Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31
32#include <linux/mtd/mtd.h>
33#include <linux/mtd/partitions.h>
34
35#include "mtdcore.h"
36
37struct backing_dev_info *mtd_bdi;
38
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67};
68
69static DEFINE_IDR(mtd_idr);
70
71/* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73DEFINE_MUTEX(mtd_table_mutex);
74EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82static LIST_HEAD(mtd_notifiers);
83
84
85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97}
98
99static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101{
102 struct mtd_info *mtd = dev_get_drvdata(dev);
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135}
136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140{
141 struct mtd_info *mtd = dev_get_drvdata(dev);
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144}
145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149{
150 struct mtd_info *mtd = dev_get_drvdata(dev);
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
154}
155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159{
160 struct mtd_info *mtd = dev_get_drvdata(dev);
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163}
164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168{
169 struct mtd_info *mtd = dev_get_drvdata(dev);
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172}
173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
175static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182}
183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
185static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187{
188 struct mtd_info *mtd = dev_get_drvdata(dev);
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191}
192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
194static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200}
201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
203static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209}
210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219}
220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221
222static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228}
229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238}
239
240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243{
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254}
255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
259static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261{
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266}
267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276}
277static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287}
288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297}
298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302{
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307}
308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
310static struct attribute *mtd_attrs[] = {
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
328 NULL,
329};
330ATTRIBUTE_GROUPS(mtd);
331
332static const struct device_type mtd_devtype = {
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336};
337
338static int mtd_partid_show(struct seq_file *s, void *p)
339{
340 struct mtd_info *mtd = s->private;
341
342 seq_printf(s, "%s\n", mtd->dbg.partid);
343
344 return 0;
345}
346
347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348{
349 return single_open(file, mtd_partid_show, inode->i_private);
350}
351
352static const struct file_operations mtd_partid_debug_fops = {
353 .open = mtd_partid_debugfs_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = single_release,
357};
358
359static int mtd_partname_show(struct seq_file *s, void *p)
360{
361 struct mtd_info *mtd = s->private;
362
363 seq_printf(s, "%s\n", mtd->dbg.partname);
364
365 return 0;
366}
367
368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369{
370 return single_open(file, mtd_partname_show, inode->i_private);
371}
372
373static const struct file_operations mtd_partname_debug_fops = {
374 .open = mtd_partname_debugfs_open,
375 .read = seq_read,
376 .llseek = seq_lseek,
377 .release = single_release,
378};
379
380static struct dentry *dfs_dir_mtd;
381
382static void mtd_debugfs_populate(struct mtd_info *mtd)
383{
384 struct device *dev = &mtd->dev;
385 struct dentry *root;
386
387 if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 return;
389
390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 mtd->dbg.dfs_dir = root;
392
393 if (mtd->dbg.partid)
394 debugfs_create_file("partid", 0400, root, mtd,
395 &mtd_partid_debug_fops);
396
397 if (mtd->dbg.partname)
398 debugfs_create_file("partname", 0400, root, mtd,
399 &mtd_partname_debug_fops);
400}
401
402#ifndef CONFIG_MMU
403unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
404{
405 switch (mtd->type) {
406 case MTD_RAM:
407 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
408 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
409 case MTD_ROM:
410 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
411 NOMMU_MAP_READ;
412 default:
413 return NOMMU_MAP_COPY;
414 }
415}
416EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
417#endif
418
419static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
420 void *cmd)
421{
422 struct mtd_info *mtd;
423
424 mtd = container_of(n, struct mtd_info, reboot_notifier);
425 mtd->_reboot(mtd);
426
427 return NOTIFY_DONE;
428}
429
430/**
431 * mtd_wunit_to_pairing_info - get pairing information of a wunit
432 * @mtd: pointer to new MTD device info structure
433 * @wunit: write unit we are interested in
434 * @info: returned pairing information
435 *
436 * Retrieve pairing information associated to the wunit.
437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
438 * paired together, and where programming a page may influence the page it is
439 * paired with.
440 * The notion of page is replaced by the term wunit (write-unit) to stay
441 * consistent with the ->writesize field.
442 *
443 * The @wunit argument can be extracted from an absolute offset using
444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
445 * to @wunit.
446 *
447 * From the pairing info the MTD user can find all the wunits paired with
448 * @wunit using the following loop:
449 *
450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
451 * info.pair = i;
452 * mtd_pairing_info_to_wunit(mtd, &info);
453 * ...
454 * }
455 */
456int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
457 struct mtd_pairing_info *info)
458{
459 struct mtd_info *master = mtd_get_master(mtd);
460 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
461
462 if (wunit < 0 || wunit >= npairs)
463 return -EINVAL;
464
465 if (master->pairing && master->pairing->get_info)
466 return master->pairing->get_info(master, wunit, info);
467
468 info->group = 0;
469 info->pair = wunit;
470
471 return 0;
472}
473EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
474
475/**
476 * mtd_pairing_info_to_wunit - get wunit from pairing information
477 * @mtd: pointer to new MTD device info structure
478 * @info: pairing information struct
479 *
480 * Returns a positive number representing the wunit associated to the info
481 * struct, or a negative error code.
482 *
483 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
484 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
485 * doc).
486 *
487 * It can also be used to only program the first page of each pair (i.e.
488 * page attached to group 0), which allows one to use an MLC NAND in
489 * software-emulated SLC mode:
490 *
491 * info.group = 0;
492 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
493 * for (info.pair = 0; info.pair < npairs; info.pair++) {
494 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
495 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
496 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
497 * }
498 */
499int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
500 const struct mtd_pairing_info *info)
501{
502 struct mtd_info *master = mtd_get_master(mtd);
503 int ngroups = mtd_pairing_groups(master);
504 int npairs = mtd_wunit_per_eb(master) / ngroups;
505
506 if (!info || info->pair < 0 || info->pair >= npairs ||
507 info->group < 0 || info->group >= ngroups)
508 return -EINVAL;
509
510 if (master->pairing && master->pairing->get_wunit)
511 return mtd->pairing->get_wunit(master, info);
512
513 return info->pair;
514}
515EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
516
517/**
518 * mtd_pairing_groups - get the number of pairing groups
519 * @mtd: pointer to new MTD device info structure
520 *
521 * Returns the number of pairing groups.
522 *
523 * This number is usually equal to the number of bits exposed by a single
524 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
525 * to iterate over all pages of a given pair.
526 */
527int mtd_pairing_groups(struct mtd_info *mtd)
528{
529 struct mtd_info *master = mtd_get_master(mtd);
530
531 if (!master->pairing || !master->pairing->ngroups)
532 return 1;
533
534 return master->pairing->ngroups;
535}
536EXPORT_SYMBOL_GPL(mtd_pairing_groups);
537
538static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
539 void *val, size_t bytes)
540{
541 struct mtd_info *mtd = priv;
542 size_t retlen;
543 int err;
544
545 err = mtd_read(mtd, offset, bytes, &retlen, val);
546 if (err && err != -EUCLEAN)
547 return err;
548
549 return retlen == bytes ? 0 : -EIO;
550}
551
552static int mtd_nvmem_add(struct mtd_info *mtd)
553{
554 struct nvmem_config config = {};
555
556 config.id = -1;
557 config.dev = &mtd->dev;
558 config.name = dev_name(&mtd->dev);
559 config.owner = THIS_MODULE;
560 config.reg_read = mtd_nvmem_reg_read;
561 config.size = mtd->size;
562 config.word_size = 1;
563 config.stride = 1;
564 config.read_only = true;
565 config.root_only = true;
566 config.no_of_node = true;
567 config.priv = mtd;
568
569 mtd->nvmem = nvmem_register(&config);
570 if (IS_ERR(mtd->nvmem)) {
571 /* Just ignore if there is no NVMEM support in the kernel */
572 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
573 mtd->nvmem = NULL;
574 } else {
575 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
576 return PTR_ERR(mtd->nvmem);
577 }
578 }
579
580 return 0;
581}
582
583/**
584 * add_mtd_device - register an MTD device
585 * @mtd: pointer to new MTD device info structure
586 *
587 * Add a device to the list of MTD devices present in the system, and
588 * notify each currently active MTD 'user' of its arrival. Returns
589 * zero on success or non-zero on failure.
590 */
591
592int add_mtd_device(struct mtd_info *mtd)
593{
594 struct mtd_info *master = mtd_get_master(mtd);
595 struct mtd_notifier *not;
596 int i, error;
597
598 /*
599 * May occur, for instance, on buggy drivers which call
600 * mtd_device_parse_register() multiple times on the same master MTD,
601 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
602 */
603 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
604 return -EEXIST;
605
606 BUG_ON(mtd->writesize == 0);
607
608 /*
609 * MTD drivers should implement ->_{write,read}() or
610 * ->_{write,read}_oob(), but not both.
611 */
612 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
613 (mtd->_read && mtd->_read_oob)))
614 return -EINVAL;
615
616 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
617 !(mtd->flags & MTD_NO_ERASE)))
618 return -EINVAL;
619
620 /*
621 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
622 * master is an MLC NAND and has a proper pairing scheme defined.
623 * We also reject masters that implement ->_writev() for now, because
624 * NAND controller drivers don't implement this hook, and adding the
625 * SLC -> MLC address/length conversion to this path is useless if we
626 * don't have a user.
627 */
628 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
629 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
630 !master->pairing || master->_writev))
631 return -EINVAL;
632
633 mutex_lock(&mtd_table_mutex);
634
635 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
636 if (i < 0) {
637 error = i;
638 goto fail_locked;
639 }
640
641 mtd->index = i;
642 mtd->usecount = 0;
643
644 /* default value if not set by driver */
645 if (mtd->bitflip_threshold == 0)
646 mtd->bitflip_threshold = mtd->ecc_strength;
647
648 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
649 int ngroups = mtd_pairing_groups(master);
650
651 mtd->erasesize /= ngroups;
652 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
653 mtd->erasesize;
654 }
655
656 if (is_power_of_2(mtd->erasesize))
657 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
658 else
659 mtd->erasesize_shift = 0;
660
661 if (is_power_of_2(mtd->writesize))
662 mtd->writesize_shift = ffs(mtd->writesize) - 1;
663 else
664 mtd->writesize_shift = 0;
665
666 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
667 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
668
669 /* Some chips always power up locked. Unlock them now */
670 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
671 error = mtd_unlock(mtd, 0, mtd->size);
672 if (error && error != -EOPNOTSUPP)
673 printk(KERN_WARNING
674 "%s: unlock failed, writes may not work\n",
675 mtd->name);
676 /* Ignore unlock failures? */
677 error = 0;
678 }
679
680 /* Caller should have set dev.parent to match the
681 * physical device, if appropriate.
682 */
683 mtd->dev.type = &mtd_devtype;
684 mtd->dev.class = &mtd_class;
685 mtd->dev.devt = MTD_DEVT(i);
686 dev_set_name(&mtd->dev, "mtd%d", i);
687 dev_set_drvdata(&mtd->dev, mtd);
688 of_node_get(mtd_get_of_node(mtd));
689 error = device_register(&mtd->dev);
690 if (error)
691 goto fail_added;
692
693 /* Add the nvmem provider */
694 error = mtd_nvmem_add(mtd);
695 if (error)
696 goto fail_nvmem_add;
697
698 mtd_debugfs_populate(mtd);
699
700 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
701 "mtd%dro", i);
702
703 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
704 /* No need to get a refcount on the module containing
705 the notifier, since we hold the mtd_table_mutex */
706 list_for_each_entry(not, &mtd_notifiers, list)
707 not->add(mtd);
708
709 mutex_unlock(&mtd_table_mutex);
710 /* We _know_ we aren't being removed, because
711 our caller is still holding us here. So none
712 of this try_ nonsense, and no bitching about it
713 either. :) */
714 __module_get(THIS_MODULE);
715 return 0;
716
717fail_nvmem_add:
718 device_unregister(&mtd->dev);
719fail_added:
720 of_node_put(mtd_get_of_node(mtd));
721 idr_remove(&mtd_idr, i);
722fail_locked:
723 mutex_unlock(&mtd_table_mutex);
724 return error;
725}
726
727/**
728 * del_mtd_device - unregister an MTD device
729 * @mtd: pointer to MTD device info structure
730 *
731 * Remove a device from the list of MTD devices present in the system,
732 * and notify each currently active MTD 'user' of its departure.
733 * Returns zero on success or 1 on failure, which currently will happen
734 * if the requested device does not appear to be present in the list.
735 */
736
737int del_mtd_device(struct mtd_info *mtd)
738{
739 int ret;
740 struct mtd_notifier *not;
741
742 mutex_lock(&mtd_table_mutex);
743
744 debugfs_remove_recursive(mtd->dbg.dfs_dir);
745
746 if (idr_find(&mtd_idr, mtd->index) != mtd) {
747 ret = -ENODEV;
748 goto out_error;
749 }
750
751 /* No need to get a refcount on the module containing
752 the notifier, since we hold the mtd_table_mutex */
753 list_for_each_entry(not, &mtd_notifiers, list)
754 not->remove(mtd);
755
756 if (mtd->usecount) {
757 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
758 mtd->index, mtd->name, mtd->usecount);
759 ret = -EBUSY;
760 } else {
761 /* Try to remove the NVMEM provider */
762 if (mtd->nvmem)
763 nvmem_unregister(mtd->nvmem);
764
765 device_unregister(&mtd->dev);
766
767 idr_remove(&mtd_idr, mtd->index);
768 of_node_put(mtd_get_of_node(mtd));
769
770 module_put(THIS_MODULE);
771 ret = 0;
772 }
773
774out_error:
775 mutex_unlock(&mtd_table_mutex);
776 return ret;
777}
778
779/*
780 * Set a few defaults based on the parent devices, if not provided by the
781 * driver
782 */
783static void mtd_set_dev_defaults(struct mtd_info *mtd)
784{
785 if (mtd->dev.parent) {
786 if (!mtd->owner && mtd->dev.parent->driver)
787 mtd->owner = mtd->dev.parent->driver->owner;
788 if (!mtd->name)
789 mtd->name = dev_name(mtd->dev.parent);
790 } else {
791 pr_debug("mtd device won't show a device symlink in sysfs\n");
792 }
793
794 INIT_LIST_HEAD(&mtd->partitions);
795 mutex_init(&mtd->master.partitions_lock);
796}
797
798/**
799 * mtd_device_parse_register - parse partitions and register an MTD device.
800 *
801 * @mtd: the MTD device to register
802 * @types: the list of MTD partition probes to try, see
803 * 'parse_mtd_partitions()' for more information
804 * @parser_data: MTD partition parser-specific data
805 * @parts: fallback partition information to register, if parsing fails;
806 * only valid if %nr_parts > %0
807 * @nr_parts: the number of partitions in parts, if zero then the full
808 * MTD device is registered if no partition info is found
809 *
810 * This function aggregates MTD partitions parsing (done by
811 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
812 * basically follows the most common pattern found in many MTD drivers:
813 *
814 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
815 * registered first.
816 * * Then It tries to probe partitions on MTD device @mtd using parsers
817 * specified in @types (if @types is %NULL, then the default list of parsers
818 * is used, see 'parse_mtd_partitions()' for more information). If none are
819 * found this functions tries to fallback to information specified in
820 * @parts/@nr_parts.
821 * * If no partitions were found this function just registers the MTD device
822 * @mtd and exits.
823 *
824 * Returns zero in case of success and a negative error code in case of failure.
825 */
826int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
827 struct mtd_part_parser_data *parser_data,
828 const struct mtd_partition *parts,
829 int nr_parts)
830{
831 int ret;
832
833 mtd_set_dev_defaults(mtd);
834
835 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
836 ret = add_mtd_device(mtd);
837 if (ret)
838 return ret;
839 }
840
841 /* Prefer parsed partitions over driver-provided fallback */
842 ret = parse_mtd_partitions(mtd, types, parser_data);
843 if (ret > 0)
844 ret = 0;
845 else if (nr_parts)
846 ret = add_mtd_partitions(mtd, parts, nr_parts);
847 else if (!device_is_registered(&mtd->dev))
848 ret = add_mtd_device(mtd);
849 else
850 ret = 0;
851
852 if (ret)
853 goto out;
854
855 /*
856 * FIXME: some drivers unfortunately call this function more than once.
857 * So we have to check if we've already assigned the reboot notifier.
858 *
859 * Generally, we can make multiple calls work for most cases, but it
860 * does cause problems with parse_mtd_partitions() above (e.g.,
861 * cmdlineparts will register partitions more than once).
862 */
863 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
864 "MTD already registered\n");
865 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
866 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
867 register_reboot_notifier(&mtd->reboot_notifier);
868 }
869
870out:
871 if (ret && device_is_registered(&mtd->dev))
872 del_mtd_device(mtd);
873
874 return ret;
875}
876EXPORT_SYMBOL_GPL(mtd_device_parse_register);
877
878/**
879 * mtd_device_unregister - unregister an existing MTD device.
880 *
881 * @master: the MTD device to unregister. This will unregister both the master
882 * and any partitions if registered.
883 */
884int mtd_device_unregister(struct mtd_info *master)
885{
886 int err;
887
888 if (master->_reboot)
889 unregister_reboot_notifier(&master->reboot_notifier);
890
891 err = del_mtd_partitions(master);
892 if (err)
893 return err;
894
895 if (!device_is_registered(&master->dev))
896 return 0;
897
898 return del_mtd_device(master);
899}
900EXPORT_SYMBOL_GPL(mtd_device_unregister);
901
902/**
903 * register_mtd_user - register a 'user' of MTD devices.
904 * @new: pointer to notifier info structure
905 *
906 * Registers a pair of callbacks function to be called upon addition
907 * or removal of MTD devices. Causes the 'add' callback to be immediately
908 * invoked for each MTD device currently present in the system.
909 */
910void register_mtd_user (struct mtd_notifier *new)
911{
912 struct mtd_info *mtd;
913
914 mutex_lock(&mtd_table_mutex);
915
916 list_add(&new->list, &mtd_notifiers);
917
918 __module_get(THIS_MODULE);
919
920 mtd_for_each_device(mtd)
921 new->add(mtd);
922
923 mutex_unlock(&mtd_table_mutex);
924}
925EXPORT_SYMBOL_GPL(register_mtd_user);
926
927/**
928 * unregister_mtd_user - unregister a 'user' of MTD devices.
929 * @old: pointer to notifier info structure
930 *
931 * Removes a callback function pair from the list of 'users' to be
932 * notified upon addition or removal of MTD devices. Causes the
933 * 'remove' callback to be immediately invoked for each MTD device
934 * currently present in the system.
935 */
936int unregister_mtd_user (struct mtd_notifier *old)
937{
938 struct mtd_info *mtd;
939
940 mutex_lock(&mtd_table_mutex);
941
942 module_put(THIS_MODULE);
943
944 mtd_for_each_device(mtd)
945 old->remove(mtd);
946
947 list_del(&old->list);
948 mutex_unlock(&mtd_table_mutex);
949 return 0;
950}
951EXPORT_SYMBOL_GPL(unregister_mtd_user);
952
953/**
954 * get_mtd_device - obtain a validated handle for an MTD device
955 * @mtd: last known address of the required MTD device
956 * @num: internal device number of the required MTD device
957 *
958 * Given a number and NULL address, return the num'th entry in the device
959 * table, if any. Given an address and num == -1, search the device table
960 * for a device with that address and return if it's still present. Given
961 * both, return the num'th driver only if its address matches. Return
962 * error code if not.
963 */
964struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
965{
966 struct mtd_info *ret = NULL, *other;
967 int err = -ENODEV;
968
969 mutex_lock(&mtd_table_mutex);
970
971 if (num == -1) {
972 mtd_for_each_device(other) {
973 if (other == mtd) {
974 ret = mtd;
975 break;
976 }
977 }
978 } else if (num >= 0) {
979 ret = idr_find(&mtd_idr, num);
980 if (mtd && mtd != ret)
981 ret = NULL;
982 }
983
984 if (!ret) {
985 ret = ERR_PTR(err);
986 goto out;
987 }
988
989 err = __get_mtd_device(ret);
990 if (err)
991 ret = ERR_PTR(err);
992out:
993 mutex_unlock(&mtd_table_mutex);
994 return ret;
995}
996EXPORT_SYMBOL_GPL(get_mtd_device);
997
998
999int __get_mtd_device(struct mtd_info *mtd)
1000{
1001 struct mtd_info *master = mtd_get_master(mtd);
1002 int err;
1003
1004 if (!try_module_get(master->owner))
1005 return -ENODEV;
1006
1007 if (master->_get_device) {
1008 err = master->_get_device(mtd);
1009
1010 if (err) {
1011 module_put(master->owner);
1012 return err;
1013 }
1014 }
1015
1016 while (mtd->parent) {
1017 mtd->usecount++;
1018 mtd = mtd->parent;
1019 }
1020
1021 return 0;
1022}
1023EXPORT_SYMBOL_GPL(__get_mtd_device);
1024
1025/**
1026 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1027 * device name
1028 * @name: MTD device name to open
1029 *
1030 * This function returns MTD device description structure in case of
1031 * success and an error code in case of failure.
1032 */
1033struct mtd_info *get_mtd_device_nm(const char *name)
1034{
1035 int err = -ENODEV;
1036 struct mtd_info *mtd = NULL, *other;
1037
1038 mutex_lock(&mtd_table_mutex);
1039
1040 mtd_for_each_device(other) {
1041 if (!strcmp(name, other->name)) {
1042 mtd = other;
1043 break;
1044 }
1045 }
1046
1047 if (!mtd)
1048 goto out_unlock;
1049
1050 err = __get_mtd_device(mtd);
1051 if (err)
1052 goto out_unlock;
1053
1054 mutex_unlock(&mtd_table_mutex);
1055 return mtd;
1056
1057out_unlock:
1058 mutex_unlock(&mtd_table_mutex);
1059 return ERR_PTR(err);
1060}
1061EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1062
1063void put_mtd_device(struct mtd_info *mtd)
1064{
1065 mutex_lock(&mtd_table_mutex);
1066 __put_mtd_device(mtd);
1067 mutex_unlock(&mtd_table_mutex);
1068
1069}
1070EXPORT_SYMBOL_GPL(put_mtd_device);
1071
1072void __put_mtd_device(struct mtd_info *mtd)
1073{
1074 struct mtd_info *master = mtd_get_master(mtd);
1075
1076 while (mtd->parent) {
1077 --mtd->usecount;
1078 BUG_ON(mtd->usecount < 0);
1079 mtd = mtd->parent;
1080 }
1081
1082 if (master->_put_device)
1083 master->_put_device(master);
1084
1085 module_put(master->owner);
1086}
1087EXPORT_SYMBOL_GPL(__put_mtd_device);
1088
1089/*
1090 * Erase is an synchronous operation. Device drivers are epected to return a
1091 * negative error code if the operation failed and update instr->fail_addr
1092 * to point the portion that was not properly erased.
1093 */
1094int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1095{
1096 struct mtd_info *master = mtd_get_master(mtd);
1097 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1098 struct erase_info adjinstr;
1099 int ret;
1100
1101 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1102 adjinstr = *instr;
1103
1104 if (!mtd->erasesize || !master->_erase)
1105 return -ENOTSUPP;
1106
1107 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1108 return -EINVAL;
1109 if (!(mtd->flags & MTD_WRITEABLE))
1110 return -EROFS;
1111
1112 if (!instr->len)
1113 return 0;
1114
1115 ledtrig_mtd_activity();
1116
1117 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1118 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1119 master->erasesize;
1120 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1121 master->erasesize) -
1122 adjinstr.addr;
1123 }
1124
1125 adjinstr.addr += mst_ofs;
1126
1127 ret = master->_erase(master, &adjinstr);
1128
1129 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1130 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1131 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1132 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1133 master);
1134 instr->fail_addr *= mtd->erasesize;
1135 }
1136 }
1137
1138 return ret;
1139}
1140EXPORT_SYMBOL_GPL(mtd_erase);
1141
1142/*
1143 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1144 */
1145int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1146 void **virt, resource_size_t *phys)
1147{
1148 struct mtd_info *master = mtd_get_master(mtd);
1149
1150 *retlen = 0;
1151 *virt = NULL;
1152 if (phys)
1153 *phys = 0;
1154 if (!master->_point)
1155 return -EOPNOTSUPP;
1156 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1157 return -EINVAL;
1158 if (!len)
1159 return 0;
1160
1161 from = mtd_get_master_ofs(mtd, from);
1162 return master->_point(master, from, len, retlen, virt, phys);
1163}
1164EXPORT_SYMBOL_GPL(mtd_point);
1165
1166/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1167int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1168{
1169 struct mtd_info *master = mtd_get_master(mtd);
1170
1171 if (!master->_unpoint)
1172 return -EOPNOTSUPP;
1173 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1174 return -EINVAL;
1175 if (!len)
1176 return 0;
1177 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1178}
1179EXPORT_SYMBOL_GPL(mtd_unpoint);
1180
1181/*
1182 * Allow NOMMU mmap() to directly map the device (if not NULL)
1183 * - return the address to which the offset maps
1184 * - return -ENOSYS to indicate refusal to do the mapping
1185 */
1186unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1187 unsigned long offset, unsigned long flags)
1188{
1189 size_t retlen;
1190 void *virt;
1191 int ret;
1192
1193 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1194 if (ret)
1195 return ret;
1196 if (retlen != len) {
1197 mtd_unpoint(mtd, offset, retlen);
1198 return -ENOSYS;
1199 }
1200 return (unsigned long)virt;
1201}
1202EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1203
1204static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1205 const struct mtd_ecc_stats *old_stats)
1206{
1207 struct mtd_ecc_stats diff;
1208
1209 if (master == mtd)
1210 return;
1211
1212 diff = master->ecc_stats;
1213 diff.failed -= old_stats->failed;
1214 diff.corrected -= old_stats->corrected;
1215
1216 while (mtd->parent) {
1217 mtd->ecc_stats.failed += diff.failed;
1218 mtd->ecc_stats.corrected += diff.corrected;
1219 mtd = mtd->parent;
1220 }
1221}
1222
1223int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1224 u_char *buf)
1225{
1226 struct mtd_oob_ops ops = {
1227 .len = len,
1228 .datbuf = buf,
1229 };
1230 int ret;
1231
1232 ret = mtd_read_oob(mtd, from, &ops);
1233 *retlen = ops.retlen;
1234
1235 return ret;
1236}
1237EXPORT_SYMBOL_GPL(mtd_read);
1238
1239int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1240 const u_char *buf)
1241{
1242 struct mtd_oob_ops ops = {
1243 .len = len,
1244 .datbuf = (u8 *)buf,
1245 };
1246 int ret;
1247
1248 ret = mtd_write_oob(mtd, to, &ops);
1249 *retlen = ops.retlen;
1250
1251 return ret;
1252}
1253EXPORT_SYMBOL_GPL(mtd_write);
1254
1255/*
1256 * In blackbox flight recorder like scenarios we want to make successful writes
1257 * in interrupt context. panic_write() is only intended to be called when its
1258 * known the kernel is about to panic and we need the write to succeed. Since
1259 * the kernel is not going to be running for much longer, this function can
1260 * break locks and delay to ensure the write succeeds (but not sleep).
1261 */
1262int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1263 const u_char *buf)
1264{
1265 struct mtd_info *master = mtd_get_master(mtd);
1266
1267 *retlen = 0;
1268 if (!master->_panic_write)
1269 return -EOPNOTSUPP;
1270 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1271 return -EINVAL;
1272 if (!(mtd->flags & MTD_WRITEABLE))
1273 return -EROFS;
1274 if (!len)
1275 return 0;
1276 if (!master->oops_panic_write)
1277 master->oops_panic_write = true;
1278
1279 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1280 retlen, buf);
1281}
1282EXPORT_SYMBOL_GPL(mtd_panic_write);
1283
1284static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1285 struct mtd_oob_ops *ops)
1286{
1287 /*
1288 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1289 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1290 * this case.
1291 */
1292 if (!ops->datbuf)
1293 ops->len = 0;
1294
1295 if (!ops->oobbuf)
1296 ops->ooblen = 0;
1297
1298 if (offs < 0 || offs + ops->len > mtd->size)
1299 return -EINVAL;
1300
1301 if (ops->ooblen) {
1302 size_t maxooblen;
1303
1304 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1305 return -EINVAL;
1306
1307 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1308 mtd_div_by_ws(offs, mtd)) *
1309 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1310 if (ops->ooblen > maxooblen)
1311 return -EINVAL;
1312 }
1313
1314 return 0;
1315}
1316
1317static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1318 struct mtd_oob_ops *ops)
1319{
1320 struct mtd_info *master = mtd_get_master(mtd);
1321 int ret;
1322
1323 from = mtd_get_master_ofs(mtd, from);
1324 if (master->_read_oob)
1325 ret = master->_read_oob(master, from, ops);
1326 else
1327 ret = master->_read(master, from, ops->len, &ops->retlen,
1328 ops->datbuf);
1329
1330 return ret;
1331}
1332
1333static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1334 struct mtd_oob_ops *ops)
1335{
1336 struct mtd_info *master = mtd_get_master(mtd);
1337 int ret;
1338
1339 to = mtd_get_master_ofs(mtd, to);
1340 if (master->_write_oob)
1341 ret = master->_write_oob(master, to, ops);
1342 else
1343 ret = master->_write(master, to, ops->len, &ops->retlen,
1344 ops->datbuf);
1345
1346 return ret;
1347}
1348
1349static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1350 struct mtd_oob_ops *ops)
1351{
1352 struct mtd_info *master = mtd_get_master(mtd);
1353 int ngroups = mtd_pairing_groups(master);
1354 int npairs = mtd_wunit_per_eb(master) / ngroups;
1355 struct mtd_oob_ops adjops = *ops;
1356 unsigned int wunit, oobavail;
1357 struct mtd_pairing_info info;
1358 int max_bitflips = 0;
1359 u32 ebofs, pageofs;
1360 loff_t base, pos;
1361
1362 ebofs = mtd_mod_by_eb(start, mtd);
1363 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1364 info.group = 0;
1365 info.pair = mtd_div_by_ws(ebofs, mtd);
1366 pageofs = mtd_mod_by_ws(ebofs, mtd);
1367 oobavail = mtd_oobavail(mtd, ops);
1368
1369 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1370 int ret;
1371
1372 if (info.pair >= npairs) {
1373 info.pair = 0;
1374 base += master->erasesize;
1375 }
1376
1377 wunit = mtd_pairing_info_to_wunit(master, &info);
1378 pos = mtd_wunit_to_offset(mtd, base, wunit);
1379
1380 adjops.len = ops->len - ops->retlen;
1381 if (adjops.len > mtd->writesize - pageofs)
1382 adjops.len = mtd->writesize - pageofs;
1383
1384 adjops.ooblen = ops->ooblen - ops->oobretlen;
1385 if (adjops.ooblen > oobavail - adjops.ooboffs)
1386 adjops.ooblen = oobavail - adjops.ooboffs;
1387
1388 if (read) {
1389 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1390 if (ret > 0)
1391 max_bitflips = max(max_bitflips, ret);
1392 } else {
1393 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1394 }
1395
1396 if (ret < 0)
1397 return ret;
1398
1399 max_bitflips = max(max_bitflips, ret);
1400 ops->retlen += adjops.retlen;
1401 ops->oobretlen += adjops.oobretlen;
1402 adjops.datbuf += adjops.retlen;
1403 adjops.oobbuf += adjops.oobretlen;
1404 adjops.ooboffs = 0;
1405 pageofs = 0;
1406 info.pair++;
1407 }
1408
1409 return max_bitflips;
1410}
1411
1412int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1413{
1414 struct mtd_info *master = mtd_get_master(mtd);
1415 struct mtd_ecc_stats old_stats = master->ecc_stats;
1416 int ret_code;
1417
1418 ops->retlen = ops->oobretlen = 0;
1419
1420 ret_code = mtd_check_oob_ops(mtd, from, ops);
1421 if (ret_code)
1422 return ret_code;
1423
1424 ledtrig_mtd_activity();
1425
1426 /* Check the validity of a potential fallback on mtd->_read */
1427 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1428 return -EOPNOTSUPP;
1429
1430 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1431 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1432 else
1433 ret_code = mtd_read_oob_std(mtd, from, ops);
1434
1435 mtd_update_ecc_stats(mtd, master, &old_stats);
1436
1437 /*
1438 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1439 * similar to mtd->_read(), returning a non-negative integer
1440 * representing max bitflips. In other cases, mtd->_read_oob() may
1441 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1442 */
1443 if (unlikely(ret_code < 0))
1444 return ret_code;
1445 if (mtd->ecc_strength == 0)
1446 return 0; /* device lacks ecc */
1447 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1448}
1449EXPORT_SYMBOL_GPL(mtd_read_oob);
1450
1451int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1452 struct mtd_oob_ops *ops)
1453{
1454 struct mtd_info *master = mtd_get_master(mtd);
1455 int ret;
1456
1457 ops->retlen = ops->oobretlen = 0;
1458
1459 if (!(mtd->flags & MTD_WRITEABLE))
1460 return -EROFS;
1461
1462 ret = mtd_check_oob_ops(mtd, to, ops);
1463 if (ret)
1464 return ret;
1465
1466 ledtrig_mtd_activity();
1467
1468 /* Check the validity of a potential fallback on mtd->_write */
1469 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1470 return -EOPNOTSUPP;
1471
1472 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1473 return mtd_io_emulated_slc(mtd, to, false, ops);
1474
1475 return mtd_write_oob_std(mtd, to, ops);
1476}
1477EXPORT_SYMBOL_GPL(mtd_write_oob);
1478
1479/**
1480 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1481 * @mtd: MTD device structure
1482 * @section: ECC section. Depending on the layout you may have all the ECC
1483 * bytes stored in a single contiguous section, or one section
1484 * per ECC chunk (and sometime several sections for a single ECC
1485 * ECC chunk)
1486 * @oobecc: OOB region struct filled with the appropriate ECC position
1487 * information
1488 *
1489 * This function returns ECC section information in the OOB area. If you want
1490 * to get all the ECC bytes information, then you should call
1491 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1492 *
1493 * Returns zero on success, a negative error code otherwise.
1494 */
1495int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1496 struct mtd_oob_region *oobecc)
1497{
1498 struct mtd_info *master = mtd_get_master(mtd);
1499
1500 memset(oobecc, 0, sizeof(*oobecc));
1501
1502 if (!master || section < 0)
1503 return -EINVAL;
1504
1505 if (!master->ooblayout || !master->ooblayout->ecc)
1506 return -ENOTSUPP;
1507
1508 return master->ooblayout->ecc(master, section, oobecc);
1509}
1510EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1511
1512/**
1513 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1514 * section
1515 * @mtd: MTD device structure
1516 * @section: Free section you are interested in. Depending on the layout
1517 * you may have all the free bytes stored in a single contiguous
1518 * section, or one section per ECC chunk plus an extra section
1519 * for the remaining bytes (or other funky layout).
1520 * @oobfree: OOB region struct filled with the appropriate free position
1521 * information
1522 *
1523 * This function returns free bytes position in the OOB area. If you want
1524 * to get all the free bytes information, then you should call
1525 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1526 *
1527 * Returns zero on success, a negative error code otherwise.
1528 */
1529int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1530 struct mtd_oob_region *oobfree)
1531{
1532 struct mtd_info *master = mtd_get_master(mtd);
1533
1534 memset(oobfree, 0, sizeof(*oobfree));
1535
1536 if (!master || section < 0)
1537 return -EINVAL;
1538
1539 if (!master->ooblayout || !master->ooblayout->free)
1540 return -ENOTSUPP;
1541
1542 return master->ooblayout->free(master, section, oobfree);
1543}
1544EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1545
1546/**
1547 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1548 * @mtd: mtd info structure
1549 * @byte: the byte we are searching for
1550 * @sectionp: pointer where the section id will be stored
1551 * @oobregion: used to retrieve the ECC position
1552 * @iter: iterator function. Should be either mtd_ooblayout_free or
1553 * mtd_ooblayout_ecc depending on the region type you're searching for
1554 *
1555 * This function returns the section id and oobregion information of a
1556 * specific byte. For example, say you want to know where the 4th ECC byte is
1557 * stored, you'll use:
1558 *
1559 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1560 *
1561 * Returns zero on success, a negative error code otherwise.
1562 */
1563static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1564 int *sectionp, struct mtd_oob_region *oobregion,
1565 int (*iter)(struct mtd_info *,
1566 int section,
1567 struct mtd_oob_region *oobregion))
1568{
1569 int pos = 0, ret, section = 0;
1570
1571 memset(oobregion, 0, sizeof(*oobregion));
1572
1573 while (1) {
1574 ret = iter(mtd, section, oobregion);
1575 if (ret)
1576 return ret;
1577
1578 if (pos + oobregion->length > byte)
1579 break;
1580
1581 pos += oobregion->length;
1582 section++;
1583 }
1584
1585 /*
1586 * Adjust region info to make it start at the beginning at the
1587 * 'start' ECC byte.
1588 */
1589 oobregion->offset += byte - pos;
1590 oobregion->length -= byte - pos;
1591 *sectionp = section;
1592
1593 return 0;
1594}
1595
1596/**
1597 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1598 * ECC byte
1599 * @mtd: mtd info structure
1600 * @eccbyte: the byte we are searching for
1601 * @sectionp: pointer where the section id will be stored
1602 * @oobregion: OOB region information
1603 *
1604 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1605 * byte.
1606 *
1607 * Returns zero on success, a negative error code otherwise.
1608 */
1609int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1610 int *section,
1611 struct mtd_oob_region *oobregion)
1612{
1613 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1614 mtd_ooblayout_ecc);
1615}
1616EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1617
1618/**
1619 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1620 * @mtd: mtd info structure
1621 * @buf: destination buffer to store OOB bytes
1622 * @oobbuf: OOB buffer
1623 * @start: first byte to retrieve
1624 * @nbytes: number of bytes to retrieve
1625 * @iter: section iterator
1626 *
1627 * Extract bytes attached to a specific category (ECC or free)
1628 * from the OOB buffer and copy them into buf.
1629 *
1630 * Returns zero on success, a negative error code otherwise.
1631 */
1632static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1633 const u8 *oobbuf, int start, int nbytes,
1634 int (*iter)(struct mtd_info *,
1635 int section,
1636 struct mtd_oob_region *oobregion))
1637{
1638 struct mtd_oob_region oobregion;
1639 int section, ret;
1640
1641 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1642 &oobregion, iter);
1643
1644 while (!ret) {
1645 int cnt;
1646
1647 cnt = min_t(int, nbytes, oobregion.length);
1648 memcpy(buf, oobbuf + oobregion.offset, cnt);
1649 buf += cnt;
1650 nbytes -= cnt;
1651
1652 if (!nbytes)
1653 break;
1654
1655 ret = iter(mtd, ++section, &oobregion);
1656 }
1657
1658 return ret;
1659}
1660
1661/**
1662 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1663 * @mtd: mtd info structure
1664 * @buf: source buffer to get OOB bytes from
1665 * @oobbuf: OOB buffer
1666 * @start: first OOB byte to set
1667 * @nbytes: number of OOB bytes to set
1668 * @iter: section iterator
1669 *
1670 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1671 * is selected by passing the appropriate iterator.
1672 *
1673 * Returns zero on success, a negative error code otherwise.
1674 */
1675static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1676 u8 *oobbuf, int start, int nbytes,
1677 int (*iter)(struct mtd_info *,
1678 int section,
1679 struct mtd_oob_region *oobregion))
1680{
1681 struct mtd_oob_region oobregion;
1682 int section, ret;
1683
1684 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1685 &oobregion, iter);
1686
1687 while (!ret) {
1688 int cnt;
1689
1690 cnt = min_t(int, nbytes, oobregion.length);
1691 memcpy(oobbuf + oobregion.offset, buf, cnt);
1692 buf += cnt;
1693 nbytes -= cnt;
1694
1695 if (!nbytes)
1696 break;
1697
1698 ret = iter(mtd, ++section, &oobregion);
1699 }
1700
1701 return ret;
1702}
1703
1704/**
1705 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1706 * @mtd: mtd info structure
1707 * @iter: category iterator
1708 *
1709 * Count the number of bytes in a given category.
1710 *
1711 * Returns a positive value on success, a negative error code otherwise.
1712 */
1713static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1714 int (*iter)(struct mtd_info *,
1715 int section,
1716 struct mtd_oob_region *oobregion))
1717{
1718 struct mtd_oob_region oobregion;
1719 int section = 0, ret, nbytes = 0;
1720
1721 while (1) {
1722 ret = iter(mtd, section++, &oobregion);
1723 if (ret) {
1724 if (ret == -ERANGE)
1725 ret = nbytes;
1726 break;
1727 }
1728
1729 nbytes += oobregion.length;
1730 }
1731
1732 return ret;
1733}
1734
1735/**
1736 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1737 * @mtd: mtd info structure
1738 * @eccbuf: destination buffer to store ECC bytes
1739 * @oobbuf: OOB buffer
1740 * @start: first ECC byte to retrieve
1741 * @nbytes: number of ECC bytes to retrieve
1742 *
1743 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1744 *
1745 * Returns zero on success, a negative error code otherwise.
1746 */
1747int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1748 const u8 *oobbuf, int start, int nbytes)
1749{
1750 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751 mtd_ooblayout_ecc);
1752}
1753EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1754
1755/**
1756 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1757 * @mtd: mtd info structure
1758 * @eccbuf: source buffer to get ECC bytes from
1759 * @oobbuf: OOB buffer
1760 * @start: first ECC byte to set
1761 * @nbytes: number of ECC bytes to set
1762 *
1763 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1768 u8 *oobbuf, int start, int nbytes)
1769{
1770 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1771 mtd_ooblayout_ecc);
1772}
1773EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1774
1775/**
1776 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1777 * @mtd: mtd info structure
1778 * @databuf: destination buffer to store ECC bytes
1779 * @oobbuf: OOB buffer
1780 * @start: first ECC byte to retrieve
1781 * @nbytes: number of ECC bytes to retrieve
1782 *
1783 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1784 *
1785 * Returns zero on success, a negative error code otherwise.
1786 */
1787int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1788 const u8 *oobbuf, int start, int nbytes)
1789{
1790 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1791 mtd_ooblayout_free);
1792}
1793EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1794
1795/**
1796 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1797 * @mtd: mtd info structure
1798 * @databuf: source buffer to get data bytes from
1799 * @oobbuf: OOB buffer
1800 * @start: first ECC byte to set
1801 * @nbytes: number of ECC bytes to set
1802 *
1803 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1804 *
1805 * Returns zero on success, a negative error code otherwise.
1806 */
1807int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1808 u8 *oobbuf, int start, int nbytes)
1809{
1810 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1811 mtd_ooblayout_free);
1812}
1813EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1814
1815/**
1816 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1817 * @mtd: mtd info structure
1818 *
1819 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1820 *
1821 * Returns zero on success, a negative error code otherwise.
1822 */
1823int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1824{
1825 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1826}
1827EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1828
1829/**
1830 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1831 * @mtd: mtd info structure
1832 *
1833 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1834 *
1835 * Returns zero on success, a negative error code otherwise.
1836 */
1837int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1838{
1839 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1840}
1841EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1842
1843/*
1844 * Method to access the protection register area, present in some flash
1845 * devices. The user data is one time programmable but the factory data is read
1846 * only.
1847 */
1848int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1849 struct otp_info *buf)
1850{
1851 struct mtd_info *master = mtd_get_master(mtd);
1852
1853 if (!master->_get_fact_prot_info)
1854 return -EOPNOTSUPP;
1855 if (!len)
1856 return 0;
1857 return master->_get_fact_prot_info(master, len, retlen, buf);
1858}
1859EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1860
1861int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1862 size_t *retlen, u_char *buf)
1863{
1864 struct mtd_info *master = mtd_get_master(mtd);
1865
1866 *retlen = 0;
1867 if (!master->_read_fact_prot_reg)
1868 return -EOPNOTSUPP;
1869 if (!len)
1870 return 0;
1871 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1872}
1873EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1874
1875int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1876 struct otp_info *buf)
1877{
1878 struct mtd_info *master = mtd_get_master(mtd);
1879
1880 if (!master->_get_user_prot_info)
1881 return -EOPNOTSUPP;
1882 if (!len)
1883 return 0;
1884 return master->_get_user_prot_info(master, len, retlen, buf);
1885}
1886EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1887
1888int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1889 size_t *retlen, u_char *buf)
1890{
1891 struct mtd_info *master = mtd_get_master(mtd);
1892
1893 *retlen = 0;
1894 if (!master->_read_user_prot_reg)
1895 return -EOPNOTSUPP;
1896 if (!len)
1897 return 0;
1898 return master->_read_user_prot_reg(master, from, len, retlen, buf);
1899}
1900EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1901
1902int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1903 size_t *retlen, u_char *buf)
1904{
1905 struct mtd_info *master = mtd_get_master(mtd);
1906 int ret;
1907
1908 *retlen = 0;
1909 if (!master->_write_user_prot_reg)
1910 return -EOPNOTSUPP;
1911 if (!len)
1912 return 0;
1913 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1914 if (ret)
1915 return ret;
1916
1917 /*
1918 * If no data could be written at all, we are out of memory and
1919 * must return -ENOSPC.
1920 */
1921 return (*retlen) ? 0 : -ENOSPC;
1922}
1923EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1924
1925int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1926{
1927 struct mtd_info *master = mtd_get_master(mtd);
1928
1929 if (!master->_lock_user_prot_reg)
1930 return -EOPNOTSUPP;
1931 if (!len)
1932 return 0;
1933 return master->_lock_user_prot_reg(master, from, len);
1934}
1935EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1936
1937/* Chip-supported device locking */
1938int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939{
1940 struct mtd_info *master = mtd_get_master(mtd);
1941
1942 if (!master->_lock)
1943 return -EOPNOTSUPP;
1944 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945 return -EINVAL;
1946 if (!len)
1947 return 0;
1948
1949 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952 }
1953
1954 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1955}
1956EXPORT_SYMBOL_GPL(mtd_lock);
1957
1958int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959{
1960 struct mtd_info *master = mtd_get_master(mtd);
1961
1962 if (!master->_unlock)
1963 return -EOPNOTSUPP;
1964 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965 return -EINVAL;
1966 if (!len)
1967 return 0;
1968
1969 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972 }
1973
1974 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1975}
1976EXPORT_SYMBOL_GPL(mtd_unlock);
1977
1978int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1979{
1980 struct mtd_info *master = mtd_get_master(mtd);
1981
1982 if (!master->_is_locked)
1983 return -EOPNOTSUPP;
1984 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1985 return -EINVAL;
1986 if (!len)
1987 return 0;
1988
1989 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1990 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1991 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1992 }
1993
1994 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1995}
1996EXPORT_SYMBOL_GPL(mtd_is_locked);
1997
1998int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1999{
2000 struct mtd_info *master = mtd_get_master(mtd);
2001
2002 if (ofs < 0 || ofs >= mtd->size)
2003 return -EINVAL;
2004 if (!master->_block_isreserved)
2005 return 0;
2006
2007 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2008 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2009
2010 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2011}
2012EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2013
2014int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2015{
2016 struct mtd_info *master = mtd_get_master(mtd);
2017
2018 if (ofs < 0 || ofs >= mtd->size)
2019 return -EINVAL;
2020 if (!master->_block_isbad)
2021 return 0;
2022
2023 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2024 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2025
2026 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2027}
2028EXPORT_SYMBOL_GPL(mtd_block_isbad);
2029
2030int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2031{
2032 struct mtd_info *master = mtd_get_master(mtd);
2033 int ret;
2034
2035 if (!master->_block_markbad)
2036 return -EOPNOTSUPP;
2037 if (ofs < 0 || ofs >= mtd->size)
2038 return -EINVAL;
2039 if (!(mtd->flags & MTD_WRITEABLE))
2040 return -EROFS;
2041
2042 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2043 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2044
2045 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2046 if (ret)
2047 return ret;
2048
2049 while (mtd->parent) {
2050 mtd->ecc_stats.badblocks++;
2051 mtd = mtd->parent;
2052 }
2053
2054 return 0;
2055}
2056EXPORT_SYMBOL_GPL(mtd_block_markbad);
2057
2058/*
2059 * default_mtd_writev - the default writev method
2060 * @mtd: mtd device description object pointer
2061 * @vecs: the vectors to write
2062 * @count: count of vectors in @vecs
2063 * @to: the MTD device offset to write to
2064 * @retlen: on exit contains the count of bytes written to the MTD device.
2065 *
2066 * This function returns zero in case of success and a negative error code in
2067 * case of failure.
2068 */
2069static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2070 unsigned long count, loff_t to, size_t *retlen)
2071{
2072 unsigned long i;
2073 size_t totlen = 0, thislen;
2074 int ret = 0;
2075
2076 for (i = 0; i < count; i++) {
2077 if (!vecs[i].iov_len)
2078 continue;
2079 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2080 vecs[i].iov_base);
2081 totlen += thislen;
2082 if (ret || thislen != vecs[i].iov_len)
2083 break;
2084 to += vecs[i].iov_len;
2085 }
2086 *retlen = totlen;
2087 return ret;
2088}
2089
2090/*
2091 * mtd_writev - the vector-based MTD write method
2092 * @mtd: mtd device description object pointer
2093 * @vecs: the vectors to write
2094 * @count: count of vectors in @vecs
2095 * @to: the MTD device offset to write to
2096 * @retlen: on exit contains the count of bytes written to the MTD device.
2097 *
2098 * This function returns zero in case of success and a negative error code in
2099 * case of failure.
2100 */
2101int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2102 unsigned long count, loff_t to, size_t *retlen)
2103{
2104 struct mtd_info *master = mtd_get_master(mtd);
2105
2106 *retlen = 0;
2107 if (!(mtd->flags & MTD_WRITEABLE))
2108 return -EROFS;
2109
2110 if (!master->_writev)
2111 return default_mtd_writev(mtd, vecs, count, to, retlen);
2112
2113 return master->_writev(master, vecs, count,
2114 mtd_get_master_ofs(mtd, to), retlen);
2115}
2116EXPORT_SYMBOL_GPL(mtd_writev);
2117
2118/**
2119 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2120 * @mtd: mtd device description object pointer
2121 * @size: a pointer to the ideal or maximum size of the allocation, points
2122 * to the actual allocation size on success.
2123 *
2124 * This routine attempts to allocate a contiguous kernel buffer up to
2125 * the specified size, backing off the size of the request exponentially
2126 * until the request succeeds or until the allocation size falls below
2127 * the system page size. This attempts to make sure it does not adversely
2128 * impact system performance, so when allocating more than one page, we
2129 * ask the memory allocator to avoid re-trying, swapping, writing back
2130 * or performing I/O.
2131 *
2132 * Note, this function also makes sure that the allocated buffer is aligned to
2133 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2134 *
2135 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2136 * to handle smaller (i.e. degraded) buffer allocations under low- or
2137 * fragmented-memory situations where such reduced allocations, from a
2138 * requested ideal, are allowed.
2139 *
2140 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2141 */
2142void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2143{
2144 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2145 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2146 void *kbuf;
2147
2148 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2149
2150 while (*size > min_alloc) {
2151 kbuf = kmalloc(*size, flags);
2152 if (kbuf)
2153 return kbuf;
2154
2155 *size >>= 1;
2156 *size = ALIGN(*size, mtd->writesize);
2157 }
2158
2159 /*
2160 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2161 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2162 */
2163 return kmalloc(*size, GFP_KERNEL);
2164}
2165EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2166
2167#ifdef CONFIG_PROC_FS
2168
2169/*====================================================================*/
2170/* Support for /proc/mtd */
2171
2172static int mtd_proc_show(struct seq_file *m, void *v)
2173{
2174 struct mtd_info *mtd;
2175
2176 seq_puts(m, "dev: size erasesize name\n");
2177 mutex_lock(&mtd_table_mutex);
2178 mtd_for_each_device(mtd) {
2179 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2180 mtd->index, (unsigned long long)mtd->size,
2181 mtd->erasesize, mtd->name);
2182 }
2183 mutex_unlock(&mtd_table_mutex);
2184 return 0;
2185}
2186#endif /* CONFIG_PROC_FS */
2187
2188/*====================================================================*/
2189/* Init code */
2190
2191static struct backing_dev_info * __init mtd_bdi_init(char *name)
2192{
2193 struct backing_dev_info *bdi;
2194 int ret;
2195
2196 bdi = bdi_alloc(NUMA_NO_NODE);
2197 if (!bdi)
2198 return ERR_PTR(-ENOMEM);
2199
2200 /*
2201 * We put '-0' suffix to the name to get the same name format as we
2202 * used to get. Since this is called only once, we get a unique name.
2203 */
2204 ret = bdi_register(bdi, "%.28s-0", name);
2205 if (ret)
2206 bdi_put(bdi);
2207
2208 return ret ? ERR_PTR(ret) : bdi;
2209}
2210
2211static struct proc_dir_entry *proc_mtd;
2212
2213static int __init init_mtd(void)
2214{
2215 int ret;
2216
2217 ret = class_register(&mtd_class);
2218 if (ret)
2219 goto err_reg;
2220
2221 mtd_bdi = mtd_bdi_init("mtd");
2222 if (IS_ERR(mtd_bdi)) {
2223 ret = PTR_ERR(mtd_bdi);
2224 goto err_bdi;
2225 }
2226
2227 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2228
2229 ret = init_mtdchar();
2230 if (ret)
2231 goto out_procfs;
2232
2233 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2234
2235 return 0;
2236
2237out_procfs:
2238 if (proc_mtd)
2239 remove_proc_entry("mtd", NULL);
2240 bdi_put(mtd_bdi);
2241err_bdi:
2242 class_unregister(&mtd_class);
2243err_reg:
2244 pr_err("Error registering mtd class or bdi: %d\n", ret);
2245 return ret;
2246}
2247
2248static void __exit cleanup_mtd(void)
2249{
2250 debugfs_remove_recursive(dfs_dir_mtd);
2251 cleanup_mtdchar();
2252 if (proc_mtd)
2253 remove_proc_entry("mtd", NULL);
2254 class_unregister(&mtd_class);
2255 bdi_put(mtd_bdi);
2256 idr_destroy(&mtd_idr);
2257}
2258
2259module_init(init_mtd);
2260module_exit(cleanup_mtd);
2261
2262MODULE_LICENSE("GPL");
2263MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2264MODULE_DESCRIPTION("Core MTD registration and access routines");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31
32#include <linux/mtd/mtd.h>
33#include <linux/mtd/partitions.h>
34
35#include "mtdcore.h"
36
37struct backing_dev_info *mtd_bdi;
38
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67};
68
69static DEFINE_IDR(mtd_idr);
70
71/* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73DEFINE_MUTEX(mtd_table_mutex);
74EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82static LIST_HEAD(mtd_notifiers);
83
84
85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97}
98
99static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101{
102 struct mtd_info *mtd = dev_get_drvdata(dev);
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135}
136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140{
141 struct mtd_info *mtd = dev_get_drvdata(dev);
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144}
145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149{
150 struct mtd_info *mtd = dev_get_drvdata(dev);
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
154}
155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159{
160 struct mtd_info *mtd = dev_get_drvdata(dev);
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163}
164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168{
169 struct mtd_info *mtd = dev_get_drvdata(dev);
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172}
173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
175static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182}
183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
185static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187{
188 struct mtd_info *mtd = dev_get_drvdata(dev);
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191}
192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
194static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200}
201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
203static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209}
210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219}
220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221
222static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228}
229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238}
239
240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243{
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254}
255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
259static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261{
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266}
267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276}
277static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287}
288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297}
298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302{
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307}
308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
310static struct attribute *mtd_attrs[] = {
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
328 NULL,
329};
330ATTRIBUTE_GROUPS(mtd);
331
332static const struct device_type mtd_devtype = {
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336};
337
338static int mtd_partid_show(struct seq_file *s, void *p)
339{
340 struct mtd_info *mtd = s->private;
341
342 seq_printf(s, "%s\n", mtd->dbg.partid);
343
344 return 0;
345}
346
347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348{
349 return single_open(file, mtd_partid_show, inode->i_private);
350}
351
352static const struct file_operations mtd_partid_debug_fops = {
353 .open = mtd_partid_debugfs_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = single_release,
357};
358
359static int mtd_partname_show(struct seq_file *s, void *p)
360{
361 struct mtd_info *mtd = s->private;
362
363 seq_printf(s, "%s\n", mtd->dbg.partname);
364
365 return 0;
366}
367
368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369{
370 return single_open(file, mtd_partname_show, inode->i_private);
371}
372
373static const struct file_operations mtd_partname_debug_fops = {
374 .open = mtd_partname_debugfs_open,
375 .read = seq_read,
376 .llseek = seq_lseek,
377 .release = single_release,
378};
379
380static struct dentry *dfs_dir_mtd;
381
382static void mtd_debugfs_populate(struct mtd_info *mtd)
383{
384 struct device *dev = &mtd->dev;
385 struct dentry *root, *dent;
386
387 if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 return;
389
390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 if (IS_ERR_OR_NULL(root)) {
392 dev_dbg(dev, "won't show data in debugfs\n");
393 return;
394 }
395
396 mtd->dbg.dfs_dir = root;
397
398 if (mtd->dbg.partid) {
399 dent = debugfs_create_file("partid", 0400, root, mtd,
400 &mtd_partid_debug_fops);
401 if (IS_ERR_OR_NULL(dent))
402 dev_err(dev, "can't create debugfs entry for partid\n");
403 }
404
405 if (mtd->dbg.partname) {
406 dent = debugfs_create_file("partname", 0400, root, mtd,
407 &mtd_partname_debug_fops);
408 if (IS_ERR_OR_NULL(dent))
409 dev_err(dev,
410 "can't create debugfs entry for partname\n");
411 }
412}
413
414#ifndef CONFIG_MMU
415unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
416{
417 switch (mtd->type) {
418 case MTD_RAM:
419 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
420 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
421 case MTD_ROM:
422 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
423 NOMMU_MAP_READ;
424 default:
425 return NOMMU_MAP_COPY;
426 }
427}
428EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
429#endif
430
431static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
432 void *cmd)
433{
434 struct mtd_info *mtd;
435
436 mtd = container_of(n, struct mtd_info, reboot_notifier);
437 mtd->_reboot(mtd);
438
439 return NOTIFY_DONE;
440}
441
442/**
443 * mtd_wunit_to_pairing_info - get pairing information of a wunit
444 * @mtd: pointer to new MTD device info structure
445 * @wunit: write unit we are interested in
446 * @info: returned pairing information
447 *
448 * Retrieve pairing information associated to the wunit.
449 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
450 * paired together, and where programming a page may influence the page it is
451 * paired with.
452 * The notion of page is replaced by the term wunit (write-unit) to stay
453 * consistent with the ->writesize field.
454 *
455 * The @wunit argument can be extracted from an absolute offset using
456 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
457 * to @wunit.
458 *
459 * From the pairing info the MTD user can find all the wunits paired with
460 * @wunit using the following loop:
461 *
462 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
463 * info.pair = i;
464 * mtd_pairing_info_to_wunit(mtd, &info);
465 * ...
466 * }
467 */
468int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
469 struct mtd_pairing_info *info)
470{
471 int npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
472
473 if (wunit < 0 || wunit >= npairs)
474 return -EINVAL;
475
476 if (mtd->pairing && mtd->pairing->get_info)
477 return mtd->pairing->get_info(mtd, wunit, info);
478
479 info->group = 0;
480 info->pair = wunit;
481
482 return 0;
483}
484EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
485
486/**
487 * mtd_pairing_info_to_wunit - get wunit from pairing information
488 * @mtd: pointer to new MTD device info structure
489 * @info: pairing information struct
490 *
491 * Returns a positive number representing the wunit associated to the info
492 * struct, or a negative error code.
493 *
494 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
495 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
496 * doc).
497 *
498 * It can also be used to only program the first page of each pair (i.e.
499 * page attached to group 0), which allows one to use an MLC NAND in
500 * software-emulated SLC mode:
501 *
502 * info.group = 0;
503 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
504 * for (info.pair = 0; info.pair < npairs; info.pair++) {
505 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
506 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
507 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
508 * }
509 */
510int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
511 const struct mtd_pairing_info *info)
512{
513 int ngroups = mtd_pairing_groups(mtd);
514 int npairs = mtd_wunit_per_eb(mtd) / ngroups;
515
516 if (!info || info->pair < 0 || info->pair >= npairs ||
517 info->group < 0 || info->group >= ngroups)
518 return -EINVAL;
519
520 if (mtd->pairing && mtd->pairing->get_wunit)
521 return mtd->pairing->get_wunit(mtd, info);
522
523 return info->pair;
524}
525EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
526
527/**
528 * mtd_pairing_groups - get the number of pairing groups
529 * @mtd: pointer to new MTD device info structure
530 *
531 * Returns the number of pairing groups.
532 *
533 * This number is usually equal to the number of bits exposed by a single
534 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
535 * to iterate over all pages of a given pair.
536 */
537int mtd_pairing_groups(struct mtd_info *mtd)
538{
539 if (!mtd->pairing || !mtd->pairing->ngroups)
540 return 1;
541
542 return mtd->pairing->ngroups;
543}
544EXPORT_SYMBOL_GPL(mtd_pairing_groups);
545
546static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
547 void *val, size_t bytes)
548{
549 struct mtd_info *mtd = priv;
550 size_t retlen;
551 int err;
552
553 err = mtd_read(mtd, offset, bytes, &retlen, val);
554 if (err && err != -EUCLEAN)
555 return err;
556
557 return retlen == bytes ? 0 : -EIO;
558}
559
560static int mtd_nvmem_add(struct mtd_info *mtd)
561{
562 struct nvmem_config config = {};
563
564 config.id = -1;
565 config.dev = &mtd->dev;
566 config.name = mtd->name;
567 config.owner = THIS_MODULE;
568 config.reg_read = mtd_nvmem_reg_read;
569 config.size = mtd->size;
570 config.word_size = 1;
571 config.stride = 1;
572 config.read_only = true;
573 config.root_only = true;
574 config.no_of_node = true;
575 config.priv = mtd;
576
577 mtd->nvmem = nvmem_register(&config);
578 if (IS_ERR(mtd->nvmem)) {
579 /* Just ignore if there is no NVMEM support in the kernel */
580 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
581 mtd->nvmem = NULL;
582 } else {
583 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
584 return PTR_ERR(mtd->nvmem);
585 }
586 }
587
588 return 0;
589}
590
591/**
592 * add_mtd_device - register an MTD device
593 * @mtd: pointer to new MTD device info structure
594 *
595 * Add a device to the list of MTD devices present in the system, and
596 * notify each currently active MTD 'user' of its arrival. Returns
597 * zero on success or non-zero on failure.
598 */
599
600int add_mtd_device(struct mtd_info *mtd)
601{
602 struct mtd_notifier *not;
603 int i, error;
604
605 /*
606 * May occur, for instance, on buggy drivers which call
607 * mtd_device_parse_register() multiple times on the same master MTD,
608 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
609 */
610 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
611 return -EEXIST;
612
613 BUG_ON(mtd->writesize == 0);
614
615 /*
616 * MTD drivers should implement ->_{write,read}() or
617 * ->_{write,read}_oob(), but not both.
618 */
619 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
620 (mtd->_read && mtd->_read_oob)))
621 return -EINVAL;
622
623 if (WARN_ON((!mtd->erasesize || !mtd->_erase) &&
624 !(mtd->flags & MTD_NO_ERASE)))
625 return -EINVAL;
626
627 mutex_lock(&mtd_table_mutex);
628
629 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
630 if (i < 0) {
631 error = i;
632 goto fail_locked;
633 }
634
635 mtd->index = i;
636 mtd->usecount = 0;
637
638 /* default value if not set by driver */
639 if (mtd->bitflip_threshold == 0)
640 mtd->bitflip_threshold = mtd->ecc_strength;
641
642 if (is_power_of_2(mtd->erasesize))
643 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
644 else
645 mtd->erasesize_shift = 0;
646
647 if (is_power_of_2(mtd->writesize))
648 mtd->writesize_shift = ffs(mtd->writesize) - 1;
649 else
650 mtd->writesize_shift = 0;
651
652 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
653 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
654
655 /* Some chips always power up locked. Unlock them now */
656 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
657 error = mtd_unlock(mtd, 0, mtd->size);
658 if (error && error != -EOPNOTSUPP)
659 printk(KERN_WARNING
660 "%s: unlock failed, writes may not work\n",
661 mtd->name);
662 /* Ignore unlock failures? */
663 error = 0;
664 }
665
666 /* Caller should have set dev.parent to match the
667 * physical device, if appropriate.
668 */
669 mtd->dev.type = &mtd_devtype;
670 mtd->dev.class = &mtd_class;
671 mtd->dev.devt = MTD_DEVT(i);
672 dev_set_name(&mtd->dev, "mtd%d", i);
673 dev_set_drvdata(&mtd->dev, mtd);
674 of_node_get(mtd_get_of_node(mtd));
675 error = device_register(&mtd->dev);
676 if (error)
677 goto fail_added;
678
679 /* Add the nvmem provider */
680 error = mtd_nvmem_add(mtd);
681 if (error)
682 goto fail_nvmem_add;
683
684 mtd_debugfs_populate(mtd);
685
686 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
687 "mtd%dro", i);
688
689 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
690 /* No need to get a refcount on the module containing
691 the notifier, since we hold the mtd_table_mutex */
692 list_for_each_entry(not, &mtd_notifiers, list)
693 not->add(mtd);
694
695 mutex_unlock(&mtd_table_mutex);
696 /* We _know_ we aren't being removed, because
697 our caller is still holding us here. So none
698 of this try_ nonsense, and no bitching about it
699 either. :) */
700 __module_get(THIS_MODULE);
701 return 0;
702
703fail_nvmem_add:
704 device_unregister(&mtd->dev);
705fail_added:
706 of_node_put(mtd_get_of_node(mtd));
707 idr_remove(&mtd_idr, i);
708fail_locked:
709 mutex_unlock(&mtd_table_mutex);
710 return error;
711}
712
713/**
714 * del_mtd_device - unregister an MTD device
715 * @mtd: pointer to MTD device info structure
716 *
717 * Remove a device from the list of MTD devices present in the system,
718 * and notify each currently active MTD 'user' of its departure.
719 * Returns zero on success or 1 on failure, which currently will happen
720 * if the requested device does not appear to be present in the list.
721 */
722
723int del_mtd_device(struct mtd_info *mtd)
724{
725 int ret;
726 struct mtd_notifier *not;
727
728 mutex_lock(&mtd_table_mutex);
729
730 debugfs_remove_recursive(mtd->dbg.dfs_dir);
731
732 if (idr_find(&mtd_idr, mtd->index) != mtd) {
733 ret = -ENODEV;
734 goto out_error;
735 }
736
737 /* No need to get a refcount on the module containing
738 the notifier, since we hold the mtd_table_mutex */
739 list_for_each_entry(not, &mtd_notifiers, list)
740 not->remove(mtd);
741
742 if (mtd->usecount) {
743 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
744 mtd->index, mtd->name, mtd->usecount);
745 ret = -EBUSY;
746 } else {
747 /* Try to remove the NVMEM provider */
748 if (mtd->nvmem)
749 nvmem_unregister(mtd->nvmem);
750
751 device_unregister(&mtd->dev);
752
753 idr_remove(&mtd_idr, mtd->index);
754 of_node_put(mtd_get_of_node(mtd));
755
756 module_put(THIS_MODULE);
757 ret = 0;
758 }
759
760out_error:
761 mutex_unlock(&mtd_table_mutex);
762 return ret;
763}
764
765/*
766 * Set a few defaults based on the parent devices, if not provided by the
767 * driver
768 */
769static void mtd_set_dev_defaults(struct mtd_info *mtd)
770{
771 if (mtd->dev.parent) {
772 if (!mtd->owner && mtd->dev.parent->driver)
773 mtd->owner = mtd->dev.parent->driver->owner;
774 if (!mtd->name)
775 mtd->name = dev_name(mtd->dev.parent);
776 } else {
777 pr_debug("mtd device won't show a device symlink in sysfs\n");
778 }
779
780 mtd->orig_flags = mtd->flags;
781}
782
783/**
784 * mtd_device_parse_register - parse partitions and register an MTD device.
785 *
786 * @mtd: the MTD device to register
787 * @types: the list of MTD partition probes to try, see
788 * 'parse_mtd_partitions()' for more information
789 * @parser_data: MTD partition parser-specific data
790 * @parts: fallback partition information to register, if parsing fails;
791 * only valid if %nr_parts > %0
792 * @nr_parts: the number of partitions in parts, if zero then the full
793 * MTD device is registered if no partition info is found
794 *
795 * This function aggregates MTD partitions parsing (done by
796 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
797 * basically follows the most common pattern found in many MTD drivers:
798 *
799 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
800 * registered first.
801 * * Then It tries to probe partitions on MTD device @mtd using parsers
802 * specified in @types (if @types is %NULL, then the default list of parsers
803 * is used, see 'parse_mtd_partitions()' for more information). If none are
804 * found this functions tries to fallback to information specified in
805 * @parts/@nr_parts.
806 * * If no partitions were found this function just registers the MTD device
807 * @mtd and exits.
808 *
809 * Returns zero in case of success and a negative error code in case of failure.
810 */
811int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
812 struct mtd_part_parser_data *parser_data,
813 const struct mtd_partition *parts,
814 int nr_parts)
815{
816 int ret;
817
818 mtd_set_dev_defaults(mtd);
819
820 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
821 ret = add_mtd_device(mtd);
822 if (ret)
823 return ret;
824 }
825
826 /* Prefer parsed partitions over driver-provided fallback */
827 ret = parse_mtd_partitions(mtd, types, parser_data);
828 if (ret > 0)
829 ret = 0;
830 else if (nr_parts)
831 ret = add_mtd_partitions(mtd, parts, nr_parts);
832 else if (!device_is_registered(&mtd->dev))
833 ret = add_mtd_device(mtd);
834 else
835 ret = 0;
836
837 if (ret)
838 goto out;
839
840 /*
841 * FIXME: some drivers unfortunately call this function more than once.
842 * So we have to check if we've already assigned the reboot notifier.
843 *
844 * Generally, we can make multiple calls work for most cases, but it
845 * does cause problems with parse_mtd_partitions() above (e.g.,
846 * cmdlineparts will register partitions more than once).
847 */
848 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
849 "MTD already registered\n");
850 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
851 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
852 register_reboot_notifier(&mtd->reboot_notifier);
853 }
854
855out:
856 if (ret && device_is_registered(&mtd->dev))
857 del_mtd_device(mtd);
858
859 return ret;
860}
861EXPORT_SYMBOL_GPL(mtd_device_parse_register);
862
863/**
864 * mtd_device_unregister - unregister an existing MTD device.
865 *
866 * @master: the MTD device to unregister. This will unregister both the master
867 * and any partitions if registered.
868 */
869int mtd_device_unregister(struct mtd_info *master)
870{
871 int err;
872
873 if (master->_reboot)
874 unregister_reboot_notifier(&master->reboot_notifier);
875
876 err = del_mtd_partitions(master);
877 if (err)
878 return err;
879
880 if (!device_is_registered(&master->dev))
881 return 0;
882
883 return del_mtd_device(master);
884}
885EXPORT_SYMBOL_GPL(mtd_device_unregister);
886
887/**
888 * register_mtd_user - register a 'user' of MTD devices.
889 * @new: pointer to notifier info structure
890 *
891 * Registers a pair of callbacks function to be called upon addition
892 * or removal of MTD devices. Causes the 'add' callback to be immediately
893 * invoked for each MTD device currently present in the system.
894 */
895void register_mtd_user (struct mtd_notifier *new)
896{
897 struct mtd_info *mtd;
898
899 mutex_lock(&mtd_table_mutex);
900
901 list_add(&new->list, &mtd_notifiers);
902
903 __module_get(THIS_MODULE);
904
905 mtd_for_each_device(mtd)
906 new->add(mtd);
907
908 mutex_unlock(&mtd_table_mutex);
909}
910EXPORT_SYMBOL_GPL(register_mtd_user);
911
912/**
913 * unregister_mtd_user - unregister a 'user' of MTD devices.
914 * @old: pointer to notifier info structure
915 *
916 * Removes a callback function pair from the list of 'users' to be
917 * notified upon addition or removal of MTD devices. Causes the
918 * 'remove' callback to be immediately invoked for each MTD device
919 * currently present in the system.
920 */
921int unregister_mtd_user (struct mtd_notifier *old)
922{
923 struct mtd_info *mtd;
924
925 mutex_lock(&mtd_table_mutex);
926
927 module_put(THIS_MODULE);
928
929 mtd_for_each_device(mtd)
930 old->remove(mtd);
931
932 list_del(&old->list);
933 mutex_unlock(&mtd_table_mutex);
934 return 0;
935}
936EXPORT_SYMBOL_GPL(unregister_mtd_user);
937
938/**
939 * get_mtd_device - obtain a validated handle for an MTD device
940 * @mtd: last known address of the required MTD device
941 * @num: internal device number of the required MTD device
942 *
943 * Given a number and NULL address, return the num'th entry in the device
944 * table, if any. Given an address and num == -1, search the device table
945 * for a device with that address and return if it's still present. Given
946 * both, return the num'th driver only if its address matches. Return
947 * error code if not.
948 */
949struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
950{
951 struct mtd_info *ret = NULL, *other;
952 int err = -ENODEV;
953
954 mutex_lock(&mtd_table_mutex);
955
956 if (num == -1) {
957 mtd_for_each_device(other) {
958 if (other == mtd) {
959 ret = mtd;
960 break;
961 }
962 }
963 } else if (num >= 0) {
964 ret = idr_find(&mtd_idr, num);
965 if (mtd && mtd != ret)
966 ret = NULL;
967 }
968
969 if (!ret) {
970 ret = ERR_PTR(err);
971 goto out;
972 }
973
974 err = __get_mtd_device(ret);
975 if (err)
976 ret = ERR_PTR(err);
977out:
978 mutex_unlock(&mtd_table_mutex);
979 return ret;
980}
981EXPORT_SYMBOL_GPL(get_mtd_device);
982
983
984int __get_mtd_device(struct mtd_info *mtd)
985{
986 int err;
987
988 if (!try_module_get(mtd->owner))
989 return -ENODEV;
990
991 if (mtd->_get_device) {
992 err = mtd->_get_device(mtd);
993
994 if (err) {
995 module_put(mtd->owner);
996 return err;
997 }
998 }
999 mtd->usecount++;
1000 return 0;
1001}
1002EXPORT_SYMBOL_GPL(__get_mtd_device);
1003
1004/**
1005 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1006 * device name
1007 * @name: MTD device name to open
1008 *
1009 * This function returns MTD device description structure in case of
1010 * success and an error code in case of failure.
1011 */
1012struct mtd_info *get_mtd_device_nm(const char *name)
1013{
1014 int err = -ENODEV;
1015 struct mtd_info *mtd = NULL, *other;
1016
1017 mutex_lock(&mtd_table_mutex);
1018
1019 mtd_for_each_device(other) {
1020 if (!strcmp(name, other->name)) {
1021 mtd = other;
1022 break;
1023 }
1024 }
1025
1026 if (!mtd)
1027 goto out_unlock;
1028
1029 err = __get_mtd_device(mtd);
1030 if (err)
1031 goto out_unlock;
1032
1033 mutex_unlock(&mtd_table_mutex);
1034 return mtd;
1035
1036out_unlock:
1037 mutex_unlock(&mtd_table_mutex);
1038 return ERR_PTR(err);
1039}
1040EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1041
1042void put_mtd_device(struct mtd_info *mtd)
1043{
1044 mutex_lock(&mtd_table_mutex);
1045 __put_mtd_device(mtd);
1046 mutex_unlock(&mtd_table_mutex);
1047
1048}
1049EXPORT_SYMBOL_GPL(put_mtd_device);
1050
1051void __put_mtd_device(struct mtd_info *mtd)
1052{
1053 --mtd->usecount;
1054 BUG_ON(mtd->usecount < 0);
1055
1056 if (mtd->_put_device)
1057 mtd->_put_device(mtd);
1058
1059 module_put(mtd->owner);
1060}
1061EXPORT_SYMBOL_GPL(__put_mtd_device);
1062
1063/*
1064 * Erase is an synchronous operation. Device drivers are epected to return a
1065 * negative error code if the operation failed and update instr->fail_addr
1066 * to point the portion that was not properly erased.
1067 */
1068int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1069{
1070 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1071
1072 if (!mtd->erasesize || !mtd->_erase)
1073 return -ENOTSUPP;
1074
1075 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1076 return -EINVAL;
1077 if (!(mtd->flags & MTD_WRITEABLE))
1078 return -EROFS;
1079
1080 if (!instr->len)
1081 return 0;
1082
1083 ledtrig_mtd_activity();
1084 return mtd->_erase(mtd, instr);
1085}
1086EXPORT_SYMBOL_GPL(mtd_erase);
1087
1088/*
1089 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1090 */
1091int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1092 void **virt, resource_size_t *phys)
1093{
1094 *retlen = 0;
1095 *virt = NULL;
1096 if (phys)
1097 *phys = 0;
1098 if (!mtd->_point)
1099 return -EOPNOTSUPP;
1100 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1101 return -EINVAL;
1102 if (!len)
1103 return 0;
1104 return mtd->_point(mtd, from, len, retlen, virt, phys);
1105}
1106EXPORT_SYMBOL_GPL(mtd_point);
1107
1108/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1109int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1110{
1111 if (!mtd->_unpoint)
1112 return -EOPNOTSUPP;
1113 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1114 return -EINVAL;
1115 if (!len)
1116 return 0;
1117 return mtd->_unpoint(mtd, from, len);
1118}
1119EXPORT_SYMBOL_GPL(mtd_unpoint);
1120
1121/*
1122 * Allow NOMMU mmap() to directly map the device (if not NULL)
1123 * - return the address to which the offset maps
1124 * - return -ENOSYS to indicate refusal to do the mapping
1125 */
1126unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1127 unsigned long offset, unsigned long flags)
1128{
1129 size_t retlen;
1130 void *virt;
1131 int ret;
1132
1133 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1134 if (ret)
1135 return ret;
1136 if (retlen != len) {
1137 mtd_unpoint(mtd, offset, retlen);
1138 return -ENOSYS;
1139 }
1140 return (unsigned long)virt;
1141}
1142EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1143
1144int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1145 u_char *buf)
1146{
1147 struct mtd_oob_ops ops = {
1148 .len = len,
1149 .datbuf = buf,
1150 };
1151 int ret;
1152
1153 ret = mtd_read_oob(mtd, from, &ops);
1154 *retlen = ops.retlen;
1155
1156 return ret;
1157}
1158EXPORT_SYMBOL_GPL(mtd_read);
1159
1160int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1161 const u_char *buf)
1162{
1163 struct mtd_oob_ops ops = {
1164 .len = len,
1165 .datbuf = (u8 *)buf,
1166 };
1167 int ret;
1168
1169 ret = mtd_write_oob(mtd, to, &ops);
1170 *retlen = ops.retlen;
1171
1172 return ret;
1173}
1174EXPORT_SYMBOL_GPL(mtd_write);
1175
1176/*
1177 * In blackbox flight recorder like scenarios we want to make successful writes
1178 * in interrupt context. panic_write() is only intended to be called when its
1179 * known the kernel is about to panic and we need the write to succeed. Since
1180 * the kernel is not going to be running for much longer, this function can
1181 * break locks and delay to ensure the write succeeds (but not sleep).
1182 */
1183int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1184 const u_char *buf)
1185{
1186 *retlen = 0;
1187 if (!mtd->_panic_write)
1188 return -EOPNOTSUPP;
1189 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1190 return -EINVAL;
1191 if (!(mtd->flags & MTD_WRITEABLE))
1192 return -EROFS;
1193 if (!len)
1194 return 0;
1195 if (!mtd->oops_panic_write)
1196 mtd->oops_panic_write = true;
1197
1198 return mtd->_panic_write(mtd, to, len, retlen, buf);
1199}
1200EXPORT_SYMBOL_GPL(mtd_panic_write);
1201
1202static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1203 struct mtd_oob_ops *ops)
1204{
1205 /*
1206 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1207 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1208 * this case.
1209 */
1210 if (!ops->datbuf)
1211 ops->len = 0;
1212
1213 if (!ops->oobbuf)
1214 ops->ooblen = 0;
1215
1216 if (offs < 0 || offs + ops->len > mtd->size)
1217 return -EINVAL;
1218
1219 if (ops->ooblen) {
1220 size_t maxooblen;
1221
1222 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1223 return -EINVAL;
1224
1225 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1226 mtd_div_by_ws(offs, mtd)) *
1227 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1228 if (ops->ooblen > maxooblen)
1229 return -EINVAL;
1230 }
1231
1232 return 0;
1233}
1234
1235int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1236{
1237 int ret_code;
1238 ops->retlen = ops->oobretlen = 0;
1239
1240 ret_code = mtd_check_oob_ops(mtd, from, ops);
1241 if (ret_code)
1242 return ret_code;
1243
1244 ledtrig_mtd_activity();
1245
1246 /* Check the validity of a potential fallback on mtd->_read */
1247 if (!mtd->_read_oob && (!mtd->_read || ops->oobbuf))
1248 return -EOPNOTSUPP;
1249
1250 if (mtd->_read_oob)
1251 ret_code = mtd->_read_oob(mtd, from, ops);
1252 else
1253 ret_code = mtd->_read(mtd, from, ops->len, &ops->retlen,
1254 ops->datbuf);
1255
1256 /*
1257 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1258 * similar to mtd->_read(), returning a non-negative integer
1259 * representing max bitflips. In other cases, mtd->_read_oob() may
1260 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1261 */
1262 if (unlikely(ret_code < 0))
1263 return ret_code;
1264 if (mtd->ecc_strength == 0)
1265 return 0; /* device lacks ecc */
1266 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1267}
1268EXPORT_SYMBOL_GPL(mtd_read_oob);
1269
1270int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1271 struct mtd_oob_ops *ops)
1272{
1273 int ret;
1274
1275 ops->retlen = ops->oobretlen = 0;
1276
1277 if (!(mtd->flags & MTD_WRITEABLE))
1278 return -EROFS;
1279
1280 ret = mtd_check_oob_ops(mtd, to, ops);
1281 if (ret)
1282 return ret;
1283
1284 ledtrig_mtd_activity();
1285
1286 /* Check the validity of a potential fallback on mtd->_write */
1287 if (!mtd->_write_oob && (!mtd->_write || ops->oobbuf))
1288 return -EOPNOTSUPP;
1289
1290 if (mtd->_write_oob)
1291 return mtd->_write_oob(mtd, to, ops);
1292 else
1293 return mtd->_write(mtd, to, ops->len, &ops->retlen,
1294 ops->datbuf);
1295}
1296EXPORT_SYMBOL_GPL(mtd_write_oob);
1297
1298/**
1299 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1300 * @mtd: MTD device structure
1301 * @section: ECC section. Depending on the layout you may have all the ECC
1302 * bytes stored in a single contiguous section, or one section
1303 * per ECC chunk (and sometime several sections for a single ECC
1304 * ECC chunk)
1305 * @oobecc: OOB region struct filled with the appropriate ECC position
1306 * information
1307 *
1308 * This function returns ECC section information in the OOB area. If you want
1309 * to get all the ECC bytes information, then you should call
1310 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1311 *
1312 * Returns zero on success, a negative error code otherwise.
1313 */
1314int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1315 struct mtd_oob_region *oobecc)
1316{
1317 memset(oobecc, 0, sizeof(*oobecc));
1318
1319 if (!mtd || section < 0)
1320 return -EINVAL;
1321
1322 if (!mtd->ooblayout || !mtd->ooblayout->ecc)
1323 return -ENOTSUPP;
1324
1325 return mtd->ooblayout->ecc(mtd, section, oobecc);
1326}
1327EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1328
1329/**
1330 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1331 * section
1332 * @mtd: MTD device structure
1333 * @section: Free section you are interested in. Depending on the layout
1334 * you may have all the free bytes stored in a single contiguous
1335 * section, or one section per ECC chunk plus an extra section
1336 * for the remaining bytes (or other funky layout).
1337 * @oobfree: OOB region struct filled with the appropriate free position
1338 * information
1339 *
1340 * This function returns free bytes position in the OOB area. If you want
1341 * to get all the free bytes information, then you should call
1342 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1343 *
1344 * Returns zero on success, a negative error code otherwise.
1345 */
1346int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1347 struct mtd_oob_region *oobfree)
1348{
1349 memset(oobfree, 0, sizeof(*oobfree));
1350
1351 if (!mtd || section < 0)
1352 return -EINVAL;
1353
1354 if (!mtd->ooblayout || !mtd->ooblayout->free)
1355 return -ENOTSUPP;
1356
1357 return mtd->ooblayout->free(mtd, section, oobfree);
1358}
1359EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1360
1361/**
1362 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1363 * @mtd: mtd info structure
1364 * @byte: the byte we are searching for
1365 * @sectionp: pointer where the section id will be stored
1366 * @oobregion: used to retrieve the ECC position
1367 * @iter: iterator function. Should be either mtd_ooblayout_free or
1368 * mtd_ooblayout_ecc depending on the region type you're searching for
1369 *
1370 * This function returns the section id and oobregion information of a
1371 * specific byte. For example, say you want to know where the 4th ECC byte is
1372 * stored, you'll use:
1373 *
1374 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1375 *
1376 * Returns zero on success, a negative error code otherwise.
1377 */
1378static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1379 int *sectionp, struct mtd_oob_region *oobregion,
1380 int (*iter)(struct mtd_info *,
1381 int section,
1382 struct mtd_oob_region *oobregion))
1383{
1384 int pos = 0, ret, section = 0;
1385
1386 memset(oobregion, 0, sizeof(*oobregion));
1387
1388 while (1) {
1389 ret = iter(mtd, section, oobregion);
1390 if (ret)
1391 return ret;
1392
1393 if (pos + oobregion->length > byte)
1394 break;
1395
1396 pos += oobregion->length;
1397 section++;
1398 }
1399
1400 /*
1401 * Adjust region info to make it start at the beginning at the
1402 * 'start' ECC byte.
1403 */
1404 oobregion->offset += byte - pos;
1405 oobregion->length -= byte - pos;
1406 *sectionp = section;
1407
1408 return 0;
1409}
1410
1411/**
1412 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1413 * ECC byte
1414 * @mtd: mtd info structure
1415 * @eccbyte: the byte we are searching for
1416 * @sectionp: pointer where the section id will be stored
1417 * @oobregion: OOB region information
1418 *
1419 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1420 * byte.
1421 *
1422 * Returns zero on success, a negative error code otherwise.
1423 */
1424int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1425 int *section,
1426 struct mtd_oob_region *oobregion)
1427{
1428 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1429 mtd_ooblayout_ecc);
1430}
1431EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1432
1433/**
1434 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1435 * @mtd: mtd info structure
1436 * @buf: destination buffer to store OOB bytes
1437 * @oobbuf: OOB buffer
1438 * @start: first byte to retrieve
1439 * @nbytes: number of bytes to retrieve
1440 * @iter: section iterator
1441 *
1442 * Extract bytes attached to a specific category (ECC or free)
1443 * from the OOB buffer and copy them into buf.
1444 *
1445 * Returns zero on success, a negative error code otherwise.
1446 */
1447static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1448 const u8 *oobbuf, int start, int nbytes,
1449 int (*iter)(struct mtd_info *,
1450 int section,
1451 struct mtd_oob_region *oobregion))
1452{
1453 struct mtd_oob_region oobregion;
1454 int section, ret;
1455
1456 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1457 &oobregion, iter);
1458
1459 while (!ret) {
1460 int cnt;
1461
1462 cnt = min_t(int, nbytes, oobregion.length);
1463 memcpy(buf, oobbuf + oobregion.offset, cnt);
1464 buf += cnt;
1465 nbytes -= cnt;
1466
1467 if (!nbytes)
1468 break;
1469
1470 ret = iter(mtd, ++section, &oobregion);
1471 }
1472
1473 return ret;
1474}
1475
1476/**
1477 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1478 * @mtd: mtd info structure
1479 * @buf: source buffer to get OOB bytes from
1480 * @oobbuf: OOB buffer
1481 * @start: first OOB byte to set
1482 * @nbytes: number of OOB bytes to set
1483 * @iter: section iterator
1484 *
1485 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1486 * is selected by passing the appropriate iterator.
1487 *
1488 * Returns zero on success, a negative error code otherwise.
1489 */
1490static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1491 u8 *oobbuf, int start, int nbytes,
1492 int (*iter)(struct mtd_info *,
1493 int section,
1494 struct mtd_oob_region *oobregion))
1495{
1496 struct mtd_oob_region oobregion;
1497 int section, ret;
1498
1499 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1500 &oobregion, iter);
1501
1502 while (!ret) {
1503 int cnt;
1504
1505 cnt = min_t(int, nbytes, oobregion.length);
1506 memcpy(oobbuf + oobregion.offset, buf, cnt);
1507 buf += cnt;
1508 nbytes -= cnt;
1509
1510 if (!nbytes)
1511 break;
1512
1513 ret = iter(mtd, ++section, &oobregion);
1514 }
1515
1516 return ret;
1517}
1518
1519/**
1520 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1521 * @mtd: mtd info structure
1522 * @iter: category iterator
1523 *
1524 * Count the number of bytes in a given category.
1525 *
1526 * Returns a positive value on success, a negative error code otherwise.
1527 */
1528static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1529 int (*iter)(struct mtd_info *,
1530 int section,
1531 struct mtd_oob_region *oobregion))
1532{
1533 struct mtd_oob_region oobregion;
1534 int section = 0, ret, nbytes = 0;
1535
1536 while (1) {
1537 ret = iter(mtd, section++, &oobregion);
1538 if (ret) {
1539 if (ret == -ERANGE)
1540 ret = nbytes;
1541 break;
1542 }
1543
1544 nbytes += oobregion.length;
1545 }
1546
1547 return ret;
1548}
1549
1550/**
1551 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1552 * @mtd: mtd info structure
1553 * @eccbuf: destination buffer to store ECC bytes
1554 * @oobbuf: OOB buffer
1555 * @start: first ECC byte to retrieve
1556 * @nbytes: number of ECC bytes to retrieve
1557 *
1558 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1559 *
1560 * Returns zero on success, a negative error code otherwise.
1561 */
1562int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1563 const u8 *oobbuf, int start, int nbytes)
1564{
1565 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1566 mtd_ooblayout_ecc);
1567}
1568EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1569
1570/**
1571 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1572 * @mtd: mtd info structure
1573 * @eccbuf: source buffer to get ECC bytes from
1574 * @oobbuf: OOB buffer
1575 * @start: first ECC byte to set
1576 * @nbytes: number of ECC bytes to set
1577 *
1578 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1579 *
1580 * Returns zero on success, a negative error code otherwise.
1581 */
1582int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1583 u8 *oobbuf, int start, int nbytes)
1584{
1585 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1586 mtd_ooblayout_ecc);
1587}
1588EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1589
1590/**
1591 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1592 * @mtd: mtd info structure
1593 * @databuf: destination buffer to store ECC bytes
1594 * @oobbuf: OOB buffer
1595 * @start: first ECC byte to retrieve
1596 * @nbytes: number of ECC bytes to retrieve
1597 *
1598 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1599 *
1600 * Returns zero on success, a negative error code otherwise.
1601 */
1602int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1603 const u8 *oobbuf, int start, int nbytes)
1604{
1605 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1606 mtd_ooblayout_free);
1607}
1608EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1609
1610/**
1611 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1612 * @mtd: mtd info structure
1613 * @databuf: source buffer to get data bytes from
1614 * @oobbuf: OOB buffer
1615 * @start: first ECC byte to set
1616 * @nbytes: number of ECC bytes to set
1617 *
1618 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1619 *
1620 * Returns zero on success, a negative error code otherwise.
1621 */
1622int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1623 u8 *oobbuf, int start, int nbytes)
1624{
1625 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1626 mtd_ooblayout_free);
1627}
1628EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1629
1630/**
1631 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1632 * @mtd: mtd info structure
1633 *
1634 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1635 *
1636 * Returns zero on success, a negative error code otherwise.
1637 */
1638int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1639{
1640 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1641}
1642EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1643
1644/**
1645 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1646 * @mtd: mtd info structure
1647 *
1648 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1649 *
1650 * Returns zero on success, a negative error code otherwise.
1651 */
1652int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1653{
1654 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1655}
1656EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1657
1658/*
1659 * Method to access the protection register area, present in some flash
1660 * devices. The user data is one time programmable but the factory data is read
1661 * only.
1662 */
1663int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1664 struct otp_info *buf)
1665{
1666 if (!mtd->_get_fact_prot_info)
1667 return -EOPNOTSUPP;
1668 if (!len)
1669 return 0;
1670 return mtd->_get_fact_prot_info(mtd, len, retlen, buf);
1671}
1672EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1673
1674int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1675 size_t *retlen, u_char *buf)
1676{
1677 *retlen = 0;
1678 if (!mtd->_read_fact_prot_reg)
1679 return -EOPNOTSUPP;
1680 if (!len)
1681 return 0;
1682 return mtd->_read_fact_prot_reg(mtd, from, len, retlen, buf);
1683}
1684EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1685
1686int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1687 struct otp_info *buf)
1688{
1689 if (!mtd->_get_user_prot_info)
1690 return -EOPNOTSUPP;
1691 if (!len)
1692 return 0;
1693 return mtd->_get_user_prot_info(mtd, len, retlen, buf);
1694}
1695EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1696
1697int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1698 size_t *retlen, u_char *buf)
1699{
1700 *retlen = 0;
1701 if (!mtd->_read_user_prot_reg)
1702 return -EOPNOTSUPP;
1703 if (!len)
1704 return 0;
1705 return mtd->_read_user_prot_reg(mtd, from, len, retlen, buf);
1706}
1707EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1708
1709int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1710 size_t *retlen, u_char *buf)
1711{
1712 int ret;
1713
1714 *retlen = 0;
1715 if (!mtd->_write_user_prot_reg)
1716 return -EOPNOTSUPP;
1717 if (!len)
1718 return 0;
1719 ret = mtd->_write_user_prot_reg(mtd, to, len, retlen, buf);
1720 if (ret)
1721 return ret;
1722
1723 /*
1724 * If no data could be written at all, we are out of memory and
1725 * must return -ENOSPC.
1726 */
1727 return (*retlen) ? 0 : -ENOSPC;
1728}
1729EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1730
1731int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1732{
1733 if (!mtd->_lock_user_prot_reg)
1734 return -EOPNOTSUPP;
1735 if (!len)
1736 return 0;
1737 return mtd->_lock_user_prot_reg(mtd, from, len);
1738}
1739EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1740
1741/* Chip-supported device locking */
1742int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1743{
1744 if (!mtd->_lock)
1745 return -EOPNOTSUPP;
1746 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1747 return -EINVAL;
1748 if (!len)
1749 return 0;
1750 return mtd->_lock(mtd, ofs, len);
1751}
1752EXPORT_SYMBOL_GPL(mtd_lock);
1753
1754int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1755{
1756 if (!mtd->_unlock)
1757 return -EOPNOTSUPP;
1758 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1759 return -EINVAL;
1760 if (!len)
1761 return 0;
1762 return mtd->_unlock(mtd, ofs, len);
1763}
1764EXPORT_SYMBOL_GPL(mtd_unlock);
1765
1766int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1767{
1768 if (!mtd->_is_locked)
1769 return -EOPNOTSUPP;
1770 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1771 return -EINVAL;
1772 if (!len)
1773 return 0;
1774 return mtd->_is_locked(mtd, ofs, len);
1775}
1776EXPORT_SYMBOL_GPL(mtd_is_locked);
1777
1778int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1779{
1780 if (ofs < 0 || ofs >= mtd->size)
1781 return -EINVAL;
1782 if (!mtd->_block_isreserved)
1783 return 0;
1784 return mtd->_block_isreserved(mtd, ofs);
1785}
1786EXPORT_SYMBOL_GPL(mtd_block_isreserved);
1787
1788int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
1789{
1790 if (ofs < 0 || ofs >= mtd->size)
1791 return -EINVAL;
1792 if (!mtd->_block_isbad)
1793 return 0;
1794 return mtd->_block_isbad(mtd, ofs);
1795}
1796EXPORT_SYMBOL_GPL(mtd_block_isbad);
1797
1798int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
1799{
1800 if (!mtd->_block_markbad)
1801 return -EOPNOTSUPP;
1802 if (ofs < 0 || ofs >= mtd->size)
1803 return -EINVAL;
1804 if (!(mtd->flags & MTD_WRITEABLE))
1805 return -EROFS;
1806 return mtd->_block_markbad(mtd, ofs);
1807}
1808EXPORT_SYMBOL_GPL(mtd_block_markbad);
1809
1810/*
1811 * default_mtd_writev - the default writev method
1812 * @mtd: mtd device description object pointer
1813 * @vecs: the vectors to write
1814 * @count: count of vectors in @vecs
1815 * @to: the MTD device offset to write to
1816 * @retlen: on exit contains the count of bytes written to the MTD device.
1817 *
1818 * This function returns zero in case of success and a negative error code in
1819 * case of failure.
1820 */
1821static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1822 unsigned long count, loff_t to, size_t *retlen)
1823{
1824 unsigned long i;
1825 size_t totlen = 0, thislen;
1826 int ret = 0;
1827
1828 for (i = 0; i < count; i++) {
1829 if (!vecs[i].iov_len)
1830 continue;
1831 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
1832 vecs[i].iov_base);
1833 totlen += thislen;
1834 if (ret || thislen != vecs[i].iov_len)
1835 break;
1836 to += vecs[i].iov_len;
1837 }
1838 *retlen = totlen;
1839 return ret;
1840}
1841
1842/*
1843 * mtd_writev - the vector-based MTD write method
1844 * @mtd: mtd device description object pointer
1845 * @vecs: the vectors to write
1846 * @count: count of vectors in @vecs
1847 * @to: the MTD device offset to write to
1848 * @retlen: on exit contains the count of bytes written to the MTD device.
1849 *
1850 * This function returns zero in case of success and a negative error code in
1851 * case of failure.
1852 */
1853int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
1854 unsigned long count, loff_t to, size_t *retlen)
1855{
1856 *retlen = 0;
1857 if (!(mtd->flags & MTD_WRITEABLE))
1858 return -EROFS;
1859 if (!mtd->_writev)
1860 return default_mtd_writev(mtd, vecs, count, to, retlen);
1861 return mtd->_writev(mtd, vecs, count, to, retlen);
1862}
1863EXPORT_SYMBOL_GPL(mtd_writev);
1864
1865/**
1866 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
1867 * @mtd: mtd device description object pointer
1868 * @size: a pointer to the ideal or maximum size of the allocation, points
1869 * to the actual allocation size on success.
1870 *
1871 * This routine attempts to allocate a contiguous kernel buffer up to
1872 * the specified size, backing off the size of the request exponentially
1873 * until the request succeeds or until the allocation size falls below
1874 * the system page size. This attempts to make sure it does not adversely
1875 * impact system performance, so when allocating more than one page, we
1876 * ask the memory allocator to avoid re-trying, swapping, writing back
1877 * or performing I/O.
1878 *
1879 * Note, this function also makes sure that the allocated buffer is aligned to
1880 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
1881 *
1882 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
1883 * to handle smaller (i.e. degraded) buffer allocations under low- or
1884 * fragmented-memory situations where such reduced allocations, from a
1885 * requested ideal, are allowed.
1886 *
1887 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
1888 */
1889void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
1890{
1891 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
1892 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
1893 void *kbuf;
1894
1895 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
1896
1897 while (*size > min_alloc) {
1898 kbuf = kmalloc(*size, flags);
1899 if (kbuf)
1900 return kbuf;
1901
1902 *size >>= 1;
1903 *size = ALIGN(*size, mtd->writesize);
1904 }
1905
1906 /*
1907 * For the last resort allocation allow 'kmalloc()' to do all sorts of
1908 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
1909 */
1910 return kmalloc(*size, GFP_KERNEL);
1911}
1912EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
1913
1914#ifdef CONFIG_PROC_FS
1915
1916/*====================================================================*/
1917/* Support for /proc/mtd */
1918
1919static int mtd_proc_show(struct seq_file *m, void *v)
1920{
1921 struct mtd_info *mtd;
1922
1923 seq_puts(m, "dev: size erasesize name\n");
1924 mutex_lock(&mtd_table_mutex);
1925 mtd_for_each_device(mtd) {
1926 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
1927 mtd->index, (unsigned long long)mtd->size,
1928 mtd->erasesize, mtd->name);
1929 }
1930 mutex_unlock(&mtd_table_mutex);
1931 return 0;
1932}
1933#endif /* CONFIG_PROC_FS */
1934
1935/*====================================================================*/
1936/* Init code */
1937
1938static struct backing_dev_info * __init mtd_bdi_init(char *name)
1939{
1940 struct backing_dev_info *bdi;
1941 int ret;
1942
1943 bdi = bdi_alloc(GFP_KERNEL);
1944 if (!bdi)
1945 return ERR_PTR(-ENOMEM);
1946
1947 bdi->name = name;
1948 /*
1949 * We put '-0' suffix to the name to get the same name format as we
1950 * used to get. Since this is called only once, we get a unique name.
1951 */
1952 ret = bdi_register(bdi, "%.28s-0", name);
1953 if (ret)
1954 bdi_put(bdi);
1955
1956 return ret ? ERR_PTR(ret) : bdi;
1957}
1958
1959static struct proc_dir_entry *proc_mtd;
1960
1961static int __init init_mtd(void)
1962{
1963 int ret;
1964
1965 ret = class_register(&mtd_class);
1966 if (ret)
1967 goto err_reg;
1968
1969 mtd_bdi = mtd_bdi_init("mtd");
1970 if (IS_ERR(mtd_bdi)) {
1971 ret = PTR_ERR(mtd_bdi);
1972 goto err_bdi;
1973 }
1974
1975 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
1976
1977 ret = init_mtdchar();
1978 if (ret)
1979 goto out_procfs;
1980
1981 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
1982
1983 return 0;
1984
1985out_procfs:
1986 if (proc_mtd)
1987 remove_proc_entry("mtd", NULL);
1988 bdi_put(mtd_bdi);
1989err_bdi:
1990 class_unregister(&mtd_class);
1991err_reg:
1992 pr_err("Error registering mtd class or bdi: %d\n", ret);
1993 return ret;
1994}
1995
1996static void __exit cleanup_mtd(void)
1997{
1998 debugfs_remove_recursive(dfs_dir_mtd);
1999 cleanup_mtdchar();
2000 if (proc_mtd)
2001 remove_proc_entry("mtd", NULL);
2002 class_unregister(&mtd_class);
2003 bdi_put(mtd_bdi);
2004 idr_destroy(&mtd_idr);
2005}
2006
2007module_init(init_mtd);
2008module_exit(cleanup_mtd);
2009
2010MODULE_LICENSE("GPL");
2011MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2012MODULE_DESCRIPTION("Core MTD registration and access routines");