Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * SuperH Timer Support - CMT
4 *
5 * Copyright (C) 2008 Magnus Damm
6 */
7
8#include <linux/clk.h>
9#include <linux/clockchips.h>
10#include <linux/clocksource.h>
11#include <linux/delay.h>
12#include <linux/err.h>
13#include <linux/init.h>
14#include <linux/interrupt.h>
15#include <linux/io.h>
16#include <linux/ioport.h>
17#include <linux/irq.h>
18#include <linux/module.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/platform_device.h>
22#include <linux/pm_domain.h>
23#include <linux/pm_runtime.h>
24#include <linux/sh_timer.h>
25#include <linux/slab.h>
26#include <linux/spinlock.h>
27
28#ifdef CONFIG_SUPERH
29#include <asm/platform_early.h>
30#endif
31
32struct sh_cmt_device;
33
34/*
35 * The CMT comes in 5 different identified flavours, depending not only on the
36 * SoC but also on the particular instance. The following table lists the main
37 * characteristics of those flavours.
38 *
39 * 16B 32B 32B-F 48B R-Car Gen2
40 * -----------------------------------------------------------------------------
41 * Channels 2 1/4 1 6 2/8
42 * Control Width 16 16 16 16 32
43 * Counter Width 16 32 32 32/48 32/48
44 * Shared Start/Stop Y Y Y Y N
45 *
46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
47 * located in the channel registers block. All other versions have a shared
48 * start/stop register located in the global space.
49 *
50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
51 * infers the start/stop bit position in the control register and the channel
52 * registers block address. Some CMT instances have a subset of channels
53 * available, in which case the index in the documentation doesn't match the
54 * "real" index as implemented in hardware. This is for instance the case with
55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
56 * in the documentation but using start/stop bit 5 and having its registers
57 * block at 0x60.
58 *
59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
61 */
62
63enum sh_cmt_model {
64 SH_CMT_16BIT,
65 SH_CMT_32BIT,
66 SH_CMT_48BIT,
67 SH_CMT0_RCAR_GEN2,
68 SH_CMT1_RCAR_GEN2,
69};
70
71struct sh_cmt_info {
72 enum sh_cmt_model model;
73
74 unsigned int channels_mask;
75
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 u32 overflow_bit;
78 u32 clear_bits;
79
80 /* callbacks for CMSTR and CMCSR access */
81 u32 (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 u32 value);
84
85 /* callbacks for CMCNT and CMCOR access */
86 u32 (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
88};
89
90struct sh_cmt_channel {
91 struct sh_cmt_device *cmt;
92
93 unsigned int index; /* Index in the documentation */
94 unsigned int hwidx; /* Real hardware index */
95
96 void __iomem *iostart;
97 void __iomem *ioctrl;
98
99 unsigned int timer_bit;
100 unsigned long flags;
101 u32 match_value;
102 u32 next_match_value;
103 u32 max_match_value;
104 raw_spinlock_t lock;
105 struct clock_event_device ced;
106 struct clocksource cs;
107 u64 total_cycles;
108 bool cs_enabled;
109};
110
111struct sh_cmt_device {
112 struct platform_device *pdev;
113
114 const struct sh_cmt_info *info;
115
116 void __iomem *mapbase;
117 struct clk *clk;
118 unsigned long rate;
119
120 raw_spinlock_t lock; /* Protect the shared start/stop register */
121
122 struct sh_cmt_channel *channels;
123 unsigned int num_channels;
124 unsigned int hw_channels;
125
126 bool has_clockevent;
127 bool has_clocksource;
128};
129
130#define SH_CMT16_CMCSR_CMF (1 << 7)
131#define SH_CMT16_CMCSR_CMIE (1 << 6)
132#define SH_CMT16_CMCSR_CKS8 (0 << 0)
133#define SH_CMT16_CMCSR_CKS32 (1 << 0)
134#define SH_CMT16_CMCSR_CKS128 (2 << 0)
135#define SH_CMT16_CMCSR_CKS512 (3 << 0)
136#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
137
138#define SH_CMT32_CMCSR_CMF (1 << 15)
139#define SH_CMT32_CMCSR_OVF (1 << 14)
140#define SH_CMT32_CMCSR_WRFLG (1 << 13)
141#define SH_CMT32_CMCSR_STTF (1 << 12)
142#define SH_CMT32_CMCSR_STPF (1 << 11)
143#define SH_CMT32_CMCSR_SSIE (1 << 10)
144#define SH_CMT32_CMCSR_CMS (1 << 9)
145#define SH_CMT32_CMCSR_CMM (1 << 8)
146#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
157
158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
159{
160 return ioread16(base + (offs << 1));
161}
162
163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
164{
165 return ioread32(base + (offs << 2));
166}
167
168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
169{
170 iowrite16(value, base + (offs << 1));
171}
172
173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
174{
175 iowrite32(value, base + (offs << 2));
176}
177
178static const struct sh_cmt_info sh_cmt_info[] = {
179 [SH_CMT_16BIT] = {
180 .model = SH_CMT_16BIT,
181 .width = 16,
182 .overflow_bit = SH_CMT16_CMCSR_CMF,
183 .clear_bits = ~SH_CMT16_CMCSR_CMF,
184 .read_control = sh_cmt_read16,
185 .write_control = sh_cmt_write16,
186 .read_count = sh_cmt_read16,
187 .write_count = sh_cmt_write16,
188 },
189 [SH_CMT_32BIT] = {
190 .model = SH_CMT_32BIT,
191 .width = 32,
192 .overflow_bit = SH_CMT32_CMCSR_CMF,
193 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
194 .read_control = sh_cmt_read16,
195 .write_control = sh_cmt_write16,
196 .read_count = sh_cmt_read32,
197 .write_count = sh_cmt_write32,
198 },
199 [SH_CMT_48BIT] = {
200 .model = SH_CMT_48BIT,
201 .channels_mask = 0x3f,
202 .width = 32,
203 .overflow_bit = SH_CMT32_CMCSR_CMF,
204 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
205 .read_control = sh_cmt_read32,
206 .write_control = sh_cmt_write32,
207 .read_count = sh_cmt_read32,
208 .write_count = sh_cmt_write32,
209 },
210 [SH_CMT0_RCAR_GEN2] = {
211 .model = SH_CMT0_RCAR_GEN2,
212 .channels_mask = 0x60,
213 .width = 32,
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
220 },
221 [SH_CMT1_RCAR_GEN2] = {
222 .model = SH_CMT1_RCAR_GEN2,
223 .channels_mask = 0xff,
224 .width = 32,
225 .overflow_bit = SH_CMT32_CMCSR_CMF,
226 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
227 .read_control = sh_cmt_read32,
228 .write_control = sh_cmt_write32,
229 .read_count = sh_cmt_read32,
230 .write_count = sh_cmt_write32,
231 },
232};
233
234#define CMCSR 0 /* channel register */
235#define CMCNT 1 /* channel register */
236#define CMCOR 2 /* channel register */
237
238static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
239{
240 if (ch->iostart)
241 return ch->cmt->info->read_control(ch->iostart, 0);
242 else
243 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
244}
245
246static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
247{
248 if (ch->iostart)
249 ch->cmt->info->write_control(ch->iostart, 0, value);
250 else
251 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
252}
253
254static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
255{
256 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
257}
258
259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
260{
261 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
262}
263
264static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
265{
266 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
267}
268
269static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
270{
271 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
272}
273
274static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
275{
276 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
277}
278
279static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
280{
281 u32 v1, v2, v3;
282 u32 o1, o2;
283
284 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
285
286 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
287 do {
288 o2 = o1;
289 v1 = sh_cmt_read_cmcnt(ch);
290 v2 = sh_cmt_read_cmcnt(ch);
291 v3 = sh_cmt_read_cmcnt(ch);
292 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
293 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
294 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
295
296 *has_wrapped = o1;
297 return v2;
298}
299
300static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
301{
302 unsigned long flags;
303 u32 value;
304
305 /* start stop register shared by multiple timer channels */
306 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
307 value = sh_cmt_read_cmstr(ch);
308
309 if (start)
310 value |= 1 << ch->timer_bit;
311 else
312 value &= ~(1 << ch->timer_bit);
313
314 sh_cmt_write_cmstr(ch, value);
315 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
316}
317
318static int sh_cmt_enable(struct sh_cmt_channel *ch)
319{
320 int k, ret;
321
322 pm_runtime_get_sync(&ch->cmt->pdev->dev);
323 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
324
325 /* enable clock */
326 ret = clk_enable(ch->cmt->clk);
327 if (ret) {
328 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
329 ch->index);
330 goto err0;
331 }
332
333 /* make sure channel is disabled */
334 sh_cmt_start_stop_ch(ch, 0);
335
336 /* configure channel, periodic mode and maximum timeout */
337 if (ch->cmt->info->width == 16) {
338 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
339 SH_CMT16_CMCSR_CKS512);
340 } else {
341 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
342 SH_CMT32_CMCSR_CMTOUT_IE |
343 SH_CMT32_CMCSR_CMR_IRQ |
344 SH_CMT32_CMCSR_CKS_RCLK8);
345 }
346
347 sh_cmt_write_cmcor(ch, 0xffffffff);
348 sh_cmt_write_cmcnt(ch, 0);
349
350 /*
351 * According to the sh73a0 user's manual, as CMCNT can be operated
352 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
353 * modifying CMCNT register; two RCLK cycles are necessary before
354 * this register is either read or any modification of the value
355 * it holds is reflected in the LSI's actual operation.
356 *
357 * While at it, we're supposed to clear out the CMCNT as of this
358 * moment, so make sure it's processed properly here. This will
359 * take RCLKx2 at maximum.
360 */
361 for (k = 0; k < 100; k++) {
362 if (!sh_cmt_read_cmcnt(ch))
363 break;
364 udelay(1);
365 }
366
367 if (sh_cmt_read_cmcnt(ch)) {
368 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
369 ch->index);
370 ret = -ETIMEDOUT;
371 goto err1;
372 }
373
374 /* enable channel */
375 sh_cmt_start_stop_ch(ch, 1);
376 return 0;
377 err1:
378 /* stop clock */
379 clk_disable(ch->cmt->clk);
380
381 err0:
382 return ret;
383}
384
385static void sh_cmt_disable(struct sh_cmt_channel *ch)
386{
387 /* disable channel */
388 sh_cmt_start_stop_ch(ch, 0);
389
390 /* disable interrupts in CMT block */
391 sh_cmt_write_cmcsr(ch, 0);
392
393 /* stop clock */
394 clk_disable(ch->cmt->clk);
395
396 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
397 pm_runtime_put(&ch->cmt->pdev->dev);
398}
399
400/* private flags */
401#define FLAG_CLOCKEVENT (1 << 0)
402#define FLAG_CLOCKSOURCE (1 << 1)
403#define FLAG_REPROGRAM (1 << 2)
404#define FLAG_SKIPEVENT (1 << 3)
405#define FLAG_IRQCONTEXT (1 << 4)
406
407static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
408 int absolute)
409{
410 u32 value = ch->next_match_value;
411 u32 new_match;
412 u32 delay = 0;
413 u32 now = 0;
414 u32 has_wrapped;
415
416 now = sh_cmt_get_counter(ch, &has_wrapped);
417 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
418
419 if (has_wrapped) {
420 /* we're competing with the interrupt handler.
421 * -> let the interrupt handler reprogram the timer.
422 * -> interrupt number two handles the event.
423 */
424 ch->flags |= FLAG_SKIPEVENT;
425 return;
426 }
427
428 if (absolute)
429 now = 0;
430
431 do {
432 /* reprogram the timer hardware,
433 * but don't save the new match value yet.
434 */
435 new_match = now + value + delay;
436 if (new_match > ch->max_match_value)
437 new_match = ch->max_match_value;
438
439 sh_cmt_write_cmcor(ch, new_match);
440
441 now = sh_cmt_get_counter(ch, &has_wrapped);
442 if (has_wrapped && (new_match > ch->match_value)) {
443 /* we are changing to a greater match value,
444 * so this wrap must be caused by the counter
445 * matching the old value.
446 * -> first interrupt reprograms the timer.
447 * -> interrupt number two handles the event.
448 */
449 ch->flags |= FLAG_SKIPEVENT;
450 break;
451 }
452
453 if (has_wrapped) {
454 /* we are changing to a smaller match value,
455 * so the wrap must be caused by the counter
456 * matching the new value.
457 * -> save programmed match value.
458 * -> let isr handle the event.
459 */
460 ch->match_value = new_match;
461 break;
462 }
463
464 /* be safe: verify hardware settings */
465 if (now < new_match) {
466 /* timer value is below match value, all good.
467 * this makes sure we won't miss any match events.
468 * -> save programmed match value.
469 * -> let isr handle the event.
470 */
471 ch->match_value = new_match;
472 break;
473 }
474
475 /* the counter has reached a value greater
476 * than our new match value. and since the
477 * has_wrapped flag isn't set we must have
478 * programmed a too close event.
479 * -> increase delay and retry.
480 */
481 if (delay)
482 delay <<= 1;
483 else
484 delay = 1;
485
486 if (!delay)
487 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
488 ch->index);
489
490 } while (delay);
491}
492
493static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
494{
495 if (delta > ch->max_match_value)
496 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
497 ch->index);
498
499 ch->next_match_value = delta;
500 sh_cmt_clock_event_program_verify(ch, 0);
501}
502
503static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
504{
505 unsigned long flags;
506
507 raw_spin_lock_irqsave(&ch->lock, flags);
508 __sh_cmt_set_next(ch, delta);
509 raw_spin_unlock_irqrestore(&ch->lock, flags);
510}
511
512static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
513{
514 struct sh_cmt_channel *ch = dev_id;
515
516 /* clear flags */
517 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
518 ch->cmt->info->clear_bits);
519
520 /* update clock source counter to begin with if enabled
521 * the wrap flag should be cleared by the timer specific
522 * isr before we end up here.
523 */
524 if (ch->flags & FLAG_CLOCKSOURCE)
525 ch->total_cycles += ch->match_value + 1;
526
527 if (!(ch->flags & FLAG_REPROGRAM))
528 ch->next_match_value = ch->max_match_value;
529
530 ch->flags |= FLAG_IRQCONTEXT;
531
532 if (ch->flags & FLAG_CLOCKEVENT) {
533 if (!(ch->flags & FLAG_SKIPEVENT)) {
534 if (clockevent_state_oneshot(&ch->ced)) {
535 ch->next_match_value = ch->max_match_value;
536 ch->flags |= FLAG_REPROGRAM;
537 }
538
539 ch->ced.event_handler(&ch->ced);
540 }
541 }
542
543 ch->flags &= ~FLAG_SKIPEVENT;
544
545 if (ch->flags & FLAG_REPROGRAM) {
546 ch->flags &= ~FLAG_REPROGRAM;
547 sh_cmt_clock_event_program_verify(ch, 1);
548
549 if (ch->flags & FLAG_CLOCKEVENT)
550 if ((clockevent_state_shutdown(&ch->ced))
551 || (ch->match_value == ch->next_match_value))
552 ch->flags &= ~FLAG_REPROGRAM;
553 }
554
555 ch->flags &= ~FLAG_IRQCONTEXT;
556
557 return IRQ_HANDLED;
558}
559
560static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
561{
562 int ret = 0;
563 unsigned long flags;
564
565 raw_spin_lock_irqsave(&ch->lock, flags);
566
567 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
568 ret = sh_cmt_enable(ch);
569
570 if (ret)
571 goto out;
572 ch->flags |= flag;
573
574 /* setup timeout if no clockevent */
575 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
576 __sh_cmt_set_next(ch, ch->max_match_value);
577 out:
578 raw_spin_unlock_irqrestore(&ch->lock, flags);
579
580 return ret;
581}
582
583static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
584{
585 unsigned long flags;
586 unsigned long f;
587
588 raw_spin_lock_irqsave(&ch->lock, flags);
589
590 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
591 ch->flags &= ~flag;
592
593 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
594 sh_cmt_disable(ch);
595
596 /* adjust the timeout to maximum if only clocksource left */
597 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
598 __sh_cmt_set_next(ch, ch->max_match_value);
599
600 raw_spin_unlock_irqrestore(&ch->lock, flags);
601}
602
603static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
604{
605 return container_of(cs, struct sh_cmt_channel, cs);
606}
607
608static u64 sh_cmt_clocksource_read(struct clocksource *cs)
609{
610 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
611 unsigned long flags;
612 u32 has_wrapped;
613 u64 value;
614 u32 raw;
615
616 raw_spin_lock_irqsave(&ch->lock, flags);
617 value = ch->total_cycles;
618 raw = sh_cmt_get_counter(ch, &has_wrapped);
619
620 if (unlikely(has_wrapped))
621 raw += ch->match_value + 1;
622 raw_spin_unlock_irqrestore(&ch->lock, flags);
623
624 return value + raw;
625}
626
627static int sh_cmt_clocksource_enable(struct clocksource *cs)
628{
629 int ret;
630 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
631
632 WARN_ON(ch->cs_enabled);
633
634 ch->total_cycles = 0;
635
636 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
637 if (!ret)
638 ch->cs_enabled = true;
639
640 return ret;
641}
642
643static void sh_cmt_clocksource_disable(struct clocksource *cs)
644{
645 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
646
647 WARN_ON(!ch->cs_enabled);
648
649 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
650 ch->cs_enabled = false;
651}
652
653static void sh_cmt_clocksource_suspend(struct clocksource *cs)
654{
655 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
656
657 if (!ch->cs_enabled)
658 return;
659
660 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
661 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
662}
663
664static void sh_cmt_clocksource_resume(struct clocksource *cs)
665{
666 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
667
668 if (!ch->cs_enabled)
669 return;
670
671 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
672 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
673}
674
675static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
676 const char *name)
677{
678 struct clocksource *cs = &ch->cs;
679
680 cs->name = name;
681 cs->rating = 125;
682 cs->read = sh_cmt_clocksource_read;
683 cs->enable = sh_cmt_clocksource_enable;
684 cs->disable = sh_cmt_clocksource_disable;
685 cs->suspend = sh_cmt_clocksource_suspend;
686 cs->resume = sh_cmt_clocksource_resume;
687 cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
688 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
689
690 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
691 ch->index);
692
693 clocksource_register_hz(cs, ch->cmt->rate);
694 return 0;
695}
696
697static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
698{
699 return container_of(ced, struct sh_cmt_channel, ced);
700}
701
702static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
703{
704 sh_cmt_start(ch, FLAG_CLOCKEVENT);
705
706 if (periodic)
707 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
708 else
709 sh_cmt_set_next(ch, ch->max_match_value);
710}
711
712static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
713{
714 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
715
716 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
717 return 0;
718}
719
720static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
721 int periodic)
722{
723 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
724
725 /* deal with old setting first */
726 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
727 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
728
729 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
730 ch->index, periodic ? "periodic" : "oneshot");
731 sh_cmt_clock_event_start(ch, periodic);
732 return 0;
733}
734
735static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
736{
737 return sh_cmt_clock_event_set_state(ced, 0);
738}
739
740static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
741{
742 return sh_cmt_clock_event_set_state(ced, 1);
743}
744
745static int sh_cmt_clock_event_next(unsigned long delta,
746 struct clock_event_device *ced)
747{
748 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
749
750 BUG_ON(!clockevent_state_oneshot(ced));
751 if (likely(ch->flags & FLAG_IRQCONTEXT))
752 ch->next_match_value = delta - 1;
753 else
754 sh_cmt_set_next(ch, delta - 1);
755
756 return 0;
757}
758
759static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
760{
761 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
762
763 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
764 clk_unprepare(ch->cmt->clk);
765}
766
767static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
768{
769 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
770
771 clk_prepare(ch->cmt->clk);
772 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
773}
774
775static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
776 const char *name)
777{
778 struct clock_event_device *ced = &ch->ced;
779 int irq;
780 int ret;
781
782 irq = platform_get_irq(ch->cmt->pdev, ch->index);
783 if (irq < 0)
784 return irq;
785
786 ret = request_irq(irq, sh_cmt_interrupt,
787 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
788 dev_name(&ch->cmt->pdev->dev), ch);
789 if (ret) {
790 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
791 ch->index, irq);
792 return ret;
793 }
794
795 ced->name = name;
796 ced->features = CLOCK_EVT_FEAT_PERIODIC;
797 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
798 ced->rating = 125;
799 ced->cpumask = cpu_possible_mask;
800 ced->set_next_event = sh_cmt_clock_event_next;
801 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
802 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
803 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
804 ced->suspend = sh_cmt_clock_event_suspend;
805 ced->resume = sh_cmt_clock_event_resume;
806
807 /* TODO: calculate good shift from rate and counter bit width */
808 ced->shift = 32;
809 ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
810 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
811 ced->max_delta_ticks = ch->max_match_value;
812 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
813 ced->min_delta_ticks = 0x1f;
814
815 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
816 ch->index);
817 clockevents_register_device(ced);
818
819 return 0;
820}
821
822static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
823 bool clockevent, bool clocksource)
824{
825 int ret;
826
827 if (clockevent) {
828 ch->cmt->has_clockevent = true;
829 ret = sh_cmt_register_clockevent(ch, name);
830 if (ret < 0)
831 return ret;
832 }
833
834 if (clocksource) {
835 ch->cmt->has_clocksource = true;
836 sh_cmt_register_clocksource(ch, name);
837 }
838
839 return 0;
840}
841
842static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
843 unsigned int hwidx, bool clockevent,
844 bool clocksource, struct sh_cmt_device *cmt)
845{
846 int ret;
847
848 /* Skip unused channels. */
849 if (!clockevent && !clocksource)
850 return 0;
851
852 ch->cmt = cmt;
853 ch->index = index;
854 ch->hwidx = hwidx;
855 ch->timer_bit = hwidx;
856
857 /*
858 * Compute the address of the channel control register block. For the
859 * timers with a per-channel start/stop register, compute its address
860 * as well.
861 */
862 switch (cmt->info->model) {
863 case SH_CMT_16BIT:
864 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
865 break;
866 case SH_CMT_32BIT:
867 case SH_CMT_48BIT:
868 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
869 break;
870 case SH_CMT0_RCAR_GEN2:
871 case SH_CMT1_RCAR_GEN2:
872 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
873 ch->ioctrl = ch->iostart + 0x10;
874 ch->timer_bit = 0;
875 break;
876 }
877
878 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
879 ch->max_match_value = ~0;
880 else
881 ch->max_match_value = (1 << cmt->info->width) - 1;
882
883 ch->match_value = ch->max_match_value;
884 raw_spin_lock_init(&ch->lock);
885
886 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
887 clockevent, clocksource);
888 if (ret) {
889 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
890 ch->index);
891 return ret;
892 }
893 ch->cs_enabled = false;
894
895 return 0;
896}
897
898static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
899{
900 struct resource *mem;
901
902 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
903 if (!mem) {
904 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
905 return -ENXIO;
906 }
907
908 cmt->mapbase = ioremap(mem->start, resource_size(mem));
909 if (cmt->mapbase == NULL) {
910 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
911 return -ENXIO;
912 }
913
914 return 0;
915}
916
917static const struct platform_device_id sh_cmt_id_table[] = {
918 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
919 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
920 { }
921};
922MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
923
924static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
925 {
926 /* deprecated, preserved for backward compatibility */
927 .compatible = "renesas,cmt-48",
928 .data = &sh_cmt_info[SH_CMT_48BIT]
929 },
930 {
931 /* deprecated, preserved for backward compatibility */
932 .compatible = "renesas,cmt-48-gen2",
933 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
934 },
935 {
936 .compatible = "renesas,r8a7740-cmt1",
937 .data = &sh_cmt_info[SH_CMT_48BIT]
938 },
939 {
940 .compatible = "renesas,sh73a0-cmt1",
941 .data = &sh_cmt_info[SH_CMT_48BIT]
942 },
943 {
944 .compatible = "renesas,rcar-gen2-cmt0",
945 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
946 },
947 {
948 .compatible = "renesas,rcar-gen2-cmt1",
949 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
950 },
951 {
952 .compatible = "renesas,rcar-gen3-cmt0",
953 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
954 },
955 {
956 .compatible = "renesas,rcar-gen3-cmt1",
957 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
958 },
959 { }
960};
961MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
962
963static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
964{
965 unsigned int mask;
966 unsigned int i;
967 int ret;
968
969 cmt->pdev = pdev;
970 raw_spin_lock_init(&cmt->lock);
971
972 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
973 cmt->info = of_device_get_match_data(&pdev->dev);
974 cmt->hw_channels = cmt->info->channels_mask;
975 } else if (pdev->dev.platform_data) {
976 struct sh_timer_config *cfg = pdev->dev.platform_data;
977 const struct platform_device_id *id = pdev->id_entry;
978
979 cmt->info = (const struct sh_cmt_info *)id->driver_data;
980 cmt->hw_channels = cfg->channels_mask;
981 } else {
982 dev_err(&cmt->pdev->dev, "missing platform data\n");
983 return -ENXIO;
984 }
985
986 /* Get hold of clock. */
987 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
988 if (IS_ERR(cmt->clk)) {
989 dev_err(&cmt->pdev->dev, "cannot get clock\n");
990 return PTR_ERR(cmt->clk);
991 }
992
993 ret = clk_prepare(cmt->clk);
994 if (ret < 0)
995 goto err_clk_put;
996
997 /* Determine clock rate. */
998 ret = clk_enable(cmt->clk);
999 if (ret < 0)
1000 goto err_clk_unprepare;
1001
1002 if (cmt->info->width == 16)
1003 cmt->rate = clk_get_rate(cmt->clk) / 512;
1004 else
1005 cmt->rate = clk_get_rate(cmt->clk) / 8;
1006
1007 clk_disable(cmt->clk);
1008
1009 /* Map the memory resource(s). */
1010 ret = sh_cmt_map_memory(cmt);
1011 if (ret < 0)
1012 goto err_clk_unprepare;
1013
1014 /* Allocate and setup the channels. */
1015 cmt->num_channels = hweight8(cmt->hw_channels);
1016 cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017 GFP_KERNEL);
1018 if (cmt->channels == NULL) {
1019 ret = -ENOMEM;
1020 goto err_unmap;
1021 }
1022
1023 /*
1024 * Use the first channel as a clock event device and the second channel
1025 * as a clock source. If only one channel is available use it for both.
1026 */
1027 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028 unsigned int hwidx = ffs(mask) - 1;
1029 bool clocksource = i == 1 || cmt->num_channels == 1;
1030 bool clockevent = i == 0;
1031
1032 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033 clockevent, clocksource, cmt);
1034 if (ret < 0)
1035 goto err_unmap;
1036
1037 mask &= ~(1 << hwidx);
1038 }
1039
1040 platform_set_drvdata(pdev, cmt);
1041
1042 return 0;
1043
1044err_unmap:
1045 kfree(cmt->channels);
1046 iounmap(cmt->mapbase);
1047err_clk_unprepare:
1048 clk_unprepare(cmt->clk);
1049err_clk_put:
1050 clk_put(cmt->clk);
1051 return ret;
1052}
1053
1054static int sh_cmt_probe(struct platform_device *pdev)
1055{
1056 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1057 int ret;
1058
1059 if (!is_sh_early_platform_device(pdev)) {
1060 pm_runtime_set_active(&pdev->dev);
1061 pm_runtime_enable(&pdev->dev);
1062 }
1063
1064 if (cmt) {
1065 dev_info(&pdev->dev, "kept as earlytimer\n");
1066 goto out;
1067 }
1068
1069 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070 if (cmt == NULL)
1071 return -ENOMEM;
1072
1073 ret = sh_cmt_setup(cmt, pdev);
1074 if (ret) {
1075 kfree(cmt);
1076 pm_runtime_idle(&pdev->dev);
1077 return ret;
1078 }
1079 if (is_sh_early_platform_device(pdev))
1080 return 0;
1081
1082 out:
1083 if (cmt->has_clockevent || cmt->has_clocksource)
1084 pm_runtime_irq_safe(&pdev->dev);
1085 else
1086 pm_runtime_idle(&pdev->dev);
1087
1088 return 0;
1089}
1090
1091static int sh_cmt_remove(struct platform_device *pdev)
1092{
1093 return -EBUSY; /* cannot unregister clockevent and clocksource */
1094}
1095
1096static struct platform_driver sh_cmt_device_driver = {
1097 .probe = sh_cmt_probe,
1098 .remove = sh_cmt_remove,
1099 .driver = {
1100 .name = "sh_cmt",
1101 .of_match_table = of_match_ptr(sh_cmt_of_table),
1102 },
1103 .id_table = sh_cmt_id_table,
1104};
1105
1106static int __init sh_cmt_init(void)
1107{
1108 return platform_driver_register(&sh_cmt_device_driver);
1109}
1110
1111static void __exit sh_cmt_exit(void)
1112{
1113 platform_driver_unregister(&sh_cmt_device_driver);
1114}
1115
1116#ifdef CONFIG_SUPERH
1117sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118#endif
1119
1120subsys_initcall(sh_cmt_init);
1121module_exit(sh_cmt_exit);
1122
1123MODULE_AUTHOR("Magnus Damm");
1124MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125MODULE_LICENSE("GPL v2");
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 */
15
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
21#include <linux/init.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/ioport.h>
25#include <linux/irq.h>
26#include <linux/module.h>
27#include <linux/of.h>
28#include <linux/platform_device.h>
29#include <linux/pm_domain.h>
30#include <linux/pm_runtime.h>
31#include <linux/sh_timer.h>
32#include <linux/slab.h>
33#include <linux/spinlock.h>
34
35struct sh_cmt_device;
36
37/*
38 * The CMT comes in 5 different identified flavours, depending not only on the
39 * SoC but also on the particular instance. The following table lists the main
40 * characteristics of those flavours.
41 *
42 * 16B 32B 32B-F 48B 48B-2
43 * -----------------------------------------------------------------------------
44 * Channels 2 1/4 1 6 2/8
45 * Control Width 16 16 16 16 32
46 * Counter Width 16 32 32 32/48 32/48
47 * Shared Start/Stop Y Y Y Y N
48 *
49 * The 48-bit gen2 version has a per-channel start/stop register located in the
50 * channel registers block. All other versions have a shared start/stop register
51 * located in the global space.
52 *
53 * Channels are indexed from 0 to N-1 in the documentation. The channel index
54 * infers the start/stop bit position in the control register and the channel
55 * registers block address. Some CMT instances have a subset of channels
56 * available, in which case the index in the documentation doesn't match the
57 * "real" index as implemented in hardware. This is for instance the case with
58 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
59 * in the documentation but using start/stop bit 5 and having its registers
60 * block at 0x60.
61 *
62 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
63 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
64 */
65
66enum sh_cmt_model {
67 SH_CMT_16BIT,
68 SH_CMT_32BIT,
69 SH_CMT_32BIT_FAST,
70 SH_CMT_48BIT,
71 SH_CMT_48BIT_GEN2,
72};
73
74struct sh_cmt_info {
75 enum sh_cmt_model model;
76
77 unsigned long width; /* 16 or 32 bit version of hardware block */
78 unsigned long overflow_bit;
79 unsigned long clear_bits;
80
81 /* callbacks for CMSTR and CMCSR access */
82 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
83 void (*write_control)(void __iomem *base, unsigned long offs,
84 unsigned long value);
85
86 /* callbacks for CMCNT and CMCOR access */
87 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
88 void (*write_count)(void __iomem *base, unsigned long offs,
89 unsigned long value);
90};
91
92struct sh_cmt_channel {
93 struct sh_cmt_device *cmt;
94
95 unsigned int index; /* Index in the documentation */
96 unsigned int hwidx; /* Real hardware index */
97
98 void __iomem *iostart;
99 void __iomem *ioctrl;
100
101 unsigned int timer_bit;
102 unsigned long flags;
103 unsigned long match_value;
104 unsigned long next_match_value;
105 unsigned long max_match_value;
106 unsigned long rate;
107 raw_spinlock_t lock;
108 struct clock_event_device ced;
109 struct clocksource cs;
110 unsigned long total_cycles;
111 bool cs_enabled;
112};
113
114struct sh_cmt_device {
115 struct platform_device *pdev;
116
117 const struct sh_cmt_info *info;
118
119 void __iomem *mapbase;
120 struct clk *clk;
121
122 raw_spinlock_t lock; /* Protect the shared start/stop register */
123
124 struct sh_cmt_channel *channels;
125 unsigned int num_channels;
126 unsigned int hw_channels;
127
128 bool has_clockevent;
129 bool has_clocksource;
130};
131
132#define SH_CMT16_CMCSR_CMF (1 << 7)
133#define SH_CMT16_CMCSR_CMIE (1 << 6)
134#define SH_CMT16_CMCSR_CKS8 (0 << 0)
135#define SH_CMT16_CMCSR_CKS32 (1 << 0)
136#define SH_CMT16_CMCSR_CKS128 (2 << 0)
137#define SH_CMT16_CMCSR_CKS512 (3 << 0)
138#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
139
140#define SH_CMT32_CMCSR_CMF (1 << 15)
141#define SH_CMT32_CMCSR_OVF (1 << 14)
142#define SH_CMT32_CMCSR_WRFLG (1 << 13)
143#define SH_CMT32_CMCSR_STTF (1 << 12)
144#define SH_CMT32_CMCSR_STPF (1 << 11)
145#define SH_CMT32_CMCSR_SSIE (1 << 10)
146#define SH_CMT32_CMCSR_CMS (1 << 9)
147#define SH_CMT32_CMCSR_CMM (1 << 8)
148#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
149#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
150#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
151#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
152#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
153#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
154#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
156#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
157#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
158#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
159
160static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
161{
162 return ioread16(base + (offs << 1));
163}
164
165static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
166{
167 return ioread32(base + (offs << 2));
168}
169
170static void sh_cmt_write16(void __iomem *base, unsigned long offs,
171 unsigned long value)
172{
173 iowrite16(value, base + (offs << 1));
174}
175
176static void sh_cmt_write32(void __iomem *base, unsigned long offs,
177 unsigned long value)
178{
179 iowrite32(value, base + (offs << 2));
180}
181
182static const struct sh_cmt_info sh_cmt_info[] = {
183 [SH_CMT_16BIT] = {
184 .model = SH_CMT_16BIT,
185 .width = 16,
186 .overflow_bit = SH_CMT16_CMCSR_CMF,
187 .clear_bits = ~SH_CMT16_CMCSR_CMF,
188 .read_control = sh_cmt_read16,
189 .write_control = sh_cmt_write16,
190 .read_count = sh_cmt_read16,
191 .write_count = sh_cmt_write16,
192 },
193 [SH_CMT_32BIT] = {
194 .model = SH_CMT_32BIT,
195 .width = 32,
196 .overflow_bit = SH_CMT32_CMCSR_CMF,
197 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
198 .read_control = sh_cmt_read16,
199 .write_control = sh_cmt_write16,
200 .read_count = sh_cmt_read32,
201 .write_count = sh_cmt_write32,
202 },
203 [SH_CMT_32BIT_FAST] = {
204 .model = SH_CMT_32BIT_FAST,
205 .width = 32,
206 .overflow_bit = SH_CMT32_CMCSR_CMF,
207 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
208 .read_control = sh_cmt_read16,
209 .write_control = sh_cmt_write16,
210 .read_count = sh_cmt_read32,
211 .write_count = sh_cmt_write32,
212 },
213 [SH_CMT_48BIT] = {
214 .model = SH_CMT_48BIT,
215 .width = 32,
216 .overflow_bit = SH_CMT32_CMCSR_CMF,
217 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
218 .read_control = sh_cmt_read32,
219 .write_control = sh_cmt_write32,
220 .read_count = sh_cmt_read32,
221 .write_count = sh_cmt_write32,
222 },
223 [SH_CMT_48BIT_GEN2] = {
224 .model = SH_CMT_48BIT_GEN2,
225 .width = 32,
226 .overflow_bit = SH_CMT32_CMCSR_CMF,
227 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
228 .read_control = sh_cmt_read32,
229 .write_control = sh_cmt_write32,
230 .read_count = sh_cmt_read32,
231 .write_count = sh_cmt_write32,
232 },
233};
234
235#define CMCSR 0 /* channel register */
236#define CMCNT 1 /* channel register */
237#define CMCOR 2 /* channel register */
238
239static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
240{
241 if (ch->iostart)
242 return ch->cmt->info->read_control(ch->iostart, 0);
243 else
244 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
245}
246
247static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
248 unsigned long value)
249{
250 if (ch->iostart)
251 ch->cmt->info->write_control(ch->iostart, 0, value);
252 else
253 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
254}
255
256static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
257{
258 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
259}
260
261static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
262 unsigned long value)
263{
264 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
265}
266
267static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
268{
269 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
270}
271
272static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
273 unsigned long value)
274{
275 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
276}
277
278static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
279 unsigned long value)
280{
281 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
282}
283
284static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
285 int *has_wrapped)
286{
287 unsigned long v1, v2, v3;
288 int o1, o2;
289
290 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
291
292 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
293 do {
294 o2 = o1;
295 v1 = sh_cmt_read_cmcnt(ch);
296 v2 = sh_cmt_read_cmcnt(ch);
297 v3 = sh_cmt_read_cmcnt(ch);
298 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
299 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
300 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
301
302 *has_wrapped = o1;
303 return v2;
304}
305
306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
307{
308 unsigned long flags, value;
309
310 /* start stop register shared by multiple timer channels */
311 raw_spin_lock_irqsave(&ch->cmt->lock, flags);
312 value = sh_cmt_read_cmstr(ch);
313
314 if (start)
315 value |= 1 << ch->timer_bit;
316 else
317 value &= ~(1 << ch->timer_bit);
318
319 sh_cmt_write_cmstr(ch, value);
320 raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
321}
322
323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
324{
325 int k, ret;
326
327 pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
329
330 /* enable clock */
331 ret = clk_enable(ch->cmt->clk);
332 if (ret) {
333 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 ch->index);
335 goto err0;
336 }
337
338 /* make sure channel is disabled */
339 sh_cmt_start_stop_ch(ch, 0);
340
341 /* configure channel, periodic mode and maximum timeout */
342 if (ch->cmt->info->width == 16) {
343 *rate = clk_get_rate(ch->cmt->clk) / 512;
344 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345 SH_CMT16_CMCSR_CKS512);
346 } else {
347 *rate = clk_get_rate(ch->cmt->clk) / 8;
348 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349 SH_CMT32_CMCSR_CMTOUT_IE |
350 SH_CMT32_CMCSR_CMR_IRQ |
351 SH_CMT32_CMCSR_CKS_RCLK8);
352 }
353
354 sh_cmt_write_cmcor(ch, 0xffffffff);
355 sh_cmt_write_cmcnt(ch, 0);
356
357 /*
358 * According to the sh73a0 user's manual, as CMCNT can be operated
359 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360 * modifying CMCNT register; two RCLK cycles are necessary before
361 * this register is either read or any modification of the value
362 * it holds is reflected in the LSI's actual operation.
363 *
364 * While at it, we're supposed to clear out the CMCNT as of this
365 * moment, so make sure it's processed properly here. This will
366 * take RCLKx2 at maximum.
367 */
368 for (k = 0; k < 100; k++) {
369 if (!sh_cmt_read_cmcnt(ch))
370 break;
371 udelay(1);
372 }
373
374 if (sh_cmt_read_cmcnt(ch)) {
375 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376 ch->index);
377 ret = -ETIMEDOUT;
378 goto err1;
379 }
380
381 /* enable channel */
382 sh_cmt_start_stop_ch(ch, 1);
383 return 0;
384 err1:
385 /* stop clock */
386 clk_disable(ch->cmt->clk);
387
388 err0:
389 return ret;
390}
391
392static void sh_cmt_disable(struct sh_cmt_channel *ch)
393{
394 /* disable channel */
395 sh_cmt_start_stop_ch(ch, 0);
396
397 /* disable interrupts in CMT block */
398 sh_cmt_write_cmcsr(ch, 0);
399
400 /* stop clock */
401 clk_disable(ch->cmt->clk);
402
403 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404 pm_runtime_put(&ch->cmt->pdev->dev);
405}
406
407/* private flags */
408#define FLAG_CLOCKEVENT (1 << 0)
409#define FLAG_CLOCKSOURCE (1 << 1)
410#define FLAG_REPROGRAM (1 << 2)
411#define FLAG_SKIPEVENT (1 << 3)
412#define FLAG_IRQCONTEXT (1 << 4)
413
414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
415 int absolute)
416{
417 unsigned long new_match;
418 unsigned long value = ch->next_match_value;
419 unsigned long delay = 0;
420 unsigned long now = 0;
421 int has_wrapped;
422
423 now = sh_cmt_get_counter(ch, &has_wrapped);
424 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
425
426 if (has_wrapped) {
427 /* we're competing with the interrupt handler.
428 * -> let the interrupt handler reprogram the timer.
429 * -> interrupt number two handles the event.
430 */
431 ch->flags |= FLAG_SKIPEVENT;
432 return;
433 }
434
435 if (absolute)
436 now = 0;
437
438 do {
439 /* reprogram the timer hardware,
440 * but don't save the new match value yet.
441 */
442 new_match = now + value + delay;
443 if (new_match > ch->max_match_value)
444 new_match = ch->max_match_value;
445
446 sh_cmt_write_cmcor(ch, new_match);
447
448 now = sh_cmt_get_counter(ch, &has_wrapped);
449 if (has_wrapped && (new_match > ch->match_value)) {
450 /* we are changing to a greater match value,
451 * so this wrap must be caused by the counter
452 * matching the old value.
453 * -> first interrupt reprograms the timer.
454 * -> interrupt number two handles the event.
455 */
456 ch->flags |= FLAG_SKIPEVENT;
457 break;
458 }
459
460 if (has_wrapped) {
461 /* we are changing to a smaller match value,
462 * so the wrap must be caused by the counter
463 * matching the new value.
464 * -> save programmed match value.
465 * -> let isr handle the event.
466 */
467 ch->match_value = new_match;
468 break;
469 }
470
471 /* be safe: verify hardware settings */
472 if (now < new_match) {
473 /* timer value is below match value, all good.
474 * this makes sure we won't miss any match events.
475 * -> save programmed match value.
476 * -> let isr handle the event.
477 */
478 ch->match_value = new_match;
479 break;
480 }
481
482 /* the counter has reached a value greater
483 * than our new match value. and since the
484 * has_wrapped flag isn't set we must have
485 * programmed a too close event.
486 * -> increase delay and retry.
487 */
488 if (delay)
489 delay <<= 1;
490 else
491 delay = 1;
492
493 if (!delay)
494 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495 ch->index);
496
497 } while (delay);
498}
499
500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
501{
502 if (delta > ch->max_match_value)
503 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504 ch->index);
505
506 ch->next_match_value = delta;
507 sh_cmt_clock_event_program_verify(ch, 0);
508}
509
510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
511{
512 unsigned long flags;
513
514 raw_spin_lock_irqsave(&ch->lock, flags);
515 __sh_cmt_set_next(ch, delta);
516 raw_spin_unlock_irqrestore(&ch->lock, flags);
517}
518
519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
520{
521 struct sh_cmt_channel *ch = dev_id;
522
523 /* clear flags */
524 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525 ch->cmt->info->clear_bits);
526
527 /* update clock source counter to begin with if enabled
528 * the wrap flag should be cleared by the timer specific
529 * isr before we end up here.
530 */
531 if (ch->flags & FLAG_CLOCKSOURCE)
532 ch->total_cycles += ch->match_value + 1;
533
534 if (!(ch->flags & FLAG_REPROGRAM))
535 ch->next_match_value = ch->max_match_value;
536
537 ch->flags |= FLAG_IRQCONTEXT;
538
539 if (ch->flags & FLAG_CLOCKEVENT) {
540 if (!(ch->flags & FLAG_SKIPEVENT)) {
541 if (clockevent_state_oneshot(&ch->ced)) {
542 ch->next_match_value = ch->max_match_value;
543 ch->flags |= FLAG_REPROGRAM;
544 }
545
546 ch->ced.event_handler(&ch->ced);
547 }
548 }
549
550 ch->flags &= ~FLAG_SKIPEVENT;
551
552 if (ch->flags & FLAG_REPROGRAM) {
553 ch->flags &= ~FLAG_REPROGRAM;
554 sh_cmt_clock_event_program_verify(ch, 1);
555
556 if (ch->flags & FLAG_CLOCKEVENT)
557 if ((clockevent_state_shutdown(&ch->ced))
558 || (ch->match_value == ch->next_match_value))
559 ch->flags &= ~FLAG_REPROGRAM;
560 }
561
562 ch->flags &= ~FLAG_IRQCONTEXT;
563
564 return IRQ_HANDLED;
565}
566
567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
568{
569 int ret = 0;
570 unsigned long flags;
571
572 raw_spin_lock_irqsave(&ch->lock, flags);
573
574 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575 ret = sh_cmt_enable(ch, &ch->rate);
576
577 if (ret)
578 goto out;
579 ch->flags |= flag;
580
581 /* setup timeout if no clockevent */
582 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583 __sh_cmt_set_next(ch, ch->max_match_value);
584 out:
585 raw_spin_unlock_irqrestore(&ch->lock, flags);
586
587 return ret;
588}
589
590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
591{
592 unsigned long flags;
593 unsigned long f;
594
595 raw_spin_lock_irqsave(&ch->lock, flags);
596
597 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598 ch->flags &= ~flag;
599
600 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601 sh_cmt_disable(ch);
602
603 /* adjust the timeout to maximum if only clocksource left */
604 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605 __sh_cmt_set_next(ch, ch->max_match_value);
606
607 raw_spin_unlock_irqrestore(&ch->lock, flags);
608}
609
610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
611{
612 return container_of(cs, struct sh_cmt_channel, cs);
613}
614
615static u64 sh_cmt_clocksource_read(struct clocksource *cs)
616{
617 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
618 unsigned long flags, raw;
619 unsigned long value;
620 int has_wrapped;
621
622 raw_spin_lock_irqsave(&ch->lock, flags);
623 value = ch->total_cycles;
624 raw = sh_cmt_get_counter(ch, &has_wrapped);
625
626 if (unlikely(has_wrapped))
627 raw += ch->match_value + 1;
628 raw_spin_unlock_irqrestore(&ch->lock, flags);
629
630 return value + raw;
631}
632
633static int sh_cmt_clocksource_enable(struct clocksource *cs)
634{
635 int ret;
636 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
637
638 WARN_ON(ch->cs_enabled);
639
640 ch->total_cycles = 0;
641
642 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
643 if (!ret) {
644 __clocksource_update_freq_hz(cs, ch->rate);
645 ch->cs_enabled = true;
646 }
647 return ret;
648}
649
650static void sh_cmt_clocksource_disable(struct clocksource *cs)
651{
652 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
653
654 WARN_ON(!ch->cs_enabled);
655
656 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 ch->cs_enabled = false;
658}
659
660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
661{
662 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663
664 if (!ch->cs_enabled)
665 return;
666
667 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
668 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
669}
670
671static void sh_cmt_clocksource_resume(struct clocksource *cs)
672{
673 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
674
675 if (!ch->cs_enabled)
676 return;
677
678 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
679 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
680}
681
682static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
683 const char *name)
684{
685 struct clocksource *cs = &ch->cs;
686
687 cs->name = name;
688 cs->rating = 125;
689 cs->read = sh_cmt_clocksource_read;
690 cs->enable = sh_cmt_clocksource_enable;
691 cs->disable = sh_cmt_clocksource_disable;
692 cs->suspend = sh_cmt_clocksource_suspend;
693 cs->resume = sh_cmt_clocksource_resume;
694 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
695 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
696
697 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
698 ch->index);
699
700 /* Register with dummy 1 Hz value, gets updated in ->enable() */
701 clocksource_register_hz(cs, 1);
702 return 0;
703}
704
705static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
706{
707 return container_of(ced, struct sh_cmt_channel, ced);
708}
709
710static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
711{
712 struct clock_event_device *ced = &ch->ced;
713
714 sh_cmt_start(ch, FLAG_CLOCKEVENT);
715
716 /* TODO: calculate good shift from rate and counter bit width */
717
718 ced->shift = 32;
719 ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
720 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
721 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
722
723 if (periodic)
724 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
725 else
726 sh_cmt_set_next(ch, ch->max_match_value);
727}
728
729static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
730{
731 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
732
733 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
734 return 0;
735}
736
737static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
738 int periodic)
739{
740 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
741
742 /* deal with old setting first */
743 if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
744 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
745
746 dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
747 ch->index, periodic ? "periodic" : "oneshot");
748 sh_cmt_clock_event_start(ch, periodic);
749 return 0;
750}
751
752static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
753{
754 return sh_cmt_clock_event_set_state(ced, 0);
755}
756
757static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
758{
759 return sh_cmt_clock_event_set_state(ced, 1);
760}
761
762static int sh_cmt_clock_event_next(unsigned long delta,
763 struct clock_event_device *ced)
764{
765 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766
767 BUG_ON(!clockevent_state_oneshot(ced));
768 if (likely(ch->flags & FLAG_IRQCONTEXT))
769 ch->next_match_value = delta - 1;
770 else
771 sh_cmt_set_next(ch, delta - 1);
772
773 return 0;
774}
775
776static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
777{
778 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
779
780 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
781 clk_unprepare(ch->cmt->clk);
782}
783
784static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
785{
786 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
787
788 clk_prepare(ch->cmt->clk);
789 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
790}
791
792static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
793 const char *name)
794{
795 struct clock_event_device *ced = &ch->ced;
796 int irq;
797 int ret;
798
799 irq = platform_get_irq(ch->cmt->pdev, ch->index);
800 if (irq < 0) {
801 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
802 ch->index);
803 return irq;
804 }
805
806 ret = request_irq(irq, sh_cmt_interrupt,
807 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
808 dev_name(&ch->cmt->pdev->dev), ch);
809 if (ret) {
810 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
811 ch->index, irq);
812 return ret;
813 }
814
815 ced->name = name;
816 ced->features = CLOCK_EVT_FEAT_PERIODIC;
817 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
818 ced->rating = 125;
819 ced->cpumask = cpu_possible_mask;
820 ced->set_next_event = sh_cmt_clock_event_next;
821 ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
822 ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
823 ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
824 ced->suspend = sh_cmt_clock_event_suspend;
825 ced->resume = sh_cmt_clock_event_resume;
826
827 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
828 ch->index);
829 clockevents_register_device(ced);
830
831 return 0;
832}
833
834static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
835 bool clockevent, bool clocksource)
836{
837 int ret;
838
839 if (clockevent) {
840 ch->cmt->has_clockevent = true;
841 ret = sh_cmt_register_clockevent(ch, name);
842 if (ret < 0)
843 return ret;
844 }
845
846 if (clocksource) {
847 ch->cmt->has_clocksource = true;
848 sh_cmt_register_clocksource(ch, name);
849 }
850
851 return 0;
852}
853
854static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
855 unsigned int hwidx, bool clockevent,
856 bool clocksource, struct sh_cmt_device *cmt)
857{
858 int ret;
859
860 /* Skip unused channels. */
861 if (!clockevent && !clocksource)
862 return 0;
863
864 ch->cmt = cmt;
865 ch->index = index;
866 ch->hwidx = hwidx;
867
868 /*
869 * Compute the address of the channel control register block. For the
870 * timers with a per-channel start/stop register, compute its address
871 * as well.
872 */
873 switch (cmt->info->model) {
874 case SH_CMT_16BIT:
875 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
876 break;
877 case SH_CMT_32BIT:
878 case SH_CMT_48BIT:
879 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
880 break;
881 case SH_CMT_32BIT_FAST:
882 /*
883 * The 32-bit "fast" timer has a single channel at hwidx 5 but
884 * is located at offset 0x40 instead of 0x60 for some reason.
885 */
886 ch->ioctrl = cmt->mapbase + 0x40;
887 break;
888 case SH_CMT_48BIT_GEN2:
889 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
890 ch->ioctrl = ch->iostart + 0x10;
891 break;
892 }
893
894 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
895 ch->max_match_value = ~0;
896 else
897 ch->max_match_value = (1 << cmt->info->width) - 1;
898
899 ch->match_value = ch->max_match_value;
900 raw_spin_lock_init(&ch->lock);
901
902 ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
903
904 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
905 clockevent, clocksource);
906 if (ret) {
907 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
908 ch->index);
909 return ret;
910 }
911 ch->cs_enabled = false;
912
913 return 0;
914}
915
916static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
917{
918 struct resource *mem;
919
920 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
921 if (!mem) {
922 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
923 return -ENXIO;
924 }
925
926 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
927 if (cmt->mapbase == NULL) {
928 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
929 return -ENXIO;
930 }
931
932 return 0;
933}
934
935static const struct platform_device_id sh_cmt_id_table[] = {
936 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
937 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
938 { }
939};
940MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
941
942static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
943 { .compatible = "renesas,cmt-32", .data = &sh_cmt_info[SH_CMT_32BIT] },
944 { .compatible = "renesas,cmt-32-fast", .data = &sh_cmt_info[SH_CMT_32BIT_FAST] },
945 { .compatible = "renesas,cmt-48", .data = &sh_cmt_info[SH_CMT_48BIT] },
946 { .compatible = "renesas,cmt-48-gen2", .data = &sh_cmt_info[SH_CMT_48BIT_GEN2] },
947 { }
948};
949MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
950
951static int sh_cmt_parse_dt(struct sh_cmt_device *cmt)
952{
953 struct device_node *np = cmt->pdev->dev.of_node;
954
955 return of_property_read_u32(np, "renesas,channels-mask",
956 &cmt->hw_channels);
957}
958
959static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
960{
961 unsigned int mask;
962 unsigned int i;
963 int ret;
964
965 cmt->pdev = pdev;
966 raw_spin_lock_init(&cmt->lock);
967
968 if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
969 const struct of_device_id *id;
970
971 id = of_match_node(sh_cmt_of_table, pdev->dev.of_node);
972 cmt->info = id->data;
973
974 ret = sh_cmt_parse_dt(cmt);
975 if (ret < 0)
976 return ret;
977 } else if (pdev->dev.platform_data) {
978 struct sh_timer_config *cfg = pdev->dev.platform_data;
979 const struct platform_device_id *id = pdev->id_entry;
980
981 cmt->info = (const struct sh_cmt_info *)id->driver_data;
982 cmt->hw_channels = cfg->channels_mask;
983 } else {
984 dev_err(&cmt->pdev->dev, "missing platform data\n");
985 return -ENXIO;
986 }
987
988 /* Get hold of clock. */
989 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
990 if (IS_ERR(cmt->clk)) {
991 dev_err(&cmt->pdev->dev, "cannot get clock\n");
992 return PTR_ERR(cmt->clk);
993 }
994
995 ret = clk_prepare(cmt->clk);
996 if (ret < 0)
997 goto err_clk_put;
998
999 /* Map the memory resource(s). */
1000 ret = sh_cmt_map_memory(cmt);
1001 if (ret < 0)
1002 goto err_clk_unprepare;
1003
1004 /* Allocate and setup the channels. */
1005 cmt->num_channels = hweight8(cmt->hw_channels);
1006 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1007 GFP_KERNEL);
1008 if (cmt->channels == NULL) {
1009 ret = -ENOMEM;
1010 goto err_unmap;
1011 }
1012
1013 /*
1014 * Use the first channel as a clock event device and the second channel
1015 * as a clock source. If only one channel is available use it for both.
1016 */
1017 for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1018 unsigned int hwidx = ffs(mask) - 1;
1019 bool clocksource = i == 1 || cmt->num_channels == 1;
1020 bool clockevent = i == 0;
1021
1022 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1023 clockevent, clocksource, cmt);
1024 if (ret < 0)
1025 goto err_unmap;
1026
1027 mask &= ~(1 << hwidx);
1028 }
1029
1030 platform_set_drvdata(pdev, cmt);
1031
1032 return 0;
1033
1034err_unmap:
1035 kfree(cmt->channels);
1036 iounmap(cmt->mapbase);
1037err_clk_unprepare:
1038 clk_unprepare(cmt->clk);
1039err_clk_put:
1040 clk_put(cmt->clk);
1041 return ret;
1042}
1043
1044static int sh_cmt_probe(struct platform_device *pdev)
1045{
1046 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1047 int ret;
1048
1049 if (!is_early_platform_device(pdev)) {
1050 pm_runtime_set_active(&pdev->dev);
1051 pm_runtime_enable(&pdev->dev);
1052 }
1053
1054 if (cmt) {
1055 dev_info(&pdev->dev, "kept as earlytimer\n");
1056 goto out;
1057 }
1058
1059 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1060 if (cmt == NULL)
1061 return -ENOMEM;
1062
1063 ret = sh_cmt_setup(cmt, pdev);
1064 if (ret) {
1065 kfree(cmt);
1066 pm_runtime_idle(&pdev->dev);
1067 return ret;
1068 }
1069 if (is_early_platform_device(pdev))
1070 return 0;
1071
1072 out:
1073 if (cmt->has_clockevent || cmt->has_clocksource)
1074 pm_runtime_irq_safe(&pdev->dev);
1075 else
1076 pm_runtime_idle(&pdev->dev);
1077
1078 return 0;
1079}
1080
1081static int sh_cmt_remove(struct platform_device *pdev)
1082{
1083 return -EBUSY; /* cannot unregister clockevent and clocksource */
1084}
1085
1086static struct platform_driver sh_cmt_device_driver = {
1087 .probe = sh_cmt_probe,
1088 .remove = sh_cmt_remove,
1089 .driver = {
1090 .name = "sh_cmt",
1091 .of_match_table = of_match_ptr(sh_cmt_of_table),
1092 },
1093 .id_table = sh_cmt_id_table,
1094};
1095
1096static int __init sh_cmt_init(void)
1097{
1098 return platform_driver_register(&sh_cmt_device_driver);
1099}
1100
1101static void __exit sh_cmt_exit(void)
1102{
1103 platform_driver_unregister(&sh_cmt_device_driver);
1104}
1105
1106early_platform_init("earlytimer", &sh_cmt_device_driver);
1107subsys_initcall(sh_cmt_init);
1108module_exit(sh_cmt_exit);
1109
1110MODULE_AUTHOR("Magnus Damm");
1111MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1112MODULE_LICENSE("GPL v2");