Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * SuperH Timer Support - CMT
   4 *
   5 *  Copyright (C) 2008 Magnus Damm
 
 
 
 
 
 
 
 
 
 
 
 
 
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/clockchips.h>
  10#include <linux/clocksource.h>
  11#include <linux/delay.h>
  12#include <linux/err.h>
  13#include <linux/init.h>
 
 
  14#include <linux/interrupt.h>
  15#include <linux/io.h>
  16#include <linux/ioport.h>
 
 
  17#include <linux/irq.h>
 
 
 
 
 
 
  18#include <linux/module.h>
  19#include <linux/of.h>
  20#include <linux/of_device.h>
  21#include <linux/platform_device.h>
  22#include <linux/pm_domain.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/sh_timer.h>
  25#include <linux/slab.h>
  26#include <linux/spinlock.h>
  27
  28#ifdef CONFIG_SUPERH
  29#include <asm/platform_early.h>
  30#endif
  31
  32struct sh_cmt_device;
  33
  34/*
  35 * The CMT comes in 5 different identified flavours, depending not only on the
  36 * SoC but also on the particular instance. The following table lists the main
  37 * characteristics of those flavours.
  38 *
  39 *			16B	32B	32B-F	48B	R-Car Gen2
  40 * -----------------------------------------------------------------------------
  41 * Channels		2	1/4	1	6	2/8
  42 * Control Width	16	16	16	16	32
  43 * Counter Width	16	32	32	32/48	32/48
  44 * Shared Start/Stop	Y	Y	Y	Y	N
  45 *
  46 * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
  47 * located in the channel registers block. All other versions have a shared
  48 * start/stop register located in the global space.
  49 *
  50 * Channels are indexed from 0 to N-1 in the documentation. The channel index
  51 * infers the start/stop bit position in the control register and the channel
  52 * registers block address. Some CMT instances have a subset of channels
  53 * available, in which case the index in the documentation doesn't match the
  54 * "real" index as implemented in hardware. This is for instance the case with
  55 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
  56 * in the documentation but using start/stop bit 5 and having its registers
  57 * block at 0x60.
  58 *
  59 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
  60 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
  61 */
  62
  63enum sh_cmt_model {
  64	SH_CMT_16BIT,
  65	SH_CMT_32BIT,
  66	SH_CMT_48BIT,
  67	SH_CMT0_RCAR_GEN2,
  68	SH_CMT1_RCAR_GEN2,
  69};
  70
  71struct sh_cmt_info {
  72	enum sh_cmt_model model;
  73
  74	unsigned int channels_mask;
  75
 
 
 
 
  76	unsigned long width; /* 16 or 32 bit version of hardware block */
  77	u32 overflow_bit;
  78	u32 clear_bits;
  79
  80	/* callbacks for CMSTR and CMCSR access */
  81	u32 (*read_control)(void __iomem *base, unsigned long offs);
  82	void (*write_control)(void __iomem *base, unsigned long offs,
  83			      u32 value);
  84
  85	/* callbacks for CMCNT and CMCOR access */
  86	u32 (*read_count)(void __iomem *base, unsigned long offs);
  87	void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
  88};
  89
  90struct sh_cmt_channel {
  91	struct sh_cmt_device *cmt;
  92
  93	unsigned int index;	/* Index in the documentation */
  94	unsigned int hwidx;	/* Real hardware index */
  95
  96	void __iomem *iostart;
  97	void __iomem *ioctrl;
  98
  99	unsigned int timer_bit;
 100	unsigned long flags;
 101	u32 match_value;
 102	u32 next_match_value;
 103	u32 max_match_value;
 
 104	raw_spinlock_t lock;
 105	struct clock_event_device ced;
 106	struct clocksource cs;
 107	u64 total_cycles;
 108	bool cs_enabled;
 109};
 110
 111struct sh_cmt_device {
 112	struct platform_device *pdev;
 113
 114	const struct sh_cmt_info *info;
 115
 116	void __iomem *mapbase;
 117	struct clk *clk;
 118	unsigned long rate;
 119
 120	raw_spinlock_t lock; /* Protect the shared start/stop register */
 121
 122	struct sh_cmt_channel *channels;
 123	unsigned int num_channels;
 124	unsigned int hw_channels;
 125
 126	bool has_clockevent;
 127	bool has_clocksource;
 
 
 128};
 129
 130#define SH_CMT16_CMCSR_CMF		(1 << 7)
 131#define SH_CMT16_CMCSR_CMIE		(1 << 6)
 132#define SH_CMT16_CMCSR_CKS8		(0 << 0)
 133#define SH_CMT16_CMCSR_CKS32		(1 << 0)
 134#define SH_CMT16_CMCSR_CKS128		(2 << 0)
 135#define SH_CMT16_CMCSR_CKS512		(3 << 0)
 136#define SH_CMT16_CMCSR_CKS_MASK		(3 << 0)
 137
 138#define SH_CMT32_CMCSR_CMF		(1 << 15)
 139#define SH_CMT32_CMCSR_OVF		(1 << 14)
 140#define SH_CMT32_CMCSR_WRFLG		(1 << 13)
 141#define SH_CMT32_CMCSR_STTF		(1 << 12)
 142#define SH_CMT32_CMCSR_STPF		(1 << 11)
 143#define SH_CMT32_CMCSR_SSIE		(1 << 10)
 144#define SH_CMT32_CMCSR_CMS		(1 << 9)
 145#define SH_CMT32_CMCSR_CMM		(1 << 8)
 146#define SH_CMT32_CMCSR_CMTOUT_IE	(1 << 7)
 147#define SH_CMT32_CMCSR_CMR_NONE		(0 << 4)
 148#define SH_CMT32_CMCSR_CMR_DMA		(1 << 4)
 149#define SH_CMT32_CMCSR_CMR_IRQ		(2 << 4)
 150#define SH_CMT32_CMCSR_CMR_MASK		(3 << 4)
 151#define SH_CMT32_CMCSR_DBGIVD		(1 << 3)
 152#define SH_CMT32_CMCSR_CKS_RCLK8	(4 << 0)
 153#define SH_CMT32_CMCSR_CKS_RCLK32	(5 << 0)
 154#define SH_CMT32_CMCSR_CKS_RCLK128	(6 << 0)
 155#define SH_CMT32_CMCSR_CKS_RCLK1	(7 << 0)
 156#define SH_CMT32_CMCSR_CKS_MASK		(7 << 0)
 157
 158static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
 159{
 160	return ioread16(base + (offs << 1));
 161}
 162
 163static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
 164{
 165	return ioread32(base + (offs << 2));
 166}
 167
 168static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
 
 169{
 170	iowrite16(value, base + (offs << 1));
 171}
 172
 173static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
 
 174{
 175	iowrite32(value, base + (offs << 2));
 176}
 177
 178static const struct sh_cmt_info sh_cmt_info[] = {
 179	[SH_CMT_16BIT] = {
 180		.model = SH_CMT_16BIT,
 181		.width = 16,
 182		.overflow_bit = SH_CMT16_CMCSR_CMF,
 183		.clear_bits = ~SH_CMT16_CMCSR_CMF,
 184		.read_control = sh_cmt_read16,
 185		.write_control = sh_cmt_write16,
 186		.read_count = sh_cmt_read16,
 187		.write_count = sh_cmt_write16,
 188	},
 189	[SH_CMT_32BIT] = {
 190		.model = SH_CMT_32BIT,
 191		.width = 32,
 192		.overflow_bit = SH_CMT32_CMCSR_CMF,
 193		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 194		.read_control = sh_cmt_read16,
 195		.write_control = sh_cmt_write16,
 196		.read_count = sh_cmt_read32,
 197		.write_count = sh_cmt_write32,
 198	},
 199	[SH_CMT_48BIT] = {
 200		.model = SH_CMT_48BIT,
 201		.channels_mask = 0x3f,
 202		.width = 32,
 203		.overflow_bit = SH_CMT32_CMCSR_CMF,
 204		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 205		.read_control = sh_cmt_read32,
 206		.write_control = sh_cmt_write32,
 207		.read_count = sh_cmt_read32,
 208		.write_count = sh_cmt_write32,
 209	},
 210	[SH_CMT0_RCAR_GEN2] = {
 211		.model = SH_CMT0_RCAR_GEN2,
 212		.channels_mask = 0x60,
 213		.width = 32,
 214		.overflow_bit = SH_CMT32_CMCSR_CMF,
 215		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 216		.read_control = sh_cmt_read32,
 217		.write_control = sh_cmt_write32,
 218		.read_count = sh_cmt_read32,
 219		.write_count = sh_cmt_write32,
 220	},
 221	[SH_CMT1_RCAR_GEN2] = {
 222		.model = SH_CMT1_RCAR_GEN2,
 223		.channels_mask = 0xff,
 224		.width = 32,
 225		.overflow_bit = SH_CMT32_CMCSR_CMF,
 226		.clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
 227		.read_control = sh_cmt_read32,
 228		.write_control = sh_cmt_write32,
 229		.read_count = sh_cmt_read32,
 230		.write_count = sh_cmt_write32,
 231	},
 232};
 233
 234#define CMCSR 0 /* channel register */
 235#define CMCNT 1 /* channel register */
 236#define CMCOR 2 /* channel register */
 237
 238static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
 239{
 240	if (ch->iostart)
 241		return ch->cmt->info->read_control(ch->iostart, 0);
 242	else
 243		return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
 244}
 245
 246static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
 247{
 248	if (ch->iostart)
 249		ch->cmt->info->write_control(ch->iostart, 0, value);
 250	else
 251		ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
 252}
 253
 254static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
 255{
 256	return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
 257}
 258
 259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
 
 260{
 261	ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
 262}
 263
 264static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
 
 265{
 266	return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
 267}
 268
 269static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
 
 270{
 271	ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
 272}
 273
 274static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
 
 275{
 276	ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
 277}
 278
 279static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
 
 280{
 281	u32 v1, v2, v3;
 282	u32 o1, o2;
 283
 284	o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 285
 286	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
 287	do {
 288		o2 = o1;
 289		v1 = sh_cmt_read_cmcnt(ch);
 290		v2 = sh_cmt_read_cmcnt(ch);
 291		v3 = sh_cmt_read_cmcnt(ch);
 292		o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
 293	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
 294			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
 295
 296	*has_wrapped = o1;
 297	return v2;
 298}
 299
 300static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
 
 
 301{
 302	unsigned long flags;
 303	u32 value;
 304
 305	/* start stop register shared by multiple timer channels */
 306	raw_spin_lock_irqsave(&ch->cmt->lock, flags);
 307	value = sh_cmt_read_cmstr(ch);
 308
 309	if (start)
 310		value |= 1 << ch->timer_bit;
 311	else
 312		value &= ~(1 << ch->timer_bit);
 313
 314	sh_cmt_write_cmstr(ch, value);
 315	raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
 316}
 317
 318static int sh_cmt_enable(struct sh_cmt_channel *ch)
 319{
 320	int k, ret;
 321
 322	pm_runtime_get_sync(&ch->cmt->pdev->dev);
 323	dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
 324
 325	/* enable clock */
 326	ret = clk_enable(ch->cmt->clk);
 327	if (ret) {
 328		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
 329			ch->index);
 330		goto err0;
 331	}
 332
 333	/* make sure channel is disabled */
 334	sh_cmt_start_stop_ch(ch, 0);
 335
 336	/* configure channel, periodic mode and maximum timeout */
 337	if (ch->cmt->info->width == 16) {
 338		sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
 339				   SH_CMT16_CMCSR_CKS512);
 340	} else {
 341		sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
 342				   SH_CMT32_CMCSR_CMTOUT_IE |
 343				   SH_CMT32_CMCSR_CMR_IRQ |
 344				   SH_CMT32_CMCSR_CKS_RCLK8);
 345	}
 346
 347	sh_cmt_write_cmcor(ch, 0xffffffff);
 348	sh_cmt_write_cmcnt(ch, 0);
 349
 350	/*
 351	 * According to the sh73a0 user's manual, as CMCNT can be operated
 352	 * only by the RCLK (Pseudo 32 kHz), there's one restriction on
 353	 * modifying CMCNT register; two RCLK cycles are necessary before
 354	 * this register is either read or any modification of the value
 355	 * it holds is reflected in the LSI's actual operation.
 356	 *
 357	 * While at it, we're supposed to clear out the CMCNT as of this
 358	 * moment, so make sure it's processed properly here.  This will
 359	 * take RCLKx2 at maximum.
 360	 */
 361	for (k = 0; k < 100; k++) {
 362		if (!sh_cmt_read_cmcnt(ch))
 363			break;
 364		udelay(1);
 365	}
 366
 367	if (sh_cmt_read_cmcnt(ch)) {
 368		dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
 369			ch->index);
 370		ret = -ETIMEDOUT;
 371		goto err1;
 372	}
 373
 374	/* enable channel */
 375	sh_cmt_start_stop_ch(ch, 1);
 376	return 0;
 377 err1:
 378	/* stop clock */
 379	clk_disable(ch->cmt->clk);
 380
 381 err0:
 382	return ret;
 383}
 384
 385static void sh_cmt_disable(struct sh_cmt_channel *ch)
 386{
 387	/* disable channel */
 388	sh_cmt_start_stop_ch(ch, 0);
 389
 390	/* disable interrupts in CMT block */
 391	sh_cmt_write_cmcsr(ch, 0);
 392
 393	/* stop clock */
 394	clk_disable(ch->cmt->clk);
 395
 396	dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
 397	pm_runtime_put(&ch->cmt->pdev->dev);
 398}
 399
 400/* private flags */
 401#define FLAG_CLOCKEVENT (1 << 0)
 402#define FLAG_CLOCKSOURCE (1 << 1)
 403#define FLAG_REPROGRAM (1 << 2)
 404#define FLAG_SKIPEVENT (1 << 3)
 405#define FLAG_IRQCONTEXT (1 << 4)
 406
 407static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
 408					      int absolute)
 409{
 410	u32 value = ch->next_match_value;
 411	u32 new_match;
 412	u32 delay = 0;
 413	u32 now = 0;
 414	u32 has_wrapped;
 415
 416	now = sh_cmt_get_counter(ch, &has_wrapped);
 417	ch->flags |= FLAG_REPROGRAM; /* force reprogram */
 418
 419	if (has_wrapped) {
 420		/* we're competing with the interrupt handler.
 421		 *  -> let the interrupt handler reprogram the timer.
 422		 *  -> interrupt number two handles the event.
 423		 */
 424		ch->flags |= FLAG_SKIPEVENT;
 425		return;
 426	}
 427
 428	if (absolute)
 429		now = 0;
 430
 431	do {
 432		/* reprogram the timer hardware,
 433		 * but don't save the new match value yet.
 434		 */
 435		new_match = now + value + delay;
 436		if (new_match > ch->max_match_value)
 437			new_match = ch->max_match_value;
 438
 439		sh_cmt_write_cmcor(ch, new_match);
 440
 441		now = sh_cmt_get_counter(ch, &has_wrapped);
 442		if (has_wrapped && (new_match > ch->match_value)) {
 443			/* we are changing to a greater match value,
 444			 * so this wrap must be caused by the counter
 445			 * matching the old value.
 446			 * -> first interrupt reprograms the timer.
 447			 * -> interrupt number two handles the event.
 448			 */
 449			ch->flags |= FLAG_SKIPEVENT;
 450			break;
 451		}
 452
 453		if (has_wrapped) {
 454			/* we are changing to a smaller match value,
 455			 * so the wrap must be caused by the counter
 456			 * matching the new value.
 457			 * -> save programmed match value.
 458			 * -> let isr handle the event.
 459			 */
 460			ch->match_value = new_match;
 461			break;
 462		}
 463
 464		/* be safe: verify hardware settings */
 465		if (now < new_match) {
 466			/* timer value is below match value, all good.
 467			 * this makes sure we won't miss any match events.
 468			 * -> save programmed match value.
 469			 * -> let isr handle the event.
 470			 */
 471			ch->match_value = new_match;
 472			break;
 473		}
 474
 475		/* the counter has reached a value greater
 476		 * than our new match value. and since the
 477		 * has_wrapped flag isn't set we must have
 478		 * programmed a too close event.
 479		 * -> increase delay and retry.
 480		 */
 481		if (delay)
 482			delay <<= 1;
 483		else
 484			delay = 1;
 485
 486		if (!delay)
 487			dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
 488				 ch->index);
 489
 490	} while (delay);
 491}
 492
 493static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 494{
 495	if (delta > ch->max_match_value)
 496		dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
 497			 ch->index);
 498
 499	ch->next_match_value = delta;
 500	sh_cmt_clock_event_program_verify(ch, 0);
 501}
 502
 503static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
 504{
 505	unsigned long flags;
 506
 507	raw_spin_lock_irqsave(&ch->lock, flags);
 508	__sh_cmt_set_next(ch, delta);
 509	raw_spin_unlock_irqrestore(&ch->lock, flags);
 510}
 511
 512static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
 513{
 514	struct sh_cmt_channel *ch = dev_id;
 515
 516	/* clear flags */
 517	sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
 518			   ch->cmt->info->clear_bits);
 519
 520	/* update clock source counter to begin with if enabled
 521	 * the wrap flag should be cleared by the timer specific
 522	 * isr before we end up here.
 523	 */
 524	if (ch->flags & FLAG_CLOCKSOURCE)
 525		ch->total_cycles += ch->match_value + 1;
 526
 527	if (!(ch->flags & FLAG_REPROGRAM))
 528		ch->next_match_value = ch->max_match_value;
 529
 530	ch->flags |= FLAG_IRQCONTEXT;
 531
 532	if (ch->flags & FLAG_CLOCKEVENT) {
 533		if (!(ch->flags & FLAG_SKIPEVENT)) {
 534			if (clockevent_state_oneshot(&ch->ced)) {
 535				ch->next_match_value = ch->max_match_value;
 536				ch->flags |= FLAG_REPROGRAM;
 537			}
 538
 539			ch->ced.event_handler(&ch->ced);
 540		}
 541	}
 542
 543	ch->flags &= ~FLAG_SKIPEVENT;
 544
 545	if (ch->flags & FLAG_REPROGRAM) {
 546		ch->flags &= ~FLAG_REPROGRAM;
 547		sh_cmt_clock_event_program_verify(ch, 1);
 548
 549		if (ch->flags & FLAG_CLOCKEVENT)
 550			if ((clockevent_state_shutdown(&ch->ced))
 551			    || (ch->match_value == ch->next_match_value))
 552				ch->flags &= ~FLAG_REPROGRAM;
 553	}
 554
 555	ch->flags &= ~FLAG_IRQCONTEXT;
 556
 557	return IRQ_HANDLED;
 558}
 559
 560static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
 561{
 562	int ret = 0;
 563	unsigned long flags;
 564
 565	raw_spin_lock_irqsave(&ch->lock, flags);
 566
 567	if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 568		ret = sh_cmt_enable(ch);
 569
 570	if (ret)
 571		goto out;
 572	ch->flags |= flag;
 573
 574	/* setup timeout if no clockevent */
 575	if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
 576		__sh_cmt_set_next(ch, ch->max_match_value);
 577 out:
 578	raw_spin_unlock_irqrestore(&ch->lock, flags);
 579
 580	return ret;
 581}
 582
 583static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
 584{
 585	unsigned long flags;
 586	unsigned long f;
 587
 588	raw_spin_lock_irqsave(&ch->lock, flags);
 589
 590	f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
 591	ch->flags &= ~flag;
 592
 593	if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
 594		sh_cmt_disable(ch);
 595
 596	/* adjust the timeout to maximum if only clocksource left */
 597	if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
 598		__sh_cmt_set_next(ch, ch->max_match_value);
 599
 600	raw_spin_unlock_irqrestore(&ch->lock, flags);
 601}
 602
 603static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
 604{
 605	return container_of(cs, struct sh_cmt_channel, cs);
 606}
 607
 608static u64 sh_cmt_clocksource_read(struct clocksource *cs)
 609{
 610	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 611	unsigned long flags;
 612	u32 has_wrapped;
 613	u64 value;
 614	u32 raw;
 615
 616	raw_spin_lock_irqsave(&ch->lock, flags);
 617	value = ch->total_cycles;
 618	raw = sh_cmt_get_counter(ch, &has_wrapped);
 619
 620	if (unlikely(has_wrapped))
 621		raw += ch->match_value + 1;
 622	raw_spin_unlock_irqrestore(&ch->lock, flags);
 623
 624	return value + raw;
 625}
 626
 627static int sh_cmt_clocksource_enable(struct clocksource *cs)
 628{
 629	int ret;
 630	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 631
 632	WARN_ON(ch->cs_enabled);
 633
 634	ch->total_cycles = 0;
 635
 636	ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 637	if (!ret)
 638		ch->cs_enabled = true;
 639
 
 
 
 
 
 640	return ret;
 641}
 642
 643static void sh_cmt_clocksource_disable(struct clocksource *cs)
 644{
 645	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 646
 647	WARN_ON(!ch->cs_enabled);
 648
 649	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 650	ch->cs_enabled = false;
 651}
 652
 653static void sh_cmt_clocksource_suspend(struct clocksource *cs)
 654{
 655	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 656
 657	if (!ch->cs_enabled)
 658		return;
 659
 660	sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
 661	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 662}
 663
 664static void sh_cmt_clocksource_resume(struct clocksource *cs)
 665{
 666	struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
 667
 668	if (!ch->cs_enabled)
 669		return;
 670
 671	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 672	sh_cmt_start(ch, FLAG_CLOCKSOURCE);
 673}
 674
 675static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
 676				       const char *name)
 677{
 678	struct clocksource *cs = &ch->cs;
 679
 680	cs->name = name;
 681	cs->rating = 125;
 682	cs->read = sh_cmt_clocksource_read;
 683	cs->enable = sh_cmt_clocksource_enable;
 684	cs->disable = sh_cmt_clocksource_disable;
 685	cs->suspend = sh_cmt_clocksource_suspend;
 686	cs->resume = sh_cmt_clocksource_resume;
 687	cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
 688	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
 689
 690	dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
 691		 ch->index);
 692
 693	clocksource_register_hz(cs, ch->cmt->rate);
 
 694	return 0;
 695}
 696
 697static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
 698{
 699	return container_of(ced, struct sh_cmt_channel, ced);
 700}
 701
 702static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
 703{
 704	sh_cmt_start(ch, FLAG_CLOCKEVENT);
 705
 706	if (periodic)
 707		sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
 708	else
 709		sh_cmt_set_next(ch, ch->max_match_value);
 710}
 711
 712static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
 713{
 714	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 715
 716	sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 717	return 0;
 
 
 
 
 
 
 
 718}
 719
 720static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
 721					int periodic)
 722{
 723	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 724
 725	/* deal with old setting first */
 726	if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
 727		sh_cmt_stop(ch, FLAG_CLOCKEVENT);
 728
 729	dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
 730		 ch->index, periodic ? "periodic" : "oneshot");
 731	sh_cmt_clock_event_start(ch, periodic);
 732	return 0;
 733}
 734
 735static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
 736{
 737	return sh_cmt_clock_event_set_state(ced, 0);
 738}
 739
 740static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
 741{
 742	return sh_cmt_clock_event_set_state(ced, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 743}
 744
 745static int sh_cmt_clock_event_next(unsigned long delta,
 746				   struct clock_event_device *ced)
 747{
 748	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 749
 750	BUG_ON(!clockevent_state_oneshot(ced));
 751	if (likely(ch->flags & FLAG_IRQCONTEXT))
 752		ch->next_match_value = delta - 1;
 753	else
 754		sh_cmt_set_next(ch, delta - 1);
 755
 756	return 0;
 757}
 758
 759static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
 760{
 761	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 762
 763	pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
 764	clk_unprepare(ch->cmt->clk);
 765}
 766
 767static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
 768{
 769	struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
 770
 771	clk_prepare(ch->cmt->clk);
 772	pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
 773}
 774
 775static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
 776				      const char *name)
 777{
 778	struct clock_event_device *ced = &ch->ced;
 779	int irq;
 780	int ret;
 781
 782	irq = platform_get_irq(ch->cmt->pdev, ch->index);
 783	if (irq < 0)
 784		return irq;
 785
 786	ret = request_irq(irq, sh_cmt_interrupt,
 787			  IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
 788			  dev_name(&ch->cmt->pdev->dev), ch);
 789	if (ret) {
 790		dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
 791			ch->index, irq);
 792		return ret;
 793	}
 794
 795	ced->name = name;
 796	ced->features = CLOCK_EVT_FEAT_PERIODIC;
 797	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
 798	ced->rating = 125;
 799	ced->cpumask = cpu_possible_mask;
 800	ced->set_next_event = sh_cmt_clock_event_next;
 801	ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
 802	ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
 803	ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
 804	ced->suspend = sh_cmt_clock_event_suspend;
 805	ced->resume = sh_cmt_clock_event_resume;
 806
 807	/* TODO: calculate good shift from rate and counter bit width */
 808	ced->shift = 32;
 809	ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
 810	ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
 811	ced->max_delta_ticks = ch->max_match_value;
 812	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
 813	ced->min_delta_ticks = 0x1f;
 814
 815	dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
 816		 ch->index);
 817	clockevents_register_device(ced);
 818
 819	return 0;
 820}
 821
 822static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
 823			   bool clockevent, bool clocksource)
 
 824{
 825	int ret;
 
 826
 827	if (clockevent) {
 828		ch->cmt->has_clockevent = true;
 829		ret = sh_cmt_register_clockevent(ch, name);
 830		if (ret < 0)
 831			return ret;
 832	}
 833
 834	if (clocksource) {
 835		ch->cmt->has_clocksource = true;
 836		sh_cmt_register_clocksource(ch, name);
 837	}
 838
 839	return 0;
 840}
 841
 842static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
 843				unsigned int hwidx, bool clockevent,
 844				bool clocksource, struct sh_cmt_device *cmt)
 845{
 846	int ret;
 
 
 
 847
 848	/* Skip unused channels. */
 849	if (!clockevent && !clocksource)
 850		return 0;
 851
 852	ch->cmt = cmt;
 853	ch->index = index;
 854	ch->hwidx = hwidx;
 855	ch->timer_bit = hwidx;
 856
 857	/*
 858	 * Compute the address of the channel control register block. For the
 859	 * timers with a per-channel start/stop register, compute its address
 860	 * as well.
 861	 */
 862	switch (cmt->info->model) {
 863	case SH_CMT_16BIT:
 864		ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
 865		break;
 866	case SH_CMT_32BIT:
 867	case SH_CMT_48BIT:
 868		ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
 869		break;
 870	case SH_CMT0_RCAR_GEN2:
 871	case SH_CMT1_RCAR_GEN2:
 872		ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
 873		ch->ioctrl = ch->iostart + 0x10;
 874		ch->timer_bit = 0;
 875		break;
 876	}
 877
 878	if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
 879		ch->max_match_value = ~0;
 880	else
 881		ch->max_match_value = (1 << cmt->info->width) - 1;
 882
 883	ch->match_value = ch->max_match_value;
 884	raw_spin_lock_init(&ch->lock);
 885
 886	ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
 887			      clockevent, clocksource);
 888	if (ret) {
 889		dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
 890			ch->index);
 891		return ret;
 892	}
 893	ch->cs_enabled = false;
 894
 895	return 0;
 896}
 897
 898static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
 899{
 900	struct resource *mem;
 901
 902	mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
 903	if (!mem) {
 904		dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
 905		return -ENXIO;
 906	}
 907
 908	cmt->mapbase = ioremap(mem->start, resource_size(mem));
 909	if (cmt->mapbase == NULL) {
 910		dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
 911		return -ENXIO;
 
 912	}
 913
 914	return 0;
 915}
 916
 917static const struct platform_device_id sh_cmt_id_table[] = {
 918	{ "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
 919	{ "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
 920	{ }
 921};
 922MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
 923
 924static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
 925	{
 926		/* deprecated, preserved for backward compatibility */
 927		.compatible = "renesas,cmt-48",
 928		.data = &sh_cmt_info[SH_CMT_48BIT]
 929	},
 930	{
 931		/* deprecated, preserved for backward compatibility */
 932		.compatible = "renesas,cmt-48-gen2",
 933		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 934	},
 935	{
 936		.compatible = "renesas,r8a7740-cmt1",
 937		.data = &sh_cmt_info[SH_CMT_48BIT]
 938	},
 939	{
 940		.compatible = "renesas,sh73a0-cmt1",
 941		.data = &sh_cmt_info[SH_CMT_48BIT]
 942	},
 943	{
 944		.compatible = "renesas,rcar-gen2-cmt0",
 945		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 946	},
 947	{
 948		.compatible = "renesas,rcar-gen2-cmt1",
 949		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 950	},
 951	{
 952		.compatible = "renesas,rcar-gen3-cmt0",
 953		.data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
 954	},
 955	{
 956		.compatible = "renesas,rcar-gen3-cmt1",
 957		.data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
 958	},
 959	{ }
 960};
 961MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
 962
 963static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
 964{
 965	unsigned int mask;
 966	unsigned int i;
 967	int ret;
 968
 969	cmt->pdev = pdev;
 970	raw_spin_lock_init(&cmt->lock);
 
 
 
 
 
 
 
 
 
 
 
 971
 972	if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
 973		cmt->info = of_device_get_match_data(&pdev->dev);
 974		cmt->hw_channels = cmt->info->channels_mask;
 975	} else if (pdev->dev.platform_data) {
 976		struct sh_timer_config *cfg = pdev->dev.platform_data;
 977		const struct platform_device_id *id = pdev->id_entry;
 978
 979		cmt->info = (const struct sh_cmt_info *)id->driver_data;
 980		cmt->hw_channels = cfg->channels_mask;
 
 
 981	} else {
 982		dev_err(&cmt->pdev->dev, "missing platform data\n");
 983		return -ENXIO;
 984	}
 985
 986	/* Get hold of clock. */
 987	cmt->clk = clk_get(&cmt->pdev->dev, "fck");
 988	if (IS_ERR(cmt->clk)) {
 989		dev_err(&cmt->pdev->dev, "cannot get clock\n");
 990		return PTR_ERR(cmt->clk);
 
 
 
 
 
 
 
 991	}
 992
 993	ret = clk_prepare(cmt->clk);
 994	if (ret < 0)
 995		goto err_clk_put;
 996
 997	/* Determine clock rate. */
 998	ret = clk_enable(cmt->clk);
 999	if (ret < 0)
1000		goto err_clk_unprepare;
1001
1002	if (cmt->info->width == 16)
1003		cmt->rate = clk_get_rate(cmt->clk) / 512;
1004	else
1005		cmt->rate = clk_get_rate(cmt->clk) / 8;
1006
1007	clk_disable(cmt->clk);
1008
1009	/* Map the memory resource(s). */
1010	ret = sh_cmt_map_memory(cmt);
1011	if (ret < 0)
1012		goto err_clk_unprepare;
1013
1014	/* Allocate and setup the channels. */
1015	cmt->num_channels = hweight8(cmt->hw_channels);
1016	cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1017				GFP_KERNEL);
1018	if (cmt->channels == NULL) {
1019		ret = -ENOMEM;
1020		goto err_unmap;
1021	}
 
1022
1023	/*
1024	 * Use the first channel as a clock event device and the second channel
1025	 * as a clock source. If only one channel is available use it for both.
1026	 */
1027	for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1028		unsigned int hwidx = ffs(mask) - 1;
1029		bool clocksource = i == 1 || cmt->num_channels == 1;
1030		bool clockevent = i == 0;
1031
1032		ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1033					   clockevent, clocksource, cmt);
1034		if (ret < 0)
1035			goto err_unmap;
1036
1037		mask &= ~(1 << hwidx);
1038	}
1039
1040	platform_set_drvdata(pdev, cmt);
1041
1042	return 0;
1043
1044err_unmap:
1045	kfree(cmt->channels);
1046	iounmap(cmt->mapbase);
1047err_clk_unprepare:
1048	clk_unprepare(cmt->clk);
1049err_clk_put:
1050	clk_put(cmt->clk);
 
1051	return ret;
1052}
1053
1054static int sh_cmt_probe(struct platform_device *pdev)
1055{
1056	struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
 
1057	int ret;
1058
1059	if (!is_sh_early_platform_device(pdev)) {
1060		pm_runtime_set_active(&pdev->dev);
1061		pm_runtime_enable(&pdev->dev);
1062	}
1063
1064	if (cmt) {
1065		dev_info(&pdev->dev, "kept as earlytimer\n");
1066		goto out;
1067	}
1068
1069	cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1070	if (cmt == NULL)
 
1071		return -ENOMEM;
 
1072
1073	ret = sh_cmt_setup(cmt, pdev);
1074	if (ret) {
1075		kfree(cmt);
1076		pm_runtime_idle(&pdev->dev);
1077		return ret;
1078	}
1079	if (is_sh_early_platform_device(pdev))
1080		return 0;
1081
1082 out:
1083	if (cmt->has_clockevent || cmt->has_clocksource)
1084		pm_runtime_irq_safe(&pdev->dev);
1085	else
1086		pm_runtime_idle(&pdev->dev);
1087
1088	return 0;
1089}
1090
1091static int sh_cmt_remove(struct platform_device *pdev)
1092{
1093	return -EBUSY; /* cannot unregister clockevent and clocksource */
1094}
1095
1096static struct platform_driver sh_cmt_device_driver = {
1097	.probe		= sh_cmt_probe,
1098	.remove		= sh_cmt_remove,
1099	.driver		= {
1100		.name	= "sh_cmt",
1101		.of_match_table = of_match_ptr(sh_cmt_of_table),
1102	},
1103	.id_table	= sh_cmt_id_table,
1104};
1105
1106static int __init sh_cmt_init(void)
1107{
1108	return platform_driver_register(&sh_cmt_device_driver);
1109}
1110
1111static void __exit sh_cmt_exit(void)
1112{
1113	platform_driver_unregister(&sh_cmt_device_driver);
1114}
1115
1116#ifdef CONFIG_SUPERH
1117sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
1118#endif
1119
1120subsys_initcall(sh_cmt_init);
1121module_exit(sh_cmt_exit);
1122
1123MODULE_AUTHOR("Magnus Damm");
1124MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1125MODULE_LICENSE("GPL v2");
v3.15
 
  1/*
  2 * SuperH Timer Support - CMT
  3 *
  4 *  Copyright (C) 2008 Magnus Damm
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License
  9 *
 10 * This program is distributed in the hope that it will be useful,
 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 13 * GNU General Public License for more details.
 14 *
 15 * You should have received a copy of the GNU General Public License
 16 * along with this program; if not, write to the Free Software
 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
 18 */
 19
 
 
 
 
 
 20#include <linux/init.h>
 21#include <linux/platform_device.h>
 22#include <linux/spinlock.h>
 23#include <linux/interrupt.h>
 
 24#include <linux/ioport.h>
 25#include <linux/io.h>
 26#include <linux/clk.h>
 27#include <linux/irq.h>
 28#include <linux/err.h>
 29#include <linux/delay.h>
 30#include <linux/clocksource.h>
 31#include <linux/clockchips.h>
 32#include <linux/sh_timer.h>
 33#include <linux/slab.h>
 34#include <linux/module.h>
 
 
 
 35#include <linux/pm_domain.h>
 36#include <linux/pm_runtime.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 37
 38struct sh_cmt_priv {
 39	void __iomem *mapbase;
 40	void __iomem *mapbase_str;
 41	struct clk *clk;
 42	unsigned long width; /* 16 or 32 bit version of hardware block */
 43	unsigned long overflow_bit;
 44	unsigned long clear_bits;
 45	struct irqaction irqaction;
 46	struct platform_device *pdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 47
 
 48	unsigned long flags;
 49	unsigned long match_value;
 50	unsigned long next_match_value;
 51	unsigned long max_match_value;
 52	unsigned long rate;
 53	raw_spinlock_t lock;
 54	struct clock_event_device ced;
 55	struct clocksource cs;
 56	unsigned long total_cycles;
 57	bool cs_enabled;
 
 
 
 
 58
 59	/* callbacks for CMSTR and CMCSR access */
 60	unsigned long (*read_control)(void __iomem *base, unsigned long offs);
 61	void (*write_control)(void __iomem *base, unsigned long offs,
 62			      unsigned long value);
 
 
 
 
 
 
 
 63
 64	/* callbacks for CMCNT and CMCOR access */
 65	unsigned long (*read_count)(void __iomem *base, unsigned long offs);
 66	void (*write_count)(void __iomem *base, unsigned long offs,
 67			    unsigned long value);
 68};
 69
 70/* Examples of supported CMT timer register layouts and I/O access widths:
 71 *
 72 * "16-bit counter and 16-bit control" as found on sh7263:
 73 * CMSTR 0xfffec000 16-bit
 74 * CMCSR 0xfffec002 16-bit
 75 * CMCNT 0xfffec004 16-bit
 76 * CMCOR 0xfffec006 16-bit
 77 *
 78 * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
 79 * CMSTR 0xffca0000 16-bit
 80 * CMCSR 0xffca0060 16-bit
 81 * CMCNT 0xffca0064 32-bit
 82 * CMCOR 0xffca0068 32-bit
 83 *
 84 * "32-bit counter and 32-bit control" as found on r8a73a4 and r8a7790:
 85 * CMSTR 0xffca0500 32-bit
 86 * CMCSR 0xffca0510 32-bit
 87 * CMCNT 0xffca0514 32-bit
 88 * CMCOR 0xffca0518 32-bit
 89 */
 
 
 
 
 
 
 
 90
 91static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
 92{
 93	return ioread16(base + (offs << 1));
 94}
 95
 96static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
 97{
 98	return ioread32(base + (offs << 2));
 99}
100
101static void sh_cmt_write16(void __iomem *base, unsigned long offs,
102			   unsigned long value)
103{
104	iowrite16(value, base + (offs << 1));
105}
106
107static void sh_cmt_write32(void __iomem *base, unsigned long offs,
108			   unsigned long value)
109{
110	iowrite32(value, base + (offs << 2));
111}
112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113#define CMCSR 0 /* channel register */
114#define CMCNT 1 /* channel register */
115#define CMCOR 2 /* channel register */
116
117static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
118{
119	return p->read_control(p->mapbase_str, 0);
 
 
 
120}
121
122static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
123{
124	return p->read_control(p->mapbase, CMCSR);
 
 
 
125}
126
127static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
128{
129	return p->read_count(p->mapbase, CMCNT);
130}
131
132static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
133				      unsigned long value)
134{
135	p->write_control(p->mapbase_str, 0, value);
136}
137
138static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
139				      unsigned long value)
140{
141	p->write_control(p->mapbase, CMCSR, value);
142}
143
144static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
145				      unsigned long value)
146{
147	p->write_count(p->mapbase, CMCNT, value);
148}
149
150static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
151				      unsigned long value)
152{
153	p->write_count(p->mapbase, CMCOR, value);
154}
155
156static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
157					int *has_wrapped)
158{
159	unsigned long v1, v2, v3;
160	int o1, o2;
161
162	o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
163
164	/* Make sure the timer value is stable. Stolen from acpi_pm.c */
165	do {
166		o2 = o1;
167		v1 = sh_cmt_read_cmcnt(p);
168		v2 = sh_cmt_read_cmcnt(p);
169		v3 = sh_cmt_read_cmcnt(p);
170		o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
171	} while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
172			  || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
173
174	*has_wrapped = o1;
175	return v2;
176}
177
178static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
179
180static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
181{
182	struct sh_timer_config *cfg = p->pdev->dev.platform_data;
183	unsigned long flags, value;
184
185	/* start stop register shared by multiple timer channels */
186	raw_spin_lock_irqsave(&sh_cmt_lock, flags);
187	value = sh_cmt_read_cmstr(p);
188
189	if (start)
190		value |= 1 << cfg->timer_bit;
191	else
192		value &= ~(1 << cfg->timer_bit);
193
194	sh_cmt_write_cmstr(p, value);
195	raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
196}
197
198static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
199{
200	int k, ret;
201
202	pm_runtime_get_sync(&p->pdev->dev);
203	dev_pm_syscore_device(&p->pdev->dev, true);
204
205	/* enable clock */
206	ret = clk_enable(p->clk);
207	if (ret) {
208		dev_err(&p->pdev->dev, "cannot enable clock\n");
 
209		goto err0;
210	}
211
212	/* make sure channel is disabled */
213	sh_cmt_start_stop_ch(p, 0);
214
215	/* configure channel, periodic mode and maximum timeout */
216	if (p->width == 16) {
217		*rate = clk_get_rate(p->clk) / 512;
218		sh_cmt_write_cmcsr(p, 0x43);
219	} else {
220		*rate = clk_get_rate(p->clk) / 8;
221		sh_cmt_write_cmcsr(p, 0x01a4);
 
 
222	}
223
224	sh_cmt_write_cmcor(p, 0xffffffff);
225	sh_cmt_write_cmcnt(p, 0);
226
227	/*
228	 * According to the sh73a0 user's manual, as CMCNT can be operated
229	 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
230	 * modifying CMCNT register; two RCLK cycles are necessary before
231	 * this register is either read or any modification of the value
232	 * it holds is reflected in the LSI's actual operation.
233	 *
234	 * While at it, we're supposed to clear out the CMCNT as of this
235	 * moment, so make sure it's processed properly here.  This will
236	 * take RCLKx2 at maximum.
237	 */
238	for (k = 0; k < 100; k++) {
239		if (!sh_cmt_read_cmcnt(p))
240			break;
241		udelay(1);
242	}
243
244	if (sh_cmt_read_cmcnt(p)) {
245		dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
 
246		ret = -ETIMEDOUT;
247		goto err1;
248	}
249
250	/* enable channel */
251	sh_cmt_start_stop_ch(p, 1);
252	return 0;
253 err1:
254	/* stop clock */
255	clk_disable(p->clk);
256
257 err0:
258	return ret;
259}
260
261static void sh_cmt_disable(struct sh_cmt_priv *p)
262{
263	/* disable channel */
264	sh_cmt_start_stop_ch(p, 0);
265
266	/* disable interrupts in CMT block */
267	sh_cmt_write_cmcsr(p, 0);
268
269	/* stop clock */
270	clk_disable(p->clk);
271
272	dev_pm_syscore_device(&p->pdev->dev, false);
273	pm_runtime_put(&p->pdev->dev);
274}
275
276/* private flags */
277#define FLAG_CLOCKEVENT (1 << 0)
278#define FLAG_CLOCKSOURCE (1 << 1)
279#define FLAG_REPROGRAM (1 << 2)
280#define FLAG_SKIPEVENT (1 << 3)
281#define FLAG_IRQCONTEXT (1 << 4)
282
283static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
284					      int absolute)
285{
286	unsigned long new_match;
287	unsigned long value = p->next_match_value;
288	unsigned long delay = 0;
289	unsigned long now = 0;
290	int has_wrapped;
291
292	now = sh_cmt_get_counter(p, &has_wrapped);
293	p->flags |= FLAG_REPROGRAM; /* force reprogram */
294
295	if (has_wrapped) {
296		/* we're competing with the interrupt handler.
297		 *  -> let the interrupt handler reprogram the timer.
298		 *  -> interrupt number two handles the event.
299		 */
300		p->flags |= FLAG_SKIPEVENT;
301		return;
302	}
303
304	if (absolute)
305		now = 0;
306
307	do {
308		/* reprogram the timer hardware,
309		 * but don't save the new match value yet.
310		 */
311		new_match = now + value + delay;
312		if (new_match > p->max_match_value)
313			new_match = p->max_match_value;
314
315		sh_cmt_write_cmcor(p, new_match);
316
317		now = sh_cmt_get_counter(p, &has_wrapped);
318		if (has_wrapped && (new_match > p->match_value)) {
319			/* we are changing to a greater match value,
320			 * so this wrap must be caused by the counter
321			 * matching the old value.
322			 * -> first interrupt reprograms the timer.
323			 * -> interrupt number two handles the event.
324			 */
325			p->flags |= FLAG_SKIPEVENT;
326			break;
327		}
328
329		if (has_wrapped) {
330			/* we are changing to a smaller match value,
331			 * so the wrap must be caused by the counter
332			 * matching the new value.
333			 * -> save programmed match value.
334			 * -> let isr handle the event.
335			 */
336			p->match_value = new_match;
337			break;
338		}
339
340		/* be safe: verify hardware settings */
341		if (now < new_match) {
342			/* timer value is below match value, all good.
343			 * this makes sure we won't miss any match events.
344			 * -> save programmed match value.
345			 * -> let isr handle the event.
346			 */
347			p->match_value = new_match;
348			break;
349		}
350
351		/* the counter has reached a value greater
352		 * than our new match value. and since the
353		 * has_wrapped flag isn't set we must have
354		 * programmed a too close event.
355		 * -> increase delay and retry.
356		 */
357		if (delay)
358			delay <<= 1;
359		else
360			delay = 1;
361
362		if (!delay)
363			dev_warn(&p->pdev->dev, "too long delay\n");
 
364
365	} while (delay);
366}
367
368static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
369{
370	if (delta > p->max_match_value)
371		dev_warn(&p->pdev->dev, "delta out of range\n");
 
372
373	p->next_match_value = delta;
374	sh_cmt_clock_event_program_verify(p, 0);
375}
376
377static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
378{
379	unsigned long flags;
380
381	raw_spin_lock_irqsave(&p->lock, flags);
382	__sh_cmt_set_next(p, delta);
383	raw_spin_unlock_irqrestore(&p->lock, flags);
384}
385
386static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
387{
388	struct sh_cmt_priv *p = dev_id;
389
390	/* clear flags */
391	sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
 
392
393	/* update clock source counter to begin with if enabled
394	 * the wrap flag should be cleared by the timer specific
395	 * isr before we end up here.
396	 */
397	if (p->flags & FLAG_CLOCKSOURCE)
398		p->total_cycles += p->match_value + 1;
399
400	if (!(p->flags & FLAG_REPROGRAM))
401		p->next_match_value = p->max_match_value;
402
403	p->flags |= FLAG_IRQCONTEXT;
404
405	if (p->flags & FLAG_CLOCKEVENT) {
406		if (!(p->flags & FLAG_SKIPEVENT)) {
407			if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
408				p->next_match_value = p->max_match_value;
409				p->flags |= FLAG_REPROGRAM;
410			}
411
412			p->ced.event_handler(&p->ced);
413		}
414	}
415
416	p->flags &= ~FLAG_SKIPEVENT;
417
418	if (p->flags & FLAG_REPROGRAM) {
419		p->flags &= ~FLAG_REPROGRAM;
420		sh_cmt_clock_event_program_verify(p, 1);
421
422		if (p->flags & FLAG_CLOCKEVENT)
423			if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
424			    || (p->match_value == p->next_match_value))
425				p->flags &= ~FLAG_REPROGRAM;
426	}
427
428	p->flags &= ~FLAG_IRQCONTEXT;
429
430	return IRQ_HANDLED;
431}
432
433static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
434{
435	int ret = 0;
436	unsigned long flags;
437
438	raw_spin_lock_irqsave(&p->lock, flags);
439
440	if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
441		ret = sh_cmt_enable(p, &p->rate);
442
443	if (ret)
444		goto out;
445	p->flags |= flag;
446
447	/* setup timeout if no clockevent */
448	if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
449		__sh_cmt_set_next(p, p->max_match_value);
450 out:
451	raw_spin_unlock_irqrestore(&p->lock, flags);
452
453	return ret;
454}
455
456static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
457{
458	unsigned long flags;
459	unsigned long f;
460
461	raw_spin_lock_irqsave(&p->lock, flags);
462
463	f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
464	p->flags &= ~flag;
465
466	if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
467		sh_cmt_disable(p);
468
469	/* adjust the timeout to maximum if only clocksource left */
470	if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
471		__sh_cmt_set_next(p, p->max_match_value);
472
473	raw_spin_unlock_irqrestore(&p->lock, flags);
474}
475
476static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
477{
478	return container_of(cs, struct sh_cmt_priv, cs);
479}
480
481static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
482{
483	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
484	unsigned long flags, raw;
485	unsigned long value;
486	int has_wrapped;
487
488	raw_spin_lock_irqsave(&p->lock, flags);
489	value = p->total_cycles;
490	raw = sh_cmt_get_counter(p, &has_wrapped);
 
491
492	if (unlikely(has_wrapped))
493		raw += p->match_value + 1;
494	raw_spin_unlock_irqrestore(&p->lock, flags);
495
496	return value + raw;
497}
498
499static int sh_cmt_clocksource_enable(struct clocksource *cs)
500{
501	int ret;
502	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
503
504	WARN_ON(p->cs_enabled);
505
506	p->total_cycles = 0;
 
 
 
 
507
508	ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
509	if (!ret) {
510		__clocksource_updatefreq_hz(cs, p->rate);
511		p->cs_enabled = true;
512	}
513	return ret;
514}
515
516static void sh_cmt_clocksource_disable(struct clocksource *cs)
517{
518	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
519
520	WARN_ON(!p->cs_enabled);
521
522	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
523	p->cs_enabled = false;
524}
525
526static void sh_cmt_clocksource_suspend(struct clocksource *cs)
527{
528	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
529
530	sh_cmt_stop(p, FLAG_CLOCKSOURCE);
531	pm_genpd_syscore_poweroff(&p->pdev->dev);
 
 
 
532}
533
534static void sh_cmt_clocksource_resume(struct clocksource *cs)
535{
536	struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
537
538	pm_genpd_syscore_poweron(&p->pdev->dev);
539	sh_cmt_start(p, FLAG_CLOCKSOURCE);
 
 
 
540}
541
542static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
543				       char *name, unsigned long rating)
544{
545	struct clocksource *cs = &p->cs;
546
547	cs->name = name;
548	cs->rating = rating;
549	cs->read = sh_cmt_clocksource_read;
550	cs->enable = sh_cmt_clocksource_enable;
551	cs->disable = sh_cmt_clocksource_disable;
552	cs->suspend = sh_cmt_clocksource_suspend;
553	cs->resume = sh_cmt_clocksource_resume;
554	cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
555	cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
556
557	dev_info(&p->pdev->dev, "used as clock source\n");
 
558
559	/* Register with dummy 1 Hz value, gets updated in ->enable() */
560	clocksource_register_hz(cs, 1);
561	return 0;
562}
563
564static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
565{
566	return container_of(ced, struct sh_cmt_priv, ced);
567}
568
569static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
570{
571	struct clock_event_device *ced = &p->ced;
572
573	sh_cmt_start(p, FLAG_CLOCKEVENT);
 
 
 
 
574
575	/* TODO: calculate good shift from rate and counter bit width */
 
 
576
577	ced->shift = 32;
578	ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
579	ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
580	ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
581
582	if (periodic)
583		sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
584	else
585		sh_cmt_set_next(p, p->max_match_value);
586}
587
588static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
589				    struct clock_event_device *ced)
590{
591	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
592
593	/* deal with old setting first */
594	switch (ced->mode) {
595	case CLOCK_EVT_MODE_PERIODIC:
596	case CLOCK_EVT_MODE_ONESHOT:
597		sh_cmt_stop(p, FLAG_CLOCKEVENT);
598		break;
599	default:
600		break;
601	}
 
 
 
 
 
602
603	switch (mode) {
604	case CLOCK_EVT_MODE_PERIODIC:
605		dev_info(&p->pdev->dev, "used for periodic clock events\n");
606		sh_cmt_clock_event_start(p, 1);
607		break;
608	case CLOCK_EVT_MODE_ONESHOT:
609		dev_info(&p->pdev->dev, "used for oneshot clock events\n");
610		sh_cmt_clock_event_start(p, 0);
611		break;
612	case CLOCK_EVT_MODE_SHUTDOWN:
613	case CLOCK_EVT_MODE_UNUSED:
614		sh_cmt_stop(p, FLAG_CLOCKEVENT);
615		break;
616	default:
617		break;
618	}
619}
620
621static int sh_cmt_clock_event_next(unsigned long delta,
622				   struct clock_event_device *ced)
623{
624	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
625
626	BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
627	if (likely(p->flags & FLAG_IRQCONTEXT))
628		p->next_match_value = delta - 1;
629	else
630		sh_cmt_set_next(p, delta - 1);
631
632	return 0;
633}
634
635static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
636{
637	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
638
639	pm_genpd_syscore_poweroff(&p->pdev->dev);
640	clk_unprepare(p->clk);
641}
642
643static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
644{
645	struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
646
647	clk_prepare(p->clk);
648	pm_genpd_syscore_poweron(&p->pdev->dev);
649}
650
651static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
652				       char *name, unsigned long rating)
653{
654	struct clock_event_device *ced = &p->ced;
 
 
655
656	memset(ced, 0, sizeof(*ced));
 
 
 
 
 
 
 
 
 
 
 
657
658	ced->name = name;
659	ced->features = CLOCK_EVT_FEAT_PERIODIC;
660	ced->features |= CLOCK_EVT_FEAT_ONESHOT;
661	ced->rating = rating;
662	ced->cpumask = cpumask_of(0);
663	ced->set_next_event = sh_cmt_clock_event_next;
664	ced->set_mode = sh_cmt_clock_event_mode;
 
 
665	ced->suspend = sh_cmt_clock_event_suspend;
666	ced->resume = sh_cmt_clock_event_resume;
667
668	dev_info(&p->pdev->dev, "used for clock events\n");
 
 
 
 
 
 
 
 
 
669	clockevents_register_device(ced);
 
 
670}
671
672static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
673			   unsigned long clockevent_rating,
674			   unsigned long clocksource_rating)
675{
676	if (clockevent_rating)
677		sh_cmt_register_clockevent(p, name, clockevent_rating);
678
679	if (clocksource_rating)
680		sh_cmt_register_clocksource(p, name, clocksource_rating);
 
 
 
 
 
 
 
 
 
681
682	return 0;
683}
684
685static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
 
 
686{
687	struct sh_timer_config *cfg = pdev->dev.platform_data;
688	struct resource *res, *res2;
689	int irq, ret;
690	ret = -ENXIO;
691
692	memset(p, 0, sizeof(*p));
693	p->pdev = pdev;
 
694
695	if (!cfg) {
696		dev_err(&p->pdev->dev, "missing platform data\n");
697		goto err0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
698	}
699
700	res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
701	if (!res) {
702		dev_err(&p->pdev->dev, "failed to get I/O memory\n");
703		goto err0;
 
 
 
 
 
 
 
 
 
 
704	}
 
705
706	/* optional resource for the shared timer start/stop register */
707	res2 = platform_get_resource(p->pdev, IORESOURCE_MEM, 1);
708
709	irq = platform_get_irq(p->pdev, 0);
710	if (irq < 0) {
711		dev_err(&p->pdev->dev, "failed to get irq\n");
712		goto err0;
 
 
 
 
713	}
714
715	/* map memory, let mapbase point to our channel */
716	p->mapbase = ioremap_nocache(res->start, resource_size(res));
717	if (p->mapbase == NULL) {
718		dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
719		goto err0;
720	}
721
722	/* map second resource for CMSTR */
723	p->mapbase_str = ioremap_nocache(res2 ? res2->start :
724					 res->start - cfg->channel_offset,
725					 res2 ? resource_size(res2) : 2);
726	if (p->mapbase_str == NULL) {
727		dev_err(&p->pdev->dev, "failed to remap I/O second memory\n");
728		goto err1;
729	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730
731	/* request irq using setup_irq() (too early for request_irq()) */
732	p->irqaction.name = dev_name(&p->pdev->dev);
733	p->irqaction.handler = sh_cmt_interrupt;
734	p->irqaction.dev_id = p;
735	p->irqaction.flags = IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING;
736
737	/* get hold of clock */
738	p->clk = clk_get(&p->pdev->dev, "cmt_fck");
739	if (IS_ERR(p->clk)) {
740		dev_err(&p->pdev->dev, "cannot get clock\n");
741		ret = PTR_ERR(p->clk);
742		goto err2;
743	}
744
745	ret = clk_prepare(p->clk);
746	if (ret < 0)
747		goto err3;
 
 
 
748
749	if (res2 && (resource_size(res2) == 4)) {
750		/* assume both CMSTR and CMCSR to be 32-bit */
751		p->read_control = sh_cmt_read32;
752		p->write_control = sh_cmt_write32;
753	} else {
754		p->read_control = sh_cmt_read16;
755		p->write_control = sh_cmt_write16;
756	}
757
758	if (resource_size(res) == 6) {
759		p->width = 16;
760		p->read_count = sh_cmt_read16;
761		p->write_count = sh_cmt_write16;
762		p->overflow_bit = 0x80;
763		p->clear_bits = ~0x80;
764	} else {
765		p->width = 32;
766		p->read_count = sh_cmt_read32;
767		p->write_count = sh_cmt_write32;
768		p->overflow_bit = 0x8000;
769		p->clear_bits = ~0xc000;
770	}
771
772	if (p->width == (sizeof(p->max_match_value) * 8))
773		p->max_match_value = ~0;
 
 
 
 
 
 
 
 
 
774	else
775		p->max_match_value = (1 << p->width) - 1;
776
777	p->match_value = p->max_match_value;
778	raw_spin_lock_init(&p->lock);
 
 
 
 
779
780	ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
781			      cfg->clockevent_rating,
782			      cfg->clocksource_rating);
783	if (ret) {
784		dev_err(&p->pdev->dev, "registration failed\n");
785		goto err4;
 
786	}
787	p->cs_enabled = false;
788
789	ret = setup_irq(irq, &p->irqaction);
790	if (ret) {
791		dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
792		goto err4;
 
 
 
 
 
 
 
 
 
 
 
793	}
794
795	platform_set_drvdata(pdev, p);
796
797	return 0;
798err4:
799	clk_unprepare(p->clk);
800err3:
801	clk_put(p->clk);
802err2:
803	iounmap(p->mapbase_str);
804err1:
805	iounmap(p->mapbase);
806err0:
807	return ret;
808}
809
810static int sh_cmt_probe(struct platform_device *pdev)
811{
812	struct sh_cmt_priv *p = platform_get_drvdata(pdev);
813	struct sh_timer_config *cfg = pdev->dev.platform_data;
814	int ret;
815
816	if (!is_early_platform_device(pdev)) {
817		pm_runtime_set_active(&pdev->dev);
818		pm_runtime_enable(&pdev->dev);
819	}
820
821	if (p) {
822		dev_info(&pdev->dev, "kept as earlytimer\n");
823		goto out;
824	}
825
826	p = kmalloc(sizeof(*p), GFP_KERNEL);
827	if (p == NULL) {
828		dev_err(&pdev->dev, "failed to allocate driver data\n");
829		return -ENOMEM;
830	}
831
832	ret = sh_cmt_setup(p, pdev);
833	if (ret) {
834		kfree(p);
835		pm_runtime_idle(&pdev->dev);
836		return ret;
837	}
838	if (is_early_platform_device(pdev))
839		return 0;
840
841 out:
842	if (cfg->clockevent_rating || cfg->clocksource_rating)
843		pm_runtime_irq_safe(&pdev->dev);
844	else
845		pm_runtime_idle(&pdev->dev);
846
847	return 0;
848}
849
850static int sh_cmt_remove(struct platform_device *pdev)
851{
852	return -EBUSY; /* cannot unregister clockevent and clocksource */
853}
854
855static struct platform_driver sh_cmt_device_driver = {
856	.probe		= sh_cmt_probe,
857	.remove		= sh_cmt_remove,
858	.driver		= {
859		.name	= "sh_cmt",
860	}
 
 
861};
862
863static int __init sh_cmt_init(void)
864{
865	return platform_driver_register(&sh_cmt_device_driver);
866}
867
868static void __exit sh_cmt_exit(void)
869{
870	platform_driver_unregister(&sh_cmt_device_driver);
871}
872
873early_platform_init("earlytimer", &sh_cmt_device_driver);
 
 
 
874subsys_initcall(sh_cmt_init);
875module_exit(sh_cmt_exit);
876
877MODULE_AUTHOR("Magnus Damm");
878MODULE_DESCRIPTION("SuperH CMT Timer Driver");
879MODULE_LICENSE("GPL v2");