Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 
 
 
 
 
 
 
 
 
 
 
 
 212static void regmap_format_2_6_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	*out = (reg << 6) | val;
 218}
 219
 220static void regmap_format_4_12_write(struct regmap *map,
 221				     unsigned int reg, unsigned int val)
 222{
 223	__be16 *out = map->work_buf;
 224	*out = cpu_to_be16((reg << 12) | val);
 225}
 226
 227static void regmap_format_7_9_write(struct regmap *map,
 228				    unsigned int reg, unsigned int val)
 229{
 230	__be16 *out = map->work_buf;
 231	*out = cpu_to_be16((reg << 9) | val);
 232}
 233
 
 
 
 
 
 
 
 
 
 
 234static void regmap_format_10_14_write(struct regmap *map,
 235				    unsigned int reg, unsigned int val)
 236{
 237	u8 *out = map->work_buf;
 238
 239	out[2] = val;
 240	out[1] = (val >> 8) | (reg << 6);
 241	out[0] = reg >> 2;
 242}
 243
 244static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 245{
 246	u8 *b = buf;
 247
 248	b[0] = val << shift;
 249}
 250
 251static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 252{
 253	put_unaligned_be16(val << shift, buf);
 254}
 255
 256static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 257{
 258	put_unaligned_le16(val << shift, buf);
 259}
 260
 261static void regmap_format_16_native(void *buf, unsigned int val,
 262				    unsigned int shift)
 263{
 264	u16 v = val << shift;
 265
 266	memcpy(buf, &v, sizeof(v));
 267}
 268
 269static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 270{
 271	u8 *b = buf;
 272
 273	val <<= shift;
 274
 275	b[0] = val >> 16;
 276	b[1] = val >> 8;
 277	b[2] = val;
 278}
 279
 280static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 281{
 282	put_unaligned_be32(val << shift, buf);
 283}
 284
 285static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 286{
 287	put_unaligned_le32(val << shift, buf);
 288}
 289
 290static void regmap_format_32_native(void *buf, unsigned int val,
 291				    unsigned int shift)
 292{
 293	u32 v = val << shift;
 294
 295	memcpy(buf, &v, sizeof(v));
 296}
 297
 298#ifdef CONFIG_64BIT
 299static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 300{
 301	put_unaligned_be64((u64) val << shift, buf);
 302}
 303
 304static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 305{
 306	put_unaligned_le64((u64) val << shift, buf);
 307}
 308
 309static void regmap_format_64_native(void *buf, unsigned int val,
 310				    unsigned int shift)
 311{
 312	u64 v = (u64) val << shift;
 313
 314	memcpy(buf, &v, sizeof(v));
 315}
 316#endif
 317
 318static void regmap_parse_inplace_noop(void *buf)
 319{
 320}
 321
 322static unsigned int regmap_parse_8(const void *buf)
 323{
 324	const u8 *b = buf;
 325
 326	return b[0];
 327}
 328
 329static unsigned int regmap_parse_16_be(const void *buf)
 330{
 331	return get_unaligned_be16(buf);
 332}
 333
 334static unsigned int regmap_parse_16_le(const void *buf)
 335{
 336	return get_unaligned_le16(buf);
 337}
 338
 339static void regmap_parse_16_be_inplace(void *buf)
 340{
 341	u16 v = get_unaligned_be16(buf);
 342
 343	memcpy(buf, &v, sizeof(v));
 344}
 345
 346static void regmap_parse_16_le_inplace(void *buf)
 347{
 348	u16 v = get_unaligned_le16(buf);
 349
 350	memcpy(buf, &v, sizeof(v));
 351}
 352
 353static unsigned int regmap_parse_16_native(const void *buf)
 354{
 355	u16 v;
 356
 357	memcpy(&v, buf, sizeof(v));
 358	return v;
 359}
 360
 361static unsigned int regmap_parse_24(const void *buf)
 362{
 363	const u8 *b = buf;
 364	unsigned int ret = b[2];
 365	ret |= ((unsigned int)b[1]) << 8;
 366	ret |= ((unsigned int)b[0]) << 16;
 367
 368	return ret;
 369}
 370
 371static unsigned int regmap_parse_32_be(const void *buf)
 372{
 373	return get_unaligned_be32(buf);
 374}
 375
 376static unsigned int regmap_parse_32_le(const void *buf)
 377{
 378	return get_unaligned_le32(buf);
 379}
 380
 381static void regmap_parse_32_be_inplace(void *buf)
 382{
 383	u32 v = get_unaligned_be32(buf);
 384
 385	memcpy(buf, &v, sizeof(v));
 386}
 387
 388static void regmap_parse_32_le_inplace(void *buf)
 389{
 390	u32 v = get_unaligned_le32(buf);
 391
 392	memcpy(buf, &v, sizeof(v));
 393}
 394
 395static unsigned int regmap_parse_32_native(const void *buf)
 396{
 397	u32 v;
 398
 399	memcpy(&v, buf, sizeof(v));
 400	return v;
 401}
 402
 403#ifdef CONFIG_64BIT
 404static unsigned int regmap_parse_64_be(const void *buf)
 405{
 406	return get_unaligned_be64(buf);
 407}
 408
 409static unsigned int regmap_parse_64_le(const void *buf)
 410{
 411	return get_unaligned_le64(buf);
 412}
 413
 414static void regmap_parse_64_be_inplace(void *buf)
 415{
 416	u64 v =  get_unaligned_be64(buf);
 417
 418	memcpy(buf, &v, sizeof(v));
 419}
 420
 421static void regmap_parse_64_le_inplace(void *buf)
 422{
 423	u64 v = get_unaligned_le64(buf);
 424
 425	memcpy(buf, &v, sizeof(v));
 426}
 427
 428static unsigned int regmap_parse_64_native(const void *buf)
 429{
 430	u64 v;
 431
 432	memcpy(&v, buf, sizeof(v));
 433	return v;
 434}
 435#endif
 436
 437static void regmap_lock_hwlock(void *__map)
 438{
 439	struct regmap *map = __map;
 440
 441	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 442}
 443
 444static void regmap_lock_hwlock_irq(void *__map)
 445{
 446	struct regmap *map = __map;
 447
 448	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 449}
 450
 451static void regmap_lock_hwlock_irqsave(void *__map)
 452{
 453	struct regmap *map = __map;
 454
 455	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 456				    &map->spinlock_flags);
 457}
 458
 459static void regmap_unlock_hwlock(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_unlock(map->hwlock);
 464}
 465
 466static void regmap_unlock_hwlock_irq(void *__map)
 467{
 468	struct regmap *map = __map;
 469
 470	hwspin_unlock_irq(map->hwlock);
 471}
 472
 473static void regmap_unlock_hwlock_irqrestore(void *__map)
 474{
 475	struct regmap *map = __map;
 476
 477	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 478}
 479
 480static void regmap_lock_unlock_none(void *__map)
 481{
 482
 483}
 484
 485static void regmap_lock_mutex(void *__map)
 486{
 487	struct regmap *map = __map;
 488	mutex_lock(&map->mutex);
 489}
 490
 491static void regmap_unlock_mutex(void *__map)
 492{
 493	struct regmap *map = __map;
 494	mutex_unlock(&map->mutex);
 495}
 496
 497static void regmap_lock_spinlock(void *__map)
 498__acquires(&map->spinlock)
 499{
 500	struct regmap *map = __map;
 501	unsigned long flags;
 502
 503	spin_lock_irqsave(&map->spinlock, flags);
 504	map->spinlock_flags = flags;
 505}
 506
 507static void regmap_unlock_spinlock(void *__map)
 508__releases(&map->spinlock)
 509{
 510	struct regmap *map = __map;
 511	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 512}
 513
 514static void dev_get_regmap_release(struct device *dev, void *res)
 515{
 516	/*
 517	 * We don't actually have anything to do here; the goal here
 518	 * is not to manage the regmap but to provide a simple way to
 519	 * get the regmap back given a struct device.
 520	 */
 521}
 522
 523static bool _regmap_range_add(struct regmap *map,
 524			      struct regmap_range_node *data)
 525{
 526	struct rb_root *root = &map->range_tree;
 527	struct rb_node **new = &(root->rb_node), *parent = NULL;
 528
 529	while (*new) {
 530		struct regmap_range_node *this =
 531			rb_entry(*new, struct regmap_range_node, node);
 532
 533		parent = *new;
 534		if (data->range_max < this->range_min)
 535			new = &((*new)->rb_left);
 536		else if (data->range_min > this->range_max)
 537			new = &((*new)->rb_right);
 538		else
 539			return false;
 540	}
 541
 542	rb_link_node(&data->node, parent, new);
 543	rb_insert_color(&data->node, root);
 544
 545	return true;
 546}
 547
 548static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 549						      unsigned int reg)
 550{
 551	struct rb_node *node = map->range_tree.rb_node;
 552
 553	while (node) {
 554		struct regmap_range_node *this =
 555			rb_entry(node, struct regmap_range_node, node);
 556
 557		if (reg < this->range_min)
 558			node = node->rb_left;
 559		else if (reg > this->range_max)
 560			node = node->rb_right;
 561		else
 562			return this;
 563	}
 564
 565	return NULL;
 566}
 567
 568static void regmap_range_exit(struct regmap *map)
 569{
 570	struct rb_node *next;
 571	struct regmap_range_node *range_node;
 572
 573	next = rb_first(&map->range_tree);
 574	while (next) {
 575		range_node = rb_entry(next, struct regmap_range_node, node);
 576		next = rb_next(&range_node->node);
 577		rb_erase(&range_node->node, &map->range_tree);
 578		kfree(range_node);
 579	}
 580
 581	kfree(map->selector_work_buf);
 582}
 583
 584static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 585{
 586	if (config->name) {
 587		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 588
 589		if (!name)
 590			return -ENOMEM;
 591
 592		kfree_const(map->name);
 593		map->name = name;
 594	}
 595
 596	return 0;
 597}
 598
 599int regmap_attach_dev(struct device *dev, struct regmap *map,
 600		      const struct regmap_config *config)
 601{
 602	struct regmap **m;
 603	int ret;
 604
 605	map->dev = dev;
 606
 607	ret = regmap_set_name(map, config);
 608	if (ret)
 609		return ret;
 610
 611	regmap_debugfs_init(map);
 612
 613	/* Add a devres resource for dev_get_regmap() */
 614	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 615	if (!m) {
 616		regmap_debugfs_exit(map);
 617		return -ENOMEM;
 618	}
 619	*m = map;
 620	devres_add(dev, m);
 621
 622	return 0;
 623}
 624EXPORT_SYMBOL_GPL(regmap_attach_dev);
 625
 626static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 627					const struct regmap_config *config)
 628{
 629	enum regmap_endian endian;
 630
 631	/* Retrieve the endianness specification from the regmap config */
 632	endian = config->reg_format_endian;
 633
 634	/* If the regmap config specified a non-default value, use that */
 635	if (endian != REGMAP_ENDIAN_DEFAULT)
 636		return endian;
 637
 638	/* Retrieve the endianness specification from the bus config */
 639	if (bus && bus->reg_format_endian_default)
 640		endian = bus->reg_format_endian_default;
 641
 642	/* If the bus specified a non-default value, use that */
 643	if (endian != REGMAP_ENDIAN_DEFAULT)
 644		return endian;
 645
 646	/* Use this if no other value was found */
 647	return REGMAP_ENDIAN_BIG;
 648}
 649
 650enum regmap_endian regmap_get_val_endian(struct device *dev,
 651					 const struct regmap_bus *bus,
 652					 const struct regmap_config *config)
 653{
 654	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 655	enum regmap_endian endian;
 656
 657	/* Retrieve the endianness specification from the regmap config */
 658	endian = config->val_format_endian;
 659
 660	/* If the regmap config specified a non-default value, use that */
 661	if (endian != REGMAP_ENDIAN_DEFAULT)
 662		return endian;
 663
 664	/* If the firmware node exist try to get endianness from it */
 665	if (fwnode_property_read_bool(fwnode, "big-endian"))
 666		endian = REGMAP_ENDIAN_BIG;
 667	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 668		endian = REGMAP_ENDIAN_LITTLE;
 669	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 670		endian = REGMAP_ENDIAN_NATIVE;
 671
 672	/* If the endianness was specified in fwnode, use that */
 673	if (endian != REGMAP_ENDIAN_DEFAULT)
 674		return endian;
 675
 676	/* Retrieve the endianness specification from the bus config */
 677	if (bus && bus->val_format_endian_default)
 678		endian = bus->val_format_endian_default;
 679
 680	/* If the bus specified a non-default value, use that */
 681	if (endian != REGMAP_ENDIAN_DEFAULT)
 682		return endian;
 683
 684	/* Use this if no other value was found */
 685	return REGMAP_ENDIAN_BIG;
 686}
 687EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 688
 689struct regmap *__regmap_init(struct device *dev,
 690			     const struct regmap_bus *bus,
 691			     void *bus_context,
 692			     const struct regmap_config *config,
 693			     struct lock_class_key *lock_key,
 694			     const char *lock_name)
 695{
 696	struct regmap *map;
 697	int ret = -EINVAL;
 698	enum regmap_endian reg_endian, val_endian;
 699	int i, j;
 700
 701	if (!config)
 702		goto err;
 703
 704	map = kzalloc(sizeof(*map), GFP_KERNEL);
 705	if (map == NULL) {
 706		ret = -ENOMEM;
 707		goto err;
 708	}
 709
 710	ret = regmap_set_name(map, config);
 711	if (ret)
 712		goto err_map;
 713
 
 
 714	if (config->disable_locking) {
 715		map->lock = map->unlock = regmap_lock_unlock_none;
 
 716		regmap_debugfs_disable(map);
 717	} else if (config->lock && config->unlock) {
 718		map->lock = config->lock;
 719		map->unlock = config->unlock;
 720		map->lock_arg = config->lock_arg;
 
 721	} else if (config->use_hwlock) {
 722		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 723		if (!map->hwlock) {
 724			ret = -ENXIO;
 725			goto err_name;
 726		}
 727
 728		switch (config->hwlock_mode) {
 729		case HWLOCK_IRQSTATE:
 730			map->lock = regmap_lock_hwlock_irqsave;
 731			map->unlock = regmap_unlock_hwlock_irqrestore;
 732			break;
 733		case HWLOCK_IRQ:
 734			map->lock = regmap_lock_hwlock_irq;
 735			map->unlock = regmap_unlock_hwlock_irq;
 736			break;
 737		default:
 738			map->lock = regmap_lock_hwlock;
 739			map->unlock = regmap_unlock_hwlock;
 740			break;
 741		}
 742
 743		map->lock_arg = map;
 744	} else {
 745		if ((bus && bus->fast_io) ||
 746		    config->fast_io) {
 747			spin_lock_init(&map->spinlock);
 748			map->lock = regmap_lock_spinlock;
 749			map->unlock = regmap_unlock_spinlock;
 750			lockdep_set_class_and_name(&map->spinlock,
 751						   lock_key, lock_name);
 752		} else {
 753			mutex_init(&map->mutex);
 754			map->lock = regmap_lock_mutex;
 755			map->unlock = regmap_unlock_mutex;
 
 756			lockdep_set_class_and_name(&map->mutex,
 757						   lock_key, lock_name);
 758		}
 759		map->lock_arg = map;
 760	}
 761
 762	/*
 763	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 764	 * scratch buffers with sleeping allocations.
 765	 */
 766	if ((bus && bus->fast_io) || config->fast_io)
 767		map->alloc_flags = GFP_ATOMIC;
 768	else
 769		map->alloc_flags = GFP_KERNEL;
 770
 771	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 772	map->format.pad_bytes = config->pad_bits / 8;
 773	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 774	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 775			config->val_bits + config->pad_bits, 8);
 776	map->reg_shift = config->pad_bits % 8;
 777	if (config->reg_stride)
 778		map->reg_stride = config->reg_stride;
 779	else
 780		map->reg_stride = 1;
 781	if (is_power_of_2(map->reg_stride))
 782		map->reg_stride_order = ilog2(map->reg_stride);
 783	else
 784		map->reg_stride_order = -1;
 785	map->use_single_read = config->use_single_read || !bus || !bus->read;
 786	map->use_single_write = config->use_single_write || !bus || !bus->write;
 787	map->can_multi_write = config->can_multi_write && bus && bus->write;
 788	if (bus) {
 789		map->max_raw_read = bus->max_raw_read;
 790		map->max_raw_write = bus->max_raw_write;
 791	}
 792	map->dev = dev;
 793	map->bus = bus;
 794	map->bus_context = bus_context;
 795	map->max_register = config->max_register;
 796	map->wr_table = config->wr_table;
 797	map->rd_table = config->rd_table;
 798	map->volatile_table = config->volatile_table;
 799	map->precious_table = config->precious_table;
 800	map->wr_noinc_table = config->wr_noinc_table;
 801	map->rd_noinc_table = config->rd_noinc_table;
 802	map->writeable_reg = config->writeable_reg;
 803	map->readable_reg = config->readable_reg;
 804	map->volatile_reg = config->volatile_reg;
 805	map->precious_reg = config->precious_reg;
 806	map->writeable_noinc_reg = config->writeable_noinc_reg;
 807	map->readable_noinc_reg = config->readable_noinc_reg;
 808	map->cache_type = config->cache_type;
 809
 810	spin_lock_init(&map->async_lock);
 811	INIT_LIST_HEAD(&map->async_list);
 812	INIT_LIST_HEAD(&map->async_free);
 813	init_waitqueue_head(&map->async_waitq);
 814
 815	if (config->read_flag_mask ||
 816	    config->write_flag_mask ||
 817	    config->zero_flag_mask) {
 818		map->read_flag_mask = config->read_flag_mask;
 819		map->write_flag_mask = config->write_flag_mask;
 820	} else if (bus) {
 821		map->read_flag_mask = bus->read_flag_mask;
 822	}
 823
 824	if (!bus) {
 825		map->reg_read  = config->reg_read;
 826		map->reg_write = config->reg_write;
 827
 828		map->defer_caching = false;
 829		goto skip_format_initialization;
 830	} else if (!bus->read || !bus->write) {
 831		map->reg_read = _regmap_bus_reg_read;
 832		map->reg_write = _regmap_bus_reg_write;
 833		map->reg_update_bits = bus->reg_update_bits;
 834
 835		map->defer_caching = false;
 836		goto skip_format_initialization;
 837	} else {
 838		map->reg_read  = _regmap_bus_read;
 839		map->reg_update_bits = bus->reg_update_bits;
 840	}
 841
 842	reg_endian = regmap_get_reg_endian(bus, config);
 843	val_endian = regmap_get_val_endian(dev, bus, config);
 844
 845	switch (config->reg_bits + map->reg_shift) {
 846	case 2:
 847		switch (config->val_bits) {
 848		case 6:
 849			map->format.format_write = regmap_format_2_6_write;
 850			break;
 851		default:
 852			goto err_hwlock;
 853		}
 854		break;
 855
 856	case 4:
 857		switch (config->val_bits) {
 858		case 12:
 859			map->format.format_write = regmap_format_4_12_write;
 860			break;
 861		default:
 862			goto err_hwlock;
 863		}
 864		break;
 865
 866	case 7:
 867		switch (config->val_bits) {
 868		case 9:
 869			map->format.format_write = regmap_format_7_9_write;
 870			break;
 
 
 
 871		default:
 872			goto err_hwlock;
 873		}
 874		break;
 875
 876	case 10:
 877		switch (config->val_bits) {
 878		case 14:
 879			map->format.format_write = regmap_format_10_14_write;
 880			break;
 881		default:
 882			goto err_hwlock;
 883		}
 884		break;
 885
 
 
 
 
 
 
 
 
 
 
 886	case 8:
 887		map->format.format_reg = regmap_format_8;
 888		break;
 889
 890	case 16:
 891		switch (reg_endian) {
 892		case REGMAP_ENDIAN_BIG:
 893			map->format.format_reg = regmap_format_16_be;
 894			break;
 895		case REGMAP_ENDIAN_LITTLE:
 896			map->format.format_reg = regmap_format_16_le;
 897			break;
 898		case REGMAP_ENDIAN_NATIVE:
 899			map->format.format_reg = regmap_format_16_native;
 900			break;
 901		default:
 902			goto err_hwlock;
 903		}
 904		break;
 905
 906	case 24:
 907		if (reg_endian != REGMAP_ENDIAN_BIG)
 908			goto err_hwlock;
 909		map->format.format_reg = regmap_format_24;
 910		break;
 911
 912	case 32:
 913		switch (reg_endian) {
 914		case REGMAP_ENDIAN_BIG:
 915			map->format.format_reg = regmap_format_32_be;
 916			break;
 917		case REGMAP_ENDIAN_LITTLE:
 918			map->format.format_reg = regmap_format_32_le;
 919			break;
 920		case REGMAP_ENDIAN_NATIVE:
 921			map->format.format_reg = regmap_format_32_native;
 922			break;
 923		default:
 924			goto err_hwlock;
 925		}
 926		break;
 927
 928#ifdef CONFIG_64BIT
 929	case 64:
 930		switch (reg_endian) {
 931		case REGMAP_ENDIAN_BIG:
 932			map->format.format_reg = regmap_format_64_be;
 933			break;
 934		case REGMAP_ENDIAN_LITTLE:
 935			map->format.format_reg = regmap_format_64_le;
 936			break;
 937		case REGMAP_ENDIAN_NATIVE:
 938			map->format.format_reg = regmap_format_64_native;
 939			break;
 940		default:
 941			goto err_hwlock;
 942		}
 943		break;
 944#endif
 945
 946	default:
 947		goto err_hwlock;
 948	}
 949
 950	if (val_endian == REGMAP_ENDIAN_NATIVE)
 951		map->format.parse_inplace = regmap_parse_inplace_noop;
 952
 953	switch (config->val_bits) {
 954	case 8:
 955		map->format.format_val = regmap_format_8;
 956		map->format.parse_val = regmap_parse_8;
 957		map->format.parse_inplace = regmap_parse_inplace_noop;
 958		break;
 959	case 16:
 960		switch (val_endian) {
 961		case REGMAP_ENDIAN_BIG:
 962			map->format.format_val = regmap_format_16_be;
 963			map->format.parse_val = regmap_parse_16_be;
 964			map->format.parse_inplace = regmap_parse_16_be_inplace;
 965			break;
 966		case REGMAP_ENDIAN_LITTLE:
 967			map->format.format_val = regmap_format_16_le;
 968			map->format.parse_val = regmap_parse_16_le;
 969			map->format.parse_inplace = regmap_parse_16_le_inplace;
 970			break;
 971		case REGMAP_ENDIAN_NATIVE:
 972			map->format.format_val = regmap_format_16_native;
 973			map->format.parse_val = regmap_parse_16_native;
 974			break;
 975		default:
 976			goto err_hwlock;
 977		}
 978		break;
 979	case 24:
 980		if (val_endian != REGMAP_ENDIAN_BIG)
 981			goto err_hwlock;
 982		map->format.format_val = regmap_format_24;
 983		map->format.parse_val = regmap_parse_24;
 984		break;
 985	case 32:
 986		switch (val_endian) {
 987		case REGMAP_ENDIAN_BIG:
 988			map->format.format_val = regmap_format_32_be;
 989			map->format.parse_val = regmap_parse_32_be;
 990			map->format.parse_inplace = regmap_parse_32_be_inplace;
 991			break;
 992		case REGMAP_ENDIAN_LITTLE:
 993			map->format.format_val = regmap_format_32_le;
 994			map->format.parse_val = regmap_parse_32_le;
 995			map->format.parse_inplace = regmap_parse_32_le_inplace;
 996			break;
 997		case REGMAP_ENDIAN_NATIVE:
 998			map->format.format_val = regmap_format_32_native;
 999			map->format.parse_val = regmap_parse_32_native;
1000			break;
1001		default:
1002			goto err_hwlock;
1003		}
1004		break;
1005#ifdef CONFIG_64BIT
1006	case 64:
1007		switch (val_endian) {
1008		case REGMAP_ENDIAN_BIG:
1009			map->format.format_val = regmap_format_64_be;
1010			map->format.parse_val = regmap_parse_64_be;
1011			map->format.parse_inplace = regmap_parse_64_be_inplace;
1012			break;
1013		case REGMAP_ENDIAN_LITTLE:
1014			map->format.format_val = regmap_format_64_le;
1015			map->format.parse_val = regmap_parse_64_le;
1016			map->format.parse_inplace = regmap_parse_64_le_inplace;
1017			break;
1018		case REGMAP_ENDIAN_NATIVE:
1019			map->format.format_val = regmap_format_64_native;
1020			map->format.parse_val = regmap_parse_64_native;
1021			break;
1022		default:
1023			goto err_hwlock;
1024		}
1025		break;
1026#endif
1027	}
1028
1029	if (map->format.format_write) {
1030		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1031		    (val_endian != REGMAP_ENDIAN_BIG))
1032			goto err_hwlock;
1033		map->use_single_write = true;
1034	}
1035
1036	if (!map->format.format_write &&
1037	    !(map->format.format_reg && map->format.format_val))
1038		goto err_hwlock;
1039
1040	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1041	if (map->work_buf == NULL) {
1042		ret = -ENOMEM;
1043		goto err_hwlock;
1044	}
1045
1046	if (map->format.format_write) {
1047		map->defer_caching = false;
1048		map->reg_write = _regmap_bus_formatted_write;
1049	} else if (map->format.format_val) {
1050		map->defer_caching = true;
1051		map->reg_write = _regmap_bus_raw_write;
1052	}
1053
1054skip_format_initialization:
1055
1056	map->range_tree = RB_ROOT;
1057	for (i = 0; i < config->num_ranges; i++) {
1058		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1059		struct regmap_range_node *new;
1060
1061		/* Sanity check */
1062		if (range_cfg->range_max < range_cfg->range_min) {
1063			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1064				range_cfg->range_max, range_cfg->range_min);
1065			goto err_range;
1066		}
1067
1068		if (range_cfg->range_max > map->max_register) {
1069			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1070				range_cfg->range_max, map->max_register);
1071			goto err_range;
1072		}
1073
1074		if (range_cfg->selector_reg > map->max_register) {
1075			dev_err(map->dev,
1076				"Invalid range %d: selector out of map\n", i);
1077			goto err_range;
1078		}
1079
1080		if (range_cfg->window_len == 0) {
1081			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082				i);
1083			goto err_range;
1084		}
1085
1086		/* Make sure, that this register range has no selector
1087		   or data window within its boundary */
1088		for (j = 0; j < config->num_ranges; j++) {
1089			unsigned sel_reg = config->ranges[j].selector_reg;
1090			unsigned win_min = config->ranges[j].window_start;
1091			unsigned win_max = win_min +
1092					   config->ranges[j].window_len - 1;
1093
1094			/* Allow data window inside its own virtual range */
1095			if (j == i)
1096				continue;
1097
1098			if (range_cfg->range_min <= sel_reg &&
1099			    sel_reg <= range_cfg->range_max) {
1100				dev_err(map->dev,
1101					"Range %d: selector for %d in window\n",
1102					i, j);
1103				goto err_range;
1104			}
1105
1106			if (!(win_max < range_cfg->range_min ||
1107			      win_min > range_cfg->range_max)) {
1108				dev_err(map->dev,
1109					"Range %d: window for %d in window\n",
1110					i, j);
1111				goto err_range;
1112			}
1113		}
1114
1115		new = kzalloc(sizeof(*new), GFP_KERNEL);
1116		if (new == NULL) {
1117			ret = -ENOMEM;
1118			goto err_range;
1119		}
1120
1121		new->map = map;
1122		new->name = range_cfg->name;
1123		new->range_min = range_cfg->range_min;
1124		new->range_max = range_cfg->range_max;
1125		new->selector_reg = range_cfg->selector_reg;
1126		new->selector_mask = range_cfg->selector_mask;
1127		new->selector_shift = range_cfg->selector_shift;
1128		new->window_start = range_cfg->window_start;
1129		new->window_len = range_cfg->window_len;
1130
1131		if (!_regmap_range_add(map, new)) {
1132			dev_err(map->dev, "Failed to add range %d\n", i);
1133			kfree(new);
1134			goto err_range;
1135		}
1136
1137		if (map->selector_work_buf == NULL) {
1138			map->selector_work_buf =
1139				kzalloc(map->format.buf_size, GFP_KERNEL);
1140			if (map->selector_work_buf == NULL) {
1141				ret = -ENOMEM;
1142				goto err_range;
1143			}
1144		}
1145	}
1146
1147	ret = regcache_init(map, config);
1148	if (ret != 0)
1149		goto err_range;
1150
1151	if (dev) {
1152		ret = regmap_attach_dev(dev, map, config);
1153		if (ret != 0)
1154			goto err_regcache;
1155	} else {
1156		regmap_debugfs_init(map);
1157	}
1158
1159	return map;
1160
1161err_regcache:
1162	regcache_exit(map);
1163err_range:
1164	regmap_range_exit(map);
1165	kfree(map->work_buf);
1166err_hwlock:
1167	if (map->hwlock)
1168		hwspin_lock_free(map->hwlock);
1169err_name:
1170	kfree_const(map->name);
1171err_map:
1172	kfree(map);
1173err:
1174	return ERR_PTR(ret);
1175}
1176EXPORT_SYMBOL_GPL(__regmap_init);
1177
1178static void devm_regmap_release(struct device *dev, void *res)
1179{
1180	regmap_exit(*(struct regmap **)res);
1181}
1182
1183struct regmap *__devm_regmap_init(struct device *dev,
1184				  const struct regmap_bus *bus,
1185				  void *bus_context,
1186				  const struct regmap_config *config,
1187				  struct lock_class_key *lock_key,
1188				  const char *lock_name)
1189{
1190	struct regmap **ptr, *regmap;
1191
1192	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1193	if (!ptr)
1194		return ERR_PTR(-ENOMEM);
1195
1196	regmap = __regmap_init(dev, bus, bus_context, config,
1197			       lock_key, lock_name);
1198	if (!IS_ERR(regmap)) {
1199		*ptr = regmap;
1200		devres_add(dev, ptr);
1201	} else {
1202		devres_free(ptr);
1203	}
1204
1205	return regmap;
1206}
1207EXPORT_SYMBOL_GPL(__devm_regmap_init);
1208
1209static void regmap_field_init(struct regmap_field *rm_field,
1210	struct regmap *regmap, struct reg_field reg_field)
1211{
1212	rm_field->regmap = regmap;
1213	rm_field->reg = reg_field.reg;
1214	rm_field->shift = reg_field.lsb;
1215	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1216	rm_field->id_size = reg_field.id_size;
1217	rm_field->id_offset = reg_field.id_offset;
1218}
1219
1220/**
1221 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1222 *
1223 * @dev: Device that will be interacted with
1224 * @regmap: regmap bank in which this register field is located.
1225 * @reg_field: Register field with in the bank.
1226 *
1227 * The return value will be an ERR_PTR() on error or a valid pointer
1228 * to a struct regmap_field. The regmap_field will be automatically freed
1229 * by the device management code.
1230 */
1231struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1232		struct regmap *regmap, struct reg_field reg_field)
1233{
1234	struct regmap_field *rm_field = devm_kzalloc(dev,
1235					sizeof(*rm_field), GFP_KERNEL);
1236	if (!rm_field)
1237		return ERR_PTR(-ENOMEM);
1238
1239	regmap_field_init(rm_field, regmap, reg_field);
1240
1241	return rm_field;
1242
1243}
1244EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246/**
1247 * devm_regmap_field_free() - Free a register field allocated using
1248 *                            devm_regmap_field_alloc.
1249 *
1250 * @dev: Device that will be interacted with
1251 * @field: regmap field which should be freed.
1252 *
1253 * Free register field allocated using devm_regmap_field_alloc(). Usually
1254 * drivers need not call this function, as the memory allocated via devm
1255 * will be freed as per device-driver life-cyle.
1256 */
1257void devm_regmap_field_free(struct device *dev,
1258	struct regmap_field *field)
1259{
1260	devm_kfree(dev, field);
1261}
1262EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1263
1264/**
1265 * regmap_field_alloc() - Allocate and initialise a register field.
1266 *
1267 * @regmap: regmap bank in which this register field is located.
1268 * @reg_field: Register field with in the bank.
1269 *
1270 * The return value will be an ERR_PTR() on error or a valid pointer
1271 * to a struct regmap_field. The regmap_field should be freed by the
1272 * user once its finished working with it using regmap_field_free().
1273 */
1274struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1275		struct reg_field reg_field)
1276{
1277	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1278
1279	if (!rm_field)
1280		return ERR_PTR(-ENOMEM);
1281
1282	regmap_field_init(rm_field, regmap, reg_field);
1283
1284	return rm_field;
1285}
1286EXPORT_SYMBOL_GPL(regmap_field_alloc);
1287
1288/**
1289 * regmap_field_free() - Free register field allocated using
1290 *                       regmap_field_alloc.
1291 *
1292 * @field: regmap field which should be freed.
1293 */
1294void regmap_field_free(struct regmap_field *field)
1295{
1296	kfree(field);
1297}
1298EXPORT_SYMBOL_GPL(regmap_field_free);
1299
1300/**
1301 * regmap_reinit_cache() - Reinitialise the current register cache
1302 *
1303 * @map: Register map to operate on.
1304 * @config: New configuration.  Only the cache data will be used.
1305 *
1306 * Discard any existing register cache for the map and initialize a
1307 * new cache.  This can be used to restore the cache to defaults or to
1308 * update the cache configuration to reflect runtime discovery of the
1309 * hardware.
1310 *
1311 * No explicit locking is done here, the user needs to ensure that
1312 * this function will not race with other calls to regmap.
1313 */
1314int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1315{
1316	int ret;
1317
1318	regcache_exit(map);
1319	regmap_debugfs_exit(map);
1320
1321	map->max_register = config->max_register;
1322	map->writeable_reg = config->writeable_reg;
1323	map->readable_reg = config->readable_reg;
1324	map->volatile_reg = config->volatile_reg;
1325	map->precious_reg = config->precious_reg;
1326	map->writeable_noinc_reg = config->writeable_noinc_reg;
1327	map->readable_noinc_reg = config->readable_noinc_reg;
1328	map->cache_type = config->cache_type;
1329
1330	ret = regmap_set_name(map, config);
1331	if (ret)
1332		return ret;
1333
1334	regmap_debugfs_init(map);
1335
1336	map->cache_bypass = false;
1337	map->cache_only = false;
1338
1339	return regcache_init(map, config);
1340}
1341EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1342
1343/**
1344 * regmap_exit() - Free a previously allocated register map
1345 *
1346 * @map: Register map to operate on.
1347 */
1348void regmap_exit(struct regmap *map)
1349{
1350	struct regmap_async *async;
1351
1352	regcache_exit(map);
1353	regmap_debugfs_exit(map);
1354	regmap_range_exit(map);
1355	if (map->bus && map->bus->free_context)
1356		map->bus->free_context(map->bus_context);
1357	kfree(map->work_buf);
1358	while (!list_empty(&map->async_free)) {
1359		async = list_first_entry_or_null(&map->async_free,
1360						 struct regmap_async,
1361						 list);
1362		list_del(&async->list);
1363		kfree(async->work_buf);
1364		kfree(async);
1365	}
1366	if (map->hwlock)
1367		hwspin_lock_free(map->hwlock);
 
 
1368	kfree_const(map->name);
1369	kfree(map->patch);
 
 
1370	kfree(map);
1371}
1372EXPORT_SYMBOL_GPL(regmap_exit);
1373
1374static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1375{
1376	struct regmap **r = res;
1377	if (!r || !*r) {
1378		WARN_ON(!r || !*r);
1379		return 0;
1380	}
1381
1382	/* If the user didn't specify a name match any */
1383	if (data)
1384		return !strcmp((*r)->name, data);
1385	else
1386		return 1;
1387}
1388
1389/**
1390 * dev_get_regmap() - Obtain the regmap (if any) for a device
1391 *
1392 * @dev: Device to retrieve the map for
1393 * @name: Optional name for the register map, usually NULL.
1394 *
1395 * Returns the regmap for the device if one is present, or NULL.  If
1396 * name is specified then it must match the name specified when
1397 * registering the device, if it is NULL then the first regmap found
1398 * will be used.  Devices with multiple register maps are very rare,
1399 * generic code should normally not need to specify a name.
1400 */
1401struct regmap *dev_get_regmap(struct device *dev, const char *name)
1402{
1403	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1404					dev_get_regmap_match, (void *)name);
1405
1406	if (!r)
1407		return NULL;
1408	return *r;
1409}
1410EXPORT_SYMBOL_GPL(dev_get_regmap);
1411
1412/**
1413 * regmap_get_device() - Obtain the device from a regmap
1414 *
1415 * @map: Register map to operate on.
1416 *
1417 * Returns the underlying device that the regmap has been created for.
1418 */
1419struct device *regmap_get_device(struct regmap *map)
1420{
1421	return map->dev;
1422}
1423EXPORT_SYMBOL_GPL(regmap_get_device);
1424
1425static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1426			       struct regmap_range_node *range,
1427			       unsigned int val_num)
1428{
1429	void *orig_work_buf;
1430	unsigned int win_offset;
1431	unsigned int win_page;
1432	bool page_chg;
1433	int ret;
1434
1435	win_offset = (*reg - range->range_min) % range->window_len;
1436	win_page = (*reg - range->range_min) / range->window_len;
1437
1438	if (val_num > 1) {
1439		/* Bulk write shouldn't cross range boundary */
1440		if (*reg + val_num - 1 > range->range_max)
1441			return -EINVAL;
1442
1443		/* ... or single page boundary */
1444		if (val_num > range->window_len - win_offset)
1445			return -EINVAL;
1446	}
1447
1448	/* It is possible to have selector register inside data window.
1449	   In that case, selector register is located on every page and
1450	   it needs no page switching, when accessed alone. */
1451	if (val_num > 1 ||
1452	    range->window_start + win_offset != range->selector_reg) {
1453		/* Use separate work_buf during page switching */
1454		orig_work_buf = map->work_buf;
1455		map->work_buf = map->selector_work_buf;
1456
1457		ret = _regmap_update_bits(map, range->selector_reg,
1458					  range->selector_mask,
1459					  win_page << range->selector_shift,
1460					  &page_chg, false);
1461
1462		map->work_buf = orig_work_buf;
1463
1464		if (ret != 0)
1465			return ret;
1466	}
1467
1468	*reg = range->window_start + win_offset;
1469
1470	return 0;
1471}
1472
1473static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1474					  unsigned long mask)
1475{
1476	u8 *buf;
1477	int i;
1478
1479	if (!mask || !map->work_buf)
1480		return;
1481
1482	buf = map->work_buf;
1483
1484	for (i = 0; i < max_bytes; i++)
1485		buf[i] |= (mask >> (8 * i)) & 0xff;
1486}
1487
1488static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1489				  const void *val, size_t val_len, bool noinc)
1490{
1491	struct regmap_range_node *range;
1492	unsigned long flags;
1493	void *work_val = map->work_buf + map->format.reg_bytes +
1494		map->format.pad_bytes;
1495	void *buf;
1496	int ret = -ENOTSUPP;
1497	size_t len;
1498	int i;
1499
1500	WARN_ON(!map->bus);
1501
1502	/* Check for unwritable or noinc registers in range
1503	 * before we start
1504	 */
1505	if (!regmap_writeable_noinc(map, reg)) {
1506		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1507			unsigned int element =
1508				reg + regmap_get_offset(map, i);
1509			if (!regmap_writeable(map, element) ||
1510				regmap_writeable_noinc(map, element))
1511				return -EINVAL;
1512		}
1513	}
1514
1515	if (!map->cache_bypass && map->format.parse_val) {
1516		unsigned int ival;
1517		int val_bytes = map->format.val_bytes;
1518		for (i = 0; i < val_len / val_bytes; i++) {
1519			ival = map->format.parse_val(val + (i * val_bytes));
1520			ret = regcache_write(map,
1521					     reg + regmap_get_offset(map, i),
1522					     ival);
1523			if (ret) {
1524				dev_err(map->dev,
1525					"Error in caching of register: %x ret: %d\n",
1526					reg + i, ret);
1527				return ret;
1528			}
1529		}
1530		if (map->cache_only) {
1531			map->cache_dirty = true;
1532			return 0;
1533		}
1534	}
1535
1536	range = _regmap_range_lookup(map, reg);
1537	if (range) {
1538		int val_num = val_len / map->format.val_bytes;
1539		int win_offset = (reg - range->range_min) % range->window_len;
1540		int win_residue = range->window_len - win_offset;
1541
1542		/* If the write goes beyond the end of the window split it */
1543		while (val_num > win_residue) {
1544			dev_dbg(map->dev, "Writing window %d/%zu\n",
1545				win_residue, val_len / map->format.val_bytes);
1546			ret = _regmap_raw_write_impl(map, reg, val,
1547						     win_residue *
1548						     map->format.val_bytes, noinc);
1549			if (ret != 0)
1550				return ret;
1551
1552			reg += win_residue;
1553			val_num -= win_residue;
1554			val += win_residue * map->format.val_bytes;
1555			val_len -= win_residue * map->format.val_bytes;
1556
1557			win_offset = (reg - range->range_min) %
1558				range->window_len;
1559			win_residue = range->window_len - win_offset;
1560		}
1561
1562		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1563		if (ret != 0)
1564			return ret;
1565	}
1566
1567	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1568	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1569				      map->write_flag_mask);
1570
1571	/*
1572	 * Essentially all I/O mechanisms will be faster with a single
1573	 * buffer to write.  Since register syncs often generate raw
1574	 * writes of single registers optimise that case.
1575	 */
1576	if (val != work_val && val_len == map->format.val_bytes) {
1577		memcpy(work_val, val, map->format.val_bytes);
1578		val = work_val;
1579	}
1580
1581	if (map->async && map->bus->async_write) {
1582		struct regmap_async *async;
1583
1584		trace_regmap_async_write_start(map, reg, val_len);
1585
1586		spin_lock_irqsave(&map->async_lock, flags);
1587		async = list_first_entry_or_null(&map->async_free,
1588						 struct regmap_async,
1589						 list);
1590		if (async)
1591			list_del(&async->list);
1592		spin_unlock_irqrestore(&map->async_lock, flags);
1593
1594		if (!async) {
1595			async = map->bus->async_alloc();
1596			if (!async)
1597				return -ENOMEM;
1598
1599			async->work_buf = kzalloc(map->format.buf_size,
1600						  GFP_KERNEL | GFP_DMA);
1601			if (!async->work_buf) {
1602				kfree(async);
1603				return -ENOMEM;
1604			}
1605		}
1606
1607		async->map = map;
1608
1609		/* If the caller supplied the value we can use it safely. */
1610		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1611		       map->format.reg_bytes + map->format.val_bytes);
1612
1613		spin_lock_irqsave(&map->async_lock, flags);
1614		list_add_tail(&async->list, &map->async_list);
1615		spin_unlock_irqrestore(&map->async_lock, flags);
1616
1617		if (val != work_val)
1618			ret = map->bus->async_write(map->bus_context,
1619						    async->work_buf,
1620						    map->format.reg_bytes +
1621						    map->format.pad_bytes,
1622						    val, val_len, async);
1623		else
1624			ret = map->bus->async_write(map->bus_context,
1625						    async->work_buf,
1626						    map->format.reg_bytes +
1627						    map->format.pad_bytes +
1628						    val_len, NULL, 0, async);
1629
1630		if (ret != 0) {
1631			dev_err(map->dev, "Failed to schedule write: %d\n",
1632				ret);
1633
1634			spin_lock_irqsave(&map->async_lock, flags);
1635			list_move(&async->list, &map->async_free);
1636			spin_unlock_irqrestore(&map->async_lock, flags);
1637		}
1638
1639		return ret;
1640	}
1641
1642	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1643
1644	/* If we're doing a single register write we can probably just
1645	 * send the work_buf directly, otherwise try to do a gather
1646	 * write.
1647	 */
1648	if (val == work_val)
1649		ret = map->bus->write(map->bus_context, map->work_buf,
1650				      map->format.reg_bytes +
1651				      map->format.pad_bytes +
1652				      val_len);
1653	else if (map->bus->gather_write)
1654		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1655					     map->format.reg_bytes +
1656					     map->format.pad_bytes,
1657					     val, val_len);
1658	else
1659		ret = -ENOTSUPP;
1660
1661	/* If that didn't work fall back on linearising by hand. */
1662	if (ret == -ENOTSUPP) {
1663		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1664		buf = kzalloc(len, GFP_KERNEL);
1665		if (!buf)
1666			return -ENOMEM;
1667
1668		memcpy(buf, map->work_buf, map->format.reg_bytes);
1669		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1670		       val, val_len);
1671		ret = map->bus->write(map->bus_context, buf, len);
1672
1673		kfree(buf);
1674	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1675		/* regcache_drop_region() takes lock that we already have,
1676		 * thus call map->cache_ops->drop() directly
1677		 */
1678		if (map->cache_ops && map->cache_ops->drop)
1679			map->cache_ops->drop(map, reg, reg + 1);
1680	}
1681
1682	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1683
1684	return ret;
1685}
1686
1687/**
1688 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1689 *
1690 * @map: Map to check.
1691 */
1692bool regmap_can_raw_write(struct regmap *map)
1693{
1694	return map->bus && map->bus->write && map->format.format_val &&
1695		map->format.format_reg;
1696}
1697EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1698
1699/**
1700 * regmap_get_raw_read_max - Get the maximum size we can read
1701 *
1702 * @map: Map to check.
1703 */
1704size_t regmap_get_raw_read_max(struct regmap *map)
1705{
1706	return map->max_raw_read;
1707}
1708EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1709
1710/**
1711 * regmap_get_raw_write_max - Get the maximum size we can read
1712 *
1713 * @map: Map to check.
1714 */
1715size_t regmap_get_raw_write_max(struct regmap *map)
1716{
1717	return map->max_raw_write;
1718}
1719EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1720
1721static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1722				       unsigned int val)
1723{
1724	int ret;
1725	struct regmap_range_node *range;
1726	struct regmap *map = context;
1727
1728	WARN_ON(!map->bus || !map->format.format_write);
1729
1730	range = _regmap_range_lookup(map, reg);
1731	if (range) {
1732		ret = _regmap_select_page(map, &reg, range, 1);
1733		if (ret != 0)
1734			return ret;
1735	}
1736
1737	map->format.format_write(map, reg, val);
1738
1739	trace_regmap_hw_write_start(map, reg, 1);
1740
1741	ret = map->bus->write(map->bus_context, map->work_buf,
1742			      map->format.buf_size);
1743
1744	trace_regmap_hw_write_done(map, reg, 1);
1745
1746	return ret;
1747}
1748
1749static int _regmap_bus_reg_write(void *context, unsigned int reg,
1750				 unsigned int val)
1751{
1752	struct regmap *map = context;
1753
1754	return map->bus->reg_write(map->bus_context, reg, val);
1755}
1756
1757static int _regmap_bus_raw_write(void *context, unsigned int reg,
1758				 unsigned int val)
1759{
1760	struct regmap *map = context;
1761
1762	WARN_ON(!map->bus || !map->format.format_val);
1763
1764	map->format.format_val(map->work_buf + map->format.reg_bytes
1765			       + map->format.pad_bytes, val, 0);
1766	return _regmap_raw_write_impl(map, reg,
1767				      map->work_buf +
1768				      map->format.reg_bytes +
1769				      map->format.pad_bytes,
1770				      map->format.val_bytes,
1771				      false);
1772}
1773
1774static inline void *_regmap_map_get_context(struct regmap *map)
1775{
1776	return (map->bus) ? map : map->bus_context;
1777}
1778
1779int _regmap_write(struct regmap *map, unsigned int reg,
1780		  unsigned int val)
1781{
1782	int ret;
1783	void *context = _regmap_map_get_context(map);
1784
1785	if (!regmap_writeable(map, reg))
1786		return -EIO;
1787
1788	if (!map->cache_bypass && !map->defer_caching) {
1789		ret = regcache_write(map, reg, val);
1790		if (ret != 0)
1791			return ret;
1792		if (map->cache_only) {
1793			map->cache_dirty = true;
1794			return 0;
1795		}
1796	}
1797
1798	if (regmap_should_log(map))
1799		dev_info(map->dev, "%x <= %x\n", reg, val);
 
 
1800
1801	trace_regmap_reg_write(map, reg, val);
 
1802
1803	return map->reg_write(context, reg, val);
1804}
1805
1806/**
1807 * regmap_write() - Write a value to a single register
1808 *
1809 * @map: Register map to write to
1810 * @reg: Register to write to
1811 * @val: Value to be written
1812 *
1813 * A value of zero will be returned on success, a negative errno will
1814 * be returned in error cases.
1815 */
1816int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1817{
1818	int ret;
1819
1820	if (!IS_ALIGNED(reg, map->reg_stride))
1821		return -EINVAL;
1822
1823	map->lock(map->lock_arg);
1824
1825	ret = _regmap_write(map, reg, val);
1826
1827	map->unlock(map->lock_arg);
1828
1829	return ret;
1830}
1831EXPORT_SYMBOL_GPL(regmap_write);
1832
1833/**
1834 * regmap_write_async() - Write a value to a single register asynchronously
1835 *
1836 * @map: Register map to write to
1837 * @reg: Register to write to
1838 * @val: Value to be written
1839 *
1840 * A value of zero will be returned on success, a negative errno will
1841 * be returned in error cases.
1842 */
1843int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1844{
1845	int ret;
1846
1847	if (!IS_ALIGNED(reg, map->reg_stride))
1848		return -EINVAL;
1849
1850	map->lock(map->lock_arg);
1851
1852	map->async = true;
1853
1854	ret = _regmap_write(map, reg, val);
1855
1856	map->async = false;
1857
1858	map->unlock(map->lock_arg);
1859
1860	return ret;
1861}
1862EXPORT_SYMBOL_GPL(regmap_write_async);
1863
1864int _regmap_raw_write(struct regmap *map, unsigned int reg,
1865		      const void *val, size_t val_len, bool noinc)
1866{
1867	size_t val_bytes = map->format.val_bytes;
1868	size_t val_count = val_len / val_bytes;
1869	size_t chunk_count, chunk_bytes;
1870	size_t chunk_regs = val_count;
1871	int ret, i;
1872
1873	if (!val_count)
1874		return -EINVAL;
1875
1876	if (map->use_single_write)
1877		chunk_regs = 1;
1878	else if (map->max_raw_write && val_len > map->max_raw_write)
1879		chunk_regs = map->max_raw_write / val_bytes;
1880
1881	chunk_count = val_count / chunk_regs;
1882	chunk_bytes = chunk_regs * val_bytes;
1883
1884	/* Write as many bytes as possible with chunk_size */
1885	for (i = 0; i < chunk_count; i++) {
1886		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
1887		if (ret)
1888			return ret;
1889
1890		reg += regmap_get_offset(map, chunk_regs);
1891		val += chunk_bytes;
1892		val_len -= chunk_bytes;
1893	}
1894
1895	/* Write remaining bytes */
1896	if (val_len)
1897		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
1898
1899	return ret;
1900}
1901
1902/**
1903 * regmap_raw_write() - Write raw values to one or more registers
1904 *
1905 * @map: Register map to write to
1906 * @reg: Initial register to write to
1907 * @val: Block of data to be written, laid out for direct transmission to the
1908 *       device
1909 * @val_len: Length of data pointed to by val.
1910 *
1911 * This function is intended to be used for things like firmware
1912 * download where a large block of data needs to be transferred to the
1913 * device.  No formatting will be done on the data provided.
1914 *
1915 * A value of zero will be returned on success, a negative errno will
1916 * be returned in error cases.
1917 */
1918int regmap_raw_write(struct regmap *map, unsigned int reg,
1919		     const void *val, size_t val_len)
1920{
1921	int ret;
1922
1923	if (!regmap_can_raw_write(map))
1924		return -EINVAL;
1925	if (val_len % map->format.val_bytes)
1926		return -EINVAL;
1927
1928	map->lock(map->lock_arg);
1929
1930	ret = _regmap_raw_write(map, reg, val, val_len, false);
1931
1932	map->unlock(map->lock_arg);
1933
1934	return ret;
1935}
1936EXPORT_SYMBOL_GPL(regmap_raw_write);
1937
1938/**
1939 * regmap_noinc_write(): Write data from a register without incrementing the
1940 *			register number
1941 *
1942 * @map: Register map to write to
1943 * @reg: Register to write to
1944 * @val: Pointer to data buffer
1945 * @val_len: Length of output buffer in bytes.
1946 *
1947 * The regmap API usually assumes that bulk bus write operations will write a
1948 * range of registers. Some devices have certain registers for which a write
1949 * operation can write to an internal FIFO.
1950 *
1951 * The target register must be volatile but registers after it can be
1952 * completely unrelated cacheable registers.
1953 *
1954 * This will attempt multiple writes as required to write val_len bytes.
1955 *
1956 * A value of zero will be returned on success, a negative errno will be
1957 * returned in error cases.
1958 */
1959int regmap_noinc_write(struct regmap *map, unsigned int reg,
1960		      const void *val, size_t val_len)
1961{
1962	size_t write_len;
1963	int ret;
1964
1965	if (!map->bus)
1966		return -EINVAL;
1967	if (!map->bus->write)
1968		return -ENOTSUPP;
1969	if (val_len % map->format.val_bytes)
1970		return -EINVAL;
1971	if (!IS_ALIGNED(reg, map->reg_stride))
1972		return -EINVAL;
1973	if (val_len == 0)
1974		return -EINVAL;
1975
1976	map->lock(map->lock_arg);
1977
1978	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1979		ret = -EINVAL;
1980		goto out_unlock;
1981	}
1982
1983	while (val_len) {
1984		if (map->max_raw_write && map->max_raw_write < val_len)
1985			write_len = map->max_raw_write;
1986		else
1987			write_len = val_len;
1988		ret = _regmap_raw_write(map, reg, val, write_len, true);
1989		if (ret)
1990			goto out_unlock;
1991		val = ((u8 *)val) + write_len;
1992		val_len -= write_len;
1993	}
1994
1995out_unlock:
1996	map->unlock(map->lock_arg);
1997	return ret;
1998}
1999EXPORT_SYMBOL_GPL(regmap_noinc_write);
2000
2001/**
2002 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2003 *                                   register field.
2004 *
2005 * @field: Register field to write to
2006 * @mask: Bitmask to change
2007 * @val: Value to be written
2008 * @change: Boolean indicating if a write was done
2009 * @async: Boolean indicating asynchronously
2010 * @force: Boolean indicating use force update
2011 *
2012 * Perform a read/modify/write cycle on the register field with change,
2013 * async, force option.
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_field_update_bits_base(struct regmap_field *field,
2019				  unsigned int mask, unsigned int val,
2020				  bool *change, bool async, bool force)
2021{
2022	mask = (mask << field->shift) & field->mask;
2023
2024	return regmap_update_bits_base(field->regmap, field->reg,
2025				       mask, val << field->shift,
2026				       change, async, force);
2027}
2028EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2029
2030/**
2031 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2032 *                                    register field with port ID
2033 *
2034 * @field: Register field to write to
2035 * @id: port ID
2036 * @mask: Bitmask to change
2037 * @val: Value to be written
2038 * @change: Boolean indicating if a write was done
2039 * @async: Boolean indicating asynchronously
2040 * @force: Boolean indicating use force update
2041 *
2042 * A value of zero will be returned on success, a negative errno will
2043 * be returned in error cases.
2044 */
2045int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2046				   unsigned int mask, unsigned int val,
2047				   bool *change, bool async, bool force)
2048{
2049	if (id >= field->id_size)
2050		return -EINVAL;
2051
2052	mask = (mask << field->shift) & field->mask;
2053
2054	return regmap_update_bits_base(field->regmap,
2055				       field->reg + (field->id_offset * id),
2056				       mask, val << field->shift,
2057				       change, async, force);
2058}
2059EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2060
2061/**
2062 * regmap_bulk_write() - Write multiple registers to the device
2063 *
2064 * @map: Register map to write to
2065 * @reg: First register to be write from
2066 * @val: Block of data to be written, in native register size for device
2067 * @val_count: Number of registers to write
2068 *
2069 * This function is intended to be used for writing a large block of
2070 * data to the device either in single transfer or multiple transfer.
2071 *
2072 * A value of zero will be returned on success, a negative errno will
2073 * be returned in error cases.
2074 */
2075int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2076		     size_t val_count)
2077{
2078	int ret = 0, i;
2079	size_t val_bytes = map->format.val_bytes;
2080
2081	if (!IS_ALIGNED(reg, map->reg_stride))
2082		return -EINVAL;
2083
2084	/*
2085	 * Some devices don't support bulk write, for them we have a series of
2086	 * single write operations.
2087	 */
2088	if (!map->bus || !map->format.parse_inplace) {
2089		map->lock(map->lock_arg);
2090		for (i = 0; i < val_count; i++) {
2091			unsigned int ival;
2092
2093			switch (val_bytes) {
2094			case 1:
2095				ival = *(u8 *)(val + (i * val_bytes));
2096				break;
2097			case 2:
2098				ival = *(u16 *)(val + (i * val_bytes));
2099				break;
2100			case 4:
2101				ival = *(u32 *)(val + (i * val_bytes));
2102				break;
2103#ifdef CONFIG_64BIT
2104			case 8:
2105				ival = *(u64 *)(val + (i * val_bytes));
2106				break;
2107#endif
2108			default:
2109				ret = -EINVAL;
2110				goto out;
2111			}
2112
2113			ret = _regmap_write(map,
2114					    reg + regmap_get_offset(map, i),
2115					    ival);
2116			if (ret != 0)
2117				goto out;
2118		}
2119out:
2120		map->unlock(map->lock_arg);
2121	} else {
2122		void *wval;
2123
2124		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2125		if (!wval)
2126			return -ENOMEM;
2127
2128		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2129			map->format.parse_inplace(wval + i);
2130
2131		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2132
2133		kfree(wval);
2134	}
2135	return ret;
2136}
2137EXPORT_SYMBOL_GPL(regmap_bulk_write);
2138
2139/*
2140 * _regmap_raw_multi_reg_write()
2141 *
2142 * the (register,newvalue) pairs in regs have not been formatted, but
2143 * they are all in the same page and have been changed to being page
2144 * relative. The page register has been written if that was necessary.
2145 */
2146static int _regmap_raw_multi_reg_write(struct regmap *map,
2147				       const struct reg_sequence *regs,
2148				       size_t num_regs)
2149{
2150	int ret;
2151	void *buf;
2152	int i;
2153	u8 *u8;
2154	size_t val_bytes = map->format.val_bytes;
2155	size_t reg_bytes = map->format.reg_bytes;
2156	size_t pad_bytes = map->format.pad_bytes;
2157	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2158	size_t len = pair_size * num_regs;
2159
2160	if (!len)
2161		return -EINVAL;
2162
2163	buf = kzalloc(len, GFP_KERNEL);
2164	if (!buf)
2165		return -ENOMEM;
2166
2167	/* We have to linearise by hand. */
2168
2169	u8 = buf;
2170
2171	for (i = 0; i < num_regs; i++) {
2172		unsigned int reg = regs[i].reg;
2173		unsigned int val = regs[i].def;
2174		trace_regmap_hw_write_start(map, reg, 1);
2175		map->format.format_reg(u8, reg, map->reg_shift);
2176		u8 += reg_bytes + pad_bytes;
2177		map->format.format_val(u8, val, 0);
2178		u8 += val_bytes;
2179	}
2180	u8 = buf;
2181	*u8 |= map->write_flag_mask;
2182
2183	ret = map->bus->write(map->bus_context, buf, len);
2184
2185	kfree(buf);
2186
2187	for (i = 0; i < num_regs; i++) {
2188		int reg = regs[i].reg;
2189		trace_regmap_hw_write_done(map, reg, 1);
2190	}
2191	return ret;
2192}
2193
2194static unsigned int _regmap_register_page(struct regmap *map,
2195					  unsigned int reg,
2196					  struct regmap_range_node *range)
2197{
2198	unsigned int win_page = (reg - range->range_min) / range->window_len;
2199
2200	return win_page;
2201}
2202
2203static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2204					       struct reg_sequence *regs,
2205					       size_t num_regs)
2206{
2207	int ret;
2208	int i, n;
2209	struct reg_sequence *base;
2210	unsigned int this_page = 0;
2211	unsigned int page_change = 0;
2212	/*
2213	 * the set of registers are not neccessarily in order, but
2214	 * since the order of write must be preserved this algorithm
2215	 * chops the set each time the page changes. This also applies
2216	 * if there is a delay required at any point in the sequence.
2217	 */
2218	base = regs;
2219	for (i = 0, n = 0; i < num_regs; i++, n++) {
2220		unsigned int reg = regs[i].reg;
2221		struct regmap_range_node *range;
2222
2223		range = _regmap_range_lookup(map, reg);
2224		if (range) {
2225			unsigned int win_page = _regmap_register_page(map, reg,
2226								      range);
2227
2228			if (i == 0)
2229				this_page = win_page;
2230			if (win_page != this_page) {
2231				this_page = win_page;
2232				page_change = 1;
2233			}
2234		}
2235
2236		/* If we have both a page change and a delay make sure to
2237		 * write the regs and apply the delay before we change the
2238		 * page.
2239		 */
2240
2241		if (page_change || regs[i].delay_us) {
2242
2243				/* For situations where the first write requires
2244				 * a delay we need to make sure we don't call
2245				 * raw_multi_reg_write with n=0
2246				 * This can't occur with page breaks as we
2247				 * never write on the first iteration
2248				 */
2249				if (regs[i].delay_us && i == 0)
2250					n = 1;
2251
2252				ret = _regmap_raw_multi_reg_write(map, base, n);
2253				if (ret != 0)
2254					return ret;
2255
2256				if (regs[i].delay_us)
2257					udelay(regs[i].delay_us);
 
 
 
 
2258
2259				base += n;
2260				n = 0;
2261
2262				if (page_change) {
2263					ret = _regmap_select_page(map,
2264								  &base[n].reg,
2265								  range, 1);
2266					if (ret != 0)
2267						return ret;
2268
2269					page_change = 0;
2270				}
2271
2272		}
2273
2274	}
2275	if (n > 0)
2276		return _regmap_raw_multi_reg_write(map, base, n);
2277	return 0;
2278}
2279
2280static int _regmap_multi_reg_write(struct regmap *map,
2281				   const struct reg_sequence *regs,
2282				   size_t num_regs)
2283{
2284	int i;
2285	int ret;
2286
2287	if (!map->can_multi_write) {
2288		for (i = 0; i < num_regs; i++) {
2289			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2290			if (ret != 0)
2291				return ret;
2292
2293			if (regs[i].delay_us)
2294				udelay(regs[i].delay_us);
 
 
 
 
2295		}
2296		return 0;
2297	}
2298
2299	if (!map->format.parse_inplace)
2300		return -EINVAL;
2301
2302	if (map->writeable_reg)
2303		for (i = 0; i < num_regs; i++) {
2304			int reg = regs[i].reg;
2305			if (!map->writeable_reg(map->dev, reg))
2306				return -EINVAL;
2307			if (!IS_ALIGNED(reg, map->reg_stride))
2308				return -EINVAL;
2309		}
2310
2311	if (!map->cache_bypass) {
2312		for (i = 0; i < num_regs; i++) {
2313			unsigned int val = regs[i].def;
2314			unsigned int reg = regs[i].reg;
2315			ret = regcache_write(map, reg, val);
2316			if (ret) {
2317				dev_err(map->dev,
2318				"Error in caching of register: %x ret: %d\n",
2319								reg, ret);
2320				return ret;
2321			}
2322		}
2323		if (map->cache_only) {
2324			map->cache_dirty = true;
2325			return 0;
2326		}
2327	}
2328
2329	WARN_ON(!map->bus);
2330
2331	for (i = 0; i < num_regs; i++) {
2332		unsigned int reg = regs[i].reg;
2333		struct regmap_range_node *range;
2334
2335		/* Coalesce all the writes between a page break or a delay
2336		 * in a sequence
2337		 */
2338		range = _regmap_range_lookup(map, reg);
2339		if (range || regs[i].delay_us) {
2340			size_t len = sizeof(struct reg_sequence)*num_regs;
2341			struct reg_sequence *base = kmemdup(regs, len,
2342							   GFP_KERNEL);
2343			if (!base)
2344				return -ENOMEM;
2345			ret = _regmap_range_multi_paged_reg_write(map, base,
2346								  num_regs);
2347			kfree(base);
2348
2349			return ret;
2350		}
2351	}
2352	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2353}
2354
2355/**
2356 * regmap_multi_reg_write() - Write multiple registers to the device
2357 *
2358 * @map: Register map to write to
2359 * @regs: Array of structures containing register,value to be written
2360 * @num_regs: Number of registers to write
2361 *
2362 * Write multiple registers to the device where the set of register, value
2363 * pairs are supplied in any order, possibly not all in a single range.
2364 *
2365 * The 'normal' block write mode will send ultimately send data on the
2366 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2367 * addressed. However, this alternative block multi write mode will send
2368 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2369 * must of course support the mode.
2370 *
2371 * A value of zero will be returned on success, a negative errno will be
2372 * returned in error cases.
2373 */
2374int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2375			   int num_regs)
2376{
2377	int ret;
2378
2379	map->lock(map->lock_arg);
2380
2381	ret = _regmap_multi_reg_write(map, regs, num_regs);
2382
2383	map->unlock(map->lock_arg);
2384
2385	return ret;
2386}
2387EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2388
2389/**
2390 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2391 *                                     device but not the cache
2392 *
2393 * @map: Register map to write to
2394 * @regs: Array of structures containing register,value to be written
2395 * @num_regs: Number of registers to write
2396 *
2397 * Write multiple registers to the device but not the cache where the set
2398 * of register are supplied in any order.
2399 *
2400 * This function is intended to be used for writing a large block of data
2401 * atomically to the device in single transfer for those I2C client devices
2402 * that implement this alternative block write mode.
2403 *
2404 * A value of zero will be returned on success, a negative errno will
2405 * be returned in error cases.
2406 */
2407int regmap_multi_reg_write_bypassed(struct regmap *map,
2408				    const struct reg_sequence *regs,
2409				    int num_regs)
2410{
2411	int ret;
2412	bool bypass;
2413
2414	map->lock(map->lock_arg);
2415
2416	bypass = map->cache_bypass;
2417	map->cache_bypass = true;
2418
2419	ret = _regmap_multi_reg_write(map, regs, num_regs);
2420
2421	map->cache_bypass = bypass;
2422
2423	map->unlock(map->lock_arg);
2424
2425	return ret;
2426}
2427EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2428
2429/**
2430 * regmap_raw_write_async() - Write raw values to one or more registers
2431 *                            asynchronously
2432 *
2433 * @map: Register map to write to
2434 * @reg: Initial register to write to
2435 * @val: Block of data to be written, laid out for direct transmission to the
2436 *       device.  Must be valid until regmap_async_complete() is called.
2437 * @val_len: Length of data pointed to by val.
2438 *
2439 * This function is intended to be used for things like firmware
2440 * download where a large block of data needs to be transferred to the
2441 * device.  No formatting will be done on the data provided.
2442 *
2443 * If supported by the underlying bus the write will be scheduled
2444 * asynchronously, helping maximise I/O speed on higher speed buses
2445 * like SPI.  regmap_async_complete() can be called to ensure that all
2446 * asynchrnous writes have been completed.
2447 *
2448 * A value of zero will be returned on success, a negative errno will
2449 * be returned in error cases.
2450 */
2451int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2452			   const void *val, size_t val_len)
2453{
2454	int ret;
2455
2456	if (val_len % map->format.val_bytes)
2457		return -EINVAL;
2458	if (!IS_ALIGNED(reg, map->reg_stride))
2459		return -EINVAL;
2460
2461	map->lock(map->lock_arg);
2462
2463	map->async = true;
2464
2465	ret = _regmap_raw_write(map, reg, val, val_len, false);
2466
2467	map->async = false;
2468
2469	map->unlock(map->lock_arg);
2470
2471	return ret;
2472}
2473EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2474
2475static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2476			    unsigned int val_len, bool noinc)
2477{
2478	struct regmap_range_node *range;
2479	int ret;
2480
2481	WARN_ON(!map->bus);
2482
2483	if (!map->bus || !map->bus->read)
2484		return -EINVAL;
2485
2486	range = _regmap_range_lookup(map, reg);
2487	if (range) {
2488		ret = _regmap_select_page(map, &reg, range,
2489					  noinc ? 1 : val_len / map->format.val_bytes);
2490		if (ret != 0)
2491			return ret;
2492	}
2493
2494	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2495	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2496				      map->read_flag_mask);
2497	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2498
2499	ret = map->bus->read(map->bus_context, map->work_buf,
2500			     map->format.reg_bytes + map->format.pad_bytes,
2501			     val, val_len);
2502
2503	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2504
2505	return ret;
2506}
2507
2508static int _regmap_bus_reg_read(void *context, unsigned int reg,
2509				unsigned int *val)
2510{
2511	struct regmap *map = context;
2512
2513	return map->bus->reg_read(map->bus_context, reg, val);
2514}
2515
2516static int _regmap_bus_read(void *context, unsigned int reg,
2517			    unsigned int *val)
2518{
2519	int ret;
2520	struct regmap *map = context;
2521	void *work_val = map->work_buf + map->format.reg_bytes +
2522		map->format.pad_bytes;
2523
2524	if (!map->format.parse_val)
2525		return -EINVAL;
2526
2527	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2528	if (ret == 0)
2529		*val = map->format.parse_val(work_val);
2530
2531	return ret;
2532}
2533
2534static int _regmap_read(struct regmap *map, unsigned int reg,
2535			unsigned int *val)
2536{
2537	int ret;
2538	void *context = _regmap_map_get_context(map);
2539
2540	if (!map->cache_bypass) {
2541		ret = regcache_read(map, reg, val);
2542		if (ret == 0)
2543			return 0;
2544	}
2545
2546	if (map->cache_only)
2547		return -EBUSY;
2548
2549	if (!regmap_readable(map, reg))
2550		return -EIO;
2551
2552	ret = map->reg_read(context, reg, val);
2553	if (ret == 0) {
2554		if (regmap_should_log(map))
2555			dev_info(map->dev, "%x => %x\n", reg, *val);
2556
2557		trace_regmap_reg_read(map, reg, *val);
2558
2559		if (!map->cache_bypass)
2560			regcache_write(map, reg, *val);
2561	}
2562
2563	return ret;
2564}
2565
2566/**
2567 * regmap_read() - Read a value from a single register
2568 *
2569 * @map: Register map to read from
2570 * @reg: Register to be read from
2571 * @val: Pointer to store read value
2572 *
2573 * A value of zero will be returned on success, a negative errno will
2574 * be returned in error cases.
2575 */
2576int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2577{
2578	int ret;
2579
2580	if (!IS_ALIGNED(reg, map->reg_stride))
2581		return -EINVAL;
2582
2583	map->lock(map->lock_arg);
2584
2585	ret = _regmap_read(map, reg, val);
2586
2587	map->unlock(map->lock_arg);
2588
2589	return ret;
2590}
2591EXPORT_SYMBOL_GPL(regmap_read);
2592
2593/**
2594 * regmap_raw_read() - Read raw data from the device
2595 *
2596 * @map: Register map to read from
2597 * @reg: First register to be read from
2598 * @val: Pointer to store read value
2599 * @val_len: Size of data to read
2600 *
2601 * A value of zero will be returned on success, a negative errno will
2602 * be returned in error cases.
2603 */
2604int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2605		    size_t val_len)
2606{
2607	size_t val_bytes = map->format.val_bytes;
2608	size_t val_count = val_len / val_bytes;
2609	unsigned int v;
2610	int ret, i;
2611
2612	if (!map->bus)
2613		return -EINVAL;
2614	if (val_len % map->format.val_bytes)
2615		return -EINVAL;
2616	if (!IS_ALIGNED(reg, map->reg_stride))
2617		return -EINVAL;
2618	if (val_count == 0)
2619		return -EINVAL;
2620
2621	map->lock(map->lock_arg);
2622
2623	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2624	    map->cache_type == REGCACHE_NONE) {
2625		size_t chunk_count, chunk_bytes;
2626		size_t chunk_regs = val_count;
2627
2628		if (!map->bus->read) {
2629			ret = -ENOTSUPP;
2630			goto out;
2631		}
2632
2633		if (map->use_single_read)
2634			chunk_regs = 1;
2635		else if (map->max_raw_read && val_len > map->max_raw_read)
2636			chunk_regs = map->max_raw_read / val_bytes;
2637
2638		chunk_count = val_count / chunk_regs;
2639		chunk_bytes = chunk_regs * val_bytes;
2640
2641		/* Read bytes that fit into whole chunks */
2642		for (i = 0; i < chunk_count; i++) {
2643			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2644			if (ret != 0)
2645				goto out;
2646
2647			reg += regmap_get_offset(map, chunk_regs);
2648			val += chunk_bytes;
2649			val_len -= chunk_bytes;
2650		}
2651
2652		/* Read remaining bytes */
2653		if (val_len) {
2654			ret = _regmap_raw_read(map, reg, val, val_len, false);
2655			if (ret != 0)
2656				goto out;
2657		}
2658	} else {
2659		/* Otherwise go word by word for the cache; should be low
2660		 * cost as we expect to hit the cache.
2661		 */
2662		for (i = 0; i < val_count; i++) {
2663			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2664					   &v);
2665			if (ret != 0)
2666				goto out;
2667
2668			map->format.format_val(val + (i * val_bytes), v, 0);
2669		}
2670	}
2671
2672 out:
2673	map->unlock(map->lock_arg);
2674
2675	return ret;
2676}
2677EXPORT_SYMBOL_GPL(regmap_raw_read);
2678
2679/**
2680 * regmap_noinc_read(): Read data from a register without incrementing the
2681 *			register number
2682 *
2683 * @map: Register map to read from
2684 * @reg: Register to read from
2685 * @val: Pointer to data buffer
2686 * @val_len: Length of output buffer in bytes.
2687 *
2688 * The regmap API usually assumes that bulk bus read operations will read a
2689 * range of registers. Some devices have certain registers for which a read
2690 * operation read will read from an internal FIFO.
2691 *
2692 * The target register must be volatile but registers after it can be
2693 * completely unrelated cacheable registers.
2694 *
2695 * This will attempt multiple reads as required to read val_len bytes.
2696 *
2697 * A value of zero will be returned on success, a negative errno will be
2698 * returned in error cases.
2699 */
2700int regmap_noinc_read(struct regmap *map, unsigned int reg,
2701		      void *val, size_t val_len)
2702{
2703	size_t read_len;
2704	int ret;
2705
2706	if (!map->bus)
2707		return -EINVAL;
2708	if (!map->bus->read)
2709		return -ENOTSUPP;
2710	if (val_len % map->format.val_bytes)
2711		return -EINVAL;
2712	if (!IS_ALIGNED(reg, map->reg_stride))
2713		return -EINVAL;
2714	if (val_len == 0)
2715		return -EINVAL;
2716
2717	map->lock(map->lock_arg);
2718
2719	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2720		ret = -EINVAL;
2721		goto out_unlock;
2722	}
2723
2724	while (val_len) {
2725		if (map->max_raw_read && map->max_raw_read < val_len)
2726			read_len = map->max_raw_read;
2727		else
2728			read_len = val_len;
2729		ret = _regmap_raw_read(map, reg, val, read_len, true);
2730		if (ret)
2731			goto out_unlock;
2732		val = ((u8 *)val) + read_len;
2733		val_len -= read_len;
2734	}
2735
2736out_unlock:
2737	map->unlock(map->lock_arg);
2738	return ret;
2739}
2740EXPORT_SYMBOL_GPL(regmap_noinc_read);
2741
2742/**
2743 * regmap_field_read(): Read a value to a single register field
2744 *
2745 * @field: Register field to read from
2746 * @val: Pointer to store read value
2747 *
2748 * A value of zero will be returned on success, a negative errno will
2749 * be returned in error cases.
2750 */
2751int regmap_field_read(struct regmap_field *field, unsigned int *val)
2752{
2753	int ret;
2754	unsigned int reg_val;
2755	ret = regmap_read(field->regmap, field->reg, &reg_val);
2756	if (ret != 0)
2757		return ret;
2758
2759	reg_val &= field->mask;
2760	reg_val >>= field->shift;
2761	*val = reg_val;
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(regmap_field_read);
2766
2767/**
2768 * regmap_fields_read() - Read a value to a single register field with port ID
2769 *
2770 * @field: Register field to read from
2771 * @id: port ID
2772 * @val: Pointer to store read value
2773 *
2774 * A value of zero will be returned on success, a negative errno will
2775 * be returned in error cases.
2776 */
2777int regmap_fields_read(struct regmap_field *field, unsigned int id,
2778		       unsigned int *val)
2779{
2780	int ret;
2781	unsigned int reg_val;
2782
2783	if (id >= field->id_size)
2784		return -EINVAL;
2785
2786	ret = regmap_read(field->regmap,
2787			  field->reg + (field->id_offset * id),
2788			  &reg_val);
2789	if (ret != 0)
2790		return ret;
2791
2792	reg_val &= field->mask;
2793	reg_val >>= field->shift;
2794	*val = reg_val;
2795
2796	return ret;
2797}
2798EXPORT_SYMBOL_GPL(regmap_fields_read);
2799
2800/**
2801 * regmap_bulk_read() - Read multiple registers from the device
2802 *
2803 * @map: Register map to read from
2804 * @reg: First register to be read from
2805 * @val: Pointer to store read value, in native register size for device
2806 * @val_count: Number of registers to read
2807 *
2808 * A value of zero will be returned on success, a negative errno will
2809 * be returned in error cases.
2810 */
2811int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2812		     size_t val_count)
2813{
2814	int ret, i;
2815	size_t val_bytes = map->format.val_bytes;
2816	bool vol = regmap_volatile_range(map, reg, val_count);
2817
2818	if (!IS_ALIGNED(reg, map->reg_stride))
2819		return -EINVAL;
2820	if (val_count == 0)
2821		return -EINVAL;
2822
2823	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2824		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2825		if (ret != 0)
2826			return ret;
2827
2828		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2829			map->format.parse_inplace(val + i);
2830	} else {
2831#ifdef CONFIG_64BIT
2832		u64 *u64 = val;
2833#endif
2834		u32 *u32 = val;
2835		u16 *u16 = val;
2836		u8 *u8 = val;
2837
2838		map->lock(map->lock_arg);
2839
2840		for (i = 0; i < val_count; i++) {
2841			unsigned int ival;
2842
2843			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844					   &ival);
2845			if (ret != 0)
2846				goto out;
2847
2848			switch (map->format.val_bytes) {
2849#ifdef CONFIG_64BIT
2850			case 8:
2851				u64[i] = ival;
2852				break;
2853#endif
2854			case 4:
2855				u32[i] = ival;
2856				break;
2857			case 2:
2858				u16[i] = ival;
2859				break;
2860			case 1:
2861				u8[i] = ival;
2862				break;
2863			default:
2864				ret = -EINVAL;
2865				goto out;
2866			}
2867		}
2868
2869out:
2870		map->unlock(map->lock_arg);
2871	}
2872
2873	return ret;
2874}
2875EXPORT_SYMBOL_GPL(regmap_bulk_read);
2876
2877static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2878			       unsigned int mask, unsigned int val,
2879			       bool *change, bool force_write)
2880{
2881	int ret;
2882	unsigned int tmp, orig;
2883
2884	if (change)
2885		*change = false;
2886
2887	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2888		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2889		if (ret == 0 && change)
2890			*change = true;
2891	} else {
2892		ret = _regmap_read(map, reg, &orig);
2893		if (ret != 0)
2894			return ret;
2895
2896		tmp = orig & ~mask;
2897		tmp |= val & mask;
2898
2899		if (force_write || (tmp != orig)) {
2900			ret = _regmap_write(map, reg, tmp);
2901			if (ret == 0 && change)
2902				*change = true;
2903		}
2904	}
2905
2906	return ret;
2907}
2908
2909/**
2910 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2911 *
2912 * @map: Register map to update
2913 * @reg: Register to update
2914 * @mask: Bitmask to change
2915 * @val: New value for bitmask
2916 * @change: Boolean indicating if a write was done
2917 * @async: Boolean indicating asynchronously
2918 * @force: Boolean indicating use force update
2919 *
2920 * Perform a read/modify/write cycle on a register map with change, async, force
2921 * options.
2922 *
2923 * If async is true:
2924 *
2925 * With most buses the read must be done synchronously so this is most useful
2926 * for devices with a cache which do not need to interact with the hardware to
2927 * determine the current register value.
2928 *
2929 * Returns zero for success, a negative number on error.
2930 */
2931int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2932			    unsigned int mask, unsigned int val,
2933			    bool *change, bool async, bool force)
2934{
2935	int ret;
2936
2937	map->lock(map->lock_arg);
2938
2939	map->async = async;
2940
2941	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2942
2943	map->async = false;
2944
2945	map->unlock(map->lock_arg);
2946
2947	return ret;
2948}
2949EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2950
2951/**
2952 * regmap_test_bits() - Check if all specified bits are set in a register.
2953 *
2954 * @map: Register map to operate on
2955 * @reg: Register to read from
2956 * @bits: Bits to test
2957 *
2958 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2959 * bits are set and a negative error number if the underlying regmap_read()
2960 * fails.
2961 */
2962int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2963{
2964	unsigned int val, ret;
2965
2966	ret = regmap_read(map, reg, &val);
2967	if (ret)
2968		return ret;
2969
2970	return (val & bits) == bits;
2971}
2972EXPORT_SYMBOL_GPL(regmap_test_bits);
2973
2974void regmap_async_complete_cb(struct regmap_async *async, int ret)
2975{
2976	struct regmap *map = async->map;
2977	bool wake;
2978
2979	trace_regmap_async_io_complete(map);
2980
2981	spin_lock(&map->async_lock);
2982	list_move(&async->list, &map->async_free);
2983	wake = list_empty(&map->async_list);
2984
2985	if (ret != 0)
2986		map->async_ret = ret;
2987
2988	spin_unlock(&map->async_lock);
2989
2990	if (wake)
2991		wake_up(&map->async_waitq);
2992}
2993EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2994
2995static int regmap_async_is_done(struct regmap *map)
2996{
2997	unsigned long flags;
2998	int ret;
2999
3000	spin_lock_irqsave(&map->async_lock, flags);
3001	ret = list_empty(&map->async_list);
3002	spin_unlock_irqrestore(&map->async_lock, flags);
3003
3004	return ret;
3005}
3006
3007/**
3008 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3009 *
3010 * @map: Map to operate on.
3011 *
3012 * Blocks until any pending asynchronous I/O has completed.  Returns
3013 * an error code for any failed I/O operations.
3014 */
3015int regmap_async_complete(struct regmap *map)
3016{
3017	unsigned long flags;
3018	int ret;
3019
3020	/* Nothing to do with no async support */
3021	if (!map->bus || !map->bus->async_write)
3022		return 0;
3023
3024	trace_regmap_async_complete_start(map);
3025
3026	wait_event(map->async_waitq, regmap_async_is_done(map));
3027
3028	spin_lock_irqsave(&map->async_lock, flags);
3029	ret = map->async_ret;
3030	map->async_ret = 0;
3031	spin_unlock_irqrestore(&map->async_lock, flags);
3032
3033	trace_regmap_async_complete_done(map);
3034
3035	return ret;
3036}
3037EXPORT_SYMBOL_GPL(regmap_async_complete);
3038
3039/**
3040 * regmap_register_patch - Register and apply register updates to be applied
3041 *                         on device initialistion
3042 *
3043 * @map: Register map to apply updates to.
3044 * @regs: Values to update.
3045 * @num_regs: Number of entries in regs.
3046 *
3047 * Register a set of register updates to be applied to the device
3048 * whenever the device registers are synchronised with the cache and
3049 * apply them immediately.  Typically this is used to apply
3050 * corrections to be applied to the device defaults on startup, such
3051 * as the updates some vendors provide to undocumented registers.
3052 *
3053 * The caller must ensure that this function cannot be called
3054 * concurrently with either itself or regcache_sync().
3055 */
3056int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3057			  int num_regs)
3058{
3059	struct reg_sequence *p;
3060	int ret;
3061	bool bypass;
3062
3063	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3064	    num_regs))
3065		return 0;
3066
3067	p = krealloc(map->patch,
3068		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3069		     GFP_KERNEL);
3070	if (p) {
3071		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3072		map->patch = p;
3073		map->patch_regs += num_regs;
3074	} else {
3075		return -ENOMEM;
3076	}
3077
3078	map->lock(map->lock_arg);
3079
3080	bypass = map->cache_bypass;
3081
3082	map->cache_bypass = true;
3083	map->async = true;
3084
3085	ret = _regmap_multi_reg_write(map, regs, num_regs);
3086
3087	map->async = false;
3088	map->cache_bypass = bypass;
3089
3090	map->unlock(map->lock_arg);
3091
3092	regmap_async_complete(map);
3093
3094	return ret;
3095}
3096EXPORT_SYMBOL_GPL(regmap_register_patch);
3097
3098/**
3099 * regmap_get_val_bytes() - Report the size of a register value
3100 *
3101 * @map: Register map to operate on.
3102 *
3103 * Report the size of a register value, mainly intended to for use by
3104 * generic infrastructure built on top of regmap.
3105 */
3106int regmap_get_val_bytes(struct regmap *map)
3107{
3108	if (map->format.format_write)
3109		return -EINVAL;
3110
3111	return map->format.val_bytes;
3112}
3113EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3114
3115/**
3116 * regmap_get_max_register() - Report the max register value
3117 *
3118 * @map: Register map to operate on.
3119 *
3120 * Report the max register value, mainly intended to for use by
3121 * generic infrastructure built on top of regmap.
3122 */
3123int regmap_get_max_register(struct regmap *map)
3124{
3125	return map->max_register ? map->max_register : -EINVAL;
3126}
3127EXPORT_SYMBOL_GPL(regmap_get_max_register);
3128
3129/**
3130 * regmap_get_reg_stride() - Report the register address stride
3131 *
3132 * @map: Register map to operate on.
3133 *
3134 * Report the register address stride, mainly intended to for use by
3135 * generic infrastructure built on top of regmap.
3136 */
3137int regmap_get_reg_stride(struct regmap *map)
3138{
3139	return map->reg_stride;
3140}
3141EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3142
3143int regmap_parse_val(struct regmap *map, const void *buf,
3144			unsigned int *val)
3145{
3146	if (!map->format.parse_val)
3147		return -EINVAL;
3148
3149	*val = map->format.parse_val(buf);
3150
3151	return 0;
3152}
3153EXPORT_SYMBOL_GPL(regmap_parse_val);
3154
3155static int __init regmap_initcall(void)
3156{
3157	regmap_debugfs_initcall();
3158
3159	return 0;
3160}
3161postcore_initcall(regmap_initcall);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_12_20_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	out[0] = reg >> 4;
 218	out[1] = (reg << 4) | (val >> 16);
 219	out[2] = val >> 8;
 220	out[3] = val;
 221}
 222
 223
 224static void regmap_format_2_6_write(struct regmap *map,
 225				     unsigned int reg, unsigned int val)
 226{
 227	u8 *out = map->work_buf;
 228
 229	*out = (reg << 6) | val;
 230}
 231
 232static void regmap_format_4_12_write(struct regmap *map,
 233				     unsigned int reg, unsigned int val)
 234{
 235	__be16 *out = map->work_buf;
 236	*out = cpu_to_be16((reg << 12) | val);
 237}
 238
 239static void regmap_format_7_9_write(struct regmap *map,
 240				    unsigned int reg, unsigned int val)
 241{
 242	__be16 *out = map->work_buf;
 243	*out = cpu_to_be16((reg << 9) | val);
 244}
 245
 246static void regmap_format_7_17_write(struct regmap *map,
 247				    unsigned int reg, unsigned int val)
 248{
 249	u8 *out = map->work_buf;
 250
 251	out[2] = val;
 252	out[1] = val >> 8;
 253	out[0] = (val >> 16) | (reg << 1);
 254}
 255
 256static void regmap_format_10_14_write(struct regmap *map,
 257				    unsigned int reg, unsigned int val)
 258{
 259	u8 *out = map->work_buf;
 260
 261	out[2] = val;
 262	out[1] = (val >> 8) | (reg << 6);
 263	out[0] = reg >> 2;
 264}
 265
 266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 267{
 268	u8 *b = buf;
 269
 270	b[0] = val << shift;
 271}
 272
 273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 274{
 275	put_unaligned_be16(val << shift, buf);
 276}
 277
 278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 279{
 280	put_unaligned_le16(val << shift, buf);
 281}
 282
 283static void regmap_format_16_native(void *buf, unsigned int val,
 284				    unsigned int shift)
 285{
 286	u16 v = val << shift;
 287
 288	memcpy(buf, &v, sizeof(v));
 289}
 290
 291static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 292{
 293	u8 *b = buf;
 294
 295	val <<= shift;
 296
 297	b[0] = val >> 16;
 298	b[1] = val >> 8;
 299	b[2] = val;
 300}
 301
 302static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 303{
 304	put_unaligned_be32(val << shift, buf);
 305}
 306
 307static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 308{
 309	put_unaligned_le32(val << shift, buf);
 310}
 311
 312static void regmap_format_32_native(void *buf, unsigned int val,
 313				    unsigned int shift)
 314{
 315	u32 v = val << shift;
 316
 317	memcpy(buf, &v, sizeof(v));
 318}
 319
 320#ifdef CONFIG_64BIT
 321static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 322{
 323	put_unaligned_be64((u64) val << shift, buf);
 324}
 325
 326static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 327{
 328	put_unaligned_le64((u64) val << shift, buf);
 329}
 330
 331static void regmap_format_64_native(void *buf, unsigned int val,
 332				    unsigned int shift)
 333{
 334	u64 v = (u64) val << shift;
 335
 336	memcpy(buf, &v, sizeof(v));
 337}
 338#endif
 339
 340static void regmap_parse_inplace_noop(void *buf)
 341{
 342}
 343
 344static unsigned int regmap_parse_8(const void *buf)
 345{
 346	const u8 *b = buf;
 347
 348	return b[0];
 349}
 350
 351static unsigned int regmap_parse_16_be(const void *buf)
 352{
 353	return get_unaligned_be16(buf);
 354}
 355
 356static unsigned int regmap_parse_16_le(const void *buf)
 357{
 358	return get_unaligned_le16(buf);
 359}
 360
 361static void regmap_parse_16_be_inplace(void *buf)
 362{
 363	u16 v = get_unaligned_be16(buf);
 364
 365	memcpy(buf, &v, sizeof(v));
 366}
 367
 368static void regmap_parse_16_le_inplace(void *buf)
 369{
 370	u16 v = get_unaligned_le16(buf);
 371
 372	memcpy(buf, &v, sizeof(v));
 373}
 374
 375static unsigned int regmap_parse_16_native(const void *buf)
 376{
 377	u16 v;
 378
 379	memcpy(&v, buf, sizeof(v));
 380	return v;
 381}
 382
 383static unsigned int regmap_parse_24(const void *buf)
 384{
 385	const u8 *b = buf;
 386	unsigned int ret = b[2];
 387	ret |= ((unsigned int)b[1]) << 8;
 388	ret |= ((unsigned int)b[0]) << 16;
 389
 390	return ret;
 391}
 392
 393static unsigned int regmap_parse_32_be(const void *buf)
 394{
 395	return get_unaligned_be32(buf);
 396}
 397
 398static unsigned int regmap_parse_32_le(const void *buf)
 399{
 400	return get_unaligned_le32(buf);
 401}
 402
 403static void regmap_parse_32_be_inplace(void *buf)
 404{
 405	u32 v = get_unaligned_be32(buf);
 406
 407	memcpy(buf, &v, sizeof(v));
 408}
 409
 410static void regmap_parse_32_le_inplace(void *buf)
 411{
 412	u32 v = get_unaligned_le32(buf);
 413
 414	memcpy(buf, &v, sizeof(v));
 415}
 416
 417static unsigned int regmap_parse_32_native(const void *buf)
 418{
 419	u32 v;
 420
 421	memcpy(&v, buf, sizeof(v));
 422	return v;
 423}
 424
 425#ifdef CONFIG_64BIT
 426static unsigned int regmap_parse_64_be(const void *buf)
 427{
 428	return get_unaligned_be64(buf);
 429}
 430
 431static unsigned int regmap_parse_64_le(const void *buf)
 432{
 433	return get_unaligned_le64(buf);
 434}
 435
 436static void regmap_parse_64_be_inplace(void *buf)
 437{
 438	u64 v =  get_unaligned_be64(buf);
 439
 440	memcpy(buf, &v, sizeof(v));
 441}
 442
 443static void regmap_parse_64_le_inplace(void *buf)
 444{
 445	u64 v = get_unaligned_le64(buf);
 446
 447	memcpy(buf, &v, sizeof(v));
 448}
 449
 450static unsigned int regmap_parse_64_native(const void *buf)
 451{
 452	u64 v;
 453
 454	memcpy(&v, buf, sizeof(v));
 455	return v;
 456}
 457#endif
 458
 459static void regmap_lock_hwlock(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 464}
 465
 466static void regmap_lock_hwlock_irq(void *__map)
 467{
 468	struct regmap *map = __map;
 469
 470	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 471}
 472
 473static void regmap_lock_hwlock_irqsave(void *__map)
 474{
 475	struct regmap *map = __map;
 476
 477	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 478				    &map->spinlock_flags);
 479}
 480
 481static void regmap_unlock_hwlock(void *__map)
 482{
 483	struct regmap *map = __map;
 484
 485	hwspin_unlock(map->hwlock);
 486}
 487
 488static void regmap_unlock_hwlock_irq(void *__map)
 489{
 490	struct regmap *map = __map;
 491
 492	hwspin_unlock_irq(map->hwlock);
 493}
 494
 495static void regmap_unlock_hwlock_irqrestore(void *__map)
 496{
 497	struct regmap *map = __map;
 498
 499	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 500}
 501
 502static void regmap_lock_unlock_none(void *__map)
 503{
 504
 505}
 506
 507static void regmap_lock_mutex(void *__map)
 508{
 509	struct regmap *map = __map;
 510	mutex_lock(&map->mutex);
 511}
 512
 513static void regmap_unlock_mutex(void *__map)
 514{
 515	struct regmap *map = __map;
 516	mutex_unlock(&map->mutex);
 517}
 518
 519static void regmap_lock_spinlock(void *__map)
 520__acquires(&map->spinlock)
 521{
 522	struct regmap *map = __map;
 523	unsigned long flags;
 524
 525	spin_lock_irqsave(&map->spinlock, flags);
 526	map->spinlock_flags = flags;
 527}
 528
 529static void regmap_unlock_spinlock(void *__map)
 530__releases(&map->spinlock)
 531{
 532	struct regmap *map = __map;
 533	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 534}
 535
 536static void dev_get_regmap_release(struct device *dev, void *res)
 537{
 538	/*
 539	 * We don't actually have anything to do here; the goal here
 540	 * is not to manage the regmap but to provide a simple way to
 541	 * get the regmap back given a struct device.
 542	 */
 543}
 544
 545static bool _regmap_range_add(struct regmap *map,
 546			      struct regmap_range_node *data)
 547{
 548	struct rb_root *root = &map->range_tree;
 549	struct rb_node **new = &(root->rb_node), *parent = NULL;
 550
 551	while (*new) {
 552		struct regmap_range_node *this =
 553			rb_entry(*new, struct regmap_range_node, node);
 554
 555		parent = *new;
 556		if (data->range_max < this->range_min)
 557			new = &((*new)->rb_left);
 558		else if (data->range_min > this->range_max)
 559			new = &((*new)->rb_right);
 560		else
 561			return false;
 562	}
 563
 564	rb_link_node(&data->node, parent, new);
 565	rb_insert_color(&data->node, root);
 566
 567	return true;
 568}
 569
 570static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 571						      unsigned int reg)
 572{
 573	struct rb_node *node = map->range_tree.rb_node;
 574
 575	while (node) {
 576		struct regmap_range_node *this =
 577			rb_entry(node, struct regmap_range_node, node);
 578
 579		if (reg < this->range_min)
 580			node = node->rb_left;
 581		else if (reg > this->range_max)
 582			node = node->rb_right;
 583		else
 584			return this;
 585	}
 586
 587	return NULL;
 588}
 589
 590static void regmap_range_exit(struct regmap *map)
 591{
 592	struct rb_node *next;
 593	struct regmap_range_node *range_node;
 594
 595	next = rb_first(&map->range_tree);
 596	while (next) {
 597		range_node = rb_entry(next, struct regmap_range_node, node);
 598		next = rb_next(&range_node->node);
 599		rb_erase(&range_node->node, &map->range_tree);
 600		kfree(range_node);
 601	}
 602
 603	kfree(map->selector_work_buf);
 604}
 605
 606static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 607{
 608	if (config->name) {
 609		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 610
 611		if (!name)
 612			return -ENOMEM;
 613
 614		kfree_const(map->name);
 615		map->name = name;
 616	}
 617
 618	return 0;
 619}
 620
 621int regmap_attach_dev(struct device *dev, struct regmap *map,
 622		      const struct regmap_config *config)
 623{
 624	struct regmap **m;
 625	int ret;
 626
 627	map->dev = dev;
 628
 629	ret = regmap_set_name(map, config);
 630	if (ret)
 631		return ret;
 632
 633	regmap_debugfs_init(map);
 634
 635	/* Add a devres resource for dev_get_regmap() */
 636	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 637	if (!m) {
 638		regmap_debugfs_exit(map);
 639		return -ENOMEM;
 640	}
 641	*m = map;
 642	devres_add(dev, m);
 643
 644	return 0;
 645}
 646EXPORT_SYMBOL_GPL(regmap_attach_dev);
 647
 648static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 649					const struct regmap_config *config)
 650{
 651	enum regmap_endian endian;
 652
 653	/* Retrieve the endianness specification from the regmap config */
 654	endian = config->reg_format_endian;
 655
 656	/* If the regmap config specified a non-default value, use that */
 657	if (endian != REGMAP_ENDIAN_DEFAULT)
 658		return endian;
 659
 660	/* Retrieve the endianness specification from the bus config */
 661	if (bus && bus->reg_format_endian_default)
 662		endian = bus->reg_format_endian_default;
 663
 664	/* If the bus specified a non-default value, use that */
 665	if (endian != REGMAP_ENDIAN_DEFAULT)
 666		return endian;
 667
 668	/* Use this if no other value was found */
 669	return REGMAP_ENDIAN_BIG;
 670}
 671
 672enum regmap_endian regmap_get_val_endian(struct device *dev,
 673					 const struct regmap_bus *bus,
 674					 const struct regmap_config *config)
 675{
 676	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 677	enum regmap_endian endian;
 678
 679	/* Retrieve the endianness specification from the regmap config */
 680	endian = config->val_format_endian;
 681
 682	/* If the regmap config specified a non-default value, use that */
 683	if (endian != REGMAP_ENDIAN_DEFAULT)
 684		return endian;
 685
 686	/* If the firmware node exist try to get endianness from it */
 687	if (fwnode_property_read_bool(fwnode, "big-endian"))
 688		endian = REGMAP_ENDIAN_BIG;
 689	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 690		endian = REGMAP_ENDIAN_LITTLE;
 691	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 692		endian = REGMAP_ENDIAN_NATIVE;
 693
 694	/* If the endianness was specified in fwnode, use that */
 695	if (endian != REGMAP_ENDIAN_DEFAULT)
 696		return endian;
 697
 698	/* Retrieve the endianness specification from the bus config */
 699	if (bus && bus->val_format_endian_default)
 700		endian = bus->val_format_endian_default;
 701
 702	/* If the bus specified a non-default value, use that */
 703	if (endian != REGMAP_ENDIAN_DEFAULT)
 704		return endian;
 705
 706	/* Use this if no other value was found */
 707	return REGMAP_ENDIAN_BIG;
 708}
 709EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 710
 711struct regmap *__regmap_init(struct device *dev,
 712			     const struct regmap_bus *bus,
 713			     void *bus_context,
 714			     const struct regmap_config *config,
 715			     struct lock_class_key *lock_key,
 716			     const char *lock_name)
 717{
 718	struct regmap *map;
 719	int ret = -EINVAL;
 720	enum regmap_endian reg_endian, val_endian;
 721	int i, j;
 722
 723	if (!config)
 724		goto err;
 725
 726	map = kzalloc(sizeof(*map), GFP_KERNEL);
 727	if (map == NULL) {
 728		ret = -ENOMEM;
 729		goto err;
 730	}
 731
 732	ret = regmap_set_name(map, config);
 733	if (ret)
 734		goto err_map;
 735
 736	ret = -EINVAL; /* Later error paths rely on this */
 737
 738	if (config->disable_locking) {
 739		map->lock = map->unlock = regmap_lock_unlock_none;
 740		map->can_sleep = config->can_sleep;
 741		regmap_debugfs_disable(map);
 742	} else if (config->lock && config->unlock) {
 743		map->lock = config->lock;
 744		map->unlock = config->unlock;
 745		map->lock_arg = config->lock_arg;
 746		map->can_sleep = config->can_sleep;
 747	} else if (config->use_hwlock) {
 748		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 749		if (!map->hwlock) {
 750			ret = -ENXIO;
 751			goto err_name;
 752		}
 753
 754		switch (config->hwlock_mode) {
 755		case HWLOCK_IRQSTATE:
 756			map->lock = regmap_lock_hwlock_irqsave;
 757			map->unlock = regmap_unlock_hwlock_irqrestore;
 758			break;
 759		case HWLOCK_IRQ:
 760			map->lock = regmap_lock_hwlock_irq;
 761			map->unlock = regmap_unlock_hwlock_irq;
 762			break;
 763		default:
 764			map->lock = regmap_lock_hwlock;
 765			map->unlock = regmap_unlock_hwlock;
 766			break;
 767		}
 768
 769		map->lock_arg = map;
 770	} else {
 771		if ((bus && bus->fast_io) ||
 772		    config->fast_io) {
 773			spin_lock_init(&map->spinlock);
 774			map->lock = regmap_lock_spinlock;
 775			map->unlock = regmap_unlock_spinlock;
 776			lockdep_set_class_and_name(&map->spinlock,
 777						   lock_key, lock_name);
 778		} else {
 779			mutex_init(&map->mutex);
 780			map->lock = regmap_lock_mutex;
 781			map->unlock = regmap_unlock_mutex;
 782			map->can_sleep = true;
 783			lockdep_set_class_and_name(&map->mutex,
 784						   lock_key, lock_name);
 785		}
 786		map->lock_arg = map;
 787	}
 788
 789	/*
 790	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 791	 * scratch buffers with sleeping allocations.
 792	 */
 793	if ((bus && bus->fast_io) || config->fast_io)
 794		map->alloc_flags = GFP_ATOMIC;
 795	else
 796		map->alloc_flags = GFP_KERNEL;
 797
 798	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 799	map->format.pad_bytes = config->pad_bits / 8;
 800	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 801	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 802			config->val_bits + config->pad_bits, 8);
 803	map->reg_shift = config->pad_bits % 8;
 804	if (config->reg_stride)
 805		map->reg_stride = config->reg_stride;
 806	else
 807		map->reg_stride = 1;
 808	if (is_power_of_2(map->reg_stride))
 809		map->reg_stride_order = ilog2(map->reg_stride);
 810	else
 811		map->reg_stride_order = -1;
 812	map->use_single_read = config->use_single_read || !bus || !bus->read;
 813	map->use_single_write = config->use_single_write || !bus || !bus->write;
 814	map->can_multi_write = config->can_multi_write && bus && bus->write;
 815	if (bus) {
 816		map->max_raw_read = bus->max_raw_read;
 817		map->max_raw_write = bus->max_raw_write;
 818	}
 819	map->dev = dev;
 820	map->bus = bus;
 821	map->bus_context = bus_context;
 822	map->max_register = config->max_register;
 823	map->wr_table = config->wr_table;
 824	map->rd_table = config->rd_table;
 825	map->volatile_table = config->volatile_table;
 826	map->precious_table = config->precious_table;
 827	map->wr_noinc_table = config->wr_noinc_table;
 828	map->rd_noinc_table = config->rd_noinc_table;
 829	map->writeable_reg = config->writeable_reg;
 830	map->readable_reg = config->readable_reg;
 831	map->volatile_reg = config->volatile_reg;
 832	map->precious_reg = config->precious_reg;
 833	map->writeable_noinc_reg = config->writeable_noinc_reg;
 834	map->readable_noinc_reg = config->readable_noinc_reg;
 835	map->cache_type = config->cache_type;
 836
 837	spin_lock_init(&map->async_lock);
 838	INIT_LIST_HEAD(&map->async_list);
 839	INIT_LIST_HEAD(&map->async_free);
 840	init_waitqueue_head(&map->async_waitq);
 841
 842	if (config->read_flag_mask ||
 843	    config->write_flag_mask ||
 844	    config->zero_flag_mask) {
 845		map->read_flag_mask = config->read_flag_mask;
 846		map->write_flag_mask = config->write_flag_mask;
 847	} else if (bus) {
 848		map->read_flag_mask = bus->read_flag_mask;
 849	}
 850
 851	if (!bus) {
 852		map->reg_read  = config->reg_read;
 853		map->reg_write = config->reg_write;
 854
 855		map->defer_caching = false;
 856		goto skip_format_initialization;
 857	} else if (!bus->read || !bus->write) {
 858		map->reg_read = _regmap_bus_reg_read;
 859		map->reg_write = _regmap_bus_reg_write;
 860		map->reg_update_bits = bus->reg_update_bits;
 861
 862		map->defer_caching = false;
 863		goto skip_format_initialization;
 864	} else {
 865		map->reg_read  = _regmap_bus_read;
 866		map->reg_update_bits = bus->reg_update_bits;
 867	}
 868
 869	reg_endian = regmap_get_reg_endian(bus, config);
 870	val_endian = regmap_get_val_endian(dev, bus, config);
 871
 872	switch (config->reg_bits + map->reg_shift) {
 873	case 2:
 874		switch (config->val_bits) {
 875		case 6:
 876			map->format.format_write = regmap_format_2_6_write;
 877			break;
 878		default:
 879			goto err_hwlock;
 880		}
 881		break;
 882
 883	case 4:
 884		switch (config->val_bits) {
 885		case 12:
 886			map->format.format_write = regmap_format_4_12_write;
 887			break;
 888		default:
 889			goto err_hwlock;
 890		}
 891		break;
 892
 893	case 7:
 894		switch (config->val_bits) {
 895		case 9:
 896			map->format.format_write = regmap_format_7_9_write;
 897			break;
 898		case 17:
 899			map->format.format_write = regmap_format_7_17_write;
 900			break;
 901		default:
 902			goto err_hwlock;
 903		}
 904		break;
 905
 906	case 10:
 907		switch (config->val_bits) {
 908		case 14:
 909			map->format.format_write = regmap_format_10_14_write;
 910			break;
 911		default:
 912			goto err_hwlock;
 913		}
 914		break;
 915
 916	case 12:
 917		switch (config->val_bits) {
 918		case 20:
 919			map->format.format_write = regmap_format_12_20_write;
 920			break;
 921		default:
 922			goto err_hwlock;
 923		}
 924		break;
 925
 926	case 8:
 927		map->format.format_reg = regmap_format_8;
 928		break;
 929
 930	case 16:
 931		switch (reg_endian) {
 932		case REGMAP_ENDIAN_BIG:
 933			map->format.format_reg = regmap_format_16_be;
 934			break;
 935		case REGMAP_ENDIAN_LITTLE:
 936			map->format.format_reg = regmap_format_16_le;
 937			break;
 938		case REGMAP_ENDIAN_NATIVE:
 939			map->format.format_reg = regmap_format_16_native;
 940			break;
 941		default:
 942			goto err_hwlock;
 943		}
 944		break;
 945
 946	case 24:
 947		if (reg_endian != REGMAP_ENDIAN_BIG)
 948			goto err_hwlock;
 949		map->format.format_reg = regmap_format_24;
 950		break;
 951
 952	case 32:
 953		switch (reg_endian) {
 954		case REGMAP_ENDIAN_BIG:
 955			map->format.format_reg = regmap_format_32_be;
 956			break;
 957		case REGMAP_ENDIAN_LITTLE:
 958			map->format.format_reg = regmap_format_32_le;
 959			break;
 960		case REGMAP_ENDIAN_NATIVE:
 961			map->format.format_reg = regmap_format_32_native;
 962			break;
 963		default:
 964			goto err_hwlock;
 965		}
 966		break;
 967
 968#ifdef CONFIG_64BIT
 969	case 64:
 970		switch (reg_endian) {
 971		case REGMAP_ENDIAN_BIG:
 972			map->format.format_reg = regmap_format_64_be;
 973			break;
 974		case REGMAP_ENDIAN_LITTLE:
 975			map->format.format_reg = regmap_format_64_le;
 976			break;
 977		case REGMAP_ENDIAN_NATIVE:
 978			map->format.format_reg = regmap_format_64_native;
 979			break;
 980		default:
 981			goto err_hwlock;
 982		}
 983		break;
 984#endif
 985
 986	default:
 987		goto err_hwlock;
 988	}
 989
 990	if (val_endian == REGMAP_ENDIAN_NATIVE)
 991		map->format.parse_inplace = regmap_parse_inplace_noop;
 992
 993	switch (config->val_bits) {
 994	case 8:
 995		map->format.format_val = regmap_format_8;
 996		map->format.parse_val = regmap_parse_8;
 997		map->format.parse_inplace = regmap_parse_inplace_noop;
 998		break;
 999	case 16:
1000		switch (val_endian) {
1001		case REGMAP_ENDIAN_BIG:
1002			map->format.format_val = regmap_format_16_be;
1003			map->format.parse_val = regmap_parse_16_be;
1004			map->format.parse_inplace = regmap_parse_16_be_inplace;
1005			break;
1006		case REGMAP_ENDIAN_LITTLE:
1007			map->format.format_val = regmap_format_16_le;
1008			map->format.parse_val = regmap_parse_16_le;
1009			map->format.parse_inplace = regmap_parse_16_le_inplace;
1010			break;
1011		case REGMAP_ENDIAN_NATIVE:
1012			map->format.format_val = regmap_format_16_native;
1013			map->format.parse_val = regmap_parse_16_native;
1014			break;
1015		default:
1016			goto err_hwlock;
1017		}
1018		break;
1019	case 24:
1020		if (val_endian != REGMAP_ENDIAN_BIG)
1021			goto err_hwlock;
1022		map->format.format_val = regmap_format_24;
1023		map->format.parse_val = regmap_parse_24;
1024		break;
1025	case 32:
1026		switch (val_endian) {
1027		case REGMAP_ENDIAN_BIG:
1028			map->format.format_val = regmap_format_32_be;
1029			map->format.parse_val = regmap_parse_32_be;
1030			map->format.parse_inplace = regmap_parse_32_be_inplace;
1031			break;
1032		case REGMAP_ENDIAN_LITTLE:
1033			map->format.format_val = regmap_format_32_le;
1034			map->format.parse_val = regmap_parse_32_le;
1035			map->format.parse_inplace = regmap_parse_32_le_inplace;
1036			break;
1037		case REGMAP_ENDIAN_NATIVE:
1038			map->format.format_val = regmap_format_32_native;
1039			map->format.parse_val = regmap_parse_32_native;
1040			break;
1041		default:
1042			goto err_hwlock;
1043		}
1044		break;
1045#ifdef CONFIG_64BIT
1046	case 64:
1047		switch (val_endian) {
1048		case REGMAP_ENDIAN_BIG:
1049			map->format.format_val = regmap_format_64_be;
1050			map->format.parse_val = regmap_parse_64_be;
1051			map->format.parse_inplace = regmap_parse_64_be_inplace;
1052			break;
1053		case REGMAP_ENDIAN_LITTLE:
1054			map->format.format_val = regmap_format_64_le;
1055			map->format.parse_val = regmap_parse_64_le;
1056			map->format.parse_inplace = regmap_parse_64_le_inplace;
1057			break;
1058		case REGMAP_ENDIAN_NATIVE:
1059			map->format.format_val = regmap_format_64_native;
1060			map->format.parse_val = regmap_parse_64_native;
1061			break;
1062		default:
1063			goto err_hwlock;
1064		}
1065		break;
1066#endif
1067	}
1068
1069	if (map->format.format_write) {
1070		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1071		    (val_endian != REGMAP_ENDIAN_BIG))
1072			goto err_hwlock;
1073		map->use_single_write = true;
1074	}
1075
1076	if (!map->format.format_write &&
1077	    !(map->format.format_reg && map->format.format_val))
1078		goto err_hwlock;
1079
1080	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1081	if (map->work_buf == NULL) {
1082		ret = -ENOMEM;
1083		goto err_hwlock;
1084	}
1085
1086	if (map->format.format_write) {
1087		map->defer_caching = false;
1088		map->reg_write = _regmap_bus_formatted_write;
1089	} else if (map->format.format_val) {
1090		map->defer_caching = true;
1091		map->reg_write = _regmap_bus_raw_write;
1092	}
1093
1094skip_format_initialization:
1095
1096	map->range_tree = RB_ROOT;
1097	for (i = 0; i < config->num_ranges; i++) {
1098		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1099		struct regmap_range_node *new;
1100
1101		/* Sanity check */
1102		if (range_cfg->range_max < range_cfg->range_min) {
1103			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1104				range_cfg->range_max, range_cfg->range_min);
1105			goto err_range;
1106		}
1107
1108		if (range_cfg->range_max > map->max_register) {
1109			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1110				range_cfg->range_max, map->max_register);
1111			goto err_range;
1112		}
1113
1114		if (range_cfg->selector_reg > map->max_register) {
1115			dev_err(map->dev,
1116				"Invalid range %d: selector out of map\n", i);
1117			goto err_range;
1118		}
1119
1120		if (range_cfg->window_len == 0) {
1121			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1122				i);
1123			goto err_range;
1124		}
1125
1126		/* Make sure, that this register range has no selector
1127		   or data window within its boundary */
1128		for (j = 0; j < config->num_ranges; j++) {
1129			unsigned sel_reg = config->ranges[j].selector_reg;
1130			unsigned win_min = config->ranges[j].window_start;
1131			unsigned win_max = win_min +
1132					   config->ranges[j].window_len - 1;
1133
1134			/* Allow data window inside its own virtual range */
1135			if (j == i)
1136				continue;
1137
1138			if (range_cfg->range_min <= sel_reg &&
1139			    sel_reg <= range_cfg->range_max) {
1140				dev_err(map->dev,
1141					"Range %d: selector for %d in window\n",
1142					i, j);
1143				goto err_range;
1144			}
1145
1146			if (!(win_max < range_cfg->range_min ||
1147			      win_min > range_cfg->range_max)) {
1148				dev_err(map->dev,
1149					"Range %d: window for %d in window\n",
1150					i, j);
1151				goto err_range;
1152			}
1153		}
1154
1155		new = kzalloc(sizeof(*new), GFP_KERNEL);
1156		if (new == NULL) {
1157			ret = -ENOMEM;
1158			goto err_range;
1159		}
1160
1161		new->map = map;
1162		new->name = range_cfg->name;
1163		new->range_min = range_cfg->range_min;
1164		new->range_max = range_cfg->range_max;
1165		new->selector_reg = range_cfg->selector_reg;
1166		new->selector_mask = range_cfg->selector_mask;
1167		new->selector_shift = range_cfg->selector_shift;
1168		new->window_start = range_cfg->window_start;
1169		new->window_len = range_cfg->window_len;
1170
1171		if (!_regmap_range_add(map, new)) {
1172			dev_err(map->dev, "Failed to add range %d\n", i);
1173			kfree(new);
1174			goto err_range;
1175		}
1176
1177		if (map->selector_work_buf == NULL) {
1178			map->selector_work_buf =
1179				kzalloc(map->format.buf_size, GFP_KERNEL);
1180			if (map->selector_work_buf == NULL) {
1181				ret = -ENOMEM;
1182				goto err_range;
1183			}
1184		}
1185	}
1186
1187	ret = regcache_init(map, config);
1188	if (ret != 0)
1189		goto err_range;
1190
1191	if (dev) {
1192		ret = regmap_attach_dev(dev, map, config);
1193		if (ret != 0)
1194			goto err_regcache;
1195	} else {
1196		regmap_debugfs_init(map);
1197	}
1198
1199	return map;
1200
1201err_regcache:
1202	regcache_exit(map);
1203err_range:
1204	regmap_range_exit(map);
1205	kfree(map->work_buf);
1206err_hwlock:
1207	if (map->hwlock)
1208		hwspin_lock_free(map->hwlock);
1209err_name:
1210	kfree_const(map->name);
1211err_map:
1212	kfree(map);
1213err:
1214	return ERR_PTR(ret);
1215}
1216EXPORT_SYMBOL_GPL(__regmap_init);
1217
1218static void devm_regmap_release(struct device *dev, void *res)
1219{
1220	regmap_exit(*(struct regmap **)res);
1221}
1222
1223struct regmap *__devm_regmap_init(struct device *dev,
1224				  const struct regmap_bus *bus,
1225				  void *bus_context,
1226				  const struct regmap_config *config,
1227				  struct lock_class_key *lock_key,
1228				  const char *lock_name)
1229{
1230	struct regmap **ptr, *regmap;
1231
1232	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1233	if (!ptr)
1234		return ERR_PTR(-ENOMEM);
1235
1236	regmap = __regmap_init(dev, bus, bus_context, config,
1237			       lock_key, lock_name);
1238	if (!IS_ERR(regmap)) {
1239		*ptr = regmap;
1240		devres_add(dev, ptr);
1241	} else {
1242		devres_free(ptr);
1243	}
1244
1245	return regmap;
1246}
1247EXPORT_SYMBOL_GPL(__devm_regmap_init);
1248
1249static void regmap_field_init(struct regmap_field *rm_field,
1250	struct regmap *regmap, struct reg_field reg_field)
1251{
1252	rm_field->regmap = regmap;
1253	rm_field->reg = reg_field.reg;
1254	rm_field->shift = reg_field.lsb;
1255	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1256	rm_field->id_size = reg_field.id_size;
1257	rm_field->id_offset = reg_field.id_offset;
1258}
1259
1260/**
1261 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1262 *
1263 * @dev: Device that will be interacted with
1264 * @regmap: regmap bank in which this register field is located.
1265 * @reg_field: Register field with in the bank.
1266 *
1267 * The return value will be an ERR_PTR() on error or a valid pointer
1268 * to a struct regmap_field. The regmap_field will be automatically freed
1269 * by the device management code.
1270 */
1271struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1272		struct regmap *regmap, struct reg_field reg_field)
1273{
1274	struct regmap_field *rm_field = devm_kzalloc(dev,
1275					sizeof(*rm_field), GFP_KERNEL);
1276	if (!rm_field)
1277		return ERR_PTR(-ENOMEM);
1278
1279	regmap_field_init(rm_field, regmap, reg_field);
1280
1281	return rm_field;
1282
1283}
1284EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1285
1286
1287/**
1288 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1289 *
1290 * @regmap: regmap bank in which this register field is located.
1291 * @rm_field: regmap register fields within the bank.
1292 * @reg_field: Register fields within the bank.
1293 * @num_fields: Number of register fields.
1294 *
1295 * The return value will be an -ENOMEM on error or zero for success.
1296 * Newly allocated regmap_fields should be freed by calling
1297 * regmap_field_bulk_free()
1298 */
1299int regmap_field_bulk_alloc(struct regmap *regmap,
1300			    struct regmap_field **rm_field,
1301			    struct reg_field *reg_field,
1302			    int num_fields)
1303{
1304	struct regmap_field *rf;
1305	int i;
1306
1307	rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1308	if (!rf)
1309		return -ENOMEM;
1310
1311	for (i = 0; i < num_fields; i++) {
1312		regmap_field_init(&rf[i], regmap, reg_field[i]);
1313		rm_field[i] = &rf[i];
1314	}
1315
1316	return 0;
1317}
1318EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1319
1320/**
1321 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1322 * fields.
1323 *
1324 * @dev: Device that will be interacted with
1325 * @regmap: regmap bank in which this register field is located.
1326 * @rm_field: regmap register fields within the bank.
1327 * @reg_field: Register fields within the bank.
1328 * @num_fields: Number of register fields.
1329 *
1330 * The return value will be an -ENOMEM on error or zero for success.
1331 * Newly allocated regmap_fields will be automatically freed by the
1332 * device management code.
1333 */
1334int devm_regmap_field_bulk_alloc(struct device *dev,
1335				 struct regmap *regmap,
1336				 struct regmap_field **rm_field,
1337				 struct reg_field *reg_field,
1338				 int num_fields)
1339{
1340	struct regmap_field *rf;
1341	int i;
1342
1343	rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1344	if (!rf)
1345		return -ENOMEM;
1346
1347	for (i = 0; i < num_fields; i++) {
1348		regmap_field_init(&rf[i], regmap, reg_field[i]);
1349		rm_field[i] = &rf[i];
1350	}
1351
1352	return 0;
1353}
1354EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1355
1356/**
1357 * regmap_field_bulk_free() - Free register field allocated using
1358 *                       regmap_field_bulk_alloc.
1359 *
1360 * @field: regmap fields which should be freed.
1361 */
1362void regmap_field_bulk_free(struct regmap_field *field)
1363{
1364	kfree(field);
1365}
1366EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1367
1368/**
1369 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1370 *                            devm_regmap_field_bulk_alloc.
1371 *
1372 * @dev: Device that will be interacted with
1373 * @field: regmap field which should be freed.
1374 *
1375 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1376 * drivers need not call this function, as the memory allocated via devm
1377 * will be freed as per device-driver life-cycle.
1378 */
1379void devm_regmap_field_bulk_free(struct device *dev,
1380				 struct regmap_field *field)
1381{
1382	devm_kfree(dev, field);
1383}
1384EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1385
1386/**
1387 * devm_regmap_field_free() - Free a register field allocated using
1388 *                            devm_regmap_field_alloc.
1389 *
1390 * @dev: Device that will be interacted with
1391 * @field: regmap field which should be freed.
1392 *
1393 * Free register field allocated using devm_regmap_field_alloc(). Usually
1394 * drivers need not call this function, as the memory allocated via devm
1395 * will be freed as per device-driver life-cyle.
1396 */
1397void devm_regmap_field_free(struct device *dev,
1398	struct regmap_field *field)
1399{
1400	devm_kfree(dev, field);
1401}
1402EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1403
1404/**
1405 * regmap_field_alloc() - Allocate and initialise a register field.
1406 *
1407 * @regmap: regmap bank in which this register field is located.
1408 * @reg_field: Register field with in the bank.
1409 *
1410 * The return value will be an ERR_PTR() on error or a valid pointer
1411 * to a struct regmap_field. The regmap_field should be freed by the
1412 * user once its finished working with it using regmap_field_free().
1413 */
1414struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1415		struct reg_field reg_field)
1416{
1417	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1418
1419	if (!rm_field)
1420		return ERR_PTR(-ENOMEM);
1421
1422	regmap_field_init(rm_field, regmap, reg_field);
1423
1424	return rm_field;
1425}
1426EXPORT_SYMBOL_GPL(regmap_field_alloc);
1427
1428/**
1429 * regmap_field_free() - Free register field allocated using
1430 *                       regmap_field_alloc.
1431 *
1432 * @field: regmap field which should be freed.
1433 */
1434void regmap_field_free(struct regmap_field *field)
1435{
1436	kfree(field);
1437}
1438EXPORT_SYMBOL_GPL(regmap_field_free);
1439
1440/**
1441 * regmap_reinit_cache() - Reinitialise the current register cache
1442 *
1443 * @map: Register map to operate on.
1444 * @config: New configuration.  Only the cache data will be used.
1445 *
1446 * Discard any existing register cache for the map and initialize a
1447 * new cache.  This can be used to restore the cache to defaults or to
1448 * update the cache configuration to reflect runtime discovery of the
1449 * hardware.
1450 *
1451 * No explicit locking is done here, the user needs to ensure that
1452 * this function will not race with other calls to regmap.
1453 */
1454int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1455{
1456	int ret;
1457
1458	regcache_exit(map);
1459	regmap_debugfs_exit(map);
1460
1461	map->max_register = config->max_register;
1462	map->writeable_reg = config->writeable_reg;
1463	map->readable_reg = config->readable_reg;
1464	map->volatile_reg = config->volatile_reg;
1465	map->precious_reg = config->precious_reg;
1466	map->writeable_noinc_reg = config->writeable_noinc_reg;
1467	map->readable_noinc_reg = config->readable_noinc_reg;
1468	map->cache_type = config->cache_type;
1469
1470	ret = regmap_set_name(map, config);
1471	if (ret)
1472		return ret;
1473
1474	regmap_debugfs_init(map);
1475
1476	map->cache_bypass = false;
1477	map->cache_only = false;
1478
1479	return regcache_init(map, config);
1480}
1481EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1482
1483/**
1484 * regmap_exit() - Free a previously allocated register map
1485 *
1486 * @map: Register map to operate on.
1487 */
1488void regmap_exit(struct regmap *map)
1489{
1490	struct regmap_async *async;
1491
1492	regcache_exit(map);
1493	regmap_debugfs_exit(map);
1494	regmap_range_exit(map);
1495	if (map->bus && map->bus->free_context)
1496		map->bus->free_context(map->bus_context);
1497	kfree(map->work_buf);
1498	while (!list_empty(&map->async_free)) {
1499		async = list_first_entry_or_null(&map->async_free,
1500						 struct regmap_async,
1501						 list);
1502		list_del(&async->list);
1503		kfree(async->work_buf);
1504		kfree(async);
1505	}
1506	if (map->hwlock)
1507		hwspin_lock_free(map->hwlock);
1508	if (map->lock == regmap_lock_mutex)
1509		mutex_destroy(&map->mutex);
1510	kfree_const(map->name);
1511	kfree(map->patch);
1512	if (map->bus && map->bus->free_on_exit)
1513		kfree(map->bus);
1514	kfree(map);
1515}
1516EXPORT_SYMBOL_GPL(regmap_exit);
1517
1518static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1519{
1520	struct regmap **r = res;
1521	if (!r || !*r) {
1522		WARN_ON(!r || !*r);
1523		return 0;
1524	}
1525
1526	/* If the user didn't specify a name match any */
1527	if (data)
1528		return !strcmp((*r)->name, data);
1529	else
1530		return 1;
1531}
1532
1533/**
1534 * dev_get_regmap() - Obtain the regmap (if any) for a device
1535 *
1536 * @dev: Device to retrieve the map for
1537 * @name: Optional name for the register map, usually NULL.
1538 *
1539 * Returns the regmap for the device if one is present, or NULL.  If
1540 * name is specified then it must match the name specified when
1541 * registering the device, if it is NULL then the first regmap found
1542 * will be used.  Devices with multiple register maps are very rare,
1543 * generic code should normally not need to specify a name.
1544 */
1545struct regmap *dev_get_regmap(struct device *dev, const char *name)
1546{
1547	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1548					dev_get_regmap_match, (void *)name);
1549
1550	if (!r)
1551		return NULL;
1552	return *r;
1553}
1554EXPORT_SYMBOL_GPL(dev_get_regmap);
1555
1556/**
1557 * regmap_get_device() - Obtain the device from a regmap
1558 *
1559 * @map: Register map to operate on.
1560 *
1561 * Returns the underlying device that the regmap has been created for.
1562 */
1563struct device *regmap_get_device(struct regmap *map)
1564{
1565	return map->dev;
1566}
1567EXPORT_SYMBOL_GPL(regmap_get_device);
1568
1569static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1570			       struct regmap_range_node *range,
1571			       unsigned int val_num)
1572{
1573	void *orig_work_buf;
1574	unsigned int win_offset;
1575	unsigned int win_page;
1576	bool page_chg;
1577	int ret;
1578
1579	win_offset = (*reg - range->range_min) % range->window_len;
1580	win_page = (*reg - range->range_min) / range->window_len;
1581
1582	if (val_num > 1) {
1583		/* Bulk write shouldn't cross range boundary */
1584		if (*reg + val_num - 1 > range->range_max)
1585			return -EINVAL;
1586
1587		/* ... or single page boundary */
1588		if (val_num > range->window_len - win_offset)
1589			return -EINVAL;
1590	}
1591
1592	/* It is possible to have selector register inside data window.
1593	   In that case, selector register is located on every page and
1594	   it needs no page switching, when accessed alone. */
1595	if (val_num > 1 ||
1596	    range->window_start + win_offset != range->selector_reg) {
1597		/* Use separate work_buf during page switching */
1598		orig_work_buf = map->work_buf;
1599		map->work_buf = map->selector_work_buf;
1600
1601		ret = _regmap_update_bits(map, range->selector_reg,
1602					  range->selector_mask,
1603					  win_page << range->selector_shift,
1604					  &page_chg, false);
1605
1606		map->work_buf = orig_work_buf;
1607
1608		if (ret != 0)
1609			return ret;
1610	}
1611
1612	*reg = range->window_start + win_offset;
1613
1614	return 0;
1615}
1616
1617static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1618					  unsigned long mask)
1619{
1620	u8 *buf;
1621	int i;
1622
1623	if (!mask || !map->work_buf)
1624		return;
1625
1626	buf = map->work_buf;
1627
1628	for (i = 0; i < max_bytes; i++)
1629		buf[i] |= (mask >> (8 * i)) & 0xff;
1630}
1631
1632static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1633				  const void *val, size_t val_len, bool noinc)
1634{
1635	struct regmap_range_node *range;
1636	unsigned long flags;
1637	void *work_val = map->work_buf + map->format.reg_bytes +
1638		map->format.pad_bytes;
1639	void *buf;
1640	int ret = -ENOTSUPP;
1641	size_t len;
1642	int i;
1643
1644	WARN_ON(!map->bus);
1645
1646	/* Check for unwritable or noinc registers in range
1647	 * before we start
1648	 */
1649	if (!regmap_writeable_noinc(map, reg)) {
1650		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1651			unsigned int element =
1652				reg + regmap_get_offset(map, i);
1653			if (!regmap_writeable(map, element) ||
1654				regmap_writeable_noinc(map, element))
1655				return -EINVAL;
1656		}
1657	}
1658
1659	if (!map->cache_bypass && map->format.parse_val) {
1660		unsigned int ival;
1661		int val_bytes = map->format.val_bytes;
1662		for (i = 0; i < val_len / val_bytes; i++) {
1663			ival = map->format.parse_val(val + (i * val_bytes));
1664			ret = regcache_write(map,
1665					     reg + regmap_get_offset(map, i),
1666					     ival);
1667			if (ret) {
1668				dev_err(map->dev,
1669					"Error in caching of register: %x ret: %d\n",
1670					reg + regmap_get_offset(map, i), ret);
1671				return ret;
1672			}
1673		}
1674		if (map->cache_only) {
1675			map->cache_dirty = true;
1676			return 0;
1677		}
1678	}
1679
1680	range = _regmap_range_lookup(map, reg);
1681	if (range) {
1682		int val_num = val_len / map->format.val_bytes;
1683		int win_offset = (reg - range->range_min) % range->window_len;
1684		int win_residue = range->window_len - win_offset;
1685
1686		/* If the write goes beyond the end of the window split it */
1687		while (val_num > win_residue) {
1688			dev_dbg(map->dev, "Writing window %d/%zu\n",
1689				win_residue, val_len / map->format.val_bytes);
1690			ret = _regmap_raw_write_impl(map, reg, val,
1691						     win_residue *
1692						     map->format.val_bytes, noinc);
1693			if (ret != 0)
1694				return ret;
1695
1696			reg += win_residue;
1697			val_num -= win_residue;
1698			val += win_residue * map->format.val_bytes;
1699			val_len -= win_residue * map->format.val_bytes;
1700
1701			win_offset = (reg - range->range_min) %
1702				range->window_len;
1703			win_residue = range->window_len - win_offset;
1704		}
1705
1706		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1707		if (ret != 0)
1708			return ret;
1709	}
1710
1711	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1712	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1713				      map->write_flag_mask);
1714
1715	/*
1716	 * Essentially all I/O mechanisms will be faster with a single
1717	 * buffer to write.  Since register syncs often generate raw
1718	 * writes of single registers optimise that case.
1719	 */
1720	if (val != work_val && val_len == map->format.val_bytes) {
1721		memcpy(work_val, val, map->format.val_bytes);
1722		val = work_val;
1723	}
1724
1725	if (map->async && map->bus->async_write) {
1726		struct regmap_async *async;
1727
1728		trace_regmap_async_write_start(map, reg, val_len);
1729
1730		spin_lock_irqsave(&map->async_lock, flags);
1731		async = list_first_entry_or_null(&map->async_free,
1732						 struct regmap_async,
1733						 list);
1734		if (async)
1735			list_del(&async->list);
1736		spin_unlock_irqrestore(&map->async_lock, flags);
1737
1738		if (!async) {
1739			async = map->bus->async_alloc();
1740			if (!async)
1741				return -ENOMEM;
1742
1743			async->work_buf = kzalloc(map->format.buf_size,
1744						  GFP_KERNEL | GFP_DMA);
1745			if (!async->work_buf) {
1746				kfree(async);
1747				return -ENOMEM;
1748			}
1749		}
1750
1751		async->map = map;
1752
1753		/* If the caller supplied the value we can use it safely. */
1754		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1755		       map->format.reg_bytes + map->format.val_bytes);
1756
1757		spin_lock_irqsave(&map->async_lock, flags);
1758		list_add_tail(&async->list, &map->async_list);
1759		spin_unlock_irqrestore(&map->async_lock, flags);
1760
1761		if (val != work_val)
1762			ret = map->bus->async_write(map->bus_context,
1763						    async->work_buf,
1764						    map->format.reg_bytes +
1765						    map->format.pad_bytes,
1766						    val, val_len, async);
1767		else
1768			ret = map->bus->async_write(map->bus_context,
1769						    async->work_buf,
1770						    map->format.reg_bytes +
1771						    map->format.pad_bytes +
1772						    val_len, NULL, 0, async);
1773
1774		if (ret != 0) {
1775			dev_err(map->dev, "Failed to schedule write: %d\n",
1776				ret);
1777
1778			spin_lock_irqsave(&map->async_lock, flags);
1779			list_move(&async->list, &map->async_free);
1780			spin_unlock_irqrestore(&map->async_lock, flags);
1781		}
1782
1783		return ret;
1784	}
1785
1786	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1787
1788	/* If we're doing a single register write we can probably just
1789	 * send the work_buf directly, otherwise try to do a gather
1790	 * write.
1791	 */
1792	if (val == work_val)
1793		ret = map->bus->write(map->bus_context, map->work_buf,
1794				      map->format.reg_bytes +
1795				      map->format.pad_bytes +
1796				      val_len);
1797	else if (map->bus->gather_write)
1798		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1799					     map->format.reg_bytes +
1800					     map->format.pad_bytes,
1801					     val, val_len);
1802	else
1803		ret = -ENOTSUPP;
1804
1805	/* If that didn't work fall back on linearising by hand. */
1806	if (ret == -ENOTSUPP) {
1807		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1808		buf = kzalloc(len, GFP_KERNEL);
1809		if (!buf)
1810			return -ENOMEM;
1811
1812		memcpy(buf, map->work_buf, map->format.reg_bytes);
1813		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1814		       val, val_len);
1815		ret = map->bus->write(map->bus_context, buf, len);
1816
1817		kfree(buf);
1818	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1819		/* regcache_drop_region() takes lock that we already have,
1820		 * thus call map->cache_ops->drop() directly
1821		 */
1822		if (map->cache_ops && map->cache_ops->drop)
1823			map->cache_ops->drop(map, reg, reg + 1);
1824	}
1825
1826	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1827
1828	return ret;
1829}
1830
1831/**
1832 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1833 *
1834 * @map: Map to check.
1835 */
1836bool regmap_can_raw_write(struct regmap *map)
1837{
1838	return map->bus && map->bus->write && map->format.format_val &&
1839		map->format.format_reg;
1840}
1841EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1842
1843/**
1844 * regmap_get_raw_read_max - Get the maximum size we can read
1845 *
1846 * @map: Map to check.
1847 */
1848size_t regmap_get_raw_read_max(struct regmap *map)
1849{
1850	return map->max_raw_read;
1851}
1852EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1853
1854/**
1855 * regmap_get_raw_write_max - Get the maximum size we can read
1856 *
1857 * @map: Map to check.
1858 */
1859size_t regmap_get_raw_write_max(struct regmap *map)
1860{
1861	return map->max_raw_write;
1862}
1863EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1864
1865static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1866				       unsigned int val)
1867{
1868	int ret;
1869	struct regmap_range_node *range;
1870	struct regmap *map = context;
1871
1872	WARN_ON(!map->bus || !map->format.format_write);
1873
1874	range = _regmap_range_lookup(map, reg);
1875	if (range) {
1876		ret = _regmap_select_page(map, &reg, range, 1);
1877		if (ret != 0)
1878			return ret;
1879	}
1880
1881	map->format.format_write(map, reg, val);
1882
1883	trace_regmap_hw_write_start(map, reg, 1);
1884
1885	ret = map->bus->write(map->bus_context, map->work_buf,
1886			      map->format.buf_size);
1887
1888	trace_regmap_hw_write_done(map, reg, 1);
1889
1890	return ret;
1891}
1892
1893static int _regmap_bus_reg_write(void *context, unsigned int reg,
1894				 unsigned int val)
1895{
1896	struct regmap *map = context;
1897
1898	return map->bus->reg_write(map->bus_context, reg, val);
1899}
1900
1901static int _regmap_bus_raw_write(void *context, unsigned int reg,
1902				 unsigned int val)
1903{
1904	struct regmap *map = context;
1905
1906	WARN_ON(!map->bus || !map->format.format_val);
1907
1908	map->format.format_val(map->work_buf + map->format.reg_bytes
1909			       + map->format.pad_bytes, val, 0);
1910	return _regmap_raw_write_impl(map, reg,
1911				      map->work_buf +
1912				      map->format.reg_bytes +
1913				      map->format.pad_bytes,
1914				      map->format.val_bytes,
1915				      false);
1916}
1917
1918static inline void *_regmap_map_get_context(struct regmap *map)
1919{
1920	return (map->bus) ? map : map->bus_context;
1921}
1922
1923int _regmap_write(struct regmap *map, unsigned int reg,
1924		  unsigned int val)
1925{
1926	int ret;
1927	void *context = _regmap_map_get_context(map);
1928
1929	if (!regmap_writeable(map, reg))
1930		return -EIO;
1931
1932	if (!map->cache_bypass && !map->defer_caching) {
1933		ret = regcache_write(map, reg, val);
1934		if (ret != 0)
1935			return ret;
1936		if (map->cache_only) {
1937			map->cache_dirty = true;
1938			return 0;
1939		}
1940	}
1941
1942	ret = map->reg_write(context, reg, val);
1943	if (ret == 0) {
1944		if (regmap_should_log(map))
1945			dev_info(map->dev, "%x <= %x\n", reg, val);
1946
1947		trace_regmap_reg_write(map, reg, val);
1948	}
1949
1950	return ret;
1951}
1952
1953/**
1954 * regmap_write() - Write a value to a single register
1955 *
1956 * @map: Register map to write to
1957 * @reg: Register to write to
1958 * @val: Value to be written
1959 *
1960 * A value of zero will be returned on success, a negative errno will
1961 * be returned in error cases.
1962 */
1963int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1964{
1965	int ret;
1966
1967	if (!IS_ALIGNED(reg, map->reg_stride))
1968		return -EINVAL;
1969
1970	map->lock(map->lock_arg);
1971
1972	ret = _regmap_write(map, reg, val);
1973
1974	map->unlock(map->lock_arg);
1975
1976	return ret;
1977}
1978EXPORT_SYMBOL_GPL(regmap_write);
1979
1980/**
1981 * regmap_write_async() - Write a value to a single register asynchronously
1982 *
1983 * @map: Register map to write to
1984 * @reg: Register to write to
1985 * @val: Value to be written
1986 *
1987 * A value of zero will be returned on success, a negative errno will
1988 * be returned in error cases.
1989 */
1990int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1991{
1992	int ret;
1993
1994	if (!IS_ALIGNED(reg, map->reg_stride))
1995		return -EINVAL;
1996
1997	map->lock(map->lock_arg);
1998
1999	map->async = true;
2000
2001	ret = _regmap_write(map, reg, val);
2002
2003	map->async = false;
2004
2005	map->unlock(map->lock_arg);
2006
2007	return ret;
2008}
2009EXPORT_SYMBOL_GPL(regmap_write_async);
2010
2011int _regmap_raw_write(struct regmap *map, unsigned int reg,
2012		      const void *val, size_t val_len, bool noinc)
2013{
2014	size_t val_bytes = map->format.val_bytes;
2015	size_t val_count = val_len / val_bytes;
2016	size_t chunk_count, chunk_bytes;
2017	size_t chunk_regs = val_count;
2018	int ret, i;
2019
2020	if (!val_count)
2021		return -EINVAL;
2022
2023	if (map->use_single_write)
2024		chunk_regs = 1;
2025	else if (map->max_raw_write && val_len > map->max_raw_write)
2026		chunk_regs = map->max_raw_write / val_bytes;
2027
2028	chunk_count = val_count / chunk_regs;
2029	chunk_bytes = chunk_regs * val_bytes;
2030
2031	/* Write as many bytes as possible with chunk_size */
2032	for (i = 0; i < chunk_count; i++) {
2033		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2034		if (ret)
2035			return ret;
2036
2037		reg += regmap_get_offset(map, chunk_regs);
2038		val += chunk_bytes;
2039		val_len -= chunk_bytes;
2040	}
2041
2042	/* Write remaining bytes */
2043	if (val_len)
2044		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2045
2046	return ret;
2047}
2048
2049/**
2050 * regmap_raw_write() - Write raw values to one or more registers
2051 *
2052 * @map: Register map to write to
2053 * @reg: Initial register to write to
2054 * @val: Block of data to be written, laid out for direct transmission to the
2055 *       device
2056 * @val_len: Length of data pointed to by val.
2057 *
2058 * This function is intended to be used for things like firmware
2059 * download where a large block of data needs to be transferred to the
2060 * device.  No formatting will be done on the data provided.
2061 *
2062 * A value of zero will be returned on success, a negative errno will
2063 * be returned in error cases.
2064 */
2065int regmap_raw_write(struct regmap *map, unsigned int reg,
2066		     const void *val, size_t val_len)
2067{
2068	int ret;
2069
2070	if (!regmap_can_raw_write(map))
2071		return -EINVAL;
2072	if (val_len % map->format.val_bytes)
2073		return -EINVAL;
2074
2075	map->lock(map->lock_arg);
2076
2077	ret = _regmap_raw_write(map, reg, val, val_len, false);
2078
2079	map->unlock(map->lock_arg);
2080
2081	return ret;
2082}
2083EXPORT_SYMBOL_GPL(regmap_raw_write);
2084
2085/**
2086 * regmap_noinc_write(): Write data from a register without incrementing the
2087 *			register number
2088 *
2089 * @map: Register map to write to
2090 * @reg: Register to write to
2091 * @val: Pointer to data buffer
2092 * @val_len: Length of output buffer in bytes.
2093 *
2094 * The regmap API usually assumes that bulk bus write operations will write a
2095 * range of registers. Some devices have certain registers for which a write
2096 * operation can write to an internal FIFO.
2097 *
2098 * The target register must be volatile but registers after it can be
2099 * completely unrelated cacheable registers.
2100 *
2101 * This will attempt multiple writes as required to write val_len bytes.
2102 *
2103 * A value of zero will be returned on success, a negative errno will be
2104 * returned in error cases.
2105 */
2106int regmap_noinc_write(struct regmap *map, unsigned int reg,
2107		      const void *val, size_t val_len)
2108{
2109	size_t write_len;
2110	int ret;
2111
2112	if (!map->bus)
2113		return -EINVAL;
2114	if (!map->bus->write)
2115		return -ENOTSUPP;
2116	if (val_len % map->format.val_bytes)
2117		return -EINVAL;
2118	if (!IS_ALIGNED(reg, map->reg_stride))
2119		return -EINVAL;
2120	if (val_len == 0)
2121		return -EINVAL;
2122
2123	map->lock(map->lock_arg);
2124
2125	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2126		ret = -EINVAL;
2127		goto out_unlock;
2128	}
2129
2130	while (val_len) {
2131		if (map->max_raw_write && map->max_raw_write < val_len)
2132			write_len = map->max_raw_write;
2133		else
2134			write_len = val_len;
2135		ret = _regmap_raw_write(map, reg, val, write_len, true);
2136		if (ret)
2137			goto out_unlock;
2138		val = ((u8 *)val) + write_len;
2139		val_len -= write_len;
2140	}
2141
2142out_unlock:
2143	map->unlock(map->lock_arg);
2144	return ret;
2145}
2146EXPORT_SYMBOL_GPL(regmap_noinc_write);
2147
2148/**
2149 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2150 *                                   register field.
2151 *
2152 * @field: Register field to write to
2153 * @mask: Bitmask to change
2154 * @val: Value to be written
2155 * @change: Boolean indicating if a write was done
2156 * @async: Boolean indicating asynchronously
2157 * @force: Boolean indicating use force update
2158 *
2159 * Perform a read/modify/write cycle on the register field with change,
2160 * async, force option.
2161 *
2162 * A value of zero will be returned on success, a negative errno will
2163 * be returned in error cases.
2164 */
2165int regmap_field_update_bits_base(struct regmap_field *field,
2166				  unsigned int mask, unsigned int val,
2167				  bool *change, bool async, bool force)
2168{
2169	mask = (mask << field->shift) & field->mask;
2170
2171	return regmap_update_bits_base(field->regmap, field->reg,
2172				       mask, val << field->shift,
2173				       change, async, force);
2174}
2175EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2176
2177/**
2178 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2179 *                                    register field with port ID
2180 *
2181 * @field: Register field to write to
2182 * @id: port ID
2183 * @mask: Bitmask to change
2184 * @val: Value to be written
2185 * @change: Boolean indicating if a write was done
2186 * @async: Boolean indicating asynchronously
2187 * @force: Boolean indicating use force update
2188 *
2189 * A value of zero will be returned on success, a negative errno will
2190 * be returned in error cases.
2191 */
2192int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2193				   unsigned int mask, unsigned int val,
2194				   bool *change, bool async, bool force)
2195{
2196	if (id >= field->id_size)
2197		return -EINVAL;
2198
2199	mask = (mask << field->shift) & field->mask;
2200
2201	return regmap_update_bits_base(field->regmap,
2202				       field->reg + (field->id_offset * id),
2203				       mask, val << field->shift,
2204				       change, async, force);
2205}
2206EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2207
2208/**
2209 * regmap_bulk_write() - Write multiple registers to the device
2210 *
2211 * @map: Register map to write to
2212 * @reg: First register to be write from
2213 * @val: Block of data to be written, in native register size for device
2214 * @val_count: Number of registers to write
2215 *
2216 * This function is intended to be used for writing a large block of
2217 * data to the device either in single transfer or multiple transfer.
2218 *
2219 * A value of zero will be returned on success, a negative errno will
2220 * be returned in error cases.
2221 */
2222int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2223		     size_t val_count)
2224{
2225	int ret = 0, i;
2226	size_t val_bytes = map->format.val_bytes;
2227
2228	if (!IS_ALIGNED(reg, map->reg_stride))
2229		return -EINVAL;
2230
2231	/*
2232	 * Some devices don't support bulk write, for them we have a series of
2233	 * single write operations.
2234	 */
2235	if (!map->bus || !map->format.parse_inplace) {
2236		map->lock(map->lock_arg);
2237		for (i = 0; i < val_count; i++) {
2238			unsigned int ival;
2239
2240			switch (val_bytes) {
2241			case 1:
2242				ival = *(u8 *)(val + (i * val_bytes));
2243				break;
2244			case 2:
2245				ival = *(u16 *)(val + (i * val_bytes));
2246				break;
2247			case 4:
2248				ival = *(u32 *)(val + (i * val_bytes));
2249				break;
2250#ifdef CONFIG_64BIT
2251			case 8:
2252				ival = *(u64 *)(val + (i * val_bytes));
2253				break;
2254#endif
2255			default:
2256				ret = -EINVAL;
2257				goto out;
2258			}
2259
2260			ret = _regmap_write(map,
2261					    reg + regmap_get_offset(map, i),
2262					    ival);
2263			if (ret != 0)
2264				goto out;
2265		}
2266out:
2267		map->unlock(map->lock_arg);
2268	} else {
2269		void *wval;
2270
2271		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2272		if (!wval)
2273			return -ENOMEM;
2274
2275		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2276			map->format.parse_inplace(wval + i);
2277
2278		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2279
2280		kfree(wval);
2281	}
2282	return ret;
2283}
2284EXPORT_SYMBOL_GPL(regmap_bulk_write);
2285
2286/*
2287 * _regmap_raw_multi_reg_write()
2288 *
2289 * the (register,newvalue) pairs in regs have not been formatted, but
2290 * they are all in the same page and have been changed to being page
2291 * relative. The page register has been written if that was necessary.
2292 */
2293static int _regmap_raw_multi_reg_write(struct regmap *map,
2294				       const struct reg_sequence *regs,
2295				       size_t num_regs)
2296{
2297	int ret;
2298	void *buf;
2299	int i;
2300	u8 *u8;
2301	size_t val_bytes = map->format.val_bytes;
2302	size_t reg_bytes = map->format.reg_bytes;
2303	size_t pad_bytes = map->format.pad_bytes;
2304	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2305	size_t len = pair_size * num_regs;
2306
2307	if (!len)
2308		return -EINVAL;
2309
2310	buf = kzalloc(len, GFP_KERNEL);
2311	if (!buf)
2312		return -ENOMEM;
2313
2314	/* We have to linearise by hand. */
2315
2316	u8 = buf;
2317
2318	for (i = 0; i < num_regs; i++) {
2319		unsigned int reg = regs[i].reg;
2320		unsigned int val = regs[i].def;
2321		trace_regmap_hw_write_start(map, reg, 1);
2322		map->format.format_reg(u8, reg, map->reg_shift);
2323		u8 += reg_bytes + pad_bytes;
2324		map->format.format_val(u8, val, 0);
2325		u8 += val_bytes;
2326	}
2327	u8 = buf;
2328	*u8 |= map->write_flag_mask;
2329
2330	ret = map->bus->write(map->bus_context, buf, len);
2331
2332	kfree(buf);
2333
2334	for (i = 0; i < num_regs; i++) {
2335		int reg = regs[i].reg;
2336		trace_regmap_hw_write_done(map, reg, 1);
2337	}
2338	return ret;
2339}
2340
2341static unsigned int _regmap_register_page(struct regmap *map,
2342					  unsigned int reg,
2343					  struct regmap_range_node *range)
2344{
2345	unsigned int win_page = (reg - range->range_min) / range->window_len;
2346
2347	return win_page;
2348}
2349
2350static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2351					       struct reg_sequence *regs,
2352					       size_t num_regs)
2353{
2354	int ret;
2355	int i, n;
2356	struct reg_sequence *base;
2357	unsigned int this_page = 0;
2358	unsigned int page_change = 0;
2359	/*
2360	 * the set of registers are not neccessarily in order, but
2361	 * since the order of write must be preserved this algorithm
2362	 * chops the set each time the page changes. This also applies
2363	 * if there is a delay required at any point in the sequence.
2364	 */
2365	base = regs;
2366	for (i = 0, n = 0; i < num_regs; i++, n++) {
2367		unsigned int reg = regs[i].reg;
2368		struct regmap_range_node *range;
2369
2370		range = _regmap_range_lookup(map, reg);
2371		if (range) {
2372			unsigned int win_page = _regmap_register_page(map, reg,
2373								      range);
2374
2375			if (i == 0)
2376				this_page = win_page;
2377			if (win_page != this_page) {
2378				this_page = win_page;
2379				page_change = 1;
2380			}
2381		}
2382
2383		/* If we have both a page change and a delay make sure to
2384		 * write the regs and apply the delay before we change the
2385		 * page.
2386		 */
2387
2388		if (page_change || regs[i].delay_us) {
2389
2390				/* For situations where the first write requires
2391				 * a delay we need to make sure we don't call
2392				 * raw_multi_reg_write with n=0
2393				 * This can't occur with page breaks as we
2394				 * never write on the first iteration
2395				 */
2396				if (regs[i].delay_us && i == 0)
2397					n = 1;
2398
2399				ret = _regmap_raw_multi_reg_write(map, base, n);
2400				if (ret != 0)
2401					return ret;
2402
2403				if (regs[i].delay_us) {
2404					if (map->can_sleep)
2405						fsleep(regs[i].delay_us);
2406					else
2407						udelay(regs[i].delay_us);
2408				}
2409
2410				base += n;
2411				n = 0;
2412
2413				if (page_change) {
2414					ret = _regmap_select_page(map,
2415								  &base[n].reg,
2416								  range, 1);
2417					if (ret != 0)
2418						return ret;
2419
2420					page_change = 0;
2421				}
2422
2423		}
2424
2425	}
2426	if (n > 0)
2427		return _regmap_raw_multi_reg_write(map, base, n);
2428	return 0;
2429}
2430
2431static int _regmap_multi_reg_write(struct regmap *map,
2432				   const struct reg_sequence *regs,
2433				   size_t num_regs)
2434{
2435	int i;
2436	int ret;
2437
2438	if (!map->can_multi_write) {
2439		for (i = 0; i < num_regs; i++) {
2440			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2441			if (ret != 0)
2442				return ret;
2443
2444			if (regs[i].delay_us) {
2445				if (map->can_sleep)
2446					fsleep(regs[i].delay_us);
2447				else
2448					udelay(regs[i].delay_us);
2449			}
2450		}
2451		return 0;
2452	}
2453
2454	if (!map->format.parse_inplace)
2455		return -EINVAL;
2456
2457	if (map->writeable_reg)
2458		for (i = 0; i < num_regs; i++) {
2459			int reg = regs[i].reg;
2460			if (!map->writeable_reg(map->dev, reg))
2461				return -EINVAL;
2462			if (!IS_ALIGNED(reg, map->reg_stride))
2463				return -EINVAL;
2464		}
2465
2466	if (!map->cache_bypass) {
2467		for (i = 0; i < num_regs; i++) {
2468			unsigned int val = regs[i].def;
2469			unsigned int reg = regs[i].reg;
2470			ret = regcache_write(map, reg, val);
2471			if (ret) {
2472				dev_err(map->dev,
2473				"Error in caching of register: %x ret: %d\n",
2474								reg, ret);
2475				return ret;
2476			}
2477		}
2478		if (map->cache_only) {
2479			map->cache_dirty = true;
2480			return 0;
2481		}
2482	}
2483
2484	WARN_ON(!map->bus);
2485
2486	for (i = 0; i < num_regs; i++) {
2487		unsigned int reg = regs[i].reg;
2488		struct regmap_range_node *range;
2489
2490		/* Coalesce all the writes between a page break or a delay
2491		 * in a sequence
2492		 */
2493		range = _regmap_range_lookup(map, reg);
2494		if (range || regs[i].delay_us) {
2495			size_t len = sizeof(struct reg_sequence)*num_regs;
2496			struct reg_sequence *base = kmemdup(regs, len,
2497							   GFP_KERNEL);
2498			if (!base)
2499				return -ENOMEM;
2500			ret = _regmap_range_multi_paged_reg_write(map, base,
2501								  num_regs);
2502			kfree(base);
2503
2504			return ret;
2505		}
2506	}
2507	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2508}
2509
2510/**
2511 * regmap_multi_reg_write() - Write multiple registers to the device
2512 *
2513 * @map: Register map to write to
2514 * @regs: Array of structures containing register,value to be written
2515 * @num_regs: Number of registers to write
2516 *
2517 * Write multiple registers to the device where the set of register, value
2518 * pairs are supplied in any order, possibly not all in a single range.
2519 *
2520 * The 'normal' block write mode will send ultimately send data on the
2521 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2522 * addressed. However, this alternative block multi write mode will send
2523 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2524 * must of course support the mode.
2525 *
2526 * A value of zero will be returned on success, a negative errno will be
2527 * returned in error cases.
2528 */
2529int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2530			   int num_regs)
2531{
2532	int ret;
2533
2534	map->lock(map->lock_arg);
2535
2536	ret = _regmap_multi_reg_write(map, regs, num_regs);
2537
2538	map->unlock(map->lock_arg);
2539
2540	return ret;
2541}
2542EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2543
2544/**
2545 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2546 *                                     device but not the cache
2547 *
2548 * @map: Register map to write to
2549 * @regs: Array of structures containing register,value to be written
2550 * @num_regs: Number of registers to write
2551 *
2552 * Write multiple registers to the device but not the cache where the set
2553 * of register are supplied in any order.
2554 *
2555 * This function is intended to be used for writing a large block of data
2556 * atomically to the device in single transfer for those I2C client devices
2557 * that implement this alternative block write mode.
2558 *
2559 * A value of zero will be returned on success, a negative errno will
2560 * be returned in error cases.
2561 */
2562int regmap_multi_reg_write_bypassed(struct regmap *map,
2563				    const struct reg_sequence *regs,
2564				    int num_regs)
2565{
2566	int ret;
2567	bool bypass;
2568
2569	map->lock(map->lock_arg);
2570
2571	bypass = map->cache_bypass;
2572	map->cache_bypass = true;
2573
2574	ret = _regmap_multi_reg_write(map, regs, num_regs);
2575
2576	map->cache_bypass = bypass;
2577
2578	map->unlock(map->lock_arg);
2579
2580	return ret;
2581}
2582EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2583
2584/**
2585 * regmap_raw_write_async() - Write raw values to one or more registers
2586 *                            asynchronously
2587 *
2588 * @map: Register map to write to
2589 * @reg: Initial register to write to
2590 * @val: Block of data to be written, laid out for direct transmission to the
2591 *       device.  Must be valid until regmap_async_complete() is called.
2592 * @val_len: Length of data pointed to by val.
2593 *
2594 * This function is intended to be used for things like firmware
2595 * download where a large block of data needs to be transferred to the
2596 * device.  No formatting will be done on the data provided.
2597 *
2598 * If supported by the underlying bus the write will be scheduled
2599 * asynchronously, helping maximise I/O speed on higher speed buses
2600 * like SPI.  regmap_async_complete() can be called to ensure that all
2601 * asynchrnous writes have been completed.
2602 *
2603 * A value of zero will be returned on success, a negative errno will
2604 * be returned in error cases.
2605 */
2606int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2607			   const void *val, size_t val_len)
2608{
2609	int ret;
2610
2611	if (val_len % map->format.val_bytes)
2612		return -EINVAL;
2613	if (!IS_ALIGNED(reg, map->reg_stride))
2614		return -EINVAL;
2615
2616	map->lock(map->lock_arg);
2617
2618	map->async = true;
2619
2620	ret = _regmap_raw_write(map, reg, val, val_len, false);
2621
2622	map->async = false;
2623
2624	map->unlock(map->lock_arg);
2625
2626	return ret;
2627}
2628EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2629
2630static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2631			    unsigned int val_len, bool noinc)
2632{
2633	struct regmap_range_node *range;
2634	int ret;
2635
2636	WARN_ON(!map->bus);
2637
2638	if (!map->bus || !map->bus->read)
2639		return -EINVAL;
2640
2641	range = _regmap_range_lookup(map, reg);
2642	if (range) {
2643		ret = _regmap_select_page(map, &reg, range,
2644					  noinc ? 1 : val_len / map->format.val_bytes);
2645		if (ret != 0)
2646			return ret;
2647	}
2648
2649	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2650	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2651				      map->read_flag_mask);
2652	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2653
2654	ret = map->bus->read(map->bus_context, map->work_buf,
2655			     map->format.reg_bytes + map->format.pad_bytes,
2656			     val, val_len);
2657
2658	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2659
2660	return ret;
2661}
2662
2663static int _regmap_bus_reg_read(void *context, unsigned int reg,
2664				unsigned int *val)
2665{
2666	struct regmap *map = context;
2667
2668	return map->bus->reg_read(map->bus_context, reg, val);
2669}
2670
2671static int _regmap_bus_read(void *context, unsigned int reg,
2672			    unsigned int *val)
2673{
2674	int ret;
2675	struct regmap *map = context;
2676	void *work_val = map->work_buf + map->format.reg_bytes +
2677		map->format.pad_bytes;
2678
2679	if (!map->format.parse_val)
2680		return -EINVAL;
2681
2682	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2683	if (ret == 0)
2684		*val = map->format.parse_val(work_val);
2685
2686	return ret;
2687}
2688
2689static int _regmap_read(struct regmap *map, unsigned int reg,
2690			unsigned int *val)
2691{
2692	int ret;
2693	void *context = _regmap_map_get_context(map);
2694
2695	if (!map->cache_bypass) {
2696		ret = regcache_read(map, reg, val);
2697		if (ret == 0)
2698			return 0;
2699	}
2700
2701	if (map->cache_only)
2702		return -EBUSY;
2703
2704	if (!regmap_readable(map, reg))
2705		return -EIO;
2706
2707	ret = map->reg_read(context, reg, val);
2708	if (ret == 0) {
2709		if (regmap_should_log(map))
2710			dev_info(map->dev, "%x => %x\n", reg, *val);
2711
2712		trace_regmap_reg_read(map, reg, *val);
2713
2714		if (!map->cache_bypass)
2715			regcache_write(map, reg, *val);
2716	}
2717
2718	return ret;
2719}
2720
2721/**
2722 * regmap_read() - Read a value from a single register
2723 *
2724 * @map: Register map to read from
2725 * @reg: Register to be read from
2726 * @val: Pointer to store read value
2727 *
2728 * A value of zero will be returned on success, a negative errno will
2729 * be returned in error cases.
2730 */
2731int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2732{
2733	int ret;
2734
2735	if (!IS_ALIGNED(reg, map->reg_stride))
2736		return -EINVAL;
2737
2738	map->lock(map->lock_arg);
2739
2740	ret = _regmap_read(map, reg, val);
2741
2742	map->unlock(map->lock_arg);
2743
2744	return ret;
2745}
2746EXPORT_SYMBOL_GPL(regmap_read);
2747
2748/**
2749 * regmap_raw_read() - Read raw data from the device
2750 *
2751 * @map: Register map to read from
2752 * @reg: First register to be read from
2753 * @val: Pointer to store read value
2754 * @val_len: Size of data to read
2755 *
2756 * A value of zero will be returned on success, a negative errno will
2757 * be returned in error cases.
2758 */
2759int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2760		    size_t val_len)
2761{
2762	size_t val_bytes = map->format.val_bytes;
2763	size_t val_count = val_len / val_bytes;
2764	unsigned int v;
2765	int ret, i;
2766
2767	if (!map->bus)
2768		return -EINVAL;
2769	if (val_len % map->format.val_bytes)
2770		return -EINVAL;
2771	if (!IS_ALIGNED(reg, map->reg_stride))
2772		return -EINVAL;
2773	if (val_count == 0)
2774		return -EINVAL;
2775
2776	map->lock(map->lock_arg);
2777
2778	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2779	    map->cache_type == REGCACHE_NONE) {
2780		size_t chunk_count, chunk_bytes;
2781		size_t chunk_regs = val_count;
2782
2783		if (!map->bus->read) {
2784			ret = -ENOTSUPP;
2785			goto out;
2786		}
2787
2788		if (map->use_single_read)
2789			chunk_regs = 1;
2790		else if (map->max_raw_read && val_len > map->max_raw_read)
2791			chunk_regs = map->max_raw_read / val_bytes;
2792
2793		chunk_count = val_count / chunk_regs;
2794		chunk_bytes = chunk_regs * val_bytes;
2795
2796		/* Read bytes that fit into whole chunks */
2797		for (i = 0; i < chunk_count; i++) {
2798			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2799			if (ret != 0)
2800				goto out;
2801
2802			reg += regmap_get_offset(map, chunk_regs);
2803			val += chunk_bytes;
2804			val_len -= chunk_bytes;
2805		}
2806
2807		/* Read remaining bytes */
2808		if (val_len) {
2809			ret = _regmap_raw_read(map, reg, val, val_len, false);
2810			if (ret != 0)
2811				goto out;
2812		}
2813	} else {
2814		/* Otherwise go word by word for the cache; should be low
2815		 * cost as we expect to hit the cache.
2816		 */
2817		for (i = 0; i < val_count; i++) {
2818			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2819					   &v);
2820			if (ret != 0)
2821				goto out;
2822
2823			map->format.format_val(val + (i * val_bytes), v, 0);
2824		}
2825	}
2826
2827 out:
2828	map->unlock(map->lock_arg);
2829
2830	return ret;
2831}
2832EXPORT_SYMBOL_GPL(regmap_raw_read);
2833
2834/**
2835 * regmap_noinc_read(): Read data from a register without incrementing the
2836 *			register number
2837 *
2838 * @map: Register map to read from
2839 * @reg: Register to read from
2840 * @val: Pointer to data buffer
2841 * @val_len: Length of output buffer in bytes.
2842 *
2843 * The regmap API usually assumes that bulk bus read operations will read a
2844 * range of registers. Some devices have certain registers for which a read
2845 * operation read will read from an internal FIFO.
2846 *
2847 * The target register must be volatile but registers after it can be
2848 * completely unrelated cacheable registers.
2849 *
2850 * This will attempt multiple reads as required to read val_len bytes.
2851 *
2852 * A value of zero will be returned on success, a negative errno will be
2853 * returned in error cases.
2854 */
2855int regmap_noinc_read(struct regmap *map, unsigned int reg,
2856		      void *val, size_t val_len)
2857{
2858	size_t read_len;
2859	int ret;
2860
2861	if (!map->bus)
2862		return -EINVAL;
2863	if (!map->bus->read)
2864		return -ENOTSUPP;
2865	if (val_len % map->format.val_bytes)
2866		return -EINVAL;
2867	if (!IS_ALIGNED(reg, map->reg_stride))
2868		return -EINVAL;
2869	if (val_len == 0)
2870		return -EINVAL;
2871
2872	map->lock(map->lock_arg);
2873
2874	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2875		ret = -EINVAL;
2876		goto out_unlock;
2877	}
2878
2879	while (val_len) {
2880		if (map->max_raw_read && map->max_raw_read < val_len)
2881			read_len = map->max_raw_read;
2882		else
2883			read_len = val_len;
2884		ret = _regmap_raw_read(map, reg, val, read_len, true);
2885		if (ret)
2886			goto out_unlock;
2887		val = ((u8 *)val) + read_len;
2888		val_len -= read_len;
2889	}
2890
2891out_unlock:
2892	map->unlock(map->lock_arg);
2893	return ret;
2894}
2895EXPORT_SYMBOL_GPL(regmap_noinc_read);
2896
2897/**
2898 * regmap_field_read(): Read a value to a single register field
2899 *
2900 * @field: Register field to read from
2901 * @val: Pointer to store read value
2902 *
2903 * A value of zero will be returned on success, a negative errno will
2904 * be returned in error cases.
2905 */
2906int regmap_field_read(struct regmap_field *field, unsigned int *val)
2907{
2908	int ret;
2909	unsigned int reg_val;
2910	ret = regmap_read(field->regmap, field->reg, &reg_val);
2911	if (ret != 0)
2912		return ret;
2913
2914	reg_val &= field->mask;
2915	reg_val >>= field->shift;
2916	*val = reg_val;
2917
2918	return ret;
2919}
2920EXPORT_SYMBOL_GPL(regmap_field_read);
2921
2922/**
2923 * regmap_fields_read() - Read a value to a single register field with port ID
2924 *
2925 * @field: Register field to read from
2926 * @id: port ID
2927 * @val: Pointer to store read value
2928 *
2929 * A value of zero will be returned on success, a negative errno will
2930 * be returned in error cases.
2931 */
2932int regmap_fields_read(struct regmap_field *field, unsigned int id,
2933		       unsigned int *val)
2934{
2935	int ret;
2936	unsigned int reg_val;
2937
2938	if (id >= field->id_size)
2939		return -EINVAL;
2940
2941	ret = regmap_read(field->regmap,
2942			  field->reg + (field->id_offset * id),
2943			  &reg_val);
2944	if (ret != 0)
2945		return ret;
2946
2947	reg_val &= field->mask;
2948	reg_val >>= field->shift;
2949	*val = reg_val;
2950
2951	return ret;
2952}
2953EXPORT_SYMBOL_GPL(regmap_fields_read);
2954
2955/**
2956 * regmap_bulk_read() - Read multiple registers from the device
2957 *
2958 * @map: Register map to read from
2959 * @reg: First register to be read from
2960 * @val: Pointer to store read value, in native register size for device
2961 * @val_count: Number of registers to read
2962 *
2963 * A value of zero will be returned on success, a negative errno will
2964 * be returned in error cases.
2965 */
2966int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2967		     size_t val_count)
2968{
2969	int ret, i;
2970	size_t val_bytes = map->format.val_bytes;
2971	bool vol = regmap_volatile_range(map, reg, val_count);
2972
2973	if (!IS_ALIGNED(reg, map->reg_stride))
2974		return -EINVAL;
2975	if (val_count == 0)
2976		return -EINVAL;
2977
2978	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2979		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2980		if (ret != 0)
2981			return ret;
2982
2983		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2984			map->format.parse_inplace(val + i);
2985	} else {
2986#ifdef CONFIG_64BIT
2987		u64 *u64 = val;
2988#endif
2989		u32 *u32 = val;
2990		u16 *u16 = val;
2991		u8 *u8 = val;
2992
2993		map->lock(map->lock_arg);
2994
2995		for (i = 0; i < val_count; i++) {
2996			unsigned int ival;
2997
2998			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2999					   &ival);
3000			if (ret != 0)
3001				goto out;
3002
3003			switch (map->format.val_bytes) {
3004#ifdef CONFIG_64BIT
3005			case 8:
3006				u64[i] = ival;
3007				break;
3008#endif
3009			case 4:
3010				u32[i] = ival;
3011				break;
3012			case 2:
3013				u16[i] = ival;
3014				break;
3015			case 1:
3016				u8[i] = ival;
3017				break;
3018			default:
3019				ret = -EINVAL;
3020				goto out;
3021			}
3022		}
3023
3024out:
3025		map->unlock(map->lock_arg);
3026	}
3027
3028	return ret;
3029}
3030EXPORT_SYMBOL_GPL(regmap_bulk_read);
3031
3032static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3033			       unsigned int mask, unsigned int val,
3034			       bool *change, bool force_write)
3035{
3036	int ret;
3037	unsigned int tmp, orig;
3038
3039	if (change)
3040		*change = false;
3041
3042	if (regmap_volatile(map, reg) && map->reg_update_bits) {
3043		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3044		if (ret == 0 && change)
3045			*change = true;
3046	} else {
3047		ret = _regmap_read(map, reg, &orig);
3048		if (ret != 0)
3049			return ret;
3050
3051		tmp = orig & ~mask;
3052		tmp |= val & mask;
3053
3054		if (force_write || (tmp != orig)) {
3055			ret = _regmap_write(map, reg, tmp);
3056			if (ret == 0 && change)
3057				*change = true;
3058		}
3059	}
3060
3061	return ret;
3062}
3063
3064/**
3065 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3066 *
3067 * @map: Register map to update
3068 * @reg: Register to update
3069 * @mask: Bitmask to change
3070 * @val: New value for bitmask
3071 * @change: Boolean indicating if a write was done
3072 * @async: Boolean indicating asynchronously
3073 * @force: Boolean indicating use force update
3074 *
3075 * Perform a read/modify/write cycle on a register map with change, async, force
3076 * options.
3077 *
3078 * If async is true:
3079 *
3080 * With most buses the read must be done synchronously so this is most useful
3081 * for devices with a cache which do not need to interact with the hardware to
3082 * determine the current register value.
3083 *
3084 * Returns zero for success, a negative number on error.
3085 */
3086int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3087			    unsigned int mask, unsigned int val,
3088			    bool *change, bool async, bool force)
3089{
3090	int ret;
3091
3092	map->lock(map->lock_arg);
3093
3094	map->async = async;
3095
3096	ret = _regmap_update_bits(map, reg, mask, val, change, force);
3097
3098	map->async = false;
3099
3100	map->unlock(map->lock_arg);
3101
3102	return ret;
3103}
3104EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3105
3106/**
3107 * regmap_test_bits() - Check if all specified bits are set in a register.
3108 *
3109 * @map: Register map to operate on
3110 * @reg: Register to read from
3111 * @bits: Bits to test
3112 *
3113 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3114 * bits are set and a negative error number if the underlying regmap_read()
3115 * fails.
3116 */
3117int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3118{
3119	unsigned int val, ret;
3120
3121	ret = regmap_read(map, reg, &val);
3122	if (ret)
3123		return ret;
3124
3125	return (val & bits) == bits;
3126}
3127EXPORT_SYMBOL_GPL(regmap_test_bits);
3128
3129void regmap_async_complete_cb(struct regmap_async *async, int ret)
3130{
3131	struct regmap *map = async->map;
3132	bool wake;
3133
3134	trace_regmap_async_io_complete(map);
3135
3136	spin_lock(&map->async_lock);
3137	list_move(&async->list, &map->async_free);
3138	wake = list_empty(&map->async_list);
3139
3140	if (ret != 0)
3141		map->async_ret = ret;
3142
3143	spin_unlock(&map->async_lock);
3144
3145	if (wake)
3146		wake_up(&map->async_waitq);
3147}
3148EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3149
3150static int regmap_async_is_done(struct regmap *map)
3151{
3152	unsigned long flags;
3153	int ret;
3154
3155	spin_lock_irqsave(&map->async_lock, flags);
3156	ret = list_empty(&map->async_list);
3157	spin_unlock_irqrestore(&map->async_lock, flags);
3158
3159	return ret;
3160}
3161
3162/**
3163 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3164 *
3165 * @map: Map to operate on.
3166 *
3167 * Blocks until any pending asynchronous I/O has completed.  Returns
3168 * an error code for any failed I/O operations.
3169 */
3170int regmap_async_complete(struct regmap *map)
3171{
3172	unsigned long flags;
3173	int ret;
3174
3175	/* Nothing to do with no async support */
3176	if (!map->bus || !map->bus->async_write)
3177		return 0;
3178
3179	trace_regmap_async_complete_start(map);
3180
3181	wait_event(map->async_waitq, regmap_async_is_done(map));
3182
3183	spin_lock_irqsave(&map->async_lock, flags);
3184	ret = map->async_ret;
3185	map->async_ret = 0;
3186	spin_unlock_irqrestore(&map->async_lock, flags);
3187
3188	trace_regmap_async_complete_done(map);
3189
3190	return ret;
3191}
3192EXPORT_SYMBOL_GPL(regmap_async_complete);
3193
3194/**
3195 * regmap_register_patch - Register and apply register updates to be applied
3196 *                         on device initialistion
3197 *
3198 * @map: Register map to apply updates to.
3199 * @regs: Values to update.
3200 * @num_regs: Number of entries in regs.
3201 *
3202 * Register a set of register updates to be applied to the device
3203 * whenever the device registers are synchronised with the cache and
3204 * apply them immediately.  Typically this is used to apply
3205 * corrections to be applied to the device defaults on startup, such
3206 * as the updates some vendors provide to undocumented registers.
3207 *
3208 * The caller must ensure that this function cannot be called
3209 * concurrently with either itself or regcache_sync().
3210 */
3211int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3212			  int num_regs)
3213{
3214	struct reg_sequence *p;
3215	int ret;
3216	bool bypass;
3217
3218	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3219	    num_regs))
3220		return 0;
3221
3222	p = krealloc(map->patch,
3223		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3224		     GFP_KERNEL);
3225	if (p) {
3226		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3227		map->patch = p;
3228		map->patch_regs += num_regs;
3229	} else {
3230		return -ENOMEM;
3231	}
3232
3233	map->lock(map->lock_arg);
3234
3235	bypass = map->cache_bypass;
3236
3237	map->cache_bypass = true;
3238	map->async = true;
3239
3240	ret = _regmap_multi_reg_write(map, regs, num_regs);
3241
3242	map->async = false;
3243	map->cache_bypass = bypass;
3244
3245	map->unlock(map->lock_arg);
3246
3247	regmap_async_complete(map);
3248
3249	return ret;
3250}
3251EXPORT_SYMBOL_GPL(regmap_register_patch);
3252
3253/**
3254 * regmap_get_val_bytes() - Report the size of a register value
3255 *
3256 * @map: Register map to operate on.
3257 *
3258 * Report the size of a register value, mainly intended to for use by
3259 * generic infrastructure built on top of regmap.
3260 */
3261int regmap_get_val_bytes(struct regmap *map)
3262{
3263	if (map->format.format_write)
3264		return -EINVAL;
3265
3266	return map->format.val_bytes;
3267}
3268EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3269
3270/**
3271 * regmap_get_max_register() - Report the max register value
3272 *
3273 * @map: Register map to operate on.
3274 *
3275 * Report the max register value, mainly intended to for use by
3276 * generic infrastructure built on top of regmap.
3277 */
3278int regmap_get_max_register(struct regmap *map)
3279{
3280	return map->max_register ? map->max_register : -EINVAL;
3281}
3282EXPORT_SYMBOL_GPL(regmap_get_max_register);
3283
3284/**
3285 * regmap_get_reg_stride() - Report the register address stride
3286 *
3287 * @map: Register map to operate on.
3288 *
3289 * Report the register address stride, mainly intended to for use by
3290 * generic infrastructure built on top of regmap.
3291 */
3292int regmap_get_reg_stride(struct regmap *map)
3293{
3294	return map->reg_stride;
3295}
3296EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3297
3298int regmap_parse_val(struct regmap *map, const void *buf,
3299			unsigned int *val)
3300{
3301	if (!map->format.parse_val)
3302		return -EINVAL;
3303
3304	*val = map->format.parse_val(buf);
3305
3306	return 0;
3307}
3308EXPORT_SYMBOL_GPL(regmap_parse_val);
3309
3310static int __init regmap_initcall(void)
3311{
3312	regmap_debugfs_initcall();
3313
3314	return 0;
3315}
3316postcore_initcall(regmap_initcall);