Loading...
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_2_6_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 *out = (reg << 6) | val;
218}
219
220static void regmap_format_4_12_write(struct regmap *map,
221 unsigned int reg, unsigned int val)
222{
223 __be16 *out = map->work_buf;
224 *out = cpu_to_be16((reg << 12) | val);
225}
226
227static void regmap_format_7_9_write(struct regmap *map,
228 unsigned int reg, unsigned int val)
229{
230 __be16 *out = map->work_buf;
231 *out = cpu_to_be16((reg << 9) | val);
232}
233
234static void regmap_format_10_14_write(struct regmap *map,
235 unsigned int reg, unsigned int val)
236{
237 u8 *out = map->work_buf;
238
239 out[2] = val;
240 out[1] = (val >> 8) | (reg << 6);
241 out[0] = reg >> 2;
242}
243
244static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
245{
246 u8 *b = buf;
247
248 b[0] = val << shift;
249}
250
251static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
252{
253 put_unaligned_be16(val << shift, buf);
254}
255
256static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
257{
258 put_unaligned_le16(val << shift, buf);
259}
260
261static void regmap_format_16_native(void *buf, unsigned int val,
262 unsigned int shift)
263{
264 u16 v = val << shift;
265
266 memcpy(buf, &v, sizeof(v));
267}
268
269static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
270{
271 u8 *b = buf;
272
273 val <<= shift;
274
275 b[0] = val >> 16;
276 b[1] = val >> 8;
277 b[2] = val;
278}
279
280static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
281{
282 put_unaligned_be32(val << shift, buf);
283}
284
285static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
286{
287 put_unaligned_le32(val << shift, buf);
288}
289
290static void regmap_format_32_native(void *buf, unsigned int val,
291 unsigned int shift)
292{
293 u32 v = val << shift;
294
295 memcpy(buf, &v, sizeof(v));
296}
297
298#ifdef CONFIG_64BIT
299static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
300{
301 put_unaligned_be64((u64) val << shift, buf);
302}
303
304static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
305{
306 put_unaligned_le64((u64) val << shift, buf);
307}
308
309static void regmap_format_64_native(void *buf, unsigned int val,
310 unsigned int shift)
311{
312 u64 v = (u64) val << shift;
313
314 memcpy(buf, &v, sizeof(v));
315}
316#endif
317
318static void regmap_parse_inplace_noop(void *buf)
319{
320}
321
322static unsigned int regmap_parse_8(const void *buf)
323{
324 const u8 *b = buf;
325
326 return b[0];
327}
328
329static unsigned int regmap_parse_16_be(const void *buf)
330{
331 return get_unaligned_be16(buf);
332}
333
334static unsigned int regmap_parse_16_le(const void *buf)
335{
336 return get_unaligned_le16(buf);
337}
338
339static void regmap_parse_16_be_inplace(void *buf)
340{
341 u16 v = get_unaligned_be16(buf);
342
343 memcpy(buf, &v, sizeof(v));
344}
345
346static void regmap_parse_16_le_inplace(void *buf)
347{
348 u16 v = get_unaligned_le16(buf);
349
350 memcpy(buf, &v, sizeof(v));
351}
352
353static unsigned int regmap_parse_16_native(const void *buf)
354{
355 u16 v;
356
357 memcpy(&v, buf, sizeof(v));
358 return v;
359}
360
361static unsigned int regmap_parse_24(const void *buf)
362{
363 const u8 *b = buf;
364 unsigned int ret = b[2];
365 ret |= ((unsigned int)b[1]) << 8;
366 ret |= ((unsigned int)b[0]) << 16;
367
368 return ret;
369}
370
371static unsigned int regmap_parse_32_be(const void *buf)
372{
373 return get_unaligned_be32(buf);
374}
375
376static unsigned int regmap_parse_32_le(const void *buf)
377{
378 return get_unaligned_le32(buf);
379}
380
381static void regmap_parse_32_be_inplace(void *buf)
382{
383 u32 v = get_unaligned_be32(buf);
384
385 memcpy(buf, &v, sizeof(v));
386}
387
388static void regmap_parse_32_le_inplace(void *buf)
389{
390 u32 v = get_unaligned_le32(buf);
391
392 memcpy(buf, &v, sizeof(v));
393}
394
395static unsigned int regmap_parse_32_native(const void *buf)
396{
397 u32 v;
398
399 memcpy(&v, buf, sizeof(v));
400 return v;
401}
402
403#ifdef CONFIG_64BIT
404static unsigned int regmap_parse_64_be(const void *buf)
405{
406 return get_unaligned_be64(buf);
407}
408
409static unsigned int regmap_parse_64_le(const void *buf)
410{
411 return get_unaligned_le64(buf);
412}
413
414static void regmap_parse_64_be_inplace(void *buf)
415{
416 u64 v = get_unaligned_be64(buf);
417
418 memcpy(buf, &v, sizeof(v));
419}
420
421static void regmap_parse_64_le_inplace(void *buf)
422{
423 u64 v = get_unaligned_le64(buf);
424
425 memcpy(buf, &v, sizeof(v));
426}
427
428static unsigned int regmap_parse_64_native(const void *buf)
429{
430 u64 v;
431
432 memcpy(&v, buf, sizeof(v));
433 return v;
434}
435#endif
436
437static void regmap_lock_hwlock(void *__map)
438{
439 struct regmap *map = __map;
440
441 hwspin_lock_timeout(map->hwlock, UINT_MAX);
442}
443
444static void regmap_lock_hwlock_irq(void *__map)
445{
446 struct regmap *map = __map;
447
448 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
449}
450
451static void regmap_lock_hwlock_irqsave(void *__map)
452{
453 struct regmap *map = __map;
454
455 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
456 &map->spinlock_flags);
457}
458
459static void regmap_unlock_hwlock(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_unlock(map->hwlock);
464}
465
466static void regmap_unlock_hwlock_irq(void *__map)
467{
468 struct regmap *map = __map;
469
470 hwspin_unlock_irq(map->hwlock);
471}
472
473static void regmap_unlock_hwlock_irqrestore(void *__map)
474{
475 struct regmap *map = __map;
476
477 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
478}
479
480static void regmap_lock_unlock_none(void *__map)
481{
482
483}
484
485static void regmap_lock_mutex(void *__map)
486{
487 struct regmap *map = __map;
488 mutex_lock(&map->mutex);
489}
490
491static void regmap_unlock_mutex(void *__map)
492{
493 struct regmap *map = __map;
494 mutex_unlock(&map->mutex);
495}
496
497static void regmap_lock_spinlock(void *__map)
498__acquires(&map->spinlock)
499{
500 struct regmap *map = __map;
501 unsigned long flags;
502
503 spin_lock_irqsave(&map->spinlock, flags);
504 map->spinlock_flags = flags;
505}
506
507static void regmap_unlock_spinlock(void *__map)
508__releases(&map->spinlock)
509{
510 struct regmap *map = __map;
511 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
512}
513
514static void dev_get_regmap_release(struct device *dev, void *res)
515{
516 /*
517 * We don't actually have anything to do here; the goal here
518 * is not to manage the regmap but to provide a simple way to
519 * get the regmap back given a struct device.
520 */
521}
522
523static bool _regmap_range_add(struct regmap *map,
524 struct regmap_range_node *data)
525{
526 struct rb_root *root = &map->range_tree;
527 struct rb_node **new = &(root->rb_node), *parent = NULL;
528
529 while (*new) {
530 struct regmap_range_node *this =
531 rb_entry(*new, struct regmap_range_node, node);
532
533 parent = *new;
534 if (data->range_max < this->range_min)
535 new = &((*new)->rb_left);
536 else if (data->range_min > this->range_max)
537 new = &((*new)->rb_right);
538 else
539 return false;
540 }
541
542 rb_link_node(&data->node, parent, new);
543 rb_insert_color(&data->node, root);
544
545 return true;
546}
547
548static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
549 unsigned int reg)
550{
551 struct rb_node *node = map->range_tree.rb_node;
552
553 while (node) {
554 struct regmap_range_node *this =
555 rb_entry(node, struct regmap_range_node, node);
556
557 if (reg < this->range_min)
558 node = node->rb_left;
559 else if (reg > this->range_max)
560 node = node->rb_right;
561 else
562 return this;
563 }
564
565 return NULL;
566}
567
568static void regmap_range_exit(struct regmap *map)
569{
570 struct rb_node *next;
571 struct regmap_range_node *range_node;
572
573 next = rb_first(&map->range_tree);
574 while (next) {
575 range_node = rb_entry(next, struct regmap_range_node, node);
576 next = rb_next(&range_node->node);
577 rb_erase(&range_node->node, &map->range_tree);
578 kfree(range_node);
579 }
580
581 kfree(map->selector_work_buf);
582}
583
584static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
585{
586 if (config->name) {
587 const char *name = kstrdup_const(config->name, GFP_KERNEL);
588
589 if (!name)
590 return -ENOMEM;
591
592 kfree_const(map->name);
593 map->name = name;
594 }
595
596 return 0;
597}
598
599int regmap_attach_dev(struct device *dev, struct regmap *map,
600 const struct regmap_config *config)
601{
602 struct regmap **m;
603 int ret;
604
605 map->dev = dev;
606
607 ret = regmap_set_name(map, config);
608 if (ret)
609 return ret;
610
611 regmap_debugfs_init(map);
612
613 /* Add a devres resource for dev_get_regmap() */
614 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
615 if (!m) {
616 regmap_debugfs_exit(map);
617 return -ENOMEM;
618 }
619 *m = map;
620 devres_add(dev, m);
621
622 return 0;
623}
624EXPORT_SYMBOL_GPL(regmap_attach_dev);
625
626static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
627 const struct regmap_config *config)
628{
629 enum regmap_endian endian;
630
631 /* Retrieve the endianness specification from the regmap config */
632 endian = config->reg_format_endian;
633
634 /* If the regmap config specified a non-default value, use that */
635 if (endian != REGMAP_ENDIAN_DEFAULT)
636 return endian;
637
638 /* Retrieve the endianness specification from the bus config */
639 if (bus && bus->reg_format_endian_default)
640 endian = bus->reg_format_endian_default;
641
642 /* If the bus specified a non-default value, use that */
643 if (endian != REGMAP_ENDIAN_DEFAULT)
644 return endian;
645
646 /* Use this if no other value was found */
647 return REGMAP_ENDIAN_BIG;
648}
649
650enum regmap_endian regmap_get_val_endian(struct device *dev,
651 const struct regmap_bus *bus,
652 const struct regmap_config *config)
653{
654 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
655 enum regmap_endian endian;
656
657 /* Retrieve the endianness specification from the regmap config */
658 endian = config->val_format_endian;
659
660 /* If the regmap config specified a non-default value, use that */
661 if (endian != REGMAP_ENDIAN_DEFAULT)
662 return endian;
663
664 /* If the firmware node exist try to get endianness from it */
665 if (fwnode_property_read_bool(fwnode, "big-endian"))
666 endian = REGMAP_ENDIAN_BIG;
667 else if (fwnode_property_read_bool(fwnode, "little-endian"))
668 endian = REGMAP_ENDIAN_LITTLE;
669 else if (fwnode_property_read_bool(fwnode, "native-endian"))
670 endian = REGMAP_ENDIAN_NATIVE;
671
672 /* If the endianness was specified in fwnode, use that */
673 if (endian != REGMAP_ENDIAN_DEFAULT)
674 return endian;
675
676 /* Retrieve the endianness specification from the bus config */
677 if (bus && bus->val_format_endian_default)
678 endian = bus->val_format_endian_default;
679
680 /* If the bus specified a non-default value, use that */
681 if (endian != REGMAP_ENDIAN_DEFAULT)
682 return endian;
683
684 /* Use this if no other value was found */
685 return REGMAP_ENDIAN_BIG;
686}
687EXPORT_SYMBOL_GPL(regmap_get_val_endian);
688
689struct regmap *__regmap_init(struct device *dev,
690 const struct regmap_bus *bus,
691 void *bus_context,
692 const struct regmap_config *config,
693 struct lock_class_key *lock_key,
694 const char *lock_name)
695{
696 struct regmap *map;
697 int ret = -EINVAL;
698 enum regmap_endian reg_endian, val_endian;
699 int i, j;
700
701 if (!config)
702 goto err;
703
704 map = kzalloc(sizeof(*map), GFP_KERNEL);
705 if (map == NULL) {
706 ret = -ENOMEM;
707 goto err;
708 }
709
710 ret = regmap_set_name(map, config);
711 if (ret)
712 goto err_map;
713
714 if (config->disable_locking) {
715 map->lock = map->unlock = regmap_lock_unlock_none;
716 regmap_debugfs_disable(map);
717 } else if (config->lock && config->unlock) {
718 map->lock = config->lock;
719 map->unlock = config->unlock;
720 map->lock_arg = config->lock_arg;
721 } else if (config->use_hwlock) {
722 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
723 if (!map->hwlock) {
724 ret = -ENXIO;
725 goto err_name;
726 }
727
728 switch (config->hwlock_mode) {
729 case HWLOCK_IRQSTATE:
730 map->lock = regmap_lock_hwlock_irqsave;
731 map->unlock = regmap_unlock_hwlock_irqrestore;
732 break;
733 case HWLOCK_IRQ:
734 map->lock = regmap_lock_hwlock_irq;
735 map->unlock = regmap_unlock_hwlock_irq;
736 break;
737 default:
738 map->lock = regmap_lock_hwlock;
739 map->unlock = regmap_unlock_hwlock;
740 break;
741 }
742
743 map->lock_arg = map;
744 } else {
745 if ((bus && bus->fast_io) ||
746 config->fast_io) {
747 spin_lock_init(&map->spinlock);
748 map->lock = regmap_lock_spinlock;
749 map->unlock = regmap_unlock_spinlock;
750 lockdep_set_class_and_name(&map->spinlock,
751 lock_key, lock_name);
752 } else {
753 mutex_init(&map->mutex);
754 map->lock = regmap_lock_mutex;
755 map->unlock = regmap_unlock_mutex;
756 lockdep_set_class_and_name(&map->mutex,
757 lock_key, lock_name);
758 }
759 map->lock_arg = map;
760 }
761
762 /*
763 * When we write in fast-paths with regmap_bulk_write() don't allocate
764 * scratch buffers with sleeping allocations.
765 */
766 if ((bus && bus->fast_io) || config->fast_io)
767 map->alloc_flags = GFP_ATOMIC;
768 else
769 map->alloc_flags = GFP_KERNEL;
770
771 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
772 map->format.pad_bytes = config->pad_bits / 8;
773 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
774 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
775 config->val_bits + config->pad_bits, 8);
776 map->reg_shift = config->pad_bits % 8;
777 if (config->reg_stride)
778 map->reg_stride = config->reg_stride;
779 else
780 map->reg_stride = 1;
781 if (is_power_of_2(map->reg_stride))
782 map->reg_stride_order = ilog2(map->reg_stride);
783 else
784 map->reg_stride_order = -1;
785 map->use_single_read = config->use_single_read || !bus || !bus->read;
786 map->use_single_write = config->use_single_write || !bus || !bus->write;
787 map->can_multi_write = config->can_multi_write && bus && bus->write;
788 if (bus) {
789 map->max_raw_read = bus->max_raw_read;
790 map->max_raw_write = bus->max_raw_write;
791 }
792 map->dev = dev;
793 map->bus = bus;
794 map->bus_context = bus_context;
795 map->max_register = config->max_register;
796 map->wr_table = config->wr_table;
797 map->rd_table = config->rd_table;
798 map->volatile_table = config->volatile_table;
799 map->precious_table = config->precious_table;
800 map->wr_noinc_table = config->wr_noinc_table;
801 map->rd_noinc_table = config->rd_noinc_table;
802 map->writeable_reg = config->writeable_reg;
803 map->readable_reg = config->readable_reg;
804 map->volatile_reg = config->volatile_reg;
805 map->precious_reg = config->precious_reg;
806 map->writeable_noinc_reg = config->writeable_noinc_reg;
807 map->readable_noinc_reg = config->readable_noinc_reg;
808 map->cache_type = config->cache_type;
809
810 spin_lock_init(&map->async_lock);
811 INIT_LIST_HEAD(&map->async_list);
812 INIT_LIST_HEAD(&map->async_free);
813 init_waitqueue_head(&map->async_waitq);
814
815 if (config->read_flag_mask ||
816 config->write_flag_mask ||
817 config->zero_flag_mask) {
818 map->read_flag_mask = config->read_flag_mask;
819 map->write_flag_mask = config->write_flag_mask;
820 } else if (bus) {
821 map->read_flag_mask = bus->read_flag_mask;
822 }
823
824 if (!bus) {
825 map->reg_read = config->reg_read;
826 map->reg_write = config->reg_write;
827
828 map->defer_caching = false;
829 goto skip_format_initialization;
830 } else if (!bus->read || !bus->write) {
831 map->reg_read = _regmap_bus_reg_read;
832 map->reg_write = _regmap_bus_reg_write;
833 map->reg_update_bits = bus->reg_update_bits;
834
835 map->defer_caching = false;
836 goto skip_format_initialization;
837 } else {
838 map->reg_read = _regmap_bus_read;
839 map->reg_update_bits = bus->reg_update_bits;
840 }
841
842 reg_endian = regmap_get_reg_endian(bus, config);
843 val_endian = regmap_get_val_endian(dev, bus, config);
844
845 switch (config->reg_bits + map->reg_shift) {
846 case 2:
847 switch (config->val_bits) {
848 case 6:
849 map->format.format_write = regmap_format_2_6_write;
850 break;
851 default:
852 goto err_hwlock;
853 }
854 break;
855
856 case 4:
857 switch (config->val_bits) {
858 case 12:
859 map->format.format_write = regmap_format_4_12_write;
860 break;
861 default:
862 goto err_hwlock;
863 }
864 break;
865
866 case 7:
867 switch (config->val_bits) {
868 case 9:
869 map->format.format_write = regmap_format_7_9_write;
870 break;
871 default:
872 goto err_hwlock;
873 }
874 break;
875
876 case 10:
877 switch (config->val_bits) {
878 case 14:
879 map->format.format_write = regmap_format_10_14_write;
880 break;
881 default:
882 goto err_hwlock;
883 }
884 break;
885
886 case 8:
887 map->format.format_reg = regmap_format_8;
888 break;
889
890 case 16:
891 switch (reg_endian) {
892 case REGMAP_ENDIAN_BIG:
893 map->format.format_reg = regmap_format_16_be;
894 break;
895 case REGMAP_ENDIAN_LITTLE:
896 map->format.format_reg = regmap_format_16_le;
897 break;
898 case REGMAP_ENDIAN_NATIVE:
899 map->format.format_reg = regmap_format_16_native;
900 break;
901 default:
902 goto err_hwlock;
903 }
904 break;
905
906 case 24:
907 if (reg_endian != REGMAP_ENDIAN_BIG)
908 goto err_hwlock;
909 map->format.format_reg = regmap_format_24;
910 break;
911
912 case 32:
913 switch (reg_endian) {
914 case REGMAP_ENDIAN_BIG:
915 map->format.format_reg = regmap_format_32_be;
916 break;
917 case REGMAP_ENDIAN_LITTLE:
918 map->format.format_reg = regmap_format_32_le;
919 break;
920 case REGMAP_ENDIAN_NATIVE:
921 map->format.format_reg = regmap_format_32_native;
922 break;
923 default:
924 goto err_hwlock;
925 }
926 break;
927
928#ifdef CONFIG_64BIT
929 case 64:
930 switch (reg_endian) {
931 case REGMAP_ENDIAN_BIG:
932 map->format.format_reg = regmap_format_64_be;
933 break;
934 case REGMAP_ENDIAN_LITTLE:
935 map->format.format_reg = regmap_format_64_le;
936 break;
937 case REGMAP_ENDIAN_NATIVE:
938 map->format.format_reg = regmap_format_64_native;
939 break;
940 default:
941 goto err_hwlock;
942 }
943 break;
944#endif
945
946 default:
947 goto err_hwlock;
948 }
949
950 if (val_endian == REGMAP_ENDIAN_NATIVE)
951 map->format.parse_inplace = regmap_parse_inplace_noop;
952
953 switch (config->val_bits) {
954 case 8:
955 map->format.format_val = regmap_format_8;
956 map->format.parse_val = regmap_parse_8;
957 map->format.parse_inplace = regmap_parse_inplace_noop;
958 break;
959 case 16:
960 switch (val_endian) {
961 case REGMAP_ENDIAN_BIG:
962 map->format.format_val = regmap_format_16_be;
963 map->format.parse_val = regmap_parse_16_be;
964 map->format.parse_inplace = regmap_parse_16_be_inplace;
965 break;
966 case REGMAP_ENDIAN_LITTLE:
967 map->format.format_val = regmap_format_16_le;
968 map->format.parse_val = regmap_parse_16_le;
969 map->format.parse_inplace = regmap_parse_16_le_inplace;
970 break;
971 case REGMAP_ENDIAN_NATIVE:
972 map->format.format_val = regmap_format_16_native;
973 map->format.parse_val = regmap_parse_16_native;
974 break;
975 default:
976 goto err_hwlock;
977 }
978 break;
979 case 24:
980 if (val_endian != REGMAP_ENDIAN_BIG)
981 goto err_hwlock;
982 map->format.format_val = regmap_format_24;
983 map->format.parse_val = regmap_parse_24;
984 break;
985 case 32:
986 switch (val_endian) {
987 case REGMAP_ENDIAN_BIG:
988 map->format.format_val = regmap_format_32_be;
989 map->format.parse_val = regmap_parse_32_be;
990 map->format.parse_inplace = regmap_parse_32_be_inplace;
991 break;
992 case REGMAP_ENDIAN_LITTLE:
993 map->format.format_val = regmap_format_32_le;
994 map->format.parse_val = regmap_parse_32_le;
995 map->format.parse_inplace = regmap_parse_32_le_inplace;
996 break;
997 case REGMAP_ENDIAN_NATIVE:
998 map->format.format_val = regmap_format_32_native;
999 map->format.parse_val = regmap_parse_32_native;
1000 break;
1001 default:
1002 goto err_hwlock;
1003 }
1004 break;
1005#ifdef CONFIG_64BIT
1006 case 64:
1007 switch (val_endian) {
1008 case REGMAP_ENDIAN_BIG:
1009 map->format.format_val = regmap_format_64_be;
1010 map->format.parse_val = regmap_parse_64_be;
1011 map->format.parse_inplace = regmap_parse_64_be_inplace;
1012 break;
1013 case REGMAP_ENDIAN_LITTLE:
1014 map->format.format_val = regmap_format_64_le;
1015 map->format.parse_val = regmap_parse_64_le;
1016 map->format.parse_inplace = regmap_parse_64_le_inplace;
1017 break;
1018 case REGMAP_ENDIAN_NATIVE:
1019 map->format.format_val = regmap_format_64_native;
1020 map->format.parse_val = regmap_parse_64_native;
1021 break;
1022 default:
1023 goto err_hwlock;
1024 }
1025 break;
1026#endif
1027 }
1028
1029 if (map->format.format_write) {
1030 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1031 (val_endian != REGMAP_ENDIAN_BIG))
1032 goto err_hwlock;
1033 map->use_single_write = true;
1034 }
1035
1036 if (!map->format.format_write &&
1037 !(map->format.format_reg && map->format.format_val))
1038 goto err_hwlock;
1039
1040 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1041 if (map->work_buf == NULL) {
1042 ret = -ENOMEM;
1043 goto err_hwlock;
1044 }
1045
1046 if (map->format.format_write) {
1047 map->defer_caching = false;
1048 map->reg_write = _regmap_bus_formatted_write;
1049 } else if (map->format.format_val) {
1050 map->defer_caching = true;
1051 map->reg_write = _regmap_bus_raw_write;
1052 }
1053
1054skip_format_initialization:
1055
1056 map->range_tree = RB_ROOT;
1057 for (i = 0; i < config->num_ranges; i++) {
1058 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1059 struct regmap_range_node *new;
1060
1061 /* Sanity check */
1062 if (range_cfg->range_max < range_cfg->range_min) {
1063 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1064 range_cfg->range_max, range_cfg->range_min);
1065 goto err_range;
1066 }
1067
1068 if (range_cfg->range_max > map->max_register) {
1069 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1070 range_cfg->range_max, map->max_register);
1071 goto err_range;
1072 }
1073
1074 if (range_cfg->selector_reg > map->max_register) {
1075 dev_err(map->dev,
1076 "Invalid range %d: selector out of map\n", i);
1077 goto err_range;
1078 }
1079
1080 if (range_cfg->window_len == 0) {
1081 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082 i);
1083 goto err_range;
1084 }
1085
1086 /* Make sure, that this register range has no selector
1087 or data window within its boundary */
1088 for (j = 0; j < config->num_ranges; j++) {
1089 unsigned sel_reg = config->ranges[j].selector_reg;
1090 unsigned win_min = config->ranges[j].window_start;
1091 unsigned win_max = win_min +
1092 config->ranges[j].window_len - 1;
1093
1094 /* Allow data window inside its own virtual range */
1095 if (j == i)
1096 continue;
1097
1098 if (range_cfg->range_min <= sel_reg &&
1099 sel_reg <= range_cfg->range_max) {
1100 dev_err(map->dev,
1101 "Range %d: selector for %d in window\n",
1102 i, j);
1103 goto err_range;
1104 }
1105
1106 if (!(win_max < range_cfg->range_min ||
1107 win_min > range_cfg->range_max)) {
1108 dev_err(map->dev,
1109 "Range %d: window for %d in window\n",
1110 i, j);
1111 goto err_range;
1112 }
1113 }
1114
1115 new = kzalloc(sizeof(*new), GFP_KERNEL);
1116 if (new == NULL) {
1117 ret = -ENOMEM;
1118 goto err_range;
1119 }
1120
1121 new->map = map;
1122 new->name = range_cfg->name;
1123 new->range_min = range_cfg->range_min;
1124 new->range_max = range_cfg->range_max;
1125 new->selector_reg = range_cfg->selector_reg;
1126 new->selector_mask = range_cfg->selector_mask;
1127 new->selector_shift = range_cfg->selector_shift;
1128 new->window_start = range_cfg->window_start;
1129 new->window_len = range_cfg->window_len;
1130
1131 if (!_regmap_range_add(map, new)) {
1132 dev_err(map->dev, "Failed to add range %d\n", i);
1133 kfree(new);
1134 goto err_range;
1135 }
1136
1137 if (map->selector_work_buf == NULL) {
1138 map->selector_work_buf =
1139 kzalloc(map->format.buf_size, GFP_KERNEL);
1140 if (map->selector_work_buf == NULL) {
1141 ret = -ENOMEM;
1142 goto err_range;
1143 }
1144 }
1145 }
1146
1147 ret = regcache_init(map, config);
1148 if (ret != 0)
1149 goto err_range;
1150
1151 if (dev) {
1152 ret = regmap_attach_dev(dev, map, config);
1153 if (ret != 0)
1154 goto err_regcache;
1155 } else {
1156 regmap_debugfs_init(map);
1157 }
1158
1159 return map;
1160
1161err_regcache:
1162 regcache_exit(map);
1163err_range:
1164 regmap_range_exit(map);
1165 kfree(map->work_buf);
1166err_hwlock:
1167 if (map->hwlock)
1168 hwspin_lock_free(map->hwlock);
1169err_name:
1170 kfree_const(map->name);
1171err_map:
1172 kfree(map);
1173err:
1174 return ERR_PTR(ret);
1175}
1176EXPORT_SYMBOL_GPL(__regmap_init);
1177
1178static void devm_regmap_release(struct device *dev, void *res)
1179{
1180 regmap_exit(*(struct regmap **)res);
1181}
1182
1183struct regmap *__devm_regmap_init(struct device *dev,
1184 const struct regmap_bus *bus,
1185 void *bus_context,
1186 const struct regmap_config *config,
1187 struct lock_class_key *lock_key,
1188 const char *lock_name)
1189{
1190 struct regmap **ptr, *regmap;
1191
1192 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1193 if (!ptr)
1194 return ERR_PTR(-ENOMEM);
1195
1196 regmap = __regmap_init(dev, bus, bus_context, config,
1197 lock_key, lock_name);
1198 if (!IS_ERR(regmap)) {
1199 *ptr = regmap;
1200 devres_add(dev, ptr);
1201 } else {
1202 devres_free(ptr);
1203 }
1204
1205 return regmap;
1206}
1207EXPORT_SYMBOL_GPL(__devm_regmap_init);
1208
1209static void regmap_field_init(struct regmap_field *rm_field,
1210 struct regmap *regmap, struct reg_field reg_field)
1211{
1212 rm_field->regmap = regmap;
1213 rm_field->reg = reg_field.reg;
1214 rm_field->shift = reg_field.lsb;
1215 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1216 rm_field->id_size = reg_field.id_size;
1217 rm_field->id_offset = reg_field.id_offset;
1218}
1219
1220/**
1221 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1222 *
1223 * @dev: Device that will be interacted with
1224 * @regmap: regmap bank in which this register field is located.
1225 * @reg_field: Register field with in the bank.
1226 *
1227 * The return value will be an ERR_PTR() on error or a valid pointer
1228 * to a struct regmap_field. The regmap_field will be automatically freed
1229 * by the device management code.
1230 */
1231struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1232 struct regmap *regmap, struct reg_field reg_field)
1233{
1234 struct regmap_field *rm_field = devm_kzalloc(dev,
1235 sizeof(*rm_field), GFP_KERNEL);
1236 if (!rm_field)
1237 return ERR_PTR(-ENOMEM);
1238
1239 regmap_field_init(rm_field, regmap, reg_field);
1240
1241 return rm_field;
1242
1243}
1244EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1245
1246/**
1247 * devm_regmap_field_free() - Free a register field allocated using
1248 * devm_regmap_field_alloc.
1249 *
1250 * @dev: Device that will be interacted with
1251 * @field: regmap field which should be freed.
1252 *
1253 * Free register field allocated using devm_regmap_field_alloc(). Usually
1254 * drivers need not call this function, as the memory allocated via devm
1255 * will be freed as per device-driver life-cyle.
1256 */
1257void devm_regmap_field_free(struct device *dev,
1258 struct regmap_field *field)
1259{
1260 devm_kfree(dev, field);
1261}
1262EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1263
1264/**
1265 * regmap_field_alloc() - Allocate and initialise a register field.
1266 *
1267 * @regmap: regmap bank in which this register field is located.
1268 * @reg_field: Register field with in the bank.
1269 *
1270 * The return value will be an ERR_PTR() on error or a valid pointer
1271 * to a struct regmap_field. The regmap_field should be freed by the
1272 * user once its finished working with it using regmap_field_free().
1273 */
1274struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1275 struct reg_field reg_field)
1276{
1277 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1278
1279 if (!rm_field)
1280 return ERR_PTR(-ENOMEM);
1281
1282 regmap_field_init(rm_field, regmap, reg_field);
1283
1284 return rm_field;
1285}
1286EXPORT_SYMBOL_GPL(regmap_field_alloc);
1287
1288/**
1289 * regmap_field_free() - Free register field allocated using
1290 * regmap_field_alloc.
1291 *
1292 * @field: regmap field which should be freed.
1293 */
1294void regmap_field_free(struct regmap_field *field)
1295{
1296 kfree(field);
1297}
1298EXPORT_SYMBOL_GPL(regmap_field_free);
1299
1300/**
1301 * regmap_reinit_cache() - Reinitialise the current register cache
1302 *
1303 * @map: Register map to operate on.
1304 * @config: New configuration. Only the cache data will be used.
1305 *
1306 * Discard any existing register cache for the map and initialize a
1307 * new cache. This can be used to restore the cache to defaults or to
1308 * update the cache configuration to reflect runtime discovery of the
1309 * hardware.
1310 *
1311 * No explicit locking is done here, the user needs to ensure that
1312 * this function will not race with other calls to regmap.
1313 */
1314int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1315{
1316 int ret;
1317
1318 regcache_exit(map);
1319 regmap_debugfs_exit(map);
1320
1321 map->max_register = config->max_register;
1322 map->writeable_reg = config->writeable_reg;
1323 map->readable_reg = config->readable_reg;
1324 map->volatile_reg = config->volatile_reg;
1325 map->precious_reg = config->precious_reg;
1326 map->writeable_noinc_reg = config->writeable_noinc_reg;
1327 map->readable_noinc_reg = config->readable_noinc_reg;
1328 map->cache_type = config->cache_type;
1329
1330 ret = regmap_set_name(map, config);
1331 if (ret)
1332 return ret;
1333
1334 regmap_debugfs_init(map);
1335
1336 map->cache_bypass = false;
1337 map->cache_only = false;
1338
1339 return regcache_init(map, config);
1340}
1341EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1342
1343/**
1344 * regmap_exit() - Free a previously allocated register map
1345 *
1346 * @map: Register map to operate on.
1347 */
1348void regmap_exit(struct regmap *map)
1349{
1350 struct regmap_async *async;
1351
1352 regcache_exit(map);
1353 regmap_debugfs_exit(map);
1354 regmap_range_exit(map);
1355 if (map->bus && map->bus->free_context)
1356 map->bus->free_context(map->bus_context);
1357 kfree(map->work_buf);
1358 while (!list_empty(&map->async_free)) {
1359 async = list_first_entry_or_null(&map->async_free,
1360 struct regmap_async,
1361 list);
1362 list_del(&async->list);
1363 kfree(async->work_buf);
1364 kfree(async);
1365 }
1366 if (map->hwlock)
1367 hwspin_lock_free(map->hwlock);
1368 kfree_const(map->name);
1369 kfree(map->patch);
1370 kfree(map);
1371}
1372EXPORT_SYMBOL_GPL(regmap_exit);
1373
1374static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1375{
1376 struct regmap **r = res;
1377 if (!r || !*r) {
1378 WARN_ON(!r || !*r);
1379 return 0;
1380 }
1381
1382 /* If the user didn't specify a name match any */
1383 if (data)
1384 return !strcmp((*r)->name, data);
1385 else
1386 return 1;
1387}
1388
1389/**
1390 * dev_get_regmap() - Obtain the regmap (if any) for a device
1391 *
1392 * @dev: Device to retrieve the map for
1393 * @name: Optional name for the register map, usually NULL.
1394 *
1395 * Returns the regmap for the device if one is present, or NULL. If
1396 * name is specified then it must match the name specified when
1397 * registering the device, if it is NULL then the first regmap found
1398 * will be used. Devices with multiple register maps are very rare,
1399 * generic code should normally not need to specify a name.
1400 */
1401struct regmap *dev_get_regmap(struct device *dev, const char *name)
1402{
1403 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1404 dev_get_regmap_match, (void *)name);
1405
1406 if (!r)
1407 return NULL;
1408 return *r;
1409}
1410EXPORT_SYMBOL_GPL(dev_get_regmap);
1411
1412/**
1413 * regmap_get_device() - Obtain the device from a regmap
1414 *
1415 * @map: Register map to operate on.
1416 *
1417 * Returns the underlying device that the regmap has been created for.
1418 */
1419struct device *regmap_get_device(struct regmap *map)
1420{
1421 return map->dev;
1422}
1423EXPORT_SYMBOL_GPL(regmap_get_device);
1424
1425static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1426 struct regmap_range_node *range,
1427 unsigned int val_num)
1428{
1429 void *orig_work_buf;
1430 unsigned int win_offset;
1431 unsigned int win_page;
1432 bool page_chg;
1433 int ret;
1434
1435 win_offset = (*reg - range->range_min) % range->window_len;
1436 win_page = (*reg - range->range_min) / range->window_len;
1437
1438 if (val_num > 1) {
1439 /* Bulk write shouldn't cross range boundary */
1440 if (*reg + val_num - 1 > range->range_max)
1441 return -EINVAL;
1442
1443 /* ... or single page boundary */
1444 if (val_num > range->window_len - win_offset)
1445 return -EINVAL;
1446 }
1447
1448 /* It is possible to have selector register inside data window.
1449 In that case, selector register is located on every page and
1450 it needs no page switching, when accessed alone. */
1451 if (val_num > 1 ||
1452 range->window_start + win_offset != range->selector_reg) {
1453 /* Use separate work_buf during page switching */
1454 orig_work_buf = map->work_buf;
1455 map->work_buf = map->selector_work_buf;
1456
1457 ret = _regmap_update_bits(map, range->selector_reg,
1458 range->selector_mask,
1459 win_page << range->selector_shift,
1460 &page_chg, false);
1461
1462 map->work_buf = orig_work_buf;
1463
1464 if (ret != 0)
1465 return ret;
1466 }
1467
1468 *reg = range->window_start + win_offset;
1469
1470 return 0;
1471}
1472
1473static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1474 unsigned long mask)
1475{
1476 u8 *buf;
1477 int i;
1478
1479 if (!mask || !map->work_buf)
1480 return;
1481
1482 buf = map->work_buf;
1483
1484 for (i = 0; i < max_bytes; i++)
1485 buf[i] |= (mask >> (8 * i)) & 0xff;
1486}
1487
1488static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1489 const void *val, size_t val_len, bool noinc)
1490{
1491 struct regmap_range_node *range;
1492 unsigned long flags;
1493 void *work_val = map->work_buf + map->format.reg_bytes +
1494 map->format.pad_bytes;
1495 void *buf;
1496 int ret = -ENOTSUPP;
1497 size_t len;
1498 int i;
1499
1500 WARN_ON(!map->bus);
1501
1502 /* Check for unwritable or noinc registers in range
1503 * before we start
1504 */
1505 if (!regmap_writeable_noinc(map, reg)) {
1506 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1507 unsigned int element =
1508 reg + regmap_get_offset(map, i);
1509 if (!regmap_writeable(map, element) ||
1510 regmap_writeable_noinc(map, element))
1511 return -EINVAL;
1512 }
1513 }
1514
1515 if (!map->cache_bypass && map->format.parse_val) {
1516 unsigned int ival;
1517 int val_bytes = map->format.val_bytes;
1518 for (i = 0; i < val_len / val_bytes; i++) {
1519 ival = map->format.parse_val(val + (i * val_bytes));
1520 ret = regcache_write(map,
1521 reg + regmap_get_offset(map, i),
1522 ival);
1523 if (ret) {
1524 dev_err(map->dev,
1525 "Error in caching of register: %x ret: %d\n",
1526 reg + i, ret);
1527 return ret;
1528 }
1529 }
1530 if (map->cache_only) {
1531 map->cache_dirty = true;
1532 return 0;
1533 }
1534 }
1535
1536 range = _regmap_range_lookup(map, reg);
1537 if (range) {
1538 int val_num = val_len / map->format.val_bytes;
1539 int win_offset = (reg - range->range_min) % range->window_len;
1540 int win_residue = range->window_len - win_offset;
1541
1542 /* If the write goes beyond the end of the window split it */
1543 while (val_num > win_residue) {
1544 dev_dbg(map->dev, "Writing window %d/%zu\n",
1545 win_residue, val_len / map->format.val_bytes);
1546 ret = _regmap_raw_write_impl(map, reg, val,
1547 win_residue *
1548 map->format.val_bytes, noinc);
1549 if (ret != 0)
1550 return ret;
1551
1552 reg += win_residue;
1553 val_num -= win_residue;
1554 val += win_residue * map->format.val_bytes;
1555 val_len -= win_residue * map->format.val_bytes;
1556
1557 win_offset = (reg - range->range_min) %
1558 range->window_len;
1559 win_residue = range->window_len - win_offset;
1560 }
1561
1562 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1563 if (ret != 0)
1564 return ret;
1565 }
1566
1567 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1568 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1569 map->write_flag_mask);
1570
1571 /*
1572 * Essentially all I/O mechanisms will be faster with a single
1573 * buffer to write. Since register syncs often generate raw
1574 * writes of single registers optimise that case.
1575 */
1576 if (val != work_val && val_len == map->format.val_bytes) {
1577 memcpy(work_val, val, map->format.val_bytes);
1578 val = work_val;
1579 }
1580
1581 if (map->async && map->bus->async_write) {
1582 struct regmap_async *async;
1583
1584 trace_regmap_async_write_start(map, reg, val_len);
1585
1586 spin_lock_irqsave(&map->async_lock, flags);
1587 async = list_first_entry_or_null(&map->async_free,
1588 struct regmap_async,
1589 list);
1590 if (async)
1591 list_del(&async->list);
1592 spin_unlock_irqrestore(&map->async_lock, flags);
1593
1594 if (!async) {
1595 async = map->bus->async_alloc();
1596 if (!async)
1597 return -ENOMEM;
1598
1599 async->work_buf = kzalloc(map->format.buf_size,
1600 GFP_KERNEL | GFP_DMA);
1601 if (!async->work_buf) {
1602 kfree(async);
1603 return -ENOMEM;
1604 }
1605 }
1606
1607 async->map = map;
1608
1609 /* If the caller supplied the value we can use it safely. */
1610 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1611 map->format.reg_bytes + map->format.val_bytes);
1612
1613 spin_lock_irqsave(&map->async_lock, flags);
1614 list_add_tail(&async->list, &map->async_list);
1615 spin_unlock_irqrestore(&map->async_lock, flags);
1616
1617 if (val != work_val)
1618 ret = map->bus->async_write(map->bus_context,
1619 async->work_buf,
1620 map->format.reg_bytes +
1621 map->format.pad_bytes,
1622 val, val_len, async);
1623 else
1624 ret = map->bus->async_write(map->bus_context,
1625 async->work_buf,
1626 map->format.reg_bytes +
1627 map->format.pad_bytes +
1628 val_len, NULL, 0, async);
1629
1630 if (ret != 0) {
1631 dev_err(map->dev, "Failed to schedule write: %d\n",
1632 ret);
1633
1634 spin_lock_irqsave(&map->async_lock, flags);
1635 list_move(&async->list, &map->async_free);
1636 spin_unlock_irqrestore(&map->async_lock, flags);
1637 }
1638
1639 return ret;
1640 }
1641
1642 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1643
1644 /* If we're doing a single register write we can probably just
1645 * send the work_buf directly, otherwise try to do a gather
1646 * write.
1647 */
1648 if (val == work_val)
1649 ret = map->bus->write(map->bus_context, map->work_buf,
1650 map->format.reg_bytes +
1651 map->format.pad_bytes +
1652 val_len);
1653 else if (map->bus->gather_write)
1654 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1655 map->format.reg_bytes +
1656 map->format.pad_bytes,
1657 val, val_len);
1658 else
1659 ret = -ENOTSUPP;
1660
1661 /* If that didn't work fall back on linearising by hand. */
1662 if (ret == -ENOTSUPP) {
1663 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1664 buf = kzalloc(len, GFP_KERNEL);
1665 if (!buf)
1666 return -ENOMEM;
1667
1668 memcpy(buf, map->work_buf, map->format.reg_bytes);
1669 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1670 val, val_len);
1671 ret = map->bus->write(map->bus_context, buf, len);
1672
1673 kfree(buf);
1674 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1675 /* regcache_drop_region() takes lock that we already have,
1676 * thus call map->cache_ops->drop() directly
1677 */
1678 if (map->cache_ops && map->cache_ops->drop)
1679 map->cache_ops->drop(map, reg, reg + 1);
1680 }
1681
1682 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1683
1684 return ret;
1685}
1686
1687/**
1688 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1689 *
1690 * @map: Map to check.
1691 */
1692bool regmap_can_raw_write(struct regmap *map)
1693{
1694 return map->bus && map->bus->write && map->format.format_val &&
1695 map->format.format_reg;
1696}
1697EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1698
1699/**
1700 * regmap_get_raw_read_max - Get the maximum size we can read
1701 *
1702 * @map: Map to check.
1703 */
1704size_t regmap_get_raw_read_max(struct regmap *map)
1705{
1706 return map->max_raw_read;
1707}
1708EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1709
1710/**
1711 * regmap_get_raw_write_max - Get the maximum size we can read
1712 *
1713 * @map: Map to check.
1714 */
1715size_t regmap_get_raw_write_max(struct regmap *map)
1716{
1717 return map->max_raw_write;
1718}
1719EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1720
1721static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1722 unsigned int val)
1723{
1724 int ret;
1725 struct regmap_range_node *range;
1726 struct regmap *map = context;
1727
1728 WARN_ON(!map->bus || !map->format.format_write);
1729
1730 range = _regmap_range_lookup(map, reg);
1731 if (range) {
1732 ret = _regmap_select_page(map, ®, range, 1);
1733 if (ret != 0)
1734 return ret;
1735 }
1736
1737 map->format.format_write(map, reg, val);
1738
1739 trace_regmap_hw_write_start(map, reg, 1);
1740
1741 ret = map->bus->write(map->bus_context, map->work_buf,
1742 map->format.buf_size);
1743
1744 trace_regmap_hw_write_done(map, reg, 1);
1745
1746 return ret;
1747}
1748
1749static int _regmap_bus_reg_write(void *context, unsigned int reg,
1750 unsigned int val)
1751{
1752 struct regmap *map = context;
1753
1754 return map->bus->reg_write(map->bus_context, reg, val);
1755}
1756
1757static int _regmap_bus_raw_write(void *context, unsigned int reg,
1758 unsigned int val)
1759{
1760 struct regmap *map = context;
1761
1762 WARN_ON(!map->bus || !map->format.format_val);
1763
1764 map->format.format_val(map->work_buf + map->format.reg_bytes
1765 + map->format.pad_bytes, val, 0);
1766 return _regmap_raw_write_impl(map, reg,
1767 map->work_buf +
1768 map->format.reg_bytes +
1769 map->format.pad_bytes,
1770 map->format.val_bytes,
1771 false);
1772}
1773
1774static inline void *_regmap_map_get_context(struct regmap *map)
1775{
1776 return (map->bus) ? map : map->bus_context;
1777}
1778
1779int _regmap_write(struct regmap *map, unsigned int reg,
1780 unsigned int val)
1781{
1782 int ret;
1783 void *context = _regmap_map_get_context(map);
1784
1785 if (!regmap_writeable(map, reg))
1786 return -EIO;
1787
1788 if (!map->cache_bypass && !map->defer_caching) {
1789 ret = regcache_write(map, reg, val);
1790 if (ret != 0)
1791 return ret;
1792 if (map->cache_only) {
1793 map->cache_dirty = true;
1794 return 0;
1795 }
1796 }
1797
1798 if (regmap_should_log(map))
1799 dev_info(map->dev, "%x <= %x\n", reg, val);
1800
1801 trace_regmap_reg_write(map, reg, val);
1802
1803 return map->reg_write(context, reg, val);
1804}
1805
1806/**
1807 * regmap_write() - Write a value to a single register
1808 *
1809 * @map: Register map to write to
1810 * @reg: Register to write to
1811 * @val: Value to be written
1812 *
1813 * A value of zero will be returned on success, a negative errno will
1814 * be returned in error cases.
1815 */
1816int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1817{
1818 int ret;
1819
1820 if (!IS_ALIGNED(reg, map->reg_stride))
1821 return -EINVAL;
1822
1823 map->lock(map->lock_arg);
1824
1825 ret = _regmap_write(map, reg, val);
1826
1827 map->unlock(map->lock_arg);
1828
1829 return ret;
1830}
1831EXPORT_SYMBOL_GPL(regmap_write);
1832
1833/**
1834 * regmap_write_async() - Write a value to a single register asynchronously
1835 *
1836 * @map: Register map to write to
1837 * @reg: Register to write to
1838 * @val: Value to be written
1839 *
1840 * A value of zero will be returned on success, a negative errno will
1841 * be returned in error cases.
1842 */
1843int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1844{
1845 int ret;
1846
1847 if (!IS_ALIGNED(reg, map->reg_stride))
1848 return -EINVAL;
1849
1850 map->lock(map->lock_arg);
1851
1852 map->async = true;
1853
1854 ret = _regmap_write(map, reg, val);
1855
1856 map->async = false;
1857
1858 map->unlock(map->lock_arg);
1859
1860 return ret;
1861}
1862EXPORT_SYMBOL_GPL(regmap_write_async);
1863
1864int _regmap_raw_write(struct regmap *map, unsigned int reg,
1865 const void *val, size_t val_len, bool noinc)
1866{
1867 size_t val_bytes = map->format.val_bytes;
1868 size_t val_count = val_len / val_bytes;
1869 size_t chunk_count, chunk_bytes;
1870 size_t chunk_regs = val_count;
1871 int ret, i;
1872
1873 if (!val_count)
1874 return -EINVAL;
1875
1876 if (map->use_single_write)
1877 chunk_regs = 1;
1878 else if (map->max_raw_write && val_len > map->max_raw_write)
1879 chunk_regs = map->max_raw_write / val_bytes;
1880
1881 chunk_count = val_count / chunk_regs;
1882 chunk_bytes = chunk_regs * val_bytes;
1883
1884 /* Write as many bytes as possible with chunk_size */
1885 for (i = 0; i < chunk_count; i++) {
1886 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
1887 if (ret)
1888 return ret;
1889
1890 reg += regmap_get_offset(map, chunk_regs);
1891 val += chunk_bytes;
1892 val_len -= chunk_bytes;
1893 }
1894
1895 /* Write remaining bytes */
1896 if (val_len)
1897 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
1898
1899 return ret;
1900}
1901
1902/**
1903 * regmap_raw_write() - Write raw values to one or more registers
1904 *
1905 * @map: Register map to write to
1906 * @reg: Initial register to write to
1907 * @val: Block of data to be written, laid out for direct transmission to the
1908 * device
1909 * @val_len: Length of data pointed to by val.
1910 *
1911 * This function is intended to be used for things like firmware
1912 * download where a large block of data needs to be transferred to the
1913 * device. No formatting will be done on the data provided.
1914 *
1915 * A value of zero will be returned on success, a negative errno will
1916 * be returned in error cases.
1917 */
1918int regmap_raw_write(struct regmap *map, unsigned int reg,
1919 const void *val, size_t val_len)
1920{
1921 int ret;
1922
1923 if (!regmap_can_raw_write(map))
1924 return -EINVAL;
1925 if (val_len % map->format.val_bytes)
1926 return -EINVAL;
1927
1928 map->lock(map->lock_arg);
1929
1930 ret = _regmap_raw_write(map, reg, val, val_len, false);
1931
1932 map->unlock(map->lock_arg);
1933
1934 return ret;
1935}
1936EXPORT_SYMBOL_GPL(regmap_raw_write);
1937
1938/**
1939 * regmap_noinc_write(): Write data from a register without incrementing the
1940 * register number
1941 *
1942 * @map: Register map to write to
1943 * @reg: Register to write to
1944 * @val: Pointer to data buffer
1945 * @val_len: Length of output buffer in bytes.
1946 *
1947 * The regmap API usually assumes that bulk bus write operations will write a
1948 * range of registers. Some devices have certain registers for which a write
1949 * operation can write to an internal FIFO.
1950 *
1951 * The target register must be volatile but registers after it can be
1952 * completely unrelated cacheable registers.
1953 *
1954 * This will attempt multiple writes as required to write val_len bytes.
1955 *
1956 * A value of zero will be returned on success, a negative errno will be
1957 * returned in error cases.
1958 */
1959int regmap_noinc_write(struct regmap *map, unsigned int reg,
1960 const void *val, size_t val_len)
1961{
1962 size_t write_len;
1963 int ret;
1964
1965 if (!map->bus)
1966 return -EINVAL;
1967 if (!map->bus->write)
1968 return -ENOTSUPP;
1969 if (val_len % map->format.val_bytes)
1970 return -EINVAL;
1971 if (!IS_ALIGNED(reg, map->reg_stride))
1972 return -EINVAL;
1973 if (val_len == 0)
1974 return -EINVAL;
1975
1976 map->lock(map->lock_arg);
1977
1978 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1979 ret = -EINVAL;
1980 goto out_unlock;
1981 }
1982
1983 while (val_len) {
1984 if (map->max_raw_write && map->max_raw_write < val_len)
1985 write_len = map->max_raw_write;
1986 else
1987 write_len = val_len;
1988 ret = _regmap_raw_write(map, reg, val, write_len, true);
1989 if (ret)
1990 goto out_unlock;
1991 val = ((u8 *)val) + write_len;
1992 val_len -= write_len;
1993 }
1994
1995out_unlock:
1996 map->unlock(map->lock_arg);
1997 return ret;
1998}
1999EXPORT_SYMBOL_GPL(regmap_noinc_write);
2000
2001/**
2002 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2003 * register field.
2004 *
2005 * @field: Register field to write to
2006 * @mask: Bitmask to change
2007 * @val: Value to be written
2008 * @change: Boolean indicating if a write was done
2009 * @async: Boolean indicating asynchronously
2010 * @force: Boolean indicating use force update
2011 *
2012 * Perform a read/modify/write cycle on the register field with change,
2013 * async, force option.
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_field_update_bits_base(struct regmap_field *field,
2019 unsigned int mask, unsigned int val,
2020 bool *change, bool async, bool force)
2021{
2022 mask = (mask << field->shift) & field->mask;
2023
2024 return regmap_update_bits_base(field->regmap, field->reg,
2025 mask, val << field->shift,
2026 change, async, force);
2027}
2028EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2029
2030/**
2031 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2032 * register field with port ID
2033 *
2034 * @field: Register field to write to
2035 * @id: port ID
2036 * @mask: Bitmask to change
2037 * @val: Value to be written
2038 * @change: Boolean indicating if a write was done
2039 * @async: Boolean indicating asynchronously
2040 * @force: Boolean indicating use force update
2041 *
2042 * A value of zero will be returned on success, a negative errno will
2043 * be returned in error cases.
2044 */
2045int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2046 unsigned int mask, unsigned int val,
2047 bool *change, bool async, bool force)
2048{
2049 if (id >= field->id_size)
2050 return -EINVAL;
2051
2052 mask = (mask << field->shift) & field->mask;
2053
2054 return regmap_update_bits_base(field->regmap,
2055 field->reg + (field->id_offset * id),
2056 mask, val << field->shift,
2057 change, async, force);
2058}
2059EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2060
2061/**
2062 * regmap_bulk_write() - Write multiple registers to the device
2063 *
2064 * @map: Register map to write to
2065 * @reg: First register to be write from
2066 * @val: Block of data to be written, in native register size for device
2067 * @val_count: Number of registers to write
2068 *
2069 * This function is intended to be used for writing a large block of
2070 * data to the device either in single transfer or multiple transfer.
2071 *
2072 * A value of zero will be returned on success, a negative errno will
2073 * be returned in error cases.
2074 */
2075int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2076 size_t val_count)
2077{
2078 int ret = 0, i;
2079 size_t val_bytes = map->format.val_bytes;
2080
2081 if (!IS_ALIGNED(reg, map->reg_stride))
2082 return -EINVAL;
2083
2084 /*
2085 * Some devices don't support bulk write, for them we have a series of
2086 * single write operations.
2087 */
2088 if (!map->bus || !map->format.parse_inplace) {
2089 map->lock(map->lock_arg);
2090 for (i = 0; i < val_count; i++) {
2091 unsigned int ival;
2092
2093 switch (val_bytes) {
2094 case 1:
2095 ival = *(u8 *)(val + (i * val_bytes));
2096 break;
2097 case 2:
2098 ival = *(u16 *)(val + (i * val_bytes));
2099 break;
2100 case 4:
2101 ival = *(u32 *)(val + (i * val_bytes));
2102 break;
2103#ifdef CONFIG_64BIT
2104 case 8:
2105 ival = *(u64 *)(val + (i * val_bytes));
2106 break;
2107#endif
2108 default:
2109 ret = -EINVAL;
2110 goto out;
2111 }
2112
2113 ret = _regmap_write(map,
2114 reg + regmap_get_offset(map, i),
2115 ival);
2116 if (ret != 0)
2117 goto out;
2118 }
2119out:
2120 map->unlock(map->lock_arg);
2121 } else {
2122 void *wval;
2123
2124 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2125 if (!wval)
2126 return -ENOMEM;
2127
2128 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2129 map->format.parse_inplace(wval + i);
2130
2131 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2132
2133 kfree(wval);
2134 }
2135 return ret;
2136}
2137EXPORT_SYMBOL_GPL(regmap_bulk_write);
2138
2139/*
2140 * _regmap_raw_multi_reg_write()
2141 *
2142 * the (register,newvalue) pairs in regs have not been formatted, but
2143 * they are all in the same page and have been changed to being page
2144 * relative. The page register has been written if that was necessary.
2145 */
2146static int _regmap_raw_multi_reg_write(struct regmap *map,
2147 const struct reg_sequence *regs,
2148 size_t num_regs)
2149{
2150 int ret;
2151 void *buf;
2152 int i;
2153 u8 *u8;
2154 size_t val_bytes = map->format.val_bytes;
2155 size_t reg_bytes = map->format.reg_bytes;
2156 size_t pad_bytes = map->format.pad_bytes;
2157 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2158 size_t len = pair_size * num_regs;
2159
2160 if (!len)
2161 return -EINVAL;
2162
2163 buf = kzalloc(len, GFP_KERNEL);
2164 if (!buf)
2165 return -ENOMEM;
2166
2167 /* We have to linearise by hand. */
2168
2169 u8 = buf;
2170
2171 for (i = 0; i < num_regs; i++) {
2172 unsigned int reg = regs[i].reg;
2173 unsigned int val = regs[i].def;
2174 trace_regmap_hw_write_start(map, reg, 1);
2175 map->format.format_reg(u8, reg, map->reg_shift);
2176 u8 += reg_bytes + pad_bytes;
2177 map->format.format_val(u8, val, 0);
2178 u8 += val_bytes;
2179 }
2180 u8 = buf;
2181 *u8 |= map->write_flag_mask;
2182
2183 ret = map->bus->write(map->bus_context, buf, len);
2184
2185 kfree(buf);
2186
2187 for (i = 0; i < num_regs; i++) {
2188 int reg = regs[i].reg;
2189 trace_regmap_hw_write_done(map, reg, 1);
2190 }
2191 return ret;
2192}
2193
2194static unsigned int _regmap_register_page(struct regmap *map,
2195 unsigned int reg,
2196 struct regmap_range_node *range)
2197{
2198 unsigned int win_page = (reg - range->range_min) / range->window_len;
2199
2200 return win_page;
2201}
2202
2203static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2204 struct reg_sequence *regs,
2205 size_t num_regs)
2206{
2207 int ret;
2208 int i, n;
2209 struct reg_sequence *base;
2210 unsigned int this_page = 0;
2211 unsigned int page_change = 0;
2212 /*
2213 * the set of registers are not neccessarily in order, but
2214 * since the order of write must be preserved this algorithm
2215 * chops the set each time the page changes. This also applies
2216 * if there is a delay required at any point in the sequence.
2217 */
2218 base = regs;
2219 for (i = 0, n = 0; i < num_regs; i++, n++) {
2220 unsigned int reg = regs[i].reg;
2221 struct regmap_range_node *range;
2222
2223 range = _regmap_range_lookup(map, reg);
2224 if (range) {
2225 unsigned int win_page = _regmap_register_page(map, reg,
2226 range);
2227
2228 if (i == 0)
2229 this_page = win_page;
2230 if (win_page != this_page) {
2231 this_page = win_page;
2232 page_change = 1;
2233 }
2234 }
2235
2236 /* If we have both a page change and a delay make sure to
2237 * write the regs and apply the delay before we change the
2238 * page.
2239 */
2240
2241 if (page_change || regs[i].delay_us) {
2242
2243 /* For situations where the first write requires
2244 * a delay we need to make sure we don't call
2245 * raw_multi_reg_write with n=0
2246 * This can't occur with page breaks as we
2247 * never write on the first iteration
2248 */
2249 if (regs[i].delay_us && i == 0)
2250 n = 1;
2251
2252 ret = _regmap_raw_multi_reg_write(map, base, n);
2253 if (ret != 0)
2254 return ret;
2255
2256 if (regs[i].delay_us)
2257 udelay(regs[i].delay_us);
2258
2259 base += n;
2260 n = 0;
2261
2262 if (page_change) {
2263 ret = _regmap_select_page(map,
2264 &base[n].reg,
2265 range, 1);
2266 if (ret != 0)
2267 return ret;
2268
2269 page_change = 0;
2270 }
2271
2272 }
2273
2274 }
2275 if (n > 0)
2276 return _regmap_raw_multi_reg_write(map, base, n);
2277 return 0;
2278}
2279
2280static int _regmap_multi_reg_write(struct regmap *map,
2281 const struct reg_sequence *regs,
2282 size_t num_regs)
2283{
2284 int i;
2285 int ret;
2286
2287 if (!map->can_multi_write) {
2288 for (i = 0; i < num_regs; i++) {
2289 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2290 if (ret != 0)
2291 return ret;
2292
2293 if (regs[i].delay_us)
2294 udelay(regs[i].delay_us);
2295 }
2296 return 0;
2297 }
2298
2299 if (!map->format.parse_inplace)
2300 return -EINVAL;
2301
2302 if (map->writeable_reg)
2303 for (i = 0; i < num_regs; i++) {
2304 int reg = regs[i].reg;
2305 if (!map->writeable_reg(map->dev, reg))
2306 return -EINVAL;
2307 if (!IS_ALIGNED(reg, map->reg_stride))
2308 return -EINVAL;
2309 }
2310
2311 if (!map->cache_bypass) {
2312 for (i = 0; i < num_regs; i++) {
2313 unsigned int val = regs[i].def;
2314 unsigned int reg = regs[i].reg;
2315 ret = regcache_write(map, reg, val);
2316 if (ret) {
2317 dev_err(map->dev,
2318 "Error in caching of register: %x ret: %d\n",
2319 reg, ret);
2320 return ret;
2321 }
2322 }
2323 if (map->cache_only) {
2324 map->cache_dirty = true;
2325 return 0;
2326 }
2327 }
2328
2329 WARN_ON(!map->bus);
2330
2331 for (i = 0; i < num_regs; i++) {
2332 unsigned int reg = regs[i].reg;
2333 struct regmap_range_node *range;
2334
2335 /* Coalesce all the writes between a page break or a delay
2336 * in a sequence
2337 */
2338 range = _regmap_range_lookup(map, reg);
2339 if (range || regs[i].delay_us) {
2340 size_t len = sizeof(struct reg_sequence)*num_regs;
2341 struct reg_sequence *base = kmemdup(regs, len,
2342 GFP_KERNEL);
2343 if (!base)
2344 return -ENOMEM;
2345 ret = _regmap_range_multi_paged_reg_write(map, base,
2346 num_regs);
2347 kfree(base);
2348
2349 return ret;
2350 }
2351 }
2352 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2353}
2354
2355/**
2356 * regmap_multi_reg_write() - Write multiple registers to the device
2357 *
2358 * @map: Register map to write to
2359 * @regs: Array of structures containing register,value to be written
2360 * @num_regs: Number of registers to write
2361 *
2362 * Write multiple registers to the device where the set of register, value
2363 * pairs are supplied in any order, possibly not all in a single range.
2364 *
2365 * The 'normal' block write mode will send ultimately send data on the
2366 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2367 * addressed. However, this alternative block multi write mode will send
2368 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2369 * must of course support the mode.
2370 *
2371 * A value of zero will be returned on success, a negative errno will be
2372 * returned in error cases.
2373 */
2374int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2375 int num_regs)
2376{
2377 int ret;
2378
2379 map->lock(map->lock_arg);
2380
2381 ret = _regmap_multi_reg_write(map, regs, num_regs);
2382
2383 map->unlock(map->lock_arg);
2384
2385 return ret;
2386}
2387EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2388
2389/**
2390 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2391 * device but not the cache
2392 *
2393 * @map: Register map to write to
2394 * @regs: Array of structures containing register,value to be written
2395 * @num_regs: Number of registers to write
2396 *
2397 * Write multiple registers to the device but not the cache where the set
2398 * of register are supplied in any order.
2399 *
2400 * This function is intended to be used for writing a large block of data
2401 * atomically to the device in single transfer for those I2C client devices
2402 * that implement this alternative block write mode.
2403 *
2404 * A value of zero will be returned on success, a negative errno will
2405 * be returned in error cases.
2406 */
2407int regmap_multi_reg_write_bypassed(struct regmap *map,
2408 const struct reg_sequence *regs,
2409 int num_regs)
2410{
2411 int ret;
2412 bool bypass;
2413
2414 map->lock(map->lock_arg);
2415
2416 bypass = map->cache_bypass;
2417 map->cache_bypass = true;
2418
2419 ret = _regmap_multi_reg_write(map, regs, num_regs);
2420
2421 map->cache_bypass = bypass;
2422
2423 map->unlock(map->lock_arg);
2424
2425 return ret;
2426}
2427EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2428
2429/**
2430 * regmap_raw_write_async() - Write raw values to one or more registers
2431 * asynchronously
2432 *
2433 * @map: Register map to write to
2434 * @reg: Initial register to write to
2435 * @val: Block of data to be written, laid out for direct transmission to the
2436 * device. Must be valid until regmap_async_complete() is called.
2437 * @val_len: Length of data pointed to by val.
2438 *
2439 * This function is intended to be used for things like firmware
2440 * download where a large block of data needs to be transferred to the
2441 * device. No formatting will be done on the data provided.
2442 *
2443 * If supported by the underlying bus the write will be scheduled
2444 * asynchronously, helping maximise I/O speed on higher speed buses
2445 * like SPI. regmap_async_complete() can be called to ensure that all
2446 * asynchrnous writes have been completed.
2447 *
2448 * A value of zero will be returned on success, a negative errno will
2449 * be returned in error cases.
2450 */
2451int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2452 const void *val, size_t val_len)
2453{
2454 int ret;
2455
2456 if (val_len % map->format.val_bytes)
2457 return -EINVAL;
2458 if (!IS_ALIGNED(reg, map->reg_stride))
2459 return -EINVAL;
2460
2461 map->lock(map->lock_arg);
2462
2463 map->async = true;
2464
2465 ret = _regmap_raw_write(map, reg, val, val_len, false);
2466
2467 map->async = false;
2468
2469 map->unlock(map->lock_arg);
2470
2471 return ret;
2472}
2473EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2474
2475static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2476 unsigned int val_len, bool noinc)
2477{
2478 struct regmap_range_node *range;
2479 int ret;
2480
2481 WARN_ON(!map->bus);
2482
2483 if (!map->bus || !map->bus->read)
2484 return -EINVAL;
2485
2486 range = _regmap_range_lookup(map, reg);
2487 if (range) {
2488 ret = _regmap_select_page(map, ®, range,
2489 noinc ? 1 : val_len / map->format.val_bytes);
2490 if (ret != 0)
2491 return ret;
2492 }
2493
2494 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2495 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2496 map->read_flag_mask);
2497 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2498
2499 ret = map->bus->read(map->bus_context, map->work_buf,
2500 map->format.reg_bytes + map->format.pad_bytes,
2501 val, val_len);
2502
2503 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2504
2505 return ret;
2506}
2507
2508static int _regmap_bus_reg_read(void *context, unsigned int reg,
2509 unsigned int *val)
2510{
2511 struct regmap *map = context;
2512
2513 return map->bus->reg_read(map->bus_context, reg, val);
2514}
2515
2516static int _regmap_bus_read(void *context, unsigned int reg,
2517 unsigned int *val)
2518{
2519 int ret;
2520 struct regmap *map = context;
2521 void *work_val = map->work_buf + map->format.reg_bytes +
2522 map->format.pad_bytes;
2523
2524 if (!map->format.parse_val)
2525 return -EINVAL;
2526
2527 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2528 if (ret == 0)
2529 *val = map->format.parse_val(work_val);
2530
2531 return ret;
2532}
2533
2534static int _regmap_read(struct regmap *map, unsigned int reg,
2535 unsigned int *val)
2536{
2537 int ret;
2538 void *context = _regmap_map_get_context(map);
2539
2540 if (!map->cache_bypass) {
2541 ret = regcache_read(map, reg, val);
2542 if (ret == 0)
2543 return 0;
2544 }
2545
2546 if (map->cache_only)
2547 return -EBUSY;
2548
2549 if (!regmap_readable(map, reg))
2550 return -EIO;
2551
2552 ret = map->reg_read(context, reg, val);
2553 if (ret == 0) {
2554 if (regmap_should_log(map))
2555 dev_info(map->dev, "%x => %x\n", reg, *val);
2556
2557 trace_regmap_reg_read(map, reg, *val);
2558
2559 if (!map->cache_bypass)
2560 regcache_write(map, reg, *val);
2561 }
2562
2563 return ret;
2564}
2565
2566/**
2567 * regmap_read() - Read a value from a single register
2568 *
2569 * @map: Register map to read from
2570 * @reg: Register to be read from
2571 * @val: Pointer to store read value
2572 *
2573 * A value of zero will be returned on success, a negative errno will
2574 * be returned in error cases.
2575 */
2576int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2577{
2578 int ret;
2579
2580 if (!IS_ALIGNED(reg, map->reg_stride))
2581 return -EINVAL;
2582
2583 map->lock(map->lock_arg);
2584
2585 ret = _regmap_read(map, reg, val);
2586
2587 map->unlock(map->lock_arg);
2588
2589 return ret;
2590}
2591EXPORT_SYMBOL_GPL(regmap_read);
2592
2593/**
2594 * regmap_raw_read() - Read raw data from the device
2595 *
2596 * @map: Register map to read from
2597 * @reg: First register to be read from
2598 * @val: Pointer to store read value
2599 * @val_len: Size of data to read
2600 *
2601 * A value of zero will be returned on success, a negative errno will
2602 * be returned in error cases.
2603 */
2604int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2605 size_t val_len)
2606{
2607 size_t val_bytes = map->format.val_bytes;
2608 size_t val_count = val_len / val_bytes;
2609 unsigned int v;
2610 int ret, i;
2611
2612 if (!map->bus)
2613 return -EINVAL;
2614 if (val_len % map->format.val_bytes)
2615 return -EINVAL;
2616 if (!IS_ALIGNED(reg, map->reg_stride))
2617 return -EINVAL;
2618 if (val_count == 0)
2619 return -EINVAL;
2620
2621 map->lock(map->lock_arg);
2622
2623 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2624 map->cache_type == REGCACHE_NONE) {
2625 size_t chunk_count, chunk_bytes;
2626 size_t chunk_regs = val_count;
2627
2628 if (!map->bus->read) {
2629 ret = -ENOTSUPP;
2630 goto out;
2631 }
2632
2633 if (map->use_single_read)
2634 chunk_regs = 1;
2635 else if (map->max_raw_read && val_len > map->max_raw_read)
2636 chunk_regs = map->max_raw_read / val_bytes;
2637
2638 chunk_count = val_count / chunk_regs;
2639 chunk_bytes = chunk_regs * val_bytes;
2640
2641 /* Read bytes that fit into whole chunks */
2642 for (i = 0; i < chunk_count; i++) {
2643 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2644 if (ret != 0)
2645 goto out;
2646
2647 reg += regmap_get_offset(map, chunk_regs);
2648 val += chunk_bytes;
2649 val_len -= chunk_bytes;
2650 }
2651
2652 /* Read remaining bytes */
2653 if (val_len) {
2654 ret = _regmap_raw_read(map, reg, val, val_len, false);
2655 if (ret != 0)
2656 goto out;
2657 }
2658 } else {
2659 /* Otherwise go word by word for the cache; should be low
2660 * cost as we expect to hit the cache.
2661 */
2662 for (i = 0; i < val_count; i++) {
2663 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2664 &v);
2665 if (ret != 0)
2666 goto out;
2667
2668 map->format.format_val(val + (i * val_bytes), v, 0);
2669 }
2670 }
2671
2672 out:
2673 map->unlock(map->lock_arg);
2674
2675 return ret;
2676}
2677EXPORT_SYMBOL_GPL(regmap_raw_read);
2678
2679/**
2680 * regmap_noinc_read(): Read data from a register without incrementing the
2681 * register number
2682 *
2683 * @map: Register map to read from
2684 * @reg: Register to read from
2685 * @val: Pointer to data buffer
2686 * @val_len: Length of output buffer in bytes.
2687 *
2688 * The regmap API usually assumes that bulk bus read operations will read a
2689 * range of registers. Some devices have certain registers for which a read
2690 * operation read will read from an internal FIFO.
2691 *
2692 * The target register must be volatile but registers after it can be
2693 * completely unrelated cacheable registers.
2694 *
2695 * This will attempt multiple reads as required to read val_len bytes.
2696 *
2697 * A value of zero will be returned on success, a negative errno will be
2698 * returned in error cases.
2699 */
2700int regmap_noinc_read(struct regmap *map, unsigned int reg,
2701 void *val, size_t val_len)
2702{
2703 size_t read_len;
2704 int ret;
2705
2706 if (!map->bus)
2707 return -EINVAL;
2708 if (!map->bus->read)
2709 return -ENOTSUPP;
2710 if (val_len % map->format.val_bytes)
2711 return -EINVAL;
2712 if (!IS_ALIGNED(reg, map->reg_stride))
2713 return -EINVAL;
2714 if (val_len == 0)
2715 return -EINVAL;
2716
2717 map->lock(map->lock_arg);
2718
2719 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2720 ret = -EINVAL;
2721 goto out_unlock;
2722 }
2723
2724 while (val_len) {
2725 if (map->max_raw_read && map->max_raw_read < val_len)
2726 read_len = map->max_raw_read;
2727 else
2728 read_len = val_len;
2729 ret = _regmap_raw_read(map, reg, val, read_len, true);
2730 if (ret)
2731 goto out_unlock;
2732 val = ((u8 *)val) + read_len;
2733 val_len -= read_len;
2734 }
2735
2736out_unlock:
2737 map->unlock(map->lock_arg);
2738 return ret;
2739}
2740EXPORT_SYMBOL_GPL(regmap_noinc_read);
2741
2742/**
2743 * regmap_field_read(): Read a value to a single register field
2744 *
2745 * @field: Register field to read from
2746 * @val: Pointer to store read value
2747 *
2748 * A value of zero will be returned on success, a negative errno will
2749 * be returned in error cases.
2750 */
2751int regmap_field_read(struct regmap_field *field, unsigned int *val)
2752{
2753 int ret;
2754 unsigned int reg_val;
2755 ret = regmap_read(field->regmap, field->reg, ®_val);
2756 if (ret != 0)
2757 return ret;
2758
2759 reg_val &= field->mask;
2760 reg_val >>= field->shift;
2761 *val = reg_val;
2762
2763 return ret;
2764}
2765EXPORT_SYMBOL_GPL(regmap_field_read);
2766
2767/**
2768 * regmap_fields_read() - Read a value to a single register field with port ID
2769 *
2770 * @field: Register field to read from
2771 * @id: port ID
2772 * @val: Pointer to store read value
2773 *
2774 * A value of zero will be returned on success, a negative errno will
2775 * be returned in error cases.
2776 */
2777int regmap_fields_read(struct regmap_field *field, unsigned int id,
2778 unsigned int *val)
2779{
2780 int ret;
2781 unsigned int reg_val;
2782
2783 if (id >= field->id_size)
2784 return -EINVAL;
2785
2786 ret = regmap_read(field->regmap,
2787 field->reg + (field->id_offset * id),
2788 ®_val);
2789 if (ret != 0)
2790 return ret;
2791
2792 reg_val &= field->mask;
2793 reg_val >>= field->shift;
2794 *val = reg_val;
2795
2796 return ret;
2797}
2798EXPORT_SYMBOL_GPL(regmap_fields_read);
2799
2800/**
2801 * regmap_bulk_read() - Read multiple registers from the device
2802 *
2803 * @map: Register map to read from
2804 * @reg: First register to be read from
2805 * @val: Pointer to store read value, in native register size for device
2806 * @val_count: Number of registers to read
2807 *
2808 * A value of zero will be returned on success, a negative errno will
2809 * be returned in error cases.
2810 */
2811int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2812 size_t val_count)
2813{
2814 int ret, i;
2815 size_t val_bytes = map->format.val_bytes;
2816 bool vol = regmap_volatile_range(map, reg, val_count);
2817
2818 if (!IS_ALIGNED(reg, map->reg_stride))
2819 return -EINVAL;
2820 if (val_count == 0)
2821 return -EINVAL;
2822
2823 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2824 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2825 if (ret != 0)
2826 return ret;
2827
2828 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2829 map->format.parse_inplace(val + i);
2830 } else {
2831#ifdef CONFIG_64BIT
2832 u64 *u64 = val;
2833#endif
2834 u32 *u32 = val;
2835 u16 *u16 = val;
2836 u8 *u8 = val;
2837
2838 map->lock(map->lock_arg);
2839
2840 for (i = 0; i < val_count; i++) {
2841 unsigned int ival;
2842
2843 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844 &ival);
2845 if (ret != 0)
2846 goto out;
2847
2848 switch (map->format.val_bytes) {
2849#ifdef CONFIG_64BIT
2850 case 8:
2851 u64[i] = ival;
2852 break;
2853#endif
2854 case 4:
2855 u32[i] = ival;
2856 break;
2857 case 2:
2858 u16[i] = ival;
2859 break;
2860 case 1:
2861 u8[i] = ival;
2862 break;
2863 default:
2864 ret = -EINVAL;
2865 goto out;
2866 }
2867 }
2868
2869out:
2870 map->unlock(map->lock_arg);
2871 }
2872
2873 return ret;
2874}
2875EXPORT_SYMBOL_GPL(regmap_bulk_read);
2876
2877static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2878 unsigned int mask, unsigned int val,
2879 bool *change, bool force_write)
2880{
2881 int ret;
2882 unsigned int tmp, orig;
2883
2884 if (change)
2885 *change = false;
2886
2887 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2888 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2889 if (ret == 0 && change)
2890 *change = true;
2891 } else {
2892 ret = _regmap_read(map, reg, &orig);
2893 if (ret != 0)
2894 return ret;
2895
2896 tmp = orig & ~mask;
2897 tmp |= val & mask;
2898
2899 if (force_write || (tmp != orig)) {
2900 ret = _regmap_write(map, reg, tmp);
2901 if (ret == 0 && change)
2902 *change = true;
2903 }
2904 }
2905
2906 return ret;
2907}
2908
2909/**
2910 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2911 *
2912 * @map: Register map to update
2913 * @reg: Register to update
2914 * @mask: Bitmask to change
2915 * @val: New value for bitmask
2916 * @change: Boolean indicating if a write was done
2917 * @async: Boolean indicating asynchronously
2918 * @force: Boolean indicating use force update
2919 *
2920 * Perform a read/modify/write cycle on a register map with change, async, force
2921 * options.
2922 *
2923 * If async is true:
2924 *
2925 * With most buses the read must be done synchronously so this is most useful
2926 * for devices with a cache which do not need to interact with the hardware to
2927 * determine the current register value.
2928 *
2929 * Returns zero for success, a negative number on error.
2930 */
2931int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2932 unsigned int mask, unsigned int val,
2933 bool *change, bool async, bool force)
2934{
2935 int ret;
2936
2937 map->lock(map->lock_arg);
2938
2939 map->async = async;
2940
2941 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2942
2943 map->async = false;
2944
2945 map->unlock(map->lock_arg);
2946
2947 return ret;
2948}
2949EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2950
2951/**
2952 * regmap_test_bits() - Check if all specified bits are set in a register.
2953 *
2954 * @map: Register map to operate on
2955 * @reg: Register to read from
2956 * @bits: Bits to test
2957 *
2958 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2959 * bits are set and a negative error number if the underlying regmap_read()
2960 * fails.
2961 */
2962int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2963{
2964 unsigned int val, ret;
2965
2966 ret = regmap_read(map, reg, &val);
2967 if (ret)
2968 return ret;
2969
2970 return (val & bits) == bits;
2971}
2972EXPORT_SYMBOL_GPL(regmap_test_bits);
2973
2974void regmap_async_complete_cb(struct regmap_async *async, int ret)
2975{
2976 struct regmap *map = async->map;
2977 bool wake;
2978
2979 trace_regmap_async_io_complete(map);
2980
2981 spin_lock(&map->async_lock);
2982 list_move(&async->list, &map->async_free);
2983 wake = list_empty(&map->async_list);
2984
2985 if (ret != 0)
2986 map->async_ret = ret;
2987
2988 spin_unlock(&map->async_lock);
2989
2990 if (wake)
2991 wake_up(&map->async_waitq);
2992}
2993EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2994
2995static int regmap_async_is_done(struct regmap *map)
2996{
2997 unsigned long flags;
2998 int ret;
2999
3000 spin_lock_irqsave(&map->async_lock, flags);
3001 ret = list_empty(&map->async_list);
3002 spin_unlock_irqrestore(&map->async_lock, flags);
3003
3004 return ret;
3005}
3006
3007/**
3008 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3009 *
3010 * @map: Map to operate on.
3011 *
3012 * Blocks until any pending asynchronous I/O has completed. Returns
3013 * an error code for any failed I/O operations.
3014 */
3015int regmap_async_complete(struct regmap *map)
3016{
3017 unsigned long flags;
3018 int ret;
3019
3020 /* Nothing to do with no async support */
3021 if (!map->bus || !map->bus->async_write)
3022 return 0;
3023
3024 trace_regmap_async_complete_start(map);
3025
3026 wait_event(map->async_waitq, regmap_async_is_done(map));
3027
3028 spin_lock_irqsave(&map->async_lock, flags);
3029 ret = map->async_ret;
3030 map->async_ret = 0;
3031 spin_unlock_irqrestore(&map->async_lock, flags);
3032
3033 trace_regmap_async_complete_done(map);
3034
3035 return ret;
3036}
3037EXPORT_SYMBOL_GPL(regmap_async_complete);
3038
3039/**
3040 * regmap_register_patch - Register and apply register updates to be applied
3041 * on device initialistion
3042 *
3043 * @map: Register map to apply updates to.
3044 * @regs: Values to update.
3045 * @num_regs: Number of entries in regs.
3046 *
3047 * Register a set of register updates to be applied to the device
3048 * whenever the device registers are synchronised with the cache and
3049 * apply them immediately. Typically this is used to apply
3050 * corrections to be applied to the device defaults on startup, such
3051 * as the updates some vendors provide to undocumented registers.
3052 *
3053 * The caller must ensure that this function cannot be called
3054 * concurrently with either itself or regcache_sync().
3055 */
3056int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3057 int num_regs)
3058{
3059 struct reg_sequence *p;
3060 int ret;
3061 bool bypass;
3062
3063 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3064 num_regs))
3065 return 0;
3066
3067 p = krealloc(map->patch,
3068 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3069 GFP_KERNEL);
3070 if (p) {
3071 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3072 map->patch = p;
3073 map->patch_regs += num_regs;
3074 } else {
3075 return -ENOMEM;
3076 }
3077
3078 map->lock(map->lock_arg);
3079
3080 bypass = map->cache_bypass;
3081
3082 map->cache_bypass = true;
3083 map->async = true;
3084
3085 ret = _regmap_multi_reg_write(map, regs, num_regs);
3086
3087 map->async = false;
3088 map->cache_bypass = bypass;
3089
3090 map->unlock(map->lock_arg);
3091
3092 regmap_async_complete(map);
3093
3094 return ret;
3095}
3096EXPORT_SYMBOL_GPL(regmap_register_patch);
3097
3098/**
3099 * regmap_get_val_bytes() - Report the size of a register value
3100 *
3101 * @map: Register map to operate on.
3102 *
3103 * Report the size of a register value, mainly intended to for use by
3104 * generic infrastructure built on top of regmap.
3105 */
3106int regmap_get_val_bytes(struct regmap *map)
3107{
3108 if (map->format.format_write)
3109 return -EINVAL;
3110
3111 return map->format.val_bytes;
3112}
3113EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3114
3115/**
3116 * regmap_get_max_register() - Report the max register value
3117 *
3118 * @map: Register map to operate on.
3119 *
3120 * Report the max register value, mainly intended to for use by
3121 * generic infrastructure built on top of regmap.
3122 */
3123int regmap_get_max_register(struct regmap *map)
3124{
3125 return map->max_register ? map->max_register : -EINVAL;
3126}
3127EXPORT_SYMBOL_GPL(regmap_get_max_register);
3128
3129/**
3130 * regmap_get_reg_stride() - Report the register address stride
3131 *
3132 * @map: Register map to operate on.
3133 *
3134 * Report the register address stride, mainly intended to for use by
3135 * generic infrastructure built on top of regmap.
3136 */
3137int regmap_get_reg_stride(struct regmap *map)
3138{
3139 return map->reg_stride;
3140}
3141EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3142
3143int regmap_parse_val(struct regmap *map, const void *buf,
3144 unsigned int *val)
3145{
3146 if (!map->format.parse_val)
3147 return -EINVAL;
3148
3149 *val = map->format.parse_val(buf);
3150
3151 return 0;
3152}
3153EXPORT_SYMBOL_GPL(regmap_parse_val);
3154
3155static int __init regmap_initcall(void)
3156{
3157 regmap_debugfs_initcall();
3158
3159 return 0;
3160}
3161postcore_initcall(regmap_initcall);
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/of.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20
21#define CREATE_TRACE_POINTS
22#include "trace.h"
23
24#include "internal.h"
25
26/*
27 * Sometimes for failures during very early init the trace
28 * infrastructure isn't available early enough to be used. For this
29 * sort of problem defining LOG_DEVICE will add printks for basic
30 * register I/O on a specific device.
31 */
32#undef LOG_DEVICE
33
34#ifdef LOG_DEVICE
35static inline bool regmap_should_log(struct regmap *map)
36{
37 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
38}
39#else
40static inline bool regmap_should_log(struct regmap *map) { return false; }
41#endif
42
43
44static int _regmap_update_bits(struct regmap *map, unsigned int reg,
45 unsigned int mask, unsigned int val,
46 bool *change, bool force_write);
47
48static int _regmap_bus_reg_read(void *context, unsigned int reg,
49 unsigned int *val);
50static int _regmap_bus_read(void *context, unsigned int reg,
51 unsigned int *val);
52static int _regmap_bus_formatted_write(void *context, unsigned int reg,
53 unsigned int val);
54static int _regmap_bus_reg_write(void *context, unsigned int reg,
55 unsigned int val);
56static int _regmap_bus_raw_write(void *context, unsigned int reg,
57 unsigned int val);
58
59bool regmap_reg_in_ranges(unsigned int reg,
60 const struct regmap_range *ranges,
61 unsigned int nranges)
62{
63 const struct regmap_range *r;
64 int i;
65
66 for (i = 0, r = ranges; i < nranges; i++, r++)
67 if (regmap_reg_in_range(reg, r))
68 return true;
69 return false;
70}
71EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
72
73bool regmap_check_range_table(struct regmap *map, unsigned int reg,
74 const struct regmap_access_table *table)
75{
76 /* Check "no ranges" first */
77 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
78 return false;
79
80 /* In case zero "yes ranges" are supplied, any reg is OK */
81 if (!table->n_yes_ranges)
82 return true;
83
84 return regmap_reg_in_ranges(reg, table->yes_ranges,
85 table->n_yes_ranges);
86}
87EXPORT_SYMBOL_GPL(regmap_check_range_table);
88
89bool regmap_writeable(struct regmap *map, unsigned int reg)
90{
91 if (map->max_register && reg > map->max_register)
92 return false;
93
94 if (map->writeable_reg)
95 return map->writeable_reg(map->dev, reg);
96
97 if (map->wr_table)
98 return regmap_check_range_table(map, reg, map->wr_table);
99
100 return true;
101}
102
103bool regmap_cached(struct regmap *map, unsigned int reg)
104{
105 int ret;
106 unsigned int val;
107
108 if (map->cache_type == REGCACHE_NONE)
109 return false;
110
111 if (!map->cache_ops)
112 return false;
113
114 if (map->max_register && reg > map->max_register)
115 return false;
116
117 map->lock(map->lock_arg);
118 ret = regcache_read(map, reg, &val);
119 map->unlock(map->lock_arg);
120 if (ret)
121 return false;
122
123 return true;
124}
125
126bool regmap_readable(struct regmap *map, unsigned int reg)
127{
128 if (!map->reg_read)
129 return false;
130
131 if (map->max_register && reg > map->max_register)
132 return false;
133
134 if (map->format.format_write)
135 return false;
136
137 if (map->readable_reg)
138 return map->readable_reg(map->dev, reg);
139
140 if (map->rd_table)
141 return regmap_check_range_table(map, reg, map->rd_table);
142
143 return true;
144}
145
146bool regmap_volatile(struct regmap *map, unsigned int reg)
147{
148 if (!map->format.format_write && !regmap_readable(map, reg))
149 return false;
150
151 if (map->volatile_reg)
152 return map->volatile_reg(map->dev, reg);
153
154 if (map->volatile_table)
155 return regmap_check_range_table(map, reg, map->volatile_table);
156
157 if (map->cache_ops)
158 return false;
159 else
160 return true;
161}
162
163bool regmap_precious(struct regmap *map, unsigned int reg)
164{
165 if (!regmap_readable(map, reg))
166 return false;
167
168 if (map->precious_reg)
169 return map->precious_reg(map->dev, reg);
170
171 if (map->precious_table)
172 return regmap_check_range_table(map, reg, map->precious_table);
173
174 return false;
175}
176
177bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
178{
179 if (map->writeable_noinc_reg)
180 return map->writeable_noinc_reg(map->dev, reg);
181
182 if (map->wr_noinc_table)
183 return regmap_check_range_table(map, reg, map->wr_noinc_table);
184
185 return true;
186}
187
188bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
189{
190 if (map->readable_noinc_reg)
191 return map->readable_noinc_reg(map->dev, reg);
192
193 if (map->rd_noinc_table)
194 return regmap_check_range_table(map, reg, map->rd_noinc_table);
195
196 return true;
197}
198
199static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
200 size_t num)
201{
202 unsigned int i;
203
204 for (i = 0; i < num; i++)
205 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
206 return false;
207
208 return true;
209}
210
211static void regmap_format_2_6_write(struct regmap *map,
212 unsigned int reg, unsigned int val)
213{
214 u8 *out = map->work_buf;
215
216 *out = (reg << 6) | val;
217}
218
219static void regmap_format_4_12_write(struct regmap *map,
220 unsigned int reg, unsigned int val)
221{
222 __be16 *out = map->work_buf;
223 *out = cpu_to_be16((reg << 12) | val);
224}
225
226static void regmap_format_7_9_write(struct regmap *map,
227 unsigned int reg, unsigned int val)
228{
229 __be16 *out = map->work_buf;
230 *out = cpu_to_be16((reg << 9) | val);
231}
232
233static void regmap_format_10_14_write(struct regmap *map,
234 unsigned int reg, unsigned int val)
235{
236 u8 *out = map->work_buf;
237
238 out[2] = val;
239 out[1] = (val >> 8) | (reg << 6);
240 out[0] = reg >> 2;
241}
242
243static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
244{
245 u8 *b = buf;
246
247 b[0] = val << shift;
248}
249
250static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
251{
252 __be16 *b = buf;
253
254 b[0] = cpu_to_be16(val << shift);
255}
256
257static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
258{
259 __le16 *b = buf;
260
261 b[0] = cpu_to_le16(val << shift);
262}
263
264static void regmap_format_16_native(void *buf, unsigned int val,
265 unsigned int shift)
266{
267 *(u16 *)buf = val << shift;
268}
269
270static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
271{
272 u8 *b = buf;
273
274 val <<= shift;
275
276 b[0] = val >> 16;
277 b[1] = val >> 8;
278 b[2] = val;
279}
280
281static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
282{
283 __be32 *b = buf;
284
285 b[0] = cpu_to_be32(val << shift);
286}
287
288static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
289{
290 __le32 *b = buf;
291
292 b[0] = cpu_to_le32(val << shift);
293}
294
295static void regmap_format_32_native(void *buf, unsigned int val,
296 unsigned int shift)
297{
298 *(u32 *)buf = val << shift;
299}
300
301#ifdef CONFIG_64BIT
302static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
303{
304 __be64 *b = buf;
305
306 b[0] = cpu_to_be64((u64)val << shift);
307}
308
309static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
310{
311 __le64 *b = buf;
312
313 b[0] = cpu_to_le64((u64)val << shift);
314}
315
316static void regmap_format_64_native(void *buf, unsigned int val,
317 unsigned int shift)
318{
319 *(u64 *)buf = (u64)val << shift;
320}
321#endif
322
323static void regmap_parse_inplace_noop(void *buf)
324{
325}
326
327static unsigned int regmap_parse_8(const void *buf)
328{
329 const u8 *b = buf;
330
331 return b[0];
332}
333
334static unsigned int regmap_parse_16_be(const void *buf)
335{
336 const __be16 *b = buf;
337
338 return be16_to_cpu(b[0]);
339}
340
341static unsigned int regmap_parse_16_le(const void *buf)
342{
343 const __le16 *b = buf;
344
345 return le16_to_cpu(b[0]);
346}
347
348static void regmap_parse_16_be_inplace(void *buf)
349{
350 __be16 *b = buf;
351
352 b[0] = be16_to_cpu(b[0]);
353}
354
355static void regmap_parse_16_le_inplace(void *buf)
356{
357 __le16 *b = buf;
358
359 b[0] = le16_to_cpu(b[0]);
360}
361
362static unsigned int regmap_parse_16_native(const void *buf)
363{
364 return *(u16 *)buf;
365}
366
367static unsigned int regmap_parse_24(const void *buf)
368{
369 const u8 *b = buf;
370 unsigned int ret = b[2];
371 ret |= ((unsigned int)b[1]) << 8;
372 ret |= ((unsigned int)b[0]) << 16;
373
374 return ret;
375}
376
377static unsigned int regmap_parse_32_be(const void *buf)
378{
379 const __be32 *b = buf;
380
381 return be32_to_cpu(b[0]);
382}
383
384static unsigned int regmap_parse_32_le(const void *buf)
385{
386 const __le32 *b = buf;
387
388 return le32_to_cpu(b[0]);
389}
390
391static void regmap_parse_32_be_inplace(void *buf)
392{
393 __be32 *b = buf;
394
395 b[0] = be32_to_cpu(b[0]);
396}
397
398static void regmap_parse_32_le_inplace(void *buf)
399{
400 __le32 *b = buf;
401
402 b[0] = le32_to_cpu(b[0]);
403}
404
405static unsigned int regmap_parse_32_native(const void *buf)
406{
407 return *(u32 *)buf;
408}
409
410#ifdef CONFIG_64BIT
411static unsigned int regmap_parse_64_be(const void *buf)
412{
413 const __be64 *b = buf;
414
415 return be64_to_cpu(b[0]);
416}
417
418static unsigned int regmap_parse_64_le(const void *buf)
419{
420 const __le64 *b = buf;
421
422 return le64_to_cpu(b[0]);
423}
424
425static void regmap_parse_64_be_inplace(void *buf)
426{
427 __be64 *b = buf;
428
429 b[0] = be64_to_cpu(b[0]);
430}
431
432static void regmap_parse_64_le_inplace(void *buf)
433{
434 __le64 *b = buf;
435
436 b[0] = le64_to_cpu(b[0]);
437}
438
439static unsigned int regmap_parse_64_native(const void *buf)
440{
441 return *(u64 *)buf;
442}
443#endif
444
445static void regmap_lock_hwlock(void *__map)
446{
447 struct regmap *map = __map;
448
449 hwspin_lock_timeout(map->hwlock, UINT_MAX);
450}
451
452static void regmap_lock_hwlock_irq(void *__map)
453{
454 struct regmap *map = __map;
455
456 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
457}
458
459static void regmap_lock_hwlock_irqsave(void *__map)
460{
461 struct regmap *map = __map;
462
463 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
464 &map->spinlock_flags);
465}
466
467static void regmap_unlock_hwlock(void *__map)
468{
469 struct regmap *map = __map;
470
471 hwspin_unlock(map->hwlock);
472}
473
474static void regmap_unlock_hwlock_irq(void *__map)
475{
476 struct regmap *map = __map;
477
478 hwspin_unlock_irq(map->hwlock);
479}
480
481static void regmap_unlock_hwlock_irqrestore(void *__map)
482{
483 struct regmap *map = __map;
484
485 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
486}
487
488static void regmap_lock_unlock_none(void *__map)
489{
490
491}
492
493static void regmap_lock_mutex(void *__map)
494{
495 struct regmap *map = __map;
496 mutex_lock(&map->mutex);
497}
498
499static void regmap_unlock_mutex(void *__map)
500{
501 struct regmap *map = __map;
502 mutex_unlock(&map->mutex);
503}
504
505static void regmap_lock_spinlock(void *__map)
506__acquires(&map->spinlock)
507{
508 struct regmap *map = __map;
509 unsigned long flags;
510
511 spin_lock_irqsave(&map->spinlock, flags);
512 map->spinlock_flags = flags;
513}
514
515static void regmap_unlock_spinlock(void *__map)
516__releases(&map->spinlock)
517{
518 struct regmap *map = __map;
519 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
520}
521
522static void dev_get_regmap_release(struct device *dev, void *res)
523{
524 /*
525 * We don't actually have anything to do here; the goal here
526 * is not to manage the regmap but to provide a simple way to
527 * get the regmap back given a struct device.
528 */
529}
530
531static bool _regmap_range_add(struct regmap *map,
532 struct regmap_range_node *data)
533{
534 struct rb_root *root = &map->range_tree;
535 struct rb_node **new = &(root->rb_node), *parent = NULL;
536
537 while (*new) {
538 struct regmap_range_node *this =
539 rb_entry(*new, struct regmap_range_node, node);
540
541 parent = *new;
542 if (data->range_max < this->range_min)
543 new = &((*new)->rb_left);
544 else if (data->range_min > this->range_max)
545 new = &((*new)->rb_right);
546 else
547 return false;
548 }
549
550 rb_link_node(&data->node, parent, new);
551 rb_insert_color(&data->node, root);
552
553 return true;
554}
555
556static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
557 unsigned int reg)
558{
559 struct rb_node *node = map->range_tree.rb_node;
560
561 while (node) {
562 struct regmap_range_node *this =
563 rb_entry(node, struct regmap_range_node, node);
564
565 if (reg < this->range_min)
566 node = node->rb_left;
567 else if (reg > this->range_max)
568 node = node->rb_right;
569 else
570 return this;
571 }
572
573 return NULL;
574}
575
576static void regmap_range_exit(struct regmap *map)
577{
578 struct rb_node *next;
579 struct regmap_range_node *range_node;
580
581 next = rb_first(&map->range_tree);
582 while (next) {
583 range_node = rb_entry(next, struct regmap_range_node, node);
584 next = rb_next(&range_node->node);
585 rb_erase(&range_node->node, &map->range_tree);
586 kfree(range_node);
587 }
588
589 kfree(map->selector_work_buf);
590}
591
592int regmap_attach_dev(struct device *dev, struct regmap *map,
593 const struct regmap_config *config)
594{
595 struct regmap **m;
596
597 map->dev = dev;
598
599 regmap_debugfs_init(map, config->name);
600
601 /* Add a devres resource for dev_get_regmap() */
602 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
603 if (!m) {
604 regmap_debugfs_exit(map);
605 return -ENOMEM;
606 }
607 *m = map;
608 devres_add(dev, m);
609
610 return 0;
611}
612EXPORT_SYMBOL_GPL(regmap_attach_dev);
613
614static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
615 const struct regmap_config *config)
616{
617 enum regmap_endian endian;
618
619 /* Retrieve the endianness specification from the regmap config */
620 endian = config->reg_format_endian;
621
622 /* If the regmap config specified a non-default value, use that */
623 if (endian != REGMAP_ENDIAN_DEFAULT)
624 return endian;
625
626 /* Retrieve the endianness specification from the bus config */
627 if (bus && bus->reg_format_endian_default)
628 endian = bus->reg_format_endian_default;
629
630 /* If the bus specified a non-default value, use that */
631 if (endian != REGMAP_ENDIAN_DEFAULT)
632 return endian;
633
634 /* Use this if no other value was found */
635 return REGMAP_ENDIAN_BIG;
636}
637
638enum regmap_endian regmap_get_val_endian(struct device *dev,
639 const struct regmap_bus *bus,
640 const struct regmap_config *config)
641{
642 struct device_node *np;
643 enum regmap_endian endian;
644
645 /* Retrieve the endianness specification from the regmap config */
646 endian = config->val_format_endian;
647
648 /* If the regmap config specified a non-default value, use that */
649 if (endian != REGMAP_ENDIAN_DEFAULT)
650 return endian;
651
652 /* If the dev and dev->of_node exist try to get endianness from DT */
653 if (dev && dev->of_node) {
654 np = dev->of_node;
655
656 /* Parse the device's DT node for an endianness specification */
657 if (of_property_read_bool(np, "big-endian"))
658 endian = REGMAP_ENDIAN_BIG;
659 else if (of_property_read_bool(np, "little-endian"))
660 endian = REGMAP_ENDIAN_LITTLE;
661 else if (of_property_read_bool(np, "native-endian"))
662 endian = REGMAP_ENDIAN_NATIVE;
663
664 /* If the endianness was specified in DT, use that */
665 if (endian != REGMAP_ENDIAN_DEFAULT)
666 return endian;
667 }
668
669 /* Retrieve the endianness specification from the bus config */
670 if (bus && bus->val_format_endian_default)
671 endian = bus->val_format_endian_default;
672
673 /* If the bus specified a non-default value, use that */
674 if (endian != REGMAP_ENDIAN_DEFAULT)
675 return endian;
676
677 /* Use this if no other value was found */
678 return REGMAP_ENDIAN_BIG;
679}
680EXPORT_SYMBOL_GPL(regmap_get_val_endian);
681
682struct regmap *__regmap_init(struct device *dev,
683 const struct regmap_bus *bus,
684 void *bus_context,
685 const struct regmap_config *config,
686 struct lock_class_key *lock_key,
687 const char *lock_name)
688{
689 struct regmap *map;
690 int ret = -EINVAL;
691 enum regmap_endian reg_endian, val_endian;
692 int i, j;
693
694 if (!config)
695 goto err;
696
697 map = kzalloc(sizeof(*map), GFP_KERNEL);
698 if (map == NULL) {
699 ret = -ENOMEM;
700 goto err;
701 }
702
703 if (config->name) {
704 map->name = kstrdup_const(config->name, GFP_KERNEL);
705 if (!map->name) {
706 ret = -ENOMEM;
707 goto err_map;
708 }
709 }
710
711 if (config->disable_locking) {
712 map->lock = map->unlock = regmap_lock_unlock_none;
713 regmap_debugfs_disable(map);
714 } else if (config->lock && config->unlock) {
715 map->lock = config->lock;
716 map->unlock = config->unlock;
717 map->lock_arg = config->lock_arg;
718 } else if (config->use_hwlock) {
719 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
720 if (!map->hwlock) {
721 ret = -ENXIO;
722 goto err_name;
723 }
724
725 switch (config->hwlock_mode) {
726 case HWLOCK_IRQSTATE:
727 map->lock = regmap_lock_hwlock_irqsave;
728 map->unlock = regmap_unlock_hwlock_irqrestore;
729 break;
730 case HWLOCK_IRQ:
731 map->lock = regmap_lock_hwlock_irq;
732 map->unlock = regmap_unlock_hwlock_irq;
733 break;
734 default:
735 map->lock = regmap_lock_hwlock;
736 map->unlock = regmap_unlock_hwlock;
737 break;
738 }
739
740 map->lock_arg = map;
741 } else {
742 if ((bus && bus->fast_io) ||
743 config->fast_io) {
744 spin_lock_init(&map->spinlock);
745 map->lock = regmap_lock_spinlock;
746 map->unlock = regmap_unlock_spinlock;
747 lockdep_set_class_and_name(&map->spinlock,
748 lock_key, lock_name);
749 } else {
750 mutex_init(&map->mutex);
751 map->lock = regmap_lock_mutex;
752 map->unlock = regmap_unlock_mutex;
753 lockdep_set_class_and_name(&map->mutex,
754 lock_key, lock_name);
755 }
756 map->lock_arg = map;
757 }
758
759 /*
760 * When we write in fast-paths with regmap_bulk_write() don't allocate
761 * scratch buffers with sleeping allocations.
762 */
763 if ((bus && bus->fast_io) || config->fast_io)
764 map->alloc_flags = GFP_ATOMIC;
765 else
766 map->alloc_flags = GFP_KERNEL;
767
768 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
769 map->format.pad_bytes = config->pad_bits / 8;
770 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
771 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
772 config->val_bits + config->pad_bits, 8);
773 map->reg_shift = config->pad_bits % 8;
774 if (config->reg_stride)
775 map->reg_stride = config->reg_stride;
776 else
777 map->reg_stride = 1;
778 if (is_power_of_2(map->reg_stride))
779 map->reg_stride_order = ilog2(map->reg_stride);
780 else
781 map->reg_stride_order = -1;
782 map->use_single_read = config->use_single_read || !bus || !bus->read;
783 map->use_single_write = config->use_single_write || !bus || !bus->write;
784 map->can_multi_write = config->can_multi_write && bus && bus->write;
785 if (bus) {
786 map->max_raw_read = bus->max_raw_read;
787 map->max_raw_write = bus->max_raw_write;
788 }
789 map->dev = dev;
790 map->bus = bus;
791 map->bus_context = bus_context;
792 map->max_register = config->max_register;
793 map->wr_table = config->wr_table;
794 map->rd_table = config->rd_table;
795 map->volatile_table = config->volatile_table;
796 map->precious_table = config->precious_table;
797 map->wr_noinc_table = config->wr_noinc_table;
798 map->rd_noinc_table = config->rd_noinc_table;
799 map->writeable_reg = config->writeable_reg;
800 map->readable_reg = config->readable_reg;
801 map->volatile_reg = config->volatile_reg;
802 map->precious_reg = config->precious_reg;
803 map->writeable_noinc_reg = config->writeable_noinc_reg;
804 map->readable_noinc_reg = config->readable_noinc_reg;
805 map->cache_type = config->cache_type;
806
807 spin_lock_init(&map->async_lock);
808 INIT_LIST_HEAD(&map->async_list);
809 INIT_LIST_HEAD(&map->async_free);
810 init_waitqueue_head(&map->async_waitq);
811
812 if (config->read_flag_mask ||
813 config->write_flag_mask ||
814 config->zero_flag_mask) {
815 map->read_flag_mask = config->read_flag_mask;
816 map->write_flag_mask = config->write_flag_mask;
817 } else if (bus) {
818 map->read_flag_mask = bus->read_flag_mask;
819 }
820
821 if (!bus) {
822 map->reg_read = config->reg_read;
823 map->reg_write = config->reg_write;
824
825 map->defer_caching = false;
826 goto skip_format_initialization;
827 } else if (!bus->read || !bus->write) {
828 map->reg_read = _regmap_bus_reg_read;
829 map->reg_write = _regmap_bus_reg_write;
830
831 map->defer_caching = false;
832 goto skip_format_initialization;
833 } else {
834 map->reg_read = _regmap_bus_read;
835 map->reg_update_bits = bus->reg_update_bits;
836 }
837
838 reg_endian = regmap_get_reg_endian(bus, config);
839 val_endian = regmap_get_val_endian(dev, bus, config);
840
841 switch (config->reg_bits + map->reg_shift) {
842 case 2:
843 switch (config->val_bits) {
844 case 6:
845 map->format.format_write = regmap_format_2_6_write;
846 break;
847 default:
848 goto err_hwlock;
849 }
850 break;
851
852 case 4:
853 switch (config->val_bits) {
854 case 12:
855 map->format.format_write = regmap_format_4_12_write;
856 break;
857 default:
858 goto err_hwlock;
859 }
860 break;
861
862 case 7:
863 switch (config->val_bits) {
864 case 9:
865 map->format.format_write = regmap_format_7_9_write;
866 break;
867 default:
868 goto err_hwlock;
869 }
870 break;
871
872 case 10:
873 switch (config->val_bits) {
874 case 14:
875 map->format.format_write = regmap_format_10_14_write;
876 break;
877 default:
878 goto err_hwlock;
879 }
880 break;
881
882 case 8:
883 map->format.format_reg = regmap_format_8;
884 break;
885
886 case 16:
887 switch (reg_endian) {
888 case REGMAP_ENDIAN_BIG:
889 map->format.format_reg = regmap_format_16_be;
890 break;
891 case REGMAP_ENDIAN_LITTLE:
892 map->format.format_reg = regmap_format_16_le;
893 break;
894 case REGMAP_ENDIAN_NATIVE:
895 map->format.format_reg = regmap_format_16_native;
896 break;
897 default:
898 goto err_hwlock;
899 }
900 break;
901
902 case 24:
903 if (reg_endian != REGMAP_ENDIAN_BIG)
904 goto err_hwlock;
905 map->format.format_reg = regmap_format_24;
906 break;
907
908 case 32:
909 switch (reg_endian) {
910 case REGMAP_ENDIAN_BIG:
911 map->format.format_reg = regmap_format_32_be;
912 break;
913 case REGMAP_ENDIAN_LITTLE:
914 map->format.format_reg = regmap_format_32_le;
915 break;
916 case REGMAP_ENDIAN_NATIVE:
917 map->format.format_reg = regmap_format_32_native;
918 break;
919 default:
920 goto err_hwlock;
921 }
922 break;
923
924#ifdef CONFIG_64BIT
925 case 64:
926 switch (reg_endian) {
927 case REGMAP_ENDIAN_BIG:
928 map->format.format_reg = regmap_format_64_be;
929 break;
930 case REGMAP_ENDIAN_LITTLE:
931 map->format.format_reg = regmap_format_64_le;
932 break;
933 case REGMAP_ENDIAN_NATIVE:
934 map->format.format_reg = regmap_format_64_native;
935 break;
936 default:
937 goto err_hwlock;
938 }
939 break;
940#endif
941
942 default:
943 goto err_hwlock;
944 }
945
946 if (val_endian == REGMAP_ENDIAN_NATIVE)
947 map->format.parse_inplace = regmap_parse_inplace_noop;
948
949 switch (config->val_bits) {
950 case 8:
951 map->format.format_val = regmap_format_8;
952 map->format.parse_val = regmap_parse_8;
953 map->format.parse_inplace = regmap_parse_inplace_noop;
954 break;
955 case 16:
956 switch (val_endian) {
957 case REGMAP_ENDIAN_BIG:
958 map->format.format_val = regmap_format_16_be;
959 map->format.parse_val = regmap_parse_16_be;
960 map->format.parse_inplace = regmap_parse_16_be_inplace;
961 break;
962 case REGMAP_ENDIAN_LITTLE:
963 map->format.format_val = regmap_format_16_le;
964 map->format.parse_val = regmap_parse_16_le;
965 map->format.parse_inplace = regmap_parse_16_le_inplace;
966 break;
967 case REGMAP_ENDIAN_NATIVE:
968 map->format.format_val = regmap_format_16_native;
969 map->format.parse_val = regmap_parse_16_native;
970 break;
971 default:
972 goto err_hwlock;
973 }
974 break;
975 case 24:
976 if (val_endian != REGMAP_ENDIAN_BIG)
977 goto err_hwlock;
978 map->format.format_val = regmap_format_24;
979 map->format.parse_val = regmap_parse_24;
980 break;
981 case 32:
982 switch (val_endian) {
983 case REGMAP_ENDIAN_BIG:
984 map->format.format_val = regmap_format_32_be;
985 map->format.parse_val = regmap_parse_32_be;
986 map->format.parse_inplace = regmap_parse_32_be_inplace;
987 break;
988 case REGMAP_ENDIAN_LITTLE:
989 map->format.format_val = regmap_format_32_le;
990 map->format.parse_val = regmap_parse_32_le;
991 map->format.parse_inplace = regmap_parse_32_le_inplace;
992 break;
993 case REGMAP_ENDIAN_NATIVE:
994 map->format.format_val = regmap_format_32_native;
995 map->format.parse_val = regmap_parse_32_native;
996 break;
997 default:
998 goto err_hwlock;
999 }
1000 break;
1001#ifdef CONFIG_64BIT
1002 case 64:
1003 switch (val_endian) {
1004 case REGMAP_ENDIAN_BIG:
1005 map->format.format_val = regmap_format_64_be;
1006 map->format.parse_val = regmap_parse_64_be;
1007 map->format.parse_inplace = regmap_parse_64_be_inplace;
1008 break;
1009 case REGMAP_ENDIAN_LITTLE:
1010 map->format.format_val = regmap_format_64_le;
1011 map->format.parse_val = regmap_parse_64_le;
1012 map->format.parse_inplace = regmap_parse_64_le_inplace;
1013 break;
1014 case REGMAP_ENDIAN_NATIVE:
1015 map->format.format_val = regmap_format_64_native;
1016 map->format.parse_val = regmap_parse_64_native;
1017 break;
1018 default:
1019 goto err_hwlock;
1020 }
1021 break;
1022#endif
1023 }
1024
1025 if (map->format.format_write) {
1026 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1027 (val_endian != REGMAP_ENDIAN_BIG))
1028 goto err_hwlock;
1029 map->use_single_write = true;
1030 }
1031
1032 if (!map->format.format_write &&
1033 !(map->format.format_reg && map->format.format_val))
1034 goto err_hwlock;
1035
1036 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1037 if (map->work_buf == NULL) {
1038 ret = -ENOMEM;
1039 goto err_hwlock;
1040 }
1041
1042 if (map->format.format_write) {
1043 map->defer_caching = false;
1044 map->reg_write = _regmap_bus_formatted_write;
1045 } else if (map->format.format_val) {
1046 map->defer_caching = true;
1047 map->reg_write = _regmap_bus_raw_write;
1048 }
1049
1050skip_format_initialization:
1051
1052 map->range_tree = RB_ROOT;
1053 for (i = 0; i < config->num_ranges; i++) {
1054 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1055 struct regmap_range_node *new;
1056
1057 /* Sanity check */
1058 if (range_cfg->range_max < range_cfg->range_min) {
1059 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1060 range_cfg->range_max, range_cfg->range_min);
1061 goto err_range;
1062 }
1063
1064 if (range_cfg->range_max > map->max_register) {
1065 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1066 range_cfg->range_max, map->max_register);
1067 goto err_range;
1068 }
1069
1070 if (range_cfg->selector_reg > map->max_register) {
1071 dev_err(map->dev,
1072 "Invalid range %d: selector out of map\n", i);
1073 goto err_range;
1074 }
1075
1076 if (range_cfg->window_len == 0) {
1077 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1078 i);
1079 goto err_range;
1080 }
1081
1082 /* Make sure, that this register range has no selector
1083 or data window within its boundary */
1084 for (j = 0; j < config->num_ranges; j++) {
1085 unsigned sel_reg = config->ranges[j].selector_reg;
1086 unsigned win_min = config->ranges[j].window_start;
1087 unsigned win_max = win_min +
1088 config->ranges[j].window_len - 1;
1089
1090 /* Allow data window inside its own virtual range */
1091 if (j == i)
1092 continue;
1093
1094 if (range_cfg->range_min <= sel_reg &&
1095 sel_reg <= range_cfg->range_max) {
1096 dev_err(map->dev,
1097 "Range %d: selector for %d in window\n",
1098 i, j);
1099 goto err_range;
1100 }
1101
1102 if (!(win_max < range_cfg->range_min ||
1103 win_min > range_cfg->range_max)) {
1104 dev_err(map->dev,
1105 "Range %d: window for %d in window\n",
1106 i, j);
1107 goto err_range;
1108 }
1109 }
1110
1111 new = kzalloc(sizeof(*new), GFP_KERNEL);
1112 if (new == NULL) {
1113 ret = -ENOMEM;
1114 goto err_range;
1115 }
1116
1117 new->map = map;
1118 new->name = range_cfg->name;
1119 new->range_min = range_cfg->range_min;
1120 new->range_max = range_cfg->range_max;
1121 new->selector_reg = range_cfg->selector_reg;
1122 new->selector_mask = range_cfg->selector_mask;
1123 new->selector_shift = range_cfg->selector_shift;
1124 new->window_start = range_cfg->window_start;
1125 new->window_len = range_cfg->window_len;
1126
1127 if (!_regmap_range_add(map, new)) {
1128 dev_err(map->dev, "Failed to add range %d\n", i);
1129 kfree(new);
1130 goto err_range;
1131 }
1132
1133 if (map->selector_work_buf == NULL) {
1134 map->selector_work_buf =
1135 kzalloc(map->format.buf_size, GFP_KERNEL);
1136 if (map->selector_work_buf == NULL) {
1137 ret = -ENOMEM;
1138 goto err_range;
1139 }
1140 }
1141 }
1142
1143 ret = regcache_init(map, config);
1144 if (ret != 0)
1145 goto err_range;
1146
1147 if (dev) {
1148 ret = regmap_attach_dev(dev, map, config);
1149 if (ret != 0)
1150 goto err_regcache;
1151 } else {
1152 regmap_debugfs_init(map, config->name);
1153 }
1154
1155 return map;
1156
1157err_regcache:
1158 regcache_exit(map);
1159err_range:
1160 regmap_range_exit(map);
1161 kfree(map->work_buf);
1162err_hwlock:
1163 if (map->hwlock)
1164 hwspin_lock_free(map->hwlock);
1165err_name:
1166 kfree_const(map->name);
1167err_map:
1168 kfree(map);
1169err:
1170 return ERR_PTR(ret);
1171}
1172EXPORT_SYMBOL_GPL(__regmap_init);
1173
1174static void devm_regmap_release(struct device *dev, void *res)
1175{
1176 regmap_exit(*(struct regmap **)res);
1177}
1178
1179struct regmap *__devm_regmap_init(struct device *dev,
1180 const struct regmap_bus *bus,
1181 void *bus_context,
1182 const struct regmap_config *config,
1183 struct lock_class_key *lock_key,
1184 const char *lock_name)
1185{
1186 struct regmap **ptr, *regmap;
1187
1188 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1189 if (!ptr)
1190 return ERR_PTR(-ENOMEM);
1191
1192 regmap = __regmap_init(dev, bus, bus_context, config,
1193 lock_key, lock_name);
1194 if (!IS_ERR(regmap)) {
1195 *ptr = regmap;
1196 devres_add(dev, ptr);
1197 } else {
1198 devres_free(ptr);
1199 }
1200
1201 return regmap;
1202}
1203EXPORT_SYMBOL_GPL(__devm_regmap_init);
1204
1205static void regmap_field_init(struct regmap_field *rm_field,
1206 struct regmap *regmap, struct reg_field reg_field)
1207{
1208 rm_field->regmap = regmap;
1209 rm_field->reg = reg_field.reg;
1210 rm_field->shift = reg_field.lsb;
1211 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1212 rm_field->id_size = reg_field.id_size;
1213 rm_field->id_offset = reg_field.id_offset;
1214}
1215
1216/**
1217 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1218 *
1219 * @dev: Device that will be interacted with
1220 * @regmap: regmap bank in which this register field is located.
1221 * @reg_field: Register field with in the bank.
1222 *
1223 * The return value will be an ERR_PTR() on error or a valid pointer
1224 * to a struct regmap_field. The regmap_field will be automatically freed
1225 * by the device management code.
1226 */
1227struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1228 struct regmap *regmap, struct reg_field reg_field)
1229{
1230 struct regmap_field *rm_field = devm_kzalloc(dev,
1231 sizeof(*rm_field), GFP_KERNEL);
1232 if (!rm_field)
1233 return ERR_PTR(-ENOMEM);
1234
1235 regmap_field_init(rm_field, regmap, reg_field);
1236
1237 return rm_field;
1238
1239}
1240EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1241
1242/**
1243 * devm_regmap_field_free() - Free a register field allocated using
1244 * devm_regmap_field_alloc.
1245 *
1246 * @dev: Device that will be interacted with
1247 * @field: regmap field which should be freed.
1248 *
1249 * Free register field allocated using devm_regmap_field_alloc(). Usually
1250 * drivers need not call this function, as the memory allocated via devm
1251 * will be freed as per device-driver life-cyle.
1252 */
1253void devm_regmap_field_free(struct device *dev,
1254 struct regmap_field *field)
1255{
1256 devm_kfree(dev, field);
1257}
1258EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1259
1260/**
1261 * regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @regmap: regmap bank in which this register field is located.
1264 * @reg_field: Register field with in the bank.
1265 *
1266 * The return value will be an ERR_PTR() on error or a valid pointer
1267 * to a struct regmap_field. The regmap_field should be freed by the
1268 * user once its finished working with it using regmap_field_free().
1269 */
1270struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1271 struct reg_field reg_field)
1272{
1273 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1274
1275 if (!rm_field)
1276 return ERR_PTR(-ENOMEM);
1277
1278 regmap_field_init(rm_field, regmap, reg_field);
1279
1280 return rm_field;
1281}
1282EXPORT_SYMBOL_GPL(regmap_field_alloc);
1283
1284/**
1285 * regmap_field_free() - Free register field allocated using
1286 * regmap_field_alloc.
1287 *
1288 * @field: regmap field which should be freed.
1289 */
1290void regmap_field_free(struct regmap_field *field)
1291{
1292 kfree(field);
1293}
1294EXPORT_SYMBOL_GPL(regmap_field_free);
1295
1296/**
1297 * regmap_reinit_cache() - Reinitialise the current register cache
1298 *
1299 * @map: Register map to operate on.
1300 * @config: New configuration. Only the cache data will be used.
1301 *
1302 * Discard any existing register cache for the map and initialize a
1303 * new cache. This can be used to restore the cache to defaults or to
1304 * update the cache configuration to reflect runtime discovery of the
1305 * hardware.
1306 *
1307 * No explicit locking is done here, the user needs to ensure that
1308 * this function will not race with other calls to regmap.
1309 */
1310int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1311{
1312 regcache_exit(map);
1313 regmap_debugfs_exit(map);
1314
1315 map->max_register = config->max_register;
1316 map->writeable_reg = config->writeable_reg;
1317 map->readable_reg = config->readable_reg;
1318 map->volatile_reg = config->volatile_reg;
1319 map->precious_reg = config->precious_reg;
1320 map->writeable_noinc_reg = config->writeable_noinc_reg;
1321 map->readable_noinc_reg = config->readable_noinc_reg;
1322 map->cache_type = config->cache_type;
1323
1324 regmap_debugfs_init(map, config->name);
1325
1326 map->cache_bypass = false;
1327 map->cache_only = false;
1328
1329 return regcache_init(map, config);
1330}
1331EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1332
1333/**
1334 * regmap_exit() - Free a previously allocated register map
1335 *
1336 * @map: Register map to operate on.
1337 */
1338void regmap_exit(struct regmap *map)
1339{
1340 struct regmap_async *async;
1341
1342 regcache_exit(map);
1343 regmap_debugfs_exit(map);
1344 regmap_range_exit(map);
1345 if (map->bus && map->bus->free_context)
1346 map->bus->free_context(map->bus_context);
1347 kfree(map->work_buf);
1348 while (!list_empty(&map->async_free)) {
1349 async = list_first_entry_or_null(&map->async_free,
1350 struct regmap_async,
1351 list);
1352 list_del(&async->list);
1353 kfree(async->work_buf);
1354 kfree(async);
1355 }
1356 if (map->hwlock)
1357 hwspin_lock_free(map->hwlock);
1358 kfree_const(map->name);
1359 kfree(map);
1360}
1361EXPORT_SYMBOL_GPL(regmap_exit);
1362
1363static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1364{
1365 struct regmap **r = res;
1366 if (!r || !*r) {
1367 WARN_ON(!r || !*r);
1368 return 0;
1369 }
1370
1371 /* If the user didn't specify a name match any */
1372 if (data)
1373 return (*r)->name == data;
1374 else
1375 return 1;
1376}
1377
1378/**
1379 * dev_get_regmap() - Obtain the regmap (if any) for a device
1380 *
1381 * @dev: Device to retrieve the map for
1382 * @name: Optional name for the register map, usually NULL.
1383 *
1384 * Returns the regmap for the device if one is present, or NULL. If
1385 * name is specified then it must match the name specified when
1386 * registering the device, if it is NULL then the first regmap found
1387 * will be used. Devices with multiple register maps are very rare,
1388 * generic code should normally not need to specify a name.
1389 */
1390struct regmap *dev_get_regmap(struct device *dev, const char *name)
1391{
1392 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1393 dev_get_regmap_match, (void *)name);
1394
1395 if (!r)
1396 return NULL;
1397 return *r;
1398}
1399EXPORT_SYMBOL_GPL(dev_get_regmap);
1400
1401/**
1402 * regmap_get_device() - Obtain the device from a regmap
1403 *
1404 * @map: Register map to operate on.
1405 *
1406 * Returns the underlying device that the regmap has been created for.
1407 */
1408struct device *regmap_get_device(struct regmap *map)
1409{
1410 return map->dev;
1411}
1412EXPORT_SYMBOL_GPL(regmap_get_device);
1413
1414static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1415 struct regmap_range_node *range,
1416 unsigned int val_num)
1417{
1418 void *orig_work_buf;
1419 unsigned int win_offset;
1420 unsigned int win_page;
1421 bool page_chg;
1422 int ret;
1423
1424 win_offset = (*reg - range->range_min) % range->window_len;
1425 win_page = (*reg - range->range_min) / range->window_len;
1426
1427 if (val_num > 1) {
1428 /* Bulk write shouldn't cross range boundary */
1429 if (*reg + val_num - 1 > range->range_max)
1430 return -EINVAL;
1431
1432 /* ... or single page boundary */
1433 if (val_num > range->window_len - win_offset)
1434 return -EINVAL;
1435 }
1436
1437 /* It is possible to have selector register inside data window.
1438 In that case, selector register is located on every page and
1439 it needs no page switching, when accessed alone. */
1440 if (val_num > 1 ||
1441 range->window_start + win_offset != range->selector_reg) {
1442 /* Use separate work_buf during page switching */
1443 orig_work_buf = map->work_buf;
1444 map->work_buf = map->selector_work_buf;
1445
1446 ret = _regmap_update_bits(map, range->selector_reg,
1447 range->selector_mask,
1448 win_page << range->selector_shift,
1449 &page_chg, false);
1450
1451 map->work_buf = orig_work_buf;
1452
1453 if (ret != 0)
1454 return ret;
1455 }
1456
1457 *reg = range->window_start + win_offset;
1458
1459 return 0;
1460}
1461
1462static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1463 unsigned long mask)
1464{
1465 u8 *buf;
1466 int i;
1467
1468 if (!mask || !map->work_buf)
1469 return;
1470
1471 buf = map->work_buf;
1472
1473 for (i = 0; i < max_bytes; i++)
1474 buf[i] |= (mask >> (8 * i)) & 0xff;
1475}
1476
1477static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1478 const void *val, size_t val_len)
1479{
1480 struct regmap_range_node *range;
1481 unsigned long flags;
1482 void *work_val = map->work_buf + map->format.reg_bytes +
1483 map->format.pad_bytes;
1484 void *buf;
1485 int ret = -ENOTSUPP;
1486 size_t len;
1487 int i;
1488
1489 WARN_ON(!map->bus);
1490
1491 /* Check for unwritable registers before we start */
1492 for (i = 0; i < val_len / map->format.val_bytes; i++)
1493 if (!regmap_writeable(map,
1494 reg + regmap_get_offset(map, i)))
1495 return -EINVAL;
1496
1497 if (!map->cache_bypass && map->format.parse_val) {
1498 unsigned int ival;
1499 int val_bytes = map->format.val_bytes;
1500 for (i = 0; i < val_len / val_bytes; i++) {
1501 ival = map->format.parse_val(val + (i * val_bytes));
1502 ret = regcache_write(map,
1503 reg + regmap_get_offset(map, i),
1504 ival);
1505 if (ret) {
1506 dev_err(map->dev,
1507 "Error in caching of register: %x ret: %d\n",
1508 reg + i, ret);
1509 return ret;
1510 }
1511 }
1512 if (map->cache_only) {
1513 map->cache_dirty = true;
1514 return 0;
1515 }
1516 }
1517
1518 range = _regmap_range_lookup(map, reg);
1519 if (range) {
1520 int val_num = val_len / map->format.val_bytes;
1521 int win_offset = (reg - range->range_min) % range->window_len;
1522 int win_residue = range->window_len - win_offset;
1523
1524 /* If the write goes beyond the end of the window split it */
1525 while (val_num > win_residue) {
1526 dev_dbg(map->dev, "Writing window %d/%zu\n",
1527 win_residue, val_len / map->format.val_bytes);
1528 ret = _regmap_raw_write_impl(map, reg, val,
1529 win_residue *
1530 map->format.val_bytes);
1531 if (ret != 0)
1532 return ret;
1533
1534 reg += win_residue;
1535 val_num -= win_residue;
1536 val += win_residue * map->format.val_bytes;
1537 val_len -= win_residue * map->format.val_bytes;
1538
1539 win_offset = (reg - range->range_min) %
1540 range->window_len;
1541 win_residue = range->window_len - win_offset;
1542 }
1543
1544 ret = _regmap_select_page(map, ®, range, val_num);
1545 if (ret != 0)
1546 return ret;
1547 }
1548
1549 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1550 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1551 map->write_flag_mask);
1552
1553 /*
1554 * Essentially all I/O mechanisms will be faster with a single
1555 * buffer to write. Since register syncs often generate raw
1556 * writes of single registers optimise that case.
1557 */
1558 if (val != work_val && val_len == map->format.val_bytes) {
1559 memcpy(work_val, val, map->format.val_bytes);
1560 val = work_val;
1561 }
1562
1563 if (map->async && map->bus->async_write) {
1564 struct regmap_async *async;
1565
1566 trace_regmap_async_write_start(map, reg, val_len);
1567
1568 spin_lock_irqsave(&map->async_lock, flags);
1569 async = list_first_entry_or_null(&map->async_free,
1570 struct regmap_async,
1571 list);
1572 if (async)
1573 list_del(&async->list);
1574 spin_unlock_irqrestore(&map->async_lock, flags);
1575
1576 if (!async) {
1577 async = map->bus->async_alloc();
1578 if (!async)
1579 return -ENOMEM;
1580
1581 async->work_buf = kzalloc(map->format.buf_size,
1582 GFP_KERNEL | GFP_DMA);
1583 if (!async->work_buf) {
1584 kfree(async);
1585 return -ENOMEM;
1586 }
1587 }
1588
1589 async->map = map;
1590
1591 /* If the caller supplied the value we can use it safely. */
1592 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1593 map->format.reg_bytes + map->format.val_bytes);
1594
1595 spin_lock_irqsave(&map->async_lock, flags);
1596 list_add_tail(&async->list, &map->async_list);
1597 spin_unlock_irqrestore(&map->async_lock, flags);
1598
1599 if (val != work_val)
1600 ret = map->bus->async_write(map->bus_context,
1601 async->work_buf,
1602 map->format.reg_bytes +
1603 map->format.pad_bytes,
1604 val, val_len, async);
1605 else
1606 ret = map->bus->async_write(map->bus_context,
1607 async->work_buf,
1608 map->format.reg_bytes +
1609 map->format.pad_bytes +
1610 val_len, NULL, 0, async);
1611
1612 if (ret != 0) {
1613 dev_err(map->dev, "Failed to schedule write: %d\n",
1614 ret);
1615
1616 spin_lock_irqsave(&map->async_lock, flags);
1617 list_move(&async->list, &map->async_free);
1618 spin_unlock_irqrestore(&map->async_lock, flags);
1619 }
1620
1621 return ret;
1622 }
1623
1624 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1625
1626 /* If we're doing a single register write we can probably just
1627 * send the work_buf directly, otherwise try to do a gather
1628 * write.
1629 */
1630 if (val == work_val)
1631 ret = map->bus->write(map->bus_context, map->work_buf,
1632 map->format.reg_bytes +
1633 map->format.pad_bytes +
1634 val_len);
1635 else if (map->bus->gather_write)
1636 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1637 map->format.reg_bytes +
1638 map->format.pad_bytes,
1639 val, val_len);
1640 else
1641 ret = -ENOTSUPP;
1642
1643 /* If that didn't work fall back on linearising by hand. */
1644 if (ret == -ENOTSUPP) {
1645 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1646 buf = kzalloc(len, GFP_KERNEL);
1647 if (!buf)
1648 return -ENOMEM;
1649
1650 memcpy(buf, map->work_buf, map->format.reg_bytes);
1651 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1652 val, val_len);
1653 ret = map->bus->write(map->bus_context, buf, len);
1654
1655 kfree(buf);
1656 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1657 /* regcache_drop_region() takes lock that we already have,
1658 * thus call map->cache_ops->drop() directly
1659 */
1660 if (map->cache_ops && map->cache_ops->drop)
1661 map->cache_ops->drop(map, reg, reg + 1);
1662 }
1663
1664 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1665
1666 return ret;
1667}
1668
1669/**
1670 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1671 *
1672 * @map: Map to check.
1673 */
1674bool regmap_can_raw_write(struct regmap *map)
1675{
1676 return map->bus && map->bus->write && map->format.format_val &&
1677 map->format.format_reg;
1678}
1679EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1680
1681/**
1682 * regmap_get_raw_read_max - Get the maximum size we can read
1683 *
1684 * @map: Map to check.
1685 */
1686size_t regmap_get_raw_read_max(struct regmap *map)
1687{
1688 return map->max_raw_read;
1689}
1690EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1691
1692/**
1693 * regmap_get_raw_write_max - Get the maximum size we can read
1694 *
1695 * @map: Map to check.
1696 */
1697size_t regmap_get_raw_write_max(struct regmap *map)
1698{
1699 return map->max_raw_write;
1700}
1701EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1702
1703static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1704 unsigned int val)
1705{
1706 int ret;
1707 struct regmap_range_node *range;
1708 struct regmap *map = context;
1709
1710 WARN_ON(!map->bus || !map->format.format_write);
1711
1712 range = _regmap_range_lookup(map, reg);
1713 if (range) {
1714 ret = _regmap_select_page(map, ®, range, 1);
1715 if (ret != 0)
1716 return ret;
1717 }
1718
1719 map->format.format_write(map, reg, val);
1720
1721 trace_regmap_hw_write_start(map, reg, 1);
1722
1723 ret = map->bus->write(map->bus_context, map->work_buf,
1724 map->format.buf_size);
1725
1726 trace_regmap_hw_write_done(map, reg, 1);
1727
1728 return ret;
1729}
1730
1731static int _regmap_bus_reg_write(void *context, unsigned int reg,
1732 unsigned int val)
1733{
1734 struct regmap *map = context;
1735
1736 return map->bus->reg_write(map->bus_context, reg, val);
1737}
1738
1739static int _regmap_bus_raw_write(void *context, unsigned int reg,
1740 unsigned int val)
1741{
1742 struct regmap *map = context;
1743
1744 WARN_ON(!map->bus || !map->format.format_val);
1745
1746 map->format.format_val(map->work_buf + map->format.reg_bytes
1747 + map->format.pad_bytes, val, 0);
1748 return _regmap_raw_write_impl(map, reg,
1749 map->work_buf +
1750 map->format.reg_bytes +
1751 map->format.pad_bytes,
1752 map->format.val_bytes);
1753}
1754
1755static inline void *_regmap_map_get_context(struct regmap *map)
1756{
1757 return (map->bus) ? map : map->bus_context;
1758}
1759
1760int _regmap_write(struct regmap *map, unsigned int reg,
1761 unsigned int val)
1762{
1763 int ret;
1764 void *context = _regmap_map_get_context(map);
1765
1766 if (!regmap_writeable(map, reg))
1767 return -EIO;
1768
1769 if (!map->cache_bypass && !map->defer_caching) {
1770 ret = regcache_write(map, reg, val);
1771 if (ret != 0)
1772 return ret;
1773 if (map->cache_only) {
1774 map->cache_dirty = true;
1775 return 0;
1776 }
1777 }
1778
1779 if (regmap_should_log(map))
1780 dev_info(map->dev, "%x <= %x\n", reg, val);
1781
1782 trace_regmap_reg_write(map, reg, val);
1783
1784 return map->reg_write(context, reg, val);
1785}
1786
1787/**
1788 * regmap_write() - Write a value to a single register
1789 *
1790 * @map: Register map to write to
1791 * @reg: Register to write to
1792 * @val: Value to be written
1793 *
1794 * A value of zero will be returned on success, a negative errno will
1795 * be returned in error cases.
1796 */
1797int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1798{
1799 int ret;
1800
1801 if (!IS_ALIGNED(reg, map->reg_stride))
1802 return -EINVAL;
1803
1804 map->lock(map->lock_arg);
1805
1806 ret = _regmap_write(map, reg, val);
1807
1808 map->unlock(map->lock_arg);
1809
1810 return ret;
1811}
1812EXPORT_SYMBOL_GPL(regmap_write);
1813
1814/**
1815 * regmap_write_async() - Write a value to a single register asynchronously
1816 *
1817 * @map: Register map to write to
1818 * @reg: Register to write to
1819 * @val: Value to be written
1820 *
1821 * A value of zero will be returned on success, a negative errno will
1822 * be returned in error cases.
1823 */
1824int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1825{
1826 int ret;
1827
1828 if (!IS_ALIGNED(reg, map->reg_stride))
1829 return -EINVAL;
1830
1831 map->lock(map->lock_arg);
1832
1833 map->async = true;
1834
1835 ret = _regmap_write(map, reg, val);
1836
1837 map->async = false;
1838
1839 map->unlock(map->lock_arg);
1840
1841 return ret;
1842}
1843EXPORT_SYMBOL_GPL(regmap_write_async);
1844
1845int _regmap_raw_write(struct regmap *map, unsigned int reg,
1846 const void *val, size_t val_len)
1847{
1848 size_t val_bytes = map->format.val_bytes;
1849 size_t val_count = val_len / val_bytes;
1850 size_t chunk_count, chunk_bytes;
1851 size_t chunk_regs = val_count;
1852 int ret, i;
1853
1854 if (!val_count)
1855 return -EINVAL;
1856
1857 if (map->use_single_write)
1858 chunk_regs = 1;
1859 else if (map->max_raw_write && val_len > map->max_raw_write)
1860 chunk_regs = map->max_raw_write / val_bytes;
1861
1862 chunk_count = val_count / chunk_regs;
1863 chunk_bytes = chunk_regs * val_bytes;
1864
1865 /* Write as many bytes as possible with chunk_size */
1866 for (i = 0; i < chunk_count; i++) {
1867 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1868 if (ret)
1869 return ret;
1870
1871 reg += regmap_get_offset(map, chunk_regs);
1872 val += chunk_bytes;
1873 val_len -= chunk_bytes;
1874 }
1875
1876 /* Write remaining bytes */
1877 if (val_len)
1878 ret = _regmap_raw_write_impl(map, reg, val, val_len);
1879
1880 return ret;
1881}
1882
1883/**
1884 * regmap_raw_write() - Write raw values to one or more registers
1885 *
1886 * @map: Register map to write to
1887 * @reg: Initial register to write to
1888 * @val: Block of data to be written, laid out for direct transmission to the
1889 * device
1890 * @val_len: Length of data pointed to by val.
1891 *
1892 * This function is intended to be used for things like firmware
1893 * download where a large block of data needs to be transferred to the
1894 * device. No formatting will be done on the data provided.
1895 *
1896 * A value of zero will be returned on success, a negative errno will
1897 * be returned in error cases.
1898 */
1899int regmap_raw_write(struct regmap *map, unsigned int reg,
1900 const void *val, size_t val_len)
1901{
1902 int ret;
1903
1904 if (!regmap_can_raw_write(map))
1905 return -EINVAL;
1906 if (val_len % map->format.val_bytes)
1907 return -EINVAL;
1908
1909 map->lock(map->lock_arg);
1910
1911 ret = _regmap_raw_write(map, reg, val, val_len);
1912
1913 map->unlock(map->lock_arg);
1914
1915 return ret;
1916}
1917EXPORT_SYMBOL_GPL(regmap_raw_write);
1918
1919/**
1920 * regmap_noinc_write(): Write data from a register without incrementing the
1921 * register number
1922 *
1923 * @map: Register map to write to
1924 * @reg: Register to write to
1925 * @val: Pointer to data buffer
1926 * @val_len: Length of output buffer in bytes.
1927 *
1928 * The regmap API usually assumes that bulk bus write operations will write a
1929 * range of registers. Some devices have certain registers for which a write
1930 * operation can write to an internal FIFO.
1931 *
1932 * The target register must be volatile but registers after it can be
1933 * completely unrelated cacheable registers.
1934 *
1935 * This will attempt multiple writes as required to write val_len bytes.
1936 *
1937 * A value of zero will be returned on success, a negative errno will be
1938 * returned in error cases.
1939 */
1940int regmap_noinc_write(struct regmap *map, unsigned int reg,
1941 const void *val, size_t val_len)
1942{
1943 size_t write_len;
1944 int ret;
1945
1946 if (!map->bus)
1947 return -EINVAL;
1948 if (!map->bus->write)
1949 return -ENOTSUPP;
1950 if (val_len % map->format.val_bytes)
1951 return -EINVAL;
1952 if (!IS_ALIGNED(reg, map->reg_stride))
1953 return -EINVAL;
1954 if (val_len == 0)
1955 return -EINVAL;
1956
1957 map->lock(map->lock_arg);
1958
1959 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1960 ret = -EINVAL;
1961 goto out_unlock;
1962 }
1963
1964 while (val_len) {
1965 if (map->max_raw_write && map->max_raw_write < val_len)
1966 write_len = map->max_raw_write;
1967 else
1968 write_len = val_len;
1969 ret = _regmap_raw_write(map, reg, val, write_len);
1970 if (ret)
1971 goto out_unlock;
1972 val = ((u8 *)val) + write_len;
1973 val_len -= write_len;
1974 }
1975
1976out_unlock:
1977 map->unlock(map->lock_arg);
1978 return ret;
1979}
1980EXPORT_SYMBOL_GPL(regmap_noinc_write);
1981
1982/**
1983 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1984 * register field.
1985 *
1986 * @field: Register field to write to
1987 * @mask: Bitmask to change
1988 * @val: Value to be written
1989 * @change: Boolean indicating if a write was done
1990 * @async: Boolean indicating asynchronously
1991 * @force: Boolean indicating use force update
1992 *
1993 * Perform a read/modify/write cycle on the register field with change,
1994 * async, force option.
1995 *
1996 * A value of zero will be returned on success, a negative errno will
1997 * be returned in error cases.
1998 */
1999int regmap_field_update_bits_base(struct regmap_field *field,
2000 unsigned int mask, unsigned int val,
2001 bool *change, bool async, bool force)
2002{
2003 mask = (mask << field->shift) & field->mask;
2004
2005 return regmap_update_bits_base(field->regmap, field->reg,
2006 mask, val << field->shift,
2007 change, async, force);
2008}
2009EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2010
2011/**
2012 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2013 * register field with port ID
2014 *
2015 * @field: Register field to write to
2016 * @id: port ID
2017 * @mask: Bitmask to change
2018 * @val: Value to be written
2019 * @change: Boolean indicating if a write was done
2020 * @async: Boolean indicating asynchronously
2021 * @force: Boolean indicating use force update
2022 *
2023 * A value of zero will be returned on success, a negative errno will
2024 * be returned in error cases.
2025 */
2026int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2027 unsigned int mask, unsigned int val,
2028 bool *change, bool async, bool force)
2029{
2030 if (id >= field->id_size)
2031 return -EINVAL;
2032
2033 mask = (mask << field->shift) & field->mask;
2034
2035 return regmap_update_bits_base(field->regmap,
2036 field->reg + (field->id_offset * id),
2037 mask, val << field->shift,
2038 change, async, force);
2039}
2040EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2041
2042/**
2043 * regmap_bulk_write() - Write multiple registers to the device
2044 *
2045 * @map: Register map to write to
2046 * @reg: First register to be write from
2047 * @val: Block of data to be written, in native register size for device
2048 * @val_count: Number of registers to write
2049 *
2050 * This function is intended to be used for writing a large block of
2051 * data to the device either in single transfer or multiple transfer.
2052 *
2053 * A value of zero will be returned on success, a negative errno will
2054 * be returned in error cases.
2055 */
2056int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2057 size_t val_count)
2058{
2059 int ret = 0, i;
2060 size_t val_bytes = map->format.val_bytes;
2061
2062 if (!IS_ALIGNED(reg, map->reg_stride))
2063 return -EINVAL;
2064
2065 /*
2066 * Some devices don't support bulk write, for them we have a series of
2067 * single write operations.
2068 */
2069 if (!map->bus || !map->format.parse_inplace) {
2070 map->lock(map->lock_arg);
2071 for (i = 0; i < val_count; i++) {
2072 unsigned int ival;
2073
2074 switch (val_bytes) {
2075 case 1:
2076 ival = *(u8 *)(val + (i * val_bytes));
2077 break;
2078 case 2:
2079 ival = *(u16 *)(val + (i * val_bytes));
2080 break;
2081 case 4:
2082 ival = *(u32 *)(val + (i * val_bytes));
2083 break;
2084#ifdef CONFIG_64BIT
2085 case 8:
2086 ival = *(u64 *)(val + (i * val_bytes));
2087 break;
2088#endif
2089 default:
2090 ret = -EINVAL;
2091 goto out;
2092 }
2093
2094 ret = _regmap_write(map,
2095 reg + regmap_get_offset(map, i),
2096 ival);
2097 if (ret != 0)
2098 goto out;
2099 }
2100out:
2101 map->unlock(map->lock_arg);
2102 } else {
2103 void *wval;
2104
2105 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2106 if (!wval)
2107 return -ENOMEM;
2108
2109 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2110 map->format.parse_inplace(wval + i);
2111
2112 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2113
2114 kfree(wval);
2115 }
2116 return ret;
2117}
2118EXPORT_SYMBOL_GPL(regmap_bulk_write);
2119
2120/*
2121 * _regmap_raw_multi_reg_write()
2122 *
2123 * the (register,newvalue) pairs in regs have not been formatted, but
2124 * they are all in the same page and have been changed to being page
2125 * relative. The page register has been written if that was necessary.
2126 */
2127static int _regmap_raw_multi_reg_write(struct regmap *map,
2128 const struct reg_sequence *regs,
2129 size_t num_regs)
2130{
2131 int ret;
2132 void *buf;
2133 int i;
2134 u8 *u8;
2135 size_t val_bytes = map->format.val_bytes;
2136 size_t reg_bytes = map->format.reg_bytes;
2137 size_t pad_bytes = map->format.pad_bytes;
2138 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2139 size_t len = pair_size * num_regs;
2140
2141 if (!len)
2142 return -EINVAL;
2143
2144 buf = kzalloc(len, GFP_KERNEL);
2145 if (!buf)
2146 return -ENOMEM;
2147
2148 /* We have to linearise by hand. */
2149
2150 u8 = buf;
2151
2152 for (i = 0; i < num_regs; i++) {
2153 unsigned int reg = regs[i].reg;
2154 unsigned int val = regs[i].def;
2155 trace_regmap_hw_write_start(map, reg, 1);
2156 map->format.format_reg(u8, reg, map->reg_shift);
2157 u8 += reg_bytes + pad_bytes;
2158 map->format.format_val(u8, val, 0);
2159 u8 += val_bytes;
2160 }
2161 u8 = buf;
2162 *u8 |= map->write_flag_mask;
2163
2164 ret = map->bus->write(map->bus_context, buf, len);
2165
2166 kfree(buf);
2167
2168 for (i = 0; i < num_regs; i++) {
2169 int reg = regs[i].reg;
2170 trace_regmap_hw_write_done(map, reg, 1);
2171 }
2172 return ret;
2173}
2174
2175static unsigned int _regmap_register_page(struct regmap *map,
2176 unsigned int reg,
2177 struct regmap_range_node *range)
2178{
2179 unsigned int win_page = (reg - range->range_min) / range->window_len;
2180
2181 return win_page;
2182}
2183
2184static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2185 struct reg_sequence *regs,
2186 size_t num_regs)
2187{
2188 int ret;
2189 int i, n;
2190 struct reg_sequence *base;
2191 unsigned int this_page = 0;
2192 unsigned int page_change = 0;
2193 /*
2194 * the set of registers are not neccessarily in order, but
2195 * since the order of write must be preserved this algorithm
2196 * chops the set each time the page changes. This also applies
2197 * if there is a delay required at any point in the sequence.
2198 */
2199 base = regs;
2200 for (i = 0, n = 0; i < num_regs; i++, n++) {
2201 unsigned int reg = regs[i].reg;
2202 struct regmap_range_node *range;
2203
2204 range = _regmap_range_lookup(map, reg);
2205 if (range) {
2206 unsigned int win_page = _regmap_register_page(map, reg,
2207 range);
2208
2209 if (i == 0)
2210 this_page = win_page;
2211 if (win_page != this_page) {
2212 this_page = win_page;
2213 page_change = 1;
2214 }
2215 }
2216
2217 /* If we have both a page change and a delay make sure to
2218 * write the regs and apply the delay before we change the
2219 * page.
2220 */
2221
2222 if (page_change || regs[i].delay_us) {
2223
2224 /* For situations where the first write requires
2225 * a delay we need to make sure we don't call
2226 * raw_multi_reg_write with n=0
2227 * This can't occur with page breaks as we
2228 * never write on the first iteration
2229 */
2230 if (regs[i].delay_us && i == 0)
2231 n = 1;
2232
2233 ret = _regmap_raw_multi_reg_write(map, base, n);
2234 if (ret != 0)
2235 return ret;
2236
2237 if (regs[i].delay_us)
2238 udelay(regs[i].delay_us);
2239
2240 base += n;
2241 n = 0;
2242
2243 if (page_change) {
2244 ret = _regmap_select_page(map,
2245 &base[n].reg,
2246 range, 1);
2247 if (ret != 0)
2248 return ret;
2249
2250 page_change = 0;
2251 }
2252
2253 }
2254
2255 }
2256 if (n > 0)
2257 return _regmap_raw_multi_reg_write(map, base, n);
2258 return 0;
2259}
2260
2261static int _regmap_multi_reg_write(struct regmap *map,
2262 const struct reg_sequence *regs,
2263 size_t num_regs)
2264{
2265 int i;
2266 int ret;
2267
2268 if (!map->can_multi_write) {
2269 for (i = 0; i < num_regs; i++) {
2270 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2271 if (ret != 0)
2272 return ret;
2273
2274 if (regs[i].delay_us)
2275 udelay(regs[i].delay_us);
2276 }
2277 return 0;
2278 }
2279
2280 if (!map->format.parse_inplace)
2281 return -EINVAL;
2282
2283 if (map->writeable_reg)
2284 for (i = 0; i < num_regs; i++) {
2285 int reg = regs[i].reg;
2286 if (!map->writeable_reg(map->dev, reg))
2287 return -EINVAL;
2288 if (!IS_ALIGNED(reg, map->reg_stride))
2289 return -EINVAL;
2290 }
2291
2292 if (!map->cache_bypass) {
2293 for (i = 0; i < num_regs; i++) {
2294 unsigned int val = regs[i].def;
2295 unsigned int reg = regs[i].reg;
2296 ret = regcache_write(map, reg, val);
2297 if (ret) {
2298 dev_err(map->dev,
2299 "Error in caching of register: %x ret: %d\n",
2300 reg, ret);
2301 return ret;
2302 }
2303 }
2304 if (map->cache_only) {
2305 map->cache_dirty = true;
2306 return 0;
2307 }
2308 }
2309
2310 WARN_ON(!map->bus);
2311
2312 for (i = 0; i < num_regs; i++) {
2313 unsigned int reg = regs[i].reg;
2314 struct regmap_range_node *range;
2315
2316 /* Coalesce all the writes between a page break or a delay
2317 * in a sequence
2318 */
2319 range = _regmap_range_lookup(map, reg);
2320 if (range || regs[i].delay_us) {
2321 size_t len = sizeof(struct reg_sequence)*num_regs;
2322 struct reg_sequence *base = kmemdup(regs, len,
2323 GFP_KERNEL);
2324 if (!base)
2325 return -ENOMEM;
2326 ret = _regmap_range_multi_paged_reg_write(map, base,
2327 num_regs);
2328 kfree(base);
2329
2330 return ret;
2331 }
2332 }
2333 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2334}
2335
2336/**
2337 * regmap_multi_reg_write() - Write multiple registers to the device
2338 *
2339 * @map: Register map to write to
2340 * @regs: Array of structures containing register,value to be written
2341 * @num_regs: Number of registers to write
2342 *
2343 * Write multiple registers to the device where the set of register, value
2344 * pairs are supplied in any order, possibly not all in a single range.
2345 *
2346 * The 'normal' block write mode will send ultimately send data on the
2347 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2348 * addressed. However, this alternative block multi write mode will send
2349 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2350 * must of course support the mode.
2351 *
2352 * A value of zero will be returned on success, a negative errno will be
2353 * returned in error cases.
2354 */
2355int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2356 int num_regs)
2357{
2358 int ret;
2359
2360 map->lock(map->lock_arg);
2361
2362 ret = _regmap_multi_reg_write(map, regs, num_regs);
2363
2364 map->unlock(map->lock_arg);
2365
2366 return ret;
2367}
2368EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2369
2370/**
2371 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2372 * device but not the cache
2373 *
2374 * @map: Register map to write to
2375 * @regs: Array of structures containing register,value to be written
2376 * @num_regs: Number of registers to write
2377 *
2378 * Write multiple registers to the device but not the cache where the set
2379 * of register are supplied in any order.
2380 *
2381 * This function is intended to be used for writing a large block of data
2382 * atomically to the device in single transfer for those I2C client devices
2383 * that implement this alternative block write mode.
2384 *
2385 * A value of zero will be returned on success, a negative errno will
2386 * be returned in error cases.
2387 */
2388int regmap_multi_reg_write_bypassed(struct regmap *map,
2389 const struct reg_sequence *regs,
2390 int num_regs)
2391{
2392 int ret;
2393 bool bypass;
2394
2395 map->lock(map->lock_arg);
2396
2397 bypass = map->cache_bypass;
2398 map->cache_bypass = true;
2399
2400 ret = _regmap_multi_reg_write(map, regs, num_regs);
2401
2402 map->cache_bypass = bypass;
2403
2404 map->unlock(map->lock_arg);
2405
2406 return ret;
2407}
2408EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2409
2410/**
2411 * regmap_raw_write_async() - Write raw values to one or more registers
2412 * asynchronously
2413 *
2414 * @map: Register map to write to
2415 * @reg: Initial register to write to
2416 * @val: Block of data to be written, laid out for direct transmission to the
2417 * device. Must be valid until regmap_async_complete() is called.
2418 * @val_len: Length of data pointed to by val.
2419 *
2420 * This function is intended to be used for things like firmware
2421 * download where a large block of data needs to be transferred to the
2422 * device. No formatting will be done on the data provided.
2423 *
2424 * If supported by the underlying bus the write will be scheduled
2425 * asynchronously, helping maximise I/O speed on higher speed buses
2426 * like SPI. regmap_async_complete() can be called to ensure that all
2427 * asynchrnous writes have been completed.
2428 *
2429 * A value of zero will be returned on success, a negative errno will
2430 * be returned in error cases.
2431 */
2432int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2433 const void *val, size_t val_len)
2434{
2435 int ret;
2436
2437 if (val_len % map->format.val_bytes)
2438 return -EINVAL;
2439 if (!IS_ALIGNED(reg, map->reg_stride))
2440 return -EINVAL;
2441
2442 map->lock(map->lock_arg);
2443
2444 map->async = true;
2445
2446 ret = _regmap_raw_write(map, reg, val, val_len);
2447
2448 map->async = false;
2449
2450 map->unlock(map->lock_arg);
2451
2452 return ret;
2453}
2454EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2455
2456static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2457 unsigned int val_len)
2458{
2459 struct regmap_range_node *range;
2460 int ret;
2461
2462 WARN_ON(!map->bus);
2463
2464 if (!map->bus || !map->bus->read)
2465 return -EINVAL;
2466
2467 range = _regmap_range_lookup(map, reg);
2468 if (range) {
2469 ret = _regmap_select_page(map, ®, range,
2470 val_len / map->format.val_bytes);
2471 if (ret != 0)
2472 return ret;
2473 }
2474
2475 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2476 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2477 map->read_flag_mask);
2478 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2479
2480 ret = map->bus->read(map->bus_context, map->work_buf,
2481 map->format.reg_bytes + map->format.pad_bytes,
2482 val, val_len);
2483
2484 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2485
2486 return ret;
2487}
2488
2489static int _regmap_bus_reg_read(void *context, unsigned int reg,
2490 unsigned int *val)
2491{
2492 struct regmap *map = context;
2493
2494 return map->bus->reg_read(map->bus_context, reg, val);
2495}
2496
2497static int _regmap_bus_read(void *context, unsigned int reg,
2498 unsigned int *val)
2499{
2500 int ret;
2501 struct regmap *map = context;
2502 void *work_val = map->work_buf + map->format.reg_bytes +
2503 map->format.pad_bytes;
2504
2505 if (!map->format.parse_val)
2506 return -EINVAL;
2507
2508 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2509 if (ret == 0)
2510 *val = map->format.parse_val(work_val);
2511
2512 return ret;
2513}
2514
2515static int _regmap_read(struct regmap *map, unsigned int reg,
2516 unsigned int *val)
2517{
2518 int ret;
2519 void *context = _regmap_map_get_context(map);
2520
2521 if (!map->cache_bypass) {
2522 ret = regcache_read(map, reg, val);
2523 if (ret == 0)
2524 return 0;
2525 }
2526
2527 if (map->cache_only)
2528 return -EBUSY;
2529
2530 if (!regmap_readable(map, reg))
2531 return -EIO;
2532
2533 ret = map->reg_read(context, reg, val);
2534 if (ret == 0) {
2535 if (regmap_should_log(map))
2536 dev_info(map->dev, "%x => %x\n", reg, *val);
2537
2538 trace_regmap_reg_read(map, reg, *val);
2539
2540 if (!map->cache_bypass)
2541 regcache_write(map, reg, *val);
2542 }
2543
2544 return ret;
2545}
2546
2547/**
2548 * regmap_read() - Read a value from a single register
2549 *
2550 * @map: Register map to read from
2551 * @reg: Register to be read from
2552 * @val: Pointer to store read value
2553 *
2554 * A value of zero will be returned on success, a negative errno will
2555 * be returned in error cases.
2556 */
2557int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2558{
2559 int ret;
2560
2561 if (!IS_ALIGNED(reg, map->reg_stride))
2562 return -EINVAL;
2563
2564 map->lock(map->lock_arg);
2565
2566 ret = _regmap_read(map, reg, val);
2567
2568 map->unlock(map->lock_arg);
2569
2570 return ret;
2571}
2572EXPORT_SYMBOL_GPL(regmap_read);
2573
2574/**
2575 * regmap_raw_read() - Read raw data from the device
2576 *
2577 * @map: Register map to read from
2578 * @reg: First register to be read from
2579 * @val: Pointer to store read value
2580 * @val_len: Size of data to read
2581 *
2582 * A value of zero will be returned on success, a negative errno will
2583 * be returned in error cases.
2584 */
2585int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2586 size_t val_len)
2587{
2588 size_t val_bytes = map->format.val_bytes;
2589 size_t val_count = val_len / val_bytes;
2590 unsigned int v;
2591 int ret, i;
2592
2593 if (!map->bus)
2594 return -EINVAL;
2595 if (val_len % map->format.val_bytes)
2596 return -EINVAL;
2597 if (!IS_ALIGNED(reg, map->reg_stride))
2598 return -EINVAL;
2599 if (val_count == 0)
2600 return -EINVAL;
2601
2602 map->lock(map->lock_arg);
2603
2604 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2605 map->cache_type == REGCACHE_NONE) {
2606 size_t chunk_count, chunk_bytes;
2607 size_t chunk_regs = val_count;
2608
2609 if (!map->bus->read) {
2610 ret = -ENOTSUPP;
2611 goto out;
2612 }
2613
2614 if (map->use_single_read)
2615 chunk_regs = 1;
2616 else if (map->max_raw_read && val_len > map->max_raw_read)
2617 chunk_regs = map->max_raw_read / val_bytes;
2618
2619 chunk_count = val_count / chunk_regs;
2620 chunk_bytes = chunk_regs * val_bytes;
2621
2622 /* Read bytes that fit into whole chunks */
2623 for (i = 0; i < chunk_count; i++) {
2624 ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2625 if (ret != 0)
2626 goto out;
2627
2628 reg += regmap_get_offset(map, chunk_regs);
2629 val += chunk_bytes;
2630 val_len -= chunk_bytes;
2631 }
2632
2633 /* Read remaining bytes */
2634 if (val_len) {
2635 ret = _regmap_raw_read(map, reg, val, val_len);
2636 if (ret != 0)
2637 goto out;
2638 }
2639 } else {
2640 /* Otherwise go word by word for the cache; should be low
2641 * cost as we expect to hit the cache.
2642 */
2643 for (i = 0; i < val_count; i++) {
2644 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2645 &v);
2646 if (ret != 0)
2647 goto out;
2648
2649 map->format.format_val(val + (i * val_bytes), v, 0);
2650 }
2651 }
2652
2653 out:
2654 map->unlock(map->lock_arg);
2655
2656 return ret;
2657}
2658EXPORT_SYMBOL_GPL(regmap_raw_read);
2659
2660/**
2661 * regmap_noinc_read(): Read data from a register without incrementing the
2662 * register number
2663 *
2664 * @map: Register map to read from
2665 * @reg: Register to read from
2666 * @val: Pointer to data buffer
2667 * @val_len: Length of output buffer in bytes.
2668 *
2669 * The regmap API usually assumes that bulk bus read operations will read a
2670 * range of registers. Some devices have certain registers for which a read
2671 * operation read will read from an internal FIFO.
2672 *
2673 * The target register must be volatile but registers after it can be
2674 * completely unrelated cacheable registers.
2675 *
2676 * This will attempt multiple reads as required to read val_len bytes.
2677 *
2678 * A value of zero will be returned on success, a negative errno will be
2679 * returned in error cases.
2680 */
2681int regmap_noinc_read(struct regmap *map, unsigned int reg,
2682 void *val, size_t val_len)
2683{
2684 size_t read_len;
2685 int ret;
2686
2687 if (!map->bus)
2688 return -EINVAL;
2689 if (!map->bus->read)
2690 return -ENOTSUPP;
2691 if (val_len % map->format.val_bytes)
2692 return -EINVAL;
2693 if (!IS_ALIGNED(reg, map->reg_stride))
2694 return -EINVAL;
2695 if (val_len == 0)
2696 return -EINVAL;
2697
2698 map->lock(map->lock_arg);
2699
2700 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2701 ret = -EINVAL;
2702 goto out_unlock;
2703 }
2704
2705 while (val_len) {
2706 if (map->max_raw_read && map->max_raw_read < val_len)
2707 read_len = map->max_raw_read;
2708 else
2709 read_len = val_len;
2710 ret = _regmap_raw_read(map, reg, val, read_len);
2711 if (ret)
2712 goto out_unlock;
2713 val = ((u8 *)val) + read_len;
2714 val_len -= read_len;
2715 }
2716
2717out_unlock:
2718 map->unlock(map->lock_arg);
2719 return ret;
2720}
2721EXPORT_SYMBOL_GPL(regmap_noinc_read);
2722
2723/**
2724 * regmap_field_read(): Read a value to a single register field
2725 *
2726 * @field: Register field to read from
2727 * @val: Pointer to store read value
2728 *
2729 * A value of zero will be returned on success, a negative errno will
2730 * be returned in error cases.
2731 */
2732int regmap_field_read(struct regmap_field *field, unsigned int *val)
2733{
2734 int ret;
2735 unsigned int reg_val;
2736 ret = regmap_read(field->regmap, field->reg, ®_val);
2737 if (ret != 0)
2738 return ret;
2739
2740 reg_val &= field->mask;
2741 reg_val >>= field->shift;
2742 *val = reg_val;
2743
2744 return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_field_read);
2747
2748/**
2749 * regmap_fields_read() - Read a value to a single register field with port ID
2750 *
2751 * @field: Register field to read from
2752 * @id: port ID
2753 * @val: Pointer to store read value
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_fields_read(struct regmap_field *field, unsigned int id,
2759 unsigned int *val)
2760{
2761 int ret;
2762 unsigned int reg_val;
2763
2764 if (id >= field->id_size)
2765 return -EINVAL;
2766
2767 ret = regmap_read(field->regmap,
2768 field->reg + (field->id_offset * id),
2769 ®_val);
2770 if (ret != 0)
2771 return ret;
2772
2773 reg_val &= field->mask;
2774 reg_val >>= field->shift;
2775 *val = reg_val;
2776
2777 return ret;
2778}
2779EXPORT_SYMBOL_GPL(regmap_fields_read);
2780
2781/**
2782 * regmap_bulk_read() - Read multiple registers from the device
2783 *
2784 * @map: Register map to read from
2785 * @reg: First register to be read from
2786 * @val: Pointer to store read value, in native register size for device
2787 * @val_count: Number of registers to read
2788 *
2789 * A value of zero will be returned on success, a negative errno will
2790 * be returned in error cases.
2791 */
2792int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2793 size_t val_count)
2794{
2795 int ret, i;
2796 size_t val_bytes = map->format.val_bytes;
2797 bool vol = regmap_volatile_range(map, reg, val_count);
2798
2799 if (!IS_ALIGNED(reg, map->reg_stride))
2800 return -EINVAL;
2801 if (val_count == 0)
2802 return -EINVAL;
2803
2804 if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2805 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2806 if (ret != 0)
2807 return ret;
2808
2809 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2810 map->format.parse_inplace(val + i);
2811 } else {
2812#ifdef CONFIG_64BIT
2813 u64 *u64 = val;
2814#endif
2815 u32 *u32 = val;
2816 u16 *u16 = val;
2817 u8 *u8 = val;
2818
2819 map->lock(map->lock_arg);
2820
2821 for (i = 0; i < val_count; i++) {
2822 unsigned int ival;
2823
2824 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2825 &ival);
2826 if (ret != 0)
2827 goto out;
2828
2829 switch (map->format.val_bytes) {
2830#ifdef CONFIG_64BIT
2831 case 8:
2832 u64[i] = ival;
2833 break;
2834#endif
2835 case 4:
2836 u32[i] = ival;
2837 break;
2838 case 2:
2839 u16[i] = ival;
2840 break;
2841 case 1:
2842 u8[i] = ival;
2843 break;
2844 default:
2845 ret = -EINVAL;
2846 goto out;
2847 }
2848 }
2849
2850out:
2851 map->unlock(map->lock_arg);
2852 }
2853
2854 return ret;
2855}
2856EXPORT_SYMBOL_GPL(regmap_bulk_read);
2857
2858static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2859 unsigned int mask, unsigned int val,
2860 bool *change, bool force_write)
2861{
2862 int ret;
2863 unsigned int tmp, orig;
2864
2865 if (change)
2866 *change = false;
2867
2868 if (regmap_volatile(map, reg) && map->reg_update_bits) {
2869 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2870 if (ret == 0 && change)
2871 *change = true;
2872 } else {
2873 ret = _regmap_read(map, reg, &orig);
2874 if (ret != 0)
2875 return ret;
2876
2877 tmp = orig & ~mask;
2878 tmp |= val & mask;
2879
2880 if (force_write || (tmp != orig)) {
2881 ret = _regmap_write(map, reg, tmp);
2882 if (ret == 0 && change)
2883 *change = true;
2884 }
2885 }
2886
2887 return ret;
2888}
2889
2890/**
2891 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2892 *
2893 * @map: Register map to update
2894 * @reg: Register to update
2895 * @mask: Bitmask to change
2896 * @val: New value for bitmask
2897 * @change: Boolean indicating if a write was done
2898 * @async: Boolean indicating asynchronously
2899 * @force: Boolean indicating use force update
2900 *
2901 * Perform a read/modify/write cycle on a register map with change, async, force
2902 * options.
2903 *
2904 * If async is true:
2905 *
2906 * With most buses the read must be done synchronously so this is most useful
2907 * for devices with a cache which do not need to interact with the hardware to
2908 * determine the current register value.
2909 *
2910 * Returns zero for success, a negative number on error.
2911 */
2912int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2913 unsigned int mask, unsigned int val,
2914 bool *change, bool async, bool force)
2915{
2916 int ret;
2917
2918 map->lock(map->lock_arg);
2919
2920 map->async = async;
2921
2922 ret = _regmap_update_bits(map, reg, mask, val, change, force);
2923
2924 map->async = false;
2925
2926 map->unlock(map->lock_arg);
2927
2928 return ret;
2929}
2930EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2931
2932void regmap_async_complete_cb(struct regmap_async *async, int ret)
2933{
2934 struct regmap *map = async->map;
2935 bool wake;
2936
2937 trace_regmap_async_io_complete(map);
2938
2939 spin_lock(&map->async_lock);
2940 list_move(&async->list, &map->async_free);
2941 wake = list_empty(&map->async_list);
2942
2943 if (ret != 0)
2944 map->async_ret = ret;
2945
2946 spin_unlock(&map->async_lock);
2947
2948 if (wake)
2949 wake_up(&map->async_waitq);
2950}
2951EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2952
2953static int regmap_async_is_done(struct regmap *map)
2954{
2955 unsigned long flags;
2956 int ret;
2957
2958 spin_lock_irqsave(&map->async_lock, flags);
2959 ret = list_empty(&map->async_list);
2960 spin_unlock_irqrestore(&map->async_lock, flags);
2961
2962 return ret;
2963}
2964
2965/**
2966 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2967 *
2968 * @map: Map to operate on.
2969 *
2970 * Blocks until any pending asynchronous I/O has completed. Returns
2971 * an error code for any failed I/O operations.
2972 */
2973int regmap_async_complete(struct regmap *map)
2974{
2975 unsigned long flags;
2976 int ret;
2977
2978 /* Nothing to do with no async support */
2979 if (!map->bus || !map->bus->async_write)
2980 return 0;
2981
2982 trace_regmap_async_complete_start(map);
2983
2984 wait_event(map->async_waitq, regmap_async_is_done(map));
2985
2986 spin_lock_irqsave(&map->async_lock, flags);
2987 ret = map->async_ret;
2988 map->async_ret = 0;
2989 spin_unlock_irqrestore(&map->async_lock, flags);
2990
2991 trace_regmap_async_complete_done(map);
2992
2993 return ret;
2994}
2995EXPORT_SYMBOL_GPL(regmap_async_complete);
2996
2997/**
2998 * regmap_register_patch - Register and apply register updates to be applied
2999 * on device initialistion
3000 *
3001 * @map: Register map to apply updates to.
3002 * @regs: Values to update.
3003 * @num_regs: Number of entries in regs.
3004 *
3005 * Register a set of register updates to be applied to the device
3006 * whenever the device registers are synchronised with the cache and
3007 * apply them immediately. Typically this is used to apply
3008 * corrections to be applied to the device defaults on startup, such
3009 * as the updates some vendors provide to undocumented registers.
3010 *
3011 * The caller must ensure that this function cannot be called
3012 * concurrently with either itself or regcache_sync().
3013 */
3014int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3015 int num_regs)
3016{
3017 struct reg_sequence *p;
3018 int ret;
3019 bool bypass;
3020
3021 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3022 num_regs))
3023 return 0;
3024
3025 p = krealloc(map->patch,
3026 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3027 GFP_KERNEL);
3028 if (p) {
3029 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3030 map->patch = p;
3031 map->patch_regs += num_regs;
3032 } else {
3033 return -ENOMEM;
3034 }
3035
3036 map->lock(map->lock_arg);
3037
3038 bypass = map->cache_bypass;
3039
3040 map->cache_bypass = true;
3041 map->async = true;
3042
3043 ret = _regmap_multi_reg_write(map, regs, num_regs);
3044
3045 map->async = false;
3046 map->cache_bypass = bypass;
3047
3048 map->unlock(map->lock_arg);
3049
3050 regmap_async_complete(map);
3051
3052 return ret;
3053}
3054EXPORT_SYMBOL_GPL(regmap_register_patch);
3055
3056/**
3057 * regmap_get_val_bytes() - Report the size of a register value
3058 *
3059 * @map: Register map to operate on.
3060 *
3061 * Report the size of a register value, mainly intended to for use by
3062 * generic infrastructure built on top of regmap.
3063 */
3064int regmap_get_val_bytes(struct regmap *map)
3065{
3066 if (map->format.format_write)
3067 return -EINVAL;
3068
3069 return map->format.val_bytes;
3070}
3071EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3072
3073/**
3074 * regmap_get_max_register() - Report the max register value
3075 *
3076 * @map: Register map to operate on.
3077 *
3078 * Report the max register value, mainly intended to for use by
3079 * generic infrastructure built on top of regmap.
3080 */
3081int regmap_get_max_register(struct regmap *map)
3082{
3083 return map->max_register ? map->max_register : -EINVAL;
3084}
3085EXPORT_SYMBOL_GPL(regmap_get_max_register);
3086
3087/**
3088 * regmap_get_reg_stride() - Report the register address stride
3089 *
3090 * @map: Register map to operate on.
3091 *
3092 * Report the register address stride, mainly intended to for use by
3093 * generic infrastructure built on top of regmap.
3094 */
3095int regmap_get_reg_stride(struct regmap *map)
3096{
3097 return map->reg_stride;
3098}
3099EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3100
3101int regmap_parse_val(struct regmap *map, const void *buf,
3102 unsigned int *val)
3103{
3104 if (!map->format.parse_val)
3105 return -EINVAL;
3106
3107 *val = map->format.parse_val(buf);
3108
3109 return 0;
3110}
3111EXPORT_SYMBOL_GPL(regmap_parse_val);
3112
3113static int __init regmap_initcall(void)
3114{
3115 regmap_debugfs_initcall();
3116
3117 return 0;
3118}
3119postcore_initcall(regmap_initcall);