Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
  33MODULE_SUPPORTED_DEVICE("{{C-Media,CMI8738},"
  34		"{C-Media,CMI8738B},"
  35		"{C-Media,CMI8338A},"
  36		"{C-Media,CMI8338B}}");
  37
  38#if IS_REACHABLE(CONFIG_GAMEPORT)
  39#define SUPPORT_JOYSTICK 1
  40#endif
  41
  42static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  43static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  44static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
  45static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
  46static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  47static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  48#ifdef SUPPORT_JOYSTICK
  49static int joystick_port[SNDRV_CARDS];
  50#endif
  51
  52module_param_array(index, int, NULL, 0444);
  53MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  54module_param_array(id, charp, NULL, 0444);
  55MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  56module_param_array(enable, bool, NULL, 0444);
  57MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  58module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  59MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  60module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  61MODULE_PARM_DESC(fm_port, "FM port.");
  62module_param_array(soft_ac3, bool, NULL, 0444);
  63MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  64#ifdef SUPPORT_JOYSTICK
  65module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  66MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  67#endif
  68
  69/*
  70 * CM8x38 registers definition
  71 */
  72
  73#define CM_REG_FUNCTRL0		0x00
  74#define CM_RST_CH1		0x00080000
  75#define CM_RST_CH0		0x00040000
  76#define CM_CHEN1		0x00020000	/* ch1: enable */
  77#define CM_CHEN0		0x00010000	/* ch0: enable */
  78#define CM_PAUSE1		0x00000008	/* ch1: pause */
  79#define CM_PAUSE0		0x00000004	/* ch0: pause */
  80#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
  81#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
  82
  83#define CM_REG_FUNCTRL1		0x04
  84#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
  85#define CM_DSFC_SHIFT		13
  86#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
  87#define CM_ASFC_SHIFT		10
  88#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
  89#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
  90#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
  91#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
  92#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
  93#define CM_BREQ			0x00000010	/* bus master enabled */
  94#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
  95#define CM_UART_EN		0x00000004	/* legacy UART */
  96#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
  97#define CM_ZVPORT		0x00000001	/* ZVPORT */
  98
  99#define CM_REG_CHFORMAT		0x08
 100
 101#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
 102#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
 103#define CM_CHB3D		0x20000000	/* 4 channels */
 104
 105#define CM_CHIP_MASK1		0x1f000000
 106#define CM_CHIP_037		0x01000000
 107#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
 108#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
 109#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
 110#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
 111#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
 112#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
 113/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
 114
 115#define CM_ADCBITLEN_MASK	0x0000C000	
 116#define CM_ADCBITLEN_16		0x00000000
 117#define CM_ADCBITLEN_15		0x00004000
 118#define CM_ADCBITLEN_14		0x00008000
 119#define CM_ADCBITLEN_13		0x0000C000
 120
 121#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
 122#define CM_ADCDACLEN_060	0x00000000
 123#define CM_ADCDACLEN_066	0x00001000
 124#define CM_ADCDACLEN_130	0x00002000
 125#define CM_ADCDACLEN_280	0x00003000
 126
 127#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
 128#define CM_ADCDLEN_ORIGINAL	0x00000000
 129#define CM_ADCDLEN_EXTRA	0x00001000
 130#define CM_ADCDLEN_24K		0x00002000
 131#define CM_ADCDLEN_WEIGHT	0x00003000
 132
 133#define CM_CH1_SRATE_176K	0x00000800
 134#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
 135#define CM_CH1_SRATE_88K	0x00000400
 136#define CM_CH0_SRATE_176K	0x00000200
 137#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
 138#define CM_CH0_SRATE_88K	0x00000100
 139#define CM_CH0_SRATE_128K	0x00000300
 140#define CM_CH0_SRATE_MASK	0x00000300
 141
 142#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
 143#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
 144#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
 145#define CM_SPDLOCKED		0x00000010
 146
 147#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
 148#define CM_CH1FMT_SHIFT		2
 149#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
 150#define CM_CH0FMT_SHIFT		0
 151
 152#define CM_REG_INT_HLDCLR	0x0C
 153#define CM_CHIP_MASK2		0xff000000
 154#define CM_CHIP_8768		0x20000000
 155#define CM_CHIP_055		0x08000000
 156#define CM_CHIP_039		0x04000000
 157#define CM_CHIP_039_6CH		0x01000000
 158#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
 159#define CM_TDMA_INT_EN		0x00040000
 160#define CM_CH1_INT_EN		0x00020000
 161#define CM_CH0_INT_EN		0x00010000
 162
 163#define CM_REG_INT_STATUS	0x10
 164#define CM_INTR			0x80000000
 165#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
 166#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
 167#define CM_UARTINT		0x00010000
 168#define CM_LTDMAINT		0x00008000
 169#define CM_HTDMAINT		0x00004000
 170#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
 171#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
 172#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
 173#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
 174#define CM_CH1BUSY		0x00000008
 175#define CM_CH0BUSY		0x00000004
 176#define CM_CHINT1		0x00000002
 177#define CM_CHINT0		0x00000001
 178
 179#define CM_REG_LEGACY_CTRL	0x14
 180#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
 181#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
 182#define CM_VMPU_330		0x00000000
 183#define CM_VMPU_320		0x20000000
 184#define CM_VMPU_310		0x40000000
 185#define CM_VMPU_300		0x60000000
 186#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
 187#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
 188#define CM_VSBSEL_220		0x00000000
 189#define CM_VSBSEL_240		0x04000000
 190#define CM_VSBSEL_260		0x08000000
 191#define CM_VSBSEL_280		0x0C000000
 192#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
 193#define CM_FMSEL_388		0x00000000
 194#define CM_FMSEL_3C8		0x01000000
 195#define CM_FMSEL_3E0		0x02000000
 196#define CM_FMSEL_3E8		0x03000000
 197#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
 198#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
 199#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
 200#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
 201#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 202#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
 203#define CM_C_EECS		0x00040000
 204#define CM_C_EEDI46		0x00020000
 205#define CM_C_EECK46		0x00010000
 206#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
 207#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
 208#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
 209#define CM_EXBASEN		0x00001000	/* external bass input enable */
 210
 211#define CM_REG_MISC_CTRL	0x18
 212#define CM_PWD			0x80000000	/* power down */
 213#define CM_RESET		0x40000000
 214#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
 215#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
 216#define CM_TXVX			0x08000000	/* model 037? */
 217#define CM_N4SPK3D		0x04000000	/* copy front to rear */
 218#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
 219#define CM_SPDIF48K		0x01000000	/* write */
 220#define CM_SPATUS48K		0x01000000	/* read */
 221#define CM_ENDBDAC		0x00800000	/* enable double dac */
 222#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
 223#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
 224#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
 225#define CM_FM_EN		0x00080000	/* enable legacy FM */
 226#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
 227#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
 228#define CM_VIDWPDSB		0x00010000	/* model 037? */
 229#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
 230#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
 231#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
 232#define CM_VIDWPPRT		0x00002000	/* model 037? */
 233#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
 234#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
 235#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
 236#define CM_ENCENTER		0x00000080
 237#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
 238#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
 239#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
 240#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
 241#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
 242#define CM_UPDDMA_2048		0x00000000
 243#define CM_UPDDMA_1024		0x00000004
 244#define CM_UPDDMA_512		0x00000008
 245#define CM_UPDDMA_256		0x0000000C		
 246#define CM_TWAIT_MASK		0x00000003	/* model 037 */
 247#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 248#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
 249
 250#define CM_REG_TDMA_POSITION	0x1C
 251#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
 252#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
 253
 254	/* byte */
 255#define CM_REG_MIXER0		0x20
 256#define CM_REG_SBVR		0x20		/* write: sb16 version */
 257#define CM_REG_DEV		0x20		/* read: hardware device version */
 258
 259#define CM_REG_MIXER21		0x21
 260#define CM_UNKNOWN_21_MASK	0x78		/* ? */
 261#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
 262#define CM_PROINV		0x02		/* SBPro left/right channel switching */
 263#define CM_X_SB16		0x01		/* SB16 compatible */
 264
 265#define CM_REG_SB16_DATA	0x22
 266#define CM_REG_SB16_ADDR	0x23
 267
 268#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
 269#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 270#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
 271#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
 272
 273#define CM_REG_MIXER1		0x24
 274#define CM_FMMUTE		0x80	/* mute FM */
 275#define CM_FMMUTE_SHIFT		7
 276#define CM_WSMUTE		0x40	/* mute PCM */
 277#define CM_WSMUTE_SHIFT		6
 278#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
 279#define CM_REAR2LIN_SHIFT	5
 280#define CM_REAR2FRONT		0x10	/* exchange rear/front */
 281#define CM_REAR2FRONT_SHIFT	4
 282#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
 283#define CM_WAVEINL_SHIFT	3
 284#define CM_WAVEINR		0x04	/* digical wave rec. right */
 285#define CM_WAVEINR_SHIFT	2
 286#define CM_X3DEN		0x02	/* 3D surround enable */
 287#define CM_X3DEN_SHIFT		1
 288#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
 289#define CM_CDPLAY_SHIFT		0
 290
 291#define CM_REG_MIXER2		0x25
 292#define CM_RAUXREN		0x80	/* AUX right capture */
 293#define CM_RAUXREN_SHIFT	7
 294#define CM_RAUXLEN		0x40	/* AUX left capture */
 295#define CM_RAUXLEN_SHIFT	6
 296#define CM_VAUXRM		0x20	/* AUX right mute */
 297#define CM_VAUXRM_SHIFT		5
 298#define CM_VAUXLM		0x10	/* AUX left mute */
 299#define CM_VAUXLM_SHIFT		4
 300#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
 301#define CM_VADMIC_SHIFT		1
 302#define CM_MICGAINZ		0x01	/* mic boost */
 303#define CM_MICGAINZ_SHIFT	0
 304
 305#define CM_REG_MIXER3		0x24
 306#define CM_REG_AUX_VOL		0x26
 307#define CM_VAUXL_MASK		0xf0
 308#define CM_VAUXR_MASK		0x0f
 309
 310#define CM_REG_MISC		0x27
 311#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
 312#define CM_XGPO1		0x20
 313// #define CM_XGPBIO		0x04
 314#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
 315#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
 316#define CM_SPDVALID		0x02	/* spdif input valid check */
 317#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
 318
 319#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
 320/*
 321 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 322 * or identical with AC97 codec?
 323 */
 324#define CM_REG_EXTERN_CODEC	CM_REG_AC97
 325
 326/*
 327 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 328 */
 329#define CM_REG_MPU_PCI		0x40
 330
 331/*
 332 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 333 */
 334#define CM_REG_FM_PCI		0x50
 335
 336/*
 337 * access from SB-mixer port
 338 */
 339#define CM_REG_EXTENT_IND	0xf0
 340#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
 341#define CM_VPHONE_SHIFT		5
 342#define CM_VPHOM		0x10	/* Phone mute control */
 343#define CM_VSPKM		0x08	/* Speaker mute control, default high */
 344#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
 345#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
 346#define CM_VADMIC3		0x01	/* Mic record boost */
 347
 348/*
 349 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 350 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 351 * unit (readonly?).
 352 */
 353#define CM_REG_PLL		0xf8
 354
 355/*
 356 * extended registers
 357 */
 358#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
 359#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
 360#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
 361#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
 362
 363#define CM_REG_EXT_MISC		0x90
 364#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
 365#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
 366#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
 367#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
 368#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
 369#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
 370#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
 371#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
 372
 373/*
 374 * size of i/o region
 375 */
 376#define CM_EXTENT_CODEC	  0x100
 377#define CM_EXTENT_MIDI	  0x2
 378#define CM_EXTENT_SYNTH	  0x4
 379
 380
 381/*
 382 * channels for playback / capture
 383 */
 384#define CM_CH_PLAY	0
 385#define CM_CH_CAPT	1
 386
 387/*
 388 * flags to check device open/close
 389 */
 390#define CM_OPEN_NONE	0
 391#define CM_OPEN_CH_MASK	0x01
 392#define CM_OPEN_DAC	0x10
 393#define CM_OPEN_ADC	0x20
 394#define CM_OPEN_SPDIF	0x40
 395#define CM_OPEN_MCHAN	0x80
 396#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
 397#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
 398#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 399#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
 400#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 401#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 402
 403
 404#if CM_CH_PLAY == 1
 405#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
 406#define CM_PLAYBACK_SPDF	CM_SPDF_1
 407#define CM_CAPTURE_SPDF		CM_SPDF_0
 408#else
 409#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 410#define CM_PLAYBACK_SPDF	CM_SPDF_0
 411#define CM_CAPTURE_SPDF		CM_SPDF_1
 412#endif
 413
 414
 415/*
 416 * driver data
 417 */
 418
 419struct cmipci_pcm {
 420	struct snd_pcm_substream *substream;
 421	u8 running;		/* dac/adc running? */
 422	u8 fmt;			/* format bits */
 423	u8 is_dac;
 424	u8 needs_silencing;
 425	unsigned int dma_size;	/* in frames */
 426	unsigned int shift;
 427	unsigned int ch;	/* channel (0/1) */
 428	unsigned int offset;	/* physical address of the buffer */
 429};
 430
 431/* mixer elements toggled/resumed during ac3 playback */
 432struct cmipci_mixer_auto_switches {
 433	const char *name;	/* switch to toggle */
 434	int toggle_on;		/* value to change when ac3 mode */
 435};
 436static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 437	{"PCM Playback Switch", 0},
 438	{"IEC958 Output Switch", 1},
 439	{"IEC958 Mix Analog", 0},
 440	// {"IEC958 Out To DAC", 1}, // no longer used
 441	{"IEC958 Loop", 0},
 442};
 443#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
 444
 445struct cmipci {
 446	struct snd_card *card;
 447
 448	struct pci_dev *pci;
 449	unsigned int device;	/* device ID */
 450	int irq;
 451
 452	unsigned long iobase;
 453	unsigned int ctrl;	/* FUNCTRL0 current value */
 454
 455	struct snd_pcm *pcm;		/* DAC/ADC PCM */
 456	struct snd_pcm *pcm2;	/* 2nd DAC */
 457	struct snd_pcm *pcm_spdif;	/* SPDIF */
 458
 459	int chip_version;
 460	int max_channels;
 461	unsigned int can_ac3_sw: 1;
 462	unsigned int can_ac3_hw: 1;
 463	unsigned int can_multi_ch: 1;
 464	unsigned int can_96k: 1;	/* samplerate above 48k */
 465	unsigned int do_soft_ac3: 1;
 466
 467	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
 468	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
 469	int spdif_counter;	/* for software AC3 */
 470
 471	unsigned int dig_status;
 472	unsigned int dig_pcm_status;
 473
 474	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 475
 476	int opened[2];	/* open mode */
 477	struct mutex open_mutex;
 478
 479	unsigned int mixer_insensitive: 1;
 480	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 481	int mixer_res_status[CM_SAVED_MIXERS];
 482
 483	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
 484
 485	/* external MIDI */
 486	struct snd_rawmidi *rmidi;
 487
 488#ifdef SUPPORT_JOYSTICK
 489	struct gameport *gameport;
 490#endif
 491
 492	spinlock_t reg_lock;
 493
 494#ifdef CONFIG_PM_SLEEP
 495	unsigned int saved_regs[0x20];
 496	unsigned char saved_mixers[0x20];
 497#endif
 498};
 499
 500
 501/* read/write operations for dword register */
 502static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 503{
 504	outl(data, cm->iobase + cmd);
 505}
 506
 507static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 508{
 509	return inl(cm->iobase + cmd);
 510}
 511
 512/* read/write operations for word register */
 513static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 514{
 515	outw(data, cm->iobase + cmd);
 516}
 517
 518static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 519{
 520	return inw(cm->iobase + cmd);
 521}
 522
 523/* read/write operations for byte register */
 524static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 525{
 526	outb(data, cm->iobase + cmd);
 527}
 528
 529static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 530{
 531	return inb(cm->iobase + cmd);
 532}
 533
 534/* bit operations for dword register */
 535static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 536{
 537	unsigned int val, oval;
 538	val = oval = inl(cm->iobase + cmd);
 539	val |= flag;
 540	if (val == oval)
 541		return 0;
 542	outl(val, cm->iobase + cmd);
 543	return 1;
 544}
 545
 546static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 547{
 548	unsigned int val, oval;
 549	val = oval = inl(cm->iobase + cmd);
 550	val &= ~flag;
 551	if (val == oval)
 552		return 0;
 553	outl(val, cm->iobase + cmd);
 554	return 1;
 555}
 556
 557/* bit operations for byte register */
 558static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 559{
 560	unsigned char val, oval;
 561	val = oval = inb(cm->iobase + cmd);
 562	val |= flag;
 563	if (val == oval)
 564		return 0;
 565	outb(val, cm->iobase + cmd);
 566	return 1;
 567}
 568
 569static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 570{
 571	unsigned char val, oval;
 572	val = oval = inb(cm->iobase + cmd);
 573	val &= ~flag;
 574	if (val == oval)
 575		return 0;
 576	outb(val, cm->iobase + cmd);
 577	return 1;
 578}
 579
 580
 581/*
 582 * PCM interface
 583 */
 584
 585/*
 586 * calculate frequency
 587 */
 588
 589static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 590
 591static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 592{
 593	unsigned int i;
 594
 595	for (i = 0; i < ARRAY_SIZE(rates); i++) {
 596		if (rates[i] == rate)
 597			return i;
 598	}
 599	snd_BUG();
 600	return 0;
 601}
 602
 603#ifdef USE_VAR48KRATE
 604/*
 605 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 606 * does it this way .. maybe not.  Never get any information from C-Media about
 607 * that <werner@suse.de>.
 608 */
 609static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 610{
 611	unsigned int delta, tolerance;
 612	int xm, xn, xr;
 613
 614	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 615		rate <<= 1;
 616	*n = -1;
 617	if (*r > 0xff)
 618		goto out;
 619	tolerance = rate*CM_TOLERANCE_RATE;
 620
 621	for (xn = (1+2); xn < (0x1f+2); xn++) {
 622		for (xm = (1+2); xm < (0xff+2); xm++) {
 623			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 624
 625			if (xr < rate)
 626				delta = rate - xr;
 627			else
 628				delta = xr - rate;
 629
 630			/*
 631			 * If we found one, remember this,
 632			 * and try to find a closer one
 633			 */
 634			if (delta < tolerance) {
 635				tolerance = delta;
 636				*m = xm - 2;
 637				*n = xn - 2;
 638			}
 639		}
 640	}
 641out:
 642	return (*n > -1);
 643}
 644
 645/*
 646 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 647 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 648 * at the register CM_REG_FUNCTRL1 (0x04).
 649 * Problem: other ways are also possible (any information about that?)
 650 */
 651static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 652{
 653	unsigned int reg = CM_REG_PLL + slot;
 654	/*
 655	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 656	 * for DSFC/ASFC (000 up to 111).
 657	 */
 658
 659	/* FIXME: Init (Do we've to set an other register first before programming?) */
 660
 661	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 662	snd_cmipci_write_b(cm, reg, rate>>8);
 663	snd_cmipci_write_b(cm, reg, rate&0xff);
 664
 665	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
 666}
 667#endif /* USE_VAR48KRATE */
 668
 669static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 670					  struct snd_pcm_hw_params *hw_params)
 671{
 672	struct cmipci *cm = snd_pcm_substream_chip(substream);
 673	if (params_channels(hw_params) > 2) {
 674		mutex_lock(&cm->open_mutex);
 675		if (cm->opened[CM_CH_PLAY]) {
 676			mutex_unlock(&cm->open_mutex);
 677			return -EBUSY;
 678		}
 679		/* reserve the channel A */
 680		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 681		mutex_unlock(&cm->open_mutex);
 682	}
 683	return 0;
 684}
 685
 686static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 687{
 688	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 689	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 690	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 691	udelay(10);
 692}
 693
 694
 695/*
 696 */
 697
 698static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 699static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 700	.count = 3,
 701	.list = hw_channels,
 702	.mask = 0,
 703};
 704static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 705	.count = 4,
 706	.list = hw_channels,
 707	.mask = 0,
 708};
 709static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 710	.count = 5,
 711	.list = hw_channels,
 712	.mask = 0,
 713};
 714
 715static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 716{
 717	if (channels > 2) {
 718		if (!cm->can_multi_ch || !rec->ch)
 719			return -EINVAL;
 720		if (rec->fmt != 0x03) /* stereo 16bit only */
 721			return -EINVAL;
 722	}
 723
 724	if (cm->can_multi_ch) {
 725		spin_lock_irq(&cm->reg_lock);
 726		if (channels > 2) {
 727			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 728			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 729		} else {
 730			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 731			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 732		}
 733		if (channels == 8)
 734			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 735		else
 736			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 737		if (channels == 6) {
 738			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 739			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 740		} else {
 741			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 742			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 743		}
 744		if (channels == 4)
 745			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 746		else
 747			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 748		spin_unlock_irq(&cm->reg_lock);
 749	}
 750	return 0;
 751}
 752
 753
 754/*
 755 * prepare playback/capture channel
 756 * channel to be used must have been set in rec->ch.
 757 */
 758static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 759				 struct snd_pcm_substream *substream)
 760{
 761	unsigned int reg, freq, freq_ext, val;
 762	unsigned int period_size;
 763	struct snd_pcm_runtime *runtime = substream->runtime;
 764
 765	rec->fmt = 0;
 766	rec->shift = 0;
 767	if (snd_pcm_format_width(runtime->format) >= 16) {
 768		rec->fmt |= 0x02;
 769		if (snd_pcm_format_width(runtime->format) > 16)
 770			rec->shift++; /* 24/32bit */
 771	}
 772	if (runtime->channels > 1)
 773		rec->fmt |= 0x01;
 774	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 775		dev_dbg(cm->card->dev, "cannot set dac channels\n");
 776		return -EINVAL;
 777	}
 778
 779	rec->offset = runtime->dma_addr;
 780	/* buffer and period sizes in frame */
 781	rec->dma_size = runtime->buffer_size << rec->shift;
 782	period_size = runtime->period_size << rec->shift;
 783	if (runtime->channels > 2) {
 784		/* multi-channels */
 785		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 786		period_size = (period_size * runtime->channels) / 2;
 787	}
 788
 789	spin_lock_irq(&cm->reg_lock);
 790
 791	/* set buffer address */
 792	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 793	snd_cmipci_write(cm, reg, rec->offset);
 794	/* program sample counts */
 795	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 796	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 797	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 798
 799	/* set adc/dac flag */
 800	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 801	if (rec->is_dac)
 802		cm->ctrl &= ~val;
 803	else
 804		cm->ctrl |= val;
 805	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 806	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 807
 808	/* set sample rate */
 809	freq = 0;
 810	freq_ext = 0;
 811	if (runtime->rate > 48000)
 812		switch (runtime->rate) {
 813		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 814		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 815		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 816		default:     snd_BUG(); break;
 817		}
 818	else
 819		freq = snd_cmipci_rate_freq(runtime->rate);
 820	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 821	if (rec->ch) {
 822		val &= ~CM_DSFC_MASK;
 823		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 824	} else {
 825		val &= ~CM_ASFC_MASK;
 826		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 827	}
 828	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 829	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 830
 831	/* set format */
 832	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 833	if (rec->ch) {
 834		val &= ~CM_CH1FMT_MASK;
 835		val |= rec->fmt << CM_CH1FMT_SHIFT;
 836	} else {
 837		val &= ~CM_CH0FMT_MASK;
 838		val |= rec->fmt << CM_CH0FMT_SHIFT;
 839	}
 840	if (cm->can_96k) {
 841		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 842		val |= freq_ext << (rec->ch * 2);
 843	}
 844	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 845	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 846
 847	if (!rec->is_dac && cm->chip_version) {
 848		if (runtime->rate > 44100)
 849			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 850		else
 851			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 852	}
 853
 854	rec->running = 0;
 855	spin_unlock_irq(&cm->reg_lock);
 856
 857	return 0;
 858}
 859
 860/*
 861 * PCM trigger/stop
 862 */
 863static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 864				  int cmd)
 865{
 866	unsigned int inthld, chen, reset, pause;
 867	int result = 0;
 868
 869	inthld = CM_CH0_INT_EN << rec->ch;
 870	chen = CM_CHEN0 << rec->ch;
 871	reset = CM_RST_CH0 << rec->ch;
 872	pause = CM_PAUSE0 << rec->ch;
 873
 874	spin_lock(&cm->reg_lock);
 875	switch (cmd) {
 876	case SNDRV_PCM_TRIGGER_START:
 877		rec->running = 1;
 878		/* set interrupt */
 879		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 880		cm->ctrl |= chen;
 881		/* enable channel */
 882		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 883		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 884		break;
 885	case SNDRV_PCM_TRIGGER_STOP:
 886		rec->running = 0;
 887		/* disable interrupt */
 888		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 889		/* reset */
 890		cm->ctrl &= ~chen;
 891		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 892		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 893		rec->needs_silencing = rec->is_dac;
 894		break;
 895	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 896	case SNDRV_PCM_TRIGGER_SUSPEND:
 897		cm->ctrl |= pause;
 898		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 899		break;
 900	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 901	case SNDRV_PCM_TRIGGER_RESUME:
 902		cm->ctrl &= ~pause;
 903		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 904		break;
 905	default:
 906		result = -EINVAL;
 907		break;
 908	}
 909	spin_unlock(&cm->reg_lock);
 910	return result;
 911}
 912
 913/*
 914 * return the current pointer
 915 */
 916static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 917						struct snd_pcm_substream *substream)
 918{
 919	size_t ptr;
 920	unsigned int reg, rem, tries;
 921
 922	if (!rec->running)
 923		return 0;
 924#if 1 // this seems better..
 925	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 926	for (tries = 0; tries < 3; tries++) {
 927		rem = snd_cmipci_read_w(cm, reg);
 928		if (rem < rec->dma_size)
 929			goto ok;
 930	} 
 931	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 932	return SNDRV_PCM_POS_XRUN;
 933ok:
 934	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 935#else
 936	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 937	ptr = snd_cmipci_read(cm, reg) - rec->offset;
 938	ptr = bytes_to_frames(substream->runtime, ptr);
 939#endif
 940	if (substream->runtime->channels > 2)
 941		ptr = (ptr * 2) / substream->runtime->channels;
 942	return ptr;
 943}
 944
 945/*
 946 * playback
 947 */
 948
 949static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 950				       int cmd)
 951{
 952	struct cmipci *cm = snd_pcm_substream_chip(substream);
 953	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 954}
 955
 956static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 957{
 958	struct cmipci *cm = snd_pcm_substream_chip(substream);
 959	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 960}
 961
 962
 963
 964/*
 965 * capture
 966 */
 967
 968static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 969				     int cmd)
 970{
 971	struct cmipci *cm = snd_pcm_substream_chip(substream);
 972	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 973}
 974
 975static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 976{
 977	struct cmipci *cm = snd_pcm_substream_chip(substream);
 978	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 979}
 980
 981
 982/*
 983 * hw preparation for spdif
 984 */
 985
 986static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 987					 struct snd_ctl_elem_info *uinfo)
 988{
 989	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 990	uinfo->count = 1;
 991	return 0;
 992}
 993
 994static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
 995					struct snd_ctl_elem_value *ucontrol)
 996{
 997	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
 998	int i;
 999
1000	spin_lock_irq(&chip->reg_lock);
1001	for (i = 0; i < 4; i++)
1002		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
1003	spin_unlock_irq(&chip->reg_lock);
1004	return 0;
1005}
1006
1007static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1008					 struct snd_ctl_elem_value *ucontrol)
1009{
1010	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1011	int i, change;
1012	unsigned int val;
1013
1014	val = 0;
1015	spin_lock_irq(&chip->reg_lock);
1016	for (i = 0; i < 4; i++)
1017		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1018	change = val != chip->dig_status;
1019	chip->dig_status = val;
1020	spin_unlock_irq(&chip->reg_lock);
1021	return change;
1022}
1023
1024static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1025{
1026	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1027	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1028	.info =		snd_cmipci_spdif_default_info,
1029	.get =		snd_cmipci_spdif_default_get,
1030	.put =		snd_cmipci_spdif_default_put
1031};
1032
1033static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1034				      struct snd_ctl_elem_info *uinfo)
1035{
1036	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1037	uinfo->count = 1;
1038	return 0;
1039}
1040
1041static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1042				     struct snd_ctl_elem_value *ucontrol)
1043{
1044	ucontrol->value.iec958.status[0] = 0xff;
1045	ucontrol->value.iec958.status[1] = 0xff;
1046	ucontrol->value.iec958.status[2] = 0xff;
1047	ucontrol->value.iec958.status[3] = 0xff;
1048	return 0;
1049}
1050
1051static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1052{
1053	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1054	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1055	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1056	.info =		snd_cmipci_spdif_mask_info,
1057	.get =		snd_cmipci_spdif_mask_get,
1058};
1059
1060static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1061					struct snd_ctl_elem_info *uinfo)
1062{
1063	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1064	uinfo->count = 1;
1065	return 0;
1066}
1067
1068static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1069				       struct snd_ctl_elem_value *ucontrol)
1070{
1071	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1072	int i;
1073
1074	spin_lock_irq(&chip->reg_lock);
1075	for (i = 0; i < 4; i++)
1076		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1077	spin_unlock_irq(&chip->reg_lock);
1078	return 0;
1079}
1080
1081static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1082				       struct snd_ctl_elem_value *ucontrol)
1083{
1084	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1085	int i, change;
1086	unsigned int val;
1087
1088	val = 0;
1089	spin_lock_irq(&chip->reg_lock);
1090	for (i = 0; i < 4; i++)
1091		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1092	change = val != chip->dig_pcm_status;
1093	chip->dig_pcm_status = val;
1094	spin_unlock_irq(&chip->reg_lock);
1095	return change;
1096}
1097
1098static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1099{
1100	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1101	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1102	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1103	.info =		snd_cmipci_spdif_stream_info,
1104	.get =		snd_cmipci_spdif_stream_get,
1105	.put =		snd_cmipci_spdif_stream_put
1106};
1107
1108/*
1109 */
1110
1111/* save mixer setting and mute for AC3 playback */
1112static int save_mixer_state(struct cmipci *cm)
1113{
1114	if (! cm->mixer_insensitive) {
1115		struct snd_ctl_elem_value *val;
1116		unsigned int i;
1117
1118		val = kmalloc(sizeof(*val), GFP_KERNEL);
1119		if (!val)
1120			return -ENOMEM;
1121		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1122			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1123			if (ctl) {
1124				int event;
1125				memset(val, 0, sizeof(*val));
1126				ctl->get(ctl, val);
1127				cm->mixer_res_status[i] = val->value.integer.value[0];
1128				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1129				event = SNDRV_CTL_EVENT_MASK_INFO;
1130				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1131					ctl->put(ctl, val); /* toggle */
1132					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1133				}
1134				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1135				snd_ctl_notify(cm->card, event, &ctl->id);
1136			}
1137		}
1138		kfree(val);
1139		cm->mixer_insensitive = 1;
1140	}
1141	return 0;
1142}
1143
1144
1145/* restore the previously saved mixer status */
1146static void restore_mixer_state(struct cmipci *cm)
1147{
1148	if (cm->mixer_insensitive) {
1149		struct snd_ctl_elem_value *val;
1150		unsigned int i;
1151
1152		val = kmalloc(sizeof(*val), GFP_KERNEL);
1153		if (!val)
1154			return;
1155		cm->mixer_insensitive = 0; /* at first clear this;
1156					      otherwise the changes will be ignored */
1157		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1158			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1159			if (ctl) {
1160				int event;
1161
1162				memset(val, 0, sizeof(*val));
1163				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1164				ctl->get(ctl, val);
1165				event = SNDRV_CTL_EVENT_MASK_INFO;
1166				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1167					val->value.integer.value[0] = cm->mixer_res_status[i];
1168					ctl->put(ctl, val);
1169					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1170				}
1171				snd_ctl_notify(cm->card, event, &ctl->id);
1172			}
1173		}
1174		kfree(val);
1175	}
1176}
1177
1178/* spinlock held! */
1179static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1180{
1181	if (do_ac3) {
1182		/* AC3EN for 037 */
1183		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1184		/* AC3EN for 039 */
1185		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1186	
1187		if (cm->can_ac3_hw) {
1188			/* SPD24SEL for 037, 0x02 */
1189			/* SPD24SEL for 039, 0x20, but cannot be set */
1190			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1191			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1192		} else { /* can_ac3_sw */
1193			/* SPD32SEL for 037 & 039, 0x20 */
1194			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1195			/* set 176K sample rate to fix 033 HW bug */
1196			if (cm->chip_version == 33) {
1197				if (rate >= 48000) {
1198					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1199				} else {
1200					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1201				}
1202			}
1203		}
1204
1205	} else {
1206		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1207		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1208
1209		if (cm->can_ac3_hw) {
1210			/* chip model >= 37 */
1211			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1212				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1213				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1214			} else {
1215				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217			}
1218		} else {
1219			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1220			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1221			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1222		}
1223	}
1224}
1225
1226static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1227{
1228	int rate, err;
1229
1230	rate = subs->runtime->rate;
1231
1232	if (up && do_ac3)
1233		if ((err = save_mixer_state(cm)) < 0)
 
1234			return err;
 
1235
1236	spin_lock_irq(&cm->reg_lock);
1237	cm->spdif_playback_avail = up;
1238	if (up) {
1239		/* they are controlled via "IEC958 Output Switch" */
1240		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1241		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1242		if (cm->spdif_playback_enabled)
1243			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1244		setup_ac3(cm, subs, do_ac3, rate);
1245
1246		if (rate == 48000 || rate == 96000)
1247			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1248		else
1249			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1250		if (rate > 48000)
1251			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1252		else
1253			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1254	} else {
1255		/* they are controlled via "IEC958 Output Switch" */
1256		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1257		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1258		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1259		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1260		setup_ac3(cm, subs, 0, 0);
1261	}
1262	spin_unlock_irq(&cm->reg_lock);
1263	return 0;
1264}
1265
1266
1267/*
1268 * preparation
1269 */
1270
1271/* playback - enable spdif only on the certain condition */
1272static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1273{
1274	struct cmipci *cm = snd_pcm_substream_chip(substream);
1275	int rate = substream->runtime->rate;
1276	int err, do_spdif, do_ac3 = 0;
1277
1278	do_spdif = (rate >= 44100 && rate <= 96000 &&
1279		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1280		    substream->runtime->channels == 2);
1281	if (do_spdif && cm->can_ac3_hw) 
1282		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1283	if ((err = setup_spdif_playback(cm, substream, do_spdif, do_ac3)) < 0)
 
1284		return err;
1285	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1286}
1287
1288/* playback  (via device #2) - enable spdif always */
1289static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1290{
1291	struct cmipci *cm = snd_pcm_substream_chip(substream);
1292	int err, do_ac3;
1293
1294	if (cm->can_ac3_hw) 
1295		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1296	else
1297		do_ac3 = 1; /* doesn't matter */
1298	if ((err = setup_spdif_playback(cm, substream, 1, do_ac3)) < 0)
 
1299		return err;
1300	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301}
1302
1303/*
1304 * Apparently, the samples last played on channel A stay in some buffer, even
1305 * after the channel is reset, and get added to the data for the rear DACs when
1306 * playing a multichannel stream on channel B.  This is likely to generate
1307 * wraparounds and thus distortions.
1308 * To avoid this, we play at least one zero sample after the actual stream has
1309 * stopped.
1310 */
1311static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1312{
1313	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1314	unsigned int reg, val;
1315
1316	if (rec->needs_silencing && runtime && runtime->dma_area) {
1317		/* set up a small silence buffer */
1318		memset(runtime->dma_area, 0, PAGE_SIZE);
1319		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1320		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1321		snd_cmipci_write(cm, reg, val);
1322	
1323		/* configure for 16 bits, 2 channels, 8 kHz */
1324		if (runtime->channels > 2)
1325			set_dac_channels(cm, rec, 2);
1326		spin_lock_irq(&cm->reg_lock);
1327		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1328		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1329		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1330		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1331		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1332		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1333		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1334		if (cm->can_96k)
1335			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1336		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1337	
1338		/* start stream (we don't need interrupts) */
1339		cm->ctrl |= CM_CHEN0 << rec->ch;
1340		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1341		spin_unlock_irq(&cm->reg_lock);
1342
1343		msleep(1);
1344
1345		/* stop and reset stream */
1346		spin_lock_irq(&cm->reg_lock);
1347		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1348		val = CM_RST_CH0 << rec->ch;
1349		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1350		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1351		spin_unlock_irq(&cm->reg_lock);
1352
1353		rec->needs_silencing = 0;
1354	}
1355}
1356
1357static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1358{
1359	struct cmipci *cm = snd_pcm_substream_chip(substream);
1360	setup_spdif_playback(cm, substream, 0, 0);
1361	restore_mixer_state(cm);
1362	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1363	return 0;
1364}
1365
1366static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1367{
1368	struct cmipci *cm = snd_pcm_substream_chip(substream);
1369	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1370	return 0;
1371}
1372
1373/* capture */
1374static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1375{
1376	struct cmipci *cm = snd_pcm_substream_chip(substream);
1377	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1378}
1379
1380/* capture with spdif (via device #2) */
1381static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1382{
1383	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384
1385	spin_lock_irq(&cm->reg_lock);
1386	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1387	if (cm->can_96k) {
1388		if (substream->runtime->rate > 48000)
1389			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1390		else
1391			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1392	}
1393	if (snd_pcm_format_width(substream->runtime->format) > 16)
1394		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1395	else
1396		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1397
1398	spin_unlock_irq(&cm->reg_lock);
1399
1400	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401}
1402
1403static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1404{
1405	struct cmipci *cm = snd_pcm_substream_chip(subs);
1406
1407	spin_lock_irq(&cm->reg_lock);
1408	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1409	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410	spin_unlock_irq(&cm->reg_lock);
1411
1412	return 0;
1413}
1414
1415
1416/*
1417 * interrupt handler
1418 */
1419static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1420{
1421	struct cmipci *cm = dev_id;
1422	unsigned int status, mask = 0;
1423	
1424	/* fastpath out, to ease interrupt sharing */
1425	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1426	if (!(status & CM_INTR))
1427		return IRQ_NONE;
1428
1429	/* acknowledge interrupt */
1430	spin_lock(&cm->reg_lock);
1431	if (status & CM_CHINT0)
1432		mask |= CM_CH0_INT_EN;
1433	if (status & CM_CHINT1)
1434		mask |= CM_CH1_INT_EN;
1435	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1436	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1437	spin_unlock(&cm->reg_lock);
1438
1439	if (cm->rmidi && (status & CM_UARTINT))
1440		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1441
1442	if (cm->pcm) {
1443		if ((status & CM_CHINT0) && cm->channel[0].running)
1444			snd_pcm_period_elapsed(cm->channel[0].substream);
1445		if ((status & CM_CHINT1) && cm->channel[1].running)
1446			snd_pcm_period_elapsed(cm->channel[1].substream);
1447	}
1448	return IRQ_HANDLED;
1449}
1450
1451/*
1452 * h/w infos
1453 */
1454
1455/* playback on channel A */
1456static const struct snd_pcm_hardware snd_cmipci_playback =
1457{
1458	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1459				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1460				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1461	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1462	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1463	.rate_min =		5512,
1464	.rate_max =		48000,
1465	.channels_min =		1,
1466	.channels_max =		2,
1467	.buffer_bytes_max =	(128*1024),
1468	.period_bytes_min =	64,
1469	.period_bytes_max =	(128*1024),
1470	.periods_min =		2,
1471	.periods_max =		1024,
1472	.fifo_size =		0,
1473};
1474
1475/* capture on channel B */
1476static const struct snd_pcm_hardware snd_cmipci_capture =
1477{
1478	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1479				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1480				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1481	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1482	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1483	.rate_min =		5512,
1484	.rate_max =		48000,
1485	.channels_min =		1,
1486	.channels_max =		2,
1487	.buffer_bytes_max =	(128*1024),
1488	.period_bytes_min =	64,
1489	.period_bytes_max =	(128*1024),
1490	.periods_min =		2,
1491	.periods_max =		1024,
1492	.fifo_size =		0,
1493};
1494
1495/* playback on channel B - stereo 16bit only? */
1496static const struct snd_pcm_hardware snd_cmipci_playback2 =
1497{
1498	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1499				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1500				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1501	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1502	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1503	.rate_min =		5512,
1504	.rate_max =		48000,
1505	.channels_min =		2,
1506	.channels_max =		2,
1507	.buffer_bytes_max =	(128*1024),
1508	.period_bytes_min =	64,
1509	.period_bytes_max =	(128*1024),
1510	.periods_min =		2,
1511	.periods_max =		1024,
1512	.fifo_size =		0,
1513};
1514
1515/* spdif playback on channel A */
1516static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1517{
1518	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1519				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1520				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1521	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1522	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1523	.rate_min =		44100,
1524	.rate_max =		48000,
1525	.channels_min =		2,
1526	.channels_max =		2,
1527	.buffer_bytes_max =	(128*1024),
1528	.period_bytes_min =	64,
1529	.period_bytes_max =	(128*1024),
1530	.periods_min =		2,
1531	.periods_max =		1024,
1532	.fifo_size =		0,
1533};
1534
1535/* spdif playback on channel A (32bit, IEC958 subframes) */
1536static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1537{
1538	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1539				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1540				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1541	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1542	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1543	.rate_min =		44100,
1544	.rate_max =		48000,
1545	.channels_min =		2,
1546	.channels_max =		2,
1547	.buffer_bytes_max =	(128*1024),
1548	.period_bytes_min =	64,
1549	.period_bytes_max =	(128*1024),
1550	.periods_min =		2,
1551	.periods_max =		1024,
1552	.fifo_size =		0,
1553};
1554
1555/* spdif capture on channel B */
1556static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1557{
1558	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1559				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1560				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1561	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1562				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1563	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1564	.rate_min =		44100,
1565	.rate_max =		48000,
1566	.channels_min =		2,
1567	.channels_max =		2,
1568	.buffer_bytes_max =	(128*1024),
1569	.period_bytes_min =	64,
1570	.period_bytes_max =	(128*1024),
1571	.periods_min =		2,
1572	.periods_max =		1024,
1573	.fifo_size =		0,
1574};
1575
1576static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1577			32000, 44100, 48000, 88200, 96000, 128000 };
1578static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1579		.count = ARRAY_SIZE(rate_constraints),
1580		.list = rate_constraints,
1581		.mask = 0,
1582};
1583
1584/*
1585 * check device open/close
1586 */
1587static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1588{
1589	int ch = mode & CM_OPEN_CH_MASK;
1590
1591	/* FIXME: a file should wait until the device becomes free
1592	 * when it's opened on blocking mode.  however, since the current
1593	 * pcm framework doesn't pass file pointer before actually opened,
1594	 * we can't know whether blocking mode or not in open callback..
1595	 */
1596	mutex_lock(&cm->open_mutex);
1597	if (cm->opened[ch]) {
1598		mutex_unlock(&cm->open_mutex);
1599		return -EBUSY;
1600	}
1601	cm->opened[ch] = mode;
1602	cm->channel[ch].substream = subs;
1603	if (! (mode & CM_OPEN_DAC)) {
1604		/* disable dual DAC mode */
1605		cm->channel[ch].is_dac = 0;
1606		spin_lock_irq(&cm->reg_lock);
1607		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1608		spin_unlock_irq(&cm->reg_lock);
1609	}
1610	mutex_unlock(&cm->open_mutex);
1611	return 0;
1612}
1613
1614static void close_device_check(struct cmipci *cm, int mode)
1615{
1616	int ch = mode & CM_OPEN_CH_MASK;
1617
1618	mutex_lock(&cm->open_mutex);
1619	if (cm->opened[ch] == mode) {
1620		if (cm->channel[ch].substream) {
1621			snd_cmipci_ch_reset(cm, ch);
1622			cm->channel[ch].running = 0;
1623			cm->channel[ch].substream = NULL;
1624		}
1625		cm->opened[ch] = 0;
1626		if (! cm->channel[ch].is_dac) {
1627			/* enable dual DAC mode again */
1628			cm->channel[ch].is_dac = 1;
1629			spin_lock_irq(&cm->reg_lock);
1630			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631			spin_unlock_irq(&cm->reg_lock);
1632		}
1633	}
1634	mutex_unlock(&cm->open_mutex);
1635}
1636
1637/*
1638 */
1639
1640static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1641{
1642	struct cmipci *cm = snd_pcm_substream_chip(substream);
1643	struct snd_pcm_runtime *runtime = substream->runtime;
1644	int err;
1645
1646	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK, substream)) < 0)
 
1647		return err;
1648	runtime->hw = snd_cmipci_playback;
1649	if (cm->chip_version == 68) {
1650		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1651				     SNDRV_PCM_RATE_96000;
1652		runtime->hw.rate_max = 96000;
1653	} else if (cm->chip_version == 55) {
1654		err = snd_pcm_hw_constraint_list(runtime, 0,
1655			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1656		if (err < 0)
1657			return err;
1658		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1659		runtime->hw.rate_max = 128000;
1660	}
1661	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1662	cm->dig_pcm_status = cm->dig_status;
1663	return 0;
1664}
1665
1666static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1667{
1668	struct cmipci *cm = snd_pcm_substream_chip(substream);
1669	struct snd_pcm_runtime *runtime = substream->runtime;
1670	int err;
1671
1672	if ((err = open_device_check(cm, CM_OPEN_CAPTURE, substream)) < 0)
 
1673		return err;
1674	runtime->hw = snd_cmipci_capture;
1675	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1676		runtime->hw.rate_min = 41000;
1677		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1678	} else if (cm->chip_version == 55) {
1679		err = snd_pcm_hw_constraint_list(runtime, 0,
1680			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1681		if (err < 0)
1682			return err;
1683		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1684		runtime->hw.rate_max = 128000;
1685	}
1686	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1687	return 0;
1688}
1689
1690static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1691{
1692	struct cmipci *cm = snd_pcm_substream_chip(substream);
1693	struct snd_pcm_runtime *runtime = substream->runtime;
1694	int err;
1695
1696	if ((err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream)) < 0) /* use channel B */
 
 
1697		return err;
1698	runtime->hw = snd_cmipci_playback2;
1699	mutex_lock(&cm->open_mutex);
1700	if (! cm->opened[CM_CH_PLAY]) {
1701		if (cm->can_multi_ch) {
1702			runtime->hw.channels_max = cm->max_channels;
1703			if (cm->max_channels == 4)
1704				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1705			else if (cm->max_channels == 6)
1706				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1707			else if (cm->max_channels == 8)
1708				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1709		}
1710	}
1711	mutex_unlock(&cm->open_mutex);
1712	if (cm->chip_version == 68) {
1713		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1714				     SNDRV_PCM_RATE_96000;
1715		runtime->hw.rate_max = 96000;
1716	} else if (cm->chip_version == 55) {
1717		err = snd_pcm_hw_constraint_list(runtime, 0,
1718			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1719		if (err < 0)
1720			return err;
1721		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1722		runtime->hw.rate_max = 128000;
1723	}
1724	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1725	return 0;
1726}
1727
1728static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1729{
1730	struct cmipci *cm = snd_pcm_substream_chip(substream);
1731	struct snd_pcm_runtime *runtime = substream->runtime;
1732	int err;
1733
1734	if ((err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream)) < 0) /* use channel A */
 
 
1735		return err;
1736	if (cm->can_ac3_hw) {
1737		runtime->hw = snd_cmipci_playback_spdif;
1738		if (cm->chip_version >= 37) {
1739			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1740			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1741		}
1742		if (cm->can_96k) {
1743			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1744					     SNDRV_PCM_RATE_96000;
1745			runtime->hw.rate_max = 96000;
1746		}
1747	} else {
1748		runtime->hw = snd_cmipci_playback_iec958_subframe;
1749	}
1750	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1751	cm->dig_pcm_status = cm->dig_status;
1752	return 0;
1753}
1754
1755static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1756{
1757	struct cmipci *cm = snd_pcm_substream_chip(substream);
1758	struct snd_pcm_runtime *runtime = substream->runtime;
1759	int err;
1760
1761	if ((err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream)) < 0) /* use channel B */
 
 
1762		return err;
1763	runtime->hw = snd_cmipci_capture_spdif;
1764	if (cm->can_96k && !(cm->chip_version == 68)) {
1765		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1766				     SNDRV_PCM_RATE_96000;
1767		runtime->hw.rate_max = 96000;
1768	}
1769	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1770	return 0;
1771}
1772
1773
1774/*
1775 */
1776
1777static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1778{
1779	struct cmipci *cm = snd_pcm_substream_chip(substream);
1780	close_device_check(cm, CM_OPEN_PLAYBACK);
1781	return 0;
1782}
1783
1784static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1785{
1786	struct cmipci *cm = snd_pcm_substream_chip(substream);
1787	close_device_check(cm, CM_OPEN_CAPTURE);
1788	return 0;
1789}
1790
1791static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1792{
1793	struct cmipci *cm = snd_pcm_substream_chip(substream);
1794	close_device_check(cm, CM_OPEN_PLAYBACK2);
1795	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1796	return 0;
1797}
1798
1799static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1800{
1801	struct cmipci *cm = snd_pcm_substream_chip(substream);
1802	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1803	return 0;
1804}
1805
1806static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1807{
1808	struct cmipci *cm = snd_pcm_substream_chip(substream);
1809	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1810	return 0;
1811}
1812
1813
1814/*
1815 */
1816
1817static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1818	.open =		snd_cmipci_playback_open,
1819	.close =	snd_cmipci_playback_close,
1820	.hw_free =	snd_cmipci_playback_hw_free,
1821	.prepare =	snd_cmipci_playback_prepare,
1822	.trigger =	snd_cmipci_playback_trigger,
1823	.pointer =	snd_cmipci_playback_pointer,
1824};
1825
1826static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1827	.open =		snd_cmipci_capture_open,
1828	.close =	snd_cmipci_capture_close,
1829	.prepare =	snd_cmipci_capture_prepare,
1830	.trigger =	snd_cmipci_capture_trigger,
1831	.pointer =	snd_cmipci_capture_pointer,
1832};
1833
1834static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1835	.open =		snd_cmipci_playback2_open,
1836	.close =	snd_cmipci_playback2_close,
1837	.hw_params =	snd_cmipci_playback2_hw_params,
1838	.hw_free =	snd_cmipci_playback2_hw_free,
1839	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1840	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1841	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1842};
1843
1844static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1845	.open =		snd_cmipci_playback_spdif_open,
1846	.close =	snd_cmipci_playback_spdif_close,
1847	.hw_free =	snd_cmipci_playback_hw_free,
1848	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1849	.trigger =	snd_cmipci_playback_trigger,
1850	.pointer =	snd_cmipci_playback_pointer,
1851};
1852
1853static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1854	.open =		snd_cmipci_capture_spdif_open,
1855	.close =	snd_cmipci_capture_spdif_close,
1856	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1857	.prepare =	snd_cmipci_capture_spdif_prepare,
1858	.trigger =	snd_cmipci_capture_trigger,
1859	.pointer =	snd_cmipci_capture_pointer,
1860};
1861
1862
1863/*
1864 */
1865
1866static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1867{
1868	struct snd_pcm *pcm;
1869	int err;
1870
1871	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1872	if (err < 0)
1873		return err;
1874
1875	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1876	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1877
1878	pcm->private_data = cm;
1879	pcm->info_flags = 0;
1880	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1881	cm->pcm = pcm;
1882
1883	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1884				       &cm->pci->dev, 64*1024, 128*1024);
1885
1886	return 0;
1887}
1888
1889static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1890{
1891	struct snd_pcm *pcm;
1892	int err;
1893
1894	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1895	if (err < 0)
1896		return err;
1897
1898	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1899
1900	pcm->private_data = cm;
1901	pcm->info_flags = 0;
1902	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1903	cm->pcm2 = pcm;
1904
1905	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1906				       &cm->pci->dev, 64*1024, 128*1024);
1907
1908	return 0;
1909}
1910
1911static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1912{
1913	struct snd_pcm *pcm;
1914	int err;
1915
1916	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1917	if (err < 0)
1918		return err;
1919
1920	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1921	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1922
1923	pcm->private_data = cm;
1924	pcm->info_flags = 0;
1925	strcpy(pcm->name, "C-Media PCI IEC958");
1926	cm->pcm_spdif = pcm;
1927
1928	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1929				       &cm->pci->dev, 64*1024, 128*1024);
1930
1931	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1932				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1933				     NULL);
1934	if (err < 0)
1935		return err;
1936
1937	return 0;
1938}
1939
1940/*
1941 * mixer interface:
1942 * - CM8338/8738 has a compatible mixer interface with SB16, but
1943 *   lack of some elements like tone control, i/o gain and AGC.
1944 * - Access to native registers:
1945 *   - A 3D switch
1946 *   - Output mute switches
1947 */
1948
1949static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1950{
1951	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1952	outb(data, s->iobase + CM_REG_SB16_DATA);
1953}
1954
1955static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1956{
1957	unsigned char v;
1958
1959	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1960	v = inb(s->iobase + CM_REG_SB16_DATA);
1961	return v;
1962}
1963
1964/*
1965 * general mixer element
1966 */
1967struct cmipci_sb_reg {
1968	unsigned int left_reg, right_reg;
1969	unsigned int left_shift, right_shift;
1970	unsigned int mask;
1971	unsigned int invert: 1;
1972	unsigned int stereo: 1;
1973};
1974
1975#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1976 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1977
1978#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1979{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1980  .info = snd_cmipci_info_volume, \
1981  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1982  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1983}
1984
1985#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1986#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1987#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1988#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1989
1990static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1991{
1992	r->left_reg = val & 0xff;
1993	r->right_reg = (val >> 8) & 0xff;
1994	r->left_shift = (val >> 16) & 0x07;
1995	r->right_shift = (val >> 19) & 0x07;
1996	r->invert = (val >> 22) & 1;
1997	r->stereo = (val >> 23) & 1;
1998	r->mask = (val >> 24) & 0xff;
1999}
2000
2001static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2002				  struct snd_ctl_elem_info *uinfo)
2003{
2004	struct cmipci_sb_reg reg;
2005
2006	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2007	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2008	uinfo->count = reg.stereo + 1;
2009	uinfo->value.integer.min = 0;
2010	uinfo->value.integer.max = reg.mask;
2011	return 0;
2012}
2013 
2014static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2015				 struct snd_ctl_elem_value *ucontrol)
2016{
2017	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2018	struct cmipci_sb_reg reg;
2019	int val;
2020
2021	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2022	spin_lock_irq(&cm->reg_lock);
2023	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2024	if (reg.invert)
2025		val = reg.mask - val;
2026	ucontrol->value.integer.value[0] = val;
2027	if (reg.stereo) {
2028		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2029		if (reg.invert)
2030			val = reg.mask - val;
2031		ucontrol->value.integer.value[1] = val;
2032	}
2033	spin_unlock_irq(&cm->reg_lock);
2034	return 0;
2035}
2036
2037static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2038				 struct snd_ctl_elem_value *ucontrol)
2039{
2040	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2041	struct cmipci_sb_reg reg;
2042	int change;
2043	int left, right, oleft, oright;
2044
2045	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2046	left = ucontrol->value.integer.value[0] & reg.mask;
2047	if (reg.invert)
2048		left = reg.mask - left;
2049	left <<= reg.left_shift;
2050	if (reg.stereo) {
2051		right = ucontrol->value.integer.value[1] & reg.mask;
2052		if (reg.invert)
2053			right = reg.mask - right;
2054		right <<= reg.right_shift;
2055	} else
2056		right = 0;
2057	spin_lock_irq(&cm->reg_lock);
2058	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2059	left |= oleft & ~(reg.mask << reg.left_shift);
2060	change = left != oleft;
2061	if (reg.stereo) {
2062		if (reg.left_reg != reg.right_reg) {
2063			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2064			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2065		} else
2066			oright = left;
2067		right |= oright & ~(reg.mask << reg.right_shift);
2068		change |= right != oright;
2069		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2070	} else
2071		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2072	spin_unlock_irq(&cm->reg_lock);
2073	return change;
2074}
2075
2076/*
2077 * input route (left,right) -> (left,right)
2078 */
2079#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2080{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2081  .info = snd_cmipci_info_input_sw, \
2082  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2083  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2084}
2085
2086static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2087				    struct snd_ctl_elem_info *uinfo)
2088{
2089	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2090	uinfo->count = 4;
2091	uinfo->value.integer.min = 0;
2092	uinfo->value.integer.max = 1;
2093	return 0;
2094}
2095 
2096static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2097				   struct snd_ctl_elem_value *ucontrol)
2098{
2099	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2100	struct cmipci_sb_reg reg;
2101	int val1, val2;
2102
2103	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2104	spin_lock_irq(&cm->reg_lock);
2105	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2106	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2107	spin_unlock_irq(&cm->reg_lock);
2108	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2109	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2110	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2111	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2112	return 0;
2113}
2114
2115static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2116				   struct snd_ctl_elem_value *ucontrol)
2117{
2118	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2119	struct cmipci_sb_reg reg;
2120	int change;
2121	int val1, val2, oval1, oval2;
2122
2123	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2124	spin_lock_irq(&cm->reg_lock);
2125	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2126	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2127	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2128	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2129	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2130	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2131	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2132	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2133	change = val1 != oval1 || val2 != oval2;
2134	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2135	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2136	spin_unlock_irq(&cm->reg_lock);
2137	return change;
2138}
2139
2140/*
2141 * native mixer switches/volumes
2142 */
2143
2144#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2145{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2146  .info = snd_cmipci_info_native_mixer, \
2147  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2148  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2149}
2150
2151#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2152{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2153  .info = snd_cmipci_info_native_mixer, \
2154  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2155  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2156}
2157
2158#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2159{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2160  .info = snd_cmipci_info_native_mixer, \
2161  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2162  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2163}
2164
2165#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2166{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2167  .info = snd_cmipci_info_native_mixer, \
2168  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2169  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2170}
2171
2172static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2173					struct snd_ctl_elem_info *uinfo)
2174{
2175	struct cmipci_sb_reg reg;
2176
2177	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2178	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2179	uinfo->count = reg.stereo + 1;
2180	uinfo->value.integer.min = 0;
2181	uinfo->value.integer.max = reg.mask;
2182	return 0;
2183
2184}
2185
2186static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2187				       struct snd_ctl_elem_value *ucontrol)
2188{
2189	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2190	struct cmipci_sb_reg reg;
2191	unsigned char oreg, val;
2192
2193	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2194	spin_lock_irq(&cm->reg_lock);
2195	oreg = inb(cm->iobase + reg.left_reg);
2196	val = (oreg >> reg.left_shift) & reg.mask;
2197	if (reg.invert)
2198		val = reg.mask - val;
2199	ucontrol->value.integer.value[0] = val;
2200	if (reg.stereo) {
2201		val = (oreg >> reg.right_shift) & reg.mask;
2202		if (reg.invert)
2203			val = reg.mask - val;
2204		ucontrol->value.integer.value[1] = val;
2205	}
2206	spin_unlock_irq(&cm->reg_lock);
2207	return 0;
2208}
2209
2210static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2211				       struct snd_ctl_elem_value *ucontrol)
2212{
2213	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2214	struct cmipci_sb_reg reg;
2215	unsigned char oreg, nreg, val;
2216
2217	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2218	spin_lock_irq(&cm->reg_lock);
2219	oreg = inb(cm->iobase + reg.left_reg);
2220	val = ucontrol->value.integer.value[0] & reg.mask;
2221	if (reg.invert)
2222		val = reg.mask - val;
2223	nreg = oreg & ~(reg.mask << reg.left_shift);
2224	nreg |= (val << reg.left_shift);
2225	if (reg.stereo) {
2226		val = ucontrol->value.integer.value[1] & reg.mask;
2227		if (reg.invert)
2228			val = reg.mask - val;
2229		nreg &= ~(reg.mask << reg.right_shift);
2230		nreg |= (val << reg.right_shift);
2231	}
2232	outb(nreg, cm->iobase + reg.left_reg);
2233	spin_unlock_irq(&cm->reg_lock);
2234	return (nreg != oreg);
2235}
2236
2237/*
2238 * special case - check mixer sensitivity
2239 */
2240static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2241						 struct snd_ctl_elem_value *ucontrol)
2242{
2243	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2244	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2245}
2246
2247static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2248						 struct snd_ctl_elem_value *ucontrol)
2249{
2250	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2251	if (cm->mixer_insensitive) {
2252		/* ignored */
2253		return 0;
2254	}
2255	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2256}
2257
2258
2259static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2260	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2261	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2262	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2263	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2264	{ /* switch with sensitivity */
2265		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2266		.name = "PCM Playback Switch",
2267		.info = snd_cmipci_info_native_mixer,
2268		.get = snd_cmipci_get_native_mixer_sensitive,
2269		.put = snd_cmipci_put_native_mixer_sensitive,
2270		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2271	},
2272	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2273	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2274	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2275	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2276	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2277	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2278	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2279	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2280	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2281	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2282	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2283	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2284	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2285	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2286	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2287	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2288	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2289	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2290	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2291	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2292	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2293	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2294	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2295};
2296
2297/*
2298 * other switches
2299 */
2300
2301struct cmipci_switch_args {
2302	int reg;		/* register index */
2303	unsigned int mask;	/* mask bits */
2304	unsigned int mask_on;	/* mask bits to turn on */
2305	unsigned int is_byte: 1;		/* byte access? */
2306	unsigned int ac3_sensitive: 1;	/* access forbidden during
2307					 * non-audio operation?
2308					 */
2309};
2310
2311#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2312
2313static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2314				   struct snd_ctl_elem_value *ucontrol,
2315				   struct cmipci_switch_args *args)
2316{
2317	unsigned int val;
2318	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2319
2320	spin_lock_irq(&cm->reg_lock);
2321	if (args->ac3_sensitive && cm->mixer_insensitive) {
2322		ucontrol->value.integer.value[0] = 0;
2323		spin_unlock_irq(&cm->reg_lock);
2324		return 0;
2325	}
2326	if (args->is_byte)
2327		val = inb(cm->iobase + args->reg);
2328	else
2329		val = snd_cmipci_read(cm, args->reg);
2330	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2331	spin_unlock_irq(&cm->reg_lock);
2332	return 0;
2333}
2334
2335static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2336				  struct snd_ctl_elem_value *ucontrol)
2337{
2338	struct cmipci_switch_args *args;
2339	args = (struct cmipci_switch_args *)kcontrol->private_value;
2340	if (snd_BUG_ON(!args))
2341		return -EINVAL;
2342	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2343}
2344
2345static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2346				   struct snd_ctl_elem_value *ucontrol,
2347				   struct cmipci_switch_args *args)
2348{
2349	unsigned int val;
2350	int change;
2351	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2352
2353	spin_lock_irq(&cm->reg_lock);
2354	if (args->ac3_sensitive && cm->mixer_insensitive) {
2355		/* ignored */
2356		spin_unlock_irq(&cm->reg_lock);
2357		return 0;
2358	}
2359	if (args->is_byte)
2360		val = inb(cm->iobase + args->reg);
2361	else
2362		val = snd_cmipci_read(cm, args->reg);
2363	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2364			args->mask_on : (args->mask & ~args->mask_on));
2365	if (change) {
2366		val &= ~args->mask;
2367		if (ucontrol->value.integer.value[0])
2368			val |= args->mask_on;
2369		else
2370			val |= (args->mask & ~args->mask_on);
2371		if (args->is_byte)
2372			outb((unsigned char)val, cm->iobase + args->reg);
2373		else
2374			snd_cmipci_write(cm, args->reg, val);
2375	}
2376	spin_unlock_irq(&cm->reg_lock);
2377	return change;
2378}
2379
2380static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2381				  struct snd_ctl_elem_value *ucontrol)
2382{
2383	struct cmipci_switch_args *args;
2384	args = (struct cmipci_switch_args *)kcontrol->private_value;
2385	if (snd_BUG_ON(!args))
2386		return -EINVAL;
2387	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2388}
2389
2390#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2391static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2392  .reg = xreg, \
2393  .mask = xmask, \
2394  .mask_on = xmask_on, \
2395  .is_byte = xis_byte, \
2396  .ac3_sensitive = xac3, \
2397}
2398	
2399#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2400	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2401
2402#if 0 /* these will be controlled in pcm device */
2403DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2404DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2405#endif
2406DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2407DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2408DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2409DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2410DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2411DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2412DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2413DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2414// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2415DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2416DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2417/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2418DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2419DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2420#if CM_CH_PLAY == 1
2421DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2422#else
2423DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2424#endif
2425DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2426// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2427// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2428// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2429DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2430
2431#define DEFINE_SWITCH(sname, stype, sarg) \
2432{ .name = sname, \
2433  .iface = stype, \
2434  .info = snd_cmipci_uswitch_info, \
2435  .get = snd_cmipci_uswitch_get, \
2436  .put = snd_cmipci_uswitch_put, \
2437  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2438}
2439
2440#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2441#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2442
2443
2444/*
2445 * callbacks for spdif output switch
2446 * needs toggle two registers..
2447 */
2448static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2449					struct snd_ctl_elem_value *ucontrol)
2450{
2451	int changed;
2452	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2453	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2454	return changed;
2455}
2456
2457static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2458					struct snd_ctl_elem_value *ucontrol)
2459{
2460	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2461	int changed;
2462	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2463	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2464	if (changed) {
2465		if (ucontrol->value.integer.value[0]) {
2466			if (chip->spdif_playback_avail)
2467				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2468		} else {
2469			if (chip->spdif_playback_avail)
2470				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2471		}
2472	}
2473	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2474	return changed;
2475}
2476
2477
2478static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2479					struct snd_ctl_elem_info *uinfo)
2480{
2481	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2482	static const char *const texts[3] = {
2483		"Line-In", "Rear Output", "Bass Output"
2484	};
2485
2486	return snd_ctl_enum_info(uinfo, 1,
2487				 cm->chip_version >= 39 ? 3 : 2, texts);
2488}
2489
2490static inline unsigned int get_line_in_mode(struct cmipci *cm)
2491{
2492	unsigned int val;
2493	if (cm->chip_version >= 39) {
2494		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2495		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2496			return 2;
2497	}
2498	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2499	if (val & CM_REAR2LIN)
2500		return 1;
2501	return 0;
2502}
2503
2504static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2505				       struct snd_ctl_elem_value *ucontrol)
2506{
2507	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2508
2509	spin_lock_irq(&cm->reg_lock);
2510	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2511	spin_unlock_irq(&cm->reg_lock);
2512	return 0;
2513}
2514
2515static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2516				       struct snd_ctl_elem_value *ucontrol)
2517{
2518	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2519	int change;
2520
2521	spin_lock_irq(&cm->reg_lock);
2522	if (ucontrol->value.enumerated.item[0] == 2)
2523		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2524	else
2525		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2526	if (ucontrol->value.enumerated.item[0] == 1)
2527		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2528	else
2529		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2530	spin_unlock_irq(&cm->reg_lock);
2531	return change;
2532}
2533
2534static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2535				       struct snd_ctl_elem_info *uinfo)
2536{
2537	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2538
2539	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2540}
2541
2542static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2543				      struct snd_ctl_elem_value *ucontrol)
2544{
2545	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2546	/* same bit as spdi_phase */
2547	spin_lock_irq(&cm->reg_lock);
2548	ucontrol->value.enumerated.item[0] = 
2549		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2550	spin_unlock_irq(&cm->reg_lock);
2551	return 0;
2552}
2553
2554static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2555				      struct snd_ctl_elem_value *ucontrol)
2556{
2557	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2558	int change;
2559
2560	spin_lock_irq(&cm->reg_lock);
2561	if (ucontrol->value.enumerated.item[0])
2562		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2563	else
2564		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2565	spin_unlock_irq(&cm->reg_lock);
2566	return change;
2567}
2568
2569/* both for CM8338/8738 */
2570static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2571	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2572	{
2573		.name = "Line-In Mode",
2574		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2575		.info = snd_cmipci_line_in_mode_info,
2576		.get = snd_cmipci_line_in_mode_get,
2577		.put = snd_cmipci_line_in_mode_put,
2578	},
2579};
2580
2581/* for non-multichannel chips */
2582static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2583DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2584
2585/* only for CM8738 */
2586static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2587#if 0 /* controlled in pcm device */
2588	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2589	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2590	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2591#endif
2592	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2593	{ .name = "IEC958 Output Switch",
2594	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2595	  .info = snd_cmipci_uswitch_info,
2596	  .get = snd_cmipci_spdout_enable_get,
2597	  .put = snd_cmipci_spdout_enable_put,
2598	},
2599	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2600	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2601	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2602//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2603	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2604	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2605};
2606
2607/* only for model 033/037 */
2608static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2609	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2610	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2611	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2612};
2613
2614/* only for model 039 or later */
2615static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2616	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2617	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2618	{
2619		.name = "Mic-In Mode",
2620		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2621		.info = snd_cmipci_mic_in_mode_info,
2622		.get = snd_cmipci_mic_in_mode_get,
2623		.put = snd_cmipci_mic_in_mode_put,
2624	}
2625};
2626
2627/* card control switches */
2628static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2629DEFINE_CARD_SWITCH("Modem", modem);
2630
2631
2632static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2633{
2634	struct snd_card *card;
2635	const struct snd_kcontrol_new *sw;
2636	struct snd_kcontrol *kctl;
2637	unsigned int idx;
2638	int err;
2639
2640	if (snd_BUG_ON(!cm || !cm->card))
2641		return -EINVAL;
2642
2643	card = cm->card;
2644
2645	strcpy(card->mixername, "CMedia PCI");
2646
2647	spin_lock_irq(&cm->reg_lock);
2648	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2649	spin_unlock_irq(&cm->reg_lock);
2650
2651	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2652		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2653			if (!strcmp(snd_cmipci_mixers[idx].name,
2654				"PCM Playback Volume"))
2655				continue;
2656		}
2657		if ((err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm))) < 0)
 
2658			return err;
2659	}
2660
2661	/* mixer switches */
2662	sw = snd_cmipci_mixer_switches;
2663	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2664		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2665		if (err < 0)
2666			return err;
2667	}
2668	if (! cm->can_multi_ch) {
2669		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2670		if (err < 0)
2671			return err;
2672	}
2673	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2674	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2675		sw = snd_cmipci_8738_mixer_switches;
2676		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2677			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2678			if (err < 0)
2679				return err;
2680		}
2681		if (cm->can_ac3_hw) {
2682			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm))) < 0)
 
 
2683				return err;
2684			kctl->id.device = pcm_spdif_device;
2685			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm))) < 0)
 
 
2686				return err;
2687			kctl->id.device = pcm_spdif_device;
2688			if ((err = snd_ctl_add(card, kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm))) < 0)
 
 
2689				return err;
2690			kctl->id.device = pcm_spdif_device;
2691		}
2692		if (cm->chip_version <= 37) {
2693			sw = snd_cmipci_old_mixer_switches;
2694			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2695				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2696				if (err < 0)
2697					return err;
2698			}
2699		}
2700	}
2701	if (cm->chip_version >= 39) {
2702		sw = snd_cmipci_extra_mixer_switches;
2703		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2704			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2705			if (err < 0)
2706				return err;
2707		}
2708	}
2709
2710	/* card switches */
2711	/*
2712	 * newer chips don't have the register bits to force modem link
2713	 * detection; the bit that was FLINKON now mutes CH1
2714	 */
2715	if (cm->chip_version < 39) {
2716		err = snd_ctl_add(cm->card,
2717				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2718		if (err < 0)
2719			return err;
2720	}
2721
2722	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2723		struct snd_ctl_elem_id elem_id;
2724		struct snd_kcontrol *ctl;
2725		memset(&elem_id, 0, sizeof(elem_id));
2726		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2727		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2728		ctl = snd_ctl_find_id(cm->card, &elem_id);
2729		if (ctl)
2730			cm->mixer_res_ctl[idx] = ctl;
2731	}
2732
2733	return 0;
2734}
2735
2736
2737/*
2738 * proc interface
2739 */
2740
2741static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2742				 struct snd_info_buffer *buffer)
2743{
2744	struct cmipci *cm = entry->private_data;
2745	int i, v;
2746	
2747	snd_iprintf(buffer, "%s\n", cm->card->longname);
2748	for (i = 0; i < 0x94; i++) {
2749		if (i == 0x28)
2750			i = 0x90;
2751		v = inb(cm->iobase + i);
2752		if (i % 4 == 0)
2753			snd_iprintf(buffer, "\n%02x:", i);
2754		snd_iprintf(buffer, " %02x", v);
2755	}
2756	snd_iprintf(buffer, "\n");
2757}
2758
2759static void snd_cmipci_proc_init(struct cmipci *cm)
2760{
2761	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2762}
2763
2764static const struct pci_device_id snd_cmipci_ids[] = {
2765	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2766	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2767	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2768	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2769	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2770	{0,},
2771};
2772
2773
2774/*
2775 * check chip version and capabilities
2776 * driver name is modified according to the chip model
2777 */
2778static void query_chip(struct cmipci *cm)
2779{
2780	unsigned int detect;
2781
2782	/* check reg 0Ch, bit 24-31 */
2783	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2784	if (! detect) {
2785		/* check reg 08h, bit 24-28 */
2786		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2787		switch (detect) {
2788		case 0:
2789			cm->chip_version = 33;
2790			if (cm->do_soft_ac3)
2791				cm->can_ac3_sw = 1;
2792			else
2793				cm->can_ac3_hw = 1;
2794			break;
2795		case CM_CHIP_037:
2796			cm->chip_version = 37;
2797			cm->can_ac3_hw = 1;
2798			break;
2799		default:
2800			cm->chip_version = 39;
2801			cm->can_ac3_hw = 1;
2802			break;
2803		}
2804		cm->max_channels = 2;
2805	} else {
2806		if (detect & CM_CHIP_039) {
2807			cm->chip_version = 39;
2808			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2809				cm->max_channels = 6;
2810			else
2811				cm->max_channels = 4;
2812		} else if (detect & CM_CHIP_8768) {
2813			cm->chip_version = 68;
2814			cm->max_channels = 8;
2815			cm->can_96k = 1;
2816		} else {
2817			cm->chip_version = 55;
2818			cm->max_channels = 6;
2819			cm->can_96k = 1;
2820		}
2821		cm->can_ac3_hw = 1;
2822		cm->can_multi_ch = 1;
2823	}
2824}
2825
2826#ifdef SUPPORT_JOYSTICK
2827static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2828{
2829	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2830	struct gameport *gp;
2831	struct resource *r = NULL;
2832	int i, io_port = 0;
2833
2834	if (joystick_port[dev] == 0)
2835		return -ENODEV;
2836
2837	if (joystick_port[dev] == 1) { /* auto-detect */
2838		for (i = 0; ports[i]; i++) {
2839			io_port = ports[i];
2840			r = request_region(io_port, 1, "CMIPCI gameport");
2841			if (r)
2842				break;
2843		}
2844	} else {
2845		io_port = joystick_port[dev];
2846		r = request_region(io_port, 1, "CMIPCI gameport");
2847	}
2848
2849	if (!r) {
2850		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2851		return -EBUSY;
2852	}
2853
2854	cm->gameport = gp = gameport_allocate_port();
2855	if (!gp) {
2856		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2857		release_and_free_resource(r);
2858		return -ENOMEM;
2859	}
2860	gameport_set_name(gp, "C-Media Gameport");
2861	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2862	gameport_set_dev_parent(gp, &cm->pci->dev);
2863	gp->io = io_port;
2864	gameport_set_port_data(gp, r);
2865
2866	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2867
2868	gameport_register_port(cm->gameport);
2869
2870	return 0;
2871}
2872
2873static void snd_cmipci_free_gameport(struct cmipci *cm)
2874{
2875	if (cm->gameport) {
2876		struct resource *r = gameport_get_port_data(cm->gameport);
2877
2878		gameport_unregister_port(cm->gameport);
2879		cm->gameport = NULL;
2880
2881		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2882		release_and_free_resource(r);
2883	}
2884}
2885#else
2886static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2887static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2888#endif
2889
2890static int snd_cmipci_free(struct cmipci *cm)
2891{
2892	if (cm->irq >= 0) {
2893		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2894		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2895		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2896		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2897		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2898		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2899		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2900
2901		/* reset mixer */
2902		snd_cmipci_mixer_write(cm, 0, 0);
2903
2904		free_irq(cm->irq, cm);
2905	}
2906
2907	snd_cmipci_free_gameport(cm);
2908	pci_release_regions(cm->pci);
2909	pci_disable_device(cm->pci);
2910	kfree(cm);
2911	return 0;
2912}
2913
2914static int snd_cmipci_dev_free(struct snd_device *device)
2915{
2916	struct cmipci *cm = device->device_data;
2917	return snd_cmipci_free(cm);
2918}
2919
2920static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2921{
2922	long iosynth;
2923	unsigned int val;
2924	struct snd_opl3 *opl3;
2925	int err;
2926
2927	if (!fm_port)
2928		goto disable_fm;
2929
2930	if (cm->chip_version >= 39) {
2931		/* first try FM regs in PCI port range */
2932		iosynth = cm->iobase + CM_REG_FM_PCI;
2933		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2934				      OPL3_HW_OPL3, 1, &opl3);
2935	} else {
2936		err = -EIO;
2937	}
2938	if (err < 0) {
2939		/* then try legacy ports */
2940		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2941		iosynth = fm_port;
2942		switch (iosynth) {
2943		case 0x3E8: val |= CM_FMSEL_3E8; break;
2944		case 0x3E0: val |= CM_FMSEL_3E0; break;
2945		case 0x3C8: val |= CM_FMSEL_3C8; break;
2946		case 0x388: val |= CM_FMSEL_388; break;
2947		default:
2948			goto disable_fm;
2949		}
2950		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2951		/* enable FM */
2952		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2953
2954		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2955				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2956			dev_err(cm->card->dev,
2957				"no OPL device at %#lx, skipping...\n",
2958				iosynth);
2959			goto disable_fm;
2960		}
2961	}
2962	if ((err = snd_opl3_hwdep_new(opl3, 0, 1, NULL)) < 0) {
 
2963		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2964		return err;
2965	}
2966	return 0;
2967
2968 disable_fm:
2969	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2970	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2971	return 0;
2972}
2973
2974static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2975			     int dev, struct cmipci **rcmipci)
2976{
2977	struct cmipci *cm;
2978	int err;
2979	static const struct snd_device_ops ops = {
2980		.dev_free =	snd_cmipci_dev_free,
2981	};
2982	unsigned int val;
2983	long iomidi = 0;
2984	int integrated_midi = 0;
2985	char modelstr[16];
2986	int pcm_index, pcm_spdif_index;
2987	static const struct pci_device_id intel_82437vx[] = {
2988		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
2989		{ },
2990	};
2991
2992	*rcmipci = NULL;
2993
2994	if ((err = pci_enable_device(pci)) < 0)
 
2995		return err;
2996
2997	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
2998	if (cm == NULL) {
2999		pci_disable_device(pci);
3000		return -ENOMEM;
3001	}
3002
3003	spin_lock_init(&cm->reg_lock);
3004	mutex_init(&cm->open_mutex);
3005	cm->device = pci->device;
3006	cm->card = card;
3007	cm->pci = pci;
3008	cm->irq = -1;
3009	cm->channel[0].ch = 0;
3010	cm->channel[1].ch = 1;
3011	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3012
3013	if ((err = pci_request_regions(pci, card->driver)) < 0) {
 
3014		kfree(cm);
3015		pci_disable_device(pci);
3016		return err;
3017	}
3018	cm->iobase = pci_resource_start(pci, 0);
3019
3020	if (request_irq(pci->irq, snd_cmipci_interrupt,
3021			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3022		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3023		snd_cmipci_free(cm);
3024		return -EBUSY;
3025	}
3026	cm->irq = pci->irq;
3027	card->sync_irq = cm->irq;
3028
3029	pci_set_master(cm->pci);
3030
3031	/*
3032	 * check chip version, max channels and capabilities
3033	 */
3034
3035	cm->chip_version = 0;
3036	cm->max_channels = 2;
3037	cm->do_soft_ac3 = soft_ac3[dev];
3038
3039	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3040	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3041		query_chip(cm);
3042	/* added -MCx suffix for chip supporting multi-channels */
3043	if (cm->can_multi_ch)
3044		sprintf(cm->card->driver + strlen(cm->card->driver),
3045			"-MC%d", cm->max_channels);
3046	else if (cm->can_ac3_sw)
3047		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3048
3049	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3050	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3051
3052#if CM_CH_PLAY == 1
3053	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3054#else
3055	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3056#endif
3057
3058	/* initialize codec registers */
3059	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3060	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3061	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3062	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3063	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3064	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3065	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3066
3067	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3068	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3069#if CM_CH_PLAY == 1
3070	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3071#else
3072	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3073#endif
3074	if (cm->chip_version) {
3075		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3076		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3077	}
3078	/* Set Bus Master Request */
3079	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3080
3081	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3082	switch (pci->device) {
3083	case PCI_DEVICE_ID_CMEDIA_CM8738:
3084	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3085		if (!pci_dev_present(intel_82437vx)) 
3086			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3087		break;
3088	default:
3089		break;
3090	}
3091
3092	if (cm->chip_version < 68) {
3093		val = pci->device < 0x110 ? 8338 : 8738;
3094	} else {
3095		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3096		case 0:
3097			val = 8769;
3098			break;
3099		case 2:
3100			val = 8762;
3101			break;
3102		default:
3103			switch ((pci->subsystem_vendor << 16) |
3104				pci->subsystem_device) {
3105			case 0x13f69761:
3106			case 0x584d3741:
3107			case 0x584d3751:
3108			case 0x584d3761:
3109			case 0x584d3771:
3110			case 0x72848384:
3111				val = 8770;
3112				break;
3113			default:
3114				val = 8768;
3115				break;
3116			}
3117		}
3118	}
3119	sprintf(card->shortname, "C-Media CMI%d", val);
3120	if (cm->chip_version < 68)
3121		sprintf(modelstr, " (model %d)", cm->chip_version);
3122	else
3123		modelstr[0] = '\0';
3124	sprintf(card->longname, "%s%s at %#lx, irq %i",
3125		card->shortname, modelstr, cm->iobase, cm->irq);
3126
3127	if ((err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops)) < 0) {
 
3128		snd_cmipci_free(cm);
3129		return err;
3130	}
3131
3132	if (cm->chip_version >= 39) {
3133		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3134		if (val != 0x00 && val != 0xff) {
3135			if (mpu_port[dev])
3136				iomidi = cm->iobase + CM_REG_MPU_PCI;
3137			integrated_midi = 1;
3138		}
3139	}
3140	if (!integrated_midi) {
3141		val = 0;
3142		iomidi = mpu_port[dev];
3143		switch (iomidi) {
3144		case 0x320: val = CM_VMPU_320; break;
3145		case 0x310: val = CM_VMPU_310; break;
3146		case 0x300: val = CM_VMPU_300; break;
3147		case 0x330: val = CM_VMPU_330; break;
3148		default:
3149			    iomidi = 0; break;
3150		}
3151		if (iomidi > 0) {
3152			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3153			/* enable UART */
3154			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3155			if (inb(iomidi + 1) == 0xff) {
3156				dev_err(cm->card->dev,
3157					"cannot enable MPU-401 port at %#lx\n",
3158					iomidi);
3159				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3160						     CM_UART_EN);
3161				iomidi = 0;
3162			}
3163		}
3164	}
3165
3166	if (cm->chip_version < 68) {
3167		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3168		if (err < 0)
3169			return err;
3170	}
3171
3172	/* reset mixer */
3173	snd_cmipci_mixer_write(cm, 0, 0);
3174
3175	snd_cmipci_proc_init(cm);
3176
3177	/* create pcm devices */
3178	pcm_index = pcm_spdif_index = 0;
3179	if ((err = snd_cmipci_pcm_new(cm, pcm_index)) < 0)
 
3180		return err;
3181	pcm_index++;
3182	if ((err = snd_cmipci_pcm2_new(cm, pcm_index)) < 0)
 
3183		return err;
3184	pcm_index++;
3185	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3186		pcm_spdif_index = pcm_index;
3187		if ((err = snd_cmipci_pcm_spdif_new(cm, pcm_index)) < 0)
 
3188			return err;
3189	}
3190
3191	/* create mixer interface & switches */
3192	if ((err = snd_cmipci_mixer_new(cm, pcm_spdif_index)) < 0)
 
3193		return err;
3194
3195	if (iomidi > 0) {
3196		if ((err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3197					       iomidi,
3198					       (integrated_midi ?
3199						MPU401_INFO_INTEGRATED : 0) |
3200					       MPU401_INFO_IRQ_HOOK,
3201					       -1, &cm->rmidi)) < 0) {
 
3202			dev_err(cm->card->dev,
3203				"no UART401 device at 0x%lx\n", iomidi);
3204		}
3205	}
3206
3207#ifdef USE_VAR48KRATE
3208	for (val = 0; val < ARRAY_SIZE(rates); val++)
3209		snd_cmipci_set_pll(cm, rates[val], val);
3210
3211	/*
3212	 * (Re-)Enable external switch spdo_48k
3213	 */
3214	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3215#endif /* USE_VAR48KRATE */
3216
3217	if (snd_cmipci_create_gameport(cm, dev) < 0)
3218		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3219
3220	*rcmipci = cm;
3221	return 0;
3222}
3223
3224/*
3225 */
3226
3227MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3228
3229static int snd_cmipci_probe(struct pci_dev *pci,
3230			    const struct pci_device_id *pci_id)
3231{
3232	static int dev;
3233	struct snd_card *card;
3234	struct cmipci *cm;
3235	int err;
3236
3237	if (dev >= SNDRV_CARDS)
3238		return -ENODEV;
3239	if (! enable[dev]) {
3240		dev++;
3241		return -ENOENT;
3242	}
3243
3244	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3245			   0, &card);
3246	if (err < 0)
3247		return err;
3248	
3249	switch (pci->device) {
3250	case PCI_DEVICE_ID_CMEDIA_CM8738:
3251	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3252		strcpy(card->driver, "CMI8738");
3253		break;
3254	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3255	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3256		strcpy(card->driver, "CMI8338");
3257		break;
3258	default:
3259		strcpy(card->driver, "CMIPCI");
3260		break;
3261	}
3262
3263	err = snd_cmipci_create(card, pci, dev, &cm);
3264	if (err < 0)
3265		goto free_card;
3266
3267	card->private_data = cm;
3268
3269	err = snd_card_register(card);
3270	if (err < 0)
3271		goto free_card;
3272
3273	pci_set_drvdata(pci, card);
3274	dev++;
3275	return 0;
3276
3277free_card:
3278	snd_card_free(card);
3279	return err;
3280}
3281
3282static void snd_cmipci_remove(struct pci_dev *pci)
3283{
3284	snd_card_free(pci_get_drvdata(pci));
3285}
3286
3287
3288#ifdef CONFIG_PM_SLEEP
3289/*
3290 * power management
3291 */
3292static const unsigned char saved_regs[] = {
3293	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3294	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3295	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3296	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3297	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3298};
3299
3300static const unsigned char saved_mixers[] = {
3301	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3302	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3303	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3304	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3305	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3306	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3307	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3308	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3309};
3310
3311static int snd_cmipci_suspend(struct device *dev)
3312{
3313	struct snd_card *card = dev_get_drvdata(dev);
3314	struct cmipci *cm = card->private_data;
3315	int i;
3316
3317	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3318	
3319	/* save registers */
3320	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3321		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3322	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3323		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3324
3325	/* disable ints */
3326	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3327	return 0;
3328}
3329
3330static int snd_cmipci_resume(struct device *dev)
3331{
3332	struct snd_card *card = dev_get_drvdata(dev);
3333	struct cmipci *cm = card->private_data;
3334	int i;
3335
3336	/* reset / initialize to a sane state */
3337	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3338	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3339	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3340	snd_cmipci_mixer_write(cm, 0, 0);
3341
3342	/* restore registers */
3343	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3344		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3345	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3346		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3347
3348	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3349	return 0;
3350}
3351
3352static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3353#define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3354#else
3355#define SND_CMIPCI_PM_OPS	NULL
3356#endif /* CONFIG_PM_SLEEP */
3357
3358static struct pci_driver cmipci_driver = {
3359	.name = KBUILD_MODNAME,
3360	.id_table = snd_cmipci_ids,
3361	.probe = snd_cmipci_probe,
3362	.remove = snd_cmipci_remove,
3363	.driver = {
3364		.pm = SND_CMIPCI_PM_OPS,
3365	},
3366};
3367	
3368module_pci_driver(cmipci_driver);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Driver for C-Media CMI8338 and 8738 PCI soundcards.
   4 * Copyright (c) 2000 by Takashi Iwai <tiwai@suse.de>
   5 */
   6 
   7/* Does not work. Warning may block system in capture mode */
   8/* #define USE_VAR48KRATE */
   9
  10#include <linux/io.h>
  11#include <linux/delay.h>
  12#include <linux/interrupt.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/slab.h>
  16#include <linux/gameport.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <sound/core.h>
  20#include <sound/info.h>
  21#include <sound/control.h>
  22#include <sound/pcm.h>
  23#include <sound/rawmidi.h>
  24#include <sound/mpu401.h>
  25#include <sound/opl3.h>
  26#include <sound/sb.h>
  27#include <sound/asoundef.h>
  28#include <sound/initval.h>
  29
  30MODULE_AUTHOR("Takashi Iwai <tiwai@suse.de>");
  31MODULE_DESCRIPTION("C-Media CMI8x38 PCI");
  32MODULE_LICENSE("GPL");
 
 
 
 
  33
  34#if IS_REACHABLE(CONFIG_GAMEPORT)
  35#define SUPPORT_JOYSTICK 1
  36#endif
  37
  38static int index[SNDRV_CARDS] = SNDRV_DEFAULT_IDX;	/* Index 0-MAX */
  39static char *id[SNDRV_CARDS] = SNDRV_DEFAULT_STR;	/* ID for this card */
  40static bool enable[SNDRV_CARDS] = SNDRV_DEFAULT_ENABLE_PNP;	/* Enable switches */
  41static long mpu_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)] = 1};
  42static long fm_port[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  43static bool soft_ac3[SNDRV_CARDS] = {[0 ... (SNDRV_CARDS-1)]=1};
  44#ifdef SUPPORT_JOYSTICK
  45static int joystick_port[SNDRV_CARDS];
  46#endif
  47
  48module_param_array(index, int, NULL, 0444);
  49MODULE_PARM_DESC(index, "Index value for C-Media PCI soundcard.");
  50module_param_array(id, charp, NULL, 0444);
  51MODULE_PARM_DESC(id, "ID string for C-Media PCI soundcard.");
  52module_param_array(enable, bool, NULL, 0444);
  53MODULE_PARM_DESC(enable, "Enable C-Media PCI soundcard.");
  54module_param_hw_array(mpu_port, long, ioport, NULL, 0444);
  55MODULE_PARM_DESC(mpu_port, "MPU-401 port.");
  56module_param_hw_array(fm_port, long, ioport, NULL, 0444);
  57MODULE_PARM_DESC(fm_port, "FM port.");
  58module_param_array(soft_ac3, bool, NULL, 0444);
  59MODULE_PARM_DESC(soft_ac3, "Software-conversion of raw SPDIF packets (model 033 only).");
  60#ifdef SUPPORT_JOYSTICK
  61module_param_hw_array(joystick_port, int, ioport, NULL, 0444);
  62MODULE_PARM_DESC(joystick_port, "Joystick port address.");
  63#endif
  64
  65/*
  66 * CM8x38 registers definition
  67 */
  68
  69#define CM_REG_FUNCTRL0		0x00
  70#define CM_RST_CH1		0x00080000
  71#define CM_RST_CH0		0x00040000
  72#define CM_CHEN1		0x00020000	/* ch1: enable */
  73#define CM_CHEN0		0x00010000	/* ch0: enable */
  74#define CM_PAUSE1		0x00000008	/* ch1: pause */
  75#define CM_PAUSE0		0x00000004	/* ch0: pause */
  76#define CM_CHADC1		0x00000002	/* ch1, 0:playback, 1:record */
  77#define CM_CHADC0		0x00000001	/* ch0, 0:playback, 1:record */
  78
  79#define CM_REG_FUNCTRL1		0x04
  80#define CM_DSFC_MASK		0x0000E000	/* channel 1 (DAC?) sampling frequency */
  81#define CM_DSFC_SHIFT		13
  82#define CM_ASFC_MASK		0x00001C00	/* channel 0 (ADC?) sampling frequency */
  83#define CM_ASFC_SHIFT		10
  84#define CM_SPDF_1		0x00000200	/* SPDIF IN/OUT at channel B */
  85#define CM_SPDF_0		0x00000100	/* SPDIF OUT only channel A */
  86#define CM_SPDFLOOP		0x00000080	/* ext. SPDIIF/IN -> OUT loopback */
  87#define CM_SPDO2DAC		0x00000040	/* SPDIF/OUT can be heard from internal DAC */
  88#define CM_INTRM		0x00000020	/* master control block (MCB) interrupt enabled */
  89#define CM_BREQ			0x00000010	/* bus master enabled */
  90#define CM_VOICE_EN		0x00000008	/* legacy voice (SB16,FM) */
  91#define CM_UART_EN		0x00000004	/* legacy UART */
  92#define CM_JYSTK_EN		0x00000002	/* legacy joystick */
  93#define CM_ZVPORT		0x00000001	/* ZVPORT */
  94
  95#define CM_REG_CHFORMAT		0x08
  96
  97#define CM_CHB3D5C		0x80000000	/* 5,6 channels */
  98#define CM_FMOFFSET2		0x40000000	/* initial FM PCM offset 2 when Fmute=1 */
  99#define CM_CHB3D		0x20000000	/* 4 channels */
 100
 101#define CM_CHIP_MASK1		0x1f000000
 102#define CM_CHIP_037		0x01000000
 103#define CM_SETLAT48		0x00800000	/* set latency timer 48h */
 104#define CM_EDGEIRQ		0x00400000	/* emulated edge trigger legacy IRQ */
 105#define CM_SPD24SEL39		0x00200000	/* 24-bit spdif: model 039 */
 106#define CM_AC3EN1		0x00100000	/* enable AC3: model 037 */
 107#define CM_SPDIF_SELECT1	0x00080000	/* for model <= 037 ? */
 108#define CM_SPD24SEL		0x00020000	/* 24bit spdif: model 037 */
 109/* #define CM_SPDIF_INVERSE	0x00010000 */ /* ??? */
 110
 111#define CM_ADCBITLEN_MASK	0x0000C000	
 112#define CM_ADCBITLEN_16		0x00000000
 113#define CM_ADCBITLEN_15		0x00004000
 114#define CM_ADCBITLEN_14		0x00008000
 115#define CM_ADCBITLEN_13		0x0000C000
 116
 117#define CM_ADCDACLEN_MASK	0x00003000	/* model 037 */
 118#define CM_ADCDACLEN_060	0x00000000
 119#define CM_ADCDACLEN_066	0x00001000
 120#define CM_ADCDACLEN_130	0x00002000
 121#define CM_ADCDACLEN_280	0x00003000
 122
 123#define CM_ADCDLEN_MASK		0x00003000	/* model 039 */
 124#define CM_ADCDLEN_ORIGINAL	0x00000000
 125#define CM_ADCDLEN_EXTRA	0x00001000
 126#define CM_ADCDLEN_24K		0x00002000
 127#define CM_ADCDLEN_WEIGHT	0x00003000
 128
 129#define CM_CH1_SRATE_176K	0x00000800
 130#define CM_CH1_SRATE_96K	0x00000800	/* model 055? */
 131#define CM_CH1_SRATE_88K	0x00000400
 132#define CM_CH0_SRATE_176K	0x00000200
 133#define CM_CH0_SRATE_96K	0x00000200	/* model 055? */
 134#define CM_CH0_SRATE_88K	0x00000100
 135#define CM_CH0_SRATE_128K	0x00000300
 136#define CM_CH0_SRATE_MASK	0x00000300
 137
 138#define CM_SPDIF_INVERSE2	0x00000080	/* model 055? */
 139#define CM_DBLSPDS		0x00000040	/* double SPDIF sample rate 88.2/96 */
 140#define CM_POLVALID		0x00000020	/* inverse SPDIF/IN valid bit */
 141#define CM_SPDLOCKED		0x00000010
 142
 143#define CM_CH1FMT_MASK		0x0000000C	/* bit 3: 16 bits, bit 2: stereo */
 144#define CM_CH1FMT_SHIFT		2
 145#define CM_CH0FMT_MASK		0x00000003	/* bit 1: 16 bits, bit 0: stereo */
 146#define CM_CH0FMT_SHIFT		0
 147
 148#define CM_REG_INT_HLDCLR	0x0C
 149#define CM_CHIP_MASK2		0xff000000
 150#define CM_CHIP_8768		0x20000000
 151#define CM_CHIP_055		0x08000000
 152#define CM_CHIP_039		0x04000000
 153#define CM_CHIP_039_6CH		0x01000000
 154#define CM_UNKNOWN_INT_EN	0x00080000	/* ? */
 155#define CM_TDMA_INT_EN		0x00040000
 156#define CM_CH1_INT_EN		0x00020000
 157#define CM_CH0_INT_EN		0x00010000
 158
 159#define CM_REG_INT_STATUS	0x10
 160#define CM_INTR			0x80000000
 161#define CM_VCO			0x08000000	/* Voice Control? CMI8738 */
 162#define CM_MCBINT		0x04000000	/* Master Control Block abort cond.? */
 163#define CM_UARTINT		0x00010000
 164#define CM_LTDMAINT		0x00008000
 165#define CM_HTDMAINT		0x00004000
 166#define CM_XDO46		0x00000080	/* Modell 033? Direct programming EEPROM (read data register) */
 167#define CM_LHBTOG		0x00000040	/* High/Low status from DMA ctrl register */
 168#define CM_LEG_HDMA		0x00000020	/* Legacy is in High DMA channel */
 169#define CM_LEG_STEREO		0x00000010	/* Legacy is in Stereo mode */
 170#define CM_CH1BUSY		0x00000008
 171#define CM_CH0BUSY		0x00000004
 172#define CM_CHINT1		0x00000002
 173#define CM_CHINT0		0x00000001
 174
 175#define CM_REG_LEGACY_CTRL	0x14
 176#define CM_NXCHG		0x80000000	/* don't map base reg dword->sample */
 177#define CM_VMPU_MASK		0x60000000	/* MPU401 i/o port address */
 178#define CM_VMPU_330		0x00000000
 179#define CM_VMPU_320		0x20000000
 180#define CM_VMPU_310		0x40000000
 181#define CM_VMPU_300		0x60000000
 182#define CM_ENWR8237		0x10000000	/* enable bus master to write 8237 base reg */
 183#define CM_VSBSEL_MASK		0x0C000000	/* SB16 base address */
 184#define CM_VSBSEL_220		0x00000000
 185#define CM_VSBSEL_240		0x04000000
 186#define CM_VSBSEL_260		0x08000000
 187#define CM_VSBSEL_280		0x0C000000
 188#define CM_FMSEL_MASK		0x03000000	/* FM OPL3 base address */
 189#define CM_FMSEL_388		0x00000000
 190#define CM_FMSEL_3C8		0x01000000
 191#define CM_FMSEL_3E0		0x02000000
 192#define CM_FMSEL_3E8		0x03000000
 193#define CM_ENSPDOUT		0x00800000	/* enable XSPDIF/OUT to I/O interface */
 194#define CM_SPDCOPYRHT		0x00400000	/* spdif in/out copyright bit */
 195#define CM_DAC2SPDO		0x00200000	/* enable wave+fm_midi -> SPDIF/OUT */
 196#define CM_INVIDWEN		0x00100000	/* internal vendor ID write enable, model 039? */
 197#define CM_SETRETRY		0x00100000	/* 0: legacy i/o wait (default), 1: legacy i/o bus retry */
 198#define CM_C_EEACCESS		0x00080000	/* direct programming eeprom regs */
 199#define CM_C_EECS		0x00040000
 200#define CM_C_EEDI46		0x00020000
 201#define CM_C_EECK46		0x00010000
 202#define CM_CHB3D6C		0x00008000	/* 5.1 channels support */
 203#define CM_CENTR2LIN		0x00004000	/* line-in as center out */
 204#define CM_BASE2LIN		0x00002000	/* line-in as bass out */
 205#define CM_EXBASEN		0x00001000	/* external bass input enable */
 206
 207#define CM_REG_MISC_CTRL	0x18
 208#define CM_PWD			0x80000000	/* power down */
 209#define CM_RESET		0x40000000
 210#define CM_SFIL_MASK		0x30000000	/* filter control at front end DAC, model 037? */
 211#define CM_VMGAIN		0x10000000	/* analog master amp +6dB, model 039? */
 212#define CM_TXVX			0x08000000	/* model 037? */
 213#define CM_N4SPK3D		0x04000000	/* copy front to rear */
 214#define CM_SPDO5V		0x02000000	/* 5V spdif output (1 = 0.5v (coax)) */
 215#define CM_SPDIF48K		0x01000000	/* write */
 216#define CM_SPATUS48K		0x01000000	/* read */
 217#define CM_ENDBDAC		0x00800000	/* enable double dac */
 218#define CM_XCHGDAC		0x00400000	/* 0: front=ch0, 1: front=ch1 */
 219#define CM_SPD32SEL		0x00200000	/* 0: 16bit SPDIF, 1: 32bit */
 220#define CM_SPDFLOOPI		0x00100000	/* int. SPDIF-OUT -> int. IN */
 221#define CM_FM_EN		0x00080000	/* enable legacy FM */
 222#define CM_AC3EN2		0x00040000	/* enable AC3: model 039 */
 223#define CM_ENWRASID		0x00010000	/* choose writable internal SUBID (audio) */
 224#define CM_VIDWPDSB		0x00010000	/* model 037? */
 225#define CM_SPDF_AC97		0x00008000	/* 0: SPDIF/OUT 44.1K, 1: 48K */
 226#define CM_MASK_EN		0x00004000	/* activate channel mask on legacy DMA */
 227#define CM_ENWRMSID		0x00002000	/* choose writable internal SUBID (modem) */
 228#define CM_VIDWPPRT		0x00002000	/* model 037? */
 229#define CM_SFILENB		0x00001000	/* filter stepping at front end DAC, model 037? */
 230#define CM_MMODE_MASK		0x00000E00	/* model DAA interface mode */
 231#define CM_SPDIF_SELECT2	0x00000100	/* for model > 039 ? */
 232#define CM_ENCENTER		0x00000080
 233#define CM_FLINKON		0x00000040	/* force modem link detection on, model 037 */
 234#define CM_MUTECH1		0x00000040	/* mute PCI ch1 to DAC */
 235#define CM_FLINKOFF		0x00000020	/* force modem link detection off, model 037 */
 236#define CM_MIDSMP		0x00000010	/* 1/2 interpolation at front end DAC */
 237#define CM_UPDDMA_MASK		0x0000000C	/* TDMA position update notification */
 238#define CM_UPDDMA_2048		0x00000000
 239#define CM_UPDDMA_1024		0x00000004
 240#define CM_UPDDMA_512		0x00000008
 241#define CM_UPDDMA_256		0x0000000C		
 242#define CM_TWAIT_MASK		0x00000003	/* model 037 */
 243#define CM_TWAIT1		0x00000002	/* FM i/o cycle, 0: 48, 1: 64 PCICLKs */
 244#define CM_TWAIT0		0x00000001	/* i/o cycle, 0: 4, 1: 6 PCICLKs */
 245
 246#define CM_REG_TDMA_POSITION	0x1C
 247#define CM_TDMA_CNT_MASK	0xFFFF0000	/* current byte/word count */
 248#define CM_TDMA_ADR_MASK	0x0000FFFF	/* current address */
 249
 250	/* byte */
 251#define CM_REG_MIXER0		0x20
 252#define CM_REG_SBVR		0x20		/* write: sb16 version */
 253#define CM_REG_DEV		0x20		/* read: hardware device version */
 254
 255#define CM_REG_MIXER21		0x21
 256#define CM_UNKNOWN_21_MASK	0x78		/* ? */
 257#define CM_X_ADPCM		0x04		/* SB16 ADPCM enable */
 258#define CM_PROINV		0x02		/* SBPro left/right channel switching */
 259#define CM_X_SB16		0x01		/* SB16 compatible */
 260
 261#define CM_REG_SB16_DATA	0x22
 262#define CM_REG_SB16_ADDR	0x23
 263
 264#define CM_REFFREQ_XIN		(315*1000*1000)/22	/* 14.31818 Mhz reference clock frequency pin XIN */
 265#define CM_ADCMULT_XIN		512			/* Guessed (487 best for 44.1kHz, not for 88/176kHz) */
 266#define CM_TOLERANCE_RATE	0.001			/* Tolerance sample rate pitch (1000ppm) */
 267#define CM_MAXIMUM_RATE		80000000		/* Note more than 80MHz */
 268
 269#define CM_REG_MIXER1		0x24
 270#define CM_FMMUTE		0x80	/* mute FM */
 271#define CM_FMMUTE_SHIFT		7
 272#define CM_WSMUTE		0x40	/* mute PCM */
 273#define CM_WSMUTE_SHIFT		6
 274#define CM_REAR2LIN		0x20	/* lin-in -> rear line out */
 275#define CM_REAR2LIN_SHIFT	5
 276#define CM_REAR2FRONT		0x10	/* exchange rear/front */
 277#define CM_REAR2FRONT_SHIFT	4
 278#define CM_WAVEINL		0x08	/* digital wave rec. left chan */
 279#define CM_WAVEINL_SHIFT	3
 280#define CM_WAVEINR		0x04	/* digical wave rec. right */
 281#define CM_WAVEINR_SHIFT	2
 282#define CM_X3DEN		0x02	/* 3D surround enable */
 283#define CM_X3DEN_SHIFT		1
 284#define CM_CDPLAY		0x01	/* enable SPDIF/IN PCM -> DAC */
 285#define CM_CDPLAY_SHIFT		0
 286
 287#define CM_REG_MIXER2		0x25
 288#define CM_RAUXREN		0x80	/* AUX right capture */
 289#define CM_RAUXREN_SHIFT	7
 290#define CM_RAUXLEN		0x40	/* AUX left capture */
 291#define CM_RAUXLEN_SHIFT	6
 292#define CM_VAUXRM		0x20	/* AUX right mute */
 293#define CM_VAUXRM_SHIFT		5
 294#define CM_VAUXLM		0x10	/* AUX left mute */
 295#define CM_VAUXLM_SHIFT		4
 296#define CM_VADMIC_MASK		0x0e	/* mic gain level (0-3) << 1 */
 297#define CM_VADMIC_SHIFT		1
 298#define CM_MICGAINZ		0x01	/* mic boost */
 299#define CM_MICGAINZ_SHIFT	0
 300
 301#define CM_REG_MIXER3		0x24
 302#define CM_REG_AUX_VOL		0x26
 303#define CM_VAUXL_MASK		0xf0
 304#define CM_VAUXR_MASK		0x0f
 305
 306#define CM_REG_MISC		0x27
 307#define CM_UNKNOWN_27_MASK	0xd8	/* ? */
 308#define CM_XGPO1		0x20
 309// #define CM_XGPBIO		0x04
 310#define CM_MIC_CENTER_LFE	0x04	/* mic as center/lfe out? (model 039 or later?) */
 311#define CM_SPDIF_INVERSE	0x04	/* spdif input phase inverse (model 037) */
 312#define CM_SPDVALID		0x02	/* spdif input valid check */
 313#define CM_DMAUTO		0x01	/* SB16 DMA auto detect */
 314
 315#define CM_REG_AC97		0x28	/* hmmm.. do we have ac97 link? */
 316/*
 317 * For CMI-8338 (0x28 - 0x2b) .. is this valid for CMI-8738
 318 * or identical with AC97 codec?
 319 */
 320#define CM_REG_EXTERN_CODEC	CM_REG_AC97
 321
 322/*
 323 * MPU401 pci port index address 0x40 - 0x4f (CMI-8738 spec ver. 0.6)
 324 */
 325#define CM_REG_MPU_PCI		0x40
 326
 327/*
 328 * FM pci port index address 0x50 - 0x5f (CMI-8738 spec ver. 0.6)
 329 */
 330#define CM_REG_FM_PCI		0x50
 331
 332/*
 333 * access from SB-mixer port
 334 */
 335#define CM_REG_EXTENT_IND	0xf0
 336#define CM_VPHONE_MASK		0xe0	/* Phone volume control (0-3) << 5 */
 337#define CM_VPHONE_SHIFT		5
 338#define CM_VPHOM		0x10	/* Phone mute control */
 339#define CM_VSPKM		0x08	/* Speaker mute control, default high */
 340#define CM_RLOOPREN		0x04    /* Rec. R-channel enable */
 341#define CM_RLOOPLEN		0x02	/* Rec. L-channel enable */
 342#define CM_VADMIC3		0x01	/* Mic record boost */
 343
 344/*
 345 * CMI-8338 spec ver 0.5 (this is not valid for CMI-8738):
 346 * the 8 registers 0xf8 - 0xff are used for programming m/n counter by the PLL
 347 * unit (readonly?).
 348 */
 349#define CM_REG_PLL		0xf8
 350
 351/*
 352 * extended registers
 353 */
 354#define CM_REG_CH0_FRAME1	0x80	/* write: base address */
 355#define CM_REG_CH0_FRAME2	0x84	/* read: current address */
 356#define CM_REG_CH1_FRAME1	0x88	/* 0-15: count of samples at bus master; buffer size */
 357#define CM_REG_CH1_FRAME2	0x8C	/* 16-31: count of samples at codec; fragment size */
 358
 359#define CM_REG_EXT_MISC		0x90
 360#define CM_ADC48K44K		0x10000000	/* ADC parameters group, 0: 44k, 1: 48k */
 361#define CM_CHB3D8C		0x00200000	/* 7.1 channels support */
 362#define CM_SPD32FMT		0x00100000	/* SPDIF/IN 32k sample rate */
 363#define CM_ADC2SPDIF		0x00080000	/* ADC output to SPDIF/OUT */
 364#define CM_SHAREADC		0x00040000	/* DAC in ADC as Center/LFE */
 365#define CM_REALTCMP		0x00020000	/* monitor the CMPL/CMPR of ADC */
 366#define CM_INVLRCK		0x00010000	/* invert ZVPORT's LRCK */
 367#define CM_UNKNOWN_90_MASK	0x0000FFFF	/* ? */
 368
 369/*
 370 * size of i/o region
 371 */
 372#define CM_EXTENT_CODEC	  0x100
 373#define CM_EXTENT_MIDI	  0x2
 374#define CM_EXTENT_SYNTH	  0x4
 375
 376
 377/*
 378 * channels for playback / capture
 379 */
 380#define CM_CH_PLAY	0
 381#define CM_CH_CAPT	1
 382
 383/*
 384 * flags to check device open/close
 385 */
 386#define CM_OPEN_NONE	0
 387#define CM_OPEN_CH_MASK	0x01
 388#define CM_OPEN_DAC	0x10
 389#define CM_OPEN_ADC	0x20
 390#define CM_OPEN_SPDIF	0x40
 391#define CM_OPEN_MCHAN	0x80
 392#define CM_OPEN_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC)
 393#define CM_OPEN_PLAYBACK2	(CM_CH_CAPT | CM_OPEN_DAC)
 394#define CM_OPEN_PLAYBACK_MULTI	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_MCHAN)
 395#define CM_OPEN_CAPTURE		(CM_CH_CAPT | CM_OPEN_ADC)
 396#define CM_OPEN_SPDIF_PLAYBACK	(CM_CH_PLAY | CM_OPEN_DAC | CM_OPEN_SPDIF)
 397#define CM_OPEN_SPDIF_CAPTURE	(CM_CH_CAPT | CM_OPEN_ADC | CM_OPEN_SPDIF)
 398
 399
 400#if CM_CH_PLAY == 1
 401#define CM_PLAYBACK_SRATE_176K	CM_CH1_SRATE_176K
 402#define CM_PLAYBACK_SPDF	CM_SPDF_1
 403#define CM_CAPTURE_SPDF		CM_SPDF_0
 404#else
 405#define CM_PLAYBACK_SRATE_176K CM_CH0_SRATE_176K
 406#define CM_PLAYBACK_SPDF	CM_SPDF_0
 407#define CM_CAPTURE_SPDF		CM_SPDF_1
 408#endif
 409
 410
 411/*
 412 * driver data
 413 */
 414
 415struct cmipci_pcm {
 416	struct snd_pcm_substream *substream;
 417	u8 running;		/* dac/adc running? */
 418	u8 fmt;			/* format bits */
 419	u8 is_dac;
 420	u8 needs_silencing;
 421	unsigned int dma_size;	/* in frames */
 422	unsigned int shift;
 423	unsigned int ch;	/* channel (0/1) */
 424	unsigned int offset;	/* physical address of the buffer */
 425};
 426
 427/* mixer elements toggled/resumed during ac3 playback */
 428struct cmipci_mixer_auto_switches {
 429	const char *name;	/* switch to toggle */
 430	int toggle_on;		/* value to change when ac3 mode */
 431};
 432static const struct cmipci_mixer_auto_switches cm_saved_mixer[] = {
 433	{"PCM Playback Switch", 0},
 434	{"IEC958 Output Switch", 1},
 435	{"IEC958 Mix Analog", 0},
 436	// {"IEC958 Out To DAC", 1}, // no longer used
 437	{"IEC958 Loop", 0},
 438};
 439#define CM_SAVED_MIXERS		ARRAY_SIZE(cm_saved_mixer)
 440
 441struct cmipci {
 442	struct snd_card *card;
 443
 444	struct pci_dev *pci;
 445	unsigned int device;	/* device ID */
 446	int irq;
 447
 448	unsigned long iobase;
 449	unsigned int ctrl;	/* FUNCTRL0 current value */
 450
 451	struct snd_pcm *pcm;		/* DAC/ADC PCM */
 452	struct snd_pcm *pcm2;	/* 2nd DAC */
 453	struct snd_pcm *pcm_spdif;	/* SPDIF */
 454
 455	int chip_version;
 456	int max_channels;
 457	unsigned int can_ac3_sw: 1;
 458	unsigned int can_ac3_hw: 1;
 459	unsigned int can_multi_ch: 1;
 460	unsigned int can_96k: 1;	/* samplerate above 48k */
 461	unsigned int do_soft_ac3: 1;
 462
 463	unsigned int spdif_playback_avail: 1;	/* spdif ready? */
 464	unsigned int spdif_playback_enabled: 1;	/* spdif switch enabled? */
 465	int spdif_counter;	/* for software AC3 */
 466
 467	unsigned int dig_status;
 468	unsigned int dig_pcm_status;
 469
 470	struct snd_pcm_hardware *hw_info[3]; /* for playbacks */
 471
 472	int opened[2];	/* open mode */
 473	struct mutex open_mutex;
 474
 475	unsigned int mixer_insensitive: 1;
 476	struct snd_kcontrol *mixer_res_ctl[CM_SAVED_MIXERS];
 477	int mixer_res_status[CM_SAVED_MIXERS];
 478
 479	struct cmipci_pcm channel[2];	/* ch0 - DAC, ch1 - ADC or 2nd DAC */
 480
 481	/* external MIDI */
 482	struct snd_rawmidi *rmidi;
 483
 484#ifdef SUPPORT_JOYSTICK
 485	struct gameport *gameport;
 486#endif
 487
 488	spinlock_t reg_lock;
 489
 490#ifdef CONFIG_PM_SLEEP
 491	unsigned int saved_regs[0x20];
 492	unsigned char saved_mixers[0x20];
 493#endif
 494};
 495
 496
 497/* read/write operations for dword register */
 498static inline void snd_cmipci_write(struct cmipci *cm, unsigned int cmd, unsigned int data)
 499{
 500	outl(data, cm->iobase + cmd);
 501}
 502
 503static inline unsigned int snd_cmipci_read(struct cmipci *cm, unsigned int cmd)
 504{
 505	return inl(cm->iobase + cmd);
 506}
 507
 508/* read/write operations for word register */
 509static inline void snd_cmipci_write_w(struct cmipci *cm, unsigned int cmd, unsigned short data)
 510{
 511	outw(data, cm->iobase + cmd);
 512}
 513
 514static inline unsigned short snd_cmipci_read_w(struct cmipci *cm, unsigned int cmd)
 515{
 516	return inw(cm->iobase + cmd);
 517}
 518
 519/* read/write operations for byte register */
 520static inline void snd_cmipci_write_b(struct cmipci *cm, unsigned int cmd, unsigned char data)
 521{
 522	outb(data, cm->iobase + cmd);
 523}
 524
 525static inline unsigned char snd_cmipci_read_b(struct cmipci *cm, unsigned int cmd)
 526{
 527	return inb(cm->iobase + cmd);
 528}
 529
 530/* bit operations for dword register */
 531static int snd_cmipci_set_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 532{
 533	unsigned int val, oval;
 534	val = oval = inl(cm->iobase + cmd);
 535	val |= flag;
 536	if (val == oval)
 537		return 0;
 538	outl(val, cm->iobase + cmd);
 539	return 1;
 540}
 541
 542static int snd_cmipci_clear_bit(struct cmipci *cm, unsigned int cmd, unsigned int flag)
 543{
 544	unsigned int val, oval;
 545	val = oval = inl(cm->iobase + cmd);
 546	val &= ~flag;
 547	if (val == oval)
 548		return 0;
 549	outl(val, cm->iobase + cmd);
 550	return 1;
 551}
 552
 553/* bit operations for byte register */
 554static int snd_cmipci_set_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 555{
 556	unsigned char val, oval;
 557	val = oval = inb(cm->iobase + cmd);
 558	val |= flag;
 559	if (val == oval)
 560		return 0;
 561	outb(val, cm->iobase + cmd);
 562	return 1;
 563}
 564
 565static int snd_cmipci_clear_bit_b(struct cmipci *cm, unsigned int cmd, unsigned char flag)
 566{
 567	unsigned char val, oval;
 568	val = oval = inb(cm->iobase + cmd);
 569	val &= ~flag;
 570	if (val == oval)
 571		return 0;
 572	outb(val, cm->iobase + cmd);
 573	return 1;
 574}
 575
 576
 577/*
 578 * PCM interface
 579 */
 580
 581/*
 582 * calculate frequency
 583 */
 584
 585static const unsigned int rates[] = { 5512, 11025, 22050, 44100, 8000, 16000, 32000, 48000 };
 586
 587static unsigned int snd_cmipci_rate_freq(unsigned int rate)
 588{
 589	unsigned int i;
 590
 591	for (i = 0; i < ARRAY_SIZE(rates); i++) {
 592		if (rates[i] == rate)
 593			return i;
 594	}
 595	snd_BUG();
 596	return 0;
 597}
 598
 599#ifdef USE_VAR48KRATE
 600/*
 601 * Determine PLL values for frequency setup, maybe the CMI8338 (CMI8738???)
 602 * does it this way .. maybe not.  Never get any information from C-Media about
 603 * that <werner@suse.de>.
 604 */
 605static int snd_cmipci_pll_rmn(unsigned int rate, unsigned int adcmult, int *r, int *m, int *n)
 606{
 607	unsigned int delta, tolerance;
 608	int xm, xn, xr;
 609
 610	for (*r = 0; rate < CM_MAXIMUM_RATE/adcmult; *r += (1<<5))
 611		rate <<= 1;
 612	*n = -1;
 613	if (*r > 0xff)
 614		goto out;
 615	tolerance = rate*CM_TOLERANCE_RATE;
 616
 617	for (xn = (1+2); xn < (0x1f+2); xn++) {
 618		for (xm = (1+2); xm < (0xff+2); xm++) {
 619			xr = ((CM_REFFREQ_XIN/adcmult) * xm) / xn;
 620
 621			if (xr < rate)
 622				delta = rate - xr;
 623			else
 624				delta = xr - rate;
 625
 626			/*
 627			 * If we found one, remember this,
 628			 * and try to find a closer one
 629			 */
 630			if (delta < tolerance) {
 631				tolerance = delta;
 632				*m = xm - 2;
 633				*n = xn - 2;
 634			}
 635		}
 636	}
 637out:
 638	return (*n > -1);
 639}
 640
 641/*
 642 * Program pll register bits, I assume that the 8 registers 0xf8 up to 0xff
 643 * are mapped onto the 8 ADC/DAC sampling frequency which can be chosen
 644 * at the register CM_REG_FUNCTRL1 (0x04).
 645 * Problem: other ways are also possible (any information about that?)
 646 */
 647static void snd_cmipci_set_pll(struct cmipci *cm, unsigned int rate, unsigned int slot)
 648{
 649	unsigned int reg = CM_REG_PLL + slot;
 650	/*
 651	 * Guess that this programs at reg. 0x04 the pos 15:13/12:10
 652	 * for DSFC/ASFC (000 up to 111).
 653	 */
 654
 655	/* FIXME: Init (Do we've to set an other register first before programming?) */
 656
 657	/* FIXME: Is this correct? Or shouldn't the m/n/r values be used for that? */
 658	snd_cmipci_write_b(cm, reg, rate>>8);
 659	snd_cmipci_write_b(cm, reg, rate&0xff);
 660
 661	/* FIXME: Setup (Do we've to set an other register first to enable this?) */
 662}
 663#endif /* USE_VAR48KRATE */
 664
 665static int snd_cmipci_playback2_hw_params(struct snd_pcm_substream *substream,
 666					  struct snd_pcm_hw_params *hw_params)
 667{
 668	struct cmipci *cm = snd_pcm_substream_chip(substream);
 669	if (params_channels(hw_params) > 2) {
 670		mutex_lock(&cm->open_mutex);
 671		if (cm->opened[CM_CH_PLAY]) {
 672			mutex_unlock(&cm->open_mutex);
 673			return -EBUSY;
 674		}
 675		/* reserve the channel A */
 676		cm->opened[CM_CH_PLAY] = CM_OPEN_PLAYBACK_MULTI;
 677		mutex_unlock(&cm->open_mutex);
 678	}
 679	return 0;
 680}
 681
 682static void snd_cmipci_ch_reset(struct cmipci *cm, int ch)
 683{
 684	int reset = CM_RST_CH0 << (cm->channel[ch].ch);
 685	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 686	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 687	udelay(10);
 688}
 689
 690
 691/*
 692 */
 693
 694static const unsigned int hw_channels[] = {1, 2, 4, 6, 8};
 695static const struct snd_pcm_hw_constraint_list hw_constraints_channels_4 = {
 696	.count = 3,
 697	.list = hw_channels,
 698	.mask = 0,
 699};
 700static const struct snd_pcm_hw_constraint_list hw_constraints_channels_6 = {
 701	.count = 4,
 702	.list = hw_channels,
 703	.mask = 0,
 704};
 705static const struct snd_pcm_hw_constraint_list hw_constraints_channels_8 = {
 706	.count = 5,
 707	.list = hw_channels,
 708	.mask = 0,
 709};
 710
 711static int set_dac_channels(struct cmipci *cm, struct cmipci_pcm *rec, int channels)
 712{
 713	if (channels > 2) {
 714		if (!cm->can_multi_ch || !rec->ch)
 715			return -EINVAL;
 716		if (rec->fmt != 0x03) /* stereo 16bit only */
 717			return -EINVAL;
 718	}
 719
 720	if (cm->can_multi_ch) {
 721		spin_lock_irq(&cm->reg_lock);
 722		if (channels > 2) {
 723			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 724			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 725		} else {
 726			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_NXCHG);
 727			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
 728		}
 729		if (channels == 8)
 730			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 731		else
 732			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_CHB3D8C);
 733		if (channels == 6) {
 734			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 735			snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 736		} else {
 737			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D5C);
 738			snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CHB3D6C);
 739		}
 740		if (channels == 4)
 741			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 742		else
 743			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_CHB3D);
 744		spin_unlock_irq(&cm->reg_lock);
 745	}
 746	return 0;
 747}
 748
 749
 750/*
 751 * prepare playback/capture channel
 752 * channel to be used must have been set in rec->ch.
 753 */
 754static int snd_cmipci_pcm_prepare(struct cmipci *cm, struct cmipci_pcm *rec,
 755				 struct snd_pcm_substream *substream)
 756{
 757	unsigned int reg, freq, freq_ext, val;
 758	unsigned int period_size;
 759	struct snd_pcm_runtime *runtime = substream->runtime;
 760
 761	rec->fmt = 0;
 762	rec->shift = 0;
 763	if (snd_pcm_format_width(runtime->format) >= 16) {
 764		rec->fmt |= 0x02;
 765		if (snd_pcm_format_width(runtime->format) > 16)
 766			rec->shift++; /* 24/32bit */
 767	}
 768	if (runtime->channels > 1)
 769		rec->fmt |= 0x01;
 770	if (rec->is_dac && set_dac_channels(cm, rec, runtime->channels) < 0) {
 771		dev_dbg(cm->card->dev, "cannot set dac channels\n");
 772		return -EINVAL;
 773	}
 774
 775	rec->offset = runtime->dma_addr;
 776	/* buffer and period sizes in frame */
 777	rec->dma_size = runtime->buffer_size << rec->shift;
 778	period_size = runtime->period_size << rec->shift;
 779	if (runtime->channels > 2) {
 780		/* multi-channels */
 781		rec->dma_size = (rec->dma_size * runtime->channels) / 2;
 782		period_size = (period_size * runtime->channels) / 2;
 783	}
 784
 785	spin_lock_irq(&cm->reg_lock);
 786
 787	/* set buffer address */
 788	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 789	snd_cmipci_write(cm, reg, rec->offset);
 790	/* program sample counts */
 791	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 792	snd_cmipci_write_w(cm, reg, rec->dma_size - 1);
 793	snd_cmipci_write_w(cm, reg + 2, period_size - 1);
 794
 795	/* set adc/dac flag */
 796	val = rec->ch ? CM_CHADC1 : CM_CHADC0;
 797	if (rec->is_dac)
 798		cm->ctrl &= ~val;
 799	else
 800		cm->ctrl |= val;
 801	snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 802	/* dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl); */
 803
 804	/* set sample rate */
 805	freq = 0;
 806	freq_ext = 0;
 807	if (runtime->rate > 48000)
 808		switch (runtime->rate) {
 809		case 88200:  freq_ext = CM_CH0_SRATE_88K; break;
 810		case 96000:  freq_ext = CM_CH0_SRATE_96K; break;
 811		case 128000: freq_ext = CM_CH0_SRATE_128K; break;
 812		default:     snd_BUG(); break;
 813		}
 814	else
 815		freq = snd_cmipci_rate_freq(runtime->rate);
 816	val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
 817	if (rec->ch) {
 818		val &= ~CM_DSFC_MASK;
 819		val |= (freq << CM_DSFC_SHIFT) & CM_DSFC_MASK;
 820	} else {
 821		val &= ~CM_ASFC_MASK;
 822		val |= (freq << CM_ASFC_SHIFT) & CM_ASFC_MASK;
 823	}
 824	snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
 825	dev_dbg(cm->card->dev, "functrl1 = %08x\n", val);
 826
 827	/* set format */
 828	val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
 829	if (rec->ch) {
 830		val &= ~CM_CH1FMT_MASK;
 831		val |= rec->fmt << CM_CH1FMT_SHIFT;
 832	} else {
 833		val &= ~CM_CH0FMT_MASK;
 834		val |= rec->fmt << CM_CH0FMT_SHIFT;
 835	}
 836	if (cm->can_96k) {
 837		val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
 838		val |= freq_ext << (rec->ch * 2);
 839	}
 840	snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
 841	dev_dbg(cm->card->dev, "chformat = %08x\n", val);
 842
 843	if (!rec->is_dac && cm->chip_version) {
 844		if (runtime->rate > 44100)
 845			snd_cmipci_set_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 846		else
 847			snd_cmipci_clear_bit(cm, CM_REG_EXT_MISC, CM_ADC48K44K);
 848	}
 849
 850	rec->running = 0;
 851	spin_unlock_irq(&cm->reg_lock);
 852
 853	return 0;
 854}
 855
 856/*
 857 * PCM trigger/stop
 858 */
 859static int snd_cmipci_pcm_trigger(struct cmipci *cm, struct cmipci_pcm *rec,
 860				  int cmd)
 861{
 862	unsigned int inthld, chen, reset, pause;
 863	int result = 0;
 864
 865	inthld = CM_CH0_INT_EN << rec->ch;
 866	chen = CM_CHEN0 << rec->ch;
 867	reset = CM_RST_CH0 << rec->ch;
 868	pause = CM_PAUSE0 << rec->ch;
 869
 870	spin_lock(&cm->reg_lock);
 871	switch (cmd) {
 872	case SNDRV_PCM_TRIGGER_START:
 873		rec->running = 1;
 874		/* set interrupt */
 875		snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, inthld);
 876		cm->ctrl |= chen;
 877		/* enable channel */
 878		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 879		dev_dbg(cm->card->dev, "functrl0 = %08x\n", cm->ctrl);
 880		break;
 881	case SNDRV_PCM_TRIGGER_STOP:
 882		rec->running = 0;
 883		/* disable interrupt */
 884		snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, inthld);
 885		/* reset */
 886		cm->ctrl &= ~chen;
 887		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | reset);
 888		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~reset);
 889		rec->needs_silencing = rec->is_dac;
 890		break;
 891	case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
 892	case SNDRV_PCM_TRIGGER_SUSPEND:
 893		cm->ctrl |= pause;
 894		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 895		break;
 896	case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
 897	case SNDRV_PCM_TRIGGER_RESUME:
 898		cm->ctrl &= ~pause;
 899		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
 900		break;
 901	default:
 902		result = -EINVAL;
 903		break;
 904	}
 905	spin_unlock(&cm->reg_lock);
 906	return result;
 907}
 908
 909/*
 910 * return the current pointer
 911 */
 912static snd_pcm_uframes_t snd_cmipci_pcm_pointer(struct cmipci *cm, struct cmipci_pcm *rec,
 913						struct snd_pcm_substream *substream)
 914{
 915	size_t ptr;
 916	unsigned int reg, rem, tries;
 917
 918	if (!rec->running)
 919		return 0;
 920#if 1 // this seems better..
 921	reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
 922	for (tries = 0; tries < 3; tries++) {
 923		rem = snd_cmipci_read_w(cm, reg);
 924		if (rem < rec->dma_size)
 925			goto ok;
 926	} 
 927	dev_err(cm->card->dev, "invalid PCM pointer: %#x\n", rem);
 928	return SNDRV_PCM_POS_XRUN;
 929ok:
 930	ptr = (rec->dma_size - (rem + 1)) >> rec->shift;
 931#else
 932	reg = rec->ch ? CM_REG_CH1_FRAME1 : CM_REG_CH0_FRAME1;
 933	ptr = snd_cmipci_read(cm, reg) - rec->offset;
 934	ptr = bytes_to_frames(substream->runtime, ptr);
 935#endif
 936	if (substream->runtime->channels > 2)
 937		ptr = (ptr * 2) / substream->runtime->channels;
 938	return ptr;
 939}
 940
 941/*
 942 * playback
 943 */
 944
 945static int snd_cmipci_playback_trigger(struct snd_pcm_substream *substream,
 946				       int cmd)
 947{
 948	struct cmipci *cm = snd_pcm_substream_chip(substream);
 949	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_PLAY], cmd);
 950}
 951
 952static snd_pcm_uframes_t snd_cmipci_playback_pointer(struct snd_pcm_substream *substream)
 953{
 954	struct cmipci *cm = snd_pcm_substream_chip(substream);
 955	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_PLAY], substream);
 956}
 957
 958
 959
 960/*
 961 * capture
 962 */
 963
 964static int snd_cmipci_capture_trigger(struct snd_pcm_substream *substream,
 965				     int cmd)
 966{
 967	struct cmipci *cm = snd_pcm_substream_chip(substream);
 968	return snd_cmipci_pcm_trigger(cm, &cm->channel[CM_CH_CAPT], cmd);
 969}
 970
 971static snd_pcm_uframes_t snd_cmipci_capture_pointer(struct snd_pcm_substream *substream)
 972{
 973	struct cmipci *cm = snd_pcm_substream_chip(substream);
 974	return snd_cmipci_pcm_pointer(cm, &cm->channel[CM_CH_CAPT], substream);
 975}
 976
 977
 978/*
 979 * hw preparation for spdif
 980 */
 981
 982static int snd_cmipci_spdif_default_info(struct snd_kcontrol *kcontrol,
 983					 struct snd_ctl_elem_info *uinfo)
 984{
 985	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
 986	uinfo->count = 1;
 987	return 0;
 988}
 989
 990static int snd_cmipci_spdif_default_get(struct snd_kcontrol *kcontrol,
 991					struct snd_ctl_elem_value *ucontrol)
 992{
 993	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
 994	int i;
 995
 996	spin_lock_irq(&chip->reg_lock);
 997	for (i = 0; i < 4; i++)
 998		ucontrol->value.iec958.status[i] = (chip->dig_status >> (i * 8)) & 0xff;
 999	spin_unlock_irq(&chip->reg_lock);
1000	return 0;
1001}
1002
1003static int snd_cmipci_spdif_default_put(struct snd_kcontrol *kcontrol,
1004					 struct snd_ctl_elem_value *ucontrol)
1005{
1006	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1007	int i, change;
1008	unsigned int val;
1009
1010	val = 0;
1011	spin_lock_irq(&chip->reg_lock);
1012	for (i = 0; i < 4; i++)
1013		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1014	change = val != chip->dig_status;
1015	chip->dig_status = val;
1016	spin_unlock_irq(&chip->reg_lock);
1017	return change;
1018}
1019
1020static const struct snd_kcontrol_new snd_cmipci_spdif_default =
1021{
1022	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1023	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
1024	.info =		snd_cmipci_spdif_default_info,
1025	.get =		snd_cmipci_spdif_default_get,
1026	.put =		snd_cmipci_spdif_default_put
1027};
1028
1029static int snd_cmipci_spdif_mask_info(struct snd_kcontrol *kcontrol,
1030				      struct snd_ctl_elem_info *uinfo)
1031{
1032	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1033	uinfo->count = 1;
1034	return 0;
1035}
1036
1037static int snd_cmipci_spdif_mask_get(struct snd_kcontrol *kcontrol,
1038				     struct snd_ctl_elem_value *ucontrol)
1039{
1040	ucontrol->value.iec958.status[0] = 0xff;
1041	ucontrol->value.iec958.status[1] = 0xff;
1042	ucontrol->value.iec958.status[2] = 0xff;
1043	ucontrol->value.iec958.status[3] = 0xff;
1044	return 0;
1045}
1046
1047static const struct snd_kcontrol_new snd_cmipci_spdif_mask =
1048{
1049	.access =	SNDRV_CTL_ELEM_ACCESS_READ,
1050	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1051	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,CON_MASK),
1052	.info =		snd_cmipci_spdif_mask_info,
1053	.get =		snd_cmipci_spdif_mask_get,
1054};
1055
1056static int snd_cmipci_spdif_stream_info(struct snd_kcontrol *kcontrol,
1057					struct snd_ctl_elem_info *uinfo)
1058{
1059	uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
1060	uinfo->count = 1;
1061	return 0;
1062}
1063
1064static int snd_cmipci_spdif_stream_get(struct snd_kcontrol *kcontrol,
1065				       struct snd_ctl_elem_value *ucontrol)
1066{
1067	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1068	int i;
1069
1070	spin_lock_irq(&chip->reg_lock);
1071	for (i = 0; i < 4; i++)
1072		ucontrol->value.iec958.status[i] = (chip->dig_pcm_status >> (i * 8)) & 0xff;
1073	spin_unlock_irq(&chip->reg_lock);
1074	return 0;
1075}
1076
1077static int snd_cmipci_spdif_stream_put(struct snd_kcontrol *kcontrol,
1078				       struct snd_ctl_elem_value *ucontrol)
1079{
1080	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
1081	int i, change;
1082	unsigned int val;
1083
1084	val = 0;
1085	spin_lock_irq(&chip->reg_lock);
1086	for (i = 0; i < 4; i++)
1087		val |= (unsigned int)ucontrol->value.iec958.status[i] << (i * 8);
1088	change = val != chip->dig_pcm_status;
1089	chip->dig_pcm_status = val;
1090	spin_unlock_irq(&chip->reg_lock);
1091	return change;
1092}
1093
1094static const struct snd_kcontrol_new snd_cmipci_spdif_stream =
1095{
1096	.access =	SNDRV_CTL_ELEM_ACCESS_READWRITE | SNDRV_CTL_ELEM_ACCESS_INACTIVE,
1097	.iface =	SNDRV_CTL_ELEM_IFACE_PCM,
1098	.name =		SNDRV_CTL_NAME_IEC958("",PLAYBACK,PCM_STREAM),
1099	.info =		snd_cmipci_spdif_stream_info,
1100	.get =		snd_cmipci_spdif_stream_get,
1101	.put =		snd_cmipci_spdif_stream_put
1102};
1103
1104/*
1105 */
1106
1107/* save mixer setting and mute for AC3 playback */
1108static int save_mixer_state(struct cmipci *cm)
1109{
1110	if (! cm->mixer_insensitive) {
1111		struct snd_ctl_elem_value *val;
1112		unsigned int i;
1113
1114		val = kmalloc(sizeof(*val), GFP_KERNEL);
1115		if (!val)
1116			return -ENOMEM;
1117		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1118			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1119			if (ctl) {
1120				int event;
1121				memset(val, 0, sizeof(*val));
1122				ctl->get(ctl, val);
1123				cm->mixer_res_status[i] = val->value.integer.value[0];
1124				val->value.integer.value[0] = cm_saved_mixer[i].toggle_on;
1125				event = SNDRV_CTL_EVENT_MASK_INFO;
1126				if (cm->mixer_res_status[i] != val->value.integer.value[0]) {
1127					ctl->put(ctl, val); /* toggle */
1128					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1129				}
1130				ctl->vd[0].access |= SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1131				snd_ctl_notify(cm->card, event, &ctl->id);
1132			}
1133		}
1134		kfree(val);
1135		cm->mixer_insensitive = 1;
1136	}
1137	return 0;
1138}
1139
1140
1141/* restore the previously saved mixer status */
1142static void restore_mixer_state(struct cmipci *cm)
1143{
1144	if (cm->mixer_insensitive) {
1145		struct snd_ctl_elem_value *val;
1146		unsigned int i;
1147
1148		val = kmalloc(sizeof(*val), GFP_KERNEL);
1149		if (!val)
1150			return;
1151		cm->mixer_insensitive = 0; /* at first clear this;
1152					      otherwise the changes will be ignored */
1153		for (i = 0; i < CM_SAVED_MIXERS; i++) {
1154			struct snd_kcontrol *ctl = cm->mixer_res_ctl[i];
1155			if (ctl) {
1156				int event;
1157
1158				memset(val, 0, sizeof(*val));
1159				ctl->vd[0].access &= ~SNDRV_CTL_ELEM_ACCESS_INACTIVE;
1160				ctl->get(ctl, val);
1161				event = SNDRV_CTL_EVENT_MASK_INFO;
1162				if (val->value.integer.value[0] != cm->mixer_res_status[i]) {
1163					val->value.integer.value[0] = cm->mixer_res_status[i];
1164					ctl->put(ctl, val);
1165					event |= SNDRV_CTL_EVENT_MASK_VALUE;
1166				}
1167				snd_ctl_notify(cm->card, event, &ctl->id);
1168			}
1169		}
1170		kfree(val);
1171	}
1172}
1173
1174/* spinlock held! */
1175static void setup_ac3(struct cmipci *cm, struct snd_pcm_substream *subs, int do_ac3, int rate)
1176{
1177	if (do_ac3) {
1178		/* AC3EN for 037 */
1179		snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1180		/* AC3EN for 039 */
1181		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1182	
1183		if (cm->can_ac3_hw) {
1184			/* SPD24SEL for 037, 0x02 */
1185			/* SPD24SEL for 039, 0x20, but cannot be set */
1186			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1187			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1188		} else { /* can_ac3_sw */
1189			/* SPD32SEL for 037 & 039, 0x20 */
1190			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1191			/* set 176K sample rate to fix 033 HW bug */
1192			if (cm->chip_version == 33) {
1193				if (rate >= 48000) {
1194					snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1195				} else {
1196					snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1197				}
1198			}
1199		}
1200
1201	} else {
1202		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_AC3EN1);
1203		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_AC3EN2);
1204
1205		if (cm->can_ac3_hw) {
1206			/* chip model >= 37 */
1207			if (snd_pcm_format_width(subs->runtime->format) > 16) {
1208				snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1209				snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1210			} else {
1211				snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1212				snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1213			}
1214		} else {
1215			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1216			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_SPD24SEL);
1217			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_PLAYBACK_SRATE_176K);
1218		}
1219	}
1220}
1221
1222static int setup_spdif_playback(struct cmipci *cm, struct snd_pcm_substream *subs, int up, int do_ac3)
1223{
1224	int rate, err;
1225
1226	rate = subs->runtime->rate;
1227
1228	if (up && do_ac3) {
1229		err = save_mixer_state(cm);
1230		if (err < 0)
1231			return err;
1232	}
1233
1234	spin_lock_irq(&cm->reg_lock);
1235	cm->spdif_playback_avail = up;
1236	if (up) {
1237		/* they are controlled via "IEC958 Output Switch" */
1238		/* snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1239		/* snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1240		if (cm->spdif_playback_enabled)
1241			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1242		setup_ac3(cm, subs, do_ac3, rate);
1243
1244		if (rate == 48000 || rate == 96000)
1245			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1246		else
1247			snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K | CM_SPDF_AC97);
1248		if (rate > 48000)
1249			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1250		else
1251			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1252	} else {
1253		/* they are controlled via "IEC958 Output Switch" */
1254		/* snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT); */
1255		/* snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_SPDO2DAC); */
1256		snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1257		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
1258		setup_ac3(cm, subs, 0, 0);
1259	}
1260	spin_unlock_irq(&cm->reg_lock);
1261	return 0;
1262}
1263
1264
1265/*
1266 * preparation
1267 */
1268
1269/* playback - enable spdif only on the certain condition */
1270static int snd_cmipci_playback_prepare(struct snd_pcm_substream *substream)
1271{
1272	struct cmipci *cm = snd_pcm_substream_chip(substream);
1273	int rate = substream->runtime->rate;
1274	int err, do_spdif, do_ac3 = 0;
1275
1276	do_spdif = (rate >= 44100 && rate <= 96000 &&
1277		    substream->runtime->format == SNDRV_PCM_FORMAT_S16_LE &&
1278		    substream->runtime->channels == 2);
1279	if (do_spdif && cm->can_ac3_hw) 
1280		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1281	err = setup_spdif_playback(cm, substream, do_spdif, do_ac3);
1282	if (err < 0)
1283		return err;
1284	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1285}
1286
1287/* playback  (via device #2) - enable spdif always */
1288static int snd_cmipci_playback_spdif_prepare(struct snd_pcm_substream *substream)
1289{
1290	struct cmipci *cm = snd_pcm_substream_chip(substream);
1291	int err, do_ac3;
1292
1293	if (cm->can_ac3_hw) 
1294		do_ac3 = cm->dig_pcm_status & IEC958_AES0_NONAUDIO;
1295	else
1296		do_ac3 = 1; /* doesn't matter */
1297	err = setup_spdif_playback(cm, substream, 1, do_ac3);
1298	if (err < 0)
1299		return err;
1300	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_PLAY], substream);
1301}
1302
1303/*
1304 * Apparently, the samples last played on channel A stay in some buffer, even
1305 * after the channel is reset, and get added to the data for the rear DACs when
1306 * playing a multichannel stream on channel B.  This is likely to generate
1307 * wraparounds and thus distortions.
1308 * To avoid this, we play at least one zero sample after the actual stream has
1309 * stopped.
1310 */
1311static void snd_cmipci_silence_hack(struct cmipci *cm, struct cmipci_pcm *rec)
1312{
1313	struct snd_pcm_runtime *runtime = rec->substream->runtime;
1314	unsigned int reg, val;
1315
1316	if (rec->needs_silencing && runtime && runtime->dma_area) {
1317		/* set up a small silence buffer */
1318		memset(runtime->dma_area, 0, PAGE_SIZE);
1319		reg = rec->ch ? CM_REG_CH1_FRAME2 : CM_REG_CH0_FRAME2;
1320		val = ((PAGE_SIZE / 4) - 1) | (((PAGE_SIZE / 4) / 2 - 1) << 16);
1321		snd_cmipci_write(cm, reg, val);
1322	
1323		/* configure for 16 bits, 2 channels, 8 kHz */
1324		if (runtime->channels > 2)
1325			set_dac_channels(cm, rec, 2);
1326		spin_lock_irq(&cm->reg_lock);
1327		val = snd_cmipci_read(cm, CM_REG_FUNCTRL1);
1328		val &= ~(CM_ASFC_MASK << (rec->ch * 3));
1329		val |= (4 << CM_ASFC_SHIFT) << (rec->ch * 3);
1330		snd_cmipci_write(cm, CM_REG_FUNCTRL1, val);
1331		val = snd_cmipci_read(cm, CM_REG_CHFORMAT);
1332		val &= ~(CM_CH0FMT_MASK << (rec->ch * 2));
1333		val |= (3 << CM_CH0FMT_SHIFT) << (rec->ch * 2);
1334		if (cm->can_96k)
1335			val &= ~(CM_CH0_SRATE_MASK << (rec->ch * 2));
1336		snd_cmipci_write(cm, CM_REG_CHFORMAT, val);
1337	
1338		/* start stream (we don't need interrupts) */
1339		cm->ctrl |= CM_CHEN0 << rec->ch;
1340		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl);
1341		spin_unlock_irq(&cm->reg_lock);
1342
1343		msleep(1);
1344
1345		/* stop and reset stream */
1346		spin_lock_irq(&cm->reg_lock);
1347		cm->ctrl &= ~(CM_CHEN0 << rec->ch);
1348		val = CM_RST_CH0 << rec->ch;
1349		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl | val);
1350		snd_cmipci_write(cm, CM_REG_FUNCTRL0, cm->ctrl & ~val);
1351		spin_unlock_irq(&cm->reg_lock);
1352
1353		rec->needs_silencing = 0;
1354	}
1355}
1356
1357static int snd_cmipci_playback_hw_free(struct snd_pcm_substream *substream)
1358{
1359	struct cmipci *cm = snd_pcm_substream_chip(substream);
1360	setup_spdif_playback(cm, substream, 0, 0);
1361	restore_mixer_state(cm);
1362	snd_cmipci_silence_hack(cm, &cm->channel[0]);
1363	return 0;
1364}
1365
1366static int snd_cmipci_playback2_hw_free(struct snd_pcm_substream *substream)
1367{
1368	struct cmipci *cm = snd_pcm_substream_chip(substream);
1369	snd_cmipci_silence_hack(cm, &cm->channel[1]);
1370	return 0;
1371}
1372
1373/* capture */
1374static int snd_cmipci_capture_prepare(struct snd_pcm_substream *substream)
1375{
1376	struct cmipci *cm = snd_pcm_substream_chip(substream);
1377	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1378}
1379
1380/* capture with spdif (via device #2) */
1381static int snd_cmipci_capture_spdif_prepare(struct snd_pcm_substream *substream)
1382{
1383	struct cmipci *cm = snd_pcm_substream_chip(substream);
1384
1385	spin_lock_irq(&cm->reg_lock);
1386	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1387	if (cm->can_96k) {
1388		if (substream->runtime->rate > 48000)
1389			snd_cmipci_set_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1390		else
1391			snd_cmipci_clear_bit(cm, CM_REG_CHFORMAT, CM_DBLSPDS);
1392	}
1393	if (snd_pcm_format_width(substream->runtime->format) > 16)
1394		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1395	else
1396		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1397
1398	spin_unlock_irq(&cm->reg_lock);
1399
1400	return snd_cmipci_pcm_prepare(cm, &cm->channel[CM_CH_CAPT], substream);
1401}
1402
1403static int snd_cmipci_capture_spdif_hw_free(struct snd_pcm_substream *subs)
1404{
1405	struct cmipci *cm = snd_pcm_substream_chip(subs);
1406
1407	spin_lock_irq(&cm->reg_lock);
1408	snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_CAPTURE_SPDF);
1409	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_SPD32SEL);
1410	spin_unlock_irq(&cm->reg_lock);
1411
1412	return 0;
1413}
1414
1415
1416/*
1417 * interrupt handler
1418 */
1419static irqreturn_t snd_cmipci_interrupt(int irq, void *dev_id)
1420{
1421	struct cmipci *cm = dev_id;
1422	unsigned int status, mask = 0;
1423	
1424	/* fastpath out, to ease interrupt sharing */
1425	status = snd_cmipci_read(cm, CM_REG_INT_STATUS);
1426	if (!(status & CM_INTR))
1427		return IRQ_NONE;
1428
1429	/* acknowledge interrupt */
1430	spin_lock(&cm->reg_lock);
1431	if (status & CM_CHINT0)
1432		mask |= CM_CH0_INT_EN;
1433	if (status & CM_CHINT1)
1434		mask |= CM_CH1_INT_EN;
1435	snd_cmipci_clear_bit(cm, CM_REG_INT_HLDCLR, mask);
1436	snd_cmipci_set_bit(cm, CM_REG_INT_HLDCLR, mask);
1437	spin_unlock(&cm->reg_lock);
1438
1439	if (cm->rmidi && (status & CM_UARTINT))
1440		snd_mpu401_uart_interrupt(irq, cm->rmidi->private_data);
1441
1442	if (cm->pcm) {
1443		if ((status & CM_CHINT0) && cm->channel[0].running)
1444			snd_pcm_period_elapsed(cm->channel[0].substream);
1445		if ((status & CM_CHINT1) && cm->channel[1].running)
1446			snd_pcm_period_elapsed(cm->channel[1].substream);
1447	}
1448	return IRQ_HANDLED;
1449}
1450
1451/*
1452 * h/w infos
1453 */
1454
1455/* playback on channel A */
1456static const struct snd_pcm_hardware snd_cmipci_playback =
1457{
1458	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1459				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1460				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1461	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1462	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1463	.rate_min =		5512,
1464	.rate_max =		48000,
1465	.channels_min =		1,
1466	.channels_max =		2,
1467	.buffer_bytes_max =	(128*1024),
1468	.period_bytes_min =	64,
1469	.period_bytes_max =	(128*1024),
1470	.periods_min =		2,
1471	.periods_max =		1024,
1472	.fifo_size =		0,
1473};
1474
1475/* capture on channel B */
1476static const struct snd_pcm_hardware snd_cmipci_capture =
1477{
1478	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1479				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1480				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1481	.formats =		SNDRV_PCM_FMTBIT_U8 | SNDRV_PCM_FMTBIT_S16_LE,
1482	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1483	.rate_min =		5512,
1484	.rate_max =		48000,
1485	.channels_min =		1,
1486	.channels_max =		2,
1487	.buffer_bytes_max =	(128*1024),
1488	.period_bytes_min =	64,
1489	.period_bytes_max =	(128*1024),
1490	.periods_min =		2,
1491	.periods_max =		1024,
1492	.fifo_size =		0,
1493};
1494
1495/* playback on channel B - stereo 16bit only? */
1496static const struct snd_pcm_hardware snd_cmipci_playback2 =
1497{
1498	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1499				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1500				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1501	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1502	.rates =		SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_48000,
1503	.rate_min =		5512,
1504	.rate_max =		48000,
1505	.channels_min =		2,
1506	.channels_max =		2,
1507	.buffer_bytes_max =	(128*1024),
1508	.period_bytes_min =	64,
1509	.period_bytes_max =	(128*1024),
1510	.periods_min =		2,
1511	.periods_max =		1024,
1512	.fifo_size =		0,
1513};
1514
1515/* spdif playback on channel A */
1516static const struct snd_pcm_hardware snd_cmipci_playback_spdif =
1517{
1518	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1519				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1520				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1521	.formats =		SNDRV_PCM_FMTBIT_S16_LE,
1522	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1523	.rate_min =		44100,
1524	.rate_max =		48000,
1525	.channels_min =		2,
1526	.channels_max =		2,
1527	.buffer_bytes_max =	(128*1024),
1528	.period_bytes_min =	64,
1529	.period_bytes_max =	(128*1024),
1530	.periods_min =		2,
1531	.periods_max =		1024,
1532	.fifo_size =		0,
1533};
1534
1535/* spdif playback on channel A (32bit, IEC958 subframes) */
1536static const struct snd_pcm_hardware snd_cmipci_playback_iec958_subframe =
1537{
1538	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1539				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1540				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1541	.formats =		SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1542	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1543	.rate_min =		44100,
1544	.rate_max =		48000,
1545	.channels_min =		2,
1546	.channels_max =		2,
1547	.buffer_bytes_max =	(128*1024),
1548	.period_bytes_min =	64,
1549	.period_bytes_max =	(128*1024),
1550	.periods_min =		2,
1551	.periods_max =		1024,
1552	.fifo_size =		0,
1553};
1554
1555/* spdif capture on channel B */
1556static const struct snd_pcm_hardware snd_cmipci_capture_spdif =
1557{
1558	.info =			(SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_INTERLEAVED |
1559				 SNDRV_PCM_INFO_BLOCK_TRANSFER | SNDRV_PCM_INFO_PAUSE |
1560				 SNDRV_PCM_INFO_RESUME | SNDRV_PCM_INFO_MMAP_VALID),
1561	.formats =	        SNDRV_PCM_FMTBIT_S16_LE |
1562				SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE,
1563	.rates =		SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
1564	.rate_min =		44100,
1565	.rate_max =		48000,
1566	.channels_min =		2,
1567	.channels_max =		2,
1568	.buffer_bytes_max =	(128*1024),
1569	.period_bytes_min =	64,
1570	.period_bytes_max =	(128*1024),
1571	.periods_min =		2,
1572	.periods_max =		1024,
1573	.fifo_size =		0,
1574};
1575
1576static const unsigned int rate_constraints[] = { 5512, 8000, 11025, 16000, 22050,
1577			32000, 44100, 48000, 88200, 96000, 128000 };
1578static const struct snd_pcm_hw_constraint_list hw_constraints_rates = {
1579		.count = ARRAY_SIZE(rate_constraints),
1580		.list = rate_constraints,
1581		.mask = 0,
1582};
1583
1584/*
1585 * check device open/close
1586 */
1587static int open_device_check(struct cmipci *cm, int mode, struct snd_pcm_substream *subs)
1588{
1589	int ch = mode & CM_OPEN_CH_MASK;
1590
1591	/* FIXME: a file should wait until the device becomes free
1592	 * when it's opened on blocking mode.  however, since the current
1593	 * pcm framework doesn't pass file pointer before actually opened,
1594	 * we can't know whether blocking mode or not in open callback..
1595	 */
1596	mutex_lock(&cm->open_mutex);
1597	if (cm->opened[ch]) {
1598		mutex_unlock(&cm->open_mutex);
1599		return -EBUSY;
1600	}
1601	cm->opened[ch] = mode;
1602	cm->channel[ch].substream = subs;
1603	if (! (mode & CM_OPEN_DAC)) {
1604		/* disable dual DAC mode */
1605		cm->channel[ch].is_dac = 0;
1606		spin_lock_irq(&cm->reg_lock);
1607		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1608		spin_unlock_irq(&cm->reg_lock);
1609	}
1610	mutex_unlock(&cm->open_mutex);
1611	return 0;
1612}
1613
1614static void close_device_check(struct cmipci *cm, int mode)
1615{
1616	int ch = mode & CM_OPEN_CH_MASK;
1617
1618	mutex_lock(&cm->open_mutex);
1619	if (cm->opened[ch] == mode) {
1620		if (cm->channel[ch].substream) {
1621			snd_cmipci_ch_reset(cm, ch);
1622			cm->channel[ch].running = 0;
1623			cm->channel[ch].substream = NULL;
1624		}
1625		cm->opened[ch] = 0;
1626		if (! cm->channel[ch].is_dac) {
1627			/* enable dual DAC mode again */
1628			cm->channel[ch].is_dac = 1;
1629			spin_lock_irq(&cm->reg_lock);
1630			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC);
1631			spin_unlock_irq(&cm->reg_lock);
1632		}
1633	}
1634	mutex_unlock(&cm->open_mutex);
1635}
1636
1637/*
1638 */
1639
1640static int snd_cmipci_playback_open(struct snd_pcm_substream *substream)
1641{
1642	struct cmipci *cm = snd_pcm_substream_chip(substream);
1643	struct snd_pcm_runtime *runtime = substream->runtime;
1644	int err;
1645
1646	err = open_device_check(cm, CM_OPEN_PLAYBACK, substream);
1647	if (err < 0)
1648		return err;
1649	runtime->hw = snd_cmipci_playback;
1650	if (cm->chip_version == 68) {
1651		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1652				     SNDRV_PCM_RATE_96000;
1653		runtime->hw.rate_max = 96000;
1654	} else if (cm->chip_version == 55) {
1655		err = snd_pcm_hw_constraint_list(runtime, 0,
1656			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1657		if (err < 0)
1658			return err;
1659		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1660		runtime->hw.rate_max = 128000;
1661	}
1662	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1663	cm->dig_pcm_status = cm->dig_status;
1664	return 0;
1665}
1666
1667static int snd_cmipci_capture_open(struct snd_pcm_substream *substream)
1668{
1669	struct cmipci *cm = snd_pcm_substream_chip(substream);
1670	struct snd_pcm_runtime *runtime = substream->runtime;
1671	int err;
1672
1673	err = open_device_check(cm, CM_OPEN_CAPTURE, substream);
1674	if (err < 0)
1675		return err;
1676	runtime->hw = snd_cmipci_capture;
1677	if (cm->chip_version == 68) {	// 8768 only supports 44k/48k recording
1678		runtime->hw.rate_min = 41000;
1679		runtime->hw.rates = SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000;
1680	} else if (cm->chip_version == 55) {
1681		err = snd_pcm_hw_constraint_list(runtime, 0,
1682			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1683		if (err < 0)
1684			return err;
1685		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1686		runtime->hw.rate_max = 128000;
1687	}
1688	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1689	return 0;
1690}
1691
1692static int snd_cmipci_playback2_open(struct snd_pcm_substream *substream)
1693{
1694	struct cmipci *cm = snd_pcm_substream_chip(substream);
1695	struct snd_pcm_runtime *runtime = substream->runtime;
1696	int err;
1697
1698	/* use channel B */
1699	err = open_device_check(cm, CM_OPEN_PLAYBACK2, substream);
1700	if (err < 0)
1701		return err;
1702	runtime->hw = snd_cmipci_playback2;
1703	mutex_lock(&cm->open_mutex);
1704	if (! cm->opened[CM_CH_PLAY]) {
1705		if (cm->can_multi_ch) {
1706			runtime->hw.channels_max = cm->max_channels;
1707			if (cm->max_channels == 4)
1708				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_4);
1709			else if (cm->max_channels == 6)
1710				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_6);
1711			else if (cm->max_channels == 8)
1712				snd_pcm_hw_constraint_list(runtime, 0, SNDRV_PCM_HW_PARAM_CHANNELS, &hw_constraints_channels_8);
1713		}
1714	}
1715	mutex_unlock(&cm->open_mutex);
1716	if (cm->chip_version == 68) {
1717		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1718				     SNDRV_PCM_RATE_96000;
1719		runtime->hw.rate_max = 96000;
1720	} else if (cm->chip_version == 55) {
1721		err = snd_pcm_hw_constraint_list(runtime, 0,
1722			SNDRV_PCM_HW_PARAM_RATE, &hw_constraints_rates);
1723		if (err < 0)
1724			return err;
1725		runtime->hw.rates |= SNDRV_PCM_RATE_KNOT;
1726		runtime->hw.rate_max = 128000;
1727	}
1728	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x10000);
1729	return 0;
1730}
1731
1732static int snd_cmipci_playback_spdif_open(struct snd_pcm_substream *substream)
1733{
1734	struct cmipci *cm = snd_pcm_substream_chip(substream);
1735	struct snd_pcm_runtime *runtime = substream->runtime;
1736	int err;
1737
1738	/* use channel A */
1739	err = open_device_check(cm, CM_OPEN_SPDIF_PLAYBACK, substream);
1740	if (err < 0)
1741		return err;
1742	if (cm->can_ac3_hw) {
1743		runtime->hw = snd_cmipci_playback_spdif;
1744		if (cm->chip_version >= 37) {
1745			runtime->hw.formats |= SNDRV_PCM_FMTBIT_S32_LE;
1746			snd_pcm_hw_constraint_msbits(runtime, 0, 32, 24);
1747		}
1748		if (cm->can_96k) {
1749			runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1750					     SNDRV_PCM_RATE_96000;
1751			runtime->hw.rate_max = 96000;
1752		}
1753	} else {
1754		runtime->hw = snd_cmipci_playback_iec958_subframe;
1755	}
1756	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1757	cm->dig_pcm_status = cm->dig_status;
1758	return 0;
1759}
1760
1761static int snd_cmipci_capture_spdif_open(struct snd_pcm_substream *substream)
1762{
1763	struct cmipci *cm = snd_pcm_substream_chip(substream);
1764	struct snd_pcm_runtime *runtime = substream->runtime;
1765	int err;
1766
1767	/* use channel B */
1768	err = open_device_check(cm, CM_OPEN_SPDIF_CAPTURE, substream);
1769	if (err < 0)
1770		return err;
1771	runtime->hw = snd_cmipci_capture_spdif;
1772	if (cm->can_96k && !(cm->chip_version == 68)) {
1773		runtime->hw.rates |= SNDRV_PCM_RATE_88200 |
1774				     SNDRV_PCM_RATE_96000;
1775		runtime->hw.rate_max = 96000;
1776	}
1777	snd_pcm_hw_constraint_minmax(runtime, SNDRV_PCM_HW_PARAM_BUFFER_SIZE, 0, 0x40000);
1778	return 0;
1779}
1780
1781
1782/*
1783 */
1784
1785static int snd_cmipci_playback_close(struct snd_pcm_substream *substream)
1786{
1787	struct cmipci *cm = snd_pcm_substream_chip(substream);
1788	close_device_check(cm, CM_OPEN_PLAYBACK);
1789	return 0;
1790}
1791
1792static int snd_cmipci_capture_close(struct snd_pcm_substream *substream)
1793{
1794	struct cmipci *cm = snd_pcm_substream_chip(substream);
1795	close_device_check(cm, CM_OPEN_CAPTURE);
1796	return 0;
1797}
1798
1799static int snd_cmipci_playback2_close(struct snd_pcm_substream *substream)
1800{
1801	struct cmipci *cm = snd_pcm_substream_chip(substream);
1802	close_device_check(cm, CM_OPEN_PLAYBACK2);
1803	close_device_check(cm, CM_OPEN_PLAYBACK_MULTI);
1804	return 0;
1805}
1806
1807static int snd_cmipci_playback_spdif_close(struct snd_pcm_substream *substream)
1808{
1809	struct cmipci *cm = snd_pcm_substream_chip(substream);
1810	close_device_check(cm, CM_OPEN_SPDIF_PLAYBACK);
1811	return 0;
1812}
1813
1814static int snd_cmipci_capture_spdif_close(struct snd_pcm_substream *substream)
1815{
1816	struct cmipci *cm = snd_pcm_substream_chip(substream);
1817	close_device_check(cm, CM_OPEN_SPDIF_CAPTURE);
1818	return 0;
1819}
1820
1821
1822/*
1823 */
1824
1825static const struct snd_pcm_ops snd_cmipci_playback_ops = {
1826	.open =		snd_cmipci_playback_open,
1827	.close =	snd_cmipci_playback_close,
1828	.hw_free =	snd_cmipci_playback_hw_free,
1829	.prepare =	snd_cmipci_playback_prepare,
1830	.trigger =	snd_cmipci_playback_trigger,
1831	.pointer =	snd_cmipci_playback_pointer,
1832};
1833
1834static const struct snd_pcm_ops snd_cmipci_capture_ops = {
1835	.open =		snd_cmipci_capture_open,
1836	.close =	snd_cmipci_capture_close,
1837	.prepare =	snd_cmipci_capture_prepare,
1838	.trigger =	snd_cmipci_capture_trigger,
1839	.pointer =	snd_cmipci_capture_pointer,
1840};
1841
1842static const struct snd_pcm_ops snd_cmipci_playback2_ops = {
1843	.open =		snd_cmipci_playback2_open,
1844	.close =	snd_cmipci_playback2_close,
1845	.hw_params =	snd_cmipci_playback2_hw_params,
1846	.hw_free =	snd_cmipci_playback2_hw_free,
1847	.prepare =	snd_cmipci_capture_prepare,	/* channel B */
1848	.trigger =	snd_cmipci_capture_trigger,	/* channel B */
1849	.pointer =	snd_cmipci_capture_pointer,	/* channel B */
1850};
1851
1852static const struct snd_pcm_ops snd_cmipci_playback_spdif_ops = {
1853	.open =		snd_cmipci_playback_spdif_open,
1854	.close =	snd_cmipci_playback_spdif_close,
1855	.hw_free =	snd_cmipci_playback_hw_free,
1856	.prepare =	snd_cmipci_playback_spdif_prepare,	/* set up rate */
1857	.trigger =	snd_cmipci_playback_trigger,
1858	.pointer =	snd_cmipci_playback_pointer,
1859};
1860
1861static const struct snd_pcm_ops snd_cmipci_capture_spdif_ops = {
1862	.open =		snd_cmipci_capture_spdif_open,
1863	.close =	snd_cmipci_capture_spdif_close,
1864	.hw_free =	snd_cmipci_capture_spdif_hw_free,
1865	.prepare =	snd_cmipci_capture_spdif_prepare,
1866	.trigger =	snd_cmipci_capture_trigger,
1867	.pointer =	snd_cmipci_capture_pointer,
1868};
1869
1870
1871/*
1872 */
1873
1874static int snd_cmipci_pcm_new(struct cmipci *cm, int device)
1875{
1876	struct snd_pcm *pcm;
1877	int err;
1878
1879	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1880	if (err < 0)
1881		return err;
1882
1883	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_ops);
1884	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_ops);
1885
1886	pcm->private_data = cm;
1887	pcm->info_flags = 0;
1888	strcpy(pcm->name, "C-Media PCI DAC/ADC");
1889	cm->pcm = pcm;
1890
1891	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1892				       &cm->pci->dev, 64*1024, 128*1024);
1893
1894	return 0;
1895}
1896
1897static int snd_cmipci_pcm2_new(struct cmipci *cm, int device)
1898{
1899	struct snd_pcm *pcm;
1900	int err;
1901
1902	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 0, &pcm);
1903	if (err < 0)
1904		return err;
1905
1906	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback2_ops);
1907
1908	pcm->private_data = cm;
1909	pcm->info_flags = 0;
1910	strcpy(pcm->name, "C-Media PCI 2nd DAC");
1911	cm->pcm2 = pcm;
1912
1913	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1914				       &cm->pci->dev, 64*1024, 128*1024);
1915
1916	return 0;
1917}
1918
1919static int snd_cmipci_pcm_spdif_new(struct cmipci *cm, int device)
1920{
1921	struct snd_pcm *pcm;
1922	int err;
1923
1924	err = snd_pcm_new(cm->card, cm->card->driver, device, 1, 1, &pcm);
1925	if (err < 0)
1926		return err;
1927
1928	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &snd_cmipci_playback_spdif_ops);
1929	snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &snd_cmipci_capture_spdif_ops);
1930
1931	pcm->private_data = cm;
1932	pcm->info_flags = 0;
1933	strcpy(pcm->name, "C-Media PCI IEC958");
1934	cm->pcm_spdif = pcm;
1935
1936	snd_pcm_set_managed_buffer_all(pcm, SNDRV_DMA_TYPE_DEV,
1937				       &cm->pci->dev, 64*1024, 128*1024);
1938
1939	err = snd_pcm_add_chmap_ctls(pcm, SNDRV_PCM_STREAM_PLAYBACK,
1940				     snd_pcm_alt_chmaps, cm->max_channels, 0,
1941				     NULL);
1942	if (err < 0)
1943		return err;
1944
1945	return 0;
1946}
1947
1948/*
1949 * mixer interface:
1950 * - CM8338/8738 has a compatible mixer interface with SB16, but
1951 *   lack of some elements like tone control, i/o gain and AGC.
1952 * - Access to native registers:
1953 *   - A 3D switch
1954 *   - Output mute switches
1955 */
1956
1957static void snd_cmipci_mixer_write(struct cmipci *s, unsigned char idx, unsigned char data)
1958{
1959	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1960	outb(data, s->iobase + CM_REG_SB16_DATA);
1961}
1962
1963static unsigned char snd_cmipci_mixer_read(struct cmipci *s, unsigned char idx)
1964{
1965	unsigned char v;
1966
1967	outb(idx, s->iobase + CM_REG_SB16_ADDR);
1968	v = inb(s->iobase + CM_REG_SB16_DATA);
1969	return v;
1970}
1971
1972/*
1973 * general mixer element
1974 */
1975struct cmipci_sb_reg {
1976	unsigned int left_reg, right_reg;
1977	unsigned int left_shift, right_shift;
1978	unsigned int mask;
1979	unsigned int invert: 1;
1980	unsigned int stereo: 1;
1981};
1982
1983#define COMPOSE_SB_REG(lreg,rreg,lshift,rshift,mask,invert,stereo) \
1984 ((lreg) | ((rreg) << 8) | (lshift << 16) | (rshift << 19) | (mask << 24) | (invert << 22) | (stereo << 23))
1985
1986#define CMIPCI_DOUBLE(xname, left_reg, right_reg, left_shift, right_shift, mask, invert, stereo) \
1987{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
1988  .info = snd_cmipci_info_volume, \
1989  .get = snd_cmipci_get_volume, .put = snd_cmipci_put_volume, \
1990  .private_value = COMPOSE_SB_REG(left_reg, right_reg, left_shift, right_shift, mask, invert, stereo), \
1991}
1992
1993#define CMIPCI_SB_VOL_STEREO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg+1, shift, shift, mask, 0, 1)
1994#define CMIPCI_SB_VOL_MONO(xname,reg,shift,mask) CMIPCI_DOUBLE(xname, reg, reg, shift, shift, mask, 0, 0)
1995#define CMIPCI_SB_SW_STEREO(xname,lshift,rshift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, lshift, rshift, 1, 0, 1)
1996#define CMIPCI_SB_SW_MONO(xname,shift) CMIPCI_DOUBLE(xname, SB_DSP4_OUTPUT_SW, SB_DSP4_OUTPUT_SW, shift, shift, 1, 0, 0)
1997
1998static void cmipci_sb_reg_decode(struct cmipci_sb_reg *r, unsigned long val)
1999{
2000	r->left_reg = val & 0xff;
2001	r->right_reg = (val >> 8) & 0xff;
2002	r->left_shift = (val >> 16) & 0x07;
2003	r->right_shift = (val >> 19) & 0x07;
2004	r->invert = (val >> 22) & 1;
2005	r->stereo = (val >> 23) & 1;
2006	r->mask = (val >> 24) & 0xff;
2007}
2008
2009static int snd_cmipci_info_volume(struct snd_kcontrol *kcontrol,
2010				  struct snd_ctl_elem_info *uinfo)
2011{
2012	struct cmipci_sb_reg reg;
2013
2014	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2015	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2016	uinfo->count = reg.stereo + 1;
2017	uinfo->value.integer.min = 0;
2018	uinfo->value.integer.max = reg.mask;
2019	return 0;
2020}
2021 
2022static int snd_cmipci_get_volume(struct snd_kcontrol *kcontrol,
2023				 struct snd_ctl_elem_value *ucontrol)
2024{
2025	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2026	struct cmipci_sb_reg reg;
2027	int val;
2028
2029	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2030	spin_lock_irq(&cm->reg_lock);
2031	val = (snd_cmipci_mixer_read(cm, reg.left_reg) >> reg.left_shift) & reg.mask;
2032	if (reg.invert)
2033		val = reg.mask - val;
2034	ucontrol->value.integer.value[0] = val;
2035	if (reg.stereo) {
2036		val = (snd_cmipci_mixer_read(cm, reg.right_reg) >> reg.right_shift) & reg.mask;
2037		if (reg.invert)
2038			val = reg.mask - val;
2039		ucontrol->value.integer.value[1] = val;
2040	}
2041	spin_unlock_irq(&cm->reg_lock);
2042	return 0;
2043}
2044
2045static int snd_cmipci_put_volume(struct snd_kcontrol *kcontrol,
2046				 struct snd_ctl_elem_value *ucontrol)
2047{
2048	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2049	struct cmipci_sb_reg reg;
2050	int change;
2051	int left, right, oleft, oright;
2052
2053	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2054	left = ucontrol->value.integer.value[0] & reg.mask;
2055	if (reg.invert)
2056		left = reg.mask - left;
2057	left <<= reg.left_shift;
2058	if (reg.stereo) {
2059		right = ucontrol->value.integer.value[1] & reg.mask;
2060		if (reg.invert)
2061			right = reg.mask - right;
2062		right <<= reg.right_shift;
2063	} else
2064		right = 0;
2065	spin_lock_irq(&cm->reg_lock);
2066	oleft = snd_cmipci_mixer_read(cm, reg.left_reg);
2067	left |= oleft & ~(reg.mask << reg.left_shift);
2068	change = left != oleft;
2069	if (reg.stereo) {
2070		if (reg.left_reg != reg.right_reg) {
2071			snd_cmipci_mixer_write(cm, reg.left_reg, left);
2072			oright = snd_cmipci_mixer_read(cm, reg.right_reg);
2073		} else
2074			oright = left;
2075		right |= oright & ~(reg.mask << reg.right_shift);
2076		change |= right != oright;
2077		snd_cmipci_mixer_write(cm, reg.right_reg, right);
2078	} else
2079		snd_cmipci_mixer_write(cm, reg.left_reg, left);
2080	spin_unlock_irq(&cm->reg_lock);
2081	return change;
2082}
2083
2084/*
2085 * input route (left,right) -> (left,right)
2086 */
2087#define CMIPCI_SB_INPUT_SW(xname, left_shift, right_shift) \
2088{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2089  .info = snd_cmipci_info_input_sw, \
2090  .get = snd_cmipci_get_input_sw, .put = snd_cmipci_put_input_sw, \
2091  .private_value = COMPOSE_SB_REG(SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, left_shift, right_shift, 1, 0, 1), \
2092}
2093
2094static int snd_cmipci_info_input_sw(struct snd_kcontrol *kcontrol,
2095				    struct snd_ctl_elem_info *uinfo)
2096{
2097	uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
2098	uinfo->count = 4;
2099	uinfo->value.integer.min = 0;
2100	uinfo->value.integer.max = 1;
2101	return 0;
2102}
2103 
2104static int snd_cmipci_get_input_sw(struct snd_kcontrol *kcontrol,
2105				   struct snd_ctl_elem_value *ucontrol)
2106{
2107	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2108	struct cmipci_sb_reg reg;
2109	int val1, val2;
2110
2111	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2112	spin_lock_irq(&cm->reg_lock);
2113	val1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2114	val2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2115	spin_unlock_irq(&cm->reg_lock);
2116	ucontrol->value.integer.value[0] = (val1 >> reg.left_shift) & 1;
2117	ucontrol->value.integer.value[1] = (val2 >> reg.left_shift) & 1;
2118	ucontrol->value.integer.value[2] = (val1 >> reg.right_shift) & 1;
2119	ucontrol->value.integer.value[3] = (val2 >> reg.right_shift) & 1;
2120	return 0;
2121}
2122
2123static int snd_cmipci_put_input_sw(struct snd_kcontrol *kcontrol,
2124				   struct snd_ctl_elem_value *ucontrol)
2125{
2126	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2127	struct cmipci_sb_reg reg;
2128	int change;
2129	int val1, val2, oval1, oval2;
2130
2131	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2132	spin_lock_irq(&cm->reg_lock);
2133	oval1 = snd_cmipci_mixer_read(cm, reg.left_reg);
2134	oval2 = snd_cmipci_mixer_read(cm, reg.right_reg);
2135	val1 = oval1 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2136	val2 = oval2 & ~((1 << reg.left_shift) | (1 << reg.right_shift));
2137	val1 |= (ucontrol->value.integer.value[0] & 1) << reg.left_shift;
2138	val2 |= (ucontrol->value.integer.value[1] & 1) << reg.left_shift;
2139	val1 |= (ucontrol->value.integer.value[2] & 1) << reg.right_shift;
2140	val2 |= (ucontrol->value.integer.value[3] & 1) << reg.right_shift;
2141	change = val1 != oval1 || val2 != oval2;
2142	snd_cmipci_mixer_write(cm, reg.left_reg, val1);
2143	snd_cmipci_mixer_write(cm, reg.right_reg, val2);
2144	spin_unlock_irq(&cm->reg_lock);
2145	return change;
2146}
2147
2148/*
2149 * native mixer switches/volumes
2150 */
2151
2152#define CMIPCI_MIXER_SW_STEREO(xname, reg, lshift, rshift, invert) \
2153{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2154  .info = snd_cmipci_info_native_mixer, \
2155  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2156  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, 1, invert, 1), \
2157}
2158
2159#define CMIPCI_MIXER_SW_MONO(xname, reg, shift, invert) \
2160{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2161  .info = snd_cmipci_info_native_mixer, \
2162  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2163  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, 1, invert, 0), \
2164}
2165
2166#define CMIPCI_MIXER_VOL_STEREO(xname, reg, lshift, rshift, mask) \
2167{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2168  .info = snd_cmipci_info_native_mixer, \
2169  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2170  .private_value = COMPOSE_SB_REG(reg, reg, lshift, rshift, mask, 0, 1), \
2171}
2172
2173#define CMIPCI_MIXER_VOL_MONO(xname, reg, shift, mask) \
2174{ .iface = SNDRV_CTL_ELEM_IFACE_MIXER, .name = xname, \
2175  .info = snd_cmipci_info_native_mixer, \
2176  .get = snd_cmipci_get_native_mixer, .put = snd_cmipci_put_native_mixer, \
2177  .private_value = COMPOSE_SB_REG(reg, reg, shift, shift, mask, 0, 0), \
2178}
2179
2180static int snd_cmipci_info_native_mixer(struct snd_kcontrol *kcontrol,
2181					struct snd_ctl_elem_info *uinfo)
2182{
2183	struct cmipci_sb_reg reg;
2184
2185	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2186	uinfo->type = reg.mask == 1 ? SNDRV_CTL_ELEM_TYPE_BOOLEAN : SNDRV_CTL_ELEM_TYPE_INTEGER;
2187	uinfo->count = reg.stereo + 1;
2188	uinfo->value.integer.min = 0;
2189	uinfo->value.integer.max = reg.mask;
2190	return 0;
2191
2192}
2193
2194static int snd_cmipci_get_native_mixer(struct snd_kcontrol *kcontrol,
2195				       struct snd_ctl_elem_value *ucontrol)
2196{
2197	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2198	struct cmipci_sb_reg reg;
2199	unsigned char oreg, val;
2200
2201	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2202	spin_lock_irq(&cm->reg_lock);
2203	oreg = inb(cm->iobase + reg.left_reg);
2204	val = (oreg >> reg.left_shift) & reg.mask;
2205	if (reg.invert)
2206		val = reg.mask - val;
2207	ucontrol->value.integer.value[0] = val;
2208	if (reg.stereo) {
2209		val = (oreg >> reg.right_shift) & reg.mask;
2210		if (reg.invert)
2211			val = reg.mask - val;
2212		ucontrol->value.integer.value[1] = val;
2213	}
2214	spin_unlock_irq(&cm->reg_lock);
2215	return 0;
2216}
2217
2218static int snd_cmipci_put_native_mixer(struct snd_kcontrol *kcontrol,
2219				       struct snd_ctl_elem_value *ucontrol)
2220{
2221	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2222	struct cmipci_sb_reg reg;
2223	unsigned char oreg, nreg, val;
2224
2225	cmipci_sb_reg_decode(&reg, kcontrol->private_value);
2226	spin_lock_irq(&cm->reg_lock);
2227	oreg = inb(cm->iobase + reg.left_reg);
2228	val = ucontrol->value.integer.value[0] & reg.mask;
2229	if (reg.invert)
2230		val = reg.mask - val;
2231	nreg = oreg & ~(reg.mask << reg.left_shift);
2232	nreg |= (val << reg.left_shift);
2233	if (reg.stereo) {
2234		val = ucontrol->value.integer.value[1] & reg.mask;
2235		if (reg.invert)
2236			val = reg.mask - val;
2237		nreg &= ~(reg.mask << reg.right_shift);
2238		nreg |= (val << reg.right_shift);
2239	}
2240	outb(nreg, cm->iobase + reg.left_reg);
2241	spin_unlock_irq(&cm->reg_lock);
2242	return (nreg != oreg);
2243}
2244
2245/*
2246 * special case - check mixer sensitivity
2247 */
2248static int snd_cmipci_get_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2249						 struct snd_ctl_elem_value *ucontrol)
2250{
2251	//struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2252	return snd_cmipci_get_native_mixer(kcontrol, ucontrol);
2253}
2254
2255static int snd_cmipci_put_native_mixer_sensitive(struct snd_kcontrol *kcontrol,
2256						 struct snd_ctl_elem_value *ucontrol)
2257{
2258	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2259	if (cm->mixer_insensitive) {
2260		/* ignored */
2261		return 0;
2262	}
2263	return snd_cmipci_put_native_mixer(kcontrol, ucontrol);
2264}
2265
2266
2267static const struct snd_kcontrol_new snd_cmipci_mixers[] = {
2268	CMIPCI_SB_VOL_STEREO("Master Playback Volume", SB_DSP4_MASTER_DEV, 3, 31),
2269	CMIPCI_MIXER_SW_MONO("3D Control - Switch", CM_REG_MIXER1, CM_X3DEN_SHIFT, 0),
2270	CMIPCI_SB_VOL_STEREO("PCM Playback Volume", SB_DSP4_PCM_DEV, 3, 31),
2271	//CMIPCI_MIXER_SW_MONO("PCM Playback Switch", CM_REG_MIXER1, CM_WSMUTE_SHIFT, 1),
2272	{ /* switch with sensitivity */
2273		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2274		.name = "PCM Playback Switch",
2275		.info = snd_cmipci_info_native_mixer,
2276		.get = snd_cmipci_get_native_mixer_sensitive,
2277		.put = snd_cmipci_put_native_mixer_sensitive,
2278		.private_value = COMPOSE_SB_REG(CM_REG_MIXER1, CM_REG_MIXER1, CM_WSMUTE_SHIFT, CM_WSMUTE_SHIFT, 1, 1, 0),
2279	},
2280	CMIPCI_MIXER_SW_STEREO("PCM Capture Switch", CM_REG_MIXER1, CM_WAVEINL_SHIFT, CM_WAVEINR_SHIFT, 0),
2281	CMIPCI_SB_VOL_STEREO("Synth Playback Volume", SB_DSP4_SYNTH_DEV, 3, 31),
2282	CMIPCI_MIXER_SW_MONO("Synth Playback Switch", CM_REG_MIXER1, CM_FMMUTE_SHIFT, 1),
2283	CMIPCI_SB_INPUT_SW("Synth Capture Route", 6, 5),
2284	CMIPCI_SB_VOL_STEREO("CD Playback Volume", SB_DSP4_CD_DEV, 3, 31),
2285	CMIPCI_SB_SW_STEREO("CD Playback Switch", 2, 1),
2286	CMIPCI_SB_INPUT_SW("CD Capture Route", 2, 1),
2287	CMIPCI_SB_VOL_STEREO("Line Playback Volume", SB_DSP4_LINE_DEV, 3, 31),
2288	CMIPCI_SB_SW_STEREO("Line Playback Switch", 4, 3),
2289	CMIPCI_SB_INPUT_SW("Line Capture Route", 4, 3),
2290	CMIPCI_SB_VOL_MONO("Mic Playback Volume", SB_DSP4_MIC_DEV, 3, 31),
2291	CMIPCI_SB_SW_MONO("Mic Playback Switch", 0),
2292	CMIPCI_DOUBLE("Mic Capture Switch", SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT, 0, 0, 1, 0, 0),
2293	CMIPCI_SB_VOL_MONO("Beep Playback Volume", SB_DSP4_SPEAKER_DEV, 6, 3),
2294	CMIPCI_MIXER_VOL_STEREO("Aux Playback Volume", CM_REG_AUX_VOL, 4, 0, 15),
2295	CMIPCI_MIXER_SW_STEREO("Aux Playback Switch", CM_REG_MIXER2, CM_VAUXLM_SHIFT, CM_VAUXRM_SHIFT, 0),
2296	CMIPCI_MIXER_SW_STEREO("Aux Capture Switch", CM_REG_MIXER2, CM_RAUXLEN_SHIFT, CM_RAUXREN_SHIFT, 0),
2297	CMIPCI_MIXER_SW_MONO("Mic Boost Playback Switch", CM_REG_MIXER2, CM_MICGAINZ_SHIFT, 1),
2298	CMIPCI_MIXER_VOL_MONO("Mic Capture Volume", CM_REG_MIXER2, CM_VADMIC_SHIFT, 7),
2299	CMIPCI_SB_VOL_MONO("Phone Playback Volume", CM_REG_EXTENT_IND, 5, 7),
2300	CMIPCI_DOUBLE("Phone Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 4, 4, 1, 0, 0),
2301	CMIPCI_DOUBLE("Beep Playback Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 3, 3, 1, 0, 0),
2302	CMIPCI_DOUBLE("Mic Boost Capture Switch", CM_REG_EXTENT_IND, CM_REG_EXTENT_IND, 0, 0, 1, 0, 0),
2303};
2304
2305/*
2306 * other switches
2307 */
2308
2309struct cmipci_switch_args {
2310	int reg;		/* register index */
2311	unsigned int mask;	/* mask bits */
2312	unsigned int mask_on;	/* mask bits to turn on */
2313	unsigned int is_byte: 1;		/* byte access? */
2314	unsigned int ac3_sensitive: 1;	/* access forbidden during
2315					 * non-audio operation?
2316					 */
2317};
2318
2319#define snd_cmipci_uswitch_info		snd_ctl_boolean_mono_info
2320
2321static int _snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2322				   struct snd_ctl_elem_value *ucontrol,
2323				   struct cmipci_switch_args *args)
2324{
2325	unsigned int val;
2326	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2327
2328	spin_lock_irq(&cm->reg_lock);
2329	if (args->ac3_sensitive && cm->mixer_insensitive) {
2330		ucontrol->value.integer.value[0] = 0;
2331		spin_unlock_irq(&cm->reg_lock);
2332		return 0;
2333	}
2334	if (args->is_byte)
2335		val = inb(cm->iobase + args->reg);
2336	else
2337		val = snd_cmipci_read(cm, args->reg);
2338	ucontrol->value.integer.value[0] = ((val & args->mask) == args->mask_on) ? 1 : 0;
2339	spin_unlock_irq(&cm->reg_lock);
2340	return 0;
2341}
2342
2343static int snd_cmipci_uswitch_get(struct snd_kcontrol *kcontrol,
2344				  struct snd_ctl_elem_value *ucontrol)
2345{
2346	struct cmipci_switch_args *args;
2347	args = (struct cmipci_switch_args *)kcontrol->private_value;
2348	if (snd_BUG_ON(!args))
2349		return -EINVAL;
2350	return _snd_cmipci_uswitch_get(kcontrol, ucontrol, args);
2351}
2352
2353static int _snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2354				   struct snd_ctl_elem_value *ucontrol,
2355				   struct cmipci_switch_args *args)
2356{
2357	unsigned int val;
2358	int change;
2359	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2360
2361	spin_lock_irq(&cm->reg_lock);
2362	if (args->ac3_sensitive && cm->mixer_insensitive) {
2363		/* ignored */
2364		spin_unlock_irq(&cm->reg_lock);
2365		return 0;
2366	}
2367	if (args->is_byte)
2368		val = inb(cm->iobase + args->reg);
2369	else
2370		val = snd_cmipci_read(cm, args->reg);
2371	change = (val & args->mask) != (ucontrol->value.integer.value[0] ? 
2372			args->mask_on : (args->mask & ~args->mask_on));
2373	if (change) {
2374		val &= ~args->mask;
2375		if (ucontrol->value.integer.value[0])
2376			val |= args->mask_on;
2377		else
2378			val |= (args->mask & ~args->mask_on);
2379		if (args->is_byte)
2380			outb((unsigned char)val, cm->iobase + args->reg);
2381		else
2382			snd_cmipci_write(cm, args->reg, val);
2383	}
2384	spin_unlock_irq(&cm->reg_lock);
2385	return change;
2386}
2387
2388static int snd_cmipci_uswitch_put(struct snd_kcontrol *kcontrol,
2389				  struct snd_ctl_elem_value *ucontrol)
2390{
2391	struct cmipci_switch_args *args;
2392	args = (struct cmipci_switch_args *)kcontrol->private_value;
2393	if (snd_BUG_ON(!args))
2394		return -EINVAL;
2395	return _snd_cmipci_uswitch_put(kcontrol, ucontrol, args);
2396}
2397
2398#define DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask_on, xis_byte, xac3) \
2399static struct cmipci_switch_args cmipci_switch_arg_##sname = { \
2400  .reg = xreg, \
2401  .mask = xmask, \
2402  .mask_on = xmask_on, \
2403  .is_byte = xis_byte, \
2404  .ac3_sensitive = xac3, \
2405}
2406	
2407#define DEFINE_BIT_SWITCH_ARG(sname, xreg, xmask, xis_byte, xac3) \
2408	DEFINE_SWITCH_ARG(sname, xreg, xmask, xmask, xis_byte, xac3)
2409
2410#if 0 /* these will be controlled in pcm device */
2411DEFINE_BIT_SWITCH_ARG(spdif_in, CM_REG_FUNCTRL1, CM_SPDF_1, 0, 0);
2412DEFINE_BIT_SWITCH_ARG(spdif_out, CM_REG_FUNCTRL1, CM_SPDF_0, 0, 0);
2413#endif
2414DEFINE_BIT_SWITCH_ARG(spdif_in_sel1, CM_REG_CHFORMAT, CM_SPDIF_SELECT1, 0, 0);
2415DEFINE_BIT_SWITCH_ARG(spdif_in_sel2, CM_REG_MISC_CTRL, CM_SPDIF_SELECT2, 0, 0);
2416DEFINE_BIT_SWITCH_ARG(spdif_enable, CM_REG_LEGACY_CTRL, CM_ENSPDOUT, 0, 0);
2417DEFINE_BIT_SWITCH_ARG(spdo2dac, CM_REG_FUNCTRL1, CM_SPDO2DAC, 0, 1);
2418DEFINE_BIT_SWITCH_ARG(spdi_valid, CM_REG_MISC, CM_SPDVALID, 1, 0);
2419DEFINE_BIT_SWITCH_ARG(spdif_copyright, CM_REG_LEGACY_CTRL, CM_SPDCOPYRHT, 0, 0);
2420DEFINE_BIT_SWITCH_ARG(spdif_dac_out, CM_REG_LEGACY_CTRL, CM_DAC2SPDO, 0, 1);
2421DEFINE_SWITCH_ARG(spdo_5v, CM_REG_MISC_CTRL, CM_SPDO5V, 0, 0, 0); /* inverse: 0 = 5V */
2422// DEFINE_BIT_SWITCH_ARG(spdo_48k, CM_REG_MISC_CTRL, CM_SPDF_AC97|CM_SPDIF48K, 0, 1);
2423DEFINE_BIT_SWITCH_ARG(spdif_loop, CM_REG_FUNCTRL1, CM_SPDFLOOP, 0, 1);
2424DEFINE_BIT_SWITCH_ARG(spdi_monitor, CM_REG_MIXER1, CM_CDPLAY, 1, 0);
2425/* DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_CHFORMAT, CM_SPDIF_INVERSE, 0, 0); */
2426DEFINE_BIT_SWITCH_ARG(spdi_phase, CM_REG_MISC, CM_SPDIF_INVERSE, 1, 0);
2427DEFINE_BIT_SWITCH_ARG(spdi_phase2, CM_REG_CHFORMAT, CM_SPDIF_INVERSE2, 0, 0);
2428#if CM_CH_PLAY == 1
2429DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, 0, 0, 0); /* reversed */
2430#else
2431DEFINE_SWITCH_ARG(exchange_dac, CM_REG_MISC_CTRL, CM_XCHGDAC, CM_XCHGDAC, 0, 0);
2432#endif
2433DEFINE_BIT_SWITCH_ARG(fourch, CM_REG_MISC_CTRL, CM_N4SPK3D, 0, 0);
2434// DEFINE_BIT_SWITCH_ARG(line_rear, CM_REG_MIXER1, CM_REAR2LIN, 1, 0);
2435// DEFINE_BIT_SWITCH_ARG(line_bass, CM_REG_LEGACY_CTRL, CM_CENTR2LIN|CM_BASE2LIN, 0, 0);
2436// DEFINE_BIT_SWITCH_ARG(joystick, CM_REG_FUNCTRL1, CM_JYSTK_EN, 0, 0); /* now module option */
2437DEFINE_SWITCH_ARG(modem, CM_REG_MISC_CTRL, CM_FLINKON|CM_FLINKOFF, CM_FLINKON, 0, 0);
2438
2439#define DEFINE_SWITCH(sname, stype, sarg) \
2440{ .name = sname, \
2441  .iface = stype, \
2442  .info = snd_cmipci_uswitch_info, \
2443  .get = snd_cmipci_uswitch_get, \
2444  .put = snd_cmipci_uswitch_put, \
2445  .private_value = (unsigned long)&cmipci_switch_arg_##sarg,\
2446}
2447
2448#define DEFINE_CARD_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_CARD, sarg)
2449#define DEFINE_MIXER_SWITCH(sname, sarg) DEFINE_SWITCH(sname, SNDRV_CTL_ELEM_IFACE_MIXER, sarg)
2450
2451
2452/*
2453 * callbacks for spdif output switch
2454 * needs toggle two registers..
2455 */
2456static int snd_cmipci_spdout_enable_get(struct snd_kcontrol *kcontrol,
2457					struct snd_ctl_elem_value *ucontrol)
2458{
2459	int changed;
2460	changed = _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2461	changed |= _snd_cmipci_uswitch_get(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2462	return changed;
2463}
2464
2465static int snd_cmipci_spdout_enable_put(struct snd_kcontrol *kcontrol,
2466					struct snd_ctl_elem_value *ucontrol)
2467{
2468	struct cmipci *chip = snd_kcontrol_chip(kcontrol);
2469	int changed;
2470	changed = _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdif_enable);
2471	changed |= _snd_cmipci_uswitch_put(kcontrol, ucontrol, &cmipci_switch_arg_spdo2dac);
2472	if (changed) {
2473		if (ucontrol->value.integer.value[0]) {
2474			if (chip->spdif_playback_avail)
2475				snd_cmipci_set_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2476		} else {
2477			if (chip->spdif_playback_avail)
2478				snd_cmipci_clear_bit(chip, CM_REG_FUNCTRL1, CM_PLAYBACK_SPDF);
2479		}
2480	}
2481	chip->spdif_playback_enabled = ucontrol->value.integer.value[0];
2482	return changed;
2483}
2484
2485
2486static int snd_cmipci_line_in_mode_info(struct snd_kcontrol *kcontrol,
2487					struct snd_ctl_elem_info *uinfo)
2488{
2489	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2490	static const char *const texts[3] = {
2491		"Line-In", "Rear Output", "Bass Output"
2492	};
2493
2494	return snd_ctl_enum_info(uinfo, 1,
2495				 cm->chip_version >= 39 ? 3 : 2, texts);
2496}
2497
2498static inline unsigned int get_line_in_mode(struct cmipci *cm)
2499{
2500	unsigned int val;
2501	if (cm->chip_version >= 39) {
2502		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL);
2503		if (val & (CM_CENTR2LIN | CM_BASE2LIN))
2504			return 2;
2505	}
2506	val = snd_cmipci_read_b(cm, CM_REG_MIXER1);
2507	if (val & CM_REAR2LIN)
2508		return 1;
2509	return 0;
2510}
2511
2512static int snd_cmipci_line_in_mode_get(struct snd_kcontrol *kcontrol,
2513				       struct snd_ctl_elem_value *ucontrol)
2514{
2515	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2516
2517	spin_lock_irq(&cm->reg_lock);
2518	ucontrol->value.enumerated.item[0] = get_line_in_mode(cm);
2519	spin_unlock_irq(&cm->reg_lock);
2520	return 0;
2521}
2522
2523static int snd_cmipci_line_in_mode_put(struct snd_kcontrol *kcontrol,
2524				       struct snd_ctl_elem_value *ucontrol)
2525{
2526	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2527	int change;
2528
2529	spin_lock_irq(&cm->reg_lock);
2530	if (ucontrol->value.enumerated.item[0] == 2)
2531		change = snd_cmipci_set_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2532	else
2533		change = snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_CENTR2LIN | CM_BASE2LIN);
2534	if (ucontrol->value.enumerated.item[0] == 1)
2535		change |= snd_cmipci_set_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2536	else
2537		change |= snd_cmipci_clear_bit_b(cm, CM_REG_MIXER1, CM_REAR2LIN);
2538	spin_unlock_irq(&cm->reg_lock);
2539	return change;
2540}
2541
2542static int snd_cmipci_mic_in_mode_info(struct snd_kcontrol *kcontrol,
2543				       struct snd_ctl_elem_info *uinfo)
2544{
2545	static const char *const texts[2] = { "Mic-In", "Center/LFE Output" };
2546
2547	return snd_ctl_enum_info(uinfo, 1, 2, texts);
2548}
2549
2550static int snd_cmipci_mic_in_mode_get(struct snd_kcontrol *kcontrol,
2551				      struct snd_ctl_elem_value *ucontrol)
2552{
2553	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2554	/* same bit as spdi_phase */
2555	spin_lock_irq(&cm->reg_lock);
2556	ucontrol->value.enumerated.item[0] = 
2557		(snd_cmipci_read_b(cm, CM_REG_MISC) & CM_SPDIF_INVERSE) ? 1 : 0;
2558	spin_unlock_irq(&cm->reg_lock);
2559	return 0;
2560}
2561
2562static int snd_cmipci_mic_in_mode_put(struct snd_kcontrol *kcontrol,
2563				      struct snd_ctl_elem_value *ucontrol)
2564{
2565	struct cmipci *cm = snd_kcontrol_chip(kcontrol);
2566	int change;
2567
2568	spin_lock_irq(&cm->reg_lock);
2569	if (ucontrol->value.enumerated.item[0])
2570		change = snd_cmipci_set_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2571	else
2572		change = snd_cmipci_clear_bit_b(cm, CM_REG_MISC, CM_SPDIF_INVERSE);
2573	spin_unlock_irq(&cm->reg_lock);
2574	return change;
2575}
2576
2577/* both for CM8338/8738 */
2578static const struct snd_kcontrol_new snd_cmipci_mixer_switches[] = {
2579	DEFINE_MIXER_SWITCH("Four Channel Mode", fourch),
2580	{
2581		.name = "Line-In Mode",
2582		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2583		.info = snd_cmipci_line_in_mode_info,
2584		.get = snd_cmipci_line_in_mode_get,
2585		.put = snd_cmipci_line_in_mode_put,
2586	},
2587};
2588
2589/* for non-multichannel chips */
2590static const struct snd_kcontrol_new snd_cmipci_nomulti_switch =
2591DEFINE_MIXER_SWITCH("Exchange DAC", exchange_dac);
2592
2593/* only for CM8738 */
2594static const struct snd_kcontrol_new snd_cmipci_8738_mixer_switches[] = {
2595#if 0 /* controlled in pcm device */
2596	DEFINE_MIXER_SWITCH("IEC958 In Record", spdif_in),
2597	DEFINE_MIXER_SWITCH("IEC958 Out", spdif_out),
2598	DEFINE_MIXER_SWITCH("IEC958 Out To DAC", spdo2dac),
2599#endif
2600	// DEFINE_MIXER_SWITCH("IEC958 Output Switch", spdif_enable),
2601	{ .name = "IEC958 Output Switch",
2602	  .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2603	  .info = snd_cmipci_uswitch_info,
2604	  .get = snd_cmipci_spdout_enable_get,
2605	  .put = snd_cmipci_spdout_enable_put,
2606	},
2607	DEFINE_MIXER_SWITCH("IEC958 In Valid", spdi_valid),
2608	DEFINE_MIXER_SWITCH("IEC958 Copyright", spdif_copyright),
2609	DEFINE_MIXER_SWITCH("IEC958 5V", spdo_5v),
2610//	DEFINE_MIXER_SWITCH("IEC958 In/Out 48KHz", spdo_48k),
2611	DEFINE_MIXER_SWITCH("IEC958 Loop", spdif_loop),
2612	DEFINE_MIXER_SWITCH("IEC958 In Monitor", spdi_monitor),
2613};
2614
2615/* only for model 033/037 */
2616static const struct snd_kcontrol_new snd_cmipci_old_mixer_switches[] = {
2617	DEFINE_MIXER_SWITCH("IEC958 Mix Analog", spdif_dac_out),
2618	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase),
2619	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel1),
2620};
2621
2622/* only for model 039 or later */
2623static const struct snd_kcontrol_new snd_cmipci_extra_mixer_switches[] = {
2624	DEFINE_MIXER_SWITCH("IEC958 In Select", spdif_in_sel2),
2625	DEFINE_MIXER_SWITCH("IEC958 In Phase Inverse", spdi_phase2),
2626	{
2627		.name = "Mic-In Mode",
2628		.iface = SNDRV_CTL_ELEM_IFACE_MIXER,
2629		.info = snd_cmipci_mic_in_mode_info,
2630		.get = snd_cmipci_mic_in_mode_get,
2631		.put = snd_cmipci_mic_in_mode_put,
2632	}
2633};
2634
2635/* card control switches */
2636static const struct snd_kcontrol_new snd_cmipci_modem_switch =
2637DEFINE_CARD_SWITCH("Modem", modem);
2638
2639
2640static int snd_cmipci_mixer_new(struct cmipci *cm, int pcm_spdif_device)
2641{
2642	struct snd_card *card;
2643	const struct snd_kcontrol_new *sw;
2644	struct snd_kcontrol *kctl;
2645	unsigned int idx;
2646	int err;
2647
2648	if (snd_BUG_ON(!cm || !cm->card))
2649		return -EINVAL;
2650
2651	card = cm->card;
2652
2653	strcpy(card->mixername, "CMedia PCI");
2654
2655	spin_lock_irq(&cm->reg_lock);
2656	snd_cmipci_mixer_write(cm, 0x00, 0x00);		/* mixer reset */
2657	spin_unlock_irq(&cm->reg_lock);
2658
2659	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixers); idx++) {
2660		if (cm->chip_version == 68) {	// 8768 has no PCM volume
2661			if (!strcmp(snd_cmipci_mixers[idx].name,
2662				"PCM Playback Volume"))
2663				continue;
2664		}
2665		err = snd_ctl_add(card, snd_ctl_new1(&snd_cmipci_mixers[idx], cm));
2666		if (err < 0)
2667			return err;
2668	}
2669
2670	/* mixer switches */
2671	sw = snd_cmipci_mixer_switches;
2672	for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_mixer_switches); idx++, sw++) {
2673		err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2674		if (err < 0)
2675			return err;
2676	}
2677	if (! cm->can_multi_ch) {
2678		err = snd_ctl_add(cm->card, snd_ctl_new1(&snd_cmipci_nomulti_switch, cm));
2679		if (err < 0)
2680			return err;
2681	}
2682	if (cm->device == PCI_DEVICE_ID_CMEDIA_CM8738 ||
2683	    cm->device == PCI_DEVICE_ID_CMEDIA_CM8738B) {
2684		sw = snd_cmipci_8738_mixer_switches;
2685		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_8738_mixer_switches); idx++, sw++) {
2686			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2687			if (err < 0)
2688				return err;
2689		}
2690		if (cm->can_ac3_hw) {
2691			kctl = snd_ctl_new1(&snd_cmipci_spdif_default, cm);
2692			err = snd_ctl_add(card, kctl);
2693			if (err < 0)
2694				return err;
2695			kctl->id.device = pcm_spdif_device;
2696			kctl = snd_ctl_new1(&snd_cmipci_spdif_mask, cm);
2697			err = snd_ctl_add(card, kctl);
2698			if (err < 0)
2699				return err;
2700			kctl->id.device = pcm_spdif_device;
2701			kctl = snd_ctl_new1(&snd_cmipci_spdif_stream, cm);
2702			err = snd_ctl_add(card, kctl);
2703			if (err < 0)
2704				return err;
2705			kctl->id.device = pcm_spdif_device;
2706		}
2707		if (cm->chip_version <= 37) {
2708			sw = snd_cmipci_old_mixer_switches;
2709			for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_old_mixer_switches); idx++, sw++) {
2710				err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2711				if (err < 0)
2712					return err;
2713			}
2714		}
2715	}
2716	if (cm->chip_version >= 39) {
2717		sw = snd_cmipci_extra_mixer_switches;
2718		for (idx = 0; idx < ARRAY_SIZE(snd_cmipci_extra_mixer_switches); idx++, sw++) {
2719			err = snd_ctl_add(cm->card, snd_ctl_new1(sw, cm));
2720			if (err < 0)
2721				return err;
2722		}
2723	}
2724
2725	/* card switches */
2726	/*
2727	 * newer chips don't have the register bits to force modem link
2728	 * detection; the bit that was FLINKON now mutes CH1
2729	 */
2730	if (cm->chip_version < 39) {
2731		err = snd_ctl_add(cm->card,
2732				  snd_ctl_new1(&snd_cmipci_modem_switch, cm));
2733		if (err < 0)
2734			return err;
2735	}
2736
2737	for (idx = 0; idx < CM_SAVED_MIXERS; idx++) {
2738		struct snd_ctl_elem_id elem_id;
2739		struct snd_kcontrol *ctl;
2740		memset(&elem_id, 0, sizeof(elem_id));
2741		elem_id.iface = SNDRV_CTL_ELEM_IFACE_MIXER;
2742		strcpy(elem_id.name, cm_saved_mixer[idx].name);
2743		ctl = snd_ctl_find_id(cm->card, &elem_id);
2744		if (ctl)
2745			cm->mixer_res_ctl[idx] = ctl;
2746	}
2747
2748	return 0;
2749}
2750
2751
2752/*
2753 * proc interface
2754 */
2755
2756static void snd_cmipci_proc_read(struct snd_info_entry *entry, 
2757				 struct snd_info_buffer *buffer)
2758{
2759	struct cmipci *cm = entry->private_data;
2760	int i, v;
2761	
2762	snd_iprintf(buffer, "%s\n", cm->card->longname);
2763	for (i = 0; i < 0x94; i++) {
2764		if (i == 0x28)
2765			i = 0x90;
2766		v = inb(cm->iobase + i);
2767		if (i % 4 == 0)
2768			snd_iprintf(buffer, "\n%02x:", i);
2769		snd_iprintf(buffer, " %02x", v);
2770	}
2771	snd_iprintf(buffer, "\n");
2772}
2773
2774static void snd_cmipci_proc_init(struct cmipci *cm)
2775{
2776	snd_card_ro_proc_new(cm->card, "cmipci", cm, snd_cmipci_proc_read);
2777}
2778
2779static const struct pci_device_id snd_cmipci_ids[] = {
2780	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338A), 0},
2781	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8338B), 0},
2782	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2783	{PCI_VDEVICE(CMEDIA, PCI_DEVICE_ID_CMEDIA_CM8738B), 0},
2784	{PCI_VDEVICE(AL, PCI_DEVICE_ID_CMEDIA_CM8738), 0},
2785	{0,},
2786};
2787
2788
2789/*
2790 * check chip version and capabilities
2791 * driver name is modified according to the chip model
2792 */
2793static void query_chip(struct cmipci *cm)
2794{
2795	unsigned int detect;
2796
2797	/* check reg 0Ch, bit 24-31 */
2798	detect = snd_cmipci_read(cm, CM_REG_INT_HLDCLR) & CM_CHIP_MASK2;
2799	if (! detect) {
2800		/* check reg 08h, bit 24-28 */
2801		detect = snd_cmipci_read(cm, CM_REG_CHFORMAT) & CM_CHIP_MASK1;
2802		switch (detect) {
2803		case 0:
2804			cm->chip_version = 33;
2805			if (cm->do_soft_ac3)
2806				cm->can_ac3_sw = 1;
2807			else
2808				cm->can_ac3_hw = 1;
2809			break;
2810		case CM_CHIP_037:
2811			cm->chip_version = 37;
2812			cm->can_ac3_hw = 1;
2813			break;
2814		default:
2815			cm->chip_version = 39;
2816			cm->can_ac3_hw = 1;
2817			break;
2818		}
2819		cm->max_channels = 2;
2820	} else {
2821		if (detect & CM_CHIP_039) {
2822			cm->chip_version = 39;
2823			if (detect & CM_CHIP_039_6CH) /* 4 or 6 channels */
2824				cm->max_channels = 6;
2825			else
2826				cm->max_channels = 4;
2827		} else if (detect & CM_CHIP_8768) {
2828			cm->chip_version = 68;
2829			cm->max_channels = 8;
2830			cm->can_96k = 1;
2831		} else {
2832			cm->chip_version = 55;
2833			cm->max_channels = 6;
2834			cm->can_96k = 1;
2835		}
2836		cm->can_ac3_hw = 1;
2837		cm->can_multi_ch = 1;
2838	}
2839}
2840
2841#ifdef SUPPORT_JOYSTICK
2842static int snd_cmipci_create_gameport(struct cmipci *cm, int dev)
2843{
2844	static const int ports[] = { 0x201, 0x200, 0 }; /* FIXME: majority is 0x201? */
2845	struct gameport *gp;
2846	struct resource *r = NULL;
2847	int i, io_port = 0;
2848
2849	if (joystick_port[dev] == 0)
2850		return -ENODEV;
2851
2852	if (joystick_port[dev] == 1) { /* auto-detect */
2853		for (i = 0; ports[i]; i++) {
2854			io_port = ports[i];
2855			r = request_region(io_port, 1, "CMIPCI gameport");
2856			if (r)
2857				break;
2858		}
2859	} else {
2860		io_port = joystick_port[dev];
2861		r = request_region(io_port, 1, "CMIPCI gameport");
2862	}
2863
2864	if (!r) {
2865		dev_warn(cm->card->dev, "cannot reserve joystick ports\n");
2866		return -EBUSY;
2867	}
2868
2869	cm->gameport = gp = gameport_allocate_port();
2870	if (!gp) {
2871		dev_err(cm->card->dev, "cannot allocate memory for gameport\n");
2872		release_and_free_resource(r);
2873		return -ENOMEM;
2874	}
2875	gameport_set_name(gp, "C-Media Gameport");
2876	gameport_set_phys(gp, "pci%s/gameport0", pci_name(cm->pci));
2877	gameport_set_dev_parent(gp, &cm->pci->dev);
2878	gp->io = io_port;
2879	gameport_set_port_data(gp, r);
2880
2881	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2882
2883	gameport_register_port(cm->gameport);
2884
2885	return 0;
2886}
2887
2888static void snd_cmipci_free_gameport(struct cmipci *cm)
2889{
2890	if (cm->gameport) {
2891		struct resource *r = gameport_get_port_data(cm->gameport);
2892
2893		gameport_unregister_port(cm->gameport);
2894		cm->gameport = NULL;
2895
2896		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
2897		release_and_free_resource(r);
2898	}
2899}
2900#else
2901static inline int snd_cmipci_create_gameport(struct cmipci *cm, int dev) { return -ENOSYS; }
2902static inline void snd_cmipci_free_gameport(struct cmipci *cm) { }
2903#endif
2904
2905static int snd_cmipci_free(struct cmipci *cm)
2906{
2907	if (cm->irq >= 0) {
2908		snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2909		snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_ENSPDOUT);
2910		snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);  /* disable ints */
2911		snd_cmipci_ch_reset(cm, CM_CH_PLAY);
2912		snd_cmipci_ch_reset(cm, CM_CH_CAPT);
2913		snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0); /* disable channels */
2914		snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
2915
2916		/* reset mixer */
2917		snd_cmipci_mixer_write(cm, 0, 0);
2918
2919		free_irq(cm->irq, cm);
2920	}
2921
2922	snd_cmipci_free_gameport(cm);
2923	pci_release_regions(cm->pci);
2924	pci_disable_device(cm->pci);
2925	kfree(cm);
2926	return 0;
2927}
2928
2929static int snd_cmipci_dev_free(struct snd_device *device)
2930{
2931	struct cmipci *cm = device->device_data;
2932	return snd_cmipci_free(cm);
2933}
2934
2935static int snd_cmipci_create_fm(struct cmipci *cm, long fm_port)
2936{
2937	long iosynth;
2938	unsigned int val;
2939	struct snd_opl3 *opl3;
2940	int err;
2941
2942	if (!fm_port)
2943		goto disable_fm;
2944
2945	if (cm->chip_version >= 39) {
2946		/* first try FM regs in PCI port range */
2947		iosynth = cm->iobase + CM_REG_FM_PCI;
2948		err = snd_opl3_create(cm->card, iosynth, iosynth + 2,
2949				      OPL3_HW_OPL3, 1, &opl3);
2950	} else {
2951		err = -EIO;
2952	}
2953	if (err < 0) {
2954		/* then try legacy ports */
2955		val = snd_cmipci_read(cm, CM_REG_LEGACY_CTRL) & ~CM_FMSEL_MASK;
2956		iosynth = fm_port;
2957		switch (iosynth) {
2958		case 0x3E8: val |= CM_FMSEL_3E8; break;
2959		case 0x3E0: val |= CM_FMSEL_3E0; break;
2960		case 0x3C8: val |= CM_FMSEL_3C8; break;
2961		case 0x388: val |= CM_FMSEL_388; break;
2962		default:
2963			goto disable_fm;
2964		}
2965		snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
2966		/* enable FM */
2967		snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2968
2969		if (snd_opl3_create(cm->card, iosynth, iosynth + 2,
2970				    OPL3_HW_OPL3, 0, &opl3) < 0) {
2971			dev_err(cm->card->dev,
2972				"no OPL device at %#lx, skipping...\n",
2973				iosynth);
2974			goto disable_fm;
2975		}
2976	}
2977	err = snd_opl3_hwdep_new(opl3, 0, 1, NULL);
2978	if (err < 0) {
2979		dev_err(cm->card->dev, "cannot create OPL3 hwdep\n");
2980		return err;
2981	}
2982	return 0;
2983
2984 disable_fm:
2985	snd_cmipci_clear_bit(cm, CM_REG_LEGACY_CTRL, CM_FMSEL_MASK);
2986	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_FM_EN);
2987	return 0;
2988}
2989
2990static int snd_cmipci_create(struct snd_card *card, struct pci_dev *pci,
2991			     int dev, struct cmipci **rcmipci)
2992{
2993	struct cmipci *cm;
2994	int err;
2995	static const struct snd_device_ops ops = {
2996		.dev_free =	snd_cmipci_dev_free,
2997	};
2998	unsigned int val;
2999	long iomidi = 0;
3000	int integrated_midi = 0;
3001	char modelstr[16];
3002	int pcm_index, pcm_spdif_index;
3003	static const struct pci_device_id intel_82437vx[] = {
3004		{ PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82437VX) },
3005		{ },
3006	};
3007
3008	*rcmipci = NULL;
3009
3010	err = pci_enable_device(pci);
3011	if (err < 0)
3012		return err;
3013
3014	cm = kzalloc(sizeof(*cm), GFP_KERNEL);
3015	if (cm == NULL) {
3016		pci_disable_device(pci);
3017		return -ENOMEM;
3018	}
3019
3020	spin_lock_init(&cm->reg_lock);
3021	mutex_init(&cm->open_mutex);
3022	cm->device = pci->device;
3023	cm->card = card;
3024	cm->pci = pci;
3025	cm->irq = -1;
3026	cm->channel[0].ch = 0;
3027	cm->channel[1].ch = 1;
3028	cm->channel[0].is_dac = cm->channel[1].is_dac = 1; /* dual DAC mode */
3029
3030	err = pci_request_regions(pci, card->driver);
3031	if (err < 0) {
3032		kfree(cm);
3033		pci_disable_device(pci);
3034		return err;
3035	}
3036	cm->iobase = pci_resource_start(pci, 0);
3037
3038	if (request_irq(pci->irq, snd_cmipci_interrupt,
3039			IRQF_SHARED, KBUILD_MODNAME, cm)) {
3040		dev_err(card->dev, "unable to grab IRQ %d\n", pci->irq);
3041		snd_cmipci_free(cm);
3042		return -EBUSY;
3043	}
3044	cm->irq = pci->irq;
3045	card->sync_irq = cm->irq;
3046
3047	pci_set_master(cm->pci);
3048
3049	/*
3050	 * check chip version, max channels and capabilities
3051	 */
3052
3053	cm->chip_version = 0;
3054	cm->max_channels = 2;
3055	cm->do_soft_ac3 = soft_ac3[dev];
3056
3057	if (pci->device != PCI_DEVICE_ID_CMEDIA_CM8338A &&
3058	    pci->device != PCI_DEVICE_ID_CMEDIA_CM8338B)
3059		query_chip(cm);
3060	/* added -MCx suffix for chip supporting multi-channels */
3061	if (cm->can_multi_ch)
3062		sprintf(cm->card->driver + strlen(cm->card->driver),
3063			"-MC%d", cm->max_channels);
3064	else if (cm->can_ac3_sw)
3065		strcpy(cm->card->driver + strlen(cm->card->driver), "-SWIEC");
3066
3067	cm->dig_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3068	cm->dig_pcm_status = SNDRV_PCM_DEFAULT_CON_SPDIF;
3069
3070#if CM_CH_PLAY == 1
3071	cm->ctrl = CM_CHADC0;	/* default FUNCNTRL0 */
3072#else
3073	cm->ctrl = CM_CHADC1;	/* default FUNCNTRL0 */
3074#endif
3075
3076	/* initialize codec registers */
3077	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3078	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_RESET);
3079	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);	/* disable ints */
3080	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3081	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3082	snd_cmipci_write(cm, CM_REG_FUNCTRL0, 0);	/* disable channels */
3083	snd_cmipci_write(cm, CM_REG_FUNCTRL1, 0);
3084
3085	snd_cmipci_write(cm, CM_REG_CHFORMAT, 0);
3086	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_ENDBDAC|CM_N4SPK3D);
3087#if CM_CH_PLAY == 1
3088	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3089#else
3090	snd_cmipci_clear_bit(cm, CM_REG_MISC_CTRL, CM_XCHGDAC);
3091#endif
3092	if (cm->chip_version) {
3093		snd_cmipci_write_b(cm, CM_REG_EXT_MISC, 0x20); /* magic */
3094		snd_cmipci_write_b(cm, CM_REG_EXT_MISC + 1, 0x09); /* more magic */
3095	}
3096	/* Set Bus Master Request */
3097	snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_BREQ);
3098
3099	/* Assume TX and compatible chip set (Autodetection required for VX chip sets) */
3100	switch (pci->device) {
3101	case PCI_DEVICE_ID_CMEDIA_CM8738:
3102	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3103		if (!pci_dev_present(intel_82437vx)) 
3104			snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_TXVX);
3105		break;
3106	default:
3107		break;
3108	}
3109
3110	if (cm->chip_version < 68) {
3111		val = pci->device < 0x110 ? 8338 : 8738;
3112	} else {
3113		switch (snd_cmipci_read_b(cm, CM_REG_INT_HLDCLR + 3) & 0x03) {
3114		case 0:
3115			val = 8769;
3116			break;
3117		case 2:
3118			val = 8762;
3119			break;
3120		default:
3121			switch ((pci->subsystem_vendor << 16) |
3122				pci->subsystem_device) {
3123			case 0x13f69761:
3124			case 0x584d3741:
3125			case 0x584d3751:
3126			case 0x584d3761:
3127			case 0x584d3771:
3128			case 0x72848384:
3129				val = 8770;
3130				break;
3131			default:
3132				val = 8768;
3133				break;
3134			}
3135		}
3136	}
3137	sprintf(card->shortname, "C-Media CMI%d", val);
3138	if (cm->chip_version < 68)
3139		sprintf(modelstr, " (model %d)", cm->chip_version);
3140	else
3141		modelstr[0] = '\0';
3142	sprintf(card->longname, "%s%s at %#lx, irq %i",
3143		card->shortname, modelstr, cm->iobase, cm->irq);
3144
3145	err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, cm, &ops);
3146	if (err < 0) {
3147		snd_cmipci_free(cm);
3148		return err;
3149	}
3150
3151	if (cm->chip_version >= 39) {
3152		val = snd_cmipci_read_b(cm, CM_REG_MPU_PCI + 1);
3153		if (val != 0x00 && val != 0xff) {
3154			if (mpu_port[dev])
3155				iomidi = cm->iobase + CM_REG_MPU_PCI;
3156			integrated_midi = 1;
3157		}
3158	}
3159	if (!integrated_midi) {
3160		val = 0;
3161		iomidi = mpu_port[dev];
3162		switch (iomidi) {
3163		case 0x320: val = CM_VMPU_320; break;
3164		case 0x310: val = CM_VMPU_310; break;
3165		case 0x300: val = CM_VMPU_300; break;
3166		case 0x330: val = CM_VMPU_330; break;
3167		default:
3168			    iomidi = 0; break;
3169		}
3170		if (iomidi > 0) {
3171			snd_cmipci_write(cm, CM_REG_LEGACY_CTRL, val);
3172			/* enable UART */
3173			snd_cmipci_set_bit(cm, CM_REG_FUNCTRL1, CM_UART_EN);
3174			if (inb(iomidi + 1) == 0xff) {
3175				dev_err(cm->card->dev,
3176					"cannot enable MPU-401 port at %#lx\n",
3177					iomidi);
3178				snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1,
3179						     CM_UART_EN);
3180				iomidi = 0;
3181			}
3182		}
3183	}
3184
3185	if (cm->chip_version < 68) {
3186		err = snd_cmipci_create_fm(cm, fm_port[dev]);
3187		if (err < 0)
3188			return err;
3189	}
3190
3191	/* reset mixer */
3192	snd_cmipci_mixer_write(cm, 0, 0);
3193
3194	snd_cmipci_proc_init(cm);
3195
3196	/* create pcm devices */
3197	pcm_index = pcm_spdif_index = 0;
3198	err = snd_cmipci_pcm_new(cm, pcm_index);
3199	if (err < 0)
3200		return err;
3201	pcm_index++;
3202	err = snd_cmipci_pcm2_new(cm, pcm_index);
3203	if (err < 0)
3204		return err;
3205	pcm_index++;
3206	if (cm->can_ac3_hw || cm->can_ac3_sw) {
3207		pcm_spdif_index = pcm_index;
3208		err = snd_cmipci_pcm_spdif_new(cm, pcm_index);
3209		if (err < 0)
3210			return err;
3211	}
3212
3213	/* create mixer interface & switches */
3214	err = snd_cmipci_mixer_new(cm, pcm_spdif_index);
3215	if (err < 0)
3216		return err;
3217
3218	if (iomidi > 0) {
3219		err = snd_mpu401_uart_new(card, 0, MPU401_HW_CMIPCI,
3220					  iomidi,
3221					  (integrated_midi ?
3222					   MPU401_INFO_INTEGRATED : 0) |
3223					  MPU401_INFO_IRQ_HOOK,
3224					  -1, &cm->rmidi);
3225		if (err < 0)
3226			dev_err(cm->card->dev,
3227				"no UART401 device at 0x%lx\n", iomidi);
 
3228	}
3229
3230#ifdef USE_VAR48KRATE
3231	for (val = 0; val < ARRAY_SIZE(rates); val++)
3232		snd_cmipci_set_pll(cm, rates[val], val);
3233
3234	/*
3235	 * (Re-)Enable external switch spdo_48k
3236	 */
3237	snd_cmipci_set_bit(cm, CM_REG_MISC_CTRL, CM_SPDIF48K|CM_SPDF_AC97);
3238#endif /* USE_VAR48KRATE */
3239
3240	if (snd_cmipci_create_gameport(cm, dev) < 0)
3241		snd_cmipci_clear_bit(cm, CM_REG_FUNCTRL1, CM_JYSTK_EN);
3242
3243	*rcmipci = cm;
3244	return 0;
3245}
3246
3247/*
3248 */
3249
3250MODULE_DEVICE_TABLE(pci, snd_cmipci_ids);
3251
3252static int snd_cmipci_probe(struct pci_dev *pci,
3253			    const struct pci_device_id *pci_id)
3254{
3255	static int dev;
3256	struct snd_card *card;
3257	struct cmipci *cm;
3258	int err;
3259
3260	if (dev >= SNDRV_CARDS)
3261		return -ENODEV;
3262	if (! enable[dev]) {
3263		dev++;
3264		return -ENOENT;
3265	}
3266
3267	err = snd_card_new(&pci->dev, index[dev], id[dev], THIS_MODULE,
3268			   0, &card);
3269	if (err < 0)
3270		return err;
3271	
3272	switch (pci->device) {
3273	case PCI_DEVICE_ID_CMEDIA_CM8738:
3274	case PCI_DEVICE_ID_CMEDIA_CM8738B:
3275		strcpy(card->driver, "CMI8738");
3276		break;
3277	case PCI_DEVICE_ID_CMEDIA_CM8338A:
3278	case PCI_DEVICE_ID_CMEDIA_CM8338B:
3279		strcpy(card->driver, "CMI8338");
3280		break;
3281	default:
3282		strcpy(card->driver, "CMIPCI");
3283		break;
3284	}
3285
3286	err = snd_cmipci_create(card, pci, dev, &cm);
3287	if (err < 0)
3288		goto free_card;
3289
3290	card->private_data = cm;
3291
3292	err = snd_card_register(card);
3293	if (err < 0)
3294		goto free_card;
3295
3296	pci_set_drvdata(pci, card);
3297	dev++;
3298	return 0;
3299
3300free_card:
3301	snd_card_free(card);
3302	return err;
3303}
3304
3305static void snd_cmipci_remove(struct pci_dev *pci)
3306{
3307	snd_card_free(pci_get_drvdata(pci));
3308}
3309
3310
3311#ifdef CONFIG_PM_SLEEP
3312/*
3313 * power management
3314 */
3315static const unsigned char saved_regs[] = {
3316	CM_REG_FUNCTRL1, CM_REG_CHFORMAT, CM_REG_LEGACY_CTRL, CM_REG_MISC_CTRL,
3317	CM_REG_MIXER0, CM_REG_MIXER1, CM_REG_MIXER2, CM_REG_MIXER3, CM_REG_PLL,
3318	CM_REG_CH0_FRAME1, CM_REG_CH0_FRAME2,
3319	CM_REG_CH1_FRAME1, CM_REG_CH1_FRAME2, CM_REG_EXT_MISC,
3320	CM_REG_INT_STATUS, CM_REG_INT_HLDCLR, CM_REG_FUNCTRL0,
3321};
3322
3323static const unsigned char saved_mixers[] = {
3324	SB_DSP4_MASTER_DEV, SB_DSP4_MASTER_DEV + 1,
3325	SB_DSP4_PCM_DEV, SB_DSP4_PCM_DEV + 1,
3326	SB_DSP4_SYNTH_DEV, SB_DSP4_SYNTH_DEV + 1,
3327	SB_DSP4_CD_DEV, SB_DSP4_CD_DEV + 1,
3328	SB_DSP4_LINE_DEV, SB_DSP4_LINE_DEV + 1,
3329	SB_DSP4_MIC_DEV, SB_DSP4_SPEAKER_DEV,
3330	CM_REG_EXTENT_IND, SB_DSP4_OUTPUT_SW,
3331	SB_DSP4_INPUT_LEFT, SB_DSP4_INPUT_RIGHT,
3332};
3333
3334static int snd_cmipci_suspend(struct device *dev)
3335{
3336	struct snd_card *card = dev_get_drvdata(dev);
3337	struct cmipci *cm = card->private_data;
3338	int i;
3339
3340	snd_power_change_state(card, SNDRV_CTL_POWER_D3hot);
3341	
3342	/* save registers */
3343	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3344		cm->saved_regs[i] = snd_cmipci_read(cm, saved_regs[i]);
3345	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3346		cm->saved_mixers[i] = snd_cmipci_mixer_read(cm, saved_mixers[i]);
3347
3348	/* disable ints */
3349	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3350	return 0;
3351}
3352
3353static int snd_cmipci_resume(struct device *dev)
3354{
3355	struct snd_card *card = dev_get_drvdata(dev);
3356	struct cmipci *cm = card->private_data;
3357	int i;
3358
3359	/* reset / initialize to a sane state */
3360	snd_cmipci_write(cm, CM_REG_INT_HLDCLR, 0);
3361	snd_cmipci_ch_reset(cm, CM_CH_PLAY);
3362	snd_cmipci_ch_reset(cm, CM_CH_CAPT);
3363	snd_cmipci_mixer_write(cm, 0, 0);
3364
3365	/* restore registers */
3366	for (i = 0; i < ARRAY_SIZE(saved_regs); i++)
3367		snd_cmipci_write(cm, saved_regs[i], cm->saved_regs[i]);
3368	for (i = 0; i < ARRAY_SIZE(saved_mixers); i++)
3369		snd_cmipci_mixer_write(cm, saved_mixers[i], cm->saved_mixers[i]);
3370
3371	snd_power_change_state(card, SNDRV_CTL_POWER_D0);
3372	return 0;
3373}
3374
3375static SIMPLE_DEV_PM_OPS(snd_cmipci_pm, snd_cmipci_suspend, snd_cmipci_resume);
3376#define SND_CMIPCI_PM_OPS	&snd_cmipci_pm
3377#else
3378#define SND_CMIPCI_PM_OPS	NULL
3379#endif /* CONFIG_PM_SLEEP */
3380
3381static struct pci_driver cmipci_driver = {
3382	.name = KBUILD_MODNAME,
3383	.id_table = snd_cmipci_ids,
3384	.probe = snd_cmipci_probe,
3385	.remove = snd_cmipci_remove,
3386	.driver = {
3387		.pm = SND_CMIPCI_PM_OPS,
3388	},
3389};
3390	
3391module_pci_driver(cmipci_driver);