Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SH RSPI driver
4 *
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
10 */
11
12#include <linux/module.h>
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/errno.h>
16#include <linux/interrupt.h>
17#include <linux/platform_device.h>
18#include <linux/io.h>
19#include <linux/clk.h>
20#include <linux/dmaengine.h>
21#include <linux/dma-mapping.h>
22#include <linux/of_device.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_dma.h>
25#include <linux/spi/spi.h>
26#include <linux/spi/rspi.h>
27#include <linux/spinlock.h>
28
29#define RSPI_SPCR 0x00 /* Control Register */
30#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31#define RSPI_SPPCR 0x02 /* Pin Control Register */
32#define RSPI_SPSR 0x03 /* Status Register */
33#define RSPI_SPDR 0x04 /* Data Register */
34#define RSPI_SPSCR 0x08 /* Sequence Control Register */
35#define RSPI_SPSSR 0x09 /* Sequence Status Register */
36#define RSPI_SPBR 0x0a /* Bit Rate Register */
37#define RSPI_SPDCR 0x0b /* Data Control Register */
38#define RSPI_SPCKD 0x0c /* Clock Delay Register */
39#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40#define RSPI_SPND 0x0e /* Next-Access Delay Register */
41#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42#define RSPI_SPCMD0 0x10 /* Command Register 0 */
43#define RSPI_SPCMD1 0x12 /* Command Register 1 */
44#define RSPI_SPCMD2 0x14 /* Command Register 2 */
45#define RSPI_SPCMD3 0x16 /* Command Register 3 */
46#define RSPI_SPCMD4 0x18 /* Command Register 4 */
47#define RSPI_SPCMD5 0x1a /* Command Register 5 */
48#define RSPI_SPCMD6 0x1c /* Command Register 6 */
49#define RSPI_SPCMD7 0x1e /* Command Register 7 */
50#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51#define RSPI_NUM_SPCMD 8
52#define RSPI_RZ_NUM_SPCMD 4
53#define QSPI_NUM_SPCMD 4
54
55/* RSPI on RZ only */
56#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
58
59/* QSPI only */
60#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
67
68/* SPCR - Control Register */
69#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70#define SPCR_SPE 0x40 /* Function Enable */
71#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75/* RSPI on SH only */
76#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78/* QSPI on R-Car Gen2 only */
79#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
81
82/* SSLP - Slave Select Polarity Register */
83#define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
84
85/* SPPCR - Pin Control Register */
86#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88#define SPPCR_SPOM 0x04
89#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
91
92#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
95/* SPSR - Status Register */
96#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97#define SPSR_TEND 0x40 /* Transmit End */
98#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99#define SPSR_PERF 0x08 /* Parity Error Flag */
100#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
103
104/* SPSCR - Sequence Control Register */
105#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
106
107/* SPSSR - Sequence Status Register */
108#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
110
111/* SPDCR - Data Control Register */
112#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116#define SPDCR_SPLWORD SPDCR_SPLW1
117#define SPDCR_SPLBYTE SPDCR_SPLW0
118#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120#define SPDCR_SLSEL1 0x08
121#define SPDCR_SLSEL0 0x04
122#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123#define SPDCR_SPFC1 0x02
124#define SPDCR_SPFC0 0x01
125#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
126
127/* SPCKD - Clock Delay Register */
128#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
129
130/* SSLND - Slave Select Negation Delay Register */
131#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
132
133/* SPND - Next-Access Delay Register */
134#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
135
136/* SPCR2 - Control Register 2 */
137#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140#define SPCR2_SPPE 0x01 /* Parity Enable */
141
142/* SPCMDn - Command Registers */
143#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146#define SPCMD_LSBF 0x1000 /* LSB First */
147#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150#define SPCMD_SPB_16BIT 0x0100
151#define SPCMD_SPB_20BIT 0x0000
152#define SPCMD_SPB_24BIT 0x0100
153#define SPCMD_SPB_32BIT 0x0200
154#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156#define SPCMD_SPIMOD1 0x0040
157#define SPCMD_SPIMOD0 0x0020
158#define SPCMD_SPIMOD_SINGLE 0
159#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162#define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
165#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
166
167/* SPBFCR - Buffer Control Register */
168#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
169#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
170#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
171#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
172/* QSPI on R-Car Gen2 */
173#define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
174#define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
175#define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
176#define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
177
178#define QSPI_BUFFER_SIZE 32u
179
180struct rspi_data {
181 void __iomem *addr;
182 u32 speed_hz;
183 struct spi_controller *ctlr;
184 struct platform_device *pdev;
185 wait_queue_head_t wait;
186 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
187 struct clk *clk;
188 u16 spcmd;
189 u8 spsr;
190 u8 sppcr;
191 int rx_irq, tx_irq;
192 const struct spi_ops *ops;
193
194 unsigned dma_callbacked:1;
195 unsigned byte_access:1;
196};
197
198static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
199{
200 iowrite8(data, rspi->addr + offset);
201}
202
203static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
204{
205 iowrite16(data, rspi->addr + offset);
206}
207
208static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
209{
210 iowrite32(data, rspi->addr + offset);
211}
212
213static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
214{
215 return ioread8(rspi->addr + offset);
216}
217
218static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
219{
220 return ioread16(rspi->addr + offset);
221}
222
223static void rspi_write_data(const struct rspi_data *rspi, u16 data)
224{
225 if (rspi->byte_access)
226 rspi_write8(rspi, data, RSPI_SPDR);
227 else /* 16 bit */
228 rspi_write16(rspi, data, RSPI_SPDR);
229}
230
231static u16 rspi_read_data(const struct rspi_data *rspi)
232{
233 if (rspi->byte_access)
234 return rspi_read8(rspi, RSPI_SPDR);
235 else /* 16 bit */
236 return rspi_read16(rspi, RSPI_SPDR);
237}
238
239/* optional functions */
240struct spi_ops {
241 int (*set_config_register)(struct rspi_data *rspi, int access_size);
242 int (*transfer_one)(struct spi_controller *ctlr,
243 struct spi_device *spi, struct spi_transfer *xfer);
244 u16 extra_mode_bits;
245 u16 flags;
246 u16 fifo_size;
247 u8 num_hw_ss;
248};
249
250/*
251 * functions for RSPI on legacy SH
252 */
253static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
254{
255 int spbr;
256
257 /* Sets output mode, MOSI signal, and (optionally) loopback */
258 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
259
260 /* Sets transfer bit rate */
261 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz) - 1;
262 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
263
264 /* Disable dummy transmission, set 16-bit word access, 1 frame */
265 rspi_write8(rspi, 0, RSPI_SPDCR);
266 rspi->byte_access = 0;
267
268 /* Sets RSPCK, SSL, next-access delay value */
269 rspi_write8(rspi, 0x00, RSPI_SPCKD);
270 rspi_write8(rspi, 0x00, RSPI_SSLND);
271 rspi_write8(rspi, 0x00, RSPI_SPND);
272
273 /* Sets parity, interrupt mask */
274 rspi_write8(rspi, 0x00, RSPI_SPCR2);
275
276 /* Resets sequencer */
277 rspi_write8(rspi, 0, RSPI_SPSCR);
278 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
279 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
280
281 /* Sets RSPI mode */
282 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
283
284 return 0;
285}
286
287/*
288 * functions for RSPI on RZ
289 */
290static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
291{
292 int spbr;
293 int div = 0;
294 unsigned long clksrc;
295
296 /* Sets output mode, MOSI signal, and (optionally) loopback */
297 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
298
299 clksrc = clk_get_rate(rspi->clk);
300 while (div < 3) {
301 if (rspi->speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */
302 break;
303 div++;
304 clksrc /= 2;
305 }
306
307 /* Sets transfer bit rate */
308 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
309 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
310 rspi->spcmd |= div << 2;
311
312 /* Disable dummy transmission, set byte access */
313 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
314 rspi->byte_access = 1;
315
316 /* Sets RSPCK, SSL, next-access delay value */
317 rspi_write8(rspi, 0x00, RSPI_SPCKD);
318 rspi_write8(rspi, 0x00, RSPI_SSLND);
319 rspi_write8(rspi, 0x00, RSPI_SPND);
320
321 /* Resets sequencer */
322 rspi_write8(rspi, 0, RSPI_SPSCR);
323 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
324 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
325
326 /* Sets RSPI mode */
327 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
328
329 return 0;
330}
331
332/*
333 * functions for QSPI
334 */
335static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
336{
337 int spbr;
338
339 /* Sets output mode, MOSI signal, and (optionally) loopback */
340 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
341
342 /* Sets transfer bit rate */
343 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->speed_hz);
344 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
345
346 /* Disable dummy transmission, set byte access */
347 rspi_write8(rspi, 0, RSPI_SPDCR);
348 rspi->byte_access = 1;
349
350 /* Sets RSPCK, SSL, next-access delay value */
351 rspi_write8(rspi, 0x00, RSPI_SPCKD);
352 rspi_write8(rspi, 0x00, RSPI_SSLND);
353 rspi_write8(rspi, 0x00, RSPI_SPND);
354
355 /* Data Length Setting */
356 if (access_size == 8)
357 rspi->spcmd |= SPCMD_SPB_8BIT;
358 else if (access_size == 16)
359 rspi->spcmd |= SPCMD_SPB_16BIT;
360 else
361 rspi->spcmd |= SPCMD_SPB_32BIT;
362
363 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
364
365 /* Resets transfer data length */
366 rspi_write32(rspi, 0, QSPI_SPBMUL0);
367
368 /* Resets transmit and receive buffer */
369 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
370 /* Sets buffer to allow normal operation */
371 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
372
373 /* Resets sequencer */
374 rspi_write8(rspi, 0, RSPI_SPSCR);
375 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
376
377 /* Sets RSPI mode */
378 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
379
380 return 0;
381}
382
383static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
384{
385 u8 data;
386
387 data = rspi_read8(rspi, reg);
388 data &= ~mask;
389 data |= (val & mask);
390 rspi_write8(rspi, data, reg);
391}
392
393static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
394 unsigned int len)
395{
396 unsigned int n;
397
398 n = min(len, QSPI_BUFFER_SIZE);
399
400 if (len >= QSPI_BUFFER_SIZE) {
401 /* sets triggering number to 32 bytes */
402 qspi_update(rspi, SPBFCR_TXTRG_MASK,
403 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
404 } else {
405 /* sets triggering number to 1 byte */
406 qspi_update(rspi, SPBFCR_TXTRG_MASK,
407 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
408 }
409
410 return n;
411}
412
413static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
414{
415 unsigned int n;
416
417 n = min(len, QSPI_BUFFER_SIZE);
418
419 if (len >= QSPI_BUFFER_SIZE) {
420 /* sets triggering number to 32 bytes */
421 qspi_update(rspi, SPBFCR_RXTRG_MASK,
422 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
423 } else {
424 /* sets triggering number to 1 byte */
425 qspi_update(rspi, SPBFCR_RXTRG_MASK,
426 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
427 }
428 return n;
429}
430
431static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
432{
433 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
434}
435
436static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
437{
438 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
439}
440
441static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
442 u8 enable_bit)
443{
444 int ret;
445
446 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
447 if (rspi->spsr & wait_mask)
448 return 0;
449
450 rspi_enable_irq(rspi, enable_bit);
451 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
452 if (ret == 0 && !(rspi->spsr & wait_mask))
453 return -ETIMEDOUT;
454
455 return 0;
456}
457
458static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
459{
460 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
461}
462
463static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
464{
465 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
466}
467
468static int rspi_data_out(struct rspi_data *rspi, u8 data)
469{
470 int error = rspi_wait_for_tx_empty(rspi);
471 if (error < 0) {
472 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
473 return error;
474 }
475 rspi_write_data(rspi, data);
476 return 0;
477}
478
479static int rspi_data_in(struct rspi_data *rspi)
480{
481 int error;
482 u8 data;
483
484 error = rspi_wait_for_rx_full(rspi);
485 if (error < 0) {
486 dev_err(&rspi->ctlr->dev, "receive timeout\n");
487 return error;
488 }
489 data = rspi_read_data(rspi);
490 return data;
491}
492
493static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
494 unsigned int n)
495{
496 while (n-- > 0) {
497 if (tx) {
498 int ret = rspi_data_out(rspi, *tx++);
499 if (ret < 0)
500 return ret;
501 }
502 if (rx) {
503 int ret = rspi_data_in(rspi);
504 if (ret < 0)
505 return ret;
506 *rx++ = ret;
507 }
508 }
509
510 return 0;
511}
512
513static void rspi_dma_complete(void *arg)
514{
515 struct rspi_data *rspi = arg;
516
517 rspi->dma_callbacked = 1;
518 wake_up_interruptible(&rspi->wait);
519}
520
521static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
522 struct sg_table *rx)
523{
524 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
525 u8 irq_mask = 0;
526 unsigned int other_irq = 0;
527 dma_cookie_t cookie;
528 int ret;
529
530 /* First prepare and submit the DMA request(s), as this may fail */
531 if (rx) {
532 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
533 rx->nents, DMA_DEV_TO_MEM,
534 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
535 if (!desc_rx) {
536 ret = -EAGAIN;
537 goto no_dma_rx;
538 }
539
540 desc_rx->callback = rspi_dma_complete;
541 desc_rx->callback_param = rspi;
542 cookie = dmaengine_submit(desc_rx);
543 if (dma_submit_error(cookie)) {
544 ret = cookie;
545 goto no_dma_rx;
546 }
547
548 irq_mask |= SPCR_SPRIE;
549 }
550
551 if (tx) {
552 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
553 tx->nents, DMA_MEM_TO_DEV,
554 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
555 if (!desc_tx) {
556 ret = -EAGAIN;
557 goto no_dma_tx;
558 }
559
560 if (rx) {
561 /* No callback */
562 desc_tx->callback = NULL;
563 } else {
564 desc_tx->callback = rspi_dma_complete;
565 desc_tx->callback_param = rspi;
566 }
567 cookie = dmaengine_submit(desc_tx);
568 if (dma_submit_error(cookie)) {
569 ret = cookie;
570 goto no_dma_tx;
571 }
572
573 irq_mask |= SPCR_SPTIE;
574 }
575
576 /*
577 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
578 * called. So, this driver disables the IRQ while DMA transfer.
579 */
580 if (tx)
581 disable_irq(other_irq = rspi->tx_irq);
582 if (rx && rspi->rx_irq != other_irq)
583 disable_irq(rspi->rx_irq);
584
585 rspi_enable_irq(rspi, irq_mask);
586 rspi->dma_callbacked = 0;
587
588 /* Now start DMA */
589 if (rx)
590 dma_async_issue_pending(rspi->ctlr->dma_rx);
591 if (tx)
592 dma_async_issue_pending(rspi->ctlr->dma_tx);
593
594 ret = wait_event_interruptible_timeout(rspi->wait,
595 rspi->dma_callbacked, HZ);
596 if (ret > 0 && rspi->dma_callbacked) {
597 ret = 0;
598 } else {
599 if (!ret) {
600 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
601 ret = -ETIMEDOUT;
602 }
603 if (tx)
604 dmaengine_terminate_all(rspi->ctlr->dma_tx);
605 if (rx)
606 dmaengine_terminate_all(rspi->ctlr->dma_rx);
607 }
608
609 rspi_disable_irq(rspi, irq_mask);
610
611 if (tx)
612 enable_irq(rspi->tx_irq);
613 if (rx && rspi->rx_irq != other_irq)
614 enable_irq(rspi->rx_irq);
615
616 return ret;
617
618no_dma_tx:
619 if (rx)
620 dmaengine_terminate_all(rspi->ctlr->dma_rx);
621no_dma_rx:
622 if (ret == -EAGAIN) {
623 dev_warn_once(&rspi->ctlr->dev,
624 "DMA not available, falling back to PIO\n");
625 }
626 return ret;
627}
628
629static void rspi_receive_init(const struct rspi_data *rspi)
630{
631 u8 spsr;
632
633 spsr = rspi_read8(rspi, RSPI_SPSR);
634 if (spsr & SPSR_SPRF)
635 rspi_read_data(rspi); /* dummy read */
636 if (spsr & SPSR_OVRF)
637 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
638 RSPI_SPSR);
639}
640
641static void rspi_rz_receive_init(const struct rspi_data *rspi)
642{
643 rspi_receive_init(rspi);
644 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
645 rspi_write8(rspi, 0, RSPI_SPBFCR);
646}
647
648static void qspi_receive_init(const struct rspi_data *rspi)
649{
650 u8 spsr;
651
652 spsr = rspi_read8(rspi, RSPI_SPSR);
653 if (spsr & SPSR_SPRF)
654 rspi_read_data(rspi); /* dummy read */
655 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
656 rspi_write8(rspi, 0, QSPI_SPBFCR);
657}
658
659static bool __rspi_can_dma(const struct rspi_data *rspi,
660 const struct spi_transfer *xfer)
661{
662 return xfer->len > rspi->ops->fifo_size;
663}
664
665static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
666 struct spi_transfer *xfer)
667{
668 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
669
670 return __rspi_can_dma(rspi, xfer);
671}
672
673static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
674 struct spi_transfer *xfer)
675{
676 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
677 return -EAGAIN;
678
679 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
680 return rspi_dma_transfer(rspi, &xfer->tx_sg,
681 xfer->rx_buf ? &xfer->rx_sg : NULL);
682}
683
684static int rspi_common_transfer(struct rspi_data *rspi,
685 struct spi_transfer *xfer)
686{
687 int ret;
688
689 ret = rspi_dma_check_then_transfer(rspi, xfer);
690 if (ret != -EAGAIN)
691 return ret;
692
693 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
694 if (ret < 0)
695 return ret;
696
697 /* Wait for the last transmission */
698 rspi_wait_for_tx_empty(rspi);
699
700 return 0;
701}
702
703static int rspi_transfer_one(struct spi_controller *ctlr,
704 struct spi_device *spi, struct spi_transfer *xfer)
705{
706 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
707 u8 spcr;
708
709 spcr = rspi_read8(rspi, RSPI_SPCR);
710 if (xfer->rx_buf) {
711 rspi_receive_init(rspi);
712 spcr &= ~SPCR_TXMD;
713 } else {
714 spcr |= SPCR_TXMD;
715 }
716 rspi_write8(rspi, spcr, RSPI_SPCR);
717
718 return rspi_common_transfer(rspi, xfer);
719}
720
721static int rspi_rz_transfer_one(struct spi_controller *ctlr,
722 struct spi_device *spi,
723 struct spi_transfer *xfer)
724{
725 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
726
727 rspi_rz_receive_init(rspi);
728
729 return rspi_common_transfer(rspi, xfer);
730}
731
732static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
733 u8 *rx, unsigned int len)
734{
735 unsigned int i, n;
736 int ret;
737
738 while (len > 0) {
739 n = qspi_set_send_trigger(rspi, len);
740 qspi_set_receive_trigger(rspi, len);
741 ret = rspi_wait_for_tx_empty(rspi);
742 if (ret < 0) {
743 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
744 return ret;
745 }
746 for (i = 0; i < n; i++)
747 rspi_write_data(rspi, *tx++);
748
749 ret = rspi_wait_for_rx_full(rspi);
750 if (ret < 0) {
751 dev_err(&rspi->ctlr->dev, "receive timeout\n");
752 return ret;
753 }
754 for (i = 0; i < n; i++)
755 *rx++ = rspi_read_data(rspi);
756
757 len -= n;
758 }
759
760 return 0;
761}
762
763static int qspi_transfer_out_in(struct rspi_data *rspi,
764 struct spi_transfer *xfer)
765{
766 int ret;
767
768 qspi_receive_init(rspi);
769
770 ret = rspi_dma_check_then_transfer(rspi, xfer);
771 if (ret != -EAGAIN)
772 return ret;
773
774 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
775 xfer->rx_buf, xfer->len);
776}
777
778static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
779{
780 const u8 *tx = xfer->tx_buf;
781 unsigned int n = xfer->len;
782 unsigned int i, len;
783 int ret;
784
785 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
786 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
787 if (ret != -EAGAIN)
788 return ret;
789 }
790
791 while (n > 0) {
792 len = qspi_set_send_trigger(rspi, n);
793 ret = rspi_wait_for_tx_empty(rspi);
794 if (ret < 0) {
795 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
796 return ret;
797 }
798 for (i = 0; i < len; i++)
799 rspi_write_data(rspi, *tx++);
800
801 n -= len;
802 }
803
804 /* Wait for the last transmission */
805 rspi_wait_for_tx_empty(rspi);
806
807 return 0;
808}
809
810static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
811{
812 u8 *rx = xfer->rx_buf;
813 unsigned int n = xfer->len;
814 unsigned int i, len;
815 int ret;
816
817 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
818 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
819 if (ret != -EAGAIN)
820 return ret;
821 }
822
823 while (n > 0) {
824 len = qspi_set_receive_trigger(rspi, n);
825 ret = rspi_wait_for_rx_full(rspi);
826 if (ret < 0) {
827 dev_err(&rspi->ctlr->dev, "receive timeout\n");
828 return ret;
829 }
830 for (i = 0; i < len; i++)
831 *rx++ = rspi_read_data(rspi);
832
833 n -= len;
834 }
835
836 return 0;
837}
838
839static int qspi_transfer_one(struct spi_controller *ctlr,
840 struct spi_device *spi, struct spi_transfer *xfer)
841{
842 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
843
844 if (spi->mode & SPI_LOOP) {
845 return qspi_transfer_out_in(rspi, xfer);
846 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
847 /* Quad or Dual SPI Write */
848 return qspi_transfer_out(rspi, xfer);
849 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
850 /* Quad or Dual SPI Read */
851 return qspi_transfer_in(rspi, xfer);
852 } else {
853 /* Single SPI Transfer */
854 return qspi_transfer_out_in(rspi, xfer);
855 }
856}
857
858static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
859{
860 if (xfer->tx_buf)
861 switch (xfer->tx_nbits) {
862 case SPI_NBITS_QUAD:
863 return SPCMD_SPIMOD_QUAD;
864 case SPI_NBITS_DUAL:
865 return SPCMD_SPIMOD_DUAL;
866 default:
867 return 0;
868 }
869 if (xfer->rx_buf)
870 switch (xfer->rx_nbits) {
871 case SPI_NBITS_QUAD:
872 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
873 case SPI_NBITS_DUAL:
874 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
875 default:
876 return 0;
877 }
878
879 return 0;
880}
881
882static int qspi_setup_sequencer(struct rspi_data *rspi,
883 const struct spi_message *msg)
884{
885 const struct spi_transfer *xfer;
886 unsigned int i = 0, len = 0;
887 u16 current_mode = 0xffff, mode;
888
889 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
890 mode = qspi_transfer_mode(xfer);
891 if (mode == current_mode) {
892 len += xfer->len;
893 continue;
894 }
895
896 /* Transfer mode change */
897 if (i) {
898 /* Set transfer data length of previous transfer */
899 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
900 }
901
902 if (i >= QSPI_NUM_SPCMD) {
903 dev_err(&msg->spi->dev,
904 "Too many different transfer modes");
905 return -EINVAL;
906 }
907
908 /* Program transfer mode for this transfer */
909 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
910 current_mode = mode;
911 len = xfer->len;
912 i++;
913 }
914 if (i) {
915 /* Set final transfer data length and sequence length */
916 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
917 rspi_write8(rspi, i - 1, RSPI_SPSCR);
918 }
919
920 return 0;
921}
922
923static int rspi_setup(struct spi_device *spi)
924{
925 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
926 u8 sslp;
927
928 if (spi->cs_gpiod)
929 return 0;
930
931 pm_runtime_get_sync(&rspi->pdev->dev);
932 spin_lock_irq(&rspi->lock);
933
934 sslp = rspi_read8(rspi, RSPI_SSLP);
935 if (spi->mode & SPI_CS_HIGH)
936 sslp |= SSLP_SSLP(spi->chip_select);
937 else
938 sslp &= ~SSLP_SSLP(spi->chip_select);
939 rspi_write8(rspi, sslp, RSPI_SSLP);
940
941 spin_unlock_irq(&rspi->lock);
942 pm_runtime_put(&rspi->pdev->dev);
943 return 0;
944}
945
946static int rspi_prepare_message(struct spi_controller *ctlr,
947 struct spi_message *msg)
948{
949 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
950 struct spi_device *spi = msg->spi;
951 const struct spi_transfer *xfer;
952 int ret;
953
954 /*
955 * As the Bit Rate Register must not be changed while the device is
956 * active, all transfers in a message must use the same bit rate.
957 * In theory, the sequencer could be enabled, and each Command Register
958 * could divide the base bit rate by a different value.
959 * However, most RSPI variants do not have Transfer Data Length
960 * Multiplier Setting Registers, so each sequence step would be limited
961 * to a single word, making this feature unsuitable for large
962 * transfers, which would gain most from it.
963 */
964 rspi->speed_hz = spi->max_speed_hz;
965 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
966 if (xfer->speed_hz < rspi->speed_hz)
967 rspi->speed_hz = xfer->speed_hz;
968 }
969
970 rspi->spcmd = SPCMD_SSLKP;
971 if (spi->mode & SPI_CPOL)
972 rspi->spcmd |= SPCMD_CPOL;
973 if (spi->mode & SPI_CPHA)
974 rspi->spcmd |= SPCMD_CPHA;
975 if (spi->mode & SPI_LSB_FIRST)
976 rspi->spcmd |= SPCMD_LSBF;
977
978 /* Configure slave signal to assert */
979 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
980 : spi->chip_select);
981
982 /* CMOS output mode and MOSI signal from previous transfer */
983 rspi->sppcr = 0;
984 if (spi->mode & SPI_LOOP)
985 rspi->sppcr |= SPPCR_SPLP;
986
987 rspi->ops->set_config_register(rspi, 8);
988
989 if (msg->spi->mode &
990 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
991 /* Setup sequencer for messages with multiple transfer modes */
992 ret = qspi_setup_sequencer(rspi, msg);
993 if (ret < 0)
994 return ret;
995 }
996
997 /* Enable SPI function in master mode */
998 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
999 return 0;
1000}
1001
1002static int rspi_unprepare_message(struct spi_controller *ctlr,
1003 struct spi_message *msg)
1004{
1005 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1006
1007 /* Disable SPI function */
1008 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1009
1010 /* Reset sequencer for Single SPI Transfers */
1011 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1012 rspi_write8(rspi, 0, RSPI_SPSCR);
1013 return 0;
1014}
1015
1016static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1017{
1018 struct rspi_data *rspi = _sr;
1019 u8 spsr;
1020 irqreturn_t ret = IRQ_NONE;
1021 u8 disable_irq = 0;
1022
1023 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1024 if (spsr & SPSR_SPRF)
1025 disable_irq |= SPCR_SPRIE;
1026 if (spsr & SPSR_SPTEF)
1027 disable_irq |= SPCR_SPTIE;
1028
1029 if (disable_irq) {
1030 ret = IRQ_HANDLED;
1031 rspi_disable_irq(rspi, disable_irq);
1032 wake_up(&rspi->wait);
1033 }
1034
1035 return ret;
1036}
1037
1038static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1039{
1040 struct rspi_data *rspi = _sr;
1041 u8 spsr;
1042
1043 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1044 if (spsr & SPSR_SPRF) {
1045 rspi_disable_irq(rspi, SPCR_SPRIE);
1046 wake_up(&rspi->wait);
1047 return IRQ_HANDLED;
1048 }
1049
1050 return 0;
1051}
1052
1053static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1054{
1055 struct rspi_data *rspi = _sr;
1056 u8 spsr;
1057
1058 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1059 if (spsr & SPSR_SPTEF) {
1060 rspi_disable_irq(rspi, SPCR_SPTIE);
1061 wake_up(&rspi->wait);
1062 return IRQ_HANDLED;
1063 }
1064
1065 return 0;
1066}
1067
1068static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1069 enum dma_transfer_direction dir,
1070 unsigned int id,
1071 dma_addr_t port_addr)
1072{
1073 dma_cap_mask_t mask;
1074 struct dma_chan *chan;
1075 struct dma_slave_config cfg;
1076 int ret;
1077
1078 dma_cap_zero(mask);
1079 dma_cap_set(DMA_SLAVE, mask);
1080
1081 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1082 (void *)(unsigned long)id, dev,
1083 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1084 if (!chan) {
1085 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1086 return NULL;
1087 }
1088
1089 memset(&cfg, 0, sizeof(cfg));
1090 cfg.direction = dir;
1091 if (dir == DMA_MEM_TO_DEV) {
1092 cfg.dst_addr = port_addr;
1093 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1094 } else {
1095 cfg.src_addr = port_addr;
1096 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1097 }
1098
1099 ret = dmaengine_slave_config(chan, &cfg);
1100 if (ret) {
1101 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1102 dma_release_channel(chan);
1103 return NULL;
1104 }
1105
1106 return chan;
1107}
1108
1109static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1110 const struct resource *res)
1111{
1112 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1113 unsigned int dma_tx_id, dma_rx_id;
1114
1115 if (dev->of_node) {
1116 /* In the OF case we will get the slave IDs from the DT */
1117 dma_tx_id = 0;
1118 dma_rx_id = 0;
1119 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1120 dma_tx_id = rspi_pd->dma_tx_id;
1121 dma_rx_id = rspi_pd->dma_rx_id;
1122 } else {
1123 /* The driver assumes no error. */
1124 return 0;
1125 }
1126
1127 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1128 res->start + RSPI_SPDR);
1129 if (!ctlr->dma_tx)
1130 return -ENODEV;
1131
1132 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1133 res->start + RSPI_SPDR);
1134 if (!ctlr->dma_rx) {
1135 dma_release_channel(ctlr->dma_tx);
1136 ctlr->dma_tx = NULL;
1137 return -ENODEV;
1138 }
1139
1140 ctlr->can_dma = rspi_can_dma;
1141 dev_info(dev, "DMA available");
1142 return 0;
1143}
1144
1145static void rspi_release_dma(struct spi_controller *ctlr)
1146{
1147 if (ctlr->dma_tx)
1148 dma_release_channel(ctlr->dma_tx);
1149 if (ctlr->dma_rx)
1150 dma_release_channel(ctlr->dma_rx);
1151}
1152
1153static int rspi_remove(struct platform_device *pdev)
1154{
1155 struct rspi_data *rspi = platform_get_drvdata(pdev);
1156
1157 rspi_release_dma(rspi->ctlr);
1158 pm_runtime_disable(&pdev->dev);
1159
1160 return 0;
1161}
1162
1163static const struct spi_ops rspi_ops = {
1164 .set_config_register = rspi_set_config_register,
1165 .transfer_one = rspi_transfer_one,
1166 .flags = SPI_CONTROLLER_MUST_TX,
1167 .fifo_size = 8,
1168 .num_hw_ss = 2,
1169};
1170
1171static const struct spi_ops rspi_rz_ops = {
1172 .set_config_register = rspi_rz_set_config_register,
1173 .transfer_one = rspi_rz_transfer_one,
1174 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1175 .fifo_size = 8, /* 8 for TX, 32 for RX */
1176 .num_hw_ss = 1,
1177};
1178
1179static const struct spi_ops qspi_ops = {
1180 .set_config_register = qspi_set_config_register,
1181 .transfer_one = qspi_transfer_one,
1182 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1183 SPI_RX_DUAL | SPI_RX_QUAD,
1184 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1185 .fifo_size = 32,
1186 .num_hw_ss = 1,
1187};
1188
1189#ifdef CONFIG_OF
1190static const struct of_device_id rspi_of_match[] = {
1191 /* RSPI on legacy SH */
1192 { .compatible = "renesas,rspi", .data = &rspi_ops },
1193 /* RSPI on RZ/A1H */
1194 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1195 /* QSPI on R-Car Gen2 */
1196 { .compatible = "renesas,qspi", .data = &qspi_ops },
1197 { /* sentinel */ }
1198};
1199
1200MODULE_DEVICE_TABLE(of, rspi_of_match);
1201
1202static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1203{
1204 u32 num_cs;
1205 int error;
1206
1207 /* Parse DT properties */
1208 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1209 if (error) {
1210 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1211 return error;
1212 }
1213
1214 ctlr->num_chipselect = num_cs;
1215 return 0;
1216}
1217#else
1218#define rspi_of_match NULL
1219static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1220{
1221 return -EINVAL;
1222}
1223#endif /* CONFIG_OF */
1224
1225static int rspi_request_irq(struct device *dev, unsigned int irq,
1226 irq_handler_t handler, const char *suffix,
1227 void *dev_id)
1228{
1229 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1230 dev_name(dev), suffix);
1231 if (!name)
1232 return -ENOMEM;
1233
1234 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1235}
1236
1237static int rspi_probe(struct platform_device *pdev)
1238{
1239 struct resource *res;
1240 struct spi_controller *ctlr;
1241 struct rspi_data *rspi;
1242 int ret;
1243 const struct rspi_plat_data *rspi_pd;
1244 const struct spi_ops *ops;
1245
1246 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1247 if (ctlr == NULL)
1248 return -ENOMEM;
1249
1250 ops = of_device_get_match_data(&pdev->dev);
1251 if (ops) {
1252 ret = rspi_parse_dt(&pdev->dev, ctlr);
1253 if (ret)
1254 goto error1;
1255 } else {
1256 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1257 rspi_pd = dev_get_platdata(&pdev->dev);
1258 if (rspi_pd && rspi_pd->num_chipselect)
1259 ctlr->num_chipselect = rspi_pd->num_chipselect;
1260 else
1261 ctlr->num_chipselect = 2; /* default */
1262 }
1263
1264 /* ops parameter check */
1265 if (!ops->set_config_register) {
1266 dev_err(&pdev->dev, "there is no set_config_register\n");
1267 ret = -ENODEV;
1268 goto error1;
1269 }
1270
1271 rspi = spi_controller_get_devdata(ctlr);
1272 platform_set_drvdata(pdev, rspi);
1273 rspi->ops = ops;
1274 rspi->ctlr = ctlr;
1275
1276 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1277 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1278 if (IS_ERR(rspi->addr)) {
1279 ret = PTR_ERR(rspi->addr);
1280 goto error1;
1281 }
1282
1283 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1284 if (IS_ERR(rspi->clk)) {
1285 dev_err(&pdev->dev, "cannot get clock\n");
1286 ret = PTR_ERR(rspi->clk);
1287 goto error1;
1288 }
1289
1290 rspi->pdev = pdev;
1291 pm_runtime_enable(&pdev->dev);
1292
1293 init_waitqueue_head(&rspi->wait);
1294 spin_lock_init(&rspi->lock);
1295
1296 ctlr->bus_num = pdev->id;
1297 ctlr->setup = rspi_setup;
1298 ctlr->auto_runtime_pm = true;
1299 ctlr->transfer_one = ops->transfer_one;
1300 ctlr->prepare_message = rspi_prepare_message;
1301 ctlr->unprepare_message = rspi_unprepare_message;
1302 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1303 SPI_LOOP | ops->extra_mode_bits;
1304 ctlr->flags = ops->flags;
1305 ctlr->dev.of_node = pdev->dev.of_node;
1306 ctlr->use_gpio_descriptors = true;
1307 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1308
1309 ret = platform_get_irq_byname_optional(pdev, "rx");
1310 if (ret < 0) {
1311 ret = platform_get_irq_byname_optional(pdev, "mux");
1312 if (ret < 0)
1313 ret = platform_get_irq(pdev, 0);
1314 if (ret >= 0)
1315 rspi->rx_irq = rspi->tx_irq = ret;
1316 } else {
1317 rspi->rx_irq = ret;
1318 ret = platform_get_irq_byname(pdev, "tx");
1319 if (ret >= 0)
1320 rspi->tx_irq = ret;
1321 }
1322
1323 if (rspi->rx_irq == rspi->tx_irq) {
1324 /* Single multiplexed interrupt */
1325 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1326 "mux", rspi);
1327 } else {
1328 /* Multi-interrupt mode, only SPRI and SPTI are used */
1329 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1330 "rx", rspi);
1331 if (!ret)
1332 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1333 rspi_irq_tx, "tx", rspi);
1334 }
1335 if (ret < 0) {
1336 dev_err(&pdev->dev, "request_irq error\n");
1337 goto error2;
1338 }
1339
1340 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1341 if (ret < 0)
1342 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1343
1344 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1345 if (ret < 0) {
1346 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1347 goto error3;
1348 }
1349
1350 dev_info(&pdev->dev, "probed\n");
1351
1352 return 0;
1353
1354error3:
1355 rspi_release_dma(ctlr);
1356error2:
1357 pm_runtime_disable(&pdev->dev);
1358error1:
1359 spi_controller_put(ctlr);
1360
1361 return ret;
1362}
1363
1364static const struct platform_device_id spi_driver_ids[] = {
1365 { "rspi", (kernel_ulong_t)&rspi_ops },
1366 {},
1367};
1368
1369MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1370
1371#ifdef CONFIG_PM_SLEEP
1372static int rspi_suspend(struct device *dev)
1373{
1374 struct rspi_data *rspi = dev_get_drvdata(dev);
1375
1376 return spi_controller_suspend(rspi->ctlr);
1377}
1378
1379static int rspi_resume(struct device *dev)
1380{
1381 struct rspi_data *rspi = dev_get_drvdata(dev);
1382
1383 return spi_controller_resume(rspi->ctlr);
1384}
1385
1386static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1387#define DEV_PM_OPS &rspi_pm_ops
1388#else
1389#define DEV_PM_OPS NULL
1390#endif /* CONFIG_PM_SLEEP */
1391
1392static struct platform_driver rspi_driver = {
1393 .probe = rspi_probe,
1394 .remove = rspi_remove,
1395 .id_table = spi_driver_ids,
1396 .driver = {
1397 .name = "renesas_spi",
1398 .pm = DEV_PM_OPS,
1399 .of_match_table = of_match_ptr(rspi_of_match),
1400 },
1401};
1402module_platform_driver(rspi_driver);
1403
1404MODULE_DESCRIPTION("Renesas RSPI bus driver");
1405MODULE_LICENSE("GPL v2");
1406MODULE_AUTHOR("Yoshihiro Shimoda");
1407MODULE_ALIAS("platform:rspi");
1/*
2 * SH RSPI driver
3 *
4 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
5 * Copyright (C) 2014 Glider bvba
6 *
7 * Based on spi-sh.c:
8 * Copyright (C) 2011 Renesas Solutions Corp.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
22 *
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/sched.h>
28#include <linux/errno.h>
29#include <linux/interrupt.h>
30#include <linux/platform_device.h>
31#include <linux/io.h>
32#include <linux/clk.h>
33#include <linux/dmaengine.h>
34#include <linux/dma-mapping.h>
35#include <linux/of_device.h>
36#include <linux/pm_runtime.h>
37#include <linux/sh_dma.h>
38#include <linux/spi/spi.h>
39#include <linux/spi/rspi.h>
40
41#define RSPI_SPCR 0x00 /* Control Register */
42#define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
43#define RSPI_SPPCR 0x02 /* Pin Control Register */
44#define RSPI_SPSR 0x03 /* Status Register */
45#define RSPI_SPDR 0x04 /* Data Register */
46#define RSPI_SPSCR 0x08 /* Sequence Control Register */
47#define RSPI_SPSSR 0x09 /* Sequence Status Register */
48#define RSPI_SPBR 0x0a /* Bit Rate Register */
49#define RSPI_SPDCR 0x0b /* Data Control Register */
50#define RSPI_SPCKD 0x0c /* Clock Delay Register */
51#define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
52#define RSPI_SPND 0x0e /* Next-Access Delay Register */
53#define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
54#define RSPI_SPCMD0 0x10 /* Command Register 0 */
55#define RSPI_SPCMD1 0x12 /* Command Register 1 */
56#define RSPI_SPCMD2 0x14 /* Command Register 2 */
57#define RSPI_SPCMD3 0x16 /* Command Register 3 */
58#define RSPI_SPCMD4 0x18 /* Command Register 4 */
59#define RSPI_SPCMD5 0x1a /* Command Register 5 */
60#define RSPI_SPCMD6 0x1c /* Command Register 6 */
61#define RSPI_SPCMD7 0x1e /* Command Register 7 */
62#define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
63#define RSPI_NUM_SPCMD 8
64#define RSPI_RZ_NUM_SPCMD 4
65#define QSPI_NUM_SPCMD 4
66
67/* RSPI on RZ only */
68#define RSPI_SPBFCR 0x20 /* Buffer Control Register */
69#define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
70
71/* QSPI only */
72#define QSPI_SPBFCR 0x18 /* Buffer Control Register */
73#define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
74#define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
75#define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
76#define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
77#define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
78#define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
79
80/* SPCR - Control Register */
81#define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
82#define SPCR_SPE 0x40 /* Function Enable */
83#define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
84#define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
85#define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
86#define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
87/* RSPI on SH only */
88#define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
89#define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
90/* QSPI on R-Car M2 only */
91#define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
92#define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
93
94/* SSLP - Slave Select Polarity Register */
95#define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */
96#define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */
97
98/* SPPCR - Pin Control Register */
99#define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
100#define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
101#define SPPCR_SPOM 0x04
102#define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
103#define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
104
105#define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
106#define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
107
108/* SPSR - Status Register */
109#define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
110#define SPSR_TEND 0x40 /* Transmit End */
111#define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
112#define SPSR_PERF 0x08 /* Parity Error Flag */
113#define SPSR_MODF 0x04 /* Mode Fault Error Flag */
114#define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
115#define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
116
117/* SPSCR - Sequence Control Register */
118#define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
119
120/* SPSSR - Sequence Status Register */
121#define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
122#define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
123
124/* SPDCR - Data Control Register */
125#define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
126#define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
127#define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
128#define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
129#define SPDCR_SPLWORD SPDCR_SPLW1
130#define SPDCR_SPLBYTE SPDCR_SPLW0
131#define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
132#define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
133#define SPDCR_SLSEL1 0x08
134#define SPDCR_SLSEL0 0x04
135#define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
136#define SPDCR_SPFC1 0x02
137#define SPDCR_SPFC0 0x01
138#define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
139
140/* SPCKD - Clock Delay Register */
141#define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
142
143/* SSLND - Slave Select Negation Delay Register */
144#define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
145
146/* SPND - Next-Access Delay Register */
147#define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
148
149/* SPCR2 - Control Register 2 */
150#define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
151#define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
152#define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
153#define SPCR2_SPPE 0x01 /* Parity Enable */
154
155/* SPCMDn - Command Registers */
156#define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
157#define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
158#define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
159#define SPCMD_LSBF 0x1000 /* LSB First */
160#define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
161#define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
162#define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
163#define SPCMD_SPB_16BIT 0x0100
164#define SPCMD_SPB_20BIT 0x0000
165#define SPCMD_SPB_24BIT 0x0100
166#define SPCMD_SPB_32BIT 0x0200
167#define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
168#define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
169#define SPCMD_SPIMOD1 0x0040
170#define SPCMD_SPIMOD0 0x0020
171#define SPCMD_SPIMOD_SINGLE 0
172#define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
173#define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
174#define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
175#define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */
176#define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
177#define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
178#define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
179
180/* SPBFCR - Buffer Control Register */
181#define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
182#define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
183#define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
184#define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
185
186#define DUMMY_DATA 0x00
187
188struct rspi_data {
189 void __iomem *addr;
190 u32 max_speed_hz;
191 struct spi_master *master;
192 wait_queue_head_t wait;
193 struct clk *clk;
194 u16 spcmd;
195 u8 spsr;
196 u8 sppcr;
197 int rx_irq, tx_irq;
198 const struct spi_ops *ops;
199
200 /* for dmaengine */
201 struct dma_chan *chan_tx;
202 struct dma_chan *chan_rx;
203
204 unsigned dma_width_16bit:1;
205 unsigned dma_callbacked:1;
206 unsigned byte_access:1;
207};
208
209static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
210{
211 iowrite8(data, rspi->addr + offset);
212}
213
214static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
215{
216 iowrite16(data, rspi->addr + offset);
217}
218
219static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
220{
221 iowrite32(data, rspi->addr + offset);
222}
223
224static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
225{
226 return ioread8(rspi->addr + offset);
227}
228
229static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
230{
231 return ioread16(rspi->addr + offset);
232}
233
234static void rspi_write_data(const struct rspi_data *rspi, u16 data)
235{
236 if (rspi->byte_access)
237 rspi_write8(rspi, data, RSPI_SPDR);
238 else /* 16 bit */
239 rspi_write16(rspi, data, RSPI_SPDR);
240}
241
242static u16 rspi_read_data(const struct rspi_data *rspi)
243{
244 if (rspi->byte_access)
245 return rspi_read8(rspi, RSPI_SPDR);
246 else /* 16 bit */
247 return rspi_read16(rspi, RSPI_SPDR);
248}
249
250/* optional functions */
251struct spi_ops {
252 int (*set_config_register)(struct rspi_data *rspi, int access_size);
253 int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
254 struct spi_transfer *xfer);
255 u16 mode_bits;
256};
257
258/*
259 * functions for RSPI on legacy SH
260 */
261static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
262{
263 int spbr;
264
265 /* Sets output mode, MOSI signal, and (optionally) loopback */
266 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
267
268 /* Sets transfer bit rate */
269 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
270 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
271
272 /* Disable dummy transmission, set 16-bit word access, 1 frame */
273 rspi_write8(rspi, 0, RSPI_SPDCR);
274 rspi->byte_access = 0;
275
276 /* Sets RSPCK, SSL, next-access delay value */
277 rspi_write8(rspi, 0x00, RSPI_SPCKD);
278 rspi_write8(rspi, 0x00, RSPI_SSLND);
279 rspi_write8(rspi, 0x00, RSPI_SPND);
280
281 /* Sets parity, interrupt mask */
282 rspi_write8(rspi, 0x00, RSPI_SPCR2);
283
284 /* Sets SPCMD */
285 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
286 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
287
288 /* Sets RSPI mode */
289 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
290
291 return 0;
292}
293
294/*
295 * functions for RSPI on RZ
296 */
297static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
298{
299 int spbr;
300
301 /* Sets output mode, MOSI signal, and (optionally) loopback */
302 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
303
304 /* Sets transfer bit rate */
305 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz) - 1;
306 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
307
308 /* Disable dummy transmission, set byte access */
309 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
310 rspi->byte_access = 1;
311
312 /* Sets RSPCK, SSL, next-access delay value */
313 rspi_write8(rspi, 0x00, RSPI_SPCKD);
314 rspi_write8(rspi, 0x00, RSPI_SSLND);
315 rspi_write8(rspi, 0x00, RSPI_SPND);
316
317 /* Sets SPCMD */
318 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
319 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
320
321 /* Sets RSPI mode */
322 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
323
324 return 0;
325}
326
327/*
328 * functions for QSPI
329 */
330static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
331{
332 int spbr;
333
334 /* Sets output mode, MOSI signal, and (optionally) loopback */
335 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
336
337 /* Sets transfer bit rate */
338 spbr = clk_get_rate(rspi->clk) / (2 * rspi->max_speed_hz);
339 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
340
341 /* Disable dummy transmission, set byte access */
342 rspi_write8(rspi, 0, RSPI_SPDCR);
343 rspi->byte_access = 1;
344
345 /* Sets RSPCK, SSL, next-access delay value */
346 rspi_write8(rspi, 0x00, RSPI_SPCKD);
347 rspi_write8(rspi, 0x00, RSPI_SSLND);
348 rspi_write8(rspi, 0x00, RSPI_SPND);
349
350 /* Data Length Setting */
351 if (access_size == 8)
352 rspi->spcmd |= SPCMD_SPB_8BIT;
353 else if (access_size == 16)
354 rspi->spcmd |= SPCMD_SPB_16BIT;
355 else
356 rspi->spcmd |= SPCMD_SPB_32BIT;
357
358 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
359
360 /* Resets transfer data length */
361 rspi_write32(rspi, 0, QSPI_SPBMUL0);
362
363 /* Resets transmit and receive buffer */
364 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
365 /* Sets buffer to allow normal operation */
366 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
367
368 /* Sets SPCMD */
369 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
370
371 /* Enables SPI function in master mode */
372 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
373
374 return 0;
375}
376
377#define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
378
379static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
380{
381 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
382}
383
384static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
385{
386 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
387}
388
389static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
390 u8 enable_bit)
391{
392 int ret;
393
394 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
395 if (rspi->spsr & wait_mask)
396 return 0;
397
398 rspi_enable_irq(rspi, enable_bit);
399 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
400 if (ret == 0 && !(rspi->spsr & wait_mask))
401 return -ETIMEDOUT;
402
403 return 0;
404}
405
406static int rspi_data_out(struct rspi_data *rspi, u8 data)
407{
408 if (rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE) < 0) {
409 dev_err(&rspi->master->dev, "transmit timeout\n");
410 return -ETIMEDOUT;
411 }
412 rspi_write_data(rspi, data);
413 return 0;
414}
415
416static int rspi_data_in(struct rspi_data *rspi)
417{
418 u8 data;
419
420 if (rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE) < 0) {
421 dev_err(&rspi->master->dev, "receive timeout\n");
422 return -ETIMEDOUT;
423 }
424 data = rspi_read_data(rspi);
425 return data;
426}
427
428static int rspi_data_out_in(struct rspi_data *rspi, u8 data)
429{
430 int ret;
431
432 ret = rspi_data_out(rspi, data);
433 if (ret < 0)
434 return ret;
435
436 return rspi_data_in(rspi);
437}
438
439static void rspi_dma_complete(void *arg)
440{
441 struct rspi_data *rspi = arg;
442
443 rspi->dma_callbacked = 1;
444 wake_up_interruptible(&rspi->wait);
445}
446
447static int rspi_dma_map_sg(struct scatterlist *sg, const void *buf,
448 unsigned len, struct dma_chan *chan,
449 enum dma_transfer_direction dir)
450{
451 sg_init_table(sg, 1);
452 sg_set_buf(sg, buf, len);
453 sg_dma_len(sg) = len;
454 return dma_map_sg(chan->device->dev, sg, 1, dir);
455}
456
457static void rspi_dma_unmap_sg(struct scatterlist *sg, struct dma_chan *chan,
458 enum dma_transfer_direction dir)
459{
460 dma_unmap_sg(chan->device->dev, sg, 1, dir);
461}
462
463static void rspi_memory_to_8bit(void *buf, const void *data, unsigned len)
464{
465 u16 *dst = buf;
466 const u8 *src = data;
467
468 while (len) {
469 *dst++ = (u16)(*src++);
470 len--;
471 }
472}
473
474static void rspi_memory_from_8bit(void *buf, const void *data, unsigned len)
475{
476 u8 *dst = buf;
477 const u16 *src = data;
478
479 while (len) {
480 *dst++ = (u8)*src++;
481 len--;
482 }
483}
484
485static int rspi_send_dma(struct rspi_data *rspi, struct spi_transfer *t)
486{
487 struct scatterlist sg;
488 const void *buf = NULL;
489 struct dma_async_tx_descriptor *desc;
490 unsigned int len;
491 int ret = 0;
492
493 if (rspi->dma_width_16bit) {
494 void *tmp;
495 /*
496 * If DMAC bus width is 16-bit, the driver allocates a dummy
497 * buffer. And, the driver converts original data into the
498 * DMAC data as the following format:
499 * original data: 1st byte, 2nd byte ...
500 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
501 */
502 len = t->len * 2;
503 tmp = kmalloc(len, GFP_KERNEL);
504 if (!tmp)
505 return -ENOMEM;
506 rspi_memory_to_8bit(tmp, t->tx_buf, t->len);
507 buf = tmp;
508 } else {
509 len = t->len;
510 buf = t->tx_buf;
511 }
512
513 if (!rspi_dma_map_sg(&sg, buf, len, rspi->chan_tx, DMA_TO_DEVICE)) {
514 ret = -EFAULT;
515 goto end_nomap;
516 }
517 desc = dmaengine_prep_slave_sg(rspi->chan_tx, &sg, 1, DMA_TO_DEVICE,
518 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
519 if (!desc) {
520 ret = -EIO;
521 goto end;
522 }
523
524 /*
525 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
526 * called. So, this driver disables the IRQ while DMA transfer.
527 */
528 disable_irq(rspi->tx_irq);
529
530 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_TXMD, RSPI_SPCR);
531 rspi_enable_irq(rspi, SPCR_SPTIE);
532 rspi->dma_callbacked = 0;
533
534 desc->callback = rspi_dma_complete;
535 desc->callback_param = rspi;
536 dmaengine_submit(desc);
537 dma_async_issue_pending(rspi->chan_tx);
538
539 ret = wait_event_interruptible_timeout(rspi->wait,
540 rspi->dma_callbacked, HZ);
541 if (ret > 0 && rspi->dma_callbacked)
542 ret = 0;
543 else if (!ret)
544 ret = -ETIMEDOUT;
545 rspi_disable_irq(rspi, SPCR_SPTIE);
546
547 enable_irq(rspi->tx_irq);
548
549end:
550 rspi_dma_unmap_sg(&sg, rspi->chan_tx, DMA_TO_DEVICE);
551end_nomap:
552 if (rspi->dma_width_16bit)
553 kfree(buf);
554
555 return ret;
556}
557
558static void rspi_receive_init(const struct rspi_data *rspi)
559{
560 u8 spsr;
561
562 spsr = rspi_read8(rspi, RSPI_SPSR);
563 if (spsr & SPSR_SPRF)
564 rspi_read_data(rspi); /* dummy read */
565 if (spsr & SPSR_OVRF)
566 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
567 RSPI_SPSR);
568}
569
570static void rspi_rz_receive_init(const struct rspi_data *rspi)
571{
572 rspi_receive_init(rspi);
573 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
574 rspi_write8(rspi, 0, RSPI_SPBFCR);
575}
576
577static void qspi_receive_init(const struct rspi_data *rspi)
578{
579 u8 spsr;
580
581 spsr = rspi_read8(rspi, RSPI_SPSR);
582 if (spsr & SPSR_SPRF)
583 rspi_read_data(rspi); /* dummy read */
584 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
585 rspi_write8(rspi, 0, QSPI_SPBFCR);
586}
587
588static int rspi_receive_dma(struct rspi_data *rspi, struct spi_transfer *t)
589{
590 struct scatterlist sg, sg_dummy;
591 void *dummy = NULL, *rx_buf = NULL;
592 struct dma_async_tx_descriptor *desc, *desc_dummy;
593 unsigned int len;
594 int ret = 0;
595
596 if (rspi->dma_width_16bit) {
597 /*
598 * If DMAC bus width is 16-bit, the driver allocates a dummy
599 * buffer. And, finally the driver converts the DMAC data into
600 * actual data as the following format:
601 * DMAC data: 1st byte, dummy, 2nd byte, dummy ...
602 * actual data: 1st byte, 2nd byte ...
603 */
604 len = t->len * 2;
605 rx_buf = kmalloc(len, GFP_KERNEL);
606 if (!rx_buf)
607 return -ENOMEM;
608 } else {
609 len = t->len;
610 rx_buf = t->rx_buf;
611 }
612
613 /* prepare dummy transfer to generate SPI clocks */
614 dummy = kzalloc(len, GFP_KERNEL);
615 if (!dummy) {
616 ret = -ENOMEM;
617 goto end_nomap;
618 }
619 if (!rspi_dma_map_sg(&sg_dummy, dummy, len, rspi->chan_tx,
620 DMA_TO_DEVICE)) {
621 ret = -EFAULT;
622 goto end_nomap;
623 }
624 desc_dummy = dmaengine_prep_slave_sg(rspi->chan_tx, &sg_dummy, 1,
625 DMA_TO_DEVICE, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
626 if (!desc_dummy) {
627 ret = -EIO;
628 goto end_dummy_mapped;
629 }
630
631 /* prepare receive transfer */
632 if (!rspi_dma_map_sg(&sg, rx_buf, len, rspi->chan_rx,
633 DMA_FROM_DEVICE)) {
634 ret = -EFAULT;
635 goto end_dummy_mapped;
636
637 }
638 desc = dmaengine_prep_slave_sg(rspi->chan_rx, &sg, 1, DMA_FROM_DEVICE,
639 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
640 if (!desc) {
641 ret = -EIO;
642 goto end;
643 }
644
645 rspi_receive_init(rspi);
646
647 /*
648 * DMAC needs SPTIE, but if SPTIE is set, this IRQ routine will be
649 * called. So, this driver disables the IRQ while DMA transfer.
650 */
651 disable_irq(rspi->tx_irq);
652 if (rspi->rx_irq != rspi->tx_irq)
653 disable_irq(rspi->rx_irq);
654
655 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_TXMD, RSPI_SPCR);
656 rspi_enable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
657 rspi->dma_callbacked = 0;
658
659 desc->callback = rspi_dma_complete;
660 desc->callback_param = rspi;
661 dmaengine_submit(desc);
662 dma_async_issue_pending(rspi->chan_rx);
663
664 desc_dummy->callback = NULL; /* No callback */
665 dmaengine_submit(desc_dummy);
666 dma_async_issue_pending(rspi->chan_tx);
667
668 ret = wait_event_interruptible_timeout(rspi->wait,
669 rspi->dma_callbacked, HZ);
670 if (ret > 0 && rspi->dma_callbacked)
671 ret = 0;
672 else if (!ret)
673 ret = -ETIMEDOUT;
674 rspi_disable_irq(rspi, SPCR_SPTIE | SPCR_SPRIE);
675
676 enable_irq(rspi->tx_irq);
677 if (rspi->rx_irq != rspi->tx_irq)
678 enable_irq(rspi->rx_irq);
679
680end:
681 rspi_dma_unmap_sg(&sg, rspi->chan_rx, DMA_FROM_DEVICE);
682end_dummy_mapped:
683 rspi_dma_unmap_sg(&sg_dummy, rspi->chan_tx, DMA_TO_DEVICE);
684end_nomap:
685 if (rspi->dma_width_16bit) {
686 if (!ret)
687 rspi_memory_from_8bit(t->rx_buf, rx_buf, t->len);
688 kfree(rx_buf);
689 }
690 kfree(dummy);
691
692 return ret;
693}
694
695static int rspi_is_dma(const struct rspi_data *rspi, struct spi_transfer *t)
696{
697 if (t->tx_buf && rspi->chan_tx)
698 return 1;
699 /* If the module receives data by DMAC, it also needs TX DMAC */
700 if (t->rx_buf && rspi->chan_tx && rspi->chan_rx)
701 return 1;
702
703 return 0;
704}
705
706static int rspi_transfer_out_in(struct rspi_data *rspi,
707 struct spi_transfer *xfer)
708{
709 int remain = xfer->len, ret;
710 const u8 *tx_buf = xfer->tx_buf;
711 u8 *rx_buf = xfer->rx_buf;
712 u8 spcr, data;
713
714 rspi_receive_init(rspi);
715
716 spcr = rspi_read8(rspi, RSPI_SPCR);
717 if (rx_buf)
718 spcr &= ~SPCR_TXMD;
719 else
720 spcr |= SPCR_TXMD;
721 rspi_write8(rspi, spcr, RSPI_SPCR);
722
723 while (remain > 0) {
724 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
725 ret = rspi_data_out(rspi, data);
726 if (ret < 0)
727 return ret;
728 if (rx_buf) {
729 ret = rspi_data_in(rspi);
730 if (ret < 0)
731 return ret;
732 *rx_buf++ = ret;
733 }
734 remain--;
735 }
736
737 /* Wait for the last transmission */
738 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
739
740 return 0;
741}
742
743static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
744 struct spi_transfer *xfer)
745{
746 struct rspi_data *rspi = spi_master_get_devdata(master);
747 int ret;
748
749 if (!rspi_is_dma(rspi, xfer))
750 return rspi_transfer_out_in(rspi, xfer);
751
752 if (xfer->tx_buf) {
753 ret = rspi_send_dma(rspi, xfer);
754 if (ret < 0)
755 return ret;
756 }
757 if (xfer->rx_buf)
758 return rspi_receive_dma(rspi, xfer);
759
760 return 0;
761}
762
763static int rspi_rz_transfer_out_in(struct rspi_data *rspi,
764 struct spi_transfer *xfer)
765{
766 int remain = xfer->len, ret;
767 const u8 *tx_buf = xfer->tx_buf;
768 u8 *rx_buf = xfer->rx_buf;
769 u8 data;
770
771 rspi_rz_receive_init(rspi);
772
773 while (remain > 0) {
774 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
775 ret = rspi_data_out_in(rspi, data);
776 if (ret < 0)
777 return ret;
778 if (rx_buf)
779 *rx_buf++ = ret;
780 remain--;
781 }
782
783 /* Wait for the last transmission */
784 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
785
786 return 0;
787}
788
789static int rspi_rz_transfer_one(struct spi_master *master,
790 struct spi_device *spi,
791 struct spi_transfer *xfer)
792{
793 struct rspi_data *rspi = spi_master_get_devdata(master);
794
795 return rspi_rz_transfer_out_in(rspi, xfer);
796}
797
798static int qspi_transfer_out_in(struct rspi_data *rspi,
799 struct spi_transfer *xfer)
800{
801 int remain = xfer->len, ret;
802 const u8 *tx_buf = xfer->tx_buf;
803 u8 *rx_buf = xfer->rx_buf;
804 u8 data;
805
806 qspi_receive_init(rspi);
807
808 while (remain > 0) {
809 data = tx_buf ? *tx_buf++ : DUMMY_DATA;
810 ret = rspi_data_out_in(rspi, data);
811 if (ret < 0)
812 return ret;
813 if (rx_buf)
814 *rx_buf++ = ret;
815 remain--;
816 }
817
818 /* Wait for the last transmission */
819 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
820
821 return 0;
822}
823
824static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
825{
826 const u8 *buf = xfer->tx_buf;
827 unsigned int i;
828 int ret;
829
830 for (i = 0; i < xfer->len; i++) {
831 ret = rspi_data_out(rspi, *buf++);
832 if (ret < 0)
833 return ret;
834 }
835
836 /* Wait for the last transmission */
837 rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
838
839 return 0;
840}
841
842static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
843{
844 u8 *buf = xfer->rx_buf;
845 unsigned int i;
846 int ret;
847
848 for (i = 0; i < xfer->len; i++) {
849 ret = rspi_data_in(rspi);
850 if (ret < 0)
851 return ret;
852 *buf++ = ret;
853 }
854
855 return 0;
856}
857
858static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
859 struct spi_transfer *xfer)
860{
861 struct rspi_data *rspi = spi_master_get_devdata(master);
862
863 if (spi->mode & SPI_LOOP) {
864 return qspi_transfer_out_in(rspi, xfer);
865 } else if (xfer->tx_buf && xfer->tx_nbits > SPI_NBITS_SINGLE) {
866 /* Quad or Dual SPI Write */
867 return qspi_transfer_out(rspi, xfer);
868 } else if (xfer->rx_buf && xfer->rx_nbits > SPI_NBITS_SINGLE) {
869 /* Quad or Dual SPI Read */
870 return qspi_transfer_in(rspi, xfer);
871 } else {
872 /* Single SPI Transfer */
873 return qspi_transfer_out_in(rspi, xfer);
874 }
875}
876
877static int rspi_setup(struct spi_device *spi)
878{
879 struct rspi_data *rspi = spi_master_get_devdata(spi->master);
880
881 rspi->max_speed_hz = spi->max_speed_hz;
882
883 rspi->spcmd = SPCMD_SSLKP;
884 if (spi->mode & SPI_CPOL)
885 rspi->spcmd |= SPCMD_CPOL;
886 if (spi->mode & SPI_CPHA)
887 rspi->spcmd |= SPCMD_CPHA;
888
889 /* CMOS output mode and MOSI signal from previous transfer */
890 rspi->sppcr = 0;
891 if (spi->mode & SPI_LOOP)
892 rspi->sppcr |= SPPCR_SPLP;
893
894 set_config_register(rspi, 8);
895
896 return 0;
897}
898
899static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
900{
901 if (xfer->tx_buf)
902 switch (xfer->tx_nbits) {
903 case SPI_NBITS_QUAD:
904 return SPCMD_SPIMOD_QUAD;
905 case SPI_NBITS_DUAL:
906 return SPCMD_SPIMOD_DUAL;
907 default:
908 return 0;
909 }
910 if (xfer->rx_buf)
911 switch (xfer->rx_nbits) {
912 case SPI_NBITS_QUAD:
913 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
914 case SPI_NBITS_DUAL:
915 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
916 default:
917 return 0;
918 }
919
920 return 0;
921}
922
923static int qspi_setup_sequencer(struct rspi_data *rspi,
924 const struct spi_message *msg)
925{
926 const struct spi_transfer *xfer;
927 unsigned int i = 0, len = 0;
928 u16 current_mode = 0xffff, mode;
929
930 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
931 mode = qspi_transfer_mode(xfer);
932 if (mode == current_mode) {
933 len += xfer->len;
934 continue;
935 }
936
937 /* Transfer mode change */
938 if (i) {
939 /* Set transfer data length of previous transfer */
940 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
941 }
942
943 if (i >= QSPI_NUM_SPCMD) {
944 dev_err(&msg->spi->dev,
945 "Too many different transfer modes");
946 return -EINVAL;
947 }
948
949 /* Program transfer mode for this transfer */
950 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
951 current_mode = mode;
952 len = xfer->len;
953 i++;
954 }
955 if (i) {
956 /* Set final transfer data length and sequence length */
957 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
958 rspi_write8(rspi, i - 1, RSPI_SPSCR);
959 }
960
961 return 0;
962}
963
964static int rspi_prepare_message(struct spi_master *master,
965 struct spi_message *msg)
966{
967 struct rspi_data *rspi = spi_master_get_devdata(master);
968 int ret;
969
970 if (msg->spi->mode &
971 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
972 /* Setup sequencer for messages with multiple transfer modes */
973 ret = qspi_setup_sequencer(rspi, msg);
974 if (ret < 0)
975 return ret;
976 }
977
978 /* Enable SPI function in master mode */
979 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
980 return 0;
981}
982
983static int rspi_unprepare_message(struct spi_master *master,
984 struct spi_message *msg)
985{
986 struct rspi_data *rspi = spi_master_get_devdata(master);
987
988 /* Disable SPI function */
989 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
990
991 /* Reset sequencer for Single SPI Transfers */
992 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
993 rspi_write8(rspi, 0, RSPI_SPSCR);
994 return 0;
995}
996
997static irqreturn_t rspi_irq_mux(int irq, void *_sr)
998{
999 struct rspi_data *rspi = _sr;
1000 u8 spsr;
1001 irqreturn_t ret = IRQ_NONE;
1002 u8 disable_irq = 0;
1003
1004 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1005 if (spsr & SPSR_SPRF)
1006 disable_irq |= SPCR_SPRIE;
1007 if (spsr & SPSR_SPTEF)
1008 disable_irq |= SPCR_SPTIE;
1009
1010 if (disable_irq) {
1011 ret = IRQ_HANDLED;
1012 rspi_disable_irq(rspi, disable_irq);
1013 wake_up(&rspi->wait);
1014 }
1015
1016 return ret;
1017}
1018
1019static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1020{
1021 struct rspi_data *rspi = _sr;
1022 u8 spsr;
1023
1024 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1025 if (spsr & SPSR_SPRF) {
1026 rspi_disable_irq(rspi, SPCR_SPRIE);
1027 wake_up(&rspi->wait);
1028 return IRQ_HANDLED;
1029 }
1030
1031 return 0;
1032}
1033
1034static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1035{
1036 struct rspi_data *rspi = _sr;
1037 u8 spsr;
1038
1039 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1040 if (spsr & SPSR_SPTEF) {
1041 rspi_disable_irq(rspi, SPCR_SPTIE);
1042 wake_up(&rspi->wait);
1043 return IRQ_HANDLED;
1044 }
1045
1046 return 0;
1047}
1048
1049static int rspi_request_dma(struct rspi_data *rspi,
1050 struct platform_device *pdev)
1051{
1052 const struct rspi_plat_data *rspi_pd = dev_get_platdata(&pdev->dev);
1053 struct resource *res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1054 dma_cap_mask_t mask;
1055 struct dma_slave_config cfg;
1056 int ret;
1057
1058 if (!res || !rspi_pd)
1059 return 0; /* The driver assumes no error. */
1060
1061 rspi->dma_width_16bit = rspi_pd->dma_width_16bit;
1062
1063 /* If the module receives data by DMAC, it also needs TX DMAC */
1064 if (rspi_pd->dma_rx_id && rspi_pd->dma_tx_id) {
1065 dma_cap_zero(mask);
1066 dma_cap_set(DMA_SLAVE, mask);
1067 rspi->chan_rx = dma_request_channel(mask, shdma_chan_filter,
1068 (void *)rspi_pd->dma_rx_id);
1069 if (rspi->chan_rx) {
1070 cfg.slave_id = rspi_pd->dma_rx_id;
1071 cfg.direction = DMA_DEV_TO_MEM;
1072 cfg.dst_addr = 0;
1073 cfg.src_addr = res->start + RSPI_SPDR;
1074 ret = dmaengine_slave_config(rspi->chan_rx, &cfg);
1075 if (!ret)
1076 dev_info(&pdev->dev, "Use DMA when rx.\n");
1077 else
1078 return ret;
1079 }
1080 }
1081 if (rspi_pd->dma_tx_id) {
1082 dma_cap_zero(mask);
1083 dma_cap_set(DMA_SLAVE, mask);
1084 rspi->chan_tx = dma_request_channel(mask, shdma_chan_filter,
1085 (void *)rspi_pd->dma_tx_id);
1086 if (rspi->chan_tx) {
1087 cfg.slave_id = rspi_pd->dma_tx_id;
1088 cfg.direction = DMA_MEM_TO_DEV;
1089 cfg.dst_addr = res->start + RSPI_SPDR;
1090 cfg.src_addr = 0;
1091 ret = dmaengine_slave_config(rspi->chan_tx, &cfg);
1092 if (!ret)
1093 dev_info(&pdev->dev, "Use DMA when tx\n");
1094 else
1095 return ret;
1096 }
1097 }
1098
1099 return 0;
1100}
1101
1102static void rspi_release_dma(struct rspi_data *rspi)
1103{
1104 if (rspi->chan_tx)
1105 dma_release_channel(rspi->chan_tx);
1106 if (rspi->chan_rx)
1107 dma_release_channel(rspi->chan_rx);
1108}
1109
1110static int rspi_remove(struct platform_device *pdev)
1111{
1112 struct rspi_data *rspi = platform_get_drvdata(pdev);
1113
1114 rspi_release_dma(rspi);
1115 pm_runtime_disable(&pdev->dev);
1116
1117 return 0;
1118}
1119
1120static const struct spi_ops rspi_ops = {
1121 .set_config_register = rspi_set_config_register,
1122 .transfer_one = rspi_transfer_one,
1123 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1124};
1125
1126static const struct spi_ops rspi_rz_ops = {
1127 .set_config_register = rspi_rz_set_config_register,
1128 .transfer_one = rspi_rz_transfer_one,
1129 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP,
1130};
1131
1132static const struct spi_ops qspi_ops = {
1133 .set_config_register = qspi_set_config_register,
1134 .transfer_one = qspi_transfer_one,
1135 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP |
1136 SPI_TX_DUAL | SPI_TX_QUAD |
1137 SPI_RX_DUAL | SPI_RX_QUAD,
1138};
1139
1140#ifdef CONFIG_OF
1141static const struct of_device_id rspi_of_match[] = {
1142 /* RSPI on legacy SH */
1143 { .compatible = "renesas,rspi", .data = &rspi_ops },
1144 /* RSPI on RZ/A1H */
1145 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1146 /* QSPI on R-Car Gen2 */
1147 { .compatible = "renesas,qspi", .data = &qspi_ops },
1148 { /* sentinel */ }
1149};
1150
1151MODULE_DEVICE_TABLE(of, rspi_of_match);
1152
1153static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1154{
1155 u32 num_cs;
1156 int error;
1157
1158 /* Parse DT properties */
1159 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1160 if (error) {
1161 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1162 return error;
1163 }
1164
1165 master->num_chipselect = num_cs;
1166 return 0;
1167}
1168#else
1169#define rspi_of_match NULL
1170static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1171{
1172 return -EINVAL;
1173}
1174#endif /* CONFIG_OF */
1175
1176static int rspi_request_irq(struct device *dev, unsigned int irq,
1177 irq_handler_t handler, const char *suffix,
1178 void *dev_id)
1179{
1180 const char *base = dev_name(dev);
1181 size_t len = strlen(base) + strlen(suffix) + 2;
1182 char *name = devm_kzalloc(dev, len, GFP_KERNEL);
1183 if (!name)
1184 return -ENOMEM;
1185 snprintf(name, len, "%s:%s", base, suffix);
1186 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1187}
1188
1189static int rspi_probe(struct platform_device *pdev)
1190{
1191 struct resource *res;
1192 struct spi_master *master;
1193 struct rspi_data *rspi;
1194 int ret;
1195 const struct of_device_id *of_id;
1196 const struct rspi_plat_data *rspi_pd;
1197 const struct spi_ops *ops;
1198
1199 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1200 if (master == NULL) {
1201 dev_err(&pdev->dev, "spi_alloc_master error.\n");
1202 return -ENOMEM;
1203 }
1204
1205 of_id = of_match_device(rspi_of_match, &pdev->dev);
1206 if (of_id) {
1207 ops = of_id->data;
1208 ret = rspi_parse_dt(&pdev->dev, master);
1209 if (ret)
1210 goto error1;
1211 } else {
1212 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1213 rspi_pd = dev_get_platdata(&pdev->dev);
1214 if (rspi_pd && rspi_pd->num_chipselect)
1215 master->num_chipselect = rspi_pd->num_chipselect;
1216 else
1217 master->num_chipselect = 2; /* default */
1218 };
1219
1220 /* ops parameter check */
1221 if (!ops->set_config_register) {
1222 dev_err(&pdev->dev, "there is no set_config_register\n");
1223 ret = -ENODEV;
1224 goto error1;
1225 }
1226
1227 rspi = spi_master_get_devdata(master);
1228 platform_set_drvdata(pdev, rspi);
1229 rspi->ops = ops;
1230 rspi->master = master;
1231
1232 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1233 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1234 if (IS_ERR(rspi->addr)) {
1235 ret = PTR_ERR(rspi->addr);
1236 goto error1;
1237 }
1238
1239 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1240 if (IS_ERR(rspi->clk)) {
1241 dev_err(&pdev->dev, "cannot get clock\n");
1242 ret = PTR_ERR(rspi->clk);
1243 goto error1;
1244 }
1245
1246 pm_runtime_enable(&pdev->dev);
1247
1248 init_waitqueue_head(&rspi->wait);
1249
1250 master->bus_num = pdev->id;
1251 master->setup = rspi_setup;
1252 master->auto_runtime_pm = true;
1253 master->transfer_one = ops->transfer_one;
1254 master->prepare_message = rspi_prepare_message;
1255 master->unprepare_message = rspi_unprepare_message;
1256 master->mode_bits = ops->mode_bits;
1257 master->dev.of_node = pdev->dev.of_node;
1258
1259 ret = platform_get_irq_byname(pdev, "rx");
1260 if (ret < 0) {
1261 ret = platform_get_irq_byname(pdev, "mux");
1262 if (ret < 0)
1263 ret = platform_get_irq(pdev, 0);
1264 if (ret >= 0)
1265 rspi->rx_irq = rspi->tx_irq = ret;
1266 } else {
1267 rspi->rx_irq = ret;
1268 ret = platform_get_irq_byname(pdev, "tx");
1269 if (ret >= 0)
1270 rspi->tx_irq = ret;
1271 }
1272 if (ret < 0) {
1273 dev_err(&pdev->dev, "platform_get_irq error\n");
1274 goto error2;
1275 }
1276
1277 if (rspi->rx_irq == rspi->tx_irq) {
1278 /* Single multiplexed interrupt */
1279 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1280 "mux", rspi);
1281 } else {
1282 /* Multi-interrupt mode, only SPRI and SPTI are used */
1283 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1284 "rx", rspi);
1285 if (!ret)
1286 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1287 rspi_irq_tx, "tx", rspi);
1288 }
1289 if (ret < 0) {
1290 dev_err(&pdev->dev, "request_irq error\n");
1291 goto error2;
1292 }
1293
1294 ret = rspi_request_dma(rspi, pdev);
1295 if (ret < 0) {
1296 dev_err(&pdev->dev, "rspi_request_dma failed.\n");
1297 goto error3;
1298 }
1299
1300 ret = devm_spi_register_master(&pdev->dev, master);
1301 if (ret < 0) {
1302 dev_err(&pdev->dev, "spi_register_master error.\n");
1303 goto error3;
1304 }
1305
1306 dev_info(&pdev->dev, "probed\n");
1307
1308 return 0;
1309
1310error3:
1311 rspi_release_dma(rspi);
1312error2:
1313 pm_runtime_disable(&pdev->dev);
1314error1:
1315 spi_master_put(master);
1316
1317 return ret;
1318}
1319
1320static struct platform_device_id spi_driver_ids[] = {
1321 { "rspi", (kernel_ulong_t)&rspi_ops },
1322 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops },
1323 { "qspi", (kernel_ulong_t)&qspi_ops },
1324 {},
1325};
1326
1327MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1328
1329static struct platform_driver rspi_driver = {
1330 .probe = rspi_probe,
1331 .remove = rspi_remove,
1332 .id_table = spi_driver_ids,
1333 .driver = {
1334 .name = "renesas_spi",
1335 .owner = THIS_MODULE,
1336 .of_match_table = of_match_ptr(rspi_of_match),
1337 },
1338};
1339module_platform_driver(rspi_driver);
1340
1341MODULE_DESCRIPTION("Renesas RSPI bus driver");
1342MODULE_LICENSE("GPL v2");
1343MODULE_AUTHOR("Yoshihiro Shimoda");
1344MODULE_ALIAS("platform:rspi");