Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
   3 * Copyright (C) 2015 Linaro Ltd.
   4 */
   5#include <linux/platform_device.h>
   6#include <linux/init.h>
   7#include <linux/cpumask.h>
   8#include <linux/export.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/module.h>
  11#include <linux/types.h>
  12#include <linux/qcom_scm.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_platform.h>
  16#include <linux/clk.h>
  17#include <linux/reset-controller.h>
  18#include <linux/arm-smccc.h>
  19
  20#include "qcom_scm.h"
  21
  22static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
  23module_param(download_mode, bool, 0);
  24
  25#define SCM_HAS_CORE_CLK	BIT(0)
  26#define SCM_HAS_IFACE_CLK	BIT(1)
  27#define SCM_HAS_BUS_CLK		BIT(2)
  28
  29struct qcom_scm {
  30	struct device *dev;
  31	struct clk *core_clk;
  32	struct clk *iface_clk;
  33	struct clk *bus_clk;
  34	struct reset_controller_dev reset;
  35
  36	u64 dload_mode_addr;
  37};
  38
  39struct qcom_scm_current_perm_info {
  40	__le32 vmid;
  41	__le32 perm;
  42	__le64 ctx;
  43	__le32 ctx_size;
  44	__le32 unused;
  45};
  46
  47struct qcom_scm_mem_map_info {
  48	__le64 mem_addr;
  49	__le64 mem_size;
  50};
  51
  52#define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
  53#define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
  54#define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
  55#define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
  56
  57#define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
  58#define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
  59#define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
  60#define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
  61
  62struct qcom_scm_wb_entry {
  63	int flag;
  64	void *entry;
  65};
  66
  67static struct qcom_scm_wb_entry qcom_scm_wb[] = {
  68	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
  69	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
  70	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
  71	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
  72};
  73
  74static const char *qcom_scm_convention_names[] = {
  75	[SMC_CONVENTION_UNKNOWN] = "unknown",
  76	[SMC_CONVENTION_ARM_32] = "smc arm 32",
  77	[SMC_CONVENTION_ARM_64] = "smc arm 64",
  78	[SMC_CONVENTION_LEGACY] = "smc legacy",
  79};
  80
  81static struct qcom_scm *__scm;
  82
  83static int qcom_scm_clk_enable(void)
  84{
  85	int ret;
  86
  87	ret = clk_prepare_enable(__scm->core_clk);
  88	if (ret)
  89		goto bail;
  90
  91	ret = clk_prepare_enable(__scm->iface_clk);
  92	if (ret)
  93		goto disable_core;
  94
  95	ret = clk_prepare_enable(__scm->bus_clk);
  96	if (ret)
  97		goto disable_iface;
  98
  99	return 0;
 100
 101disable_iface:
 102	clk_disable_unprepare(__scm->iface_clk);
 103disable_core:
 104	clk_disable_unprepare(__scm->core_clk);
 105bail:
 106	return ret;
 107}
 108
 109static void qcom_scm_clk_disable(void)
 110{
 111	clk_disable_unprepare(__scm->core_clk);
 112	clk_disable_unprepare(__scm->iface_clk);
 113	clk_disable_unprepare(__scm->bus_clk);
 114}
 115
 116static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
 117					u32 cmd_id);
 118
 119enum qcom_scm_convention qcom_scm_convention;
 120static bool has_queried __read_mostly;
 121static DEFINE_SPINLOCK(query_lock);
 122
 123static void __query_convention(void)
 124{
 125	unsigned long flags;
 126	struct qcom_scm_desc desc = {
 127		.svc = QCOM_SCM_SVC_INFO,
 128		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
 129		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
 130					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
 131			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
 132		.arginfo = QCOM_SCM_ARGS(1),
 133		.owner = ARM_SMCCC_OWNER_SIP,
 134	};
 135	struct qcom_scm_res res;
 
 136	int ret;
 
 
 
 
 137
 138	spin_lock_irqsave(&query_lock, flags);
 139	if (has_queried)
 140		goto out;
 141
 142	qcom_scm_convention = SMC_CONVENTION_ARM_64;
 143	// Device isn't required as there is only one argument - no device
 144	// needed to dma_map_single to secure world
 145	ret = scm_smc_call(NULL, &desc, &res, true);
 146	if (!ret && res.result[0] == 1)
 147		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 148
 149	qcom_scm_convention = SMC_CONVENTION_ARM_32;
 150	ret = scm_smc_call(NULL, &desc, &res, true);
 151	if (!ret && res.result[0] == 1)
 152		goto out;
 153
 154	qcom_scm_convention = SMC_CONVENTION_LEGACY;
 155out:
 156	has_queried = true;
 157	spin_unlock_irqrestore(&query_lock, flags);
 158	pr_info("qcom_scm: convention: %s\n",
 159		qcom_scm_convention_names[qcom_scm_convention]);
 160}
 
 
 
 161
 162static inline enum qcom_scm_convention __get_convention(void)
 163{
 164	if (unlikely(!has_queried))
 165		__query_convention();
 166	return qcom_scm_convention;
 167}
 168
 169/**
 170 * qcom_scm_call() - Invoke a syscall in the secure world
 171 * @dev:	device
 172 * @svc_id:	service identifier
 173 * @cmd_id:	command identifier
 174 * @desc:	Descriptor structure containing arguments and return values
 175 *
 176 * Sends a command to the SCM and waits for the command to finish processing.
 177 * This should *only* be called in pre-emptible context.
 178 */
 179static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
 180			 struct qcom_scm_res *res)
 181{
 182	might_sleep();
 183	switch (__get_convention()) {
 184	case SMC_CONVENTION_ARM_32:
 185	case SMC_CONVENTION_ARM_64:
 186		return scm_smc_call(dev, desc, res, false);
 187	case SMC_CONVENTION_LEGACY:
 188		return scm_legacy_call(dev, desc, res);
 189	default:
 190		pr_err("Unknown current SCM calling convention.\n");
 191		return -EINVAL;
 192	}
 193}
 194
 195/**
 196 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
 197 * @dev:	device
 198 * @svc_id:	service identifier
 199 * @cmd_id:	command identifier
 200 * @desc:	Descriptor structure containing arguments and return values
 201 * @res:	Structure containing results from SMC/HVC call
 202 *
 203 * Sends a command to the SCM and waits for the command to finish processing.
 204 * This can be called in atomic context.
 205 */
 206static int qcom_scm_call_atomic(struct device *dev,
 207				const struct qcom_scm_desc *desc,
 208				struct qcom_scm_res *res)
 209{
 210	switch (__get_convention()) {
 211	case SMC_CONVENTION_ARM_32:
 212	case SMC_CONVENTION_ARM_64:
 213		return scm_smc_call(dev, desc, res, true);
 214	case SMC_CONVENTION_LEGACY:
 215		return scm_legacy_call_atomic(dev, desc, res);
 216	default:
 217		pr_err("Unknown current SCM calling convention.\n");
 218		return -EINVAL;
 219	}
 220}
 221
 222static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
 223					u32 cmd_id)
 224{
 225	int ret;
 226	struct qcom_scm_desc desc = {
 227		.svc = QCOM_SCM_SVC_INFO,
 228		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
 229		.owner = ARM_SMCCC_OWNER_SIP,
 230	};
 231	struct qcom_scm_res res;
 232
 233	desc.arginfo = QCOM_SCM_ARGS(1);
 234	switch (__get_convention()) {
 235	case SMC_CONVENTION_ARM_32:
 236	case SMC_CONVENTION_ARM_64:
 237		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
 238				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
 239		break;
 240	case SMC_CONVENTION_LEGACY:
 241		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
 242		break;
 243	default:
 244		pr_err("Unknown SMC convention being used\n");
 245		return -EINVAL;
 246	}
 247
 248	ret = qcom_scm_call(dev, &desc, &res);
 249
 250	return ret ? : res.result[0];
 251}
 252
 253/**
 254 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
 255 * @entry: Entry point function for the cpus
 256 * @cpus: The cpumask of cpus that will use the entry point
 257 *
 258 * Set the Linux entry point for the SCM to transfer control to when coming
 259 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
 260 */
 261int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
 262{
 263	int ret;
 264	int flags = 0;
 265	int cpu;
 266	struct qcom_scm_desc desc = {
 267		.svc = QCOM_SCM_SVC_BOOT,
 268		.cmd = QCOM_SCM_BOOT_SET_ADDR,
 269		.arginfo = QCOM_SCM_ARGS(2),
 270	};
 271
 272	/*
 273	 * Reassign only if we are switching from hotplug entry point
 274	 * to cpuidle entry point or vice versa.
 275	 */
 276	for_each_cpu(cpu, cpus) {
 277		if (entry == qcom_scm_wb[cpu].entry)
 278			continue;
 279		flags |= qcom_scm_wb[cpu].flag;
 280	}
 281
 282	/* No change in entry function */
 283	if (!flags)
 284		return 0;
 285
 286	desc.args[0] = flags;
 287	desc.args[1] = virt_to_phys(entry);
 288
 289	ret = qcom_scm_call(__scm->dev, &desc, NULL);
 290	if (!ret) {
 291		for_each_cpu(cpu, cpus)
 292			qcom_scm_wb[cpu].entry = entry;
 293	}
 294
 295	return ret;
 296}
 297EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
 298
 299/**
 300 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
 301 * @entry: Entry point function for the cpus
 302 * @cpus: The cpumask of cpus that will use the entry point
 303 *
 304 * Set the cold boot address of the cpus. Any cpu outside the supported
 305 * range would be removed from the cpu present mask.
 306 */
 307int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
 308{
 309	int flags = 0;
 310	int cpu;
 311	int scm_cb_flags[] = {
 312		QCOM_SCM_FLAG_COLDBOOT_CPU0,
 313		QCOM_SCM_FLAG_COLDBOOT_CPU1,
 314		QCOM_SCM_FLAG_COLDBOOT_CPU2,
 315		QCOM_SCM_FLAG_COLDBOOT_CPU3,
 316	};
 317	struct qcom_scm_desc desc = {
 318		.svc = QCOM_SCM_SVC_BOOT,
 319		.cmd = QCOM_SCM_BOOT_SET_ADDR,
 320		.arginfo = QCOM_SCM_ARGS(2),
 321		.owner = ARM_SMCCC_OWNER_SIP,
 322	};
 323
 324	if (!cpus || (cpus && cpumask_empty(cpus)))
 325		return -EINVAL;
 326
 327	for_each_cpu(cpu, cpus) {
 328		if (cpu < ARRAY_SIZE(scm_cb_flags))
 329			flags |= scm_cb_flags[cpu];
 330		else
 331			set_cpu_present(cpu, false);
 332	}
 333
 334	desc.args[0] = flags;
 335	desc.args[1] = virt_to_phys(entry);
 336
 337	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
 338}
 339EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
 340
 341/**
 342 * qcom_scm_cpu_power_down() - Power down the cpu
 343 * @flags - Flags to flush cache
 344 *
 345 * This is an end point to power down cpu. If there was a pending interrupt,
 346 * the control would return from this function, otherwise, the cpu jumps to the
 347 * warm boot entry point set for this cpu upon reset.
 348 */
 349void qcom_scm_cpu_power_down(u32 flags)
 350{
 351	struct qcom_scm_desc desc = {
 352		.svc = QCOM_SCM_SVC_BOOT,
 353		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
 354		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
 355		.arginfo = QCOM_SCM_ARGS(1),
 356		.owner = ARM_SMCCC_OWNER_SIP,
 357	};
 358
 359	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
 360}
 361EXPORT_SYMBOL(qcom_scm_cpu_power_down);
 362
 363int qcom_scm_set_remote_state(u32 state, u32 id)
 364{
 365	struct qcom_scm_desc desc = {
 366		.svc = QCOM_SCM_SVC_BOOT,
 367		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
 368		.arginfo = QCOM_SCM_ARGS(2),
 369		.args[0] = state,
 370		.args[1] = id,
 371		.owner = ARM_SMCCC_OWNER_SIP,
 372	};
 373	struct qcom_scm_res res;
 374	int ret;
 375
 376	ret = qcom_scm_call(__scm->dev, &desc, &res);
 377
 378	return ret ? : res.result[0];
 379}
 380EXPORT_SYMBOL(qcom_scm_set_remote_state);
 381
 382static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
 383{
 384	struct qcom_scm_desc desc = {
 385		.svc = QCOM_SCM_SVC_BOOT,
 386		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
 387		.arginfo = QCOM_SCM_ARGS(2),
 388		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
 389		.owner = ARM_SMCCC_OWNER_SIP,
 390	};
 391
 392	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
 393
 394	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
 395}
 396
 397static void qcom_scm_set_download_mode(bool enable)
 398{
 399	bool avail;
 400	int ret = 0;
 401
 402	avail = __qcom_scm_is_call_available(__scm->dev,
 403					     QCOM_SCM_SVC_BOOT,
 404					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
 405	if (avail) {
 406		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
 407	} else if (__scm->dload_mode_addr) {
 408		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
 409				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
 410	} else {
 411		dev_err(__scm->dev,
 412			"No available mechanism for setting download mode\n");
 413	}
 414
 415	if (ret)
 416		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
 417}
 418
 419/**
 420 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
 421 *			       state machine for a given peripheral, using the
 422 *			       metadata
 423 * @peripheral: peripheral id
 424 * @metadata:	pointer to memory containing ELF header, program header table
 425 *		and optional blob of data used for authenticating the metadata
 426 *		and the rest of the firmware
 427 * @size:	size of the metadata
 428 *
 429 * Returns 0 on success.
 430 */
 431int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
 432{
 433	dma_addr_t mdata_phys;
 434	void *mdata_buf;
 435	int ret;
 436	struct qcom_scm_desc desc = {
 437		.svc = QCOM_SCM_SVC_PIL,
 438		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
 439		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
 440		.args[0] = peripheral,
 441		.owner = ARM_SMCCC_OWNER_SIP,
 442	};
 443	struct qcom_scm_res res;
 444
 445	/*
 446	 * During the scm call memory protection will be enabled for the meta
 447	 * data blob, so make sure it's physically contiguous, 4K aligned and
 448	 * non-cachable to avoid XPU violations.
 449	 */
 450	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
 451				       GFP_KERNEL);
 452	if (!mdata_buf) {
 453		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
 454		return -ENOMEM;
 455	}
 456	memcpy(mdata_buf, metadata, size);
 457
 458	ret = qcom_scm_clk_enable();
 459	if (ret)
 460		goto free_metadata;
 461
 462	desc.args[1] = mdata_phys;
 463
 464	ret = qcom_scm_call(__scm->dev, &desc, &res);
 465
 466	qcom_scm_clk_disable();
 467
 468free_metadata:
 469	dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
 470
 471	return ret ? : res.result[0];
 472}
 473EXPORT_SYMBOL(qcom_scm_pas_init_image);
 474
 475/**
 476 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
 477 *			      for firmware loading
 478 * @peripheral:	peripheral id
 479 * @addr:	start address of memory area to prepare
 480 * @size:	size of the memory area to prepare
 481 *
 482 * Returns 0 on success.
 483 */
 484int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
 485{
 486	int ret;
 487	struct qcom_scm_desc desc = {
 488		.svc = QCOM_SCM_SVC_PIL,
 489		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
 490		.arginfo = QCOM_SCM_ARGS(3),
 491		.args[0] = peripheral,
 492		.args[1] = addr,
 493		.args[2] = size,
 494		.owner = ARM_SMCCC_OWNER_SIP,
 495	};
 496	struct qcom_scm_res res;
 497
 498	ret = qcom_scm_clk_enable();
 499	if (ret)
 500		return ret;
 501
 502	ret = qcom_scm_call(__scm->dev, &desc, &res);
 503	qcom_scm_clk_disable();
 504
 505	return ret ? : res.result[0];
 506}
 507EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
 508
 509/**
 510 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
 511 *				   and reset the remote processor
 512 * @peripheral:	peripheral id
 513 *
 514 * Return 0 on success.
 515 */
 516int qcom_scm_pas_auth_and_reset(u32 peripheral)
 517{
 518	int ret;
 519	struct qcom_scm_desc desc = {
 520		.svc = QCOM_SCM_SVC_PIL,
 521		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
 522		.arginfo = QCOM_SCM_ARGS(1),
 523		.args[0] = peripheral,
 524		.owner = ARM_SMCCC_OWNER_SIP,
 525	};
 526	struct qcom_scm_res res;
 527
 528	ret = qcom_scm_clk_enable();
 529	if (ret)
 530		return ret;
 531
 532	ret = qcom_scm_call(__scm->dev, &desc, &res);
 533	qcom_scm_clk_disable();
 534
 535	return ret ? : res.result[0];
 536}
 537EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
 538
 539/**
 540 * qcom_scm_pas_shutdown() - Shut down the remote processor
 541 * @peripheral: peripheral id
 542 *
 543 * Returns 0 on success.
 544 */
 545int qcom_scm_pas_shutdown(u32 peripheral)
 546{
 547	int ret;
 548	struct qcom_scm_desc desc = {
 549		.svc = QCOM_SCM_SVC_PIL,
 550		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
 551		.arginfo = QCOM_SCM_ARGS(1),
 552		.args[0] = peripheral,
 553		.owner = ARM_SMCCC_OWNER_SIP,
 554	};
 555	struct qcom_scm_res res;
 556
 557	ret = qcom_scm_clk_enable();
 558	if (ret)
 559		return ret;
 560
 561	ret = qcom_scm_call(__scm->dev, &desc, &res);
 562
 563	qcom_scm_clk_disable();
 564
 565	return ret ? : res.result[0];
 566}
 567EXPORT_SYMBOL(qcom_scm_pas_shutdown);
 568
 569/**
 570 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
 571 *			      available for the given peripherial
 572 * @peripheral:	peripheral id
 573 *
 574 * Returns true if PAS is supported for this peripheral, otherwise false.
 575 */
 576bool qcom_scm_pas_supported(u32 peripheral)
 577{
 578	int ret;
 579	struct qcom_scm_desc desc = {
 580		.svc = QCOM_SCM_SVC_PIL,
 581		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
 582		.arginfo = QCOM_SCM_ARGS(1),
 583		.args[0] = peripheral,
 584		.owner = ARM_SMCCC_OWNER_SIP,
 585	};
 586	struct qcom_scm_res res;
 587
 588	ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
 589					   QCOM_SCM_PIL_PAS_IS_SUPPORTED);
 590	if (ret <= 0)
 591		return false;
 592
 593	ret = qcom_scm_call(__scm->dev, &desc, &res);
 594
 595	return ret ? false : !!res.result[0];
 596}
 597EXPORT_SYMBOL(qcom_scm_pas_supported);
 598
 599static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
 600{
 601	struct qcom_scm_desc desc = {
 602		.svc = QCOM_SCM_SVC_PIL,
 603		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
 604		.arginfo = QCOM_SCM_ARGS(2),
 605		.args[0] = reset,
 606		.args[1] = 0,
 607		.owner = ARM_SMCCC_OWNER_SIP,
 608	};
 609	struct qcom_scm_res res;
 610	int ret;
 611
 612	ret = qcom_scm_call(__scm->dev, &desc, &res);
 613
 614	return ret ? : res.result[0];
 615}
 616
 617static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
 618				     unsigned long idx)
 619{
 620	if (idx != 0)
 621		return -EINVAL;
 622
 623	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
 624}
 625
 626static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
 627				       unsigned long idx)
 628{
 629	if (idx != 0)
 630		return -EINVAL;
 631
 632	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
 633}
 634
 635static const struct reset_control_ops qcom_scm_pas_reset_ops = {
 636	.assert = qcom_scm_pas_reset_assert,
 637	.deassert = qcom_scm_pas_reset_deassert,
 638};
 639
 640int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
 641{
 642	struct qcom_scm_desc desc = {
 643		.svc = QCOM_SCM_SVC_IO,
 644		.cmd = QCOM_SCM_IO_READ,
 645		.arginfo = QCOM_SCM_ARGS(1),
 646		.args[0] = addr,
 647		.owner = ARM_SMCCC_OWNER_SIP,
 648	};
 649	struct qcom_scm_res res;
 650	int ret;
 651
 652
 653	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
 654	if (ret >= 0)
 655		*val = res.result[0];
 656
 657	return ret < 0 ? ret : 0;
 658}
 659EXPORT_SYMBOL(qcom_scm_io_readl);
 660
 661int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
 662{
 663	struct qcom_scm_desc desc = {
 664		.svc = QCOM_SCM_SVC_IO,
 665		.cmd = QCOM_SCM_IO_WRITE,
 666		.arginfo = QCOM_SCM_ARGS(2),
 667		.args[0] = addr,
 668		.args[1] = val,
 669		.owner = ARM_SMCCC_OWNER_SIP,
 670	};
 671
 672	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
 673}
 674EXPORT_SYMBOL(qcom_scm_io_writel);
 675
 676/**
 677 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
 678 * supports restore security config interface.
 679 *
 680 * Return true if restore-cfg interface is supported, false if not.
 681 */
 682bool qcom_scm_restore_sec_cfg_available(void)
 683{
 684	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
 685					    QCOM_SCM_MP_RESTORE_SEC_CFG);
 686}
 687EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
 688
 689int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
 690{
 691	struct qcom_scm_desc desc = {
 692		.svc = QCOM_SCM_SVC_MP,
 693		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
 694		.arginfo = QCOM_SCM_ARGS(2),
 695		.args[0] = device_id,
 696		.args[1] = spare,
 697		.owner = ARM_SMCCC_OWNER_SIP,
 698	};
 699	struct qcom_scm_res res;
 700	int ret;
 701
 702	ret = qcom_scm_call(__scm->dev, &desc, &res);
 703
 704	return ret ? : res.result[0];
 705}
 706EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
 707
 708int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
 709{
 710	struct qcom_scm_desc desc = {
 711		.svc = QCOM_SCM_SVC_MP,
 712		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
 713		.arginfo = QCOM_SCM_ARGS(1),
 714		.args[0] = spare,
 715		.owner = ARM_SMCCC_OWNER_SIP,
 716	};
 717	struct qcom_scm_res res;
 718	int ret;
 719
 720	ret = qcom_scm_call(__scm->dev, &desc, &res);
 721
 722	if (size)
 723		*size = res.result[0];
 724
 725	return ret ? : res.result[1];
 726}
 727EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
 728
 729int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
 730{
 731	struct qcom_scm_desc desc = {
 732		.svc = QCOM_SCM_SVC_MP,
 733		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
 734		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
 735					 QCOM_SCM_VAL),
 736		.args[0] = addr,
 737		.args[1] = size,
 738		.args[2] = spare,
 739		.owner = ARM_SMCCC_OWNER_SIP,
 740	};
 741	int ret;
 742
 743	desc.args[0] = addr;
 744	desc.args[1] = size;
 745	desc.args[2] = spare;
 746	desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
 747				     QCOM_SCM_VAL);
 748
 749	ret = qcom_scm_call(__scm->dev, &desc, NULL);
 750
 751	/* the pg table has been initialized already, ignore the error */
 752	if (ret == -EPERM)
 753		ret = 0;
 754
 755	return ret;
 756}
 757EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
 758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
 760				 size_t mem_sz, phys_addr_t src, size_t src_sz,
 761				 phys_addr_t dest, size_t dest_sz)
 762{
 763	int ret;
 764	struct qcom_scm_desc desc = {
 765		.svc = QCOM_SCM_SVC_MP,
 766		.cmd = QCOM_SCM_MP_ASSIGN,
 767		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
 768					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
 769					 QCOM_SCM_VAL, QCOM_SCM_VAL),
 770		.args[0] = mem_region,
 771		.args[1] = mem_sz,
 772		.args[2] = src,
 773		.args[3] = src_sz,
 774		.args[4] = dest,
 775		.args[5] = dest_sz,
 776		.args[6] = 0,
 777		.owner = ARM_SMCCC_OWNER_SIP,
 778	};
 779	struct qcom_scm_res res;
 780
 781	ret = qcom_scm_call(dev, &desc, &res);
 782
 783	return ret ? : res.result[0];
 784}
 785
 786/**
 787 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
 788 * @mem_addr: mem region whose ownership need to be reassigned
 789 * @mem_sz:   size of the region.
 790 * @srcvm:    vmid for current set of owners, each set bit in
 791 *            flag indicate a unique owner
 792 * @newvm:    array having new owners and corresponding permission
 793 *            flags
 794 * @dest_cnt: number of owners in next set.
 795 *
 796 * Return negative errno on failure or 0 on success with @srcvm updated.
 797 */
 798int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
 799			unsigned int *srcvm,
 800			const struct qcom_scm_vmperm *newvm,
 801			unsigned int dest_cnt)
 802{
 803	struct qcom_scm_current_perm_info *destvm;
 804	struct qcom_scm_mem_map_info *mem_to_map;
 805	phys_addr_t mem_to_map_phys;
 806	phys_addr_t dest_phys;
 807	dma_addr_t ptr_phys;
 808	size_t mem_to_map_sz;
 809	size_t dest_sz;
 810	size_t src_sz;
 811	size_t ptr_sz;
 812	int next_vm;
 813	__le32 *src;
 814	void *ptr;
 815	int ret, i, b;
 816	unsigned long srcvm_bits = *srcvm;
 817
 818	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
 819	mem_to_map_sz = sizeof(*mem_to_map);
 820	dest_sz = dest_cnt * sizeof(*destvm);
 821	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
 822			ALIGN(dest_sz, SZ_64);
 823
 824	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
 825	if (!ptr)
 826		return -ENOMEM;
 827
 828	/* Fill source vmid detail */
 829	src = ptr;
 830	i = 0;
 831	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
 832		src[i++] = cpu_to_le32(b);
 833
 834	/* Fill details of mem buff to map */
 835	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
 836	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
 837	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
 838	mem_to_map->mem_size = cpu_to_le64(mem_sz);
 839
 840	next_vm = 0;
 841	/* Fill details of next vmid detail */
 842	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
 843	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
 844	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
 845		destvm->vmid = cpu_to_le32(newvm->vmid);
 846		destvm->perm = cpu_to_le32(newvm->perm);
 847		destvm->ctx = 0;
 848		destvm->ctx_size = 0;
 849		next_vm |= BIT(newvm->vmid);
 850	}
 851
 852	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
 853				    ptr_phys, src_sz, dest_phys, dest_sz);
 854	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
 855	if (ret) {
 856		dev_err(__scm->dev,
 857			"Assign memory protection call failed %d\n", ret);
 858		return -EINVAL;
 859	}
 860
 861	*srcvm = next_vm;
 862	return 0;
 863}
 864EXPORT_SYMBOL(qcom_scm_assign_mem);
 865
 866/**
 867 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
 868 */
 869bool qcom_scm_ocmem_lock_available(void)
 870{
 871	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
 872					    QCOM_SCM_OCMEM_LOCK_CMD);
 873}
 874EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
 875
 876/**
 877 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
 878 * region to the specified initiator
 879 *
 880 * @id:     tz initiator id
 881 * @offset: OCMEM offset
 882 * @size:   OCMEM size
 883 * @mode:   access mode (WIDE/NARROW)
 884 */
 885int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
 886			u32 mode)
 887{
 888	struct qcom_scm_desc desc = {
 889		.svc = QCOM_SCM_SVC_OCMEM,
 890		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
 891		.args[0] = id,
 892		.args[1] = offset,
 893		.args[2] = size,
 894		.args[3] = mode,
 895		.arginfo = QCOM_SCM_ARGS(4),
 896	};
 897
 898	return qcom_scm_call(__scm->dev, &desc, NULL);
 899}
 900EXPORT_SYMBOL(qcom_scm_ocmem_lock);
 901
 902/**
 903 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
 904 * region from the specified initiator
 905 *
 906 * @id:     tz initiator id
 907 * @offset: OCMEM offset
 908 * @size:   OCMEM size
 909 */
 910int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
 911{
 912	struct qcom_scm_desc desc = {
 913		.svc = QCOM_SCM_SVC_OCMEM,
 914		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
 915		.args[0] = id,
 916		.args[1] = offset,
 917		.args[2] = size,
 918		.arginfo = QCOM_SCM_ARGS(3),
 919	};
 920
 921	return qcom_scm_call(__scm->dev, &desc, NULL);
 922}
 923EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
 924
 925/**
 926 * qcom_scm_ice_available() - Is the ICE key programming interface available?
 927 *
 928 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
 929 *	   qcom_scm_ice_set_key() are available.
 930 */
 931bool qcom_scm_ice_available(void)
 932{
 933	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
 934					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
 935		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
 936					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
 937}
 938EXPORT_SYMBOL(qcom_scm_ice_available);
 939
 940/**
 941 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
 942 * @index: the keyslot to invalidate
 943 *
 944 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
 945 * these SoCs; only this SCM call does.
 
 
 
 946 *
 947 * Return: 0 on success; -errno on failure.
 948 */
 949int qcom_scm_ice_invalidate_key(u32 index)
 950{
 951	struct qcom_scm_desc desc = {
 952		.svc = QCOM_SCM_SVC_ES,
 953		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
 954		.arginfo = QCOM_SCM_ARGS(1),
 955		.args[0] = index,
 956		.owner = ARM_SMCCC_OWNER_SIP,
 957	};
 958
 959	return qcom_scm_call(__scm->dev, &desc, NULL);
 960}
 961EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
 962
 963/**
 964 * qcom_scm_ice_set_key() - Set an inline encryption key
 965 * @index: the keyslot into which to set the key
 966 * @key: the key to program
 967 * @key_size: the size of the key in bytes
 968 * @cipher: the encryption algorithm the key is for
 969 * @data_unit_size: the encryption data unit size, i.e. the size of each
 970 *		    individual plaintext and ciphertext.  Given in 512-byte
 971 *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
 972 *
 973 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
 974 * can then be used to encrypt/decrypt UFS I/O requests inline.
 975 *
 976 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
 977 * these SoCs; only this SCM call does.
 
 
 
 978 *
 979 * Return: 0 on success; -errno on failure.
 980 */
 981int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
 982			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
 983{
 984	struct qcom_scm_desc desc = {
 985		.svc = QCOM_SCM_SVC_ES,
 986		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
 987		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
 988					 QCOM_SCM_VAL, QCOM_SCM_VAL,
 989					 QCOM_SCM_VAL),
 990		.args[0] = index,
 991		.args[2] = key_size,
 992		.args[3] = cipher,
 993		.args[4] = data_unit_size,
 994		.owner = ARM_SMCCC_OWNER_SIP,
 995	};
 996	void *keybuf;
 997	dma_addr_t key_phys;
 998	int ret;
 999
1000	/*
1001	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1002	 * physical address that's been properly flushed.  The sanctioned way to
1003	 * do this is by using the DMA API.  But as is best practice for crypto
1004	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1005	 * dma_map_single() not clearly correct, since the DMA API can use
1006	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1007	 * keys is normally rare and thus not performance-critical.
1008	 */
1009
1010	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1011				    GFP_KERNEL);
1012	if (!keybuf)
1013		return -ENOMEM;
1014	memcpy(keybuf, key, key_size);
1015	desc.args[1] = key_phys;
1016
1017	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1018
1019	memzero_explicit(keybuf, key_size);
1020
1021	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1022	return ret;
1023}
1024EXPORT_SYMBOL(qcom_scm_ice_set_key);
1025
1026/**
1027 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1028 *
1029 * Return true if HDCP is supported, false if not.
1030 */
1031bool qcom_scm_hdcp_available(void)
1032{
 
1033	int ret = qcom_scm_clk_enable();
1034
1035	if (ret)
1036		return ret;
1037
1038	ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1039						QCOM_SCM_HDCP_INVOKE);
1040
1041	qcom_scm_clk_disable();
1042
1043	return ret > 0;
1044}
1045EXPORT_SYMBOL(qcom_scm_hdcp_available);
1046
1047/**
1048 * qcom_scm_hdcp_req() - Send HDCP request.
1049 * @req: HDCP request array
1050 * @req_cnt: HDCP request array count
1051 * @resp: response buffer passed to SCM
1052 *
1053 * Write HDCP register(s) through SCM.
1054 */
1055int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1056{
1057	int ret;
1058	struct qcom_scm_desc desc = {
1059		.svc = QCOM_SCM_SVC_HDCP,
1060		.cmd = QCOM_SCM_HDCP_INVOKE,
1061		.arginfo = QCOM_SCM_ARGS(10),
1062		.args = {
1063			req[0].addr,
1064			req[0].val,
1065			req[1].addr,
1066			req[1].val,
1067			req[2].addr,
1068			req[2].val,
1069			req[3].addr,
1070			req[3].val,
1071			req[4].addr,
1072			req[4].val
1073		},
1074		.owner = ARM_SMCCC_OWNER_SIP,
1075	};
1076	struct qcom_scm_res res;
1077
1078	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1079		return -ERANGE;
1080
1081	ret = qcom_scm_clk_enable();
1082	if (ret)
1083		return ret;
1084
1085	ret = qcom_scm_call(__scm->dev, &desc, &res);
1086	*resp = res.result[0];
1087
1088	qcom_scm_clk_disable();
1089
1090	return ret;
1091}
1092EXPORT_SYMBOL(qcom_scm_hdcp_req);
1093
1094int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1095{
1096	struct qcom_scm_desc desc = {
1097		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1098		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1099		.arginfo = QCOM_SCM_ARGS(2),
1100		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1101		.args[1] = en,
1102		.owner = ARM_SMCCC_OWNER_SIP,
1103	};
1104
1105
1106	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1107}
1108EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1109
1110static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1111{
1112	struct device_node *tcsr;
1113	struct device_node *np = dev->of_node;
1114	struct resource res;
1115	u32 offset;
1116	int ret;
1117
1118	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1119	if (!tcsr)
1120		return 0;
1121
1122	ret = of_address_to_resource(tcsr, 0, &res);
1123	of_node_put(tcsr);
1124	if (ret)
1125		return ret;
1126
1127	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1128	if (ret < 0)
1129		return ret;
1130
1131	*addr = res.start + offset;
1132
1133	return 0;
1134}
1135
1136/**
1137 * qcom_scm_is_available() - Checks if SCM is available
1138 */
1139bool qcom_scm_is_available(void)
1140{
1141	return !!__scm;
1142}
1143EXPORT_SYMBOL(qcom_scm_is_available);
1144
1145static int qcom_scm_probe(struct platform_device *pdev)
1146{
1147	struct qcom_scm *scm;
1148	unsigned long clks;
1149	int ret;
1150
1151	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1152	if (!scm)
1153		return -ENOMEM;
1154
1155	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1156	if (ret < 0)
1157		return ret;
1158
1159	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1160
1161	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1162	if (IS_ERR(scm->core_clk)) {
1163		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1164			return PTR_ERR(scm->core_clk);
1165
1166		if (clks & SCM_HAS_CORE_CLK) {
1167			dev_err(&pdev->dev, "failed to acquire core clk\n");
1168			return PTR_ERR(scm->core_clk);
1169		}
1170
1171		scm->core_clk = NULL;
1172	}
1173
1174	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1175	if (IS_ERR(scm->iface_clk)) {
1176		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1177			return PTR_ERR(scm->iface_clk);
1178
1179		if (clks & SCM_HAS_IFACE_CLK) {
1180			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1181			return PTR_ERR(scm->iface_clk);
1182		}
1183
1184		scm->iface_clk = NULL;
1185	}
1186
1187	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1188	if (IS_ERR(scm->bus_clk)) {
1189		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1190			return PTR_ERR(scm->bus_clk);
1191
1192		if (clks & SCM_HAS_BUS_CLK) {
1193			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1194			return PTR_ERR(scm->bus_clk);
1195		}
1196
1197		scm->bus_clk = NULL;
1198	}
1199
1200	scm->reset.ops = &qcom_scm_pas_reset_ops;
1201	scm->reset.nr_resets = 1;
1202	scm->reset.of_node = pdev->dev.of_node;
1203	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1204	if (ret)
1205		return ret;
1206
1207	/* vote for max clk rate for highest performance */
1208	ret = clk_set_rate(scm->core_clk, INT_MAX);
1209	if (ret)
1210		return ret;
1211
1212	__scm = scm;
1213	__scm->dev = &pdev->dev;
1214
1215	__query_convention();
1216
1217	/*
1218	 * If requested enable "download mode", from this point on warmboot
1219	 * will cause the the boot stages to enter download mode, unless
1220	 * disabled below by a clean shutdown/reboot.
1221	 */
1222	if (download_mode)
1223		qcom_scm_set_download_mode(true);
1224
1225	return 0;
1226}
1227
1228static void qcom_scm_shutdown(struct platform_device *pdev)
1229{
1230	/* Clean shutdown, disable download mode to allow normal restart */
1231	if (download_mode)
1232		qcom_scm_set_download_mode(false);
1233}
1234
1235static const struct of_device_id qcom_scm_dt_match[] = {
1236	{ .compatible = "qcom,scm-apq8064",
1237	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1238	},
1239	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1240							     SCM_HAS_IFACE_CLK |
1241							     SCM_HAS_BUS_CLK)
1242	},
1243	{ .compatible = "qcom,scm-ipq4019" },
 
 
 
1244	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1245	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1246	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1247							     SCM_HAS_IFACE_CLK |
1248							     SCM_HAS_BUS_CLK)
1249	},
1250	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1251							     SCM_HAS_IFACE_CLK |
1252							     SCM_HAS_BUS_CLK)
1253	},
1254	{ .compatible = "qcom,scm-msm8994" },
1255	{ .compatible = "qcom,scm-msm8996" },
1256	{ .compatible = "qcom,scm" },
1257	{}
1258};
1259
1260static struct platform_driver qcom_scm_driver = {
1261	.driver = {
1262		.name	= "qcom_scm",
1263		.of_match_table = qcom_scm_dt_match,
 
1264	},
1265	.probe = qcom_scm_probe,
1266	.shutdown = qcom_scm_shutdown,
1267};
1268
1269static int __init qcom_scm_init(void)
1270{
1271	return platform_driver_register(&qcom_scm_driver);
1272}
1273subsys_initcall(qcom_scm_init);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
   3 * Copyright (C) 2015 Linaro Ltd.
   4 */
   5#include <linux/platform_device.h>
   6#include <linux/init.h>
   7#include <linux/cpumask.h>
   8#include <linux/export.h>
   9#include <linux/dma-mapping.h>
  10#include <linux/module.h>
  11#include <linux/types.h>
  12#include <linux/qcom_scm.h>
  13#include <linux/of.h>
  14#include <linux/of_address.h>
  15#include <linux/of_platform.h>
  16#include <linux/clk.h>
  17#include <linux/reset-controller.h>
  18#include <linux/arm-smccc.h>
  19
  20#include "qcom_scm.h"
  21
  22static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
  23module_param(download_mode, bool, 0);
  24
  25#define SCM_HAS_CORE_CLK	BIT(0)
  26#define SCM_HAS_IFACE_CLK	BIT(1)
  27#define SCM_HAS_BUS_CLK		BIT(2)
  28
  29struct qcom_scm {
  30	struct device *dev;
  31	struct clk *core_clk;
  32	struct clk *iface_clk;
  33	struct clk *bus_clk;
  34	struct reset_controller_dev reset;
  35
  36	u64 dload_mode_addr;
  37};
  38
  39struct qcom_scm_current_perm_info {
  40	__le32 vmid;
  41	__le32 perm;
  42	__le64 ctx;
  43	__le32 ctx_size;
  44	__le32 unused;
  45};
  46
  47struct qcom_scm_mem_map_info {
  48	__le64 mem_addr;
  49	__le64 mem_size;
  50};
  51
  52#define QCOM_SCM_FLAG_COLDBOOT_CPU0	0x00
  53#define QCOM_SCM_FLAG_COLDBOOT_CPU1	0x01
  54#define QCOM_SCM_FLAG_COLDBOOT_CPU2	0x08
  55#define QCOM_SCM_FLAG_COLDBOOT_CPU3	0x20
  56
  57#define QCOM_SCM_FLAG_WARMBOOT_CPU0	0x04
  58#define QCOM_SCM_FLAG_WARMBOOT_CPU1	0x02
  59#define QCOM_SCM_FLAG_WARMBOOT_CPU2	0x10
  60#define QCOM_SCM_FLAG_WARMBOOT_CPU3	0x40
  61
  62struct qcom_scm_wb_entry {
  63	int flag;
  64	void *entry;
  65};
  66
  67static struct qcom_scm_wb_entry qcom_scm_wb[] = {
  68	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
  69	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
  70	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
  71	{ .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
  72};
  73
  74static const char *qcom_scm_convention_names[] = {
  75	[SMC_CONVENTION_UNKNOWN] = "unknown",
  76	[SMC_CONVENTION_ARM_32] = "smc arm 32",
  77	[SMC_CONVENTION_ARM_64] = "smc arm 64",
  78	[SMC_CONVENTION_LEGACY] = "smc legacy",
  79};
  80
  81static struct qcom_scm *__scm;
  82
  83static int qcom_scm_clk_enable(void)
  84{
  85	int ret;
  86
  87	ret = clk_prepare_enable(__scm->core_clk);
  88	if (ret)
  89		goto bail;
  90
  91	ret = clk_prepare_enable(__scm->iface_clk);
  92	if (ret)
  93		goto disable_core;
  94
  95	ret = clk_prepare_enable(__scm->bus_clk);
  96	if (ret)
  97		goto disable_iface;
  98
  99	return 0;
 100
 101disable_iface:
 102	clk_disable_unprepare(__scm->iface_clk);
 103disable_core:
 104	clk_disable_unprepare(__scm->core_clk);
 105bail:
 106	return ret;
 107}
 108
 109static void qcom_scm_clk_disable(void)
 110{
 111	clk_disable_unprepare(__scm->core_clk);
 112	clk_disable_unprepare(__scm->iface_clk);
 113	clk_disable_unprepare(__scm->bus_clk);
 114}
 115
 116enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
 117static DEFINE_SPINLOCK(scm_query_lock);
 118
 119static enum qcom_scm_convention __get_convention(void)
 
 
 
 
 120{
 121	unsigned long flags;
 122	struct qcom_scm_desc desc = {
 123		.svc = QCOM_SCM_SVC_INFO,
 124		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
 125		.args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
 126					   QCOM_SCM_INFO_IS_CALL_AVAIL) |
 127			   (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
 128		.arginfo = QCOM_SCM_ARGS(1),
 129		.owner = ARM_SMCCC_OWNER_SIP,
 130	};
 131	struct qcom_scm_res res;
 132	enum qcom_scm_convention probed_convention;
 133	int ret;
 134	bool forced = false;
 135
 136	if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
 137		return qcom_scm_convention;
 138
 139	/*
 140	 * Device isn't required as there is only one argument - no device
 141	 * needed to dma_map_single to secure world
 142	 */
 143	probed_convention = SMC_CONVENTION_ARM_64;
 144	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
 
 
 145	if (!ret && res.result[0] == 1)
 146		goto found;
 147
 148	/*
 149	 * Some SC7180 firmwares didn't implement the
 150	 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
 151	 * calling conventions on these firmwares. Luckily we don't make any
 152	 * early calls into the firmware on these SoCs so the device pointer
 153	 * will be valid here to check if the compatible matches.
 154	 */
 155	if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
 156		forced = true;
 157		goto found;
 158	}
 159
 160	probed_convention = SMC_CONVENTION_ARM_32;
 161	ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
 162	if (!ret && res.result[0] == 1)
 163		goto found;
 164
 165	probed_convention = SMC_CONVENTION_LEGACY;
 166found:
 167	spin_lock_irqsave(&scm_query_lock, flags);
 168	if (probed_convention != qcom_scm_convention) {
 169		qcom_scm_convention = probed_convention;
 170		pr_info("qcom_scm: convention: %s%s\n",
 171			qcom_scm_convention_names[qcom_scm_convention],
 172			forced ? " (forced)" : "");
 173	}
 174	spin_unlock_irqrestore(&scm_query_lock, flags);
 175
 
 
 
 
 176	return qcom_scm_convention;
 177}
 178
 179/**
 180 * qcom_scm_call() - Invoke a syscall in the secure world
 181 * @dev:	device
 182 * @svc_id:	service identifier
 183 * @cmd_id:	command identifier
 184 * @desc:	Descriptor structure containing arguments and return values
 185 *
 186 * Sends a command to the SCM and waits for the command to finish processing.
 187 * This should *only* be called in pre-emptible context.
 188 */
 189static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
 190			 struct qcom_scm_res *res)
 191{
 192	might_sleep();
 193	switch (__get_convention()) {
 194	case SMC_CONVENTION_ARM_32:
 195	case SMC_CONVENTION_ARM_64:
 196		return scm_smc_call(dev, desc, res, false);
 197	case SMC_CONVENTION_LEGACY:
 198		return scm_legacy_call(dev, desc, res);
 199	default:
 200		pr_err("Unknown current SCM calling convention.\n");
 201		return -EINVAL;
 202	}
 203}
 204
 205/**
 206 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
 207 * @dev:	device
 208 * @svc_id:	service identifier
 209 * @cmd_id:	command identifier
 210 * @desc:	Descriptor structure containing arguments and return values
 211 * @res:	Structure containing results from SMC/HVC call
 212 *
 213 * Sends a command to the SCM and waits for the command to finish processing.
 214 * This can be called in atomic context.
 215 */
 216static int qcom_scm_call_atomic(struct device *dev,
 217				const struct qcom_scm_desc *desc,
 218				struct qcom_scm_res *res)
 219{
 220	switch (__get_convention()) {
 221	case SMC_CONVENTION_ARM_32:
 222	case SMC_CONVENTION_ARM_64:
 223		return scm_smc_call(dev, desc, res, true);
 224	case SMC_CONVENTION_LEGACY:
 225		return scm_legacy_call_atomic(dev, desc, res);
 226	default:
 227		pr_err("Unknown current SCM calling convention.\n");
 228		return -EINVAL;
 229	}
 230}
 231
 232static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
 233					 u32 cmd_id)
 234{
 235	int ret;
 236	struct qcom_scm_desc desc = {
 237		.svc = QCOM_SCM_SVC_INFO,
 238		.cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
 239		.owner = ARM_SMCCC_OWNER_SIP,
 240	};
 241	struct qcom_scm_res res;
 242
 243	desc.arginfo = QCOM_SCM_ARGS(1);
 244	switch (__get_convention()) {
 245	case SMC_CONVENTION_ARM_32:
 246	case SMC_CONVENTION_ARM_64:
 247		desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
 248				(ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
 249		break;
 250	case SMC_CONVENTION_LEGACY:
 251		desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
 252		break;
 253	default:
 254		pr_err("Unknown SMC convention being used\n");
 255		return -EINVAL;
 256	}
 257
 258	ret = qcom_scm_call(dev, &desc, &res);
 259
 260	return ret ? false : !!res.result[0];
 261}
 262
 263/**
 264 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
 265 * @entry: Entry point function for the cpus
 266 * @cpus: The cpumask of cpus that will use the entry point
 267 *
 268 * Set the Linux entry point for the SCM to transfer control to when coming
 269 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
 270 */
 271int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
 272{
 273	int ret;
 274	int flags = 0;
 275	int cpu;
 276	struct qcom_scm_desc desc = {
 277		.svc = QCOM_SCM_SVC_BOOT,
 278		.cmd = QCOM_SCM_BOOT_SET_ADDR,
 279		.arginfo = QCOM_SCM_ARGS(2),
 280	};
 281
 282	/*
 283	 * Reassign only if we are switching from hotplug entry point
 284	 * to cpuidle entry point or vice versa.
 285	 */
 286	for_each_cpu(cpu, cpus) {
 287		if (entry == qcom_scm_wb[cpu].entry)
 288			continue;
 289		flags |= qcom_scm_wb[cpu].flag;
 290	}
 291
 292	/* No change in entry function */
 293	if (!flags)
 294		return 0;
 295
 296	desc.args[0] = flags;
 297	desc.args[1] = virt_to_phys(entry);
 298
 299	ret = qcom_scm_call(__scm->dev, &desc, NULL);
 300	if (!ret) {
 301		for_each_cpu(cpu, cpus)
 302			qcom_scm_wb[cpu].entry = entry;
 303	}
 304
 305	return ret;
 306}
 307EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
 308
 309/**
 310 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
 311 * @entry: Entry point function for the cpus
 312 * @cpus: The cpumask of cpus that will use the entry point
 313 *
 314 * Set the cold boot address of the cpus. Any cpu outside the supported
 315 * range would be removed from the cpu present mask.
 316 */
 317int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
 318{
 319	int flags = 0;
 320	int cpu;
 321	int scm_cb_flags[] = {
 322		QCOM_SCM_FLAG_COLDBOOT_CPU0,
 323		QCOM_SCM_FLAG_COLDBOOT_CPU1,
 324		QCOM_SCM_FLAG_COLDBOOT_CPU2,
 325		QCOM_SCM_FLAG_COLDBOOT_CPU3,
 326	};
 327	struct qcom_scm_desc desc = {
 328		.svc = QCOM_SCM_SVC_BOOT,
 329		.cmd = QCOM_SCM_BOOT_SET_ADDR,
 330		.arginfo = QCOM_SCM_ARGS(2),
 331		.owner = ARM_SMCCC_OWNER_SIP,
 332	};
 333
 334	if (!cpus || (cpus && cpumask_empty(cpus)))
 335		return -EINVAL;
 336
 337	for_each_cpu(cpu, cpus) {
 338		if (cpu < ARRAY_SIZE(scm_cb_flags))
 339			flags |= scm_cb_flags[cpu];
 340		else
 341			set_cpu_present(cpu, false);
 342	}
 343
 344	desc.args[0] = flags;
 345	desc.args[1] = virt_to_phys(entry);
 346
 347	return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
 348}
 349EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
 350
 351/**
 352 * qcom_scm_cpu_power_down() - Power down the cpu
 353 * @flags - Flags to flush cache
 354 *
 355 * This is an end point to power down cpu. If there was a pending interrupt,
 356 * the control would return from this function, otherwise, the cpu jumps to the
 357 * warm boot entry point set for this cpu upon reset.
 358 */
 359void qcom_scm_cpu_power_down(u32 flags)
 360{
 361	struct qcom_scm_desc desc = {
 362		.svc = QCOM_SCM_SVC_BOOT,
 363		.cmd = QCOM_SCM_BOOT_TERMINATE_PC,
 364		.args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
 365		.arginfo = QCOM_SCM_ARGS(1),
 366		.owner = ARM_SMCCC_OWNER_SIP,
 367	};
 368
 369	qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
 370}
 371EXPORT_SYMBOL(qcom_scm_cpu_power_down);
 372
 373int qcom_scm_set_remote_state(u32 state, u32 id)
 374{
 375	struct qcom_scm_desc desc = {
 376		.svc = QCOM_SCM_SVC_BOOT,
 377		.cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
 378		.arginfo = QCOM_SCM_ARGS(2),
 379		.args[0] = state,
 380		.args[1] = id,
 381		.owner = ARM_SMCCC_OWNER_SIP,
 382	};
 383	struct qcom_scm_res res;
 384	int ret;
 385
 386	ret = qcom_scm_call(__scm->dev, &desc, &res);
 387
 388	return ret ? : res.result[0];
 389}
 390EXPORT_SYMBOL(qcom_scm_set_remote_state);
 391
 392static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
 393{
 394	struct qcom_scm_desc desc = {
 395		.svc = QCOM_SCM_SVC_BOOT,
 396		.cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
 397		.arginfo = QCOM_SCM_ARGS(2),
 398		.args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
 399		.owner = ARM_SMCCC_OWNER_SIP,
 400	};
 401
 402	desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
 403
 404	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
 405}
 406
 407static void qcom_scm_set_download_mode(bool enable)
 408{
 409	bool avail;
 410	int ret = 0;
 411
 412	avail = __qcom_scm_is_call_available(__scm->dev,
 413					     QCOM_SCM_SVC_BOOT,
 414					     QCOM_SCM_BOOT_SET_DLOAD_MODE);
 415	if (avail) {
 416		ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
 417	} else if (__scm->dload_mode_addr) {
 418		ret = qcom_scm_io_writel(__scm->dload_mode_addr,
 419				enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
 420	} else {
 421		dev_err(__scm->dev,
 422			"No available mechanism for setting download mode\n");
 423	}
 424
 425	if (ret)
 426		dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
 427}
 428
 429/**
 430 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
 431 *			       state machine for a given peripheral, using the
 432 *			       metadata
 433 * @peripheral: peripheral id
 434 * @metadata:	pointer to memory containing ELF header, program header table
 435 *		and optional blob of data used for authenticating the metadata
 436 *		and the rest of the firmware
 437 * @size:	size of the metadata
 438 *
 439 * Returns 0 on success.
 440 */
 441int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
 442{
 443	dma_addr_t mdata_phys;
 444	void *mdata_buf;
 445	int ret;
 446	struct qcom_scm_desc desc = {
 447		.svc = QCOM_SCM_SVC_PIL,
 448		.cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
 449		.arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
 450		.args[0] = peripheral,
 451		.owner = ARM_SMCCC_OWNER_SIP,
 452	};
 453	struct qcom_scm_res res;
 454
 455	/*
 456	 * During the scm call memory protection will be enabled for the meta
 457	 * data blob, so make sure it's physically contiguous, 4K aligned and
 458	 * non-cachable to avoid XPU violations.
 459	 */
 460	mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
 461				       GFP_KERNEL);
 462	if (!mdata_buf) {
 463		dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
 464		return -ENOMEM;
 465	}
 466	memcpy(mdata_buf, metadata, size);
 467
 468	ret = qcom_scm_clk_enable();
 469	if (ret)
 470		goto free_metadata;
 471
 472	desc.args[1] = mdata_phys;
 473
 474	ret = qcom_scm_call(__scm->dev, &desc, &res);
 475
 476	qcom_scm_clk_disable();
 477
 478free_metadata:
 479	dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
 480
 481	return ret ? : res.result[0];
 482}
 483EXPORT_SYMBOL(qcom_scm_pas_init_image);
 484
 485/**
 486 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
 487 *			      for firmware loading
 488 * @peripheral:	peripheral id
 489 * @addr:	start address of memory area to prepare
 490 * @size:	size of the memory area to prepare
 491 *
 492 * Returns 0 on success.
 493 */
 494int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
 495{
 496	int ret;
 497	struct qcom_scm_desc desc = {
 498		.svc = QCOM_SCM_SVC_PIL,
 499		.cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
 500		.arginfo = QCOM_SCM_ARGS(3),
 501		.args[0] = peripheral,
 502		.args[1] = addr,
 503		.args[2] = size,
 504		.owner = ARM_SMCCC_OWNER_SIP,
 505	};
 506	struct qcom_scm_res res;
 507
 508	ret = qcom_scm_clk_enable();
 509	if (ret)
 510		return ret;
 511
 512	ret = qcom_scm_call(__scm->dev, &desc, &res);
 513	qcom_scm_clk_disable();
 514
 515	return ret ? : res.result[0];
 516}
 517EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
 518
 519/**
 520 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
 521 *				   and reset the remote processor
 522 * @peripheral:	peripheral id
 523 *
 524 * Return 0 on success.
 525 */
 526int qcom_scm_pas_auth_and_reset(u32 peripheral)
 527{
 528	int ret;
 529	struct qcom_scm_desc desc = {
 530		.svc = QCOM_SCM_SVC_PIL,
 531		.cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
 532		.arginfo = QCOM_SCM_ARGS(1),
 533		.args[0] = peripheral,
 534		.owner = ARM_SMCCC_OWNER_SIP,
 535	};
 536	struct qcom_scm_res res;
 537
 538	ret = qcom_scm_clk_enable();
 539	if (ret)
 540		return ret;
 541
 542	ret = qcom_scm_call(__scm->dev, &desc, &res);
 543	qcom_scm_clk_disable();
 544
 545	return ret ? : res.result[0];
 546}
 547EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
 548
 549/**
 550 * qcom_scm_pas_shutdown() - Shut down the remote processor
 551 * @peripheral: peripheral id
 552 *
 553 * Returns 0 on success.
 554 */
 555int qcom_scm_pas_shutdown(u32 peripheral)
 556{
 557	int ret;
 558	struct qcom_scm_desc desc = {
 559		.svc = QCOM_SCM_SVC_PIL,
 560		.cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
 561		.arginfo = QCOM_SCM_ARGS(1),
 562		.args[0] = peripheral,
 563		.owner = ARM_SMCCC_OWNER_SIP,
 564	};
 565	struct qcom_scm_res res;
 566
 567	ret = qcom_scm_clk_enable();
 568	if (ret)
 569		return ret;
 570
 571	ret = qcom_scm_call(__scm->dev, &desc, &res);
 572
 573	qcom_scm_clk_disable();
 574
 575	return ret ? : res.result[0];
 576}
 577EXPORT_SYMBOL(qcom_scm_pas_shutdown);
 578
 579/**
 580 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
 581 *			      available for the given peripherial
 582 * @peripheral:	peripheral id
 583 *
 584 * Returns true if PAS is supported for this peripheral, otherwise false.
 585 */
 586bool qcom_scm_pas_supported(u32 peripheral)
 587{
 588	int ret;
 589	struct qcom_scm_desc desc = {
 590		.svc = QCOM_SCM_SVC_PIL,
 591		.cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
 592		.arginfo = QCOM_SCM_ARGS(1),
 593		.args[0] = peripheral,
 594		.owner = ARM_SMCCC_OWNER_SIP,
 595	};
 596	struct qcom_scm_res res;
 597
 598	if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
 599					  QCOM_SCM_PIL_PAS_IS_SUPPORTED))
 
 600		return false;
 601
 602	ret = qcom_scm_call(__scm->dev, &desc, &res);
 603
 604	return ret ? false : !!res.result[0];
 605}
 606EXPORT_SYMBOL(qcom_scm_pas_supported);
 607
 608static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
 609{
 610	struct qcom_scm_desc desc = {
 611		.svc = QCOM_SCM_SVC_PIL,
 612		.cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
 613		.arginfo = QCOM_SCM_ARGS(2),
 614		.args[0] = reset,
 615		.args[1] = 0,
 616		.owner = ARM_SMCCC_OWNER_SIP,
 617	};
 618	struct qcom_scm_res res;
 619	int ret;
 620
 621	ret = qcom_scm_call(__scm->dev, &desc, &res);
 622
 623	return ret ? : res.result[0];
 624}
 625
 626static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
 627				     unsigned long idx)
 628{
 629	if (idx != 0)
 630		return -EINVAL;
 631
 632	return __qcom_scm_pas_mss_reset(__scm->dev, 1);
 633}
 634
 635static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
 636				       unsigned long idx)
 637{
 638	if (idx != 0)
 639		return -EINVAL;
 640
 641	return __qcom_scm_pas_mss_reset(__scm->dev, 0);
 642}
 643
 644static const struct reset_control_ops qcom_scm_pas_reset_ops = {
 645	.assert = qcom_scm_pas_reset_assert,
 646	.deassert = qcom_scm_pas_reset_deassert,
 647};
 648
 649int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
 650{
 651	struct qcom_scm_desc desc = {
 652		.svc = QCOM_SCM_SVC_IO,
 653		.cmd = QCOM_SCM_IO_READ,
 654		.arginfo = QCOM_SCM_ARGS(1),
 655		.args[0] = addr,
 656		.owner = ARM_SMCCC_OWNER_SIP,
 657	};
 658	struct qcom_scm_res res;
 659	int ret;
 660
 661
 662	ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
 663	if (ret >= 0)
 664		*val = res.result[0];
 665
 666	return ret < 0 ? ret : 0;
 667}
 668EXPORT_SYMBOL(qcom_scm_io_readl);
 669
 670int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
 671{
 672	struct qcom_scm_desc desc = {
 673		.svc = QCOM_SCM_SVC_IO,
 674		.cmd = QCOM_SCM_IO_WRITE,
 675		.arginfo = QCOM_SCM_ARGS(2),
 676		.args[0] = addr,
 677		.args[1] = val,
 678		.owner = ARM_SMCCC_OWNER_SIP,
 679	};
 680
 681	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
 682}
 683EXPORT_SYMBOL(qcom_scm_io_writel);
 684
 685/**
 686 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
 687 * supports restore security config interface.
 688 *
 689 * Return true if restore-cfg interface is supported, false if not.
 690 */
 691bool qcom_scm_restore_sec_cfg_available(void)
 692{
 693	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
 694					    QCOM_SCM_MP_RESTORE_SEC_CFG);
 695}
 696EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
 697
 698int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
 699{
 700	struct qcom_scm_desc desc = {
 701		.svc = QCOM_SCM_SVC_MP,
 702		.cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
 703		.arginfo = QCOM_SCM_ARGS(2),
 704		.args[0] = device_id,
 705		.args[1] = spare,
 706		.owner = ARM_SMCCC_OWNER_SIP,
 707	};
 708	struct qcom_scm_res res;
 709	int ret;
 710
 711	ret = qcom_scm_call(__scm->dev, &desc, &res);
 712
 713	return ret ? : res.result[0];
 714}
 715EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
 716
 717int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
 718{
 719	struct qcom_scm_desc desc = {
 720		.svc = QCOM_SCM_SVC_MP,
 721		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
 722		.arginfo = QCOM_SCM_ARGS(1),
 723		.args[0] = spare,
 724		.owner = ARM_SMCCC_OWNER_SIP,
 725	};
 726	struct qcom_scm_res res;
 727	int ret;
 728
 729	ret = qcom_scm_call(__scm->dev, &desc, &res);
 730
 731	if (size)
 732		*size = res.result[0];
 733
 734	return ret ? : res.result[1];
 735}
 736EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
 737
 738int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
 739{
 740	struct qcom_scm_desc desc = {
 741		.svc = QCOM_SCM_SVC_MP,
 742		.cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
 743		.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
 744					 QCOM_SCM_VAL),
 745		.args[0] = addr,
 746		.args[1] = size,
 747		.args[2] = spare,
 748		.owner = ARM_SMCCC_OWNER_SIP,
 749	};
 750	int ret;
 751
 752	desc.args[0] = addr;
 753	desc.args[1] = size;
 754	desc.args[2] = spare;
 755	desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
 756				     QCOM_SCM_VAL);
 757
 758	ret = qcom_scm_call(__scm->dev, &desc, NULL);
 759
 760	/* the pg table has been initialized already, ignore the error */
 761	if (ret == -EPERM)
 762		ret = 0;
 763
 764	return ret;
 765}
 766EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
 767
 768int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
 769				   u32 cp_nonpixel_start,
 770				   u32 cp_nonpixel_size)
 771{
 772	int ret;
 773	struct qcom_scm_desc desc = {
 774		.svc = QCOM_SCM_SVC_MP,
 775		.cmd = QCOM_SCM_MP_VIDEO_VAR,
 776		.arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
 777					 QCOM_SCM_VAL, QCOM_SCM_VAL),
 778		.args[0] = cp_start,
 779		.args[1] = cp_size,
 780		.args[2] = cp_nonpixel_start,
 781		.args[3] = cp_nonpixel_size,
 782		.owner = ARM_SMCCC_OWNER_SIP,
 783	};
 784	struct qcom_scm_res res;
 785
 786	ret = qcom_scm_call(__scm->dev, &desc, &res);
 787
 788	return ret ? : res.result[0];
 789}
 790EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
 791
 792static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
 793				 size_t mem_sz, phys_addr_t src, size_t src_sz,
 794				 phys_addr_t dest, size_t dest_sz)
 795{
 796	int ret;
 797	struct qcom_scm_desc desc = {
 798		.svc = QCOM_SCM_SVC_MP,
 799		.cmd = QCOM_SCM_MP_ASSIGN,
 800		.arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
 801					 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
 802					 QCOM_SCM_VAL, QCOM_SCM_VAL),
 803		.args[0] = mem_region,
 804		.args[1] = mem_sz,
 805		.args[2] = src,
 806		.args[3] = src_sz,
 807		.args[4] = dest,
 808		.args[5] = dest_sz,
 809		.args[6] = 0,
 810		.owner = ARM_SMCCC_OWNER_SIP,
 811	};
 812	struct qcom_scm_res res;
 813
 814	ret = qcom_scm_call(dev, &desc, &res);
 815
 816	return ret ? : res.result[0];
 817}
 818
 819/**
 820 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
 821 * @mem_addr: mem region whose ownership need to be reassigned
 822 * @mem_sz:   size of the region.
 823 * @srcvm:    vmid for current set of owners, each set bit in
 824 *            flag indicate a unique owner
 825 * @newvm:    array having new owners and corresponding permission
 826 *            flags
 827 * @dest_cnt: number of owners in next set.
 828 *
 829 * Return negative errno on failure or 0 on success with @srcvm updated.
 830 */
 831int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
 832			unsigned int *srcvm,
 833			const struct qcom_scm_vmperm *newvm,
 834			unsigned int dest_cnt)
 835{
 836	struct qcom_scm_current_perm_info *destvm;
 837	struct qcom_scm_mem_map_info *mem_to_map;
 838	phys_addr_t mem_to_map_phys;
 839	phys_addr_t dest_phys;
 840	dma_addr_t ptr_phys;
 841	size_t mem_to_map_sz;
 842	size_t dest_sz;
 843	size_t src_sz;
 844	size_t ptr_sz;
 845	int next_vm;
 846	__le32 *src;
 847	void *ptr;
 848	int ret, i, b;
 849	unsigned long srcvm_bits = *srcvm;
 850
 851	src_sz = hweight_long(srcvm_bits) * sizeof(*src);
 852	mem_to_map_sz = sizeof(*mem_to_map);
 853	dest_sz = dest_cnt * sizeof(*destvm);
 854	ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
 855			ALIGN(dest_sz, SZ_64);
 856
 857	ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
 858	if (!ptr)
 859		return -ENOMEM;
 860
 861	/* Fill source vmid detail */
 862	src = ptr;
 863	i = 0;
 864	for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
 865		src[i++] = cpu_to_le32(b);
 866
 867	/* Fill details of mem buff to map */
 868	mem_to_map = ptr + ALIGN(src_sz, SZ_64);
 869	mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
 870	mem_to_map->mem_addr = cpu_to_le64(mem_addr);
 871	mem_to_map->mem_size = cpu_to_le64(mem_sz);
 872
 873	next_vm = 0;
 874	/* Fill details of next vmid detail */
 875	destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
 876	dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
 877	for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
 878		destvm->vmid = cpu_to_le32(newvm->vmid);
 879		destvm->perm = cpu_to_le32(newvm->perm);
 880		destvm->ctx = 0;
 881		destvm->ctx_size = 0;
 882		next_vm |= BIT(newvm->vmid);
 883	}
 884
 885	ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
 886				    ptr_phys, src_sz, dest_phys, dest_sz);
 887	dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
 888	if (ret) {
 889		dev_err(__scm->dev,
 890			"Assign memory protection call failed %d\n", ret);
 891		return -EINVAL;
 892	}
 893
 894	*srcvm = next_vm;
 895	return 0;
 896}
 897EXPORT_SYMBOL(qcom_scm_assign_mem);
 898
 899/**
 900 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
 901 */
 902bool qcom_scm_ocmem_lock_available(void)
 903{
 904	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
 905					    QCOM_SCM_OCMEM_LOCK_CMD);
 906}
 907EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
 908
 909/**
 910 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
 911 * region to the specified initiator
 912 *
 913 * @id:     tz initiator id
 914 * @offset: OCMEM offset
 915 * @size:   OCMEM size
 916 * @mode:   access mode (WIDE/NARROW)
 917 */
 918int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
 919			u32 mode)
 920{
 921	struct qcom_scm_desc desc = {
 922		.svc = QCOM_SCM_SVC_OCMEM,
 923		.cmd = QCOM_SCM_OCMEM_LOCK_CMD,
 924		.args[0] = id,
 925		.args[1] = offset,
 926		.args[2] = size,
 927		.args[3] = mode,
 928		.arginfo = QCOM_SCM_ARGS(4),
 929	};
 930
 931	return qcom_scm_call(__scm->dev, &desc, NULL);
 932}
 933EXPORT_SYMBOL(qcom_scm_ocmem_lock);
 934
 935/**
 936 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
 937 * region from the specified initiator
 938 *
 939 * @id:     tz initiator id
 940 * @offset: OCMEM offset
 941 * @size:   OCMEM size
 942 */
 943int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
 944{
 945	struct qcom_scm_desc desc = {
 946		.svc = QCOM_SCM_SVC_OCMEM,
 947		.cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
 948		.args[0] = id,
 949		.args[1] = offset,
 950		.args[2] = size,
 951		.arginfo = QCOM_SCM_ARGS(3),
 952	};
 953
 954	return qcom_scm_call(__scm->dev, &desc, NULL);
 955}
 956EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
 957
 958/**
 959 * qcom_scm_ice_available() - Is the ICE key programming interface available?
 960 *
 961 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
 962 *	   qcom_scm_ice_set_key() are available.
 963 */
 964bool qcom_scm_ice_available(void)
 965{
 966	return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
 967					    QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
 968		__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
 969					     QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
 970}
 971EXPORT_SYMBOL(qcom_scm_ice_available);
 972
 973/**
 974 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
 975 * @index: the keyslot to invalidate
 976 *
 977 * The UFSHCI and eMMC standards define a standard way to do this, but it
 978 * doesn't work on these SoCs; only this SCM call does.
 979 *
 980 * It is assumed that the SoC has only one ICE instance being used, as this SCM
 981 * call doesn't specify which ICE instance the keyslot belongs to.
 982 *
 983 * Return: 0 on success; -errno on failure.
 984 */
 985int qcom_scm_ice_invalidate_key(u32 index)
 986{
 987	struct qcom_scm_desc desc = {
 988		.svc = QCOM_SCM_SVC_ES,
 989		.cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
 990		.arginfo = QCOM_SCM_ARGS(1),
 991		.args[0] = index,
 992		.owner = ARM_SMCCC_OWNER_SIP,
 993	};
 994
 995	return qcom_scm_call(__scm->dev, &desc, NULL);
 996}
 997EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
 998
 999/**
1000 * qcom_scm_ice_set_key() - Set an inline encryption key
1001 * @index: the keyslot into which to set the key
1002 * @key: the key to program
1003 * @key_size: the size of the key in bytes
1004 * @cipher: the encryption algorithm the key is for
1005 * @data_unit_size: the encryption data unit size, i.e. the size of each
1006 *		    individual plaintext and ciphertext.  Given in 512-byte
1007 *		    units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1008 *
1009 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1010 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1011 *
1012 * The UFSHCI and eMMC standards define a standard way to do this, but it
1013 * doesn't work on these SoCs; only this SCM call does.
1014 *
1015 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1016 * call doesn't specify which ICE instance the keyslot belongs to.
1017 *
1018 * Return: 0 on success; -errno on failure.
1019 */
1020int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1021			 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1022{
1023	struct qcom_scm_desc desc = {
1024		.svc = QCOM_SCM_SVC_ES,
1025		.cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1026		.arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1027					 QCOM_SCM_VAL, QCOM_SCM_VAL,
1028					 QCOM_SCM_VAL),
1029		.args[0] = index,
1030		.args[2] = key_size,
1031		.args[3] = cipher,
1032		.args[4] = data_unit_size,
1033		.owner = ARM_SMCCC_OWNER_SIP,
1034	};
1035	void *keybuf;
1036	dma_addr_t key_phys;
1037	int ret;
1038
1039	/*
1040	 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1041	 * physical address that's been properly flushed.  The sanctioned way to
1042	 * do this is by using the DMA API.  But as is best practice for crypto
1043	 * keys, we also must wipe the key after use.  This makes kmemdup() +
1044	 * dma_map_single() not clearly correct, since the DMA API can use
1045	 * bounce buffers.  Instead, just use dma_alloc_coherent().  Programming
1046	 * keys is normally rare and thus not performance-critical.
1047	 */
1048
1049	keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1050				    GFP_KERNEL);
1051	if (!keybuf)
1052		return -ENOMEM;
1053	memcpy(keybuf, key, key_size);
1054	desc.args[1] = key_phys;
1055
1056	ret = qcom_scm_call(__scm->dev, &desc, NULL);
1057
1058	memzero_explicit(keybuf, key_size);
1059
1060	dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1061	return ret;
1062}
1063EXPORT_SYMBOL(qcom_scm_ice_set_key);
1064
1065/**
1066 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1067 *
1068 * Return true if HDCP is supported, false if not.
1069 */
1070bool qcom_scm_hdcp_available(void)
1071{
1072	bool avail;
1073	int ret = qcom_scm_clk_enable();
1074
1075	if (ret)
1076		return ret;
1077
1078	avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1079						QCOM_SCM_HDCP_INVOKE);
1080
1081	qcom_scm_clk_disable();
1082
1083	return avail;
1084}
1085EXPORT_SYMBOL(qcom_scm_hdcp_available);
1086
1087/**
1088 * qcom_scm_hdcp_req() - Send HDCP request.
1089 * @req: HDCP request array
1090 * @req_cnt: HDCP request array count
1091 * @resp: response buffer passed to SCM
1092 *
1093 * Write HDCP register(s) through SCM.
1094 */
1095int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1096{
1097	int ret;
1098	struct qcom_scm_desc desc = {
1099		.svc = QCOM_SCM_SVC_HDCP,
1100		.cmd = QCOM_SCM_HDCP_INVOKE,
1101		.arginfo = QCOM_SCM_ARGS(10),
1102		.args = {
1103			req[0].addr,
1104			req[0].val,
1105			req[1].addr,
1106			req[1].val,
1107			req[2].addr,
1108			req[2].val,
1109			req[3].addr,
1110			req[3].val,
1111			req[4].addr,
1112			req[4].val
1113		},
1114		.owner = ARM_SMCCC_OWNER_SIP,
1115	};
1116	struct qcom_scm_res res;
1117
1118	if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1119		return -ERANGE;
1120
1121	ret = qcom_scm_clk_enable();
1122	if (ret)
1123		return ret;
1124
1125	ret = qcom_scm_call(__scm->dev, &desc, &res);
1126	*resp = res.result[0];
1127
1128	qcom_scm_clk_disable();
1129
1130	return ret;
1131}
1132EXPORT_SYMBOL(qcom_scm_hdcp_req);
1133
1134int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1135{
1136	struct qcom_scm_desc desc = {
1137		.svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1138		.cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1139		.arginfo = QCOM_SCM_ARGS(2),
1140		.args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1141		.args[1] = en,
1142		.owner = ARM_SMCCC_OWNER_SIP,
1143	};
1144
1145
1146	return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1147}
1148EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1149
1150static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1151{
1152	struct device_node *tcsr;
1153	struct device_node *np = dev->of_node;
1154	struct resource res;
1155	u32 offset;
1156	int ret;
1157
1158	tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1159	if (!tcsr)
1160		return 0;
1161
1162	ret = of_address_to_resource(tcsr, 0, &res);
1163	of_node_put(tcsr);
1164	if (ret)
1165		return ret;
1166
1167	ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1168	if (ret < 0)
1169		return ret;
1170
1171	*addr = res.start + offset;
1172
1173	return 0;
1174}
1175
1176/**
1177 * qcom_scm_is_available() - Checks if SCM is available
1178 */
1179bool qcom_scm_is_available(void)
1180{
1181	return !!__scm;
1182}
1183EXPORT_SYMBOL(qcom_scm_is_available);
1184
1185static int qcom_scm_probe(struct platform_device *pdev)
1186{
1187	struct qcom_scm *scm;
1188	unsigned long clks;
1189	int ret;
1190
1191	scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1192	if (!scm)
1193		return -ENOMEM;
1194
1195	ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1196	if (ret < 0)
1197		return ret;
1198
1199	clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1200
1201	scm->core_clk = devm_clk_get(&pdev->dev, "core");
1202	if (IS_ERR(scm->core_clk)) {
1203		if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1204			return PTR_ERR(scm->core_clk);
1205
1206		if (clks & SCM_HAS_CORE_CLK) {
1207			dev_err(&pdev->dev, "failed to acquire core clk\n");
1208			return PTR_ERR(scm->core_clk);
1209		}
1210
1211		scm->core_clk = NULL;
1212	}
1213
1214	scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1215	if (IS_ERR(scm->iface_clk)) {
1216		if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1217			return PTR_ERR(scm->iface_clk);
1218
1219		if (clks & SCM_HAS_IFACE_CLK) {
1220			dev_err(&pdev->dev, "failed to acquire iface clk\n");
1221			return PTR_ERR(scm->iface_clk);
1222		}
1223
1224		scm->iface_clk = NULL;
1225	}
1226
1227	scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1228	if (IS_ERR(scm->bus_clk)) {
1229		if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1230			return PTR_ERR(scm->bus_clk);
1231
1232		if (clks & SCM_HAS_BUS_CLK) {
1233			dev_err(&pdev->dev, "failed to acquire bus clk\n");
1234			return PTR_ERR(scm->bus_clk);
1235		}
1236
1237		scm->bus_clk = NULL;
1238	}
1239
1240	scm->reset.ops = &qcom_scm_pas_reset_ops;
1241	scm->reset.nr_resets = 1;
1242	scm->reset.of_node = pdev->dev.of_node;
1243	ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1244	if (ret)
1245		return ret;
1246
1247	/* vote for max clk rate for highest performance */
1248	ret = clk_set_rate(scm->core_clk, INT_MAX);
1249	if (ret)
1250		return ret;
1251
1252	__scm = scm;
1253	__scm->dev = &pdev->dev;
1254
1255	__get_convention();
1256
1257	/*
1258	 * If requested enable "download mode", from this point on warmboot
1259	 * will cause the the boot stages to enter download mode, unless
1260	 * disabled below by a clean shutdown/reboot.
1261	 */
1262	if (download_mode)
1263		qcom_scm_set_download_mode(true);
1264
1265	return 0;
1266}
1267
1268static void qcom_scm_shutdown(struct platform_device *pdev)
1269{
1270	/* Clean shutdown, disable download mode to allow normal restart */
1271	if (download_mode)
1272		qcom_scm_set_download_mode(false);
1273}
1274
1275static const struct of_device_id qcom_scm_dt_match[] = {
1276	{ .compatible = "qcom,scm-apq8064",
1277	  /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1278	},
1279	{ .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1280							     SCM_HAS_IFACE_CLK |
1281							     SCM_HAS_BUS_CLK)
1282	},
1283	{ .compatible = "qcom,scm-ipq4019" },
1284	{ .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1285							     SCM_HAS_IFACE_CLK |
1286							     SCM_HAS_BUS_CLK) },
1287	{ .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1288	{ .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1289	{ .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1290							     SCM_HAS_IFACE_CLK |
1291							     SCM_HAS_BUS_CLK)
1292	},
1293	{ .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1294							     SCM_HAS_IFACE_CLK |
1295							     SCM_HAS_BUS_CLK)
1296	},
1297	{ .compatible = "qcom,scm-msm8994" },
1298	{ .compatible = "qcom,scm-msm8996" },
1299	{ .compatible = "qcom,scm" },
1300	{}
1301};
1302
1303static struct platform_driver qcom_scm_driver = {
1304	.driver = {
1305		.name	= "qcom_scm",
1306		.of_match_table = qcom_scm_dt_match,
1307		.suppress_bind_attrs = true,
1308	},
1309	.probe = qcom_scm_probe,
1310	.shutdown = qcom_scm_shutdown,
1311};
1312
1313static int __init qcom_scm_init(void)
1314{
1315	return platform_driver_register(&qcom_scm_driver);
1316}
1317subsys_initcall(qcom_scm_init);