Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119
 120	raw_spinlock_t lock; /* Protect the shared start/stop register */
 121
 122	struct sh_cmt_channel *channels;
 123	unsigned int num_channels;
 124	unsigned int hw_channels;
 125
 126	bool has_clockevent;
 127	bool has_clocksource;
 128};
 129
 130#define SH_CMT16_CMCSR_CMF		(1 << 7)
 131#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 132#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 133#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 134#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 135#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 136#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 137
 138#define SH_CMT32_CMCSR_CMF		(1 << 15)
 139#define SH_CMT32_CMCSR_OVF		(1 << 14)
 140#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 141#define SH_CMT32_CMCSR_STTF		(1 << 12)
 142#define SH_CMT32_CMCSR_STPF		(1 << 11)
 143#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 144#define SH_CMT32_CMCSR_CMS		(1 << 9)
 145#define SH_CMT32_CMCSR_CMM		(1 << 8)
 146#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 147#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 148#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 149#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 150#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 151#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 152#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 153#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 156#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 157
 158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 159{
 160	return ioread16(base + (offs << 1));
 161}
 162
 163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 164{
 165	return ioread32(base + (offs << 2));
 166}
 167
 168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 169{
 170	iowrite16(value, base + (offs << 1));
 171}
 172
 173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 174{
 175	iowrite32(value, base + (offs << 2));
 176}
 177
 178static const struct sh_cmt_info sh_cmt_info[] = {
 179	[SH_CMT_16BIT] = {
 180		.model = SH_CMT_16BIT,
 181		.width = 16,
 182		.overflow_bit = SH_CMT16_CMCSR_CMF,
 183		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 184		.read_control = sh_cmt_read16,
 185		.write_control = sh_cmt_write16,
 186		.read_count = sh_cmt_read16,
 187		.write_count = sh_cmt_write16,
 188	},
 189	[SH_CMT_32BIT] = {
 190		.model = SH_CMT_32BIT,
 191		.width = 32,
 192		.overflow_bit = SH_CMT32_CMCSR_CMF,
 193		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 194		.read_control = sh_cmt_read16,
 195		.write_control = sh_cmt_write16,
 196		.read_count = sh_cmt_read32,
 197		.write_count = sh_cmt_write32,
 198	},
 199	[SH_CMT_48BIT] = {
 200		.model = SH_CMT_48BIT,
 201		.channels_mask = 0x3f,
 202		.width = 32,
 203		.overflow_bit = SH_CMT32_CMCSR_CMF,
 204		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 205		.read_control = sh_cmt_read32,
 206		.write_control = sh_cmt_write32,
 207		.read_count = sh_cmt_read32,
 208		.write_count = sh_cmt_write32,
 209	},
 210	[SH_CMT0_RCAR_GEN2] = {
 211		.model = SH_CMT0_RCAR_GEN2,
 212		.channels_mask = 0x60,
 213		.width = 32,
 214		.overflow_bit = SH_CMT32_CMCSR_CMF,
 215		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 216		.read_control = sh_cmt_read32,
 217		.write_control = sh_cmt_write32,
 218		.read_count = sh_cmt_read32,
 219		.write_count = sh_cmt_write32,
 220	},
 221	[SH_CMT1_RCAR_GEN2] = {
 222		.model = SH_CMT1_RCAR_GEN2,
 223		.channels_mask = 0xff,
 224		.width = 32,
 225		.overflow_bit = SH_CMT32_CMCSR_CMF,
 226		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 227		.read_control = sh_cmt_read32,
 228		.write_control = sh_cmt_write32,
 229		.read_count = sh_cmt_read32,
 230		.write_count = sh_cmt_write32,
 231	},
 232};
 233
 234#define CMCSR 0 /* channel register */
 235#define CMCNT 1 /* channel register */
 236#define CMCOR 2 /* channel register */
 237
 
 
 238static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 239{
 240	if (ch->iostart)
 241		return ch->cmt->info->read_control(ch->iostart, 0);
 242	else
 243		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 244}
 245
 246static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 247{
 248	if (ch->iostart)
 249		ch->cmt->info->write_control(ch->iostart, 0, value);
 250	else
 251		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 252}
 253
 254static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 255{
 256	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 257}
 258
 259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 260{
 261	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 262}
 263
 264static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 265{
 266	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 267}
 268
 269static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 270{
 271	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 272}
 273
 274static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 275{
 276	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 277}
 278
 279static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 280{
 281	u32 v1, v2, v3;
 282	u32 o1, o2;
 283
 284	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 285
 286	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 287	do {
 288		o2 = o1;
 289		v1 = sh_cmt_read_cmcnt(ch);
 290		v2 = sh_cmt_read_cmcnt(ch);
 291		v3 = sh_cmt_read_cmcnt(ch);
 292		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 293	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 294			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 295
 296	*has_wrapped = o1;
 297	return v2;
 298}
 299
 300static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 301{
 302	unsigned long flags;
 303	u32 value;
 304
 305	/* start stop register shared by multiple timer channels */
 306	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 307	value = sh_cmt_read_cmstr(ch);
 308
 309	if (start)
 310		value |= 1 << ch->timer_bit;
 311	else
 312		value &= ~(1 << ch->timer_bit);
 313
 314	sh_cmt_write_cmstr(ch, value);
 315	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 316}
 317
 318static int sh_cmt_enable(struct sh_cmt_channel *ch)
 319{
 320	int k, ret;
 321
 322	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 323	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 324
 325	/* enable clock */
 326	ret = clk_enable(ch->cmt->clk);
 327	if (ret) {
 328		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 329			ch->index);
 330		goto err0;
 331	}
 332
 333	/* make sure channel is disabled */
 334	sh_cmt_start_stop_ch(ch, 0);
 335
 336	/* configure channel, periodic mode and maximum timeout */
 337	if (ch->cmt->info->width == 16) {
 338		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 339				   SH_CMT16_CMCSR_CKS512);
 340	} else {
 341		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 342				   SH_CMT32_CMCSR_CMTOUT_IE |
 
 343				   SH_CMT32_CMCSR_CMR_IRQ |
 344				   SH_CMT32_CMCSR_CKS_RCLK8);
 345	}
 346
 347	sh_cmt_write_cmcor(ch, 0xffffffff);
 348	sh_cmt_write_cmcnt(ch, 0);
 349
 350	/*
 351	 * According to the sh73a0 user's manual, as CMCNT can be operated
 352	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
 353	 * modifying CMCNT register; two RCLK cycles are necessary before
 354	 * this register is either read or any modification of the value
 355	 * it holds is reflected in the LSI's actual operation.
 356	 *
 357	 * While at it, we're supposed to clear out the CMCNT as of this
 358	 * moment, so make sure it's processed properly here.  This will
 359	 * take RCLKx2 at maximum.
 360	 */
 361	for (k = 0; k < 100; k++) {
 362		if (!sh_cmt_read_cmcnt(ch))
 363			break;
 364		udelay(1);
 365	}
 366
 367	if (sh_cmt_read_cmcnt(ch)) {
 368		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 369			ch->index);
 370		ret = -ETIMEDOUT;
 371		goto err1;
 372	}
 373
 374	/* enable channel */
 375	sh_cmt_start_stop_ch(ch, 1);
 376	return 0;
 377 err1:
 378	/* stop clock */
 379	clk_disable(ch->cmt->clk);
 380
 381 err0:
 382	return ret;
 383}
 384
 385static void sh_cmt_disable(struct sh_cmt_channel *ch)
 386{
 387	/* disable channel */
 388	sh_cmt_start_stop_ch(ch, 0);
 389
 390	/* disable interrupts in CMT block */
 391	sh_cmt_write_cmcsr(ch, 0);
 392
 393	/* stop clock */
 394	clk_disable(ch->cmt->clk);
 395
 396	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 397	pm_runtime_put(&ch->cmt->pdev->dev);
 398}
 399
 400/* private flags */
 401#define FLAG_CLOCKEVENT (1 << 0)
 402#define FLAG_CLOCKSOURCE (1 << 1)
 403#define FLAG_REPROGRAM (1 << 2)
 404#define FLAG_SKIPEVENT (1 << 3)
 405#define FLAG_IRQCONTEXT (1 << 4)
 406
 407static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 408					      int absolute)
 409{
 410	u32 value = ch->next_match_value;
 411	u32 new_match;
 412	u32 delay = 0;
 413	u32 now = 0;
 414	u32 has_wrapped;
 415
 416	now = sh_cmt_get_counter(ch, &has_wrapped);
 417	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 418
 419	if (has_wrapped) {
 420		/* we're competing with the interrupt handler.
 421		 *  -> let the interrupt handler reprogram the timer.
 422		 *  -> interrupt number two handles the event.
 423		 */
 424		ch->flags |= FLAG_SKIPEVENT;
 425		return;
 426	}
 427
 428	if (absolute)
 429		now = 0;
 430
 431	do {
 432		/* reprogram the timer hardware,
 433		 * but don't save the new match value yet.
 434		 */
 435		new_match = now + value + delay;
 436		if (new_match > ch->max_match_value)
 437			new_match = ch->max_match_value;
 438
 439		sh_cmt_write_cmcor(ch, new_match);
 440
 441		now = sh_cmt_get_counter(ch, &has_wrapped);
 442		if (has_wrapped && (new_match > ch->match_value)) {
 443			/* we are changing to a greater match value,
 444			 * so this wrap must be caused by the counter
 445			 * matching the old value.
 446			 * -> first interrupt reprograms the timer.
 447			 * -> interrupt number two handles the event.
 448			 */
 449			ch->flags |= FLAG_SKIPEVENT;
 450			break;
 451		}
 452
 453		if (has_wrapped) {
 454			/* we are changing to a smaller match value,
 455			 * so the wrap must be caused by the counter
 456			 * matching the new value.
 457			 * -> save programmed match value.
 458			 * -> let isr handle the event.
 459			 */
 460			ch->match_value = new_match;
 461			break;
 462		}
 463
 464		/* be safe: verify hardware settings */
 465		if (now < new_match) {
 466			/* timer value is below match value, all good.
 467			 * this makes sure we won't miss any match events.
 468			 * -> save programmed match value.
 469			 * -> let isr handle the event.
 470			 */
 471			ch->match_value = new_match;
 472			break;
 473		}
 474
 475		/* the counter has reached a value greater
 476		 * than our new match value. and since the
 477		 * has_wrapped flag isn't set we must have
 478		 * programmed a too close event.
 479		 * -> increase delay and retry.
 480		 */
 481		if (delay)
 482			delay <<= 1;
 483		else
 484			delay = 1;
 485
 486		if (!delay)
 487			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 488				 ch->index);
 489
 490	} while (delay);
 491}
 492
 493static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 494{
 495	if (delta > ch->max_match_value)
 496		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 497			 ch->index);
 498
 499	ch->next_match_value = delta;
 500	sh_cmt_clock_event_program_verify(ch, 0);
 501}
 502
 503static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 504{
 505	unsigned long flags;
 506
 507	raw_spin_lock_irqsave(&ch->lock, flags);
 508	__sh_cmt_set_next(ch, delta);
 509	raw_spin_unlock_irqrestore(&ch->lock, flags);
 510}
 511
 512static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 513{
 514	struct sh_cmt_channel *ch = dev_id;
 515
 516	/* clear flags */
 517	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 518			   ch->cmt->info->clear_bits);
 519
 520	/* update clock source counter to begin with if enabled
 521	 * the wrap flag should be cleared by the timer specific
 522	 * isr before we end up here.
 523	 */
 524	if (ch->flags & FLAG_CLOCKSOURCE)
 525		ch->total_cycles += ch->match_value + 1;
 526
 527	if (!(ch->flags & FLAG_REPROGRAM))
 528		ch->next_match_value = ch->max_match_value;
 529
 530	ch->flags |= FLAG_IRQCONTEXT;
 531
 532	if (ch->flags & FLAG_CLOCKEVENT) {
 533		if (!(ch->flags & FLAG_SKIPEVENT)) {
 534			if (clockevent_state_oneshot(&ch->ced)) {
 535				ch->next_match_value = ch->max_match_value;
 536				ch->flags |= FLAG_REPROGRAM;
 537			}
 538
 539			ch->ced.event_handler(&ch->ced);
 540		}
 541	}
 542
 543	ch->flags &= ~FLAG_SKIPEVENT;
 544
 545	if (ch->flags & FLAG_REPROGRAM) {
 546		ch->flags &= ~FLAG_REPROGRAM;
 547		sh_cmt_clock_event_program_verify(ch, 1);
 548
 549		if (ch->flags & FLAG_CLOCKEVENT)
 550			if ((clockevent_state_shutdown(&ch->ced))
 551			    || (ch->match_value == ch->next_match_value))
 552				ch->flags &= ~FLAG_REPROGRAM;
 553	}
 554
 555	ch->flags &= ~FLAG_IRQCONTEXT;
 556
 557	return IRQ_HANDLED;
 558}
 559
 560static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 561{
 562	int ret = 0;
 563	unsigned long flags;
 564
 
 
 
 565	raw_spin_lock_irqsave(&ch->lock, flags);
 566
 567	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 
 
 568		ret = sh_cmt_enable(ch);
 
 569
 570	if (ret)
 571		goto out;
 572	ch->flags |= flag;
 573
 574	/* setup timeout if no clockevent */
 575	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 
 576		__sh_cmt_set_next(ch, ch->max_match_value);
 577 out:
 578	raw_spin_unlock_irqrestore(&ch->lock, flags);
 579
 580	return ret;
 581}
 582
 583static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 584{
 585	unsigned long flags;
 586	unsigned long f;
 587
 588	raw_spin_lock_irqsave(&ch->lock, flags);
 589
 590	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 591	ch->flags &= ~flag;
 592
 593	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 594		sh_cmt_disable(ch);
 
 
 
 595
 596	/* adjust the timeout to maximum if only clocksource left */
 597	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 598		__sh_cmt_set_next(ch, ch->max_match_value);
 599
 600	raw_spin_unlock_irqrestore(&ch->lock, flags);
 
 
 
 601}
 602
 603static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 604{
 605	return container_of(cs, struct sh_cmt_channel, cs);
 606}
 607
 608static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 609{
 610	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 611	unsigned long flags;
 612	u32 has_wrapped;
 613	u64 value;
 614	u32 raw;
 615
 616	raw_spin_lock_irqsave(&ch->lock, flags);
 617	value = ch->total_cycles;
 618	raw = sh_cmt_get_counter(ch, &has_wrapped);
 
 619
 620	if (unlikely(has_wrapped))
 621		raw += ch->match_value + 1;
 622	raw_spin_unlock_irqrestore(&ch->lock, flags);
 623
 624	return value + raw;
 
 
 
 
 
 
 
 625}
 626
 627static int sh_cmt_clocksource_enable(struct clocksource *cs)
 628{
 629	int ret;
 630	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 631
 632	WARN_ON(ch->cs_enabled);
 633
 634	ch->total_cycles = 0;
 635
 636	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 637	if (!ret)
 638		ch->cs_enabled = true;
 639
 640	return ret;
 641}
 642
 643static void sh_cmt_clocksource_disable(struct clocksource *cs)
 644{
 645	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 646
 647	WARN_ON(!ch->cs_enabled);
 648
 649	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 650	ch->cs_enabled = false;
 651}
 652
 653static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 654{
 655	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 656
 657	if (!ch->cs_enabled)
 658		return;
 659
 660	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 661	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 662}
 663
 664static void sh_cmt_clocksource_resume(struct clocksource *cs)
 665{
 666	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 667
 668	if (!ch->cs_enabled)
 669		return;
 670
 671	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 672	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 673}
 674
 675static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 676				       const char *name)
 677{
 678	struct clocksource *cs = &ch->cs;
 679
 680	cs->name = name;
 681	cs->rating = 125;
 682	cs->read = sh_cmt_clocksource_read;
 683	cs->enable = sh_cmt_clocksource_enable;
 684	cs->disable = sh_cmt_clocksource_disable;
 685	cs->suspend = sh_cmt_clocksource_suspend;
 686	cs->resume = sh_cmt_clocksource_resume;
 687	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
 688	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 689
 690	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 691		 ch->index);
 692
 693	clocksource_register_hz(cs, ch->cmt->rate);
 694	return 0;
 695}
 696
 697static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 698{
 699	return container_of(ced, struct sh_cmt_channel, ced);
 700}
 701
 702static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 703{
 704	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 705
 706	if (periodic)
 707		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 708	else
 709		sh_cmt_set_next(ch, ch->max_match_value);
 710}
 711
 712static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 713{
 714	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 715
 716	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 717	return 0;
 718}
 719
 720static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 721					int periodic)
 722{
 723	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 724
 725	/* deal with old setting first */
 726	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 727		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 728
 729	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 730		 ch->index, periodic ? "periodic" : "oneshot");
 731	sh_cmt_clock_event_start(ch, periodic);
 732	return 0;
 733}
 734
 735static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 736{
 737	return sh_cmt_clock_event_set_state(ced, 0);
 738}
 739
 740static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 741{
 742	return sh_cmt_clock_event_set_state(ced, 1);
 743}
 744
 745static int sh_cmt_clock_event_next(unsigned long delta,
 746				   struct clock_event_device *ced)
 747{
 748	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 749
 750	BUG_ON(!clockevent_state_oneshot(ced));
 751	if (likely(ch->flags & FLAG_IRQCONTEXT))
 752		ch->next_match_value = delta - 1;
 753	else
 754		sh_cmt_set_next(ch, delta - 1);
 755
 756	return 0;
 757}
 758
 759static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 760{
 761	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 762
 763	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 764	clk_unprepare(ch->cmt->clk);
 765}
 766
 767static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 768{
 769	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 770
 771	clk_prepare(ch->cmt->clk);
 772	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 773}
 774
 775static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 776				      const char *name)
 777{
 778	struct clock_event_device *ced = &ch->ced;
 779	int irq;
 780	int ret;
 781
 782	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 783	if (irq < 0)
 784		return irq;
 785
 786	ret = request_irq(irq, sh_cmt_interrupt,
 787			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 788			  dev_name(&ch->cmt->pdev->dev), ch);
 789	if (ret) {
 790		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 791			ch->index, irq);
 792		return ret;
 793	}
 794
 795	ced->name = name;
 796	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 797	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 798	ced->rating = 125;
 799	ced->cpumask = cpu_possible_mask;
 800	ced->set_next_event = sh_cmt_clock_event_next;
 801	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 802	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 803	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 804	ced->suspend = sh_cmt_clock_event_suspend;
 805	ced->resume = sh_cmt_clock_event_resume;
 806
 807	/* TODO: calculate good shift from rate and counter bit width */
 808	ced->shift = 32;
 809	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 810	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 811	ced->max_delta_ticks = ch->max_match_value;
 812	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 813	ced->min_delta_ticks = 0x1f;
 814
 815	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 816		 ch->index);
 817	clockevents_register_device(ced);
 818
 819	return 0;
 820}
 821
 822static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 823			   bool clockevent, bool clocksource)
 824{
 825	int ret;
 826
 827	if (clockevent) {
 828		ch->cmt->has_clockevent = true;
 829		ret = sh_cmt_register_clockevent(ch, name);
 830		if (ret < 0)
 831			return ret;
 832	}
 833
 834	if (clocksource) {
 835		ch->cmt->has_clocksource = true;
 836		sh_cmt_register_clocksource(ch, name);
 837	}
 838
 839	return 0;
 840}
 841
 842static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 843				unsigned int hwidx, bool clockevent,
 844				bool clocksource, struct sh_cmt_device *cmt)
 845{
 
 846	int ret;
 847
 848	/* Skip unused channels. */
 849	if (!clockevent && !clocksource)
 850		return 0;
 851
 852	ch->cmt = cmt;
 853	ch->index = index;
 854	ch->hwidx = hwidx;
 855	ch->timer_bit = hwidx;
 856
 857	/*
 858	 * Compute the address of the channel control register block. For the
 859	 * timers with a per-channel start/stop register, compute its address
 860	 * as well.
 861	 */
 862	switch (cmt->info->model) {
 863	case SH_CMT_16BIT:
 864		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 865		break;
 866	case SH_CMT_32BIT:
 867	case SH_CMT_48BIT:
 868		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 869		break;
 870	case SH_CMT0_RCAR_GEN2:
 871	case SH_CMT1_RCAR_GEN2:
 872		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 873		ch->ioctrl = ch->iostart + 0x10;
 874		ch->timer_bit = 0;
 
 
 
 
 
 875		break;
 876	}
 877
 878	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 879		ch->max_match_value = ~0;
 880	else
 881		ch->max_match_value = (1 << cmt->info->width) - 1;
 882
 883	ch->match_value = ch->max_match_value;
 884	raw_spin_lock_init(&ch->lock);
 885
 886	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 887			      clockevent, clocksource);
 888	if (ret) {
 889		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 890			ch->index);
 891		return ret;
 892	}
 893	ch->cs_enabled = false;
 894
 895	return 0;
 896}
 897
 898static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 899{
 900	struct resource *mem;
 901
 902	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 903	if (!mem) {
 904		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 905		return -ENXIO;
 906	}
 907
 908	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 909	if (cmt->mapbase == NULL) {
 910		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 911		return -ENXIO;
 912	}
 913
 914	return 0;
 915}
 916
 917static const struct platform_device_id sh_cmt_id_table[] = {
 918	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 919	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 920	{ }
 921};
 922MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 923
 924static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 925	{
 926		/* deprecated, preserved for backward compatibility */
 927		.compatible = "renesas,cmt-48",
 928		.data = &sh_cmt_info[SH_CMT_48BIT]
 929	},
 930	{
 931		/* deprecated, preserved for backward compatibility */
 932		.compatible = "renesas,cmt-48-gen2",
 933		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 934	},
 935	{
 936		.compatible = "renesas,r8a7740-cmt1",
 937		.data = &sh_cmt_info[SH_CMT_48BIT]
 938	},
 939	{
 940		.compatible = "renesas,sh73a0-cmt1",
 941		.data = &sh_cmt_info[SH_CMT_48BIT]
 942	},
 943	{
 944		.compatible = "renesas,rcar-gen2-cmt0",
 945		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 946	},
 947	{
 948		.compatible = "renesas,rcar-gen2-cmt1",
 949		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 950	},
 951	{
 952		.compatible = "renesas,rcar-gen3-cmt0",
 953		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 954	},
 955	{
 956		.compatible = "renesas,rcar-gen3-cmt1",
 957		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 958	},
 959	{ }
 960};
 961MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 962
 963static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 964{
 965	unsigned int mask;
 966	unsigned int i;
 967	int ret;
 968
 969	cmt->pdev = pdev;
 970	raw_spin_lock_init(&cmt->lock);
 971
 972	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 973		cmt->info = of_device_get_match_data(&pdev->dev);
 974		cmt->hw_channels = cmt->info->channels_mask;
 975	} else if (pdev->dev.platform_data) {
 976		struct sh_timer_config *cfg = pdev->dev.platform_data;
 977		const struct platform_device_id *id = pdev->id_entry;
 978
 979		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 980		cmt->hw_channels = cfg->channels_mask;
 981	} else {
 982		dev_err(&cmt->pdev->dev, "missing platform data\n");
 983		return -ENXIO;
 984	}
 985
 986	/* Get hold of clock. */
 987	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 988	if (IS_ERR(cmt->clk)) {
 989		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 990		return PTR_ERR(cmt->clk);
 991	}
 992
 993	ret = clk_prepare(cmt->clk);
 994	if (ret < 0)
 995		goto err_clk_put;
 996
 997	/* Determine clock rate. */
 998	ret = clk_enable(cmt->clk);
 999	if (ret < 0)
1000		goto err_clk_unprepare;
1001
1002	if (cmt->info->width == 16)
1003		cmt->rate = clk_get_rate(cmt->clk) / 512;
1004	else
1005		cmt->rate = clk_get_rate(cmt->clk) / 8;
1006
1007	clk_disable(cmt->clk);
1008
1009	/* Map the memory resource(s). */
1010	ret = sh_cmt_map_memory(cmt);
1011	if (ret < 0)
1012		goto err_clk_unprepare;
1013
1014	/* Allocate and setup the channels. */
1015	cmt->num_channels = hweight8(cmt->hw_channels);
1016	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017				GFP_KERNEL);
1018	if (cmt->channels == NULL) {
1019		ret = -ENOMEM;
1020		goto err_unmap;
1021	}
1022
1023	/*
1024	 * Use the first channel as a clock event device and the second channel
1025	 * as a clock source. If only one channel is available use it for both.
1026	 */
1027	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028		unsigned int hwidx = ffs(mask) - 1;
1029		bool clocksource = i == 1 || cmt->num_channels == 1;
1030		bool clockevent = i == 0;
1031
1032		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033					   clockevent, clocksource, cmt);
1034		if (ret < 0)
1035			goto err_unmap;
1036
1037		mask &= ~(1 << hwidx);
1038	}
1039
 
 
1040	platform_set_drvdata(pdev, cmt);
1041
1042	return 0;
1043
1044err_unmap:
1045	kfree(cmt->channels);
1046	iounmap(cmt->mapbase);
 
 
1047err_clk_unprepare:
1048	clk_unprepare(cmt->clk);
1049err_clk_put:
1050	clk_put(cmt->clk);
1051	return ret;
1052}
1053
1054static int sh_cmt_probe(struct platform_device *pdev)
1055{
1056	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057	int ret;
1058
1059	if (!is_sh_early_platform_device(pdev)) {
1060		pm_runtime_set_active(&pdev->dev);
1061		pm_runtime_enable(&pdev->dev);
1062	}
1063
1064	if (cmt) {
1065		dev_info(&pdev->dev, "kept as earlytimer\n");
1066		goto out;
1067	}
1068
1069	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070	if (cmt == NULL)
1071		return -ENOMEM;
1072
1073	ret = sh_cmt_setup(cmt, pdev);
1074	if (ret) {
1075		kfree(cmt);
1076		pm_runtime_idle(&pdev->dev);
1077		return ret;
1078	}
1079	if (is_sh_early_platform_device(pdev))
1080		return 0;
1081
1082 out:
1083	if (cmt->has_clockevent || cmt->has_clocksource)
1084		pm_runtime_irq_safe(&pdev->dev);
1085	else
1086		pm_runtime_idle(&pdev->dev);
1087
1088	return 0;
1089}
1090
1091static int sh_cmt_remove(struct platform_device *pdev)
1092{
1093	return -EBUSY; /* cannot unregister clockevent and clocksource */
1094}
1095
1096static struct platform_driver sh_cmt_device_driver = {
1097	.probe		= sh_cmt_probe,
1098	.remove		= sh_cmt_remove,
1099	.driver		= {
1100		.name	= "sh_cmt",
1101		.of_match_table = of_match_ptr(sh_cmt_of_table),
1102	},
1103	.id_table	= sh_cmt_id_table,
1104};
1105
1106static int __init sh_cmt_init(void)
1107{
1108	return platform_driver_register(&sh_cmt_device_driver);
1109}
1110
1111static void __exit sh_cmt_exit(void)
1112{
1113	platform_driver_unregister(&sh_cmt_device_driver);
1114}
1115
1116#ifdef CONFIG_SUPERH
1117sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118#endif
1119
1120subsys_initcall(sh_cmt_init);
1121module_exit(sh_cmt_exit);
1122
1123MODULE_AUTHOR("Magnus Damm");
1124MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125MODULE_LICENSE("GPL v2");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/ioport.h>
  17#include <linux/irq.h>
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119
 120	raw_spinlock_t lock; /* Protect the shared start/stop register */
 121
 122	struct sh_cmt_channel *channels;
 123	unsigned int num_channels;
 124	unsigned int hw_channels;
 125
 126	bool has_clockevent;
 127	bool has_clocksource;
 128};
 129
 130#define SH_CMT16_CMCSR_CMF		(1 << 7)
 131#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 132#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 133#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 134#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 135#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 136#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 137
 138#define SH_CMT32_CMCSR_CMF		(1 << 15)
 139#define SH_CMT32_CMCSR_OVF		(1 << 14)
 140#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 141#define SH_CMT32_CMCSR_STTF		(1 << 12)
 142#define SH_CMT32_CMCSR_STPF		(1 << 11)
 143#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 144#define SH_CMT32_CMCSR_CMS		(1 << 9)
 145#define SH_CMT32_CMCSR_CMM		(1 << 8)
 146#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 147#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 148#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 149#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 150#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 151#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 152#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 153#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 156#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 157
 158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 159{
 160	return ioread16(base + (offs << 1));
 161}
 162
 163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 164{
 165	return ioread32(base + (offs << 2));
 166}
 167
 168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 169{
 170	iowrite16(value, base + (offs << 1));
 171}
 172
 173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 174{
 175	iowrite32(value, base + (offs << 2));
 176}
 177
 178static const struct sh_cmt_info sh_cmt_info[] = {
 179	[SH_CMT_16BIT] = {
 180		.model = SH_CMT_16BIT,
 181		.width = 16,
 182		.overflow_bit = SH_CMT16_CMCSR_CMF,
 183		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 184		.read_control = sh_cmt_read16,
 185		.write_control = sh_cmt_write16,
 186		.read_count = sh_cmt_read16,
 187		.write_count = sh_cmt_write16,
 188	},
 189	[SH_CMT_32BIT] = {
 190		.model = SH_CMT_32BIT,
 191		.width = 32,
 192		.overflow_bit = SH_CMT32_CMCSR_CMF,
 193		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 194		.read_control = sh_cmt_read16,
 195		.write_control = sh_cmt_write16,
 196		.read_count = sh_cmt_read32,
 197		.write_count = sh_cmt_write32,
 198	},
 199	[SH_CMT_48BIT] = {
 200		.model = SH_CMT_48BIT,
 201		.channels_mask = 0x3f,
 202		.width = 32,
 203		.overflow_bit = SH_CMT32_CMCSR_CMF,
 204		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 205		.read_control = sh_cmt_read32,
 206		.write_control = sh_cmt_write32,
 207		.read_count = sh_cmt_read32,
 208		.write_count = sh_cmt_write32,
 209	},
 210	[SH_CMT0_RCAR_GEN2] = {
 211		.model = SH_CMT0_RCAR_GEN2,
 212		.channels_mask = 0x60,
 213		.width = 32,
 214		.overflow_bit = SH_CMT32_CMCSR_CMF,
 215		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 216		.read_control = sh_cmt_read32,
 217		.write_control = sh_cmt_write32,
 218		.read_count = sh_cmt_read32,
 219		.write_count = sh_cmt_write32,
 220	},
 221	[SH_CMT1_RCAR_GEN2] = {
 222		.model = SH_CMT1_RCAR_GEN2,
 223		.channels_mask = 0xff,
 224		.width = 32,
 225		.overflow_bit = SH_CMT32_CMCSR_CMF,
 226		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 227		.read_control = sh_cmt_read32,
 228		.write_control = sh_cmt_write32,
 229		.read_count = sh_cmt_read32,
 230		.write_count = sh_cmt_write32,
 231	},
 232};
 233
 234#define CMCSR 0 /* channel register */
 235#define CMCNT 1 /* channel register */
 236#define CMCOR 2 /* channel register */
 237
 238#define CMCLKE	0x1000	/* CLK Enable Register (R-Car Gen2) */
 239
 240static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 241{
 242	if (ch->iostart)
 243		return ch->cmt->info->read_control(ch->iostart, 0);
 244	else
 245		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 246}
 247
 248static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 249{
 250	if (ch->iostart)
 251		ch->cmt->info->write_control(ch->iostart, 0, value);
 252	else
 253		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 254}
 255
 256static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 257{
 258	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 259}
 260
 261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 262{
 263	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 264}
 265
 266static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 267{
 268	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 269}
 270
 271static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 272{
 273	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 274}
 275
 276static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 277{
 278	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 279}
 280
 281static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 282{
 283	u32 v1, v2, v3;
 284	u32 o1, o2;
 285
 286	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 287
 288	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 289	do {
 290		o2 = o1;
 291		v1 = sh_cmt_read_cmcnt(ch);
 292		v2 = sh_cmt_read_cmcnt(ch);
 293		v3 = sh_cmt_read_cmcnt(ch);
 294		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 295	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 296			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 297
 298	*has_wrapped = o1;
 299	return v2;
 300}
 301
 302static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 303{
 304	unsigned long flags;
 305	u32 value;
 306
 307	/* start stop register shared by multiple timer channels */
 308	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 309	value = sh_cmt_read_cmstr(ch);
 310
 311	if (start)
 312		value |= 1 << ch->timer_bit;
 313	else
 314		value &= ~(1 << ch->timer_bit);
 315
 316	sh_cmt_write_cmstr(ch, value);
 317	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 318}
 319
 320static int sh_cmt_enable(struct sh_cmt_channel *ch)
 321{
 322	int k, ret;
 323
 
 324	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 325
 326	/* enable clock */
 327	ret = clk_enable(ch->cmt->clk);
 328	if (ret) {
 329		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 330			ch->index);
 331		goto err0;
 332	}
 333
 334	/* make sure channel is disabled */
 335	sh_cmt_start_stop_ch(ch, 0);
 336
 337	/* configure channel, periodic mode and maximum timeout */
 338	if (ch->cmt->info->width == 16) {
 339		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 340				   SH_CMT16_CMCSR_CKS512);
 341	} else {
 342		u32 cmtout = ch->cmt->info->model <= SH_CMT_48BIT ?
 343			      SH_CMT32_CMCSR_CMTOUT_IE : 0;
 344		sh_cmt_write_cmcsr(ch, cmtout | SH_CMT32_CMCSR_CMM |
 345				   SH_CMT32_CMCSR_CMR_IRQ |
 346				   SH_CMT32_CMCSR_CKS_RCLK8);
 347	}
 348
 349	sh_cmt_write_cmcor(ch, 0xffffffff);
 350	sh_cmt_write_cmcnt(ch, 0);
 351
 352	/*
 353	 * According to the sh73a0 user's manual, as CMCNT can be operated
 354	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
 355	 * modifying CMCNT register; two RCLK cycles are necessary before
 356	 * this register is either read or any modification of the value
 357	 * it holds is reflected in the LSI's actual operation.
 358	 *
 359	 * While at it, we're supposed to clear out the CMCNT as of this
 360	 * moment, so make sure it's processed properly here.  This will
 361	 * take RCLKx2 at maximum.
 362	 */
 363	for (k = 0; k < 100; k++) {
 364		if (!sh_cmt_read_cmcnt(ch))
 365			break;
 366		udelay(1);
 367	}
 368
 369	if (sh_cmt_read_cmcnt(ch)) {
 370		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 371			ch->index);
 372		ret = -ETIMEDOUT;
 373		goto err1;
 374	}
 375
 376	/* enable channel */
 377	sh_cmt_start_stop_ch(ch, 1);
 378	return 0;
 379 err1:
 380	/* stop clock */
 381	clk_disable(ch->cmt->clk);
 382
 383 err0:
 384	return ret;
 385}
 386
 387static void sh_cmt_disable(struct sh_cmt_channel *ch)
 388{
 389	/* disable channel */
 390	sh_cmt_start_stop_ch(ch, 0);
 391
 392	/* disable interrupts in CMT block */
 393	sh_cmt_write_cmcsr(ch, 0);
 394
 395	/* stop clock */
 396	clk_disable(ch->cmt->clk);
 397
 398	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 
 399}
 400
 401/* private flags */
 402#define FLAG_CLOCKEVENT (1 << 0)
 403#define FLAG_CLOCKSOURCE (1 << 1)
 404#define FLAG_REPROGRAM (1 << 2)
 405#define FLAG_SKIPEVENT (1 << 3)
 406#define FLAG_IRQCONTEXT (1 << 4)
 407
 408static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 409					      int absolute)
 410{
 411	u32 value = ch->next_match_value;
 412	u32 new_match;
 413	u32 delay = 0;
 414	u32 now = 0;
 415	u32 has_wrapped;
 416
 417	now = sh_cmt_get_counter(ch, &has_wrapped);
 418	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 419
 420	if (has_wrapped) {
 421		/* we're competing with the interrupt handler.
 422		 *  -> let the interrupt handler reprogram the timer.
 423		 *  -> interrupt number two handles the event.
 424		 */
 425		ch->flags |= FLAG_SKIPEVENT;
 426		return;
 427	}
 428
 429	if (absolute)
 430		now = 0;
 431
 432	do {
 433		/* reprogram the timer hardware,
 434		 * but don't save the new match value yet.
 435		 */
 436		new_match = now + value + delay;
 437		if (new_match > ch->max_match_value)
 438			new_match = ch->max_match_value;
 439
 440		sh_cmt_write_cmcor(ch, new_match);
 441
 442		now = sh_cmt_get_counter(ch, &has_wrapped);
 443		if (has_wrapped && (new_match > ch->match_value)) {
 444			/* we are changing to a greater match value,
 445			 * so this wrap must be caused by the counter
 446			 * matching the old value.
 447			 * -> first interrupt reprograms the timer.
 448			 * -> interrupt number two handles the event.
 449			 */
 450			ch->flags |= FLAG_SKIPEVENT;
 451			break;
 452		}
 453
 454		if (has_wrapped) {
 455			/* we are changing to a smaller match value,
 456			 * so the wrap must be caused by the counter
 457			 * matching the new value.
 458			 * -> save programmed match value.
 459			 * -> let isr handle the event.
 460			 */
 461			ch->match_value = new_match;
 462			break;
 463		}
 464
 465		/* be safe: verify hardware settings */
 466		if (now < new_match) {
 467			/* timer value is below match value, all good.
 468			 * this makes sure we won't miss any match events.
 469			 * -> save programmed match value.
 470			 * -> let isr handle the event.
 471			 */
 472			ch->match_value = new_match;
 473			break;
 474		}
 475
 476		/* the counter has reached a value greater
 477		 * than our new match value. and since the
 478		 * has_wrapped flag isn't set we must have
 479		 * programmed a too close event.
 480		 * -> increase delay and retry.
 481		 */
 482		if (delay)
 483			delay <<= 1;
 484		else
 485			delay = 1;
 486
 487		if (!delay)
 488			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 489				 ch->index);
 490
 491	} while (delay);
 492}
 493
 494static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 495{
 496	if (delta > ch->max_match_value)
 497		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 498			 ch->index);
 499
 500	ch->next_match_value = delta;
 501	sh_cmt_clock_event_program_verify(ch, 0);
 502}
 503
 504static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 505{
 506	unsigned long flags;
 507
 508	raw_spin_lock_irqsave(&ch->lock, flags);
 509	__sh_cmt_set_next(ch, delta);
 510	raw_spin_unlock_irqrestore(&ch->lock, flags);
 511}
 512
 513static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 514{
 515	struct sh_cmt_channel *ch = dev_id;
 516
 517	/* clear flags */
 518	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 519			   ch->cmt->info->clear_bits);
 520
 521	/* update clock source counter to begin with if enabled
 522	 * the wrap flag should be cleared by the timer specific
 523	 * isr before we end up here.
 524	 */
 525	if (ch->flags & FLAG_CLOCKSOURCE)
 526		ch->total_cycles += ch->match_value + 1;
 527
 528	if (!(ch->flags & FLAG_REPROGRAM))
 529		ch->next_match_value = ch->max_match_value;
 530
 531	ch->flags |= FLAG_IRQCONTEXT;
 532
 533	if (ch->flags & FLAG_CLOCKEVENT) {
 534		if (!(ch->flags & FLAG_SKIPEVENT)) {
 535			if (clockevent_state_oneshot(&ch->ced)) {
 536				ch->next_match_value = ch->max_match_value;
 537				ch->flags |= FLAG_REPROGRAM;
 538			}
 539
 540			ch->ced.event_handler(&ch->ced);
 541		}
 542	}
 543
 544	ch->flags &= ~FLAG_SKIPEVENT;
 545
 546	if (ch->flags & FLAG_REPROGRAM) {
 547		ch->flags &= ~FLAG_REPROGRAM;
 548		sh_cmt_clock_event_program_verify(ch, 1);
 549
 550		if (ch->flags & FLAG_CLOCKEVENT)
 551			if ((clockevent_state_shutdown(&ch->ced))
 552			    || (ch->match_value == ch->next_match_value))
 553				ch->flags &= ~FLAG_REPROGRAM;
 554	}
 555
 556	ch->flags &= ~FLAG_IRQCONTEXT;
 557
 558	return IRQ_HANDLED;
 559}
 560
 561static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 562{
 563	int ret = 0;
 564	unsigned long flags;
 565
 566	if (flag & FLAG_CLOCKSOURCE)
 567		pm_runtime_get_sync(&ch->cmt->pdev->dev);
 568
 569	raw_spin_lock_irqsave(&ch->lock, flags);
 570
 571	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 572		if (flag & FLAG_CLOCKEVENT)
 573			pm_runtime_get_sync(&ch->cmt->pdev->dev);
 574		ret = sh_cmt_enable(ch);
 575	}
 576
 577	if (ret)
 578		goto out;
 579	ch->flags |= flag;
 580
 581	/* setup timeout if no clockevent */
 582	if (ch->cmt->num_channels == 1 &&
 583	    flag == FLAG_CLOCKSOURCE && (!(ch->flags & FLAG_CLOCKEVENT)))
 584		__sh_cmt_set_next(ch, ch->max_match_value);
 585 out:
 586	raw_spin_unlock_irqrestore(&ch->lock, flags);
 587
 588	return ret;
 589}
 590
 591static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 592{
 593	unsigned long flags;
 594	unsigned long f;
 595
 596	raw_spin_lock_irqsave(&ch->lock, flags);
 597
 598	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 599	ch->flags &= ~flag;
 600
 601	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE))) {
 602		sh_cmt_disable(ch);
 603		if (flag & FLAG_CLOCKEVENT)
 604			pm_runtime_put(&ch->cmt->pdev->dev);
 605	}
 606
 607	/* adjust the timeout to maximum if only clocksource left */
 608	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 609		__sh_cmt_set_next(ch, ch->max_match_value);
 610
 611	raw_spin_unlock_irqrestore(&ch->lock, flags);
 612
 613	if (flag & FLAG_CLOCKSOURCE)
 614		pm_runtime_put(&ch->cmt->pdev->dev);
 615}
 616
 617static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 618{
 619	return container_of(cs, struct sh_cmt_channel, cs);
 620}
 621
 622static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 623{
 624	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 
 625	u32 has_wrapped;
 
 
 626
 627	if (ch->cmt->num_channels == 1) {
 628		unsigned long flags;
 629		u64 value;
 630		u32 raw;
 631
 632		raw_spin_lock_irqsave(&ch->lock, flags);
 633		value = ch->total_cycles;
 634		raw = sh_cmt_get_counter(ch, &has_wrapped);
 635
 636		if (unlikely(has_wrapped))
 637			raw += ch->match_value + 1;
 638		raw_spin_unlock_irqrestore(&ch->lock, flags);
 639
 640		return value + raw;
 641	}
 642
 643	return sh_cmt_get_counter(ch, &has_wrapped);
 644}
 645
 646static int sh_cmt_clocksource_enable(struct clocksource *cs)
 647{
 648	int ret;
 649	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 650
 651	WARN_ON(ch->cs_enabled);
 652
 653	ch->total_cycles = 0;
 654
 655	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 656	if (!ret)
 657		ch->cs_enabled = true;
 658
 659	return ret;
 660}
 661
 662static void sh_cmt_clocksource_disable(struct clocksource *cs)
 663{
 664	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 665
 666	WARN_ON(!ch->cs_enabled);
 667
 668	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 669	ch->cs_enabled = false;
 670}
 671
 672static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 673{
 674	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 675
 676	if (!ch->cs_enabled)
 677		return;
 678
 679	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 680	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 681}
 682
 683static void sh_cmt_clocksource_resume(struct clocksource *cs)
 684{
 685	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 686
 687	if (!ch->cs_enabled)
 688		return;
 689
 690	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 691	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 692}
 693
 694static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 695				       const char *name)
 696{
 697	struct clocksource *cs = &ch->cs;
 698
 699	cs->name = name;
 700	cs->rating = 125;
 701	cs->read = sh_cmt_clocksource_read;
 702	cs->enable = sh_cmt_clocksource_enable;
 703	cs->disable = sh_cmt_clocksource_disable;
 704	cs->suspend = sh_cmt_clocksource_suspend;
 705	cs->resume = sh_cmt_clocksource_resume;
 706	cs->mask = CLOCKSOURCE_MASK(ch->cmt->info->width);
 707	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 708
 709	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 710		 ch->index);
 711
 712	clocksource_register_hz(cs, ch->cmt->rate);
 713	return 0;
 714}
 715
 716static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 717{
 718	return container_of(ced, struct sh_cmt_channel, ced);
 719}
 720
 721static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 722{
 723	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 724
 725	if (periodic)
 726		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 727	else
 728		sh_cmt_set_next(ch, ch->max_match_value);
 729}
 730
 731static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 732{
 733	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 734
 735	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 736	return 0;
 737}
 738
 739static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 740					int periodic)
 741{
 742	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 743
 744	/* deal with old setting first */
 745	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 746		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 747
 748	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 749		 ch->index, periodic ? "periodic" : "oneshot");
 750	sh_cmt_clock_event_start(ch, periodic);
 751	return 0;
 752}
 753
 754static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 755{
 756	return sh_cmt_clock_event_set_state(ced, 0);
 757}
 758
 759static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 760{
 761	return sh_cmt_clock_event_set_state(ced, 1);
 762}
 763
 764static int sh_cmt_clock_event_next(unsigned long delta,
 765				   struct clock_event_device *ced)
 766{
 767	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 768
 769	BUG_ON(!clockevent_state_oneshot(ced));
 770	if (likely(ch->flags & FLAG_IRQCONTEXT))
 771		ch->next_match_value = delta - 1;
 772	else
 773		sh_cmt_set_next(ch, delta - 1);
 774
 775	return 0;
 776}
 777
 778static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 779{
 780	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 781
 782	dev_pm_genpd_suspend(&ch->cmt->pdev->dev);
 783	clk_unprepare(ch->cmt->clk);
 784}
 785
 786static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 787{
 788	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 789
 790	clk_prepare(ch->cmt->clk);
 791	dev_pm_genpd_resume(&ch->cmt->pdev->dev);
 792}
 793
 794static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 795				      const char *name)
 796{
 797	struct clock_event_device *ced = &ch->ced;
 798	int irq;
 799	int ret;
 800
 801	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 802	if (irq < 0)
 803		return irq;
 804
 805	ret = request_irq(irq, sh_cmt_interrupt,
 806			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 807			  dev_name(&ch->cmt->pdev->dev), ch);
 808	if (ret) {
 809		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 810			ch->index, irq);
 811		return ret;
 812	}
 813
 814	ced->name = name;
 815	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 816	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 817	ced->rating = 125;
 818	ced->cpumask = cpu_possible_mask;
 819	ced->set_next_event = sh_cmt_clock_event_next;
 820	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 821	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 822	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 823	ced->suspend = sh_cmt_clock_event_suspend;
 824	ced->resume = sh_cmt_clock_event_resume;
 825
 826	/* TODO: calculate good shift from rate and counter bit width */
 827	ced->shift = 32;
 828	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 829	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 830	ced->max_delta_ticks = ch->max_match_value;
 831	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 832	ced->min_delta_ticks = 0x1f;
 833
 834	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 835		 ch->index);
 836	clockevents_register_device(ced);
 837
 838	return 0;
 839}
 840
 841static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 842			   bool clockevent, bool clocksource)
 843{
 844	int ret;
 845
 846	if (clockevent) {
 847		ch->cmt->has_clockevent = true;
 848		ret = sh_cmt_register_clockevent(ch, name);
 849		if (ret < 0)
 850			return ret;
 851	}
 852
 853	if (clocksource) {
 854		ch->cmt->has_clocksource = true;
 855		sh_cmt_register_clocksource(ch, name);
 856	}
 857
 858	return 0;
 859}
 860
 861static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 862				unsigned int hwidx, bool clockevent,
 863				bool clocksource, struct sh_cmt_device *cmt)
 864{
 865	u32 value;
 866	int ret;
 867
 868	/* Skip unused channels. */
 869	if (!clockevent && !clocksource)
 870		return 0;
 871
 872	ch->cmt = cmt;
 873	ch->index = index;
 874	ch->hwidx = hwidx;
 875	ch->timer_bit = hwidx;
 876
 877	/*
 878	 * Compute the address of the channel control register block. For the
 879	 * timers with a per-channel start/stop register, compute its address
 880	 * as well.
 881	 */
 882	switch (cmt->info->model) {
 883	case SH_CMT_16BIT:
 884		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 885		break;
 886	case SH_CMT_32BIT:
 887	case SH_CMT_48BIT:
 888		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 889		break;
 890	case SH_CMT0_RCAR_GEN2:
 891	case SH_CMT1_RCAR_GEN2:
 892		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 893		ch->ioctrl = ch->iostart + 0x10;
 894		ch->timer_bit = 0;
 895
 896		/* Enable the clock supply to the channel */
 897		value = ioread32(cmt->mapbase + CMCLKE);
 898		value |= BIT(hwidx);
 899		iowrite32(value, cmt->mapbase + CMCLKE);
 900		break;
 901	}
 902
 903	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 904		ch->max_match_value = ~0;
 905	else
 906		ch->max_match_value = (1 << cmt->info->width) - 1;
 907
 908	ch->match_value = ch->max_match_value;
 909	raw_spin_lock_init(&ch->lock);
 910
 911	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 912			      clockevent, clocksource);
 913	if (ret) {
 914		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 915			ch->index);
 916		return ret;
 917	}
 918	ch->cs_enabled = false;
 919
 920	return 0;
 921}
 922
 923static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 924{
 925	struct resource *mem;
 926
 927	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 928	if (!mem) {
 929		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 930		return -ENXIO;
 931	}
 932
 933	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 934	if (cmt->mapbase == NULL) {
 935		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 936		return -ENXIO;
 937	}
 938
 939	return 0;
 940}
 941
 942static const struct platform_device_id sh_cmt_id_table[] = {
 943	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 944	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 945	{ }
 946};
 947MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 948
 949static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 950	{
 951		/* deprecated, preserved for backward compatibility */
 952		.compatible = "renesas,cmt-48",
 953		.data = &sh_cmt_info[SH_CMT_48BIT]
 954	},
 955	{
 956		/* deprecated, preserved for backward compatibility */
 957		.compatible = "renesas,cmt-48-gen2",
 958		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 959	},
 960	{
 961		.compatible = "renesas,r8a7740-cmt1",
 962		.data = &sh_cmt_info[SH_CMT_48BIT]
 963	},
 964	{
 965		.compatible = "renesas,sh73a0-cmt1",
 966		.data = &sh_cmt_info[SH_CMT_48BIT]
 967	},
 968	{
 969		.compatible = "renesas,rcar-gen2-cmt0",
 970		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 971	},
 972	{
 973		.compatible = "renesas,rcar-gen2-cmt1",
 974		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 975	},
 976	{
 977		.compatible = "renesas,rcar-gen3-cmt0",
 978		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 979	},
 980	{
 981		.compatible = "renesas,rcar-gen3-cmt1",
 982		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 983	},
 984	{ }
 985};
 986MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 987
 988static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 989{
 990	unsigned int mask;
 991	unsigned int i;
 992	int ret;
 993
 994	cmt->pdev = pdev;
 995	raw_spin_lock_init(&cmt->lock);
 996
 997	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 998		cmt->info = of_device_get_match_data(&pdev->dev);
 999		cmt->hw_channels = cmt->info->channels_mask;
1000	} else if (pdev->dev.platform_data) {
1001		struct sh_timer_config *cfg = pdev->dev.platform_data;
1002		const struct platform_device_id *id = pdev->id_entry;
1003
1004		cmt->info = (const struct sh_cmt_info *)id->driver_data;
1005		cmt->hw_channels = cfg->channels_mask;
1006	} else {
1007		dev_err(&cmt->pdev->dev, "missing platform data\n");
1008		return -ENXIO;
1009	}
1010
1011	/* Get hold of clock. */
1012	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
1013	if (IS_ERR(cmt->clk)) {
1014		dev_err(&cmt->pdev->dev, "cannot get clock\n");
1015		return PTR_ERR(cmt->clk);
1016	}
1017
1018	ret = clk_prepare(cmt->clk);
1019	if (ret < 0)
1020		goto err_clk_put;
1021
1022	/* Determine clock rate. */
1023	ret = clk_enable(cmt->clk);
1024	if (ret < 0)
1025		goto err_clk_unprepare;
1026
1027	if (cmt->info->width == 16)
1028		cmt->rate = clk_get_rate(cmt->clk) / 512;
1029	else
1030		cmt->rate = clk_get_rate(cmt->clk) / 8;
1031
 
 
1032	/* Map the memory resource(s). */
1033	ret = sh_cmt_map_memory(cmt);
1034	if (ret < 0)
1035		goto err_clk_disable;
1036
1037	/* Allocate and setup the channels. */
1038	cmt->num_channels = hweight8(cmt->hw_channels);
1039	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1040				GFP_KERNEL);
1041	if (cmt->channels == NULL) {
1042		ret = -ENOMEM;
1043		goto err_unmap;
1044	}
1045
1046	/*
1047	 * Use the first channel as a clock event device and the second channel
1048	 * as a clock source. If only one channel is available use it for both.
1049	 */
1050	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1051		unsigned int hwidx = ffs(mask) - 1;
1052		bool clocksource = i == 1 || cmt->num_channels == 1;
1053		bool clockevent = i == 0;
1054
1055		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1056					   clockevent, clocksource, cmt);
1057		if (ret < 0)
1058			goto err_unmap;
1059
1060		mask &= ~(1 << hwidx);
1061	}
1062
1063	clk_disable(cmt->clk);
1064
1065	platform_set_drvdata(pdev, cmt);
1066
1067	return 0;
1068
1069err_unmap:
1070	kfree(cmt->channels);
1071	iounmap(cmt->mapbase);
1072err_clk_disable:
1073	clk_disable(cmt->clk);
1074err_clk_unprepare:
1075	clk_unprepare(cmt->clk);
1076err_clk_put:
1077	clk_put(cmt->clk);
1078	return ret;
1079}
1080
1081static int sh_cmt_probe(struct platform_device *pdev)
1082{
1083	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1084	int ret;
1085
1086	if (!is_sh_early_platform_device(pdev)) {
1087		pm_runtime_set_active(&pdev->dev);
1088		pm_runtime_enable(&pdev->dev);
1089	}
1090
1091	if (cmt) {
1092		dev_info(&pdev->dev, "kept as earlytimer\n");
1093		goto out;
1094	}
1095
1096	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1097	if (cmt == NULL)
1098		return -ENOMEM;
1099
1100	ret = sh_cmt_setup(cmt, pdev);
1101	if (ret) {
1102		kfree(cmt);
1103		pm_runtime_idle(&pdev->dev);
1104		return ret;
1105	}
1106	if (is_sh_early_platform_device(pdev))
1107		return 0;
1108
1109 out:
1110	if (cmt->has_clockevent || cmt->has_clocksource)
1111		pm_runtime_irq_safe(&pdev->dev);
1112	else
1113		pm_runtime_idle(&pdev->dev);
1114
1115	return 0;
1116}
1117
1118static int sh_cmt_remove(struct platform_device *pdev)
1119{
1120	return -EBUSY; /* cannot unregister clockevent and clocksource */
1121}
1122
1123static struct platform_driver sh_cmt_device_driver = {
1124	.probe		= sh_cmt_probe,
1125	.remove		= sh_cmt_remove,
1126	.driver		= {
1127		.name	= "sh_cmt",
1128		.of_match_table = of_match_ptr(sh_cmt_of_table),
1129	},
1130	.id_table	= sh_cmt_id_table,
1131};
1132
1133static int __init sh_cmt_init(void)
1134{
1135	return platform_driver_register(&sh_cmt_device_driver);
1136}
1137
1138static void __exit sh_cmt_exit(void)
1139{
1140	platform_driver_unregister(&sh_cmt_device_driver);
1141}
1142
1143#ifdef CONFIG_SUPERH
1144sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1145#endif
1146
1147subsys_initcall(sh_cmt_init);
1148module_exit(sh_cmt_exit);
1149
1150MODULE_AUTHOR("Magnus Damm");
1151MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1152MODULE_LICENSE("GPL v2");