Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2//
   3// Register map access API
   4//
   5// Copyright 2011 Wolfson Microelectronics plc
   6//
   7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
 
 
 
 
   8
   9#include <linux/device.h>
  10#include <linux/slab.h>
  11#include <linux/export.h>
  12#include <linux/mutex.h>
  13#include <linux/err.h>
  14#include <linux/property.h>
  15#include <linux/rbtree.h>
  16#include <linux/sched.h>
  17#include <linux/delay.h>
  18#include <linux/log2.h>
  19#include <linux/hwspinlock.h>
  20#include <asm/unaligned.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35#ifdef LOG_DEVICE
  36static inline bool regmap_should_log(struct regmap *map)
  37{
  38	return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
  39}
  40#else
  41static inline bool regmap_should_log(struct regmap *map) { return false; }
  42#endif
  43
  44
  45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  46			       unsigned int mask, unsigned int val,
  47			       bool *change, bool force_write);
  48
  49static int _regmap_bus_reg_read(void *context, unsigned int reg,
  50				unsigned int *val);
  51static int _regmap_bus_read(void *context, unsigned int reg,
  52			    unsigned int *val);
  53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  54				       unsigned int val);
  55static int _regmap_bus_reg_write(void *context, unsigned int reg,
  56				 unsigned int val);
  57static int _regmap_bus_raw_write(void *context, unsigned int reg,
  58				 unsigned int val);
  59
  60bool regmap_reg_in_ranges(unsigned int reg,
  61			  const struct regmap_range *ranges,
  62			  unsigned int nranges)
  63{
  64	const struct regmap_range *r;
  65	int i;
  66
  67	for (i = 0, r = ranges; i < nranges; i++, r++)
  68		if (regmap_reg_in_range(reg, r))
  69			return true;
  70	return false;
  71}
  72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  73
  74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  75			      const struct regmap_access_table *table)
  76{
  77	/* Check "no ranges" first */
  78	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  79		return false;
  80
  81	/* In case zero "yes ranges" are supplied, any reg is OK */
  82	if (!table->n_yes_ranges)
  83		return true;
  84
  85	return regmap_reg_in_ranges(reg, table->yes_ranges,
  86				    table->n_yes_ranges);
  87}
  88EXPORT_SYMBOL_GPL(regmap_check_range_table);
  89
  90bool regmap_writeable(struct regmap *map, unsigned int reg)
  91{
  92	if (map->max_register && reg > map->max_register)
  93		return false;
  94
  95	if (map->writeable_reg)
  96		return map->writeable_reg(map->dev, reg);
  97
  98	if (map->wr_table)
  99		return regmap_check_range_table(map, reg, map->wr_table);
 100
 101	return true;
 102}
 103
 104bool regmap_cached(struct regmap *map, unsigned int reg)
 105{
 106	int ret;
 107	unsigned int val;
 108
 109	if (map->cache_type == REGCACHE_NONE)
 110		return false;
 111
 112	if (!map->cache_ops)
 113		return false;
 114
 115	if (map->max_register && reg > map->max_register)
 116		return false;
 117
 118	map->lock(map->lock_arg);
 119	ret = regcache_read(map, reg, &val);
 120	map->unlock(map->lock_arg);
 121	if (ret)
 122		return false;
 123
 124	return true;
 125}
 126
 127bool regmap_readable(struct regmap *map, unsigned int reg)
 128{
 129	if (!map->reg_read)
 130		return false;
 131
 132	if (map->max_register && reg > map->max_register)
 133		return false;
 134
 135	if (map->format.format_write)
 136		return false;
 137
 138	if (map->readable_reg)
 139		return map->readable_reg(map->dev, reg);
 140
 141	if (map->rd_table)
 142		return regmap_check_range_table(map, reg, map->rd_table);
 143
 144	return true;
 145}
 146
 147bool regmap_volatile(struct regmap *map, unsigned int reg)
 148{
 149	if (!map->format.format_write && !regmap_readable(map, reg))
 150		return false;
 151
 152	if (map->volatile_reg)
 153		return map->volatile_reg(map->dev, reg);
 154
 155	if (map->volatile_table)
 156		return regmap_check_range_table(map, reg, map->volatile_table);
 157
 158	if (map->cache_ops)
 159		return false;
 160	else
 161		return true;
 162}
 163
 164bool regmap_precious(struct regmap *map, unsigned int reg)
 165{
 166	if (!regmap_readable(map, reg))
 167		return false;
 168
 169	if (map->precious_reg)
 170		return map->precious_reg(map->dev, reg);
 171
 172	if (map->precious_table)
 173		return regmap_check_range_table(map, reg, map->precious_table);
 174
 175	return false;
 176}
 177
 178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
 179{
 180	if (map->writeable_noinc_reg)
 181		return map->writeable_noinc_reg(map->dev, reg);
 182
 183	if (map->wr_noinc_table)
 184		return regmap_check_range_table(map, reg, map->wr_noinc_table);
 185
 186	return true;
 187}
 188
 189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
 190{
 191	if (map->readable_noinc_reg)
 192		return map->readable_noinc_reg(map->dev, reg);
 193
 194	if (map->rd_noinc_table)
 195		return regmap_check_range_table(map, reg, map->rd_noinc_table);
 196
 197	return true;
 198}
 199
 200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 201	size_t num)
 202{
 203	unsigned int i;
 204
 205	for (i = 0; i < num; i++)
 206		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 207			return false;
 208
 209	return true;
 210}
 211
 212static void regmap_format_2_6_write(struct regmap *map,
 213				     unsigned int reg, unsigned int val)
 214{
 215	u8 *out = map->work_buf;
 216
 217	*out = (reg << 6) | val;
 218}
 219
 220static void regmap_format_4_12_write(struct regmap *map,
 221				     unsigned int reg, unsigned int val)
 222{
 223	__be16 *out = map->work_buf;
 224	*out = cpu_to_be16((reg << 12) | val);
 225}
 226
 227static void regmap_format_7_9_write(struct regmap *map,
 228				    unsigned int reg, unsigned int val)
 229{
 230	__be16 *out = map->work_buf;
 231	*out = cpu_to_be16((reg << 9) | val);
 232}
 233
 234static void regmap_format_10_14_write(struct regmap *map,
 235				    unsigned int reg, unsigned int val)
 236{
 237	u8 *out = map->work_buf;
 238
 239	out[2] = val;
 240	out[1] = (val >> 8) | (reg << 6);
 241	out[0] = reg >> 2;
 242}
 243
 244static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 245{
 246	u8 *b = buf;
 247
 248	b[0] = val << shift;
 249}
 250
 251static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 252{
 253	put_unaligned_be16(val << shift, buf);
 
 
 254}
 255
 256static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 257{
 258	put_unaligned_le16(val << shift, buf);
 
 
 259}
 260
 261static void regmap_format_16_native(void *buf, unsigned int val,
 262				    unsigned int shift)
 263{
 264	u16 v = val << shift;
 265
 266	memcpy(buf, &v, sizeof(v));
 267}
 268
 269static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 270{
 271	u8 *b = buf;
 272
 273	val <<= shift;
 274
 275	b[0] = val >> 16;
 276	b[1] = val >> 8;
 277	b[2] = val;
 278}
 279
 280static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 281{
 282	put_unaligned_be32(val << shift, buf);
 
 
 283}
 284
 285static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 286{
 287	put_unaligned_le32(val << shift, buf);
 
 
 288}
 289
 290static void regmap_format_32_native(void *buf, unsigned int val,
 291				    unsigned int shift)
 292{
 293	u32 v = val << shift;
 294
 295	memcpy(buf, &v, sizeof(v));
 296}
 297
 298#ifdef CONFIG_64BIT
 299static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 300{
 301	put_unaligned_be64((u64) val << shift, buf);
 
 
 302}
 303
 304static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 305{
 306	put_unaligned_le64((u64) val << shift, buf);
 
 
 307}
 308
 309static void regmap_format_64_native(void *buf, unsigned int val,
 310				    unsigned int shift)
 311{
 312	u64 v = (u64) val << shift;
 313
 314	memcpy(buf, &v, sizeof(v));
 315}
 316#endif
 317
 318static void regmap_parse_inplace_noop(void *buf)
 319{
 320}
 321
 322static unsigned int regmap_parse_8(const void *buf)
 323{
 324	const u8 *b = buf;
 325
 326	return b[0];
 327}
 328
 329static unsigned int regmap_parse_16_be(const void *buf)
 330{
 331	return get_unaligned_be16(buf);
 
 
 332}
 333
 334static unsigned int regmap_parse_16_le(const void *buf)
 335{
 336	return get_unaligned_le16(buf);
 
 
 337}
 338
 339static void regmap_parse_16_be_inplace(void *buf)
 340{
 341	u16 v = get_unaligned_be16(buf);
 342
 343	memcpy(buf, &v, sizeof(v));
 344}
 345
 346static void regmap_parse_16_le_inplace(void *buf)
 347{
 348	u16 v = get_unaligned_le16(buf);
 349
 350	memcpy(buf, &v, sizeof(v));
 351}
 352
 353static unsigned int regmap_parse_16_native(const void *buf)
 354{
 355	u16 v;
 356
 357	memcpy(&v, buf, sizeof(v));
 358	return v;
 359}
 360
 361static unsigned int regmap_parse_24(const void *buf)
 362{
 363	const u8 *b = buf;
 364	unsigned int ret = b[2];
 365	ret |= ((unsigned int)b[1]) << 8;
 366	ret |= ((unsigned int)b[0]) << 16;
 367
 368	return ret;
 369}
 370
 371static unsigned int regmap_parse_32_be(const void *buf)
 372{
 373	return get_unaligned_be32(buf);
 
 
 374}
 375
 376static unsigned int regmap_parse_32_le(const void *buf)
 377{
 378	return get_unaligned_le32(buf);
 
 
 379}
 380
 381static void regmap_parse_32_be_inplace(void *buf)
 382{
 383	u32 v = get_unaligned_be32(buf);
 384
 385	memcpy(buf, &v, sizeof(v));
 386}
 387
 388static void regmap_parse_32_le_inplace(void *buf)
 389{
 390	u32 v = get_unaligned_le32(buf);
 391
 392	memcpy(buf, &v, sizeof(v));
 393}
 394
 395static unsigned int regmap_parse_32_native(const void *buf)
 396{
 397	u32 v;
 398
 399	memcpy(&v, buf, sizeof(v));
 400	return v;
 401}
 402
 403#ifdef CONFIG_64BIT
 404static unsigned int regmap_parse_64_be(const void *buf)
 405{
 406	return get_unaligned_be64(buf);
 
 
 407}
 408
 409static unsigned int regmap_parse_64_le(const void *buf)
 410{
 411	return get_unaligned_le64(buf);
 
 
 412}
 413
 414static void regmap_parse_64_be_inplace(void *buf)
 415{
 416	u64 v =  get_unaligned_be64(buf);
 417
 418	memcpy(buf, &v, sizeof(v));
 419}
 420
 421static void regmap_parse_64_le_inplace(void *buf)
 422{
 423	u64 v = get_unaligned_le64(buf);
 424
 425	memcpy(buf, &v, sizeof(v));
 426}
 427
 428static unsigned int regmap_parse_64_native(const void *buf)
 429{
 430	u64 v;
 431
 432	memcpy(&v, buf, sizeof(v));
 433	return v;
 434}
 435#endif
 436
 437static void regmap_lock_hwlock(void *__map)
 438{
 439	struct regmap *map = __map;
 440
 441	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 442}
 443
 444static void regmap_lock_hwlock_irq(void *__map)
 445{
 446	struct regmap *map = __map;
 447
 448	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 449}
 450
 451static void regmap_lock_hwlock_irqsave(void *__map)
 452{
 453	struct regmap *map = __map;
 454
 455	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 456				    &map->spinlock_flags);
 457}
 458
 459static void regmap_unlock_hwlock(void *__map)
 460{
 461	struct regmap *map = __map;
 462
 463	hwspin_unlock(map->hwlock);
 464}
 465
 466static void regmap_unlock_hwlock_irq(void *__map)
 467{
 468	struct regmap *map = __map;
 469
 470	hwspin_unlock_irq(map->hwlock);
 471}
 472
 473static void regmap_unlock_hwlock_irqrestore(void *__map)
 474{
 475	struct regmap *map = __map;
 476
 477	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 478}
 479
 480static void regmap_lock_unlock_none(void *__map)
 481{
 482
 483}
 484
 485static void regmap_lock_mutex(void *__map)
 486{
 487	struct regmap *map = __map;
 488	mutex_lock(&map->mutex);
 489}
 490
 491static void regmap_unlock_mutex(void *__map)
 492{
 493	struct regmap *map = __map;
 494	mutex_unlock(&map->mutex);
 495}
 496
 497static void regmap_lock_spinlock(void *__map)
 498__acquires(&map->spinlock)
 499{
 500	struct regmap *map = __map;
 501	unsigned long flags;
 502
 503	spin_lock_irqsave(&map->spinlock, flags);
 504	map->spinlock_flags = flags;
 505}
 506
 507static void regmap_unlock_spinlock(void *__map)
 508__releases(&map->spinlock)
 509{
 510	struct regmap *map = __map;
 511	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 512}
 513
 514static void dev_get_regmap_release(struct device *dev, void *res)
 515{
 516	/*
 517	 * We don't actually have anything to do here; the goal here
 518	 * is not to manage the regmap but to provide a simple way to
 519	 * get the regmap back given a struct device.
 520	 */
 521}
 522
 523static bool _regmap_range_add(struct regmap *map,
 524			      struct regmap_range_node *data)
 525{
 526	struct rb_root *root = &map->range_tree;
 527	struct rb_node **new = &(root->rb_node), *parent = NULL;
 528
 529	while (*new) {
 530		struct regmap_range_node *this =
 531			rb_entry(*new, struct regmap_range_node, node);
 532
 533		parent = *new;
 534		if (data->range_max < this->range_min)
 535			new = &((*new)->rb_left);
 536		else if (data->range_min > this->range_max)
 537			new = &((*new)->rb_right);
 538		else
 539			return false;
 540	}
 541
 542	rb_link_node(&data->node, parent, new);
 543	rb_insert_color(&data->node, root);
 544
 545	return true;
 546}
 547
 548static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 549						      unsigned int reg)
 550{
 551	struct rb_node *node = map->range_tree.rb_node;
 552
 553	while (node) {
 554		struct regmap_range_node *this =
 555			rb_entry(node, struct regmap_range_node, node);
 556
 557		if (reg < this->range_min)
 558			node = node->rb_left;
 559		else if (reg > this->range_max)
 560			node = node->rb_right;
 561		else
 562			return this;
 563	}
 564
 565	return NULL;
 566}
 567
 568static void regmap_range_exit(struct regmap *map)
 569{
 570	struct rb_node *next;
 571	struct regmap_range_node *range_node;
 572
 573	next = rb_first(&map->range_tree);
 574	while (next) {
 575		range_node = rb_entry(next, struct regmap_range_node, node);
 576		next = rb_next(&range_node->node);
 577		rb_erase(&range_node->node, &map->range_tree);
 578		kfree(range_node);
 579	}
 580
 581	kfree(map->selector_work_buf);
 582}
 583
 584static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
 585{
 586	if (config->name) {
 587		const char *name = kstrdup_const(config->name, GFP_KERNEL);
 588
 589		if (!name)
 590			return -ENOMEM;
 591
 592		kfree_const(map->name);
 593		map->name = name;
 594	}
 595
 596	return 0;
 597}
 598
 599int regmap_attach_dev(struct device *dev, struct regmap *map,
 600		      const struct regmap_config *config)
 601{
 602	struct regmap **m;
 603	int ret;
 604
 605	map->dev = dev;
 606
 607	ret = regmap_set_name(map, config);
 608	if (ret)
 609		return ret;
 610
 611	regmap_debugfs_init(map);
 612
 613	/* Add a devres resource for dev_get_regmap() */
 614	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 615	if (!m) {
 616		regmap_debugfs_exit(map);
 617		return -ENOMEM;
 618	}
 619	*m = map;
 620	devres_add(dev, m);
 621
 622	return 0;
 623}
 624EXPORT_SYMBOL_GPL(regmap_attach_dev);
 625
 626static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 627					const struct regmap_config *config)
 628{
 629	enum regmap_endian endian;
 630
 631	/* Retrieve the endianness specification from the regmap config */
 632	endian = config->reg_format_endian;
 633
 634	/* If the regmap config specified a non-default value, use that */
 635	if (endian != REGMAP_ENDIAN_DEFAULT)
 636		return endian;
 637
 638	/* Retrieve the endianness specification from the bus config */
 639	if (bus && bus->reg_format_endian_default)
 640		endian = bus->reg_format_endian_default;
 641
 642	/* If the bus specified a non-default value, use that */
 643	if (endian != REGMAP_ENDIAN_DEFAULT)
 644		return endian;
 645
 646	/* Use this if no other value was found */
 647	return REGMAP_ENDIAN_BIG;
 648}
 649
 650enum regmap_endian regmap_get_val_endian(struct device *dev,
 651					 const struct regmap_bus *bus,
 652					 const struct regmap_config *config)
 653{
 654	struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
 655	enum regmap_endian endian;
 656
 657	/* Retrieve the endianness specification from the regmap config */
 658	endian = config->val_format_endian;
 659
 660	/* If the regmap config specified a non-default value, use that */
 661	if (endian != REGMAP_ENDIAN_DEFAULT)
 662		return endian;
 663
 664	/* If the firmware node exist try to get endianness from it */
 665	if (fwnode_property_read_bool(fwnode, "big-endian"))
 666		endian = REGMAP_ENDIAN_BIG;
 667	else if (fwnode_property_read_bool(fwnode, "little-endian"))
 668		endian = REGMAP_ENDIAN_LITTLE;
 669	else if (fwnode_property_read_bool(fwnode, "native-endian"))
 670		endian = REGMAP_ENDIAN_NATIVE;
 671
 672	/* If the endianness was specified in fwnode, use that */
 673	if (endian != REGMAP_ENDIAN_DEFAULT)
 674		return endian;
 
 
 
 
 
 675
 676	/* Retrieve the endianness specification from the bus config */
 677	if (bus && bus->val_format_endian_default)
 678		endian = bus->val_format_endian_default;
 679
 680	/* If the bus specified a non-default value, use that */
 681	if (endian != REGMAP_ENDIAN_DEFAULT)
 682		return endian;
 683
 684	/* Use this if no other value was found */
 685	return REGMAP_ENDIAN_BIG;
 686}
 687EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 688
 689struct regmap *__regmap_init(struct device *dev,
 690			     const struct regmap_bus *bus,
 691			     void *bus_context,
 692			     const struct regmap_config *config,
 693			     struct lock_class_key *lock_key,
 694			     const char *lock_name)
 695{
 696	struct regmap *map;
 697	int ret = -EINVAL;
 698	enum regmap_endian reg_endian, val_endian;
 699	int i, j;
 700
 701	if (!config)
 702		goto err;
 703
 704	map = kzalloc(sizeof(*map), GFP_KERNEL);
 705	if (map == NULL) {
 706		ret = -ENOMEM;
 707		goto err;
 708	}
 709
 710	ret = regmap_set_name(map, config);
 711	if (ret)
 712		goto err_map;
 
 
 
 
 713
 714	if (config->disable_locking) {
 715		map->lock = map->unlock = regmap_lock_unlock_none;
 716		regmap_debugfs_disable(map);
 717	} else if (config->lock && config->unlock) {
 718		map->lock = config->lock;
 719		map->unlock = config->unlock;
 720		map->lock_arg = config->lock_arg;
 721	} else if (config->use_hwlock) {
 722		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 723		if (!map->hwlock) {
 724			ret = -ENXIO;
 725			goto err_name;
 726		}
 727
 728		switch (config->hwlock_mode) {
 729		case HWLOCK_IRQSTATE:
 730			map->lock = regmap_lock_hwlock_irqsave;
 731			map->unlock = regmap_unlock_hwlock_irqrestore;
 732			break;
 733		case HWLOCK_IRQ:
 734			map->lock = regmap_lock_hwlock_irq;
 735			map->unlock = regmap_unlock_hwlock_irq;
 736			break;
 737		default:
 738			map->lock = regmap_lock_hwlock;
 739			map->unlock = regmap_unlock_hwlock;
 740			break;
 741		}
 742
 743		map->lock_arg = map;
 744	} else {
 745		if ((bus && bus->fast_io) ||
 746		    config->fast_io) {
 747			spin_lock_init(&map->spinlock);
 748			map->lock = regmap_lock_spinlock;
 749			map->unlock = regmap_unlock_spinlock;
 750			lockdep_set_class_and_name(&map->spinlock,
 751						   lock_key, lock_name);
 752		} else {
 753			mutex_init(&map->mutex);
 754			map->lock = regmap_lock_mutex;
 755			map->unlock = regmap_unlock_mutex;
 756			lockdep_set_class_and_name(&map->mutex,
 757						   lock_key, lock_name);
 758		}
 759		map->lock_arg = map;
 760	}
 761
 762	/*
 763	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 764	 * scratch buffers with sleeping allocations.
 765	 */
 766	if ((bus && bus->fast_io) || config->fast_io)
 767		map->alloc_flags = GFP_ATOMIC;
 768	else
 769		map->alloc_flags = GFP_KERNEL;
 770
 771	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 772	map->format.pad_bytes = config->pad_bits / 8;
 773	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 774	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 775			config->val_bits + config->pad_bits, 8);
 776	map->reg_shift = config->pad_bits % 8;
 777	if (config->reg_stride)
 778		map->reg_stride = config->reg_stride;
 779	else
 780		map->reg_stride = 1;
 781	if (is_power_of_2(map->reg_stride))
 782		map->reg_stride_order = ilog2(map->reg_stride);
 783	else
 784		map->reg_stride_order = -1;
 785	map->use_single_read = config->use_single_read || !bus || !bus->read;
 786	map->use_single_write = config->use_single_write || !bus || !bus->write;
 787	map->can_multi_write = config->can_multi_write && bus && bus->write;
 788	if (bus) {
 789		map->max_raw_read = bus->max_raw_read;
 790		map->max_raw_write = bus->max_raw_write;
 791	}
 792	map->dev = dev;
 793	map->bus = bus;
 794	map->bus_context = bus_context;
 795	map->max_register = config->max_register;
 796	map->wr_table = config->wr_table;
 797	map->rd_table = config->rd_table;
 798	map->volatile_table = config->volatile_table;
 799	map->precious_table = config->precious_table;
 800	map->wr_noinc_table = config->wr_noinc_table;
 801	map->rd_noinc_table = config->rd_noinc_table;
 802	map->writeable_reg = config->writeable_reg;
 803	map->readable_reg = config->readable_reg;
 804	map->volatile_reg = config->volatile_reg;
 805	map->precious_reg = config->precious_reg;
 806	map->writeable_noinc_reg = config->writeable_noinc_reg;
 807	map->readable_noinc_reg = config->readable_noinc_reg;
 808	map->cache_type = config->cache_type;
 809
 810	spin_lock_init(&map->async_lock);
 811	INIT_LIST_HEAD(&map->async_list);
 812	INIT_LIST_HEAD(&map->async_free);
 813	init_waitqueue_head(&map->async_waitq);
 814
 815	if (config->read_flag_mask ||
 816	    config->write_flag_mask ||
 817	    config->zero_flag_mask) {
 818		map->read_flag_mask = config->read_flag_mask;
 819		map->write_flag_mask = config->write_flag_mask;
 820	} else if (bus) {
 821		map->read_flag_mask = bus->read_flag_mask;
 822	}
 823
 824	if (!bus) {
 825		map->reg_read  = config->reg_read;
 826		map->reg_write = config->reg_write;
 827
 828		map->defer_caching = false;
 829		goto skip_format_initialization;
 830	} else if (!bus->read || !bus->write) {
 831		map->reg_read = _regmap_bus_reg_read;
 832		map->reg_write = _regmap_bus_reg_write;
 833		map->reg_update_bits = bus->reg_update_bits;
 834
 835		map->defer_caching = false;
 836		goto skip_format_initialization;
 837	} else {
 838		map->reg_read  = _regmap_bus_read;
 839		map->reg_update_bits = bus->reg_update_bits;
 840	}
 841
 842	reg_endian = regmap_get_reg_endian(bus, config);
 843	val_endian = regmap_get_val_endian(dev, bus, config);
 844
 845	switch (config->reg_bits + map->reg_shift) {
 846	case 2:
 847		switch (config->val_bits) {
 848		case 6:
 849			map->format.format_write = regmap_format_2_6_write;
 850			break;
 851		default:
 852			goto err_hwlock;
 853		}
 854		break;
 855
 856	case 4:
 857		switch (config->val_bits) {
 858		case 12:
 859			map->format.format_write = regmap_format_4_12_write;
 860			break;
 861		default:
 862			goto err_hwlock;
 863		}
 864		break;
 865
 866	case 7:
 867		switch (config->val_bits) {
 868		case 9:
 869			map->format.format_write = regmap_format_7_9_write;
 870			break;
 871		default:
 872			goto err_hwlock;
 873		}
 874		break;
 875
 876	case 10:
 877		switch (config->val_bits) {
 878		case 14:
 879			map->format.format_write = regmap_format_10_14_write;
 880			break;
 881		default:
 882			goto err_hwlock;
 883		}
 884		break;
 885
 886	case 8:
 887		map->format.format_reg = regmap_format_8;
 888		break;
 889
 890	case 16:
 891		switch (reg_endian) {
 892		case REGMAP_ENDIAN_BIG:
 893			map->format.format_reg = regmap_format_16_be;
 894			break;
 895		case REGMAP_ENDIAN_LITTLE:
 896			map->format.format_reg = regmap_format_16_le;
 897			break;
 898		case REGMAP_ENDIAN_NATIVE:
 899			map->format.format_reg = regmap_format_16_native;
 900			break;
 901		default:
 902			goto err_hwlock;
 903		}
 904		break;
 905
 906	case 24:
 907		if (reg_endian != REGMAP_ENDIAN_BIG)
 908			goto err_hwlock;
 909		map->format.format_reg = regmap_format_24;
 910		break;
 911
 912	case 32:
 913		switch (reg_endian) {
 914		case REGMAP_ENDIAN_BIG:
 915			map->format.format_reg = regmap_format_32_be;
 916			break;
 917		case REGMAP_ENDIAN_LITTLE:
 918			map->format.format_reg = regmap_format_32_le;
 919			break;
 920		case REGMAP_ENDIAN_NATIVE:
 921			map->format.format_reg = regmap_format_32_native;
 922			break;
 923		default:
 924			goto err_hwlock;
 925		}
 926		break;
 927
 928#ifdef CONFIG_64BIT
 929	case 64:
 930		switch (reg_endian) {
 931		case REGMAP_ENDIAN_BIG:
 932			map->format.format_reg = regmap_format_64_be;
 933			break;
 934		case REGMAP_ENDIAN_LITTLE:
 935			map->format.format_reg = regmap_format_64_le;
 936			break;
 937		case REGMAP_ENDIAN_NATIVE:
 938			map->format.format_reg = regmap_format_64_native;
 939			break;
 940		default:
 941			goto err_hwlock;
 942		}
 943		break;
 944#endif
 945
 946	default:
 947		goto err_hwlock;
 948	}
 949
 950	if (val_endian == REGMAP_ENDIAN_NATIVE)
 951		map->format.parse_inplace = regmap_parse_inplace_noop;
 952
 953	switch (config->val_bits) {
 954	case 8:
 955		map->format.format_val = regmap_format_8;
 956		map->format.parse_val = regmap_parse_8;
 957		map->format.parse_inplace = regmap_parse_inplace_noop;
 958		break;
 959	case 16:
 960		switch (val_endian) {
 961		case REGMAP_ENDIAN_BIG:
 962			map->format.format_val = regmap_format_16_be;
 963			map->format.parse_val = regmap_parse_16_be;
 964			map->format.parse_inplace = regmap_parse_16_be_inplace;
 965			break;
 966		case REGMAP_ENDIAN_LITTLE:
 967			map->format.format_val = regmap_format_16_le;
 968			map->format.parse_val = regmap_parse_16_le;
 969			map->format.parse_inplace = regmap_parse_16_le_inplace;
 970			break;
 971		case REGMAP_ENDIAN_NATIVE:
 972			map->format.format_val = regmap_format_16_native;
 973			map->format.parse_val = regmap_parse_16_native;
 974			break;
 975		default:
 976			goto err_hwlock;
 977		}
 978		break;
 979	case 24:
 980		if (val_endian != REGMAP_ENDIAN_BIG)
 981			goto err_hwlock;
 982		map->format.format_val = regmap_format_24;
 983		map->format.parse_val = regmap_parse_24;
 984		break;
 985	case 32:
 986		switch (val_endian) {
 987		case REGMAP_ENDIAN_BIG:
 988			map->format.format_val = regmap_format_32_be;
 989			map->format.parse_val = regmap_parse_32_be;
 990			map->format.parse_inplace = regmap_parse_32_be_inplace;
 991			break;
 992		case REGMAP_ENDIAN_LITTLE:
 993			map->format.format_val = regmap_format_32_le;
 994			map->format.parse_val = regmap_parse_32_le;
 995			map->format.parse_inplace = regmap_parse_32_le_inplace;
 996			break;
 997		case REGMAP_ENDIAN_NATIVE:
 998			map->format.format_val = regmap_format_32_native;
 999			map->format.parse_val = regmap_parse_32_native;
1000			break;
1001		default:
1002			goto err_hwlock;
1003		}
1004		break;
1005#ifdef CONFIG_64BIT
1006	case 64:
1007		switch (val_endian) {
1008		case REGMAP_ENDIAN_BIG:
1009			map->format.format_val = regmap_format_64_be;
1010			map->format.parse_val = regmap_parse_64_be;
1011			map->format.parse_inplace = regmap_parse_64_be_inplace;
1012			break;
1013		case REGMAP_ENDIAN_LITTLE:
1014			map->format.format_val = regmap_format_64_le;
1015			map->format.parse_val = regmap_parse_64_le;
1016			map->format.parse_inplace = regmap_parse_64_le_inplace;
1017			break;
1018		case REGMAP_ENDIAN_NATIVE:
1019			map->format.format_val = regmap_format_64_native;
1020			map->format.parse_val = regmap_parse_64_native;
1021			break;
1022		default:
1023			goto err_hwlock;
1024		}
1025		break;
1026#endif
1027	}
1028
1029	if (map->format.format_write) {
1030		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1031		    (val_endian != REGMAP_ENDIAN_BIG))
1032			goto err_hwlock;
1033		map->use_single_write = true;
1034	}
1035
1036	if (!map->format.format_write &&
1037	    !(map->format.format_reg && map->format.format_val))
1038		goto err_hwlock;
1039
1040	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1041	if (map->work_buf == NULL) {
1042		ret = -ENOMEM;
1043		goto err_hwlock;
1044	}
1045
1046	if (map->format.format_write) {
1047		map->defer_caching = false;
1048		map->reg_write = _regmap_bus_formatted_write;
1049	} else if (map->format.format_val) {
1050		map->defer_caching = true;
1051		map->reg_write = _regmap_bus_raw_write;
1052	}
1053
1054skip_format_initialization:
1055
1056	map->range_tree = RB_ROOT;
1057	for (i = 0; i < config->num_ranges; i++) {
1058		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1059		struct regmap_range_node *new;
1060
1061		/* Sanity check */
1062		if (range_cfg->range_max < range_cfg->range_min) {
1063			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1064				range_cfg->range_max, range_cfg->range_min);
1065			goto err_range;
1066		}
1067
1068		if (range_cfg->range_max > map->max_register) {
1069			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1070				range_cfg->range_max, map->max_register);
1071			goto err_range;
1072		}
1073
1074		if (range_cfg->selector_reg > map->max_register) {
1075			dev_err(map->dev,
1076				"Invalid range %d: selector out of map\n", i);
1077			goto err_range;
1078		}
1079
1080		if (range_cfg->window_len == 0) {
1081			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1082				i);
1083			goto err_range;
1084		}
1085
1086		/* Make sure, that this register range has no selector
1087		   or data window within its boundary */
1088		for (j = 0; j < config->num_ranges; j++) {
1089			unsigned sel_reg = config->ranges[j].selector_reg;
1090			unsigned win_min = config->ranges[j].window_start;
1091			unsigned win_max = win_min +
1092					   config->ranges[j].window_len - 1;
1093
1094			/* Allow data window inside its own virtual range */
1095			if (j == i)
1096				continue;
1097
1098			if (range_cfg->range_min <= sel_reg &&
1099			    sel_reg <= range_cfg->range_max) {
1100				dev_err(map->dev,
1101					"Range %d: selector for %d in window\n",
1102					i, j);
1103				goto err_range;
1104			}
1105
1106			if (!(win_max < range_cfg->range_min ||
1107			      win_min > range_cfg->range_max)) {
1108				dev_err(map->dev,
1109					"Range %d: window for %d in window\n",
1110					i, j);
1111				goto err_range;
1112			}
1113		}
1114
1115		new = kzalloc(sizeof(*new), GFP_KERNEL);
1116		if (new == NULL) {
1117			ret = -ENOMEM;
1118			goto err_range;
1119		}
1120
1121		new->map = map;
1122		new->name = range_cfg->name;
1123		new->range_min = range_cfg->range_min;
1124		new->range_max = range_cfg->range_max;
1125		new->selector_reg = range_cfg->selector_reg;
1126		new->selector_mask = range_cfg->selector_mask;
1127		new->selector_shift = range_cfg->selector_shift;
1128		new->window_start = range_cfg->window_start;
1129		new->window_len = range_cfg->window_len;
1130
1131		if (!_regmap_range_add(map, new)) {
1132			dev_err(map->dev, "Failed to add range %d\n", i);
1133			kfree(new);
1134			goto err_range;
1135		}
1136
1137		if (map->selector_work_buf == NULL) {
1138			map->selector_work_buf =
1139				kzalloc(map->format.buf_size, GFP_KERNEL);
1140			if (map->selector_work_buf == NULL) {
1141				ret = -ENOMEM;
1142				goto err_range;
1143			}
1144		}
1145	}
1146
1147	ret = regcache_init(map, config);
1148	if (ret != 0)
1149		goto err_range;
1150
1151	if (dev) {
1152		ret = regmap_attach_dev(dev, map, config);
1153		if (ret != 0)
1154			goto err_regcache;
1155	} else {
1156		regmap_debugfs_init(map);
1157	}
1158
1159	return map;
1160
1161err_regcache:
1162	regcache_exit(map);
1163err_range:
1164	regmap_range_exit(map);
1165	kfree(map->work_buf);
1166err_hwlock:
1167	if (map->hwlock)
1168		hwspin_lock_free(map->hwlock);
1169err_name:
1170	kfree_const(map->name);
1171err_map:
1172	kfree(map);
1173err:
1174	return ERR_PTR(ret);
1175}
1176EXPORT_SYMBOL_GPL(__regmap_init);
1177
1178static void devm_regmap_release(struct device *dev, void *res)
1179{
1180	regmap_exit(*(struct regmap **)res);
1181}
1182
1183struct regmap *__devm_regmap_init(struct device *dev,
1184				  const struct regmap_bus *bus,
1185				  void *bus_context,
1186				  const struct regmap_config *config,
1187				  struct lock_class_key *lock_key,
1188				  const char *lock_name)
1189{
1190	struct regmap **ptr, *regmap;
1191
1192	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1193	if (!ptr)
1194		return ERR_PTR(-ENOMEM);
1195
1196	regmap = __regmap_init(dev, bus, bus_context, config,
1197			       lock_key, lock_name);
1198	if (!IS_ERR(regmap)) {
1199		*ptr = regmap;
1200		devres_add(dev, ptr);
1201	} else {
1202		devres_free(ptr);
1203	}
1204
1205	return regmap;
1206}
1207EXPORT_SYMBOL_GPL(__devm_regmap_init);
1208
1209static void regmap_field_init(struct regmap_field *rm_field,
1210	struct regmap *regmap, struct reg_field reg_field)
1211{
1212	rm_field->regmap = regmap;
1213	rm_field->reg = reg_field.reg;
1214	rm_field->shift = reg_field.lsb;
1215	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1216	rm_field->id_size = reg_field.id_size;
1217	rm_field->id_offset = reg_field.id_offset;
1218}
1219
1220/**
1221 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1222 *
1223 * @dev: Device that will be interacted with
1224 * @regmap: regmap bank in which this register field is located.
1225 * @reg_field: Register field with in the bank.
1226 *
1227 * The return value will be an ERR_PTR() on error or a valid pointer
1228 * to a struct regmap_field. The regmap_field will be automatically freed
1229 * by the device management code.
1230 */
1231struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1232		struct regmap *regmap, struct reg_field reg_field)
1233{
1234	struct regmap_field *rm_field = devm_kzalloc(dev,
1235					sizeof(*rm_field), GFP_KERNEL);
1236	if (!rm_field)
1237		return ERR_PTR(-ENOMEM);
1238
1239	regmap_field_init(rm_field, regmap, reg_field);
1240
1241	return rm_field;
1242
1243}
1244EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1245
1246/**
1247 * devm_regmap_field_free() - Free a register field allocated using
1248 *                            devm_regmap_field_alloc.
1249 *
1250 * @dev: Device that will be interacted with
1251 * @field: regmap field which should be freed.
1252 *
1253 * Free register field allocated using devm_regmap_field_alloc(). Usually
1254 * drivers need not call this function, as the memory allocated via devm
1255 * will be freed as per device-driver life-cyle.
1256 */
1257void devm_regmap_field_free(struct device *dev,
1258	struct regmap_field *field)
1259{
1260	devm_kfree(dev, field);
1261}
1262EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1263
1264/**
1265 * regmap_field_alloc() - Allocate and initialise a register field.
1266 *
1267 * @regmap: regmap bank in which this register field is located.
1268 * @reg_field: Register field with in the bank.
1269 *
1270 * The return value will be an ERR_PTR() on error or a valid pointer
1271 * to a struct regmap_field. The regmap_field should be freed by the
1272 * user once its finished working with it using regmap_field_free().
1273 */
1274struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1275		struct reg_field reg_field)
1276{
1277	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1278
1279	if (!rm_field)
1280		return ERR_PTR(-ENOMEM);
1281
1282	regmap_field_init(rm_field, regmap, reg_field);
1283
1284	return rm_field;
1285}
1286EXPORT_SYMBOL_GPL(regmap_field_alloc);
1287
1288/**
1289 * regmap_field_free() - Free register field allocated using
1290 *                       regmap_field_alloc.
1291 *
1292 * @field: regmap field which should be freed.
1293 */
1294void regmap_field_free(struct regmap_field *field)
1295{
1296	kfree(field);
1297}
1298EXPORT_SYMBOL_GPL(regmap_field_free);
1299
1300/**
1301 * regmap_reinit_cache() - Reinitialise the current register cache
1302 *
1303 * @map: Register map to operate on.
1304 * @config: New configuration.  Only the cache data will be used.
1305 *
1306 * Discard any existing register cache for the map and initialize a
1307 * new cache.  This can be used to restore the cache to defaults or to
1308 * update the cache configuration to reflect runtime discovery of the
1309 * hardware.
1310 *
1311 * No explicit locking is done here, the user needs to ensure that
1312 * this function will not race with other calls to regmap.
1313 */
1314int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1315{
1316	int ret;
1317
1318	regcache_exit(map);
1319	regmap_debugfs_exit(map);
1320
1321	map->max_register = config->max_register;
1322	map->writeable_reg = config->writeable_reg;
1323	map->readable_reg = config->readable_reg;
1324	map->volatile_reg = config->volatile_reg;
1325	map->precious_reg = config->precious_reg;
1326	map->writeable_noinc_reg = config->writeable_noinc_reg;
1327	map->readable_noinc_reg = config->readable_noinc_reg;
1328	map->cache_type = config->cache_type;
1329
1330	ret = regmap_set_name(map, config);
1331	if (ret)
1332		return ret;
1333
1334	regmap_debugfs_init(map);
1335
1336	map->cache_bypass = false;
1337	map->cache_only = false;
1338
1339	return regcache_init(map, config);
1340}
1341EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1342
1343/**
1344 * regmap_exit() - Free a previously allocated register map
1345 *
1346 * @map: Register map to operate on.
1347 */
1348void regmap_exit(struct regmap *map)
1349{
1350	struct regmap_async *async;
1351
1352	regcache_exit(map);
1353	regmap_debugfs_exit(map);
1354	regmap_range_exit(map);
1355	if (map->bus && map->bus->free_context)
1356		map->bus->free_context(map->bus_context);
1357	kfree(map->work_buf);
1358	while (!list_empty(&map->async_free)) {
1359		async = list_first_entry_or_null(&map->async_free,
1360						 struct regmap_async,
1361						 list);
1362		list_del(&async->list);
1363		kfree(async->work_buf);
1364		kfree(async);
1365	}
1366	if (map->hwlock)
1367		hwspin_lock_free(map->hwlock);
1368	kfree_const(map->name);
1369	kfree(map->patch);
1370	kfree(map);
1371}
1372EXPORT_SYMBOL_GPL(regmap_exit);
1373
1374static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1375{
1376	struct regmap **r = res;
1377	if (!r || !*r) {
1378		WARN_ON(!r || !*r);
1379		return 0;
1380	}
1381
1382	/* If the user didn't specify a name match any */
1383	if (data)
1384		return !strcmp((*r)->name, data);
1385	else
1386		return 1;
1387}
1388
1389/**
1390 * dev_get_regmap() - Obtain the regmap (if any) for a device
1391 *
1392 * @dev: Device to retrieve the map for
1393 * @name: Optional name for the register map, usually NULL.
1394 *
1395 * Returns the regmap for the device if one is present, or NULL.  If
1396 * name is specified then it must match the name specified when
1397 * registering the device, if it is NULL then the first regmap found
1398 * will be used.  Devices with multiple register maps are very rare,
1399 * generic code should normally not need to specify a name.
1400 */
1401struct regmap *dev_get_regmap(struct device *dev, const char *name)
1402{
1403	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1404					dev_get_regmap_match, (void *)name);
1405
1406	if (!r)
1407		return NULL;
1408	return *r;
1409}
1410EXPORT_SYMBOL_GPL(dev_get_regmap);
1411
1412/**
1413 * regmap_get_device() - Obtain the device from a regmap
1414 *
1415 * @map: Register map to operate on.
1416 *
1417 * Returns the underlying device that the regmap has been created for.
1418 */
1419struct device *regmap_get_device(struct regmap *map)
1420{
1421	return map->dev;
1422}
1423EXPORT_SYMBOL_GPL(regmap_get_device);
1424
1425static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1426			       struct regmap_range_node *range,
1427			       unsigned int val_num)
1428{
1429	void *orig_work_buf;
1430	unsigned int win_offset;
1431	unsigned int win_page;
1432	bool page_chg;
1433	int ret;
1434
1435	win_offset = (*reg - range->range_min) % range->window_len;
1436	win_page = (*reg - range->range_min) / range->window_len;
1437
1438	if (val_num > 1) {
1439		/* Bulk write shouldn't cross range boundary */
1440		if (*reg + val_num - 1 > range->range_max)
1441			return -EINVAL;
1442
1443		/* ... or single page boundary */
1444		if (val_num > range->window_len - win_offset)
1445			return -EINVAL;
1446	}
1447
1448	/* It is possible to have selector register inside data window.
1449	   In that case, selector register is located on every page and
1450	   it needs no page switching, when accessed alone. */
1451	if (val_num > 1 ||
1452	    range->window_start + win_offset != range->selector_reg) {
1453		/* Use separate work_buf during page switching */
1454		orig_work_buf = map->work_buf;
1455		map->work_buf = map->selector_work_buf;
1456
1457		ret = _regmap_update_bits(map, range->selector_reg,
1458					  range->selector_mask,
1459					  win_page << range->selector_shift,
1460					  &page_chg, false);
1461
1462		map->work_buf = orig_work_buf;
1463
1464		if (ret != 0)
1465			return ret;
1466	}
1467
1468	*reg = range->window_start + win_offset;
1469
1470	return 0;
1471}
1472
1473static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1474					  unsigned long mask)
1475{
1476	u8 *buf;
1477	int i;
1478
1479	if (!mask || !map->work_buf)
1480		return;
1481
1482	buf = map->work_buf;
1483
1484	for (i = 0; i < max_bytes; i++)
1485		buf[i] |= (mask >> (8 * i)) & 0xff;
1486}
1487
1488static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1489				  const void *val, size_t val_len, bool noinc)
1490{
1491	struct regmap_range_node *range;
1492	unsigned long flags;
1493	void *work_val = map->work_buf + map->format.reg_bytes +
1494		map->format.pad_bytes;
1495	void *buf;
1496	int ret = -ENOTSUPP;
1497	size_t len;
1498	int i;
1499
1500	WARN_ON(!map->bus);
1501
1502	/* Check for unwritable or noinc registers in range
1503	 * before we start
1504	 */
1505	if (!regmap_writeable_noinc(map, reg)) {
1506		for (i = 0; i < val_len / map->format.val_bytes; i++) {
1507			unsigned int element =
1508				reg + regmap_get_offset(map, i);
1509			if (!regmap_writeable(map, element) ||
1510				regmap_writeable_noinc(map, element))
1511				return -EINVAL;
1512		}
1513	}
1514
1515	if (!map->cache_bypass && map->format.parse_val) {
1516		unsigned int ival;
1517		int val_bytes = map->format.val_bytes;
1518		for (i = 0; i < val_len / val_bytes; i++) {
1519			ival = map->format.parse_val(val + (i * val_bytes));
1520			ret = regcache_write(map,
1521					     reg + regmap_get_offset(map, i),
1522					     ival);
1523			if (ret) {
1524				dev_err(map->dev,
1525					"Error in caching of register: %x ret: %d\n",
1526					reg + i, ret);
1527				return ret;
1528			}
1529		}
1530		if (map->cache_only) {
1531			map->cache_dirty = true;
1532			return 0;
1533		}
1534	}
1535
1536	range = _regmap_range_lookup(map, reg);
1537	if (range) {
1538		int val_num = val_len / map->format.val_bytes;
1539		int win_offset = (reg - range->range_min) % range->window_len;
1540		int win_residue = range->window_len - win_offset;
1541
1542		/* If the write goes beyond the end of the window split it */
1543		while (val_num > win_residue) {
1544			dev_dbg(map->dev, "Writing window %d/%zu\n",
1545				win_residue, val_len / map->format.val_bytes);
1546			ret = _regmap_raw_write_impl(map, reg, val,
1547						     win_residue *
1548						     map->format.val_bytes, noinc);
1549			if (ret != 0)
1550				return ret;
1551
1552			reg += win_residue;
1553			val_num -= win_residue;
1554			val += win_residue * map->format.val_bytes;
1555			val_len -= win_residue * map->format.val_bytes;
1556
1557			win_offset = (reg - range->range_min) %
1558				range->window_len;
1559			win_residue = range->window_len - win_offset;
1560		}
1561
1562		ret = _regmap_select_page(map, &reg, range, noinc ? 1 : val_num);
1563		if (ret != 0)
1564			return ret;
1565	}
1566
1567	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1568	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1569				      map->write_flag_mask);
1570
1571	/*
1572	 * Essentially all I/O mechanisms will be faster with a single
1573	 * buffer to write.  Since register syncs often generate raw
1574	 * writes of single registers optimise that case.
1575	 */
1576	if (val != work_val && val_len == map->format.val_bytes) {
1577		memcpy(work_val, val, map->format.val_bytes);
1578		val = work_val;
1579	}
1580
1581	if (map->async && map->bus->async_write) {
1582		struct regmap_async *async;
1583
1584		trace_regmap_async_write_start(map, reg, val_len);
1585
1586		spin_lock_irqsave(&map->async_lock, flags);
1587		async = list_first_entry_or_null(&map->async_free,
1588						 struct regmap_async,
1589						 list);
1590		if (async)
1591			list_del(&async->list);
1592		spin_unlock_irqrestore(&map->async_lock, flags);
1593
1594		if (!async) {
1595			async = map->bus->async_alloc();
1596			if (!async)
1597				return -ENOMEM;
1598
1599			async->work_buf = kzalloc(map->format.buf_size,
1600						  GFP_KERNEL | GFP_DMA);
1601			if (!async->work_buf) {
1602				kfree(async);
1603				return -ENOMEM;
1604			}
1605		}
1606
1607		async->map = map;
1608
1609		/* If the caller supplied the value we can use it safely. */
1610		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1611		       map->format.reg_bytes + map->format.val_bytes);
1612
1613		spin_lock_irqsave(&map->async_lock, flags);
1614		list_add_tail(&async->list, &map->async_list);
1615		spin_unlock_irqrestore(&map->async_lock, flags);
1616
1617		if (val != work_val)
1618			ret = map->bus->async_write(map->bus_context,
1619						    async->work_buf,
1620						    map->format.reg_bytes +
1621						    map->format.pad_bytes,
1622						    val, val_len, async);
1623		else
1624			ret = map->bus->async_write(map->bus_context,
1625						    async->work_buf,
1626						    map->format.reg_bytes +
1627						    map->format.pad_bytes +
1628						    val_len, NULL, 0, async);
1629
1630		if (ret != 0) {
1631			dev_err(map->dev, "Failed to schedule write: %d\n",
1632				ret);
1633
1634			spin_lock_irqsave(&map->async_lock, flags);
1635			list_move(&async->list, &map->async_free);
1636			spin_unlock_irqrestore(&map->async_lock, flags);
1637		}
1638
1639		return ret;
1640	}
1641
1642	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1643
1644	/* If we're doing a single register write we can probably just
1645	 * send the work_buf directly, otherwise try to do a gather
1646	 * write.
1647	 */
1648	if (val == work_val)
1649		ret = map->bus->write(map->bus_context, map->work_buf,
1650				      map->format.reg_bytes +
1651				      map->format.pad_bytes +
1652				      val_len);
1653	else if (map->bus->gather_write)
1654		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1655					     map->format.reg_bytes +
1656					     map->format.pad_bytes,
1657					     val, val_len);
1658	else
1659		ret = -ENOTSUPP;
1660
1661	/* If that didn't work fall back on linearising by hand. */
1662	if (ret == -ENOTSUPP) {
1663		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1664		buf = kzalloc(len, GFP_KERNEL);
1665		if (!buf)
1666			return -ENOMEM;
1667
1668		memcpy(buf, map->work_buf, map->format.reg_bytes);
1669		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1670		       val, val_len);
1671		ret = map->bus->write(map->bus_context, buf, len);
1672
1673		kfree(buf);
1674	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1675		/* regcache_drop_region() takes lock that we already have,
1676		 * thus call map->cache_ops->drop() directly
1677		 */
1678		if (map->cache_ops && map->cache_ops->drop)
1679			map->cache_ops->drop(map, reg, reg + 1);
1680	}
1681
1682	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1683
1684	return ret;
1685}
1686
1687/**
1688 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1689 *
1690 * @map: Map to check.
1691 */
1692bool regmap_can_raw_write(struct regmap *map)
1693{
1694	return map->bus && map->bus->write && map->format.format_val &&
1695		map->format.format_reg;
1696}
1697EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1698
1699/**
1700 * regmap_get_raw_read_max - Get the maximum size we can read
1701 *
1702 * @map: Map to check.
1703 */
1704size_t regmap_get_raw_read_max(struct regmap *map)
1705{
1706	return map->max_raw_read;
1707}
1708EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1709
1710/**
1711 * regmap_get_raw_write_max - Get the maximum size we can read
1712 *
1713 * @map: Map to check.
1714 */
1715size_t regmap_get_raw_write_max(struct regmap *map)
1716{
1717	return map->max_raw_write;
1718}
1719EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1720
1721static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1722				       unsigned int val)
1723{
1724	int ret;
1725	struct regmap_range_node *range;
1726	struct regmap *map = context;
1727
1728	WARN_ON(!map->bus || !map->format.format_write);
1729
1730	range = _regmap_range_lookup(map, reg);
1731	if (range) {
1732		ret = _regmap_select_page(map, &reg, range, 1);
1733		if (ret != 0)
1734			return ret;
1735	}
1736
1737	map->format.format_write(map, reg, val);
1738
1739	trace_regmap_hw_write_start(map, reg, 1);
1740
1741	ret = map->bus->write(map->bus_context, map->work_buf,
1742			      map->format.buf_size);
1743
1744	trace_regmap_hw_write_done(map, reg, 1);
1745
1746	return ret;
1747}
1748
1749static int _regmap_bus_reg_write(void *context, unsigned int reg,
1750				 unsigned int val)
1751{
1752	struct regmap *map = context;
1753
1754	return map->bus->reg_write(map->bus_context, reg, val);
1755}
1756
1757static int _regmap_bus_raw_write(void *context, unsigned int reg,
1758				 unsigned int val)
1759{
1760	struct regmap *map = context;
1761
1762	WARN_ON(!map->bus || !map->format.format_val);
1763
1764	map->format.format_val(map->work_buf + map->format.reg_bytes
1765			       + map->format.pad_bytes, val, 0);
1766	return _regmap_raw_write_impl(map, reg,
1767				      map->work_buf +
1768				      map->format.reg_bytes +
1769				      map->format.pad_bytes,
1770				      map->format.val_bytes,
1771				      false);
1772}
1773
1774static inline void *_regmap_map_get_context(struct regmap *map)
1775{
1776	return (map->bus) ? map : map->bus_context;
1777}
1778
1779int _regmap_write(struct regmap *map, unsigned int reg,
1780		  unsigned int val)
1781{
1782	int ret;
1783	void *context = _regmap_map_get_context(map);
1784
1785	if (!regmap_writeable(map, reg))
1786		return -EIO;
1787
1788	if (!map->cache_bypass && !map->defer_caching) {
1789		ret = regcache_write(map, reg, val);
1790		if (ret != 0)
1791			return ret;
1792		if (map->cache_only) {
1793			map->cache_dirty = true;
1794			return 0;
1795		}
1796	}
1797
1798	if (regmap_should_log(map))
 
1799		dev_info(map->dev, "%x <= %x\n", reg, val);
 
1800
1801	trace_regmap_reg_write(map, reg, val);
1802
1803	return map->reg_write(context, reg, val);
1804}
1805
1806/**
1807 * regmap_write() - Write a value to a single register
1808 *
1809 * @map: Register map to write to
1810 * @reg: Register to write to
1811 * @val: Value to be written
1812 *
1813 * A value of zero will be returned on success, a negative errno will
1814 * be returned in error cases.
1815 */
1816int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1817{
1818	int ret;
1819
1820	if (!IS_ALIGNED(reg, map->reg_stride))
1821		return -EINVAL;
1822
1823	map->lock(map->lock_arg);
1824
1825	ret = _regmap_write(map, reg, val);
1826
1827	map->unlock(map->lock_arg);
1828
1829	return ret;
1830}
1831EXPORT_SYMBOL_GPL(regmap_write);
1832
1833/**
1834 * regmap_write_async() - Write a value to a single register asynchronously
1835 *
1836 * @map: Register map to write to
1837 * @reg: Register to write to
1838 * @val: Value to be written
1839 *
1840 * A value of zero will be returned on success, a negative errno will
1841 * be returned in error cases.
1842 */
1843int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1844{
1845	int ret;
1846
1847	if (!IS_ALIGNED(reg, map->reg_stride))
1848		return -EINVAL;
1849
1850	map->lock(map->lock_arg);
1851
1852	map->async = true;
1853
1854	ret = _regmap_write(map, reg, val);
1855
1856	map->async = false;
1857
1858	map->unlock(map->lock_arg);
1859
1860	return ret;
1861}
1862EXPORT_SYMBOL_GPL(regmap_write_async);
1863
1864int _regmap_raw_write(struct regmap *map, unsigned int reg,
1865		      const void *val, size_t val_len, bool noinc)
1866{
1867	size_t val_bytes = map->format.val_bytes;
1868	size_t val_count = val_len / val_bytes;
1869	size_t chunk_count, chunk_bytes;
1870	size_t chunk_regs = val_count;
1871	int ret, i;
1872
1873	if (!val_count)
1874		return -EINVAL;
1875
1876	if (map->use_single_write)
1877		chunk_regs = 1;
1878	else if (map->max_raw_write && val_len > map->max_raw_write)
1879		chunk_regs = map->max_raw_write / val_bytes;
1880
1881	chunk_count = val_count / chunk_regs;
1882	chunk_bytes = chunk_regs * val_bytes;
1883
1884	/* Write as many bytes as possible with chunk_size */
1885	for (i = 0; i < chunk_count; i++) {
1886		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
1887		if (ret)
1888			return ret;
1889
1890		reg += regmap_get_offset(map, chunk_regs);
1891		val += chunk_bytes;
1892		val_len -= chunk_bytes;
1893	}
1894
1895	/* Write remaining bytes */
1896	if (val_len)
1897		ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
1898
1899	return ret;
1900}
1901
1902/**
1903 * regmap_raw_write() - Write raw values to one or more registers
1904 *
1905 * @map: Register map to write to
1906 * @reg: Initial register to write to
1907 * @val: Block of data to be written, laid out for direct transmission to the
1908 *       device
1909 * @val_len: Length of data pointed to by val.
1910 *
1911 * This function is intended to be used for things like firmware
1912 * download where a large block of data needs to be transferred to the
1913 * device.  No formatting will be done on the data provided.
1914 *
1915 * A value of zero will be returned on success, a negative errno will
1916 * be returned in error cases.
1917 */
1918int regmap_raw_write(struct regmap *map, unsigned int reg,
1919		     const void *val, size_t val_len)
1920{
1921	int ret;
1922
1923	if (!regmap_can_raw_write(map))
1924		return -EINVAL;
1925	if (val_len % map->format.val_bytes)
1926		return -EINVAL;
1927
1928	map->lock(map->lock_arg);
1929
1930	ret = _regmap_raw_write(map, reg, val, val_len, false);
1931
1932	map->unlock(map->lock_arg);
1933
1934	return ret;
1935}
1936EXPORT_SYMBOL_GPL(regmap_raw_write);
1937
1938/**
1939 * regmap_noinc_write(): Write data from a register without incrementing the
1940 *			register number
1941 *
1942 * @map: Register map to write to
1943 * @reg: Register to write to
1944 * @val: Pointer to data buffer
1945 * @val_len: Length of output buffer in bytes.
1946 *
1947 * The regmap API usually assumes that bulk bus write operations will write a
1948 * range of registers. Some devices have certain registers for which a write
1949 * operation can write to an internal FIFO.
1950 *
1951 * The target register must be volatile but registers after it can be
1952 * completely unrelated cacheable registers.
1953 *
1954 * This will attempt multiple writes as required to write val_len bytes.
1955 *
1956 * A value of zero will be returned on success, a negative errno will be
1957 * returned in error cases.
1958 */
1959int regmap_noinc_write(struct regmap *map, unsigned int reg,
1960		      const void *val, size_t val_len)
1961{
1962	size_t write_len;
1963	int ret;
1964
1965	if (!map->bus)
1966		return -EINVAL;
1967	if (!map->bus->write)
1968		return -ENOTSUPP;
1969	if (val_len % map->format.val_bytes)
1970		return -EINVAL;
1971	if (!IS_ALIGNED(reg, map->reg_stride))
1972		return -EINVAL;
1973	if (val_len == 0)
1974		return -EINVAL;
1975
1976	map->lock(map->lock_arg);
1977
1978	if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
1979		ret = -EINVAL;
1980		goto out_unlock;
1981	}
1982
1983	while (val_len) {
1984		if (map->max_raw_write && map->max_raw_write < val_len)
1985			write_len = map->max_raw_write;
1986		else
1987			write_len = val_len;
1988		ret = _regmap_raw_write(map, reg, val, write_len, true);
1989		if (ret)
1990			goto out_unlock;
1991		val = ((u8 *)val) + write_len;
1992		val_len -= write_len;
1993	}
1994
1995out_unlock:
1996	map->unlock(map->lock_arg);
1997	return ret;
1998}
1999EXPORT_SYMBOL_GPL(regmap_noinc_write);
2000
2001/**
2002 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2003 *                                   register field.
2004 *
2005 * @field: Register field to write to
2006 * @mask: Bitmask to change
2007 * @val: Value to be written
2008 * @change: Boolean indicating if a write was done
2009 * @async: Boolean indicating asynchronously
2010 * @force: Boolean indicating use force update
2011 *
2012 * Perform a read/modify/write cycle on the register field with change,
2013 * async, force option.
2014 *
2015 * A value of zero will be returned on success, a negative errno will
2016 * be returned in error cases.
2017 */
2018int regmap_field_update_bits_base(struct regmap_field *field,
2019				  unsigned int mask, unsigned int val,
2020				  bool *change, bool async, bool force)
2021{
2022	mask = (mask << field->shift) & field->mask;
2023
2024	return regmap_update_bits_base(field->regmap, field->reg,
2025				       mask, val << field->shift,
2026				       change, async, force);
2027}
2028EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2029
2030/**
2031 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2032 *                                    register field with port ID
2033 *
2034 * @field: Register field to write to
2035 * @id: port ID
2036 * @mask: Bitmask to change
2037 * @val: Value to be written
2038 * @change: Boolean indicating if a write was done
2039 * @async: Boolean indicating asynchronously
2040 * @force: Boolean indicating use force update
2041 *
2042 * A value of zero will be returned on success, a negative errno will
2043 * be returned in error cases.
2044 */
2045int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2046				   unsigned int mask, unsigned int val,
2047				   bool *change, bool async, bool force)
2048{
2049	if (id >= field->id_size)
2050		return -EINVAL;
2051
2052	mask = (mask << field->shift) & field->mask;
2053
2054	return regmap_update_bits_base(field->regmap,
2055				       field->reg + (field->id_offset * id),
2056				       mask, val << field->shift,
2057				       change, async, force);
2058}
2059EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2060
2061/**
2062 * regmap_bulk_write() - Write multiple registers to the device
2063 *
2064 * @map: Register map to write to
2065 * @reg: First register to be write from
2066 * @val: Block of data to be written, in native register size for device
2067 * @val_count: Number of registers to write
2068 *
2069 * This function is intended to be used for writing a large block of
2070 * data to the device either in single transfer or multiple transfer.
2071 *
2072 * A value of zero will be returned on success, a negative errno will
2073 * be returned in error cases.
2074 */
2075int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2076		     size_t val_count)
2077{
2078	int ret = 0, i;
2079	size_t val_bytes = map->format.val_bytes;
2080
2081	if (!IS_ALIGNED(reg, map->reg_stride))
2082		return -EINVAL;
2083
2084	/*
2085	 * Some devices don't support bulk write, for them we have a series of
2086	 * single write operations.
2087	 */
2088	if (!map->bus || !map->format.parse_inplace) {
2089		map->lock(map->lock_arg);
2090		for (i = 0; i < val_count; i++) {
2091			unsigned int ival;
2092
2093			switch (val_bytes) {
2094			case 1:
2095				ival = *(u8 *)(val + (i * val_bytes));
2096				break;
2097			case 2:
2098				ival = *(u16 *)(val + (i * val_bytes));
2099				break;
2100			case 4:
2101				ival = *(u32 *)(val + (i * val_bytes));
2102				break;
2103#ifdef CONFIG_64BIT
2104			case 8:
2105				ival = *(u64 *)(val + (i * val_bytes));
2106				break;
2107#endif
2108			default:
2109				ret = -EINVAL;
2110				goto out;
2111			}
2112
2113			ret = _regmap_write(map,
2114					    reg + regmap_get_offset(map, i),
2115					    ival);
2116			if (ret != 0)
2117				goto out;
2118		}
2119out:
2120		map->unlock(map->lock_arg);
2121	} else {
2122		void *wval;
2123
2124		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2125		if (!wval)
2126			return -ENOMEM;
2127
2128		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2129			map->format.parse_inplace(wval + i);
2130
2131		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2132
2133		kfree(wval);
2134	}
2135	return ret;
2136}
2137EXPORT_SYMBOL_GPL(regmap_bulk_write);
2138
2139/*
2140 * _regmap_raw_multi_reg_write()
2141 *
2142 * the (register,newvalue) pairs in regs have not been formatted, but
2143 * they are all in the same page and have been changed to being page
2144 * relative. The page register has been written if that was necessary.
2145 */
2146static int _regmap_raw_multi_reg_write(struct regmap *map,
2147				       const struct reg_sequence *regs,
2148				       size_t num_regs)
2149{
2150	int ret;
2151	void *buf;
2152	int i;
2153	u8 *u8;
2154	size_t val_bytes = map->format.val_bytes;
2155	size_t reg_bytes = map->format.reg_bytes;
2156	size_t pad_bytes = map->format.pad_bytes;
2157	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2158	size_t len = pair_size * num_regs;
2159
2160	if (!len)
2161		return -EINVAL;
2162
2163	buf = kzalloc(len, GFP_KERNEL);
2164	if (!buf)
2165		return -ENOMEM;
2166
2167	/* We have to linearise by hand. */
2168
2169	u8 = buf;
2170
2171	for (i = 0; i < num_regs; i++) {
2172		unsigned int reg = regs[i].reg;
2173		unsigned int val = regs[i].def;
2174		trace_regmap_hw_write_start(map, reg, 1);
2175		map->format.format_reg(u8, reg, map->reg_shift);
2176		u8 += reg_bytes + pad_bytes;
2177		map->format.format_val(u8, val, 0);
2178		u8 += val_bytes;
2179	}
2180	u8 = buf;
2181	*u8 |= map->write_flag_mask;
2182
2183	ret = map->bus->write(map->bus_context, buf, len);
2184
2185	kfree(buf);
2186
2187	for (i = 0; i < num_regs; i++) {
2188		int reg = regs[i].reg;
2189		trace_regmap_hw_write_done(map, reg, 1);
2190	}
2191	return ret;
2192}
2193
2194static unsigned int _regmap_register_page(struct regmap *map,
2195					  unsigned int reg,
2196					  struct regmap_range_node *range)
2197{
2198	unsigned int win_page = (reg - range->range_min) / range->window_len;
2199
2200	return win_page;
2201}
2202
2203static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2204					       struct reg_sequence *regs,
2205					       size_t num_regs)
2206{
2207	int ret;
2208	int i, n;
2209	struct reg_sequence *base;
2210	unsigned int this_page = 0;
2211	unsigned int page_change = 0;
2212	/*
2213	 * the set of registers are not neccessarily in order, but
2214	 * since the order of write must be preserved this algorithm
2215	 * chops the set each time the page changes. This also applies
2216	 * if there is a delay required at any point in the sequence.
2217	 */
2218	base = regs;
2219	for (i = 0, n = 0; i < num_regs; i++, n++) {
2220		unsigned int reg = regs[i].reg;
2221		struct regmap_range_node *range;
2222
2223		range = _regmap_range_lookup(map, reg);
2224		if (range) {
2225			unsigned int win_page = _regmap_register_page(map, reg,
2226								      range);
2227
2228			if (i == 0)
2229				this_page = win_page;
2230			if (win_page != this_page) {
2231				this_page = win_page;
2232				page_change = 1;
2233			}
2234		}
2235
2236		/* If we have both a page change and a delay make sure to
2237		 * write the regs and apply the delay before we change the
2238		 * page.
2239		 */
2240
2241		if (page_change || regs[i].delay_us) {
2242
2243				/* For situations where the first write requires
2244				 * a delay we need to make sure we don't call
2245				 * raw_multi_reg_write with n=0
2246				 * This can't occur with page breaks as we
2247				 * never write on the first iteration
2248				 */
2249				if (regs[i].delay_us && i == 0)
2250					n = 1;
2251
2252				ret = _regmap_raw_multi_reg_write(map, base, n);
2253				if (ret != 0)
2254					return ret;
2255
2256				if (regs[i].delay_us)
2257					udelay(regs[i].delay_us);
2258
2259				base += n;
2260				n = 0;
2261
2262				if (page_change) {
2263					ret = _regmap_select_page(map,
2264								  &base[n].reg,
2265								  range, 1);
2266					if (ret != 0)
2267						return ret;
2268
2269					page_change = 0;
2270				}
2271
2272		}
2273
2274	}
2275	if (n > 0)
2276		return _regmap_raw_multi_reg_write(map, base, n);
2277	return 0;
2278}
2279
2280static int _regmap_multi_reg_write(struct regmap *map,
2281				   const struct reg_sequence *regs,
2282				   size_t num_regs)
2283{
2284	int i;
2285	int ret;
2286
2287	if (!map->can_multi_write) {
2288		for (i = 0; i < num_regs; i++) {
2289			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2290			if (ret != 0)
2291				return ret;
2292
2293			if (regs[i].delay_us)
2294				udelay(regs[i].delay_us);
2295		}
2296		return 0;
2297	}
2298
2299	if (!map->format.parse_inplace)
2300		return -EINVAL;
2301
2302	if (map->writeable_reg)
2303		for (i = 0; i < num_regs; i++) {
2304			int reg = regs[i].reg;
2305			if (!map->writeable_reg(map->dev, reg))
2306				return -EINVAL;
2307			if (!IS_ALIGNED(reg, map->reg_stride))
2308				return -EINVAL;
2309		}
2310
2311	if (!map->cache_bypass) {
2312		for (i = 0; i < num_regs; i++) {
2313			unsigned int val = regs[i].def;
2314			unsigned int reg = regs[i].reg;
2315			ret = regcache_write(map, reg, val);
2316			if (ret) {
2317				dev_err(map->dev,
2318				"Error in caching of register: %x ret: %d\n",
2319								reg, ret);
2320				return ret;
2321			}
2322		}
2323		if (map->cache_only) {
2324			map->cache_dirty = true;
2325			return 0;
2326		}
2327	}
2328
2329	WARN_ON(!map->bus);
2330
2331	for (i = 0; i < num_regs; i++) {
2332		unsigned int reg = regs[i].reg;
2333		struct regmap_range_node *range;
2334
2335		/* Coalesce all the writes between a page break or a delay
2336		 * in a sequence
2337		 */
2338		range = _regmap_range_lookup(map, reg);
2339		if (range || regs[i].delay_us) {
2340			size_t len = sizeof(struct reg_sequence)*num_regs;
2341			struct reg_sequence *base = kmemdup(regs, len,
2342							   GFP_KERNEL);
2343			if (!base)
2344				return -ENOMEM;
2345			ret = _regmap_range_multi_paged_reg_write(map, base,
2346								  num_regs);
2347			kfree(base);
2348
2349			return ret;
2350		}
2351	}
2352	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2353}
2354
2355/**
2356 * regmap_multi_reg_write() - Write multiple registers to the device
2357 *
2358 * @map: Register map to write to
2359 * @regs: Array of structures containing register,value to be written
2360 * @num_regs: Number of registers to write
2361 *
2362 * Write multiple registers to the device where the set of register, value
2363 * pairs are supplied in any order, possibly not all in a single range.
2364 *
2365 * The 'normal' block write mode will send ultimately send data on the
2366 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2367 * addressed. However, this alternative block multi write mode will send
2368 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2369 * must of course support the mode.
2370 *
2371 * A value of zero will be returned on success, a negative errno will be
2372 * returned in error cases.
2373 */
2374int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2375			   int num_regs)
2376{
2377	int ret;
2378
2379	map->lock(map->lock_arg);
2380
2381	ret = _regmap_multi_reg_write(map, regs, num_regs);
2382
2383	map->unlock(map->lock_arg);
2384
2385	return ret;
2386}
2387EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2388
2389/**
2390 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2391 *                                     device but not the cache
2392 *
2393 * @map: Register map to write to
2394 * @regs: Array of structures containing register,value to be written
2395 * @num_regs: Number of registers to write
2396 *
2397 * Write multiple registers to the device but not the cache where the set
2398 * of register are supplied in any order.
2399 *
2400 * This function is intended to be used for writing a large block of data
2401 * atomically to the device in single transfer for those I2C client devices
2402 * that implement this alternative block write mode.
2403 *
2404 * A value of zero will be returned on success, a negative errno will
2405 * be returned in error cases.
2406 */
2407int regmap_multi_reg_write_bypassed(struct regmap *map,
2408				    const struct reg_sequence *regs,
2409				    int num_regs)
2410{
2411	int ret;
2412	bool bypass;
2413
2414	map->lock(map->lock_arg);
2415
2416	bypass = map->cache_bypass;
2417	map->cache_bypass = true;
2418
2419	ret = _regmap_multi_reg_write(map, regs, num_regs);
2420
2421	map->cache_bypass = bypass;
2422
2423	map->unlock(map->lock_arg);
2424
2425	return ret;
2426}
2427EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2428
2429/**
2430 * regmap_raw_write_async() - Write raw values to one or more registers
2431 *                            asynchronously
2432 *
2433 * @map: Register map to write to
2434 * @reg: Initial register to write to
2435 * @val: Block of data to be written, laid out for direct transmission to the
2436 *       device.  Must be valid until regmap_async_complete() is called.
2437 * @val_len: Length of data pointed to by val.
2438 *
2439 * This function is intended to be used for things like firmware
2440 * download where a large block of data needs to be transferred to the
2441 * device.  No formatting will be done on the data provided.
2442 *
2443 * If supported by the underlying bus the write will be scheduled
2444 * asynchronously, helping maximise I/O speed on higher speed buses
2445 * like SPI.  regmap_async_complete() can be called to ensure that all
2446 * asynchrnous writes have been completed.
2447 *
2448 * A value of zero will be returned on success, a negative errno will
2449 * be returned in error cases.
2450 */
2451int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2452			   const void *val, size_t val_len)
2453{
2454	int ret;
2455
2456	if (val_len % map->format.val_bytes)
2457		return -EINVAL;
2458	if (!IS_ALIGNED(reg, map->reg_stride))
2459		return -EINVAL;
2460
2461	map->lock(map->lock_arg);
2462
2463	map->async = true;
2464
2465	ret = _regmap_raw_write(map, reg, val, val_len, false);
2466
2467	map->async = false;
2468
2469	map->unlock(map->lock_arg);
2470
2471	return ret;
2472}
2473EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2474
2475static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2476			    unsigned int val_len, bool noinc)
2477{
2478	struct regmap_range_node *range;
2479	int ret;
2480
2481	WARN_ON(!map->bus);
2482
2483	if (!map->bus || !map->bus->read)
2484		return -EINVAL;
2485
2486	range = _regmap_range_lookup(map, reg);
2487	if (range) {
2488		ret = _regmap_select_page(map, &reg, range,
2489					  noinc ? 1 : val_len / map->format.val_bytes);
2490		if (ret != 0)
2491			return ret;
2492	}
2493
2494	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2495	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2496				      map->read_flag_mask);
2497	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2498
2499	ret = map->bus->read(map->bus_context, map->work_buf,
2500			     map->format.reg_bytes + map->format.pad_bytes,
2501			     val, val_len);
2502
2503	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2504
2505	return ret;
2506}
2507
2508static int _regmap_bus_reg_read(void *context, unsigned int reg,
2509				unsigned int *val)
2510{
2511	struct regmap *map = context;
2512
2513	return map->bus->reg_read(map->bus_context, reg, val);
2514}
2515
2516static int _regmap_bus_read(void *context, unsigned int reg,
2517			    unsigned int *val)
2518{
2519	int ret;
2520	struct regmap *map = context;
2521	void *work_val = map->work_buf + map->format.reg_bytes +
2522		map->format.pad_bytes;
2523
2524	if (!map->format.parse_val)
2525		return -EINVAL;
2526
2527	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2528	if (ret == 0)
2529		*val = map->format.parse_val(work_val);
2530
2531	return ret;
2532}
2533
2534static int _regmap_read(struct regmap *map, unsigned int reg,
2535			unsigned int *val)
2536{
2537	int ret;
2538	void *context = _regmap_map_get_context(map);
2539
2540	if (!map->cache_bypass) {
2541		ret = regcache_read(map, reg, val);
2542		if (ret == 0)
2543			return 0;
2544	}
2545
2546	if (map->cache_only)
2547		return -EBUSY;
2548
2549	if (!regmap_readable(map, reg))
2550		return -EIO;
2551
2552	ret = map->reg_read(context, reg, val);
2553	if (ret == 0) {
2554		if (regmap_should_log(map))
 
2555			dev_info(map->dev, "%x => %x\n", reg, *val);
 
2556
2557		trace_regmap_reg_read(map, reg, *val);
2558
2559		if (!map->cache_bypass)
2560			regcache_write(map, reg, *val);
2561	}
2562
2563	return ret;
2564}
2565
2566/**
2567 * regmap_read() - Read a value from a single register
2568 *
2569 * @map: Register map to read from
2570 * @reg: Register to be read from
2571 * @val: Pointer to store read value
2572 *
2573 * A value of zero will be returned on success, a negative errno will
2574 * be returned in error cases.
2575 */
2576int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2577{
2578	int ret;
2579
2580	if (!IS_ALIGNED(reg, map->reg_stride))
2581		return -EINVAL;
2582
2583	map->lock(map->lock_arg);
2584
2585	ret = _regmap_read(map, reg, val);
2586
2587	map->unlock(map->lock_arg);
2588
2589	return ret;
2590}
2591EXPORT_SYMBOL_GPL(regmap_read);
2592
2593/**
2594 * regmap_raw_read() - Read raw data from the device
2595 *
2596 * @map: Register map to read from
2597 * @reg: First register to be read from
2598 * @val: Pointer to store read value
2599 * @val_len: Size of data to read
2600 *
2601 * A value of zero will be returned on success, a negative errno will
2602 * be returned in error cases.
2603 */
2604int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2605		    size_t val_len)
2606{
2607	size_t val_bytes = map->format.val_bytes;
2608	size_t val_count = val_len / val_bytes;
2609	unsigned int v;
2610	int ret, i;
2611
2612	if (!map->bus)
2613		return -EINVAL;
2614	if (val_len % map->format.val_bytes)
2615		return -EINVAL;
2616	if (!IS_ALIGNED(reg, map->reg_stride))
2617		return -EINVAL;
2618	if (val_count == 0)
2619		return -EINVAL;
2620
2621	map->lock(map->lock_arg);
2622
2623	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2624	    map->cache_type == REGCACHE_NONE) {
2625		size_t chunk_count, chunk_bytes;
2626		size_t chunk_regs = val_count;
2627
2628		if (!map->bus->read) {
2629			ret = -ENOTSUPP;
2630			goto out;
2631		}
2632
2633		if (map->use_single_read)
2634			chunk_regs = 1;
2635		else if (map->max_raw_read && val_len > map->max_raw_read)
2636			chunk_regs = map->max_raw_read / val_bytes;
2637
2638		chunk_count = val_count / chunk_regs;
2639		chunk_bytes = chunk_regs * val_bytes;
2640
2641		/* Read bytes that fit into whole chunks */
2642		for (i = 0; i < chunk_count; i++) {
2643			ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
2644			if (ret != 0)
2645				goto out;
2646
2647			reg += regmap_get_offset(map, chunk_regs);
2648			val += chunk_bytes;
2649			val_len -= chunk_bytes;
2650		}
2651
2652		/* Read remaining bytes */
2653		if (val_len) {
2654			ret = _regmap_raw_read(map, reg, val, val_len, false);
2655			if (ret != 0)
2656				goto out;
2657		}
2658	} else {
2659		/* Otherwise go word by word for the cache; should be low
2660		 * cost as we expect to hit the cache.
2661		 */
2662		for (i = 0; i < val_count; i++) {
2663			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2664					   &v);
2665			if (ret != 0)
2666				goto out;
2667
2668			map->format.format_val(val + (i * val_bytes), v, 0);
2669		}
2670	}
2671
2672 out:
2673	map->unlock(map->lock_arg);
2674
2675	return ret;
2676}
2677EXPORT_SYMBOL_GPL(regmap_raw_read);
2678
2679/**
2680 * regmap_noinc_read(): Read data from a register without incrementing the
2681 *			register number
2682 *
2683 * @map: Register map to read from
2684 * @reg: Register to read from
2685 * @val: Pointer to data buffer
2686 * @val_len: Length of output buffer in bytes.
2687 *
2688 * The regmap API usually assumes that bulk bus read operations will read a
2689 * range of registers. Some devices have certain registers for which a read
2690 * operation read will read from an internal FIFO.
2691 *
2692 * The target register must be volatile but registers after it can be
2693 * completely unrelated cacheable registers.
2694 *
2695 * This will attempt multiple reads as required to read val_len bytes.
2696 *
2697 * A value of zero will be returned on success, a negative errno will be
2698 * returned in error cases.
2699 */
2700int regmap_noinc_read(struct regmap *map, unsigned int reg,
2701		      void *val, size_t val_len)
2702{
2703	size_t read_len;
2704	int ret;
2705
2706	if (!map->bus)
2707		return -EINVAL;
2708	if (!map->bus->read)
2709		return -ENOTSUPP;
2710	if (val_len % map->format.val_bytes)
2711		return -EINVAL;
2712	if (!IS_ALIGNED(reg, map->reg_stride))
2713		return -EINVAL;
2714	if (val_len == 0)
2715		return -EINVAL;
2716
2717	map->lock(map->lock_arg);
2718
2719	if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
2720		ret = -EINVAL;
2721		goto out_unlock;
2722	}
2723
2724	while (val_len) {
2725		if (map->max_raw_read && map->max_raw_read < val_len)
2726			read_len = map->max_raw_read;
2727		else
2728			read_len = val_len;
2729		ret = _regmap_raw_read(map, reg, val, read_len, true);
2730		if (ret)
2731			goto out_unlock;
2732		val = ((u8 *)val) + read_len;
2733		val_len -= read_len;
2734	}
2735
2736out_unlock:
2737	map->unlock(map->lock_arg);
2738	return ret;
2739}
2740EXPORT_SYMBOL_GPL(regmap_noinc_read);
2741
2742/**
2743 * regmap_field_read(): Read a value to a single register field
2744 *
2745 * @field: Register field to read from
2746 * @val: Pointer to store read value
2747 *
2748 * A value of zero will be returned on success, a negative errno will
2749 * be returned in error cases.
2750 */
2751int regmap_field_read(struct regmap_field *field, unsigned int *val)
2752{
2753	int ret;
2754	unsigned int reg_val;
2755	ret = regmap_read(field->regmap, field->reg, &reg_val);
2756	if (ret != 0)
2757		return ret;
2758
2759	reg_val &= field->mask;
2760	reg_val >>= field->shift;
2761	*val = reg_val;
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(regmap_field_read);
2766
2767/**
2768 * regmap_fields_read() - Read a value to a single register field with port ID
2769 *
2770 * @field: Register field to read from
2771 * @id: port ID
2772 * @val: Pointer to store read value
2773 *
2774 * A value of zero will be returned on success, a negative errno will
2775 * be returned in error cases.
2776 */
2777int regmap_fields_read(struct regmap_field *field, unsigned int id,
2778		       unsigned int *val)
2779{
2780	int ret;
2781	unsigned int reg_val;
2782
2783	if (id >= field->id_size)
2784		return -EINVAL;
2785
2786	ret = regmap_read(field->regmap,
2787			  field->reg + (field->id_offset * id),
2788			  &reg_val);
2789	if (ret != 0)
2790		return ret;
2791
2792	reg_val &= field->mask;
2793	reg_val >>= field->shift;
2794	*val = reg_val;
2795
2796	return ret;
2797}
2798EXPORT_SYMBOL_GPL(regmap_fields_read);
2799
2800/**
2801 * regmap_bulk_read() - Read multiple registers from the device
2802 *
2803 * @map: Register map to read from
2804 * @reg: First register to be read from
2805 * @val: Pointer to store read value, in native register size for device
2806 * @val_count: Number of registers to read
2807 *
2808 * A value of zero will be returned on success, a negative errno will
2809 * be returned in error cases.
2810 */
2811int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2812		     size_t val_count)
2813{
2814	int ret, i;
2815	size_t val_bytes = map->format.val_bytes;
2816	bool vol = regmap_volatile_range(map, reg, val_count);
2817
2818	if (!IS_ALIGNED(reg, map->reg_stride))
2819		return -EINVAL;
2820	if (val_count == 0)
2821		return -EINVAL;
2822
2823	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2824		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2825		if (ret != 0)
2826			return ret;
2827
2828		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2829			map->format.parse_inplace(val + i);
2830	} else {
2831#ifdef CONFIG_64BIT
2832		u64 *u64 = val;
2833#endif
2834		u32 *u32 = val;
2835		u16 *u16 = val;
2836		u8 *u8 = val;
2837
2838		map->lock(map->lock_arg);
2839
2840		for (i = 0; i < val_count; i++) {
2841			unsigned int ival;
2842
2843			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2844					   &ival);
2845			if (ret != 0)
2846				goto out;
2847
2848			switch (map->format.val_bytes) {
2849#ifdef CONFIG_64BIT
2850			case 8:
2851				u64[i] = ival;
2852				break;
2853#endif
2854			case 4:
2855				u32[i] = ival;
2856				break;
2857			case 2:
2858				u16[i] = ival;
2859				break;
2860			case 1:
2861				u8[i] = ival;
2862				break;
2863			default:
2864				ret = -EINVAL;
2865				goto out;
2866			}
2867		}
2868
2869out:
2870		map->unlock(map->lock_arg);
2871	}
2872
2873	return ret;
2874}
2875EXPORT_SYMBOL_GPL(regmap_bulk_read);
2876
2877static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2878			       unsigned int mask, unsigned int val,
2879			       bool *change, bool force_write)
2880{
2881	int ret;
2882	unsigned int tmp, orig;
2883
2884	if (change)
2885		*change = false;
2886
2887	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2888		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2889		if (ret == 0 && change)
2890			*change = true;
2891	} else {
2892		ret = _regmap_read(map, reg, &orig);
2893		if (ret != 0)
2894			return ret;
2895
2896		tmp = orig & ~mask;
2897		tmp |= val & mask;
2898
2899		if (force_write || (tmp != orig)) {
2900			ret = _regmap_write(map, reg, tmp);
2901			if (ret == 0 && change)
2902				*change = true;
2903		}
2904	}
2905
2906	return ret;
2907}
2908
2909/**
2910 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2911 *
2912 * @map: Register map to update
2913 * @reg: Register to update
2914 * @mask: Bitmask to change
2915 * @val: New value for bitmask
2916 * @change: Boolean indicating if a write was done
2917 * @async: Boolean indicating asynchronously
2918 * @force: Boolean indicating use force update
2919 *
2920 * Perform a read/modify/write cycle on a register map with change, async, force
2921 * options.
2922 *
2923 * If async is true:
2924 *
2925 * With most buses the read must be done synchronously so this is most useful
2926 * for devices with a cache which do not need to interact with the hardware to
2927 * determine the current register value.
2928 *
2929 * Returns zero for success, a negative number on error.
2930 */
2931int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2932			    unsigned int mask, unsigned int val,
2933			    bool *change, bool async, bool force)
2934{
2935	int ret;
2936
2937	map->lock(map->lock_arg);
2938
2939	map->async = async;
2940
2941	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2942
2943	map->async = false;
2944
2945	map->unlock(map->lock_arg);
2946
2947	return ret;
2948}
2949EXPORT_SYMBOL_GPL(regmap_update_bits_base);
2950
2951/**
2952 * regmap_test_bits() - Check if all specified bits are set in a register.
2953 *
2954 * @map: Register map to operate on
2955 * @reg: Register to read from
2956 * @bits: Bits to test
2957 *
2958 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
2959 * bits are set and a negative error number if the underlying regmap_read()
2960 * fails.
2961 */
2962int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
2963{
2964	unsigned int val, ret;
2965
2966	ret = regmap_read(map, reg, &val);
2967	if (ret)
2968		return ret;
2969
2970	return (val & bits) == bits;
2971}
2972EXPORT_SYMBOL_GPL(regmap_test_bits);
2973
2974void regmap_async_complete_cb(struct regmap_async *async, int ret)
2975{
2976	struct regmap *map = async->map;
2977	bool wake;
2978
2979	trace_regmap_async_io_complete(map);
2980
2981	spin_lock(&map->async_lock);
2982	list_move(&async->list, &map->async_free);
2983	wake = list_empty(&map->async_list);
2984
2985	if (ret != 0)
2986		map->async_ret = ret;
2987
2988	spin_unlock(&map->async_lock);
2989
2990	if (wake)
2991		wake_up(&map->async_waitq);
2992}
2993EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2994
2995static int regmap_async_is_done(struct regmap *map)
2996{
2997	unsigned long flags;
2998	int ret;
2999
3000	spin_lock_irqsave(&map->async_lock, flags);
3001	ret = list_empty(&map->async_list);
3002	spin_unlock_irqrestore(&map->async_lock, flags);
3003
3004	return ret;
3005}
3006
3007/**
3008 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3009 *
3010 * @map: Map to operate on.
3011 *
3012 * Blocks until any pending asynchronous I/O has completed.  Returns
3013 * an error code for any failed I/O operations.
3014 */
3015int regmap_async_complete(struct regmap *map)
3016{
3017	unsigned long flags;
3018	int ret;
3019
3020	/* Nothing to do with no async support */
3021	if (!map->bus || !map->bus->async_write)
3022		return 0;
3023
3024	trace_regmap_async_complete_start(map);
3025
3026	wait_event(map->async_waitq, regmap_async_is_done(map));
3027
3028	spin_lock_irqsave(&map->async_lock, flags);
3029	ret = map->async_ret;
3030	map->async_ret = 0;
3031	spin_unlock_irqrestore(&map->async_lock, flags);
3032
3033	trace_regmap_async_complete_done(map);
3034
3035	return ret;
3036}
3037EXPORT_SYMBOL_GPL(regmap_async_complete);
3038
3039/**
3040 * regmap_register_patch - Register and apply register updates to be applied
3041 *                         on device initialistion
3042 *
3043 * @map: Register map to apply updates to.
3044 * @regs: Values to update.
3045 * @num_regs: Number of entries in regs.
3046 *
3047 * Register a set of register updates to be applied to the device
3048 * whenever the device registers are synchronised with the cache and
3049 * apply them immediately.  Typically this is used to apply
3050 * corrections to be applied to the device defaults on startup, such
3051 * as the updates some vendors provide to undocumented registers.
3052 *
3053 * The caller must ensure that this function cannot be called
3054 * concurrently with either itself or regcache_sync().
3055 */
3056int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3057			  int num_regs)
3058{
3059	struct reg_sequence *p;
3060	int ret;
3061	bool bypass;
3062
3063	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3064	    num_regs))
3065		return 0;
3066
3067	p = krealloc(map->patch,
3068		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3069		     GFP_KERNEL);
3070	if (p) {
3071		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3072		map->patch = p;
3073		map->patch_regs += num_regs;
3074	} else {
3075		return -ENOMEM;
3076	}
3077
3078	map->lock(map->lock_arg);
3079
3080	bypass = map->cache_bypass;
3081
3082	map->cache_bypass = true;
3083	map->async = true;
3084
3085	ret = _regmap_multi_reg_write(map, regs, num_regs);
3086
3087	map->async = false;
3088	map->cache_bypass = bypass;
3089
3090	map->unlock(map->lock_arg);
3091
3092	regmap_async_complete(map);
3093
3094	return ret;
3095}
3096EXPORT_SYMBOL_GPL(regmap_register_patch);
3097
3098/**
3099 * regmap_get_val_bytes() - Report the size of a register value
3100 *
3101 * @map: Register map to operate on.
3102 *
3103 * Report the size of a register value, mainly intended to for use by
3104 * generic infrastructure built on top of regmap.
3105 */
3106int regmap_get_val_bytes(struct regmap *map)
3107{
3108	if (map->format.format_write)
3109		return -EINVAL;
3110
3111	return map->format.val_bytes;
3112}
3113EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3114
3115/**
3116 * regmap_get_max_register() - Report the max register value
3117 *
3118 * @map: Register map to operate on.
3119 *
3120 * Report the max register value, mainly intended to for use by
3121 * generic infrastructure built on top of regmap.
3122 */
3123int regmap_get_max_register(struct regmap *map)
3124{
3125	return map->max_register ? map->max_register : -EINVAL;
3126}
3127EXPORT_SYMBOL_GPL(regmap_get_max_register);
3128
3129/**
3130 * regmap_get_reg_stride() - Report the register address stride
3131 *
3132 * @map: Register map to operate on.
3133 *
3134 * Report the register address stride, mainly intended to for use by
3135 * generic infrastructure built on top of regmap.
3136 */
3137int regmap_get_reg_stride(struct regmap *map)
3138{
3139	return map->reg_stride;
3140}
3141EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3142
3143int regmap_parse_val(struct regmap *map, const void *buf,
3144			unsigned int *val)
3145{
3146	if (!map->format.parse_val)
3147		return -EINVAL;
3148
3149	*val = map->format.parse_val(buf);
3150
3151	return 0;
3152}
3153EXPORT_SYMBOL_GPL(regmap_parse_val);
3154
3155static int __init regmap_initcall(void)
3156{
3157	regmap_debugfs_initcall();
3158
3159	return 0;
3160}
3161postcore_initcall(regmap_initcall);
v4.17
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21#include <linux/delay.h>
  22#include <linux/log2.h>
  23#include <linux/hwspinlock.h>
 
  24
  25#define CREATE_TRACE_POINTS
  26#include "trace.h"
  27
  28#include "internal.h"
  29
  30/*
  31 * Sometimes for failures during very early init the trace
  32 * infrastructure isn't available early enough to be used.  For this
  33 * sort of problem defining LOG_DEVICE will add printks for basic
  34 * register I/O on a specific device.
  35 */
  36#undef LOG_DEVICE
  37
 
 
 
 
 
 
 
 
 
 
  38static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  39			       unsigned int mask, unsigned int val,
  40			       bool *change, bool force_write);
  41
  42static int _regmap_bus_reg_read(void *context, unsigned int reg,
  43				unsigned int *val);
  44static int _regmap_bus_read(void *context, unsigned int reg,
  45			    unsigned int *val);
  46static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  47				       unsigned int val);
  48static int _regmap_bus_reg_write(void *context, unsigned int reg,
  49				 unsigned int val);
  50static int _regmap_bus_raw_write(void *context, unsigned int reg,
  51				 unsigned int val);
  52
  53bool regmap_reg_in_ranges(unsigned int reg,
  54			  const struct regmap_range *ranges,
  55			  unsigned int nranges)
  56{
  57	const struct regmap_range *r;
  58	int i;
  59
  60	for (i = 0, r = ranges; i < nranges; i++, r++)
  61		if (regmap_reg_in_range(reg, r))
  62			return true;
  63	return false;
  64}
  65EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  66
  67bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  68			      const struct regmap_access_table *table)
  69{
  70	/* Check "no ranges" first */
  71	if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  72		return false;
  73
  74	/* In case zero "yes ranges" are supplied, any reg is OK */
  75	if (!table->n_yes_ranges)
  76		return true;
  77
  78	return regmap_reg_in_ranges(reg, table->yes_ranges,
  79				    table->n_yes_ranges);
  80}
  81EXPORT_SYMBOL_GPL(regmap_check_range_table);
  82
  83bool regmap_writeable(struct regmap *map, unsigned int reg)
  84{
  85	if (map->max_register && reg > map->max_register)
  86		return false;
  87
  88	if (map->writeable_reg)
  89		return map->writeable_reg(map->dev, reg);
  90
  91	if (map->wr_table)
  92		return regmap_check_range_table(map, reg, map->wr_table);
  93
  94	return true;
  95}
  96
  97bool regmap_cached(struct regmap *map, unsigned int reg)
  98{
  99	int ret;
 100	unsigned int val;
 101
 102	if (map->cache_type == REGCACHE_NONE)
 103		return false;
 104
 105	if (!map->cache_ops)
 106		return false;
 107
 108	if (map->max_register && reg > map->max_register)
 109		return false;
 110
 111	map->lock(map->lock_arg);
 112	ret = regcache_read(map, reg, &val);
 113	map->unlock(map->lock_arg);
 114	if (ret)
 115		return false;
 116
 117	return true;
 118}
 119
 120bool regmap_readable(struct regmap *map, unsigned int reg)
 121{
 122	if (!map->reg_read)
 123		return false;
 124
 125	if (map->max_register && reg > map->max_register)
 126		return false;
 127
 128	if (map->format.format_write)
 129		return false;
 130
 131	if (map->readable_reg)
 132		return map->readable_reg(map->dev, reg);
 133
 134	if (map->rd_table)
 135		return regmap_check_range_table(map, reg, map->rd_table);
 136
 137	return true;
 138}
 139
 140bool regmap_volatile(struct regmap *map, unsigned int reg)
 141{
 142	if (!map->format.format_write && !regmap_readable(map, reg))
 143		return false;
 144
 145	if (map->volatile_reg)
 146		return map->volatile_reg(map->dev, reg);
 147
 148	if (map->volatile_table)
 149		return regmap_check_range_table(map, reg, map->volatile_table);
 150
 151	if (map->cache_ops)
 152		return false;
 153	else
 154		return true;
 155}
 156
 157bool regmap_precious(struct regmap *map, unsigned int reg)
 158{
 159	if (!regmap_readable(map, reg))
 160		return false;
 161
 162	if (map->precious_reg)
 163		return map->precious_reg(map->dev, reg);
 164
 165	if (map->precious_table)
 166		return regmap_check_range_table(map, reg, map->precious_table);
 167
 168	return false;
 169}
 170
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 171static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 172	size_t num)
 173{
 174	unsigned int i;
 175
 176	for (i = 0; i < num; i++)
 177		if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
 178			return false;
 179
 180	return true;
 181}
 182
 183static void regmap_format_2_6_write(struct regmap *map,
 184				     unsigned int reg, unsigned int val)
 185{
 186	u8 *out = map->work_buf;
 187
 188	*out = (reg << 6) | val;
 189}
 190
 191static void regmap_format_4_12_write(struct regmap *map,
 192				     unsigned int reg, unsigned int val)
 193{
 194	__be16 *out = map->work_buf;
 195	*out = cpu_to_be16((reg << 12) | val);
 196}
 197
 198static void regmap_format_7_9_write(struct regmap *map,
 199				    unsigned int reg, unsigned int val)
 200{
 201	__be16 *out = map->work_buf;
 202	*out = cpu_to_be16((reg << 9) | val);
 203}
 204
 205static void regmap_format_10_14_write(struct regmap *map,
 206				    unsigned int reg, unsigned int val)
 207{
 208	u8 *out = map->work_buf;
 209
 210	out[2] = val;
 211	out[1] = (val >> 8) | (reg << 6);
 212	out[0] = reg >> 2;
 213}
 214
 215static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 216{
 217	u8 *b = buf;
 218
 219	b[0] = val << shift;
 220}
 221
 222static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 223{
 224	__be16 *b = buf;
 225
 226	b[0] = cpu_to_be16(val << shift);
 227}
 228
 229static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 230{
 231	__le16 *b = buf;
 232
 233	b[0] = cpu_to_le16(val << shift);
 234}
 235
 236static void regmap_format_16_native(void *buf, unsigned int val,
 237				    unsigned int shift)
 238{
 239	*(u16 *)buf = val << shift;
 
 
 240}
 241
 242static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 243{
 244	u8 *b = buf;
 245
 246	val <<= shift;
 247
 248	b[0] = val >> 16;
 249	b[1] = val >> 8;
 250	b[2] = val;
 251}
 252
 253static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 254{
 255	__be32 *b = buf;
 256
 257	b[0] = cpu_to_be32(val << shift);
 258}
 259
 260static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 261{
 262	__le32 *b = buf;
 263
 264	b[0] = cpu_to_le32(val << shift);
 265}
 266
 267static void regmap_format_32_native(void *buf, unsigned int val,
 268				    unsigned int shift)
 269{
 270	*(u32 *)buf = val << shift;
 
 
 271}
 272
 273#ifdef CONFIG_64BIT
 274static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
 275{
 276	__be64 *b = buf;
 277
 278	b[0] = cpu_to_be64((u64)val << shift);
 279}
 280
 281static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
 282{
 283	__le64 *b = buf;
 284
 285	b[0] = cpu_to_le64((u64)val << shift);
 286}
 287
 288static void regmap_format_64_native(void *buf, unsigned int val,
 289				    unsigned int shift)
 290{
 291	*(u64 *)buf = (u64)val << shift;
 
 
 292}
 293#endif
 294
 295static void regmap_parse_inplace_noop(void *buf)
 296{
 297}
 298
 299static unsigned int regmap_parse_8(const void *buf)
 300{
 301	const u8 *b = buf;
 302
 303	return b[0];
 304}
 305
 306static unsigned int regmap_parse_16_be(const void *buf)
 307{
 308	const __be16 *b = buf;
 309
 310	return be16_to_cpu(b[0]);
 311}
 312
 313static unsigned int regmap_parse_16_le(const void *buf)
 314{
 315	const __le16 *b = buf;
 316
 317	return le16_to_cpu(b[0]);
 318}
 319
 320static void regmap_parse_16_be_inplace(void *buf)
 321{
 322	__be16 *b = buf;
 323
 324	b[0] = be16_to_cpu(b[0]);
 325}
 326
 327static void regmap_parse_16_le_inplace(void *buf)
 328{
 329	__le16 *b = buf;
 330
 331	b[0] = le16_to_cpu(b[0]);
 332}
 333
 334static unsigned int regmap_parse_16_native(const void *buf)
 335{
 336	return *(u16 *)buf;
 
 
 
 337}
 338
 339static unsigned int regmap_parse_24(const void *buf)
 340{
 341	const u8 *b = buf;
 342	unsigned int ret = b[2];
 343	ret |= ((unsigned int)b[1]) << 8;
 344	ret |= ((unsigned int)b[0]) << 16;
 345
 346	return ret;
 347}
 348
 349static unsigned int regmap_parse_32_be(const void *buf)
 350{
 351	const __be32 *b = buf;
 352
 353	return be32_to_cpu(b[0]);
 354}
 355
 356static unsigned int regmap_parse_32_le(const void *buf)
 357{
 358	const __le32 *b = buf;
 359
 360	return le32_to_cpu(b[0]);
 361}
 362
 363static void regmap_parse_32_be_inplace(void *buf)
 364{
 365	__be32 *b = buf;
 366
 367	b[0] = be32_to_cpu(b[0]);
 368}
 369
 370static void regmap_parse_32_le_inplace(void *buf)
 371{
 372	__le32 *b = buf;
 373
 374	b[0] = le32_to_cpu(b[0]);
 375}
 376
 377static unsigned int regmap_parse_32_native(const void *buf)
 378{
 379	return *(u32 *)buf;
 
 
 
 380}
 381
 382#ifdef CONFIG_64BIT
 383static unsigned int regmap_parse_64_be(const void *buf)
 384{
 385	const __be64 *b = buf;
 386
 387	return be64_to_cpu(b[0]);
 388}
 389
 390static unsigned int regmap_parse_64_le(const void *buf)
 391{
 392	const __le64 *b = buf;
 393
 394	return le64_to_cpu(b[0]);
 395}
 396
 397static void regmap_parse_64_be_inplace(void *buf)
 398{
 399	__be64 *b = buf;
 400
 401	b[0] = be64_to_cpu(b[0]);
 402}
 403
 404static void regmap_parse_64_le_inplace(void *buf)
 405{
 406	__le64 *b = buf;
 407
 408	b[0] = le64_to_cpu(b[0]);
 409}
 410
 411static unsigned int regmap_parse_64_native(const void *buf)
 412{
 413	return *(u64 *)buf;
 
 
 
 414}
 415#endif
 416
 417static void regmap_lock_hwlock(void *__map)
 418{
 419	struct regmap *map = __map;
 420
 421	hwspin_lock_timeout(map->hwlock, UINT_MAX);
 422}
 423
 424static void regmap_lock_hwlock_irq(void *__map)
 425{
 426	struct regmap *map = __map;
 427
 428	hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
 429}
 430
 431static void regmap_lock_hwlock_irqsave(void *__map)
 432{
 433	struct regmap *map = __map;
 434
 435	hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
 436				    &map->spinlock_flags);
 437}
 438
 439static void regmap_unlock_hwlock(void *__map)
 440{
 441	struct regmap *map = __map;
 442
 443	hwspin_unlock(map->hwlock);
 444}
 445
 446static void regmap_unlock_hwlock_irq(void *__map)
 447{
 448	struct regmap *map = __map;
 449
 450	hwspin_unlock_irq(map->hwlock);
 451}
 452
 453static void regmap_unlock_hwlock_irqrestore(void *__map)
 454{
 455	struct regmap *map = __map;
 456
 457	hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
 458}
 459
 460static void regmap_lock_unlock_none(void *__map)
 461{
 462
 463}
 464
 465static void regmap_lock_mutex(void *__map)
 466{
 467	struct regmap *map = __map;
 468	mutex_lock(&map->mutex);
 469}
 470
 471static void regmap_unlock_mutex(void *__map)
 472{
 473	struct regmap *map = __map;
 474	mutex_unlock(&map->mutex);
 475}
 476
 477static void regmap_lock_spinlock(void *__map)
 478__acquires(&map->spinlock)
 479{
 480	struct regmap *map = __map;
 481	unsigned long flags;
 482
 483	spin_lock_irqsave(&map->spinlock, flags);
 484	map->spinlock_flags = flags;
 485}
 486
 487static void regmap_unlock_spinlock(void *__map)
 488__releases(&map->spinlock)
 489{
 490	struct regmap *map = __map;
 491	spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 492}
 493
 494static void dev_get_regmap_release(struct device *dev, void *res)
 495{
 496	/*
 497	 * We don't actually have anything to do here; the goal here
 498	 * is not to manage the regmap but to provide a simple way to
 499	 * get the regmap back given a struct device.
 500	 */
 501}
 502
 503static bool _regmap_range_add(struct regmap *map,
 504			      struct regmap_range_node *data)
 505{
 506	struct rb_root *root = &map->range_tree;
 507	struct rb_node **new = &(root->rb_node), *parent = NULL;
 508
 509	while (*new) {
 510		struct regmap_range_node *this =
 511			rb_entry(*new, struct regmap_range_node, node);
 512
 513		parent = *new;
 514		if (data->range_max < this->range_min)
 515			new = &((*new)->rb_left);
 516		else if (data->range_min > this->range_max)
 517			new = &((*new)->rb_right);
 518		else
 519			return false;
 520	}
 521
 522	rb_link_node(&data->node, parent, new);
 523	rb_insert_color(&data->node, root);
 524
 525	return true;
 526}
 527
 528static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 529						      unsigned int reg)
 530{
 531	struct rb_node *node = map->range_tree.rb_node;
 532
 533	while (node) {
 534		struct regmap_range_node *this =
 535			rb_entry(node, struct regmap_range_node, node);
 536
 537		if (reg < this->range_min)
 538			node = node->rb_left;
 539		else if (reg > this->range_max)
 540			node = node->rb_right;
 541		else
 542			return this;
 543	}
 544
 545	return NULL;
 546}
 547
 548static void regmap_range_exit(struct regmap *map)
 549{
 550	struct rb_node *next;
 551	struct regmap_range_node *range_node;
 552
 553	next = rb_first(&map->range_tree);
 554	while (next) {
 555		range_node = rb_entry(next, struct regmap_range_node, node);
 556		next = rb_next(&range_node->node);
 557		rb_erase(&range_node->node, &map->range_tree);
 558		kfree(range_node);
 559	}
 560
 561	kfree(map->selector_work_buf);
 562}
 563
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564int regmap_attach_dev(struct device *dev, struct regmap *map,
 565		      const struct regmap_config *config)
 566{
 567	struct regmap **m;
 
 568
 569	map->dev = dev;
 570
 571	regmap_debugfs_init(map, config->name);
 
 
 
 
 572
 573	/* Add a devres resource for dev_get_regmap() */
 574	m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 575	if (!m) {
 576		regmap_debugfs_exit(map);
 577		return -ENOMEM;
 578	}
 579	*m = map;
 580	devres_add(dev, m);
 581
 582	return 0;
 583}
 584EXPORT_SYMBOL_GPL(regmap_attach_dev);
 585
 586static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 587					const struct regmap_config *config)
 588{
 589	enum regmap_endian endian;
 590
 591	/* Retrieve the endianness specification from the regmap config */
 592	endian = config->reg_format_endian;
 593
 594	/* If the regmap config specified a non-default value, use that */
 595	if (endian != REGMAP_ENDIAN_DEFAULT)
 596		return endian;
 597
 598	/* Retrieve the endianness specification from the bus config */
 599	if (bus && bus->reg_format_endian_default)
 600		endian = bus->reg_format_endian_default;
 601
 602	/* If the bus specified a non-default value, use that */
 603	if (endian != REGMAP_ENDIAN_DEFAULT)
 604		return endian;
 605
 606	/* Use this if no other value was found */
 607	return REGMAP_ENDIAN_BIG;
 608}
 609
 610enum regmap_endian regmap_get_val_endian(struct device *dev,
 611					 const struct regmap_bus *bus,
 612					 const struct regmap_config *config)
 613{
 614	struct device_node *np;
 615	enum regmap_endian endian;
 616
 617	/* Retrieve the endianness specification from the regmap config */
 618	endian = config->val_format_endian;
 619
 620	/* If the regmap config specified a non-default value, use that */
 621	if (endian != REGMAP_ENDIAN_DEFAULT)
 622		return endian;
 623
 624	/* If the dev and dev->of_node exist try to get endianness from DT */
 625	if (dev && dev->of_node) {
 626		np = dev->of_node;
 627
 628		/* Parse the device's DT node for an endianness specification */
 629		if (of_property_read_bool(np, "big-endian"))
 630			endian = REGMAP_ENDIAN_BIG;
 631		else if (of_property_read_bool(np, "little-endian"))
 632			endian = REGMAP_ENDIAN_LITTLE;
 633		else if (of_property_read_bool(np, "native-endian"))
 634			endian = REGMAP_ENDIAN_NATIVE;
 635
 636		/* If the endianness was specified in DT, use that */
 637		if (endian != REGMAP_ENDIAN_DEFAULT)
 638			return endian;
 639	}
 640
 641	/* Retrieve the endianness specification from the bus config */
 642	if (bus && bus->val_format_endian_default)
 643		endian = bus->val_format_endian_default;
 644
 645	/* If the bus specified a non-default value, use that */
 646	if (endian != REGMAP_ENDIAN_DEFAULT)
 647		return endian;
 648
 649	/* Use this if no other value was found */
 650	return REGMAP_ENDIAN_BIG;
 651}
 652EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 653
 654struct regmap *__regmap_init(struct device *dev,
 655			     const struct regmap_bus *bus,
 656			     void *bus_context,
 657			     const struct regmap_config *config,
 658			     struct lock_class_key *lock_key,
 659			     const char *lock_name)
 660{
 661	struct regmap *map;
 662	int ret = -EINVAL;
 663	enum regmap_endian reg_endian, val_endian;
 664	int i, j;
 665
 666	if (!config)
 667		goto err;
 668
 669	map = kzalloc(sizeof(*map), GFP_KERNEL);
 670	if (map == NULL) {
 671		ret = -ENOMEM;
 672		goto err;
 673	}
 674
 675	if (config->name) {
 676		map->name = kstrdup_const(config->name, GFP_KERNEL);
 677		if (!map->name) {
 678			ret = -ENOMEM;
 679			goto err_map;
 680		}
 681	}
 682
 683	if (config->disable_locking) {
 684		map->lock = map->unlock = regmap_lock_unlock_none;
 685		regmap_debugfs_disable(map);
 686	} else if (config->lock && config->unlock) {
 687		map->lock = config->lock;
 688		map->unlock = config->unlock;
 689		map->lock_arg = config->lock_arg;
 690	} else if (config->use_hwlock) {
 691		map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
 692		if (!map->hwlock) {
 693			ret = -ENXIO;
 694			goto err_name;
 695		}
 696
 697		switch (config->hwlock_mode) {
 698		case HWLOCK_IRQSTATE:
 699			map->lock = regmap_lock_hwlock_irqsave;
 700			map->unlock = regmap_unlock_hwlock_irqrestore;
 701			break;
 702		case HWLOCK_IRQ:
 703			map->lock = regmap_lock_hwlock_irq;
 704			map->unlock = regmap_unlock_hwlock_irq;
 705			break;
 706		default:
 707			map->lock = regmap_lock_hwlock;
 708			map->unlock = regmap_unlock_hwlock;
 709			break;
 710		}
 711
 712		map->lock_arg = map;
 713	} else {
 714		if ((bus && bus->fast_io) ||
 715		    config->fast_io) {
 716			spin_lock_init(&map->spinlock);
 717			map->lock = regmap_lock_spinlock;
 718			map->unlock = regmap_unlock_spinlock;
 719			lockdep_set_class_and_name(&map->spinlock,
 720						   lock_key, lock_name);
 721		} else {
 722			mutex_init(&map->mutex);
 723			map->lock = regmap_lock_mutex;
 724			map->unlock = regmap_unlock_mutex;
 725			lockdep_set_class_and_name(&map->mutex,
 726						   lock_key, lock_name);
 727		}
 728		map->lock_arg = map;
 729	}
 730
 731	/*
 732	 * When we write in fast-paths with regmap_bulk_write() don't allocate
 733	 * scratch buffers with sleeping allocations.
 734	 */
 735	if ((bus && bus->fast_io) || config->fast_io)
 736		map->alloc_flags = GFP_ATOMIC;
 737	else
 738		map->alloc_flags = GFP_KERNEL;
 739
 740	map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 741	map->format.pad_bytes = config->pad_bits / 8;
 742	map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 743	map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 744			config->val_bits + config->pad_bits, 8);
 745	map->reg_shift = config->pad_bits % 8;
 746	if (config->reg_stride)
 747		map->reg_stride = config->reg_stride;
 748	else
 749		map->reg_stride = 1;
 750	if (is_power_of_2(map->reg_stride))
 751		map->reg_stride_order = ilog2(map->reg_stride);
 752	else
 753		map->reg_stride_order = -1;
 754	map->use_single_read = config->use_single_rw || !bus || !bus->read;
 755	map->use_single_write = config->use_single_rw || !bus || !bus->write;
 756	map->can_multi_write = config->can_multi_write && bus && bus->write;
 757	if (bus) {
 758		map->max_raw_read = bus->max_raw_read;
 759		map->max_raw_write = bus->max_raw_write;
 760	}
 761	map->dev = dev;
 762	map->bus = bus;
 763	map->bus_context = bus_context;
 764	map->max_register = config->max_register;
 765	map->wr_table = config->wr_table;
 766	map->rd_table = config->rd_table;
 767	map->volatile_table = config->volatile_table;
 768	map->precious_table = config->precious_table;
 
 
 769	map->writeable_reg = config->writeable_reg;
 770	map->readable_reg = config->readable_reg;
 771	map->volatile_reg = config->volatile_reg;
 772	map->precious_reg = config->precious_reg;
 
 
 773	map->cache_type = config->cache_type;
 774
 775	spin_lock_init(&map->async_lock);
 776	INIT_LIST_HEAD(&map->async_list);
 777	INIT_LIST_HEAD(&map->async_free);
 778	init_waitqueue_head(&map->async_waitq);
 779
 780	if (config->read_flag_mask ||
 781	    config->write_flag_mask ||
 782	    config->zero_flag_mask) {
 783		map->read_flag_mask = config->read_flag_mask;
 784		map->write_flag_mask = config->write_flag_mask;
 785	} else if (bus) {
 786		map->read_flag_mask = bus->read_flag_mask;
 787	}
 788
 789	if (!bus) {
 790		map->reg_read  = config->reg_read;
 791		map->reg_write = config->reg_write;
 792
 793		map->defer_caching = false;
 794		goto skip_format_initialization;
 795	} else if (!bus->read || !bus->write) {
 796		map->reg_read = _regmap_bus_reg_read;
 797		map->reg_write = _regmap_bus_reg_write;
 
 798
 799		map->defer_caching = false;
 800		goto skip_format_initialization;
 801	} else {
 802		map->reg_read  = _regmap_bus_read;
 803		map->reg_update_bits = bus->reg_update_bits;
 804	}
 805
 806	reg_endian = regmap_get_reg_endian(bus, config);
 807	val_endian = regmap_get_val_endian(dev, bus, config);
 808
 809	switch (config->reg_bits + map->reg_shift) {
 810	case 2:
 811		switch (config->val_bits) {
 812		case 6:
 813			map->format.format_write = regmap_format_2_6_write;
 814			break;
 815		default:
 816			goto err_hwlock;
 817		}
 818		break;
 819
 820	case 4:
 821		switch (config->val_bits) {
 822		case 12:
 823			map->format.format_write = regmap_format_4_12_write;
 824			break;
 825		default:
 826			goto err_hwlock;
 827		}
 828		break;
 829
 830	case 7:
 831		switch (config->val_bits) {
 832		case 9:
 833			map->format.format_write = regmap_format_7_9_write;
 834			break;
 835		default:
 836			goto err_hwlock;
 837		}
 838		break;
 839
 840	case 10:
 841		switch (config->val_bits) {
 842		case 14:
 843			map->format.format_write = regmap_format_10_14_write;
 844			break;
 845		default:
 846			goto err_hwlock;
 847		}
 848		break;
 849
 850	case 8:
 851		map->format.format_reg = regmap_format_8;
 852		break;
 853
 854	case 16:
 855		switch (reg_endian) {
 856		case REGMAP_ENDIAN_BIG:
 857			map->format.format_reg = regmap_format_16_be;
 858			break;
 859		case REGMAP_ENDIAN_LITTLE:
 860			map->format.format_reg = regmap_format_16_le;
 861			break;
 862		case REGMAP_ENDIAN_NATIVE:
 863			map->format.format_reg = regmap_format_16_native;
 864			break;
 865		default:
 866			goto err_hwlock;
 867		}
 868		break;
 869
 870	case 24:
 871		if (reg_endian != REGMAP_ENDIAN_BIG)
 872			goto err_hwlock;
 873		map->format.format_reg = regmap_format_24;
 874		break;
 875
 876	case 32:
 877		switch (reg_endian) {
 878		case REGMAP_ENDIAN_BIG:
 879			map->format.format_reg = regmap_format_32_be;
 880			break;
 881		case REGMAP_ENDIAN_LITTLE:
 882			map->format.format_reg = regmap_format_32_le;
 883			break;
 884		case REGMAP_ENDIAN_NATIVE:
 885			map->format.format_reg = regmap_format_32_native;
 886			break;
 887		default:
 888			goto err_hwlock;
 889		}
 890		break;
 891
 892#ifdef CONFIG_64BIT
 893	case 64:
 894		switch (reg_endian) {
 895		case REGMAP_ENDIAN_BIG:
 896			map->format.format_reg = regmap_format_64_be;
 897			break;
 898		case REGMAP_ENDIAN_LITTLE:
 899			map->format.format_reg = regmap_format_64_le;
 900			break;
 901		case REGMAP_ENDIAN_NATIVE:
 902			map->format.format_reg = regmap_format_64_native;
 903			break;
 904		default:
 905			goto err_hwlock;
 906		}
 907		break;
 908#endif
 909
 910	default:
 911		goto err_hwlock;
 912	}
 913
 914	if (val_endian == REGMAP_ENDIAN_NATIVE)
 915		map->format.parse_inplace = regmap_parse_inplace_noop;
 916
 917	switch (config->val_bits) {
 918	case 8:
 919		map->format.format_val = regmap_format_8;
 920		map->format.parse_val = regmap_parse_8;
 921		map->format.parse_inplace = regmap_parse_inplace_noop;
 922		break;
 923	case 16:
 924		switch (val_endian) {
 925		case REGMAP_ENDIAN_BIG:
 926			map->format.format_val = regmap_format_16_be;
 927			map->format.parse_val = regmap_parse_16_be;
 928			map->format.parse_inplace = regmap_parse_16_be_inplace;
 929			break;
 930		case REGMAP_ENDIAN_LITTLE:
 931			map->format.format_val = regmap_format_16_le;
 932			map->format.parse_val = regmap_parse_16_le;
 933			map->format.parse_inplace = regmap_parse_16_le_inplace;
 934			break;
 935		case REGMAP_ENDIAN_NATIVE:
 936			map->format.format_val = regmap_format_16_native;
 937			map->format.parse_val = regmap_parse_16_native;
 938			break;
 939		default:
 940			goto err_hwlock;
 941		}
 942		break;
 943	case 24:
 944		if (val_endian != REGMAP_ENDIAN_BIG)
 945			goto err_hwlock;
 946		map->format.format_val = regmap_format_24;
 947		map->format.parse_val = regmap_parse_24;
 948		break;
 949	case 32:
 950		switch (val_endian) {
 951		case REGMAP_ENDIAN_BIG:
 952			map->format.format_val = regmap_format_32_be;
 953			map->format.parse_val = regmap_parse_32_be;
 954			map->format.parse_inplace = regmap_parse_32_be_inplace;
 955			break;
 956		case REGMAP_ENDIAN_LITTLE:
 957			map->format.format_val = regmap_format_32_le;
 958			map->format.parse_val = regmap_parse_32_le;
 959			map->format.parse_inplace = regmap_parse_32_le_inplace;
 960			break;
 961		case REGMAP_ENDIAN_NATIVE:
 962			map->format.format_val = regmap_format_32_native;
 963			map->format.parse_val = regmap_parse_32_native;
 964			break;
 965		default:
 966			goto err_hwlock;
 967		}
 968		break;
 969#ifdef CONFIG_64BIT
 970	case 64:
 971		switch (val_endian) {
 972		case REGMAP_ENDIAN_BIG:
 973			map->format.format_val = regmap_format_64_be;
 974			map->format.parse_val = regmap_parse_64_be;
 975			map->format.parse_inplace = regmap_parse_64_be_inplace;
 976			break;
 977		case REGMAP_ENDIAN_LITTLE:
 978			map->format.format_val = regmap_format_64_le;
 979			map->format.parse_val = regmap_parse_64_le;
 980			map->format.parse_inplace = regmap_parse_64_le_inplace;
 981			break;
 982		case REGMAP_ENDIAN_NATIVE:
 983			map->format.format_val = regmap_format_64_native;
 984			map->format.parse_val = regmap_parse_64_native;
 985			break;
 986		default:
 987			goto err_hwlock;
 988		}
 989		break;
 990#endif
 991	}
 992
 993	if (map->format.format_write) {
 994		if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 995		    (val_endian != REGMAP_ENDIAN_BIG))
 996			goto err_hwlock;
 997		map->use_single_write = true;
 998	}
 999
1000	if (!map->format.format_write &&
1001	    !(map->format.format_reg && map->format.format_val))
1002		goto err_hwlock;
1003
1004	map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1005	if (map->work_buf == NULL) {
1006		ret = -ENOMEM;
1007		goto err_hwlock;
1008	}
1009
1010	if (map->format.format_write) {
1011		map->defer_caching = false;
1012		map->reg_write = _regmap_bus_formatted_write;
1013	} else if (map->format.format_val) {
1014		map->defer_caching = true;
1015		map->reg_write = _regmap_bus_raw_write;
1016	}
1017
1018skip_format_initialization:
1019
1020	map->range_tree = RB_ROOT;
1021	for (i = 0; i < config->num_ranges; i++) {
1022		const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1023		struct regmap_range_node *new;
1024
1025		/* Sanity check */
1026		if (range_cfg->range_max < range_cfg->range_min) {
1027			dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1028				range_cfg->range_max, range_cfg->range_min);
1029			goto err_range;
1030		}
1031
1032		if (range_cfg->range_max > map->max_register) {
1033			dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1034				range_cfg->range_max, map->max_register);
1035			goto err_range;
1036		}
1037
1038		if (range_cfg->selector_reg > map->max_register) {
1039			dev_err(map->dev,
1040				"Invalid range %d: selector out of map\n", i);
1041			goto err_range;
1042		}
1043
1044		if (range_cfg->window_len == 0) {
1045			dev_err(map->dev, "Invalid range %d: window_len 0\n",
1046				i);
1047			goto err_range;
1048		}
1049
1050		/* Make sure, that this register range has no selector
1051		   or data window within its boundary */
1052		for (j = 0; j < config->num_ranges; j++) {
1053			unsigned sel_reg = config->ranges[j].selector_reg;
1054			unsigned win_min = config->ranges[j].window_start;
1055			unsigned win_max = win_min +
1056					   config->ranges[j].window_len - 1;
1057
1058			/* Allow data window inside its own virtual range */
1059			if (j == i)
1060				continue;
1061
1062			if (range_cfg->range_min <= sel_reg &&
1063			    sel_reg <= range_cfg->range_max) {
1064				dev_err(map->dev,
1065					"Range %d: selector for %d in window\n",
1066					i, j);
1067				goto err_range;
1068			}
1069
1070			if (!(win_max < range_cfg->range_min ||
1071			      win_min > range_cfg->range_max)) {
1072				dev_err(map->dev,
1073					"Range %d: window for %d in window\n",
1074					i, j);
1075				goto err_range;
1076			}
1077		}
1078
1079		new = kzalloc(sizeof(*new), GFP_KERNEL);
1080		if (new == NULL) {
1081			ret = -ENOMEM;
1082			goto err_range;
1083		}
1084
1085		new->map = map;
1086		new->name = range_cfg->name;
1087		new->range_min = range_cfg->range_min;
1088		new->range_max = range_cfg->range_max;
1089		new->selector_reg = range_cfg->selector_reg;
1090		new->selector_mask = range_cfg->selector_mask;
1091		new->selector_shift = range_cfg->selector_shift;
1092		new->window_start = range_cfg->window_start;
1093		new->window_len = range_cfg->window_len;
1094
1095		if (!_regmap_range_add(map, new)) {
1096			dev_err(map->dev, "Failed to add range %d\n", i);
1097			kfree(new);
1098			goto err_range;
1099		}
1100
1101		if (map->selector_work_buf == NULL) {
1102			map->selector_work_buf =
1103				kzalloc(map->format.buf_size, GFP_KERNEL);
1104			if (map->selector_work_buf == NULL) {
1105				ret = -ENOMEM;
1106				goto err_range;
1107			}
1108		}
1109	}
1110
1111	ret = regcache_init(map, config);
1112	if (ret != 0)
1113		goto err_range;
1114
1115	if (dev) {
1116		ret = regmap_attach_dev(dev, map, config);
1117		if (ret != 0)
1118			goto err_regcache;
1119	} else {
1120		regmap_debugfs_init(map, config->name);
1121	}
1122
1123	return map;
1124
1125err_regcache:
1126	regcache_exit(map);
1127err_range:
1128	regmap_range_exit(map);
1129	kfree(map->work_buf);
1130err_hwlock:
1131	if (map->hwlock)
1132		hwspin_lock_free(map->hwlock);
1133err_name:
1134	kfree_const(map->name);
1135err_map:
1136	kfree(map);
1137err:
1138	return ERR_PTR(ret);
1139}
1140EXPORT_SYMBOL_GPL(__regmap_init);
1141
1142static void devm_regmap_release(struct device *dev, void *res)
1143{
1144	regmap_exit(*(struct regmap **)res);
1145}
1146
1147struct regmap *__devm_regmap_init(struct device *dev,
1148				  const struct regmap_bus *bus,
1149				  void *bus_context,
1150				  const struct regmap_config *config,
1151				  struct lock_class_key *lock_key,
1152				  const char *lock_name)
1153{
1154	struct regmap **ptr, *regmap;
1155
1156	ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1157	if (!ptr)
1158		return ERR_PTR(-ENOMEM);
1159
1160	regmap = __regmap_init(dev, bus, bus_context, config,
1161			       lock_key, lock_name);
1162	if (!IS_ERR(regmap)) {
1163		*ptr = regmap;
1164		devres_add(dev, ptr);
1165	} else {
1166		devres_free(ptr);
1167	}
1168
1169	return regmap;
1170}
1171EXPORT_SYMBOL_GPL(__devm_regmap_init);
1172
1173static void regmap_field_init(struct regmap_field *rm_field,
1174	struct regmap *regmap, struct reg_field reg_field)
1175{
1176	rm_field->regmap = regmap;
1177	rm_field->reg = reg_field.reg;
1178	rm_field->shift = reg_field.lsb;
1179	rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1180	rm_field->id_size = reg_field.id_size;
1181	rm_field->id_offset = reg_field.id_offset;
1182}
1183
1184/**
1185 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1186 *
1187 * @dev: Device that will be interacted with
1188 * @regmap: regmap bank in which this register field is located.
1189 * @reg_field: Register field with in the bank.
1190 *
1191 * The return value will be an ERR_PTR() on error or a valid pointer
1192 * to a struct regmap_field. The regmap_field will be automatically freed
1193 * by the device management code.
1194 */
1195struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1196		struct regmap *regmap, struct reg_field reg_field)
1197{
1198	struct regmap_field *rm_field = devm_kzalloc(dev,
1199					sizeof(*rm_field), GFP_KERNEL);
1200	if (!rm_field)
1201		return ERR_PTR(-ENOMEM);
1202
1203	regmap_field_init(rm_field, regmap, reg_field);
1204
1205	return rm_field;
1206
1207}
1208EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1209
1210/**
1211 * devm_regmap_field_free() - Free a register field allocated using
1212 *                            devm_regmap_field_alloc.
1213 *
1214 * @dev: Device that will be interacted with
1215 * @field: regmap field which should be freed.
1216 *
1217 * Free register field allocated using devm_regmap_field_alloc(). Usually
1218 * drivers need not call this function, as the memory allocated via devm
1219 * will be freed as per device-driver life-cyle.
1220 */
1221void devm_regmap_field_free(struct device *dev,
1222	struct regmap_field *field)
1223{
1224	devm_kfree(dev, field);
1225}
1226EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1227
1228/**
1229 * regmap_field_alloc() - Allocate and initialise a register field.
1230 *
1231 * @regmap: regmap bank in which this register field is located.
1232 * @reg_field: Register field with in the bank.
1233 *
1234 * The return value will be an ERR_PTR() on error or a valid pointer
1235 * to a struct regmap_field. The regmap_field should be freed by the
1236 * user once its finished working with it using regmap_field_free().
1237 */
1238struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1239		struct reg_field reg_field)
1240{
1241	struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1242
1243	if (!rm_field)
1244		return ERR_PTR(-ENOMEM);
1245
1246	regmap_field_init(rm_field, regmap, reg_field);
1247
1248	return rm_field;
1249}
1250EXPORT_SYMBOL_GPL(regmap_field_alloc);
1251
1252/**
1253 * regmap_field_free() - Free register field allocated using
1254 *                       regmap_field_alloc.
1255 *
1256 * @field: regmap field which should be freed.
1257 */
1258void regmap_field_free(struct regmap_field *field)
1259{
1260	kfree(field);
1261}
1262EXPORT_SYMBOL_GPL(regmap_field_free);
1263
1264/**
1265 * regmap_reinit_cache() - Reinitialise the current register cache
1266 *
1267 * @map: Register map to operate on.
1268 * @config: New configuration.  Only the cache data will be used.
1269 *
1270 * Discard any existing register cache for the map and initialize a
1271 * new cache.  This can be used to restore the cache to defaults or to
1272 * update the cache configuration to reflect runtime discovery of the
1273 * hardware.
1274 *
1275 * No explicit locking is done here, the user needs to ensure that
1276 * this function will not race with other calls to regmap.
1277 */
1278int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1279{
 
 
1280	regcache_exit(map);
1281	regmap_debugfs_exit(map);
1282
1283	map->max_register = config->max_register;
1284	map->writeable_reg = config->writeable_reg;
1285	map->readable_reg = config->readable_reg;
1286	map->volatile_reg = config->volatile_reg;
1287	map->precious_reg = config->precious_reg;
 
 
1288	map->cache_type = config->cache_type;
1289
1290	regmap_debugfs_init(map, config->name);
 
 
 
 
1291
1292	map->cache_bypass = false;
1293	map->cache_only = false;
1294
1295	return regcache_init(map, config);
1296}
1297EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1298
1299/**
1300 * regmap_exit() - Free a previously allocated register map
1301 *
1302 * @map: Register map to operate on.
1303 */
1304void regmap_exit(struct regmap *map)
1305{
1306	struct regmap_async *async;
1307
1308	regcache_exit(map);
1309	regmap_debugfs_exit(map);
1310	regmap_range_exit(map);
1311	if (map->bus && map->bus->free_context)
1312		map->bus->free_context(map->bus_context);
1313	kfree(map->work_buf);
1314	while (!list_empty(&map->async_free)) {
1315		async = list_first_entry_or_null(&map->async_free,
1316						 struct regmap_async,
1317						 list);
1318		list_del(&async->list);
1319		kfree(async->work_buf);
1320		kfree(async);
1321	}
1322	if (map->hwlock)
1323		hwspin_lock_free(map->hwlock);
1324	kfree_const(map->name);
 
1325	kfree(map);
1326}
1327EXPORT_SYMBOL_GPL(regmap_exit);
1328
1329static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1330{
1331	struct regmap **r = res;
1332	if (!r || !*r) {
1333		WARN_ON(!r || !*r);
1334		return 0;
1335	}
1336
1337	/* If the user didn't specify a name match any */
1338	if (data)
1339		return (*r)->name == data;
1340	else
1341		return 1;
1342}
1343
1344/**
1345 * dev_get_regmap() - Obtain the regmap (if any) for a device
1346 *
1347 * @dev: Device to retrieve the map for
1348 * @name: Optional name for the register map, usually NULL.
1349 *
1350 * Returns the regmap for the device if one is present, or NULL.  If
1351 * name is specified then it must match the name specified when
1352 * registering the device, if it is NULL then the first regmap found
1353 * will be used.  Devices with multiple register maps are very rare,
1354 * generic code should normally not need to specify a name.
1355 */
1356struct regmap *dev_get_regmap(struct device *dev, const char *name)
1357{
1358	struct regmap **r = devres_find(dev, dev_get_regmap_release,
1359					dev_get_regmap_match, (void *)name);
1360
1361	if (!r)
1362		return NULL;
1363	return *r;
1364}
1365EXPORT_SYMBOL_GPL(dev_get_regmap);
1366
1367/**
1368 * regmap_get_device() - Obtain the device from a regmap
1369 *
1370 * @map: Register map to operate on.
1371 *
1372 * Returns the underlying device that the regmap has been created for.
1373 */
1374struct device *regmap_get_device(struct regmap *map)
1375{
1376	return map->dev;
1377}
1378EXPORT_SYMBOL_GPL(regmap_get_device);
1379
1380static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1381			       struct regmap_range_node *range,
1382			       unsigned int val_num)
1383{
1384	void *orig_work_buf;
1385	unsigned int win_offset;
1386	unsigned int win_page;
1387	bool page_chg;
1388	int ret;
1389
1390	win_offset = (*reg - range->range_min) % range->window_len;
1391	win_page = (*reg - range->range_min) / range->window_len;
1392
1393	if (val_num > 1) {
1394		/* Bulk write shouldn't cross range boundary */
1395		if (*reg + val_num - 1 > range->range_max)
1396			return -EINVAL;
1397
1398		/* ... or single page boundary */
1399		if (val_num > range->window_len - win_offset)
1400			return -EINVAL;
1401	}
1402
1403	/* It is possible to have selector register inside data window.
1404	   In that case, selector register is located on every page and
1405	   it needs no page switching, when accessed alone. */
1406	if (val_num > 1 ||
1407	    range->window_start + win_offset != range->selector_reg) {
1408		/* Use separate work_buf during page switching */
1409		orig_work_buf = map->work_buf;
1410		map->work_buf = map->selector_work_buf;
1411
1412		ret = _regmap_update_bits(map, range->selector_reg,
1413					  range->selector_mask,
1414					  win_page << range->selector_shift,
1415					  &page_chg, false);
1416
1417		map->work_buf = orig_work_buf;
1418
1419		if (ret != 0)
1420			return ret;
1421	}
1422
1423	*reg = range->window_start + win_offset;
1424
1425	return 0;
1426}
1427
1428static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1429					  unsigned long mask)
1430{
1431	u8 *buf;
1432	int i;
1433
1434	if (!mask || !map->work_buf)
1435		return;
1436
1437	buf = map->work_buf;
1438
1439	for (i = 0; i < max_bytes; i++)
1440		buf[i] |= (mask >> (8 * i)) & 0xff;
1441}
1442
1443static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1444				  const void *val, size_t val_len)
1445{
1446	struct regmap_range_node *range;
1447	unsigned long flags;
1448	void *work_val = map->work_buf + map->format.reg_bytes +
1449		map->format.pad_bytes;
1450	void *buf;
1451	int ret = -ENOTSUPP;
1452	size_t len;
1453	int i;
1454
1455	WARN_ON(!map->bus);
1456
1457	/* Check for unwritable registers before we start */
1458	if (map->writeable_reg)
1459		for (i = 0; i < val_len / map->format.val_bytes; i++)
1460			if (!map->writeable_reg(map->dev,
1461					       reg + regmap_get_offset(map, i)))
 
 
 
 
1462				return -EINVAL;
 
 
1463
1464	if (!map->cache_bypass && map->format.parse_val) {
1465		unsigned int ival;
1466		int val_bytes = map->format.val_bytes;
1467		for (i = 0; i < val_len / val_bytes; i++) {
1468			ival = map->format.parse_val(val + (i * val_bytes));
1469			ret = regcache_write(map,
1470					     reg + regmap_get_offset(map, i),
1471					     ival);
1472			if (ret) {
1473				dev_err(map->dev,
1474					"Error in caching of register: %x ret: %d\n",
1475					reg + i, ret);
1476				return ret;
1477			}
1478		}
1479		if (map->cache_only) {
1480			map->cache_dirty = true;
1481			return 0;
1482		}
1483	}
1484
1485	range = _regmap_range_lookup(map, reg);
1486	if (range) {
1487		int val_num = val_len / map->format.val_bytes;
1488		int win_offset = (reg - range->range_min) % range->window_len;
1489		int win_residue = range->window_len - win_offset;
1490
1491		/* If the write goes beyond the end of the window split it */
1492		while (val_num > win_residue) {
1493			dev_dbg(map->dev, "Writing window %d/%zu\n",
1494				win_residue, val_len / map->format.val_bytes);
1495			ret = _regmap_raw_write_impl(map, reg, val,
1496						     win_residue *
1497						     map->format.val_bytes);
1498			if (ret != 0)
1499				return ret;
1500
1501			reg += win_residue;
1502			val_num -= win_residue;
1503			val += win_residue * map->format.val_bytes;
1504			val_len -= win_residue * map->format.val_bytes;
1505
1506			win_offset = (reg - range->range_min) %
1507				range->window_len;
1508			win_residue = range->window_len - win_offset;
1509		}
1510
1511		ret = _regmap_select_page(map, &reg, range, val_num);
1512		if (ret != 0)
1513			return ret;
1514	}
1515
1516	map->format.format_reg(map->work_buf, reg, map->reg_shift);
1517	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1518				      map->write_flag_mask);
1519
1520	/*
1521	 * Essentially all I/O mechanisms will be faster with a single
1522	 * buffer to write.  Since register syncs often generate raw
1523	 * writes of single registers optimise that case.
1524	 */
1525	if (val != work_val && val_len == map->format.val_bytes) {
1526		memcpy(work_val, val, map->format.val_bytes);
1527		val = work_val;
1528	}
1529
1530	if (map->async && map->bus->async_write) {
1531		struct regmap_async *async;
1532
1533		trace_regmap_async_write_start(map, reg, val_len);
1534
1535		spin_lock_irqsave(&map->async_lock, flags);
1536		async = list_first_entry_or_null(&map->async_free,
1537						 struct regmap_async,
1538						 list);
1539		if (async)
1540			list_del(&async->list);
1541		spin_unlock_irqrestore(&map->async_lock, flags);
1542
1543		if (!async) {
1544			async = map->bus->async_alloc();
1545			if (!async)
1546				return -ENOMEM;
1547
1548			async->work_buf = kzalloc(map->format.buf_size,
1549						  GFP_KERNEL | GFP_DMA);
1550			if (!async->work_buf) {
1551				kfree(async);
1552				return -ENOMEM;
1553			}
1554		}
1555
1556		async->map = map;
1557
1558		/* If the caller supplied the value we can use it safely. */
1559		memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1560		       map->format.reg_bytes + map->format.val_bytes);
1561
1562		spin_lock_irqsave(&map->async_lock, flags);
1563		list_add_tail(&async->list, &map->async_list);
1564		spin_unlock_irqrestore(&map->async_lock, flags);
1565
1566		if (val != work_val)
1567			ret = map->bus->async_write(map->bus_context,
1568						    async->work_buf,
1569						    map->format.reg_bytes +
1570						    map->format.pad_bytes,
1571						    val, val_len, async);
1572		else
1573			ret = map->bus->async_write(map->bus_context,
1574						    async->work_buf,
1575						    map->format.reg_bytes +
1576						    map->format.pad_bytes +
1577						    val_len, NULL, 0, async);
1578
1579		if (ret != 0) {
1580			dev_err(map->dev, "Failed to schedule write: %d\n",
1581				ret);
1582
1583			spin_lock_irqsave(&map->async_lock, flags);
1584			list_move(&async->list, &map->async_free);
1585			spin_unlock_irqrestore(&map->async_lock, flags);
1586		}
1587
1588		return ret;
1589	}
1590
1591	trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1592
1593	/* If we're doing a single register write we can probably just
1594	 * send the work_buf directly, otherwise try to do a gather
1595	 * write.
1596	 */
1597	if (val == work_val)
1598		ret = map->bus->write(map->bus_context, map->work_buf,
1599				      map->format.reg_bytes +
1600				      map->format.pad_bytes +
1601				      val_len);
1602	else if (map->bus->gather_write)
1603		ret = map->bus->gather_write(map->bus_context, map->work_buf,
1604					     map->format.reg_bytes +
1605					     map->format.pad_bytes,
1606					     val, val_len);
 
 
1607
1608	/* If that didn't work fall back on linearising by hand. */
1609	if (ret == -ENOTSUPP) {
1610		len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1611		buf = kzalloc(len, GFP_KERNEL);
1612		if (!buf)
1613			return -ENOMEM;
1614
1615		memcpy(buf, map->work_buf, map->format.reg_bytes);
1616		memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1617		       val, val_len);
1618		ret = map->bus->write(map->bus_context, buf, len);
1619
1620		kfree(buf);
1621	} else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1622		/* regcache_drop_region() takes lock that we already have,
1623		 * thus call map->cache_ops->drop() directly
1624		 */
1625		if (map->cache_ops && map->cache_ops->drop)
1626			map->cache_ops->drop(map, reg, reg + 1);
1627	}
1628
1629	trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1630
1631	return ret;
1632}
1633
1634/**
1635 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1636 *
1637 * @map: Map to check.
1638 */
1639bool regmap_can_raw_write(struct regmap *map)
1640{
1641	return map->bus && map->bus->write && map->format.format_val &&
1642		map->format.format_reg;
1643}
1644EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1645
1646/**
1647 * regmap_get_raw_read_max - Get the maximum size we can read
1648 *
1649 * @map: Map to check.
1650 */
1651size_t regmap_get_raw_read_max(struct regmap *map)
1652{
1653	return map->max_raw_read;
1654}
1655EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1656
1657/**
1658 * regmap_get_raw_write_max - Get the maximum size we can read
1659 *
1660 * @map: Map to check.
1661 */
1662size_t regmap_get_raw_write_max(struct regmap *map)
1663{
1664	return map->max_raw_write;
1665}
1666EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1667
1668static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1669				       unsigned int val)
1670{
1671	int ret;
1672	struct regmap_range_node *range;
1673	struct regmap *map = context;
1674
1675	WARN_ON(!map->bus || !map->format.format_write);
1676
1677	range = _regmap_range_lookup(map, reg);
1678	if (range) {
1679		ret = _regmap_select_page(map, &reg, range, 1);
1680		if (ret != 0)
1681			return ret;
1682	}
1683
1684	map->format.format_write(map, reg, val);
1685
1686	trace_regmap_hw_write_start(map, reg, 1);
1687
1688	ret = map->bus->write(map->bus_context, map->work_buf,
1689			      map->format.buf_size);
1690
1691	trace_regmap_hw_write_done(map, reg, 1);
1692
1693	return ret;
1694}
1695
1696static int _regmap_bus_reg_write(void *context, unsigned int reg,
1697				 unsigned int val)
1698{
1699	struct regmap *map = context;
1700
1701	return map->bus->reg_write(map->bus_context, reg, val);
1702}
1703
1704static int _regmap_bus_raw_write(void *context, unsigned int reg,
1705				 unsigned int val)
1706{
1707	struct regmap *map = context;
1708
1709	WARN_ON(!map->bus || !map->format.format_val);
1710
1711	map->format.format_val(map->work_buf + map->format.reg_bytes
1712			       + map->format.pad_bytes, val, 0);
1713	return _regmap_raw_write_impl(map, reg,
1714				      map->work_buf +
1715				      map->format.reg_bytes +
1716				      map->format.pad_bytes,
1717				      map->format.val_bytes);
 
1718}
1719
1720static inline void *_regmap_map_get_context(struct regmap *map)
1721{
1722	return (map->bus) ? map : map->bus_context;
1723}
1724
1725int _regmap_write(struct regmap *map, unsigned int reg,
1726		  unsigned int val)
1727{
1728	int ret;
1729	void *context = _regmap_map_get_context(map);
1730
1731	if (!regmap_writeable(map, reg))
1732		return -EIO;
1733
1734	if (!map->cache_bypass && !map->defer_caching) {
1735		ret = regcache_write(map, reg, val);
1736		if (ret != 0)
1737			return ret;
1738		if (map->cache_only) {
1739			map->cache_dirty = true;
1740			return 0;
1741		}
1742	}
1743
1744#ifdef LOG_DEVICE
1745	if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1746		dev_info(map->dev, "%x <= %x\n", reg, val);
1747#endif
1748
1749	trace_regmap_reg_write(map, reg, val);
1750
1751	return map->reg_write(context, reg, val);
1752}
1753
1754/**
1755 * regmap_write() - Write a value to a single register
1756 *
1757 * @map: Register map to write to
1758 * @reg: Register to write to
1759 * @val: Value to be written
1760 *
1761 * A value of zero will be returned on success, a negative errno will
1762 * be returned in error cases.
1763 */
1764int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1765{
1766	int ret;
1767
1768	if (!IS_ALIGNED(reg, map->reg_stride))
1769		return -EINVAL;
1770
1771	map->lock(map->lock_arg);
1772
1773	ret = _regmap_write(map, reg, val);
1774
1775	map->unlock(map->lock_arg);
1776
1777	return ret;
1778}
1779EXPORT_SYMBOL_GPL(regmap_write);
1780
1781/**
1782 * regmap_write_async() - Write a value to a single register asynchronously
1783 *
1784 * @map: Register map to write to
1785 * @reg: Register to write to
1786 * @val: Value to be written
1787 *
1788 * A value of zero will be returned on success, a negative errno will
1789 * be returned in error cases.
1790 */
1791int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1792{
1793	int ret;
1794
1795	if (!IS_ALIGNED(reg, map->reg_stride))
1796		return -EINVAL;
1797
1798	map->lock(map->lock_arg);
1799
1800	map->async = true;
1801
1802	ret = _regmap_write(map, reg, val);
1803
1804	map->async = false;
1805
1806	map->unlock(map->lock_arg);
1807
1808	return ret;
1809}
1810EXPORT_SYMBOL_GPL(regmap_write_async);
1811
1812int _regmap_raw_write(struct regmap *map, unsigned int reg,
1813		      const void *val, size_t val_len)
1814{
1815	size_t val_bytes = map->format.val_bytes;
1816	size_t val_count = val_len / val_bytes;
1817	size_t chunk_count, chunk_bytes;
1818	size_t chunk_regs = val_count;
1819	int ret, i;
1820
1821	if (!val_count)
1822		return -EINVAL;
1823
1824	if (map->use_single_write)
1825		chunk_regs = 1;
1826	else if (map->max_raw_write && val_len > map->max_raw_write)
1827		chunk_regs = map->max_raw_write / val_bytes;
1828
1829	chunk_count = val_count / chunk_regs;
1830	chunk_bytes = chunk_regs * val_bytes;
1831
1832	/* Write as many bytes as possible with chunk_size */
1833	for (i = 0; i < chunk_count; i++) {
1834		ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes);
1835		if (ret)
1836			return ret;
1837
1838		reg += regmap_get_offset(map, chunk_regs);
1839		val += chunk_bytes;
1840		val_len -= chunk_bytes;
1841	}
1842
1843	/* Write remaining bytes */
1844	if (val_len)
1845		ret = _regmap_raw_write_impl(map, reg, val, val_len);
1846
1847	return ret;
1848}
1849
1850/**
1851 * regmap_raw_write() - Write raw values to one or more registers
1852 *
1853 * @map: Register map to write to
1854 * @reg: Initial register to write to
1855 * @val: Block of data to be written, laid out for direct transmission to the
1856 *       device
1857 * @val_len: Length of data pointed to by val.
1858 *
1859 * This function is intended to be used for things like firmware
1860 * download where a large block of data needs to be transferred to the
1861 * device.  No formatting will be done on the data provided.
1862 *
1863 * A value of zero will be returned on success, a negative errno will
1864 * be returned in error cases.
1865 */
1866int regmap_raw_write(struct regmap *map, unsigned int reg,
1867		     const void *val, size_t val_len)
1868{
1869	int ret;
1870
1871	if (!regmap_can_raw_write(map))
1872		return -EINVAL;
1873	if (val_len % map->format.val_bytes)
1874		return -EINVAL;
1875
1876	map->lock(map->lock_arg);
1877
1878	ret = _regmap_raw_write(map, reg, val, val_len);
1879
1880	map->unlock(map->lock_arg);
1881
1882	return ret;
1883}
1884EXPORT_SYMBOL_GPL(regmap_raw_write);
1885
1886/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
1888 *                                   register field.
1889 *
1890 * @field: Register field to write to
1891 * @mask: Bitmask to change
1892 * @val: Value to be written
1893 * @change: Boolean indicating if a write was done
1894 * @async: Boolean indicating asynchronously
1895 * @force: Boolean indicating use force update
1896 *
1897 * Perform a read/modify/write cycle on the register field with change,
1898 * async, force option.
1899 *
1900 * A value of zero will be returned on success, a negative errno will
1901 * be returned in error cases.
1902 */
1903int regmap_field_update_bits_base(struct regmap_field *field,
1904				  unsigned int mask, unsigned int val,
1905				  bool *change, bool async, bool force)
1906{
1907	mask = (mask << field->shift) & field->mask;
1908
1909	return regmap_update_bits_base(field->regmap, field->reg,
1910				       mask, val << field->shift,
1911				       change, async, force);
1912}
1913EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
1914
1915/**
1916 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
1917 *                                    register field with port ID
1918 *
1919 * @field: Register field to write to
1920 * @id: port ID
1921 * @mask: Bitmask to change
1922 * @val: Value to be written
1923 * @change: Boolean indicating if a write was done
1924 * @async: Boolean indicating asynchronously
1925 * @force: Boolean indicating use force update
1926 *
1927 * A value of zero will be returned on success, a negative errno will
1928 * be returned in error cases.
1929 */
1930int regmap_fields_update_bits_base(struct regmap_field *field,  unsigned int id,
1931				   unsigned int mask, unsigned int val,
1932				   bool *change, bool async, bool force)
1933{
1934	if (id >= field->id_size)
1935		return -EINVAL;
1936
1937	mask = (mask << field->shift) & field->mask;
1938
1939	return regmap_update_bits_base(field->regmap,
1940				       field->reg + (field->id_offset * id),
1941				       mask, val << field->shift,
1942				       change, async, force);
1943}
1944EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
1945
1946/**
1947 * regmap_bulk_write() - Write multiple registers to the device
1948 *
1949 * @map: Register map to write to
1950 * @reg: First register to be write from
1951 * @val: Block of data to be written, in native register size for device
1952 * @val_count: Number of registers to write
1953 *
1954 * This function is intended to be used for writing a large block of
1955 * data to the device either in single transfer or multiple transfer.
1956 *
1957 * A value of zero will be returned on success, a negative errno will
1958 * be returned in error cases.
1959 */
1960int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1961		     size_t val_count)
1962{
1963	int ret = 0, i;
1964	size_t val_bytes = map->format.val_bytes;
1965
1966	if (!IS_ALIGNED(reg, map->reg_stride))
1967		return -EINVAL;
1968
1969	/*
1970	 * Some devices don't support bulk write, for them we have a series of
1971	 * single write operations.
1972	 */
1973	if (!map->bus || !map->format.parse_inplace) {
1974		map->lock(map->lock_arg);
1975		for (i = 0; i < val_count; i++) {
1976			unsigned int ival;
1977
1978			switch (val_bytes) {
1979			case 1:
1980				ival = *(u8 *)(val + (i * val_bytes));
1981				break;
1982			case 2:
1983				ival = *(u16 *)(val + (i * val_bytes));
1984				break;
1985			case 4:
1986				ival = *(u32 *)(val + (i * val_bytes));
1987				break;
1988#ifdef CONFIG_64BIT
1989			case 8:
1990				ival = *(u64 *)(val + (i * val_bytes));
1991				break;
1992#endif
1993			default:
1994				ret = -EINVAL;
1995				goto out;
1996			}
1997
1998			ret = _regmap_write(map,
1999					    reg + regmap_get_offset(map, i),
2000					    ival);
2001			if (ret != 0)
2002				goto out;
2003		}
2004out:
2005		map->unlock(map->lock_arg);
2006	} else {
2007		void *wval;
2008
2009		wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2010		if (!wval)
2011			return -ENOMEM;
2012
2013		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2014			map->format.parse_inplace(wval + i);
2015
2016		ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2017
2018		kfree(wval);
2019	}
2020	return ret;
2021}
2022EXPORT_SYMBOL_GPL(regmap_bulk_write);
2023
2024/*
2025 * _regmap_raw_multi_reg_write()
2026 *
2027 * the (register,newvalue) pairs in regs have not been formatted, but
2028 * they are all in the same page and have been changed to being page
2029 * relative. The page register has been written if that was necessary.
2030 */
2031static int _regmap_raw_multi_reg_write(struct regmap *map,
2032				       const struct reg_sequence *regs,
2033				       size_t num_regs)
2034{
2035	int ret;
2036	void *buf;
2037	int i;
2038	u8 *u8;
2039	size_t val_bytes = map->format.val_bytes;
2040	size_t reg_bytes = map->format.reg_bytes;
2041	size_t pad_bytes = map->format.pad_bytes;
2042	size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2043	size_t len = pair_size * num_regs;
2044
2045	if (!len)
2046		return -EINVAL;
2047
2048	buf = kzalloc(len, GFP_KERNEL);
2049	if (!buf)
2050		return -ENOMEM;
2051
2052	/* We have to linearise by hand. */
2053
2054	u8 = buf;
2055
2056	for (i = 0; i < num_regs; i++) {
2057		unsigned int reg = regs[i].reg;
2058		unsigned int val = regs[i].def;
2059		trace_regmap_hw_write_start(map, reg, 1);
2060		map->format.format_reg(u8, reg, map->reg_shift);
2061		u8 += reg_bytes + pad_bytes;
2062		map->format.format_val(u8, val, 0);
2063		u8 += val_bytes;
2064	}
2065	u8 = buf;
2066	*u8 |= map->write_flag_mask;
2067
2068	ret = map->bus->write(map->bus_context, buf, len);
2069
2070	kfree(buf);
2071
2072	for (i = 0; i < num_regs; i++) {
2073		int reg = regs[i].reg;
2074		trace_regmap_hw_write_done(map, reg, 1);
2075	}
2076	return ret;
2077}
2078
2079static unsigned int _regmap_register_page(struct regmap *map,
2080					  unsigned int reg,
2081					  struct regmap_range_node *range)
2082{
2083	unsigned int win_page = (reg - range->range_min) / range->window_len;
2084
2085	return win_page;
2086}
2087
2088static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2089					       struct reg_sequence *regs,
2090					       size_t num_regs)
2091{
2092	int ret;
2093	int i, n;
2094	struct reg_sequence *base;
2095	unsigned int this_page = 0;
2096	unsigned int page_change = 0;
2097	/*
2098	 * the set of registers are not neccessarily in order, but
2099	 * since the order of write must be preserved this algorithm
2100	 * chops the set each time the page changes. This also applies
2101	 * if there is a delay required at any point in the sequence.
2102	 */
2103	base = regs;
2104	for (i = 0, n = 0; i < num_regs; i++, n++) {
2105		unsigned int reg = regs[i].reg;
2106		struct regmap_range_node *range;
2107
2108		range = _regmap_range_lookup(map, reg);
2109		if (range) {
2110			unsigned int win_page = _regmap_register_page(map, reg,
2111								      range);
2112
2113			if (i == 0)
2114				this_page = win_page;
2115			if (win_page != this_page) {
2116				this_page = win_page;
2117				page_change = 1;
2118			}
2119		}
2120
2121		/* If we have both a page change and a delay make sure to
2122		 * write the regs and apply the delay before we change the
2123		 * page.
2124		 */
2125
2126		if (page_change || regs[i].delay_us) {
2127
2128				/* For situations where the first write requires
2129				 * a delay we need to make sure we don't call
2130				 * raw_multi_reg_write with n=0
2131				 * This can't occur with page breaks as we
2132				 * never write on the first iteration
2133				 */
2134				if (regs[i].delay_us && i == 0)
2135					n = 1;
2136
2137				ret = _regmap_raw_multi_reg_write(map, base, n);
2138				if (ret != 0)
2139					return ret;
2140
2141				if (regs[i].delay_us)
2142					udelay(regs[i].delay_us);
2143
2144				base += n;
2145				n = 0;
2146
2147				if (page_change) {
2148					ret = _regmap_select_page(map,
2149								  &base[n].reg,
2150								  range, 1);
2151					if (ret != 0)
2152						return ret;
2153
2154					page_change = 0;
2155				}
2156
2157		}
2158
2159	}
2160	if (n > 0)
2161		return _regmap_raw_multi_reg_write(map, base, n);
2162	return 0;
2163}
2164
2165static int _regmap_multi_reg_write(struct regmap *map,
2166				   const struct reg_sequence *regs,
2167				   size_t num_regs)
2168{
2169	int i;
2170	int ret;
2171
2172	if (!map->can_multi_write) {
2173		for (i = 0; i < num_regs; i++) {
2174			ret = _regmap_write(map, regs[i].reg, regs[i].def);
2175			if (ret != 0)
2176				return ret;
2177
2178			if (regs[i].delay_us)
2179				udelay(regs[i].delay_us);
2180		}
2181		return 0;
2182	}
2183
2184	if (!map->format.parse_inplace)
2185		return -EINVAL;
2186
2187	if (map->writeable_reg)
2188		for (i = 0; i < num_regs; i++) {
2189			int reg = regs[i].reg;
2190			if (!map->writeable_reg(map->dev, reg))
2191				return -EINVAL;
2192			if (!IS_ALIGNED(reg, map->reg_stride))
2193				return -EINVAL;
2194		}
2195
2196	if (!map->cache_bypass) {
2197		for (i = 0; i < num_regs; i++) {
2198			unsigned int val = regs[i].def;
2199			unsigned int reg = regs[i].reg;
2200			ret = regcache_write(map, reg, val);
2201			if (ret) {
2202				dev_err(map->dev,
2203				"Error in caching of register: %x ret: %d\n",
2204								reg, ret);
2205				return ret;
2206			}
2207		}
2208		if (map->cache_only) {
2209			map->cache_dirty = true;
2210			return 0;
2211		}
2212	}
2213
2214	WARN_ON(!map->bus);
2215
2216	for (i = 0; i < num_regs; i++) {
2217		unsigned int reg = regs[i].reg;
2218		struct regmap_range_node *range;
2219
2220		/* Coalesce all the writes between a page break or a delay
2221		 * in a sequence
2222		 */
2223		range = _regmap_range_lookup(map, reg);
2224		if (range || regs[i].delay_us) {
2225			size_t len = sizeof(struct reg_sequence)*num_regs;
2226			struct reg_sequence *base = kmemdup(regs, len,
2227							   GFP_KERNEL);
2228			if (!base)
2229				return -ENOMEM;
2230			ret = _regmap_range_multi_paged_reg_write(map, base,
2231								  num_regs);
2232			kfree(base);
2233
2234			return ret;
2235		}
2236	}
2237	return _regmap_raw_multi_reg_write(map, regs, num_regs);
2238}
2239
2240/**
2241 * regmap_multi_reg_write() - Write multiple registers to the device
2242 *
2243 * @map: Register map to write to
2244 * @regs: Array of structures containing register,value to be written
2245 * @num_regs: Number of registers to write
2246 *
2247 * Write multiple registers to the device where the set of register, value
2248 * pairs are supplied in any order, possibly not all in a single range.
2249 *
2250 * The 'normal' block write mode will send ultimately send data on the
2251 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2252 * addressed. However, this alternative block multi write mode will send
2253 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2254 * must of course support the mode.
2255 *
2256 * A value of zero will be returned on success, a negative errno will be
2257 * returned in error cases.
2258 */
2259int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2260			   int num_regs)
2261{
2262	int ret;
2263
2264	map->lock(map->lock_arg);
2265
2266	ret = _regmap_multi_reg_write(map, regs, num_regs);
2267
2268	map->unlock(map->lock_arg);
2269
2270	return ret;
2271}
2272EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2273
2274/**
2275 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2276 *                                     device but not the cache
2277 *
2278 * @map: Register map to write to
2279 * @regs: Array of structures containing register,value to be written
2280 * @num_regs: Number of registers to write
2281 *
2282 * Write multiple registers to the device but not the cache where the set
2283 * of register are supplied in any order.
2284 *
2285 * This function is intended to be used for writing a large block of data
2286 * atomically to the device in single transfer for those I2C client devices
2287 * that implement this alternative block write mode.
2288 *
2289 * A value of zero will be returned on success, a negative errno will
2290 * be returned in error cases.
2291 */
2292int regmap_multi_reg_write_bypassed(struct regmap *map,
2293				    const struct reg_sequence *regs,
2294				    int num_regs)
2295{
2296	int ret;
2297	bool bypass;
2298
2299	map->lock(map->lock_arg);
2300
2301	bypass = map->cache_bypass;
2302	map->cache_bypass = true;
2303
2304	ret = _regmap_multi_reg_write(map, regs, num_regs);
2305
2306	map->cache_bypass = bypass;
2307
2308	map->unlock(map->lock_arg);
2309
2310	return ret;
2311}
2312EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2313
2314/**
2315 * regmap_raw_write_async() - Write raw values to one or more registers
2316 *                            asynchronously
2317 *
2318 * @map: Register map to write to
2319 * @reg: Initial register to write to
2320 * @val: Block of data to be written, laid out for direct transmission to the
2321 *       device.  Must be valid until regmap_async_complete() is called.
2322 * @val_len: Length of data pointed to by val.
2323 *
2324 * This function is intended to be used for things like firmware
2325 * download where a large block of data needs to be transferred to the
2326 * device.  No formatting will be done on the data provided.
2327 *
2328 * If supported by the underlying bus the write will be scheduled
2329 * asynchronously, helping maximise I/O speed on higher speed buses
2330 * like SPI.  regmap_async_complete() can be called to ensure that all
2331 * asynchrnous writes have been completed.
2332 *
2333 * A value of zero will be returned on success, a negative errno will
2334 * be returned in error cases.
2335 */
2336int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2337			   const void *val, size_t val_len)
2338{
2339	int ret;
2340
2341	if (val_len % map->format.val_bytes)
2342		return -EINVAL;
2343	if (!IS_ALIGNED(reg, map->reg_stride))
2344		return -EINVAL;
2345
2346	map->lock(map->lock_arg);
2347
2348	map->async = true;
2349
2350	ret = _regmap_raw_write(map, reg, val, val_len);
2351
2352	map->async = false;
2353
2354	map->unlock(map->lock_arg);
2355
2356	return ret;
2357}
2358EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2359
2360static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2361			    unsigned int val_len)
2362{
2363	struct regmap_range_node *range;
2364	int ret;
2365
2366	WARN_ON(!map->bus);
2367
2368	if (!map->bus || !map->bus->read)
2369		return -EINVAL;
2370
2371	range = _regmap_range_lookup(map, reg);
2372	if (range) {
2373		ret = _regmap_select_page(map, &reg, range,
2374					  val_len / map->format.val_bytes);
2375		if (ret != 0)
2376			return ret;
2377	}
2378
2379	map->format.format_reg(map->work_buf, reg, map->reg_shift);
2380	regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2381				      map->read_flag_mask);
2382	trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2383
2384	ret = map->bus->read(map->bus_context, map->work_buf,
2385			     map->format.reg_bytes + map->format.pad_bytes,
2386			     val, val_len);
2387
2388	trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2389
2390	return ret;
2391}
2392
2393static int _regmap_bus_reg_read(void *context, unsigned int reg,
2394				unsigned int *val)
2395{
2396	struct regmap *map = context;
2397
2398	return map->bus->reg_read(map->bus_context, reg, val);
2399}
2400
2401static int _regmap_bus_read(void *context, unsigned int reg,
2402			    unsigned int *val)
2403{
2404	int ret;
2405	struct regmap *map = context;
2406	void *work_val = map->work_buf + map->format.reg_bytes +
2407		map->format.pad_bytes;
2408
2409	if (!map->format.parse_val)
2410		return -EINVAL;
2411
2412	ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes);
2413	if (ret == 0)
2414		*val = map->format.parse_val(work_val);
2415
2416	return ret;
2417}
2418
2419static int _regmap_read(struct regmap *map, unsigned int reg,
2420			unsigned int *val)
2421{
2422	int ret;
2423	void *context = _regmap_map_get_context(map);
2424
2425	if (!map->cache_bypass) {
2426		ret = regcache_read(map, reg, val);
2427		if (ret == 0)
2428			return 0;
2429	}
2430
2431	if (map->cache_only)
2432		return -EBUSY;
2433
2434	if (!regmap_readable(map, reg))
2435		return -EIO;
2436
2437	ret = map->reg_read(context, reg, val);
2438	if (ret == 0) {
2439#ifdef LOG_DEVICE
2440		if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2441			dev_info(map->dev, "%x => %x\n", reg, *val);
2442#endif
2443
2444		trace_regmap_reg_read(map, reg, *val);
2445
2446		if (!map->cache_bypass)
2447			regcache_write(map, reg, *val);
2448	}
2449
2450	return ret;
2451}
2452
2453/**
2454 * regmap_read() - Read a value from a single register
2455 *
2456 * @map: Register map to read from
2457 * @reg: Register to be read from
2458 * @val: Pointer to store read value
2459 *
2460 * A value of zero will be returned on success, a negative errno will
2461 * be returned in error cases.
2462 */
2463int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2464{
2465	int ret;
2466
2467	if (!IS_ALIGNED(reg, map->reg_stride))
2468		return -EINVAL;
2469
2470	map->lock(map->lock_arg);
2471
2472	ret = _regmap_read(map, reg, val);
2473
2474	map->unlock(map->lock_arg);
2475
2476	return ret;
2477}
2478EXPORT_SYMBOL_GPL(regmap_read);
2479
2480/**
2481 * regmap_raw_read() - Read raw data from the device
2482 *
2483 * @map: Register map to read from
2484 * @reg: First register to be read from
2485 * @val: Pointer to store read value
2486 * @val_len: Size of data to read
2487 *
2488 * A value of zero will be returned on success, a negative errno will
2489 * be returned in error cases.
2490 */
2491int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2492		    size_t val_len)
2493{
2494	size_t val_bytes = map->format.val_bytes;
2495	size_t val_count = val_len / val_bytes;
2496	unsigned int v;
2497	int ret, i;
2498
2499	if (!map->bus)
2500		return -EINVAL;
2501	if (val_len % map->format.val_bytes)
2502		return -EINVAL;
2503	if (!IS_ALIGNED(reg, map->reg_stride))
2504		return -EINVAL;
2505	if (val_count == 0)
2506		return -EINVAL;
2507
2508	map->lock(map->lock_arg);
2509
2510	if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2511	    map->cache_type == REGCACHE_NONE) {
2512		size_t chunk_count, chunk_bytes;
2513		size_t chunk_regs = val_count;
2514
2515		if (!map->bus->read) {
2516			ret = -ENOTSUPP;
2517			goto out;
2518		}
2519
2520		if (map->use_single_read)
2521			chunk_regs = 1;
2522		else if (map->max_raw_read && val_len > map->max_raw_read)
2523			chunk_regs = map->max_raw_read / val_bytes;
2524
2525		chunk_count = val_count / chunk_regs;
2526		chunk_bytes = chunk_regs * val_bytes;
2527
2528		/* Read bytes that fit into whole chunks */
2529		for (i = 0; i < chunk_count; i++) {
2530			ret = _regmap_raw_read(map, reg, val, chunk_bytes);
2531			if (ret != 0)
2532				goto out;
2533
2534			reg += regmap_get_offset(map, chunk_regs);
2535			val += chunk_bytes;
2536			val_len -= chunk_bytes;
2537		}
2538
2539		/* Read remaining bytes */
2540		if (val_len) {
2541			ret = _regmap_raw_read(map, reg, val, val_len);
2542			if (ret != 0)
2543				goto out;
2544		}
2545	} else {
2546		/* Otherwise go word by word for the cache; should be low
2547		 * cost as we expect to hit the cache.
2548		 */
2549		for (i = 0; i < val_count; i++) {
2550			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2551					   &v);
2552			if (ret != 0)
2553				goto out;
2554
2555			map->format.format_val(val + (i * val_bytes), v, 0);
2556		}
2557	}
2558
2559 out:
2560	map->unlock(map->lock_arg);
2561
2562	return ret;
2563}
2564EXPORT_SYMBOL_GPL(regmap_raw_read);
2565
2566/**
2567 * regmap_field_read() - Read a value to a single register field
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2568 *
2569 * @field: Register field to read from
2570 * @val: Pointer to store read value
2571 *
2572 * A value of zero will be returned on success, a negative errno will
2573 * be returned in error cases.
2574 */
2575int regmap_field_read(struct regmap_field *field, unsigned int *val)
2576{
2577	int ret;
2578	unsigned int reg_val;
2579	ret = regmap_read(field->regmap, field->reg, &reg_val);
2580	if (ret != 0)
2581		return ret;
2582
2583	reg_val &= field->mask;
2584	reg_val >>= field->shift;
2585	*val = reg_val;
2586
2587	return ret;
2588}
2589EXPORT_SYMBOL_GPL(regmap_field_read);
2590
2591/**
2592 * regmap_fields_read() - Read a value to a single register field with port ID
2593 *
2594 * @field: Register field to read from
2595 * @id: port ID
2596 * @val: Pointer to store read value
2597 *
2598 * A value of zero will be returned on success, a negative errno will
2599 * be returned in error cases.
2600 */
2601int regmap_fields_read(struct regmap_field *field, unsigned int id,
2602		       unsigned int *val)
2603{
2604	int ret;
2605	unsigned int reg_val;
2606
2607	if (id >= field->id_size)
2608		return -EINVAL;
2609
2610	ret = regmap_read(field->regmap,
2611			  field->reg + (field->id_offset * id),
2612			  &reg_val);
2613	if (ret != 0)
2614		return ret;
2615
2616	reg_val &= field->mask;
2617	reg_val >>= field->shift;
2618	*val = reg_val;
2619
2620	return ret;
2621}
2622EXPORT_SYMBOL_GPL(regmap_fields_read);
2623
2624/**
2625 * regmap_bulk_read() - Read multiple registers from the device
2626 *
2627 * @map: Register map to read from
2628 * @reg: First register to be read from
2629 * @val: Pointer to store read value, in native register size for device
2630 * @val_count: Number of registers to read
2631 *
2632 * A value of zero will be returned on success, a negative errno will
2633 * be returned in error cases.
2634 */
2635int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2636		     size_t val_count)
2637{
2638	int ret, i;
2639	size_t val_bytes = map->format.val_bytes;
2640	bool vol = regmap_volatile_range(map, reg, val_count);
2641
2642	if (!IS_ALIGNED(reg, map->reg_stride))
2643		return -EINVAL;
2644	if (val_count == 0)
2645		return -EINVAL;
2646
2647	if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2648		ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
2649		if (ret != 0)
2650			return ret;
2651
2652		for (i = 0; i < val_count * val_bytes; i += val_bytes)
2653			map->format.parse_inplace(val + i);
2654	} else {
2655#ifdef CONFIG_64BIT
2656		u64 *u64 = val;
2657#endif
2658		u32 *u32 = val;
2659		u16 *u16 = val;
2660		u8 *u8 = val;
2661
2662		map->lock(map->lock_arg);
2663
2664		for (i = 0; i < val_count; i++) {
2665			unsigned int ival;
2666
2667			ret = _regmap_read(map, reg + regmap_get_offset(map, i),
2668					   &ival);
2669			if (ret != 0)
2670				goto out;
2671
2672			switch (map->format.val_bytes) {
2673#ifdef CONFIG_64BIT
2674			case 8:
2675				u64[i] = ival;
2676				break;
2677#endif
2678			case 4:
2679				u32[i] = ival;
2680				break;
2681			case 2:
2682				u16[i] = ival;
2683				break;
2684			case 1:
2685				u8[i] = ival;
2686				break;
2687			default:
2688				ret = -EINVAL;
2689				goto out;
2690			}
2691		}
2692
2693out:
2694		map->unlock(map->lock_arg);
2695	}
2696
2697	return ret;
2698}
2699EXPORT_SYMBOL_GPL(regmap_bulk_read);
2700
2701static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2702			       unsigned int mask, unsigned int val,
2703			       bool *change, bool force_write)
2704{
2705	int ret;
2706	unsigned int tmp, orig;
2707
2708	if (change)
2709		*change = false;
2710
2711	if (regmap_volatile(map, reg) && map->reg_update_bits) {
2712		ret = map->reg_update_bits(map->bus_context, reg, mask, val);
2713		if (ret == 0 && change)
2714			*change = true;
2715	} else {
2716		ret = _regmap_read(map, reg, &orig);
2717		if (ret != 0)
2718			return ret;
2719
2720		tmp = orig & ~mask;
2721		tmp |= val & mask;
2722
2723		if (force_write || (tmp != orig)) {
2724			ret = _regmap_write(map, reg, tmp);
2725			if (ret == 0 && change)
2726				*change = true;
2727		}
2728	}
2729
2730	return ret;
2731}
2732
2733/**
2734 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
2735 *
2736 * @map: Register map to update
2737 * @reg: Register to update
2738 * @mask: Bitmask to change
2739 * @val: New value for bitmask
2740 * @change: Boolean indicating if a write was done
2741 * @async: Boolean indicating asynchronously
2742 * @force: Boolean indicating use force update
2743 *
2744 * Perform a read/modify/write cycle on a register map with change, async, force
2745 * options.
2746 *
2747 * If async is true:
2748 *
2749 * With most buses the read must be done synchronously so this is most useful
2750 * for devices with a cache which do not need to interact with the hardware to
2751 * determine the current register value.
2752 *
2753 * Returns zero for success, a negative number on error.
2754 */
2755int regmap_update_bits_base(struct regmap *map, unsigned int reg,
2756			    unsigned int mask, unsigned int val,
2757			    bool *change, bool async, bool force)
2758{
2759	int ret;
2760
2761	map->lock(map->lock_arg);
2762
2763	map->async = async;
2764
2765	ret = _regmap_update_bits(map, reg, mask, val, change, force);
2766
2767	map->async = false;
2768
2769	map->unlock(map->lock_arg);
2770
2771	return ret;
2772}
2773EXPORT_SYMBOL_GPL(regmap_update_bits_base);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2774
2775void regmap_async_complete_cb(struct regmap_async *async, int ret)
2776{
2777	struct regmap *map = async->map;
2778	bool wake;
2779
2780	trace_regmap_async_io_complete(map);
2781
2782	spin_lock(&map->async_lock);
2783	list_move(&async->list, &map->async_free);
2784	wake = list_empty(&map->async_list);
2785
2786	if (ret != 0)
2787		map->async_ret = ret;
2788
2789	spin_unlock(&map->async_lock);
2790
2791	if (wake)
2792		wake_up(&map->async_waitq);
2793}
2794EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2795
2796static int regmap_async_is_done(struct regmap *map)
2797{
2798	unsigned long flags;
2799	int ret;
2800
2801	spin_lock_irqsave(&map->async_lock, flags);
2802	ret = list_empty(&map->async_list);
2803	spin_unlock_irqrestore(&map->async_lock, flags);
2804
2805	return ret;
2806}
2807
2808/**
2809 * regmap_async_complete - Ensure all asynchronous I/O has completed.
2810 *
2811 * @map: Map to operate on.
2812 *
2813 * Blocks until any pending asynchronous I/O has completed.  Returns
2814 * an error code for any failed I/O operations.
2815 */
2816int regmap_async_complete(struct regmap *map)
2817{
2818	unsigned long flags;
2819	int ret;
2820
2821	/* Nothing to do with no async support */
2822	if (!map->bus || !map->bus->async_write)
2823		return 0;
2824
2825	trace_regmap_async_complete_start(map);
2826
2827	wait_event(map->async_waitq, regmap_async_is_done(map));
2828
2829	spin_lock_irqsave(&map->async_lock, flags);
2830	ret = map->async_ret;
2831	map->async_ret = 0;
2832	spin_unlock_irqrestore(&map->async_lock, flags);
2833
2834	trace_regmap_async_complete_done(map);
2835
2836	return ret;
2837}
2838EXPORT_SYMBOL_GPL(regmap_async_complete);
2839
2840/**
2841 * regmap_register_patch - Register and apply register updates to be applied
2842 *                         on device initialistion
2843 *
2844 * @map: Register map to apply updates to.
2845 * @regs: Values to update.
2846 * @num_regs: Number of entries in regs.
2847 *
2848 * Register a set of register updates to be applied to the device
2849 * whenever the device registers are synchronised with the cache and
2850 * apply them immediately.  Typically this is used to apply
2851 * corrections to be applied to the device defaults on startup, such
2852 * as the updates some vendors provide to undocumented registers.
2853 *
2854 * The caller must ensure that this function cannot be called
2855 * concurrently with either itself or regcache_sync().
2856 */
2857int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
2858			  int num_regs)
2859{
2860	struct reg_sequence *p;
2861	int ret;
2862	bool bypass;
2863
2864	if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2865	    num_regs))
2866		return 0;
2867
2868	p = krealloc(map->patch,
2869		     sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
2870		     GFP_KERNEL);
2871	if (p) {
2872		memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2873		map->patch = p;
2874		map->patch_regs += num_regs;
2875	} else {
2876		return -ENOMEM;
2877	}
2878
2879	map->lock(map->lock_arg);
2880
2881	bypass = map->cache_bypass;
2882
2883	map->cache_bypass = true;
2884	map->async = true;
2885
2886	ret = _regmap_multi_reg_write(map, regs, num_regs);
2887
2888	map->async = false;
2889	map->cache_bypass = bypass;
2890
2891	map->unlock(map->lock_arg);
2892
2893	regmap_async_complete(map);
2894
2895	return ret;
2896}
2897EXPORT_SYMBOL_GPL(regmap_register_patch);
2898
2899/**
2900 * regmap_get_val_bytes() - Report the size of a register value
2901 *
2902 * @map: Register map to operate on.
2903 *
2904 * Report the size of a register value, mainly intended to for use by
2905 * generic infrastructure built on top of regmap.
2906 */
2907int regmap_get_val_bytes(struct regmap *map)
2908{
2909	if (map->format.format_write)
2910		return -EINVAL;
2911
2912	return map->format.val_bytes;
2913}
2914EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2915
2916/**
2917 * regmap_get_max_register() - Report the max register value
2918 *
2919 * @map: Register map to operate on.
2920 *
2921 * Report the max register value, mainly intended to for use by
2922 * generic infrastructure built on top of regmap.
2923 */
2924int regmap_get_max_register(struct regmap *map)
2925{
2926	return map->max_register ? map->max_register : -EINVAL;
2927}
2928EXPORT_SYMBOL_GPL(regmap_get_max_register);
2929
2930/**
2931 * regmap_get_reg_stride() - Report the register address stride
2932 *
2933 * @map: Register map to operate on.
2934 *
2935 * Report the register address stride, mainly intended to for use by
2936 * generic infrastructure built on top of regmap.
2937 */
2938int regmap_get_reg_stride(struct regmap *map)
2939{
2940	return map->reg_stride;
2941}
2942EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2943
2944int regmap_parse_val(struct regmap *map, const void *buf,
2945			unsigned int *val)
2946{
2947	if (!map->format.parse_val)
2948		return -EINVAL;
2949
2950	*val = map->format.parse_val(buf);
2951
2952	return 0;
2953}
2954EXPORT_SYMBOL_GPL(regmap_parse_val);
2955
2956static int __init regmap_initcall(void)
2957{
2958	regmap_debugfs_initcall();
2959
2960	return 0;
2961}
2962postcore_initcall(regmap_initcall);