Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5#include <linux/platform_device.h>
6#include <linux/init.h>
7#include <linux/cpumask.h>
8#include <linux/export.h>
9#include <linux/dma-mapping.h>
10#include <linux/module.h>
11#include <linux/types.h>
12#include <linux/qcom_scm.h>
13#include <linux/of.h>
14#include <linux/of_address.h>
15#include <linux/of_platform.h>
16#include <linux/clk.h>
17#include <linux/reset-controller.h>
18#include <linux/arm-smccc.h>
19
20#include "qcom_scm.h"
21
22static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
23module_param(download_mode, bool, 0);
24
25#define SCM_HAS_CORE_CLK BIT(0)
26#define SCM_HAS_IFACE_CLK BIT(1)
27#define SCM_HAS_BUS_CLK BIT(2)
28
29struct qcom_scm {
30 struct device *dev;
31 struct clk *core_clk;
32 struct clk *iface_clk;
33 struct clk *bus_clk;
34 struct reset_controller_dev reset;
35
36 u64 dload_mode_addr;
37};
38
39struct qcom_scm_current_perm_info {
40 __le32 vmid;
41 __le32 perm;
42 __le64 ctx;
43 __le32 ctx_size;
44 __le32 unused;
45};
46
47struct qcom_scm_mem_map_info {
48 __le64 mem_addr;
49 __le64 mem_size;
50};
51
52#define QCOM_SCM_FLAG_COLDBOOT_CPU0 0x00
53#define QCOM_SCM_FLAG_COLDBOOT_CPU1 0x01
54#define QCOM_SCM_FLAG_COLDBOOT_CPU2 0x08
55#define QCOM_SCM_FLAG_COLDBOOT_CPU3 0x20
56
57#define QCOM_SCM_FLAG_WARMBOOT_CPU0 0x04
58#define QCOM_SCM_FLAG_WARMBOOT_CPU1 0x02
59#define QCOM_SCM_FLAG_WARMBOOT_CPU2 0x10
60#define QCOM_SCM_FLAG_WARMBOOT_CPU3 0x40
61
62struct qcom_scm_wb_entry {
63 int flag;
64 void *entry;
65};
66
67static struct qcom_scm_wb_entry qcom_scm_wb[] = {
68 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU0 },
69 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU1 },
70 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU2 },
71 { .flag = QCOM_SCM_FLAG_WARMBOOT_CPU3 },
72};
73
74static const char *qcom_scm_convention_names[] = {
75 [SMC_CONVENTION_UNKNOWN] = "unknown",
76 [SMC_CONVENTION_ARM_32] = "smc arm 32",
77 [SMC_CONVENTION_ARM_64] = "smc arm 64",
78 [SMC_CONVENTION_LEGACY] = "smc legacy",
79};
80
81static struct qcom_scm *__scm;
82
83static int qcom_scm_clk_enable(void)
84{
85 int ret;
86
87 ret = clk_prepare_enable(__scm->core_clk);
88 if (ret)
89 goto bail;
90
91 ret = clk_prepare_enable(__scm->iface_clk);
92 if (ret)
93 goto disable_core;
94
95 ret = clk_prepare_enable(__scm->bus_clk);
96 if (ret)
97 goto disable_iface;
98
99 return 0;
100
101disable_iface:
102 clk_disable_unprepare(__scm->iface_clk);
103disable_core:
104 clk_disable_unprepare(__scm->core_clk);
105bail:
106 return ret;
107}
108
109static void qcom_scm_clk_disable(void)
110{
111 clk_disable_unprepare(__scm->core_clk);
112 clk_disable_unprepare(__scm->iface_clk);
113 clk_disable_unprepare(__scm->bus_clk);
114}
115
116static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
117 u32 cmd_id);
118
119enum qcom_scm_convention qcom_scm_convention;
120static bool has_queried __read_mostly;
121static DEFINE_SPINLOCK(query_lock);
122
123static void __query_convention(void)
124{
125 unsigned long flags;
126 struct qcom_scm_desc desc = {
127 .svc = QCOM_SCM_SVC_INFO,
128 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
129 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
130 QCOM_SCM_INFO_IS_CALL_AVAIL) |
131 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
132 .arginfo = QCOM_SCM_ARGS(1),
133 .owner = ARM_SMCCC_OWNER_SIP,
134 };
135 struct qcom_scm_res res;
136 int ret;
137
138 spin_lock_irqsave(&query_lock, flags);
139 if (has_queried)
140 goto out;
141
142 qcom_scm_convention = SMC_CONVENTION_ARM_64;
143 // Device isn't required as there is only one argument - no device
144 // needed to dma_map_single to secure world
145 ret = scm_smc_call(NULL, &desc, &res, true);
146 if (!ret && res.result[0] == 1)
147 goto out;
148
149 qcom_scm_convention = SMC_CONVENTION_ARM_32;
150 ret = scm_smc_call(NULL, &desc, &res, true);
151 if (!ret && res.result[0] == 1)
152 goto out;
153
154 qcom_scm_convention = SMC_CONVENTION_LEGACY;
155out:
156 has_queried = true;
157 spin_unlock_irqrestore(&query_lock, flags);
158 pr_info("qcom_scm: convention: %s\n",
159 qcom_scm_convention_names[qcom_scm_convention]);
160}
161
162static inline enum qcom_scm_convention __get_convention(void)
163{
164 if (unlikely(!has_queried))
165 __query_convention();
166 return qcom_scm_convention;
167}
168
169/**
170 * qcom_scm_call() - Invoke a syscall in the secure world
171 * @dev: device
172 * @svc_id: service identifier
173 * @cmd_id: command identifier
174 * @desc: Descriptor structure containing arguments and return values
175 *
176 * Sends a command to the SCM and waits for the command to finish processing.
177 * This should *only* be called in pre-emptible context.
178 */
179static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
180 struct qcom_scm_res *res)
181{
182 might_sleep();
183 switch (__get_convention()) {
184 case SMC_CONVENTION_ARM_32:
185 case SMC_CONVENTION_ARM_64:
186 return scm_smc_call(dev, desc, res, false);
187 case SMC_CONVENTION_LEGACY:
188 return scm_legacy_call(dev, desc, res);
189 default:
190 pr_err("Unknown current SCM calling convention.\n");
191 return -EINVAL;
192 }
193}
194
195/**
196 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
197 * @dev: device
198 * @svc_id: service identifier
199 * @cmd_id: command identifier
200 * @desc: Descriptor structure containing arguments and return values
201 * @res: Structure containing results from SMC/HVC call
202 *
203 * Sends a command to the SCM and waits for the command to finish processing.
204 * This can be called in atomic context.
205 */
206static int qcom_scm_call_atomic(struct device *dev,
207 const struct qcom_scm_desc *desc,
208 struct qcom_scm_res *res)
209{
210 switch (__get_convention()) {
211 case SMC_CONVENTION_ARM_32:
212 case SMC_CONVENTION_ARM_64:
213 return scm_smc_call(dev, desc, res, true);
214 case SMC_CONVENTION_LEGACY:
215 return scm_legacy_call_atomic(dev, desc, res);
216 default:
217 pr_err("Unknown current SCM calling convention.\n");
218 return -EINVAL;
219 }
220}
221
222static int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
223 u32 cmd_id)
224{
225 int ret;
226 struct qcom_scm_desc desc = {
227 .svc = QCOM_SCM_SVC_INFO,
228 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
229 .owner = ARM_SMCCC_OWNER_SIP,
230 };
231 struct qcom_scm_res res;
232
233 desc.arginfo = QCOM_SCM_ARGS(1);
234 switch (__get_convention()) {
235 case SMC_CONVENTION_ARM_32:
236 case SMC_CONVENTION_ARM_64:
237 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
238 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
239 break;
240 case SMC_CONVENTION_LEGACY:
241 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
242 break;
243 default:
244 pr_err("Unknown SMC convention being used\n");
245 return -EINVAL;
246 }
247
248 ret = qcom_scm_call(dev, &desc, &res);
249
250 return ret ? : res.result[0];
251}
252
253/**
254 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for cpus
255 * @entry: Entry point function for the cpus
256 * @cpus: The cpumask of cpus that will use the entry point
257 *
258 * Set the Linux entry point for the SCM to transfer control to when coming
259 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
260 */
261int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
262{
263 int ret;
264 int flags = 0;
265 int cpu;
266 struct qcom_scm_desc desc = {
267 .svc = QCOM_SCM_SVC_BOOT,
268 .cmd = QCOM_SCM_BOOT_SET_ADDR,
269 .arginfo = QCOM_SCM_ARGS(2),
270 };
271
272 /*
273 * Reassign only if we are switching from hotplug entry point
274 * to cpuidle entry point or vice versa.
275 */
276 for_each_cpu(cpu, cpus) {
277 if (entry == qcom_scm_wb[cpu].entry)
278 continue;
279 flags |= qcom_scm_wb[cpu].flag;
280 }
281
282 /* No change in entry function */
283 if (!flags)
284 return 0;
285
286 desc.args[0] = flags;
287 desc.args[1] = virt_to_phys(entry);
288
289 ret = qcom_scm_call(__scm->dev, &desc, NULL);
290 if (!ret) {
291 for_each_cpu(cpu, cpus)
292 qcom_scm_wb[cpu].entry = entry;
293 }
294
295 return ret;
296}
297EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
298
299/**
300 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for cpus
301 * @entry: Entry point function for the cpus
302 * @cpus: The cpumask of cpus that will use the entry point
303 *
304 * Set the cold boot address of the cpus. Any cpu outside the supported
305 * range would be removed from the cpu present mask.
306 */
307int qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
308{
309 int flags = 0;
310 int cpu;
311 int scm_cb_flags[] = {
312 QCOM_SCM_FLAG_COLDBOOT_CPU0,
313 QCOM_SCM_FLAG_COLDBOOT_CPU1,
314 QCOM_SCM_FLAG_COLDBOOT_CPU2,
315 QCOM_SCM_FLAG_COLDBOOT_CPU3,
316 };
317 struct qcom_scm_desc desc = {
318 .svc = QCOM_SCM_SVC_BOOT,
319 .cmd = QCOM_SCM_BOOT_SET_ADDR,
320 .arginfo = QCOM_SCM_ARGS(2),
321 .owner = ARM_SMCCC_OWNER_SIP,
322 };
323
324 if (!cpus || (cpus && cpumask_empty(cpus)))
325 return -EINVAL;
326
327 for_each_cpu(cpu, cpus) {
328 if (cpu < ARRAY_SIZE(scm_cb_flags))
329 flags |= scm_cb_flags[cpu];
330 else
331 set_cpu_present(cpu, false);
332 }
333
334 desc.args[0] = flags;
335 desc.args[1] = virt_to_phys(entry);
336
337 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
338}
339EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
340
341/**
342 * qcom_scm_cpu_power_down() - Power down the cpu
343 * @flags - Flags to flush cache
344 *
345 * This is an end point to power down cpu. If there was a pending interrupt,
346 * the control would return from this function, otherwise, the cpu jumps to the
347 * warm boot entry point set for this cpu upon reset.
348 */
349void qcom_scm_cpu_power_down(u32 flags)
350{
351 struct qcom_scm_desc desc = {
352 .svc = QCOM_SCM_SVC_BOOT,
353 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
354 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
355 .arginfo = QCOM_SCM_ARGS(1),
356 .owner = ARM_SMCCC_OWNER_SIP,
357 };
358
359 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
360}
361EXPORT_SYMBOL(qcom_scm_cpu_power_down);
362
363int qcom_scm_set_remote_state(u32 state, u32 id)
364{
365 struct qcom_scm_desc desc = {
366 .svc = QCOM_SCM_SVC_BOOT,
367 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
368 .arginfo = QCOM_SCM_ARGS(2),
369 .args[0] = state,
370 .args[1] = id,
371 .owner = ARM_SMCCC_OWNER_SIP,
372 };
373 struct qcom_scm_res res;
374 int ret;
375
376 ret = qcom_scm_call(__scm->dev, &desc, &res);
377
378 return ret ? : res.result[0];
379}
380EXPORT_SYMBOL(qcom_scm_set_remote_state);
381
382static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
383{
384 struct qcom_scm_desc desc = {
385 .svc = QCOM_SCM_SVC_BOOT,
386 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
387 .arginfo = QCOM_SCM_ARGS(2),
388 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
389 .owner = ARM_SMCCC_OWNER_SIP,
390 };
391
392 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
393
394 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
395}
396
397static void qcom_scm_set_download_mode(bool enable)
398{
399 bool avail;
400 int ret = 0;
401
402 avail = __qcom_scm_is_call_available(__scm->dev,
403 QCOM_SCM_SVC_BOOT,
404 QCOM_SCM_BOOT_SET_DLOAD_MODE);
405 if (avail) {
406 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
407 } else if (__scm->dload_mode_addr) {
408 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
409 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
410 } else {
411 dev_err(__scm->dev,
412 "No available mechanism for setting download mode\n");
413 }
414
415 if (ret)
416 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
417}
418
419/**
420 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
421 * state machine for a given peripheral, using the
422 * metadata
423 * @peripheral: peripheral id
424 * @metadata: pointer to memory containing ELF header, program header table
425 * and optional blob of data used for authenticating the metadata
426 * and the rest of the firmware
427 * @size: size of the metadata
428 *
429 * Returns 0 on success.
430 */
431int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size)
432{
433 dma_addr_t mdata_phys;
434 void *mdata_buf;
435 int ret;
436 struct qcom_scm_desc desc = {
437 .svc = QCOM_SCM_SVC_PIL,
438 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
439 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
440 .args[0] = peripheral,
441 .owner = ARM_SMCCC_OWNER_SIP,
442 };
443 struct qcom_scm_res res;
444
445 /*
446 * During the scm call memory protection will be enabled for the meta
447 * data blob, so make sure it's physically contiguous, 4K aligned and
448 * non-cachable to avoid XPU violations.
449 */
450 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
451 GFP_KERNEL);
452 if (!mdata_buf) {
453 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
454 return -ENOMEM;
455 }
456 memcpy(mdata_buf, metadata, size);
457
458 ret = qcom_scm_clk_enable();
459 if (ret)
460 goto free_metadata;
461
462 desc.args[1] = mdata_phys;
463
464 ret = qcom_scm_call(__scm->dev, &desc, &res);
465
466 qcom_scm_clk_disable();
467
468free_metadata:
469 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
470
471 return ret ? : res.result[0];
472}
473EXPORT_SYMBOL(qcom_scm_pas_init_image);
474
475/**
476 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
477 * for firmware loading
478 * @peripheral: peripheral id
479 * @addr: start address of memory area to prepare
480 * @size: size of the memory area to prepare
481 *
482 * Returns 0 on success.
483 */
484int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
485{
486 int ret;
487 struct qcom_scm_desc desc = {
488 .svc = QCOM_SCM_SVC_PIL,
489 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
490 .arginfo = QCOM_SCM_ARGS(3),
491 .args[0] = peripheral,
492 .args[1] = addr,
493 .args[2] = size,
494 .owner = ARM_SMCCC_OWNER_SIP,
495 };
496 struct qcom_scm_res res;
497
498 ret = qcom_scm_clk_enable();
499 if (ret)
500 return ret;
501
502 ret = qcom_scm_call(__scm->dev, &desc, &res);
503 qcom_scm_clk_disable();
504
505 return ret ? : res.result[0];
506}
507EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
508
509/**
510 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
511 * and reset the remote processor
512 * @peripheral: peripheral id
513 *
514 * Return 0 on success.
515 */
516int qcom_scm_pas_auth_and_reset(u32 peripheral)
517{
518 int ret;
519 struct qcom_scm_desc desc = {
520 .svc = QCOM_SCM_SVC_PIL,
521 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
522 .arginfo = QCOM_SCM_ARGS(1),
523 .args[0] = peripheral,
524 .owner = ARM_SMCCC_OWNER_SIP,
525 };
526 struct qcom_scm_res res;
527
528 ret = qcom_scm_clk_enable();
529 if (ret)
530 return ret;
531
532 ret = qcom_scm_call(__scm->dev, &desc, &res);
533 qcom_scm_clk_disable();
534
535 return ret ? : res.result[0];
536}
537EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
538
539/**
540 * qcom_scm_pas_shutdown() - Shut down the remote processor
541 * @peripheral: peripheral id
542 *
543 * Returns 0 on success.
544 */
545int qcom_scm_pas_shutdown(u32 peripheral)
546{
547 int ret;
548 struct qcom_scm_desc desc = {
549 .svc = QCOM_SCM_SVC_PIL,
550 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
551 .arginfo = QCOM_SCM_ARGS(1),
552 .args[0] = peripheral,
553 .owner = ARM_SMCCC_OWNER_SIP,
554 };
555 struct qcom_scm_res res;
556
557 ret = qcom_scm_clk_enable();
558 if (ret)
559 return ret;
560
561 ret = qcom_scm_call(__scm->dev, &desc, &res);
562
563 qcom_scm_clk_disable();
564
565 return ret ? : res.result[0];
566}
567EXPORT_SYMBOL(qcom_scm_pas_shutdown);
568
569/**
570 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
571 * available for the given peripherial
572 * @peripheral: peripheral id
573 *
574 * Returns true if PAS is supported for this peripheral, otherwise false.
575 */
576bool qcom_scm_pas_supported(u32 peripheral)
577{
578 int ret;
579 struct qcom_scm_desc desc = {
580 .svc = QCOM_SCM_SVC_PIL,
581 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
582 .arginfo = QCOM_SCM_ARGS(1),
583 .args[0] = peripheral,
584 .owner = ARM_SMCCC_OWNER_SIP,
585 };
586 struct qcom_scm_res res;
587
588 ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
589 QCOM_SCM_PIL_PAS_IS_SUPPORTED);
590 if (ret <= 0)
591 return false;
592
593 ret = qcom_scm_call(__scm->dev, &desc, &res);
594
595 return ret ? false : !!res.result[0];
596}
597EXPORT_SYMBOL(qcom_scm_pas_supported);
598
599static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
600{
601 struct qcom_scm_desc desc = {
602 .svc = QCOM_SCM_SVC_PIL,
603 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
604 .arginfo = QCOM_SCM_ARGS(2),
605 .args[0] = reset,
606 .args[1] = 0,
607 .owner = ARM_SMCCC_OWNER_SIP,
608 };
609 struct qcom_scm_res res;
610 int ret;
611
612 ret = qcom_scm_call(__scm->dev, &desc, &res);
613
614 return ret ? : res.result[0];
615}
616
617static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
618 unsigned long idx)
619{
620 if (idx != 0)
621 return -EINVAL;
622
623 return __qcom_scm_pas_mss_reset(__scm->dev, 1);
624}
625
626static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
627 unsigned long idx)
628{
629 if (idx != 0)
630 return -EINVAL;
631
632 return __qcom_scm_pas_mss_reset(__scm->dev, 0);
633}
634
635static const struct reset_control_ops qcom_scm_pas_reset_ops = {
636 .assert = qcom_scm_pas_reset_assert,
637 .deassert = qcom_scm_pas_reset_deassert,
638};
639
640int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
641{
642 struct qcom_scm_desc desc = {
643 .svc = QCOM_SCM_SVC_IO,
644 .cmd = QCOM_SCM_IO_READ,
645 .arginfo = QCOM_SCM_ARGS(1),
646 .args[0] = addr,
647 .owner = ARM_SMCCC_OWNER_SIP,
648 };
649 struct qcom_scm_res res;
650 int ret;
651
652
653 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
654 if (ret >= 0)
655 *val = res.result[0];
656
657 return ret < 0 ? ret : 0;
658}
659EXPORT_SYMBOL(qcom_scm_io_readl);
660
661int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
662{
663 struct qcom_scm_desc desc = {
664 .svc = QCOM_SCM_SVC_IO,
665 .cmd = QCOM_SCM_IO_WRITE,
666 .arginfo = QCOM_SCM_ARGS(2),
667 .args[0] = addr,
668 .args[1] = val,
669 .owner = ARM_SMCCC_OWNER_SIP,
670 };
671
672 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
673}
674EXPORT_SYMBOL(qcom_scm_io_writel);
675
676/**
677 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
678 * supports restore security config interface.
679 *
680 * Return true if restore-cfg interface is supported, false if not.
681 */
682bool qcom_scm_restore_sec_cfg_available(void)
683{
684 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
685 QCOM_SCM_MP_RESTORE_SEC_CFG);
686}
687EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
688
689int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
690{
691 struct qcom_scm_desc desc = {
692 .svc = QCOM_SCM_SVC_MP,
693 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
694 .arginfo = QCOM_SCM_ARGS(2),
695 .args[0] = device_id,
696 .args[1] = spare,
697 .owner = ARM_SMCCC_OWNER_SIP,
698 };
699 struct qcom_scm_res res;
700 int ret;
701
702 ret = qcom_scm_call(__scm->dev, &desc, &res);
703
704 return ret ? : res.result[0];
705}
706EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
707
708int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
709{
710 struct qcom_scm_desc desc = {
711 .svc = QCOM_SCM_SVC_MP,
712 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
713 .arginfo = QCOM_SCM_ARGS(1),
714 .args[0] = spare,
715 .owner = ARM_SMCCC_OWNER_SIP,
716 };
717 struct qcom_scm_res res;
718 int ret;
719
720 ret = qcom_scm_call(__scm->dev, &desc, &res);
721
722 if (size)
723 *size = res.result[0];
724
725 return ret ? : res.result[1];
726}
727EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
728
729int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
730{
731 struct qcom_scm_desc desc = {
732 .svc = QCOM_SCM_SVC_MP,
733 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
734 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
735 QCOM_SCM_VAL),
736 .args[0] = addr,
737 .args[1] = size,
738 .args[2] = spare,
739 .owner = ARM_SMCCC_OWNER_SIP,
740 };
741 int ret;
742
743 desc.args[0] = addr;
744 desc.args[1] = size;
745 desc.args[2] = spare;
746 desc.arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
747 QCOM_SCM_VAL);
748
749 ret = qcom_scm_call(__scm->dev, &desc, NULL);
750
751 /* the pg table has been initialized already, ignore the error */
752 if (ret == -EPERM)
753 ret = 0;
754
755 return ret;
756}
757EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
758
759static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
760 size_t mem_sz, phys_addr_t src, size_t src_sz,
761 phys_addr_t dest, size_t dest_sz)
762{
763 int ret;
764 struct qcom_scm_desc desc = {
765 .svc = QCOM_SCM_SVC_MP,
766 .cmd = QCOM_SCM_MP_ASSIGN,
767 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
768 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
769 QCOM_SCM_VAL, QCOM_SCM_VAL),
770 .args[0] = mem_region,
771 .args[1] = mem_sz,
772 .args[2] = src,
773 .args[3] = src_sz,
774 .args[4] = dest,
775 .args[5] = dest_sz,
776 .args[6] = 0,
777 .owner = ARM_SMCCC_OWNER_SIP,
778 };
779 struct qcom_scm_res res;
780
781 ret = qcom_scm_call(dev, &desc, &res);
782
783 return ret ? : res.result[0];
784}
785
786/**
787 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
788 * @mem_addr: mem region whose ownership need to be reassigned
789 * @mem_sz: size of the region.
790 * @srcvm: vmid for current set of owners, each set bit in
791 * flag indicate a unique owner
792 * @newvm: array having new owners and corresponding permission
793 * flags
794 * @dest_cnt: number of owners in next set.
795 *
796 * Return negative errno on failure or 0 on success with @srcvm updated.
797 */
798int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
799 unsigned int *srcvm,
800 const struct qcom_scm_vmperm *newvm,
801 unsigned int dest_cnt)
802{
803 struct qcom_scm_current_perm_info *destvm;
804 struct qcom_scm_mem_map_info *mem_to_map;
805 phys_addr_t mem_to_map_phys;
806 phys_addr_t dest_phys;
807 dma_addr_t ptr_phys;
808 size_t mem_to_map_sz;
809 size_t dest_sz;
810 size_t src_sz;
811 size_t ptr_sz;
812 int next_vm;
813 __le32 *src;
814 void *ptr;
815 int ret, i, b;
816 unsigned long srcvm_bits = *srcvm;
817
818 src_sz = hweight_long(srcvm_bits) * sizeof(*src);
819 mem_to_map_sz = sizeof(*mem_to_map);
820 dest_sz = dest_cnt * sizeof(*destvm);
821 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
822 ALIGN(dest_sz, SZ_64);
823
824 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
825 if (!ptr)
826 return -ENOMEM;
827
828 /* Fill source vmid detail */
829 src = ptr;
830 i = 0;
831 for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
832 src[i++] = cpu_to_le32(b);
833
834 /* Fill details of mem buff to map */
835 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
836 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
837 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
838 mem_to_map->mem_size = cpu_to_le64(mem_sz);
839
840 next_vm = 0;
841 /* Fill details of next vmid detail */
842 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
843 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
844 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
845 destvm->vmid = cpu_to_le32(newvm->vmid);
846 destvm->perm = cpu_to_le32(newvm->perm);
847 destvm->ctx = 0;
848 destvm->ctx_size = 0;
849 next_vm |= BIT(newvm->vmid);
850 }
851
852 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
853 ptr_phys, src_sz, dest_phys, dest_sz);
854 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
855 if (ret) {
856 dev_err(__scm->dev,
857 "Assign memory protection call failed %d\n", ret);
858 return -EINVAL;
859 }
860
861 *srcvm = next_vm;
862 return 0;
863}
864EXPORT_SYMBOL(qcom_scm_assign_mem);
865
866/**
867 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
868 */
869bool qcom_scm_ocmem_lock_available(void)
870{
871 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
872 QCOM_SCM_OCMEM_LOCK_CMD);
873}
874EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
875
876/**
877 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
878 * region to the specified initiator
879 *
880 * @id: tz initiator id
881 * @offset: OCMEM offset
882 * @size: OCMEM size
883 * @mode: access mode (WIDE/NARROW)
884 */
885int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
886 u32 mode)
887{
888 struct qcom_scm_desc desc = {
889 .svc = QCOM_SCM_SVC_OCMEM,
890 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
891 .args[0] = id,
892 .args[1] = offset,
893 .args[2] = size,
894 .args[3] = mode,
895 .arginfo = QCOM_SCM_ARGS(4),
896 };
897
898 return qcom_scm_call(__scm->dev, &desc, NULL);
899}
900EXPORT_SYMBOL(qcom_scm_ocmem_lock);
901
902/**
903 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
904 * region from the specified initiator
905 *
906 * @id: tz initiator id
907 * @offset: OCMEM offset
908 * @size: OCMEM size
909 */
910int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
911{
912 struct qcom_scm_desc desc = {
913 .svc = QCOM_SCM_SVC_OCMEM,
914 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
915 .args[0] = id,
916 .args[1] = offset,
917 .args[2] = size,
918 .arginfo = QCOM_SCM_ARGS(3),
919 };
920
921 return qcom_scm_call(__scm->dev, &desc, NULL);
922}
923EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
924
925/**
926 * qcom_scm_ice_available() - Is the ICE key programming interface available?
927 *
928 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
929 * qcom_scm_ice_set_key() are available.
930 */
931bool qcom_scm_ice_available(void)
932{
933 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
934 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
935 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
936 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
937}
938EXPORT_SYMBOL(qcom_scm_ice_available);
939
940/**
941 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
942 * @index: the keyslot to invalidate
943 *
944 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
945 * these SoCs; only this SCM call does.
946 *
947 * Return: 0 on success; -errno on failure.
948 */
949int qcom_scm_ice_invalidate_key(u32 index)
950{
951 struct qcom_scm_desc desc = {
952 .svc = QCOM_SCM_SVC_ES,
953 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
954 .arginfo = QCOM_SCM_ARGS(1),
955 .args[0] = index,
956 .owner = ARM_SMCCC_OWNER_SIP,
957 };
958
959 return qcom_scm_call(__scm->dev, &desc, NULL);
960}
961EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
962
963/**
964 * qcom_scm_ice_set_key() - Set an inline encryption key
965 * @index: the keyslot into which to set the key
966 * @key: the key to program
967 * @key_size: the size of the key in bytes
968 * @cipher: the encryption algorithm the key is for
969 * @data_unit_size: the encryption data unit size, i.e. the size of each
970 * individual plaintext and ciphertext. Given in 512-byte
971 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
972 *
973 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
974 * can then be used to encrypt/decrypt UFS I/O requests inline.
975 *
976 * The UFSHCI standard defines a standard way to do this, but it doesn't work on
977 * these SoCs; only this SCM call does.
978 *
979 * Return: 0 on success; -errno on failure.
980 */
981int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
982 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
983{
984 struct qcom_scm_desc desc = {
985 .svc = QCOM_SCM_SVC_ES,
986 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
987 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
988 QCOM_SCM_VAL, QCOM_SCM_VAL,
989 QCOM_SCM_VAL),
990 .args[0] = index,
991 .args[2] = key_size,
992 .args[3] = cipher,
993 .args[4] = data_unit_size,
994 .owner = ARM_SMCCC_OWNER_SIP,
995 };
996 void *keybuf;
997 dma_addr_t key_phys;
998 int ret;
999
1000 /*
1001 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1002 * physical address that's been properly flushed. The sanctioned way to
1003 * do this is by using the DMA API. But as is best practice for crypto
1004 * keys, we also must wipe the key after use. This makes kmemdup() +
1005 * dma_map_single() not clearly correct, since the DMA API can use
1006 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1007 * keys is normally rare and thus not performance-critical.
1008 */
1009
1010 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1011 GFP_KERNEL);
1012 if (!keybuf)
1013 return -ENOMEM;
1014 memcpy(keybuf, key, key_size);
1015 desc.args[1] = key_phys;
1016
1017 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1018
1019 memzero_explicit(keybuf, key_size);
1020
1021 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1022 return ret;
1023}
1024EXPORT_SYMBOL(qcom_scm_ice_set_key);
1025
1026/**
1027 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1028 *
1029 * Return true if HDCP is supported, false if not.
1030 */
1031bool qcom_scm_hdcp_available(void)
1032{
1033 int ret = qcom_scm_clk_enable();
1034
1035 if (ret)
1036 return ret;
1037
1038 ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1039 QCOM_SCM_HDCP_INVOKE);
1040
1041 qcom_scm_clk_disable();
1042
1043 return ret > 0;
1044}
1045EXPORT_SYMBOL(qcom_scm_hdcp_available);
1046
1047/**
1048 * qcom_scm_hdcp_req() - Send HDCP request.
1049 * @req: HDCP request array
1050 * @req_cnt: HDCP request array count
1051 * @resp: response buffer passed to SCM
1052 *
1053 * Write HDCP register(s) through SCM.
1054 */
1055int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1056{
1057 int ret;
1058 struct qcom_scm_desc desc = {
1059 .svc = QCOM_SCM_SVC_HDCP,
1060 .cmd = QCOM_SCM_HDCP_INVOKE,
1061 .arginfo = QCOM_SCM_ARGS(10),
1062 .args = {
1063 req[0].addr,
1064 req[0].val,
1065 req[1].addr,
1066 req[1].val,
1067 req[2].addr,
1068 req[2].val,
1069 req[3].addr,
1070 req[3].val,
1071 req[4].addr,
1072 req[4].val
1073 },
1074 .owner = ARM_SMCCC_OWNER_SIP,
1075 };
1076 struct qcom_scm_res res;
1077
1078 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1079 return -ERANGE;
1080
1081 ret = qcom_scm_clk_enable();
1082 if (ret)
1083 return ret;
1084
1085 ret = qcom_scm_call(__scm->dev, &desc, &res);
1086 *resp = res.result[0];
1087
1088 qcom_scm_clk_disable();
1089
1090 return ret;
1091}
1092EXPORT_SYMBOL(qcom_scm_hdcp_req);
1093
1094int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1095{
1096 struct qcom_scm_desc desc = {
1097 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1098 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1099 .arginfo = QCOM_SCM_ARGS(2),
1100 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1101 .args[1] = en,
1102 .owner = ARM_SMCCC_OWNER_SIP,
1103 };
1104
1105
1106 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1107}
1108EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1109
1110static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1111{
1112 struct device_node *tcsr;
1113 struct device_node *np = dev->of_node;
1114 struct resource res;
1115 u32 offset;
1116 int ret;
1117
1118 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1119 if (!tcsr)
1120 return 0;
1121
1122 ret = of_address_to_resource(tcsr, 0, &res);
1123 of_node_put(tcsr);
1124 if (ret)
1125 return ret;
1126
1127 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1128 if (ret < 0)
1129 return ret;
1130
1131 *addr = res.start + offset;
1132
1133 return 0;
1134}
1135
1136/**
1137 * qcom_scm_is_available() - Checks if SCM is available
1138 */
1139bool qcom_scm_is_available(void)
1140{
1141 return !!__scm;
1142}
1143EXPORT_SYMBOL(qcom_scm_is_available);
1144
1145static int qcom_scm_probe(struct platform_device *pdev)
1146{
1147 struct qcom_scm *scm;
1148 unsigned long clks;
1149 int ret;
1150
1151 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1152 if (!scm)
1153 return -ENOMEM;
1154
1155 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1156 if (ret < 0)
1157 return ret;
1158
1159 clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1160
1161 scm->core_clk = devm_clk_get(&pdev->dev, "core");
1162 if (IS_ERR(scm->core_clk)) {
1163 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1164 return PTR_ERR(scm->core_clk);
1165
1166 if (clks & SCM_HAS_CORE_CLK) {
1167 dev_err(&pdev->dev, "failed to acquire core clk\n");
1168 return PTR_ERR(scm->core_clk);
1169 }
1170
1171 scm->core_clk = NULL;
1172 }
1173
1174 scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1175 if (IS_ERR(scm->iface_clk)) {
1176 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1177 return PTR_ERR(scm->iface_clk);
1178
1179 if (clks & SCM_HAS_IFACE_CLK) {
1180 dev_err(&pdev->dev, "failed to acquire iface clk\n");
1181 return PTR_ERR(scm->iface_clk);
1182 }
1183
1184 scm->iface_clk = NULL;
1185 }
1186
1187 scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1188 if (IS_ERR(scm->bus_clk)) {
1189 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1190 return PTR_ERR(scm->bus_clk);
1191
1192 if (clks & SCM_HAS_BUS_CLK) {
1193 dev_err(&pdev->dev, "failed to acquire bus clk\n");
1194 return PTR_ERR(scm->bus_clk);
1195 }
1196
1197 scm->bus_clk = NULL;
1198 }
1199
1200 scm->reset.ops = &qcom_scm_pas_reset_ops;
1201 scm->reset.nr_resets = 1;
1202 scm->reset.of_node = pdev->dev.of_node;
1203 ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1204 if (ret)
1205 return ret;
1206
1207 /* vote for max clk rate for highest performance */
1208 ret = clk_set_rate(scm->core_clk, INT_MAX);
1209 if (ret)
1210 return ret;
1211
1212 __scm = scm;
1213 __scm->dev = &pdev->dev;
1214
1215 __query_convention();
1216
1217 /*
1218 * If requested enable "download mode", from this point on warmboot
1219 * will cause the the boot stages to enter download mode, unless
1220 * disabled below by a clean shutdown/reboot.
1221 */
1222 if (download_mode)
1223 qcom_scm_set_download_mode(true);
1224
1225 return 0;
1226}
1227
1228static void qcom_scm_shutdown(struct platform_device *pdev)
1229{
1230 /* Clean shutdown, disable download mode to allow normal restart */
1231 if (download_mode)
1232 qcom_scm_set_download_mode(false);
1233}
1234
1235static const struct of_device_id qcom_scm_dt_match[] = {
1236 { .compatible = "qcom,scm-apq8064",
1237 /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1238 },
1239 { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1240 SCM_HAS_IFACE_CLK |
1241 SCM_HAS_BUS_CLK)
1242 },
1243 { .compatible = "qcom,scm-ipq4019" },
1244 { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1245 { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1246 { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1247 SCM_HAS_IFACE_CLK |
1248 SCM_HAS_BUS_CLK)
1249 },
1250 { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1251 SCM_HAS_IFACE_CLK |
1252 SCM_HAS_BUS_CLK)
1253 },
1254 { .compatible = "qcom,scm-msm8994" },
1255 { .compatible = "qcom,scm-msm8996" },
1256 { .compatible = "qcom,scm" },
1257 {}
1258};
1259
1260static struct platform_driver qcom_scm_driver = {
1261 .driver = {
1262 .name = "qcom_scm",
1263 .of_match_table = qcom_scm_dt_match,
1264 },
1265 .probe = qcom_scm_probe,
1266 .shutdown = qcom_scm_shutdown,
1267};
1268
1269static int __init qcom_scm_init(void)
1270{
1271 return platform_driver_register(&qcom_scm_driver);
1272}
1273subsys_initcall(qcom_scm_init);
1// SPDX-License-Identifier: GPL-2.0-only
2/* Copyright (c) 2010,2015,2019 The Linux Foundation. All rights reserved.
3 * Copyright (C) 2015 Linaro Ltd.
4 */
5#include <linux/platform_device.h>
6#include <linux/init.h>
7#include <linux/cpumask.h>
8#include <linux/export.h>
9#include <linux/dma-mapping.h>
10#include <linux/interconnect.h>
11#include <linux/module.h>
12#include <linux/types.h>
13#include <linux/qcom_scm.h>
14#include <linux/of.h>
15#include <linux/of_address.h>
16#include <linux/of_platform.h>
17#include <linux/clk.h>
18#include <linux/reset-controller.h>
19#include <linux/arm-smccc.h>
20
21#include "qcom_scm.h"
22
23static bool download_mode = IS_ENABLED(CONFIG_QCOM_SCM_DOWNLOAD_MODE_DEFAULT);
24module_param(download_mode, bool, 0);
25
26#define SCM_HAS_CORE_CLK BIT(0)
27#define SCM_HAS_IFACE_CLK BIT(1)
28#define SCM_HAS_BUS_CLK BIT(2)
29
30struct qcom_scm {
31 struct device *dev;
32 struct clk *core_clk;
33 struct clk *iface_clk;
34 struct clk *bus_clk;
35 struct icc_path *path;
36 struct reset_controller_dev reset;
37
38 /* control access to the interconnect path */
39 struct mutex scm_bw_lock;
40 int scm_vote_count;
41
42 u64 dload_mode_addr;
43};
44
45struct qcom_scm_current_perm_info {
46 __le32 vmid;
47 __le32 perm;
48 __le64 ctx;
49 __le32 ctx_size;
50 __le32 unused;
51};
52
53struct qcom_scm_mem_map_info {
54 __le64 mem_addr;
55 __le64 mem_size;
56};
57
58/* Each bit configures cold/warm boot address for one of the 4 CPUs */
59static const u8 qcom_scm_cpu_cold_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
60 0, BIT(0), BIT(3), BIT(5)
61};
62static const u8 qcom_scm_cpu_warm_bits[QCOM_SCM_BOOT_MAX_CPUS] = {
63 BIT(2), BIT(1), BIT(4), BIT(6)
64};
65
66static const char * const qcom_scm_convention_names[] = {
67 [SMC_CONVENTION_UNKNOWN] = "unknown",
68 [SMC_CONVENTION_ARM_32] = "smc arm 32",
69 [SMC_CONVENTION_ARM_64] = "smc arm 64",
70 [SMC_CONVENTION_LEGACY] = "smc legacy",
71};
72
73static struct qcom_scm *__scm;
74
75static int qcom_scm_clk_enable(void)
76{
77 int ret;
78
79 ret = clk_prepare_enable(__scm->core_clk);
80 if (ret)
81 goto bail;
82
83 ret = clk_prepare_enable(__scm->iface_clk);
84 if (ret)
85 goto disable_core;
86
87 ret = clk_prepare_enable(__scm->bus_clk);
88 if (ret)
89 goto disable_iface;
90
91 return 0;
92
93disable_iface:
94 clk_disable_unprepare(__scm->iface_clk);
95disable_core:
96 clk_disable_unprepare(__scm->core_clk);
97bail:
98 return ret;
99}
100
101static void qcom_scm_clk_disable(void)
102{
103 clk_disable_unprepare(__scm->core_clk);
104 clk_disable_unprepare(__scm->iface_clk);
105 clk_disable_unprepare(__scm->bus_clk);
106}
107
108static int qcom_scm_bw_enable(void)
109{
110 int ret = 0;
111
112 if (!__scm->path)
113 return 0;
114
115 if (IS_ERR(__scm->path))
116 return -EINVAL;
117
118 mutex_lock(&__scm->scm_bw_lock);
119 if (!__scm->scm_vote_count) {
120 ret = icc_set_bw(__scm->path, 0, UINT_MAX);
121 if (ret < 0) {
122 dev_err(__scm->dev, "failed to set bandwidth request\n");
123 goto err_bw;
124 }
125 }
126 __scm->scm_vote_count++;
127err_bw:
128 mutex_unlock(&__scm->scm_bw_lock);
129
130 return ret;
131}
132
133static void qcom_scm_bw_disable(void)
134{
135 if (IS_ERR_OR_NULL(__scm->path))
136 return;
137
138 mutex_lock(&__scm->scm_bw_lock);
139 if (__scm->scm_vote_count-- == 1)
140 icc_set_bw(__scm->path, 0, 0);
141 mutex_unlock(&__scm->scm_bw_lock);
142}
143
144enum qcom_scm_convention qcom_scm_convention = SMC_CONVENTION_UNKNOWN;
145static DEFINE_SPINLOCK(scm_query_lock);
146
147static enum qcom_scm_convention __get_convention(void)
148{
149 unsigned long flags;
150 struct qcom_scm_desc desc = {
151 .svc = QCOM_SCM_SVC_INFO,
152 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
153 .args[0] = SCM_SMC_FNID(QCOM_SCM_SVC_INFO,
154 QCOM_SCM_INFO_IS_CALL_AVAIL) |
155 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT),
156 .arginfo = QCOM_SCM_ARGS(1),
157 .owner = ARM_SMCCC_OWNER_SIP,
158 };
159 struct qcom_scm_res res;
160 enum qcom_scm_convention probed_convention;
161 int ret;
162 bool forced = false;
163
164 if (likely(qcom_scm_convention != SMC_CONVENTION_UNKNOWN))
165 return qcom_scm_convention;
166
167 /*
168 * Device isn't required as there is only one argument - no device
169 * needed to dma_map_single to secure world
170 */
171 probed_convention = SMC_CONVENTION_ARM_64;
172 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
173 if (!ret && res.result[0] == 1)
174 goto found;
175
176 /*
177 * Some SC7180 firmwares didn't implement the
178 * QCOM_SCM_INFO_IS_CALL_AVAIL call, so we fallback to forcing ARM_64
179 * calling conventions on these firmwares. Luckily we don't make any
180 * early calls into the firmware on these SoCs so the device pointer
181 * will be valid here to check if the compatible matches.
182 */
183 if (of_device_is_compatible(__scm ? __scm->dev->of_node : NULL, "qcom,scm-sc7180")) {
184 forced = true;
185 goto found;
186 }
187
188 probed_convention = SMC_CONVENTION_ARM_32;
189 ret = __scm_smc_call(NULL, &desc, probed_convention, &res, true);
190 if (!ret && res.result[0] == 1)
191 goto found;
192
193 probed_convention = SMC_CONVENTION_LEGACY;
194found:
195 spin_lock_irqsave(&scm_query_lock, flags);
196 if (probed_convention != qcom_scm_convention) {
197 qcom_scm_convention = probed_convention;
198 pr_info("qcom_scm: convention: %s%s\n",
199 qcom_scm_convention_names[qcom_scm_convention],
200 forced ? " (forced)" : "");
201 }
202 spin_unlock_irqrestore(&scm_query_lock, flags);
203
204 return qcom_scm_convention;
205}
206
207/**
208 * qcom_scm_call() - Invoke a syscall in the secure world
209 * @dev: device
210 * @desc: Descriptor structure containing arguments and return values
211 * @res: Structure containing results from SMC/HVC call
212 *
213 * Sends a command to the SCM and waits for the command to finish processing.
214 * This should *only* be called in pre-emptible context.
215 */
216static int qcom_scm_call(struct device *dev, const struct qcom_scm_desc *desc,
217 struct qcom_scm_res *res)
218{
219 might_sleep();
220 switch (__get_convention()) {
221 case SMC_CONVENTION_ARM_32:
222 case SMC_CONVENTION_ARM_64:
223 return scm_smc_call(dev, desc, res, false);
224 case SMC_CONVENTION_LEGACY:
225 return scm_legacy_call(dev, desc, res);
226 default:
227 pr_err("Unknown current SCM calling convention.\n");
228 return -EINVAL;
229 }
230}
231
232/**
233 * qcom_scm_call_atomic() - atomic variation of qcom_scm_call()
234 * @dev: device
235 * @desc: Descriptor structure containing arguments and return values
236 * @res: Structure containing results from SMC/HVC call
237 *
238 * Sends a command to the SCM and waits for the command to finish processing.
239 * This can be called in atomic context.
240 */
241static int qcom_scm_call_atomic(struct device *dev,
242 const struct qcom_scm_desc *desc,
243 struct qcom_scm_res *res)
244{
245 switch (__get_convention()) {
246 case SMC_CONVENTION_ARM_32:
247 case SMC_CONVENTION_ARM_64:
248 return scm_smc_call(dev, desc, res, true);
249 case SMC_CONVENTION_LEGACY:
250 return scm_legacy_call_atomic(dev, desc, res);
251 default:
252 pr_err("Unknown current SCM calling convention.\n");
253 return -EINVAL;
254 }
255}
256
257static bool __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
258 u32 cmd_id)
259{
260 int ret;
261 struct qcom_scm_desc desc = {
262 .svc = QCOM_SCM_SVC_INFO,
263 .cmd = QCOM_SCM_INFO_IS_CALL_AVAIL,
264 .owner = ARM_SMCCC_OWNER_SIP,
265 };
266 struct qcom_scm_res res;
267
268 desc.arginfo = QCOM_SCM_ARGS(1);
269 switch (__get_convention()) {
270 case SMC_CONVENTION_ARM_32:
271 case SMC_CONVENTION_ARM_64:
272 desc.args[0] = SCM_SMC_FNID(svc_id, cmd_id) |
273 (ARM_SMCCC_OWNER_SIP << ARM_SMCCC_OWNER_SHIFT);
274 break;
275 case SMC_CONVENTION_LEGACY:
276 desc.args[0] = SCM_LEGACY_FNID(svc_id, cmd_id);
277 break;
278 default:
279 pr_err("Unknown SMC convention being used\n");
280 return false;
281 }
282
283 ret = qcom_scm_call(dev, &desc, &res);
284
285 return ret ? false : !!res.result[0];
286}
287
288static int qcom_scm_set_boot_addr(void *entry, const u8 *cpu_bits)
289{
290 int cpu;
291 unsigned int flags = 0;
292 struct qcom_scm_desc desc = {
293 .svc = QCOM_SCM_SVC_BOOT,
294 .cmd = QCOM_SCM_BOOT_SET_ADDR,
295 .arginfo = QCOM_SCM_ARGS(2),
296 .owner = ARM_SMCCC_OWNER_SIP,
297 };
298
299 for_each_present_cpu(cpu) {
300 if (cpu >= QCOM_SCM_BOOT_MAX_CPUS)
301 return -EINVAL;
302 flags |= cpu_bits[cpu];
303 }
304
305 desc.args[0] = flags;
306 desc.args[1] = virt_to_phys(entry);
307
308 return qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
309}
310
311static int qcom_scm_set_boot_addr_mc(void *entry, unsigned int flags)
312{
313 struct qcom_scm_desc desc = {
314 .svc = QCOM_SCM_SVC_BOOT,
315 .cmd = QCOM_SCM_BOOT_SET_ADDR_MC,
316 .owner = ARM_SMCCC_OWNER_SIP,
317 .arginfo = QCOM_SCM_ARGS(6),
318 .args = {
319 virt_to_phys(entry),
320 /* Apply to all CPUs in all affinity levels */
321 ~0ULL, ~0ULL, ~0ULL, ~0ULL,
322 flags,
323 },
324 };
325
326 /* Need a device for DMA of the additional arguments */
327 if (!__scm || __get_convention() == SMC_CONVENTION_LEGACY)
328 return -EOPNOTSUPP;
329
330 return qcom_scm_call(__scm->dev, &desc, NULL);
331}
332
333/**
334 * qcom_scm_set_warm_boot_addr() - Set the warm boot address for all cpus
335 * @entry: Entry point function for the cpus
336 *
337 * Set the Linux entry point for the SCM to transfer control to when coming
338 * out of a power down. CPU power down may be executed on cpuidle or hotplug.
339 */
340int qcom_scm_set_warm_boot_addr(void *entry)
341{
342 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_WARMBOOT))
343 /* Fallback to old SCM call */
344 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_warm_bits);
345 return 0;
346}
347EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
348
349/**
350 * qcom_scm_set_cold_boot_addr() - Set the cold boot address for all cpus
351 * @entry: Entry point function for the cpus
352 */
353int qcom_scm_set_cold_boot_addr(void *entry)
354{
355 if (qcom_scm_set_boot_addr_mc(entry, QCOM_SCM_BOOT_MC_FLAG_COLDBOOT))
356 /* Fallback to old SCM call */
357 return qcom_scm_set_boot_addr(entry, qcom_scm_cpu_cold_bits);
358 return 0;
359}
360EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
361
362/**
363 * qcom_scm_cpu_power_down() - Power down the cpu
364 * @flags: Flags to flush cache
365 *
366 * This is an end point to power down cpu. If there was a pending interrupt,
367 * the control would return from this function, otherwise, the cpu jumps to the
368 * warm boot entry point set for this cpu upon reset.
369 */
370void qcom_scm_cpu_power_down(u32 flags)
371{
372 struct qcom_scm_desc desc = {
373 .svc = QCOM_SCM_SVC_BOOT,
374 .cmd = QCOM_SCM_BOOT_TERMINATE_PC,
375 .args[0] = flags & QCOM_SCM_FLUSH_FLAG_MASK,
376 .arginfo = QCOM_SCM_ARGS(1),
377 .owner = ARM_SMCCC_OWNER_SIP,
378 };
379
380 qcom_scm_call_atomic(__scm ? __scm->dev : NULL, &desc, NULL);
381}
382EXPORT_SYMBOL(qcom_scm_cpu_power_down);
383
384int qcom_scm_set_remote_state(u32 state, u32 id)
385{
386 struct qcom_scm_desc desc = {
387 .svc = QCOM_SCM_SVC_BOOT,
388 .cmd = QCOM_SCM_BOOT_SET_REMOTE_STATE,
389 .arginfo = QCOM_SCM_ARGS(2),
390 .args[0] = state,
391 .args[1] = id,
392 .owner = ARM_SMCCC_OWNER_SIP,
393 };
394 struct qcom_scm_res res;
395 int ret;
396
397 ret = qcom_scm_call(__scm->dev, &desc, &res);
398
399 return ret ? : res.result[0];
400}
401EXPORT_SYMBOL(qcom_scm_set_remote_state);
402
403static int __qcom_scm_set_dload_mode(struct device *dev, bool enable)
404{
405 struct qcom_scm_desc desc = {
406 .svc = QCOM_SCM_SVC_BOOT,
407 .cmd = QCOM_SCM_BOOT_SET_DLOAD_MODE,
408 .arginfo = QCOM_SCM_ARGS(2),
409 .args[0] = QCOM_SCM_BOOT_SET_DLOAD_MODE,
410 .owner = ARM_SMCCC_OWNER_SIP,
411 };
412
413 desc.args[1] = enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0;
414
415 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
416}
417
418static void qcom_scm_set_download_mode(bool enable)
419{
420 bool avail;
421 int ret = 0;
422
423 avail = __qcom_scm_is_call_available(__scm->dev,
424 QCOM_SCM_SVC_BOOT,
425 QCOM_SCM_BOOT_SET_DLOAD_MODE);
426 if (avail) {
427 ret = __qcom_scm_set_dload_mode(__scm->dev, enable);
428 } else if (__scm->dload_mode_addr) {
429 ret = qcom_scm_io_writel(__scm->dload_mode_addr,
430 enable ? QCOM_SCM_BOOT_SET_DLOAD_MODE : 0);
431 } else {
432 dev_err(__scm->dev,
433 "No available mechanism for setting download mode\n");
434 }
435
436 if (ret)
437 dev_err(__scm->dev, "failed to set download mode: %d\n", ret);
438}
439
440/**
441 * qcom_scm_pas_init_image() - Initialize peripheral authentication service
442 * state machine for a given peripheral, using the
443 * metadata
444 * @peripheral: peripheral id
445 * @metadata: pointer to memory containing ELF header, program header table
446 * and optional blob of data used for authenticating the metadata
447 * and the rest of the firmware
448 * @size: size of the metadata
449 * @ctx: optional metadata context
450 *
451 * Return: 0 on success.
452 *
453 * Upon successful return, the PAS metadata context (@ctx) will be used to
454 * track the metadata allocation, this needs to be released by invoking
455 * qcom_scm_pas_metadata_release() by the caller.
456 */
457int qcom_scm_pas_init_image(u32 peripheral, const void *metadata, size_t size,
458 struct qcom_scm_pas_metadata *ctx)
459{
460 dma_addr_t mdata_phys;
461 void *mdata_buf;
462 int ret;
463 struct qcom_scm_desc desc = {
464 .svc = QCOM_SCM_SVC_PIL,
465 .cmd = QCOM_SCM_PIL_PAS_INIT_IMAGE,
466 .arginfo = QCOM_SCM_ARGS(2, QCOM_SCM_VAL, QCOM_SCM_RW),
467 .args[0] = peripheral,
468 .owner = ARM_SMCCC_OWNER_SIP,
469 };
470 struct qcom_scm_res res;
471
472 /*
473 * During the scm call memory protection will be enabled for the meta
474 * data blob, so make sure it's physically contiguous, 4K aligned and
475 * non-cachable to avoid XPU violations.
476 */
477 mdata_buf = dma_alloc_coherent(__scm->dev, size, &mdata_phys,
478 GFP_KERNEL);
479 if (!mdata_buf) {
480 dev_err(__scm->dev, "Allocation of metadata buffer failed.\n");
481 return -ENOMEM;
482 }
483 memcpy(mdata_buf, metadata, size);
484
485 ret = qcom_scm_clk_enable();
486 if (ret)
487 goto out;
488
489 ret = qcom_scm_bw_enable();
490 if (ret)
491 return ret;
492
493 desc.args[1] = mdata_phys;
494
495 ret = qcom_scm_call(__scm->dev, &desc, &res);
496
497 qcom_scm_bw_disable();
498 qcom_scm_clk_disable();
499
500out:
501 if (ret < 0 || !ctx) {
502 dma_free_coherent(__scm->dev, size, mdata_buf, mdata_phys);
503 } else if (ctx) {
504 ctx->ptr = mdata_buf;
505 ctx->phys = mdata_phys;
506 ctx->size = size;
507 }
508
509 return ret ? : res.result[0];
510}
511EXPORT_SYMBOL(qcom_scm_pas_init_image);
512
513/**
514 * qcom_scm_pas_metadata_release() - release metadata context
515 * @ctx: metadata context
516 */
517void qcom_scm_pas_metadata_release(struct qcom_scm_pas_metadata *ctx)
518{
519 if (!ctx->ptr)
520 return;
521
522 dma_free_coherent(__scm->dev, ctx->size, ctx->ptr, ctx->phys);
523
524 ctx->ptr = NULL;
525 ctx->phys = 0;
526 ctx->size = 0;
527}
528EXPORT_SYMBOL(qcom_scm_pas_metadata_release);
529
530/**
531 * qcom_scm_pas_mem_setup() - Prepare the memory related to a given peripheral
532 * for firmware loading
533 * @peripheral: peripheral id
534 * @addr: start address of memory area to prepare
535 * @size: size of the memory area to prepare
536 *
537 * Returns 0 on success.
538 */
539int qcom_scm_pas_mem_setup(u32 peripheral, phys_addr_t addr, phys_addr_t size)
540{
541 int ret;
542 struct qcom_scm_desc desc = {
543 .svc = QCOM_SCM_SVC_PIL,
544 .cmd = QCOM_SCM_PIL_PAS_MEM_SETUP,
545 .arginfo = QCOM_SCM_ARGS(3),
546 .args[0] = peripheral,
547 .args[1] = addr,
548 .args[2] = size,
549 .owner = ARM_SMCCC_OWNER_SIP,
550 };
551 struct qcom_scm_res res;
552
553 ret = qcom_scm_clk_enable();
554 if (ret)
555 return ret;
556
557 ret = qcom_scm_bw_enable();
558 if (ret)
559 return ret;
560
561 ret = qcom_scm_call(__scm->dev, &desc, &res);
562 qcom_scm_bw_disable();
563 qcom_scm_clk_disable();
564
565 return ret ? : res.result[0];
566}
567EXPORT_SYMBOL(qcom_scm_pas_mem_setup);
568
569/**
570 * qcom_scm_pas_auth_and_reset() - Authenticate the given peripheral firmware
571 * and reset the remote processor
572 * @peripheral: peripheral id
573 *
574 * Return 0 on success.
575 */
576int qcom_scm_pas_auth_and_reset(u32 peripheral)
577{
578 int ret;
579 struct qcom_scm_desc desc = {
580 .svc = QCOM_SCM_SVC_PIL,
581 .cmd = QCOM_SCM_PIL_PAS_AUTH_AND_RESET,
582 .arginfo = QCOM_SCM_ARGS(1),
583 .args[0] = peripheral,
584 .owner = ARM_SMCCC_OWNER_SIP,
585 };
586 struct qcom_scm_res res;
587
588 ret = qcom_scm_clk_enable();
589 if (ret)
590 return ret;
591
592 ret = qcom_scm_bw_enable();
593 if (ret)
594 return ret;
595
596 ret = qcom_scm_call(__scm->dev, &desc, &res);
597 qcom_scm_bw_disable();
598 qcom_scm_clk_disable();
599
600 return ret ? : res.result[0];
601}
602EXPORT_SYMBOL(qcom_scm_pas_auth_and_reset);
603
604/**
605 * qcom_scm_pas_shutdown() - Shut down the remote processor
606 * @peripheral: peripheral id
607 *
608 * Returns 0 on success.
609 */
610int qcom_scm_pas_shutdown(u32 peripheral)
611{
612 int ret;
613 struct qcom_scm_desc desc = {
614 .svc = QCOM_SCM_SVC_PIL,
615 .cmd = QCOM_SCM_PIL_PAS_SHUTDOWN,
616 .arginfo = QCOM_SCM_ARGS(1),
617 .args[0] = peripheral,
618 .owner = ARM_SMCCC_OWNER_SIP,
619 };
620 struct qcom_scm_res res;
621
622 ret = qcom_scm_clk_enable();
623 if (ret)
624 return ret;
625
626 ret = qcom_scm_bw_enable();
627 if (ret)
628 return ret;
629
630 ret = qcom_scm_call(__scm->dev, &desc, &res);
631
632 qcom_scm_bw_disable();
633 qcom_scm_clk_disable();
634
635 return ret ? : res.result[0];
636}
637EXPORT_SYMBOL(qcom_scm_pas_shutdown);
638
639/**
640 * qcom_scm_pas_supported() - Check if the peripheral authentication service is
641 * available for the given peripherial
642 * @peripheral: peripheral id
643 *
644 * Returns true if PAS is supported for this peripheral, otherwise false.
645 */
646bool qcom_scm_pas_supported(u32 peripheral)
647{
648 int ret;
649 struct qcom_scm_desc desc = {
650 .svc = QCOM_SCM_SVC_PIL,
651 .cmd = QCOM_SCM_PIL_PAS_IS_SUPPORTED,
652 .arginfo = QCOM_SCM_ARGS(1),
653 .args[0] = peripheral,
654 .owner = ARM_SMCCC_OWNER_SIP,
655 };
656 struct qcom_scm_res res;
657
658 if (!__qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_PIL,
659 QCOM_SCM_PIL_PAS_IS_SUPPORTED))
660 return false;
661
662 ret = qcom_scm_call(__scm->dev, &desc, &res);
663
664 return ret ? false : !!res.result[0];
665}
666EXPORT_SYMBOL(qcom_scm_pas_supported);
667
668static int __qcom_scm_pas_mss_reset(struct device *dev, bool reset)
669{
670 struct qcom_scm_desc desc = {
671 .svc = QCOM_SCM_SVC_PIL,
672 .cmd = QCOM_SCM_PIL_PAS_MSS_RESET,
673 .arginfo = QCOM_SCM_ARGS(2),
674 .args[0] = reset,
675 .args[1] = 0,
676 .owner = ARM_SMCCC_OWNER_SIP,
677 };
678 struct qcom_scm_res res;
679 int ret;
680
681 ret = qcom_scm_call(__scm->dev, &desc, &res);
682
683 return ret ? : res.result[0];
684}
685
686static int qcom_scm_pas_reset_assert(struct reset_controller_dev *rcdev,
687 unsigned long idx)
688{
689 if (idx != 0)
690 return -EINVAL;
691
692 return __qcom_scm_pas_mss_reset(__scm->dev, 1);
693}
694
695static int qcom_scm_pas_reset_deassert(struct reset_controller_dev *rcdev,
696 unsigned long idx)
697{
698 if (idx != 0)
699 return -EINVAL;
700
701 return __qcom_scm_pas_mss_reset(__scm->dev, 0);
702}
703
704static const struct reset_control_ops qcom_scm_pas_reset_ops = {
705 .assert = qcom_scm_pas_reset_assert,
706 .deassert = qcom_scm_pas_reset_deassert,
707};
708
709int qcom_scm_io_readl(phys_addr_t addr, unsigned int *val)
710{
711 struct qcom_scm_desc desc = {
712 .svc = QCOM_SCM_SVC_IO,
713 .cmd = QCOM_SCM_IO_READ,
714 .arginfo = QCOM_SCM_ARGS(1),
715 .args[0] = addr,
716 .owner = ARM_SMCCC_OWNER_SIP,
717 };
718 struct qcom_scm_res res;
719 int ret;
720
721
722 ret = qcom_scm_call_atomic(__scm->dev, &desc, &res);
723 if (ret >= 0)
724 *val = res.result[0];
725
726 return ret < 0 ? ret : 0;
727}
728EXPORT_SYMBOL(qcom_scm_io_readl);
729
730int qcom_scm_io_writel(phys_addr_t addr, unsigned int val)
731{
732 struct qcom_scm_desc desc = {
733 .svc = QCOM_SCM_SVC_IO,
734 .cmd = QCOM_SCM_IO_WRITE,
735 .arginfo = QCOM_SCM_ARGS(2),
736 .args[0] = addr,
737 .args[1] = val,
738 .owner = ARM_SMCCC_OWNER_SIP,
739 };
740
741 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
742}
743EXPORT_SYMBOL(qcom_scm_io_writel);
744
745/**
746 * qcom_scm_restore_sec_cfg_available() - Check if secure environment
747 * supports restore security config interface.
748 *
749 * Return true if restore-cfg interface is supported, false if not.
750 */
751bool qcom_scm_restore_sec_cfg_available(void)
752{
753 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_MP,
754 QCOM_SCM_MP_RESTORE_SEC_CFG);
755}
756EXPORT_SYMBOL(qcom_scm_restore_sec_cfg_available);
757
758int qcom_scm_restore_sec_cfg(u32 device_id, u32 spare)
759{
760 struct qcom_scm_desc desc = {
761 .svc = QCOM_SCM_SVC_MP,
762 .cmd = QCOM_SCM_MP_RESTORE_SEC_CFG,
763 .arginfo = QCOM_SCM_ARGS(2),
764 .args[0] = device_id,
765 .args[1] = spare,
766 .owner = ARM_SMCCC_OWNER_SIP,
767 };
768 struct qcom_scm_res res;
769 int ret;
770
771 ret = qcom_scm_call(__scm->dev, &desc, &res);
772
773 return ret ? : res.result[0];
774}
775EXPORT_SYMBOL(qcom_scm_restore_sec_cfg);
776
777int qcom_scm_iommu_secure_ptbl_size(u32 spare, size_t *size)
778{
779 struct qcom_scm_desc desc = {
780 .svc = QCOM_SCM_SVC_MP,
781 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_SIZE,
782 .arginfo = QCOM_SCM_ARGS(1),
783 .args[0] = spare,
784 .owner = ARM_SMCCC_OWNER_SIP,
785 };
786 struct qcom_scm_res res;
787 int ret;
788
789 ret = qcom_scm_call(__scm->dev, &desc, &res);
790
791 if (size)
792 *size = res.result[0];
793
794 return ret ? : res.result[1];
795}
796EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_size);
797
798int qcom_scm_iommu_secure_ptbl_init(u64 addr, u32 size, u32 spare)
799{
800 struct qcom_scm_desc desc = {
801 .svc = QCOM_SCM_SVC_MP,
802 .cmd = QCOM_SCM_MP_IOMMU_SECURE_PTBL_INIT,
803 .arginfo = QCOM_SCM_ARGS(3, QCOM_SCM_RW, QCOM_SCM_VAL,
804 QCOM_SCM_VAL),
805 .args[0] = addr,
806 .args[1] = size,
807 .args[2] = spare,
808 .owner = ARM_SMCCC_OWNER_SIP,
809 };
810 int ret;
811
812 ret = qcom_scm_call(__scm->dev, &desc, NULL);
813
814 /* the pg table has been initialized already, ignore the error */
815 if (ret == -EPERM)
816 ret = 0;
817
818 return ret;
819}
820EXPORT_SYMBOL(qcom_scm_iommu_secure_ptbl_init);
821
822int qcom_scm_iommu_set_cp_pool_size(u32 spare, u32 size)
823{
824 struct qcom_scm_desc desc = {
825 .svc = QCOM_SCM_SVC_MP,
826 .cmd = QCOM_SCM_MP_IOMMU_SET_CP_POOL_SIZE,
827 .arginfo = QCOM_SCM_ARGS(2),
828 .args[0] = size,
829 .args[1] = spare,
830 .owner = ARM_SMCCC_OWNER_SIP,
831 };
832
833 return qcom_scm_call(__scm->dev, &desc, NULL);
834}
835EXPORT_SYMBOL(qcom_scm_iommu_set_cp_pool_size);
836
837int qcom_scm_mem_protect_video_var(u32 cp_start, u32 cp_size,
838 u32 cp_nonpixel_start,
839 u32 cp_nonpixel_size)
840{
841 int ret;
842 struct qcom_scm_desc desc = {
843 .svc = QCOM_SCM_SVC_MP,
844 .cmd = QCOM_SCM_MP_VIDEO_VAR,
845 .arginfo = QCOM_SCM_ARGS(4, QCOM_SCM_VAL, QCOM_SCM_VAL,
846 QCOM_SCM_VAL, QCOM_SCM_VAL),
847 .args[0] = cp_start,
848 .args[1] = cp_size,
849 .args[2] = cp_nonpixel_start,
850 .args[3] = cp_nonpixel_size,
851 .owner = ARM_SMCCC_OWNER_SIP,
852 };
853 struct qcom_scm_res res;
854
855 ret = qcom_scm_call(__scm->dev, &desc, &res);
856
857 return ret ? : res.result[0];
858}
859EXPORT_SYMBOL(qcom_scm_mem_protect_video_var);
860
861static int __qcom_scm_assign_mem(struct device *dev, phys_addr_t mem_region,
862 size_t mem_sz, phys_addr_t src, size_t src_sz,
863 phys_addr_t dest, size_t dest_sz)
864{
865 int ret;
866 struct qcom_scm_desc desc = {
867 .svc = QCOM_SCM_SVC_MP,
868 .cmd = QCOM_SCM_MP_ASSIGN,
869 .arginfo = QCOM_SCM_ARGS(7, QCOM_SCM_RO, QCOM_SCM_VAL,
870 QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_RO,
871 QCOM_SCM_VAL, QCOM_SCM_VAL),
872 .args[0] = mem_region,
873 .args[1] = mem_sz,
874 .args[2] = src,
875 .args[3] = src_sz,
876 .args[4] = dest,
877 .args[5] = dest_sz,
878 .args[6] = 0,
879 .owner = ARM_SMCCC_OWNER_SIP,
880 };
881 struct qcom_scm_res res;
882
883 ret = qcom_scm_call(dev, &desc, &res);
884
885 return ret ? : res.result[0];
886}
887
888/**
889 * qcom_scm_assign_mem() - Make a secure call to reassign memory ownership
890 * @mem_addr: mem region whose ownership need to be reassigned
891 * @mem_sz: size of the region.
892 * @srcvm: vmid for current set of owners, each set bit in
893 * flag indicate a unique owner
894 * @newvm: array having new owners and corresponding permission
895 * flags
896 * @dest_cnt: number of owners in next set.
897 *
898 * Return negative errno on failure or 0 on success with @srcvm updated.
899 */
900int qcom_scm_assign_mem(phys_addr_t mem_addr, size_t mem_sz,
901 unsigned int *srcvm,
902 const struct qcom_scm_vmperm *newvm,
903 unsigned int dest_cnt)
904{
905 struct qcom_scm_current_perm_info *destvm;
906 struct qcom_scm_mem_map_info *mem_to_map;
907 phys_addr_t mem_to_map_phys;
908 phys_addr_t dest_phys;
909 dma_addr_t ptr_phys;
910 size_t mem_to_map_sz;
911 size_t dest_sz;
912 size_t src_sz;
913 size_t ptr_sz;
914 int next_vm;
915 __le32 *src;
916 void *ptr;
917 int ret, i, b;
918 unsigned long srcvm_bits = *srcvm;
919
920 src_sz = hweight_long(srcvm_bits) * sizeof(*src);
921 mem_to_map_sz = sizeof(*mem_to_map);
922 dest_sz = dest_cnt * sizeof(*destvm);
923 ptr_sz = ALIGN(src_sz, SZ_64) + ALIGN(mem_to_map_sz, SZ_64) +
924 ALIGN(dest_sz, SZ_64);
925
926 ptr = dma_alloc_coherent(__scm->dev, ptr_sz, &ptr_phys, GFP_KERNEL);
927 if (!ptr)
928 return -ENOMEM;
929
930 /* Fill source vmid detail */
931 src = ptr;
932 i = 0;
933 for_each_set_bit(b, &srcvm_bits, BITS_PER_LONG)
934 src[i++] = cpu_to_le32(b);
935
936 /* Fill details of mem buff to map */
937 mem_to_map = ptr + ALIGN(src_sz, SZ_64);
938 mem_to_map_phys = ptr_phys + ALIGN(src_sz, SZ_64);
939 mem_to_map->mem_addr = cpu_to_le64(mem_addr);
940 mem_to_map->mem_size = cpu_to_le64(mem_sz);
941
942 next_vm = 0;
943 /* Fill details of next vmid detail */
944 destvm = ptr + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
945 dest_phys = ptr_phys + ALIGN(mem_to_map_sz, SZ_64) + ALIGN(src_sz, SZ_64);
946 for (i = 0; i < dest_cnt; i++, destvm++, newvm++) {
947 destvm->vmid = cpu_to_le32(newvm->vmid);
948 destvm->perm = cpu_to_le32(newvm->perm);
949 destvm->ctx = 0;
950 destvm->ctx_size = 0;
951 next_vm |= BIT(newvm->vmid);
952 }
953
954 ret = __qcom_scm_assign_mem(__scm->dev, mem_to_map_phys, mem_to_map_sz,
955 ptr_phys, src_sz, dest_phys, dest_sz);
956 dma_free_coherent(__scm->dev, ptr_sz, ptr, ptr_phys);
957 if (ret) {
958 dev_err(__scm->dev,
959 "Assign memory protection call failed %d\n", ret);
960 return -EINVAL;
961 }
962
963 *srcvm = next_vm;
964 return 0;
965}
966EXPORT_SYMBOL(qcom_scm_assign_mem);
967
968/**
969 * qcom_scm_ocmem_lock_available() - is OCMEM lock/unlock interface available
970 */
971bool qcom_scm_ocmem_lock_available(void)
972{
973 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_OCMEM,
974 QCOM_SCM_OCMEM_LOCK_CMD);
975}
976EXPORT_SYMBOL(qcom_scm_ocmem_lock_available);
977
978/**
979 * qcom_scm_ocmem_lock() - call OCMEM lock interface to assign an OCMEM
980 * region to the specified initiator
981 *
982 * @id: tz initiator id
983 * @offset: OCMEM offset
984 * @size: OCMEM size
985 * @mode: access mode (WIDE/NARROW)
986 */
987int qcom_scm_ocmem_lock(enum qcom_scm_ocmem_client id, u32 offset, u32 size,
988 u32 mode)
989{
990 struct qcom_scm_desc desc = {
991 .svc = QCOM_SCM_SVC_OCMEM,
992 .cmd = QCOM_SCM_OCMEM_LOCK_CMD,
993 .args[0] = id,
994 .args[1] = offset,
995 .args[2] = size,
996 .args[3] = mode,
997 .arginfo = QCOM_SCM_ARGS(4),
998 };
999
1000 return qcom_scm_call(__scm->dev, &desc, NULL);
1001}
1002EXPORT_SYMBOL(qcom_scm_ocmem_lock);
1003
1004/**
1005 * qcom_scm_ocmem_unlock() - call OCMEM unlock interface to release an OCMEM
1006 * region from the specified initiator
1007 *
1008 * @id: tz initiator id
1009 * @offset: OCMEM offset
1010 * @size: OCMEM size
1011 */
1012int qcom_scm_ocmem_unlock(enum qcom_scm_ocmem_client id, u32 offset, u32 size)
1013{
1014 struct qcom_scm_desc desc = {
1015 .svc = QCOM_SCM_SVC_OCMEM,
1016 .cmd = QCOM_SCM_OCMEM_UNLOCK_CMD,
1017 .args[0] = id,
1018 .args[1] = offset,
1019 .args[2] = size,
1020 .arginfo = QCOM_SCM_ARGS(3),
1021 };
1022
1023 return qcom_scm_call(__scm->dev, &desc, NULL);
1024}
1025EXPORT_SYMBOL(qcom_scm_ocmem_unlock);
1026
1027/**
1028 * qcom_scm_ice_available() - Is the ICE key programming interface available?
1029 *
1030 * Return: true iff the SCM calls wrapped by qcom_scm_ice_invalidate_key() and
1031 * qcom_scm_ice_set_key() are available.
1032 */
1033bool qcom_scm_ice_available(void)
1034{
1035 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1036 QCOM_SCM_ES_INVALIDATE_ICE_KEY) &&
1037 __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_ES,
1038 QCOM_SCM_ES_CONFIG_SET_ICE_KEY);
1039}
1040EXPORT_SYMBOL(qcom_scm_ice_available);
1041
1042/**
1043 * qcom_scm_ice_invalidate_key() - Invalidate an inline encryption key
1044 * @index: the keyslot to invalidate
1045 *
1046 * The UFSHCI and eMMC standards define a standard way to do this, but it
1047 * doesn't work on these SoCs; only this SCM call does.
1048 *
1049 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1050 * call doesn't specify which ICE instance the keyslot belongs to.
1051 *
1052 * Return: 0 on success; -errno on failure.
1053 */
1054int qcom_scm_ice_invalidate_key(u32 index)
1055{
1056 struct qcom_scm_desc desc = {
1057 .svc = QCOM_SCM_SVC_ES,
1058 .cmd = QCOM_SCM_ES_INVALIDATE_ICE_KEY,
1059 .arginfo = QCOM_SCM_ARGS(1),
1060 .args[0] = index,
1061 .owner = ARM_SMCCC_OWNER_SIP,
1062 };
1063
1064 return qcom_scm_call(__scm->dev, &desc, NULL);
1065}
1066EXPORT_SYMBOL(qcom_scm_ice_invalidate_key);
1067
1068/**
1069 * qcom_scm_ice_set_key() - Set an inline encryption key
1070 * @index: the keyslot into which to set the key
1071 * @key: the key to program
1072 * @key_size: the size of the key in bytes
1073 * @cipher: the encryption algorithm the key is for
1074 * @data_unit_size: the encryption data unit size, i.e. the size of each
1075 * individual plaintext and ciphertext. Given in 512-byte
1076 * units, e.g. 1 = 512 bytes, 8 = 4096 bytes, etc.
1077 *
1078 * Program a key into a keyslot of Qualcomm ICE (Inline Crypto Engine), where it
1079 * can then be used to encrypt/decrypt UFS or eMMC I/O requests inline.
1080 *
1081 * The UFSHCI and eMMC standards define a standard way to do this, but it
1082 * doesn't work on these SoCs; only this SCM call does.
1083 *
1084 * It is assumed that the SoC has only one ICE instance being used, as this SCM
1085 * call doesn't specify which ICE instance the keyslot belongs to.
1086 *
1087 * Return: 0 on success; -errno on failure.
1088 */
1089int qcom_scm_ice_set_key(u32 index, const u8 *key, u32 key_size,
1090 enum qcom_scm_ice_cipher cipher, u32 data_unit_size)
1091{
1092 struct qcom_scm_desc desc = {
1093 .svc = QCOM_SCM_SVC_ES,
1094 .cmd = QCOM_SCM_ES_CONFIG_SET_ICE_KEY,
1095 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_VAL, QCOM_SCM_RW,
1096 QCOM_SCM_VAL, QCOM_SCM_VAL,
1097 QCOM_SCM_VAL),
1098 .args[0] = index,
1099 .args[2] = key_size,
1100 .args[3] = cipher,
1101 .args[4] = data_unit_size,
1102 .owner = ARM_SMCCC_OWNER_SIP,
1103 };
1104 void *keybuf;
1105 dma_addr_t key_phys;
1106 int ret;
1107
1108 /*
1109 * 'key' may point to vmalloc()'ed memory, but we need to pass a
1110 * physical address that's been properly flushed. The sanctioned way to
1111 * do this is by using the DMA API. But as is best practice for crypto
1112 * keys, we also must wipe the key after use. This makes kmemdup() +
1113 * dma_map_single() not clearly correct, since the DMA API can use
1114 * bounce buffers. Instead, just use dma_alloc_coherent(). Programming
1115 * keys is normally rare and thus not performance-critical.
1116 */
1117
1118 keybuf = dma_alloc_coherent(__scm->dev, key_size, &key_phys,
1119 GFP_KERNEL);
1120 if (!keybuf)
1121 return -ENOMEM;
1122 memcpy(keybuf, key, key_size);
1123 desc.args[1] = key_phys;
1124
1125 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1126
1127 memzero_explicit(keybuf, key_size);
1128
1129 dma_free_coherent(__scm->dev, key_size, keybuf, key_phys);
1130 return ret;
1131}
1132EXPORT_SYMBOL(qcom_scm_ice_set_key);
1133
1134/**
1135 * qcom_scm_hdcp_available() - Check if secure environment supports HDCP.
1136 *
1137 * Return true if HDCP is supported, false if not.
1138 */
1139bool qcom_scm_hdcp_available(void)
1140{
1141 bool avail;
1142 int ret = qcom_scm_clk_enable();
1143
1144 if (ret)
1145 return ret;
1146
1147 avail = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
1148 QCOM_SCM_HDCP_INVOKE);
1149
1150 qcom_scm_clk_disable();
1151
1152 return avail;
1153}
1154EXPORT_SYMBOL(qcom_scm_hdcp_available);
1155
1156/**
1157 * qcom_scm_hdcp_req() - Send HDCP request.
1158 * @req: HDCP request array
1159 * @req_cnt: HDCP request array count
1160 * @resp: response buffer passed to SCM
1161 *
1162 * Write HDCP register(s) through SCM.
1163 */
1164int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
1165{
1166 int ret;
1167 struct qcom_scm_desc desc = {
1168 .svc = QCOM_SCM_SVC_HDCP,
1169 .cmd = QCOM_SCM_HDCP_INVOKE,
1170 .arginfo = QCOM_SCM_ARGS(10),
1171 .args = {
1172 req[0].addr,
1173 req[0].val,
1174 req[1].addr,
1175 req[1].val,
1176 req[2].addr,
1177 req[2].val,
1178 req[3].addr,
1179 req[3].val,
1180 req[4].addr,
1181 req[4].val
1182 },
1183 .owner = ARM_SMCCC_OWNER_SIP,
1184 };
1185 struct qcom_scm_res res;
1186
1187 if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
1188 return -ERANGE;
1189
1190 ret = qcom_scm_clk_enable();
1191 if (ret)
1192 return ret;
1193
1194 ret = qcom_scm_call(__scm->dev, &desc, &res);
1195 *resp = res.result[0];
1196
1197 qcom_scm_clk_disable();
1198
1199 return ret;
1200}
1201EXPORT_SYMBOL(qcom_scm_hdcp_req);
1202
1203int qcom_scm_iommu_set_pt_format(u32 sec_id, u32 ctx_num, u32 pt_fmt)
1204{
1205 struct qcom_scm_desc desc = {
1206 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1207 .cmd = QCOM_SCM_SMMU_PT_FORMAT,
1208 .arginfo = QCOM_SCM_ARGS(3),
1209 .args[0] = sec_id,
1210 .args[1] = ctx_num,
1211 .args[2] = pt_fmt, /* 0: LPAE AArch32 - 1: AArch64 */
1212 .owner = ARM_SMCCC_OWNER_SIP,
1213 };
1214
1215 return qcom_scm_call(__scm->dev, &desc, NULL);
1216}
1217EXPORT_SYMBOL(qcom_scm_iommu_set_pt_format);
1218
1219int qcom_scm_qsmmu500_wait_safe_toggle(bool en)
1220{
1221 struct qcom_scm_desc desc = {
1222 .svc = QCOM_SCM_SVC_SMMU_PROGRAM,
1223 .cmd = QCOM_SCM_SMMU_CONFIG_ERRATA1,
1224 .arginfo = QCOM_SCM_ARGS(2),
1225 .args[0] = QCOM_SCM_SMMU_CONFIG_ERRATA1_CLIENT_ALL,
1226 .args[1] = en,
1227 .owner = ARM_SMCCC_OWNER_SIP,
1228 };
1229
1230
1231 return qcom_scm_call_atomic(__scm->dev, &desc, NULL);
1232}
1233EXPORT_SYMBOL(qcom_scm_qsmmu500_wait_safe_toggle);
1234
1235bool qcom_scm_lmh_dcvsh_available(void)
1236{
1237 return __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_LMH, QCOM_SCM_LMH_LIMIT_DCVSH);
1238}
1239EXPORT_SYMBOL(qcom_scm_lmh_dcvsh_available);
1240
1241int qcom_scm_lmh_profile_change(u32 profile_id)
1242{
1243 struct qcom_scm_desc desc = {
1244 .svc = QCOM_SCM_SVC_LMH,
1245 .cmd = QCOM_SCM_LMH_LIMIT_PROFILE_CHANGE,
1246 .arginfo = QCOM_SCM_ARGS(1, QCOM_SCM_VAL),
1247 .args[0] = profile_id,
1248 .owner = ARM_SMCCC_OWNER_SIP,
1249 };
1250
1251 return qcom_scm_call(__scm->dev, &desc, NULL);
1252}
1253EXPORT_SYMBOL(qcom_scm_lmh_profile_change);
1254
1255int qcom_scm_lmh_dcvsh(u32 payload_fn, u32 payload_reg, u32 payload_val,
1256 u64 limit_node, u32 node_id, u64 version)
1257{
1258 dma_addr_t payload_phys;
1259 u32 *payload_buf;
1260 int ret, payload_size = 5 * sizeof(u32);
1261
1262 struct qcom_scm_desc desc = {
1263 .svc = QCOM_SCM_SVC_LMH,
1264 .cmd = QCOM_SCM_LMH_LIMIT_DCVSH,
1265 .arginfo = QCOM_SCM_ARGS(5, QCOM_SCM_RO, QCOM_SCM_VAL, QCOM_SCM_VAL,
1266 QCOM_SCM_VAL, QCOM_SCM_VAL),
1267 .args[1] = payload_size,
1268 .args[2] = limit_node,
1269 .args[3] = node_id,
1270 .args[4] = version,
1271 .owner = ARM_SMCCC_OWNER_SIP,
1272 };
1273
1274 payload_buf = dma_alloc_coherent(__scm->dev, payload_size, &payload_phys, GFP_KERNEL);
1275 if (!payload_buf)
1276 return -ENOMEM;
1277
1278 payload_buf[0] = payload_fn;
1279 payload_buf[1] = 0;
1280 payload_buf[2] = payload_reg;
1281 payload_buf[3] = 1;
1282 payload_buf[4] = payload_val;
1283
1284 desc.args[0] = payload_phys;
1285
1286 ret = qcom_scm_call(__scm->dev, &desc, NULL);
1287
1288 dma_free_coherent(__scm->dev, payload_size, payload_buf, payload_phys);
1289 return ret;
1290}
1291EXPORT_SYMBOL(qcom_scm_lmh_dcvsh);
1292
1293static int qcom_scm_find_dload_address(struct device *dev, u64 *addr)
1294{
1295 struct device_node *tcsr;
1296 struct device_node *np = dev->of_node;
1297 struct resource res;
1298 u32 offset;
1299 int ret;
1300
1301 tcsr = of_parse_phandle(np, "qcom,dload-mode", 0);
1302 if (!tcsr)
1303 return 0;
1304
1305 ret = of_address_to_resource(tcsr, 0, &res);
1306 of_node_put(tcsr);
1307 if (ret)
1308 return ret;
1309
1310 ret = of_property_read_u32_index(np, "qcom,dload-mode", 1, &offset);
1311 if (ret < 0)
1312 return ret;
1313
1314 *addr = res.start + offset;
1315
1316 return 0;
1317}
1318
1319/**
1320 * qcom_scm_is_available() - Checks if SCM is available
1321 */
1322bool qcom_scm_is_available(void)
1323{
1324 return !!__scm;
1325}
1326EXPORT_SYMBOL(qcom_scm_is_available);
1327
1328static int qcom_scm_probe(struct platform_device *pdev)
1329{
1330 struct qcom_scm *scm;
1331 unsigned long clks;
1332 int ret;
1333
1334 scm = devm_kzalloc(&pdev->dev, sizeof(*scm), GFP_KERNEL);
1335 if (!scm)
1336 return -ENOMEM;
1337
1338 ret = qcom_scm_find_dload_address(&pdev->dev, &scm->dload_mode_addr);
1339 if (ret < 0)
1340 return ret;
1341
1342 mutex_init(&scm->scm_bw_lock);
1343
1344 clks = (unsigned long)of_device_get_match_data(&pdev->dev);
1345
1346 scm->path = devm_of_icc_get(&pdev->dev, NULL);
1347 if (IS_ERR(scm->path))
1348 return dev_err_probe(&pdev->dev, PTR_ERR(scm->path),
1349 "failed to acquire interconnect path\n");
1350
1351 scm->core_clk = devm_clk_get(&pdev->dev, "core");
1352 if (IS_ERR(scm->core_clk)) {
1353 if (PTR_ERR(scm->core_clk) == -EPROBE_DEFER)
1354 return PTR_ERR(scm->core_clk);
1355
1356 if (clks & SCM_HAS_CORE_CLK) {
1357 dev_err(&pdev->dev, "failed to acquire core clk\n");
1358 return PTR_ERR(scm->core_clk);
1359 }
1360
1361 scm->core_clk = NULL;
1362 }
1363
1364 scm->iface_clk = devm_clk_get(&pdev->dev, "iface");
1365 if (IS_ERR(scm->iface_clk)) {
1366 if (PTR_ERR(scm->iface_clk) == -EPROBE_DEFER)
1367 return PTR_ERR(scm->iface_clk);
1368
1369 if (clks & SCM_HAS_IFACE_CLK) {
1370 dev_err(&pdev->dev, "failed to acquire iface clk\n");
1371 return PTR_ERR(scm->iface_clk);
1372 }
1373
1374 scm->iface_clk = NULL;
1375 }
1376
1377 scm->bus_clk = devm_clk_get(&pdev->dev, "bus");
1378 if (IS_ERR(scm->bus_clk)) {
1379 if (PTR_ERR(scm->bus_clk) == -EPROBE_DEFER)
1380 return PTR_ERR(scm->bus_clk);
1381
1382 if (clks & SCM_HAS_BUS_CLK) {
1383 dev_err(&pdev->dev, "failed to acquire bus clk\n");
1384 return PTR_ERR(scm->bus_clk);
1385 }
1386
1387 scm->bus_clk = NULL;
1388 }
1389
1390 scm->reset.ops = &qcom_scm_pas_reset_ops;
1391 scm->reset.nr_resets = 1;
1392 scm->reset.of_node = pdev->dev.of_node;
1393 ret = devm_reset_controller_register(&pdev->dev, &scm->reset);
1394 if (ret)
1395 return ret;
1396
1397 /* vote for max clk rate for highest performance */
1398 ret = clk_set_rate(scm->core_clk, INT_MAX);
1399 if (ret)
1400 return ret;
1401
1402 __scm = scm;
1403 __scm->dev = &pdev->dev;
1404
1405 __get_convention();
1406
1407 /*
1408 * If requested enable "download mode", from this point on warmboot
1409 * will cause the boot stages to enter download mode, unless
1410 * disabled below by a clean shutdown/reboot.
1411 */
1412 if (download_mode)
1413 qcom_scm_set_download_mode(true);
1414
1415 return 0;
1416}
1417
1418static void qcom_scm_shutdown(struct platform_device *pdev)
1419{
1420 /* Clean shutdown, disable download mode to allow normal restart */
1421 if (download_mode)
1422 qcom_scm_set_download_mode(false);
1423}
1424
1425static const struct of_device_id qcom_scm_dt_match[] = {
1426 { .compatible = "qcom,scm-apq8064",
1427 /* FIXME: This should have .data = (void *) SCM_HAS_CORE_CLK */
1428 },
1429 { .compatible = "qcom,scm-apq8084", .data = (void *)(SCM_HAS_CORE_CLK |
1430 SCM_HAS_IFACE_CLK |
1431 SCM_HAS_BUS_CLK)
1432 },
1433 { .compatible = "qcom,scm-ipq4019" },
1434 { .compatible = "qcom,scm-mdm9607", .data = (void *)(SCM_HAS_CORE_CLK |
1435 SCM_HAS_IFACE_CLK |
1436 SCM_HAS_BUS_CLK) },
1437 { .compatible = "qcom,scm-msm8660", .data = (void *) SCM_HAS_CORE_CLK },
1438 { .compatible = "qcom,scm-msm8960", .data = (void *) SCM_HAS_CORE_CLK },
1439 { .compatible = "qcom,scm-msm8916", .data = (void *)(SCM_HAS_CORE_CLK |
1440 SCM_HAS_IFACE_CLK |
1441 SCM_HAS_BUS_CLK)
1442 },
1443 { .compatible = "qcom,scm-msm8953", .data = (void *)(SCM_HAS_CORE_CLK |
1444 SCM_HAS_IFACE_CLK |
1445 SCM_HAS_BUS_CLK)
1446 },
1447 { .compatible = "qcom,scm-msm8974", .data = (void *)(SCM_HAS_CORE_CLK |
1448 SCM_HAS_IFACE_CLK |
1449 SCM_HAS_BUS_CLK)
1450 },
1451 { .compatible = "qcom,scm-msm8976", .data = (void *)(SCM_HAS_CORE_CLK |
1452 SCM_HAS_IFACE_CLK |
1453 SCM_HAS_BUS_CLK)
1454 },
1455 { .compatible = "qcom,scm-msm8994" },
1456 { .compatible = "qcom,scm-msm8996" },
1457 { .compatible = "qcom,scm" },
1458 {}
1459};
1460MODULE_DEVICE_TABLE(of, qcom_scm_dt_match);
1461
1462static struct platform_driver qcom_scm_driver = {
1463 .driver = {
1464 .name = "qcom_scm",
1465 .of_match_table = qcom_scm_dt_match,
1466 .suppress_bind_attrs = true,
1467 },
1468 .probe = qcom_scm_probe,
1469 .shutdown = qcom_scm_shutdown,
1470};
1471
1472static int __init qcom_scm_init(void)
1473{
1474 return platform_driver_register(&qcom_scm_driver);
1475}
1476subsys_initcall(qcom_scm_init);
1477
1478MODULE_DESCRIPTION("Qualcomm Technologies, Inc. SCM driver");
1479MODULE_LICENSE("GPL v2");