Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
 
 
 
 
  32/**
  33 * DOC: memblock overview
  34 *
  35 * Memblock is a method of managing memory regions during the early
  36 * boot period when the usual kernel memory allocators are not up and
  37 * running.
  38 *
  39 * Memblock views the system memory as collections of contiguous
  40 * regions. There are several types of these collections:
  41 *
  42 * * ``memory`` - describes the physical memory available to the
  43 *   kernel; this may differ from the actual physical memory installed
  44 *   in the system, for instance when the memory is restricted with
  45 *   ``mem=`` command line parameter
  46 * * ``reserved`` - describes the regions that were allocated
  47 * * ``physmem`` - describes the actual physical memory available during
  48 *   boot regardless of the possible restrictions and memory hot(un)plug;
  49 *   the ``physmem`` type is only available on some architectures.
  50 *
  51 * Each region is represented by :c:type:`struct memblock_region` that
  52 * defines the region extents, its attributes and NUMA node id on NUMA
  53 * systems. Every memory type is described by the :c:type:`struct
  54 * memblock_type` which contains an array of memory regions along with
  55 * the allocator metadata. The "memory" and "reserved" types are nicely
  56 * wrapped with :c:type:`struct memblock`. This structure is statically
  57 * initialized at build time. The region arrays are initially sized to
  58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
  59 * for "reserved". The region array for "physmem" is initially sized to
  60 * %INIT_PHYSMEM_REGIONS.
  61 * The memblock_allow_resize() enables automatic resizing of the region
  62 * arrays during addition of new regions. This feature should be used
  63 * with care so that memory allocated for the region array will not
  64 * overlap with areas that should be reserved, for example initrd.
  65 *
  66 * The early architecture setup should tell memblock what the physical
  67 * memory layout is by using memblock_add() or memblock_add_node()
  68 * functions. The first function does not assign the region to a NUMA
  69 * node and it is appropriate for UMA systems. Yet, it is possible to
  70 * use it on NUMA systems as well and assign the region to a NUMA node
  71 * later in the setup process using memblock_set_node(). The
  72 * memblock_add_node() performs such an assignment directly.
  73 *
  74 * Once memblock is setup the memory can be allocated using one of the
  75 * API variants:
  76 *
  77 * * memblock_phys_alloc*() - these functions return the **physical**
  78 *   address of the allocated memory
  79 * * memblock_alloc*() - these functions return the **virtual** address
  80 *   of the allocated memory.
  81 *
  82 * Note, that both API variants use implicit assumptions about allowed
  83 * memory ranges and the fallback methods. Consult the documentation
  84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  85 * functions for more elaborate description.
  86 *
  87 * As the system boot progresses, the architecture specific mem_init()
  88 * function frees all the memory to the buddy page allocator.
  89 *
  90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  91 * memblock data structures (except "physmem") will be discarded after the
  92 * system initialization completes.
  93 */
  94
  95#ifndef CONFIG_NEED_MULTIPLE_NODES
  96struct pglist_data __refdata contig_page_data;
  97EXPORT_SYMBOL(contig_page_data);
  98#endif
  99
 100unsigned long max_low_pfn;
 101unsigned long min_low_pfn;
 102unsigned long max_pfn;
 103unsigned long long max_possible_pfn;
 104
 105static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
 106static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 107#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 108static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 109#endif
 110
 111struct memblock memblock __initdata_memblock = {
 112	.memory.regions		= memblock_memory_init_regions,
 113	.memory.cnt		= 1,	/* empty dummy entry */
 114	.memory.max		= INIT_MEMBLOCK_REGIONS,
 115	.memory.name		= "memory",
 116
 117	.reserved.regions	= memblock_reserved_init_regions,
 118	.reserved.cnt		= 1,	/* empty dummy entry */
 119	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 120	.reserved.name		= "reserved",
 121
 122	.bottom_up		= false,
 123	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 124};
 125
 126#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 127struct memblock_type physmem = {
 128	.regions		= memblock_physmem_init_regions,
 129	.cnt			= 1,	/* empty dummy entry */
 130	.max			= INIT_PHYSMEM_REGIONS,
 131	.name			= "physmem",
 132};
 133#endif
 134
 135int memblock_debug __initdata_memblock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136static bool system_has_some_mirror __initdata_memblock = false;
 137static int memblock_can_resize __initdata_memblock;
 138static int memblock_memory_in_slab __initdata_memblock = 0;
 139static int memblock_reserved_in_slab __initdata_memblock = 0;
 140
 141static enum memblock_flags __init_memblock choose_memblock_flags(void)
 142{
 143	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 144}
 145
 146/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 147static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 148{
 149	return *size = min(*size, PHYS_ADDR_MAX - base);
 150}
 151
 152/*
 153 * Address comparison utilities
 154 */
 155static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 156				       phys_addr_t base2, phys_addr_t size2)
 157{
 158	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 159}
 160
 161bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 162					phys_addr_t base, phys_addr_t size)
 163{
 164	unsigned long i;
 165
 
 
 166	for (i = 0; i < type->cnt; i++)
 167		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 168					   type->regions[i].size))
 169			break;
 170	return i < type->cnt;
 171}
 172
 173/**
 174 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 175 * @start: start of candidate range
 176 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 177 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 178 * @size: size of free area to find
 179 * @align: alignment of free area to find
 180 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 181 * @flags: pick from blocks based on memory attributes
 182 *
 183 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 184 *
 185 * Return:
 186 * Found address on success, 0 on failure.
 187 */
 188static phys_addr_t __init_memblock
 189__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 190				phys_addr_t size, phys_addr_t align, int nid,
 191				enum memblock_flags flags)
 192{
 193	phys_addr_t this_start, this_end, cand;
 194	u64 i;
 195
 196	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 197		this_start = clamp(this_start, start, end);
 198		this_end = clamp(this_end, start, end);
 199
 200		cand = round_up(this_start, align);
 201		if (cand < this_end && this_end - cand >= size)
 202			return cand;
 203	}
 204
 205	return 0;
 206}
 207
 208/**
 209 * __memblock_find_range_top_down - find free area utility, in top-down
 210 * @start: start of candidate range
 211 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 212 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 213 * @size: size of free area to find
 214 * @align: alignment of free area to find
 215 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 216 * @flags: pick from blocks based on memory attributes
 217 *
 218 * Utility called from memblock_find_in_range_node(), find free area top-down.
 219 *
 220 * Return:
 221 * Found address on success, 0 on failure.
 222 */
 223static phys_addr_t __init_memblock
 224__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 225			       phys_addr_t size, phys_addr_t align, int nid,
 226			       enum memblock_flags flags)
 227{
 228	phys_addr_t this_start, this_end, cand;
 229	u64 i;
 230
 231	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 232					NULL) {
 233		this_start = clamp(this_start, start, end);
 234		this_end = clamp(this_end, start, end);
 235
 236		if (this_end < size)
 237			continue;
 238
 239		cand = round_down(this_end - size, align);
 240		if (cand >= this_start)
 241			return cand;
 242	}
 243
 244	return 0;
 245}
 246
 247/**
 248 * memblock_find_in_range_node - find free area in given range and node
 249 * @size: size of free area to find
 250 * @align: alignment of free area to find
 251 * @start: start of candidate range
 252 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 253 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 254 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 255 * @flags: pick from blocks based on memory attributes
 256 *
 257 * Find @size free area aligned to @align in the specified range and node.
 258 *
 259 * When allocation direction is bottom-up, the @start should be greater
 260 * than the end of the kernel image. Otherwise, it will be trimmed. The
 261 * reason is that we want the bottom-up allocation just near the kernel
 262 * image so it is highly likely that the allocated memory and the kernel
 263 * will reside in the same node.
 264 *
 265 * If bottom-up allocation failed, will try to allocate memory top-down.
 266 *
 267 * Return:
 268 * Found address on success, 0 on failure.
 269 */
 270static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 271					phys_addr_t align, phys_addr_t start,
 272					phys_addr_t end, int nid,
 273					enum memblock_flags flags)
 274{
 275	phys_addr_t kernel_end, ret;
 276
 277	/* pump up @end */
 278	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 279	    end == MEMBLOCK_ALLOC_KASAN)
 280		end = memblock.current_limit;
 281
 282	/* avoid allocating the first page */
 283	start = max_t(phys_addr_t, start, PAGE_SIZE);
 284	end = max(start, end);
 285	kernel_end = __pa_symbol(_end);
 286
 287	/*
 288	 * try bottom-up allocation only when bottom-up mode
 289	 * is set and @end is above the kernel image.
 290	 */
 291	if (memblock_bottom_up() && end > kernel_end) {
 292		phys_addr_t bottom_up_start;
 293
 294		/* make sure we will allocate above the kernel */
 295		bottom_up_start = max(start, kernel_end);
 296
 297		/* ok, try bottom-up allocation first */
 298		ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 299						      size, align, nid, flags);
 300		if (ret)
 301			return ret;
 302
 303		/*
 304		 * we always limit bottom-up allocation above the kernel,
 305		 * but top-down allocation doesn't have the limit, so
 306		 * retrying top-down allocation may succeed when bottom-up
 307		 * allocation failed.
 308		 *
 309		 * bottom-up allocation is expected to be fail very rarely,
 310		 * so we use WARN_ONCE() here to see the stack trace if
 311		 * fail happens.
 312		 */
 313		WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
 314			  "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
 315	}
 316
 317	return __memblock_find_range_top_down(start, end, size, align, nid,
 318					      flags);
 
 
 
 
 319}
 320
 321/**
 322 * memblock_find_in_range - find free area in given range
 323 * @start: start of candidate range
 324 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 325 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 326 * @size: size of free area to find
 327 * @align: alignment of free area to find
 328 *
 329 * Find @size free area aligned to @align in the specified range.
 330 *
 331 * Return:
 332 * Found address on success, 0 on failure.
 333 */
 334phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 335					phys_addr_t end, phys_addr_t size,
 336					phys_addr_t align)
 337{
 338	phys_addr_t ret;
 339	enum memblock_flags flags = choose_memblock_flags();
 340
 341again:
 342	ret = memblock_find_in_range_node(size, align, start, end,
 343					    NUMA_NO_NODE, flags);
 344
 345	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 346		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 347			&size);
 348		flags &= ~MEMBLOCK_MIRROR;
 349		goto again;
 350	}
 351
 352	return ret;
 353}
 354
 355static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 356{
 357	type->total_size -= type->regions[r].size;
 358	memmove(&type->regions[r], &type->regions[r + 1],
 359		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 360	type->cnt--;
 361
 362	/* Special case for empty arrays */
 363	if (type->cnt == 0) {
 364		WARN_ON(type->total_size != 0);
 365		type->cnt = 1;
 366		type->regions[0].base = 0;
 367		type->regions[0].size = 0;
 368		type->regions[0].flags = 0;
 369		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 370	}
 371}
 372
 373#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 374/**
 375 * memblock_discard - discard memory and reserved arrays if they were allocated
 376 */
 377void __init memblock_discard(void)
 378{
 379	phys_addr_t addr, size;
 380
 381	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 382		addr = __pa(memblock.reserved.regions);
 383		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 384				  memblock.reserved.max);
 385		__memblock_free_late(addr, size);
 
 
 
 386	}
 387
 388	if (memblock.memory.regions != memblock_memory_init_regions) {
 389		addr = __pa(memblock.memory.regions);
 390		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 391				  memblock.memory.max);
 392		__memblock_free_late(addr, size);
 
 
 
 393	}
 
 
 394}
 395#endif
 396
 397/**
 398 * memblock_double_array - double the size of the memblock regions array
 399 * @type: memblock type of the regions array being doubled
 400 * @new_area_start: starting address of memory range to avoid overlap with
 401 * @new_area_size: size of memory range to avoid overlap with
 402 *
 403 * Double the size of the @type regions array. If memblock is being used to
 404 * allocate memory for a new reserved regions array and there is a previously
 405 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 406 * waiting to be reserved, ensure the memory used by the new array does
 407 * not overlap.
 408 *
 409 * Return:
 410 * 0 on success, -1 on failure.
 411 */
 412static int __init_memblock memblock_double_array(struct memblock_type *type,
 413						phys_addr_t new_area_start,
 414						phys_addr_t new_area_size)
 415{
 416	struct memblock_region *new_array, *old_array;
 417	phys_addr_t old_alloc_size, new_alloc_size;
 418	phys_addr_t old_size, new_size, addr, new_end;
 419	int use_slab = slab_is_available();
 420	int *in_slab;
 421
 422	/* We don't allow resizing until we know about the reserved regions
 423	 * of memory that aren't suitable for allocation
 424	 */
 425	if (!memblock_can_resize)
 426		return -1;
 427
 428	/* Calculate new doubled size */
 429	old_size = type->max * sizeof(struct memblock_region);
 430	new_size = old_size << 1;
 431	/*
 432	 * We need to allocated new one align to PAGE_SIZE,
 433	 *   so we can free them completely later.
 434	 */
 435	old_alloc_size = PAGE_ALIGN(old_size);
 436	new_alloc_size = PAGE_ALIGN(new_size);
 437
 438	/* Retrieve the slab flag */
 439	if (type == &memblock.memory)
 440		in_slab = &memblock_memory_in_slab;
 441	else
 442		in_slab = &memblock_reserved_in_slab;
 443
 444	/* Try to find some space for it */
 445	if (use_slab) {
 446		new_array = kmalloc(new_size, GFP_KERNEL);
 447		addr = new_array ? __pa(new_array) : 0;
 448	} else {
 449		/* only exclude range when trying to double reserved.regions */
 450		if (type != &memblock.reserved)
 451			new_area_start = new_area_size = 0;
 452
 453		addr = memblock_find_in_range(new_area_start + new_area_size,
 454						memblock.current_limit,
 455						new_alloc_size, PAGE_SIZE);
 456		if (!addr && new_area_size)
 457			addr = memblock_find_in_range(0,
 458				min(new_area_start, memblock.current_limit),
 459				new_alloc_size, PAGE_SIZE);
 460
 461		new_array = addr ? __va(addr) : NULL;
 462	}
 463	if (!addr) {
 464		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 465		       type->name, type->max, type->max * 2);
 466		return -1;
 467	}
 468
 469	new_end = addr + new_size - 1;
 470	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 471			type->name, type->max * 2, &addr, &new_end);
 472
 473	/*
 474	 * Found space, we now need to move the array over before we add the
 475	 * reserved region since it may be our reserved array itself that is
 476	 * full.
 477	 */
 478	memcpy(new_array, type->regions, old_size);
 479	memset(new_array + type->max, 0, old_size);
 480	old_array = type->regions;
 481	type->regions = new_array;
 482	type->max <<= 1;
 483
 484	/* Free old array. We needn't free it if the array is the static one */
 485	if (*in_slab)
 486		kfree(old_array);
 487	else if (old_array != memblock_memory_init_regions &&
 488		 old_array != memblock_reserved_init_regions)
 489		memblock_free(__pa(old_array), old_alloc_size);
 490
 491	/*
 492	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 493	 * needn't do it
 494	 */
 495	if (!use_slab)
 496		BUG_ON(memblock_reserve(addr, new_alloc_size));
 497
 498	/* Update slab flag */
 499	*in_slab = use_slab;
 500
 501	return 0;
 502}
 503
 504/**
 505 * memblock_merge_regions - merge neighboring compatible regions
 506 * @type: memblock type to scan
 507 *
 508 * Scan @type and merge neighboring compatible regions.
 509 */
 510static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 511{
 512	int i = 0;
 513
 514	/* cnt never goes below 1 */
 515	while (i < type->cnt - 1) {
 516		struct memblock_region *this = &type->regions[i];
 517		struct memblock_region *next = &type->regions[i + 1];
 518
 519		if (this->base + this->size != next->base ||
 520		    memblock_get_region_node(this) !=
 521		    memblock_get_region_node(next) ||
 522		    this->flags != next->flags) {
 523			BUG_ON(this->base + this->size > next->base);
 524			i++;
 525			continue;
 526		}
 527
 528		this->size += next->size;
 529		/* move forward from next + 1, index of which is i + 2 */
 530		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 531		type->cnt--;
 532	}
 533}
 534
 535/**
 536 * memblock_insert_region - insert new memblock region
 537 * @type:	memblock type to insert into
 538 * @idx:	index for the insertion point
 539 * @base:	base address of the new region
 540 * @size:	size of the new region
 541 * @nid:	node id of the new region
 542 * @flags:	flags of the new region
 543 *
 544 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 545 * @type must already have extra room to accommodate the new region.
 546 */
 547static void __init_memblock memblock_insert_region(struct memblock_type *type,
 548						   int idx, phys_addr_t base,
 549						   phys_addr_t size,
 550						   int nid,
 551						   enum memblock_flags flags)
 552{
 553	struct memblock_region *rgn = &type->regions[idx];
 554
 555	BUG_ON(type->cnt >= type->max);
 556	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 557	rgn->base = base;
 558	rgn->size = size;
 559	rgn->flags = flags;
 560	memblock_set_region_node(rgn, nid);
 561	type->cnt++;
 562	type->total_size += size;
 563}
 564
 565/**
 566 * memblock_add_range - add new memblock region
 567 * @type: memblock type to add new region into
 568 * @base: base address of the new region
 569 * @size: size of the new region
 570 * @nid: nid of the new region
 571 * @flags: flags of the new region
 572 *
 573 * Add new memblock region [@base, @base + @size) into @type.  The new region
 574 * is allowed to overlap with existing ones - overlaps don't affect already
 575 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 576 * compatible regions are merged) after the addition.
 577 *
 578 * Return:
 579 * 0 on success, -errno on failure.
 580 */
 581static int __init_memblock memblock_add_range(struct memblock_type *type,
 582				phys_addr_t base, phys_addr_t size,
 583				int nid, enum memblock_flags flags)
 584{
 585	bool insert = false;
 586	phys_addr_t obase = base;
 587	phys_addr_t end = base + memblock_cap_size(base, &size);
 588	int idx, nr_new;
 589	struct memblock_region *rgn;
 590
 591	if (!size)
 592		return 0;
 593
 594	/* special case for empty array */
 595	if (type->regions[0].size == 0) {
 596		WARN_ON(type->cnt != 1 || type->total_size);
 597		type->regions[0].base = base;
 598		type->regions[0].size = size;
 599		type->regions[0].flags = flags;
 600		memblock_set_region_node(&type->regions[0], nid);
 601		type->total_size = size;
 602		return 0;
 603	}
 
 
 
 
 
 
 
 
 
 
 
 604repeat:
 605	/*
 606	 * The following is executed twice.  Once with %false @insert and
 607	 * then with %true.  The first counts the number of regions needed
 608	 * to accommodate the new area.  The second actually inserts them.
 609	 */
 610	base = obase;
 611	nr_new = 0;
 612
 613	for_each_memblock_type(idx, type, rgn) {
 614		phys_addr_t rbase = rgn->base;
 615		phys_addr_t rend = rbase + rgn->size;
 616
 617		if (rbase >= end)
 618			break;
 619		if (rend <= base)
 620			continue;
 621		/*
 622		 * @rgn overlaps.  If it separates the lower part of new
 623		 * area, insert that portion.
 624		 */
 625		if (rbase > base) {
 626#ifdef CONFIG_NEED_MULTIPLE_NODES
 627			WARN_ON(nid != memblock_get_region_node(rgn));
 628#endif
 629			WARN_ON(flags != rgn->flags);
 630			nr_new++;
 631			if (insert)
 632				memblock_insert_region(type, idx++, base,
 633						       rbase - base, nid,
 634						       flags);
 635		}
 636		/* area below @rend is dealt with, forget about it */
 637		base = min(rend, end);
 638	}
 639
 640	/* insert the remaining portion */
 641	if (base < end) {
 642		nr_new++;
 643		if (insert)
 644			memblock_insert_region(type, idx, base, end - base,
 645					       nid, flags);
 646	}
 647
 648	if (!nr_new)
 649		return 0;
 650
 651	/*
 652	 * If this was the first round, resize array and repeat for actual
 653	 * insertions; otherwise, merge and return.
 654	 */
 655	if (!insert) {
 656		while (type->cnt + nr_new > type->max)
 657			if (memblock_double_array(type, obase, size) < 0)
 658				return -ENOMEM;
 659		insert = true;
 660		goto repeat;
 661	} else {
 662		memblock_merge_regions(type);
 663		return 0;
 664	}
 665}
 666
 667/**
 668 * memblock_add_node - add new memblock region within a NUMA node
 669 * @base: base address of the new region
 670 * @size: size of the new region
 671 * @nid: nid of the new region
 
 672 *
 673 * Add new memblock region [@base, @base + @size) to the "memory"
 674 * type. See memblock_add_range() description for mode details
 675 *
 676 * Return:
 677 * 0 on success, -errno on failure.
 678 */
 679int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 680				       int nid)
 681{
 682	return memblock_add_range(&memblock.memory, base, size, nid, 0);
 
 
 
 
 
 683}
 684
 685/**
 686 * memblock_add - add new memblock region
 687 * @base: base address of the new region
 688 * @size: size of the new region
 689 *
 690 * Add new memblock region [@base, @base + @size) to the "memory"
 691 * type. See memblock_add_range() description for mode details
 692 *
 693 * Return:
 694 * 0 on success, -errno on failure.
 695 */
 696int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 697{
 698	phys_addr_t end = base + size - 1;
 699
 700	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 701		     &base, &end, (void *)_RET_IP_);
 702
 703	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 704}
 705
 706/**
 707 * memblock_isolate_range - isolate given range into disjoint memblocks
 708 * @type: memblock type to isolate range for
 709 * @base: base of range to isolate
 710 * @size: size of range to isolate
 711 * @start_rgn: out parameter for the start of isolated region
 712 * @end_rgn: out parameter for the end of isolated region
 713 *
 714 * Walk @type and ensure that regions don't cross the boundaries defined by
 715 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 716 * which may create at most two more regions.  The index of the first
 717 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 718 *
 719 * Return:
 720 * 0 on success, -errno on failure.
 721 */
 722static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 723					phys_addr_t base, phys_addr_t size,
 724					int *start_rgn, int *end_rgn)
 725{
 726	phys_addr_t end = base + memblock_cap_size(base, &size);
 727	int idx;
 728	struct memblock_region *rgn;
 729
 730	*start_rgn = *end_rgn = 0;
 731
 732	if (!size)
 733		return 0;
 734
 735	/* we'll create at most two more regions */
 736	while (type->cnt + 2 > type->max)
 737		if (memblock_double_array(type, base, size) < 0)
 738			return -ENOMEM;
 739
 740	for_each_memblock_type(idx, type, rgn) {
 741		phys_addr_t rbase = rgn->base;
 742		phys_addr_t rend = rbase + rgn->size;
 743
 744		if (rbase >= end)
 745			break;
 746		if (rend <= base)
 747			continue;
 748
 749		if (rbase < base) {
 750			/*
 751			 * @rgn intersects from below.  Split and continue
 752			 * to process the next region - the new top half.
 753			 */
 754			rgn->base = base;
 755			rgn->size -= base - rbase;
 756			type->total_size -= base - rbase;
 757			memblock_insert_region(type, idx, rbase, base - rbase,
 758					       memblock_get_region_node(rgn),
 759					       rgn->flags);
 760		} else if (rend > end) {
 761			/*
 762			 * @rgn intersects from above.  Split and redo the
 763			 * current region - the new bottom half.
 764			 */
 765			rgn->base = end;
 766			rgn->size -= end - rbase;
 767			type->total_size -= end - rbase;
 768			memblock_insert_region(type, idx--, rbase, end - rbase,
 769					       memblock_get_region_node(rgn),
 770					       rgn->flags);
 771		} else {
 772			/* @rgn is fully contained, record it */
 773			if (!*end_rgn)
 774				*start_rgn = idx;
 775			*end_rgn = idx + 1;
 776		}
 777	}
 778
 779	return 0;
 780}
 781
 782static int __init_memblock memblock_remove_range(struct memblock_type *type,
 783					  phys_addr_t base, phys_addr_t size)
 784{
 785	int start_rgn, end_rgn;
 786	int i, ret;
 787
 788	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 789	if (ret)
 790		return ret;
 791
 792	for (i = end_rgn - 1; i >= start_rgn; i--)
 793		memblock_remove_region(type, i);
 794	return 0;
 795}
 796
 797int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 798{
 799	phys_addr_t end = base + size - 1;
 800
 801	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 802		     &base, &end, (void *)_RET_IP_);
 803
 804	return memblock_remove_range(&memblock.memory, base, size);
 805}
 806
 807/**
 808 * memblock_free - free boot memory block
 809 * @base: phys starting address of the  boot memory block
 810 * @size: size of the boot memory block in bytes
 811 *
 812 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 813 * The freeing memory will not be released to the buddy allocator.
 814 */
 815int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816{
 817	phys_addr_t end = base + size - 1;
 818
 819	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 820		     &base, &end, (void *)_RET_IP_);
 821
 822	kmemleak_free_part_phys(base, size);
 823	return memblock_remove_range(&memblock.reserved, base, size);
 824}
 825
 826int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 827{
 828	phys_addr_t end = base + size - 1;
 829
 830	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 831		     &base, &end, (void *)_RET_IP_);
 832
 833	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 834}
 835
 836#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 837int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 838{
 839	phys_addr_t end = base + size - 1;
 840
 841	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 842		     &base, &end, (void *)_RET_IP_);
 843
 844	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 845}
 846#endif
 847
 848/**
 849 * memblock_setclr_flag - set or clear flag for a memory region
 850 * @base: base address of the region
 851 * @size: size of the region
 852 * @set: set or clear the flag
 853 * @flag: the flag to udpate
 854 *
 855 * This function isolates region [@base, @base + @size), and sets/clears flag
 856 *
 857 * Return: 0 on success, -errno on failure.
 858 */
 859static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 860				phys_addr_t size, int set, int flag)
 861{
 862	struct memblock_type *type = &memblock.memory;
 863	int i, ret, start_rgn, end_rgn;
 864
 865	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 866	if (ret)
 867		return ret;
 868
 869	for (i = start_rgn; i < end_rgn; i++) {
 870		struct memblock_region *r = &type->regions[i];
 871
 872		if (set)
 873			r->flags |= flag;
 874		else
 875			r->flags &= ~flag;
 876	}
 877
 878	memblock_merge_regions(type);
 879	return 0;
 880}
 881
 882/**
 883 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 884 * @base: the base phys addr of the region
 885 * @size: the size of the region
 886 *
 887 * Return: 0 on success, -errno on failure.
 888 */
 889int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 890{
 891	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 892}
 893
 894/**
 895 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 896 * @base: the base phys addr of the region
 897 * @size: the size of the region
 898 *
 899 * Return: 0 on success, -errno on failure.
 900 */
 901int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 902{
 903	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 904}
 905
 906/**
 907 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 908 * @base: the base phys addr of the region
 909 * @size: the size of the region
 910 *
 911 * Return: 0 on success, -errno on failure.
 912 */
 913int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 914{
 
 
 
 915	system_has_some_mirror = true;
 916
 917	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 918}
 919
 920/**
 921 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 922 * @base: the base phys addr of the region
 923 * @size: the size of the region
 924 *
 
 
 
 
 
 
 
 
 925 * Return: 0 on success, -errno on failure.
 926 */
 927int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 928{
 929	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 930}
 931
 932/**
 933 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 934 * @base: the base phys addr of the region
 935 * @size: the size of the region
 936 *
 937 * Return: 0 on success, -errno on failure.
 938 */
 939int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 940{
 941	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 942}
 943
 944/**
 945 * __next_reserved_mem_region - next function for for_each_reserved_region()
 946 * @idx: pointer to u64 loop variable
 947 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 948 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 949 *
 950 * Iterate over all reserved memory regions.
 951 */
 952void __init_memblock __next_reserved_mem_region(u64 *idx,
 953					   phys_addr_t *out_start,
 954					   phys_addr_t *out_end)
 955{
 956	struct memblock_type *type = &memblock.reserved;
 957
 958	if (*idx < type->cnt) {
 959		struct memblock_region *r = &type->regions[*idx];
 960		phys_addr_t base = r->base;
 961		phys_addr_t size = r->size;
 962
 963		if (out_start)
 964			*out_start = base;
 965		if (out_end)
 966			*out_end = base + size - 1;
 967
 968		*idx += 1;
 969		return;
 970	}
 971
 972	/* signal end of iteration */
 973	*idx = ULLONG_MAX;
 974}
 975
 976static bool should_skip_region(struct memblock_region *m, int nid, int flags)
 977{
 978	int m_nid = memblock_get_region_node(m);
 979
 
 
 
 
 980	/* only memory regions are associated with nodes, check it */
 981	if (nid != NUMA_NO_NODE && nid != m_nid)
 982		return true;
 983
 984	/* skip hotpluggable memory regions if needed */
 985	if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 
 986		return true;
 987
 988	/* if we want mirror memory skip non-mirror memory regions */
 989	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 990		return true;
 991
 992	/* skip nomap memory unless we were asked for it explicitly */
 993	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
 994		return true;
 995
 
 
 
 
 996	return false;
 997}
 998
 999/**
1000 * __next_mem_range - next function for for_each_free_mem_range() etc.
1001 * @idx: pointer to u64 loop variable
1002 * @nid: node selector, %NUMA_NO_NODE for all nodes
1003 * @flags: pick from blocks based on memory attributes
1004 * @type_a: pointer to memblock_type from where the range is taken
1005 * @type_b: pointer to memblock_type which excludes memory from being taken
1006 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1007 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1008 * @out_nid: ptr to int for nid of the range, can be %NULL
1009 *
1010 * Find the first area from *@idx which matches @nid, fill the out
1011 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1012 * *@idx contains index into type_a and the upper 32bit indexes the
1013 * areas before each region in type_b.	For example, if type_b regions
1014 * look like the following,
1015 *
1016 *	0:[0-16), 1:[32-48), 2:[128-130)
1017 *
1018 * The upper 32bit indexes the following regions.
1019 *
1020 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1021 *
1022 * As both region arrays are sorted, the function advances the two indices
1023 * in lockstep and returns each intersection.
1024 */
1025void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1026		      struct memblock_type *type_a,
1027		      struct memblock_type *type_b, phys_addr_t *out_start,
1028		      phys_addr_t *out_end, int *out_nid)
1029{
1030	int idx_a = *idx & 0xffffffff;
1031	int idx_b = *idx >> 32;
1032
1033	if (WARN_ONCE(nid == MAX_NUMNODES,
1034	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1035		nid = NUMA_NO_NODE;
1036
1037	for (; idx_a < type_a->cnt; idx_a++) {
1038		struct memblock_region *m = &type_a->regions[idx_a];
1039
1040		phys_addr_t m_start = m->base;
1041		phys_addr_t m_end = m->base + m->size;
1042		int	    m_nid = memblock_get_region_node(m);
1043
1044		if (should_skip_region(m, nid, flags))
1045			continue;
1046
1047		if (!type_b) {
1048			if (out_start)
1049				*out_start = m_start;
1050			if (out_end)
1051				*out_end = m_end;
1052			if (out_nid)
1053				*out_nid = m_nid;
1054			idx_a++;
1055			*idx = (u32)idx_a | (u64)idx_b << 32;
1056			return;
1057		}
1058
1059		/* scan areas before each reservation */
1060		for (; idx_b < type_b->cnt + 1; idx_b++) {
1061			struct memblock_region *r;
1062			phys_addr_t r_start;
1063			phys_addr_t r_end;
1064
1065			r = &type_b->regions[idx_b];
1066			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1067			r_end = idx_b < type_b->cnt ?
1068				r->base : PHYS_ADDR_MAX;
1069
1070			/*
1071			 * if idx_b advanced past idx_a,
1072			 * break out to advance idx_a
1073			 */
1074			if (r_start >= m_end)
1075				break;
1076			/* if the two regions intersect, we're done */
1077			if (m_start < r_end) {
1078				if (out_start)
1079					*out_start =
1080						max(m_start, r_start);
1081				if (out_end)
1082					*out_end = min(m_end, r_end);
1083				if (out_nid)
1084					*out_nid = m_nid;
1085				/*
1086				 * The region which ends first is
1087				 * advanced for the next iteration.
1088				 */
1089				if (m_end <= r_end)
1090					idx_a++;
1091				else
1092					idx_b++;
1093				*idx = (u32)idx_a | (u64)idx_b << 32;
1094				return;
1095			}
1096		}
1097	}
1098
1099	/* signal end of iteration */
1100	*idx = ULLONG_MAX;
1101}
1102
1103/**
1104 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1105 *
1106 * @idx: pointer to u64 loop variable
1107 * @nid: node selector, %NUMA_NO_NODE for all nodes
1108 * @flags: pick from blocks based on memory attributes
1109 * @type_a: pointer to memblock_type from where the range is taken
1110 * @type_b: pointer to memblock_type which excludes memory from being taken
1111 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1112 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1113 * @out_nid: ptr to int for nid of the range, can be %NULL
1114 *
1115 * Finds the next range from type_a which is not marked as unsuitable
1116 * in type_b.
1117 *
1118 * Reverse of __next_mem_range().
1119 */
1120void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1121					  enum memblock_flags flags,
1122					  struct memblock_type *type_a,
1123					  struct memblock_type *type_b,
1124					  phys_addr_t *out_start,
1125					  phys_addr_t *out_end, int *out_nid)
1126{
1127	int idx_a = *idx & 0xffffffff;
1128	int idx_b = *idx >> 32;
1129
1130	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1131		nid = NUMA_NO_NODE;
1132
1133	if (*idx == (u64)ULLONG_MAX) {
1134		idx_a = type_a->cnt - 1;
1135		if (type_b != NULL)
1136			idx_b = type_b->cnt;
1137		else
1138			idx_b = 0;
1139	}
1140
1141	for (; idx_a >= 0; idx_a--) {
1142		struct memblock_region *m = &type_a->regions[idx_a];
1143
1144		phys_addr_t m_start = m->base;
1145		phys_addr_t m_end = m->base + m->size;
1146		int m_nid = memblock_get_region_node(m);
1147
1148		if (should_skip_region(m, nid, flags))
1149			continue;
1150
1151		if (!type_b) {
1152			if (out_start)
1153				*out_start = m_start;
1154			if (out_end)
1155				*out_end = m_end;
1156			if (out_nid)
1157				*out_nid = m_nid;
1158			idx_a--;
1159			*idx = (u32)idx_a | (u64)idx_b << 32;
1160			return;
1161		}
1162
1163		/* scan areas before each reservation */
1164		for (; idx_b >= 0; idx_b--) {
1165			struct memblock_region *r;
1166			phys_addr_t r_start;
1167			phys_addr_t r_end;
1168
1169			r = &type_b->regions[idx_b];
1170			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1171			r_end = idx_b < type_b->cnt ?
1172				r->base : PHYS_ADDR_MAX;
1173			/*
1174			 * if idx_b advanced past idx_a,
1175			 * break out to advance idx_a
1176			 */
1177
1178			if (r_end <= m_start)
1179				break;
1180			/* if the two regions intersect, we're done */
1181			if (m_end > r_start) {
1182				if (out_start)
1183					*out_start = max(m_start, r_start);
1184				if (out_end)
1185					*out_end = min(m_end, r_end);
1186				if (out_nid)
1187					*out_nid = m_nid;
1188				if (m_start >= r_start)
1189					idx_a--;
1190				else
1191					idx_b--;
1192				*idx = (u32)idx_a | (u64)idx_b << 32;
1193				return;
1194			}
1195		}
1196	}
1197	/* signal end of iteration */
1198	*idx = ULLONG_MAX;
1199}
1200
1201/*
1202 * Common iterator interface used to define for_each_mem_pfn_range().
1203 */
1204void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1205				unsigned long *out_start_pfn,
1206				unsigned long *out_end_pfn, int *out_nid)
1207{
1208	struct memblock_type *type = &memblock.memory;
1209	struct memblock_region *r;
1210	int r_nid;
1211
1212	while (++*idx < type->cnt) {
1213		r = &type->regions[*idx];
1214		r_nid = memblock_get_region_node(r);
1215
1216		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1217			continue;
1218		if (nid == MAX_NUMNODES || nid == r_nid)
1219			break;
1220	}
1221	if (*idx >= type->cnt) {
1222		*idx = -1;
1223		return;
1224	}
1225
1226	if (out_start_pfn)
1227		*out_start_pfn = PFN_UP(r->base);
1228	if (out_end_pfn)
1229		*out_end_pfn = PFN_DOWN(r->base + r->size);
1230	if (out_nid)
1231		*out_nid = r_nid;
1232}
1233
1234/**
1235 * memblock_set_node - set node ID on memblock regions
1236 * @base: base of area to set node ID for
1237 * @size: size of area to set node ID for
1238 * @type: memblock type to set node ID for
1239 * @nid: node ID to set
1240 *
1241 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1242 * Regions which cross the area boundaries are split as necessary.
1243 *
1244 * Return:
1245 * 0 on success, -errno on failure.
1246 */
1247int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1248				      struct memblock_type *type, int nid)
1249{
1250#ifdef CONFIG_NEED_MULTIPLE_NODES
1251	int start_rgn, end_rgn;
1252	int i, ret;
1253
1254	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1255	if (ret)
1256		return ret;
1257
1258	for (i = start_rgn; i < end_rgn; i++)
1259		memblock_set_region_node(&type->regions[i], nid);
1260
1261	memblock_merge_regions(type);
1262#endif
1263	return 0;
1264}
1265
1266#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1267/**
1268 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1269 *
1270 * @idx: pointer to u64 loop variable
1271 * @zone: zone in which all of the memory blocks reside
1272 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1273 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1274 *
1275 * This function is meant to be a zone/pfn specific wrapper for the
1276 * for_each_mem_range type iterators. Specifically they are used in the
1277 * deferred memory init routines and as such we were duplicating much of
1278 * this logic throughout the code. So instead of having it in multiple
1279 * locations it seemed like it would make more sense to centralize this to
1280 * one new iterator that does everything they need.
1281 */
1282void __init_memblock
1283__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1284			     unsigned long *out_spfn, unsigned long *out_epfn)
1285{
1286	int zone_nid = zone_to_nid(zone);
1287	phys_addr_t spa, epa;
1288	int nid;
1289
1290	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1291			 &memblock.memory, &memblock.reserved,
1292			 &spa, &epa, &nid);
1293
1294	while (*idx != U64_MAX) {
1295		unsigned long epfn = PFN_DOWN(epa);
1296		unsigned long spfn = PFN_UP(spa);
1297
1298		/*
1299		 * Verify the end is at least past the start of the zone and
1300		 * that we have at least one PFN to initialize.
1301		 */
1302		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1303			/* if we went too far just stop searching */
1304			if (zone_end_pfn(zone) <= spfn) {
1305				*idx = U64_MAX;
1306				break;
1307			}
1308
1309			if (out_spfn)
1310				*out_spfn = max(zone->zone_start_pfn, spfn);
1311			if (out_epfn)
1312				*out_epfn = min(zone_end_pfn(zone), epfn);
1313
1314			return;
1315		}
1316
1317		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1318				 &memblock.memory, &memblock.reserved,
1319				 &spa, &epa, &nid);
1320	}
1321
1322	/* signal end of iteration */
1323	if (out_spfn)
1324		*out_spfn = ULONG_MAX;
1325	if (out_epfn)
1326		*out_epfn = 0;
1327}
1328
1329#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1330
1331/**
1332 * memblock_alloc_range_nid - allocate boot memory block
1333 * @size: size of memory block to be allocated in bytes
1334 * @align: alignment of the region and block's size
1335 * @start: the lower bound of the memory region to allocate (phys address)
1336 * @end: the upper bound of the memory region to allocate (phys address)
1337 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1338 * @exact_nid: control the allocation fall back to other nodes
1339 *
1340 * The allocation is performed from memory region limited by
1341 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1342 *
1343 * If the specified node can not hold the requested memory and @exact_nid
1344 * is false, the allocation falls back to any node in the system.
1345 *
1346 * For systems with memory mirroring, the allocation is attempted first
1347 * from the regions with mirroring enabled and then retried from any
1348 * memory region.
1349 *
1350 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1351 * allocated boot memory block, so that it is never reported as leaks.
1352 *
1353 * Return:
1354 * Physical address of allocated memory block on success, %0 on failure.
1355 */
1356phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1357					phys_addr_t align, phys_addr_t start,
1358					phys_addr_t end, int nid,
1359					bool exact_nid)
1360{
1361	enum memblock_flags flags = choose_memblock_flags();
1362	phys_addr_t found;
1363
1364	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1365		nid = NUMA_NO_NODE;
1366
1367	if (!align) {
1368		/* Can't use WARNs this early in boot on powerpc */
1369		dump_stack();
1370		align = SMP_CACHE_BYTES;
1371	}
1372
1373again:
1374	found = memblock_find_in_range_node(size, align, start, end, nid,
1375					    flags);
1376	if (found && !memblock_reserve(found, size))
1377		goto done;
1378
1379	if (nid != NUMA_NO_NODE && !exact_nid) {
1380		found = memblock_find_in_range_node(size, align, start,
1381						    end, NUMA_NO_NODE,
1382						    flags);
1383		if (found && !memblock_reserve(found, size))
1384			goto done;
1385	}
1386
1387	if (flags & MEMBLOCK_MIRROR) {
1388		flags &= ~MEMBLOCK_MIRROR;
1389		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1390			&size);
1391		goto again;
1392	}
1393
1394	return 0;
1395
1396done:
1397	/* Skip kmemleak for kasan_init() due to high volume. */
1398	if (end != MEMBLOCK_ALLOC_KASAN)
 
 
 
1399		/*
1400		 * The min_count is set to 0 so that memblock allocated
1401		 * blocks are never reported as leaks. This is because many
1402		 * of these blocks are only referred via the physical
1403		 * address which is not looked up by kmemleak.
1404		 */
1405		kmemleak_alloc_phys(found, size, 0, 0);
1406
1407	return found;
1408}
1409
1410/**
1411 * memblock_phys_alloc_range - allocate a memory block inside specified range
1412 * @size: size of memory block to be allocated in bytes
1413 * @align: alignment of the region and block's size
1414 * @start: the lower bound of the memory region to allocate (physical address)
1415 * @end: the upper bound of the memory region to allocate (physical address)
1416 *
1417 * Allocate @size bytes in the between @start and @end.
1418 *
1419 * Return: physical address of the allocated memory block on success,
1420 * %0 on failure.
1421 */
1422phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1423					     phys_addr_t align,
1424					     phys_addr_t start,
1425					     phys_addr_t end)
1426{
 
 
 
1427	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1428					false);
1429}
1430
1431/**
1432 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1433 * @size: size of memory block to be allocated in bytes
1434 * @align: alignment of the region and block's size
1435 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1436 *
1437 * Allocates memory block from the specified NUMA node. If the node
1438 * has no available memory, attempts to allocated from any node in the
1439 * system.
1440 *
1441 * Return: physical address of the allocated memory block on success,
1442 * %0 on failure.
1443 */
1444phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1445{
1446	return memblock_alloc_range_nid(size, align, 0,
1447					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1448}
1449
1450/**
1451 * memblock_alloc_internal - allocate boot memory block
1452 * @size: size of memory block to be allocated in bytes
1453 * @align: alignment of the region and block's size
1454 * @min_addr: the lower bound of the memory region to allocate (phys address)
1455 * @max_addr: the upper bound of the memory region to allocate (phys address)
1456 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1457 * @exact_nid: control the allocation fall back to other nodes
1458 *
1459 * Allocates memory block using memblock_alloc_range_nid() and
1460 * converts the returned physical address to virtual.
1461 *
1462 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1463 * will fall back to memory below @min_addr. Other constraints, such
1464 * as node and mirrored memory will be handled again in
1465 * memblock_alloc_range_nid().
1466 *
1467 * Return:
1468 * Virtual address of allocated memory block on success, NULL on failure.
1469 */
1470static void * __init memblock_alloc_internal(
1471				phys_addr_t size, phys_addr_t align,
1472				phys_addr_t min_addr, phys_addr_t max_addr,
1473				int nid, bool exact_nid)
1474{
1475	phys_addr_t alloc;
1476
1477	/*
1478	 * Detect any accidental use of these APIs after slab is ready, as at
1479	 * this moment memblock may be deinitialized already and its
1480	 * internal data may be destroyed (after execution of memblock_free_all)
1481	 */
1482	if (WARN_ON_ONCE(slab_is_available()))
1483		return kzalloc_node(size, GFP_NOWAIT, nid);
1484
1485	if (max_addr > memblock.current_limit)
1486		max_addr = memblock.current_limit;
1487
1488	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1489					exact_nid);
1490
1491	/* retry allocation without lower limit */
1492	if (!alloc && min_addr)
1493		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1494						exact_nid);
1495
1496	if (!alloc)
1497		return NULL;
1498
1499	return phys_to_virt(alloc);
1500}
1501
1502/**
1503 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1504 * without zeroing memory
1505 * @size: size of memory block to be allocated in bytes
1506 * @align: alignment of the region and block's size
1507 * @min_addr: the lower bound of the memory region from where the allocation
1508 *	  is preferred (phys address)
1509 * @max_addr: the upper bound of the memory region from where the allocation
1510 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1511 *	      allocate only from memory limited by memblock.current_limit value
1512 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1513 *
1514 * Public function, provides additional debug information (including caller
1515 * info), if enabled. Does not zero allocated memory.
1516 *
1517 * Return:
1518 * Virtual address of allocated memory block on success, NULL on failure.
1519 */
1520void * __init memblock_alloc_exact_nid_raw(
1521			phys_addr_t size, phys_addr_t align,
1522			phys_addr_t min_addr, phys_addr_t max_addr,
1523			int nid)
1524{
1525	void *ptr;
1526
1527	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1528		     __func__, (u64)size, (u64)align, nid, &min_addr,
1529		     &max_addr, (void *)_RET_IP_);
1530
1531	ptr = memblock_alloc_internal(size, align,
1532					   min_addr, max_addr, nid, true);
1533	if (ptr && size > 0)
1534		page_init_poison(ptr, size);
1535
1536	return ptr;
1537}
1538
1539/**
1540 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1541 * memory and without panicking
1542 * @size: size of memory block to be allocated in bytes
1543 * @align: alignment of the region and block's size
1544 * @min_addr: the lower bound of the memory region from where the allocation
1545 *	  is preferred (phys address)
1546 * @max_addr: the upper bound of the memory region from where the allocation
1547 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1548 *	      allocate only from memory limited by memblock.current_limit value
1549 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1550 *
1551 * Public function, provides additional debug information (including caller
1552 * info), if enabled. Does not zero allocated memory, does not panic if request
1553 * cannot be satisfied.
1554 *
1555 * Return:
1556 * Virtual address of allocated memory block on success, NULL on failure.
1557 */
1558void * __init memblock_alloc_try_nid_raw(
1559			phys_addr_t size, phys_addr_t align,
1560			phys_addr_t min_addr, phys_addr_t max_addr,
1561			int nid)
1562{
1563	void *ptr;
1564
1565	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1566		     __func__, (u64)size, (u64)align, nid, &min_addr,
1567		     &max_addr, (void *)_RET_IP_);
1568
1569	ptr = memblock_alloc_internal(size, align,
1570					   min_addr, max_addr, nid, false);
1571	if (ptr && size > 0)
1572		page_init_poison(ptr, size);
1573
1574	return ptr;
1575}
1576
1577/**
1578 * memblock_alloc_try_nid - allocate boot memory block
1579 * @size: size of memory block to be allocated in bytes
1580 * @align: alignment of the region and block's size
1581 * @min_addr: the lower bound of the memory region from where the allocation
1582 *	  is preferred (phys address)
1583 * @max_addr: the upper bound of the memory region from where the allocation
1584 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1585 *	      allocate only from memory limited by memblock.current_limit value
1586 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1587 *
1588 * Public function, provides additional debug information (including caller
1589 * info), if enabled. This function zeroes the allocated memory.
1590 *
1591 * Return:
1592 * Virtual address of allocated memory block on success, NULL on failure.
1593 */
1594void * __init memblock_alloc_try_nid(
1595			phys_addr_t size, phys_addr_t align,
1596			phys_addr_t min_addr, phys_addr_t max_addr,
1597			int nid)
1598{
1599	void *ptr;
1600
1601	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1602		     __func__, (u64)size, (u64)align, nid, &min_addr,
1603		     &max_addr, (void *)_RET_IP_);
1604	ptr = memblock_alloc_internal(size, align,
1605					   min_addr, max_addr, nid, false);
1606	if (ptr)
1607		memset(ptr, 0, size);
1608
1609	return ptr;
1610}
1611
1612/**
1613 * __memblock_free_late - free pages directly to buddy allocator
1614 * @base: phys starting address of the  boot memory block
1615 * @size: size of the boot memory block in bytes
1616 *
1617 * This is only useful when the memblock allocator has already been torn
1618 * down, but we are still initializing the system.  Pages are released directly
1619 * to the buddy allocator.
1620 */
1621void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1622{
1623	phys_addr_t cursor, end;
1624
1625	end = base + size - 1;
1626	memblock_dbg("%s: [%pa-%pa] %pS\n",
1627		     __func__, &base, &end, (void *)_RET_IP_);
1628	kmemleak_free_part_phys(base, size);
1629	cursor = PFN_UP(base);
1630	end = PFN_DOWN(base + size);
1631
1632	for (; cursor < end; cursor++) {
1633		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1634		totalram_pages_inc();
1635	}
1636}
1637
1638/*
1639 * Remaining API functions
1640 */
1641
1642phys_addr_t __init_memblock memblock_phys_mem_size(void)
1643{
1644	return memblock.memory.total_size;
1645}
1646
1647phys_addr_t __init_memblock memblock_reserved_size(void)
1648{
1649	return memblock.reserved.total_size;
1650}
1651
1652phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1653{
1654	unsigned long pages = 0;
1655	struct memblock_region *r;
1656	unsigned long start_pfn, end_pfn;
1657
1658	for_each_memblock(memory, r) {
1659		start_pfn = memblock_region_memory_base_pfn(r);
1660		end_pfn = memblock_region_memory_end_pfn(r);
1661		start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1662		end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1663		pages += end_pfn - start_pfn;
1664	}
1665
1666	return PFN_PHYS(pages);
1667}
1668
1669/* lowest address */
1670phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1671{
1672	return memblock.memory.regions[0].base;
1673}
1674
1675phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1676{
1677	int idx = memblock.memory.cnt - 1;
1678
1679	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1680}
1681
1682static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1683{
1684	phys_addr_t max_addr = PHYS_ADDR_MAX;
1685	struct memblock_region *r;
1686
1687	/*
1688	 * translate the memory @limit size into the max address within one of
1689	 * the memory memblock regions, if the @limit exceeds the total size
1690	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1691	 */
1692	for_each_memblock(memory, r) {
1693		if (limit <= r->size) {
1694			max_addr = r->base + limit;
1695			break;
1696		}
1697		limit -= r->size;
1698	}
1699
1700	return max_addr;
1701}
1702
1703void __init memblock_enforce_memory_limit(phys_addr_t limit)
1704{
1705	phys_addr_t max_addr;
1706
1707	if (!limit)
1708		return;
1709
1710	max_addr = __find_max_addr(limit);
1711
1712	/* @limit exceeds the total size of the memory, do nothing */
1713	if (max_addr == PHYS_ADDR_MAX)
1714		return;
1715
1716	/* truncate both memory and reserved regions */
1717	memblock_remove_range(&memblock.memory, max_addr,
1718			      PHYS_ADDR_MAX);
1719	memblock_remove_range(&memblock.reserved, max_addr,
1720			      PHYS_ADDR_MAX);
1721}
1722
1723void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1724{
1725	int start_rgn, end_rgn;
1726	int i, ret;
1727
1728	if (!size)
1729		return;
1730
 
 
 
 
 
1731	ret = memblock_isolate_range(&memblock.memory, base, size,
1732						&start_rgn, &end_rgn);
1733	if (ret)
1734		return;
1735
1736	/* remove all the MAP regions */
1737	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1738		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1739			memblock_remove_region(&memblock.memory, i);
1740
1741	for (i = start_rgn - 1; i >= 0; i--)
1742		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1743			memblock_remove_region(&memblock.memory, i);
1744
1745	/* truncate the reserved regions */
1746	memblock_remove_range(&memblock.reserved, 0, base);
1747	memblock_remove_range(&memblock.reserved,
1748			base + size, PHYS_ADDR_MAX);
1749}
1750
1751void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1752{
1753	phys_addr_t max_addr;
1754
1755	if (!limit)
1756		return;
1757
1758	max_addr = __find_max_addr(limit);
1759
1760	/* @limit exceeds the total size of the memory, do nothing */
1761	if (max_addr == PHYS_ADDR_MAX)
1762		return;
1763
1764	memblock_cap_memory_range(0, max_addr);
1765}
1766
1767static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1768{
1769	unsigned int left = 0, right = type->cnt;
1770
1771	do {
1772		unsigned int mid = (right + left) / 2;
1773
1774		if (addr < type->regions[mid].base)
1775			right = mid;
1776		else if (addr >= (type->regions[mid].base +
1777				  type->regions[mid].size))
1778			left = mid + 1;
1779		else
1780			return mid;
1781	} while (left < right);
1782	return -1;
1783}
1784
1785bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1786{
1787	return memblock_search(&memblock.reserved, addr) != -1;
1788}
1789
1790bool __init_memblock memblock_is_memory(phys_addr_t addr)
1791{
1792	return memblock_search(&memblock.memory, addr) != -1;
1793}
1794
1795bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1796{
1797	int i = memblock_search(&memblock.memory, addr);
1798
1799	if (i == -1)
1800		return false;
1801	return !memblock_is_nomap(&memblock.memory.regions[i]);
1802}
1803
1804int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1805			 unsigned long *start_pfn, unsigned long *end_pfn)
1806{
1807	struct memblock_type *type = &memblock.memory;
1808	int mid = memblock_search(type, PFN_PHYS(pfn));
1809
1810	if (mid == -1)
1811		return -1;
1812
1813	*start_pfn = PFN_DOWN(type->regions[mid].base);
1814	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1815
1816	return memblock_get_region_node(&type->regions[mid]);
1817}
1818
1819/**
1820 * memblock_is_region_memory - check if a region is a subset of memory
1821 * @base: base of region to check
1822 * @size: size of region to check
1823 *
1824 * Check if the region [@base, @base + @size) is a subset of a memory block.
1825 *
1826 * Return:
1827 * 0 if false, non-zero if true
1828 */
1829bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1830{
1831	int idx = memblock_search(&memblock.memory, base);
1832	phys_addr_t end = base + memblock_cap_size(base, &size);
1833
1834	if (idx == -1)
1835		return false;
1836	return (memblock.memory.regions[idx].base +
1837		 memblock.memory.regions[idx].size) >= end;
1838}
1839
1840/**
1841 * memblock_is_region_reserved - check if a region intersects reserved memory
1842 * @base: base of region to check
1843 * @size: size of region to check
1844 *
1845 * Check if the region [@base, @base + @size) intersects a reserved
1846 * memory block.
1847 *
1848 * Return:
1849 * True if they intersect, false if not.
1850 */
1851bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1852{
1853	memblock_cap_size(base, &size);
1854	return memblock_overlaps_region(&memblock.reserved, base, size);
1855}
1856
1857void __init_memblock memblock_trim_memory(phys_addr_t align)
1858{
1859	phys_addr_t start, end, orig_start, orig_end;
1860	struct memblock_region *r;
1861
1862	for_each_memblock(memory, r) {
1863		orig_start = r->base;
1864		orig_end = r->base + r->size;
1865		start = round_up(orig_start, align);
1866		end = round_down(orig_end, align);
1867
1868		if (start == orig_start && end == orig_end)
1869			continue;
1870
1871		if (start < end) {
1872			r->base = start;
1873			r->size = end - start;
1874		} else {
1875			memblock_remove_region(&memblock.memory,
1876					       r - memblock.memory.regions);
1877			r--;
1878		}
1879	}
1880}
1881
1882void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1883{
1884	memblock.current_limit = limit;
1885}
1886
1887phys_addr_t __init_memblock memblock_get_current_limit(void)
1888{
1889	return memblock.current_limit;
1890}
1891
1892static void __init_memblock memblock_dump(struct memblock_type *type)
1893{
1894	phys_addr_t base, end, size;
1895	enum memblock_flags flags;
1896	int idx;
1897	struct memblock_region *rgn;
1898
1899	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1900
1901	for_each_memblock_type(idx, type, rgn) {
1902		char nid_buf[32] = "";
1903
1904		base = rgn->base;
1905		size = rgn->size;
1906		end = base + size - 1;
1907		flags = rgn->flags;
1908#ifdef CONFIG_NEED_MULTIPLE_NODES
1909		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1910			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1911				 memblock_get_region_node(rgn));
1912#endif
1913		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1914			type->name, idx, &base, &end, &size, nid_buf, flags);
1915	}
1916}
1917
1918void __init_memblock __memblock_dump_all(void)
1919{
1920	pr_info("MEMBLOCK configuration:\n");
1921	pr_info(" memory size = %pa reserved size = %pa\n",
1922		&memblock.memory.total_size,
1923		&memblock.reserved.total_size);
1924
1925	memblock_dump(&memblock.memory);
1926	memblock_dump(&memblock.reserved);
1927#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1928	memblock_dump(&physmem);
1929#endif
1930}
1931
 
 
 
 
 
 
1932void __init memblock_allow_resize(void)
1933{
1934	memblock_can_resize = 1;
1935}
1936
1937static int __init early_memblock(char *p)
1938{
1939	if (p && strstr(p, "debug"))
1940		memblock_debug = 1;
1941	return 0;
1942}
1943early_param("memblock", early_memblock);
1944
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1945static void __init __free_pages_memory(unsigned long start, unsigned long end)
1946{
1947	int order;
1948
1949	while (start < end) {
1950		order = min(MAX_ORDER - 1UL, __ffs(start));
1951
1952		while (start + (1UL << order) > end)
1953			order--;
1954
1955		memblock_free_pages(pfn_to_page(start), start, order);
1956
1957		start += (1UL << order);
1958	}
1959}
1960
1961static unsigned long __init __free_memory_core(phys_addr_t start,
1962				 phys_addr_t end)
1963{
1964	unsigned long start_pfn = PFN_UP(start);
1965	unsigned long end_pfn = min_t(unsigned long,
1966				      PFN_DOWN(end), max_low_pfn);
1967
1968	if (start_pfn >= end_pfn)
1969		return 0;
1970
1971	__free_pages_memory(start_pfn, end_pfn);
1972
1973	return end_pfn - start_pfn;
1974}
1975
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1976static unsigned long __init free_low_memory_core_early(void)
1977{
1978	unsigned long count = 0;
1979	phys_addr_t start, end;
1980	u64 i;
1981
1982	memblock_clear_hotplug(0, -1);
1983
1984	for_each_reserved_mem_region(i, &start, &end)
1985		reserve_bootmem_region(start, end);
1986
1987	/*
1988	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1989	 *  because in some case like Node0 doesn't have RAM installed
1990	 *  low ram will be on Node1
1991	 */
1992	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1993				NULL)
1994		count += __free_memory_core(start, end);
1995
1996	return count;
1997}
1998
1999static int reset_managed_pages_done __initdata;
2000
2001void reset_node_managed_pages(pg_data_t *pgdat)
2002{
2003	struct zone *z;
2004
2005	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2006		atomic_long_set(&z->managed_pages, 0);
2007}
2008
2009void __init reset_all_zones_managed_pages(void)
2010{
2011	struct pglist_data *pgdat;
2012
2013	if (reset_managed_pages_done)
2014		return;
2015
2016	for_each_online_pgdat(pgdat)
2017		reset_node_managed_pages(pgdat);
2018
2019	reset_managed_pages_done = 1;
2020}
2021
2022/**
2023 * memblock_free_all - release free pages to the buddy allocator
2024 *
2025 * Return: the number of pages actually released.
2026 */
2027unsigned long __init memblock_free_all(void)
2028{
2029	unsigned long pages;
2030
 
2031	reset_all_zones_managed_pages();
2032
2033	pages = free_low_memory_core_early();
2034	totalram_pages_add(pages);
2035
2036	return pages;
2037}
2038
2039#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2040
2041static int memblock_debug_show(struct seq_file *m, void *private)
2042{
2043	struct memblock_type *type = m->private;
2044	struct memblock_region *reg;
2045	int i;
2046	phys_addr_t end;
2047
2048	for (i = 0; i < type->cnt; i++) {
2049		reg = &type->regions[i];
2050		end = reg->base + reg->size - 1;
2051
2052		seq_printf(m, "%4d: ", i);
2053		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2054	}
2055	return 0;
2056}
2057DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2058
2059static int __init memblock_init_debugfs(void)
2060{
2061	struct dentry *root = debugfs_create_dir("memblock", NULL);
2062
2063	debugfs_create_file("memory", 0444, root,
2064			    &memblock.memory, &memblock_debug_fops);
2065	debugfs_create_file("reserved", 0444, root,
2066			    &memblock.reserved, &memblock_debug_fops);
2067#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2068	debugfs_create_file("physmem", 0444, root, &physmem,
2069			    &memblock_debug_fops);
2070#endif
2071
2072	return 0;
2073}
2074__initcall(memblock_init_debugfs);
2075
2076#endif /* CONFIG_DEBUG_FS */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Procedures for maintaining information about logical memory blocks.
   4 *
   5 * Peter Bergner, IBM Corp.	June 2001.
   6 * Copyright (C) 2001 Peter Bergner.
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/slab.h>
  11#include <linux/init.h>
  12#include <linux/bitops.h>
  13#include <linux/poison.h>
  14#include <linux/pfn.h>
  15#include <linux/debugfs.h>
  16#include <linux/kmemleak.h>
  17#include <linux/seq_file.h>
  18#include <linux/memblock.h>
  19
  20#include <asm/sections.h>
  21#include <linux/io.h>
  22
  23#include "internal.h"
  24
  25#define INIT_MEMBLOCK_REGIONS			128
  26#define INIT_PHYSMEM_REGIONS			4
  27
  28#ifndef INIT_MEMBLOCK_RESERVED_REGIONS
  29# define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
  30#endif
  31
  32#ifndef INIT_MEMBLOCK_MEMORY_REGIONS
  33#define INIT_MEMBLOCK_MEMORY_REGIONS		INIT_MEMBLOCK_REGIONS
  34#endif
  35
  36/**
  37 * DOC: memblock overview
  38 *
  39 * Memblock is a method of managing memory regions during the early
  40 * boot period when the usual kernel memory allocators are not up and
  41 * running.
  42 *
  43 * Memblock views the system memory as collections of contiguous
  44 * regions. There are several types of these collections:
  45 *
  46 * * ``memory`` - describes the physical memory available to the
  47 *   kernel; this may differ from the actual physical memory installed
  48 *   in the system, for instance when the memory is restricted with
  49 *   ``mem=`` command line parameter
  50 * * ``reserved`` - describes the regions that were allocated
  51 * * ``physmem`` - describes the actual physical memory available during
  52 *   boot regardless of the possible restrictions and memory hot(un)plug;
  53 *   the ``physmem`` type is only available on some architectures.
  54 *
  55 * Each region is represented by struct memblock_region that
  56 * defines the region extents, its attributes and NUMA node id on NUMA
  57 * systems. Every memory type is described by the struct memblock_type
  58 * which contains an array of memory regions along with
  59 * the allocator metadata. The "memory" and "reserved" types are nicely
  60 * wrapped with struct memblock. This structure is statically
  61 * initialized at build time. The region arrays are initially sized to
  62 * %INIT_MEMBLOCK_MEMORY_REGIONS for "memory" and
  63 * %INIT_MEMBLOCK_RESERVED_REGIONS for "reserved". The region array
  64 * for "physmem" is initially sized to %INIT_PHYSMEM_REGIONS.
  65 * The memblock_allow_resize() enables automatic resizing of the region
  66 * arrays during addition of new regions. This feature should be used
  67 * with care so that memory allocated for the region array will not
  68 * overlap with areas that should be reserved, for example initrd.
  69 *
  70 * The early architecture setup should tell memblock what the physical
  71 * memory layout is by using memblock_add() or memblock_add_node()
  72 * functions. The first function does not assign the region to a NUMA
  73 * node and it is appropriate for UMA systems. Yet, it is possible to
  74 * use it on NUMA systems as well and assign the region to a NUMA node
  75 * later in the setup process using memblock_set_node(). The
  76 * memblock_add_node() performs such an assignment directly.
  77 *
  78 * Once memblock is setup the memory can be allocated using one of the
  79 * API variants:
  80 *
  81 * * memblock_phys_alloc*() - these functions return the **physical**
  82 *   address of the allocated memory
  83 * * memblock_alloc*() - these functions return the **virtual** address
  84 *   of the allocated memory.
  85 *
  86 * Note, that both API variants use implicit assumptions about allowed
  87 * memory ranges and the fallback methods. Consult the documentation
  88 * of memblock_alloc_internal() and memblock_alloc_range_nid()
  89 * functions for more elaborate description.
  90 *
  91 * As the system boot progresses, the architecture specific mem_init()
  92 * function frees all the memory to the buddy page allocator.
  93 *
  94 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
  95 * memblock data structures (except "physmem") will be discarded after the
  96 * system initialization completes.
  97 */
  98
  99#ifndef CONFIG_NUMA
 100struct pglist_data __refdata contig_page_data;
 101EXPORT_SYMBOL(contig_page_data);
 102#endif
 103
 104unsigned long max_low_pfn;
 105unsigned long min_low_pfn;
 106unsigned long max_pfn;
 107unsigned long long max_possible_pfn;
 108
 109static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_MEMORY_REGIONS] __initdata_memblock;
 110static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
 111#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 112static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
 113#endif
 114
 115struct memblock memblock __initdata_memblock = {
 116	.memory.regions		= memblock_memory_init_regions,
 117	.memory.cnt		= 1,	/* empty dummy entry */
 118	.memory.max		= INIT_MEMBLOCK_MEMORY_REGIONS,
 119	.memory.name		= "memory",
 120
 121	.reserved.regions	= memblock_reserved_init_regions,
 122	.reserved.cnt		= 1,	/* empty dummy entry */
 123	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
 124	.reserved.name		= "reserved",
 125
 126	.bottom_up		= false,
 127	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
 128};
 129
 130#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 131struct memblock_type physmem = {
 132	.regions		= memblock_physmem_init_regions,
 133	.cnt			= 1,	/* empty dummy entry */
 134	.max			= INIT_PHYSMEM_REGIONS,
 135	.name			= "physmem",
 136};
 137#endif
 138
 139/*
 140 * keep a pointer to &memblock.memory in the text section to use it in
 141 * __next_mem_range() and its helpers.
 142 *  For architectures that do not keep memblock data after init, this
 143 * pointer will be reset to NULL at memblock_discard()
 144 */
 145static __refdata struct memblock_type *memblock_memory = &memblock.memory;
 146
 147#define for_each_memblock_type(i, memblock_type, rgn)			\
 148	for (i = 0, rgn = &memblock_type->regions[0];			\
 149	     i < memblock_type->cnt;					\
 150	     i++, rgn = &memblock_type->regions[i])
 151
 152#define memblock_dbg(fmt, ...)						\
 153	do {								\
 154		if (memblock_debug)					\
 155			pr_info(fmt, ##__VA_ARGS__);			\
 156	} while (0)
 157
 158static int memblock_debug __initdata_memblock;
 159static bool system_has_some_mirror __initdata_memblock = false;
 160static int memblock_can_resize __initdata_memblock;
 161static int memblock_memory_in_slab __initdata_memblock = 0;
 162static int memblock_reserved_in_slab __initdata_memblock = 0;
 163
 164static enum memblock_flags __init_memblock choose_memblock_flags(void)
 165{
 166	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 167}
 168
 169/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 170static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 171{
 172	return *size = min(*size, PHYS_ADDR_MAX - base);
 173}
 174
 175/*
 176 * Address comparison utilities
 177 */
 178static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 179				       phys_addr_t base2, phys_addr_t size2)
 180{
 181	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 182}
 183
 184bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 185					phys_addr_t base, phys_addr_t size)
 186{
 187	unsigned long i;
 188
 189	memblock_cap_size(base, &size);
 190
 191	for (i = 0; i < type->cnt; i++)
 192		if (memblock_addrs_overlap(base, size, type->regions[i].base,
 193					   type->regions[i].size))
 194			break;
 195	return i < type->cnt;
 196}
 197
 198/**
 199 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 200 * @start: start of candidate range
 201 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 202 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 203 * @size: size of free area to find
 204 * @align: alignment of free area to find
 205 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 206 * @flags: pick from blocks based on memory attributes
 207 *
 208 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 209 *
 210 * Return:
 211 * Found address on success, 0 on failure.
 212 */
 213static phys_addr_t __init_memblock
 214__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 215				phys_addr_t size, phys_addr_t align, int nid,
 216				enum memblock_flags flags)
 217{
 218	phys_addr_t this_start, this_end, cand;
 219	u64 i;
 220
 221	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 222		this_start = clamp(this_start, start, end);
 223		this_end = clamp(this_end, start, end);
 224
 225		cand = round_up(this_start, align);
 226		if (cand < this_end && this_end - cand >= size)
 227			return cand;
 228	}
 229
 230	return 0;
 231}
 232
 233/**
 234 * __memblock_find_range_top_down - find free area utility, in top-down
 235 * @start: start of candidate range
 236 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 237 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 238 * @size: size of free area to find
 239 * @align: alignment of free area to find
 240 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 241 * @flags: pick from blocks based on memory attributes
 242 *
 243 * Utility called from memblock_find_in_range_node(), find free area top-down.
 244 *
 245 * Return:
 246 * Found address on success, 0 on failure.
 247 */
 248static phys_addr_t __init_memblock
 249__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 250			       phys_addr_t size, phys_addr_t align, int nid,
 251			       enum memblock_flags flags)
 252{
 253	phys_addr_t this_start, this_end, cand;
 254	u64 i;
 255
 256	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 257					NULL) {
 258		this_start = clamp(this_start, start, end);
 259		this_end = clamp(this_end, start, end);
 260
 261		if (this_end < size)
 262			continue;
 263
 264		cand = round_down(this_end - size, align);
 265		if (cand >= this_start)
 266			return cand;
 267	}
 268
 269	return 0;
 270}
 271
 272/**
 273 * memblock_find_in_range_node - find free area in given range and node
 274 * @size: size of free area to find
 275 * @align: alignment of free area to find
 276 * @start: start of candidate range
 277 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 278 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 279 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 280 * @flags: pick from blocks based on memory attributes
 281 *
 282 * Find @size free area aligned to @align in the specified range and node.
 283 *
 
 
 
 
 
 
 
 
 284 * Return:
 285 * Found address on success, 0 on failure.
 286 */
 287static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 288					phys_addr_t align, phys_addr_t start,
 289					phys_addr_t end, int nid,
 290					enum memblock_flags flags)
 291{
 
 
 292	/* pump up @end */
 293	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
 294	    end == MEMBLOCK_ALLOC_NOLEAKTRACE)
 295		end = memblock.current_limit;
 296
 297	/* avoid allocating the first page */
 298	start = max_t(phys_addr_t, start, PAGE_SIZE);
 299	end = max(start, end);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 300
 301	if (memblock_bottom_up())
 302		return __memblock_find_range_bottom_up(start, end, size, align,
 303						       nid, flags);
 304	else
 305		return __memblock_find_range_top_down(start, end, size, align,
 306						      nid, flags);
 307}
 308
 309/**
 310 * memblock_find_in_range - find free area in given range
 311 * @start: start of candidate range
 312 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 313 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 314 * @size: size of free area to find
 315 * @align: alignment of free area to find
 316 *
 317 * Find @size free area aligned to @align in the specified range.
 318 *
 319 * Return:
 320 * Found address on success, 0 on failure.
 321 */
 322static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 323					phys_addr_t end, phys_addr_t size,
 324					phys_addr_t align)
 325{
 326	phys_addr_t ret;
 327	enum memblock_flags flags = choose_memblock_flags();
 328
 329again:
 330	ret = memblock_find_in_range_node(size, align, start, end,
 331					    NUMA_NO_NODE, flags);
 332
 333	if (!ret && (flags & MEMBLOCK_MIRROR)) {
 334		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
 335			&size);
 336		flags &= ~MEMBLOCK_MIRROR;
 337		goto again;
 338	}
 339
 340	return ret;
 341}
 342
 343static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 344{
 345	type->total_size -= type->regions[r].size;
 346	memmove(&type->regions[r], &type->regions[r + 1],
 347		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
 348	type->cnt--;
 349
 350	/* Special case for empty arrays */
 351	if (type->cnt == 0) {
 352		WARN_ON(type->total_size != 0);
 353		type->cnt = 1;
 354		type->regions[0].base = 0;
 355		type->regions[0].size = 0;
 356		type->regions[0].flags = 0;
 357		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 358	}
 359}
 360
 361#ifndef CONFIG_ARCH_KEEP_MEMBLOCK
 362/**
 363 * memblock_discard - discard memory and reserved arrays if they were allocated
 364 */
 365void __init memblock_discard(void)
 366{
 367	phys_addr_t addr, size;
 368
 369	if (memblock.reserved.regions != memblock_reserved_init_regions) {
 370		addr = __pa(memblock.reserved.regions);
 371		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 372				  memblock.reserved.max);
 373		if (memblock_reserved_in_slab)
 374			kfree(memblock.reserved.regions);
 375		else
 376			memblock_free_late(addr, size);
 377	}
 378
 379	if (memblock.memory.regions != memblock_memory_init_regions) {
 380		addr = __pa(memblock.memory.regions);
 381		size = PAGE_ALIGN(sizeof(struct memblock_region) *
 382				  memblock.memory.max);
 383		if (memblock_memory_in_slab)
 384			kfree(memblock.memory.regions);
 385		else
 386			memblock_free_late(addr, size);
 387	}
 388
 389	memblock_memory = NULL;
 390}
 391#endif
 392
 393/**
 394 * memblock_double_array - double the size of the memblock regions array
 395 * @type: memblock type of the regions array being doubled
 396 * @new_area_start: starting address of memory range to avoid overlap with
 397 * @new_area_size: size of memory range to avoid overlap with
 398 *
 399 * Double the size of the @type regions array. If memblock is being used to
 400 * allocate memory for a new reserved regions array and there is a previously
 401 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 402 * waiting to be reserved, ensure the memory used by the new array does
 403 * not overlap.
 404 *
 405 * Return:
 406 * 0 on success, -1 on failure.
 407 */
 408static int __init_memblock memblock_double_array(struct memblock_type *type,
 409						phys_addr_t new_area_start,
 410						phys_addr_t new_area_size)
 411{
 412	struct memblock_region *new_array, *old_array;
 413	phys_addr_t old_alloc_size, new_alloc_size;
 414	phys_addr_t old_size, new_size, addr, new_end;
 415	int use_slab = slab_is_available();
 416	int *in_slab;
 417
 418	/* We don't allow resizing until we know about the reserved regions
 419	 * of memory that aren't suitable for allocation
 420	 */
 421	if (!memblock_can_resize)
 422		return -1;
 423
 424	/* Calculate new doubled size */
 425	old_size = type->max * sizeof(struct memblock_region);
 426	new_size = old_size << 1;
 427	/*
 428	 * We need to allocated new one align to PAGE_SIZE,
 429	 *   so we can free them completely later.
 430	 */
 431	old_alloc_size = PAGE_ALIGN(old_size);
 432	new_alloc_size = PAGE_ALIGN(new_size);
 433
 434	/* Retrieve the slab flag */
 435	if (type == &memblock.memory)
 436		in_slab = &memblock_memory_in_slab;
 437	else
 438		in_slab = &memblock_reserved_in_slab;
 439
 440	/* Try to find some space for it */
 441	if (use_slab) {
 442		new_array = kmalloc(new_size, GFP_KERNEL);
 443		addr = new_array ? __pa(new_array) : 0;
 444	} else {
 445		/* only exclude range when trying to double reserved.regions */
 446		if (type != &memblock.reserved)
 447			new_area_start = new_area_size = 0;
 448
 449		addr = memblock_find_in_range(new_area_start + new_area_size,
 450						memblock.current_limit,
 451						new_alloc_size, PAGE_SIZE);
 452		if (!addr && new_area_size)
 453			addr = memblock_find_in_range(0,
 454				min(new_area_start, memblock.current_limit),
 455				new_alloc_size, PAGE_SIZE);
 456
 457		new_array = addr ? __va(addr) : NULL;
 458	}
 459	if (!addr) {
 460		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 461		       type->name, type->max, type->max * 2);
 462		return -1;
 463	}
 464
 465	new_end = addr + new_size - 1;
 466	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 467			type->name, type->max * 2, &addr, &new_end);
 468
 469	/*
 470	 * Found space, we now need to move the array over before we add the
 471	 * reserved region since it may be our reserved array itself that is
 472	 * full.
 473	 */
 474	memcpy(new_array, type->regions, old_size);
 475	memset(new_array + type->max, 0, old_size);
 476	old_array = type->regions;
 477	type->regions = new_array;
 478	type->max <<= 1;
 479
 480	/* Free old array. We needn't free it if the array is the static one */
 481	if (*in_slab)
 482		kfree(old_array);
 483	else if (old_array != memblock_memory_init_regions &&
 484		 old_array != memblock_reserved_init_regions)
 485		memblock_free(old_array, old_alloc_size);
 486
 487	/*
 488	 * Reserve the new array if that comes from the memblock.  Otherwise, we
 489	 * needn't do it
 490	 */
 491	if (!use_slab)
 492		BUG_ON(memblock_reserve(addr, new_alloc_size));
 493
 494	/* Update slab flag */
 495	*in_slab = use_slab;
 496
 497	return 0;
 498}
 499
 500/**
 501 * memblock_merge_regions - merge neighboring compatible regions
 502 * @type: memblock type to scan
 503 *
 504 * Scan @type and merge neighboring compatible regions.
 505 */
 506static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 507{
 508	int i = 0;
 509
 510	/* cnt never goes below 1 */
 511	while (i < type->cnt - 1) {
 512		struct memblock_region *this = &type->regions[i];
 513		struct memblock_region *next = &type->regions[i + 1];
 514
 515		if (this->base + this->size != next->base ||
 516		    memblock_get_region_node(this) !=
 517		    memblock_get_region_node(next) ||
 518		    this->flags != next->flags) {
 519			BUG_ON(this->base + this->size > next->base);
 520			i++;
 521			continue;
 522		}
 523
 524		this->size += next->size;
 525		/* move forward from next + 1, index of which is i + 2 */
 526		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 527		type->cnt--;
 528	}
 529}
 530
 531/**
 532 * memblock_insert_region - insert new memblock region
 533 * @type:	memblock type to insert into
 534 * @idx:	index for the insertion point
 535 * @base:	base address of the new region
 536 * @size:	size of the new region
 537 * @nid:	node id of the new region
 538 * @flags:	flags of the new region
 539 *
 540 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 541 * @type must already have extra room to accommodate the new region.
 542 */
 543static void __init_memblock memblock_insert_region(struct memblock_type *type,
 544						   int idx, phys_addr_t base,
 545						   phys_addr_t size,
 546						   int nid,
 547						   enum memblock_flags flags)
 548{
 549	struct memblock_region *rgn = &type->regions[idx];
 550
 551	BUG_ON(type->cnt >= type->max);
 552	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 553	rgn->base = base;
 554	rgn->size = size;
 555	rgn->flags = flags;
 556	memblock_set_region_node(rgn, nid);
 557	type->cnt++;
 558	type->total_size += size;
 559}
 560
 561/**
 562 * memblock_add_range - add new memblock region
 563 * @type: memblock type to add new region into
 564 * @base: base address of the new region
 565 * @size: size of the new region
 566 * @nid: nid of the new region
 567 * @flags: flags of the new region
 568 *
 569 * Add new memblock region [@base, @base + @size) into @type.  The new region
 570 * is allowed to overlap with existing ones - overlaps don't affect already
 571 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 572 * compatible regions are merged) after the addition.
 573 *
 574 * Return:
 575 * 0 on success, -errno on failure.
 576 */
 577static int __init_memblock memblock_add_range(struct memblock_type *type,
 578				phys_addr_t base, phys_addr_t size,
 579				int nid, enum memblock_flags flags)
 580{
 581	bool insert = false;
 582	phys_addr_t obase = base;
 583	phys_addr_t end = base + memblock_cap_size(base, &size);
 584	int idx, nr_new;
 585	struct memblock_region *rgn;
 586
 587	if (!size)
 588		return 0;
 589
 590	/* special case for empty array */
 591	if (type->regions[0].size == 0) {
 592		WARN_ON(type->cnt != 1 || type->total_size);
 593		type->regions[0].base = base;
 594		type->regions[0].size = size;
 595		type->regions[0].flags = flags;
 596		memblock_set_region_node(&type->regions[0], nid);
 597		type->total_size = size;
 598		return 0;
 599	}
 600
 601	/*
 602	 * The worst case is when new range overlaps all existing regions,
 603	 * then we'll need type->cnt + 1 empty regions in @type. So if
 604	 * type->cnt * 2 + 1 is less than type->max, we know
 605	 * that there is enough empty regions in @type, and we can insert
 606	 * regions directly.
 607	 */
 608	if (type->cnt * 2 + 1 < type->max)
 609		insert = true;
 610
 611repeat:
 612	/*
 613	 * The following is executed twice.  Once with %false @insert and
 614	 * then with %true.  The first counts the number of regions needed
 615	 * to accommodate the new area.  The second actually inserts them.
 616	 */
 617	base = obase;
 618	nr_new = 0;
 619
 620	for_each_memblock_type(idx, type, rgn) {
 621		phys_addr_t rbase = rgn->base;
 622		phys_addr_t rend = rbase + rgn->size;
 623
 624		if (rbase >= end)
 625			break;
 626		if (rend <= base)
 627			continue;
 628		/*
 629		 * @rgn overlaps.  If it separates the lower part of new
 630		 * area, insert that portion.
 631		 */
 632		if (rbase > base) {
 633#ifdef CONFIG_NUMA
 634			WARN_ON(nid != memblock_get_region_node(rgn));
 635#endif
 636			WARN_ON(flags != rgn->flags);
 637			nr_new++;
 638			if (insert)
 639				memblock_insert_region(type, idx++, base,
 640						       rbase - base, nid,
 641						       flags);
 642		}
 643		/* area below @rend is dealt with, forget about it */
 644		base = min(rend, end);
 645	}
 646
 647	/* insert the remaining portion */
 648	if (base < end) {
 649		nr_new++;
 650		if (insert)
 651			memblock_insert_region(type, idx, base, end - base,
 652					       nid, flags);
 653	}
 654
 655	if (!nr_new)
 656		return 0;
 657
 658	/*
 659	 * If this was the first round, resize array and repeat for actual
 660	 * insertions; otherwise, merge and return.
 661	 */
 662	if (!insert) {
 663		while (type->cnt + nr_new > type->max)
 664			if (memblock_double_array(type, obase, size) < 0)
 665				return -ENOMEM;
 666		insert = true;
 667		goto repeat;
 668	} else {
 669		memblock_merge_regions(type);
 670		return 0;
 671	}
 672}
 673
 674/**
 675 * memblock_add_node - add new memblock region within a NUMA node
 676 * @base: base address of the new region
 677 * @size: size of the new region
 678 * @nid: nid of the new region
 679 * @flags: flags of the new region
 680 *
 681 * Add new memblock region [@base, @base + @size) to the "memory"
 682 * type. See memblock_add_range() description for mode details
 683 *
 684 * Return:
 685 * 0 on success, -errno on failure.
 686 */
 687int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 688				      int nid, enum memblock_flags flags)
 689{
 690	phys_addr_t end = base + size - 1;
 691
 692	memblock_dbg("%s: [%pa-%pa] nid=%d flags=%x %pS\n", __func__,
 693		     &base, &end, nid, flags, (void *)_RET_IP_);
 694
 695	return memblock_add_range(&memblock.memory, base, size, nid, flags);
 696}
 697
 698/**
 699 * memblock_add - add new memblock region
 700 * @base: base address of the new region
 701 * @size: size of the new region
 702 *
 703 * Add new memblock region [@base, @base + @size) to the "memory"
 704 * type. See memblock_add_range() description for mode details
 705 *
 706 * Return:
 707 * 0 on success, -errno on failure.
 708 */
 709int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 710{
 711	phys_addr_t end = base + size - 1;
 712
 713	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 714		     &base, &end, (void *)_RET_IP_);
 715
 716	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 717}
 718
 719/**
 720 * memblock_isolate_range - isolate given range into disjoint memblocks
 721 * @type: memblock type to isolate range for
 722 * @base: base of range to isolate
 723 * @size: size of range to isolate
 724 * @start_rgn: out parameter for the start of isolated region
 725 * @end_rgn: out parameter for the end of isolated region
 726 *
 727 * Walk @type and ensure that regions don't cross the boundaries defined by
 728 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 729 * which may create at most two more regions.  The index of the first
 730 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 731 *
 732 * Return:
 733 * 0 on success, -errno on failure.
 734 */
 735static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 736					phys_addr_t base, phys_addr_t size,
 737					int *start_rgn, int *end_rgn)
 738{
 739	phys_addr_t end = base + memblock_cap_size(base, &size);
 740	int idx;
 741	struct memblock_region *rgn;
 742
 743	*start_rgn = *end_rgn = 0;
 744
 745	if (!size)
 746		return 0;
 747
 748	/* we'll create at most two more regions */
 749	while (type->cnt + 2 > type->max)
 750		if (memblock_double_array(type, base, size) < 0)
 751			return -ENOMEM;
 752
 753	for_each_memblock_type(idx, type, rgn) {
 754		phys_addr_t rbase = rgn->base;
 755		phys_addr_t rend = rbase + rgn->size;
 756
 757		if (rbase >= end)
 758			break;
 759		if (rend <= base)
 760			continue;
 761
 762		if (rbase < base) {
 763			/*
 764			 * @rgn intersects from below.  Split and continue
 765			 * to process the next region - the new top half.
 766			 */
 767			rgn->base = base;
 768			rgn->size -= base - rbase;
 769			type->total_size -= base - rbase;
 770			memblock_insert_region(type, idx, rbase, base - rbase,
 771					       memblock_get_region_node(rgn),
 772					       rgn->flags);
 773		} else if (rend > end) {
 774			/*
 775			 * @rgn intersects from above.  Split and redo the
 776			 * current region - the new bottom half.
 777			 */
 778			rgn->base = end;
 779			rgn->size -= end - rbase;
 780			type->total_size -= end - rbase;
 781			memblock_insert_region(type, idx--, rbase, end - rbase,
 782					       memblock_get_region_node(rgn),
 783					       rgn->flags);
 784		} else {
 785			/* @rgn is fully contained, record it */
 786			if (!*end_rgn)
 787				*start_rgn = idx;
 788			*end_rgn = idx + 1;
 789		}
 790	}
 791
 792	return 0;
 793}
 794
 795static int __init_memblock memblock_remove_range(struct memblock_type *type,
 796					  phys_addr_t base, phys_addr_t size)
 797{
 798	int start_rgn, end_rgn;
 799	int i, ret;
 800
 801	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 802	if (ret)
 803		return ret;
 804
 805	for (i = end_rgn - 1; i >= start_rgn; i--)
 806		memblock_remove_region(type, i);
 807	return 0;
 808}
 809
 810int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 811{
 812	phys_addr_t end = base + size - 1;
 813
 814	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 815		     &base, &end, (void *)_RET_IP_);
 816
 817	return memblock_remove_range(&memblock.memory, base, size);
 818}
 819
 820/**
 821 * memblock_free - free boot memory allocation
 822 * @ptr: starting address of the  boot memory allocation
 823 * @size: size of the boot memory block in bytes
 824 *
 825 * Free boot memory block previously allocated by memblock_alloc_xx() API.
 826 * The freeing memory will not be released to the buddy allocator.
 827 */
 828void __init_memblock memblock_free(void *ptr, size_t size)
 829{
 830	if (ptr)
 831		memblock_phys_free(__pa(ptr), size);
 832}
 833
 834/**
 835 * memblock_phys_free - free boot memory block
 836 * @base: phys starting address of the  boot memory block
 837 * @size: size of the boot memory block in bytes
 838 *
 839 * Free boot memory block previously allocated by memblock_phys_alloc_xx() API.
 840 * The freeing memory will not be released to the buddy allocator.
 841 */
 842int __init_memblock memblock_phys_free(phys_addr_t base, phys_addr_t size)
 843{
 844	phys_addr_t end = base + size - 1;
 845
 846	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 847		     &base, &end, (void *)_RET_IP_);
 848
 849	kmemleak_free_part_phys(base, size);
 850	return memblock_remove_range(&memblock.reserved, base, size);
 851}
 852
 853int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 854{
 855	phys_addr_t end = base + size - 1;
 856
 857	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 858		     &base, &end, (void *)_RET_IP_);
 859
 860	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 861}
 862
 863#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 864int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
 865{
 866	phys_addr_t end = base + size - 1;
 867
 868	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
 869		     &base, &end, (void *)_RET_IP_);
 870
 871	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
 872}
 873#endif
 874
 875/**
 876 * memblock_setclr_flag - set or clear flag for a memory region
 877 * @base: base address of the region
 878 * @size: size of the region
 879 * @set: set or clear the flag
 880 * @flag: the flag to update
 881 *
 882 * This function isolates region [@base, @base + @size), and sets/clears flag
 883 *
 884 * Return: 0 on success, -errno on failure.
 885 */
 886static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 887				phys_addr_t size, int set, int flag)
 888{
 889	struct memblock_type *type = &memblock.memory;
 890	int i, ret, start_rgn, end_rgn;
 891
 892	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 893	if (ret)
 894		return ret;
 895
 896	for (i = start_rgn; i < end_rgn; i++) {
 897		struct memblock_region *r = &type->regions[i];
 898
 899		if (set)
 900			r->flags |= flag;
 901		else
 902			r->flags &= ~flag;
 903	}
 904
 905	memblock_merge_regions(type);
 906	return 0;
 907}
 908
 909/**
 910 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 911 * @base: the base phys addr of the region
 912 * @size: the size of the region
 913 *
 914 * Return: 0 on success, -errno on failure.
 915 */
 916int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 917{
 918	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 919}
 920
 921/**
 922 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 923 * @base: the base phys addr of the region
 924 * @size: the size of the region
 925 *
 926 * Return: 0 on success, -errno on failure.
 927 */
 928int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 929{
 930	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 931}
 932
 933/**
 934 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 935 * @base: the base phys addr of the region
 936 * @size: the size of the region
 937 *
 938 * Return: 0 on success, -errno on failure.
 939 */
 940int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 941{
 942	if (!mirrored_kernelcore)
 943		return 0;
 944
 945	system_has_some_mirror = true;
 946
 947	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 948}
 949
 950/**
 951 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 952 * @base: the base phys addr of the region
 953 * @size: the size of the region
 954 *
 955 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
 956 * direct mapping of the physical memory. These regions will still be
 957 * covered by the memory map. The struct page representing NOMAP memory
 958 * frames in the memory map will be PageReserved()
 959 *
 960 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
 961 * memblock, the caller must inform kmemleak to ignore that memory
 962 *
 963 * Return: 0 on success, -errno on failure.
 964 */
 965int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 966{
 967	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 968}
 969
 970/**
 971 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 972 * @base: the base phys addr of the region
 973 * @size: the size of the region
 974 *
 975 * Return: 0 on success, -errno on failure.
 976 */
 977int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 978{
 979	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 980}
 981
 982static bool should_skip_region(struct memblock_type *type,
 983			       struct memblock_region *m,
 984			       int nid, int flags)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985{
 986	int m_nid = memblock_get_region_node(m);
 987
 988	/* we never skip regions when iterating memblock.reserved or physmem */
 989	if (type != memblock_memory)
 990		return false;
 991
 992	/* only memory regions are associated with nodes, check it */
 993	if (nid != NUMA_NO_NODE && nid != m_nid)
 994		return true;
 995
 996	/* skip hotpluggable memory regions if needed */
 997	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
 998	    !(flags & MEMBLOCK_HOTPLUG))
 999		return true;
1000
1001	/* if we want mirror memory skip non-mirror memory regions */
1002	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1003		return true;
1004
1005	/* skip nomap memory unless we were asked for it explicitly */
1006	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1007		return true;
1008
1009	/* skip driver-managed memory unless we were asked for it explicitly */
1010	if (!(flags & MEMBLOCK_DRIVER_MANAGED) && memblock_is_driver_managed(m))
1011		return true;
1012
1013	return false;
1014}
1015
1016/**
1017 * __next_mem_range - next function for for_each_free_mem_range() etc.
1018 * @idx: pointer to u64 loop variable
1019 * @nid: node selector, %NUMA_NO_NODE for all nodes
1020 * @flags: pick from blocks based on memory attributes
1021 * @type_a: pointer to memblock_type from where the range is taken
1022 * @type_b: pointer to memblock_type which excludes memory from being taken
1023 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1024 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1025 * @out_nid: ptr to int for nid of the range, can be %NULL
1026 *
1027 * Find the first area from *@idx which matches @nid, fill the out
1028 * parameters, and update *@idx for the next iteration.  The lower 32bit of
1029 * *@idx contains index into type_a and the upper 32bit indexes the
1030 * areas before each region in type_b.	For example, if type_b regions
1031 * look like the following,
1032 *
1033 *	0:[0-16), 1:[32-48), 2:[128-130)
1034 *
1035 * The upper 32bit indexes the following regions.
1036 *
1037 *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1038 *
1039 * As both region arrays are sorted, the function advances the two indices
1040 * in lockstep and returns each intersection.
1041 */
1042void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1043		      struct memblock_type *type_a,
1044		      struct memblock_type *type_b, phys_addr_t *out_start,
1045		      phys_addr_t *out_end, int *out_nid)
1046{
1047	int idx_a = *idx & 0xffffffff;
1048	int idx_b = *idx >> 32;
1049
1050	if (WARN_ONCE(nid == MAX_NUMNODES,
1051	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1052		nid = NUMA_NO_NODE;
1053
1054	for (; idx_a < type_a->cnt; idx_a++) {
1055		struct memblock_region *m = &type_a->regions[idx_a];
1056
1057		phys_addr_t m_start = m->base;
1058		phys_addr_t m_end = m->base + m->size;
1059		int	    m_nid = memblock_get_region_node(m);
1060
1061		if (should_skip_region(type_a, m, nid, flags))
1062			continue;
1063
1064		if (!type_b) {
1065			if (out_start)
1066				*out_start = m_start;
1067			if (out_end)
1068				*out_end = m_end;
1069			if (out_nid)
1070				*out_nid = m_nid;
1071			idx_a++;
1072			*idx = (u32)idx_a | (u64)idx_b << 32;
1073			return;
1074		}
1075
1076		/* scan areas before each reservation */
1077		for (; idx_b < type_b->cnt + 1; idx_b++) {
1078			struct memblock_region *r;
1079			phys_addr_t r_start;
1080			phys_addr_t r_end;
1081
1082			r = &type_b->regions[idx_b];
1083			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1084			r_end = idx_b < type_b->cnt ?
1085				r->base : PHYS_ADDR_MAX;
1086
1087			/*
1088			 * if idx_b advanced past idx_a,
1089			 * break out to advance idx_a
1090			 */
1091			if (r_start >= m_end)
1092				break;
1093			/* if the two regions intersect, we're done */
1094			if (m_start < r_end) {
1095				if (out_start)
1096					*out_start =
1097						max(m_start, r_start);
1098				if (out_end)
1099					*out_end = min(m_end, r_end);
1100				if (out_nid)
1101					*out_nid = m_nid;
1102				/*
1103				 * The region which ends first is
1104				 * advanced for the next iteration.
1105				 */
1106				if (m_end <= r_end)
1107					idx_a++;
1108				else
1109					idx_b++;
1110				*idx = (u32)idx_a | (u64)idx_b << 32;
1111				return;
1112			}
1113		}
1114	}
1115
1116	/* signal end of iteration */
1117	*idx = ULLONG_MAX;
1118}
1119
1120/**
1121 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1122 *
1123 * @idx: pointer to u64 loop variable
1124 * @nid: node selector, %NUMA_NO_NODE for all nodes
1125 * @flags: pick from blocks based on memory attributes
1126 * @type_a: pointer to memblock_type from where the range is taken
1127 * @type_b: pointer to memblock_type which excludes memory from being taken
1128 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1129 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1130 * @out_nid: ptr to int for nid of the range, can be %NULL
1131 *
1132 * Finds the next range from type_a which is not marked as unsuitable
1133 * in type_b.
1134 *
1135 * Reverse of __next_mem_range().
1136 */
1137void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1138					  enum memblock_flags flags,
1139					  struct memblock_type *type_a,
1140					  struct memblock_type *type_b,
1141					  phys_addr_t *out_start,
1142					  phys_addr_t *out_end, int *out_nid)
1143{
1144	int idx_a = *idx & 0xffffffff;
1145	int idx_b = *idx >> 32;
1146
1147	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1148		nid = NUMA_NO_NODE;
1149
1150	if (*idx == (u64)ULLONG_MAX) {
1151		idx_a = type_a->cnt - 1;
1152		if (type_b != NULL)
1153			idx_b = type_b->cnt;
1154		else
1155			idx_b = 0;
1156	}
1157
1158	for (; idx_a >= 0; idx_a--) {
1159		struct memblock_region *m = &type_a->regions[idx_a];
1160
1161		phys_addr_t m_start = m->base;
1162		phys_addr_t m_end = m->base + m->size;
1163		int m_nid = memblock_get_region_node(m);
1164
1165		if (should_skip_region(type_a, m, nid, flags))
1166			continue;
1167
1168		if (!type_b) {
1169			if (out_start)
1170				*out_start = m_start;
1171			if (out_end)
1172				*out_end = m_end;
1173			if (out_nid)
1174				*out_nid = m_nid;
1175			idx_a--;
1176			*idx = (u32)idx_a | (u64)idx_b << 32;
1177			return;
1178		}
1179
1180		/* scan areas before each reservation */
1181		for (; idx_b >= 0; idx_b--) {
1182			struct memblock_region *r;
1183			phys_addr_t r_start;
1184			phys_addr_t r_end;
1185
1186			r = &type_b->regions[idx_b];
1187			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1188			r_end = idx_b < type_b->cnt ?
1189				r->base : PHYS_ADDR_MAX;
1190			/*
1191			 * if idx_b advanced past idx_a,
1192			 * break out to advance idx_a
1193			 */
1194
1195			if (r_end <= m_start)
1196				break;
1197			/* if the two regions intersect, we're done */
1198			if (m_end > r_start) {
1199				if (out_start)
1200					*out_start = max(m_start, r_start);
1201				if (out_end)
1202					*out_end = min(m_end, r_end);
1203				if (out_nid)
1204					*out_nid = m_nid;
1205				if (m_start >= r_start)
1206					idx_a--;
1207				else
1208					idx_b--;
1209				*idx = (u32)idx_a | (u64)idx_b << 32;
1210				return;
1211			}
1212		}
1213	}
1214	/* signal end of iteration */
1215	*idx = ULLONG_MAX;
1216}
1217
1218/*
1219 * Common iterator interface used to define for_each_mem_pfn_range().
1220 */
1221void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1222				unsigned long *out_start_pfn,
1223				unsigned long *out_end_pfn, int *out_nid)
1224{
1225	struct memblock_type *type = &memblock.memory;
1226	struct memblock_region *r;
1227	int r_nid;
1228
1229	while (++*idx < type->cnt) {
1230		r = &type->regions[*idx];
1231		r_nid = memblock_get_region_node(r);
1232
1233		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1234			continue;
1235		if (nid == MAX_NUMNODES || nid == r_nid)
1236			break;
1237	}
1238	if (*idx >= type->cnt) {
1239		*idx = -1;
1240		return;
1241	}
1242
1243	if (out_start_pfn)
1244		*out_start_pfn = PFN_UP(r->base);
1245	if (out_end_pfn)
1246		*out_end_pfn = PFN_DOWN(r->base + r->size);
1247	if (out_nid)
1248		*out_nid = r_nid;
1249}
1250
1251/**
1252 * memblock_set_node - set node ID on memblock regions
1253 * @base: base of area to set node ID for
1254 * @size: size of area to set node ID for
1255 * @type: memblock type to set node ID for
1256 * @nid: node ID to set
1257 *
1258 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1259 * Regions which cross the area boundaries are split as necessary.
1260 *
1261 * Return:
1262 * 0 on success, -errno on failure.
1263 */
1264int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1265				      struct memblock_type *type, int nid)
1266{
1267#ifdef CONFIG_NUMA
1268	int start_rgn, end_rgn;
1269	int i, ret;
1270
1271	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1272	if (ret)
1273		return ret;
1274
1275	for (i = start_rgn; i < end_rgn; i++)
1276		memblock_set_region_node(&type->regions[i], nid);
1277
1278	memblock_merge_regions(type);
1279#endif
1280	return 0;
1281}
1282
1283#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1284/**
1285 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1286 *
1287 * @idx: pointer to u64 loop variable
1288 * @zone: zone in which all of the memory blocks reside
1289 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1290 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1291 *
1292 * This function is meant to be a zone/pfn specific wrapper for the
1293 * for_each_mem_range type iterators. Specifically they are used in the
1294 * deferred memory init routines and as such we were duplicating much of
1295 * this logic throughout the code. So instead of having it in multiple
1296 * locations it seemed like it would make more sense to centralize this to
1297 * one new iterator that does everything they need.
1298 */
1299void __init_memblock
1300__next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1301			     unsigned long *out_spfn, unsigned long *out_epfn)
1302{
1303	int zone_nid = zone_to_nid(zone);
1304	phys_addr_t spa, epa;
 
1305
1306	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1307			 &memblock.memory, &memblock.reserved,
1308			 &spa, &epa, NULL);
1309
1310	while (*idx != U64_MAX) {
1311		unsigned long epfn = PFN_DOWN(epa);
1312		unsigned long spfn = PFN_UP(spa);
1313
1314		/*
1315		 * Verify the end is at least past the start of the zone and
1316		 * that we have at least one PFN to initialize.
1317		 */
1318		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1319			/* if we went too far just stop searching */
1320			if (zone_end_pfn(zone) <= spfn) {
1321				*idx = U64_MAX;
1322				break;
1323			}
1324
1325			if (out_spfn)
1326				*out_spfn = max(zone->zone_start_pfn, spfn);
1327			if (out_epfn)
1328				*out_epfn = min(zone_end_pfn(zone), epfn);
1329
1330			return;
1331		}
1332
1333		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1334				 &memblock.memory, &memblock.reserved,
1335				 &spa, &epa, NULL);
1336	}
1337
1338	/* signal end of iteration */
1339	if (out_spfn)
1340		*out_spfn = ULONG_MAX;
1341	if (out_epfn)
1342		*out_epfn = 0;
1343}
1344
1345#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1346
1347/**
1348 * memblock_alloc_range_nid - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @start: the lower bound of the memory region to allocate (phys address)
1352 * @end: the upper bound of the memory region to allocate (phys address)
1353 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1354 * @exact_nid: control the allocation fall back to other nodes
1355 *
1356 * The allocation is performed from memory region limited by
1357 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1358 *
1359 * If the specified node can not hold the requested memory and @exact_nid
1360 * is false, the allocation falls back to any node in the system.
1361 *
1362 * For systems with memory mirroring, the allocation is attempted first
1363 * from the regions with mirroring enabled and then retried from any
1364 * memory region.
1365 *
1366 * In addition, function using kmemleak_alloc_phys for allocated boot
1367 * memory block, it is never reported as leaks.
1368 *
1369 * Return:
1370 * Physical address of allocated memory block on success, %0 on failure.
1371 */
1372phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1373					phys_addr_t align, phys_addr_t start,
1374					phys_addr_t end, int nid,
1375					bool exact_nid)
1376{
1377	enum memblock_flags flags = choose_memblock_flags();
1378	phys_addr_t found;
1379
1380	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1381		nid = NUMA_NO_NODE;
1382
1383	if (!align) {
1384		/* Can't use WARNs this early in boot on powerpc */
1385		dump_stack();
1386		align = SMP_CACHE_BYTES;
1387	}
1388
1389again:
1390	found = memblock_find_in_range_node(size, align, start, end, nid,
1391					    flags);
1392	if (found && !memblock_reserve(found, size))
1393		goto done;
1394
1395	if (nid != NUMA_NO_NODE && !exact_nid) {
1396		found = memblock_find_in_range_node(size, align, start,
1397						    end, NUMA_NO_NODE,
1398						    flags);
1399		if (found && !memblock_reserve(found, size))
1400			goto done;
1401	}
1402
1403	if (flags & MEMBLOCK_MIRROR) {
1404		flags &= ~MEMBLOCK_MIRROR;
1405		pr_warn_ratelimited("Could not allocate %pap bytes of mirrored memory\n",
1406			&size);
1407		goto again;
1408	}
1409
1410	return 0;
1411
1412done:
1413	/*
1414	 * Skip kmemleak for those places like kasan_init() and
1415	 * early_pgtable_alloc() due to high volume.
1416	 */
1417	if (end != MEMBLOCK_ALLOC_NOLEAKTRACE)
1418		/*
1419		 * Memblock allocated blocks are never reported as
1420		 * leaks. This is because many of these blocks are
1421		 * only referred via the physical address which is
1422		 * not looked up by kmemleak.
1423		 */
1424		kmemleak_alloc_phys(found, size, 0);
1425
1426	return found;
1427}
1428
1429/**
1430 * memblock_phys_alloc_range - allocate a memory block inside specified range
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @start: the lower bound of the memory region to allocate (physical address)
1434 * @end: the upper bound of the memory region to allocate (physical address)
1435 *
1436 * Allocate @size bytes in the between @start and @end.
1437 *
1438 * Return: physical address of the allocated memory block on success,
1439 * %0 on failure.
1440 */
1441phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1442					     phys_addr_t align,
1443					     phys_addr_t start,
1444					     phys_addr_t end)
1445{
1446	memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1447		     __func__, (u64)size, (u64)align, &start, &end,
1448		     (void *)_RET_IP_);
1449	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1450					false);
1451}
1452
1453/**
1454 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1455 * @size: size of memory block to be allocated in bytes
1456 * @align: alignment of the region and block's size
1457 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1458 *
1459 * Allocates memory block from the specified NUMA node. If the node
1460 * has no available memory, attempts to allocated from any node in the
1461 * system.
1462 *
1463 * Return: physical address of the allocated memory block on success,
1464 * %0 on failure.
1465 */
1466phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1467{
1468	return memblock_alloc_range_nid(size, align, 0,
1469					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1470}
1471
1472/**
1473 * memblock_alloc_internal - allocate boot memory block
1474 * @size: size of memory block to be allocated in bytes
1475 * @align: alignment of the region and block's size
1476 * @min_addr: the lower bound of the memory region to allocate (phys address)
1477 * @max_addr: the upper bound of the memory region to allocate (phys address)
1478 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1479 * @exact_nid: control the allocation fall back to other nodes
1480 *
1481 * Allocates memory block using memblock_alloc_range_nid() and
1482 * converts the returned physical address to virtual.
1483 *
1484 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1485 * will fall back to memory below @min_addr. Other constraints, such
1486 * as node and mirrored memory will be handled again in
1487 * memblock_alloc_range_nid().
1488 *
1489 * Return:
1490 * Virtual address of allocated memory block on success, NULL on failure.
1491 */
1492static void * __init memblock_alloc_internal(
1493				phys_addr_t size, phys_addr_t align,
1494				phys_addr_t min_addr, phys_addr_t max_addr,
1495				int nid, bool exact_nid)
1496{
1497	phys_addr_t alloc;
1498
1499	/*
1500	 * Detect any accidental use of these APIs after slab is ready, as at
1501	 * this moment memblock may be deinitialized already and its
1502	 * internal data may be destroyed (after execution of memblock_free_all)
1503	 */
1504	if (WARN_ON_ONCE(slab_is_available()))
1505		return kzalloc_node(size, GFP_NOWAIT, nid);
1506
1507	if (max_addr > memblock.current_limit)
1508		max_addr = memblock.current_limit;
1509
1510	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1511					exact_nid);
1512
1513	/* retry allocation without lower limit */
1514	if (!alloc && min_addr)
1515		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1516						exact_nid);
1517
1518	if (!alloc)
1519		return NULL;
1520
1521	return phys_to_virt(alloc);
1522}
1523
1524/**
1525 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1526 * without zeroing memory
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1530 *	  is preferred (phys address)
1531 * @max_addr: the upper bound of the memory region from where the allocation
1532 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533 *	      allocate only from memory limited by memblock.current_limit value
1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 *
1536 * Public function, provides additional debug information (including caller
1537 * info), if enabled. Does not zero allocated memory.
1538 *
1539 * Return:
1540 * Virtual address of allocated memory block on success, NULL on failure.
1541 */
1542void * __init memblock_alloc_exact_nid_raw(
1543			phys_addr_t size, phys_addr_t align,
1544			phys_addr_t min_addr, phys_addr_t max_addr,
1545			int nid)
1546{
 
 
1547	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1548		     __func__, (u64)size, (u64)align, nid, &min_addr,
1549		     &max_addr, (void *)_RET_IP_);
1550
1551	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1552				       true);
 
 
 
 
1553}
1554
1555/**
1556 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1557 * memory and without panicking
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1561 *	  is preferred (phys address)
1562 * @max_addr: the upper bound of the memory region from where the allocation
1563 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564 *	      allocate only from memory limited by memblock.current_limit value
1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566 *
1567 * Public function, provides additional debug information (including caller
1568 * info), if enabled. Does not zero allocated memory, does not panic if request
1569 * cannot be satisfied.
1570 *
1571 * Return:
1572 * Virtual address of allocated memory block on success, NULL on failure.
1573 */
1574void * __init memblock_alloc_try_nid_raw(
1575			phys_addr_t size, phys_addr_t align,
1576			phys_addr_t min_addr, phys_addr_t max_addr,
1577			int nid)
1578{
 
 
1579	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1580		     __func__, (u64)size, (u64)align, nid, &min_addr,
1581		     &max_addr, (void *)_RET_IP_);
1582
1583	return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1584				       false);
 
 
 
 
1585}
1586
1587/**
1588 * memblock_alloc_try_nid - allocate boot memory block
1589 * @size: size of memory block to be allocated in bytes
1590 * @align: alignment of the region and block's size
1591 * @min_addr: the lower bound of the memory region from where the allocation
1592 *	  is preferred (phys address)
1593 * @max_addr: the upper bound of the memory region from where the allocation
1594 *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1595 *	      allocate only from memory limited by memblock.current_limit value
1596 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1597 *
1598 * Public function, provides additional debug information (including caller
1599 * info), if enabled. This function zeroes the allocated memory.
1600 *
1601 * Return:
1602 * Virtual address of allocated memory block on success, NULL on failure.
1603 */
1604void * __init memblock_alloc_try_nid(
1605			phys_addr_t size, phys_addr_t align,
1606			phys_addr_t min_addr, phys_addr_t max_addr,
1607			int nid)
1608{
1609	void *ptr;
1610
1611	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1612		     __func__, (u64)size, (u64)align, nid, &min_addr,
1613		     &max_addr, (void *)_RET_IP_);
1614	ptr = memblock_alloc_internal(size, align,
1615					   min_addr, max_addr, nid, false);
1616	if (ptr)
1617		memset(ptr, 0, size);
1618
1619	return ptr;
1620}
1621
1622/**
1623 * memblock_free_late - free pages directly to buddy allocator
1624 * @base: phys starting address of the  boot memory block
1625 * @size: size of the boot memory block in bytes
1626 *
1627 * This is only useful when the memblock allocator has already been torn
1628 * down, but we are still initializing the system.  Pages are released directly
1629 * to the buddy allocator.
1630 */
1631void __init memblock_free_late(phys_addr_t base, phys_addr_t size)
1632{
1633	phys_addr_t cursor, end;
1634
1635	end = base + size - 1;
1636	memblock_dbg("%s: [%pa-%pa] %pS\n",
1637		     __func__, &base, &end, (void *)_RET_IP_);
1638	kmemleak_free_part_phys(base, size);
1639	cursor = PFN_UP(base);
1640	end = PFN_DOWN(base + size);
1641
1642	for (; cursor < end; cursor++) {
1643		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1644		totalram_pages_inc();
1645	}
1646}
1647
1648/*
1649 * Remaining API functions
1650 */
1651
1652phys_addr_t __init_memblock memblock_phys_mem_size(void)
1653{
1654	return memblock.memory.total_size;
1655}
1656
1657phys_addr_t __init_memblock memblock_reserved_size(void)
1658{
1659	return memblock.reserved.total_size;
1660}
1661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662/* lowest address */
1663phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1664{
1665	return memblock.memory.regions[0].base;
1666}
1667
1668phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1669{
1670	int idx = memblock.memory.cnt - 1;
1671
1672	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1673}
1674
1675static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1676{
1677	phys_addr_t max_addr = PHYS_ADDR_MAX;
1678	struct memblock_region *r;
1679
1680	/*
1681	 * translate the memory @limit size into the max address within one of
1682	 * the memory memblock regions, if the @limit exceeds the total size
1683	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1684	 */
1685	for_each_mem_region(r) {
1686		if (limit <= r->size) {
1687			max_addr = r->base + limit;
1688			break;
1689		}
1690		limit -= r->size;
1691	}
1692
1693	return max_addr;
1694}
1695
1696void __init memblock_enforce_memory_limit(phys_addr_t limit)
1697{
1698	phys_addr_t max_addr;
1699
1700	if (!limit)
1701		return;
1702
1703	max_addr = __find_max_addr(limit);
1704
1705	/* @limit exceeds the total size of the memory, do nothing */
1706	if (max_addr == PHYS_ADDR_MAX)
1707		return;
1708
1709	/* truncate both memory and reserved regions */
1710	memblock_remove_range(&memblock.memory, max_addr,
1711			      PHYS_ADDR_MAX);
1712	memblock_remove_range(&memblock.reserved, max_addr,
1713			      PHYS_ADDR_MAX);
1714}
1715
1716void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1717{
1718	int start_rgn, end_rgn;
1719	int i, ret;
1720
1721	if (!size)
1722		return;
1723
1724	if (!memblock_memory->total_size) {
1725		pr_warn("%s: No memory registered yet\n", __func__);
1726		return;
1727	}
1728
1729	ret = memblock_isolate_range(&memblock.memory, base, size,
1730						&start_rgn, &end_rgn);
1731	if (ret)
1732		return;
1733
1734	/* remove all the MAP regions */
1735	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1736		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1737			memblock_remove_region(&memblock.memory, i);
1738
1739	for (i = start_rgn - 1; i >= 0; i--)
1740		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1741			memblock_remove_region(&memblock.memory, i);
1742
1743	/* truncate the reserved regions */
1744	memblock_remove_range(&memblock.reserved, 0, base);
1745	memblock_remove_range(&memblock.reserved,
1746			base + size, PHYS_ADDR_MAX);
1747}
1748
1749void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1750{
1751	phys_addr_t max_addr;
1752
1753	if (!limit)
1754		return;
1755
1756	max_addr = __find_max_addr(limit);
1757
1758	/* @limit exceeds the total size of the memory, do nothing */
1759	if (max_addr == PHYS_ADDR_MAX)
1760		return;
1761
1762	memblock_cap_memory_range(0, max_addr);
1763}
1764
1765static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1766{
1767	unsigned int left = 0, right = type->cnt;
1768
1769	do {
1770		unsigned int mid = (right + left) / 2;
1771
1772		if (addr < type->regions[mid].base)
1773			right = mid;
1774		else if (addr >= (type->regions[mid].base +
1775				  type->regions[mid].size))
1776			left = mid + 1;
1777		else
1778			return mid;
1779	} while (left < right);
1780	return -1;
1781}
1782
1783bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1784{
1785	return memblock_search(&memblock.reserved, addr) != -1;
1786}
1787
1788bool __init_memblock memblock_is_memory(phys_addr_t addr)
1789{
1790	return memblock_search(&memblock.memory, addr) != -1;
1791}
1792
1793bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1794{
1795	int i = memblock_search(&memblock.memory, addr);
1796
1797	if (i == -1)
1798		return false;
1799	return !memblock_is_nomap(&memblock.memory.regions[i]);
1800}
1801
1802int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1803			 unsigned long *start_pfn, unsigned long *end_pfn)
1804{
1805	struct memblock_type *type = &memblock.memory;
1806	int mid = memblock_search(type, PFN_PHYS(pfn));
1807
1808	if (mid == -1)
1809		return -1;
1810
1811	*start_pfn = PFN_DOWN(type->regions[mid].base);
1812	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1813
1814	return memblock_get_region_node(&type->regions[mid]);
1815}
1816
1817/**
1818 * memblock_is_region_memory - check if a region is a subset of memory
1819 * @base: base of region to check
1820 * @size: size of region to check
1821 *
1822 * Check if the region [@base, @base + @size) is a subset of a memory block.
1823 *
1824 * Return:
1825 * 0 if false, non-zero if true
1826 */
1827bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1828{
1829	int idx = memblock_search(&memblock.memory, base);
1830	phys_addr_t end = base + memblock_cap_size(base, &size);
1831
1832	if (idx == -1)
1833		return false;
1834	return (memblock.memory.regions[idx].base +
1835		 memblock.memory.regions[idx].size) >= end;
1836}
1837
1838/**
1839 * memblock_is_region_reserved - check if a region intersects reserved memory
1840 * @base: base of region to check
1841 * @size: size of region to check
1842 *
1843 * Check if the region [@base, @base + @size) intersects a reserved
1844 * memory block.
1845 *
1846 * Return:
1847 * True if they intersect, false if not.
1848 */
1849bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1850{
 
1851	return memblock_overlaps_region(&memblock.reserved, base, size);
1852}
1853
1854void __init_memblock memblock_trim_memory(phys_addr_t align)
1855{
1856	phys_addr_t start, end, orig_start, orig_end;
1857	struct memblock_region *r;
1858
1859	for_each_mem_region(r) {
1860		orig_start = r->base;
1861		orig_end = r->base + r->size;
1862		start = round_up(orig_start, align);
1863		end = round_down(orig_end, align);
1864
1865		if (start == orig_start && end == orig_end)
1866			continue;
1867
1868		if (start < end) {
1869			r->base = start;
1870			r->size = end - start;
1871		} else {
1872			memblock_remove_region(&memblock.memory,
1873					       r - memblock.memory.regions);
1874			r--;
1875		}
1876	}
1877}
1878
1879void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1880{
1881	memblock.current_limit = limit;
1882}
1883
1884phys_addr_t __init_memblock memblock_get_current_limit(void)
1885{
1886	return memblock.current_limit;
1887}
1888
1889static void __init_memblock memblock_dump(struct memblock_type *type)
1890{
1891	phys_addr_t base, end, size;
1892	enum memblock_flags flags;
1893	int idx;
1894	struct memblock_region *rgn;
1895
1896	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1897
1898	for_each_memblock_type(idx, type, rgn) {
1899		char nid_buf[32] = "";
1900
1901		base = rgn->base;
1902		size = rgn->size;
1903		end = base + size - 1;
1904		flags = rgn->flags;
1905#ifdef CONFIG_NUMA
1906		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1907			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1908				 memblock_get_region_node(rgn));
1909#endif
1910		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1911			type->name, idx, &base, &end, &size, nid_buf, flags);
1912	}
1913}
1914
1915static void __init_memblock __memblock_dump_all(void)
1916{
1917	pr_info("MEMBLOCK configuration:\n");
1918	pr_info(" memory size = %pa reserved size = %pa\n",
1919		&memblock.memory.total_size,
1920		&memblock.reserved.total_size);
1921
1922	memblock_dump(&memblock.memory);
1923	memblock_dump(&memblock.reserved);
1924#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1925	memblock_dump(&physmem);
1926#endif
1927}
1928
1929void __init_memblock memblock_dump_all(void)
1930{
1931	if (memblock_debug)
1932		__memblock_dump_all();
1933}
1934
1935void __init memblock_allow_resize(void)
1936{
1937	memblock_can_resize = 1;
1938}
1939
1940static int __init early_memblock(char *p)
1941{
1942	if (p && strstr(p, "debug"))
1943		memblock_debug = 1;
1944	return 0;
1945}
1946early_param("memblock", early_memblock);
1947
1948static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1949{
1950	struct page *start_pg, *end_pg;
1951	phys_addr_t pg, pgend;
1952
1953	/*
1954	 * Convert start_pfn/end_pfn to a struct page pointer.
1955	 */
1956	start_pg = pfn_to_page(start_pfn - 1) + 1;
1957	end_pg = pfn_to_page(end_pfn - 1) + 1;
1958
1959	/*
1960	 * Convert to physical addresses, and round start upwards and end
1961	 * downwards.
1962	 */
1963	pg = PAGE_ALIGN(__pa(start_pg));
1964	pgend = __pa(end_pg) & PAGE_MASK;
1965
1966	/*
1967	 * If there are free pages between these, free the section of the
1968	 * memmap array.
1969	 */
1970	if (pg < pgend)
1971		memblock_phys_free(pg, pgend - pg);
1972}
1973
1974/*
1975 * The mem_map array can get very big.  Free the unused area of the memory map.
1976 */
1977static void __init free_unused_memmap(void)
1978{
1979	unsigned long start, end, prev_end = 0;
1980	int i;
1981
1982	if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1983	    IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1984		return;
1985
1986	/*
1987	 * This relies on each bank being in address order.
1988	 * The banks are sorted previously in bootmem_init().
1989	 */
1990	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1991#ifdef CONFIG_SPARSEMEM
1992		/*
1993		 * Take care not to free memmap entries that don't exist
1994		 * due to SPARSEMEM sections which aren't present.
1995		 */
1996		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1997#endif
1998		/*
1999		 * Align down here since many operations in VM subsystem
2000		 * presume that there are no holes in the memory map inside
2001		 * a pageblock
2002		 */
2003		start = pageblock_start_pfn(start);
2004
2005		/*
2006		 * If we had a previous bank, and there is a space
2007		 * between the current bank and the previous, free it.
2008		 */
2009		if (prev_end && prev_end < start)
2010			free_memmap(prev_end, start);
2011
2012		/*
2013		 * Align up here since many operations in VM subsystem
2014		 * presume that there are no holes in the memory map inside
2015		 * a pageblock
2016		 */
2017		prev_end = pageblock_align(end);
2018	}
2019
2020#ifdef CONFIG_SPARSEMEM
2021	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
2022		prev_end = pageblock_align(end);
2023		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2024	}
2025#endif
2026}
2027
2028static void __init __free_pages_memory(unsigned long start, unsigned long end)
2029{
2030	int order;
2031
2032	while (start < end) {
2033		order = min(MAX_ORDER - 1UL, __ffs(start));
2034
2035		while (start + (1UL << order) > end)
2036			order--;
2037
2038		memblock_free_pages(pfn_to_page(start), start, order);
2039
2040		start += (1UL << order);
2041	}
2042}
2043
2044static unsigned long __init __free_memory_core(phys_addr_t start,
2045				 phys_addr_t end)
2046{
2047	unsigned long start_pfn = PFN_UP(start);
2048	unsigned long end_pfn = min_t(unsigned long,
2049				      PFN_DOWN(end), max_low_pfn);
2050
2051	if (start_pfn >= end_pfn)
2052		return 0;
2053
2054	__free_pages_memory(start_pfn, end_pfn);
2055
2056	return end_pfn - start_pfn;
2057}
2058
2059static void __init memmap_init_reserved_pages(void)
2060{
2061	struct memblock_region *region;
2062	phys_addr_t start, end;
2063	u64 i;
2064
2065	/* initialize struct pages for the reserved regions */
2066	for_each_reserved_mem_range(i, &start, &end)
2067		reserve_bootmem_region(start, end);
2068
2069	/* and also treat struct pages for the NOMAP regions as PageReserved */
2070	for_each_mem_region(region) {
2071		if (memblock_is_nomap(region)) {
2072			start = region->base;
2073			end = start + region->size;
2074			reserve_bootmem_region(start, end);
2075		}
2076	}
2077}
2078
2079static unsigned long __init free_low_memory_core_early(void)
2080{
2081	unsigned long count = 0;
2082	phys_addr_t start, end;
2083	u64 i;
2084
2085	memblock_clear_hotplug(0, -1);
2086
2087	memmap_init_reserved_pages();
 
2088
2089	/*
2090	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2091	 *  because in some case like Node0 doesn't have RAM installed
2092	 *  low ram will be on Node1
2093	 */
2094	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2095				NULL)
2096		count += __free_memory_core(start, end);
2097
2098	return count;
2099}
2100
2101static int reset_managed_pages_done __initdata;
2102
2103void reset_node_managed_pages(pg_data_t *pgdat)
2104{
2105	struct zone *z;
2106
2107	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2108		atomic_long_set(&z->managed_pages, 0);
2109}
2110
2111void __init reset_all_zones_managed_pages(void)
2112{
2113	struct pglist_data *pgdat;
2114
2115	if (reset_managed_pages_done)
2116		return;
2117
2118	for_each_online_pgdat(pgdat)
2119		reset_node_managed_pages(pgdat);
2120
2121	reset_managed_pages_done = 1;
2122}
2123
2124/**
2125 * memblock_free_all - release free pages to the buddy allocator
 
 
2126 */
2127void __init memblock_free_all(void)
2128{
2129	unsigned long pages;
2130
2131	free_unused_memmap();
2132	reset_all_zones_managed_pages();
2133
2134	pages = free_low_memory_core_early();
2135	totalram_pages_add(pages);
 
 
2136}
2137
2138#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2139
2140static int memblock_debug_show(struct seq_file *m, void *private)
2141{
2142	struct memblock_type *type = m->private;
2143	struct memblock_region *reg;
2144	int i;
2145	phys_addr_t end;
2146
2147	for (i = 0; i < type->cnt; i++) {
2148		reg = &type->regions[i];
2149		end = reg->base + reg->size - 1;
2150
2151		seq_printf(m, "%4d: ", i);
2152		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2153	}
2154	return 0;
2155}
2156DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2157
2158static int __init memblock_init_debugfs(void)
2159{
2160	struct dentry *root = debugfs_create_dir("memblock", NULL);
2161
2162	debugfs_create_file("memory", 0444, root,
2163			    &memblock.memory, &memblock_debug_fops);
2164	debugfs_create_file("reserved", 0444, root,
2165			    &memblock.reserved, &memblock_debug_fops);
2166#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2167	debugfs_create_file("physmem", 0444, root, &physmem,
2168			    &memblock_debug_fops);
2169#endif
2170
2171	return 0;
2172}
2173__initcall(memblock_init_debugfs);
2174
2175#endif /* CONFIG_DEBUG_FS */