Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SH RSPI driver
   4 *
   5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6 * Copyright (C) 2014 Glider bvba
   7 *
   8 * Based on spi-sh.c:
   9 * Copyright (C) 2011 Renesas Solutions Corp.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/dmaengine.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/of_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_dma.h>
  25#include <linux/spi/spi.h>
  26#include <linux/spi/rspi.h>
  27#include <linux/spinlock.h>
  28
  29#define RSPI_SPCR		0x00	/* Control Register */
  30#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
  31#define RSPI_SPPCR		0x02	/* Pin Control Register */
  32#define RSPI_SPSR		0x03	/* Status Register */
  33#define RSPI_SPDR		0x04	/* Data Register */
  34#define RSPI_SPSCR		0x08	/* Sequence Control Register */
  35#define RSPI_SPSSR		0x09	/* Sequence Status Register */
  36#define RSPI_SPBR		0x0a	/* Bit Rate Register */
  37#define RSPI_SPDCR		0x0b	/* Data Control Register */
  38#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
  39#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
  40#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
  41#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
  42#define RSPI_SPCMD0		0x10	/* Command Register 0 */
  43#define RSPI_SPCMD1		0x12	/* Command Register 1 */
  44#define RSPI_SPCMD2		0x14	/* Command Register 2 */
  45#define RSPI_SPCMD3		0x16	/* Command Register 3 */
  46#define RSPI_SPCMD4		0x18	/* Command Register 4 */
  47#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
  48#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
  49#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
  50#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
  51#define RSPI_NUM_SPCMD		8
  52#define RSPI_RZ_NUM_SPCMD	4
  53#define QSPI_NUM_SPCMD		4
  54
  55/* RSPI on RZ only */
  56#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
  57#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
  58
  59/* QSPI only */
  60#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
  61#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
  62#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
  63#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
  64#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
  65#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
  66#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
  67
  68/* SPCR - Control Register */
  69#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
  70#define SPCR_SPE		0x40	/* Function Enable */
  71#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
  72#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
  73#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
  74#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
  75/* RSPI on SH only */
  76#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
  77#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
  78/* QSPI on R-Car Gen2 only */
  79#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
  80#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
  81
  82/* SSLP - Slave Select Polarity Register */
  83#define SSLP_SSLP(i)		BIT(i)	/* SSLi Signal Polarity Setting */
 
  84
  85/* SPPCR - Pin Control Register */
  86#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
  87#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
  88#define SPPCR_SPOM		0x04
  89#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
  90#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
  91
  92#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94
  95/* SPSR - Status Register */
  96#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
  97#define SPSR_TEND		0x40	/* Transmit End */
  98#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
  99#define SPSR_PERF		0x08	/* Parity Error Flag */
 100#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
 101#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
 102#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
 103
 104/* SPSCR - Sequence Control Register */
 105#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
 106
 107/* SPSSR - Sequence Status Register */
 108#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
 109#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
 110
 111/* SPDCR - Data Control Register */
 112#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
 113#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
 114#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
 115#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
 116#define SPDCR_SPLWORD		SPDCR_SPLW1
 117#define SPDCR_SPLBYTE		SPDCR_SPLW0
 118#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
 119#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
 120#define SPDCR_SLSEL1		0x08
 121#define SPDCR_SLSEL0		0x04
 122#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
 123#define SPDCR_SPFC1		0x02
 124#define SPDCR_SPFC0		0x01
 125#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
 126
 127/* SPCKD - Clock Delay Register */
 128#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
 129
 130/* SSLND - Slave Select Negation Delay Register */
 131#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
 132
 133/* SPND - Next-Access Delay Register */
 134#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
 135
 136/* SPCR2 - Control Register 2 */
 137#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
 138#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
 139#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
 140#define SPCR2_SPPE		0x01	/* Parity Enable */
 141
 142/* SPCMDn - Command Registers */
 143#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
 144#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
 145#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
 146#define SPCMD_LSBF		0x1000	/* LSB First */
 147#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
 148#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
 149#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
 150#define SPCMD_SPB_16BIT		0x0100
 151#define SPCMD_SPB_20BIT		0x0000
 152#define SPCMD_SPB_24BIT		0x0100
 153#define SPCMD_SPB_32BIT		0x0200
 154#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
 155#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
 156#define SPCMD_SPIMOD1		0x0040
 157#define SPCMD_SPIMOD0		0x0020
 158#define SPCMD_SPIMOD_SINGLE	0
 159#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
 160#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
 161#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
 162#define SPCMD_SSLA(i)		((i) << 4)	/* SSL Assert Signal Setting */
 163#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
 164#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
 165#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
 166
 167/* SPBFCR - Buffer Control Register */
 168#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
 169#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
 170#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
 171#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
 172/* QSPI on R-Car Gen2 */
 173#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
 174#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
 175#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
 176#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
 177
 178#define QSPI_BUFFER_SIZE        32u
 179
 180struct rspi_data {
 181	void __iomem *addr;
 182	u32 speed_hz;
 183	struct spi_controller *ctlr;
 184	struct platform_device *pdev;
 185	wait_queue_head_t wait;
 186	spinlock_t lock;		/* Protects RMW-access to RSPI_SSLP */
 187	struct clk *clk;
 188	u16 spcmd;
 189	u8 spsr;
 190	u8 sppcr;
 191	int rx_irq, tx_irq;
 192	const struct spi_ops *ops;
 193
 194	unsigned dma_callbacked:1;
 195	unsigned byte_access:1;
 196};
 197
 198static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 199{
 200	iowrite8(data, rspi->addr + offset);
 201}
 202
 203static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 204{
 205	iowrite16(data, rspi->addr + offset);
 206}
 207
 208static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 209{
 210	iowrite32(data, rspi->addr + offset);
 211}
 212
 213static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 214{
 215	return ioread8(rspi->addr + offset);
 216}
 217
 218static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 219{
 220	return ioread16(rspi->addr + offset);
 221}
 222
 223static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 224{
 225	if (rspi->byte_access)
 226		rspi_write8(rspi, data, RSPI_SPDR);
 227	else /* 16 bit */
 228		rspi_write16(rspi, data, RSPI_SPDR);
 229}
 230
 231static u16 rspi_read_data(const struct rspi_data *rspi)
 232{
 233	if (rspi->byte_access)
 234		return rspi_read8(rspi, RSPI_SPDR);
 235	else /* 16 bit */
 236		return rspi_read16(rspi, RSPI_SPDR);
 237}
 238
 239/* optional functions */
 240struct spi_ops {
 241	int (*set_config_register)(struct rspi_data *rspi, int access_size);
 242	int (*transfer_one)(struct spi_controller *ctlr,
 243			    struct spi_device *spi, struct spi_transfer *xfer);
 244	u16 extra_mode_bits;
 245	u16 flags;
 246	u16 fifo_size;
 247	u8 num_hw_ss;
 248};
 249
 250/*
 251 * functions for RSPI on legacy SH
 252 */
 253static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 254{
 255	int spbr;
 256
 257	/* Sets output mode, MOSI signal, and (optionally) loopback */
 258	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 259
 260	/* Sets transfer bit rate */
 261	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz) - 1;
 
 262	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 263
 264	/* Disable dummy transmission, set 16-bit word access, 1 frame */
 265	rspi_write8(rspi, 0, RSPI_SPDCR);
 266	rspi->byte_access = 0;
 267
 268	/* Sets RSPCK, SSL, next-access delay value */
 269	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 270	rspi_write8(rspi, 0x00, RSPI_SSLND);
 271	rspi_write8(rspi, 0x00, RSPI_SPND);
 272
 273	/* Sets parity, interrupt mask */
 274	rspi_write8(rspi, 0x00, RSPI_SPCR2);
 275
 276	/* Resets sequencer */
 277	rspi_write8(rspi, 0, RSPI_SPSCR);
 278	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 279	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 280
 281	/* Sets RSPI mode */
 282	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 283
 284	return 0;
 285}
 286
 287/*
 288 * functions for RSPI on RZ
 289 */
 290static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 291{
 292	int spbr;
 293	int div = 0;
 294	unsigned long clksrc;
 295
 296	/* Sets output mode, MOSI signal, and (optionally) loopback */
 297	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 298
 299	clksrc = clk_get_rate(rspi->clk);
 300	while (div < 3) {
 301		if (rspi->speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
 302			break;
 303		div++;
 304		clksrc /= 2;
 305	}
 306
 307	/* Sets transfer bit rate */
 308	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
 309	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 310	rspi->spcmd |= div << 2;
 311
 312	/* Disable dummy transmission, set byte access */
 313	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 314	rspi->byte_access = 1;
 315
 316	/* Sets RSPCK, SSL, next-access delay value */
 317	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 318	rspi_write8(rspi, 0x00, RSPI_SSLND);
 319	rspi_write8(rspi, 0x00, RSPI_SPND);
 320
 321	/* Resets sequencer */
 322	rspi_write8(rspi, 0, RSPI_SPSCR);
 323	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 324	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 325
 326	/* Sets RSPI mode */
 327	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 328
 329	return 0;
 330}
 331
 332/*
 333 * functions for QSPI
 334 */
 335static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 336{
 337	int spbr;
 338
 339	/* Sets output mode, MOSI signal, and (optionally) loopback */
 340	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 341
 342	/* Sets transfer bit rate */
 343	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz);
 344	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 345
 346	/* Disable dummy transmission, set byte access */
 347	rspi_write8(rspi, 0, RSPI_SPDCR);
 348	rspi->byte_access = 1;
 349
 350	/* Sets RSPCK, SSL, next-access delay value */
 351	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 352	rspi_write8(rspi, 0x00, RSPI_SSLND);
 353	rspi_write8(rspi, 0x00, RSPI_SPND);
 354
 355	/* Data Length Setting */
 356	if (access_size == 8)
 357		rspi->spcmd |= SPCMD_SPB_8BIT;
 358	else if (access_size == 16)
 359		rspi->spcmd |= SPCMD_SPB_16BIT;
 360	else
 361		rspi->spcmd |= SPCMD_SPB_32BIT;
 362
 363	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 364
 365	/* Resets transfer data length */
 366	rspi_write32(rspi, 0, QSPI_SPBMUL0);
 367
 368	/* Resets transmit and receive buffer */
 369	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 370	/* Sets buffer to allow normal operation */
 371	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 372
 373	/* Resets sequencer */
 374	rspi_write8(rspi, 0, RSPI_SPSCR);
 375	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 376
 377	/* Sets RSPI mode */
 378	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 379
 380	return 0;
 381}
 382
 383static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 384{
 385	u8 data;
 386
 387	data = rspi_read8(rspi, reg);
 388	data &= ~mask;
 389	data |= (val & mask);
 390	rspi_write8(rspi, data, reg);
 391}
 392
 393static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 394					  unsigned int len)
 395{
 396	unsigned int n;
 397
 398	n = min(len, QSPI_BUFFER_SIZE);
 399
 400	if (len >= QSPI_BUFFER_SIZE) {
 401		/* sets triggering number to 32 bytes */
 402		qspi_update(rspi, SPBFCR_TXTRG_MASK,
 403			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 404	} else {
 405		/* sets triggering number to 1 byte */
 406		qspi_update(rspi, SPBFCR_TXTRG_MASK,
 407			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 408	}
 409
 410	return n;
 411}
 412
 413static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 414{
 415	unsigned int n;
 416
 417	n = min(len, QSPI_BUFFER_SIZE);
 418
 419	if (len >= QSPI_BUFFER_SIZE) {
 420		/* sets triggering number to 32 bytes */
 421		qspi_update(rspi, SPBFCR_RXTRG_MASK,
 422			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 423	} else {
 424		/* sets triggering number to 1 byte */
 425		qspi_update(rspi, SPBFCR_RXTRG_MASK,
 426			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 427	}
 428	return n;
 429}
 430
 
 
 431static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 432{
 433	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 434}
 435
 436static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 437{
 438	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 439}
 440
 441static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 442				   u8 enable_bit)
 443{
 444	int ret;
 445
 446	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 447	if (rspi->spsr & wait_mask)
 448		return 0;
 449
 450	rspi_enable_irq(rspi, enable_bit);
 451	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 452	if (ret == 0 && !(rspi->spsr & wait_mask))
 453		return -ETIMEDOUT;
 454
 455	return 0;
 456}
 457
 458static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 459{
 460	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 461}
 462
 463static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 464{
 465	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 466}
 467
 468static int rspi_data_out(struct rspi_data *rspi, u8 data)
 469{
 470	int error = rspi_wait_for_tx_empty(rspi);
 471	if (error < 0) {
 472		dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 473		return error;
 474	}
 475	rspi_write_data(rspi, data);
 476	return 0;
 477}
 478
 479static int rspi_data_in(struct rspi_data *rspi)
 480{
 481	int error;
 482	u8 data;
 483
 484	error = rspi_wait_for_rx_full(rspi);
 485	if (error < 0) {
 486		dev_err(&rspi->ctlr->dev, "receive timeout\n");
 487		return error;
 488	}
 489	data = rspi_read_data(rspi);
 490	return data;
 491}
 492
 493static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 494			     unsigned int n)
 495{
 496	while (n-- > 0) {
 497		if (tx) {
 498			int ret = rspi_data_out(rspi, *tx++);
 499			if (ret < 0)
 500				return ret;
 501		}
 502		if (rx) {
 503			int ret = rspi_data_in(rspi);
 504			if (ret < 0)
 505				return ret;
 506			*rx++ = ret;
 507		}
 508	}
 509
 510	return 0;
 511}
 512
 513static void rspi_dma_complete(void *arg)
 514{
 515	struct rspi_data *rspi = arg;
 516
 517	rspi->dma_callbacked = 1;
 518	wake_up_interruptible(&rspi->wait);
 519}
 520
 521static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 522			     struct sg_table *rx)
 523{
 524	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 525	u8 irq_mask = 0;
 526	unsigned int other_irq = 0;
 527	dma_cookie_t cookie;
 528	int ret;
 529
 530	/* First prepare and submit the DMA request(s), as this may fail */
 531	if (rx) {
 532		desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 533					rx->nents, DMA_DEV_TO_MEM,
 534					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 535		if (!desc_rx) {
 536			ret = -EAGAIN;
 537			goto no_dma_rx;
 538		}
 539
 540		desc_rx->callback = rspi_dma_complete;
 541		desc_rx->callback_param = rspi;
 542		cookie = dmaengine_submit(desc_rx);
 543		if (dma_submit_error(cookie)) {
 544			ret = cookie;
 545			goto no_dma_rx;
 546		}
 547
 548		irq_mask |= SPCR_SPRIE;
 549	}
 550
 551	if (tx) {
 552		desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 553					tx->nents, DMA_MEM_TO_DEV,
 554					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 555		if (!desc_tx) {
 556			ret = -EAGAIN;
 557			goto no_dma_tx;
 558		}
 559
 560		if (rx) {
 561			/* No callback */
 562			desc_tx->callback = NULL;
 563		} else {
 564			desc_tx->callback = rspi_dma_complete;
 565			desc_tx->callback_param = rspi;
 566		}
 567		cookie = dmaengine_submit(desc_tx);
 568		if (dma_submit_error(cookie)) {
 569			ret = cookie;
 570			goto no_dma_tx;
 571		}
 572
 573		irq_mask |= SPCR_SPTIE;
 574	}
 575
 576	/*
 577	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 578	 * called. So, this driver disables the IRQ while DMA transfer.
 579	 */
 580	if (tx)
 581		disable_irq(other_irq = rspi->tx_irq);
 582	if (rx && rspi->rx_irq != other_irq)
 583		disable_irq(rspi->rx_irq);
 584
 585	rspi_enable_irq(rspi, irq_mask);
 586	rspi->dma_callbacked = 0;
 587
 588	/* Now start DMA */
 589	if (rx)
 590		dma_async_issue_pending(rspi->ctlr->dma_rx);
 591	if (tx)
 592		dma_async_issue_pending(rspi->ctlr->dma_tx);
 593
 594	ret = wait_event_interruptible_timeout(rspi->wait,
 595					       rspi->dma_callbacked, HZ);
 596	if (ret > 0 && rspi->dma_callbacked) {
 597		ret = 0;
 598	} else {
 599		if (!ret) {
 600			dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 601			ret = -ETIMEDOUT;
 602		}
 603		if (tx)
 604			dmaengine_terminate_all(rspi->ctlr->dma_tx);
 605		if (rx)
 606			dmaengine_terminate_all(rspi->ctlr->dma_rx);
 607	}
 608
 609	rspi_disable_irq(rspi, irq_mask);
 610
 611	if (tx)
 612		enable_irq(rspi->tx_irq);
 613	if (rx && rspi->rx_irq != other_irq)
 614		enable_irq(rspi->rx_irq);
 615
 616	return ret;
 617
 618no_dma_tx:
 619	if (rx)
 620		dmaengine_terminate_all(rspi->ctlr->dma_rx);
 621no_dma_rx:
 622	if (ret == -EAGAIN) {
 623		dev_warn_once(&rspi->ctlr->dev,
 624			      "DMA not available, falling back to PIO\n");
 
 625	}
 626	return ret;
 627}
 628
 629static void rspi_receive_init(const struct rspi_data *rspi)
 630{
 631	u8 spsr;
 632
 633	spsr = rspi_read8(rspi, RSPI_SPSR);
 634	if (spsr & SPSR_SPRF)
 635		rspi_read_data(rspi);	/* dummy read */
 636	if (spsr & SPSR_OVRF)
 637		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 638			    RSPI_SPSR);
 639}
 640
 641static void rspi_rz_receive_init(const struct rspi_data *rspi)
 642{
 643	rspi_receive_init(rspi);
 644	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 645	rspi_write8(rspi, 0, RSPI_SPBFCR);
 646}
 647
 648static void qspi_receive_init(const struct rspi_data *rspi)
 649{
 650	u8 spsr;
 651
 652	spsr = rspi_read8(rspi, RSPI_SPSR);
 653	if (spsr & SPSR_SPRF)
 654		rspi_read_data(rspi);   /* dummy read */
 655	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 656	rspi_write8(rspi, 0, QSPI_SPBFCR);
 657}
 658
 659static bool __rspi_can_dma(const struct rspi_data *rspi,
 660			   const struct spi_transfer *xfer)
 661{
 662	return xfer->len > rspi->ops->fifo_size;
 663}
 664
 665static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 666			 struct spi_transfer *xfer)
 667{
 668	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 669
 670	return __rspi_can_dma(rspi, xfer);
 671}
 672
 673static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 674					 struct spi_transfer *xfer)
 675{
 676	if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 677		return -EAGAIN;
 678
 679	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 680	return rspi_dma_transfer(rspi, &xfer->tx_sg,
 681				xfer->rx_buf ? &xfer->rx_sg : NULL);
 682}
 683
 684static int rspi_common_transfer(struct rspi_data *rspi,
 685				struct spi_transfer *xfer)
 686{
 687	int ret;
 688
 689	ret = rspi_dma_check_then_transfer(rspi, xfer);
 690	if (ret != -EAGAIN)
 691		return ret;
 692
 693	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 694	if (ret < 0)
 695		return ret;
 696
 697	/* Wait for the last transmission */
 698	rspi_wait_for_tx_empty(rspi);
 699
 700	return 0;
 701}
 702
 703static int rspi_transfer_one(struct spi_controller *ctlr,
 704			     struct spi_device *spi, struct spi_transfer *xfer)
 705{
 706	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 707	u8 spcr;
 708
 709	spcr = rspi_read8(rspi, RSPI_SPCR);
 710	if (xfer->rx_buf) {
 711		rspi_receive_init(rspi);
 712		spcr &= ~SPCR_TXMD;
 713	} else {
 714		spcr |= SPCR_TXMD;
 715	}
 716	rspi_write8(rspi, spcr, RSPI_SPCR);
 717
 718	return rspi_common_transfer(rspi, xfer);
 719}
 720
 721static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 722				struct spi_device *spi,
 723				struct spi_transfer *xfer)
 724{
 725	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 726
 727	rspi_rz_receive_init(rspi);
 728
 729	return rspi_common_transfer(rspi, xfer);
 730}
 731
 732static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 733					u8 *rx, unsigned int len)
 734{
 735	unsigned int i, n;
 736	int ret;
 737
 738	while (len > 0) {
 739		n = qspi_set_send_trigger(rspi, len);
 740		qspi_set_receive_trigger(rspi, len);
 741		ret = rspi_wait_for_tx_empty(rspi);
 742		if (ret < 0) {
 743			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 744			return ret;
 745		}
 746		for (i = 0; i < n; i++)
 747			rspi_write_data(rspi, *tx++);
 748
 749		ret = rspi_wait_for_rx_full(rspi);
 750		if (ret < 0) {
 751			dev_err(&rspi->ctlr->dev, "receive timeout\n");
 752			return ret;
 753		}
 754		for (i = 0; i < n; i++)
 755			*rx++ = rspi_read_data(rspi);
 756
 757		len -= n;
 758	}
 759
 760	return 0;
 761}
 762
 763static int qspi_transfer_out_in(struct rspi_data *rspi,
 764				struct spi_transfer *xfer)
 765{
 766	int ret;
 767
 768	qspi_receive_init(rspi);
 769
 770	ret = rspi_dma_check_then_transfer(rspi, xfer);
 771	if (ret != -EAGAIN)
 772		return ret;
 773
 774	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 775					    xfer->rx_buf, xfer->len);
 776}
 777
 778static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 779{
 780	const u8 *tx = xfer->tx_buf;
 781	unsigned int n = xfer->len;
 782	unsigned int i, len;
 783	int ret;
 784
 785	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 786		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 787		if (ret != -EAGAIN)
 788			return ret;
 789	}
 790
 791	while (n > 0) {
 792		len = qspi_set_send_trigger(rspi, n);
 793		ret = rspi_wait_for_tx_empty(rspi);
 794		if (ret < 0) {
 795			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 796			return ret;
 797		}
 798		for (i = 0; i < len; i++)
 799			rspi_write_data(rspi, *tx++);
 800
 801		n -= len;
 802	}
 803
 804	/* Wait for the last transmission */
 805	rspi_wait_for_tx_empty(rspi);
 806
 807	return 0;
 808}
 809
 810static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 811{
 812	u8 *rx = xfer->rx_buf;
 813	unsigned int n = xfer->len;
 814	unsigned int i, len;
 815	int ret;
 816
 817	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 818		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 819		if (ret != -EAGAIN)
 820			return ret;
 821	}
 822
 823	while (n > 0) {
 824		len = qspi_set_receive_trigger(rspi, n);
 825		ret = rspi_wait_for_rx_full(rspi);
 826		if (ret < 0) {
 827			dev_err(&rspi->ctlr->dev, "receive timeout\n");
 828			return ret;
 829		}
 830		for (i = 0; i < len; i++)
 831			*rx++ = rspi_read_data(rspi);
 832
 833		n -= len;
 834	}
 835
 836	return 0;
 837}
 838
 839static int qspi_transfer_one(struct spi_controller *ctlr,
 840			     struct spi_device *spi, struct spi_transfer *xfer)
 841{
 842	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 843
 844	if (spi->mode & SPI_LOOP) {
 845		return qspi_transfer_out_in(rspi, xfer);
 846	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 847		/* Quad or Dual SPI Write */
 848		return qspi_transfer_out(rspi, xfer);
 849	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 850		/* Quad or Dual SPI Read */
 851		return qspi_transfer_in(rspi, xfer);
 852	} else {
 853		/* Single SPI Transfer */
 854		return qspi_transfer_out_in(rspi, xfer);
 855	}
 856}
 857
 858static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 859{
 860	if (xfer->tx_buf)
 861		switch (xfer->tx_nbits) {
 862		case SPI_NBITS_QUAD:
 863			return SPCMD_SPIMOD_QUAD;
 864		case SPI_NBITS_DUAL:
 865			return SPCMD_SPIMOD_DUAL;
 866		default:
 867			return 0;
 868		}
 869	if (xfer->rx_buf)
 870		switch (xfer->rx_nbits) {
 871		case SPI_NBITS_QUAD:
 872			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 873		case SPI_NBITS_DUAL:
 874			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 875		default:
 876			return 0;
 877		}
 878
 879	return 0;
 880}
 881
 882static int qspi_setup_sequencer(struct rspi_data *rspi,
 883				const struct spi_message *msg)
 884{
 885	const struct spi_transfer *xfer;
 886	unsigned int i = 0, len = 0;
 887	u16 current_mode = 0xffff, mode;
 888
 889	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 890		mode = qspi_transfer_mode(xfer);
 891		if (mode == current_mode) {
 892			len += xfer->len;
 893			continue;
 894		}
 895
 896		/* Transfer mode change */
 897		if (i) {
 898			/* Set transfer data length of previous transfer */
 899			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 900		}
 901
 902		if (i >= QSPI_NUM_SPCMD) {
 903			dev_err(&msg->spi->dev,
 904				"Too many different transfer modes");
 905			return -EINVAL;
 906		}
 907
 908		/* Program transfer mode for this transfer */
 909		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 910		current_mode = mode;
 911		len = xfer->len;
 912		i++;
 913	}
 914	if (i) {
 915		/* Set final transfer data length and sequence length */
 916		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 917		rspi_write8(rspi, i - 1, RSPI_SPSCR);
 918	}
 919
 920	return 0;
 921}
 922
 923static int rspi_setup(struct spi_device *spi)
 924{
 925	struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
 926	u8 sslp;
 927
 928	if (spi->cs_gpiod)
 929		return 0;
 930
 931	pm_runtime_get_sync(&rspi->pdev->dev);
 932	spin_lock_irq(&rspi->lock);
 933
 934	sslp = rspi_read8(rspi, RSPI_SSLP);
 935	if (spi->mode & SPI_CS_HIGH)
 936		sslp |= SSLP_SSLP(spi->chip_select);
 937	else
 938		sslp &= ~SSLP_SSLP(spi->chip_select);
 939	rspi_write8(rspi, sslp, RSPI_SSLP);
 940
 941	spin_unlock_irq(&rspi->lock);
 942	pm_runtime_put(&rspi->pdev->dev);
 943	return 0;
 944}
 945
 946static int rspi_prepare_message(struct spi_controller *ctlr,
 947				struct spi_message *msg)
 948{
 949	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 950	struct spi_device *spi = msg->spi;
 951	const struct spi_transfer *xfer;
 952	int ret;
 953
 954	/*
 955	 * As the Bit Rate Register must not be changed while the device is
 956	 * active, all transfers in a message must use the same bit rate.
 957	 * In theory, the sequencer could be enabled, and each Command Register
 958	 * could divide the base bit rate by a different value.
 959	 * However, most RSPI variants do not have Transfer Data Length
 960	 * Multiplier Setting Registers, so each sequence step would be limited
 961	 * to a single word, making this feature unsuitable for large
 962	 * transfers, which would gain most from it.
 963	 */
 964	rspi->speed_hz = spi->max_speed_hz;
 965	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 966		if (xfer->speed_hz < rspi->speed_hz)
 967			rspi->speed_hz = xfer->speed_hz;
 968	}
 969
 970	rspi->spcmd = SPCMD_SSLKP;
 971	if (spi->mode & SPI_CPOL)
 972		rspi->spcmd |= SPCMD_CPOL;
 973	if (spi->mode & SPI_CPHA)
 974		rspi->spcmd |= SPCMD_CPHA;
 975	if (spi->mode & SPI_LSB_FIRST)
 976		rspi->spcmd |= SPCMD_LSBF;
 977
 978	/* Configure slave signal to assert */
 979	rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
 980						: spi->chip_select);
 981
 982	/* CMOS output mode and MOSI signal from previous transfer */
 983	rspi->sppcr = 0;
 984	if (spi->mode & SPI_LOOP)
 985		rspi->sppcr |= SPPCR_SPLP;
 986
 987	rspi->ops->set_config_register(rspi, 8);
 988
 989	if (msg->spi->mode &
 990	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
 991		/* Setup sequencer for messages with multiple transfer modes */
 992		ret = qspi_setup_sequencer(rspi, msg);
 993		if (ret < 0)
 994			return ret;
 995	}
 996
 997	/* Enable SPI function in master mode */
 998	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
 999	return 0;
1000}
1001
1002static int rspi_unprepare_message(struct spi_controller *ctlr,
1003				  struct spi_message *msg)
1004{
1005	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1006
1007	/* Disable SPI function */
1008	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1009
1010	/* Reset sequencer for Single SPI Transfers */
1011	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1012	rspi_write8(rspi, 0, RSPI_SPSCR);
1013	return 0;
1014}
1015
1016static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1017{
1018	struct rspi_data *rspi = _sr;
1019	u8 spsr;
1020	irqreturn_t ret = IRQ_NONE;
1021	u8 disable_irq = 0;
1022
1023	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1024	if (spsr & SPSR_SPRF)
1025		disable_irq |= SPCR_SPRIE;
1026	if (spsr & SPSR_SPTEF)
1027		disable_irq |= SPCR_SPTIE;
1028
1029	if (disable_irq) {
1030		ret = IRQ_HANDLED;
1031		rspi_disable_irq(rspi, disable_irq);
1032		wake_up(&rspi->wait);
1033	}
1034
1035	return ret;
1036}
1037
1038static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1039{
1040	struct rspi_data *rspi = _sr;
1041	u8 spsr;
1042
1043	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1044	if (spsr & SPSR_SPRF) {
1045		rspi_disable_irq(rspi, SPCR_SPRIE);
1046		wake_up(&rspi->wait);
1047		return IRQ_HANDLED;
1048	}
1049
1050	return 0;
1051}
1052
1053static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1054{
1055	struct rspi_data *rspi = _sr;
1056	u8 spsr;
1057
1058	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1059	if (spsr & SPSR_SPTEF) {
1060		rspi_disable_irq(rspi, SPCR_SPTIE);
1061		wake_up(&rspi->wait);
1062		return IRQ_HANDLED;
1063	}
1064
1065	return 0;
1066}
1067
1068static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1069					      enum dma_transfer_direction dir,
1070					      unsigned int id,
1071					      dma_addr_t port_addr)
1072{
1073	dma_cap_mask_t mask;
1074	struct dma_chan *chan;
1075	struct dma_slave_config cfg;
1076	int ret;
1077
1078	dma_cap_zero(mask);
1079	dma_cap_set(DMA_SLAVE, mask);
1080
1081	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1082				(void *)(unsigned long)id, dev,
1083				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1084	if (!chan) {
1085		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1086		return NULL;
1087	}
1088
1089	memset(&cfg, 0, sizeof(cfg));
1090	cfg.direction = dir;
1091	if (dir == DMA_MEM_TO_DEV) {
1092		cfg.dst_addr = port_addr;
1093		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1094	} else {
1095		cfg.src_addr = port_addr;
1096		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1097	}
1098
1099	ret = dmaengine_slave_config(chan, &cfg);
1100	if (ret) {
1101		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1102		dma_release_channel(chan);
1103		return NULL;
1104	}
1105
1106	return chan;
1107}
1108
1109static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1110			    const struct resource *res)
1111{
1112	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1113	unsigned int dma_tx_id, dma_rx_id;
1114
1115	if (dev->of_node) {
1116		/* In the OF case we will get the slave IDs from the DT */
1117		dma_tx_id = 0;
1118		dma_rx_id = 0;
1119	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1120		dma_tx_id = rspi_pd->dma_tx_id;
1121		dma_rx_id = rspi_pd->dma_rx_id;
1122	} else {
1123		/* The driver assumes no error. */
1124		return 0;
1125	}
1126
1127	ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1128					     res->start + RSPI_SPDR);
1129	if (!ctlr->dma_tx)
1130		return -ENODEV;
1131
1132	ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1133					     res->start + RSPI_SPDR);
1134	if (!ctlr->dma_rx) {
1135		dma_release_channel(ctlr->dma_tx);
1136		ctlr->dma_tx = NULL;
1137		return -ENODEV;
1138	}
1139
1140	ctlr->can_dma = rspi_can_dma;
1141	dev_info(dev, "DMA available");
1142	return 0;
1143}
1144
1145static void rspi_release_dma(struct spi_controller *ctlr)
1146{
1147	if (ctlr->dma_tx)
1148		dma_release_channel(ctlr->dma_tx);
1149	if (ctlr->dma_rx)
1150		dma_release_channel(ctlr->dma_rx);
1151}
1152
1153static int rspi_remove(struct platform_device *pdev)
1154{
1155	struct rspi_data *rspi = platform_get_drvdata(pdev);
1156
1157	rspi_release_dma(rspi->ctlr);
1158	pm_runtime_disable(&pdev->dev);
1159
1160	return 0;
1161}
1162
1163static const struct spi_ops rspi_ops = {
1164	.set_config_register =	rspi_set_config_register,
1165	.transfer_one =		rspi_transfer_one,
 
1166	.flags =		SPI_CONTROLLER_MUST_TX,
1167	.fifo_size =		8,
1168	.num_hw_ss =		2,
1169};
1170
1171static const struct spi_ops rspi_rz_ops = {
1172	.set_config_register =	rspi_rz_set_config_register,
1173	.transfer_one =		rspi_rz_transfer_one,
 
1174	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1175	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1176	.num_hw_ss =		1,
1177};
1178
1179static const struct spi_ops qspi_ops = {
1180	.set_config_register =	qspi_set_config_register,
1181	.transfer_one =		qspi_transfer_one,
1182	.extra_mode_bits =	SPI_TX_DUAL | SPI_TX_QUAD |
 
1183				SPI_RX_DUAL | SPI_RX_QUAD,
1184	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1185	.fifo_size =		32,
1186	.num_hw_ss =		1,
1187};
1188
1189#ifdef CONFIG_OF
1190static const struct of_device_id rspi_of_match[] = {
1191	/* RSPI on legacy SH */
1192	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1193	/* RSPI on RZ/A1H */
1194	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1195	/* QSPI on R-Car Gen2 */
1196	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1197	{ /* sentinel */ }
1198};
1199
1200MODULE_DEVICE_TABLE(of, rspi_of_match);
1201
1202static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1203{
1204	u32 num_cs;
1205	int error;
1206
1207	/* Parse DT properties */
1208	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1209	if (error) {
1210		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1211		return error;
1212	}
1213
1214	ctlr->num_chipselect = num_cs;
1215	return 0;
1216}
1217#else
1218#define rspi_of_match	NULL
1219static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1220{
1221	return -EINVAL;
1222}
1223#endif /* CONFIG_OF */
1224
1225static int rspi_request_irq(struct device *dev, unsigned int irq,
1226			    irq_handler_t handler, const char *suffix,
1227			    void *dev_id)
1228{
1229	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1230					  dev_name(dev), suffix);
1231	if (!name)
1232		return -ENOMEM;
1233
1234	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1235}
1236
1237static int rspi_probe(struct platform_device *pdev)
1238{
1239	struct resource *res;
1240	struct spi_controller *ctlr;
1241	struct rspi_data *rspi;
1242	int ret;
1243	const struct rspi_plat_data *rspi_pd;
1244	const struct spi_ops *ops;
1245
1246	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1247	if (ctlr == NULL)
1248		return -ENOMEM;
1249
1250	ops = of_device_get_match_data(&pdev->dev);
1251	if (ops) {
1252		ret = rspi_parse_dt(&pdev->dev, ctlr);
1253		if (ret)
1254			goto error1;
1255	} else {
1256		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1257		rspi_pd = dev_get_platdata(&pdev->dev);
1258		if (rspi_pd && rspi_pd->num_chipselect)
1259			ctlr->num_chipselect = rspi_pd->num_chipselect;
1260		else
1261			ctlr->num_chipselect = 2; /* default */
1262	}
1263
1264	/* ops parameter check */
1265	if (!ops->set_config_register) {
1266		dev_err(&pdev->dev, "there is no set_config_register\n");
1267		ret = -ENODEV;
1268		goto error1;
1269	}
1270
1271	rspi = spi_controller_get_devdata(ctlr);
1272	platform_set_drvdata(pdev, rspi);
1273	rspi->ops = ops;
1274	rspi->ctlr = ctlr;
1275
1276	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1277	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1278	if (IS_ERR(rspi->addr)) {
1279		ret = PTR_ERR(rspi->addr);
1280		goto error1;
1281	}
1282
1283	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1284	if (IS_ERR(rspi->clk)) {
1285		dev_err(&pdev->dev, "cannot get clock\n");
1286		ret = PTR_ERR(rspi->clk);
1287		goto error1;
1288	}
1289
1290	rspi->pdev = pdev;
1291	pm_runtime_enable(&pdev->dev);
1292
1293	init_waitqueue_head(&rspi->wait);
1294	spin_lock_init(&rspi->lock);
1295
1296	ctlr->bus_num = pdev->id;
1297	ctlr->setup = rspi_setup;
1298	ctlr->auto_runtime_pm = true;
1299	ctlr->transfer_one = ops->transfer_one;
1300	ctlr->prepare_message = rspi_prepare_message;
1301	ctlr->unprepare_message = rspi_unprepare_message;
1302	ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1303			  SPI_LOOP | ops->extra_mode_bits;
1304	ctlr->flags = ops->flags;
1305	ctlr->dev.of_node = pdev->dev.of_node;
1306	ctlr->use_gpio_descriptors = true;
1307	ctlr->max_native_cs = rspi->ops->num_hw_ss;
1308
1309	ret = platform_get_irq_byname_optional(pdev, "rx");
1310	if (ret < 0) {
1311		ret = platform_get_irq_byname_optional(pdev, "mux");
1312		if (ret < 0)
1313			ret = platform_get_irq(pdev, 0);
1314		if (ret >= 0)
1315			rspi->rx_irq = rspi->tx_irq = ret;
1316	} else {
1317		rspi->rx_irq = ret;
1318		ret = platform_get_irq_byname(pdev, "tx");
1319		if (ret >= 0)
1320			rspi->tx_irq = ret;
1321	}
 
 
 
 
1322
1323	if (rspi->rx_irq == rspi->tx_irq) {
1324		/* Single multiplexed interrupt */
1325		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1326				       "mux", rspi);
1327	} else {
1328		/* Multi-interrupt mode, only SPRI and SPTI are used */
1329		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1330				       "rx", rspi);
1331		if (!ret)
1332			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1333					       rspi_irq_tx, "tx", rspi);
1334	}
1335	if (ret < 0) {
1336		dev_err(&pdev->dev, "request_irq error\n");
1337		goto error2;
1338	}
1339
1340	ret = rspi_request_dma(&pdev->dev, ctlr, res);
1341	if (ret < 0)
1342		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1343
1344	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1345	if (ret < 0) {
1346		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1347		goto error3;
1348	}
1349
1350	dev_info(&pdev->dev, "probed\n");
1351
1352	return 0;
1353
1354error3:
1355	rspi_release_dma(ctlr);
1356error2:
1357	pm_runtime_disable(&pdev->dev);
1358error1:
1359	spi_controller_put(ctlr);
1360
1361	return ret;
1362}
1363
1364static const struct platform_device_id spi_driver_ids[] = {
1365	{ "rspi",	(kernel_ulong_t)&rspi_ops },
 
 
1366	{},
1367};
1368
1369MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1370
1371#ifdef CONFIG_PM_SLEEP
1372static int rspi_suspend(struct device *dev)
1373{
1374	struct rspi_data *rspi = dev_get_drvdata(dev);
1375
1376	return spi_controller_suspend(rspi->ctlr);
1377}
1378
1379static int rspi_resume(struct device *dev)
1380{
1381	struct rspi_data *rspi = dev_get_drvdata(dev);
1382
1383	return spi_controller_resume(rspi->ctlr);
1384}
1385
1386static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1387#define DEV_PM_OPS	&rspi_pm_ops
1388#else
1389#define DEV_PM_OPS	NULL
1390#endif /* CONFIG_PM_SLEEP */
1391
1392static struct platform_driver rspi_driver = {
1393	.probe =	rspi_probe,
1394	.remove =	rspi_remove,
1395	.id_table =	spi_driver_ids,
1396	.driver		= {
1397		.name = "renesas_spi",
1398		.pm = DEV_PM_OPS,
1399		.of_match_table = of_match_ptr(rspi_of_match),
1400	},
1401};
1402module_platform_driver(rspi_driver);
1403
1404MODULE_DESCRIPTION("Renesas RSPI bus driver");
1405MODULE_LICENSE("GPL v2");
1406MODULE_AUTHOR("Yoshihiro Shimoda");
1407MODULE_ALIAS("platform:rspi");
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SH RSPI driver
   4 *
   5 * Copyright (C) 2012, 2013  Renesas Solutions Corp.
   6 * Copyright (C) 2014 Glider bvba
   7 *
   8 * Based on spi-sh.c:
   9 * Copyright (C) 2011 Renesas Solutions Corp.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/kernel.h>
  14#include <linux/sched.h>
  15#include <linux/errno.h>
  16#include <linux/interrupt.h>
  17#include <linux/platform_device.h>
  18#include <linux/io.h>
  19#include <linux/clk.h>
  20#include <linux/dmaengine.h>
  21#include <linux/dma-mapping.h>
  22#include <linux/of_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_dma.h>
  25#include <linux/spi/spi.h>
  26#include <linux/spi/rspi.h>
 
  27
  28#define RSPI_SPCR		0x00	/* Control Register */
  29#define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
  30#define RSPI_SPPCR		0x02	/* Pin Control Register */
  31#define RSPI_SPSR		0x03	/* Status Register */
  32#define RSPI_SPDR		0x04	/* Data Register */
  33#define RSPI_SPSCR		0x08	/* Sequence Control Register */
  34#define RSPI_SPSSR		0x09	/* Sequence Status Register */
  35#define RSPI_SPBR		0x0a	/* Bit Rate Register */
  36#define RSPI_SPDCR		0x0b	/* Data Control Register */
  37#define RSPI_SPCKD		0x0c	/* Clock Delay Register */
  38#define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
  39#define RSPI_SPND		0x0e	/* Next-Access Delay Register */
  40#define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
  41#define RSPI_SPCMD0		0x10	/* Command Register 0 */
  42#define RSPI_SPCMD1		0x12	/* Command Register 1 */
  43#define RSPI_SPCMD2		0x14	/* Command Register 2 */
  44#define RSPI_SPCMD3		0x16	/* Command Register 3 */
  45#define RSPI_SPCMD4		0x18	/* Command Register 4 */
  46#define RSPI_SPCMD5		0x1a	/* Command Register 5 */
  47#define RSPI_SPCMD6		0x1c	/* Command Register 6 */
  48#define RSPI_SPCMD7		0x1e	/* Command Register 7 */
  49#define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
  50#define RSPI_NUM_SPCMD		8
  51#define RSPI_RZ_NUM_SPCMD	4
  52#define QSPI_NUM_SPCMD		4
  53
  54/* RSPI on RZ only */
  55#define RSPI_SPBFCR		0x20	/* Buffer Control Register */
  56#define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
  57
  58/* QSPI only */
  59#define QSPI_SPBFCR		0x18	/* Buffer Control Register */
  60#define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
  61#define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
  62#define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
  63#define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
  64#define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
  65#define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
  66
  67/* SPCR - Control Register */
  68#define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
  69#define SPCR_SPE		0x40	/* Function Enable */
  70#define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
  71#define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
  72#define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
  73#define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
  74/* RSPI on SH only */
  75#define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
  76#define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
  77/* QSPI on R-Car Gen2 only */
  78#define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
  79#define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
  80
  81/* SSLP - Slave Select Polarity Register */
  82#define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
  83#define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
  84
  85/* SPPCR - Pin Control Register */
  86#define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
  87#define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
  88#define SPPCR_SPOM		0x04
  89#define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
  90#define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
  91
  92#define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
  93#define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
  94
  95/* SPSR - Status Register */
  96#define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
  97#define SPSR_TEND		0x40	/* Transmit End */
  98#define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
  99#define SPSR_PERF		0x08	/* Parity Error Flag */
 100#define SPSR_MODF		0x04	/* Mode Fault Error Flag */
 101#define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
 102#define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
 103
 104/* SPSCR - Sequence Control Register */
 105#define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
 106
 107/* SPSSR - Sequence Status Register */
 108#define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
 109#define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
 110
 111/* SPDCR - Data Control Register */
 112#define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
 113#define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
 114#define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
 115#define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
 116#define SPDCR_SPLWORD		SPDCR_SPLW1
 117#define SPDCR_SPLBYTE		SPDCR_SPLW0
 118#define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
 119#define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
 120#define SPDCR_SLSEL1		0x08
 121#define SPDCR_SLSEL0		0x04
 122#define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
 123#define SPDCR_SPFC1		0x02
 124#define SPDCR_SPFC0		0x01
 125#define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
 126
 127/* SPCKD - Clock Delay Register */
 128#define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
 129
 130/* SSLND - Slave Select Negation Delay Register */
 131#define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
 132
 133/* SPND - Next-Access Delay Register */
 134#define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
 135
 136/* SPCR2 - Control Register 2 */
 137#define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
 138#define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
 139#define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
 140#define SPCR2_SPPE		0x01	/* Parity Enable */
 141
 142/* SPCMDn - Command Registers */
 143#define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
 144#define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
 145#define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
 146#define SPCMD_LSBF		0x1000	/* LSB First */
 147#define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
 148#define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
 149#define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
 150#define SPCMD_SPB_16BIT		0x0100
 151#define SPCMD_SPB_20BIT		0x0000
 152#define SPCMD_SPB_24BIT		0x0100
 153#define SPCMD_SPB_32BIT		0x0200
 154#define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
 155#define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
 156#define SPCMD_SPIMOD1		0x0040
 157#define SPCMD_SPIMOD0		0x0020
 158#define SPCMD_SPIMOD_SINGLE	0
 159#define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
 160#define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
 161#define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
 162#define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
 163#define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
 164#define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
 165#define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
 166
 167/* SPBFCR - Buffer Control Register */
 168#define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
 169#define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
 170#define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
 171#define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
 172/* QSPI on R-Car Gen2 */
 173#define SPBFCR_TXTRG_1B		0x00	/* 31 bytes (1 byte available) */
 174#define SPBFCR_TXTRG_32B	0x30	/* 0 byte (32 bytes available) */
 175#define SPBFCR_RXTRG_1B		0x00	/* 1 byte (31 bytes available) */
 176#define SPBFCR_RXTRG_32B	0x07	/* 32 bytes (0 byte available) */
 177
 178#define QSPI_BUFFER_SIZE        32u
 179
 180struct rspi_data {
 181	void __iomem *addr;
 182	u32 max_speed_hz;
 183	struct spi_controller *ctlr;
 
 184	wait_queue_head_t wait;
 
 185	struct clk *clk;
 186	u16 spcmd;
 187	u8 spsr;
 188	u8 sppcr;
 189	int rx_irq, tx_irq;
 190	const struct spi_ops *ops;
 191
 192	unsigned dma_callbacked:1;
 193	unsigned byte_access:1;
 194};
 195
 196static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
 197{
 198	iowrite8(data, rspi->addr + offset);
 199}
 200
 201static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
 202{
 203	iowrite16(data, rspi->addr + offset);
 204}
 205
 206static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
 207{
 208	iowrite32(data, rspi->addr + offset);
 209}
 210
 211static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
 212{
 213	return ioread8(rspi->addr + offset);
 214}
 215
 216static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
 217{
 218	return ioread16(rspi->addr + offset);
 219}
 220
 221static void rspi_write_data(const struct rspi_data *rspi, u16 data)
 222{
 223	if (rspi->byte_access)
 224		rspi_write8(rspi, data, RSPI_SPDR);
 225	else /* 16 bit */
 226		rspi_write16(rspi, data, RSPI_SPDR);
 227}
 228
 229static u16 rspi_read_data(const struct rspi_data *rspi)
 230{
 231	if (rspi->byte_access)
 232		return rspi_read8(rspi, RSPI_SPDR);
 233	else /* 16 bit */
 234		return rspi_read16(rspi, RSPI_SPDR);
 235}
 236
 237/* optional functions */
 238struct spi_ops {
 239	int (*set_config_register)(struct rspi_data *rspi, int access_size);
 240	int (*transfer_one)(struct spi_controller *ctlr,
 241			    struct spi_device *spi, struct spi_transfer *xfer);
 242	u16 mode_bits;
 243	u16 flags;
 244	u16 fifo_size;
 
 245};
 246
 247/*
 248 * functions for RSPI on legacy SH
 249 */
 250static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
 251{
 252	int spbr;
 253
 254	/* Sets output mode, MOSI signal, and (optionally) loopback */
 255	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 256
 257	/* Sets transfer bit rate */
 258	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
 259			    2 * rspi->max_speed_hz) - 1;
 260	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 261
 262	/* Disable dummy transmission, set 16-bit word access, 1 frame */
 263	rspi_write8(rspi, 0, RSPI_SPDCR);
 264	rspi->byte_access = 0;
 265
 266	/* Sets RSPCK, SSL, next-access delay value */
 267	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 268	rspi_write8(rspi, 0x00, RSPI_SSLND);
 269	rspi_write8(rspi, 0x00, RSPI_SPND);
 270
 271	/* Sets parity, interrupt mask */
 272	rspi_write8(rspi, 0x00, RSPI_SPCR2);
 273
 274	/* Resets sequencer */
 275	rspi_write8(rspi, 0, RSPI_SPSCR);
 276	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 277	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 278
 279	/* Sets RSPI mode */
 280	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 281
 282	return 0;
 283}
 284
 285/*
 286 * functions for RSPI on RZ
 287 */
 288static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
 289{
 290	int spbr;
 291	int div = 0;
 292	unsigned long clksrc;
 293
 294	/* Sets output mode, MOSI signal, and (optionally) loopback */
 295	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 296
 297	clksrc = clk_get_rate(rspi->clk);
 298	while (div < 3) {
 299		if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
 300			break;
 301		div++;
 302		clksrc /= 2;
 303	}
 304
 305	/* Sets transfer bit rate */
 306	spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1;
 307	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 308	rspi->spcmd |= div << 2;
 309
 310	/* Disable dummy transmission, set byte access */
 311	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
 312	rspi->byte_access = 1;
 313
 314	/* Sets RSPCK, SSL, next-access delay value */
 315	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 316	rspi_write8(rspi, 0x00, RSPI_SSLND);
 317	rspi_write8(rspi, 0x00, RSPI_SPND);
 318
 319	/* Resets sequencer */
 320	rspi_write8(rspi, 0, RSPI_SPSCR);
 321	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
 322	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 323
 324	/* Sets RSPI mode */
 325	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 326
 327	return 0;
 328}
 329
 330/*
 331 * functions for QSPI
 332 */
 333static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
 334{
 335	int spbr;
 336
 337	/* Sets output mode, MOSI signal, and (optionally) loopback */
 338	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
 339
 340	/* Sets transfer bit rate */
 341	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
 342	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
 343
 344	/* Disable dummy transmission, set byte access */
 345	rspi_write8(rspi, 0, RSPI_SPDCR);
 346	rspi->byte_access = 1;
 347
 348	/* Sets RSPCK, SSL, next-access delay value */
 349	rspi_write8(rspi, 0x00, RSPI_SPCKD);
 350	rspi_write8(rspi, 0x00, RSPI_SSLND);
 351	rspi_write8(rspi, 0x00, RSPI_SPND);
 352
 353	/* Data Length Setting */
 354	if (access_size == 8)
 355		rspi->spcmd |= SPCMD_SPB_8BIT;
 356	else if (access_size == 16)
 357		rspi->spcmd |= SPCMD_SPB_16BIT;
 358	else
 359		rspi->spcmd |= SPCMD_SPB_32BIT;
 360
 361	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
 362
 363	/* Resets transfer data length */
 364	rspi_write32(rspi, 0, QSPI_SPBMUL0);
 365
 366	/* Resets transmit and receive buffer */
 367	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 368	/* Sets buffer to allow normal operation */
 369	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
 370
 371	/* Resets sequencer */
 372	rspi_write8(rspi, 0, RSPI_SPSCR);
 373	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 374
 375	/* Sets RSPI mode */
 376	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
 377
 378	return 0;
 379}
 380
 381static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
 382{
 383	u8 data;
 384
 385	data = rspi_read8(rspi, reg);
 386	data &= ~mask;
 387	data |= (val & mask);
 388	rspi_write8(rspi, data, reg);
 389}
 390
 391static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
 392					  unsigned int len)
 393{
 394	unsigned int n;
 395
 396	n = min(len, QSPI_BUFFER_SIZE);
 397
 398	if (len >= QSPI_BUFFER_SIZE) {
 399		/* sets triggering number to 32 bytes */
 400		qspi_update(rspi, SPBFCR_TXTRG_MASK,
 401			     SPBFCR_TXTRG_32B, QSPI_SPBFCR);
 402	} else {
 403		/* sets triggering number to 1 byte */
 404		qspi_update(rspi, SPBFCR_TXTRG_MASK,
 405			     SPBFCR_TXTRG_1B, QSPI_SPBFCR);
 406	}
 407
 408	return n;
 409}
 410
 411static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
 412{
 413	unsigned int n;
 414
 415	n = min(len, QSPI_BUFFER_SIZE);
 416
 417	if (len >= QSPI_BUFFER_SIZE) {
 418		/* sets triggering number to 32 bytes */
 419		qspi_update(rspi, SPBFCR_RXTRG_MASK,
 420			     SPBFCR_RXTRG_32B, QSPI_SPBFCR);
 421	} else {
 422		/* sets triggering number to 1 byte */
 423		qspi_update(rspi, SPBFCR_RXTRG_MASK,
 424			     SPBFCR_RXTRG_1B, QSPI_SPBFCR);
 425	}
 426	return n;
 427}
 428
 429#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
 430
 431static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
 432{
 433	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
 434}
 435
 436static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
 437{
 438	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
 439}
 440
 441static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
 442				   u8 enable_bit)
 443{
 444	int ret;
 445
 446	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
 447	if (rspi->spsr & wait_mask)
 448		return 0;
 449
 450	rspi_enable_irq(rspi, enable_bit);
 451	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
 452	if (ret == 0 && !(rspi->spsr & wait_mask))
 453		return -ETIMEDOUT;
 454
 455	return 0;
 456}
 457
 458static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
 459{
 460	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
 461}
 462
 463static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
 464{
 465	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
 466}
 467
 468static int rspi_data_out(struct rspi_data *rspi, u8 data)
 469{
 470	int error = rspi_wait_for_tx_empty(rspi);
 471	if (error < 0) {
 472		dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 473		return error;
 474	}
 475	rspi_write_data(rspi, data);
 476	return 0;
 477}
 478
 479static int rspi_data_in(struct rspi_data *rspi)
 480{
 481	int error;
 482	u8 data;
 483
 484	error = rspi_wait_for_rx_full(rspi);
 485	if (error < 0) {
 486		dev_err(&rspi->ctlr->dev, "receive timeout\n");
 487		return error;
 488	}
 489	data = rspi_read_data(rspi);
 490	return data;
 491}
 492
 493static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
 494			     unsigned int n)
 495{
 496	while (n-- > 0) {
 497		if (tx) {
 498			int ret = rspi_data_out(rspi, *tx++);
 499			if (ret < 0)
 500				return ret;
 501		}
 502		if (rx) {
 503			int ret = rspi_data_in(rspi);
 504			if (ret < 0)
 505				return ret;
 506			*rx++ = ret;
 507		}
 508	}
 509
 510	return 0;
 511}
 512
 513static void rspi_dma_complete(void *arg)
 514{
 515	struct rspi_data *rspi = arg;
 516
 517	rspi->dma_callbacked = 1;
 518	wake_up_interruptible(&rspi->wait);
 519}
 520
 521static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
 522			     struct sg_table *rx)
 523{
 524	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
 525	u8 irq_mask = 0;
 526	unsigned int other_irq = 0;
 527	dma_cookie_t cookie;
 528	int ret;
 529
 530	/* First prepare and submit the DMA request(s), as this may fail */
 531	if (rx) {
 532		desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
 533					rx->nents, DMA_DEV_TO_MEM,
 534					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 535		if (!desc_rx) {
 536			ret = -EAGAIN;
 537			goto no_dma_rx;
 538		}
 539
 540		desc_rx->callback = rspi_dma_complete;
 541		desc_rx->callback_param = rspi;
 542		cookie = dmaengine_submit(desc_rx);
 543		if (dma_submit_error(cookie)) {
 544			ret = cookie;
 545			goto no_dma_rx;
 546		}
 547
 548		irq_mask |= SPCR_SPRIE;
 549	}
 550
 551	if (tx) {
 552		desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
 553					tx->nents, DMA_MEM_TO_DEV,
 554					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 555		if (!desc_tx) {
 556			ret = -EAGAIN;
 557			goto no_dma_tx;
 558		}
 559
 560		if (rx) {
 561			/* No callback */
 562			desc_tx->callback = NULL;
 563		} else {
 564			desc_tx->callback = rspi_dma_complete;
 565			desc_tx->callback_param = rspi;
 566		}
 567		cookie = dmaengine_submit(desc_tx);
 568		if (dma_submit_error(cookie)) {
 569			ret = cookie;
 570			goto no_dma_tx;
 571		}
 572
 573		irq_mask |= SPCR_SPTIE;
 574	}
 575
 576	/*
 577	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
 578	 * called. So, this driver disables the IRQ while DMA transfer.
 579	 */
 580	if (tx)
 581		disable_irq(other_irq = rspi->tx_irq);
 582	if (rx && rspi->rx_irq != other_irq)
 583		disable_irq(rspi->rx_irq);
 584
 585	rspi_enable_irq(rspi, irq_mask);
 586	rspi->dma_callbacked = 0;
 587
 588	/* Now start DMA */
 589	if (rx)
 590		dma_async_issue_pending(rspi->ctlr->dma_rx);
 591	if (tx)
 592		dma_async_issue_pending(rspi->ctlr->dma_tx);
 593
 594	ret = wait_event_interruptible_timeout(rspi->wait,
 595					       rspi->dma_callbacked, HZ);
 596	if (ret > 0 && rspi->dma_callbacked) {
 597		ret = 0;
 598	} else {
 599		if (!ret) {
 600			dev_err(&rspi->ctlr->dev, "DMA timeout\n");
 601			ret = -ETIMEDOUT;
 602		}
 603		if (tx)
 604			dmaengine_terminate_all(rspi->ctlr->dma_tx);
 605		if (rx)
 606			dmaengine_terminate_all(rspi->ctlr->dma_rx);
 607	}
 608
 609	rspi_disable_irq(rspi, irq_mask);
 610
 611	if (tx)
 612		enable_irq(rspi->tx_irq);
 613	if (rx && rspi->rx_irq != other_irq)
 614		enable_irq(rspi->rx_irq);
 615
 616	return ret;
 617
 618no_dma_tx:
 619	if (rx)
 620		dmaengine_terminate_all(rspi->ctlr->dma_rx);
 621no_dma_rx:
 622	if (ret == -EAGAIN) {
 623		pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
 624			     dev_driver_string(&rspi->ctlr->dev),
 625			     dev_name(&rspi->ctlr->dev));
 626	}
 627	return ret;
 628}
 629
 630static void rspi_receive_init(const struct rspi_data *rspi)
 631{
 632	u8 spsr;
 633
 634	spsr = rspi_read8(rspi, RSPI_SPSR);
 635	if (spsr & SPSR_SPRF)
 636		rspi_read_data(rspi);	/* dummy read */
 637	if (spsr & SPSR_OVRF)
 638		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
 639			    RSPI_SPSR);
 640}
 641
 642static void rspi_rz_receive_init(const struct rspi_data *rspi)
 643{
 644	rspi_receive_init(rspi);
 645	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
 646	rspi_write8(rspi, 0, RSPI_SPBFCR);
 647}
 648
 649static void qspi_receive_init(const struct rspi_data *rspi)
 650{
 651	u8 spsr;
 652
 653	spsr = rspi_read8(rspi, RSPI_SPSR);
 654	if (spsr & SPSR_SPRF)
 655		rspi_read_data(rspi);   /* dummy read */
 656	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
 657	rspi_write8(rspi, 0, QSPI_SPBFCR);
 658}
 659
 660static bool __rspi_can_dma(const struct rspi_data *rspi,
 661			   const struct spi_transfer *xfer)
 662{
 663	return xfer->len > rspi->ops->fifo_size;
 664}
 665
 666static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
 667			 struct spi_transfer *xfer)
 668{
 669	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 670
 671	return __rspi_can_dma(rspi, xfer);
 672}
 673
 674static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
 675					 struct spi_transfer *xfer)
 676{
 677	if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
 678		return -EAGAIN;
 679
 680	/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
 681	return rspi_dma_transfer(rspi, &xfer->tx_sg,
 682				xfer->rx_buf ? &xfer->rx_sg : NULL);
 683}
 684
 685static int rspi_common_transfer(struct rspi_data *rspi,
 686				struct spi_transfer *xfer)
 687{
 688	int ret;
 689
 690	ret = rspi_dma_check_then_transfer(rspi, xfer);
 691	if (ret != -EAGAIN)
 692		return ret;
 693
 694	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
 695	if (ret < 0)
 696		return ret;
 697
 698	/* Wait for the last transmission */
 699	rspi_wait_for_tx_empty(rspi);
 700
 701	return 0;
 702}
 703
 704static int rspi_transfer_one(struct spi_controller *ctlr,
 705			     struct spi_device *spi, struct spi_transfer *xfer)
 706{
 707	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 708	u8 spcr;
 709
 710	spcr = rspi_read8(rspi, RSPI_SPCR);
 711	if (xfer->rx_buf) {
 712		rspi_receive_init(rspi);
 713		spcr &= ~SPCR_TXMD;
 714	} else {
 715		spcr |= SPCR_TXMD;
 716	}
 717	rspi_write8(rspi, spcr, RSPI_SPCR);
 718
 719	return rspi_common_transfer(rspi, xfer);
 720}
 721
 722static int rspi_rz_transfer_one(struct spi_controller *ctlr,
 723				struct spi_device *spi,
 724				struct spi_transfer *xfer)
 725{
 726	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 727
 728	rspi_rz_receive_init(rspi);
 729
 730	return rspi_common_transfer(rspi, xfer);
 731}
 732
 733static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
 734					u8 *rx, unsigned int len)
 735{
 736	unsigned int i, n;
 737	int ret;
 738
 739	while (len > 0) {
 740		n = qspi_set_send_trigger(rspi, len);
 741		qspi_set_receive_trigger(rspi, len);
 742		ret = rspi_wait_for_tx_empty(rspi);
 743		if (ret < 0) {
 744			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 745			return ret;
 746		}
 747		for (i = 0; i < n; i++)
 748			rspi_write_data(rspi, *tx++);
 749
 750		ret = rspi_wait_for_rx_full(rspi);
 751		if (ret < 0) {
 752			dev_err(&rspi->ctlr->dev, "receive timeout\n");
 753			return ret;
 754		}
 755		for (i = 0; i < n; i++)
 756			*rx++ = rspi_read_data(rspi);
 757
 758		len -= n;
 759	}
 760
 761	return 0;
 762}
 763
 764static int qspi_transfer_out_in(struct rspi_data *rspi,
 765				struct spi_transfer *xfer)
 766{
 767	int ret;
 768
 769	qspi_receive_init(rspi);
 770
 771	ret = rspi_dma_check_then_transfer(rspi, xfer);
 772	if (ret != -EAGAIN)
 773		return ret;
 774
 775	return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
 776					    xfer->rx_buf, xfer->len);
 777}
 778
 779static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
 780{
 781	const u8 *tx = xfer->tx_buf;
 782	unsigned int n = xfer->len;
 783	unsigned int i, len;
 784	int ret;
 785
 786	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 787		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
 788		if (ret != -EAGAIN)
 789			return ret;
 790	}
 791
 792	while (n > 0) {
 793		len = qspi_set_send_trigger(rspi, n);
 794		ret = rspi_wait_for_tx_empty(rspi);
 795		if (ret < 0) {
 796			dev_err(&rspi->ctlr->dev, "transmit timeout\n");
 797			return ret;
 798		}
 799		for (i = 0; i < len; i++)
 800			rspi_write_data(rspi, *tx++);
 801
 802		n -= len;
 803	}
 804
 805	/* Wait for the last transmission */
 806	rspi_wait_for_tx_empty(rspi);
 807
 808	return 0;
 809}
 810
 811static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
 812{
 813	u8 *rx = xfer->rx_buf;
 814	unsigned int n = xfer->len;
 815	unsigned int i, len;
 816	int ret;
 817
 818	if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
 819		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
 820		if (ret != -EAGAIN)
 821			return ret;
 822	}
 823
 824	while (n > 0) {
 825		len = qspi_set_receive_trigger(rspi, n);
 826		ret = rspi_wait_for_rx_full(rspi);
 827		if (ret < 0) {
 828			dev_err(&rspi->ctlr->dev, "receive timeout\n");
 829			return ret;
 830		}
 831		for (i = 0; i < len; i++)
 832			*rx++ = rspi_read_data(rspi);
 833
 834		n -= len;
 835	}
 836
 837	return 0;
 838}
 839
 840static int qspi_transfer_one(struct spi_controller *ctlr,
 841			     struct spi_device *spi, struct spi_transfer *xfer)
 842{
 843	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 844
 845	if (spi->mode & SPI_LOOP) {
 846		return qspi_transfer_out_in(rspi, xfer);
 847	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
 848		/* Quad or Dual SPI Write */
 849		return qspi_transfer_out(rspi, xfer);
 850	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
 851		/* Quad or Dual SPI Read */
 852		return qspi_transfer_in(rspi, xfer);
 853	} else {
 854		/* Single SPI Transfer */
 855		return qspi_transfer_out_in(rspi, xfer);
 856	}
 857}
 858
 859static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
 860{
 861	if (xfer->tx_buf)
 862		switch (xfer->tx_nbits) {
 863		case SPI_NBITS_QUAD:
 864			return SPCMD_SPIMOD_QUAD;
 865		case SPI_NBITS_DUAL:
 866			return SPCMD_SPIMOD_DUAL;
 867		default:
 868			return 0;
 869		}
 870	if (xfer->rx_buf)
 871		switch (xfer->rx_nbits) {
 872		case SPI_NBITS_QUAD:
 873			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
 874		case SPI_NBITS_DUAL:
 875			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
 876		default:
 877			return 0;
 878		}
 879
 880	return 0;
 881}
 882
 883static int qspi_setup_sequencer(struct rspi_data *rspi,
 884				const struct spi_message *msg)
 885{
 886	const struct spi_transfer *xfer;
 887	unsigned int i = 0, len = 0;
 888	u16 current_mode = 0xffff, mode;
 889
 890	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
 891		mode = qspi_transfer_mode(xfer);
 892		if (mode == current_mode) {
 893			len += xfer->len;
 894			continue;
 895		}
 896
 897		/* Transfer mode change */
 898		if (i) {
 899			/* Set transfer data length of previous transfer */
 900			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 901		}
 902
 903		if (i >= QSPI_NUM_SPCMD) {
 904			dev_err(&msg->spi->dev,
 905				"Too many different transfer modes");
 906			return -EINVAL;
 907		}
 908
 909		/* Program transfer mode for this transfer */
 910		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
 911		current_mode = mode;
 912		len = xfer->len;
 913		i++;
 914	}
 915	if (i) {
 916		/* Set final transfer data length and sequence length */
 917		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
 918		rspi_write8(rspi, i - 1, RSPI_SPSCR);
 919	}
 920
 921	return 0;
 922}
 923
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 924static int rspi_prepare_message(struct spi_controller *ctlr,
 925				struct spi_message *msg)
 926{
 927	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 928	struct spi_device *spi = msg->spi;
 
 929	int ret;
 930
 931	rspi->max_speed_hz = spi->max_speed_hz;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 932
 933	rspi->spcmd = SPCMD_SSLKP;
 934	if (spi->mode & SPI_CPOL)
 935		rspi->spcmd |= SPCMD_CPOL;
 936	if (spi->mode & SPI_CPHA)
 937		rspi->spcmd |= SPCMD_CPHA;
 
 
 
 
 
 
 938
 939	/* CMOS output mode and MOSI signal from previous transfer */
 940	rspi->sppcr = 0;
 941	if (spi->mode & SPI_LOOP)
 942		rspi->sppcr |= SPPCR_SPLP;
 943
 944	set_config_register(rspi, 8);
 945
 946	if (msg->spi->mode &
 947	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
 948		/* Setup sequencer for messages with multiple transfer modes */
 949		ret = qspi_setup_sequencer(rspi, msg);
 950		if (ret < 0)
 951			return ret;
 952	}
 953
 954	/* Enable SPI function in master mode */
 955	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
 956	return 0;
 957}
 958
 959static int rspi_unprepare_message(struct spi_controller *ctlr,
 960				  struct spi_message *msg)
 961{
 962	struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
 963
 964	/* Disable SPI function */
 965	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
 966
 967	/* Reset sequencer for Single SPI Transfers */
 968	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
 969	rspi_write8(rspi, 0, RSPI_SPSCR);
 970	return 0;
 971}
 972
 973static irqreturn_t rspi_irq_mux(int irq, void *_sr)
 974{
 975	struct rspi_data *rspi = _sr;
 976	u8 spsr;
 977	irqreturn_t ret = IRQ_NONE;
 978	u8 disable_irq = 0;
 979
 980	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
 981	if (spsr & SPSR_SPRF)
 982		disable_irq |= SPCR_SPRIE;
 983	if (spsr & SPSR_SPTEF)
 984		disable_irq |= SPCR_SPTIE;
 985
 986	if (disable_irq) {
 987		ret = IRQ_HANDLED;
 988		rspi_disable_irq(rspi, disable_irq);
 989		wake_up(&rspi->wait);
 990	}
 991
 992	return ret;
 993}
 994
 995static irqreturn_t rspi_irq_rx(int irq, void *_sr)
 996{
 997	struct rspi_data *rspi = _sr;
 998	u8 spsr;
 999
1000	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1001	if (spsr & SPSR_SPRF) {
1002		rspi_disable_irq(rspi, SPCR_SPRIE);
1003		wake_up(&rspi->wait);
1004		return IRQ_HANDLED;
1005	}
1006
1007	return 0;
1008}
1009
1010static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1011{
1012	struct rspi_data *rspi = _sr;
1013	u8 spsr;
1014
1015	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1016	if (spsr & SPSR_SPTEF) {
1017		rspi_disable_irq(rspi, SPCR_SPTIE);
1018		wake_up(&rspi->wait);
1019		return IRQ_HANDLED;
1020	}
1021
1022	return 0;
1023}
1024
1025static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1026					      enum dma_transfer_direction dir,
1027					      unsigned int id,
1028					      dma_addr_t port_addr)
1029{
1030	dma_cap_mask_t mask;
1031	struct dma_chan *chan;
1032	struct dma_slave_config cfg;
1033	int ret;
1034
1035	dma_cap_zero(mask);
1036	dma_cap_set(DMA_SLAVE, mask);
1037
1038	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1039				(void *)(unsigned long)id, dev,
1040				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1041	if (!chan) {
1042		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1043		return NULL;
1044	}
1045
1046	memset(&cfg, 0, sizeof(cfg));
1047	cfg.direction = dir;
1048	if (dir == DMA_MEM_TO_DEV) {
1049		cfg.dst_addr = port_addr;
1050		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1051	} else {
1052		cfg.src_addr = port_addr;
1053		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1054	}
1055
1056	ret = dmaengine_slave_config(chan, &cfg);
1057	if (ret) {
1058		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1059		dma_release_channel(chan);
1060		return NULL;
1061	}
1062
1063	return chan;
1064}
1065
1066static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1067			    const struct resource *res)
1068{
1069	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1070	unsigned int dma_tx_id, dma_rx_id;
1071
1072	if (dev->of_node) {
1073		/* In the OF case we will get the slave IDs from the DT */
1074		dma_tx_id = 0;
1075		dma_rx_id = 0;
1076	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1077		dma_tx_id = rspi_pd->dma_tx_id;
1078		dma_rx_id = rspi_pd->dma_rx_id;
1079	} else {
1080		/* The driver assumes no error. */
1081		return 0;
1082	}
1083
1084	ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1085					     res->start + RSPI_SPDR);
1086	if (!ctlr->dma_tx)
1087		return -ENODEV;
1088
1089	ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1090					     res->start + RSPI_SPDR);
1091	if (!ctlr->dma_rx) {
1092		dma_release_channel(ctlr->dma_tx);
1093		ctlr->dma_tx = NULL;
1094		return -ENODEV;
1095	}
1096
1097	ctlr->can_dma = rspi_can_dma;
1098	dev_info(dev, "DMA available");
1099	return 0;
1100}
1101
1102static void rspi_release_dma(struct spi_controller *ctlr)
1103{
1104	if (ctlr->dma_tx)
1105		dma_release_channel(ctlr->dma_tx);
1106	if (ctlr->dma_rx)
1107		dma_release_channel(ctlr->dma_rx);
1108}
1109
1110static int rspi_remove(struct platform_device *pdev)
1111{
1112	struct rspi_data *rspi = platform_get_drvdata(pdev);
1113
1114	rspi_release_dma(rspi->ctlr);
1115	pm_runtime_disable(&pdev->dev);
1116
1117	return 0;
1118}
1119
1120static const struct spi_ops rspi_ops = {
1121	.set_config_register =	rspi_set_config_register,
1122	.transfer_one =		rspi_transfer_one,
1123	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124	.flags =		SPI_CONTROLLER_MUST_TX,
1125	.fifo_size =		8,
 
1126};
1127
1128static const struct spi_ops rspi_rz_ops = {
1129	.set_config_register =	rspi_rz_set_config_register,
1130	.transfer_one =		rspi_rz_transfer_one,
1131	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1132	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1133	.fifo_size =		8,	/* 8 for TX, 32 for RX */
 
1134};
1135
1136static const struct spi_ops qspi_ops = {
1137	.set_config_register =	qspi_set_config_register,
1138	.transfer_one =		qspi_transfer_one,
1139	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
1140				SPI_TX_DUAL | SPI_TX_QUAD |
1141				SPI_RX_DUAL | SPI_RX_QUAD,
1142	.flags =		SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1143	.fifo_size =		32,
 
1144};
1145
1146#ifdef CONFIG_OF
1147static const struct of_device_id rspi_of_match[] = {
1148	/* RSPI on legacy SH */
1149	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1150	/* RSPI on RZ/A1H */
1151	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1152	/* QSPI on R-Car Gen2 */
1153	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1154	{ /* sentinel */ }
1155};
1156
1157MODULE_DEVICE_TABLE(of, rspi_of_match);
1158
1159static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1160{
1161	u32 num_cs;
1162	int error;
1163
1164	/* Parse DT properties */
1165	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1166	if (error) {
1167		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1168		return error;
1169	}
1170
1171	ctlr->num_chipselect = num_cs;
1172	return 0;
1173}
1174#else
1175#define rspi_of_match	NULL
1176static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1177{
1178	return -EINVAL;
1179}
1180#endif /* CONFIG_OF */
1181
1182static int rspi_request_irq(struct device *dev, unsigned int irq,
1183			    irq_handler_t handler, const char *suffix,
1184			    void *dev_id)
1185{
1186	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1187					  dev_name(dev), suffix);
1188	if (!name)
1189		return -ENOMEM;
1190
1191	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1192}
1193
1194static int rspi_probe(struct platform_device *pdev)
1195{
1196	struct resource *res;
1197	struct spi_controller *ctlr;
1198	struct rspi_data *rspi;
1199	int ret;
1200	const struct rspi_plat_data *rspi_pd;
1201	const struct spi_ops *ops;
1202
1203	ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1204	if (ctlr == NULL)
1205		return -ENOMEM;
1206
1207	ops = of_device_get_match_data(&pdev->dev);
1208	if (ops) {
1209		ret = rspi_parse_dt(&pdev->dev, ctlr);
1210		if (ret)
1211			goto error1;
1212	} else {
1213		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1214		rspi_pd = dev_get_platdata(&pdev->dev);
1215		if (rspi_pd && rspi_pd->num_chipselect)
1216			ctlr->num_chipselect = rspi_pd->num_chipselect;
1217		else
1218			ctlr->num_chipselect = 2; /* default */
1219	}
1220
1221	/* ops parameter check */
1222	if (!ops->set_config_register) {
1223		dev_err(&pdev->dev, "there is no set_config_register\n");
1224		ret = -ENODEV;
1225		goto error1;
1226	}
1227
1228	rspi = spi_controller_get_devdata(ctlr);
1229	platform_set_drvdata(pdev, rspi);
1230	rspi->ops = ops;
1231	rspi->ctlr = ctlr;
1232
1233	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1234	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1235	if (IS_ERR(rspi->addr)) {
1236		ret = PTR_ERR(rspi->addr);
1237		goto error1;
1238	}
1239
1240	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1241	if (IS_ERR(rspi->clk)) {
1242		dev_err(&pdev->dev, "cannot get clock\n");
1243		ret = PTR_ERR(rspi->clk);
1244		goto error1;
1245	}
1246
 
1247	pm_runtime_enable(&pdev->dev);
1248
1249	init_waitqueue_head(&rspi->wait);
 
1250
1251	ctlr->bus_num = pdev->id;
 
1252	ctlr->auto_runtime_pm = true;
1253	ctlr->transfer_one = ops->transfer_one;
1254	ctlr->prepare_message = rspi_prepare_message;
1255	ctlr->unprepare_message = rspi_unprepare_message;
1256	ctlr->mode_bits = ops->mode_bits;
 
1257	ctlr->flags = ops->flags;
1258	ctlr->dev.of_node = pdev->dev.of_node;
 
 
1259
1260	ret = platform_get_irq_byname(pdev, "rx");
1261	if (ret < 0) {
1262		ret = platform_get_irq_byname(pdev, "mux");
1263		if (ret < 0)
1264			ret = platform_get_irq(pdev, 0);
1265		if (ret >= 0)
1266			rspi->rx_irq = rspi->tx_irq = ret;
1267	} else {
1268		rspi->rx_irq = ret;
1269		ret = platform_get_irq_byname(pdev, "tx");
1270		if (ret >= 0)
1271			rspi->tx_irq = ret;
1272	}
1273	if (ret < 0) {
1274		dev_err(&pdev->dev, "platform_get_irq error\n");
1275		goto error2;
1276	}
1277
1278	if (rspi->rx_irq == rspi->tx_irq) {
1279		/* Single multiplexed interrupt */
1280		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1281				       "mux", rspi);
1282	} else {
1283		/* Multi-interrupt mode, only SPRI and SPTI are used */
1284		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1285				       "rx", rspi);
1286		if (!ret)
1287			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1288					       rspi_irq_tx, "tx", rspi);
1289	}
1290	if (ret < 0) {
1291		dev_err(&pdev->dev, "request_irq error\n");
1292		goto error2;
1293	}
1294
1295	ret = rspi_request_dma(&pdev->dev, ctlr, res);
1296	if (ret < 0)
1297		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1298
1299	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1300	if (ret < 0) {
1301		dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1302		goto error3;
1303	}
1304
1305	dev_info(&pdev->dev, "probed\n");
1306
1307	return 0;
1308
1309error3:
1310	rspi_release_dma(ctlr);
1311error2:
1312	pm_runtime_disable(&pdev->dev);
1313error1:
1314	spi_controller_put(ctlr);
1315
1316	return ret;
1317}
1318
1319static const struct platform_device_id spi_driver_ids[] = {
1320	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1321	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1322	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1323	{},
1324};
1325
1326MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1327
1328#ifdef CONFIG_PM_SLEEP
1329static int rspi_suspend(struct device *dev)
1330{
1331	struct rspi_data *rspi = dev_get_drvdata(dev);
1332
1333	return spi_controller_suspend(rspi->ctlr);
1334}
1335
1336static int rspi_resume(struct device *dev)
1337{
1338	struct rspi_data *rspi = dev_get_drvdata(dev);
1339
1340	return spi_controller_resume(rspi->ctlr);
1341}
1342
1343static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1344#define DEV_PM_OPS	&rspi_pm_ops
1345#else
1346#define DEV_PM_OPS	NULL
1347#endif /* CONFIG_PM_SLEEP */
1348
1349static struct platform_driver rspi_driver = {
1350	.probe =	rspi_probe,
1351	.remove =	rspi_remove,
1352	.id_table =	spi_driver_ids,
1353	.driver		= {
1354		.name = "renesas_spi",
1355		.pm = DEV_PM_OPS,
1356		.of_match_table = of_match_ptr(rspi_of_match),
1357	},
1358};
1359module_platform_driver(rspi_driver);
1360
1361MODULE_DESCRIPTION("Renesas RSPI bus driver");
1362MODULE_LICENSE("GPL v2");
1363MODULE_AUTHOR("Yoshihiro Shimoda");
1364MODULE_ALIAS("platform:rspi");