Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core registration and callback routines for MTD
   4 * drivers and users.
   5 *
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 * Copyright © 2006      Red Hat UK Limited 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/timer.h>
  16#include <linux/major.h>
  17#include <linux/fs.h>
  18#include <linux/err.h>
  19#include <linux/ioctl.h>
  20#include <linux/init.h>
  21#include <linux/of.h>
  22#include <linux/proc_fs.h>
  23#include <linux/idr.h>
  24#include <linux/backing-dev.h>
  25#include <linux/gfp.h>
  26#include <linux/slab.h>
  27#include <linux/reboot.h>
  28#include <linux/leds.h>
  29#include <linux/debugfs.h>
  30#include <linux/nvmem-provider.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/partitions.h>
  34
  35#include "mtdcore.h"
  36
  37struct backing_dev_info *mtd_bdi;
  38
  39#ifdef CONFIG_PM_SLEEP
  40
  41static int mtd_cls_suspend(struct device *dev)
  42{
  43	struct mtd_info *mtd = dev_get_drvdata(dev);
  44
  45	return mtd ? mtd_suspend(mtd) : 0;
  46}
  47
  48static int mtd_cls_resume(struct device *dev)
  49{
  50	struct mtd_info *mtd = dev_get_drvdata(dev);
  51
  52	if (mtd)
  53		mtd_resume(mtd);
  54	return 0;
  55}
  56
  57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  59#else
  60#define MTD_CLS_PM_OPS NULL
  61#endif
  62
  63static struct class mtd_class = {
  64	.name = "mtd",
  65	.owner = THIS_MODULE,
  66	.pm = MTD_CLS_PM_OPS,
  67};
  68
  69static DEFINE_IDR(mtd_idr);
  70
  71/* These are exported solely for the purpose of mtd_blkdevs.c. You
  72   should not use them for _anything_ else */
  73DEFINE_MUTEX(mtd_table_mutex);
  74EXPORT_SYMBOL_GPL(mtd_table_mutex);
  75
  76struct mtd_info *__mtd_next_device(int i)
  77{
  78	return idr_get_next(&mtd_idr, &i);
  79}
  80EXPORT_SYMBOL_GPL(__mtd_next_device);
  81
  82static LIST_HEAD(mtd_notifiers);
  83
  84
  85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  86
  87/* REVISIT once MTD uses the driver model better, whoever allocates
  88 * the mtd_info will probably want to use the release() hook...
  89 */
  90static void mtd_release(struct device *dev)
  91{
  92	struct mtd_info *mtd = dev_get_drvdata(dev);
  93	dev_t index = MTD_DEVT(mtd->index);
  94
  95	/* remove /dev/mtdXro node */
  96	device_destroy(&mtd_class, index + 1);
  97}
  98
 
 
 
 
 
 
  99static ssize_t mtd_type_show(struct device *dev,
 100		struct device_attribute *attr, char *buf)
 101{
 102	struct mtd_info *mtd = dev_get_drvdata(dev);
 103	char *type;
 104
 105	switch (mtd->type) {
 106	case MTD_ABSENT:
 107		type = "absent";
 108		break;
 109	case MTD_RAM:
 110		type = "ram";
 111		break;
 112	case MTD_ROM:
 113		type = "rom";
 114		break;
 115	case MTD_NORFLASH:
 116		type = "nor";
 117		break;
 118	case MTD_NANDFLASH:
 119		type = "nand";
 120		break;
 121	case MTD_DATAFLASH:
 122		type = "dataflash";
 123		break;
 124	case MTD_UBIVOLUME:
 125		type = "ubi";
 126		break;
 127	case MTD_MLCNANDFLASH:
 128		type = "mlc-nand";
 129		break;
 130	default:
 131		type = "unknown";
 132	}
 133
 134	return snprintf(buf, PAGE_SIZE, "%s\n", type);
 135}
 136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
 137
 138static ssize_t mtd_flags_show(struct device *dev,
 139		struct device_attribute *attr, char *buf)
 140{
 141	struct mtd_info *mtd = dev_get_drvdata(dev);
 142
 143	return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
 144}
 145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
 146
 147static ssize_t mtd_size_show(struct device *dev,
 148		struct device_attribute *attr, char *buf)
 149{
 150	struct mtd_info *mtd = dev_get_drvdata(dev);
 151
 152	return snprintf(buf, PAGE_SIZE, "%llu\n",
 153		(unsigned long long)mtd->size);
 154}
 155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
 156
 157static ssize_t mtd_erasesize_show(struct device *dev,
 158		struct device_attribute *attr, char *buf)
 159{
 160	struct mtd_info *mtd = dev_get_drvdata(dev);
 161
 162	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
 163}
 164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
 165
 166static ssize_t mtd_writesize_show(struct device *dev,
 167		struct device_attribute *attr, char *buf)
 168{
 169	struct mtd_info *mtd = dev_get_drvdata(dev);
 170
 171	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
 172}
 173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
 174
 175static ssize_t mtd_subpagesize_show(struct device *dev,
 176		struct device_attribute *attr, char *buf)
 177{
 178	struct mtd_info *mtd = dev_get_drvdata(dev);
 179	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 180
 181	return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
 182}
 183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
 184
 185static ssize_t mtd_oobsize_show(struct device *dev,
 186		struct device_attribute *attr, char *buf)
 187{
 188	struct mtd_info *mtd = dev_get_drvdata(dev);
 189
 190	return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
 191}
 192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
 193
 194static ssize_t mtd_oobavail_show(struct device *dev,
 195				 struct device_attribute *attr, char *buf)
 196{
 197	struct mtd_info *mtd = dev_get_drvdata(dev);
 198
 199	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
 200}
 201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
 202
 203static ssize_t mtd_numeraseregions_show(struct device *dev,
 204		struct device_attribute *attr, char *buf)
 205{
 206	struct mtd_info *mtd = dev_get_drvdata(dev);
 207
 208	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
 209}
 210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
 211	NULL);
 212
 213static ssize_t mtd_name_show(struct device *dev,
 214		struct device_attribute *attr, char *buf)
 215{
 216	struct mtd_info *mtd = dev_get_drvdata(dev);
 217
 218	return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
 219}
 220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
 221
 222static ssize_t mtd_ecc_strength_show(struct device *dev,
 223				     struct device_attribute *attr, char *buf)
 224{
 225	struct mtd_info *mtd = dev_get_drvdata(dev);
 226
 227	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
 228}
 229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
 230
 231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 232					  struct device_attribute *attr,
 233					  char *buf)
 234{
 235	struct mtd_info *mtd = dev_get_drvdata(dev);
 236
 237	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
 238}
 239
 240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 241					   struct device_attribute *attr,
 242					   const char *buf, size_t count)
 243{
 244	struct mtd_info *mtd = dev_get_drvdata(dev);
 245	unsigned int bitflip_threshold;
 246	int retval;
 247
 248	retval = kstrtouint(buf, 0, &bitflip_threshold);
 249	if (retval)
 250		return retval;
 251
 252	mtd->bitflip_threshold = bitflip_threshold;
 253	return count;
 254}
 255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
 256		   mtd_bitflip_threshold_show,
 257		   mtd_bitflip_threshold_store);
 258
 259static ssize_t mtd_ecc_step_size_show(struct device *dev,
 260		struct device_attribute *attr, char *buf)
 261{
 262	struct mtd_info *mtd = dev_get_drvdata(dev);
 263
 264	return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
 265
 266}
 267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
 268
 269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
 270		struct device_attribute *attr, char *buf)
 271{
 272	struct mtd_info *mtd = dev_get_drvdata(dev);
 273	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 274
 275	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
 276}
 277static DEVICE_ATTR(corrected_bits, S_IRUGO,
 278		   mtd_ecc_stats_corrected_show, NULL);
 279
 280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
 281		struct device_attribute *attr, char *buf)
 282{
 283	struct mtd_info *mtd = dev_get_drvdata(dev);
 284	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 285
 286	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
 287}
 288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
 289
 290static ssize_t mtd_badblocks_show(struct device *dev,
 291		struct device_attribute *attr, char *buf)
 292{
 293	struct mtd_info *mtd = dev_get_drvdata(dev);
 294	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 295
 296	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
 297}
 298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
 299
 300static ssize_t mtd_bbtblocks_show(struct device *dev,
 301		struct device_attribute *attr, char *buf)
 302{
 303	struct mtd_info *mtd = dev_get_drvdata(dev);
 304	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 305
 306	return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
 307}
 308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
 309
 310static struct attribute *mtd_attrs[] = {
 311	&dev_attr_type.attr,
 312	&dev_attr_flags.attr,
 313	&dev_attr_size.attr,
 314	&dev_attr_erasesize.attr,
 315	&dev_attr_writesize.attr,
 316	&dev_attr_subpagesize.attr,
 317	&dev_attr_oobsize.attr,
 318	&dev_attr_oobavail.attr,
 319	&dev_attr_numeraseregions.attr,
 320	&dev_attr_name.attr,
 321	&dev_attr_ecc_strength.attr,
 322	&dev_attr_ecc_step_size.attr,
 323	&dev_attr_corrected_bits.attr,
 324	&dev_attr_ecc_failures.attr,
 325	&dev_attr_bad_blocks.attr,
 326	&dev_attr_bbt_blocks.attr,
 327	&dev_attr_bitflip_threshold.attr,
 328	NULL,
 329};
 330ATTRIBUTE_GROUPS(mtd);
 331
 332static const struct device_type mtd_devtype = {
 333	.name		= "mtd",
 334	.groups		= mtd_groups,
 335	.release	= mtd_release,
 336};
 337
 338static int mtd_partid_show(struct seq_file *s, void *p)
 339{
 340	struct mtd_info *mtd = s->private;
 341
 342	seq_printf(s, "%s\n", mtd->dbg.partid);
 343
 344	return 0;
 345}
 346
 347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
 348{
 349	return single_open(file, mtd_partid_show, inode->i_private);
 350}
 351
 352static const struct file_operations mtd_partid_debug_fops = {
 353	.open           = mtd_partid_debugfs_open,
 354	.read           = seq_read,
 355	.llseek         = seq_lseek,
 356	.release        = single_release,
 357};
 358
 359static int mtd_partname_show(struct seq_file *s, void *p)
 360{
 361	struct mtd_info *mtd = s->private;
 362
 363	seq_printf(s, "%s\n", mtd->dbg.partname);
 364
 365	return 0;
 366}
 367
 368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
 369{
 370	return single_open(file, mtd_partname_show, inode->i_private);
 371}
 372
 373static const struct file_operations mtd_partname_debug_fops = {
 374	.open           = mtd_partname_debugfs_open,
 375	.read           = seq_read,
 376	.llseek         = seq_lseek,
 377	.release        = single_release,
 378};
 379
 380static struct dentry *dfs_dir_mtd;
 381
 382static void mtd_debugfs_populate(struct mtd_info *mtd)
 383{
 
 384	struct device *dev = &mtd->dev;
 385	struct dentry *root;
 386
 387	if (IS_ERR_OR_NULL(dfs_dir_mtd))
 388		return;
 389
 390	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
 391	mtd->dbg.dfs_dir = root;
 392
 393	if (mtd->dbg.partid)
 394		debugfs_create_file("partid", 0400, root, mtd,
 395				    &mtd_partid_debug_fops);
 396
 397	if (mtd->dbg.partname)
 398		debugfs_create_file("partname", 0400, root, mtd,
 399				    &mtd_partname_debug_fops);
 400}
 401
 402#ifndef CONFIG_MMU
 403unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 404{
 405	switch (mtd->type) {
 406	case MTD_RAM:
 407		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 408			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 409	case MTD_ROM:
 410		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 411			NOMMU_MAP_READ;
 412	default:
 413		return NOMMU_MAP_COPY;
 414	}
 415}
 416EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 417#endif
 418
 419static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 420			       void *cmd)
 421{
 422	struct mtd_info *mtd;
 423
 424	mtd = container_of(n, struct mtd_info, reboot_notifier);
 425	mtd->_reboot(mtd);
 426
 427	return NOTIFY_DONE;
 428}
 429
 430/**
 431 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 432 * @mtd: pointer to new MTD device info structure
 433 * @wunit: write unit we are interested in
 434 * @info: returned pairing information
 435 *
 436 * Retrieve pairing information associated to the wunit.
 437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 438 * paired together, and where programming a page may influence the page it is
 439 * paired with.
 440 * The notion of page is replaced by the term wunit (write-unit) to stay
 441 * consistent with the ->writesize field.
 442 *
 443 * The @wunit argument can be extracted from an absolute offset using
 444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 445 * to @wunit.
 446 *
 447 * From the pairing info the MTD user can find all the wunits paired with
 448 * @wunit using the following loop:
 449 *
 450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 451 *	info.pair = i;
 452 *	mtd_pairing_info_to_wunit(mtd, &info);
 453 *	...
 454 * }
 455 */
 456int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 457			      struct mtd_pairing_info *info)
 458{
 459	struct mtd_info *master = mtd_get_master(mtd);
 460	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
 461
 462	if (wunit < 0 || wunit >= npairs)
 463		return -EINVAL;
 464
 465	if (master->pairing && master->pairing->get_info)
 466		return master->pairing->get_info(master, wunit, info);
 467
 468	info->group = 0;
 469	info->pair = wunit;
 470
 471	return 0;
 472}
 473EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 474
 475/**
 476 * mtd_pairing_info_to_wunit - get wunit from pairing information
 477 * @mtd: pointer to new MTD device info structure
 478 * @info: pairing information struct
 479 *
 480 * Returns a positive number representing the wunit associated to the info
 481 * struct, or a negative error code.
 482 *
 483 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 484 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 485 * doc).
 486 *
 487 * It can also be used to only program the first page of each pair (i.e.
 488 * page attached to group 0), which allows one to use an MLC NAND in
 489 * software-emulated SLC mode:
 490 *
 491 * info.group = 0;
 492 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 493 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 494 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 495 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 496 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 497 * }
 498 */
 499int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 500			      const struct mtd_pairing_info *info)
 501{
 502	struct mtd_info *master = mtd_get_master(mtd);
 503	int ngroups = mtd_pairing_groups(master);
 504	int npairs = mtd_wunit_per_eb(master) / ngroups;
 505
 506	if (!info || info->pair < 0 || info->pair >= npairs ||
 507	    info->group < 0 || info->group >= ngroups)
 508		return -EINVAL;
 509
 510	if (master->pairing && master->pairing->get_wunit)
 511		return mtd->pairing->get_wunit(master, info);
 512
 513	return info->pair;
 514}
 515EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 516
 517/**
 518 * mtd_pairing_groups - get the number of pairing groups
 519 * @mtd: pointer to new MTD device info structure
 520 *
 521 * Returns the number of pairing groups.
 522 *
 523 * This number is usually equal to the number of bits exposed by a single
 524 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 525 * to iterate over all pages of a given pair.
 526 */
 527int mtd_pairing_groups(struct mtd_info *mtd)
 528{
 529	struct mtd_info *master = mtd_get_master(mtd);
 530
 531	if (!master->pairing || !master->pairing->ngroups)
 532		return 1;
 533
 534	return master->pairing->ngroups;
 535}
 536EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 537
 538static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
 539			      void *val, size_t bytes)
 540{
 541	struct mtd_info *mtd = priv;
 542	size_t retlen;
 543	int err;
 544
 545	err = mtd_read(mtd, offset, bytes, &retlen, val);
 546	if (err && err != -EUCLEAN)
 547		return err;
 548
 549	return retlen == bytes ? 0 : -EIO;
 550}
 551
 552static int mtd_nvmem_add(struct mtd_info *mtd)
 553{
 
 554	struct nvmem_config config = {};
 555
 556	config.id = -1;
 557	config.dev = &mtd->dev;
 558	config.name = dev_name(&mtd->dev);
 559	config.owner = THIS_MODULE;
 560	config.reg_read = mtd_nvmem_reg_read;
 561	config.size = mtd->size;
 562	config.word_size = 1;
 563	config.stride = 1;
 564	config.read_only = true;
 565	config.root_only = true;
 566	config.no_of_node = true;
 567	config.priv = mtd;
 568
 569	mtd->nvmem = nvmem_register(&config);
 570	if (IS_ERR(mtd->nvmem)) {
 571		/* Just ignore if there is no NVMEM support in the kernel */
 572		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
 573			mtd->nvmem = NULL;
 574		} else {
 575			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
 576			return PTR_ERR(mtd->nvmem);
 577		}
 578	}
 579
 580	return 0;
 581}
 582
 583/**
 584 *	add_mtd_device - register an MTD device
 585 *	@mtd: pointer to new MTD device info structure
 586 *
 587 *	Add a device to the list of MTD devices present in the system, and
 588 *	notify each currently active MTD 'user' of its arrival. Returns
 589 *	zero on success or non-zero on failure.
 590 */
 591
 592int add_mtd_device(struct mtd_info *mtd)
 593{
 594	struct mtd_info *master = mtd_get_master(mtd);
 595	struct mtd_notifier *not;
 596	int i, error;
 597
 598	/*
 599	 * May occur, for instance, on buggy drivers which call
 600	 * mtd_device_parse_register() multiple times on the same master MTD,
 601	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 602	 */
 603	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 604		return -EEXIST;
 605
 606	BUG_ON(mtd->writesize == 0);
 607
 608	/*
 609	 * MTD drivers should implement ->_{write,read}() or
 610	 * ->_{write,read}_oob(), but not both.
 611	 */
 612	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
 613		    (mtd->_read && mtd->_read_oob)))
 614		return -EINVAL;
 615
 616	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
 617		    !(mtd->flags & MTD_NO_ERASE)))
 618		return -EINVAL;
 619
 620	/*
 621	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
 622	 * master is an MLC NAND and has a proper pairing scheme defined.
 623	 * We also reject masters that implement ->_writev() for now, because
 624	 * NAND controller drivers don't implement this hook, and adding the
 625	 * SLC -> MLC address/length conversion to this path is useless if we
 626	 * don't have a user.
 627	 */
 628	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
 629	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
 630	     !master->pairing || master->_writev))
 631		return -EINVAL;
 632
 633	mutex_lock(&mtd_table_mutex);
 634
 635	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 636	if (i < 0) {
 637		error = i;
 638		goto fail_locked;
 639	}
 640
 641	mtd->index = i;
 642	mtd->usecount = 0;
 643
 644	/* default value if not set by driver */
 645	if (mtd->bitflip_threshold == 0)
 646		mtd->bitflip_threshold = mtd->ecc_strength;
 647
 648	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
 649		int ngroups = mtd_pairing_groups(master);
 650
 651		mtd->erasesize /= ngroups;
 652		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
 653			    mtd->erasesize;
 654	}
 655
 656	if (is_power_of_2(mtd->erasesize))
 657		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 658	else
 659		mtd->erasesize_shift = 0;
 660
 661	if (is_power_of_2(mtd->writesize))
 662		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 663	else
 664		mtd->writesize_shift = 0;
 665
 666	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 667	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 668
 669	/* Some chips always power up locked. Unlock them now */
 670	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 671		error = mtd_unlock(mtd, 0, mtd->size);
 672		if (error && error != -EOPNOTSUPP)
 673			printk(KERN_WARNING
 674			       "%s: unlock failed, writes may not work\n",
 675			       mtd->name);
 676		/* Ignore unlock failures? */
 677		error = 0;
 678	}
 679
 680	/* Caller should have set dev.parent to match the
 681	 * physical device, if appropriate.
 682	 */
 683	mtd->dev.type = &mtd_devtype;
 684	mtd->dev.class = &mtd_class;
 685	mtd->dev.devt = MTD_DEVT(i);
 686	dev_set_name(&mtd->dev, "mtd%d", i);
 687	dev_set_drvdata(&mtd->dev, mtd);
 688	of_node_get(mtd_get_of_node(mtd));
 689	error = device_register(&mtd->dev);
 690	if (error)
 691		goto fail_added;
 692
 693	/* Add the nvmem provider */
 694	error = mtd_nvmem_add(mtd);
 695	if (error)
 696		goto fail_nvmem_add;
 697
 698	mtd_debugfs_populate(mtd);
 699
 700	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 701		      "mtd%dro", i);
 702
 703	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 704	/* No need to get a refcount on the module containing
 705	   the notifier, since we hold the mtd_table_mutex */
 706	list_for_each_entry(not, &mtd_notifiers, list)
 707		not->add(mtd);
 708
 709	mutex_unlock(&mtd_table_mutex);
 710	/* We _know_ we aren't being removed, because
 711	   our caller is still holding us here. So none
 712	   of this try_ nonsense, and no bitching about it
 713	   either. :) */
 714	__module_get(THIS_MODULE);
 715	return 0;
 716
 717fail_nvmem_add:
 718	device_unregister(&mtd->dev);
 719fail_added:
 720	of_node_put(mtd_get_of_node(mtd));
 721	idr_remove(&mtd_idr, i);
 722fail_locked:
 723	mutex_unlock(&mtd_table_mutex);
 724	return error;
 725}
 726
 727/**
 728 *	del_mtd_device - unregister an MTD device
 729 *	@mtd: pointer to MTD device info structure
 730 *
 731 *	Remove a device from the list of MTD devices present in the system,
 732 *	and notify each currently active MTD 'user' of its departure.
 733 *	Returns zero on success or 1 on failure, which currently will happen
 734 *	if the requested device does not appear to be present in the list.
 735 */
 736
 737int del_mtd_device(struct mtd_info *mtd)
 738{
 739	int ret;
 740	struct mtd_notifier *not;
 741
 742	mutex_lock(&mtd_table_mutex);
 743
 744	debugfs_remove_recursive(mtd->dbg.dfs_dir);
 745
 746	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 747		ret = -ENODEV;
 748		goto out_error;
 749	}
 750
 751	/* No need to get a refcount on the module containing
 752		the notifier, since we hold the mtd_table_mutex */
 753	list_for_each_entry(not, &mtd_notifiers, list)
 754		not->remove(mtd);
 755
 756	if (mtd->usecount) {
 757		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 758		       mtd->index, mtd->name, mtd->usecount);
 759		ret = -EBUSY;
 760	} else {
 761		/* Try to remove the NVMEM provider */
 762		if (mtd->nvmem)
 763			nvmem_unregister(mtd->nvmem);
 764
 765		device_unregister(&mtd->dev);
 766
 767		idr_remove(&mtd_idr, mtd->index);
 768		of_node_put(mtd_get_of_node(mtd));
 769
 770		module_put(THIS_MODULE);
 771		ret = 0;
 772	}
 773
 774out_error:
 775	mutex_unlock(&mtd_table_mutex);
 776	return ret;
 777}
 778
 779/*
 780 * Set a few defaults based on the parent devices, if not provided by the
 781 * driver
 782 */
 783static void mtd_set_dev_defaults(struct mtd_info *mtd)
 784{
 785	if (mtd->dev.parent) {
 786		if (!mtd->owner && mtd->dev.parent->driver)
 787			mtd->owner = mtd->dev.parent->driver->owner;
 788		if (!mtd->name)
 789			mtd->name = dev_name(mtd->dev.parent);
 790	} else {
 791		pr_debug("mtd device won't show a device symlink in sysfs\n");
 792	}
 793
 794	INIT_LIST_HEAD(&mtd->partitions);
 795	mutex_init(&mtd->master.partitions_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 796}
 797
 798/**
 799 * mtd_device_parse_register - parse partitions and register an MTD device.
 800 *
 801 * @mtd: the MTD device to register
 802 * @types: the list of MTD partition probes to try, see
 803 *         'parse_mtd_partitions()' for more information
 804 * @parser_data: MTD partition parser-specific data
 805 * @parts: fallback partition information to register, if parsing fails;
 806 *         only valid if %nr_parts > %0
 807 * @nr_parts: the number of partitions in parts, if zero then the full
 808 *            MTD device is registered if no partition info is found
 809 *
 810 * This function aggregates MTD partitions parsing (done by
 811 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 812 * basically follows the most common pattern found in many MTD drivers:
 813 *
 814 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 815 *   registered first.
 816 * * Then It tries to probe partitions on MTD device @mtd using parsers
 817 *   specified in @types (if @types is %NULL, then the default list of parsers
 818 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 819 *   found this functions tries to fallback to information specified in
 820 *   @parts/@nr_parts.
 821 * * If no partitions were found this function just registers the MTD device
 822 *   @mtd and exits.
 823 *
 824 * Returns zero in case of success and a negative error code in case of failure.
 825 */
 826int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 827			      struct mtd_part_parser_data *parser_data,
 828			      const struct mtd_partition *parts,
 829			      int nr_parts)
 830{
 831	int ret;
 832
 833	mtd_set_dev_defaults(mtd);
 834
 835	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
 836		ret = add_mtd_device(mtd);
 837		if (ret)
 838			return ret;
 839	}
 840
 841	/* Prefer parsed partitions over driver-provided fallback */
 842	ret = parse_mtd_partitions(mtd, types, parser_data);
 
 
 
 843	if (ret > 0)
 844		ret = 0;
 845	else if (nr_parts)
 846		ret = add_mtd_partitions(mtd, parts, nr_parts);
 847	else if (!device_is_registered(&mtd->dev))
 848		ret = add_mtd_device(mtd);
 849	else
 850		ret = 0;
 851
 852	if (ret)
 853		goto out;
 854
 855	/*
 856	 * FIXME: some drivers unfortunately call this function more than once.
 857	 * So we have to check if we've already assigned the reboot notifier.
 858	 *
 859	 * Generally, we can make multiple calls work for most cases, but it
 860	 * does cause problems with parse_mtd_partitions() above (e.g.,
 861	 * cmdlineparts will register partitions more than once).
 862	 */
 863	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
 864		  "MTD already registered\n");
 865	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
 866		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
 867		register_reboot_notifier(&mtd->reboot_notifier);
 868	}
 869
 
 
 870out:
 871	if (ret && device_is_registered(&mtd->dev))
 872		del_mtd_device(mtd);
 873
 874	return ret;
 875}
 876EXPORT_SYMBOL_GPL(mtd_device_parse_register);
 877
 878/**
 879 * mtd_device_unregister - unregister an existing MTD device.
 880 *
 881 * @master: the MTD device to unregister.  This will unregister both the master
 882 *          and any partitions if registered.
 883 */
 884int mtd_device_unregister(struct mtd_info *master)
 885{
 886	int err;
 887
 888	if (master->_reboot)
 889		unregister_reboot_notifier(&master->reboot_notifier);
 890
 
 
 
 
 
 
 891	err = del_mtd_partitions(master);
 892	if (err)
 893		return err;
 894
 895	if (!device_is_registered(&master->dev))
 896		return 0;
 897
 898	return del_mtd_device(master);
 899}
 900EXPORT_SYMBOL_GPL(mtd_device_unregister);
 901
 902/**
 903 *	register_mtd_user - register a 'user' of MTD devices.
 904 *	@new: pointer to notifier info structure
 905 *
 906 *	Registers a pair of callbacks function to be called upon addition
 907 *	or removal of MTD devices. Causes the 'add' callback to be immediately
 908 *	invoked for each MTD device currently present in the system.
 909 */
 910void register_mtd_user (struct mtd_notifier *new)
 911{
 912	struct mtd_info *mtd;
 913
 914	mutex_lock(&mtd_table_mutex);
 915
 916	list_add(&new->list, &mtd_notifiers);
 917
 918	__module_get(THIS_MODULE);
 919
 920	mtd_for_each_device(mtd)
 921		new->add(mtd);
 922
 923	mutex_unlock(&mtd_table_mutex);
 924}
 925EXPORT_SYMBOL_GPL(register_mtd_user);
 926
 927/**
 928 *	unregister_mtd_user - unregister a 'user' of MTD devices.
 929 *	@old: pointer to notifier info structure
 930 *
 931 *	Removes a callback function pair from the list of 'users' to be
 932 *	notified upon addition or removal of MTD devices. Causes the
 933 *	'remove' callback to be immediately invoked for each MTD device
 934 *	currently present in the system.
 935 */
 936int unregister_mtd_user (struct mtd_notifier *old)
 937{
 938	struct mtd_info *mtd;
 939
 940	mutex_lock(&mtd_table_mutex);
 941
 942	module_put(THIS_MODULE);
 943
 944	mtd_for_each_device(mtd)
 945		old->remove(mtd);
 946
 947	list_del(&old->list);
 948	mutex_unlock(&mtd_table_mutex);
 949	return 0;
 950}
 951EXPORT_SYMBOL_GPL(unregister_mtd_user);
 952
 953/**
 954 *	get_mtd_device - obtain a validated handle for an MTD device
 955 *	@mtd: last known address of the required MTD device
 956 *	@num: internal device number of the required MTD device
 957 *
 958 *	Given a number and NULL address, return the num'th entry in the device
 959 *	table, if any.	Given an address and num == -1, search the device table
 960 *	for a device with that address and return if it's still present. Given
 961 *	both, return the num'th driver only if its address matches. Return
 962 *	error code if not.
 963 */
 964struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
 965{
 966	struct mtd_info *ret = NULL, *other;
 967	int err = -ENODEV;
 968
 969	mutex_lock(&mtd_table_mutex);
 970
 971	if (num == -1) {
 972		mtd_for_each_device(other) {
 973			if (other == mtd) {
 974				ret = mtd;
 975				break;
 976			}
 977		}
 978	} else if (num >= 0) {
 979		ret = idr_find(&mtd_idr, num);
 980		if (mtd && mtd != ret)
 981			ret = NULL;
 982	}
 983
 984	if (!ret) {
 985		ret = ERR_PTR(err);
 986		goto out;
 987	}
 988
 989	err = __get_mtd_device(ret);
 990	if (err)
 991		ret = ERR_PTR(err);
 992out:
 993	mutex_unlock(&mtd_table_mutex);
 994	return ret;
 995}
 996EXPORT_SYMBOL_GPL(get_mtd_device);
 997
 998
 999int __get_mtd_device(struct mtd_info *mtd)
1000{
1001	struct mtd_info *master = mtd_get_master(mtd);
1002	int err;
1003
1004	if (!try_module_get(master->owner))
1005		return -ENODEV;
1006
1007	if (master->_get_device) {
1008		err = master->_get_device(mtd);
1009
1010		if (err) {
1011			module_put(master->owner);
1012			return err;
1013		}
1014	}
1015
 
 
1016	while (mtd->parent) {
1017		mtd->usecount++;
1018		mtd = mtd->parent;
1019	}
1020
1021	return 0;
1022}
1023EXPORT_SYMBOL_GPL(__get_mtd_device);
1024
1025/**
1026 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1027 *	device name
1028 *	@name: MTD device name to open
1029 *
1030 * 	This function returns MTD device description structure in case of
1031 * 	success and an error code in case of failure.
1032 */
1033struct mtd_info *get_mtd_device_nm(const char *name)
1034{
1035	int err = -ENODEV;
1036	struct mtd_info *mtd = NULL, *other;
1037
1038	mutex_lock(&mtd_table_mutex);
1039
1040	mtd_for_each_device(other) {
1041		if (!strcmp(name, other->name)) {
1042			mtd = other;
1043			break;
1044		}
1045	}
1046
1047	if (!mtd)
1048		goto out_unlock;
1049
1050	err = __get_mtd_device(mtd);
1051	if (err)
1052		goto out_unlock;
1053
1054	mutex_unlock(&mtd_table_mutex);
1055	return mtd;
1056
1057out_unlock:
1058	mutex_unlock(&mtd_table_mutex);
1059	return ERR_PTR(err);
1060}
1061EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1062
1063void put_mtd_device(struct mtd_info *mtd)
1064{
1065	mutex_lock(&mtd_table_mutex);
1066	__put_mtd_device(mtd);
1067	mutex_unlock(&mtd_table_mutex);
1068
1069}
1070EXPORT_SYMBOL_GPL(put_mtd_device);
1071
1072void __put_mtd_device(struct mtd_info *mtd)
1073{
1074	struct mtd_info *master = mtd_get_master(mtd);
1075
1076	while (mtd->parent) {
1077		--mtd->usecount;
1078		BUG_ON(mtd->usecount < 0);
1079		mtd = mtd->parent;
1080	}
1081
 
 
1082	if (master->_put_device)
1083		master->_put_device(master);
1084
1085	module_put(master->owner);
1086}
1087EXPORT_SYMBOL_GPL(__put_mtd_device);
1088
1089/*
1090 * Erase is an synchronous operation. Device drivers are epected to return a
1091 * negative error code if the operation failed and update instr->fail_addr
1092 * to point the portion that was not properly erased.
1093 */
1094int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1095{
1096	struct mtd_info *master = mtd_get_master(mtd);
1097	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1098	struct erase_info adjinstr;
1099	int ret;
1100
1101	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1102	adjinstr = *instr;
1103
1104	if (!mtd->erasesize || !master->_erase)
1105		return -ENOTSUPP;
1106
1107	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1108		return -EINVAL;
1109	if (!(mtd->flags & MTD_WRITEABLE))
1110		return -EROFS;
1111
1112	if (!instr->len)
1113		return 0;
1114
1115	ledtrig_mtd_activity();
1116
1117	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1118		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1119				master->erasesize;
1120		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1121				master->erasesize) -
1122			       adjinstr.addr;
1123	}
1124
1125	adjinstr.addr += mst_ofs;
1126
1127	ret = master->_erase(master, &adjinstr);
1128
1129	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1130		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1131		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1132			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1133							 master);
1134			instr->fail_addr *= mtd->erasesize;
1135		}
1136	}
1137
1138	return ret;
1139}
1140EXPORT_SYMBOL_GPL(mtd_erase);
1141
1142/*
1143 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1144 */
1145int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1146	      void **virt, resource_size_t *phys)
1147{
1148	struct mtd_info *master = mtd_get_master(mtd);
1149
1150	*retlen = 0;
1151	*virt = NULL;
1152	if (phys)
1153		*phys = 0;
1154	if (!master->_point)
1155		return -EOPNOTSUPP;
1156	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1157		return -EINVAL;
1158	if (!len)
1159		return 0;
1160
1161	from = mtd_get_master_ofs(mtd, from);
1162	return master->_point(master, from, len, retlen, virt, phys);
1163}
1164EXPORT_SYMBOL_GPL(mtd_point);
1165
1166/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1167int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1168{
1169	struct mtd_info *master = mtd_get_master(mtd);
1170
1171	if (!master->_unpoint)
1172		return -EOPNOTSUPP;
1173	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1174		return -EINVAL;
1175	if (!len)
1176		return 0;
1177	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1178}
1179EXPORT_SYMBOL_GPL(mtd_unpoint);
1180
1181/*
1182 * Allow NOMMU mmap() to directly map the device (if not NULL)
1183 * - return the address to which the offset maps
1184 * - return -ENOSYS to indicate refusal to do the mapping
1185 */
1186unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1187				    unsigned long offset, unsigned long flags)
1188{
1189	size_t retlen;
1190	void *virt;
1191	int ret;
1192
1193	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1194	if (ret)
1195		return ret;
1196	if (retlen != len) {
1197		mtd_unpoint(mtd, offset, retlen);
1198		return -ENOSYS;
1199	}
1200	return (unsigned long)virt;
1201}
1202EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1203
1204static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1205				 const struct mtd_ecc_stats *old_stats)
1206{
1207	struct mtd_ecc_stats diff;
1208
1209	if (master == mtd)
1210		return;
1211
1212	diff = master->ecc_stats;
1213	diff.failed -= old_stats->failed;
1214	diff.corrected -= old_stats->corrected;
1215
1216	while (mtd->parent) {
1217		mtd->ecc_stats.failed += diff.failed;
1218		mtd->ecc_stats.corrected += diff.corrected;
1219		mtd = mtd->parent;
1220	}
1221}
1222
1223int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1224	     u_char *buf)
1225{
1226	struct mtd_oob_ops ops = {
1227		.len = len,
1228		.datbuf = buf,
1229	};
1230	int ret;
1231
1232	ret = mtd_read_oob(mtd, from, &ops);
1233	*retlen = ops.retlen;
1234
1235	return ret;
1236}
1237EXPORT_SYMBOL_GPL(mtd_read);
1238
1239int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1240	      const u_char *buf)
1241{
1242	struct mtd_oob_ops ops = {
1243		.len = len,
1244		.datbuf = (u8 *)buf,
1245	};
1246	int ret;
1247
1248	ret = mtd_write_oob(mtd, to, &ops);
1249	*retlen = ops.retlen;
1250
1251	return ret;
1252}
1253EXPORT_SYMBOL_GPL(mtd_write);
1254
1255/*
1256 * In blackbox flight recorder like scenarios we want to make successful writes
1257 * in interrupt context. panic_write() is only intended to be called when its
1258 * known the kernel is about to panic and we need the write to succeed. Since
1259 * the kernel is not going to be running for much longer, this function can
1260 * break locks and delay to ensure the write succeeds (but not sleep).
1261 */
1262int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1263		    const u_char *buf)
1264{
1265	struct mtd_info *master = mtd_get_master(mtd);
1266
1267	*retlen = 0;
1268	if (!master->_panic_write)
1269		return -EOPNOTSUPP;
1270	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1271		return -EINVAL;
1272	if (!(mtd->flags & MTD_WRITEABLE))
1273		return -EROFS;
1274	if (!len)
1275		return 0;
1276	if (!master->oops_panic_write)
1277		master->oops_panic_write = true;
1278
1279	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1280				    retlen, buf);
1281}
1282EXPORT_SYMBOL_GPL(mtd_panic_write);
1283
1284static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1285			     struct mtd_oob_ops *ops)
1286{
1287	/*
1288	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1289	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1290	 *  this case.
1291	 */
1292	if (!ops->datbuf)
1293		ops->len = 0;
1294
1295	if (!ops->oobbuf)
1296		ops->ooblen = 0;
1297
1298	if (offs < 0 || offs + ops->len > mtd->size)
1299		return -EINVAL;
1300
1301	if (ops->ooblen) {
1302		size_t maxooblen;
1303
1304		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1305			return -EINVAL;
1306
1307		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1308				      mtd_div_by_ws(offs, mtd)) *
1309			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1310		if (ops->ooblen > maxooblen)
1311			return -EINVAL;
1312	}
1313
1314	return 0;
1315}
1316
1317static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1318			    struct mtd_oob_ops *ops)
1319{
1320	struct mtd_info *master = mtd_get_master(mtd);
1321	int ret;
1322
1323	from = mtd_get_master_ofs(mtd, from);
1324	if (master->_read_oob)
1325		ret = master->_read_oob(master, from, ops);
1326	else
1327		ret = master->_read(master, from, ops->len, &ops->retlen,
1328				    ops->datbuf);
1329
1330	return ret;
1331}
1332
1333static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1334			     struct mtd_oob_ops *ops)
1335{
1336	struct mtd_info *master = mtd_get_master(mtd);
1337	int ret;
1338
1339	to = mtd_get_master_ofs(mtd, to);
1340	if (master->_write_oob)
1341		ret = master->_write_oob(master, to, ops);
1342	else
1343		ret = master->_write(master, to, ops->len, &ops->retlen,
1344				     ops->datbuf);
1345
1346	return ret;
1347}
1348
1349static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1350			       struct mtd_oob_ops *ops)
1351{
1352	struct mtd_info *master = mtd_get_master(mtd);
1353	int ngroups = mtd_pairing_groups(master);
1354	int npairs = mtd_wunit_per_eb(master) / ngroups;
1355	struct mtd_oob_ops adjops = *ops;
1356	unsigned int wunit, oobavail;
1357	struct mtd_pairing_info info;
1358	int max_bitflips = 0;
1359	u32 ebofs, pageofs;
1360	loff_t base, pos;
1361
1362	ebofs = mtd_mod_by_eb(start, mtd);
1363	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1364	info.group = 0;
1365	info.pair = mtd_div_by_ws(ebofs, mtd);
1366	pageofs = mtd_mod_by_ws(ebofs, mtd);
1367	oobavail = mtd_oobavail(mtd, ops);
1368
1369	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1370		int ret;
1371
1372		if (info.pair >= npairs) {
1373			info.pair = 0;
1374			base += master->erasesize;
1375		}
1376
1377		wunit = mtd_pairing_info_to_wunit(master, &info);
1378		pos = mtd_wunit_to_offset(mtd, base, wunit);
1379
1380		adjops.len = ops->len - ops->retlen;
1381		if (adjops.len > mtd->writesize - pageofs)
1382			adjops.len = mtd->writesize - pageofs;
1383
1384		adjops.ooblen = ops->ooblen - ops->oobretlen;
1385		if (adjops.ooblen > oobavail - adjops.ooboffs)
1386			adjops.ooblen = oobavail - adjops.ooboffs;
1387
1388		if (read) {
1389			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1390			if (ret > 0)
1391				max_bitflips = max(max_bitflips, ret);
1392		} else {
1393			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1394		}
1395
1396		if (ret < 0)
1397			return ret;
1398
1399		max_bitflips = max(max_bitflips, ret);
1400		ops->retlen += adjops.retlen;
1401		ops->oobretlen += adjops.oobretlen;
1402		adjops.datbuf += adjops.retlen;
1403		adjops.oobbuf += adjops.oobretlen;
1404		adjops.ooboffs = 0;
1405		pageofs = 0;
1406		info.pair++;
1407	}
1408
1409	return max_bitflips;
1410}
1411
1412int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1413{
1414	struct mtd_info *master = mtd_get_master(mtd);
1415	struct mtd_ecc_stats old_stats = master->ecc_stats;
1416	int ret_code;
1417
1418	ops->retlen = ops->oobretlen = 0;
1419
1420	ret_code = mtd_check_oob_ops(mtd, from, ops);
1421	if (ret_code)
1422		return ret_code;
1423
1424	ledtrig_mtd_activity();
1425
1426	/* Check the validity of a potential fallback on mtd->_read */
1427	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1428		return -EOPNOTSUPP;
1429
1430	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1431		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1432	else
1433		ret_code = mtd_read_oob_std(mtd, from, ops);
1434
1435	mtd_update_ecc_stats(mtd, master, &old_stats);
1436
1437	/*
1438	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1439	 * similar to mtd->_read(), returning a non-negative integer
1440	 * representing max bitflips. In other cases, mtd->_read_oob() may
1441	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1442	 */
1443	if (unlikely(ret_code < 0))
1444		return ret_code;
1445	if (mtd->ecc_strength == 0)
1446		return 0;	/* device lacks ecc */
1447	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1448}
1449EXPORT_SYMBOL_GPL(mtd_read_oob);
1450
1451int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1452				struct mtd_oob_ops *ops)
1453{
1454	struct mtd_info *master = mtd_get_master(mtd);
1455	int ret;
1456
1457	ops->retlen = ops->oobretlen = 0;
1458
1459	if (!(mtd->flags & MTD_WRITEABLE))
1460		return -EROFS;
1461
1462	ret = mtd_check_oob_ops(mtd, to, ops);
1463	if (ret)
1464		return ret;
1465
1466	ledtrig_mtd_activity();
1467
1468	/* Check the validity of a potential fallback on mtd->_write */
1469	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1470		return -EOPNOTSUPP;
1471
1472	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1473		return mtd_io_emulated_slc(mtd, to, false, ops);
1474
1475	return mtd_write_oob_std(mtd, to, ops);
1476}
1477EXPORT_SYMBOL_GPL(mtd_write_oob);
1478
1479/**
1480 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1481 * @mtd: MTD device structure
1482 * @section: ECC section. Depending on the layout you may have all the ECC
1483 *	     bytes stored in a single contiguous section, or one section
1484 *	     per ECC chunk (and sometime several sections for a single ECC
1485 *	     ECC chunk)
1486 * @oobecc: OOB region struct filled with the appropriate ECC position
1487 *	    information
1488 *
1489 * This function returns ECC section information in the OOB area. If you want
1490 * to get all the ECC bytes information, then you should call
1491 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1492 *
1493 * Returns zero on success, a negative error code otherwise.
1494 */
1495int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1496		      struct mtd_oob_region *oobecc)
1497{
1498	struct mtd_info *master = mtd_get_master(mtd);
1499
1500	memset(oobecc, 0, sizeof(*oobecc));
1501
1502	if (!master || section < 0)
1503		return -EINVAL;
1504
1505	if (!master->ooblayout || !master->ooblayout->ecc)
1506		return -ENOTSUPP;
1507
1508	return master->ooblayout->ecc(master, section, oobecc);
1509}
1510EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1511
1512/**
1513 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1514 *			section
1515 * @mtd: MTD device structure
1516 * @section: Free section you are interested in. Depending on the layout
1517 *	     you may have all the free bytes stored in a single contiguous
1518 *	     section, or one section per ECC chunk plus an extra section
1519 *	     for the remaining bytes (or other funky layout).
1520 * @oobfree: OOB region struct filled with the appropriate free position
1521 *	     information
1522 *
1523 * This function returns free bytes position in the OOB area. If you want
1524 * to get all the free bytes information, then you should call
1525 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1526 *
1527 * Returns zero on success, a negative error code otherwise.
1528 */
1529int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1530		       struct mtd_oob_region *oobfree)
1531{
1532	struct mtd_info *master = mtd_get_master(mtd);
1533
1534	memset(oobfree, 0, sizeof(*oobfree));
1535
1536	if (!master || section < 0)
1537		return -EINVAL;
1538
1539	if (!master->ooblayout || !master->ooblayout->free)
1540		return -ENOTSUPP;
1541
1542	return master->ooblayout->free(master, section, oobfree);
1543}
1544EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1545
1546/**
1547 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1548 * @mtd: mtd info structure
1549 * @byte: the byte we are searching for
1550 * @sectionp: pointer where the section id will be stored
1551 * @oobregion: used to retrieve the ECC position
1552 * @iter: iterator function. Should be either mtd_ooblayout_free or
1553 *	  mtd_ooblayout_ecc depending on the region type you're searching for
1554 *
1555 * This function returns the section id and oobregion information of a
1556 * specific byte. For example, say you want to know where the 4th ECC byte is
1557 * stored, you'll use:
1558 *
1559 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1560 *
1561 * Returns zero on success, a negative error code otherwise.
1562 */
1563static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1564				int *sectionp, struct mtd_oob_region *oobregion,
1565				int (*iter)(struct mtd_info *,
1566					    int section,
1567					    struct mtd_oob_region *oobregion))
1568{
1569	int pos = 0, ret, section = 0;
1570
1571	memset(oobregion, 0, sizeof(*oobregion));
1572
1573	while (1) {
1574		ret = iter(mtd, section, oobregion);
1575		if (ret)
1576			return ret;
1577
1578		if (pos + oobregion->length > byte)
1579			break;
1580
1581		pos += oobregion->length;
1582		section++;
1583	}
1584
1585	/*
1586	 * Adjust region info to make it start at the beginning at the
1587	 * 'start' ECC byte.
1588	 */
1589	oobregion->offset += byte - pos;
1590	oobregion->length -= byte - pos;
1591	*sectionp = section;
1592
1593	return 0;
1594}
1595
1596/**
1597 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1598 *				  ECC byte
1599 * @mtd: mtd info structure
1600 * @eccbyte: the byte we are searching for
1601 * @sectionp: pointer where the section id will be stored
1602 * @oobregion: OOB region information
1603 *
1604 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1605 * byte.
1606 *
1607 * Returns zero on success, a negative error code otherwise.
1608 */
1609int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1610				 int *section,
1611				 struct mtd_oob_region *oobregion)
1612{
1613	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1614					 mtd_ooblayout_ecc);
1615}
1616EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1617
1618/**
1619 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1620 * @mtd: mtd info structure
1621 * @buf: destination buffer to store OOB bytes
1622 * @oobbuf: OOB buffer
1623 * @start: first byte to retrieve
1624 * @nbytes: number of bytes to retrieve
1625 * @iter: section iterator
1626 *
1627 * Extract bytes attached to a specific category (ECC or free)
1628 * from the OOB buffer and copy them into buf.
1629 *
1630 * Returns zero on success, a negative error code otherwise.
1631 */
1632static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1633				const u8 *oobbuf, int start, int nbytes,
1634				int (*iter)(struct mtd_info *,
1635					    int section,
1636					    struct mtd_oob_region *oobregion))
1637{
1638	struct mtd_oob_region oobregion;
1639	int section, ret;
1640
1641	ret = mtd_ooblayout_find_region(mtd, start, &section,
1642					&oobregion, iter);
1643
1644	while (!ret) {
1645		int cnt;
1646
1647		cnt = min_t(int, nbytes, oobregion.length);
1648		memcpy(buf, oobbuf + oobregion.offset, cnt);
1649		buf += cnt;
1650		nbytes -= cnt;
1651
1652		if (!nbytes)
1653			break;
1654
1655		ret = iter(mtd, ++section, &oobregion);
1656	}
1657
1658	return ret;
1659}
1660
1661/**
1662 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1663 * @mtd: mtd info structure
1664 * @buf: source buffer to get OOB bytes from
1665 * @oobbuf: OOB buffer
1666 * @start: first OOB byte to set
1667 * @nbytes: number of OOB bytes to set
1668 * @iter: section iterator
1669 *
1670 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1671 * is selected by passing the appropriate iterator.
1672 *
1673 * Returns zero on success, a negative error code otherwise.
1674 */
1675static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1676				u8 *oobbuf, int start, int nbytes,
1677				int (*iter)(struct mtd_info *,
1678					    int section,
1679					    struct mtd_oob_region *oobregion))
1680{
1681	struct mtd_oob_region oobregion;
1682	int section, ret;
1683
1684	ret = mtd_ooblayout_find_region(mtd, start, &section,
1685					&oobregion, iter);
1686
1687	while (!ret) {
1688		int cnt;
1689
1690		cnt = min_t(int, nbytes, oobregion.length);
1691		memcpy(oobbuf + oobregion.offset, buf, cnt);
1692		buf += cnt;
1693		nbytes -= cnt;
1694
1695		if (!nbytes)
1696			break;
1697
1698		ret = iter(mtd, ++section, &oobregion);
1699	}
1700
1701	return ret;
1702}
1703
1704/**
1705 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1706 * @mtd: mtd info structure
1707 * @iter: category iterator
1708 *
1709 * Count the number of bytes in a given category.
1710 *
1711 * Returns a positive value on success, a negative error code otherwise.
1712 */
1713static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1714				int (*iter)(struct mtd_info *,
1715					    int section,
1716					    struct mtd_oob_region *oobregion))
1717{
1718	struct mtd_oob_region oobregion;
1719	int section = 0, ret, nbytes = 0;
1720
1721	while (1) {
1722		ret = iter(mtd, section++, &oobregion);
1723		if (ret) {
1724			if (ret == -ERANGE)
1725				ret = nbytes;
1726			break;
1727		}
1728
1729		nbytes += oobregion.length;
1730	}
1731
1732	return ret;
1733}
1734
1735/**
1736 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1737 * @mtd: mtd info structure
1738 * @eccbuf: destination buffer to store ECC bytes
1739 * @oobbuf: OOB buffer
1740 * @start: first ECC byte to retrieve
1741 * @nbytes: number of ECC bytes to retrieve
1742 *
1743 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1744 *
1745 * Returns zero on success, a negative error code otherwise.
1746 */
1747int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1748			       const u8 *oobbuf, int start, int nbytes)
1749{
1750	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751				       mtd_ooblayout_ecc);
1752}
1753EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1754
1755/**
1756 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1757 * @mtd: mtd info structure
1758 * @eccbuf: source buffer to get ECC bytes from
1759 * @oobbuf: OOB buffer
1760 * @start: first ECC byte to set
1761 * @nbytes: number of ECC bytes to set
1762 *
1763 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1768			       u8 *oobbuf, int start, int nbytes)
1769{
1770	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1771				       mtd_ooblayout_ecc);
1772}
1773EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1774
1775/**
1776 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1777 * @mtd: mtd info structure
1778 * @databuf: destination buffer to store ECC bytes
1779 * @oobbuf: OOB buffer
1780 * @start: first ECC byte to retrieve
1781 * @nbytes: number of ECC bytes to retrieve
1782 *
1783 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1784 *
1785 * Returns zero on success, a negative error code otherwise.
1786 */
1787int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1788				const u8 *oobbuf, int start, int nbytes)
1789{
1790	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1791				       mtd_ooblayout_free);
1792}
1793EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1794
1795/**
1796 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1797 * @mtd: mtd info structure
1798 * @databuf: source buffer to get data bytes from
1799 * @oobbuf: OOB buffer
1800 * @start: first ECC byte to set
1801 * @nbytes: number of ECC bytes to set
1802 *
1803 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1804 *
1805 * Returns zero on success, a negative error code otherwise.
1806 */
1807int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1808				u8 *oobbuf, int start, int nbytes)
1809{
1810	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1811				       mtd_ooblayout_free);
1812}
1813EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1814
1815/**
1816 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1817 * @mtd: mtd info structure
1818 *
1819 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1820 *
1821 * Returns zero on success, a negative error code otherwise.
1822 */
1823int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1824{
1825	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1826}
1827EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1828
1829/**
1830 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1831 * @mtd: mtd info structure
1832 *
1833 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1834 *
1835 * Returns zero on success, a negative error code otherwise.
1836 */
1837int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1838{
1839	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1840}
1841EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1842
1843/*
1844 * Method to access the protection register area, present in some flash
1845 * devices. The user data is one time programmable but the factory data is read
1846 * only.
1847 */
1848int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1849			   struct otp_info *buf)
1850{
1851	struct mtd_info *master = mtd_get_master(mtd);
1852
1853	if (!master->_get_fact_prot_info)
1854		return -EOPNOTSUPP;
1855	if (!len)
1856		return 0;
1857	return master->_get_fact_prot_info(master, len, retlen, buf);
1858}
1859EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1860
1861int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1862			   size_t *retlen, u_char *buf)
1863{
1864	struct mtd_info *master = mtd_get_master(mtd);
1865
1866	*retlen = 0;
1867	if (!master->_read_fact_prot_reg)
1868		return -EOPNOTSUPP;
1869	if (!len)
1870		return 0;
1871	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1872}
1873EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1874
1875int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1876			   struct otp_info *buf)
1877{
1878	struct mtd_info *master = mtd_get_master(mtd);
1879
1880	if (!master->_get_user_prot_info)
1881		return -EOPNOTSUPP;
1882	if (!len)
1883		return 0;
1884	return master->_get_user_prot_info(master, len, retlen, buf);
1885}
1886EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1887
1888int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1889			   size_t *retlen, u_char *buf)
1890{
1891	struct mtd_info *master = mtd_get_master(mtd);
1892
1893	*retlen = 0;
1894	if (!master->_read_user_prot_reg)
1895		return -EOPNOTSUPP;
1896	if (!len)
1897		return 0;
1898	return master->_read_user_prot_reg(master, from, len, retlen, buf);
1899}
1900EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1901
1902int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1903			    size_t *retlen, u_char *buf)
1904{
1905	struct mtd_info *master = mtd_get_master(mtd);
1906	int ret;
1907
1908	*retlen = 0;
1909	if (!master->_write_user_prot_reg)
1910		return -EOPNOTSUPP;
1911	if (!len)
1912		return 0;
1913	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1914	if (ret)
1915		return ret;
1916
1917	/*
1918	 * If no data could be written at all, we are out of memory and
1919	 * must return -ENOSPC.
1920	 */
1921	return (*retlen) ? 0 : -ENOSPC;
1922}
1923EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1924
1925int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1926{
1927	struct mtd_info *master = mtd_get_master(mtd);
1928
1929	if (!master->_lock_user_prot_reg)
1930		return -EOPNOTSUPP;
1931	if (!len)
1932		return 0;
1933	return master->_lock_user_prot_reg(master, from, len);
1934}
1935EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1936
 
 
 
 
 
 
 
 
 
 
 
 
1937/* Chip-supported device locking */
1938int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939{
1940	struct mtd_info *master = mtd_get_master(mtd);
1941
1942	if (!master->_lock)
1943		return -EOPNOTSUPP;
1944	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945		return -EINVAL;
1946	if (!len)
1947		return 0;
1948
1949	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952	}
1953
1954	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1955}
1956EXPORT_SYMBOL_GPL(mtd_lock);
1957
1958int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959{
1960	struct mtd_info *master = mtd_get_master(mtd);
1961
1962	if (!master->_unlock)
1963		return -EOPNOTSUPP;
1964	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965		return -EINVAL;
1966	if (!len)
1967		return 0;
1968
1969	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972	}
1973
1974	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1975}
1976EXPORT_SYMBOL_GPL(mtd_unlock);
1977
1978int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1979{
1980	struct mtd_info *master = mtd_get_master(mtd);
1981
1982	if (!master->_is_locked)
1983		return -EOPNOTSUPP;
1984	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1985		return -EINVAL;
1986	if (!len)
1987		return 0;
1988
1989	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1990		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1991		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1992	}
1993
1994	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1995}
1996EXPORT_SYMBOL_GPL(mtd_is_locked);
1997
1998int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1999{
2000	struct mtd_info *master = mtd_get_master(mtd);
2001
2002	if (ofs < 0 || ofs >= mtd->size)
2003		return -EINVAL;
2004	if (!master->_block_isreserved)
2005		return 0;
2006
2007	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2008		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2009
2010	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2011}
2012EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2013
2014int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2015{
2016	struct mtd_info *master = mtd_get_master(mtd);
2017
2018	if (ofs < 0 || ofs >= mtd->size)
2019		return -EINVAL;
2020	if (!master->_block_isbad)
2021		return 0;
2022
2023	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2024		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2025
2026	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2027}
2028EXPORT_SYMBOL_GPL(mtd_block_isbad);
2029
2030int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2031{
2032	struct mtd_info *master = mtd_get_master(mtd);
2033	int ret;
2034
2035	if (!master->_block_markbad)
2036		return -EOPNOTSUPP;
2037	if (ofs < 0 || ofs >= mtd->size)
2038		return -EINVAL;
2039	if (!(mtd->flags & MTD_WRITEABLE))
2040		return -EROFS;
2041
2042	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2043		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2044
2045	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2046	if (ret)
2047		return ret;
2048
2049	while (mtd->parent) {
2050		mtd->ecc_stats.badblocks++;
2051		mtd = mtd->parent;
2052	}
2053
2054	return 0;
2055}
2056EXPORT_SYMBOL_GPL(mtd_block_markbad);
2057
2058/*
2059 * default_mtd_writev - the default writev method
2060 * @mtd: mtd device description object pointer
2061 * @vecs: the vectors to write
2062 * @count: count of vectors in @vecs
2063 * @to: the MTD device offset to write to
2064 * @retlen: on exit contains the count of bytes written to the MTD device.
2065 *
2066 * This function returns zero in case of success and a negative error code in
2067 * case of failure.
2068 */
2069static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2070			      unsigned long count, loff_t to, size_t *retlen)
2071{
2072	unsigned long i;
2073	size_t totlen = 0, thislen;
2074	int ret = 0;
2075
2076	for (i = 0; i < count; i++) {
2077		if (!vecs[i].iov_len)
2078			continue;
2079		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2080				vecs[i].iov_base);
2081		totlen += thislen;
2082		if (ret || thislen != vecs[i].iov_len)
2083			break;
2084		to += vecs[i].iov_len;
2085	}
2086	*retlen = totlen;
2087	return ret;
2088}
2089
2090/*
2091 * mtd_writev - the vector-based MTD write method
2092 * @mtd: mtd device description object pointer
2093 * @vecs: the vectors to write
2094 * @count: count of vectors in @vecs
2095 * @to: the MTD device offset to write to
2096 * @retlen: on exit contains the count of bytes written to the MTD device.
2097 *
2098 * This function returns zero in case of success and a negative error code in
2099 * case of failure.
2100 */
2101int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2102	       unsigned long count, loff_t to, size_t *retlen)
2103{
2104	struct mtd_info *master = mtd_get_master(mtd);
2105
2106	*retlen = 0;
2107	if (!(mtd->flags & MTD_WRITEABLE))
2108		return -EROFS;
2109
2110	if (!master->_writev)
2111		return default_mtd_writev(mtd, vecs, count, to, retlen);
2112
2113	return master->_writev(master, vecs, count,
2114			       mtd_get_master_ofs(mtd, to), retlen);
2115}
2116EXPORT_SYMBOL_GPL(mtd_writev);
2117
2118/**
2119 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2120 * @mtd: mtd device description object pointer
2121 * @size: a pointer to the ideal or maximum size of the allocation, points
2122 *        to the actual allocation size on success.
2123 *
2124 * This routine attempts to allocate a contiguous kernel buffer up to
2125 * the specified size, backing off the size of the request exponentially
2126 * until the request succeeds or until the allocation size falls below
2127 * the system page size. This attempts to make sure it does not adversely
2128 * impact system performance, so when allocating more than one page, we
2129 * ask the memory allocator to avoid re-trying, swapping, writing back
2130 * or performing I/O.
2131 *
2132 * Note, this function also makes sure that the allocated buffer is aligned to
2133 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2134 *
2135 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2136 * to handle smaller (i.e. degraded) buffer allocations under low- or
2137 * fragmented-memory situations where such reduced allocations, from a
2138 * requested ideal, are allowed.
2139 *
2140 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2141 */
2142void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2143{
2144	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2145	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2146	void *kbuf;
2147
2148	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2149
2150	while (*size > min_alloc) {
2151		kbuf = kmalloc(*size, flags);
2152		if (kbuf)
2153			return kbuf;
2154
2155		*size >>= 1;
2156		*size = ALIGN(*size, mtd->writesize);
2157	}
2158
2159	/*
2160	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2161	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2162	 */
2163	return kmalloc(*size, GFP_KERNEL);
2164}
2165EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2166
2167#ifdef CONFIG_PROC_FS
2168
2169/*====================================================================*/
2170/* Support for /proc/mtd */
2171
2172static int mtd_proc_show(struct seq_file *m, void *v)
2173{
2174	struct mtd_info *mtd;
2175
2176	seq_puts(m, "dev:    size   erasesize  name\n");
2177	mutex_lock(&mtd_table_mutex);
2178	mtd_for_each_device(mtd) {
2179		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2180			   mtd->index, (unsigned long long)mtd->size,
2181			   mtd->erasesize, mtd->name);
2182	}
2183	mutex_unlock(&mtd_table_mutex);
2184	return 0;
2185}
2186#endif /* CONFIG_PROC_FS */
2187
2188/*====================================================================*/
2189/* Init code */
2190
2191static struct backing_dev_info * __init mtd_bdi_init(char *name)
2192{
2193	struct backing_dev_info *bdi;
2194	int ret;
2195
2196	bdi = bdi_alloc(NUMA_NO_NODE);
2197	if (!bdi)
2198		return ERR_PTR(-ENOMEM);
 
 
2199
2200	/*
2201	 * We put '-0' suffix to the name to get the same name format as we
2202	 * used to get. Since this is called only once, we get a unique name. 
2203	 */
2204	ret = bdi_register(bdi, "%.28s-0", name);
2205	if (ret)
2206		bdi_put(bdi);
2207
2208	return ret ? ERR_PTR(ret) : bdi;
2209}
2210
2211static struct proc_dir_entry *proc_mtd;
2212
2213static int __init init_mtd(void)
2214{
2215	int ret;
2216
2217	ret = class_register(&mtd_class);
2218	if (ret)
2219		goto err_reg;
2220
2221	mtd_bdi = mtd_bdi_init("mtd");
2222	if (IS_ERR(mtd_bdi)) {
2223		ret = PTR_ERR(mtd_bdi);
2224		goto err_bdi;
2225	}
2226
2227	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2228
2229	ret = init_mtdchar();
2230	if (ret)
2231		goto out_procfs;
2232
2233	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2234
2235	return 0;
2236
2237out_procfs:
2238	if (proc_mtd)
2239		remove_proc_entry("mtd", NULL);
2240	bdi_put(mtd_bdi);
2241err_bdi:
2242	class_unregister(&mtd_class);
2243err_reg:
2244	pr_err("Error registering mtd class or bdi: %d\n", ret);
2245	return ret;
2246}
2247
2248static void __exit cleanup_mtd(void)
2249{
2250	debugfs_remove_recursive(dfs_dir_mtd);
2251	cleanup_mtdchar();
2252	if (proc_mtd)
2253		remove_proc_entry("mtd", NULL);
2254	class_unregister(&mtd_class);
2255	bdi_put(mtd_bdi);
2256	idr_destroy(&mtd_idr);
2257}
2258
2259module_init(init_mtd);
2260module_exit(cleanup_mtd);
2261
2262MODULE_LICENSE("GPL");
2263MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2264MODULE_DESCRIPTION("Core MTD registration and access routines");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Core registration and callback routines for MTD
   4 * drivers and users.
   5 *
   6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
   7 * Copyright © 2006      Red Hat UK Limited 
   8 */
   9
  10#include <linux/module.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/seq_file.h>
  14#include <linux/string.h>
  15#include <linux/timer.h>
  16#include <linux/major.h>
  17#include <linux/fs.h>
  18#include <linux/err.h>
  19#include <linux/ioctl.h>
  20#include <linux/init.h>
  21#include <linux/of.h>
  22#include <linux/proc_fs.h>
  23#include <linux/idr.h>
  24#include <linux/backing-dev.h>
  25#include <linux/gfp.h>
  26#include <linux/slab.h>
  27#include <linux/reboot.h>
  28#include <linux/leds.h>
  29#include <linux/debugfs.h>
  30#include <linux/nvmem-provider.h>
  31
  32#include <linux/mtd/mtd.h>
  33#include <linux/mtd/partitions.h>
  34
  35#include "mtdcore.h"
  36
  37struct backing_dev_info *mtd_bdi;
  38
  39#ifdef CONFIG_PM_SLEEP
  40
  41static int mtd_cls_suspend(struct device *dev)
  42{
  43	struct mtd_info *mtd = dev_get_drvdata(dev);
  44
  45	return mtd ? mtd_suspend(mtd) : 0;
  46}
  47
  48static int mtd_cls_resume(struct device *dev)
  49{
  50	struct mtd_info *mtd = dev_get_drvdata(dev);
  51
  52	if (mtd)
  53		mtd_resume(mtd);
  54	return 0;
  55}
  56
  57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
  58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
  59#else
  60#define MTD_CLS_PM_OPS NULL
  61#endif
  62
  63static struct class mtd_class = {
  64	.name = "mtd",
  65	.owner = THIS_MODULE,
  66	.pm = MTD_CLS_PM_OPS,
  67};
  68
  69static DEFINE_IDR(mtd_idr);
  70
  71/* These are exported solely for the purpose of mtd_blkdevs.c. You
  72   should not use them for _anything_ else */
  73DEFINE_MUTEX(mtd_table_mutex);
  74EXPORT_SYMBOL_GPL(mtd_table_mutex);
  75
  76struct mtd_info *__mtd_next_device(int i)
  77{
  78	return idr_get_next(&mtd_idr, &i);
  79}
  80EXPORT_SYMBOL_GPL(__mtd_next_device);
  81
  82static LIST_HEAD(mtd_notifiers);
  83
  84
  85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
  86
  87/* REVISIT once MTD uses the driver model better, whoever allocates
  88 * the mtd_info will probably want to use the release() hook...
  89 */
  90static void mtd_release(struct device *dev)
  91{
  92	struct mtd_info *mtd = dev_get_drvdata(dev);
  93	dev_t index = MTD_DEVT(mtd->index);
  94
  95	/* remove /dev/mtdXro node */
  96	device_destroy(&mtd_class, index + 1);
  97}
  98
  99#define MTD_DEVICE_ATTR_RO(name) \
 100static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
 101
 102#define MTD_DEVICE_ATTR_RW(name) \
 103static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
 104
 105static ssize_t mtd_type_show(struct device *dev,
 106		struct device_attribute *attr, char *buf)
 107{
 108	struct mtd_info *mtd = dev_get_drvdata(dev);
 109	char *type;
 110
 111	switch (mtd->type) {
 112	case MTD_ABSENT:
 113		type = "absent";
 114		break;
 115	case MTD_RAM:
 116		type = "ram";
 117		break;
 118	case MTD_ROM:
 119		type = "rom";
 120		break;
 121	case MTD_NORFLASH:
 122		type = "nor";
 123		break;
 124	case MTD_NANDFLASH:
 125		type = "nand";
 126		break;
 127	case MTD_DATAFLASH:
 128		type = "dataflash";
 129		break;
 130	case MTD_UBIVOLUME:
 131		type = "ubi";
 132		break;
 133	case MTD_MLCNANDFLASH:
 134		type = "mlc-nand";
 135		break;
 136	default:
 137		type = "unknown";
 138	}
 139
 140	return sysfs_emit(buf, "%s\n", type);
 141}
 142MTD_DEVICE_ATTR_RO(type);
 143
 144static ssize_t mtd_flags_show(struct device *dev,
 145		struct device_attribute *attr, char *buf)
 146{
 147	struct mtd_info *mtd = dev_get_drvdata(dev);
 148
 149	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
 150}
 151MTD_DEVICE_ATTR_RO(flags);
 152
 153static ssize_t mtd_size_show(struct device *dev,
 154		struct device_attribute *attr, char *buf)
 155{
 156	struct mtd_info *mtd = dev_get_drvdata(dev);
 157
 158	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
 
 159}
 160MTD_DEVICE_ATTR_RO(size);
 161
 162static ssize_t mtd_erasesize_show(struct device *dev,
 163		struct device_attribute *attr, char *buf)
 164{
 165	struct mtd_info *mtd = dev_get_drvdata(dev);
 166
 167	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
 168}
 169MTD_DEVICE_ATTR_RO(erasesize);
 170
 171static ssize_t mtd_writesize_show(struct device *dev,
 172		struct device_attribute *attr, char *buf)
 173{
 174	struct mtd_info *mtd = dev_get_drvdata(dev);
 175
 176	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
 177}
 178MTD_DEVICE_ATTR_RO(writesize);
 179
 180static ssize_t mtd_subpagesize_show(struct device *dev,
 181		struct device_attribute *attr, char *buf)
 182{
 183	struct mtd_info *mtd = dev_get_drvdata(dev);
 184	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
 185
 186	return sysfs_emit(buf, "%u\n", subpagesize);
 187}
 188MTD_DEVICE_ATTR_RO(subpagesize);
 189
 190static ssize_t mtd_oobsize_show(struct device *dev,
 191		struct device_attribute *attr, char *buf)
 192{
 193	struct mtd_info *mtd = dev_get_drvdata(dev);
 194
 195	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
 196}
 197MTD_DEVICE_ATTR_RO(oobsize);
 198
 199static ssize_t mtd_oobavail_show(struct device *dev,
 200				 struct device_attribute *attr, char *buf)
 201{
 202	struct mtd_info *mtd = dev_get_drvdata(dev);
 203
 204	return sysfs_emit(buf, "%u\n", mtd->oobavail);
 205}
 206MTD_DEVICE_ATTR_RO(oobavail);
 207
 208static ssize_t mtd_numeraseregions_show(struct device *dev,
 209		struct device_attribute *attr, char *buf)
 210{
 211	struct mtd_info *mtd = dev_get_drvdata(dev);
 212
 213	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
 214}
 215MTD_DEVICE_ATTR_RO(numeraseregions);
 
 216
 217static ssize_t mtd_name_show(struct device *dev,
 218		struct device_attribute *attr, char *buf)
 219{
 220	struct mtd_info *mtd = dev_get_drvdata(dev);
 221
 222	return sysfs_emit(buf, "%s\n", mtd->name);
 223}
 224MTD_DEVICE_ATTR_RO(name);
 225
 226static ssize_t mtd_ecc_strength_show(struct device *dev,
 227				     struct device_attribute *attr, char *buf)
 228{
 229	struct mtd_info *mtd = dev_get_drvdata(dev);
 230
 231	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
 232}
 233MTD_DEVICE_ATTR_RO(ecc_strength);
 234
 235static ssize_t mtd_bitflip_threshold_show(struct device *dev,
 236					  struct device_attribute *attr,
 237					  char *buf)
 238{
 239	struct mtd_info *mtd = dev_get_drvdata(dev);
 240
 241	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
 242}
 243
 244static ssize_t mtd_bitflip_threshold_store(struct device *dev,
 245					   struct device_attribute *attr,
 246					   const char *buf, size_t count)
 247{
 248	struct mtd_info *mtd = dev_get_drvdata(dev);
 249	unsigned int bitflip_threshold;
 250	int retval;
 251
 252	retval = kstrtouint(buf, 0, &bitflip_threshold);
 253	if (retval)
 254		return retval;
 255
 256	mtd->bitflip_threshold = bitflip_threshold;
 257	return count;
 258}
 259MTD_DEVICE_ATTR_RW(bitflip_threshold);
 
 
 260
 261static ssize_t mtd_ecc_step_size_show(struct device *dev,
 262		struct device_attribute *attr, char *buf)
 263{
 264	struct mtd_info *mtd = dev_get_drvdata(dev);
 265
 266	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
 267
 268}
 269MTD_DEVICE_ATTR_RO(ecc_step_size);
 270
 271static ssize_t mtd_corrected_bits_show(struct device *dev,
 272		struct device_attribute *attr, char *buf)
 273{
 274	struct mtd_info *mtd = dev_get_drvdata(dev);
 275	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 276
 277	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
 278}
 279MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
 
 280
 281static ssize_t mtd_ecc_failures_show(struct device *dev,
 282		struct device_attribute *attr, char *buf)
 283{
 284	struct mtd_info *mtd = dev_get_drvdata(dev);
 285	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 286
 287	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
 288}
 289MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
 290
 291static ssize_t mtd_bad_blocks_show(struct device *dev,
 292		struct device_attribute *attr, char *buf)
 293{
 294	struct mtd_info *mtd = dev_get_drvdata(dev);
 295	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 296
 297	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
 298}
 299MTD_DEVICE_ATTR_RO(bad_blocks);
 300
 301static ssize_t mtd_bbt_blocks_show(struct device *dev,
 302		struct device_attribute *attr, char *buf)
 303{
 304	struct mtd_info *mtd = dev_get_drvdata(dev);
 305	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
 306
 307	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
 308}
 309MTD_DEVICE_ATTR_RO(bbt_blocks);
 310
 311static struct attribute *mtd_attrs[] = {
 312	&dev_attr_type.attr,
 313	&dev_attr_flags.attr,
 314	&dev_attr_size.attr,
 315	&dev_attr_erasesize.attr,
 316	&dev_attr_writesize.attr,
 317	&dev_attr_subpagesize.attr,
 318	&dev_attr_oobsize.attr,
 319	&dev_attr_oobavail.attr,
 320	&dev_attr_numeraseregions.attr,
 321	&dev_attr_name.attr,
 322	&dev_attr_ecc_strength.attr,
 323	&dev_attr_ecc_step_size.attr,
 324	&dev_attr_corrected_bits.attr,
 325	&dev_attr_ecc_failures.attr,
 326	&dev_attr_bad_blocks.attr,
 327	&dev_attr_bbt_blocks.attr,
 328	&dev_attr_bitflip_threshold.attr,
 329	NULL,
 330};
 331ATTRIBUTE_GROUPS(mtd);
 332
 333static const struct device_type mtd_devtype = {
 334	.name		= "mtd",
 335	.groups		= mtd_groups,
 336	.release	= mtd_release,
 337};
 338
 339static int mtd_partid_debug_show(struct seq_file *s, void *p)
 340{
 341	struct mtd_info *mtd = s->private;
 342
 343	seq_printf(s, "%s\n", mtd->dbg.partid);
 344
 345	return 0;
 346}
 347
 348DEFINE_SHOW_ATTRIBUTE(mtd_partid_debug);
 
 
 
 
 
 
 
 
 
 
 349
 350static int mtd_partname_debug_show(struct seq_file *s, void *p)
 351{
 352	struct mtd_info *mtd = s->private;
 353
 354	seq_printf(s, "%s\n", mtd->dbg.partname);
 355
 356	return 0;
 357}
 358
 359DEFINE_SHOW_ATTRIBUTE(mtd_partname_debug);
 
 
 
 
 
 
 
 
 
 
 360
 361static struct dentry *dfs_dir_mtd;
 362
 363static void mtd_debugfs_populate(struct mtd_info *mtd)
 364{
 365	struct mtd_info *master = mtd_get_master(mtd);
 366	struct device *dev = &mtd->dev;
 367	struct dentry *root;
 368
 369	if (IS_ERR_OR_NULL(dfs_dir_mtd))
 370		return;
 371
 372	root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
 373	mtd->dbg.dfs_dir = root;
 374
 375	if (master->dbg.partid)
 376		debugfs_create_file("partid", 0400, root, master,
 377				    &mtd_partid_debug_fops);
 378
 379	if (master->dbg.partname)
 380		debugfs_create_file("partname", 0400, root, master,
 381				    &mtd_partname_debug_fops);
 382}
 383
 384#ifndef CONFIG_MMU
 385unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
 386{
 387	switch (mtd->type) {
 388	case MTD_RAM:
 389		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 390			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
 391	case MTD_ROM:
 392		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
 393			NOMMU_MAP_READ;
 394	default:
 395		return NOMMU_MAP_COPY;
 396	}
 397}
 398EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
 399#endif
 400
 401static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
 402			       void *cmd)
 403{
 404	struct mtd_info *mtd;
 405
 406	mtd = container_of(n, struct mtd_info, reboot_notifier);
 407	mtd->_reboot(mtd);
 408
 409	return NOTIFY_DONE;
 410}
 411
 412/**
 413 * mtd_wunit_to_pairing_info - get pairing information of a wunit
 414 * @mtd: pointer to new MTD device info structure
 415 * @wunit: write unit we are interested in
 416 * @info: returned pairing information
 417 *
 418 * Retrieve pairing information associated to the wunit.
 419 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
 420 * paired together, and where programming a page may influence the page it is
 421 * paired with.
 422 * The notion of page is replaced by the term wunit (write-unit) to stay
 423 * consistent with the ->writesize field.
 424 *
 425 * The @wunit argument can be extracted from an absolute offset using
 426 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
 427 * to @wunit.
 428 *
 429 * From the pairing info the MTD user can find all the wunits paired with
 430 * @wunit using the following loop:
 431 *
 432 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
 433 *	info.pair = i;
 434 *	mtd_pairing_info_to_wunit(mtd, &info);
 435 *	...
 436 * }
 437 */
 438int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
 439			      struct mtd_pairing_info *info)
 440{
 441	struct mtd_info *master = mtd_get_master(mtd);
 442	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
 443
 444	if (wunit < 0 || wunit >= npairs)
 445		return -EINVAL;
 446
 447	if (master->pairing && master->pairing->get_info)
 448		return master->pairing->get_info(master, wunit, info);
 449
 450	info->group = 0;
 451	info->pair = wunit;
 452
 453	return 0;
 454}
 455EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
 456
 457/**
 458 * mtd_pairing_info_to_wunit - get wunit from pairing information
 459 * @mtd: pointer to new MTD device info structure
 460 * @info: pairing information struct
 461 *
 462 * Returns a positive number representing the wunit associated to the info
 463 * struct, or a negative error code.
 464 *
 465 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
 466 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
 467 * doc).
 468 *
 469 * It can also be used to only program the first page of each pair (i.e.
 470 * page attached to group 0), which allows one to use an MLC NAND in
 471 * software-emulated SLC mode:
 472 *
 473 * info.group = 0;
 474 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
 475 * for (info.pair = 0; info.pair < npairs; info.pair++) {
 476 *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
 477 *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
 478 *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
 479 * }
 480 */
 481int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
 482			      const struct mtd_pairing_info *info)
 483{
 484	struct mtd_info *master = mtd_get_master(mtd);
 485	int ngroups = mtd_pairing_groups(master);
 486	int npairs = mtd_wunit_per_eb(master) / ngroups;
 487
 488	if (!info || info->pair < 0 || info->pair >= npairs ||
 489	    info->group < 0 || info->group >= ngroups)
 490		return -EINVAL;
 491
 492	if (master->pairing && master->pairing->get_wunit)
 493		return mtd->pairing->get_wunit(master, info);
 494
 495	return info->pair;
 496}
 497EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
 498
 499/**
 500 * mtd_pairing_groups - get the number of pairing groups
 501 * @mtd: pointer to new MTD device info structure
 502 *
 503 * Returns the number of pairing groups.
 504 *
 505 * This number is usually equal to the number of bits exposed by a single
 506 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
 507 * to iterate over all pages of a given pair.
 508 */
 509int mtd_pairing_groups(struct mtd_info *mtd)
 510{
 511	struct mtd_info *master = mtd_get_master(mtd);
 512
 513	if (!master->pairing || !master->pairing->ngroups)
 514		return 1;
 515
 516	return master->pairing->ngroups;
 517}
 518EXPORT_SYMBOL_GPL(mtd_pairing_groups);
 519
 520static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
 521			      void *val, size_t bytes)
 522{
 523	struct mtd_info *mtd = priv;
 524	size_t retlen;
 525	int err;
 526
 527	err = mtd_read(mtd, offset, bytes, &retlen, val);
 528	if (err && err != -EUCLEAN)
 529		return err;
 530
 531	return retlen == bytes ? 0 : -EIO;
 532}
 533
 534static int mtd_nvmem_add(struct mtd_info *mtd)
 535{
 536	struct device_node *node = mtd_get_of_node(mtd);
 537	struct nvmem_config config = {};
 538
 539	config.id = -1;
 540	config.dev = &mtd->dev;
 541	config.name = dev_name(&mtd->dev);
 542	config.owner = THIS_MODULE;
 543	config.reg_read = mtd_nvmem_reg_read;
 544	config.size = mtd->size;
 545	config.word_size = 1;
 546	config.stride = 1;
 547	config.read_only = true;
 548	config.root_only = true;
 549	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
 550	config.priv = mtd;
 551
 552	mtd->nvmem = nvmem_register(&config);
 553	if (IS_ERR(mtd->nvmem)) {
 554		/* Just ignore if there is no NVMEM support in the kernel */
 555		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
 556			mtd->nvmem = NULL;
 557		} else {
 558			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
 559			return PTR_ERR(mtd->nvmem);
 560		}
 561	}
 562
 563	return 0;
 564}
 565
 566/**
 567 *	add_mtd_device - register an MTD device
 568 *	@mtd: pointer to new MTD device info structure
 569 *
 570 *	Add a device to the list of MTD devices present in the system, and
 571 *	notify each currently active MTD 'user' of its arrival. Returns
 572 *	zero on success or non-zero on failure.
 573 */
 574
 575int add_mtd_device(struct mtd_info *mtd)
 576{
 577	struct mtd_info *master = mtd_get_master(mtd);
 578	struct mtd_notifier *not;
 579	int i, error;
 580
 581	/*
 582	 * May occur, for instance, on buggy drivers which call
 583	 * mtd_device_parse_register() multiple times on the same master MTD,
 584	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
 585	 */
 586	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
 587		return -EEXIST;
 588
 589	BUG_ON(mtd->writesize == 0);
 590
 591	/*
 592	 * MTD drivers should implement ->_{write,read}() or
 593	 * ->_{write,read}_oob(), but not both.
 594	 */
 595	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
 596		    (mtd->_read && mtd->_read_oob)))
 597		return -EINVAL;
 598
 599	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
 600		    !(mtd->flags & MTD_NO_ERASE)))
 601		return -EINVAL;
 602
 603	/*
 604	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
 605	 * master is an MLC NAND and has a proper pairing scheme defined.
 606	 * We also reject masters that implement ->_writev() for now, because
 607	 * NAND controller drivers don't implement this hook, and adding the
 608	 * SLC -> MLC address/length conversion to this path is useless if we
 609	 * don't have a user.
 610	 */
 611	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
 612	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
 613	     !master->pairing || master->_writev))
 614		return -EINVAL;
 615
 616	mutex_lock(&mtd_table_mutex);
 617
 618	i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
 619	if (i < 0) {
 620		error = i;
 621		goto fail_locked;
 622	}
 623
 624	mtd->index = i;
 625	mtd->usecount = 0;
 626
 627	/* default value if not set by driver */
 628	if (mtd->bitflip_threshold == 0)
 629		mtd->bitflip_threshold = mtd->ecc_strength;
 630
 631	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
 632		int ngroups = mtd_pairing_groups(master);
 633
 634		mtd->erasesize /= ngroups;
 635		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
 636			    mtd->erasesize;
 637	}
 638
 639	if (is_power_of_2(mtd->erasesize))
 640		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
 641	else
 642		mtd->erasesize_shift = 0;
 643
 644	if (is_power_of_2(mtd->writesize))
 645		mtd->writesize_shift = ffs(mtd->writesize) - 1;
 646	else
 647		mtd->writesize_shift = 0;
 648
 649	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
 650	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
 651
 652	/* Some chips always power up locked. Unlock them now */
 653	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
 654		error = mtd_unlock(mtd, 0, mtd->size);
 655		if (error && error != -EOPNOTSUPP)
 656			printk(KERN_WARNING
 657			       "%s: unlock failed, writes may not work\n",
 658			       mtd->name);
 659		/* Ignore unlock failures? */
 660		error = 0;
 661	}
 662
 663	/* Caller should have set dev.parent to match the
 664	 * physical device, if appropriate.
 665	 */
 666	mtd->dev.type = &mtd_devtype;
 667	mtd->dev.class = &mtd_class;
 668	mtd->dev.devt = MTD_DEVT(i);
 669	dev_set_name(&mtd->dev, "mtd%d", i);
 670	dev_set_drvdata(&mtd->dev, mtd);
 671	of_node_get(mtd_get_of_node(mtd));
 672	error = device_register(&mtd->dev);
 673	if (error)
 674		goto fail_added;
 675
 676	/* Add the nvmem provider */
 677	error = mtd_nvmem_add(mtd);
 678	if (error)
 679		goto fail_nvmem_add;
 680
 681	mtd_debugfs_populate(mtd);
 682
 683	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
 684		      "mtd%dro", i);
 685
 686	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
 687	/* No need to get a refcount on the module containing
 688	   the notifier, since we hold the mtd_table_mutex */
 689	list_for_each_entry(not, &mtd_notifiers, list)
 690		not->add(mtd);
 691
 692	mutex_unlock(&mtd_table_mutex);
 693	/* We _know_ we aren't being removed, because
 694	   our caller is still holding us here. So none
 695	   of this try_ nonsense, and no bitching about it
 696	   either. :) */
 697	__module_get(THIS_MODULE);
 698	return 0;
 699
 700fail_nvmem_add:
 701	device_unregister(&mtd->dev);
 702fail_added:
 703	of_node_put(mtd_get_of_node(mtd));
 704	idr_remove(&mtd_idr, i);
 705fail_locked:
 706	mutex_unlock(&mtd_table_mutex);
 707	return error;
 708}
 709
 710/**
 711 *	del_mtd_device - unregister an MTD device
 712 *	@mtd: pointer to MTD device info structure
 713 *
 714 *	Remove a device from the list of MTD devices present in the system,
 715 *	and notify each currently active MTD 'user' of its departure.
 716 *	Returns zero on success or 1 on failure, which currently will happen
 717 *	if the requested device does not appear to be present in the list.
 718 */
 719
 720int del_mtd_device(struct mtd_info *mtd)
 721{
 722	int ret;
 723	struct mtd_notifier *not;
 724
 725	mutex_lock(&mtd_table_mutex);
 726
 727	debugfs_remove_recursive(mtd->dbg.dfs_dir);
 728
 729	if (idr_find(&mtd_idr, mtd->index) != mtd) {
 730		ret = -ENODEV;
 731		goto out_error;
 732	}
 733
 734	/* No need to get a refcount on the module containing
 735		the notifier, since we hold the mtd_table_mutex */
 736	list_for_each_entry(not, &mtd_notifiers, list)
 737		not->remove(mtd);
 738
 739	if (mtd->usecount) {
 740		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
 741		       mtd->index, mtd->name, mtd->usecount);
 742		ret = -EBUSY;
 743	} else {
 744		/* Try to remove the NVMEM provider */
 745		if (mtd->nvmem)
 746			nvmem_unregister(mtd->nvmem);
 747
 748		device_unregister(&mtd->dev);
 749
 750		idr_remove(&mtd_idr, mtd->index);
 751		of_node_put(mtd_get_of_node(mtd));
 752
 753		module_put(THIS_MODULE);
 754		ret = 0;
 755	}
 756
 757out_error:
 758	mutex_unlock(&mtd_table_mutex);
 759	return ret;
 760}
 761
 762/*
 763 * Set a few defaults based on the parent devices, if not provided by the
 764 * driver
 765 */
 766static void mtd_set_dev_defaults(struct mtd_info *mtd)
 767{
 768	if (mtd->dev.parent) {
 769		if (!mtd->owner && mtd->dev.parent->driver)
 770			mtd->owner = mtd->dev.parent->driver->owner;
 771		if (!mtd->name)
 772			mtd->name = dev_name(mtd->dev.parent);
 773	} else {
 774		pr_debug("mtd device won't show a device symlink in sysfs\n");
 775	}
 776
 777	INIT_LIST_HEAD(&mtd->partitions);
 778	mutex_init(&mtd->master.partitions_lock);
 779	mutex_init(&mtd->master.chrdev_lock);
 780}
 781
 782static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
 783{
 784	struct otp_info *info;
 785	ssize_t size = 0;
 786	unsigned int i;
 787	size_t retlen;
 788	int ret;
 789
 790	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
 791	if (!info)
 792		return -ENOMEM;
 793
 794	if (is_user)
 795		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
 796	else
 797		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
 798	if (ret)
 799		goto err;
 800
 801	for (i = 0; i < retlen / sizeof(*info); i++)
 802		size += info[i].length;
 803
 804	kfree(info);
 805	return size;
 806
 807err:
 808	kfree(info);
 809
 810	/* ENODATA means there is no OTP region. */
 811	return ret == -ENODATA ? 0 : ret;
 812}
 813
 814static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
 815						   const char *compatible,
 816						   int size,
 817						   nvmem_reg_read_t reg_read)
 818{
 819	struct nvmem_device *nvmem = NULL;
 820	struct nvmem_config config = {};
 821	struct device_node *np;
 822
 823	/* DT binding is optional */
 824	np = of_get_compatible_child(mtd->dev.of_node, compatible);
 825
 826	/* OTP nvmem will be registered on the physical device */
 827	config.dev = mtd->dev.parent;
 828	/* just reuse the compatible as name */
 829	config.name = compatible;
 830	config.id = NVMEM_DEVID_NONE;
 831	config.owner = THIS_MODULE;
 832	config.type = NVMEM_TYPE_OTP;
 833	config.root_only = true;
 834	config.reg_read = reg_read;
 835	config.size = size;
 836	config.of_node = np;
 837	config.priv = mtd;
 838
 839	nvmem = nvmem_register(&config);
 840	/* Just ignore if there is no NVMEM support in the kernel */
 841	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
 842		nvmem = NULL;
 843
 844	of_node_put(np);
 845
 846	return nvmem;
 847}
 848
 849static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
 850				       void *val, size_t bytes)
 851{
 852	struct mtd_info *mtd = priv;
 853	size_t retlen;
 854	int ret;
 855
 856	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
 857	if (ret)
 858		return ret;
 859
 860	return retlen == bytes ? 0 : -EIO;
 861}
 862
 863static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
 864				       void *val, size_t bytes)
 865{
 866	struct mtd_info *mtd = priv;
 867	size_t retlen;
 868	int ret;
 869
 870	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
 871	if (ret)
 872		return ret;
 873
 874	return retlen == bytes ? 0 : -EIO;
 875}
 876
 877static int mtd_otp_nvmem_add(struct mtd_info *mtd)
 878{
 879	struct nvmem_device *nvmem;
 880	ssize_t size;
 881	int err;
 882
 883	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
 884		size = mtd_otp_size(mtd, true);
 885		if (size < 0)
 886			return size;
 887
 888		if (size > 0) {
 889			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
 890						       mtd_nvmem_user_otp_reg_read);
 891			if (IS_ERR(nvmem)) {
 892				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
 893				return PTR_ERR(nvmem);
 894			}
 895			mtd->otp_user_nvmem = nvmem;
 896		}
 897	}
 898
 899	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
 900		size = mtd_otp_size(mtd, false);
 901		if (size < 0) {
 902			err = size;
 903			goto err;
 904		}
 905
 906		if (size > 0) {
 907			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
 908						       mtd_nvmem_fact_otp_reg_read);
 909			if (IS_ERR(nvmem)) {
 910				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
 911				err = PTR_ERR(nvmem);
 912				goto err;
 913			}
 914			mtd->otp_factory_nvmem = nvmem;
 915		}
 916	}
 917
 918	return 0;
 919
 920err:
 921	if (mtd->otp_user_nvmem)
 922		nvmem_unregister(mtd->otp_user_nvmem);
 923	return err;
 924}
 925
 926/**
 927 * mtd_device_parse_register - parse partitions and register an MTD device.
 928 *
 929 * @mtd: the MTD device to register
 930 * @types: the list of MTD partition probes to try, see
 931 *         'parse_mtd_partitions()' for more information
 932 * @parser_data: MTD partition parser-specific data
 933 * @parts: fallback partition information to register, if parsing fails;
 934 *         only valid if %nr_parts > %0
 935 * @nr_parts: the number of partitions in parts, if zero then the full
 936 *            MTD device is registered if no partition info is found
 937 *
 938 * This function aggregates MTD partitions parsing (done by
 939 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
 940 * basically follows the most common pattern found in many MTD drivers:
 941 *
 942 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
 943 *   registered first.
 944 * * Then It tries to probe partitions on MTD device @mtd using parsers
 945 *   specified in @types (if @types is %NULL, then the default list of parsers
 946 *   is used, see 'parse_mtd_partitions()' for more information). If none are
 947 *   found this functions tries to fallback to information specified in
 948 *   @parts/@nr_parts.
 949 * * If no partitions were found this function just registers the MTD device
 950 *   @mtd and exits.
 951 *
 952 * Returns zero in case of success and a negative error code in case of failure.
 953 */
 954int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
 955			      struct mtd_part_parser_data *parser_data,
 956			      const struct mtd_partition *parts,
 957			      int nr_parts)
 958{
 959	int ret;
 960
 961	mtd_set_dev_defaults(mtd);
 962
 963	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
 964		ret = add_mtd_device(mtd);
 965		if (ret)
 966			return ret;
 967	}
 968
 969	/* Prefer parsed partitions over driver-provided fallback */
 970	ret = parse_mtd_partitions(mtd, types, parser_data);
 971	if (ret == -EPROBE_DEFER)
 972		goto out;
 973
 974	if (ret > 0)
 975		ret = 0;
 976	else if (nr_parts)
 977		ret = add_mtd_partitions(mtd, parts, nr_parts);
 978	else if (!device_is_registered(&mtd->dev))
 979		ret = add_mtd_device(mtd);
 980	else
 981		ret = 0;
 982
 983	if (ret)
 984		goto out;
 985
 986	/*
 987	 * FIXME: some drivers unfortunately call this function more than once.
 988	 * So we have to check if we've already assigned the reboot notifier.
 989	 *
 990	 * Generally, we can make multiple calls work for most cases, but it
 991	 * does cause problems with parse_mtd_partitions() above (e.g.,
 992	 * cmdlineparts will register partitions more than once).
 993	 */
 994	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
 995		  "MTD already registered\n");
 996	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
 997		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
 998		register_reboot_notifier(&mtd->reboot_notifier);
 999	}
1000
1001	ret = mtd_otp_nvmem_add(mtd);
1002
1003out:
1004	if (ret && device_is_registered(&mtd->dev))
1005		del_mtd_device(mtd);
1006
1007	return ret;
1008}
1009EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1010
1011/**
1012 * mtd_device_unregister - unregister an existing MTD device.
1013 *
1014 * @master: the MTD device to unregister.  This will unregister both the master
1015 *          and any partitions if registered.
1016 */
1017int mtd_device_unregister(struct mtd_info *master)
1018{
1019	int err;
1020
1021	if (master->_reboot)
1022		unregister_reboot_notifier(&master->reboot_notifier);
1023
1024	if (master->otp_user_nvmem)
1025		nvmem_unregister(master->otp_user_nvmem);
1026
1027	if (master->otp_factory_nvmem)
1028		nvmem_unregister(master->otp_factory_nvmem);
1029
1030	err = del_mtd_partitions(master);
1031	if (err)
1032		return err;
1033
1034	if (!device_is_registered(&master->dev))
1035		return 0;
1036
1037	return del_mtd_device(master);
1038}
1039EXPORT_SYMBOL_GPL(mtd_device_unregister);
1040
1041/**
1042 *	register_mtd_user - register a 'user' of MTD devices.
1043 *	@new: pointer to notifier info structure
1044 *
1045 *	Registers a pair of callbacks function to be called upon addition
1046 *	or removal of MTD devices. Causes the 'add' callback to be immediately
1047 *	invoked for each MTD device currently present in the system.
1048 */
1049void register_mtd_user (struct mtd_notifier *new)
1050{
1051	struct mtd_info *mtd;
1052
1053	mutex_lock(&mtd_table_mutex);
1054
1055	list_add(&new->list, &mtd_notifiers);
1056
1057	__module_get(THIS_MODULE);
1058
1059	mtd_for_each_device(mtd)
1060		new->add(mtd);
1061
1062	mutex_unlock(&mtd_table_mutex);
1063}
1064EXPORT_SYMBOL_GPL(register_mtd_user);
1065
1066/**
1067 *	unregister_mtd_user - unregister a 'user' of MTD devices.
1068 *	@old: pointer to notifier info structure
1069 *
1070 *	Removes a callback function pair from the list of 'users' to be
1071 *	notified upon addition or removal of MTD devices. Causes the
1072 *	'remove' callback to be immediately invoked for each MTD device
1073 *	currently present in the system.
1074 */
1075int unregister_mtd_user (struct mtd_notifier *old)
1076{
1077	struct mtd_info *mtd;
1078
1079	mutex_lock(&mtd_table_mutex);
1080
1081	module_put(THIS_MODULE);
1082
1083	mtd_for_each_device(mtd)
1084		old->remove(mtd);
1085
1086	list_del(&old->list);
1087	mutex_unlock(&mtd_table_mutex);
1088	return 0;
1089}
1090EXPORT_SYMBOL_GPL(unregister_mtd_user);
1091
1092/**
1093 *	get_mtd_device - obtain a validated handle for an MTD device
1094 *	@mtd: last known address of the required MTD device
1095 *	@num: internal device number of the required MTD device
1096 *
1097 *	Given a number and NULL address, return the num'th entry in the device
1098 *	table, if any.	Given an address and num == -1, search the device table
1099 *	for a device with that address and return if it's still present. Given
1100 *	both, return the num'th driver only if its address matches. Return
1101 *	error code if not.
1102 */
1103struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1104{
1105	struct mtd_info *ret = NULL, *other;
1106	int err = -ENODEV;
1107
1108	mutex_lock(&mtd_table_mutex);
1109
1110	if (num == -1) {
1111		mtd_for_each_device(other) {
1112			if (other == mtd) {
1113				ret = mtd;
1114				break;
1115			}
1116		}
1117	} else if (num >= 0) {
1118		ret = idr_find(&mtd_idr, num);
1119		if (mtd && mtd != ret)
1120			ret = NULL;
1121	}
1122
1123	if (!ret) {
1124		ret = ERR_PTR(err);
1125		goto out;
1126	}
1127
1128	err = __get_mtd_device(ret);
1129	if (err)
1130		ret = ERR_PTR(err);
1131out:
1132	mutex_unlock(&mtd_table_mutex);
1133	return ret;
1134}
1135EXPORT_SYMBOL_GPL(get_mtd_device);
1136
1137
1138int __get_mtd_device(struct mtd_info *mtd)
1139{
1140	struct mtd_info *master = mtd_get_master(mtd);
1141	int err;
1142
1143	if (!try_module_get(master->owner))
1144		return -ENODEV;
1145
1146	if (master->_get_device) {
1147		err = master->_get_device(mtd);
1148
1149		if (err) {
1150			module_put(master->owner);
1151			return err;
1152		}
1153	}
1154
1155	master->usecount++;
1156
1157	while (mtd->parent) {
1158		mtd->usecount++;
1159		mtd = mtd->parent;
1160	}
1161
1162	return 0;
1163}
1164EXPORT_SYMBOL_GPL(__get_mtd_device);
1165
1166/**
1167 *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1168 *	device name
1169 *	@name: MTD device name to open
1170 *
1171 * 	This function returns MTD device description structure in case of
1172 * 	success and an error code in case of failure.
1173 */
1174struct mtd_info *get_mtd_device_nm(const char *name)
1175{
1176	int err = -ENODEV;
1177	struct mtd_info *mtd = NULL, *other;
1178
1179	mutex_lock(&mtd_table_mutex);
1180
1181	mtd_for_each_device(other) {
1182		if (!strcmp(name, other->name)) {
1183			mtd = other;
1184			break;
1185		}
1186	}
1187
1188	if (!mtd)
1189		goto out_unlock;
1190
1191	err = __get_mtd_device(mtd);
1192	if (err)
1193		goto out_unlock;
1194
1195	mutex_unlock(&mtd_table_mutex);
1196	return mtd;
1197
1198out_unlock:
1199	mutex_unlock(&mtd_table_mutex);
1200	return ERR_PTR(err);
1201}
1202EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1203
1204void put_mtd_device(struct mtd_info *mtd)
1205{
1206	mutex_lock(&mtd_table_mutex);
1207	__put_mtd_device(mtd);
1208	mutex_unlock(&mtd_table_mutex);
1209
1210}
1211EXPORT_SYMBOL_GPL(put_mtd_device);
1212
1213void __put_mtd_device(struct mtd_info *mtd)
1214{
1215	struct mtd_info *master = mtd_get_master(mtd);
1216
1217	while (mtd->parent) {
1218		--mtd->usecount;
1219		BUG_ON(mtd->usecount < 0);
1220		mtd = mtd->parent;
1221	}
1222
1223	master->usecount--;
1224
1225	if (master->_put_device)
1226		master->_put_device(master);
1227
1228	module_put(master->owner);
1229}
1230EXPORT_SYMBOL_GPL(__put_mtd_device);
1231
1232/*
1233 * Erase is an synchronous operation. Device drivers are epected to return a
1234 * negative error code if the operation failed and update instr->fail_addr
1235 * to point the portion that was not properly erased.
1236 */
1237int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1238{
1239	struct mtd_info *master = mtd_get_master(mtd);
1240	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1241	struct erase_info adjinstr;
1242	int ret;
1243
1244	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1245	adjinstr = *instr;
1246
1247	if (!mtd->erasesize || !master->_erase)
1248		return -ENOTSUPP;
1249
1250	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1251		return -EINVAL;
1252	if (!(mtd->flags & MTD_WRITEABLE))
1253		return -EROFS;
1254
1255	if (!instr->len)
1256		return 0;
1257
1258	ledtrig_mtd_activity();
1259
1260	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1261		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1262				master->erasesize;
1263		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1264				master->erasesize) -
1265			       adjinstr.addr;
1266	}
1267
1268	adjinstr.addr += mst_ofs;
1269
1270	ret = master->_erase(master, &adjinstr);
1271
1272	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1273		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1274		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1275			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1276							 master);
1277			instr->fail_addr *= mtd->erasesize;
1278		}
1279	}
1280
1281	return ret;
1282}
1283EXPORT_SYMBOL_GPL(mtd_erase);
1284
1285/*
1286 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1287 */
1288int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1289	      void **virt, resource_size_t *phys)
1290{
1291	struct mtd_info *master = mtd_get_master(mtd);
1292
1293	*retlen = 0;
1294	*virt = NULL;
1295	if (phys)
1296		*phys = 0;
1297	if (!master->_point)
1298		return -EOPNOTSUPP;
1299	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1300		return -EINVAL;
1301	if (!len)
1302		return 0;
1303
1304	from = mtd_get_master_ofs(mtd, from);
1305	return master->_point(master, from, len, retlen, virt, phys);
1306}
1307EXPORT_SYMBOL_GPL(mtd_point);
1308
1309/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1310int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1311{
1312	struct mtd_info *master = mtd_get_master(mtd);
1313
1314	if (!master->_unpoint)
1315		return -EOPNOTSUPP;
1316	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1317		return -EINVAL;
1318	if (!len)
1319		return 0;
1320	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1321}
1322EXPORT_SYMBOL_GPL(mtd_unpoint);
1323
1324/*
1325 * Allow NOMMU mmap() to directly map the device (if not NULL)
1326 * - return the address to which the offset maps
1327 * - return -ENOSYS to indicate refusal to do the mapping
1328 */
1329unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1330				    unsigned long offset, unsigned long flags)
1331{
1332	size_t retlen;
1333	void *virt;
1334	int ret;
1335
1336	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1337	if (ret)
1338		return ret;
1339	if (retlen != len) {
1340		mtd_unpoint(mtd, offset, retlen);
1341		return -ENOSYS;
1342	}
1343	return (unsigned long)virt;
1344}
1345EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1346
1347static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1348				 const struct mtd_ecc_stats *old_stats)
1349{
1350	struct mtd_ecc_stats diff;
1351
1352	if (master == mtd)
1353		return;
1354
1355	diff = master->ecc_stats;
1356	diff.failed -= old_stats->failed;
1357	diff.corrected -= old_stats->corrected;
1358
1359	while (mtd->parent) {
1360		mtd->ecc_stats.failed += diff.failed;
1361		mtd->ecc_stats.corrected += diff.corrected;
1362		mtd = mtd->parent;
1363	}
1364}
1365
1366int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1367	     u_char *buf)
1368{
1369	struct mtd_oob_ops ops = {
1370		.len = len,
1371		.datbuf = buf,
1372	};
1373	int ret;
1374
1375	ret = mtd_read_oob(mtd, from, &ops);
1376	*retlen = ops.retlen;
1377
1378	return ret;
1379}
1380EXPORT_SYMBOL_GPL(mtd_read);
1381
1382int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1383	      const u_char *buf)
1384{
1385	struct mtd_oob_ops ops = {
1386		.len = len,
1387		.datbuf = (u8 *)buf,
1388	};
1389	int ret;
1390
1391	ret = mtd_write_oob(mtd, to, &ops);
1392	*retlen = ops.retlen;
1393
1394	return ret;
1395}
1396EXPORT_SYMBOL_GPL(mtd_write);
1397
1398/*
1399 * In blackbox flight recorder like scenarios we want to make successful writes
1400 * in interrupt context. panic_write() is only intended to be called when its
1401 * known the kernel is about to panic and we need the write to succeed. Since
1402 * the kernel is not going to be running for much longer, this function can
1403 * break locks and delay to ensure the write succeeds (but not sleep).
1404 */
1405int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1406		    const u_char *buf)
1407{
1408	struct mtd_info *master = mtd_get_master(mtd);
1409
1410	*retlen = 0;
1411	if (!master->_panic_write)
1412		return -EOPNOTSUPP;
1413	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1414		return -EINVAL;
1415	if (!(mtd->flags & MTD_WRITEABLE))
1416		return -EROFS;
1417	if (!len)
1418		return 0;
1419	if (!master->oops_panic_write)
1420		master->oops_panic_write = true;
1421
1422	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1423				    retlen, buf);
1424}
1425EXPORT_SYMBOL_GPL(mtd_panic_write);
1426
1427static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1428			     struct mtd_oob_ops *ops)
1429{
1430	/*
1431	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1432	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1433	 *  this case.
1434	 */
1435	if (!ops->datbuf)
1436		ops->len = 0;
1437
1438	if (!ops->oobbuf)
1439		ops->ooblen = 0;
1440
1441	if (offs < 0 || offs + ops->len > mtd->size)
1442		return -EINVAL;
1443
1444	if (ops->ooblen) {
1445		size_t maxooblen;
1446
1447		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1448			return -EINVAL;
1449
1450		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1451				      mtd_div_by_ws(offs, mtd)) *
1452			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1453		if (ops->ooblen > maxooblen)
1454			return -EINVAL;
1455	}
1456
1457	return 0;
1458}
1459
1460static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1461			    struct mtd_oob_ops *ops)
1462{
1463	struct mtd_info *master = mtd_get_master(mtd);
1464	int ret;
1465
1466	from = mtd_get_master_ofs(mtd, from);
1467	if (master->_read_oob)
1468		ret = master->_read_oob(master, from, ops);
1469	else
1470		ret = master->_read(master, from, ops->len, &ops->retlen,
1471				    ops->datbuf);
1472
1473	return ret;
1474}
1475
1476static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1477			     struct mtd_oob_ops *ops)
1478{
1479	struct mtd_info *master = mtd_get_master(mtd);
1480	int ret;
1481
1482	to = mtd_get_master_ofs(mtd, to);
1483	if (master->_write_oob)
1484		ret = master->_write_oob(master, to, ops);
1485	else
1486		ret = master->_write(master, to, ops->len, &ops->retlen,
1487				     ops->datbuf);
1488
1489	return ret;
1490}
1491
1492static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1493			       struct mtd_oob_ops *ops)
1494{
1495	struct mtd_info *master = mtd_get_master(mtd);
1496	int ngroups = mtd_pairing_groups(master);
1497	int npairs = mtd_wunit_per_eb(master) / ngroups;
1498	struct mtd_oob_ops adjops = *ops;
1499	unsigned int wunit, oobavail;
1500	struct mtd_pairing_info info;
1501	int max_bitflips = 0;
1502	u32 ebofs, pageofs;
1503	loff_t base, pos;
1504
1505	ebofs = mtd_mod_by_eb(start, mtd);
1506	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1507	info.group = 0;
1508	info.pair = mtd_div_by_ws(ebofs, mtd);
1509	pageofs = mtd_mod_by_ws(ebofs, mtd);
1510	oobavail = mtd_oobavail(mtd, ops);
1511
1512	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1513		int ret;
1514
1515		if (info.pair >= npairs) {
1516			info.pair = 0;
1517			base += master->erasesize;
1518		}
1519
1520		wunit = mtd_pairing_info_to_wunit(master, &info);
1521		pos = mtd_wunit_to_offset(mtd, base, wunit);
1522
1523		adjops.len = ops->len - ops->retlen;
1524		if (adjops.len > mtd->writesize - pageofs)
1525			adjops.len = mtd->writesize - pageofs;
1526
1527		adjops.ooblen = ops->ooblen - ops->oobretlen;
1528		if (adjops.ooblen > oobavail - adjops.ooboffs)
1529			adjops.ooblen = oobavail - adjops.ooboffs;
1530
1531		if (read) {
1532			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1533			if (ret > 0)
1534				max_bitflips = max(max_bitflips, ret);
1535		} else {
1536			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1537		}
1538
1539		if (ret < 0)
1540			return ret;
1541
1542		max_bitflips = max(max_bitflips, ret);
1543		ops->retlen += adjops.retlen;
1544		ops->oobretlen += adjops.oobretlen;
1545		adjops.datbuf += adjops.retlen;
1546		adjops.oobbuf += adjops.oobretlen;
1547		adjops.ooboffs = 0;
1548		pageofs = 0;
1549		info.pair++;
1550	}
1551
1552	return max_bitflips;
1553}
1554
1555int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1556{
1557	struct mtd_info *master = mtd_get_master(mtd);
1558	struct mtd_ecc_stats old_stats = master->ecc_stats;
1559	int ret_code;
1560
1561	ops->retlen = ops->oobretlen = 0;
1562
1563	ret_code = mtd_check_oob_ops(mtd, from, ops);
1564	if (ret_code)
1565		return ret_code;
1566
1567	ledtrig_mtd_activity();
1568
1569	/* Check the validity of a potential fallback on mtd->_read */
1570	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1571		return -EOPNOTSUPP;
1572
1573	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1574		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1575	else
1576		ret_code = mtd_read_oob_std(mtd, from, ops);
1577
1578	mtd_update_ecc_stats(mtd, master, &old_stats);
1579
1580	/*
1581	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1582	 * similar to mtd->_read(), returning a non-negative integer
1583	 * representing max bitflips. In other cases, mtd->_read_oob() may
1584	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1585	 */
1586	if (unlikely(ret_code < 0))
1587		return ret_code;
1588	if (mtd->ecc_strength == 0)
1589		return 0;	/* device lacks ecc */
1590	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1591}
1592EXPORT_SYMBOL_GPL(mtd_read_oob);
1593
1594int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1595				struct mtd_oob_ops *ops)
1596{
1597	struct mtd_info *master = mtd_get_master(mtd);
1598	int ret;
1599
1600	ops->retlen = ops->oobretlen = 0;
1601
1602	if (!(mtd->flags & MTD_WRITEABLE))
1603		return -EROFS;
1604
1605	ret = mtd_check_oob_ops(mtd, to, ops);
1606	if (ret)
1607		return ret;
1608
1609	ledtrig_mtd_activity();
1610
1611	/* Check the validity of a potential fallback on mtd->_write */
1612	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1613		return -EOPNOTSUPP;
1614
1615	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1616		return mtd_io_emulated_slc(mtd, to, false, ops);
1617
1618	return mtd_write_oob_std(mtd, to, ops);
1619}
1620EXPORT_SYMBOL_GPL(mtd_write_oob);
1621
1622/**
1623 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1624 * @mtd: MTD device structure
1625 * @section: ECC section. Depending on the layout you may have all the ECC
1626 *	     bytes stored in a single contiguous section, or one section
1627 *	     per ECC chunk (and sometime several sections for a single ECC
1628 *	     ECC chunk)
1629 * @oobecc: OOB region struct filled with the appropriate ECC position
1630 *	    information
1631 *
1632 * This function returns ECC section information in the OOB area. If you want
1633 * to get all the ECC bytes information, then you should call
1634 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1635 *
1636 * Returns zero on success, a negative error code otherwise.
1637 */
1638int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1639		      struct mtd_oob_region *oobecc)
1640{
1641	struct mtd_info *master = mtd_get_master(mtd);
1642
1643	memset(oobecc, 0, sizeof(*oobecc));
1644
1645	if (!master || section < 0)
1646		return -EINVAL;
1647
1648	if (!master->ooblayout || !master->ooblayout->ecc)
1649		return -ENOTSUPP;
1650
1651	return master->ooblayout->ecc(master, section, oobecc);
1652}
1653EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1654
1655/**
1656 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1657 *			section
1658 * @mtd: MTD device structure
1659 * @section: Free section you are interested in. Depending on the layout
1660 *	     you may have all the free bytes stored in a single contiguous
1661 *	     section, or one section per ECC chunk plus an extra section
1662 *	     for the remaining bytes (or other funky layout).
1663 * @oobfree: OOB region struct filled with the appropriate free position
1664 *	     information
1665 *
1666 * This function returns free bytes position in the OOB area. If you want
1667 * to get all the free bytes information, then you should call
1668 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1669 *
1670 * Returns zero on success, a negative error code otherwise.
1671 */
1672int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1673		       struct mtd_oob_region *oobfree)
1674{
1675	struct mtd_info *master = mtd_get_master(mtd);
1676
1677	memset(oobfree, 0, sizeof(*oobfree));
1678
1679	if (!master || section < 0)
1680		return -EINVAL;
1681
1682	if (!master->ooblayout || !master->ooblayout->free)
1683		return -ENOTSUPP;
1684
1685	return master->ooblayout->free(master, section, oobfree);
1686}
1687EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1688
1689/**
1690 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1691 * @mtd: mtd info structure
1692 * @byte: the byte we are searching for
1693 * @sectionp: pointer where the section id will be stored
1694 * @oobregion: used to retrieve the ECC position
1695 * @iter: iterator function. Should be either mtd_ooblayout_free or
1696 *	  mtd_ooblayout_ecc depending on the region type you're searching for
1697 *
1698 * This function returns the section id and oobregion information of a
1699 * specific byte. For example, say you want to know where the 4th ECC byte is
1700 * stored, you'll use:
1701 *
1702 * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1703 *
1704 * Returns zero on success, a negative error code otherwise.
1705 */
1706static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1707				int *sectionp, struct mtd_oob_region *oobregion,
1708				int (*iter)(struct mtd_info *,
1709					    int section,
1710					    struct mtd_oob_region *oobregion))
1711{
1712	int pos = 0, ret, section = 0;
1713
1714	memset(oobregion, 0, sizeof(*oobregion));
1715
1716	while (1) {
1717		ret = iter(mtd, section, oobregion);
1718		if (ret)
1719			return ret;
1720
1721		if (pos + oobregion->length > byte)
1722			break;
1723
1724		pos += oobregion->length;
1725		section++;
1726	}
1727
1728	/*
1729	 * Adjust region info to make it start at the beginning at the
1730	 * 'start' ECC byte.
1731	 */
1732	oobregion->offset += byte - pos;
1733	oobregion->length -= byte - pos;
1734	*sectionp = section;
1735
1736	return 0;
1737}
1738
1739/**
1740 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1741 *				  ECC byte
1742 * @mtd: mtd info structure
1743 * @eccbyte: the byte we are searching for
1744 * @section: pointer where the section id will be stored
1745 * @oobregion: OOB region information
1746 *
1747 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1748 * byte.
1749 *
1750 * Returns zero on success, a negative error code otherwise.
1751 */
1752int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1753				 int *section,
1754				 struct mtd_oob_region *oobregion)
1755{
1756	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1757					 mtd_ooblayout_ecc);
1758}
1759EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1760
1761/**
1762 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1763 * @mtd: mtd info structure
1764 * @buf: destination buffer to store OOB bytes
1765 * @oobbuf: OOB buffer
1766 * @start: first byte to retrieve
1767 * @nbytes: number of bytes to retrieve
1768 * @iter: section iterator
1769 *
1770 * Extract bytes attached to a specific category (ECC or free)
1771 * from the OOB buffer and copy them into buf.
1772 *
1773 * Returns zero on success, a negative error code otherwise.
1774 */
1775static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1776				const u8 *oobbuf, int start, int nbytes,
1777				int (*iter)(struct mtd_info *,
1778					    int section,
1779					    struct mtd_oob_region *oobregion))
1780{
1781	struct mtd_oob_region oobregion;
1782	int section, ret;
1783
1784	ret = mtd_ooblayout_find_region(mtd, start, &section,
1785					&oobregion, iter);
1786
1787	while (!ret) {
1788		int cnt;
1789
1790		cnt = min_t(int, nbytes, oobregion.length);
1791		memcpy(buf, oobbuf + oobregion.offset, cnt);
1792		buf += cnt;
1793		nbytes -= cnt;
1794
1795		if (!nbytes)
1796			break;
1797
1798		ret = iter(mtd, ++section, &oobregion);
1799	}
1800
1801	return ret;
1802}
1803
1804/**
1805 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1806 * @mtd: mtd info structure
1807 * @buf: source buffer to get OOB bytes from
1808 * @oobbuf: OOB buffer
1809 * @start: first OOB byte to set
1810 * @nbytes: number of OOB bytes to set
1811 * @iter: section iterator
1812 *
1813 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1814 * is selected by passing the appropriate iterator.
1815 *
1816 * Returns zero on success, a negative error code otherwise.
1817 */
1818static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1819				u8 *oobbuf, int start, int nbytes,
1820				int (*iter)(struct mtd_info *,
1821					    int section,
1822					    struct mtd_oob_region *oobregion))
1823{
1824	struct mtd_oob_region oobregion;
1825	int section, ret;
1826
1827	ret = mtd_ooblayout_find_region(mtd, start, &section,
1828					&oobregion, iter);
1829
1830	while (!ret) {
1831		int cnt;
1832
1833		cnt = min_t(int, nbytes, oobregion.length);
1834		memcpy(oobbuf + oobregion.offset, buf, cnt);
1835		buf += cnt;
1836		nbytes -= cnt;
1837
1838		if (!nbytes)
1839			break;
1840
1841		ret = iter(mtd, ++section, &oobregion);
1842	}
1843
1844	return ret;
1845}
1846
1847/**
1848 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1849 * @mtd: mtd info structure
1850 * @iter: category iterator
1851 *
1852 * Count the number of bytes in a given category.
1853 *
1854 * Returns a positive value on success, a negative error code otherwise.
1855 */
1856static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1857				int (*iter)(struct mtd_info *,
1858					    int section,
1859					    struct mtd_oob_region *oobregion))
1860{
1861	struct mtd_oob_region oobregion;
1862	int section = 0, ret, nbytes = 0;
1863
1864	while (1) {
1865		ret = iter(mtd, section++, &oobregion);
1866		if (ret) {
1867			if (ret == -ERANGE)
1868				ret = nbytes;
1869			break;
1870		}
1871
1872		nbytes += oobregion.length;
1873	}
1874
1875	return ret;
1876}
1877
1878/**
1879 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1880 * @mtd: mtd info structure
1881 * @eccbuf: destination buffer to store ECC bytes
1882 * @oobbuf: OOB buffer
1883 * @start: first ECC byte to retrieve
1884 * @nbytes: number of ECC bytes to retrieve
1885 *
1886 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1887 *
1888 * Returns zero on success, a negative error code otherwise.
1889 */
1890int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1891			       const u8 *oobbuf, int start, int nbytes)
1892{
1893	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1894				       mtd_ooblayout_ecc);
1895}
1896EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1897
1898/**
1899 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1900 * @mtd: mtd info structure
1901 * @eccbuf: source buffer to get ECC bytes from
1902 * @oobbuf: OOB buffer
1903 * @start: first ECC byte to set
1904 * @nbytes: number of ECC bytes to set
1905 *
1906 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1907 *
1908 * Returns zero on success, a negative error code otherwise.
1909 */
1910int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1911			       u8 *oobbuf, int start, int nbytes)
1912{
1913	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1914				       mtd_ooblayout_ecc);
1915}
1916EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1917
1918/**
1919 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1920 * @mtd: mtd info structure
1921 * @databuf: destination buffer to store ECC bytes
1922 * @oobbuf: OOB buffer
1923 * @start: first ECC byte to retrieve
1924 * @nbytes: number of ECC bytes to retrieve
1925 *
1926 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1927 *
1928 * Returns zero on success, a negative error code otherwise.
1929 */
1930int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1931				const u8 *oobbuf, int start, int nbytes)
1932{
1933	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1934				       mtd_ooblayout_free);
1935}
1936EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1937
1938/**
1939 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1940 * @mtd: mtd info structure
1941 * @databuf: source buffer to get data bytes from
1942 * @oobbuf: OOB buffer
1943 * @start: first ECC byte to set
1944 * @nbytes: number of ECC bytes to set
1945 *
1946 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1947 *
1948 * Returns zero on success, a negative error code otherwise.
1949 */
1950int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1951				u8 *oobbuf, int start, int nbytes)
1952{
1953	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1954				       mtd_ooblayout_free);
1955}
1956EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1957
1958/**
1959 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1960 * @mtd: mtd info structure
1961 *
1962 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1963 *
1964 * Returns zero on success, a negative error code otherwise.
1965 */
1966int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1967{
1968	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1969}
1970EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1971
1972/**
1973 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1974 * @mtd: mtd info structure
1975 *
1976 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1977 *
1978 * Returns zero on success, a negative error code otherwise.
1979 */
1980int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1981{
1982	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1983}
1984EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1985
1986/*
1987 * Method to access the protection register area, present in some flash
1988 * devices. The user data is one time programmable but the factory data is read
1989 * only.
1990 */
1991int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1992			   struct otp_info *buf)
1993{
1994	struct mtd_info *master = mtd_get_master(mtd);
1995
1996	if (!master->_get_fact_prot_info)
1997		return -EOPNOTSUPP;
1998	if (!len)
1999		return 0;
2000	return master->_get_fact_prot_info(master, len, retlen, buf);
2001}
2002EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2003
2004int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2005			   size_t *retlen, u_char *buf)
2006{
2007	struct mtd_info *master = mtd_get_master(mtd);
2008
2009	*retlen = 0;
2010	if (!master->_read_fact_prot_reg)
2011		return -EOPNOTSUPP;
2012	if (!len)
2013		return 0;
2014	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2015}
2016EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2017
2018int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2019			   struct otp_info *buf)
2020{
2021	struct mtd_info *master = mtd_get_master(mtd);
2022
2023	if (!master->_get_user_prot_info)
2024		return -EOPNOTSUPP;
2025	if (!len)
2026		return 0;
2027	return master->_get_user_prot_info(master, len, retlen, buf);
2028}
2029EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2030
2031int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2032			   size_t *retlen, u_char *buf)
2033{
2034	struct mtd_info *master = mtd_get_master(mtd);
2035
2036	*retlen = 0;
2037	if (!master->_read_user_prot_reg)
2038		return -EOPNOTSUPP;
2039	if (!len)
2040		return 0;
2041	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2042}
2043EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2044
2045int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2046			    size_t *retlen, const u_char *buf)
2047{
2048	struct mtd_info *master = mtd_get_master(mtd);
2049	int ret;
2050
2051	*retlen = 0;
2052	if (!master->_write_user_prot_reg)
2053		return -EOPNOTSUPP;
2054	if (!len)
2055		return 0;
2056	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2057	if (ret)
2058		return ret;
2059
2060	/*
2061	 * If no data could be written at all, we are out of memory and
2062	 * must return -ENOSPC.
2063	 */
2064	return (*retlen) ? 0 : -ENOSPC;
2065}
2066EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2067
2068int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2069{
2070	struct mtd_info *master = mtd_get_master(mtd);
2071
2072	if (!master->_lock_user_prot_reg)
2073		return -EOPNOTSUPP;
2074	if (!len)
2075		return 0;
2076	return master->_lock_user_prot_reg(master, from, len);
2077}
2078EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2079
2080int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2081{
2082	struct mtd_info *master = mtd_get_master(mtd);
2083
2084	if (!master->_erase_user_prot_reg)
2085		return -EOPNOTSUPP;
2086	if (!len)
2087		return 0;
2088	return master->_erase_user_prot_reg(master, from, len);
2089}
2090EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2091
2092/* Chip-supported device locking */
2093int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2094{
2095	struct mtd_info *master = mtd_get_master(mtd);
2096
2097	if (!master->_lock)
2098		return -EOPNOTSUPP;
2099	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2100		return -EINVAL;
2101	if (!len)
2102		return 0;
2103
2104	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2105		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2106		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2107	}
2108
2109	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2110}
2111EXPORT_SYMBOL_GPL(mtd_lock);
2112
2113int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2114{
2115	struct mtd_info *master = mtd_get_master(mtd);
2116
2117	if (!master->_unlock)
2118		return -EOPNOTSUPP;
2119	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2120		return -EINVAL;
2121	if (!len)
2122		return 0;
2123
2124	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2125		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2126		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2127	}
2128
2129	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2130}
2131EXPORT_SYMBOL_GPL(mtd_unlock);
2132
2133int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2134{
2135	struct mtd_info *master = mtd_get_master(mtd);
2136
2137	if (!master->_is_locked)
2138		return -EOPNOTSUPP;
2139	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2140		return -EINVAL;
2141	if (!len)
2142		return 0;
2143
2144	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2145		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2146		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2147	}
2148
2149	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2150}
2151EXPORT_SYMBOL_GPL(mtd_is_locked);
2152
2153int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2154{
2155	struct mtd_info *master = mtd_get_master(mtd);
2156
2157	if (ofs < 0 || ofs >= mtd->size)
2158		return -EINVAL;
2159	if (!master->_block_isreserved)
2160		return 0;
2161
2162	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2163		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2164
2165	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2166}
2167EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2168
2169int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2170{
2171	struct mtd_info *master = mtd_get_master(mtd);
2172
2173	if (ofs < 0 || ofs >= mtd->size)
2174		return -EINVAL;
2175	if (!master->_block_isbad)
2176		return 0;
2177
2178	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2179		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2180
2181	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2182}
2183EXPORT_SYMBOL_GPL(mtd_block_isbad);
2184
2185int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2186{
2187	struct mtd_info *master = mtd_get_master(mtd);
2188	int ret;
2189
2190	if (!master->_block_markbad)
2191		return -EOPNOTSUPP;
2192	if (ofs < 0 || ofs >= mtd->size)
2193		return -EINVAL;
2194	if (!(mtd->flags & MTD_WRITEABLE))
2195		return -EROFS;
2196
2197	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2198		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2199
2200	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2201	if (ret)
2202		return ret;
2203
2204	while (mtd->parent) {
2205		mtd->ecc_stats.badblocks++;
2206		mtd = mtd->parent;
2207	}
2208
2209	return 0;
2210}
2211EXPORT_SYMBOL_GPL(mtd_block_markbad);
2212
2213/*
2214 * default_mtd_writev - the default writev method
2215 * @mtd: mtd device description object pointer
2216 * @vecs: the vectors to write
2217 * @count: count of vectors in @vecs
2218 * @to: the MTD device offset to write to
2219 * @retlen: on exit contains the count of bytes written to the MTD device.
2220 *
2221 * This function returns zero in case of success and a negative error code in
2222 * case of failure.
2223 */
2224static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2225			      unsigned long count, loff_t to, size_t *retlen)
2226{
2227	unsigned long i;
2228	size_t totlen = 0, thislen;
2229	int ret = 0;
2230
2231	for (i = 0; i < count; i++) {
2232		if (!vecs[i].iov_len)
2233			continue;
2234		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2235				vecs[i].iov_base);
2236		totlen += thislen;
2237		if (ret || thislen != vecs[i].iov_len)
2238			break;
2239		to += vecs[i].iov_len;
2240	}
2241	*retlen = totlen;
2242	return ret;
2243}
2244
2245/*
2246 * mtd_writev - the vector-based MTD write method
2247 * @mtd: mtd device description object pointer
2248 * @vecs: the vectors to write
2249 * @count: count of vectors in @vecs
2250 * @to: the MTD device offset to write to
2251 * @retlen: on exit contains the count of bytes written to the MTD device.
2252 *
2253 * This function returns zero in case of success and a negative error code in
2254 * case of failure.
2255 */
2256int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2257	       unsigned long count, loff_t to, size_t *retlen)
2258{
2259	struct mtd_info *master = mtd_get_master(mtd);
2260
2261	*retlen = 0;
2262	if (!(mtd->flags & MTD_WRITEABLE))
2263		return -EROFS;
2264
2265	if (!master->_writev)
2266		return default_mtd_writev(mtd, vecs, count, to, retlen);
2267
2268	return master->_writev(master, vecs, count,
2269			       mtd_get_master_ofs(mtd, to), retlen);
2270}
2271EXPORT_SYMBOL_GPL(mtd_writev);
2272
2273/**
2274 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2275 * @mtd: mtd device description object pointer
2276 * @size: a pointer to the ideal or maximum size of the allocation, points
2277 *        to the actual allocation size on success.
2278 *
2279 * This routine attempts to allocate a contiguous kernel buffer up to
2280 * the specified size, backing off the size of the request exponentially
2281 * until the request succeeds or until the allocation size falls below
2282 * the system page size. This attempts to make sure it does not adversely
2283 * impact system performance, so when allocating more than one page, we
2284 * ask the memory allocator to avoid re-trying, swapping, writing back
2285 * or performing I/O.
2286 *
2287 * Note, this function also makes sure that the allocated buffer is aligned to
2288 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2289 *
2290 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2291 * to handle smaller (i.e. degraded) buffer allocations under low- or
2292 * fragmented-memory situations where such reduced allocations, from a
2293 * requested ideal, are allowed.
2294 *
2295 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2296 */
2297void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2298{
2299	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2300	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2301	void *kbuf;
2302
2303	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2304
2305	while (*size > min_alloc) {
2306		kbuf = kmalloc(*size, flags);
2307		if (kbuf)
2308			return kbuf;
2309
2310		*size >>= 1;
2311		*size = ALIGN(*size, mtd->writesize);
2312	}
2313
2314	/*
2315	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2316	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2317	 */
2318	return kmalloc(*size, GFP_KERNEL);
2319}
2320EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2321
2322#ifdef CONFIG_PROC_FS
2323
2324/*====================================================================*/
2325/* Support for /proc/mtd */
2326
2327static int mtd_proc_show(struct seq_file *m, void *v)
2328{
2329	struct mtd_info *mtd;
2330
2331	seq_puts(m, "dev:    size   erasesize  name\n");
2332	mutex_lock(&mtd_table_mutex);
2333	mtd_for_each_device(mtd) {
2334		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2335			   mtd->index, (unsigned long long)mtd->size,
2336			   mtd->erasesize, mtd->name);
2337	}
2338	mutex_unlock(&mtd_table_mutex);
2339	return 0;
2340}
2341#endif /* CONFIG_PROC_FS */
2342
2343/*====================================================================*/
2344/* Init code */
2345
2346static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2347{
2348	struct backing_dev_info *bdi;
2349	int ret;
2350
2351	bdi = bdi_alloc(NUMA_NO_NODE);
2352	if (!bdi)
2353		return ERR_PTR(-ENOMEM);
2354	bdi->ra_pages = 0;
2355	bdi->io_pages = 0;
2356
2357	/*
2358	 * We put '-0' suffix to the name to get the same name format as we
2359	 * used to get. Since this is called only once, we get a unique name. 
2360	 */
2361	ret = bdi_register(bdi, "%.28s-0", name);
2362	if (ret)
2363		bdi_put(bdi);
2364
2365	return ret ? ERR_PTR(ret) : bdi;
2366}
2367
2368static struct proc_dir_entry *proc_mtd;
2369
2370static int __init init_mtd(void)
2371{
2372	int ret;
2373
2374	ret = class_register(&mtd_class);
2375	if (ret)
2376		goto err_reg;
2377
2378	mtd_bdi = mtd_bdi_init("mtd");
2379	if (IS_ERR(mtd_bdi)) {
2380		ret = PTR_ERR(mtd_bdi);
2381		goto err_bdi;
2382	}
2383
2384	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2385
2386	ret = init_mtdchar();
2387	if (ret)
2388		goto out_procfs;
2389
2390	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2391
2392	return 0;
2393
2394out_procfs:
2395	if (proc_mtd)
2396		remove_proc_entry("mtd", NULL);
2397	bdi_put(mtd_bdi);
2398err_bdi:
2399	class_unregister(&mtd_class);
2400err_reg:
2401	pr_err("Error registering mtd class or bdi: %d\n", ret);
2402	return ret;
2403}
2404
2405static void __exit cleanup_mtd(void)
2406{
2407	debugfs_remove_recursive(dfs_dir_mtd);
2408	cleanup_mtdchar();
2409	if (proc_mtd)
2410		remove_proc_entry("mtd", NULL);
2411	class_unregister(&mtd_class);
2412	bdi_put(mtd_bdi);
2413	idr_destroy(&mtd_idr);
2414}
2415
2416module_init(init_mtd);
2417module_exit(cleanup_mtd);
2418
2419MODULE_LICENSE("GPL");
2420MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2421MODULE_DESCRIPTION("Core MTD registration and access routines");