Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31
32#include <linux/mtd/mtd.h>
33#include <linux/mtd/partitions.h>
34
35#include "mtdcore.h"
36
37struct backing_dev_info *mtd_bdi;
38
39#ifdef CONFIG_PM_SLEEP
40
41static int mtd_cls_suspend(struct device *dev)
42{
43 struct mtd_info *mtd = dev_get_drvdata(dev);
44
45 return mtd ? mtd_suspend(mtd) : 0;
46}
47
48static int mtd_cls_resume(struct device *dev)
49{
50 struct mtd_info *mtd = dev_get_drvdata(dev);
51
52 if (mtd)
53 mtd_resume(mtd);
54 return 0;
55}
56
57static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59#else
60#define MTD_CLS_PM_OPS NULL
61#endif
62
63static struct class mtd_class = {
64 .name = "mtd",
65 .owner = THIS_MODULE,
66 .pm = MTD_CLS_PM_OPS,
67};
68
69static DEFINE_IDR(mtd_idr);
70
71/* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73DEFINE_MUTEX(mtd_table_mutex);
74EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82static LIST_HEAD(mtd_notifiers);
83
84
85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97}
98
99static ssize_t mtd_type_show(struct device *dev,
100 struct device_attribute *attr, char *buf)
101{
102 struct mtd_info *mtd = dev_get_drvdata(dev);
103 char *type;
104
105 switch (mtd->type) {
106 case MTD_ABSENT:
107 type = "absent";
108 break;
109 case MTD_RAM:
110 type = "ram";
111 break;
112 case MTD_ROM:
113 type = "rom";
114 break;
115 case MTD_NORFLASH:
116 type = "nor";
117 break;
118 case MTD_NANDFLASH:
119 type = "nand";
120 break;
121 case MTD_DATAFLASH:
122 type = "dataflash";
123 break;
124 case MTD_UBIVOLUME:
125 type = "ubi";
126 break;
127 case MTD_MLCNANDFLASH:
128 type = "mlc-nand";
129 break;
130 default:
131 type = "unknown";
132 }
133
134 return snprintf(buf, PAGE_SIZE, "%s\n", type);
135}
136static DEVICE_ATTR(type, S_IRUGO, mtd_type_show, NULL);
137
138static ssize_t mtd_flags_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140{
141 struct mtd_info *mtd = dev_get_drvdata(dev);
142
143 return snprintf(buf, PAGE_SIZE, "0x%lx\n", (unsigned long)mtd->flags);
144}
145static DEVICE_ATTR(flags, S_IRUGO, mtd_flags_show, NULL);
146
147static ssize_t mtd_size_show(struct device *dev,
148 struct device_attribute *attr, char *buf)
149{
150 struct mtd_info *mtd = dev_get_drvdata(dev);
151
152 return snprintf(buf, PAGE_SIZE, "%llu\n",
153 (unsigned long long)mtd->size);
154}
155static DEVICE_ATTR(size, S_IRUGO, mtd_size_show, NULL);
156
157static ssize_t mtd_erasesize_show(struct device *dev,
158 struct device_attribute *attr, char *buf)
159{
160 struct mtd_info *mtd = dev_get_drvdata(dev);
161
162 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->erasesize);
163}
164static DEVICE_ATTR(erasesize, S_IRUGO, mtd_erasesize_show, NULL);
165
166static ssize_t mtd_writesize_show(struct device *dev,
167 struct device_attribute *attr, char *buf)
168{
169 struct mtd_info *mtd = dev_get_drvdata(dev);
170
171 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->writesize);
172}
173static DEVICE_ATTR(writesize, S_IRUGO, mtd_writesize_show, NULL);
174
175static ssize_t mtd_subpagesize_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
180
181 return snprintf(buf, PAGE_SIZE, "%u\n", subpagesize);
182}
183static DEVICE_ATTR(subpagesize, S_IRUGO, mtd_subpagesize_show, NULL);
184
185static ssize_t mtd_oobsize_show(struct device *dev,
186 struct device_attribute *attr, char *buf)
187{
188 struct mtd_info *mtd = dev_get_drvdata(dev);
189
190 return snprintf(buf, PAGE_SIZE, "%lu\n", (unsigned long)mtd->oobsize);
191}
192static DEVICE_ATTR(oobsize, S_IRUGO, mtd_oobsize_show, NULL);
193
194static ssize_t mtd_oobavail_show(struct device *dev,
195 struct device_attribute *attr, char *buf)
196{
197 struct mtd_info *mtd = dev_get_drvdata(dev);
198
199 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->oobavail);
200}
201static DEVICE_ATTR(oobavail, S_IRUGO, mtd_oobavail_show, NULL);
202
203static ssize_t mtd_numeraseregions_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct mtd_info *mtd = dev_get_drvdata(dev);
207
208 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->numeraseregions);
209}
210static DEVICE_ATTR(numeraseregions, S_IRUGO, mtd_numeraseregions_show,
211 NULL);
212
213static ssize_t mtd_name_show(struct device *dev,
214 struct device_attribute *attr, char *buf)
215{
216 struct mtd_info *mtd = dev_get_drvdata(dev);
217
218 return snprintf(buf, PAGE_SIZE, "%s\n", mtd->name);
219}
220static DEVICE_ATTR(name, S_IRUGO, mtd_name_show, NULL);
221
222static ssize_t mtd_ecc_strength_show(struct device *dev,
223 struct device_attribute *attr, char *buf)
224{
225 struct mtd_info *mtd = dev_get_drvdata(dev);
226
227 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_strength);
228}
229static DEVICE_ATTR(ecc_strength, S_IRUGO, mtd_ecc_strength_show, NULL);
230
231static ssize_t mtd_bitflip_threshold_show(struct device *dev,
232 struct device_attribute *attr,
233 char *buf)
234{
235 struct mtd_info *mtd = dev_get_drvdata(dev);
236
237 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->bitflip_threshold);
238}
239
240static ssize_t mtd_bitflip_threshold_store(struct device *dev,
241 struct device_attribute *attr,
242 const char *buf, size_t count)
243{
244 struct mtd_info *mtd = dev_get_drvdata(dev);
245 unsigned int bitflip_threshold;
246 int retval;
247
248 retval = kstrtouint(buf, 0, &bitflip_threshold);
249 if (retval)
250 return retval;
251
252 mtd->bitflip_threshold = bitflip_threshold;
253 return count;
254}
255static DEVICE_ATTR(bitflip_threshold, S_IRUGO | S_IWUSR,
256 mtd_bitflip_threshold_show,
257 mtd_bitflip_threshold_store);
258
259static ssize_t mtd_ecc_step_size_show(struct device *dev,
260 struct device_attribute *attr, char *buf)
261{
262 struct mtd_info *mtd = dev_get_drvdata(dev);
263
264 return snprintf(buf, PAGE_SIZE, "%u\n", mtd->ecc_step_size);
265
266}
267static DEVICE_ATTR(ecc_step_size, S_IRUGO, mtd_ecc_step_size_show, NULL);
268
269static ssize_t mtd_ecc_stats_corrected_show(struct device *dev,
270 struct device_attribute *attr, char *buf)
271{
272 struct mtd_info *mtd = dev_get_drvdata(dev);
273 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
274
275 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->corrected);
276}
277static DEVICE_ATTR(corrected_bits, S_IRUGO,
278 mtd_ecc_stats_corrected_show, NULL);
279
280static ssize_t mtd_ecc_stats_errors_show(struct device *dev,
281 struct device_attribute *attr, char *buf)
282{
283 struct mtd_info *mtd = dev_get_drvdata(dev);
284 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
285
286 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->failed);
287}
288static DEVICE_ATTR(ecc_failures, S_IRUGO, mtd_ecc_stats_errors_show, NULL);
289
290static ssize_t mtd_badblocks_show(struct device *dev,
291 struct device_attribute *attr, char *buf)
292{
293 struct mtd_info *mtd = dev_get_drvdata(dev);
294 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
295
296 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->badblocks);
297}
298static DEVICE_ATTR(bad_blocks, S_IRUGO, mtd_badblocks_show, NULL);
299
300static ssize_t mtd_bbtblocks_show(struct device *dev,
301 struct device_attribute *attr, char *buf)
302{
303 struct mtd_info *mtd = dev_get_drvdata(dev);
304 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
305
306 return snprintf(buf, PAGE_SIZE, "%u\n", ecc_stats->bbtblocks);
307}
308static DEVICE_ATTR(bbt_blocks, S_IRUGO, mtd_bbtblocks_show, NULL);
309
310static struct attribute *mtd_attrs[] = {
311 &dev_attr_type.attr,
312 &dev_attr_flags.attr,
313 &dev_attr_size.attr,
314 &dev_attr_erasesize.attr,
315 &dev_attr_writesize.attr,
316 &dev_attr_subpagesize.attr,
317 &dev_attr_oobsize.attr,
318 &dev_attr_oobavail.attr,
319 &dev_attr_numeraseregions.attr,
320 &dev_attr_name.attr,
321 &dev_attr_ecc_strength.attr,
322 &dev_attr_ecc_step_size.attr,
323 &dev_attr_corrected_bits.attr,
324 &dev_attr_ecc_failures.attr,
325 &dev_attr_bad_blocks.attr,
326 &dev_attr_bbt_blocks.attr,
327 &dev_attr_bitflip_threshold.attr,
328 NULL,
329};
330ATTRIBUTE_GROUPS(mtd);
331
332static const struct device_type mtd_devtype = {
333 .name = "mtd",
334 .groups = mtd_groups,
335 .release = mtd_release,
336};
337
338static int mtd_partid_show(struct seq_file *s, void *p)
339{
340 struct mtd_info *mtd = s->private;
341
342 seq_printf(s, "%s\n", mtd->dbg.partid);
343
344 return 0;
345}
346
347static int mtd_partid_debugfs_open(struct inode *inode, struct file *file)
348{
349 return single_open(file, mtd_partid_show, inode->i_private);
350}
351
352static const struct file_operations mtd_partid_debug_fops = {
353 .open = mtd_partid_debugfs_open,
354 .read = seq_read,
355 .llseek = seq_lseek,
356 .release = single_release,
357};
358
359static int mtd_partname_show(struct seq_file *s, void *p)
360{
361 struct mtd_info *mtd = s->private;
362
363 seq_printf(s, "%s\n", mtd->dbg.partname);
364
365 return 0;
366}
367
368static int mtd_partname_debugfs_open(struct inode *inode, struct file *file)
369{
370 return single_open(file, mtd_partname_show, inode->i_private);
371}
372
373static const struct file_operations mtd_partname_debug_fops = {
374 .open = mtd_partname_debugfs_open,
375 .read = seq_read,
376 .llseek = seq_lseek,
377 .release = single_release,
378};
379
380static struct dentry *dfs_dir_mtd;
381
382static void mtd_debugfs_populate(struct mtd_info *mtd)
383{
384 struct device *dev = &mtd->dev;
385 struct dentry *root;
386
387 if (IS_ERR_OR_NULL(dfs_dir_mtd))
388 return;
389
390 root = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
391 mtd->dbg.dfs_dir = root;
392
393 if (mtd->dbg.partid)
394 debugfs_create_file("partid", 0400, root, mtd,
395 &mtd_partid_debug_fops);
396
397 if (mtd->dbg.partname)
398 debugfs_create_file("partname", 0400, root, mtd,
399 &mtd_partname_debug_fops);
400}
401
402#ifndef CONFIG_MMU
403unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
404{
405 switch (mtd->type) {
406 case MTD_RAM:
407 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
408 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
409 case MTD_ROM:
410 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
411 NOMMU_MAP_READ;
412 default:
413 return NOMMU_MAP_COPY;
414 }
415}
416EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
417#endif
418
419static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
420 void *cmd)
421{
422 struct mtd_info *mtd;
423
424 mtd = container_of(n, struct mtd_info, reboot_notifier);
425 mtd->_reboot(mtd);
426
427 return NOTIFY_DONE;
428}
429
430/**
431 * mtd_wunit_to_pairing_info - get pairing information of a wunit
432 * @mtd: pointer to new MTD device info structure
433 * @wunit: write unit we are interested in
434 * @info: returned pairing information
435 *
436 * Retrieve pairing information associated to the wunit.
437 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
438 * paired together, and where programming a page may influence the page it is
439 * paired with.
440 * The notion of page is replaced by the term wunit (write-unit) to stay
441 * consistent with the ->writesize field.
442 *
443 * The @wunit argument can be extracted from an absolute offset using
444 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
445 * to @wunit.
446 *
447 * From the pairing info the MTD user can find all the wunits paired with
448 * @wunit using the following loop:
449 *
450 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
451 * info.pair = i;
452 * mtd_pairing_info_to_wunit(mtd, &info);
453 * ...
454 * }
455 */
456int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
457 struct mtd_pairing_info *info)
458{
459 struct mtd_info *master = mtd_get_master(mtd);
460 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
461
462 if (wunit < 0 || wunit >= npairs)
463 return -EINVAL;
464
465 if (master->pairing && master->pairing->get_info)
466 return master->pairing->get_info(master, wunit, info);
467
468 info->group = 0;
469 info->pair = wunit;
470
471 return 0;
472}
473EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
474
475/**
476 * mtd_pairing_info_to_wunit - get wunit from pairing information
477 * @mtd: pointer to new MTD device info structure
478 * @info: pairing information struct
479 *
480 * Returns a positive number representing the wunit associated to the info
481 * struct, or a negative error code.
482 *
483 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
484 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
485 * doc).
486 *
487 * It can also be used to only program the first page of each pair (i.e.
488 * page attached to group 0), which allows one to use an MLC NAND in
489 * software-emulated SLC mode:
490 *
491 * info.group = 0;
492 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
493 * for (info.pair = 0; info.pair < npairs; info.pair++) {
494 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
495 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
496 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
497 * }
498 */
499int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
500 const struct mtd_pairing_info *info)
501{
502 struct mtd_info *master = mtd_get_master(mtd);
503 int ngroups = mtd_pairing_groups(master);
504 int npairs = mtd_wunit_per_eb(master) / ngroups;
505
506 if (!info || info->pair < 0 || info->pair >= npairs ||
507 info->group < 0 || info->group >= ngroups)
508 return -EINVAL;
509
510 if (master->pairing && master->pairing->get_wunit)
511 return mtd->pairing->get_wunit(master, info);
512
513 return info->pair;
514}
515EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
516
517/**
518 * mtd_pairing_groups - get the number of pairing groups
519 * @mtd: pointer to new MTD device info structure
520 *
521 * Returns the number of pairing groups.
522 *
523 * This number is usually equal to the number of bits exposed by a single
524 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
525 * to iterate over all pages of a given pair.
526 */
527int mtd_pairing_groups(struct mtd_info *mtd)
528{
529 struct mtd_info *master = mtd_get_master(mtd);
530
531 if (!master->pairing || !master->pairing->ngroups)
532 return 1;
533
534 return master->pairing->ngroups;
535}
536EXPORT_SYMBOL_GPL(mtd_pairing_groups);
537
538static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
539 void *val, size_t bytes)
540{
541 struct mtd_info *mtd = priv;
542 size_t retlen;
543 int err;
544
545 err = mtd_read(mtd, offset, bytes, &retlen, val);
546 if (err && err != -EUCLEAN)
547 return err;
548
549 return retlen == bytes ? 0 : -EIO;
550}
551
552static int mtd_nvmem_add(struct mtd_info *mtd)
553{
554 struct nvmem_config config = {};
555
556 config.id = -1;
557 config.dev = &mtd->dev;
558 config.name = dev_name(&mtd->dev);
559 config.owner = THIS_MODULE;
560 config.reg_read = mtd_nvmem_reg_read;
561 config.size = mtd->size;
562 config.word_size = 1;
563 config.stride = 1;
564 config.read_only = true;
565 config.root_only = true;
566 config.no_of_node = true;
567 config.priv = mtd;
568
569 mtd->nvmem = nvmem_register(&config);
570 if (IS_ERR(mtd->nvmem)) {
571 /* Just ignore if there is no NVMEM support in the kernel */
572 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
573 mtd->nvmem = NULL;
574 } else {
575 dev_err(&mtd->dev, "Failed to register NVMEM device\n");
576 return PTR_ERR(mtd->nvmem);
577 }
578 }
579
580 return 0;
581}
582
583/**
584 * add_mtd_device - register an MTD device
585 * @mtd: pointer to new MTD device info structure
586 *
587 * Add a device to the list of MTD devices present in the system, and
588 * notify each currently active MTD 'user' of its arrival. Returns
589 * zero on success or non-zero on failure.
590 */
591
592int add_mtd_device(struct mtd_info *mtd)
593{
594 struct mtd_info *master = mtd_get_master(mtd);
595 struct mtd_notifier *not;
596 int i, error;
597
598 /*
599 * May occur, for instance, on buggy drivers which call
600 * mtd_device_parse_register() multiple times on the same master MTD,
601 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
602 */
603 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
604 return -EEXIST;
605
606 BUG_ON(mtd->writesize == 0);
607
608 /*
609 * MTD drivers should implement ->_{write,read}() or
610 * ->_{write,read}_oob(), but not both.
611 */
612 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
613 (mtd->_read && mtd->_read_oob)))
614 return -EINVAL;
615
616 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
617 !(mtd->flags & MTD_NO_ERASE)))
618 return -EINVAL;
619
620 /*
621 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
622 * master is an MLC NAND and has a proper pairing scheme defined.
623 * We also reject masters that implement ->_writev() for now, because
624 * NAND controller drivers don't implement this hook, and adding the
625 * SLC -> MLC address/length conversion to this path is useless if we
626 * don't have a user.
627 */
628 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
629 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
630 !master->pairing || master->_writev))
631 return -EINVAL;
632
633 mutex_lock(&mtd_table_mutex);
634
635 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
636 if (i < 0) {
637 error = i;
638 goto fail_locked;
639 }
640
641 mtd->index = i;
642 mtd->usecount = 0;
643
644 /* default value if not set by driver */
645 if (mtd->bitflip_threshold == 0)
646 mtd->bitflip_threshold = mtd->ecc_strength;
647
648 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
649 int ngroups = mtd_pairing_groups(master);
650
651 mtd->erasesize /= ngroups;
652 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
653 mtd->erasesize;
654 }
655
656 if (is_power_of_2(mtd->erasesize))
657 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
658 else
659 mtd->erasesize_shift = 0;
660
661 if (is_power_of_2(mtd->writesize))
662 mtd->writesize_shift = ffs(mtd->writesize) - 1;
663 else
664 mtd->writesize_shift = 0;
665
666 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
667 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
668
669 /* Some chips always power up locked. Unlock them now */
670 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
671 error = mtd_unlock(mtd, 0, mtd->size);
672 if (error && error != -EOPNOTSUPP)
673 printk(KERN_WARNING
674 "%s: unlock failed, writes may not work\n",
675 mtd->name);
676 /* Ignore unlock failures? */
677 error = 0;
678 }
679
680 /* Caller should have set dev.parent to match the
681 * physical device, if appropriate.
682 */
683 mtd->dev.type = &mtd_devtype;
684 mtd->dev.class = &mtd_class;
685 mtd->dev.devt = MTD_DEVT(i);
686 dev_set_name(&mtd->dev, "mtd%d", i);
687 dev_set_drvdata(&mtd->dev, mtd);
688 of_node_get(mtd_get_of_node(mtd));
689 error = device_register(&mtd->dev);
690 if (error)
691 goto fail_added;
692
693 /* Add the nvmem provider */
694 error = mtd_nvmem_add(mtd);
695 if (error)
696 goto fail_nvmem_add;
697
698 mtd_debugfs_populate(mtd);
699
700 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
701 "mtd%dro", i);
702
703 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
704 /* No need to get a refcount on the module containing
705 the notifier, since we hold the mtd_table_mutex */
706 list_for_each_entry(not, &mtd_notifiers, list)
707 not->add(mtd);
708
709 mutex_unlock(&mtd_table_mutex);
710 /* We _know_ we aren't being removed, because
711 our caller is still holding us here. So none
712 of this try_ nonsense, and no bitching about it
713 either. :) */
714 __module_get(THIS_MODULE);
715 return 0;
716
717fail_nvmem_add:
718 device_unregister(&mtd->dev);
719fail_added:
720 of_node_put(mtd_get_of_node(mtd));
721 idr_remove(&mtd_idr, i);
722fail_locked:
723 mutex_unlock(&mtd_table_mutex);
724 return error;
725}
726
727/**
728 * del_mtd_device - unregister an MTD device
729 * @mtd: pointer to MTD device info structure
730 *
731 * Remove a device from the list of MTD devices present in the system,
732 * and notify each currently active MTD 'user' of its departure.
733 * Returns zero on success or 1 on failure, which currently will happen
734 * if the requested device does not appear to be present in the list.
735 */
736
737int del_mtd_device(struct mtd_info *mtd)
738{
739 int ret;
740 struct mtd_notifier *not;
741
742 mutex_lock(&mtd_table_mutex);
743
744 debugfs_remove_recursive(mtd->dbg.dfs_dir);
745
746 if (idr_find(&mtd_idr, mtd->index) != mtd) {
747 ret = -ENODEV;
748 goto out_error;
749 }
750
751 /* No need to get a refcount on the module containing
752 the notifier, since we hold the mtd_table_mutex */
753 list_for_each_entry(not, &mtd_notifiers, list)
754 not->remove(mtd);
755
756 if (mtd->usecount) {
757 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
758 mtd->index, mtd->name, mtd->usecount);
759 ret = -EBUSY;
760 } else {
761 /* Try to remove the NVMEM provider */
762 if (mtd->nvmem)
763 nvmem_unregister(mtd->nvmem);
764
765 device_unregister(&mtd->dev);
766
767 idr_remove(&mtd_idr, mtd->index);
768 of_node_put(mtd_get_of_node(mtd));
769
770 module_put(THIS_MODULE);
771 ret = 0;
772 }
773
774out_error:
775 mutex_unlock(&mtd_table_mutex);
776 return ret;
777}
778
779/*
780 * Set a few defaults based on the parent devices, if not provided by the
781 * driver
782 */
783static void mtd_set_dev_defaults(struct mtd_info *mtd)
784{
785 if (mtd->dev.parent) {
786 if (!mtd->owner && mtd->dev.parent->driver)
787 mtd->owner = mtd->dev.parent->driver->owner;
788 if (!mtd->name)
789 mtd->name = dev_name(mtd->dev.parent);
790 } else {
791 pr_debug("mtd device won't show a device symlink in sysfs\n");
792 }
793
794 INIT_LIST_HEAD(&mtd->partitions);
795 mutex_init(&mtd->master.partitions_lock);
796}
797
798/**
799 * mtd_device_parse_register - parse partitions and register an MTD device.
800 *
801 * @mtd: the MTD device to register
802 * @types: the list of MTD partition probes to try, see
803 * 'parse_mtd_partitions()' for more information
804 * @parser_data: MTD partition parser-specific data
805 * @parts: fallback partition information to register, if parsing fails;
806 * only valid if %nr_parts > %0
807 * @nr_parts: the number of partitions in parts, if zero then the full
808 * MTD device is registered if no partition info is found
809 *
810 * This function aggregates MTD partitions parsing (done by
811 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
812 * basically follows the most common pattern found in many MTD drivers:
813 *
814 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
815 * registered first.
816 * * Then It tries to probe partitions on MTD device @mtd using parsers
817 * specified in @types (if @types is %NULL, then the default list of parsers
818 * is used, see 'parse_mtd_partitions()' for more information). If none are
819 * found this functions tries to fallback to information specified in
820 * @parts/@nr_parts.
821 * * If no partitions were found this function just registers the MTD device
822 * @mtd and exits.
823 *
824 * Returns zero in case of success and a negative error code in case of failure.
825 */
826int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
827 struct mtd_part_parser_data *parser_data,
828 const struct mtd_partition *parts,
829 int nr_parts)
830{
831 int ret;
832
833 mtd_set_dev_defaults(mtd);
834
835 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
836 ret = add_mtd_device(mtd);
837 if (ret)
838 return ret;
839 }
840
841 /* Prefer parsed partitions over driver-provided fallback */
842 ret = parse_mtd_partitions(mtd, types, parser_data);
843 if (ret > 0)
844 ret = 0;
845 else if (nr_parts)
846 ret = add_mtd_partitions(mtd, parts, nr_parts);
847 else if (!device_is_registered(&mtd->dev))
848 ret = add_mtd_device(mtd);
849 else
850 ret = 0;
851
852 if (ret)
853 goto out;
854
855 /*
856 * FIXME: some drivers unfortunately call this function more than once.
857 * So we have to check if we've already assigned the reboot notifier.
858 *
859 * Generally, we can make multiple calls work for most cases, but it
860 * does cause problems with parse_mtd_partitions() above (e.g.,
861 * cmdlineparts will register partitions more than once).
862 */
863 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
864 "MTD already registered\n");
865 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
866 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
867 register_reboot_notifier(&mtd->reboot_notifier);
868 }
869
870out:
871 if (ret && device_is_registered(&mtd->dev))
872 del_mtd_device(mtd);
873
874 return ret;
875}
876EXPORT_SYMBOL_GPL(mtd_device_parse_register);
877
878/**
879 * mtd_device_unregister - unregister an existing MTD device.
880 *
881 * @master: the MTD device to unregister. This will unregister both the master
882 * and any partitions if registered.
883 */
884int mtd_device_unregister(struct mtd_info *master)
885{
886 int err;
887
888 if (master->_reboot)
889 unregister_reboot_notifier(&master->reboot_notifier);
890
891 err = del_mtd_partitions(master);
892 if (err)
893 return err;
894
895 if (!device_is_registered(&master->dev))
896 return 0;
897
898 return del_mtd_device(master);
899}
900EXPORT_SYMBOL_GPL(mtd_device_unregister);
901
902/**
903 * register_mtd_user - register a 'user' of MTD devices.
904 * @new: pointer to notifier info structure
905 *
906 * Registers a pair of callbacks function to be called upon addition
907 * or removal of MTD devices. Causes the 'add' callback to be immediately
908 * invoked for each MTD device currently present in the system.
909 */
910void register_mtd_user (struct mtd_notifier *new)
911{
912 struct mtd_info *mtd;
913
914 mutex_lock(&mtd_table_mutex);
915
916 list_add(&new->list, &mtd_notifiers);
917
918 __module_get(THIS_MODULE);
919
920 mtd_for_each_device(mtd)
921 new->add(mtd);
922
923 mutex_unlock(&mtd_table_mutex);
924}
925EXPORT_SYMBOL_GPL(register_mtd_user);
926
927/**
928 * unregister_mtd_user - unregister a 'user' of MTD devices.
929 * @old: pointer to notifier info structure
930 *
931 * Removes a callback function pair from the list of 'users' to be
932 * notified upon addition or removal of MTD devices. Causes the
933 * 'remove' callback to be immediately invoked for each MTD device
934 * currently present in the system.
935 */
936int unregister_mtd_user (struct mtd_notifier *old)
937{
938 struct mtd_info *mtd;
939
940 mutex_lock(&mtd_table_mutex);
941
942 module_put(THIS_MODULE);
943
944 mtd_for_each_device(mtd)
945 old->remove(mtd);
946
947 list_del(&old->list);
948 mutex_unlock(&mtd_table_mutex);
949 return 0;
950}
951EXPORT_SYMBOL_GPL(unregister_mtd_user);
952
953/**
954 * get_mtd_device - obtain a validated handle for an MTD device
955 * @mtd: last known address of the required MTD device
956 * @num: internal device number of the required MTD device
957 *
958 * Given a number and NULL address, return the num'th entry in the device
959 * table, if any. Given an address and num == -1, search the device table
960 * for a device with that address and return if it's still present. Given
961 * both, return the num'th driver only if its address matches. Return
962 * error code if not.
963 */
964struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
965{
966 struct mtd_info *ret = NULL, *other;
967 int err = -ENODEV;
968
969 mutex_lock(&mtd_table_mutex);
970
971 if (num == -1) {
972 mtd_for_each_device(other) {
973 if (other == mtd) {
974 ret = mtd;
975 break;
976 }
977 }
978 } else if (num >= 0) {
979 ret = idr_find(&mtd_idr, num);
980 if (mtd && mtd != ret)
981 ret = NULL;
982 }
983
984 if (!ret) {
985 ret = ERR_PTR(err);
986 goto out;
987 }
988
989 err = __get_mtd_device(ret);
990 if (err)
991 ret = ERR_PTR(err);
992out:
993 mutex_unlock(&mtd_table_mutex);
994 return ret;
995}
996EXPORT_SYMBOL_GPL(get_mtd_device);
997
998
999int __get_mtd_device(struct mtd_info *mtd)
1000{
1001 struct mtd_info *master = mtd_get_master(mtd);
1002 int err;
1003
1004 if (!try_module_get(master->owner))
1005 return -ENODEV;
1006
1007 if (master->_get_device) {
1008 err = master->_get_device(mtd);
1009
1010 if (err) {
1011 module_put(master->owner);
1012 return err;
1013 }
1014 }
1015
1016 while (mtd->parent) {
1017 mtd->usecount++;
1018 mtd = mtd->parent;
1019 }
1020
1021 return 0;
1022}
1023EXPORT_SYMBOL_GPL(__get_mtd_device);
1024
1025/**
1026 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1027 * device name
1028 * @name: MTD device name to open
1029 *
1030 * This function returns MTD device description structure in case of
1031 * success and an error code in case of failure.
1032 */
1033struct mtd_info *get_mtd_device_nm(const char *name)
1034{
1035 int err = -ENODEV;
1036 struct mtd_info *mtd = NULL, *other;
1037
1038 mutex_lock(&mtd_table_mutex);
1039
1040 mtd_for_each_device(other) {
1041 if (!strcmp(name, other->name)) {
1042 mtd = other;
1043 break;
1044 }
1045 }
1046
1047 if (!mtd)
1048 goto out_unlock;
1049
1050 err = __get_mtd_device(mtd);
1051 if (err)
1052 goto out_unlock;
1053
1054 mutex_unlock(&mtd_table_mutex);
1055 return mtd;
1056
1057out_unlock:
1058 mutex_unlock(&mtd_table_mutex);
1059 return ERR_PTR(err);
1060}
1061EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1062
1063void put_mtd_device(struct mtd_info *mtd)
1064{
1065 mutex_lock(&mtd_table_mutex);
1066 __put_mtd_device(mtd);
1067 mutex_unlock(&mtd_table_mutex);
1068
1069}
1070EXPORT_SYMBOL_GPL(put_mtd_device);
1071
1072void __put_mtd_device(struct mtd_info *mtd)
1073{
1074 struct mtd_info *master = mtd_get_master(mtd);
1075
1076 while (mtd->parent) {
1077 --mtd->usecount;
1078 BUG_ON(mtd->usecount < 0);
1079 mtd = mtd->parent;
1080 }
1081
1082 if (master->_put_device)
1083 master->_put_device(master);
1084
1085 module_put(master->owner);
1086}
1087EXPORT_SYMBOL_GPL(__put_mtd_device);
1088
1089/*
1090 * Erase is an synchronous operation. Device drivers are epected to return a
1091 * negative error code if the operation failed and update instr->fail_addr
1092 * to point the portion that was not properly erased.
1093 */
1094int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1095{
1096 struct mtd_info *master = mtd_get_master(mtd);
1097 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1098 struct erase_info adjinstr;
1099 int ret;
1100
1101 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1102 adjinstr = *instr;
1103
1104 if (!mtd->erasesize || !master->_erase)
1105 return -ENOTSUPP;
1106
1107 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1108 return -EINVAL;
1109 if (!(mtd->flags & MTD_WRITEABLE))
1110 return -EROFS;
1111
1112 if (!instr->len)
1113 return 0;
1114
1115 ledtrig_mtd_activity();
1116
1117 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1118 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1119 master->erasesize;
1120 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1121 master->erasesize) -
1122 adjinstr.addr;
1123 }
1124
1125 adjinstr.addr += mst_ofs;
1126
1127 ret = master->_erase(master, &adjinstr);
1128
1129 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1130 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1131 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1132 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1133 master);
1134 instr->fail_addr *= mtd->erasesize;
1135 }
1136 }
1137
1138 return ret;
1139}
1140EXPORT_SYMBOL_GPL(mtd_erase);
1141
1142/*
1143 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1144 */
1145int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1146 void **virt, resource_size_t *phys)
1147{
1148 struct mtd_info *master = mtd_get_master(mtd);
1149
1150 *retlen = 0;
1151 *virt = NULL;
1152 if (phys)
1153 *phys = 0;
1154 if (!master->_point)
1155 return -EOPNOTSUPP;
1156 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1157 return -EINVAL;
1158 if (!len)
1159 return 0;
1160
1161 from = mtd_get_master_ofs(mtd, from);
1162 return master->_point(master, from, len, retlen, virt, phys);
1163}
1164EXPORT_SYMBOL_GPL(mtd_point);
1165
1166/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1167int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1168{
1169 struct mtd_info *master = mtd_get_master(mtd);
1170
1171 if (!master->_unpoint)
1172 return -EOPNOTSUPP;
1173 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1174 return -EINVAL;
1175 if (!len)
1176 return 0;
1177 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1178}
1179EXPORT_SYMBOL_GPL(mtd_unpoint);
1180
1181/*
1182 * Allow NOMMU mmap() to directly map the device (if not NULL)
1183 * - return the address to which the offset maps
1184 * - return -ENOSYS to indicate refusal to do the mapping
1185 */
1186unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1187 unsigned long offset, unsigned long flags)
1188{
1189 size_t retlen;
1190 void *virt;
1191 int ret;
1192
1193 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1194 if (ret)
1195 return ret;
1196 if (retlen != len) {
1197 mtd_unpoint(mtd, offset, retlen);
1198 return -ENOSYS;
1199 }
1200 return (unsigned long)virt;
1201}
1202EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1203
1204static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1205 const struct mtd_ecc_stats *old_stats)
1206{
1207 struct mtd_ecc_stats diff;
1208
1209 if (master == mtd)
1210 return;
1211
1212 diff = master->ecc_stats;
1213 diff.failed -= old_stats->failed;
1214 diff.corrected -= old_stats->corrected;
1215
1216 while (mtd->parent) {
1217 mtd->ecc_stats.failed += diff.failed;
1218 mtd->ecc_stats.corrected += diff.corrected;
1219 mtd = mtd->parent;
1220 }
1221}
1222
1223int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1224 u_char *buf)
1225{
1226 struct mtd_oob_ops ops = {
1227 .len = len,
1228 .datbuf = buf,
1229 };
1230 int ret;
1231
1232 ret = mtd_read_oob(mtd, from, &ops);
1233 *retlen = ops.retlen;
1234
1235 return ret;
1236}
1237EXPORT_SYMBOL_GPL(mtd_read);
1238
1239int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1240 const u_char *buf)
1241{
1242 struct mtd_oob_ops ops = {
1243 .len = len,
1244 .datbuf = (u8 *)buf,
1245 };
1246 int ret;
1247
1248 ret = mtd_write_oob(mtd, to, &ops);
1249 *retlen = ops.retlen;
1250
1251 return ret;
1252}
1253EXPORT_SYMBOL_GPL(mtd_write);
1254
1255/*
1256 * In blackbox flight recorder like scenarios we want to make successful writes
1257 * in interrupt context. panic_write() is only intended to be called when its
1258 * known the kernel is about to panic and we need the write to succeed. Since
1259 * the kernel is not going to be running for much longer, this function can
1260 * break locks and delay to ensure the write succeeds (but not sleep).
1261 */
1262int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1263 const u_char *buf)
1264{
1265 struct mtd_info *master = mtd_get_master(mtd);
1266
1267 *retlen = 0;
1268 if (!master->_panic_write)
1269 return -EOPNOTSUPP;
1270 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1271 return -EINVAL;
1272 if (!(mtd->flags & MTD_WRITEABLE))
1273 return -EROFS;
1274 if (!len)
1275 return 0;
1276 if (!master->oops_panic_write)
1277 master->oops_panic_write = true;
1278
1279 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1280 retlen, buf);
1281}
1282EXPORT_SYMBOL_GPL(mtd_panic_write);
1283
1284static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1285 struct mtd_oob_ops *ops)
1286{
1287 /*
1288 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1289 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1290 * this case.
1291 */
1292 if (!ops->datbuf)
1293 ops->len = 0;
1294
1295 if (!ops->oobbuf)
1296 ops->ooblen = 0;
1297
1298 if (offs < 0 || offs + ops->len > mtd->size)
1299 return -EINVAL;
1300
1301 if (ops->ooblen) {
1302 size_t maxooblen;
1303
1304 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1305 return -EINVAL;
1306
1307 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1308 mtd_div_by_ws(offs, mtd)) *
1309 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1310 if (ops->ooblen > maxooblen)
1311 return -EINVAL;
1312 }
1313
1314 return 0;
1315}
1316
1317static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1318 struct mtd_oob_ops *ops)
1319{
1320 struct mtd_info *master = mtd_get_master(mtd);
1321 int ret;
1322
1323 from = mtd_get_master_ofs(mtd, from);
1324 if (master->_read_oob)
1325 ret = master->_read_oob(master, from, ops);
1326 else
1327 ret = master->_read(master, from, ops->len, &ops->retlen,
1328 ops->datbuf);
1329
1330 return ret;
1331}
1332
1333static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1334 struct mtd_oob_ops *ops)
1335{
1336 struct mtd_info *master = mtd_get_master(mtd);
1337 int ret;
1338
1339 to = mtd_get_master_ofs(mtd, to);
1340 if (master->_write_oob)
1341 ret = master->_write_oob(master, to, ops);
1342 else
1343 ret = master->_write(master, to, ops->len, &ops->retlen,
1344 ops->datbuf);
1345
1346 return ret;
1347}
1348
1349static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1350 struct mtd_oob_ops *ops)
1351{
1352 struct mtd_info *master = mtd_get_master(mtd);
1353 int ngroups = mtd_pairing_groups(master);
1354 int npairs = mtd_wunit_per_eb(master) / ngroups;
1355 struct mtd_oob_ops adjops = *ops;
1356 unsigned int wunit, oobavail;
1357 struct mtd_pairing_info info;
1358 int max_bitflips = 0;
1359 u32 ebofs, pageofs;
1360 loff_t base, pos;
1361
1362 ebofs = mtd_mod_by_eb(start, mtd);
1363 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1364 info.group = 0;
1365 info.pair = mtd_div_by_ws(ebofs, mtd);
1366 pageofs = mtd_mod_by_ws(ebofs, mtd);
1367 oobavail = mtd_oobavail(mtd, ops);
1368
1369 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1370 int ret;
1371
1372 if (info.pair >= npairs) {
1373 info.pair = 0;
1374 base += master->erasesize;
1375 }
1376
1377 wunit = mtd_pairing_info_to_wunit(master, &info);
1378 pos = mtd_wunit_to_offset(mtd, base, wunit);
1379
1380 adjops.len = ops->len - ops->retlen;
1381 if (adjops.len > mtd->writesize - pageofs)
1382 adjops.len = mtd->writesize - pageofs;
1383
1384 adjops.ooblen = ops->ooblen - ops->oobretlen;
1385 if (adjops.ooblen > oobavail - adjops.ooboffs)
1386 adjops.ooblen = oobavail - adjops.ooboffs;
1387
1388 if (read) {
1389 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1390 if (ret > 0)
1391 max_bitflips = max(max_bitflips, ret);
1392 } else {
1393 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1394 }
1395
1396 if (ret < 0)
1397 return ret;
1398
1399 max_bitflips = max(max_bitflips, ret);
1400 ops->retlen += adjops.retlen;
1401 ops->oobretlen += adjops.oobretlen;
1402 adjops.datbuf += adjops.retlen;
1403 adjops.oobbuf += adjops.oobretlen;
1404 adjops.ooboffs = 0;
1405 pageofs = 0;
1406 info.pair++;
1407 }
1408
1409 return max_bitflips;
1410}
1411
1412int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1413{
1414 struct mtd_info *master = mtd_get_master(mtd);
1415 struct mtd_ecc_stats old_stats = master->ecc_stats;
1416 int ret_code;
1417
1418 ops->retlen = ops->oobretlen = 0;
1419
1420 ret_code = mtd_check_oob_ops(mtd, from, ops);
1421 if (ret_code)
1422 return ret_code;
1423
1424 ledtrig_mtd_activity();
1425
1426 /* Check the validity of a potential fallback on mtd->_read */
1427 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1428 return -EOPNOTSUPP;
1429
1430 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1431 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1432 else
1433 ret_code = mtd_read_oob_std(mtd, from, ops);
1434
1435 mtd_update_ecc_stats(mtd, master, &old_stats);
1436
1437 /*
1438 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1439 * similar to mtd->_read(), returning a non-negative integer
1440 * representing max bitflips. In other cases, mtd->_read_oob() may
1441 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1442 */
1443 if (unlikely(ret_code < 0))
1444 return ret_code;
1445 if (mtd->ecc_strength == 0)
1446 return 0; /* device lacks ecc */
1447 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1448}
1449EXPORT_SYMBOL_GPL(mtd_read_oob);
1450
1451int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1452 struct mtd_oob_ops *ops)
1453{
1454 struct mtd_info *master = mtd_get_master(mtd);
1455 int ret;
1456
1457 ops->retlen = ops->oobretlen = 0;
1458
1459 if (!(mtd->flags & MTD_WRITEABLE))
1460 return -EROFS;
1461
1462 ret = mtd_check_oob_ops(mtd, to, ops);
1463 if (ret)
1464 return ret;
1465
1466 ledtrig_mtd_activity();
1467
1468 /* Check the validity of a potential fallback on mtd->_write */
1469 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1470 return -EOPNOTSUPP;
1471
1472 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1473 return mtd_io_emulated_slc(mtd, to, false, ops);
1474
1475 return mtd_write_oob_std(mtd, to, ops);
1476}
1477EXPORT_SYMBOL_GPL(mtd_write_oob);
1478
1479/**
1480 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1481 * @mtd: MTD device structure
1482 * @section: ECC section. Depending on the layout you may have all the ECC
1483 * bytes stored in a single contiguous section, or one section
1484 * per ECC chunk (and sometime several sections for a single ECC
1485 * ECC chunk)
1486 * @oobecc: OOB region struct filled with the appropriate ECC position
1487 * information
1488 *
1489 * This function returns ECC section information in the OOB area. If you want
1490 * to get all the ECC bytes information, then you should call
1491 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1492 *
1493 * Returns zero on success, a negative error code otherwise.
1494 */
1495int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1496 struct mtd_oob_region *oobecc)
1497{
1498 struct mtd_info *master = mtd_get_master(mtd);
1499
1500 memset(oobecc, 0, sizeof(*oobecc));
1501
1502 if (!master || section < 0)
1503 return -EINVAL;
1504
1505 if (!master->ooblayout || !master->ooblayout->ecc)
1506 return -ENOTSUPP;
1507
1508 return master->ooblayout->ecc(master, section, oobecc);
1509}
1510EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1511
1512/**
1513 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1514 * section
1515 * @mtd: MTD device structure
1516 * @section: Free section you are interested in. Depending on the layout
1517 * you may have all the free bytes stored in a single contiguous
1518 * section, or one section per ECC chunk plus an extra section
1519 * for the remaining bytes (or other funky layout).
1520 * @oobfree: OOB region struct filled with the appropriate free position
1521 * information
1522 *
1523 * This function returns free bytes position in the OOB area. If you want
1524 * to get all the free bytes information, then you should call
1525 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1526 *
1527 * Returns zero on success, a negative error code otherwise.
1528 */
1529int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1530 struct mtd_oob_region *oobfree)
1531{
1532 struct mtd_info *master = mtd_get_master(mtd);
1533
1534 memset(oobfree, 0, sizeof(*oobfree));
1535
1536 if (!master || section < 0)
1537 return -EINVAL;
1538
1539 if (!master->ooblayout || !master->ooblayout->free)
1540 return -ENOTSUPP;
1541
1542 return master->ooblayout->free(master, section, oobfree);
1543}
1544EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1545
1546/**
1547 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1548 * @mtd: mtd info structure
1549 * @byte: the byte we are searching for
1550 * @sectionp: pointer where the section id will be stored
1551 * @oobregion: used to retrieve the ECC position
1552 * @iter: iterator function. Should be either mtd_ooblayout_free or
1553 * mtd_ooblayout_ecc depending on the region type you're searching for
1554 *
1555 * This function returns the section id and oobregion information of a
1556 * specific byte. For example, say you want to know where the 4th ECC byte is
1557 * stored, you'll use:
1558 *
1559 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1560 *
1561 * Returns zero on success, a negative error code otherwise.
1562 */
1563static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1564 int *sectionp, struct mtd_oob_region *oobregion,
1565 int (*iter)(struct mtd_info *,
1566 int section,
1567 struct mtd_oob_region *oobregion))
1568{
1569 int pos = 0, ret, section = 0;
1570
1571 memset(oobregion, 0, sizeof(*oobregion));
1572
1573 while (1) {
1574 ret = iter(mtd, section, oobregion);
1575 if (ret)
1576 return ret;
1577
1578 if (pos + oobregion->length > byte)
1579 break;
1580
1581 pos += oobregion->length;
1582 section++;
1583 }
1584
1585 /*
1586 * Adjust region info to make it start at the beginning at the
1587 * 'start' ECC byte.
1588 */
1589 oobregion->offset += byte - pos;
1590 oobregion->length -= byte - pos;
1591 *sectionp = section;
1592
1593 return 0;
1594}
1595
1596/**
1597 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1598 * ECC byte
1599 * @mtd: mtd info structure
1600 * @eccbyte: the byte we are searching for
1601 * @sectionp: pointer where the section id will be stored
1602 * @oobregion: OOB region information
1603 *
1604 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1605 * byte.
1606 *
1607 * Returns zero on success, a negative error code otherwise.
1608 */
1609int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1610 int *section,
1611 struct mtd_oob_region *oobregion)
1612{
1613 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1614 mtd_ooblayout_ecc);
1615}
1616EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1617
1618/**
1619 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1620 * @mtd: mtd info structure
1621 * @buf: destination buffer to store OOB bytes
1622 * @oobbuf: OOB buffer
1623 * @start: first byte to retrieve
1624 * @nbytes: number of bytes to retrieve
1625 * @iter: section iterator
1626 *
1627 * Extract bytes attached to a specific category (ECC or free)
1628 * from the OOB buffer and copy them into buf.
1629 *
1630 * Returns zero on success, a negative error code otherwise.
1631 */
1632static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1633 const u8 *oobbuf, int start, int nbytes,
1634 int (*iter)(struct mtd_info *,
1635 int section,
1636 struct mtd_oob_region *oobregion))
1637{
1638 struct mtd_oob_region oobregion;
1639 int section, ret;
1640
1641 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1642 &oobregion, iter);
1643
1644 while (!ret) {
1645 int cnt;
1646
1647 cnt = min_t(int, nbytes, oobregion.length);
1648 memcpy(buf, oobbuf + oobregion.offset, cnt);
1649 buf += cnt;
1650 nbytes -= cnt;
1651
1652 if (!nbytes)
1653 break;
1654
1655 ret = iter(mtd, ++section, &oobregion);
1656 }
1657
1658 return ret;
1659}
1660
1661/**
1662 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1663 * @mtd: mtd info structure
1664 * @buf: source buffer to get OOB bytes from
1665 * @oobbuf: OOB buffer
1666 * @start: first OOB byte to set
1667 * @nbytes: number of OOB bytes to set
1668 * @iter: section iterator
1669 *
1670 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1671 * is selected by passing the appropriate iterator.
1672 *
1673 * Returns zero on success, a negative error code otherwise.
1674 */
1675static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1676 u8 *oobbuf, int start, int nbytes,
1677 int (*iter)(struct mtd_info *,
1678 int section,
1679 struct mtd_oob_region *oobregion))
1680{
1681 struct mtd_oob_region oobregion;
1682 int section, ret;
1683
1684 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1685 &oobregion, iter);
1686
1687 while (!ret) {
1688 int cnt;
1689
1690 cnt = min_t(int, nbytes, oobregion.length);
1691 memcpy(oobbuf + oobregion.offset, buf, cnt);
1692 buf += cnt;
1693 nbytes -= cnt;
1694
1695 if (!nbytes)
1696 break;
1697
1698 ret = iter(mtd, ++section, &oobregion);
1699 }
1700
1701 return ret;
1702}
1703
1704/**
1705 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1706 * @mtd: mtd info structure
1707 * @iter: category iterator
1708 *
1709 * Count the number of bytes in a given category.
1710 *
1711 * Returns a positive value on success, a negative error code otherwise.
1712 */
1713static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1714 int (*iter)(struct mtd_info *,
1715 int section,
1716 struct mtd_oob_region *oobregion))
1717{
1718 struct mtd_oob_region oobregion;
1719 int section = 0, ret, nbytes = 0;
1720
1721 while (1) {
1722 ret = iter(mtd, section++, &oobregion);
1723 if (ret) {
1724 if (ret == -ERANGE)
1725 ret = nbytes;
1726 break;
1727 }
1728
1729 nbytes += oobregion.length;
1730 }
1731
1732 return ret;
1733}
1734
1735/**
1736 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1737 * @mtd: mtd info structure
1738 * @eccbuf: destination buffer to store ECC bytes
1739 * @oobbuf: OOB buffer
1740 * @start: first ECC byte to retrieve
1741 * @nbytes: number of ECC bytes to retrieve
1742 *
1743 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1744 *
1745 * Returns zero on success, a negative error code otherwise.
1746 */
1747int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1748 const u8 *oobbuf, int start, int nbytes)
1749{
1750 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1751 mtd_ooblayout_ecc);
1752}
1753EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1754
1755/**
1756 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1757 * @mtd: mtd info structure
1758 * @eccbuf: source buffer to get ECC bytes from
1759 * @oobbuf: OOB buffer
1760 * @start: first ECC byte to set
1761 * @nbytes: number of ECC bytes to set
1762 *
1763 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1764 *
1765 * Returns zero on success, a negative error code otherwise.
1766 */
1767int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
1768 u8 *oobbuf, int start, int nbytes)
1769{
1770 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1771 mtd_ooblayout_ecc);
1772}
1773EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
1774
1775/**
1776 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
1777 * @mtd: mtd info structure
1778 * @databuf: destination buffer to store ECC bytes
1779 * @oobbuf: OOB buffer
1780 * @start: first ECC byte to retrieve
1781 * @nbytes: number of ECC bytes to retrieve
1782 *
1783 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
1784 *
1785 * Returns zero on success, a negative error code otherwise.
1786 */
1787int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
1788 const u8 *oobbuf, int start, int nbytes)
1789{
1790 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
1791 mtd_ooblayout_free);
1792}
1793EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
1794
1795/**
1796 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
1797 * @mtd: mtd info structure
1798 * @databuf: source buffer to get data bytes from
1799 * @oobbuf: OOB buffer
1800 * @start: first ECC byte to set
1801 * @nbytes: number of ECC bytes to set
1802 *
1803 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
1804 *
1805 * Returns zero on success, a negative error code otherwise.
1806 */
1807int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
1808 u8 *oobbuf, int start, int nbytes)
1809{
1810 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
1811 mtd_ooblayout_free);
1812}
1813EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
1814
1815/**
1816 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
1817 * @mtd: mtd info structure
1818 *
1819 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
1820 *
1821 * Returns zero on success, a negative error code otherwise.
1822 */
1823int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
1824{
1825 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
1826}
1827EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
1828
1829/**
1830 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
1831 * @mtd: mtd info structure
1832 *
1833 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
1834 *
1835 * Returns zero on success, a negative error code otherwise.
1836 */
1837int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
1838{
1839 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
1840}
1841EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
1842
1843/*
1844 * Method to access the protection register area, present in some flash
1845 * devices. The user data is one time programmable but the factory data is read
1846 * only.
1847 */
1848int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1849 struct otp_info *buf)
1850{
1851 struct mtd_info *master = mtd_get_master(mtd);
1852
1853 if (!master->_get_fact_prot_info)
1854 return -EOPNOTSUPP;
1855 if (!len)
1856 return 0;
1857 return master->_get_fact_prot_info(master, len, retlen, buf);
1858}
1859EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
1860
1861int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1862 size_t *retlen, u_char *buf)
1863{
1864 struct mtd_info *master = mtd_get_master(mtd);
1865
1866 *retlen = 0;
1867 if (!master->_read_fact_prot_reg)
1868 return -EOPNOTSUPP;
1869 if (!len)
1870 return 0;
1871 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
1872}
1873EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
1874
1875int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
1876 struct otp_info *buf)
1877{
1878 struct mtd_info *master = mtd_get_master(mtd);
1879
1880 if (!master->_get_user_prot_info)
1881 return -EOPNOTSUPP;
1882 if (!len)
1883 return 0;
1884 return master->_get_user_prot_info(master, len, retlen, buf);
1885}
1886EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
1887
1888int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
1889 size_t *retlen, u_char *buf)
1890{
1891 struct mtd_info *master = mtd_get_master(mtd);
1892
1893 *retlen = 0;
1894 if (!master->_read_user_prot_reg)
1895 return -EOPNOTSUPP;
1896 if (!len)
1897 return 0;
1898 return master->_read_user_prot_reg(master, from, len, retlen, buf);
1899}
1900EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
1901
1902int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
1903 size_t *retlen, u_char *buf)
1904{
1905 struct mtd_info *master = mtd_get_master(mtd);
1906 int ret;
1907
1908 *retlen = 0;
1909 if (!master->_write_user_prot_reg)
1910 return -EOPNOTSUPP;
1911 if (!len)
1912 return 0;
1913 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
1914 if (ret)
1915 return ret;
1916
1917 /*
1918 * If no data could be written at all, we are out of memory and
1919 * must return -ENOSPC.
1920 */
1921 return (*retlen) ? 0 : -ENOSPC;
1922}
1923EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
1924
1925int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
1926{
1927 struct mtd_info *master = mtd_get_master(mtd);
1928
1929 if (!master->_lock_user_prot_reg)
1930 return -EOPNOTSUPP;
1931 if (!len)
1932 return 0;
1933 return master->_lock_user_prot_reg(master, from, len);
1934}
1935EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
1936
1937/* Chip-supported device locking */
1938int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1939{
1940 struct mtd_info *master = mtd_get_master(mtd);
1941
1942 if (!master->_lock)
1943 return -EOPNOTSUPP;
1944 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1945 return -EINVAL;
1946 if (!len)
1947 return 0;
1948
1949 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1950 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1951 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1952 }
1953
1954 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
1955}
1956EXPORT_SYMBOL_GPL(mtd_lock);
1957
1958int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1959{
1960 struct mtd_info *master = mtd_get_master(mtd);
1961
1962 if (!master->_unlock)
1963 return -EOPNOTSUPP;
1964 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1965 return -EINVAL;
1966 if (!len)
1967 return 0;
1968
1969 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1970 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1971 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1972 }
1973
1974 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
1975}
1976EXPORT_SYMBOL_GPL(mtd_unlock);
1977
1978int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1979{
1980 struct mtd_info *master = mtd_get_master(mtd);
1981
1982 if (!master->_is_locked)
1983 return -EOPNOTSUPP;
1984 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
1985 return -EINVAL;
1986 if (!len)
1987 return 0;
1988
1989 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1990 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
1991 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
1992 }
1993
1994 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
1995}
1996EXPORT_SYMBOL_GPL(mtd_is_locked);
1997
1998int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
1999{
2000 struct mtd_info *master = mtd_get_master(mtd);
2001
2002 if (ofs < 0 || ofs >= mtd->size)
2003 return -EINVAL;
2004 if (!master->_block_isreserved)
2005 return 0;
2006
2007 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2008 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2009
2010 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2011}
2012EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2013
2014int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2015{
2016 struct mtd_info *master = mtd_get_master(mtd);
2017
2018 if (ofs < 0 || ofs >= mtd->size)
2019 return -EINVAL;
2020 if (!master->_block_isbad)
2021 return 0;
2022
2023 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2024 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2025
2026 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2027}
2028EXPORT_SYMBOL_GPL(mtd_block_isbad);
2029
2030int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2031{
2032 struct mtd_info *master = mtd_get_master(mtd);
2033 int ret;
2034
2035 if (!master->_block_markbad)
2036 return -EOPNOTSUPP;
2037 if (ofs < 0 || ofs >= mtd->size)
2038 return -EINVAL;
2039 if (!(mtd->flags & MTD_WRITEABLE))
2040 return -EROFS;
2041
2042 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2043 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2044
2045 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2046 if (ret)
2047 return ret;
2048
2049 while (mtd->parent) {
2050 mtd->ecc_stats.badblocks++;
2051 mtd = mtd->parent;
2052 }
2053
2054 return 0;
2055}
2056EXPORT_SYMBOL_GPL(mtd_block_markbad);
2057
2058/*
2059 * default_mtd_writev - the default writev method
2060 * @mtd: mtd device description object pointer
2061 * @vecs: the vectors to write
2062 * @count: count of vectors in @vecs
2063 * @to: the MTD device offset to write to
2064 * @retlen: on exit contains the count of bytes written to the MTD device.
2065 *
2066 * This function returns zero in case of success and a negative error code in
2067 * case of failure.
2068 */
2069static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2070 unsigned long count, loff_t to, size_t *retlen)
2071{
2072 unsigned long i;
2073 size_t totlen = 0, thislen;
2074 int ret = 0;
2075
2076 for (i = 0; i < count; i++) {
2077 if (!vecs[i].iov_len)
2078 continue;
2079 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2080 vecs[i].iov_base);
2081 totlen += thislen;
2082 if (ret || thislen != vecs[i].iov_len)
2083 break;
2084 to += vecs[i].iov_len;
2085 }
2086 *retlen = totlen;
2087 return ret;
2088}
2089
2090/*
2091 * mtd_writev - the vector-based MTD write method
2092 * @mtd: mtd device description object pointer
2093 * @vecs: the vectors to write
2094 * @count: count of vectors in @vecs
2095 * @to: the MTD device offset to write to
2096 * @retlen: on exit contains the count of bytes written to the MTD device.
2097 *
2098 * This function returns zero in case of success and a negative error code in
2099 * case of failure.
2100 */
2101int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2102 unsigned long count, loff_t to, size_t *retlen)
2103{
2104 struct mtd_info *master = mtd_get_master(mtd);
2105
2106 *retlen = 0;
2107 if (!(mtd->flags & MTD_WRITEABLE))
2108 return -EROFS;
2109
2110 if (!master->_writev)
2111 return default_mtd_writev(mtd, vecs, count, to, retlen);
2112
2113 return master->_writev(master, vecs, count,
2114 mtd_get_master_ofs(mtd, to), retlen);
2115}
2116EXPORT_SYMBOL_GPL(mtd_writev);
2117
2118/**
2119 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2120 * @mtd: mtd device description object pointer
2121 * @size: a pointer to the ideal or maximum size of the allocation, points
2122 * to the actual allocation size on success.
2123 *
2124 * This routine attempts to allocate a contiguous kernel buffer up to
2125 * the specified size, backing off the size of the request exponentially
2126 * until the request succeeds or until the allocation size falls below
2127 * the system page size. This attempts to make sure it does not adversely
2128 * impact system performance, so when allocating more than one page, we
2129 * ask the memory allocator to avoid re-trying, swapping, writing back
2130 * or performing I/O.
2131 *
2132 * Note, this function also makes sure that the allocated buffer is aligned to
2133 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2134 *
2135 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2136 * to handle smaller (i.e. degraded) buffer allocations under low- or
2137 * fragmented-memory situations where such reduced allocations, from a
2138 * requested ideal, are allowed.
2139 *
2140 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2141 */
2142void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2143{
2144 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2145 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2146 void *kbuf;
2147
2148 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2149
2150 while (*size > min_alloc) {
2151 kbuf = kmalloc(*size, flags);
2152 if (kbuf)
2153 return kbuf;
2154
2155 *size >>= 1;
2156 *size = ALIGN(*size, mtd->writesize);
2157 }
2158
2159 /*
2160 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2161 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2162 */
2163 return kmalloc(*size, GFP_KERNEL);
2164}
2165EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2166
2167#ifdef CONFIG_PROC_FS
2168
2169/*====================================================================*/
2170/* Support for /proc/mtd */
2171
2172static int mtd_proc_show(struct seq_file *m, void *v)
2173{
2174 struct mtd_info *mtd;
2175
2176 seq_puts(m, "dev: size erasesize name\n");
2177 mutex_lock(&mtd_table_mutex);
2178 mtd_for_each_device(mtd) {
2179 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2180 mtd->index, (unsigned long long)mtd->size,
2181 mtd->erasesize, mtd->name);
2182 }
2183 mutex_unlock(&mtd_table_mutex);
2184 return 0;
2185}
2186#endif /* CONFIG_PROC_FS */
2187
2188/*====================================================================*/
2189/* Init code */
2190
2191static struct backing_dev_info * __init mtd_bdi_init(char *name)
2192{
2193 struct backing_dev_info *bdi;
2194 int ret;
2195
2196 bdi = bdi_alloc(NUMA_NO_NODE);
2197 if (!bdi)
2198 return ERR_PTR(-ENOMEM);
2199
2200 /*
2201 * We put '-0' suffix to the name to get the same name format as we
2202 * used to get. Since this is called only once, we get a unique name.
2203 */
2204 ret = bdi_register(bdi, "%.28s-0", name);
2205 if (ret)
2206 bdi_put(bdi);
2207
2208 return ret ? ERR_PTR(ret) : bdi;
2209}
2210
2211static struct proc_dir_entry *proc_mtd;
2212
2213static int __init init_mtd(void)
2214{
2215 int ret;
2216
2217 ret = class_register(&mtd_class);
2218 if (ret)
2219 goto err_reg;
2220
2221 mtd_bdi = mtd_bdi_init("mtd");
2222 if (IS_ERR(mtd_bdi)) {
2223 ret = PTR_ERR(mtd_bdi);
2224 goto err_bdi;
2225 }
2226
2227 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2228
2229 ret = init_mtdchar();
2230 if (ret)
2231 goto out_procfs;
2232
2233 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2234
2235 return 0;
2236
2237out_procfs:
2238 if (proc_mtd)
2239 remove_proc_entry("mtd", NULL);
2240 bdi_put(mtd_bdi);
2241err_bdi:
2242 class_unregister(&mtd_class);
2243err_reg:
2244 pr_err("Error registering mtd class or bdi: %d\n", ret);
2245 return ret;
2246}
2247
2248static void __exit cleanup_mtd(void)
2249{
2250 debugfs_remove_recursive(dfs_dir_mtd);
2251 cleanup_mtdchar();
2252 if (proc_mtd)
2253 remove_proc_entry("mtd", NULL);
2254 class_unregister(&mtd_class);
2255 bdi_put(mtd_bdi);
2256 idr_destroy(&mtd_idr);
2257}
2258
2259module_init(init_mtd);
2260module_exit(cleanup_mtd);
2261
2262MODULE_LICENSE("GPL");
2263MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2264MODULE_DESCRIPTION("Core MTD registration and access routines");
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/random.h>
27#include <linux/slab.h>
28#include <linux/reboot.h>
29#include <linux/leds.h>
30#include <linux/debugfs.h>
31#include <linux/nvmem-provider.h>
32#include <linux/root_dev.h>
33#include <linux/error-injection.h>
34
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/partitions.h>
37
38#include "mtdcore.h"
39
40struct backing_dev_info *mtd_bdi;
41
42#ifdef CONFIG_PM_SLEEP
43
44static int mtd_cls_suspend(struct device *dev)
45{
46 struct mtd_info *mtd = dev_get_drvdata(dev);
47
48 return mtd ? mtd_suspend(mtd) : 0;
49}
50
51static int mtd_cls_resume(struct device *dev)
52{
53 struct mtd_info *mtd = dev_get_drvdata(dev);
54
55 if (mtd)
56 mtd_resume(mtd);
57 return 0;
58}
59
60static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
61#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
62#else
63#define MTD_CLS_PM_OPS NULL
64#endif
65
66static struct class mtd_class = {
67 .name = "mtd",
68 .pm = MTD_CLS_PM_OPS,
69};
70
71static DEFINE_IDR(mtd_idr);
72
73/* These are exported solely for the purpose of mtd_blkdevs.c. You
74 should not use them for _anything_ else */
75DEFINE_MUTEX(mtd_table_mutex);
76EXPORT_SYMBOL_GPL(mtd_table_mutex);
77
78struct mtd_info *__mtd_next_device(int i)
79{
80 return idr_get_next(&mtd_idr, &i);
81}
82EXPORT_SYMBOL_GPL(__mtd_next_device);
83
84static LIST_HEAD(mtd_notifiers);
85
86
87#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
88
89/* REVISIT once MTD uses the driver model better, whoever allocates
90 * the mtd_info will probably want to use the release() hook...
91 */
92static void mtd_release(struct device *dev)
93{
94 struct mtd_info *mtd = dev_get_drvdata(dev);
95 dev_t index = MTD_DEVT(mtd->index);
96
97 idr_remove(&mtd_idr, mtd->index);
98 of_node_put(mtd_get_of_node(mtd));
99
100 if (mtd_is_partition(mtd))
101 release_mtd_partition(mtd);
102
103 /* remove /dev/mtdXro node */
104 device_destroy(&mtd_class, index + 1);
105}
106
107static void mtd_device_release(struct kref *kref)
108{
109 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
110 bool is_partition = mtd_is_partition(mtd);
111
112 debugfs_remove_recursive(mtd->dbg.dfs_dir);
113
114 /* Try to remove the NVMEM provider */
115 nvmem_unregister(mtd->nvmem);
116
117 device_unregister(&mtd->dev);
118
119 /*
120 * Clear dev so mtd can be safely re-registered later if desired.
121 * Should not be done for partition,
122 * as it was already destroyed in device_unregister().
123 */
124 if (!is_partition)
125 memset(&mtd->dev, 0, sizeof(mtd->dev));
126
127 module_put(THIS_MODULE);
128}
129
130#define MTD_DEVICE_ATTR_RO(name) \
131static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
132
133#define MTD_DEVICE_ATTR_RW(name) \
134static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
135
136static ssize_t mtd_type_show(struct device *dev,
137 struct device_attribute *attr, char *buf)
138{
139 struct mtd_info *mtd = dev_get_drvdata(dev);
140 char *type;
141
142 switch (mtd->type) {
143 case MTD_ABSENT:
144 type = "absent";
145 break;
146 case MTD_RAM:
147 type = "ram";
148 break;
149 case MTD_ROM:
150 type = "rom";
151 break;
152 case MTD_NORFLASH:
153 type = "nor";
154 break;
155 case MTD_NANDFLASH:
156 type = "nand";
157 break;
158 case MTD_DATAFLASH:
159 type = "dataflash";
160 break;
161 case MTD_UBIVOLUME:
162 type = "ubi";
163 break;
164 case MTD_MLCNANDFLASH:
165 type = "mlc-nand";
166 break;
167 default:
168 type = "unknown";
169 }
170
171 return sysfs_emit(buf, "%s\n", type);
172}
173MTD_DEVICE_ATTR_RO(type);
174
175static ssize_t mtd_flags_show(struct device *dev,
176 struct device_attribute *attr, char *buf)
177{
178 struct mtd_info *mtd = dev_get_drvdata(dev);
179
180 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
181}
182MTD_DEVICE_ATTR_RO(flags);
183
184static ssize_t mtd_size_show(struct device *dev,
185 struct device_attribute *attr, char *buf)
186{
187 struct mtd_info *mtd = dev_get_drvdata(dev);
188
189 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
190}
191MTD_DEVICE_ATTR_RO(size);
192
193static ssize_t mtd_erasesize_show(struct device *dev,
194 struct device_attribute *attr, char *buf)
195{
196 struct mtd_info *mtd = dev_get_drvdata(dev);
197
198 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
199}
200MTD_DEVICE_ATTR_RO(erasesize);
201
202static ssize_t mtd_writesize_show(struct device *dev,
203 struct device_attribute *attr, char *buf)
204{
205 struct mtd_info *mtd = dev_get_drvdata(dev);
206
207 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
208}
209MTD_DEVICE_ATTR_RO(writesize);
210
211static ssize_t mtd_subpagesize_show(struct device *dev,
212 struct device_attribute *attr, char *buf)
213{
214 struct mtd_info *mtd = dev_get_drvdata(dev);
215 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
216
217 return sysfs_emit(buf, "%u\n", subpagesize);
218}
219MTD_DEVICE_ATTR_RO(subpagesize);
220
221static ssize_t mtd_oobsize_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 struct mtd_info *mtd = dev_get_drvdata(dev);
225
226 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
227}
228MTD_DEVICE_ATTR_RO(oobsize);
229
230static ssize_t mtd_oobavail_show(struct device *dev,
231 struct device_attribute *attr, char *buf)
232{
233 struct mtd_info *mtd = dev_get_drvdata(dev);
234
235 return sysfs_emit(buf, "%u\n", mtd->oobavail);
236}
237MTD_DEVICE_ATTR_RO(oobavail);
238
239static ssize_t mtd_numeraseregions_show(struct device *dev,
240 struct device_attribute *attr, char *buf)
241{
242 struct mtd_info *mtd = dev_get_drvdata(dev);
243
244 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
245}
246MTD_DEVICE_ATTR_RO(numeraseregions);
247
248static ssize_t mtd_name_show(struct device *dev,
249 struct device_attribute *attr, char *buf)
250{
251 struct mtd_info *mtd = dev_get_drvdata(dev);
252
253 return sysfs_emit(buf, "%s\n", mtd->name);
254}
255MTD_DEVICE_ATTR_RO(name);
256
257static ssize_t mtd_ecc_strength_show(struct device *dev,
258 struct device_attribute *attr, char *buf)
259{
260 struct mtd_info *mtd = dev_get_drvdata(dev);
261
262 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
263}
264MTD_DEVICE_ATTR_RO(ecc_strength);
265
266static ssize_t mtd_bitflip_threshold_show(struct device *dev,
267 struct device_attribute *attr,
268 char *buf)
269{
270 struct mtd_info *mtd = dev_get_drvdata(dev);
271
272 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
273}
274
275static ssize_t mtd_bitflip_threshold_store(struct device *dev,
276 struct device_attribute *attr,
277 const char *buf, size_t count)
278{
279 struct mtd_info *mtd = dev_get_drvdata(dev);
280 unsigned int bitflip_threshold;
281 int retval;
282
283 retval = kstrtouint(buf, 0, &bitflip_threshold);
284 if (retval)
285 return retval;
286
287 mtd->bitflip_threshold = bitflip_threshold;
288 return count;
289}
290MTD_DEVICE_ATTR_RW(bitflip_threshold);
291
292static ssize_t mtd_ecc_step_size_show(struct device *dev,
293 struct device_attribute *attr, char *buf)
294{
295 struct mtd_info *mtd = dev_get_drvdata(dev);
296
297 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
298
299}
300MTD_DEVICE_ATTR_RO(ecc_step_size);
301
302static ssize_t mtd_corrected_bits_show(struct device *dev,
303 struct device_attribute *attr, char *buf)
304{
305 struct mtd_info *mtd = dev_get_drvdata(dev);
306 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
307
308 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
309}
310MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
311
312static ssize_t mtd_ecc_failures_show(struct device *dev,
313 struct device_attribute *attr, char *buf)
314{
315 struct mtd_info *mtd = dev_get_drvdata(dev);
316 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
317
318 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
319}
320MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
321
322static ssize_t mtd_bad_blocks_show(struct device *dev,
323 struct device_attribute *attr, char *buf)
324{
325 struct mtd_info *mtd = dev_get_drvdata(dev);
326 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
327
328 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
329}
330MTD_DEVICE_ATTR_RO(bad_blocks);
331
332static ssize_t mtd_bbt_blocks_show(struct device *dev,
333 struct device_attribute *attr, char *buf)
334{
335 struct mtd_info *mtd = dev_get_drvdata(dev);
336 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
337
338 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
339}
340MTD_DEVICE_ATTR_RO(bbt_blocks);
341
342static struct attribute *mtd_attrs[] = {
343 &dev_attr_type.attr,
344 &dev_attr_flags.attr,
345 &dev_attr_size.attr,
346 &dev_attr_erasesize.attr,
347 &dev_attr_writesize.attr,
348 &dev_attr_subpagesize.attr,
349 &dev_attr_oobsize.attr,
350 &dev_attr_oobavail.attr,
351 &dev_attr_numeraseregions.attr,
352 &dev_attr_name.attr,
353 &dev_attr_ecc_strength.attr,
354 &dev_attr_ecc_step_size.attr,
355 &dev_attr_corrected_bits.attr,
356 &dev_attr_ecc_failures.attr,
357 &dev_attr_bad_blocks.attr,
358 &dev_attr_bbt_blocks.attr,
359 &dev_attr_bitflip_threshold.attr,
360 NULL,
361};
362ATTRIBUTE_GROUPS(mtd);
363
364static const struct device_type mtd_devtype = {
365 .name = "mtd",
366 .groups = mtd_groups,
367 .release = mtd_release,
368};
369
370static bool mtd_expert_analysis_mode;
371
372#ifdef CONFIG_DEBUG_FS
373bool mtd_check_expert_analysis_mode(void)
374{
375 const char *mtd_expert_analysis_warning =
376 "Bad block checks have been entirely disabled.\n"
377 "This is only reserved for post-mortem forensics and debug purposes.\n"
378 "Never enable this mode if you do not know what you are doing!\n";
379
380 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
381}
382EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
383#endif
384
385static struct dentry *dfs_dir_mtd;
386
387static void mtd_debugfs_populate(struct mtd_info *mtd)
388{
389 struct device *dev = &mtd->dev;
390
391 if (IS_ERR_OR_NULL(dfs_dir_mtd))
392 return;
393
394 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
395}
396
397#ifndef CONFIG_MMU
398unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
399{
400 switch (mtd->type) {
401 case MTD_RAM:
402 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
403 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
404 case MTD_ROM:
405 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
406 NOMMU_MAP_READ;
407 default:
408 return NOMMU_MAP_COPY;
409 }
410}
411EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
412#endif
413
414static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
415 void *cmd)
416{
417 struct mtd_info *mtd;
418
419 mtd = container_of(n, struct mtd_info, reboot_notifier);
420 mtd->_reboot(mtd);
421
422 return NOTIFY_DONE;
423}
424
425/**
426 * mtd_wunit_to_pairing_info - get pairing information of a wunit
427 * @mtd: pointer to new MTD device info structure
428 * @wunit: write unit we are interested in
429 * @info: returned pairing information
430 *
431 * Retrieve pairing information associated to the wunit.
432 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
433 * paired together, and where programming a page may influence the page it is
434 * paired with.
435 * The notion of page is replaced by the term wunit (write-unit) to stay
436 * consistent with the ->writesize field.
437 *
438 * The @wunit argument can be extracted from an absolute offset using
439 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
440 * to @wunit.
441 *
442 * From the pairing info the MTD user can find all the wunits paired with
443 * @wunit using the following loop:
444 *
445 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
446 * info.pair = i;
447 * mtd_pairing_info_to_wunit(mtd, &info);
448 * ...
449 * }
450 */
451int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
452 struct mtd_pairing_info *info)
453{
454 struct mtd_info *master = mtd_get_master(mtd);
455 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
456
457 if (wunit < 0 || wunit >= npairs)
458 return -EINVAL;
459
460 if (master->pairing && master->pairing->get_info)
461 return master->pairing->get_info(master, wunit, info);
462
463 info->group = 0;
464 info->pair = wunit;
465
466 return 0;
467}
468EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
469
470/**
471 * mtd_pairing_info_to_wunit - get wunit from pairing information
472 * @mtd: pointer to new MTD device info structure
473 * @info: pairing information struct
474 *
475 * Returns a positive number representing the wunit associated to the info
476 * struct, or a negative error code.
477 *
478 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
479 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
480 * doc).
481 *
482 * It can also be used to only program the first page of each pair (i.e.
483 * page attached to group 0), which allows one to use an MLC NAND in
484 * software-emulated SLC mode:
485 *
486 * info.group = 0;
487 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
488 * for (info.pair = 0; info.pair < npairs; info.pair++) {
489 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
490 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
491 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
492 * }
493 */
494int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
495 const struct mtd_pairing_info *info)
496{
497 struct mtd_info *master = mtd_get_master(mtd);
498 int ngroups = mtd_pairing_groups(master);
499 int npairs = mtd_wunit_per_eb(master) / ngroups;
500
501 if (!info || info->pair < 0 || info->pair >= npairs ||
502 info->group < 0 || info->group >= ngroups)
503 return -EINVAL;
504
505 if (master->pairing && master->pairing->get_wunit)
506 return mtd->pairing->get_wunit(master, info);
507
508 return info->pair;
509}
510EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
511
512/**
513 * mtd_pairing_groups - get the number of pairing groups
514 * @mtd: pointer to new MTD device info structure
515 *
516 * Returns the number of pairing groups.
517 *
518 * This number is usually equal to the number of bits exposed by a single
519 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
520 * to iterate over all pages of a given pair.
521 */
522int mtd_pairing_groups(struct mtd_info *mtd)
523{
524 struct mtd_info *master = mtd_get_master(mtd);
525
526 if (!master->pairing || !master->pairing->ngroups)
527 return 1;
528
529 return master->pairing->ngroups;
530}
531EXPORT_SYMBOL_GPL(mtd_pairing_groups);
532
533static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
534 void *val, size_t bytes)
535{
536 struct mtd_info *mtd = priv;
537 size_t retlen;
538 int err;
539
540 err = mtd_read(mtd, offset, bytes, &retlen, val);
541 if (err && err != -EUCLEAN)
542 return err;
543
544 return retlen == bytes ? 0 : -EIO;
545}
546
547static int mtd_nvmem_add(struct mtd_info *mtd)
548{
549 struct device_node *node = mtd_get_of_node(mtd);
550 struct nvmem_config config = {};
551
552 config.id = NVMEM_DEVID_NONE;
553 config.dev = &mtd->dev;
554 config.name = dev_name(&mtd->dev);
555 config.owner = THIS_MODULE;
556 config.add_legacy_fixed_of_cells = of_device_is_compatible(node, "nvmem-cells");
557 config.reg_read = mtd_nvmem_reg_read;
558 config.size = mtd->size;
559 config.word_size = 1;
560 config.stride = 1;
561 config.read_only = true;
562 config.root_only = true;
563 config.ignore_wp = true;
564 config.priv = mtd;
565
566 mtd->nvmem = nvmem_register(&config);
567 if (IS_ERR(mtd->nvmem)) {
568 /* Just ignore if there is no NVMEM support in the kernel */
569 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
570 mtd->nvmem = NULL;
571 else
572 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
573 "Failed to register NVMEM device\n");
574 }
575
576 return 0;
577}
578
579static void mtd_check_of_node(struct mtd_info *mtd)
580{
581 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
582 const char *pname, *prefix = "partition-";
583 int plen, mtd_name_len, offset, prefix_len;
584
585 /* Check if MTD already has a device node */
586 if (mtd_get_of_node(mtd))
587 return;
588
589 if (!mtd_is_partition(mtd))
590 return;
591
592 parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
593 if (!parent_dn)
594 return;
595
596 if (mtd_is_partition(mtd->parent))
597 partitions = of_node_get(parent_dn);
598 else
599 partitions = of_get_child_by_name(parent_dn, "partitions");
600 if (!partitions)
601 goto exit_parent;
602
603 prefix_len = strlen(prefix);
604 mtd_name_len = strlen(mtd->name);
605
606 /* Search if a partition is defined with the same name */
607 for_each_child_of_node(partitions, mtd_dn) {
608 /* Skip partition with no/wrong prefix */
609 if (!of_node_name_prefix(mtd_dn, prefix))
610 continue;
611
612 /* Label have priority. Check that first */
613 if (!of_property_read_string(mtd_dn, "label", &pname)) {
614 offset = 0;
615 } else {
616 pname = mtd_dn->name;
617 offset = prefix_len;
618 }
619
620 plen = strlen(pname) - offset;
621 if (plen == mtd_name_len &&
622 !strncmp(mtd->name, pname + offset, plen)) {
623 mtd_set_of_node(mtd, mtd_dn);
624 of_node_put(mtd_dn);
625 break;
626 }
627 }
628
629 of_node_put(partitions);
630exit_parent:
631 of_node_put(parent_dn);
632}
633
634/**
635 * add_mtd_device - register an MTD device
636 * @mtd: pointer to new MTD device info structure
637 *
638 * Add a device to the list of MTD devices present in the system, and
639 * notify each currently active MTD 'user' of its arrival. Returns
640 * zero on success or non-zero on failure.
641 */
642
643int add_mtd_device(struct mtd_info *mtd)
644{
645 struct device_node *np = mtd_get_of_node(mtd);
646 struct mtd_info *master = mtd_get_master(mtd);
647 struct mtd_notifier *not;
648 int i, error, ofidx;
649
650 /*
651 * May occur, for instance, on buggy drivers which call
652 * mtd_device_parse_register() multiple times on the same master MTD,
653 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
654 */
655 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
656 return -EEXIST;
657
658 BUG_ON(mtd->writesize == 0);
659
660 /*
661 * MTD drivers should implement ->_{write,read}() or
662 * ->_{write,read}_oob(), but not both.
663 */
664 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
665 (mtd->_read && mtd->_read_oob)))
666 return -EINVAL;
667
668 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
669 !(mtd->flags & MTD_NO_ERASE)))
670 return -EINVAL;
671
672 /*
673 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
674 * master is an MLC NAND and has a proper pairing scheme defined.
675 * We also reject masters that implement ->_writev() for now, because
676 * NAND controller drivers don't implement this hook, and adding the
677 * SLC -> MLC address/length conversion to this path is useless if we
678 * don't have a user.
679 */
680 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
681 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
682 !master->pairing || master->_writev))
683 return -EINVAL;
684
685 mutex_lock(&mtd_table_mutex);
686
687 ofidx = -1;
688 if (np)
689 ofidx = of_alias_get_id(np, "mtd");
690 if (ofidx >= 0)
691 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
692 else
693 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
694 if (i < 0) {
695 error = i;
696 goto fail_locked;
697 }
698
699 mtd->index = i;
700 kref_init(&mtd->refcnt);
701
702 /* default value if not set by driver */
703 if (mtd->bitflip_threshold == 0)
704 mtd->bitflip_threshold = mtd->ecc_strength;
705
706 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
707 int ngroups = mtd_pairing_groups(master);
708
709 mtd->erasesize /= ngroups;
710 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
711 mtd->erasesize;
712 }
713
714 if (is_power_of_2(mtd->erasesize))
715 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
716 else
717 mtd->erasesize_shift = 0;
718
719 if (is_power_of_2(mtd->writesize))
720 mtd->writesize_shift = ffs(mtd->writesize) - 1;
721 else
722 mtd->writesize_shift = 0;
723
724 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
725 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
726
727 /* Some chips always power up locked. Unlock them now */
728 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
729 error = mtd_unlock(mtd, 0, mtd->size);
730 if (error && error != -EOPNOTSUPP)
731 printk(KERN_WARNING
732 "%s: unlock failed, writes may not work\n",
733 mtd->name);
734 /* Ignore unlock failures? */
735 error = 0;
736 }
737
738 /* Caller should have set dev.parent to match the
739 * physical device, if appropriate.
740 */
741 mtd->dev.type = &mtd_devtype;
742 mtd->dev.class = &mtd_class;
743 mtd->dev.devt = MTD_DEVT(i);
744 dev_set_name(&mtd->dev, "mtd%d", i);
745 dev_set_drvdata(&mtd->dev, mtd);
746 mtd_check_of_node(mtd);
747 of_node_get(mtd_get_of_node(mtd));
748 error = device_register(&mtd->dev);
749 if (error) {
750 put_device(&mtd->dev);
751 goto fail_added;
752 }
753
754 /* Add the nvmem provider */
755 error = mtd_nvmem_add(mtd);
756 if (error)
757 goto fail_nvmem_add;
758
759 mtd_debugfs_populate(mtd);
760
761 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
762 "mtd%dro", i);
763
764 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
765 /* No need to get a refcount on the module containing
766 the notifier, since we hold the mtd_table_mutex */
767 list_for_each_entry(not, &mtd_notifiers, list)
768 not->add(mtd);
769
770 mutex_unlock(&mtd_table_mutex);
771
772 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
773 if (IS_BUILTIN(CONFIG_MTD)) {
774 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
775 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
776 } else {
777 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
778 mtd->index, mtd->name);
779 }
780 }
781
782 /* We _know_ we aren't being removed, because
783 our caller is still holding us here. So none
784 of this try_ nonsense, and no bitching about it
785 either. :) */
786 __module_get(THIS_MODULE);
787 return 0;
788
789fail_nvmem_add:
790 device_unregister(&mtd->dev);
791fail_added:
792 of_node_put(mtd_get_of_node(mtd));
793 idr_remove(&mtd_idr, i);
794fail_locked:
795 mutex_unlock(&mtd_table_mutex);
796 return error;
797}
798
799/**
800 * del_mtd_device - unregister an MTD device
801 * @mtd: pointer to MTD device info structure
802 *
803 * Remove a device from the list of MTD devices present in the system,
804 * and notify each currently active MTD 'user' of its departure.
805 * Returns zero on success or 1 on failure, which currently will happen
806 * if the requested device does not appear to be present in the list.
807 */
808
809int del_mtd_device(struct mtd_info *mtd)
810{
811 int ret;
812 struct mtd_notifier *not;
813
814 mutex_lock(&mtd_table_mutex);
815
816 if (idr_find(&mtd_idr, mtd->index) != mtd) {
817 ret = -ENODEV;
818 goto out_error;
819 }
820
821 /* No need to get a refcount on the module containing
822 the notifier, since we hold the mtd_table_mutex */
823 list_for_each_entry(not, &mtd_notifiers, list)
824 not->remove(mtd);
825
826 kref_put(&mtd->refcnt, mtd_device_release);
827 ret = 0;
828
829out_error:
830 mutex_unlock(&mtd_table_mutex);
831 return ret;
832}
833
834/*
835 * Set a few defaults based on the parent devices, if not provided by the
836 * driver
837 */
838static void mtd_set_dev_defaults(struct mtd_info *mtd)
839{
840 if (mtd->dev.parent) {
841 if (!mtd->owner && mtd->dev.parent->driver)
842 mtd->owner = mtd->dev.parent->driver->owner;
843 if (!mtd->name)
844 mtd->name = dev_name(mtd->dev.parent);
845 } else {
846 pr_debug("mtd device won't show a device symlink in sysfs\n");
847 }
848
849 INIT_LIST_HEAD(&mtd->partitions);
850 mutex_init(&mtd->master.partitions_lock);
851 mutex_init(&mtd->master.chrdev_lock);
852}
853
854static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
855{
856 struct otp_info *info;
857 ssize_t size = 0;
858 unsigned int i;
859 size_t retlen;
860 int ret;
861
862 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
863 if (!info)
864 return -ENOMEM;
865
866 if (is_user)
867 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
868 else
869 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
870 if (ret)
871 goto err;
872
873 for (i = 0; i < retlen / sizeof(*info); i++)
874 size += info[i].length;
875
876 kfree(info);
877 return size;
878
879err:
880 kfree(info);
881
882 /* ENODATA means there is no OTP region. */
883 return ret == -ENODATA ? 0 : ret;
884}
885
886static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
887 const char *compatible,
888 int size,
889 nvmem_reg_read_t reg_read)
890{
891 struct nvmem_device *nvmem = NULL;
892 struct nvmem_config config = {};
893 struct device_node *np;
894
895 /* DT binding is optional */
896 np = of_get_compatible_child(mtd->dev.of_node, compatible);
897
898 /* OTP nvmem will be registered on the physical device */
899 config.dev = mtd->dev.parent;
900 config.name = compatible;
901 config.id = NVMEM_DEVID_AUTO;
902 config.owner = THIS_MODULE;
903 config.add_legacy_fixed_of_cells = !mtd_type_is_nand(mtd);
904 config.type = NVMEM_TYPE_OTP;
905 config.root_only = true;
906 config.ignore_wp = true;
907 config.reg_read = reg_read;
908 config.size = size;
909 config.of_node = np;
910 config.priv = mtd;
911
912 nvmem = nvmem_register(&config);
913 /* Just ignore if there is no NVMEM support in the kernel */
914 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
915 nvmem = NULL;
916
917 of_node_put(np);
918
919 return nvmem;
920}
921
922static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
923 void *val, size_t bytes)
924{
925 struct mtd_info *mtd = priv;
926 size_t retlen;
927 int ret;
928
929 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
930 if (ret)
931 return ret;
932
933 return retlen == bytes ? 0 : -EIO;
934}
935
936static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
937 void *val, size_t bytes)
938{
939 struct mtd_info *mtd = priv;
940 size_t retlen;
941 int ret;
942
943 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
944 if (ret)
945 return ret;
946
947 return retlen == bytes ? 0 : -EIO;
948}
949
950static int mtd_otp_nvmem_add(struct mtd_info *mtd)
951{
952 struct device *dev = mtd->dev.parent;
953 struct nvmem_device *nvmem;
954 ssize_t size;
955 int err;
956
957 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
958 size = mtd_otp_size(mtd, true);
959 if (size < 0) {
960 err = size;
961 goto err;
962 }
963
964 if (size > 0) {
965 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
966 mtd_nvmem_user_otp_reg_read);
967 if (IS_ERR(nvmem)) {
968 err = PTR_ERR(nvmem);
969 goto err;
970 }
971 mtd->otp_user_nvmem = nvmem;
972 }
973 }
974
975 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
976 size = mtd_otp_size(mtd, false);
977 if (size < 0) {
978 err = size;
979 goto err;
980 }
981
982 if (size > 0) {
983 /*
984 * The factory OTP contains thing such as a unique serial
985 * number and is small, so let's read it out and put it
986 * into the entropy pool.
987 */
988 void *otp;
989
990 otp = kmalloc(size, GFP_KERNEL);
991 if (!otp) {
992 err = -ENOMEM;
993 goto err;
994 }
995 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
996 if (err < 0) {
997 kfree(otp);
998 goto err;
999 }
1000 add_device_randomness(otp, err);
1001 kfree(otp);
1002
1003 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
1004 mtd_nvmem_fact_otp_reg_read);
1005 if (IS_ERR(nvmem)) {
1006 err = PTR_ERR(nvmem);
1007 goto err;
1008 }
1009 mtd->otp_factory_nvmem = nvmem;
1010 }
1011 }
1012
1013 return 0;
1014
1015err:
1016 nvmem_unregister(mtd->otp_user_nvmem);
1017 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1018}
1019
1020/**
1021 * mtd_device_parse_register - parse partitions and register an MTD device.
1022 *
1023 * @mtd: the MTD device to register
1024 * @types: the list of MTD partition probes to try, see
1025 * 'parse_mtd_partitions()' for more information
1026 * @parser_data: MTD partition parser-specific data
1027 * @parts: fallback partition information to register, if parsing fails;
1028 * only valid if %nr_parts > %0
1029 * @nr_parts: the number of partitions in parts, if zero then the full
1030 * MTD device is registered if no partition info is found
1031 *
1032 * This function aggregates MTD partitions parsing (done by
1033 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1034 * basically follows the most common pattern found in many MTD drivers:
1035 *
1036 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1037 * registered first.
1038 * * Then It tries to probe partitions on MTD device @mtd using parsers
1039 * specified in @types (if @types is %NULL, then the default list of parsers
1040 * is used, see 'parse_mtd_partitions()' for more information). If none are
1041 * found this functions tries to fallback to information specified in
1042 * @parts/@nr_parts.
1043 * * If no partitions were found this function just registers the MTD device
1044 * @mtd and exits.
1045 *
1046 * Returns zero in case of success and a negative error code in case of failure.
1047 */
1048int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1049 struct mtd_part_parser_data *parser_data,
1050 const struct mtd_partition *parts,
1051 int nr_parts)
1052{
1053 int ret;
1054
1055 mtd_set_dev_defaults(mtd);
1056
1057 ret = mtd_otp_nvmem_add(mtd);
1058 if (ret)
1059 goto out;
1060
1061 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1062 ret = add_mtd_device(mtd);
1063 if (ret)
1064 goto out;
1065 }
1066
1067 /* Prefer parsed partitions over driver-provided fallback */
1068 ret = parse_mtd_partitions(mtd, types, parser_data);
1069 if (ret == -EPROBE_DEFER)
1070 goto out;
1071
1072 if (ret > 0)
1073 ret = 0;
1074 else if (nr_parts)
1075 ret = add_mtd_partitions(mtd, parts, nr_parts);
1076 else if (!device_is_registered(&mtd->dev))
1077 ret = add_mtd_device(mtd);
1078 else
1079 ret = 0;
1080
1081 if (ret)
1082 goto out;
1083
1084 /*
1085 * FIXME: some drivers unfortunately call this function more than once.
1086 * So we have to check if we've already assigned the reboot notifier.
1087 *
1088 * Generally, we can make multiple calls work for most cases, but it
1089 * does cause problems with parse_mtd_partitions() above (e.g.,
1090 * cmdlineparts will register partitions more than once).
1091 */
1092 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1093 "MTD already registered\n");
1094 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1095 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1096 register_reboot_notifier(&mtd->reboot_notifier);
1097 }
1098
1099out:
1100 if (ret) {
1101 nvmem_unregister(mtd->otp_user_nvmem);
1102 nvmem_unregister(mtd->otp_factory_nvmem);
1103 }
1104
1105 if (ret && device_is_registered(&mtd->dev))
1106 del_mtd_device(mtd);
1107
1108 return ret;
1109}
1110EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1111
1112/**
1113 * mtd_device_unregister - unregister an existing MTD device.
1114 *
1115 * @master: the MTD device to unregister. This will unregister both the master
1116 * and any partitions if registered.
1117 */
1118int mtd_device_unregister(struct mtd_info *master)
1119{
1120 int err;
1121
1122 if (master->_reboot) {
1123 unregister_reboot_notifier(&master->reboot_notifier);
1124 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1125 }
1126
1127 nvmem_unregister(master->otp_user_nvmem);
1128 nvmem_unregister(master->otp_factory_nvmem);
1129
1130 err = del_mtd_partitions(master);
1131 if (err)
1132 return err;
1133
1134 if (!device_is_registered(&master->dev))
1135 return 0;
1136
1137 return del_mtd_device(master);
1138}
1139EXPORT_SYMBOL_GPL(mtd_device_unregister);
1140
1141/**
1142 * register_mtd_user - register a 'user' of MTD devices.
1143 * @new: pointer to notifier info structure
1144 *
1145 * Registers a pair of callbacks function to be called upon addition
1146 * or removal of MTD devices. Causes the 'add' callback to be immediately
1147 * invoked for each MTD device currently present in the system.
1148 */
1149void register_mtd_user (struct mtd_notifier *new)
1150{
1151 struct mtd_info *mtd;
1152
1153 mutex_lock(&mtd_table_mutex);
1154
1155 list_add(&new->list, &mtd_notifiers);
1156
1157 __module_get(THIS_MODULE);
1158
1159 mtd_for_each_device(mtd)
1160 new->add(mtd);
1161
1162 mutex_unlock(&mtd_table_mutex);
1163}
1164EXPORT_SYMBOL_GPL(register_mtd_user);
1165
1166/**
1167 * unregister_mtd_user - unregister a 'user' of MTD devices.
1168 * @old: pointer to notifier info structure
1169 *
1170 * Removes a callback function pair from the list of 'users' to be
1171 * notified upon addition or removal of MTD devices. Causes the
1172 * 'remove' callback to be immediately invoked for each MTD device
1173 * currently present in the system.
1174 */
1175int unregister_mtd_user (struct mtd_notifier *old)
1176{
1177 struct mtd_info *mtd;
1178
1179 mutex_lock(&mtd_table_mutex);
1180
1181 module_put(THIS_MODULE);
1182
1183 mtd_for_each_device(mtd)
1184 old->remove(mtd);
1185
1186 list_del(&old->list);
1187 mutex_unlock(&mtd_table_mutex);
1188 return 0;
1189}
1190EXPORT_SYMBOL_GPL(unregister_mtd_user);
1191
1192/**
1193 * get_mtd_device - obtain a validated handle for an MTD device
1194 * @mtd: last known address of the required MTD device
1195 * @num: internal device number of the required MTD device
1196 *
1197 * Given a number and NULL address, return the num'th entry in the device
1198 * table, if any. Given an address and num == -1, search the device table
1199 * for a device with that address and return if it's still present. Given
1200 * both, return the num'th driver only if its address matches. Return
1201 * error code if not.
1202 */
1203struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1204{
1205 struct mtd_info *ret = NULL, *other;
1206 int err = -ENODEV;
1207
1208 mutex_lock(&mtd_table_mutex);
1209
1210 if (num == -1) {
1211 mtd_for_each_device(other) {
1212 if (other == mtd) {
1213 ret = mtd;
1214 break;
1215 }
1216 }
1217 } else if (num >= 0) {
1218 ret = idr_find(&mtd_idr, num);
1219 if (mtd && mtd != ret)
1220 ret = NULL;
1221 }
1222
1223 if (!ret) {
1224 ret = ERR_PTR(err);
1225 goto out;
1226 }
1227
1228 err = __get_mtd_device(ret);
1229 if (err)
1230 ret = ERR_PTR(err);
1231out:
1232 mutex_unlock(&mtd_table_mutex);
1233 return ret;
1234}
1235EXPORT_SYMBOL_GPL(get_mtd_device);
1236
1237
1238int __get_mtd_device(struct mtd_info *mtd)
1239{
1240 struct mtd_info *master = mtd_get_master(mtd);
1241 int err;
1242
1243 if (master->_get_device) {
1244 err = master->_get_device(mtd);
1245 if (err)
1246 return err;
1247 }
1248
1249 if (!try_module_get(master->owner)) {
1250 if (master->_put_device)
1251 master->_put_device(master);
1252 return -ENODEV;
1253 }
1254
1255 while (mtd) {
1256 if (mtd != master)
1257 kref_get(&mtd->refcnt);
1258 mtd = mtd->parent;
1259 }
1260
1261 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1262 kref_get(&master->refcnt);
1263
1264 return 0;
1265}
1266EXPORT_SYMBOL_GPL(__get_mtd_device);
1267
1268/**
1269 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1270 *
1271 * @np: device tree node
1272 */
1273struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1274{
1275 struct mtd_info *mtd = NULL;
1276 struct mtd_info *tmp;
1277 int err;
1278
1279 mutex_lock(&mtd_table_mutex);
1280
1281 err = -EPROBE_DEFER;
1282 mtd_for_each_device(tmp) {
1283 if (mtd_get_of_node(tmp) == np) {
1284 mtd = tmp;
1285 err = __get_mtd_device(mtd);
1286 break;
1287 }
1288 }
1289
1290 mutex_unlock(&mtd_table_mutex);
1291
1292 return err ? ERR_PTR(err) : mtd;
1293}
1294EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1295
1296/**
1297 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1298 * device name
1299 * @name: MTD device name to open
1300 *
1301 * This function returns MTD device description structure in case of
1302 * success and an error code in case of failure.
1303 */
1304struct mtd_info *get_mtd_device_nm(const char *name)
1305{
1306 int err = -ENODEV;
1307 struct mtd_info *mtd = NULL, *other;
1308
1309 mutex_lock(&mtd_table_mutex);
1310
1311 mtd_for_each_device(other) {
1312 if (!strcmp(name, other->name)) {
1313 mtd = other;
1314 break;
1315 }
1316 }
1317
1318 if (!mtd)
1319 goto out_unlock;
1320
1321 err = __get_mtd_device(mtd);
1322 if (err)
1323 goto out_unlock;
1324
1325 mutex_unlock(&mtd_table_mutex);
1326 return mtd;
1327
1328out_unlock:
1329 mutex_unlock(&mtd_table_mutex);
1330 return ERR_PTR(err);
1331}
1332EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1333
1334void put_mtd_device(struct mtd_info *mtd)
1335{
1336 mutex_lock(&mtd_table_mutex);
1337 __put_mtd_device(mtd);
1338 mutex_unlock(&mtd_table_mutex);
1339
1340}
1341EXPORT_SYMBOL_GPL(put_mtd_device);
1342
1343void __put_mtd_device(struct mtd_info *mtd)
1344{
1345 struct mtd_info *master = mtd_get_master(mtd);
1346
1347 while (mtd) {
1348 /* kref_put() can relese mtd, so keep a reference mtd->parent */
1349 struct mtd_info *parent = mtd->parent;
1350
1351 if (mtd != master)
1352 kref_put(&mtd->refcnt, mtd_device_release);
1353 mtd = parent;
1354 }
1355
1356 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1357 kref_put(&master->refcnt, mtd_device_release);
1358
1359 module_put(master->owner);
1360
1361 /* must be the last as master can be freed in the _put_device */
1362 if (master->_put_device)
1363 master->_put_device(master);
1364}
1365EXPORT_SYMBOL_GPL(__put_mtd_device);
1366
1367/*
1368 * Erase is an synchronous operation. Device drivers are epected to return a
1369 * negative error code if the operation failed and update instr->fail_addr
1370 * to point the portion that was not properly erased.
1371 */
1372int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1373{
1374 struct mtd_info *master = mtd_get_master(mtd);
1375 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1376 struct erase_info adjinstr;
1377 int ret;
1378
1379 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1380 adjinstr = *instr;
1381
1382 if (!mtd->erasesize || !master->_erase)
1383 return -ENOTSUPP;
1384
1385 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1386 return -EINVAL;
1387 if (!(mtd->flags & MTD_WRITEABLE))
1388 return -EROFS;
1389
1390 if (!instr->len)
1391 return 0;
1392
1393 ledtrig_mtd_activity();
1394
1395 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1396 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1397 master->erasesize;
1398 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1399 master->erasesize) -
1400 adjinstr.addr;
1401 }
1402
1403 adjinstr.addr += mst_ofs;
1404
1405 ret = master->_erase(master, &adjinstr);
1406
1407 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1408 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1409 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1410 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1411 master);
1412 instr->fail_addr *= mtd->erasesize;
1413 }
1414 }
1415
1416 return ret;
1417}
1418EXPORT_SYMBOL_GPL(mtd_erase);
1419ALLOW_ERROR_INJECTION(mtd_erase, ERRNO);
1420
1421/*
1422 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1423 */
1424int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1425 void **virt, resource_size_t *phys)
1426{
1427 struct mtd_info *master = mtd_get_master(mtd);
1428
1429 *retlen = 0;
1430 *virt = NULL;
1431 if (phys)
1432 *phys = 0;
1433 if (!master->_point)
1434 return -EOPNOTSUPP;
1435 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1436 return -EINVAL;
1437 if (!len)
1438 return 0;
1439
1440 from = mtd_get_master_ofs(mtd, from);
1441 return master->_point(master, from, len, retlen, virt, phys);
1442}
1443EXPORT_SYMBOL_GPL(mtd_point);
1444
1445/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1446int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1447{
1448 struct mtd_info *master = mtd_get_master(mtd);
1449
1450 if (!master->_unpoint)
1451 return -EOPNOTSUPP;
1452 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1453 return -EINVAL;
1454 if (!len)
1455 return 0;
1456 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1457}
1458EXPORT_SYMBOL_GPL(mtd_unpoint);
1459
1460/*
1461 * Allow NOMMU mmap() to directly map the device (if not NULL)
1462 * - return the address to which the offset maps
1463 * - return -ENOSYS to indicate refusal to do the mapping
1464 */
1465unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1466 unsigned long offset, unsigned long flags)
1467{
1468 size_t retlen;
1469 void *virt;
1470 int ret;
1471
1472 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1473 if (ret)
1474 return ret;
1475 if (retlen != len) {
1476 mtd_unpoint(mtd, offset, retlen);
1477 return -ENOSYS;
1478 }
1479 return (unsigned long)virt;
1480}
1481EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1482
1483static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1484 const struct mtd_ecc_stats *old_stats)
1485{
1486 struct mtd_ecc_stats diff;
1487
1488 if (master == mtd)
1489 return;
1490
1491 diff = master->ecc_stats;
1492 diff.failed -= old_stats->failed;
1493 diff.corrected -= old_stats->corrected;
1494
1495 while (mtd->parent) {
1496 mtd->ecc_stats.failed += diff.failed;
1497 mtd->ecc_stats.corrected += diff.corrected;
1498 mtd = mtd->parent;
1499 }
1500}
1501
1502int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1503 u_char *buf)
1504{
1505 struct mtd_oob_ops ops = {
1506 .len = len,
1507 .datbuf = buf,
1508 };
1509 int ret;
1510
1511 ret = mtd_read_oob(mtd, from, &ops);
1512 *retlen = ops.retlen;
1513
1514 WARN_ON_ONCE(*retlen != len && mtd_is_bitflip_or_eccerr(ret));
1515
1516 return ret;
1517}
1518EXPORT_SYMBOL_GPL(mtd_read);
1519ALLOW_ERROR_INJECTION(mtd_read, ERRNO);
1520
1521int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1522 const u_char *buf)
1523{
1524 struct mtd_oob_ops ops = {
1525 .len = len,
1526 .datbuf = (u8 *)buf,
1527 };
1528 int ret;
1529
1530 ret = mtd_write_oob(mtd, to, &ops);
1531 *retlen = ops.retlen;
1532
1533 return ret;
1534}
1535EXPORT_SYMBOL_GPL(mtd_write);
1536ALLOW_ERROR_INJECTION(mtd_write, ERRNO);
1537
1538/*
1539 * In blackbox flight recorder like scenarios we want to make successful writes
1540 * in interrupt context. panic_write() is only intended to be called when its
1541 * known the kernel is about to panic and we need the write to succeed. Since
1542 * the kernel is not going to be running for much longer, this function can
1543 * break locks and delay to ensure the write succeeds (but not sleep).
1544 */
1545int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1546 const u_char *buf)
1547{
1548 struct mtd_info *master = mtd_get_master(mtd);
1549
1550 *retlen = 0;
1551 if (!master->_panic_write)
1552 return -EOPNOTSUPP;
1553 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1554 return -EINVAL;
1555 if (!(mtd->flags & MTD_WRITEABLE))
1556 return -EROFS;
1557 if (!len)
1558 return 0;
1559 if (!master->oops_panic_write)
1560 master->oops_panic_write = true;
1561
1562 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1563 retlen, buf);
1564}
1565EXPORT_SYMBOL_GPL(mtd_panic_write);
1566
1567static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1568 struct mtd_oob_ops *ops)
1569{
1570 /*
1571 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1572 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1573 * this case.
1574 */
1575 if (!ops->datbuf)
1576 ops->len = 0;
1577
1578 if (!ops->oobbuf)
1579 ops->ooblen = 0;
1580
1581 if (offs < 0 || offs + ops->len > mtd->size)
1582 return -EINVAL;
1583
1584 if (ops->ooblen) {
1585 size_t maxooblen;
1586
1587 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1588 return -EINVAL;
1589
1590 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1591 mtd_div_by_ws(offs, mtd)) *
1592 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1593 if (ops->ooblen > maxooblen)
1594 return -EINVAL;
1595 }
1596
1597 return 0;
1598}
1599
1600static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1601 struct mtd_oob_ops *ops)
1602{
1603 struct mtd_info *master = mtd_get_master(mtd);
1604 int ret;
1605
1606 from = mtd_get_master_ofs(mtd, from);
1607 if (master->_read_oob)
1608 ret = master->_read_oob(master, from, ops);
1609 else
1610 ret = master->_read(master, from, ops->len, &ops->retlen,
1611 ops->datbuf);
1612
1613 return ret;
1614}
1615
1616static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1617 struct mtd_oob_ops *ops)
1618{
1619 struct mtd_info *master = mtd_get_master(mtd);
1620 int ret;
1621
1622 to = mtd_get_master_ofs(mtd, to);
1623 if (master->_write_oob)
1624 ret = master->_write_oob(master, to, ops);
1625 else
1626 ret = master->_write(master, to, ops->len, &ops->retlen,
1627 ops->datbuf);
1628
1629 return ret;
1630}
1631
1632static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1633 struct mtd_oob_ops *ops)
1634{
1635 struct mtd_info *master = mtd_get_master(mtd);
1636 int ngroups = mtd_pairing_groups(master);
1637 int npairs = mtd_wunit_per_eb(master) / ngroups;
1638 struct mtd_oob_ops adjops = *ops;
1639 unsigned int wunit, oobavail;
1640 struct mtd_pairing_info info;
1641 int max_bitflips = 0;
1642 u32 ebofs, pageofs;
1643 loff_t base, pos;
1644
1645 ebofs = mtd_mod_by_eb(start, mtd);
1646 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1647 info.group = 0;
1648 info.pair = mtd_div_by_ws(ebofs, mtd);
1649 pageofs = mtd_mod_by_ws(ebofs, mtd);
1650 oobavail = mtd_oobavail(mtd, ops);
1651
1652 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1653 int ret;
1654
1655 if (info.pair >= npairs) {
1656 info.pair = 0;
1657 base += master->erasesize;
1658 }
1659
1660 wunit = mtd_pairing_info_to_wunit(master, &info);
1661 pos = mtd_wunit_to_offset(mtd, base, wunit);
1662
1663 adjops.len = ops->len - ops->retlen;
1664 if (adjops.len > mtd->writesize - pageofs)
1665 adjops.len = mtd->writesize - pageofs;
1666
1667 adjops.ooblen = ops->ooblen - ops->oobretlen;
1668 if (adjops.ooblen > oobavail - adjops.ooboffs)
1669 adjops.ooblen = oobavail - adjops.ooboffs;
1670
1671 if (read) {
1672 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1673 if (ret > 0)
1674 max_bitflips = max(max_bitflips, ret);
1675 } else {
1676 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1677 }
1678
1679 if (ret < 0)
1680 return ret;
1681
1682 max_bitflips = max(max_bitflips, ret);
1683 ops->retlen += adjops.retlen;
1684 ops->oobretlen += adjops.oobretlen;
1685 adjops.datbuf += adjops.retlen;
1686 adjops.oobbuf += adjops.oobretlen;
1687 adjops.ooboffs = 0;
1688 pageofs = 0;
1689 info.pair++;
1690 }
1691
1692 return max_bitflips;
1693}
1694
1695int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1696{
1697 struct mtd_info *master = mtd_get_master(mtd);
1698 struct mtd_ecc_stats old_stats = master->ecc_stats;
1699 int ret_code;
1700
1701 ops->retlen = ops->oobretlen = 0;
1702
1703 ret_code = mtd_check_oob_ops(mtd, from, ops);
1704 if (ret_code)
1705 return ret_code;
1706
1707 ledtrig_mtd_activity();
1708
1709 /* Check the validity of a potential fallback on mtd->_read */
1710 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1711 return -EOPNOTSUPP;
1712
1713 if (ops->stats)
1714 memset(ops->stats, 0, sizeof(*ops->stats));
1715
1716 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1717 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1718 else
1719 ret_code = mtd_read_oob_std(mtd, from, ops);
1720
1721 mtd_update_ecc_stats(mtd, master, &old_stats);
1722
1723 /*
1724 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1725 * similar to mtd->_read(), returning a non-negative integer
1726 * representing max bitflips. In other cases, mtd->_read_oob() may
1727 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1728 */
1729 if (unlikely(ret_code < 0))
1730 return ret_code;
1731 if (mtd->ecc_strength == 0)
1732 return 0; /* device lacks ecc */
1733 if (ops->stats)
1734 ops->stats->max_bitflips = ret_code;
1735 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1736}
1737EXPORT_SYMBOL_GPL(mtd_read_oob);
1738
1739int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1740 struct mtd_oob_ops *ops)
1741{
1742 struct mtd_info *master = mtd_get_master(mtd);
1743 int ret;
1744
1745 ops->retlen = ops->oobretlen = 0;
1746
1747 if (!(mtd->flags & MTD_WRITEABLE))
1748 return -EROFS;
1749
1750 ret = mtd_check_oob_ops(mtd, to, ops);
1751 if (ret)
1752 return ret;
1753
1754 ledtrig_mtd_activity();
1755
1756 /* Check the validity of a potential fallback on mtd->_write */
1757 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1758 return -EOPNOTSUPP;
1759
1760 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1761 return mtd_io_emulated_slc(mtd, to, false, ops);
1762
1763 return mtd_write_oob_std(mtd, to, ops);
1764}
1765EXPORT_SYMBOL_GPL(mtd_write_oob);
1766
1767/**
1768 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1769 * @mtd: MTD device structure
1770 * @section: ECC section. Depending on the layout you may have all the ECC
1771 * bytes stored in a single contiguous section, or one section
1772 * per ECC chunk (and sometime several sections for a single ECC
1773 * ECC chunk)
1774 * @oobecc: OOB region struct filled with the appropriate ECC position
1775 * information
1776 *
1777 * This function returns ECC section information in the OOB area. If you want
1778 * to get all the ECC bytes information, then you should call
1779 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1780 *
1781 * Returns zero on success, a negative error code otherwise.
1782 */
1783int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1784 struct mtd_oob_region *oobecc)
1785{
1786 struct mtd_info *master = mtd_get_master(mtd);
1787
1788 memset(oobecc, 0, sizeof(*oobecc));
1789
1790 if (!master || section < 0)
1791 return -EINVAL;
1792
1793 if (!master->ooblayout || !master->ooblayout->ecc)
1794 return -ENOTSUPP;
1795
1796 return master->ooblayout->ecc(master, section, oobecc);
1797}
1798EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1799
1800/**
1801 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1802 * section
1803 * @mtd: MTD device structure
1804 * @section: Free section you are interested in. Depending on the layout
1805 * you may have all the free bytes stored in a single contiguous
1806 * section, or one section per ECC chunk plus an extra section
1807 * for the remaining bytes (or other funky layout).
1808 * @oobfree: OOB region struct filled with the appropriate free position
1809 * information
1810 *
1811 * This function returns free bytes position in the OOB area. If you want
1812 * to get all the free bytes information, then you should call
1813 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1814 *
1815 * Returns zero on success, a negative error code otherwise.
1816 */
1817int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1818 struct mtd_oob_region *oobfree)
1819{
1820 struct mtd_info *master = mtd_get_master(mtd);
1821
1822 memset(oobfree, 0, sizeof(*oobfree));
1823
1824 if (!master || section < 0)
1825 return -EINVAL;
1826
1827 if (!master->ooblayout || !master->ooblayout->free)
1828 return -ENOTSUPP;
1829
1830 return master->ooblayout->free(master, section, oobfree);
1831}
1832EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1833
1834/**
1835 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1836 * @mtd: mtd info structure
1837 * @byte: the byte we are searching for
1838 * @sectionp: pointer where the section id will be stored
1839 * @oobregion: used to retrieve the ECC position
1840 * @iter: iterator function. Should be either mtd_ooblayout_free or
1841 * mtd_ooblayout_ecc depending on the region type you're searching for
1842 *
1843 * This function returns the section id and oobregion information of a
1844 * specific byte. For example, say you want to know where the 4th ECC byte is
1845 * stored, you'll use:
1846 *
1847 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1848 *
1849 * Returns zero on success, a negative error code otherwise.
1850 */
1851static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1852 int *sectionp, struct mtd_oob_region *oobregion,
1853 int (*iter)(struct mtd_info *,
1854 int section,
1855 struct mtd_oob_region *oobregion))
1856{
1857 int pos = 0, ret, section = 0;
1858
1859 memset(oobregion, 0, sizeof(*oobregion));
1860
1861 while (1) {
1862 ret = iter(mtd, section, oobregion);
1863 if (ret)
1864 return ret;
1865
1866 if (pos + oobregion->length > byte)
1867 break;
1868
1869 pos += oobregion->length;
1870 section++;
1871 }
1872
1873 /*
1874 * Adjust region info to make it start at the beginning at the
1875 * 'start' ECC byte.
1876 */
1877 oobregion->offset += byte - pos;
1878 oobregion->length -= byte - pos;
1879 *sectionp = section;
1880
1881 return 0;
1882}
1883
1884/**
1885 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1886 * ECC byte
1887 * @mtd: mtd info structure
1888 * @eccbyte: the byte we are searching for
1889 * @section: pointer where the section id will be stored
1890 * @oobregion: OOB region information
1891 *
1892 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1893 * byte.
1894 *
1895 * Returns zero on success, a negative error code otherwise.
1896 */
1897int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1898 int *section,
1899 struct mtd_oob_region *oobregion)
1900{
1901 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1902 mtd_ooblayout_ecc);
1903}
1904EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1905
1906/**
1907 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1908 * @mtd: mtd info structure
1909 * @buf: destination buffer to store OOB bytes
1910 * @oobbuf: OOB buffer
1911 * @start: first byte to retrieve
1912 * @nbytes: number of bytes to retrieve
1913 * @iter: section iterator
1914 *
1915 * Extract bytes attached to a specific category (ECC or free)
1916 * from the OOB buffer and copy them into buf.
1917 *
1918 * Returns zero on success, a negative error code otherwise.
1919 */
1920static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1921 const u8 *oobbuf, int start, int nbytes,
1922 int (*iter)(struct mtd_info *,
1923 int section,
1924 struct mtd_oob_region *oobregion))
1925{
1926 struct mtd_oob_region oobregion;
1927 int section, ret;
1928
1929 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1930 &oobregion, iter);
1931
1932 while (!ret) {
1933 int cnt;
1934
1935 cnt = min_t(int, nbytes, oobregion.length);
1936 memcpy(buf, oobbuf + oobregion.offset, cnt);
1937 buf += cnt;
1938 nbytes -= cnt;
1939
1940 if (!nbytes)
1941 break;
1942
1943 ret = iter(mtd, ++section, &oobregion);
1944 }
1945
1946 return ret;
1947}
1948
1949/**
1950 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1951 * @mtd: mtd info structure
1952 * @buf: source buffer to get OOB bytes from
1953 * @oobbuf: OOB buffer
1954 * @start: first OOB byte to set
1955 * @nbytes: number of OOB bytes to set
1956 * @iter: section iterator
1957 *
1958 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1959 * is selected by passing the appropriate iterator.
1960 *
1961 * Returns zero on success, a negative error code otherwise.
1962 */
1963static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1964 u8 *oobbuf, int start, int nbytes,
1965 int (*iter)(struct mtd_info *,
1966 int section,
1967 struct mtd_oob_region *oobregion))
1968{
1969 struct mtd_oob_region oobregion;
1970 int section, ret;
1971
1972 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1973 &oobregion, iter);
1974
1975 while (!ret) {
1976 int cnt;
1977
1978 cnt = min_t(int, nbytes, oobregion.length);
1979 memcpy(oobbuf + oobregion.offset, buf, cnt);
1980 buf += cnt;
1981 nbytes -= cnt;
1982
1983 if (!nbytes)
1984 break;
1985
1986 ret = iter(mtd, ++section, &oobregion);
1987 }
1988
1989 return ret;
1990}
1991
1992/**
1993 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1994 * @mtd: mtd info structure
1995 * @iter: category iterator
1996 *
1997 * Count the number of bytes in a given category.
1998 *
1999 * Returns a positive value on success, a negative error code otherwise.
2000 */
2001static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
2002 int (*iter)(struct mtd_info *,
2003 int section,
2004 struct mtd_oob_region *oobregion))
2005{
2006 struct mtd_oob_region oobregion;
2007 int section = 0, ret, nbytes = 0;
2008
2009 while (1) {
2010 ret = iter(mtd, section++, &oobregion);
2011 if (ret) {
2012 if (ret == -ERANGE)
2013 ret = nbytes;
2014 break;
2015 }
2016
2017 nbytes += oobregion.length;
2018 }
2019
2020 return ret;
2021}
2022
2023/**
2024 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2025 * @mtd: mtd info structure
2026 * @eccbuf: destination buffer to store ECC bytes
2027 * @oobbuf: OOB buffer
2028 * @start: first ECC byte to retrieve
2029 * @nbytes: number of ECC bytes to retrieve
2030 *
2031 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2032 *
2033 * Returns zero on success, a negative error code otherwise.
2034 */
2035int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2036 const u8 *oobbuf, int start, int nbytes)
2037{
2038 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2039 mtd_ooblayout_ecc);
2040}
2041EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2042
2043/**
2044 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2045 * @mtd: mtd info structure
2046 * @eccbuf: source buffer to get ECC bytes from
2047 * @oobbuf: OOB buffer
2048 * @start: first ECC byte to set
2049 * @nbytes: number of ECC bytes to set
2050 *
2051 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2052 *
2053 * Returns zero on success, a negative error code otherwise.
2054 */
2055int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2056 u8 *oobbuf, int start, int nbytes)
2057{
2058 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2059 mtd_ooblayout_ecc);
2060}
2061EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2062
2063/**
2064 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2065 * @mtd: mtd info structure
2066 * @databuf: destination buffer to store ECC bytes
2067 * @oobbuf: OOB buffer
2068 * @start: first ECC byte to retrieve
2069 * @nbytes: number of ECC bytes to retrieve
2070 *
2071 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2072 *
2073 * Returns zero on success, a negative error code otherwise.
2074 */
2075int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2076 const u8 *oobbuf, int start, int nbytes)
2077{
2078 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2079 mtd_ooblayout_free);
2080}
2081EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2082
2083/**
2084 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2085 * @mtd: mtd info structure
2086 * @databuf: source buffer to get data bytes from
2087 * @oobbuf: OOB buffer
2088 * @start: first ECC byte to set
2089 * @nbytes: number of ECC bytes to set
2090 *
2091 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2092 *
2093 * Returns zero on success, a negative error code otherwise.
2094 */
2095int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2096 u8 *oobbuf, int start, int nbytes)
2097{
2098 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2099 mtd_ooblayout_free);
2100}
2101EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2102
2103/**
2104 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2105 * @mtd: mtd info structure
2106 *
2107 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2108 *
2109 * Returns zero on success, a negative error code otherwise.
2110 */
2111int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2112{
2113 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2114}
2115EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2116
2117/**
2118 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2119 * @mtd: mtd info structure
2120 *
2121 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2122 *
2123 * Returns zero on success, a negative error code otherwise.
2124 */
2125int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2126{
2127 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2128}
2129EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2130
2131/*
2132 * Method to access the protection register area, present in some flash
2133 * devices. The user data is one time programmable but the factory data is read
2134 * only.
2135 */
2136int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2137 struct otp_info *buf)
2138{
2139 struct mtd_info *master = mtd_get_master(mtd);
2140
2141 if (!master->_get_fact_prot_info)
2142 return -EOPNOTSUPP;
2143 if (!len)
2144 return 0;
2145 return master->_get_fact_prot_info(master, len, retlen, buf);
2146}
2147EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2148
2149int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2150 size_t *retlen, u_char *buf)
2151{
2152 struct mtd_info *master = mtd_get_master(mtd);
2153
2154 *retlen = 0;
2155 if (!master->_read_fact_prot_reg)
2156 return -EOPNOTSUPP;
2157 if (!len)
2158 return 0;
2159 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2160}
2161EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2162
2163int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2164 struct otp_info *buf)
2165{
2166 struct mtd_info *master = mtd_get_master(mtd);
2167
2168 if (!master->_get_user_prot_info)
2169 return -EOPNOTSUPP;
2170 if (!len)
2171 return 0;
2172 return master->_get_user_prot_info(master, len, retlen, buf);
2173}
2174EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2175
2176int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2177 size_t *retlen, u_char *buf)
2178{
2179 struct mtd_info *master = mtd_get_master(mtd);
2180
2181 *retlen = 0;
2182 if (!master->_read_user_prot_reg)
2183 return -EOPNOTSUPP;
2184 if (!len)
2185 return 0;
2186 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2187}
2188EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2189
2190int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2191 size_t *retlen, const u_char *buf)
2192{
2193 struct mtd_info *master = mtd_get_master(mtd);
2194 int ret;
2195
2196 *retlen = 0;
2197 if (!master->_write_user_prot_reg)
2198 return -EOPNOTSUPP;
2199 if (!len)
2200 return 0;
2201 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2202 if (ret)
2203 return ret;
2204
2205 /*
2206 * If no data could be written at all, we are out of memory and
2207 * must return -ENOSPC.
2208 */
2209 return (*retlen) ? 0 : -ENOSPC;
2210}
2211EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2212
2213int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2214{
2215 struct mtd_info *master = mtd_get_master(mtd);
2216
2217 if (!master->_lock_user_prot_reg)
2218 return -EOPNOTSUPP;
2219 if (!len)
2220 return 0;
2221 return master->_lock_user_prot_reg(master, from, len);
2222}
2223EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2224
2225int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2226{
2227 struct mtd_info *master = mtd_get_master(mtd);
2228
2229 if (!master->_erase_user_prot_reg)
2230 return -EOPNOTSUPP;
2231 if (!len)
2232 return 0;
2233 return master->_erase_user_prot_reg(master, from, len);
2234}
2235EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2236
2237/* Chip-supported device locking */
2238int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2239{
2240 struct mtd_info *master = mtd_get_master(mtd);
2241
2242 if (!master->_lock)
2243 return -EOPNOTSUPP;
2244 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2245 return -EINVAL;
2246 if (!len)
2247 return 0;
2248
2249 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2250 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2251 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2252 }
2253
2254 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2255}
2256EXPORT_SYMBOL_GPL(mtd_lock);
2257
2258int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2259{
2260 struct mtd_info *master = mtd_get_master(mtd);
2261
2262 if (!master->_unlock)
2263 return -EOPNOTSUPP;
2264 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2265 return -EINVAL;
2266 if (!len)
2267 return 0;
2268
2269 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2270 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2271 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2272 }
2273
2274 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2275}
2276EXPORT_SYMBOL_GPL(mtd_unlock);
2277
2278int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2279{
2280 struct mtd_info *master = mtd_get_master(mtd);
2281
2282 if (!master->_is_locked)
2283 return -EOPNOTSUPP;
2284 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2285 return -EINVAL;
2286 if (!len)
2287 return 0;
2288
2289 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2290 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2291 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2292 }
2293
2294 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2295}
2296EXPORT_SYMBOL_GPL(mtd_is_locked);
2297
2298int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2299{
2300 struct mtd_info *master = mtd_get_master(mtd);
2301
2302 if (ofs < 0 || ofs >= mtd->size)
2303 return -EINVAL;
2304 if (!master->_block_isreserved)
2305 return 0;
2306
2307 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2308 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2309
2310 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2311}
2312EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2313
2314int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2315{
2316 struct mtd_info *master = mtd_get_master(mtd);
2317
2318 if (ofs < 0 || ofs >= mtd->size)
2319 return -EINVAL;
2320 if (!master->_block_isbad)
2321 return 0;
2322
2323 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2324 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2325
2326 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2327}
2328EXPORT_SYMBOL_GPL(mtd_block_isbad);
2329
2330int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2331{
2332 struct mtd_info *master = mtd_get_master(mtd);
2333 int ret;
2334
2335 if (!master->_block_markbad)
2336 return -EOPNOTSUPP;
2337 if (ofs < 0 || ofs >= mtd->size)
2338 return -EINVAL;
2339 if (!(mtd->flags & MTD_WRITEABLE))
2340 return -EROFS;
2341
2342 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2343 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2344
2345 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2346 if (ret)
2347 return ret;
2348
2349 while (mtd->parent) {
2350 mtd->ecc_stats.badblocks++;
2351 mtd = mtd->parent;
2352 }
2353
2354 return 0;
2355}
2356EXPORT_SYMBOL_GPL(mtd_block_markbad);
2357ALLOW_ERROR_INJECTION(mtd_block_markbad, ERRNO);
2358
2359/*
2360 * default_mtd_writev - the default writev method
2361 * @mtd: mtd device description object pointer
2362 * @vecs: the vectors to write
2363 * @count: count of vectors in @vecs
2364 * @to: the MTD device offset to write to
2365 * @retlen: on exit contains the count of bytes written to the MTD device.
2366 *
2367 * This function returns zero in case of success and a negative error code in
2368 * case of failure.
2369 */
2370static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2371 unsigned long count, loff_t to, size_t *retlen)
2372{
2373 unsigned long i;
2374 size_t totlen = 0, thislen;
2375 int ret = 0;
2376
2377 for (i = 0; i < count; i++) {
2378 if (!vecs[i].iov_len)
2379 continue;
2380 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2381 vecs[i].iov_base);
2382 totlen += thislen;
2383 if (ret || thislen != vecs[i].iov_len)
2384 break;
2385 to += vecs[i].iov_len;
2386 }
2387 *retlen = totlen;
2388 return ret;
2389}
2390
2391/*
2392 * mtd_writev - the vector-based MTD write method
2393 * @mtd: mtd device description object pointer
2394 * @vecs: the vectors to write
2395 * @count: count of vectors in @vecs
2396 * @to: the MTD device offset to write to
2397 * @retlen: on exit contains the count of bytes written to the MTD device.
2398 *
2399 * This function returns zero in case of success and a negative error code in
2400 * case of failure.
2401 */
2402int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2403 unsigned long count, loff_t to, size_t *retlen)
2404{
2405 struct mtd_info *master = mtd_get_master(mtd);
2406
2407 *retlen = 0;
2408 if (!(mtd->flags & MTD_WRITEABLE))
2409 return -EROFS;
2410
2411 if (!master->_writev)
2412 return default_mtd_writev(mtd, vecs, count, to, retlen);
2413
2414 return master->_writev(master, vecs, count,
2415 mtd_get_master_ofs(mtd, to), retlen);
2416}
2417EXPORT_SYMBOL_GPL(mtd_writev);
2418
2419/**
2420 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2421 * @mtd: mtd device description object pointer
2422 * @size: a pointer to the ideal or maximum size of the allocation, points
2423 * to the actual allocation size on success.
2424 *
2425 * This routine attempts to allocate a contiguous kernel buffer up to
2426 * the specified size, backing off the size of the request exponentially
2427 * until the request succeeds or until the allocation size falls below
2428 * the system page size. This attempts to make sure it does not adversely
2429 * impact system performance, so when allocating more than one page, we
2430 * ask the memory allocator to avoid re-trying, swapping, writing back
2431 * or performing I/O.
2432 *
2433 * Note, this function also makes sure that the allocated buffer is aligned to
2434 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2435 *
2436 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2437 * to handle smaller (i.e. degraded) buffer allocations under low- or
2438 * fragmented-memory situations where such reduced allocations, from a
2439 * requested ideal, are allowed.
2440 *
2441 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2442 */
2443void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2444{
2445 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2446 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2447 void *kbuf;
2448
2449 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2450
2451 while (*size > min_alloc) {
2452 kbuf = kmalloc(*size, flags);
2453 if (kbuf)
2454 return kbuf;
2455
2456 *size >>= 1;
2457 *size = ALIGN(*size, mtd->writesize);
2458 }
2459
2460 /*
2461 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2462 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2463 */
2464 return kmalloc(*size, GFP_KERNEL);
2465}
2466EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2467
2468#ifdef CONFIG_PROC_FS
2469
2470/*====================================================================*/
2471/* Support for /proc/mtd */
2472
2473static int mtd_proc_show(struct seq_file *m, void *v)
2474{
2475 struct mtd_info *mtd;
2476
2477 seq_puts(m, "dev: size erasesize name\n");
2478 mutex_lock(&mtd_table_mutex);
2479 mtd_for_each_device(mtd) {
2480 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2481 mtd->index, (unsigned long long)mtd->size,
2482 mtd->erasesize, mtd->name);
2483 }
2484 mutex_unlock(&mtd_table_mutex);
2485 return 0;
2486}
2487#endif /* CONFIG_PROC_FS */
2488
2489/*====================================================================*/
2490/* Init code */
2491
2492static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2493{
2494 struct backing_dev_info *bdi;
2495 int ret;
2496
2497 bdi = bdi_alloc(NUMA_NO_NODE);
2498 if (!bdi)
2499 return ERR_PTR(-ENOMEM);
2500 bdi->ra_pages = 0;
2501 bdi->io_pages = 0;
2502
2503 /*
2504 * We put '-0' suffix to the name to get the same name format as we
2505 * used to get. Since this is called only once, we get a unique name.
2506 */
2507 ret = bdi_register(bdi, "%.28s-0", name);
2508 if (ret)
2509 bdi_put(bdi);
2510
2511 return ret ? ERR_PTR(ret) : bdi;
2512}
2513
2514static struct proc_dir_entry *proc_mtd;
2515
2516static int __init init_mtd(void)
2517{
2518 int ret;
2519
2520 ret = class_register(&mtd_class);
2521 if (ret)
2522 goto err_reg;
2523
2524 mtd_bdi = mtd_bdi_init("mtd");
2525 if (IS_ERR(mtd_bdi)) {
2526 ret = PTR_ERR(mtd_bdi);
2527 goto err_bdi;
2528 }
2529
2530 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2531
2532 ret = init_mtdchar();
2533 if (ret)
2534 goto out_procfs;
2535
2536 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2537 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2538 &mtd_expert_analysis_mode);
2539
2540 return 0;
2541
2542out_procfs:
2543 if (proc_mtd)
2544 remove_proc_entry("mtd", NULL);
2545 bdi_unregister(mtd_bdi);
2546 bdi_put(mtd_bdi);
2547err_bdi:
2548 class_unregister(&mtd_class);
2549err_reg:
2550 pr_err("Error registering mtd class or bdi: %d\n", ret);
2551 return ret;
2552}
2553
2554static void __exit cleanup_mtd(void)
2555{
2556 debugfs_remove_recursive(dfs_dir_mtd);
2557 cleanup_mtdchar();
2558 if (proc_mtd)
2559 remove_proc_entry("mtd", NULL);
2560 class_unregister(&mtd_class);
2561 bdi_unregister(mtd_bdi);
2562 bdi_put(mtd_bdi);
2563 idr_destroy(&mtd_idr);
2564}
2565
2566module_init(init_mtd);
2567module_exit(cleanup_mtd);
2568
2569MODULE_LICENSE("GPL");
2570MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2571MODULE_DESCRIPTION("Core MTD registration and access routines");