Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SH RSPI driver
4 *
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/clk.h>
20#include <linux/dmaengine.h>
21#include <linux/dma-mapping.h>
22#include <linux/of_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_dma.h>
25#include <linux/spi/spi.h>
26#include <linux/spi/rspi.h>
27#include <linux/spinlock.h>
28
29#define RSPI_SPCR 0x00 /* Control Register */
30#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31#define RSPI_SPPCR 0x02 /* Pin Control Register */
32#define RSPI_SPSR 0x03 /* Status Register */
33#define RSPI_SPDR 0x04 /* Data Register */
34#define RSPI_SPSCR 0x08 /* Sequence Control Register */
35#define RSPI_SPSSR 0x09 /* Sequence Status Register */
36#define RSPI_SPBR 0x0a /* Bit Rate Register */
37#define RSPI_SPDCR 0x0b /* Data Control Register */
38#define RSPI_SPCKD 0x0c /* Clock Delay Register */
39#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40#define RSPI_SPND 0x0e /* Next-Access Delay Register */
41#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42#define RSPI_SPCMD0 0x10 /* Command Register 0 */
43#define RSPI_SPCMD1 0x12 /* Command Register 1 */
44#define RSPI_SPCMD2 0x14 /* Command Register 2 */
45#define RSPI_SPCMD3 0x16 /* Command Register 3 */
46#define RSPI_SPCMD4 0x18 /* Command Register 4 */
47#define RSPI_SPCMD5 0x1a /* Command Register 5 */
48#define RSPI_SPCMD6 0x1c /* Command Register 6 */
49#define RSPI_SPCMD7 0x1e /* Command Register 7 */
50#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51#define RSPI_NUM_SPCMD 8
52#define RSPI_RZ_NUM_SPCMD 4
53#define QSPI_NUM_SPCMD 4
54
55/* RSPI on RZ only */
56#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
58
59/* QSPI only */
60#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
67
68/* SPCR - Control Register */
69#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70#define SPCR_SPE 0x40 /* Function Enable */
71#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75/* RSPI on SH only */
76#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78/* QSPI on R-Car Gen2 only */
79#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
81
82/* SSLP - Slave Select Polarity Register */
83#define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
84
85/* SPPCR - Pin Control Register */
86#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88#define SPPCR_SPOM 0x04
89#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
91
92#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
95/* SPSR - Status Register */
96#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97#define SPSR_TEND 0x40 /* Transmit End */
98#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99#define SPSR_PERF 0x08 /* Parity Error Flag */
100#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
103
104/* SPSCR - Sequence Control Register */
105#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
106
107/* SPSSR - Sequence Status Register */
108#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
110
111/* SPDCR - Data Control Register */
112#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116#define SPDCR_SPLWORD SPDCR_SPLW1
117#define SPDCR_SPLBYTE SPDCR_SPLW0
118#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120#define SPDCR_SLSEL1 0x08
121#define SPDCR_SLSEL0 0x04
122#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123#define SPDCR_SPFC1 0x02
124#define SPDCR_SPFC0 0x01
125#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
126
127/* SPCKD - Clock Delay Register */
128#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
129
130/* SSLND - Slave Select Negation Delay Register */
131#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
132
133/* SPND - Next-Access Delay Register */
134#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
135
136/* SPCR2 - Control Register 2 */
137#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140#define SPCR2_SPPE 0x01 /* Parity Enable */
141
142/* SPCMDn - Command Registers */
143#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146#define SPCMD_LSBF 0x1000 /* LSB First */
147#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150#define SPCMD_SPB_16BIT 0x0100
151#define SPCMD_SPB_20BIT 0x0000
152#define SPCMD_SPB_24BIT 0x0100
153#define SPCMD_SPB_32BIT 0x0200
154#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156#define SPCMD_SPIMOD1 0x0040
157#define SPCMD_SPIMOD0 0x0020
158#define SPCMD_SPIMOD_SINGLE 0
159#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162#define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
165#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
166
167/* SPBFCR - Buffer Control Register */
168#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
169#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
170#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
171#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
172/* QSPI on R-Car Gen2 */
173#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
174#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
175#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
176#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
177
178#define QSPI_BUFFER_SIZE 32u
179
180struct rspi_data {
181 void __iomem *addr;
182 u32 speed_hz;
183 struct spi_controller *ctlr;
184 struct platform_device *pdev;
185 wait_queue_head_t wait;
186 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
187 struct clk *clk;
188 u16 spcmd;
189 u8 spsr;
190 u8 sppcr;
191 int rx_irq, tx_irq;
192 const struct spi_ops *ops;
193
194 unsigned dma_callbacked:1;
195 unsigned byte_access:1;
196};
197
198static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
199{
200 iowrite8(data, rspi->addr + offset);
201}
202
203static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
204{
205 iowrite16(data, rspi->addr + offset);
206}
207
208static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
209{
210 iowrite32(data, rspi->addr + offset);
211}
212
213static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
214{
215 return ioread8(rspi->addr + offset);
216}
217
218static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
219{
220 return ioread16(rspi->addr + offset);
221}
222
223static void rspi_write_data(const struct rspi_data *rspi, u16 data)
224{
225 if (rspi->byte_access)
226 rspi_write8(rspi, data, RSPI_SPDR);
227 else /* 16 bit */
228 rspi_write16(rspi, data, RSPI_SPDR);
229}
230
231static u16 rspi_read_data(const struct rspi_data *rspi)
232{
233 if (rspi->byte_access)
234 return rspi_read8(rspi, RSPI_SPDR);
235 else /* 16 bit */
236 return rspi_read16(rspi, RSPI_SPDR);
237}
238
239/* optional functions */
240struct spi_ops {
241 int (*set_config_register)(struct rspi_data *rspi, int access_size);
242 int (*transfer_one)(struct spi_controller *ctlr,
243 struct spi_device *spi, struct spi_transfer *xfer);
244 u16 extra_mode_bits;
245 u16 flags;
246 u16 fifo_size;
247 u8 num_hw_ss;
248};
249
250/*
251 * functions for RSPI on legacy SH
252 */
253static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
254{
255 int spbr;
256
257 /* Sets output mode, MOSI signal, and (optionally) loopback */
258 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
259
260 /* Sets transfer bit rate */
261 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz) - 1;
262 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
263
264 /* Disable dummy transmission, set 16-bit word access, 1 frame */
265 rspi_write8(rspi, 0, RSPI_SPDCR);
266 rspi->byte_access = 0;
267
268 /* Sets RSPCK, SSL, next-access delay value */
269 rspi_write8(rspi, 0x00, RSPI_SPCKD);
270 rspi_write8(rspi, 0x00, RSPI_SSLND);
271 rspi_write8(rspi, 0x00, RSPI_SPND);
272
273 /* Sets parity, interrupt mask */
274 rspi_write8(rspi, 0x00, RSPI_SPCR2);
275
276 /* Resets sequencer */
277 rspi_write8(rspi, 0, RSPI_SPSCR);
278 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
279 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
280
281 /* Sets RSPI mode */
282 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
283
284 return 0;
285}
286
287/*
288 * functions for RSPI on RZ
289 */
290static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
291{
292 int spbr;
293 int div = 0;
294 unsigned long clksrc;
295
296 /* Sets output mode, MOSI signal, and (optionally) loopback */
297 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
298
299 clksrc = clk_get_rate(rspi->clk);
300 while (div < 3) {
301 if (rspi->speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
302 break;
303 div++;
304 clksrc /= 2;
305 }
306
307 /* Sets transfer bit rate */
308 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
309 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
310 rspi->spcmd |= div << 2;
311
312 /* Disable dummy transmission, set byte access */
313 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
314 rspi->byte_access = 1;
315
316 /* Sets RSPCK, SSL, next-access delay value */
317 rspi_write8(rspi, 0x00, RSPI_SPCKD);
318 rspi_write8(rspi, 0x00, RSPI_SSLND);
319 rspi_write8(rspi, 0x00, RSPI_SPND);
320
321 /* Resets sequencer */
322 rspi_write8(rspi, 0, RSPI_SPSCR);
323 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
324 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
325
326 /* Sets RSPI mode */
327 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
328
329 return 0;
330}
331
332/*
333 * functions for QSPI
334 */
335static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
336{
337 int spbr;
338
339 /* Sets output mode, MOSI signal, and (optionally) loopback */
340 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
341
342 /* Sets transfer bit rate */
343 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz);
344 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
345
346 /* Disable dummy transmission, set byte access */
347 rspi_write8(rspi, 0, RSPI_SPDCR);
348 rspi->byte_access = 1;
349
350 /* Sets RSPCK, SSL, next-access delay value */
351 rspi_write8(rspi, 0x00, RSPI_SPCKD);
352 rspi_write8(rspi, 0x00, RSPI_SSLND);
353 rspi_write8(rspi, 0x00, RSPI_SPND);
354
355 /* Data Length Setting */
356 if (access_size == 8)
357 rspi->spcmd |= SPCMD_SPB_8BIT;
358 else if (access_size == 16)
359 rspi->spcmd |= SPCMD_SPB_16BIT;
360 else
361 rspi->spcmd |= SPCMD_SPB_32BIT;
362
363 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
364
365 /* Resets transfer data length */
366 rspi_write32(rspi, 0, QSPI_SPBMUL0);
367
368 /* Resets transmit and receive buffer */
369 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
370 /* Sets buffer to allow normal operation */
371 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
372
373 /* Resets sequencer */
374 rspi_write8(rspi, 0, RSPI_SPSCR);
375 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
376
377 /* Sets RSPI mode */
378 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
379
380 return 0;
381}
382
383static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
384{
385 u8 data;
386
387 data = rspi_read8(rspi, reg);
388 data &= ~mask;
389 data |= (val & mask);
390 rspi_write8(rspi, data, reg);
391}
392
393static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
394 unsigned int len)
395{
396 unsigned int n;
397
398 n = min(len, QSPI_BUFFER_SIZE);
399
400 if (len >= QSPI_BUFFER_SIZE) {
401 /* sets triggering number to 32 bytes */
402 qspi_update(rspi, SPBFCR_TXTRG_MASK,
403 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
404 } else {
405 /* sets triggering number to 1 byte */
406 qspi_update(rspi, SPBFCR_TXTRG_MASK,
407 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
408 }
409
410 return n;
411}
412
413static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
414{
415 unsigned int n;
416
417 n = min(len, QSPI_BUFFER_SIZE);
418
419 if (len >= QSPI_BUFFER_SIZE) {
420 /* sets triggering number to 32 bytes */
421 qspi_update(rspi, SPBFCR_RXTRG_MASK,
422 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
423 } else {
424 /* sets triggering number to 1 byte */
425 qspi_update(rspi, SPBFCR_RXTRG_MASK,
426 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
427 }
428 return n;
429}
430
431static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
432{
433 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
434}
435
436static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
437{
438 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
439}
440
441static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
442 u8 enable_bit)
443{
444 int ret;
445
446 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
447 if (rspi->spsr & wait_mask)
448 return 0;
449
450 rspi_enable_irq(rspi, enable_bit);
451 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
452 if (ret == 0 && !(rspi->spsr & wait_mask))
453 return -ETIMEDOUT;
454
455 return 0;
456}
457
458static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
459{
460 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
461}
462
463static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
464{
465 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
466}
467
468static int rspi_data_out(struct rspi_data *rspi, u8 data)
469{
470 int error = rspi_wait_for_tx_empty(rspi);
471 if (error < 0) {
472 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
473 return error;
474 }
475 rspi_write_data(rspi, data);
476 return 0;
477}
478
479static int rspi_data_in(struct rspi_data *rspi)
480{
481 int error;
482 u8 data;
483
484 error = rspi_wait_for_rx_full(rspi);
485 if (error < 0) {
486 dev_err(&rspi->ctlr->dev, "receive timeout\n");
487 return error;
488 }
489 data = rspi_read_data(rspi);
490 return data;
491}
492
493static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
494 unsigned int n)
495{
496 while (n-- > 0) {
497 if (tx) {
498 int ret = rspi_data_out(rspi, *tx++);
499 if (ret < 0)
500 return ret;
501 }
502 if (rx) {
503 int ret = rspi_data_in(rspi);
504 if (ret < 0)
505 return ret;
506 *rx++ = ret;
507 }
508 }
509
510 return 0;
511}
512
513static void rspi_dma_complete(void *arg)
514{
515 struct rspi_data *rspi = arg;
516
517 rspi->dma_callbacked = 1;
518 wake_up_interruptible(&rspi->wait);
519}
520
521static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
522 struct sg_table *rx)
523{
524 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
525 u8 irq_mask = 0;
526 unsigned int other_irq = 0;
527 dma_cookie_t cookie;
528 int ret;
529
530 /* First prepare and submit the DMA request(s), as this may fail */
531 if (rx) {
532 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
533 rx->nents, DMA_DEV_TO_MEM,
534 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
535 if (!desc_rx) {
536 ret = -EAGAIN;
537 goto no_dma_rx;
538 }
539
540 desc_rx->callback = rspi_dma_complete;
541 desc_rx->callback_param = rspi;
542 cookie = dmaengine_submit(desc_rx);
543 if (dma_submit_error(cookie)) {
544 ret = cookie;
545 goto no_dma_rx;
546 }
547
548 irq_mask |= SPCR_SPRIE;
549 }
550
551 if (tx) {
552 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
553 tx->nents, DMA_MEM_TO_DEV,
554 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
555 if (!desc_tx) {
556 ret = -EAGAIN;
557 goto no_dma_tx;
558 }
559
560 if (rx) {
561 /* No callback */
562 desc_tx->callback = NULL;
563 } else {
564 desc_tx->callback = rspi_dma_complete;
565 desc_tx->callback_param = rspi;
566 }
567 cookie = dmaengine_submit(desc_tx);
568 if (dma_submit_error(cookie)) {
569 ret = cookie;
570 goto no_dma_tx;
571 }
572
573 irq_mask |= SPCR_SPTIE;
574 }
575
576 /*
577 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
578 * called. So, this driver disables the IRQ while DMA transfer.
579 */
580 if (tx)
581 disable_irq(other_irq = rspi->tx_irq);
582 if (rx && rspi->rx_irq != other_irq)
583 disable_irq(rspi->rx_irq);
584
585 rspi_enable_irq(rspi, irq_mask);
586 rspi->dma_callbacked = 0;
587
588 /* Now start DMA */
589 if (rx)
590 dma_async_issue_pending(rspi->ctlr->dma_rx);
591 if (tx)
592 dma_async_issue_pending(rspi->ctlr->dma_tx);
593
594 ret = wait_event_interruptible_timeout(rspi->wait,
595 rspi->dma_callbacked, HZ);
596 if (ret > 0 && rspi->dma_callbacked) {
597 ret = 0;
598 } else {
599 if (!ret) {
600 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
601 ret = -ETIMEDOUT;
602 }
603 if (tx)
604 dmaengine_terminate_all(rspi->ctlr->dma_tx);
605 if (rx)
606 dmaengine_terminate_all(rspi->ctlr->dma_rx);
607 }
608
609 rspi_disable_irq(rspi, irq_mask);
610
611 if (tx)
612 enable_irq(rspi->tx_irq);
613 if (rx && rspi->rx_irq != other_irq)
614 enable_irq(rspi->rx_irq);
615
616 return ret;
617
618no_dma_tx:
619 if (rx)
620 dmaengine_terminate_all(rspi->ctlr->dma_rx);
621no_dma_rx:
622 if (ret == -EAGAIN) {
623 dev_warn_once(&rspi->ctlr->dev,
624 "DMA not available, falling back to PIO\n");
625 }
626 return ret;
627}
628
629static void rspi_receive_init(const struct rspi_data *rspi)
630{
631 u8 spsr;
632
633 spsr = rspi_read8(rspi, RSPI_SPSR);
634 if (spsr & SPSR_SPRF)
635 rspi_read_data(rspi); /* dummy read */
636 if (spsr & SPSR_OVRF)
637 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
638 RSPI_SPSR);
639}
640
641static void rspi_rz_receive_init(const struct rspi_data *rspi)
642{
643 rspi_receive_init(rspi);
644 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
645 rspi_write8(rspi, 0, RSPI_SPBFCR);
646}
647
648static void qspi_receive_init(const struct rspi_data *rspi)
649{
650 u8 spsr;
651
652 spsr = rspi_read8(rspi, RSPI_SPSR);
653 if (spsr & SPSR_SPRF)
654 rspi_read_data(rspi); /* dummy read */
655 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
656 rspi_write8(rspi, 0, QSPI_SPBFCR);
657}
658
659static bool __rspi_can_dma(const struct rspi_data *rspi,
660 const struct spi_transfer *xfer)
661{
662 return xfer->len > rspi->ops->fifo_size;
663}
664
665static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
666 struct spi_transfer *xfer)
667{
668 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
669
670 return __rspi_can_dma(rspi, xfer);
671}
672
673static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
674 struct spi_transfer *xfer)
675{
676 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
677 return -EAGAIN;
678
679 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
680 return rspi_dma_transfer(rspi, &xfer->tx_sg,
681 xfer->rx_buf ? &xfer->rx_sg : NULL);
682}
683
684static int rspi_common_transfer(struct rspi_data *rspi,
685 struct spi_transfer *xfer)
686{
687 int ret;
688
689 ret = rspi_dma_check_then_transfer(rspi, xfer);
690 if (ret != -EAGAIN)
691 return ret;
692
693 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
694 if (ret < 0)
695 return ret;
696
697 /* Wait for the last transmission */
698 rspi_wait_for_tx_empty(rspi);
699
700 return 0;
701}
702
703static int rspi_transfer_one(struct spi_controller *ctlr,
704 struct spi_device *spi, struct spi_transfer *xfer)
705{
706 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
707 u8 spcr;
708
709 spcr = rspi_read8(rspi, RSPI_SPCR);
710 if (xfer->rx_buf) {
711 rspi_receive_init(rspi);
712 spcr &= ~SPCR_TXMD;
713 } else {
714 spcr |= SPCR_TXMD;
715 }
716 rspi_write8(rspi, spcr, RSPI_SPCR);
717
718 return rspi_common_transfer(rspi, xfer);
719}
720
721static int rspi_rz_transfer_one(struct spi_controller *ctlr,
722 struct spi_device *spi,
723 struct spi_transfer *xfer)
724{
725 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
726
727 rspi_rz_receive_init(rspi);
728
729 return rspi_common_transfer(rspi, xfer);
730}
731
732static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
733 u8 *rx, unsigned int len)
734{
735 unsigned int i, n;
736 int ret;
737
738 while (len > 0) {
739 n = qspi_set_send_trigger(rspi, len);
740 qspi_set_receive_trigger(rspi, len);
741 ret = rspi_wait_for_tx_empty(rspi);
742 if (ret < 0) {
743 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
744 return ret;
745 }
746 for (i = 0; i < n; i++)
747 rspi_write_data(rspi, *tx++);
748
749 ret = rspi_wait_for_rx_full(rspi);
750 if (ret < 0) {
751 dev_err(&rspi->ctlr->dev, "receive timeout\n");
752 return ret;
753 }
754 for (i = 0; i < n; i++)
755 *rx++ = rspi_read_data(rspi);
756
757 len -= n;
758 }
759
760 return 0;
761}
762
763static int qspi_transfer_out_in(struct rspi_data *rspi,
764 struct spi_transfer *xfer)
765{
766 int ret;
767
768 qspi_receive_init(rspi);
769
770 ret = rspi_dma_check_then_transfer(rspi, xfer);
771 if (ret != -EAGAIN)
772 return ret;
773
774 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
775 xfer->rx_buf, xfer->len);
776}
777
778static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
779{
780 const u8 *tx = xfer->tx_buf;
781 unsigned int n = xfer->len;
782 unsigned int i, len;
783 int ret;
784
785 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
786 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
787 if (ret != -EAGAIN)
788 return ret;
789 }
790
791 while (n > 0) {
792 len = qspi_set_send_trigger(rspi, n);
793 ret = rspi_wait_for_tx_empty(rspi);
794 if (ret < 0) {
795 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
796 return ret;
797 }
798 for (i = 0; i < len; i++)
799 rspi_write_data(rspi, *tx++);
800
801 n -= len;
802 }
803
804 /* Wait for the last transmission */
805 rspi_wait_for_tx_empty(rspi);
806
807 return 0;
808}
809
810static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
811{
812 u8 *rx = xfer->rx_buf;
813 unsigned int n = xfer->len;
814 unsigned int i, len;
815 int ret;
816
817 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
818 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
819 if (ret != -EAGAIN)
820 return ret;
821 }
822
823 while (n > 0) {
824 len = qspi_set_receive_trigger(rspi, n);
825 ret = rspi_wait_for_rx_full(rspi);
826 if (ret < 0) {
827 dev_err(&rspi->ctlr->dev, "receive timeout\n");
828 return ret;
829 }
830 for (i = 0; i < len; i++)
831 *rx++ = rspi_read_data(rspi);
832
833 n -= len;
834 }
835
836 return 0;
837}
838
839static int qspi_transfer_one(struct spi_controller *ctlr,
840 struct spi_device *spi, struct spi_transfer *xfer)
841{
842 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
843
844 if (spi->mode & SPI_LOOP) {
845 return qspi_transfer_out_in(rspi, xfer);
846 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
847 /* Quad or Dual SPI Write */
848 return qspi_transfer_out(rspi, xfer);
849 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
850 /* Quad or Dual SPI Read */
851 return qspi_transfer_in(rspi, xfer);
852 } else {
853 /* Single SPI Transfer */
854 return qspi_transfer_out_in(rspi, xfer);
855 }
856}
857
858static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
859{
860 if (xfer->tx_buf)
861 switch (xfer->tx_nbits) {
862 case SPI_NBITS_QUAD:
863 return SPCMD_SPIMOD_QUAD;
864 case SPI_NBITS_DUAL:
865 return SPCMD_SPIMOD_DUAL;
866 default:
867 return 0;
868 }
869 if (xfer->rx_buf)
870 switch (xfer->rx_nbits) {
871 case SPI_NBITS_QUAD:
872 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
873 case SPI_NBITS_DUAL:
874 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
875 default:
876 return 0;
877 }
878
879 return 0;
880}
881
882static int qspi_setup_sequencer(struct rspi_data *rspi,
883 const struct spi_message *msg)
884{
885 const struct spi_transfer *xfer;
886 unsigned int i = 0, len = 0;
887 u16 current_mode = 0xffff, mode;
888
889 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890 mode = qspi_transfer_mode(xfer);
891 if (mode == current_mode) {
892 len += xfer->len;
893 continue;
894 }
895
896 /* Transfer mode change */
897 if (i) {
898 /* Set transfer data length of previous transfer */
899 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
900 }
901
902 if (i >= QSPI_NUM_SPCMD) {
903 dev_err(&msg->spi->dev,
904 "Too many different transfer modes");
905 return -EINVAL;
906 }
907
908 /* Program transfer mode for this transfer */
909 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
910 current_mode = mode;
911 len = xfer->len;
912 i++;
913 }
914 if (i) {
915 /* Set final transfer data length and sequence length */
916 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
917 rspi_write8(rspi, i - 1, RSPI_SPSCR);
918 }
919
920 return 0;
921}
922
923static int rspi_setup(struct spi_device *spi)
924{
925 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
926 u8 sslp;
927
928 if (spi->cs_gpiod)
929 return 0;
930
931 pm_runtime_get_sync(&rspi->pdev->dev);
932 spin_lock_irq(&rspi->lock);
933
934 sslp = rspi_read8(rspi, RSPI_SSLP);
935 if (spi->mode & SPI_CS_HIGH)
936 sslp |= SSLP_SSLP(spi->chip_select);
937 else
938 sslp &= ~SSLP_SSLP(spi->chip_select);
939 rspi_write8(rspi, sslp, RSPI_SSLP);
940
941 spin_unlock_irq(&rspi->lock);
942 pm_runtime_put(&rspi->pdev->dev);
943 return 0;
944}
945
946static int rspi_prepare_message(struct spi_controller *ctlr,
947 struct spi_message *msg)
948{
949 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
950 struct spi_device *spi = msg->spi;
951 const struct spi_transfer *xfer;
952 int ret;
953
954 /*
955 * As the Bit Rate Register must not be changed while the device is
956 * active, all transfers in a message must use the same bit rate.
957 * In theory, the sequencer could be enabled, and each Command Register
958 * could divide the base bit rate by a different value.
959 * However, most RSPI variants do not have Transfer Data Length
960 * Multiplier Setting Registers, so each sequence step would be limited
961 * to a single word, making this feature unsuitable for large
962 * transfers, which would gain most from it.
963 */
964 rspi->speed_hz = spi->max_speed_hz;
965 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
966 if (xfer->speed_hz < rspi->speed_hz)
967 rspi->speed_hz = xfer->speed_hz;
968 }
969
970 rspi->spcmd = SPCMD_SSLKP;
971 if (spi->mode & SPI_CPOL)
972 rspi->spcmd |= SPCMD_CPOL;
973 if (spi->mode & SPI_CPHA)
974 rspi->spcmd |= SPCMD_CPHA;
975 if (spi->mode & SPI_LSB_FIRST)
976 rspi->spcmd |= SPCMD_LSBF;
977
978 /* Configure slave signal to assert */
979 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
980 : spi->chip_select);
981
982 /* CMOS output mode and MOSI signal from previous transfer */
983 rspi->sppcr = 0;
984 if (spi->mode & SPI_LOOP)
985 rspi->sppcr |= SPPCR_SPLP;
986
987 rspi->ops->set_config_register(rspi, 8);
988
989 if (msg->spi->mode &
990 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
991 /* Setup sequencer for messages with multiple transfer modes */
992 ret = qspi_setup_sequencer(rspi, msg);
993 if (ret < 0)
994 return ret;
995 }
996
997 /* Enable SPI function in master mode */
998 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
999 return 0;
1000}
1001
1002static int rspi_unprepare_message(struct spi_controller *ctlr,
1003 struct spi_message *msg)
1004{
1005 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1006
1007 /* Disable SPI function */
1008 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1009
1010 /* Reset sequencer for Single SPI Transfers */
1011 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1012 rspi_write8(rspi, 0, RSPI_SPSCR);
1013 return 0;
1014}
1015
1016static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1017{
1018 struct rspi_data *rspi = _sr;
1019 u8 spsr;
1020 irqreturn_t ret = IRQ_NONE;
1021 u8 disable_irq = 0;
1022
1023 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1024 if (spsr & SPSR_SPRF)
1025 disable_irq |= SPCR_SPRIE;
1026 if (spsr & SPSR_SPTEF)
1027 disable_irq |= SPCR_SPTIE;
1028
1029 if (disable_irq) {
1030 ret = IRQ_HANDLED;
1031 rspi_disable_irq(rspi, disable_irq);
1032 wake_up(&rspi->wait);
1033 }
1034
1035 return ret;
1036}
1037
1038static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1039{
1040 struct rspi_data *rspi = _sr;
1041 u8 spsr;
1042
1043 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1044 if (spsr & SPSR_SPRF) {
1045 rspi_disable_irq(rspi, SPCR_SPRIE);
1046 wake_up(&rspi->wait);
1047 return IRQ_HANDLED;
1048 }
1049
1050 return 0;
1051}
1052
1053static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1054{
1055 struct rspi_data *rspi = _sr;
1056 u8 spsr;
1057
1058 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1059 if (spsr & SPSR_SPTEF) {
1060 rspi_disable_irq(rspi, SPCR_SPTIE);
1061 wake_up(&rspi->wait);
1062 return IRQ_HANDLED;
1063 }
1064
1065 return 0;
1066}
1067
1068static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1069 enum dma_transfer_direction dir,
1070 unsigned int id,
1071 dma_addr_t port_addr)
1072{
1073 dma_cap_mask_t mask;
1074 struct dma_chan *chan;
1075 struct dma_slave_config cfg;
1076 int ret;
1077
1078 dma_cap_zero(mask);
1079 dma_cap_set(DMA_SLAVE, mask);
1080
1081 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1082 (void *)(unsigned long)id, dev,
1083 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1084 if (!chan) {
1085 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1086 return NULL;
1087 }
1088
1089 memset(&cfg, 0, sizeof(cfg));
1090 cfg.direction = dir;
1091 if (dir == DMA_MEM_TO_DEV) {
1092 cfg.dst_addr = port_addr;
1093 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1094 } else {
1095 cfg.src_addr = port_addr;
1096 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1097 }
1098
1099 ret = dmaengine_slave_config(chan, &cfg);
1100 if (ret) {
1101 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1102 dma_release_channel(chan);
1103 return NULL;
1104 }
1105
1106 return chan;
1107}
1108
1109static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1110 const struct resource *res)
1111{
1112 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1113 unsigned int dma_tx_id, dma_rx_id;
1114
1115 if (dev->of_node) {
1116 /* In the OF case we will get the slave IDs from the DT */
1117 dma_tx_id = 0;
1118 dma_rx_id = 0;
1119 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1120 dma_tx_id = rspi_pd->dma_tx_id;
1121 dma_rx_id = rspi_pd->dma_rx_id;
1122 } else {
1123 /* The driver assumes no error. */
1124 return 0;
1125 }
1126
1127 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1128 res->start + RSPI_SPDR);
1129 if (!ctlr->dma_tx)
1130 return -ENODEV;
1131
1132 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1133 res->start + RSPI_SPDR);
1134 if (!ctlr->dma_rx) {
1135 dma_release_channel(ctlr->dma_tx);
1136 ctlr->dma_tx = NULL;
1137 return -ENODEV;
1138 }
1139
1140 ctlr->can_dma = rspi_can_dma;
1141 dev_info(dev, "DMA available");
1142 return 0;
1143}
1144
1145static void rspi_release_dma(struct spi_controller *ctlr)
1146{
1147 if (ctlr->dma_tx)
1148 dma_release_channel(ctlr->dma_tx);
1149 if (ctlr->dma_rx)
1150 dma_release_channel(ctlr->dma_rx);
1151}
1152
1153static int rspi_remove(struct platform_device *pdev)
1154{
1155 struct rspi_data *rspi = platform_get_drvdata(pdev);
1156
1157 rspi_release_dma(rspi->ctlr);
1158 pm_runtime_disable(&pdev->dev);
1159
1160 return 0;
1161}
1162
1163static const struct spi_ops rspi_ops = {
1164 .set_config_register = rspi_set_config_register,
1165 .transfer_one = rspi_transfer_one,
1166 .flags = SPI_CONTROLLER_MUST_TX,
1167 .fifo_size = 8,
1168 .num_hw_ss = 2,
1169};
1170
1171static const struct spi_ops rspi_rz_ops = {
1172 .set_config_register = rspi_rz_set_config_register,
1173 .transfer_one = rspi_rz_transfer_one,
1174 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1175 .fifo_size = 8, /* 8 for TX, 32 for RX */
1176 .num_hw_ss = 1,
1177};
1178
1179static const struct spi_ops qspi_ops = {
1180 .set_config_register = qspi_set_config_register,
1181 .transfer_one = qspi_transfer_one,
1182 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1183 SPI_RX_DUAL | SPI_RX_QUAD,
1184 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1185 .fifo_size = 32,
1186 .num_hw_ss = 1,
1187};
1188
1189#ifdef CONFIG_OF
1190static const struct of_device_id rspi_of_match[] = {
1191 /* RSPI on legacy SH */
1192 { .compatible = "renesas,rspi", .data = &rspi_ops },
1193 /* RSPI on RZ/A1H */
1194 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1195 /* QSPI on R-Car Gen2 */
1196 { .compatible = "renesas,qspi", .data = &qspi_ops },
1197 { /* sentinel */ }
1198};
1199
1200MODULE_DEVICE_TABLE(of, rspi_of_match);
1201
1202static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1203{
1204 u32 num_cs;
1205 int error;
1206
1207 /* Parse DT properties */
1208 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1209 if (error) {
1210 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1211 return error;
1212 }
1213
1214 ctlr->num_chipselect = num_cs;
1215 return 0;
1216}
1217#else
1218#define rspi_of_match NULL
1219static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1220{
1221 return -EINVAL;
1222}
1223#endif /* CONFIG_OF */
1224
1225static int rspi_request_irq(struct device *dev, unsigned int irq,
1226 irq_handler_t handler, const char *suffix,
1227 void *dev_id)
1228{
1229 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1230 dev_name(dev), suffix);
1231 if (!name)
1232 return -ENOMEM;
1233
1234 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1235}
1236
1237static int rspi_probe(struct platform_device *pdev)
1238{
1239 struct resource *res;
1240 struct spi_controller *ctlr;
1241 struct rspi_data *rspi;
1242 int ret;
1243 const struct rspi_plat_data *rspi_pd;
1244 const struct spi_ops *ops;
1245
1246 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1247 if (ctlr == NULL)
1248 return -ENOMEM;
1249
1250 ops = of_device_get_match_data(&pdev->dev);
1251 if (ops) {
1252 ret = rspi_parse_dt(&pdev->dev, ctlr);
1253 if (ret)
1254 goto error1;
1255 } else {
1256 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1257 rspi_pd = dev_get_platdata(&pdev->dev);
1258 if (rspi_pd && rspi_pd->num_chipselect)
1259 ctlr->num_chipselect = rspi_pd->num_chipselect;
1260 else
1261 ctlr->num_chipselect = 2; /* default */
1262 }
1263
1264 /* ops parameter check */
1265 if (!ops->set_config_register) {
1266 dev_err(&pdev->dev, "there is no set_config_register\n");
1267 ret = -ENODEV;
1268 goto error1;
1269 }
1270
1271 rspi = spi_controller_get_devdata(ctlr);
1272 platform_set_drvdata(pdev, rspi);
1273 rspi->ops = ops;
1274 rspi->ctlr = ctlr;
1275
1276 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1277 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1278 if (IS_ERR(rspi->addr)) {
1279 ret = PTR_ERR(rspi->addr);
1280 goto error1;
1281 }
1282
1283 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1284 if (IS_ERR(rspi->clk)) {
1285 dev_err(&pdev->dev, "cannot get clock\n");
1286 ret = PTR_ERR(rspi->clk);
1287 goto error1;
1288 }
1289
1290 rspi->pdev = pdev;
1291 pm_runtime_enable(&pdev->dev);
1292
1293 init_waitqueue_head(&rspi->wait);
1294 spin_lock_init(&rspi->lock);
1295
1296 ctlr->bus_num = pdev->id;
1297 ctlr->setup = rspi_setup;
1298 ctlr->auto_runtime_pm = true;
1299 ctlr->transfer_one = ops->transfer_one;
1300 ctlr->prepare_message = rspi_prepare_message;
1301 ctlr->unprepare_message = rspi_unprepare_message;
1302 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1303 SPI_LOOP | ops->extra_mode_bits;
1304 ctlr->flags = ops->flags;
1305 ctlr->dev.of_node = pdev->dev.of_node;
1306 ctlr->use_gpio_descriptors = true;
1307 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1308
1309 ret = platform_get_irq_byname_optional(pdev, "rx");
1310 if (ret < 0) {
1311 ret = platform_get_irq_byname_optional(pdev, "mux");
1312 if (ret < 0)
1313 ret = platform_get_irq(pdev, 0);
1314 if (ret >= 0)
1315 rspi->rx_irq = rspi->tx_irq = ret;
1316 } else {
1317 rspi->rx_irq = ret;
1318 ret = platform_get_irq_byname(pdev, "tx");
1319 if (ret >= 0)
1320 rspi->tx_irq = ret;
1321 }
1322
1323 if (rspi->rx_irq == rspi->tx_irq) {
1324 /* Single multiplexed interrupt */
1325 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1326 "mux", rspi);
1327 } else {
1328 /* Multi-interrupt mode, only SPRI and SPTI are used */
1329 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1330 "rx", rspi);
1331 if (!ret)
1332 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1333 rspi_irq_tx, "tx", rspi);
1334 }
1335 if (ret < 0) {
1336 dev_err(&pdev->dev, "request_irq error\n");
1337 goto error2;
1338 }
1339
1340 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1341 if (ret < 0)
1342 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1343
1344 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1345 if (ret < 0) {
1346 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1347 goto error3;
1348 }
1349
1350 dev_info(&pdev->dev, "probed\n");
1351
1352 return 0;
1353
1354error3:
1355 rspi_release_dma(ctlr);
1356error2:
1357 pm_runtime_disable(&pdev->dev);
1358error1:
1359 spi_controller_put(ctlr);
1360
1361 return ret;
1362}
1363
1364static const struct platform_device_id spi_driver_ids[] = {
1365 { "rspi", (kernel_ulong_t)&rspi_ops },
1366 {},
1367};
1368
1369MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1370
1371#ifdef CONFIG_PM_SLEEP
1372static int rspi_suspend(struct device *dev)
1373{
1374 struct rspi_data *rspi = dev_get_drvdata(dev);
1375
1376 return spi_controller_suspend(rspi->ctlr);
1377}
1378
1379static int rspi_resume(struct device *dev)
1380{
1381 struct rspi_data *rspi = dev_get_drvdata(dev);
1382
1383 return spi_controller_resume(rspi->ctlr);
1384}
1385
1386static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1387#define DEV_PM_OPS &rspi_pm_ops
1388#else
1389#define DEV_PM_OPS NULL
1390#endif /* CONFIG_PM_SLEEP */
1391
1392static struct platform_driver rspi_driver = {
1393 .probe = rspi_probe,
1394 .remove = rspi_remove,
1395 .id_table = spi_driver_ids,
1396 .driver = {
1397 .name = "renesas_spi",
1398 .pm = DEV_PM_OPS,
1399 .of_match_table = of_match_ptr(rspi_of_match),
1400 },
1401};
1402module_platform_driver(rspi_driver);
1403
1404MODULE_DESCRIPTION("Renesas RSPI bus driver");
1405MODULE_LICENSE("GPL v2");
1406MODULE_AUTHOR("Yoshihiro Shimoda");
1407MODULE_ALIAS("platform:rspi");
1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/module.h>
21#include <linux/kernel.h>
22#include <linux/sched.h>
23#include <linux/errno.h>
24#include <linux/interrupt.h>
25#include <linux/platform_device.h>
26#include <linux/io.h>
27#include <linux/clk.h>
28#include <linux/dmaengine.h>
29#include <linux/dma-mapping.h>
30#include <linux/of_device.h>
31#include <linux/pm_runtime.h>
32#include <linux/sh_dma.h>
33#include <linux/spi/spi.h>
34#include <linux/spi/rspi.h>
35
36#define RSPI_SPCR 0x00 /* Control Register */
37#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
38#define RSPI_SPPCR 0x02 /* Pin Control Register */
39#define RSPI_SPSR 0x03 /* Status Register */
40#define RSPI_SPDR 0x04 /* Data Register */
41#define RSPI_SPSCR 0x08 /* Sequence Control Register */
42#define RSPI_SPSSR 0x09 /* Sequence Status Register */
43#define RSPI_SPBR 0x0a /* Bit Rate Register */
44#define RSPI_SPDCR 0x0b /* Data Control Register */
45#define RSPI_SPCKD 0x0c /* Clock Delay Register */
46#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
47#define RSPI_SPND 0x0e /* Next-Access Delay Register */
48#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
49#define RSPI_SPCMD0 0x10 /* Command Register 0 */
50#define RSPI_SPCMD1 0x12 /* Command Register 1 */
51#define RSPI_SPCMD2 0x14 /* Command Register 2 */
52#define RSPI_SPCMD3 0x16 /* Command Register 3 */
53#define RSPI_SPCMD4 0x18 /* Command Register 4 */
54#define RSPI_SPCMD5 0x1a /* Command Register 5 */
55#define RSPI_SPCMD6 0x1c /* Command Register 6 */
56#define RSPI_SPCMD7 0x1e /* Command Register 7 */
57#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
58#define RSPI_NUM_SPCMD 8
59#define RSPI_RZ_NUM_SPCMD 4
60#define QSPI_NUM_SPCMD 4
61
62/* RSPI on RZ only */
63#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
64#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
65
66/* QSPI only */
67#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
68#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
69#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
70#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
71#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
72#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
73#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
74
75/* SPCR - Control Register */
76#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
77#define SPCR_SPE 0x40 /* Function Enable */
78#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
79#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
80#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
81#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
82/* RSPI on SH only */
83#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
84#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
85/* QSPI on R-Car Gen2 only */
86#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
87#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
88
89/* SSLP - Slave Select Polarity Register */
90#define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
91#define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
92
93/* SPPCR - Pin Control Register */
94#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
95#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
96#define SPPCR_SPOM 0x04
97#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
98#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
99
100#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102
103/* SPSR - Status Register */
104#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
105#define SPSR_TEND 0x40 /* Transmit End */
106#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
107#define SPSR_PERF 0x08 /* Parity Error Flag */
108#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
109#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
110#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
111
112/* SPSCR - Sequence Control Register */
113#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
114
115/* SPSSR - Sequence Status Register */
116#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
117#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
118
119/* SPDCR - Data Control Register */
120#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
121#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
122#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
123#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
124#define SPDCR_SPLWORD SPDCR_SPLW1
125#define SPDCR_SPLBYTE SPDCR_SPLW0
126#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
127#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
128#define SPDCR_SLSEL1 0x08
129#define SPDCR_SLSEL0 0x04
130#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
131#define SPDCR_SPFC1 0x02
132#define SPDCR_SPFC0 0x01
133#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
134
135/* SPCKD - Clock Delay Register */
136#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
137
138/* SSLND - Slave Select Negation Delay Register */
139#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
140
141/* SPND - Next-Access Delay Register */
142#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
143
144/* SPCR2 - Control Register 2 */
145#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
146#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
147#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
148#define SPCR2_SPPE 0x01 /* Parity Enable */
149
150/* SPCMDn - Command Registers */
151#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
152#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
153#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
154#define SPCMD_LSBF 0x1000 /* LSB First */
155#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
156#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
157#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
158#define SPCMD_SPB_16BIT 0x0100
159#define SPCMD_SPB_20BIT 0x0000
160#define SPCMD_SPB_24BIT 0x0100
161#define SPCMD_SPB_32BIT 0x0200
162#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
163#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
164#define SPCMD_SPIMOD1 0x0040
165#define SPCMD_SPIMOD0 0x0020
166#define SPCMD_SPIMOD_SINGLE 0
167#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
168#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
169#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
170#define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
171#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
172#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
173#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
174
175/* SPBFCR - Buffer Control Register */
176#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
177#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
178#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
179#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
180/* QSPI on R-Car Gen2 */
181#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
182#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
183#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
184#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
185
186#define QSPI_BUFFER_SIZE 32u
187
188struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 unsigned dma_callbacked:1;
201 unsigned byte_access:1;
202};
203
204static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
205{
206 iowrite8(data, rspi->addr + offset);
207}
208
209static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
210{
211 iowrite16(data, rspi->addr + offset);
212}
213
214static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
215{
216 iowrite32(data, rspi->addr + offset);
217}
218
219static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
220{
221 return ioread8(rspi->addr + offset);
222}
223
224static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
225{
226 return ioread16(rspi->addr + offset);
227}
228
229static void rspi_write_data(const struct rspi_data *rspi, u16 data)
230{
231 if (rspi->byte_access)
232 rspi_write8(rspi, data, RSPI_SPDR);
233 else /* 16 bit */
234 rspi_write16(rspi, data, RSPI_SPDR);
235}
236
237static u16 rspi_read_data(const struct rspi_data *rspi)
238{
239 if (rspi->byte_access)
240 return rspi_read8(rspi, RSPI_SPDR);
241 else /* 16 bit */
242 return rspi_read16(rspi, RSPI_SPDR);
243}
244
245/* optional functions */
246struct spi_ops {
247 int (*set_config_register)(struct rspi_data *rspi, int access_size);
248 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
249 struct spi_transfer *xfer);
250 u16 mode_bits;
251 u16 flags;
252 u16 fifo_size;
253};
254
255/*
256 * functions for RSPI on legacy SH
257 */
258static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
259{
260 int spbr;
261
262 /* Sets output mode, MOSI signal, and (optionally) loopback */
263 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
264
265 /* Sets transfer bit rate */
266 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
267 2 * rspi->max_speed_hz) - 1;
268 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
269
270 /* Disable dummy transmission, set 16-bit word access, 1 frame */
271 rspi_write8(rspi, 0, RSPI_SPDCR);
272 rspi->byte_access = 0;
273
274 /* Sets RSPCK, SSL, next-access delay value */
275 rspi_write8(rspi, 0x00, RSPI_SPCKD);
276 rspi_write8(rspi, 0x00, RSPI_SSLND);
277 rspi_write8(rspi, 0x00, RSPI_SPND);
278
279 /* Sets parity, interrupt mask */
280 rspi_write8(rspi, 0x00, RSPI_SPCR2);
281
282 /* Sets SPCMD */
283 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
284 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
285
286 /* Sets RSPI mode */
287 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
288
289 return 0;
290}
291
292/*
293 * functions for RSPI on RZ
294 */
295static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
296{
297 int spbr;
298
299 /* Sets output mode, MOSI signal, and (optionally) loopback */
300 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
301
302 /* Sets transfer bit rate */
303 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
304 2 * rspi->max_speed_hz) - 1;
305 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
306
307 /* Disable dummy transmission, set byte access */
308 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
309 rspi->byte_access = 1;
310
311 /* Sets RSPCK, SSL, next-access delay value */
312 rspi_write8(rspi, 0x00, RSPI_SPCKD);
313 rspi_write8(rspi, 0x00, RSPI_SSLND);
314 rspi_write8(rspi, 0x00, RSPI_SPND);
315
316 /* Sets SPCMD */
317 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
318 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
319
320 /* Sets RSPI mode */
321 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
322
323 return 0;
324}
325
326/*
327 * functions for QSPI
328 */
329static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
330{
331 int spbr;
332
333 /* Sets output mode, MOSI signal, and (optionally) loopback */
334 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
335
336 /* Sets transfer bit rate */
337 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
338 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
339
340 /* Disable dummy transmission, set byte access */
341 rspi_write8(rspi, 0, RSPI_SPDCR);
342 rspi->byte_access = 1;
343
344 /* Sets RSPCK, SSL, next-access delay value */
345 rspi_write8(rspi, 0x00, RSPI_SPCKD);
346 rspi_write8(rspi, 0x00, RSPI_SSLND);
347 rspi_write8(rspi, 0x00, RSPI_SPND);
348
349 /* Data Length Setting */
350 if (access_size == 8)
351 rspi->spcmd |= SPCMD_SPB_8BIT;
352 else if (access_size == 16)
353 rspi->spcmd |= SPCMD_SPB_16BIT;
354 else
355 rspi->spcmd |= SPCMD_SPB_32BIT;
356
357 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
358
359 /* Resets transfer data length */
360 rspi_write32(rspi, 0, QSPI_SPBMUL0);
361
362 /* Resets transmit and receive buffer */
363 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
364 /* Sets buffer to allow normal operation */
365 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
366
367 /* Sets SPCMD */
368 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
369
370 /* Enables SPI function in master mode */
371 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
372
373 return 0;
374}
375
376static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
377{
378 u8 data;
379
380 data = rspi_read8(rspi, reg);
381 data &= ~mask;
382 data |= (val & mask);
383 rspi_write8(rspi, data, reg);
384}
385
386static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
387 unsigned int len)
388{
389 unsigned int n;
390
391 n = min(len, QSPI_BUFFER_SIZE);
392
393 if (len >= QSPI_BUFFER_SIZE) {
394 /* sets triggering number to 32 bytes */
395 qspi_update(rspi, SPBFCR_TXTRG_MASK,
396 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
397 } else {
398 /* sets triggering number to 1 byte */
399 qspi_update(rspi, SPBFCR_TXTRG_MASK,
400 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
401 }
402
403 return n;
404}
405
406static void qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
407{
408 unsigned int n;
409
410 n = min(len, QSPI_BUFFER_SIZE);
411
412 if (len >= QSPI_BUFFER_SIZE) {
413 /* sets triggering number to 32 bytes */
414 qspi_update(rspi, SPBFCR_RXTRG_MASK,
415 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
416 } else {
417 /* sets triggering number to 1 byte */
418 qspi_update(rspi, SPBFCR_RXTRG_MASK,
419 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
420 }
421}
422
423#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
424
425static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
426{
427 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
428}
429
430static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
431{
432 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
433}
434
435static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
436 u8 enable_bit)
437{
438 int ret;
439
440 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
441 if (rspi->spsr & wait_mask)
442 return 0;
443
444 rspi_enable_irq(rspi, enable_bit);
445 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
446 if (ret == 0 && !(rspi->spsr & wait_mask))
447 return -ETIMEDOUT;
448
449 return 0;
450}
451
452static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
453{
454 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
455}
456
457static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
458{
459 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
460}
461
462static int rspi_data_out(struct rspi_data *rspi, u8 data)
463{
464 int error = rspi_wait_for_tx_empty(rspi);
465 if (error < 0) {
466 dev_err(&rspi->master->dev, "transmit timeout\n");
467 return error;
468 }
469 rspi_write_data(rspi, data);
470 return 0;
471}
472
473static int rspi_data_in(struct rspi_data *rspi)
474{
475 int error;
476 u8 data;
477
478 error = rspi_wait_for_rx_full(rspi);
479 if (error < 0) {
480 dev_err(&rspi->master->dev, "receive timeout\n");
481 return error;
482 }
483 data = rspi_read_data(rspi);
484 return data;
485}
486
487static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
488 unsigned int n)
489{
490 while (n-- > 0) {
491 if (tx) {
492 int ret = rspi_data_out(rspi, *tx++);
493 if (ret < 0)
494 return ret;
495 }
496 if (rx) {
497 int ret = rspi_data_in(rspi);
498 if (ret < 0)
499 return ret;
500 *rx++ = ret;
501 }
502 }
503
504 return 0;
505}
506
507static void rspi_dma_complete(void *arg)
508{
509 struct rspi_data *rspi = arg;
510
511 rspi->dma_callbacked = 1;
512 wake_up_interruptible(&rspi->wait);
513}
514
515static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
516 struct sg_table *rx)
517{
518 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
519 u8 irq_mask = 0;
520 unsigned int other_irq = 0;
521 dma_cookie_t cookie;
522 int ret;
523
524 /* First prepare and submit the DMA request(s), as this may fail */
525 if (rx) {
526 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
527 rx->sgl, rx->nents, DMA_FROM_DEVICE,
528 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
529 if (!desc_rx) {
530 ret = -EAGAIN;
531 goto no_dma_rx;
532 }
533
534 desc_rx->callback = rspi_dma_complete;
535 desc_rx->callback_param = rspi;
536 cookie = dmaengine_submit(desc_rx);
537 if (dma_submit_error(cookie)) {
538 ret = cookie;
539 goto no_dma_rx;
540 }
541
542 irq_mask |= SPCR_SPRIE;
543 }
544
545 if (tx) {
546 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
547 tx->sgl, tx->nents, DMA_TO_DEVICE,
548 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
549 if (!desc_tx) {
550 ret = -EAGAIN;
551 goto no_dma_tx;
552 }
553
554 if (rx) {
555 /* No callback */
556 desc_tx->callback = NULL;
557 } else {
558 desc_tx->callback = rspi_dma_complete;
559 desc_tx->callback_param = rspi;
560 }
561 cookie = dmaengine_submit(desc_tx);
562 if (dma_submit_error(cookie)) {
563 ret = cookie;
564 goto no_dma_tx;
565 }
566
567 irq_mask |= SPCR_SPTIE;
568 }
569
570 /*
571 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
572 * called. So, this driver disables the IRQ while DMA transfer.
573 */
574 if (tx)
575 disable_irq(other_irq = rspi->tx_irq);
576 if (rx && rspi->rx_irq != other_irq)
577 disable_irq(rspi->rx_irq);
578
579 rspi_enable_irq(rspi, irq_mask);
580 rspi->dma_callbacked = 0;
581
582 /* Now start DMA */
583 if (rx)
584 dma_async_issue_pending(rspi->master->dma_rx);
585 if (tx)
586 dma_async_issue_pending(rspi->master->dma_tx);
587
588 ret = wait_event_interruptible_timeout(rspi->wait,
589 rspi->dma_callbacked, HZ);
590 if (ret > 0 && rspi->dma_callbacked)
591 ret = 0;
592 else if (!ret) {
593 dev_err(&rspi->master->dev, "DMA timeout\n");
594 ret = -ETIMEDOUT;
595 if (tx)
596 dmaengine_terminate_all(rspi->master->dma_tx);
597 if (rx)
598 dmaengine_terminate_all(rspi->master->dma_rx);
599 }
600
601 rspi_disable_irq(rspi, irq_mask);
602
603 if (tx)
604 enable_irq(rspi->tx_irq);
605 if (rx && rspi->rx_irq != other_irq)
606 enable_irq(rspi->rx_irq);
607
608 return ret;
609
610no_dma_tx:
611 if (rx)
612 dmaengine_terminate_all(rspi->master->dma_rx);
613no_dma_rx:
614 if (ret == -EAGAIN) {
615 pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
616 dev_driver_string(&rspi->master->dev),
617 dev_name(&rspi->master->dev));
618 }
619 return ret;
620}
621
622static void rspi_receive_init(const struct rspi_data *rspi)
623{
624 u8 spsr;
625
626 spsr = rspi_read8(rspi, RSPI_SPSR);
627 if (spsr & SPSR_SPRF)
628 rspi_read_data(rspi); /* dummy read */
629 if (spsr & SPSR_OVRF)
630 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
631 RSPI_SPSR);
632}
633
634static void rspi_rz_receive_init(const struct rspi_data *rspi)
635{
636 rspi_receive_init(rspi);
637 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
638 rspi_write8(rspi, 0, RSPI_SPBFCR);
639}
640
641static void qspi_receive_init(const struct rspi_data *rspi)
642{
643 u8 spsr;
644
645 spsr = rspi_read8(rspi, RSPI_SPSR);
646 if (spsr & SPSR_SPRF)
647 rspi_read_data(rspi); /* dummy read */
648 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
649 rspi_write8(rspi, 0, QSPI_SPBFCR);
650}
651
652static bool __rspi_can_dma(const struct rspi_data *rspi,
653 const struct spi_transfer *xfer)
654{
655 return xfer->len > rspi->ops->fifo_size;
656}
657
658static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
659 struct spi_transfer *xfer)
660{
661 struct rspi_data *rspi = spi_master_get_devdata(master);
662
663 return __rspi_can_dma(rspi, xfer);
664}
665
666static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
667 struct spi_transfer *xfer)
668{
669 if (!rspi->master->can_dma || !__rspi_can_dma(rspi, xfer))
670 return -EAGAIN;
671
672 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
673 return rspi_dma_transfer(rspi, &xfer->tx_sg,
674 xfer->rx_buf ? &xfer->rx_sg : NULL);
675}
676
677static int rspi_common_transfer(struct rspi_data *rspi,
678 struct spi_transfer *xfer)
679{
680 int ret;
681
682 ret = rspi_dma_check_then_transfer(rspi, xfer);
683 if (ret != -EAGAIN)
684 return ret;
685
686 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
687 if (ret < 0)
688 return ret;
689
690 /* Wait for the last transmission */
691 rspi_wait_for_tx_empty(rspi);
692
693 return 0;
694}
695
696static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
697 struct spi_transfer *xfer)
698{
699 struct rspi_data *rspi = spi_master_get_devdata(master);
700 u8 spcr;
701
702 spcr = rspi_read8(rspi, RSPI_SPCR);
703 if (xfer->rx_buf) {
704 rspi_receive_init(rspi);
705 spcr &= ~SPCR_TXMD;
706 } else {
707 spcr |= SPCR_TXMD;
708 }
709 rspi_write8(rspi, spcr, RSPI_SPCR);
710
711 return rspi_common_transfer(rspi, xfer);
712}
713
714static int rspi_rz_transfer_one(struct spi_master *master,
715 struct spi_device *spi,
716 struct spi_transfer *xfer)
717{
718 struct rspi_data *rspi = spi_master_get_devdata(master);
719
720 rspi_rz_receive_init(rspi);
721
722 return rspi_common_transfer(rspi, xfer);
723}
724
725static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
726 u8 *rx, unsigned int len)
727{
728 unsigned int i, n;
729 int ret;
730
731 while (len > 0) {
732 n = qspi_set_send_trigger(rspi, len);
733 qspi_set_receive_trigger(rspi, len);
734 if (n == QSPI_BUFFER_SIZE) {
735 ret = rspi_wait_for_tx_empty(rspi);
736 if (ret < 0) {
737 dev_err(&rspi->master->dev, "transmit timeout\n");
738 return ret;
739 }
740 for (i = 0; i < n; i++)
741 rspi_write_data(rspi, *tx++);
742
743 ret = rspi_wait_for_rx_full(rspi);
744 if (ret < 0) {
745 dev_err(&rspi->master->dev, "receive timeout\n");
746 return ret;
747 }
748 for (i = 0; i < n; i++)
749 *rx++ = rspi_read_data(rspi);
750 } else {
751 ret = rspi_pio_transfer(rspi, tx, rx, n);
752 if (ret < 0)
753 return ret;
754 }
755 len -= n;
756 }
757
758 return 0;
759}
760
761static int qspi_transfer_out_in(struct rspi_data *rspi,
762 struct spi_transfer *xfer)
763{
764 int ret;
765
766 qspi_receive_init(rspi);
767
768 ret = rspi_dma_check_then_transfer(rspi, xfer);
769 if (ret != -EAGAIN)
770 return ret;
771
772 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
773 xfer->rx_buf, xfer->len);
774}
775
776static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
777{
778 int ret;
779
780 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
781 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
782 if (ret != -EAGAIN)
783 return ret;
784 }
785
786 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
787 if (ret < 0)
788 return ret;
789
790 /* Wait for the last transmission */
791 rspi_wait_for_tx_empty(rspi);
792
793 return 0;
794}
795
796static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
797{
798 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
799 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
800 if (ret != -EAGAIN)
801 return ret;
802 }
803
804 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
805}
806
807static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
808 struct spi_transfer *xfer)
809{
810 struct rspi_data *rspi = spi_master_get_devdata(master);
811
812 if (spi->mode & SPI_LOOP) {
813 return qspi_transfer_out_in(rspi, xfer);
814 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
815 /* Quad or Dual SPI Write */
816 return qspi_transfer_out(rspi, xfer);
817 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
818 /* Quad or Dual SPI Read */
819 return qspi_transfer_in(rspi, xfer);
820 } else {
821 /* Single SPI Transfer */
822 return qspi_transfer_out_in(rspi, xfer);
823 }
824}
825
826static int rspi_setup(struct spi_device *spi)
827{
828 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
829
830 rspi->max_speed_hz = spi->max_speed_hz;
831
832 rspi->spcmd = SPCMD_SSLKP;
833 if (spi->mode & SPI_CPOL)
834 rspi->spcmd |= SPCMD_CPOL;
835 if (spi->mode & SPI_CPHA)
836 rspi->spcmd |= SPCMD_CPHA;
837
838 /* CMOS output mode and MOSI signal from previous transfer */
839 rspi->sppcr = 0;
840 if (spi->mode & SPI_LOOP)
841 rspi->sppcr |= SPPCR_SPLP;
842
843 set_config_register(rspi, 8);
844
845 return 0;
846}
847
848static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
849{
850 if (xfer->tx_buf)
851 switch (xfer->tx_nbits) {
852 case SPI_NBITS_QUAD:
853 return SPCMD_SPIMOD_QUAD;
854 case SPI_NBITS_DUAL:
855 return SPCMD_SPIMOD_DUAL;
856 default:
857 return 0;
858 }
859 if (xfer->rx_buf)
860 switch (xfer->rx_nbits) {
861 case SPI_NBITS_QUAD:
862 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
863 case SPI_NBITS_DUAL:
864 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
865 default:
866 return 0;
867 }
868
869 return 0;
870}
871
872static int qspi_setup_sequencer(struct rspi_data *rspi,
873 const struct spi_message *msg)
874{
875 const struct spi_transfer *xfer;
876 unsigned int i = 0, len = 0;
877 u16 current_mode = 0xffff, mode;
878
879 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
880 mode = qspi_transfer_mode(xfer);
881 if (mode == current_mode) {
882 len += xfer->len;
883 continue;
884 }
885
886 /* Transfer mode change */
887 if (i) {
888 /* Set transfer data length of previous transfer */
889 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
890 }
891
892 if (i >= QSPI_NUM_SPCMD) {
893 dev_err(&msg->spi->dev,
894 "Too many different transfer modes");
895 return -EINVAL;
896 }
897
898 /* Program transfer mode for this transfer */
899 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
900 current_mode = mode;
901 len = xfer->len;
902 i++;
903 }
904 if (i) {
905 /* Set final transfer data length and sequence length */
906 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
907 rspi_write8(rspi, i - 1, RSPI_SPSCR);
908 }
909
910 return 0;
911}
912
913static int rspi_prepare_message(struct spi_master *master,
914 struct spi_message *msg)
915{
916 struct rspi_data *rspi = spi_master_get_devdata(master);
917 int ret;
918
919 if (msg->spi->mode &
920 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
921 /* Setup sequencer for messages with multiple transfer modes */
922 ret = qspi_setup_sequencer(rspi, msg);
923 if (ret < 0)
924 return ret;
925 }
926
927 /* Enable SPI function in master mode */
928 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
929 return 0;
930}
931
932static int rspi_unprepare_message(struct spi_master *master,
933 struct spi_message *msg)
934{
935 struct rspi_data *rspi = spi_master_get_devdata(master);
936
937 /* Disable SPI function */
938 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
939
940 /* Reset sequencer for Single SPI Transfers */
941 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
942 rspi_write8(rspi, 0, RSPI_SPSCR);
943 return 0;
944}
945
946static irqreturn_t rspi_irq_mux(int irq, void *_sr)
947{
948 struct rspi_data *rspi = _sr;
949 u8 spsr;
950 irqreturn_t ret = IRQ_NONE;
951 u8 disable_irq = 0;
952
953 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
954 if (spsr & SPSR_SPRF)
955 disable_irq |= SPCR_SPRIE;
956 if (spsr & SPSR_SPTEF)
957 disable_irq |= SPCR_SPTIE;
958
959 if (disable_irq) {
960 ret = IRQ_HANDLED;
961 rspi_disable_irq(rspi, disable_irq);
962 wake_up(&rspi->wait);
963 }
964
965 return ret;
966}
967
968static irqreturn_t rspi_irq_rx(int irq, void *_sr)
969{
970 struct rspi_data *rspi = _sr;
971 u8 spsr;
972
973 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
974 if (spsr & SPSR_SPRF) {
975 rspi_disable_irq(rspi, SPCR_SPRIE);
976 wake_up(&rspi->wait);
977 return IRQ_HANDLED;
978 }
979
980 return 0;
981}
982
983static irqreturn_t rspi_irq_tx(int irq, void *_sr)
984{
985 struct rspi_data *rspi = _sr;
986 u8 spsr;
987
988 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
989 if (spsr & SPSR_SPTEF) {
990 rspi_disable_irq(rspi, SPCR_SPTIE);
991 wake_up(&rspi->wait);
992 return IRQ_HANDLED;
993 }
994
995 return 0;
996}
997
998static struct dma_chan *rspi_request_dma_chan(struct device *dev,
999 enum dma_transfer_direction dir,
1000 unsigned int id,
1001 dma_addr_t port_addr)
1002{
1003 dma_cap_mask_t mask;
1004 struct dma_chan *chan;
1005 struct dma_slave_config cfg;
1006 int ret;
1007
1008 dma_cap_zero(mask);
1009 dma_cap_set(DMA_SLAVE, mask);
1010
1011 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1012 (void *)(unsigned long)id, dev,
1013 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1014 if (!chan) {
1015 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1016 return NULL;
1017 }
1018
1019 memset(&cfg, 0, sizeof(cfg));
1020 cfg.direction = dir;
1021 if (dir == DMA_MEM_TO_DEV) {
1022 cfg.dst_addr = port_addr;
1023 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1024 } else {
1025 cfg.src_addr = port_addr;
1026 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1027 }
1028
1029 ret = dmaengine_slave_config(chan, &cfg);
1030 if (ret) {
1031 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1032 dma_release_channel(chan);
1033 return NULL;
1034 }
1035
1036 return chan;
1037}
1038
1039static int rspi_request_dma(struct device *dev, struct spi_master *master,
1040 const struct resource *res)
1041{
1042 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1043 unsigned int dma_tx_id, dma_rx_id;
1044
1045 if (dev->of_node) {
1046 /* In the OF case we will get the slave IDs from the DT */
1047 dma_tx_id = 0;
1048 dma_rx_id = 0;
1049 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1050 dma_tx_id = rspi_pd->dma_tx_id;
1051 dma_rx_id = rspi_pd->dma_rx_id;
1052 } else {
1053 /* The driver assumes no error. */
1054 return 0;
1055 }
1056
1057 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1058 res->start + RSPI_SPDR);
1059 if (!master->dma_tx)
1060 return -ENODEV;
1061
1062 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1063 res->start + RSPI_SPDR);
1064 if (!master->dma_rx) {
1065 dma_release_channel(master->dma_tx);
1066 master->dma_tx = NULL;
1067 return -ENODEV;
1068 }
1069
1070 master->can_dma = rspi_can_dma;
1071 dev_info(dev, "DMA available");
1072 return 0;
1073}
1074
1075static void rspi_release_dma(struct spi_master *master)
1076{
1077 if (master->dma_tx)
1078 dma_release_channel(master->dma_tx);
1079 if (master->dma_rx)
1080 dma_release_channel(master->dma_rx);
1081}
1082
1083static int rspi_remove(struct platform_device *pdev)
1084{
1085 struct rspi_data *rspi = platform_get_drvdata(pdev);
1086
1087 rspi_release_dma(rspi->master);
1088 pm_runtime_disable(&pdev->dev);
1089
1090 return 0;
1091}
1092
1093static const struct spi_ops rspi_ops = {
1094 .set_config_register = rspi_set_config_register,
1095 .transfer_one = rspi_transfer_one,
1096 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1097 .flags = SPI_MASTER_MUST_TX,
1098 .fifo_size = 8,
1099};
1100
1101static const struct spi_ops rspi_rz_ops = {
1102 .set_config_register = rspi_rz_set_config_register,
1103 .transfer_one = rspi_rz_transfer_one,
1104 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1105 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1106 .fifo_size = 8, /* 8 for TX, 32 for RX */
1107};
1108
1109static const struct spi_ops qspi_ops = {
1110 .set_config_register = qspi_set_config_register,
1111 .transfer_one = qspi_transfer_one,
1112 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1113 SPI_TX_DUAL | SPI_TX_QUAD |
1114 SPI_RX_DUAL | SPI_RX_QUAD,
1115 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1116 .fifo_size = 32,
1117};
1118
1119#ifdef CONFIG_OF
1120static const struct of_device_id rspi_of_match[] = {
1121 /* RSPI on legacy SH */
1122 { .compatible = "renesas,rspi", .data = &rspi_ops },
1123 /* RSPI on RZ/A1H */
1124 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1125 /* QSPI on R-Car Gen2 */
1126 { .compatible = "renesas,qspi", .data = &qspi_ops },
1127 { /* sentinel */ }
1128};
1129
1130MODULE_DEVICE_TABLE(of, rspi_of_match);
1131
1132static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1133{
1134 u32 num_cs;
1135 int error;
1136
1137 /* Parse DT properties */
1138 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1139 if (error) {
1140 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1141 return error;
1142 }
1143
1144 master->num_chipselect = num_cs;
1145 return 0;
1146}
1147#else
1148#define rspi_of_match NULL
1149static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1150{
1151 return -EINVAL;
1152}
1153#endif /* CONFIG_OF */
1154
1155static int rspi_request_irq(struct device *dev, unsigned int irq,
1156 irq_handler_t handler, const char *suffix,
1157 void *dev_id)
1158{
1159 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1160 dev_name(dev), suffix);
1161 if (!name)
1162 return -ENOMEM;
1163
1164 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1165}
1166
1167static int rspi_probe(struct platform_device *pdev)
1168{
1169 struct resource *res;
1170 struct spi_master *master;
1171 struct rspi_data *rspi;
1172 int ret;
1173 const struct of_device_id *of_id;
1174 const struct rspi_plat_data *rspi_pd;
1175 const struct spi_ops *ops;
1176
1177 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1178 if (master == NULL) {
1179 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1180 return -ENOMEM;
1181 }
1182
1183 of_id = of_match_device(rspi_of_match, &pdev->dev);
1184 if (of_id) {
1185 ops = of_id->data;
1186 ret = rspi_parse_dt(&pdev->dev, master);
1187 if (ret)
1188 goto error1;
1189 } else {
1190 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1191 rspi_pd = dev_get_platdata(&pdev->dev);
1192 if (rspi_pd && rspi_pd->num_chipselect)
1193 master->num_chipselect = rspi_pd->num_chipselect;
1194 else
1195 master->num_chipselect = 2; /* default */
1196 }
1197
1198 /* ops parameter check */
1199 if (!ops->set_config_register) {
1200 dev_err(&pdev->dev, "there is no set_config_register\n");
1201 ret = -ENODEV;
1202 goto error1;
1203 }
1204
1205 rspi = spi_master_get_devdata(master);
1206 platform_set_drvdata(pdev, rspi);
1207 rspi->ops = ops;
1208 rspi->master = master;
1209
1210 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1211 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1212 if (IS_ERR(rspi->addr)) {
1213 ret = PTR_ERR(rspi->addr);
1214 goto error1;
1215 }
1216
1217 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1218 if (IS_ERR(rspi->clk)) {
1219 dev_err(&pdev->dev, "cannot get clock\n");
1220 ret = PTR_ERR(rspi->clk);
1221 goto error1;
1222 }
1223
1224 pm_runtime_enable(&pdev->dev);
1225
1226 init_waitqueue_head(&rspi->wait);
1227
1228 master->bus_num = pdev->id;
1229 master->setup = rspi_setup;
1230 master->auto_runtime_pm = true;
1231 master->transfer_one = ops->transfer_one;
1232 master->prepare_message = rspi_prepare_message;
1233 master->unprepare_message = rspi_unprepare_message;
1234 master->mode_bits = ops->mode_bits;
1235 master->flags = ops->flags;
1236 master->dev.of_node = pdev->dev.of_node;
1237
1238 ret = platform_get_irq_byname(pdev, "rx");
1239 if (ret < 0) {
1240 ret = platform_get_irq_byname(pdev, "mux");
1241 if (ret < 0)
1242 ret = platform_get_irq(pdev, 0);
1243 if (ret >= 0)
1244 rspi->rx_irq = rspi->tx_irq = ret;
1245 } else {
1246 rspi->rx_irq = ret;
1247 ret = platform_get_irq_byname(pdev, "tx");
1248 if (ret >= 0)
1249 rspi->tx_irq = ret;
1250 }
1251 if (ret < 0) {
1252 dev_err(&pdev->dev, "platform_get_irq error\n");
1253 goto error2;
1254 }
1255
1256 if (rspi->rx_irq == rspi->tx_irq) {
1257 /* Single multiplexed interrupt */
1258 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1259 "mux", rspi);
1260 } else {
1261 /* Multi-interrupt mode, only SPRI and SPTI are used */
1262 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1263 "rx", rspi);
1264 if (!ret)
1265 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1266 rspi_irq_tx, "tx", rspi);
1267 }
1268 if (ret < 0) {
1269 dev_err(&pdev->dev, "request_irq error\n");
1270 goto error2;
1271 }
1272
1273 ret = rspi_request_dma(&pdev->dev, master, res);
1274 if (ret < 0)
1275 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1276
1277 ret = devm_spi_register_master(&pdev->dev, master);
1278 if (ret < 0) {
1279 dev_err(&pdev->dev, "spi_register_master error.\n");
1280 goto error3;
1281 }
1282
1283 dev_info(&pdev->dev, "probed\n");
1284
1285 return 0;
1286
1287error3:
1288 rspi_release_dma(master);
1289error2:
1290 pm_runtime_disable(&pdev->dev);
1291error1:
1292 spi_master_put(master);
1293
1294 return ret;
1295}
1296
1297static const struct platform_device_id spi_driver_ids[] = {
1298 { "rspi", (kernel_ulong_t)&rspi_ops },
1299 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1300 { "qspi", (kernel_ulong_t)&qspi_ops },
1301 {},
1302};
1303
1304MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1305
1306static struct platform_driver rspi_driver = {
1307 .probe = rspi_probe,
1308 .remove = rspi_remove,
1309 .id_table = spi_driver_ids,
1310 .driver = {
1311 .name = "renesas_spi",
1312 .of_match_table = of_match_ptr(rspi_of_match),
1313 },
1314};
1315module_platform_driver(rspi_driver);
1316
1317MODULE_DESCRIPTION("Renesas RSPI bus driver");
1318MODULE_LICENSE("GPL v2");
1319MODULE_AUTHOR("Yoshihiro Shimoda");
1320MODULE_ALIAS("platform:rspi");