAGE_ALIGN(sizeof(struct memblock_region) *
306 memblock.memory.max);
307 __memblock_free_late(addr, size);
308 }
309}
310#endif
311
312/**
313 * memblock_double_array - double the size of the memblock regions array
314 * @type: memblock type of the regions array being doubled
315 * @new_area_start: starting address of memory range to avoid overlap with
316 * @new_area_size: size of memory range to avoid overlap with
317 *
318 * Double the size of the @type regions array. If memblock is being used to
319 * allocate memory for a new reserved regions array and there is a previously
320 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
321 * waiting to be reserved, ensure the memory used by the new array does
322 * not overlap.
323 *
324 * RETURNS:
325 * 0 on success, -1 on failure.
326 */
327static int __init_memblock memblock_double_array(struct memblock_type *type,
328 phys_addr_t new_area_start,
329 phys_addr_t new_area_size)
330{
331 struct memblock_region *new_array, *old_array;
332 phys_addr_t old_alloc_size, new_alloc_size;
333 phys_addr_t old_size, new_size, addr;
334 int use_slab = slab_is_available();
335 int *in_slab;
336
337 /* We don't allow resizing until we know about the reserved regions
338 * of memory that aren't suitable for allocation
339 */
340 if (!memblock_can_resize)
341 return -1;
342
343 /* Calculate new doubled size */
344 old_size = type->max * sizeof(struct memblock_region);
345 new_size = old_size << 1;
346 /*
347 * We need to allocated new one align to PAGE_SIZE,
348 * so we can free them completely later.
349 */
350 old_alloc_size = PAGE_ALIGN(old_size);
351 new_alloc_size = PAGE_ALIGN(new_size);
352
353 /* Retrieve the slab flag */
354 if (type == &memblock.memory)
355 in_slab = &memblock_memory_in_slab;
356 else
357 in_slab = &memblock_reserved_in_slab;
358
359 /* Try to find some space for it.
360 *
361 * WARNING: We assume that either slab_is_available() and we use it or
362 * we use MEMBLOCK for allocations. That means that this is unsafe to
363 * use when bootmem is currently active (unless bootmem itself is
364 * implemented on top of MEMBLOCK which isn't the case yet)
365 *
366 * This should however not be an issue for now, as we currently only
367 * call into MEMBLOCK while it's still active, or much later when slab
368 * is active for memory hotplug operations
369 */
370 if (use_slab) {
371 new_array = kmalloc(new_size, GFP_KERNEL);
372 addr = new_array ? __pa(new_array) : 0;
373 } else {
374 /* only exclude range when trying to double reserved.regions */
375 if (type != &memblock.reserved)
376 new_area_start = new_area_size = 0;
377
378 addr = memblock_find_in_range(new_area_start + new_area_size,
379 memblock.current_limit,
380 new_alloc_size, PAGE_SIZE);
381 if (!addr && new_area_size)
382 addr = memblock_find_in_range(0,
383 min(new_area_start, memblock.current_limit),
384 new_alloc_size, PAGE_SIZE);
385
386 new_array = addr ? __va(addr) : NULL;
387 }
388 if (!addr) {
389 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
390 type->name, type->max, type->max * 2);
391 return -1;
392 }
393
394 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
395 type->name, type->max * 2, (u64)addr,
396 (u64)addr + new_size - 1);
397
398 /*
399 * Found space, we now need to move the array over before we add the
400 * reserved region since it may be our reserved array itself that is
401 * full.
402 */
403 memcpy(new_array, type->regions, old_size);
404 memset(new_array + type->max, 0, old_size);
405 old_array = type->regions;
406 type->regions = new_array;
407 type->max <<= 1;
408
409 /* Free old array. We needn't free it if the array is the static one */
410 if (*in_slab)
411 kfree(old_array);
412 else if (old_array != memblock_memory_init_regions &&
413 old_array != memblock_reserved_init_regions)
414 memblock_free(__pa(old_array), old_alloc_size);
415
416 /*
417 * Reserve the new array if that comes from the memblock. Otherwise, we
418 * needn't do it
419 */
420 if (!use_slab)
421 BUG_ON(memblock_reserve(addr, new_alloc_size));
422
423 /* Update slab flag */
424 *in_slab = use_slab;
425
426 return 0;
427}
428
429/**
430 * memblock_merge_regions - merge neighboring compatible regions
431 * @type: memblock type to scan
432 *
433 * Scan @type and merge neighboring compatible regions.
434 */
435static void __init_memblock memblock_merge_regions(struct memblock_type *type)
436{
437 int i = 0;
438
439 /* cnt never goes below 1 */
440 while (i < type->cnt - 1) {
441 struct memblock_region *this = &type->regions[i];
442 struct memblock_region *next = &type->regions[i + 1];
443
444 if (this->base + this->size != next->base ||
445 memblock_get_region_node(this) !=
446 memblock_get_region_node(next) ||
447 this->flags != next->flags) {
448 BUG_ON(this->base + this->size > next->base);
449 i++;
450 continue;
451 }
452
453 this->size += next->size;
454 /* move forward from next + 1, index of which is i + 2 */
455 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
456 type->cnt--;
457 }
458}
459
460/**
461 * memblock_insert_region - insert new memblock region
462 * @type: memblock type to insert into
463 * @idx: index for the insertion point
464 * @base: base address of the new region
465 * @size: size of the new region
466 * @nid: node id of the new region
467 * @flags: flags of the new region
468 *
469 * Insert new memblock region [@base,@base+@size) into @type at @idx.
470 * @type must already have extra room to accommodate the new region.
471 */
472static void __init_memblock memblock_insert_region(struct memblock_type *type,
473 int idx, phys_addr_t base,
474 phys_addr_t size,
475 int nid, unsigned long flags)
476{
477 struct memblock_region *rgn = &type->regions[idx];
478
479 BUG_ON(type->cnt >= type->max);
480 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
481 rgn->base = base;
482 rgn->size = size;
483 rgn->flags = flags;
484 memblock_set_region_node(rgn, nid);
485 type->cnt++;
486 type->total_size += size;
487}
488
489/**
490 * memblock_add_range - add new memblock region
491 * @type: memblock type to add new region into
492 * @base: base address of the new region
493 * @size: size of the new region
494 * @nid: nid of the new region
495 * @flags: flags of the new region
496 *
497 * Add new memblock region [@base,@base+@size) into @type. The new region
498 * is allowed to overlap with existing ones - overlaps don't affect already
499 * existing regions. @type is guaranteed to be minimal (all neighbouring
500 * compatible regions are merged) after the addition.
501 *
502 * RETURNS:
503 * 0 on success, -errno on failure.
504 */
505int __init_memblock memblock_add_range(struct memblock_type *type,
506 phys_addr_t base, phys_addr_t size,
507 int nid, unsigned long flags)
508{
509 bool insert = false;
510 phys_addr_t obase = base;
511 phys_addr_t end = base + memblock_cap_size(base, &size);
512 int idx, nr_new;
513 struct memblock_region *rgn;
514
515 if (!size)
516 return 0;
517
518 /* special case for empty array */
519 if (type->regions[0].size == 0) {
520 WARN_ON(type->cnt != 1 || type->total_size);
521 type->regions[0].base = base;
522 type->regions[0].size = size;
523 type->regions[0].flags = flags;
524 memblock_set_region_node(&type->regions[0], nid);
525 type->total_size = size;
526 return 0;
527 }
528repeat:
529 /*
530 * The following is executed twice. Once with %false @insert and
531 * then with %true. The first counts the number of regions needed
532 * to accommodate the new area. The second actually inserts them.
533 */
534 base = obase;
535 nr_new = 0;
536
537 for_each_memblock_type(idx, type, rgn) {
538 phys_addr_t rbase = rgn->base;
539 phys_addr_t rend = rbase + rgn->size;
540
541 if (rbase >= end)
542 break;
543 if (rend <= base)
544 continue;
545 /*
546 * @rgn overlaps. If it separates the lower part of new
547 * area, insert that portion.
548 */
549 if (rbase > base) {
550#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
551 WARN_ON(nid != memblock_get_region_node(rgn));
552#endif
553 WARN_ON(flags != rgn->flags);
554 nr_new++;
555 if (insert)
556 memblock_insert_region(type, idx++, base,
557 rbase - base, nid,
558 flags);
559 }
560 /* area below @rend is dealt with, forget about it */
561 base = min(rend, end);
562 }
563
564 /* insert the remaining portion */
565 if (base < end) {
566 nr_new++;
567 if (insert)
568 memblock_insert_region(type, idx, base, end - base,
569 nid, flags);
570 }
571
572 if (!nr_new)
573 return 0;
574
575 /*
576 * If this was the first round, resize array and repeat for actual
577 * insertions; otherwise, merge and return.
578 */
579 if (!insert) {
580 while (type->cnt + nr_new > type->max)
581 if (memblock_double_array(type, obase, size) < 0)
582 return -ENOMEM;
583 insert = true;
584 goto repeat;
585 } else {
586 memblock_merge_regions(type);
587 return 0;
588 }
589}
590
591int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
592 int nid)
593{
594 return memblock_add_range(&memblock.memory, base, size, nid, 0);
595}
596
597int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
598{
599 phys_addr_t end = base + size - 1;
600
601 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
602 &base, &end, (void *)_RET_IP_);
603
604 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
605}
606
607/**
608 * memblock_isolate_range - isolate given range into disjoint memblocks
609 * @type: memblock type to isolate range for
610 * @base: base of range to isolate
611 * @size: size of range to isolate
612 * @start_rgn: out parameter for the start of isolated region
613 * @end_rgn: out parameter for the end of isolated region
614 *
615 * Walk @type and ensure that regions don't cross the boundaries defined by
616 * [@base,@base+@size). Crossing regions are split at the boundaries,
617 * which may create at most two more regions. The index of the first
618 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
619 *
620 * RETURNS:
621 * 0 on success, -errno on failure.
622 */
623static int __init_memblock memblock_isolate_range(struct memblock_type *type,
624 phys_addr_t base, phys_addr_t size,
625 int *start_rgn, int *end_rgn)
626{
627 phys_addr_t end = base + memblock_cap_size(base, &size);
628 int idx;
629 struct memblock_region *rgn;
630
631 *start_rgn = *end_rgn = 0;
632
633 if (!size)
634 return 0;
635
636 /* we'll create at most two more regions */
637 while (type->cnt + 2 > type->max)
638 if (memblock_double_array(type, base, size) < 0)
639 return -ENOMEM;
640
641 for_each_memblock_type(idx, type, rgn) {
642 phys_addr_t rbase = rgn->base;
643 phys_addr_t rend = rbase + rgn->size;
644
645 if (rbase >= end)
646 break;
647 if (rend <= base)
648 continue;
649
650 if (rbase < base) {
651 /*
652 * @rgn intersects from below. Split and continue
653 * to process the next region - the new top half.
654 */
655 rgn->base = base;
656 rgn->size -= base - rbase;
657 type->total_size -= base - rbase;
658 memblock_insert_region(type, idx, rbase, base - rbase,
659 memblock_get_region_node(rgn),
660 rgn->flags);
661 } else if (rend > end) {
662 /*
663 * @rgn intersects from above. Split and redo the
664 * current region - the new bottom half.
665 */
666 rgn->base = end;
667 rgn->size -= end - rbase;
668 type->total_size -= end - rbase;
669 memblock_insert_region(type, idx--, rbase, end - rbase,
670 memblock_get_region_node(rgn),
671 rgn->flags);
672 } else {
673 /* @rgn is fully contained, record it */
674 if (!*end_rgn)
675 *start_rgn = idx;
676 *end_rgn = idx + 1;
677 }
678 }
679
680 return 0;
681}
682
683static int __init_memblock memblock_remove_range(struct memblock_type *type,
684 phys_addr_t base, phys_addr_t size)
685{
686 int start_rgn, end_rgn;
687 int i, ret;
688
689 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
690 if (ret)
691 return ret;
692
693 for (i = end_rgn - 1; i >= start_rgn; i--)
694 memblock_remove_region(type, i);
695 return 0;
696}
697
698int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
699{
700 return memblock_remove_range(&memblock.memory, base, size);
701}
702
703
704int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
705{
706 phys_addr_t end = base + size - 1;
707
708 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
709 &base, &end, (void *)_RET_IP_);
710
711 kmemleak_free_part_phys(base, size);
712 return memblock_remove_range(&memblock.reserved, base, size);
713}
714
715int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
716{
717 phys_addr_t end = base + size - 1;
718
719 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
720 &base, &end, (void *)_RET_IP_);
721
722 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
723}
724
725/**
726 *
727 * This function isolates region [@base, @base + @size), and sets/clears flag
728 *
729 * Return 0 on success, -errno on failure.
730 */
731static int __init_memblock memblock_setclr_flag(phys_addr_t base,
732 phys_addr_t size, int set, int flag)
733{
734 struct memblock_type *type = &memblock.memory;
735 int i, ret, start_rgn, end_rgn;
736
737 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
738 if (ret)
739 return ret;
740
741 for (i = start_rgn; i < end_rgn; i++)
742 if (set)
743 memblock_set_region_flags(&type->regions[i], flag);
744 else
745 memblock_clear_region_flags(&type->regions[i], flag);
746
747 memblock_merge_regions(type);
748 return 0;
749}
750
751/**
752 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
753 * @base: the base phys addr of the region
754 * @size: the size of the region
755 *
756 * Return 0 on success, -errno on failure.
757 */
758int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
759{
760 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
761}
762
763/**
764 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
765 * @base: the base phys addr of the region
766 * @size: the size of the region
767 *
768 * Return 0 on success, -errno on failure.
769 */
770int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
771{
772 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
773}
774
775/**
776 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
777 * @base: the base phys addr of the region
778 * @size: the size of the region
779 *
780 * Return 0 on success, -errno on failure.
781 */
782int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
783{
784 system_has_some_mirror = true;
785
786 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
787}
788
789/**
790 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
791 * @base: the base phys addr of the region
792 * @size: the size of the region
793 *
794 * Return 0 on success, -errno on failure.
795 */
796int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
797{
798 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
799}
800
801/**
802 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
803 * @base: the base phys addr of the region
804 * @size: the size of the region
805 *
806 * Return 0 on success, -errno on failure.
807 */
808int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
809{
810 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
811}
812
813/**
814 * __next_reserved_mem_region - next function for for_each_reserved_region()
815 * @idx: pointer to u64 loop variable
816 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
817 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
818 *
819 * Iterate over all reserved memory regions.
820 */
821void __init_memblock __next_reserved_mem_region(u64 *idx,
822 phys_addr_t *out_start,
823 phys_addr_t *out_end)
824{
825 struct memblock_type *type = &memblock.reserved;
826
827 if (*idx < type->cnt) {
828 struct memblock_region *r = &type->regions[*idx];
829 phys_addr_t base = r->base;
830 phys_addr_t size = r->size;
831
832 if (out_start)
833 *out_start = base;
834 if (out_end)
835 *out_end = base + size - 1;
836
837 *idx += 1;
838 return;
839 }
840
841 /* signal end of iteration */
842 *idx = ULLONG_MAX;
843}
844
845/**
846 * __next__mem_range - next function for for_each_free_mem_range() etc.
847 * @idx: pointer to u64 loop variable
848 * @nid: node selector, %NUMA_NO_NODE for all nodes
849 * @flags: pick from blocks based on memory attributes
850 * @type_a: pointer to memblock_type from where the range is taken
851 * @type_b: pointer to memblock_type which excludes memory from being taken
852 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
853 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
854 * @out_nid: ptr to int for nid of the range, can be %NULL
855 *
856 * Find the first area from *@idx which matches @nid, fill the out
857 * parameters, and update *@idx for the next iteration. The lower 32bit of
858 * *@idx contains index into type_a and the upper 32bit indexes the
859 * areas before each region in type_b. For example, if type_b regions
860 * look like the following,
861 *
862 * 0:[0-16), 1:[32-48), 2:[128-130)
863 *
864 * The upper 32bit indexes the following regions.
865 *
866 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
867 *
868 * As both region arrays are sorted, the function advances the two indices
869 * in lockstep and returns each intersection.
870 */
871void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
872 struct memblock_type *type_a,
873 struct memblock_type *type_b,
874 phys_addr_t *out_start,
875 phys_addr_t *out_end, int *out_nid)
876{
877 int idx_a = *idx & 0xffffffff;
878 int idx_b = *idx >> 32;
879
880 if (WARN_ONCE(nid == MAX_NUMNODES,
881 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
882 nid = NUMA_NO_NODE;
883
884 for (; idx_a < type_a->cnt; idx_a++) {
885 struct memblock_region *m = &type_a->regions[idx_a];
886
887 phys_addr_t m_start = m->base;
888 phys_addr_t m_end = m->base + m->size;
889 int m_nid = memblock_get_region_node(m);
890
891 /* only memory regions are associated with nodes, check it */
892 if (nid != NUMA_NO_NODE && nid != m_nid)
893 continue;
894
895 /* skip hotpluggable memory regions if needed */
896 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
897 continue;
898
899 /* if we want mirror memory skip non-mirror memory regions */
900 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
901 continue;
902
903 /* skip nomap memory unless we were asked for it explicitly */
904 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
905 continue;
906
907 if (!type_b) {
908 if (out_start)
909 *out_start = m_start;
910 if (out_end)
911 *out_end = m_end;
912 if (out_nid)
913 *out_nid = m_nid;
914 idx_a++;
915 *idx = (u32)idx_a | (u64)idx_b << 32;
916 return;
917 }
918
919 /* scan areas before each reservation */
920 for (; idx_b < type_b->cnt + 1; idx_b++) {
921 struct memblock_region *r;
922 phys_addr_t r_start;
923 phys_addr_t r_end;
924
925 r = &type_b->regions[idx_b];
926 r_start = idx_b ? r[-1].base + r[-1].size : 0;
927 r_end = idx_b < type_b->cnt ?
928 r->base : (phys_addr_t)ULLONG_MAX;
929
930 /*
931 * if idx_b advanced past idx_a,
932 * break out to advance idx_a
933 */
934 if (r_start >= m_end)
935 break;
936 /* if the two regions intersect, we're done */
937 if (m_start < r_end) {
938 if (out_start)
939 *out_start =
940 max(m_start, r_start);
941 if (out_end)
942 *out_end = min(m_end, r_end);
943 if (out_nid)
944 *out_nid = m_nid;
945 /*
946 * The region which ends first is
947 * advanced for the next iteration.
948 */
949 if (m_end <= r_end)
950 idx_a++;
951 else
952 idx_b++;
953 *idx = (u32)idx_a | (u64)idx_b << 32;
954 return;
955 }
956 }
957 }
958
959 /* signal end of iteration */
960 *idx = ULLONG_MAX;
961}
962
963/**
964 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
965 *
966 * Finds the next range from type_a which is not marked as unsuitable
967 * in type_b.
968 *
969 * @idx: pointer to u64 loop variable
970 * @nid: node selector, %NUMA_NO_NODE for all nodes
971 * @flags: pick from blocks based on memory attributes
972 * @type_a: pointer to memblock_type from where the range is taken
973 * @type_b: pointer to memblock_type which excludes memory from being taken
974 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
975 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
976 * @out_nid: ptr to int for nid of the range, can be %NULL
977 *
978 * Reverse of __next_mem_range().
979 */
980void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
981 struct memblock_type *type_a,
982 struct memblock_type *type_b,
983 phys_addr_t *out_start,
984 phys_addr_t *out_end, int *out_nid)
985{
986 int idx_a = *idx & 0xffffffff;
987 int idx_b = *idx >> 32;
988
989 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
990 nid = NUMA_NO_NODE;
991
992 if (*idx == (u64)ULLONG_MAX) {
993 idx_a = type_a->cnt - 1;
994 if (type_b != NULL)
995 idx_b = type_b->cnt;
996 else
997 idx_b = 0;
998 }
999
1000 for (; idx_a >= 0; idx_a--) {
1001 struct memblock_region *m = &type_a->regions[idx_a];
1002
1003 phys_addr_t m_start = m->base;
1004 phys_addr_t m_end = m->base + m->size;
1005 int m_nid = memblock_get_region_node(m);
1006
1007 /* only memory regions are associated with nodes, check it */
1008 if (nid != NUMA_NO_NODE && nid != m_nid)
1009 continue;
1010
1011 /* skip hotpluggable memory regions if needed */
1012 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1013 continue;
1014
1015 /* if we want mirror memory skip non-mirror memory regions */
1016 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1017 continue;
1018
1019 /* skip nomap memory unless we were asked for it explicitly */
1020 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1021 continue;
1022
1023 if (!type_b) {
1024 if (out_start)
1025 *out_start = m_start;
1026 if (out_end)
1027 *out_end = m_end;
1028 if (out_nid)
1029 *out_nid = m_nid;
1030 idx_a--;
1031 *idx = (u32)idx_a | (u64)idx_b << 32;
1032 return;
1033 }
1034
1035 /* scan areas before each reservation */
1036 for (; idx_b >= 0; idx_b--) {
1037 struct memblock_region *r;
1038 phys_addr_t r_start;
1039 phys_addr_t r_end;
1040
1041 r = &type_b->regions[idx_b];
1042 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1043 r_end = idx_b < type_b->cnt ?
1044 r->base : (phys_addr_t)ULLONG_MAX;
1045 /*
1046 * if idx_b advanced past idx_a,
1047 * break out to advance idx_a
1048 */
1049
1050 if (r_end <= m_start)
1051 break;
1052 /* if the two regions intersect, we're done */
1053 if (m_end > r_start) {
1054 if (out_start)
1055 *out_start = max(m_start, r_start);
1056 if (out_end)
1057 *out_end = min(m_end, r_end);
1058 if (out_nid)
1059 *out_nid = m_nid;
1060 if (m_start >= r_start)
1061 idx_a--;
1062 else
1063 idx_b--;
1064 *idx = (u32)idx_a | (u64)idx_b << 32;
1065 return;
1066 }
1067 }
1068 }
1069 /* signal end of iteration */
1070 *idx = ULLONG_MAX;
1071}
1072
1073#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1074/*
1075 * Common iterator interface used to define for_each_mem_range().
1076 */
1077void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1078 unsigned long *out_start_pfn,
1079 unsigned long *out_end_pfn, int *out_nid)
1080{
1081 struct memblock_type *type = &memblock.memory;
1082 struct memblock_region *r;
1083
1084 while (++*idx < type->cnt) {
1085 r = &type->regions[*idx];
1086
1087 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1088 continue;
1089 if (nid == MAX_NUMNODES || nid == r->nid)
1090 break;
1091 }
1092 if (*idx >= type->cnt) {
1093 *idx = -1;
1094 return;
1095 }
1096
1097 if (out_start_pfn)
1098 *out_start_pfn = PFN_UP(r->base);
1099 if (out_end_pfn)
1100 *out_end_pfn = PFN_DOWN(r->base + r->size);
1101 if (out_nid)
1102 *out_nid = r->nid;
1103}
1104
1105/**
1106 * memblock_set_node - set node ID on memblock regions
1107 * @base: base of area to set node ID for
1108 * @size: size of area to set node ID for
1109 * @type: memblock type to set node ID for
1110 * @nid: node ID to set
1111 *
1112 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1113 * Regions which cross the area boundaries are split as necessary.
1114 *
1115 * RETURNS:
1116 * 0 on success, -errno on failure.
1117 */
1118int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1119 struct memblock_type *type, int nid)
1120{
1121 int start_rgn, end_rgn;
1122 int i, ret;
1123
1124 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1125 if (ret)
1126 return ret;
1127
1128 for (i = start_rgn; i < end_rgn; i++)
1129 memblock_set_region_node(&type->regions[i], nid);
1130
1131 memblock_merge_regions(type);
1132 return 0;
1133}
1134#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1135
1136static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1137 phys_addr_t align, phys_addr_t start,
1138 phys_addr_t end, int nid, ulong flags)
1139{
1140 phys_addr_t found;
1141
1142 if (!align)
1143 align = SMP_CACHE_BYTES;
1144
1145 found = memblock_find_in_range_node(size, align, start, end, nid,
1146 flags);
1147 if (found && !memblock_reserve(found, size)) {
1148 /*
1149 * The min_count is set to 0 so that memblock allocations are
1150 * never reported as leaks.
1151 */
1152 kmemleak_alloc_phys(found, size, 0, 0);
1153 return found;
1154 }
1155 return 0;
1156}
1157
1158phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1159 phys_addr_t start, phys_addr_t end,
1160 ulong flags)
1161{
1162 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1163 flags);
1164}
1165
1166phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1167 phys_addr_t align, phys_addr_t max_addr,
1168 int nid, ulong flags)
1169{
1170 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1171}
1172
1173phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1174{
1175 ulong flags = choose_memblock_flags();
1176 phys_addr_t ret;
1177
1178again:
1179 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1180 nid, flags);
1181
1182 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1183 flags &= ~MEMBLOCK_MIRROR;
1184 goto again;
1185 }
1186 return ret;
1187}
1188
1189phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1190{
1191 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1192 MEMBLOCK_NONE);
1193}
1194
1195phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1196{
1197 phys_addr_t alloc;
1198
1199 alloc = __memblock_alloc_base(size, align, max_addr);
1200
1201 if (alloc == 0)
1202 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1203 &size, &max_addr);
1204
1205 return alloc;
1206}
1207
1208phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1209{
1210 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1211}
1212
1213phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1214{
1215 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1216
1217 if (res)
1218 return res;
1219 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1220}
1221
1222/**
1223 * memblock_virt_alloc_internal - allocate boot memory block
1224 * @size: size of memory block to be allocated in bytes
1225 * @align: alignment of the region and block's size
1226 * @min_addr: the lower bound of the memory region to allocate (phys address)
1227 * @max_addr: the upper bound of the memory region to allocate (phys address)
1228 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1229 *
1230 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1231 * will fall back to memory below @min_addr. Also, allocation may fall back
1232 * to any node in the system if the specified node can not
1233 * hold the requested memory.
1234 *
1235 * The allocation is performed from memory region limited by
1236 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1237 *
1238 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1239 *
1240 * The phys address of allocated boot memory block is converted to virtual and
1241 * allocated memory is reset to 0.
1242 *
1243 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1244 * allocated boot memory block, so that it is never reported as leaks.
1245 *
1246 * RETURNS:
1247 * Virtual address of allocated memory block on success, NULL on failure.
1248 */
1249static void * __init memblock_virt_alloc_internal(
1250 phys_addr_t size, phys_addr_t align,
1251 phys_addr_t min_addr, phys_addr_t max_addr,
1252 int nid)
1253{
1254 phys_addr_t alloc;
1255 void *ptr;
1256 ulong flags = choose_memblock_flags();
1257
1258 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1259 nid = NUMA_NO_NODE;
1260
1261 /*
1262 * Detect any accidental use of these APIs after slab is ready, as at
1263 * this moment memblock may be deinitialized already and its
1264 * internal data may be destroyed (after execution of free_all_bootmem)
1265 */
1266 if (WARN_ON_ONCE(slab_is_available()))
1267 return kzalloc_node(size, GFP_NOWAIT, nid);
1268
1269 if (!align)
1270 align = SMP_CACHE_BYTES;
1271
1272 if (max_addr > memblock.current_limit)
1273 max_addr = memblock.current_limit;
1274again:
1275 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1276 nid, flags);
1277 if (alloc && !memblock_reserve(alloc, size))
1278 goto done;
1279
1280 if (nid != NUMA_NO_NODE) {
1281 alloc = memblock_find_in_range_node(size, align, min_addr,
1282 max_addr, NUMA_NO_NODE,
1283 flags);
1284 if (alloc && !memblock_reserve(alloc, size))
1285 goto done;
1286 }
1287
1288 if (min_addr) {
1289 min_addr = 0;
1290 goto again;
1291 }
1292
1293 if (flags & MEMBLOCK_MIRROR) {
1294 flags &= ~MEMBLOCK_MIRROR;
1295 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1296 &size);
1297 goto again;
1298 }
1299
1300 return NULL;
1301done:
1302 ptr = phys_to_virt(alloc);
1303
1304 /*
1305 * The min_count is set to 0 so that bootmem allocated blocks
1306 * are never reported as leaks. This is because many of these blocks
1307 * are only referred via the physical address which is not
1308 * looked up by kmemleak.
1309 */
1310 kmemleak_alloc(ptr, size, 0, 0);
1311
1312 return ptr;
1313}
1314
1315/**
1316 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1317 * memory and without panicking
1318 * @size: size of memory block to be allocated in bytes
1319 * @align: alignment of the region and block's size
1320 * @min_addr: the lower bound of the memory region from where the allocation
1321 * is preferred (phys address)
1322 * @max_addr: the upper bound of the memory region from where the allocation
1323 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1324 * allocate only from memory limited by memblock.current_limit value
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 *
1327 * Public function, provides additional debug information (including caller
1328 * info), if enabled. Does not zero allocated memory, does not panic if request
1329 * cannot be satisfied.
1330 *
1331 * RETURNS:
1332 * Virtual address of allocated memory block on success, NULL on failure.
1333 */
1334void * __init memblock_virt_alloc_try_nid_raw(
1335 phys_addr_t size, phys_addr_t align,
1336 phys_addr_t min_addr, phys_addr_t max_addr,
1337 int nid)
1338{
1339 void *ptr;
1340
1341 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1342 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1343 (u64)max_addr, (void *)_RET_IP_);
1344
1345 ptr = memblock_virt_alloc_internal(size, align,
1346 min_addr, max_addr, nid);
1347#ifdef CONFIG_DEBUG_VM
1348 if (ptr && size > 0)
1349 memset(ptr, PAGE_POISON_PATTERN, size);
1350#endif
1351 return ptr;
1352}
1353
1354/**
1355 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1356 * @size: size of memory block to be allocated in bytes
1357 * @align: alignment of the region and block's size
1358 * @min_addr: the lower bound of the memory region from where the allocation
1359 * is preferred (phys address)
1360 * @max_addr: the upper bound of the memory region from where the allocation
1361 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1362 * allocate only from memory limited by memblock.current_limit value
1363 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1364 *
1365 * Public function, provides additional debug information (including caller
1366 * info), if enabled. This function zeroes the allocated memory.
1367 *
1368 * RETURNS:
1369 * Virtual address of allocated memory block on success, NULL on failure.
1370 */
1371void * __init memblock_virt_alloc_try_nid_nopanic(
1372 phys_addr_t size, phys_addr_t align,
1373 phys_addr_t min_addr, phys_addr_t max_addr,
1374 int nid)
1375{
1376 void *ptr;
1377
1378 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1379 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1380 (u64)max_addr, (void *)_RET_IP_);
1381
1382 ptr = memblock_virt_alloc_internal(size, align,
1383 min_addr, max_addr, nid);
1384 if (ptr)
1385 memset(ptr, 0, size);
1386 return ptr;
1387}
1388
1389/**
1390 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1391 * @size: size of memory block to be allocated in bytes
1392 * @align: alignment of the region and block's size
1393 * @min_addr: the lower bound of the memory region from where the allocation
1394 * is preferred (phys address)
1395 * @max_addr: the upper bound of the memory region from where the allocation
1396 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1397 * allocate only from memory limited by memblock.current_limit value
1398 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1399 *
1400 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1401 * which provides debug information (including caller info), if enabled,
1402 * and panics if the request can not be satisfied.
1403 *
1404 * RETURNS:
1405 * Virtual address of allocated memory block on success, NULL on failure.
1406 */
1407void * __init memblock_virt_alloc_try_nid(
1408 phys_addr_t size, phys_addr_t align,
1409 phys_addr_t min_addr, phys_addr_t max_addr,
1410 int nid)
1411{
1412 void *ptr;
1413
1414 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1415 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1416 (u64)max_addr, (void *)_RET_IP_);
1417 ptr = memblock_virt_alloc_internal(size, align,
1418 min_addr, max_addr, nid);
1419 if (ptr) {
1420 memset(ptr, 0, size);
1421 return ptr;
1422 }
1423
1424 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1425 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1426 (u64)max_addr);
1427 return NULL;
1428}
1429
1430/**
1431 * __memblock_free_early - free boot memory block
1432 * @base: phys starting address of the boot memory block
1433 * @size: size of the boot memory block in bytes
1434 *
1435 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1436 * The freeing memory will not be released to the buddy allocator.
1437 */
1438void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1439{
1440 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1441 __func__, (u64)base, (u64)base + size - 1,
1442 (void *)_RET_IP_);
1443 kmemleak_free_part_phys(base, size);
1444 memblock_remove_range(&memblock.reserved, base, size);
1445}
1446
1447/*
1448 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1449 * @addr: phys starting address of the boot memory block
1450 * @size: size of the boot memory block in bytes
1451 *
1452 * This is only useful when the bootmem allocator has already been torn
1453 * down, but we are still initializing the system. Pages are released directly
1454 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1455 */
1456void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1457{
1458 u64 cursor, end;
1459
1460 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1461 __func__, (u64)base, (u64)base + size - 1,
1462 (void *)_RET_IP_);
1463 kmemleak_free_part_phys(base, size);
1464 cursor = PFN_UP(base);
1465 end = PFN_DOWN(base + size);
1466
1467 for (; cursor < end; cursor++) {
1468 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1469 totalram_pages++;
1470 }
1471}
1472
1473/*
1474 * Remaining API functions
1475 */
1476
1477phys_addr_t __init_memblock memblock_phys_mem_size(void)
1478{
1479 return memblock.memory.total_size;
1480}
1481
1482phys_addr_t __init_memblock memblock_reserved_size(void)
1483{
1484 return memblock.reserved.total_size;
1485}
1486
1487phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1488{
1489 unsigned long pages = 0;
1490 struct memblock_region *r;
1491 unsigned long start_pfn, end_pfn;
1492
1493 for_each_memblock(memory, r) {
1494 start_pfn = memblock_region_memory_base_pfn(r);
1495 end_pfn = memblock_region_memory_end_pfn(r);
1496 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1497 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1498 pages += end_pfn - start_pfn;
1499 }
1500
1501 return PFN_PHYS(pages);
1502}
1503
1504/* lowest address */
1505phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1506{
1507 return memblock.memory.regions[0].base;
1508}
1509
1510phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1511{
1512 int idx = memblock.memory.cnt - 1;
1513
1514 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1515}
1516
1517static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1518{
1519 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1520 struct memblock_region *r;
1521
1522 /*
1523 * translate the memory @limit size into the max address within one of
1524 * the memory memblock regions, if the @limit exceeds the total size
1525 * of those regions, max_addr will keep original value ULLONG_MAX
1526 */
1527 for_each_memblock(memory, r) {
1528 if (limit <= r->size) {
1529 max_addr = r->base + limit;
1530 break;
1531 }
1532 limit -= r->size;
1533 }
1534
1535 return max_addr;
1536}
1537
1538void __init memblock_enforce_memory_limit(phys_addr_t limit)
1539{
1540 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1541
1542 if (!limit)
1543 return;
1544
1545 max_addr = __find_max_addr(limit);
1546
1547 /* @limit exceeds the total size of the memory, do nothing */
1548 if (max_addr == (phys_addr_t)ULLONG_MAX)
1549 return;
1550
1551 /* truncate both memory and reserved regions */
1552 memblock_remove_range(&memblock.memory, max_addr,
1553 (phys_addr_t)ULLONG_MAX);
1554 memblock_remove_range(&memblock.reserved, max_addr,
1555 (phys_addr_t)ULLONG_MAX);
1556}
1557
1558void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1559{
1560 int start_rgn, end_rgn;
1561 int i, ret;
1562
1563 if (!size)
1564 return;
1565
1566 ret = memblock_isolate_range(&memblock.memory, base, size,
1567 &start_rgn, &end_rgn);
1568 if (ret)
1569 return;
1570
1571 /* remove all the MAP regions */
1572 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1573 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1574 memblock_remove_region(&memblock.memory, i);
1575
1576 for (i = start_rgn - 1; i >= 0; i--)
1577 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1578 memblock_remove_region(&memblock.memory, i);
1579
1580 /* truncate the reserved regions */
1581 memblock_remove_range(&memblock.reserved, 0, base);
1582 memblock_remove_range(&memblock.reserved,
1583 base + size, (phys_addr_t)ULLONG_MAX);
1584}
1585
1586void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1587{
1588 phys_addr_t max_addr;
1589
1590 if (!limit)
1591 return;
1592
1593 max_addr = __find_max_addr(limit);
1594
1595 /* @limit exceeds the total size of the memory, do nothing */
1596 if (max_addr == (phys_addr_t)ULLONG_MAX)
1597 return;
1598
1599 memblock_cap_memory_range(0, max_addr);
1600}
1601
1602static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1603{
1604 unsigned int left = 0, right = type->cnt;
1605
1606 do {
1607 unsigned int mid = (right + left) / 2;
1608
1609 if (addr < type->regions[mid].base)
1610 right = mid;
1611 else if (addr >= (type->regions[mid].base +
1612 type->regions[mid].size))
1613 left = mid + 1;
1614 else
1615 return mid;
1616 } while (left < right);
1617 return -1;
1618}
1619
1620bool __init memblock_is_reserved(phys_addr_t addr)
1621{
1622 return memblock_search(&memblock.reserved, addr) != -1;
1623}
1624
1625bool __init_memblock memblock_is_memory(phys_addr_t addr)
1626{
1627 return memblock_search(&memblock.memory, addr) != -1;
1628}
1629
1630bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1631{
1632 int i = memblock_search(&memblock.memory, addr);
1633
1634 if (i == -1)
1635 return false;
1636 return !memblock_is_nomap(&memblock.memory.regions[i]);
1637}
1638
1639#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1640int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1641 unsigned long *start_pfn, unsigned long *end_pfn)
1642{
1643 struct memblock_type *type = &memblock.memory;
1644 int mid = memblock_search(type, PFN_PHYS(pfn));
1645
1646 if (mid == -1)
1647 return -1;
1648
1649 *start_pfn = PFN_DOWN(type->regions[mid].base);
1650 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1651
1652 return type->regions[mid].nid;
1653}
1654#endif
1655
1656/**
1657 * memblock_is_region_memory - check if a region is a subset of memory
1658 * @base: base of region to check
1659 * @size: size of region to check
1660 *
1661 * Check if the region [@base, @base+@size) is a subset of a memory block.
1662 *
1663 * RETURNS:
1664 * 0 if false, non-zero if true
1665 */
1666bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1667{
1668 int idx = memblock_search(&memblock.memory, base);
1669 phys_addr_t end = base + memblock_cap_size(base, &size);
1670
1671 if (idx == -1)
1672 return false;
1673 return (memblock.memory.regions[idx].base +
1674 memblock.memory.regions[idx].size) >= end;
1675}
1676
1677/**
1678 * memblock_is_region_reserved - check if a region intersects reserved memory
1679 * @base: base of region to check
1680 * @size: size of region to check
1681 *
1682 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1683 *
1684 * RETURNS:
1685 * True if they intersect, false if not.
1686 */
1687bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1688{
1689 memblock_cap_size(base, &size);
1690 return memblock_overlaps_region(&memblock.reserved, base, size);
1691}
1692
1693void __init_memblock memblock_trim_memory(phys_addr_t align)
1694{
1695 phys_addr_t start, end, orig_start, orig_end;
1696 struct memblock_region *r;
1697
1698 for_each_memblock(memory, r) {
1699 orig_start = r->base;
1700 orig_end = r->base + r->size;
1701 start = round_up(orig_start, align);
1702 end = round_down(orig_end, align);
1703
1704 if (start == orig_start && end == orig_end)
1705 continue;
1706
1707 if (start < end) {
1708 r->base = start;
1709 r->size = end - start;
1710 } else {
1711 memblock_remove_region(&memblock.memory,
1712 r - memblock.memory.regions);
1713 r--;
1714 }
1715 }
1716}
1717
1718void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1719{
1720 memblock.current_limit = limit;
1721}
1722
1723phys_addr_t __init_memblock memblock_get_current_limit(void)
1724{
1725 return memblock.current_limit;
1726}
1727
1728static void __init_memblock memblock_dump(struct memblock_type *type)
1729{
1730 phys_addr_t base, end, size;
1731 unsigned long flags;
1732 int idx;
1733 struct memblock_region *rgn;
1734
1735 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1736
1737 for_each_memblock_type(idx, type, rgn) {
1738 char nid_buf[32] = "";
1739
1740 base = rgn->base;
1741 size = rgn->size;
1742 end = base + size - 1;
1743 flags = rgn->flags;
1744#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1745 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1746 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1747 memblock_get_region_node(rgn));
1748#endif
1749 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1750 type->name, idx, &base, &end, &size, nid_buf, flags);
1751 }
1752}
1753
1754void __init_memblock __memblock_dump_all(void)
1755{
1756 pr_info("MEMBLOCK configuration:\n");
1757 pr_info(" memory size = %pa reserved size = %pa\n",
1758 &memblock.memory.total_size,
1759 &memblock.reserved.total_size);
1760
1761 memblock_dump(&memblock.memory);
1762 memblock_dump(&memblock.reserved);
1763#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1764 memblock_dump(&memblock.physmem);
1765#endif
1766}
1767
1768void __init memblock_allow_resize(void)
1769{
1770 memblock_can_resize = 1;
1771}
1772
1773static int __init early_memblock(char *p)
1774{
1775 if (p && strstr(p, "debug"))
1776 memblock_debug = 1;
1777 return 0;
1778}
1779early_param("memblock", early_memblock);
1780
1781#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1782
1783static int memblock_debug_show(struct seq_file *m, void *private)
1784{
1785 struct memblock_type *type = m->private;
1786 struct memblock_region *reg;
1787 int i;
1788 phys_addr_t end;
1789
1790 for (i = 0; i < type->cnt; i++) {
1791 reg = &type->regions[i];
1792 end = reg->base + reg->size - 1;
1793
1794 seq_printf(m, "%4d: ", i);
1795 seq_printf(m, "%pa..%pa\n", ®->base, &end);
1796 }
1797 return 0;
1798}
1799DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1800
1801static int __init memblock_init_debugfs(void)
1802{
1803 struct dentry *root = debugfs_create_dir("memblock", NULL);
1804 if (!root)
1805 return -ENXIO;
1806 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1807 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1808#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1809 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1810#endif
1811
1812 return 0;
1813}
1814__initcall(memblock_init_debugfs);
1815
1816#endif /* CONFIG_DEBUG_FS */