Linux Audio

Check our new training course

Loading...
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/fcntl.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/syscalls.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/fdtable.h>
  15#include <linux/capability.h>
  16#include <linux/dnotify.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/security.h>
  21#include <linux/ptrace.h>
  22#include <linux/signal.h>
  23#include <linux/rcupdate.h>
  24#include <linux/pid_namespace.h>
  25#include <linux/user_namespace.h>
  26#include <linux/memfd.h>
  27#include <linux/compat.h>
 
  28
  29#include <linux/poll.h>
  30#include <asm/siginfo.h>
  31#include <linux/uaccess.h>
  32
  33#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
  34
  35static int setfl(int fd, struct file * filp, unsigned long arg)
  36{
  37	struct inode * inode = file_inode(filp);
  38	int error = 0;
  39
  40	/*
  41	 * O_APPEND cannot be cleared if the file is marked as append-only
  42	 * and the file is open for write.
  43	 */
  44	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
  45		return -EPERM;
  46
  47	/* O_NOATIME can only be set by the owner or superuser */
  48	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
  49		if (!inode_owner_or_capable(inode))
  50			return -EPERM;
  51
  52	/* required for strict SunOS emulation */
  53	if (O_NONBLOCK != O_NDELAY)
  54	       if (arg & O_NDELAY)
  55		   arg |= O_NONBLOCK;
  56
  57	/* Pipe packetized mode is controlled by O_DIRECT flag */
  58	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
  59		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
  60			!filp->f_mapping->a_ops->direct_IO)
  61				return -EINVAL;
  62	}
  63
  64	if (filp->f_op->check_flags)
  65		error = filp->f_op->check_flags(arg);
  66	if (error)
  67		return error;
  68
  69	/*
  70	 * ->fasync() is responsible for setting the FASYNC bit.
  71	 */
  72	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
  73		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
  74		if (error < 0)
  75			goto out;
  76		if (error > 0)
  77			error = 0;
  78	}
  79	spin_lock(&filp->f_lock);
  80	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
  81	spin_unlock(&filp->f_lock);
  82
  83 out:
  84	return error;
  85}
  86
  87static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
  88                     int force)
  89{
  90	write_lock_irq(&filp->f_owner.lock);
  91	if (force || !filp->f_owner.pid) {
  92		put_pid(filp->f_owner.pid);
  93		filp->f_owner.pid = get_pid(pid);
  94		filp->f_owner.pid_type = type;
  95
  96		if (pid) {
  97			const struct cred *cred = current_cred();
  98			filp->f_owner.uid = cred->uid;
  99			filp->f_owner.euid = cred->euid;
 100		}
 101	}
 102	write_unlock_irq(&filp->f_owner.lock);
 103}
 104
 105void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
 106		int force)
 107{
 108	security_file_set_fowner(filp);
 109	f_modown(filp, pid, type, force);
 110}
 111EXPORT_SYMBOL(__f_setown);
 112
 113int f_setown(struct file *filp, unsigned long arg, int force)
 114{
 115	enum pid_type type;
 116	struct pid *pid = NULL;
 117	int who = arg, ret = 0;
 118
 119	type = PIDTYPE_TGID;
 120	if (who < 0) {
 121		/* avoid overflow below */
 122		if (who == INT_MIN)
 123			return -EINVAL;
 124
 125		type = PIDTYPE_PGID;
 126		who = -who;
 127	}
 128
 129	rcu_read_lock();
 130	if (who) {
 131		pid = find_vpid(who);
 132		if (!pid)
 133			ret = -ESRCH;
 134	}
 135
 136	if (!ret)
 137		__f_setown(filp, pid, type, force);
 138	rcu_read_unlock();
 139
 140	return ret;
 141}
 142EXPORT_SYMBOL(f_setown);
 143
 144void f_delown(struct file *filp)
 145{
 146	f_modown(filp, NULL, PIDTYPE_TGID, 1);
 147}
 148
 149pid_t f_getown(struct file *filp)
 150{
 151	pid_t pid;
 152	read_lock(&filp->f_owner.lock);
 153	pid = pid_vnr(filp->f_owner.pid);
 154	if (filp->f_owner.pid_type == PIDTYPE_PGID)
 155		pid = -pid;
 156	read_unlock(&filp->f_owner.lock);
 
 
 
 
 
 157	return pid;
 158}
 159
 160static int f_setown_ex(struct file *filp, unsigned long arg)
 161{
 162	struct f_owner_ex __user *owner_p = (void __user *)arg;
 163	struct f_owner_ex owner;
 164	struct pid *pid;
 165	int type;
 166	int ret;
 167
 168	ret = copy_from_user(&owner, owner_p, sizeof(owner));
 169	if (ret)
 170		return -EFAULT;
 171
 172	switch (owner.type) {
 173	case F_OWNER_TID:
 174		type = PIDTYPE_PID;
 175		break;
 176
 177	case F_OWNER_PID:
 178		type = PIDTYPE_TGID;
 179		break;
 180
 181	case F_OWNER_PGRP:
 182		type = PIDTYPE_PGID;
 183		break;
 184
 185	default:
 186		return -EINVAL;
 187	}
 188
 189	rcu_read_lock();
 190	pid = find_vpid(owner.pid);
 191	if (owner.pid && !pid)
 192		ret = -ESRCH;
 193	else
 194		 __f_setown(filp, pid, type, 1);
 195	rcu_read_unlock();
 196
 197	return ret;
 198}
 199
 200static int f_getown_ex(struct file *filp, unsigned long arg)
 201{
 202	struct f_owner_ex __user *owner_p = (void __user *)arg;
 203	struct f_owner_ex owner;
 204	int ret = 0;
 205
 206	read_lock(&filp->f_owner.lock);
 207	owner.pid = pid_vnr(filp->f_owner.pid);
 
 
 
 208	switch (filp->f_owner.pid_type) {
 209	case PIDTYPE_PID:
 210		owner.type = F_OWNER_TID;
 211		break;
 212
 213	case PIDTYPE_TGID:
 214		owner.type = F_OWNER_PID;
 215		break;
 216
 217	case PIDTYPE_PGID:
 218		owner.type = F_OWNER_PGRP;
 219		break;
 220
 221	default:
 222		WARN_ON(1);
 223		ret = -EINVAL;
 224		break;
 225	}
 226	read_unlock(&filp->f_owner.lock);
 227
 228	if (!ret) {
 229		ret = copy_to_user(owner_p, &owner, sizeof(owner));
 230		if (ret)
 231			ret = -EFAULT;
 232	}
 233	return ret;
 234}
 235
 236#ifdef CONFIG_CHECKPOINT_RESTORE
 237static int f_getowner_uids(struct file *filp, unsigned long arg)
 238{
 239	struct user_namespace *user_ns = current_user_ns();
 240	uid_t __user *dst = (void __user *)arg;
 241	uid_t src[2];
 242	int err;
 243
 244	read_lock(&filp->f_owner.lock);
 245	src[0] = from_kuid(user_ns, filp->f_owner.uid);
 246	src[1] = from_kuid(user_ns, filp->f_owner.euid);
 247	read_unlock(&filp->f_owner.lock);
 248
 249	err  = put_user(src[0], &dst[0]);
 250	err |= put_user(src[1], &dst[1]);
 251
 252	return err;
 253}
 254#else
 255static int f_getowner_uids(struct file *filp, unsigned long arg)
 256{
 257	return -EINVAL;
 258}
 259#endif
 260
 261static bool rw_hint_valid(enum rw_hint hint)
 262{
 263	switch (hint) {
 264	case RWH_WRITE_LIFE_NOT_SET:
 265	case RWH_WRITE_LIFE_NONE:
 266	case RWH_WRITE_LIFE_SHORT:
 267	case RWH_WRITE_LIFE_MEDIUM:
 268	case RWH_WRITE_LIFE_LONG:
 269	case RWH_WRITE_LIFE_EXTREME:
 270		return true;
 271	default:
 272		return false;
 273	}
 274}
 275
 276static long fcntl_rw_hint(struct file *file, unsigned int cmd,
 277			  unsigned long arg)
 278{
 279	struct inode *inode = file_inode(file);
 280	u64 __user *argp = (u64 __user *)arg;
 281	enum rw_hint hint;
 282	u64 h;
 283
 284	switch (cmd) {
 285	case F_GET_FILE_RW_HINT:
 286		h = file_write_hint(file);
 287		if (copy_to_user(argp, &h, sizeof(*argp)))
 288			return -EFAULT;
 289		return 0;
 290	case F_SET_FILE_RW_HINT:
 291		if (copy_from_user(&h, argp, sizeof(h)))
 292			return -EFAULT;
 293		hint = (enum rw_hint) h;
 294		if (!rw_hint_valid(hint))
 295			return -EINVAL;
 296
 297		spin_lock(&file->f_lock);
 298		file->f_write_hint = hint;
 299		spin_unlock(&file->f_lock);
 300		return 0;
 301	case F_GET_RW_HINT:
 302		h = inode->i_write_hint;
 303		if (copy_to_user(argp, &h, sizeof(*argp)))
 304			return -EFAULT;
 305		return 0;
 306	case F_SET_RW_HINT:
 307		if (copy_from_user(&h, argp, sizeof(h)))
 308			return -EFAULT;
 309		hint = (enum rw_hint) h;
 310		if (!rw_hint_valid(hint))
 311			return -EINVAL;
 312
 313		inode_lock(inode);
 314		inode->i_write_hint = hint;
 315		inode_unlock(inode);
 316		return 0;
 317	default:
 318		return -EINVAL;
 319	}
 320}
 321
 322static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
 323		struct file *filp)
 324{
 325	void __user *argp = (void __user *)arg;
 326	struct flock flock;
 327	long err = -EINVAL;
 328
 329	switch (cmd) {
 330	case F_DUPFD:
 331		err = f_dupfd(arg, filp, 0);
 332		break;
 333	case F_DUPFD_CLOEXEC:
 334		err = f_dupfd(arg, filp, O_CLOEXEC);
 335		break;
 336	case F_GETFD:
 337		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
 338		break;
 339	case F_SETFD:
 340		err = 0;
 341		set_close_on_exec(fd, arg & FD_CLOEXEC);
 342		break;
 343	case F_GETFL:
 344		err = filp->f_flags;
 345		break;
 346	case F_SETFL:
 347		err = setfl(fd, filp, arg);
 348		break;
 349#if BITS_PER_LONG != 32
 350	/* 32-bit arches must use fcntl64() */
 351	case F_OFD_GETLK:
 352#endif
 353	case F_GETLK:
 354		if (copy_from_user(&flock, argp, sizeof(flock)))
 355			return -EFAULT;
 356		err = fcntl_getlk(filp, cmd, &flock);
 357		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 358			return -EFAULT;
 359		break;
 360#if BITS_PER_LONG != 32
 361	/* 32-bit arches must use fcntl64() */
 362	case F_OFD_SETLK:
 363	case F_OFD_SETLKW:
 364#endif
 365		fallthrough;
 
 366	case F_SETLK:
 367	case F_SETLKW:
 368		if (copy_from_user(&flock, argp, sizeof(flock)))
 369			return -EFAULT;
 370		err = fcntl_setlk(fd, filp, cmd, &flock);
 371		break;
 372	case F_GETOWN:
 373		/*
 374		 * XXX If f_owner is a process group, the
 375		 * negative return value will get converted
 376		 * into an error.  Oops.  If we keep the
 377		 * current syscall conventions, the only way
 378		 * to fix this will be in libc.
 379		 */
 380		err = f_getown(filp);
 381		force_successful_syscall_return();
 382		break;
 383	case F_SETOWN:
 384		err = f_setown(filp, arg, 1);
 385		break;
 386	case F_GETOWN_EX:
 387		err = f_getown_ex(filp, arg);
 388		break;
 389	case F_SETOWN_EX:
 390		err = f_setown_ex(filp, arg);
 391		break;
 392	case F_GETOWNER_UIDS:
 393		err = f_getowner_uids(filp, arg);
 394		break;
 395	case F_GETSIG:
 396		err = filp->f_owner.signum;
 397		break;
 398	case F_SETSIG:
 399		/* arg == 0 restores default behaviour. */
 400		if (!valid_signal(arg)) {
 401			break;
 402		}
 403		err = 0;
 404		filp->f_owner.signum = arg;
 405		break;
 406	case F_GETLEASE:
 407		err = fcntl_getlease(filp);
 408		break;
 409	case F_SETLEASE:
 410		err = fcntl_setlease(fd, filp, arg);
 411		break;
 412	case F_NOTIFY:
 413		err = fcntl_dirnotify(fd, filp, arg);
 414		break;
 415	case F_SETPIPE_SZ:
 416	case F_GETPIPE_SZ:
 417		err = pipe_fcntl(filp, cmd, arg);
 418		break;
 419	case F_ADD_SEALS:
 420	case F_GET_SEALS:
 421		err = memfd_fcntl(filp, cmd, arg);
 422		break;
 423	case F_GET_RW_HINT:
 424	case F_SET_RW_HINT:
 425	case F_GET_FILE_RW_HINT:
 426	case F_SET_FILE_RW_HINT:
 427		err = fcntl_rw_hint(filp, cmd, arg);
 428		break;
 429	default:
 430		break;
 431	}
 432	return err;
 433}
 434
 435static int check_fcntl_cmd(unsigned cmd)
 436{
 437	switch (cmd) {
 438	case F_DUPFD:
 439	case F_DUPFD_CLOEXEC:
 440	case F_GETFD:
 441	case F_SETFD:
 442	case F_GETFL:
 443		return 1;
 444	}
 445	return 0;
 446}
 447
 448SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
 449{	
 450	struct fd f = fdget_raw(fd);
 451	long err = -EBADF;
 452
 453	if (!f.file)
 454		goto out;
 455
 456	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 457		if (!check_fcntl_cmd(cmd))
 458			goto out1;
 459	}
 460
 461	err = security_file_fcntl(f.file, cmd, arg);
 462	if (!err)
 463		err = do_fcntl(fd, cmd, arg, f.file);
 464
 465out1:
 466 	fdput(f);
 467out:
 468	return err;
 469}
 470
 471#if BITS_PER_LONG == 32
 472SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 473		unsigned long, arg)
 474{	
 475	void __user *argp = (void __user *)arg;
 476	struct fd f = fdget_raw(fd);
 477	struct flock64 flock;
 478	long err = -EBADF;
 479
 480	if (!f.file)
 481		goto out;
 482
 483	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 484		if (!check_fcntl_cmd(cmd))
 485			goto out1;
 486	}
 487
 488	err = security_file_fcntl(f.file, cmd, arg);
 489	if (err)
 490		goto out1;
 491	
 492	switch (cmd) {
 493	case F_GETLK64:
 494	case F_OFD_GETLK:
 495		err = -EFAULT;
 496		if (copy_from_user(&flock, argp, sizeof(flock)))
 497			break;
 498		err = fcntl_getlk64(f.file, cmd, &flock);
 499		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 500			err = -EFAULT;
 501		break;
 502	case F_SETLK64:
 503	case F_SETLKW64:
 504	case F_OFD_SETLK:
 505	case F_OFD_SETLKW:
 506		err = -EFAULT;
 507		if (copy_from_user(&flock, argp, sizeof(flock)))
 508			break;
 509		err = fcntl_setlk64(fd, f.file, cmd, &flock);
 510		break;
 511	default:
 512		err = do_fcntl(fd, cmd, arg, f.file);
 513		break;
 514	}
 515out1:
 516	fdput(f);
 517out:
 518	return err;
 519}
 520#endif
 521
 522#ifdef CONFIG_COMPAT
 523/* careful - don't use anywhere else */
 524#define copy_flock_fields(dst, src)		\
 525	(dst)->l_type = (src)->l_type;		\
 526	(dst)->l_whence = (src)->l_whence;	\
 527	(dst)->l_start = (src)->l_start;	\
 528	(dst)->l_len = (src)->l_len;		\
 529	(dst)->l_pid = (src)->l_pid;
 530
 531static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
 532{
 533	struct compat_flock fl;
 534
 535	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
 536		return -EFAULT;
 537	copy_flock_fields(kfl, &fl);
 538	return 0;
 539}
 540
 541static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
 542{
 543	struct compat_flock64 fl;
 544
 545	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
 546		return -EFAULT;
 547	copy_flock_fields(kfl, &fl);
 548	return 0;
 549}
 550
 551static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
 552{
 553	struct compat_flock fl;
 554
 555	memset(&fl, 0, sizeof(struct compat_flock));
 556	copy_flock_fields(&fl, kfl);
 557	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
 558		return -EFAULT;
 559	return 0;
 560}
 561
 562static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
 563{
 564	struct compat_flock64 fl;
 565
 566	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
 567	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
 568
 569	memset(&fl, 0, sizeof(struct compat_flock64));
 570	copy_flock_fields(&fl, kfl);
 571	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
 572		return -EFAULT;
 573	return 0;
 574}
 575#undef copy_flock_fields
 576
 577static unsigned int
 578convert_fcntl_cmd(unsigned int cmd)
 579{
 580	switch (cmd) {
 581	case F_GETLK64:
 582		return F_GETLK;
 583	case F_SETLK64:
 584		return F_SETLK;
 585	case F_SETLKW64:
 586		return F_SETLKW;
 587	}
 588
 589	return cmd;
 590}
 591
 592/*
 593 * GETLK was successful and we need to return the data, but it needs to fit in
 594 * the compat structure.
 595 * l_start shouldn't be too big, unless the original start + end is greater than
 596 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
 597 * -EOVERFLOW in that case.  l_len could be too big, in which case we just
 598 * truncate it, and only allow the app to see that part of the conflicting lock
 599 * that might make sense to it anyway
 600 */
 601static int fixup_compat_flock(struct flock *flock)
 602{
 603	if (flock->l_start > COMPAT_OFF_T_MAX)
 604		return -EOVERFLOW;
 605	if (flock->l_len > COMPAT_OFF_T_MAX)
 606		flock->l_len = COMPAT_OFF_T_MAX;
 607	return 0;
 608}
 609
 610static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
 611			     compat_ulong_t arg)
 612{
 613	struct fd f = fdget_raw(fd);
 614	struct flock flock;
 615	long err = -EBADF;
 616
 617	if (!f.file)
 618		return err;
 619
 620	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 621		if (!check_fcntl_cmd(cmd))
 622			goto out_put;
 623	}
 624
 625	err = security_file_fcntl(f.file, cmd, arg);
 626	if (err)
 627		goto out_put;
 628
 629	switch (cmd) {
 630	case F_GETLK:
 631		err = get_compat_flock(&flock, compat_ptr(arg));
 632		if (err)
 633			break;
 634		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 635		if (err)
 636			break;
 637		err = fixup_compat_flock(&flock);
 638		if (!err)
 639			err = put_compat_flock(&flock, compat_ptr(arg));
 640		break;
 641	case F_GETLK64:
 642	case F_OFD_GETLK:
 643		err = get_compat_flock64(&flock, compat_ptr(arg));
 644		if (err)
 645			break;
 646		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 647		if (!err)
 648			err = put_compat_flock64(&flock, compat_ptr(arg));
 649		break;
 650	case F_SETLK:
 651	case F_SETLKW:
 652		err = get_compat_flock(&flock, compat_ptr(arg));
 653		if (err)
 654			break;
 655		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 656		break;
 657	case F_SETLK64:
 658	case F_SETLKW64:
 659	case F_OFD_SETLK:
 660	case F_OFD_SETLKW:
 661		err = get_compat_flock64(&flock, compat_ptr(arg));
 662		if (err)
 663			break;
 664		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 665		break;
 666	default:
 667		err = do_fcntl(fd, cmd, arg, f.file);
 668		break;
 669	}
 670out_put:
 671	fdput(f);
 672	return err;
 673}
 674
 675COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 676		       compat_ulong_t, arg)
 677{
 678	return do_compat_fcntl64(fd, cmd, arg);
 679}
 680
 681COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
 682		       compat_ulong_t, arg)
 683{
 684	switch (cmd) {
 685	case F_GETLK64:
 686	case F_SETLK64:
 687	case F_SETLKW64:
 688	case F_OFD_GETLK:
 689	case F_OFD_SETLK:
 690	case F_OFD_SETLKW:
 691		return -EINVAL;
 692	}
 693	return do_compat_fcntl64(fd, cmd, arg);
 694}
 695#endif
 696
 697/* Table to convert sigio signal codes into poll band bitmaps */
 698
 699static const __poll_t band_table[NSIGPOLL] = {
 700	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
 701	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
 702	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
 703	EPOLLERR,				/* POLL_ERR */
 704	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
 705	EPOLLHUP | EPOLLERR			/* POLL_HUP */
 706};
 707
 708static inline int sigio_perm(struct task_struct *p,
 709                             struct fown_struct *fown, int sig)
 710{
 711	const struct cred *cred;
 712	int ret;
 713
 714	rcu_read_lock();
 715	cred = __task_cred(p);
 716	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
 717		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
 718		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
 719	       !security_file_send_sigiotask(p, fown, sig));
 720	rcu_read_unlock();
 721	return ret;
 722}
 723
 724static void send_sigio_to_task(struct task_struct *p,
 725			       struct fown_struct *fown,
 726			       int fd, int reason, enum pid_type type)
 727{
 728	/*
 729	 * F_SETSIG can change ->signum lockless in parallel, make
 730	 * sure we read it once and use the same value throughout.
 731	 */
 732	int signum = READ_ONCE(fown->signum);
 733
 734	if (!sigio_perm(p, fown, signum))
 735		return;
 736
 737	switch (signum) {
 738		default: {
 739			kernel_siginfo_t si;
 740
 741			/* Queue a rt signal with the appropriate fd as its
 742			   value.  We use SI_SIGIO as the source, not 
 743			   SI_KERNEL, since kernel signals always get 
 744			   delivered even if we can't queue.  Failure to
 745			   queue in this case _should_ be reported; we fall
 746			   back to SIGIO in that case. --sct */
 747			clear_siginfo(&si);
 748			si.si_signo = signum;
 749			si.si_errno = 0;
 750		        si.si_code  = reason;
 751			/*
 752			 * Posix definies POLL_IN and friends to be signal
 753			 * specific si_codes for SIG_POLL.  Linux extended
 754			 * these si_codes to other signals in a way that is
 755			 * ambiguous if other signals also have signal
 756			 * specific si_codes.  In that case use SI_SIGIO instead
 757			 * to remove the ambiguity.
 758			 */
 759			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
 760				si.si_code = SI_SIGIO;
 761
 762			/* Make sure we are called with one of the POLL_*
 763			   reasons, otherwise we could leak kernel stack into
 764			   userspace.  */
 765			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
 766			if (reason - POLL_IN >= NSIGPOLL)
 767				si.si_band  = ~0L;
 768			else
 769				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
 770			si.si_fd    = fd;
 771			if (!do_send_sig_info(signum, &si, p, type))
 772				break;
 773		}
 774			fallthrough;	/* fall back on the old plain SIGIO signal */
 775		case 0:
 776			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
 777	}
 778}
 779
 780void send_sigio(struct fown_struct *fown, int fd, int band)
 781{
 782	struct task_struct *p;
 783	enum pid_type type;
 
 784	struct pid *pid;
 785	
 786	read_lock(&fown->lock);
 787
 788	type = fown->pid_type;
 789	pid = fown->pid;
 790	if (!pid)
 791		goto out_unlock_fown;
 792
 793	if (type <= PIDTYPE_TGID) {
 794		rcu_read_lock();
 795		p = pid_task(pid, PIDTYPE_PID);
 796		if (p)
 797			send_sigio_to_task(p, fown, fd, band, type);
 798		rcu_read_unlock();
 799	} else {
 800		read_lock(&tasklist_lock);
 801		do_each_pid_task(pid, type, p) {
 802			send_sigio_to_task(p, fown, fd, band, type);
 803		} while_each_pid_task(pid, type, p);
 804		read_unlock(&tasklist_lock);
 805	}
 806 out_unlock_fown:
 807	read_unlock(&fown->lock);
 808}
 809
 810static void send_sigurg_to_task(struct task_struct *p,
 811				struct fown_struct *fown, enum pid_type type)
 812{
 813	if (sigio_perm(p, fown, SIGURG))
 814		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
 815}
 816
 817int send_sigurg(struct fown_struct *fown)
 818{
 819	struct task_struct *p;
 820	enum pid_type type;
 821	struct pid *pid;
 
 822	int ret = 0;
 823	
 824	read_lock(&fown->lock);
 825
 826	type = fown->pid_type;
 827	pid = fown->pid;
 828	if (!pid)
 829		goto out_unlock_fown;
 830
 831	ret = 1;
 832
 833	if (type <= PIDTYPE_TGID) {
 834		rcu_read_lock();
 835		p = pid_task(pid, PIDTYPE_PID);
 836		if (p)
 837			send_sigurg_to_task(p, fown, type);
 838		rcu_read_unlock();
 839	} else {
 840		read_lock(&tasklist_lock);
 841		do_each_pid_task(pid, type, p) {
 842			send_sigurg_to_task(p, fown, type);
 843		} while_each_pid_task(pid, type, p);
 844		read_unlock(&tasklist_lock);
 845	}
 846 out_unlock_fown:
 847	read_unlock(&fown->lock);
 848	return ret;
 849}
 850
 851static DEFINE_SPINLOCK(fasync_lock);
 852static struct kmem_cache *fasync_cache __read_mostly;
 853
 854static void fasync_free_rcu(struct rcu_head *head)
 855{
 856	kmem_cache_free(fasync_cache,
 857			container_of(head, struct fasync_struct, fa_rcu));
 858}
 859
 860/*
 861 * Remove a fasync entry. If successfully removed, return
 862 * positive and clear the FASYNC flag. If no entry exists,
 863 * do nothing and return 0.
 864 *
 865 * NOTE! It is very important that the FASYNC flag always
 866 * match the state "is the filp on a fasync list".
 867 *
 868 */
 869int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
 870{
 871	struct fasync_struct *fa, **fp;
 872	int result = 0;
 873
 874	spin_lock(&filp->f_lock);
 875	spin_lock(&fasync_lock);
 876	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 877		if (fa->fa_file != filp)
 878			continue;
 879
 880		write_lock_irq(&fa->fa_lock);
 881		fa->fa_file = NULL;
 882		write_unlock_irq(&fa->fa_lock);
 883
 884		*fp = fa->fa_next;
 885		call_rcu(&fa->fa_rcu, fasync_free_rcu);
 886		filp->f_flags &= ~FASYNC;
 887		result = 1;
 888		break;
 889	}
 890	spin_unlock(&fasync_lock);
 891	spin_unlock(&filp->f_lock);
 892	return result;
 893}
 894
 895struct fasync_struct *fasync_alloc(void)
 896{
 897	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
 898}
 899
 900/*
 901 * NOTE! This can be used only for unused fasync entries:
 902 * entries that actually got inserted on the fasync list
 903 * need to be released by rcu - see fasync_remove_entry.
 904 */
 905void fasync_free(struct fasync_struct *new)
 906{
 907	kmem_cache_free(fasync_cache, new);
 908}
 909
 910/*
 911 * Insert a new entry into the fasync list.  Return the pointer to the
 912 * old one if we didn't use the new one.
 913 *
 914 * NOTE! It is very important that the FASYNC flag always
 915 * match the state "is the filp on a fasync list".
 916 */
 917struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
 918{
 919        struct fasync_struct *fa, **fp;
 920
 921	spin_lock(&filp->f_lock);
 922	spin_lock(&fasync_lock);
 923	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 924		if (fa->fa_file != filp)
 925			continue;
 926
 927		write_lock_irq(&fa->fa_lock);
 928		fa->fa_fd = fd;
 929		write_unlock_irq(&fa->fa_lock);
 930		goto out;
 931	}
 932
 933	rwlock_init(&new->fa_lock);
 934	new->magic = FASYNC_MAGIC;
 935	new->fa_file = filp;
 936	new->fa_fd = fd;
 937	new->fa_next = *fapp;
 938	rcu_assign_pointer(*fapp, new);
 939	filp->f_flags |= FASYNC;
 940
 941out:
 942	spin_unlock(&fasync_lock);
 943	spin_unlock(&filp->f_lock);
 944	return fa;
 945}
 946
 947/*
 948 * Add a fasync entry. Return negative on error, positive if
 949 * added, and zero if did nothing but change an existing one.
 950 */
 951static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
 952{
 953	struct fasync_struct *new;
 954
 955	new = fasync_alloc();
 956	if (!new)
 957		return -ENOMEM;
 958
 959	/*
 960	 * fasync_insert_entry() returns the old (update) entry if
 961	 * it existed.
 962	 *
 963	 * So free the (unused) new entry and return 0 to let the
 964	 * caller know that we didn't add any new fasync entries.
 965	 */
 966	if (fasync_insert_entry(fd, filp, fapp, new)) {
 967		fasync_free(new);
 968		return 0;
 969	}
 970
 971	return 1;
 972}
 973
 974/*
 975 * fasync_helper() is used by almost all character device drivers
 976 * to set up the fasync queue, and for regular files by the file
 977 * lease code. It returns negative on error, 0 if it did no changes
 978 * and positive if it added/deleted the entry.
 979 */
 980int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
 981{
 982	if (!on)
 983		return fasync_remove_entry(filp, fapp);
 984	return fasync_add_entry(fd, filp, fapp);
 985}
 986
 987EXPORT_SYMBOL(fasync_helper);
 988
 989/*
 990 * rcu_read_lock() is held
 991 */
 992static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
 993{
 994	while (fa) {
 995		struct fown_struct *fown;
 
 996
 997		if (fa->magic != FASYNC_MAGIC) {
 998			printk(KERN_ERR "kill_fasync: bad magic number in "
 999			       "fasync_struct!\n");
1000			return;
1001		}
1002		read_lock(&fa->fa_lock);
1003		if (fa->fa_file) {
1004			fown = &fa->fa_file->f_owner;
1005			/* Don't send SIGURG to processes which have not set a
1006			   queued signum: SIGURG has its own default signalling
1007			   mechanism. */
1008			if (!(sig == SIGURG && fown->signum == 0))
1009				send_sigio(fown, fa->fa_fd, band);
1010		}
1011		read_unlock(&fa->fa_lock);
1012		fa = rcu_dereference(fa->fa_next);
1013	}
1014}
1015
1016void kill_fasync(struct fasync_struct **fp, int sig, int band)
1017{
1018	/* First a quick test without locking: usually
1019	 * the list is empty.
1020	 */
1021	if (*fp) {
1022		rcu_read_lock();
1023		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1024		rcu_read_unlock();
1025	}
1026}
1027EXPORT_SYMBOL(kill_fasync);
1028
1029static int __init fcntl_init(void)
1030{
1031	/*
1032	 * Please add new bits here to ensure allocation uniqueness.
1033	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1034	 * is defined as O_NONBLOCK on some platforms and not on others.
1035	 */
1036	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1037		HWEIGHT32(
1038			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1039			__FMODE_EXEC | __FMODE_NONOTIFY));
1040
1041	fasync_cache = kmem_cache_create("fasync_cache",
1042		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
1043	return 0;
1044}
1045
1046module_init(fcntl_init)
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/fcntl.c
   4 *
   5 *  Copyright (C) 1991, 1992  Linus Torvalds
   6 */
   7
   8#include <linux/syscalls.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/sched/task.h>
  12#include <linux/fs.h>
  13#include <linux/file.h>
  14#include <linux/fdtable.h>
  15#include <linux/capability.h>
  16#include <linux/dnotify.h>
  17#include <linux/slab.h>
  18#include <linux/module.h>
  19#include <linux/pipe_fs_i.h>
  20#include <linux/security.h>
  21#include <linux/ptrace.h>
  22#include <linux/signal.h>
  23#include <linux/rcupdate.h>
  24#include <linux/pid_namespace.h>
  25#include <linux/user_namespace.h>
  26#include <linux/memfd.h>
  27#include <linux/compat.h>
  28#include <linux/mount.h>
  29
  30#include <linux/poll.h>
  31#include <asm/siginfo.h>
  32#include <linux/uaccess.h>
  33
  34#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
  35
  36static int setfl(int fd, struct file * filp, unsigned long arg)
  37{
  38	struct inode * inode = file_inode(filp);
  39	int error = 0;
  40
  41	/*
  42	 * O_APPEND cannot be cleared if the file is marked as append-only
  43	 * and the file is open for write.
  44	 */
  45	if (((arg ^ filp->f_flags) & O_APPEND) && IS_APPEND(inode))
  46		return -EPERM;
  47
  48	/* O_NOATIME can only be set by the owner or superuser */
  49	if ((arg & O_NOATIME) && !(filp->f_flags & O_NOATIME))
  50		if (!inode_owner_or_capable(file_mnt_user_ns(filp), inode))
  51			return -EPERM;
  52
  53	/* required for strict SunOS emulation */
  54	if (O_NONBLOCK != O_NDELAY)
  55	       if (arg & O_NDELAY)
  56		   arg |= O_NONBLOCK;
  57
  58	/* Pipe packetized mode is controlled by O_DIRECT flag */
  59	if (!S_ISFIFO(inode->i_mode) && (arg & O_DIRECT)) {
  60		if (!filp->f_mapping || !filp->f_mapping->a_ops ||
  61			!filp->f_mapping->a_ops->direct_IO)
  62				return -EINVAL;
  63	}
  64
  65	if (filp->f_op->check_flags)
  66		error = filp->f_op->check_flags(arg);
  67	if (error)
  68		return error;
  69
  70	/*
  71	 * ->fasync() is responsible for setting the FASYNC bit.
  72	 */
  73	if (((arg ^ filp->f_flags) & FASYNC) && filp->f_op->fasync) {
  74		error = filp->f_op->fasync(fd, filp, (arg & FASYNC) != 0);
  75		if (error < 0)
  76			goto out;
  77		if (error > 0)
  78			error = 0;
  79	}
  80	spin_lock(&filp->f_lock);
  81	filp->f_flags = (arg & SETFL_MASK) | (filp->f_flags & ~SETFL_MASK);
  82	spin_unlock(&filp->f_lock);
  83
  84 out:
  85	return error;
  86}
  87
  88static void f_modown(struct file *filp, struct pid *pid, enum pid_type type,
  89                     int force)
  90{
  91	write_lock_irq(&filp->f_owner.lock);
  92	if (force || !filp->f_owner.pid) {
  93		put_pid(filp->f_owner.pid);
  94		filp->f_owner.pid = get_pid(pid);
  95		filp->f_owner.pid_type = type;
  96
  97		if (pid) {
  98			const struct cred *cred = current_cred();
  99			filp->f_owner.uid = cred->uid;
 100			filp->f_owner.euid = cred->euid;
 101		}
 102	}
 103	write_unlock_irq(&filp->f_owner.lock);
 104}
 105
 106void __f_setown(struct file *filp, struct pid *pid, enum pid_type type,
 107		int force)
 108{
 109	security_file_set_fowner(filp);
 110	f_modown(filp, pid, type, force);
 111}
 112EXPORT_SYMBOL(__f_setown);
 113
 114int f_setown(struct file *filp, unsigned long arg, int force)
 115{
 116	enum pid_type type;
 117	struct pid *pid = NULL;
 118	int who = arg, ret = 0;
 119
 120	type = PIDTYPE_TGID;
 121	if (who < 0) {
 122		/* avoid overflow below */
 123		if (who == INT_MIN)
 124			return -EINVAL;
 125
 126		type = PIDTYPE_PGID;
 127		who = -who;
 128	}
 129
 130	rcu_read_lock();
 131	if (who) {
 132		pid = find_vpid(who);
 133		if (!pid)
 134			ret = -ESRCH;
 135	}
 136
 137	if (!ret)
 138		__f_setown(filp, pid, type, force);
 139	rcu_read_unlock();
 140
 141	return ret;
 142}
 143EXPORT_SYMBOL(f_setown);
 144
 145void f_delown(struct file *filp)
 146{
 147	f_modown(filp, NULL, PIDTYPE_TGID, 1);
 148}
 149
 150pid_t f_getown(struct file *filp)
 151{
 152	pid_t pid = 0;
 153
 154	read_lock_irq(&filp->f_owner.lock);
 155	rcu_read_lock();
 156	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type)) {
 157		pid = pid_vnr(filp->f_owner.pid);
 158		if (filp->f_owner.pid_type == PIDTYPE_PGID)
 159			pid = -pid;
 160	}
 161	rcu_read_unlock();
 162	read_unlock_irq(&filp->f_owner.lock);
 163	return pid;
 164}
 165
 166static int f_setown_ex(struct file *filp, unsigned long arg)
 167{
 168	struct f_owner_ex __user *owner_p = (void __user *)arg;
 169	struct f_owner_ex owner;
 170	struct pid *pid;
 171	int type;
 172	int ret;
 173
 174	ret = copy_from_user(&owner, owner_p, sizeof(owner));
 175	if (ret)
 176		return -EFAULT;
 177
 178	switch (owner.type) {
 179	case F_OWNER_TID:
 180		type = PIDTYPE_PID;
 181		break;
 182
 183	case F_OWNER_PID:
 184		type = PIDTYPE_TGID;
 185		break;
 186
 187	case F_OWNER_PGRP:
 188		type = PIDTYPE_PGID;
 189		break;
 190
 191	default:
 192		return -EINVAL;
 193	}
 194
 195	rcu_read_lock();
 196	pid = find_vpid(owner.pid);
 197	if (owner.pid && !pid)
 198		ret = -ESRCH;
 199	else
 200		 __f_setown(filp, pid, type, 1);
 201	rcu_read_unlock();
 202
 203	return ret;
 204}
 205
 206static int f_getown_ex(struct file *filp, unsigned long arg)
 207{
 208	struct f_owner_ex __user *owner_p = (void __user *)arg;
 209	struct f_owner_ex owner = {};
 210	int ret = 0;
 211
 212	read_lock_irq(&filp->f_owner.lock);
 213	rcu_read_lock();
 214	if (pid_task(filp->f_owner.pid, filp->f_owner.pid_type))
 215		owner.pid = pid_vnr(filp->f_owner.pid);
 216	rcu_read_unlock();
 217	switch (filp->f_owner.pid_type) {
 218	case PIDTYPE_PID:
 219		owner.type = F_OWNER_TID;
 220		break;
 221
 222	case PIDTYPE_TGID:
 223		owner.type = F_OWNER_PID;
 224		break;
 225
 226	case PIDTYPE_PGID:
 227		owner.type = F_OWNER_PGRP;
 228		break;
 229
 230	default:
 231		WARN_ON(1);
 232		ret = -EINVAL;
 233		break;
 234	}
 235	read_unlock_irq(&filp->f_owner.lock);
 236
 237	if (!ret) {
 238		ret = copy_to_user(owner_p, &owner, sizeof(owner));
 239		if (ret)
 240			ret = -EFAULT;
 241	}
 242	return ret;
 243}
 244
 245#ifdef CONFIG_CHECKPOINT_RESTORE
 246static int f_getowner_uids(struct file *filp, unsigned long arg)
 247{
 248	struct user_namespace *user_ns = current_user_ns();
 249	uid_t __user *dst = (void __user *)arg;
 250	uid_t src[2];
 251	int err;
 252
 253	read_lock_irq(&filp->f_owner.lock);
 254	src[0] = from_kuid(user_ns, filp->f_owner.uid);
 255	src[1] = from_kuid(user_ns, filp->f_owner.euid);
 256	read_unlock_irq(&filp->f_owner.lock);
 257
 258	err  = put_user(src[0], &dst[0]);
 259	err |= put_user(src[1], &dst[1]);
 260
 261	return err;
 262}
 263#else
 264static int f_getowner_uids(struct file *filp, unsigned long arg)
 265{
 266	return -EINVAL;
 267}
 268#endif
 269
 270static bool rw_hint_valid(enum rw_hint hint)
 271{
 272	switch (hint) {
 273	case RWH_WRITE_LIFE_NOT_SET:
 274	case RWH_WRITE_LIFE_NONE:
 275	case RWH_WRITE_LIFE_SHORT:
 276	case RWH_WRITE_LIFE_MEDIUM:
 277	case RWH_WRITE_LIFE_LONG:
 278	case RWH_WRITE_LIFE_EXTREME:
 279		return true;
 280	default:
 281		return false;
 282	}
 283}
 284
 285static long fcntl_rw_hint(struct file *file, unsigned int cmd,
 286			  unsigned long arg)
 287{
 288	struct inode *inode = file_inode(file);
 289	u64 __user *argp = (u64 __user *)arg;
 290	enum rw_hint hint;
 291	u64 h;
 292
 293	switch (cmd) {
 294	case F_GET_FILE_RW_HINT:
 295		h = file_write_hint(file);
 296		if (copy_to_user(argp, &h, sizeof(*argp)))
 297			return -EFAULT;
 298		return 0;
 299	case F_SET_FILE_RW_HINT:
 300		if (copy_from_user(&h, argp, sizeof(h)))
 301			return -EFAULT;
 302		hint = (enum rw_hint) h;
 303		if (!rw_hint_valid(hint))
 304			return -EINVAL;
 305
 306		spin_lock(&file->f_lock);
 307		file->f_write_hint = hint;
 308		spin_unlock(&file->f_lock);
 309		return 0;
 310	case F_GET_RW_HINT:
 311		h = inode->i_write_hint;
 312		if (copy_to_user(argp, &h, sizeof(*argp)))
 313			return -EFAULT;
 314		return 0;
 315	case F_SET_RW_HINT:
 316		if (copy_from_user(&h, argp, sizeof(h)))
 317			return -EFAULT;
 318		hint = (enum rw_hint) h;
 319		if (!rw_hint_valid(hint))
 320			return -EINVAL;
 321
 322		inode_lock(inode);
 323		inode->i_write_hint = hint;
 324		inode_unlock(inode);
 325		return 0;
 326	default:
 327		return -EINVAL;
 328	}
 329}
 330
 331static long do_fcntl(int fd, unsigned int cmd, unsigned long arg,
 332		struct file *filp)
 333{
 334	void __user *argp = (void __user *)arg;
 335	struct flock flock;
 336	long err = -EINVAL;
 337
 338	switch (cmd) {
 339	case F_DUPFD:
 340		err = f_dupfd(arg, filp, 0);
 341		break;
 342	case F_DUPFD_CLOEXEC:
 343		err = f_dupfd(arg, filp, O_CLOEXEC);
 344		break;
 345	case F_GETFD:
 346		err = get_close_on_exec(fd) ? FD_CLOEXEC : 0;
 347		break;
 348	case F_SETFD:
 349		err = 0;
 350		set_close_on_exec(fd, arg & FD_CLOEXEC);
 351		break;
 352	case F_GETFL:
 353		err = filp->f_flags;
 354		break;
 355	case F_SETFL:
 356		err = setfl(fd, filp, arg);
 357		break;
 358#if BITS_PER_LONG != 32
 359	/* 32-bit arches must use fcntl64() */
 360	case F_OFD_GETLK:
 361#endif
 362	case F_GETLK:
 363		if (copy_from_user(&flock, argp, sizeof(flock)))
 364			return -EFAULT;
 365		err = fcntl_getlk(filp, cmd, &flock);
 366		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 367			return -EFAULT;
 368		break;
 369#if BITS_PER_LONG != 32
 370	/* 32-bit arches must use fcntl64() */
 371	case F_OFD_SETLK:
 372	case F_OFD_SETLKW:
 
 373		fallthrough;
 374#endif
 375	case F_SETLK:
 376	case F_SETLKW:
 377		if (copy_from_user(&flock, argp, sizeof(flock)))
 378			return -EFAULT;
 379		err = fcntl_setlk(fd, filp, cmd, &flock);
 380		break;
 381	case F_GETOWN:
 382		/*
 383		 * XXX If f_owner is a process group, the
 384		 * negative return value will get converted
 385		 * into an error.  Oops.  If we keep the
 386		 * current syscall conventions, the only way
 387		 * to fix this will be in libc.
 388		 */
 389		err = f_getown(filp);
 390		force_successful_syscall_return();
 391		break;
 392	case F_SETOWN:
 393		err = f_setown(filp, arg, 1);
 394		break;
 395	case F_GETOWN_EX:
 396		err = f_getown_ex(filp, arg);
 397		break;
 398	case F_SETOWN_EX:
 399		err = f_setown_ex(filp, arg);
 400		break;
 401	case F_GETOWNER_UIDS:
 402		err = f_getowner_uids(filp, arg);
 403		break;
 404	case F_GETSIG:
 405		err = filp->f_owner.signum;
 406		break;
 407	case F_SETSIG:
 408		/* arg == 0 restores default behaviour. */
 409		if (!valid_signal(arg)) {
 410			break;
 411		}
 412		err = 0;
 413		filp->f_owner.signum = arg;
 414		break;
 415	case F_GETLEASE:
 416		err = fcntl_getlease(filp);
 417		break;
 418	case F_SETLEASE:
 419		err = fcntl_setlease(fd, filp, arg);
 420		break;
 421	case F_NOTIFY:
 422		err = fcntl_dirnotify(fd, filp, arg);
 423		break;
 424	case F_SETPIPE_SZ:
 425	case F_GETPIPE_SZ:
 426		err = pipe_fcntl(filp, cmd, arg);
 427		break;
 428	case F_ADD_SEALS:
 429	case F_GET_SEALS:
 430		err = memfd_fcntl(filp, cmd, arg);
 431		break;
 432	case F_GET_RW_HINT:
 433	case F_SET_RW_HINT:
 434	case F_GET_FILE_RW_HINT:
 435	case F_SET_FILE_RW_HINT:
 436		err = fcntl_rw_hint(filp, cmd, arg);
 437		break;
 438	default:
 439		break;
 440	}
 441	return err;
 442}
 443
 444static int check_fcntl_cmd(unsigned cmd)
 445{
 446	switch (cmd) {
 447	case F_DUPFD:
 448	case F_DUPFD_CLOEXEC:
 449	case F_GETFD:
 450	case F_SETFD:
 451	case F_GETFL:
 452		return 1;
 453	}
 454	return 0;
 455}
 456
 457SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
 458{	
 459	struct fd f = fdget_raw(fd);
 460	long err = -EBADF;
 461
 462	if (!f.file)
 463		goto out;
 464
 465	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 466		if (!check_fcntl_cmd(cmd))
 467			goto out1;
 468	}
 469
 470	err = security_file_fcntl(f.file, cmd, arg);
 471	if (!err)
 472		err = do_fcntl(fd, cmd, arg, f.file);
 473
 474out1:
 475 	fdput(f);
 476out:
 477	return err;
 478}
 479
 480#if BITS_PER_LONG == 32
 481SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 482		unsigned long, arg)
 483{	
 484	void __user *argp = (void __user *)arg;
 485	struct fd f = fdget_raw(fd);
 486	struct flock64 flock;
 487	long err = -EBADF;
 488
 489	if (!f.file)
 490		goto out;
 491
 492	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 493		if (!check_fcntl_cmd(cmd))
 494			goto out1;
 495	}
 496
 497	err = security_file_fcntl(f.file, cmd, arg);
 498	if (err)
 499		goto out1;
 500	
 501	switch (cmd) {
 502	case F_GETLK64:
 503	case F_OFD_GETLK:
 504		err = -EFAULT;
 505		if (copy_from_user(&flock, argp, sizeof(flock)))
 506			break;
 507		err = fcntl_getlk64(f.file, cmd, &flock);
 508		if (!err && copy_to_user(argp, &flock, sizeof(flock)))
 509			err = -EFAULT;
 510		break;
 511	case F_SETLK64:
 512	case F_SETLKW64:
 513	case F_OFD_SETLK:
 514	case F_OFD_SETLKW:
 515		err = -EFAULT;
 516		if (copy_from_user(&flock, argp, sizeof(flock)))
 517			break;
 518		err = fcntl_setlk64(fd, f.file, cmd, &flock);
 519		break;
 520	default:
 521		err = do_fcntl(fd, cmd, arg, f.file);
 522		break;
 523	}
 524out1:
 525	fdput(f);
 526out:
 527	return err;
 528}
 529#endif
 530
 531#ifdef CONFIG_COMPAT
 532/* careful - don't use anywhere else */
 533#define copy_flock_fields(dst, src)		\
 534	(dst)->l_type = (src)->l_type;		\
 535	(dst)->l_whence = (src)->l_whence;	\
 536	(dst)->l_start = (src)->l_start;	\
 537	(dst)->l_len = (src)->l_len;		\
 538	(dst)->l_pid = (src)->l_pid;
 539
 540static int get_compat_flock(struct flock *kfl, const struct compat_flock __user *ufl)
 541{
 542	struct compat_flock fl;
 543
 544	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock)))
 545		return -EFAULT;
 546	copy_flock_fields(kfl, &fl);
 547	return 0;
 548}
 549
 550static int get_compat_flock64(struct flock *kfl, const struct compat_flock64 __user *ufl)
 551{
 552	struct compat_flock64 fl;
 553
 554	if (copy_from_user(&fl, ufl, sizeof(struct compat_flock64)))
 555		return -EFAULT;
 556	copy_flock_fields(kfl, &fl);
 557	return 0;
 558}
 559
 560static int put_compat_flock(const struct flock *kfl, struct compat_flock __user *ufl)
 561{
 562	struct compat_flock fl;
 563
 564	memset(&fl, 0, sizeof(struct compat_flock));
 565	copy_flock_fields(&fl, kfl);
 566	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock)))
 567		return -EFAULT;
 568	return 0;
 569}
 570
 571static int put_compat_flock64(const struct flock *kfl, struct compat_flock64 __user *ufl)
 572{
 573	struct compat_flock64 fl;
 574
 575	BUILD_BUG_ON(sizeof(kfl->l_start) > sizeof(ufl->l_start));
 576	BUILD_BUG_ON(sizeof(kfl->l_len) > sizeof(ufl->l_len));
 577
 578	memset(&fl, 0, sizeof(struct compat_flock64));
 579	copy_flock_fields(&fl, kfl);
 580	if (copy_to_user(ufl, &fl, sizeof(struct compat_flock64)))
 581		return -EFAULT;
 582	return 0;
 583}
 584#undef copy_flock_fields
 585
 586static unsigned int
 587convert_fcntl_cmd(unsigned int cmd)
 588{
 589	switch (cmd) {
 590	case F_GETLK64:
 591		return F_GETLK;
 592	case F_SETLK64:
 593		return F_SETLK;
 594	case F_SETLKW64:
 595		return F_SETLKW;
 596	}
 597
 598	return cmd;
 599}
 600
 601/*
 602 * GETLK was successful and we need to return the data, but it needs to fit in
 603 * the compat structure.
 604 * l_start shouldn't be too big, unless the original start + end is greater than
 605 * COMPAT_OFF_T_MAX, in which case the app was asking for trouble, so we return
 606 * -EOVERFLOW in that case.  l_len could be too big, in which case we just
 607 * truncate it, and only allow the app to see that part of the conflicting lock
 608 * that might make sense to it anyway
 609 */
 610static int fixup_compat_flock(struct flock *flock)
 611{
 612	if (flock->l_start > COMPAT_OFF_T_MAX)
 613		return -EOVERFLOW;
 614	if (flock->l_len > COMPAT_OFF_T_MAX)
 615		flock->l_len = COMPAT_OFF_T_MAX;
 616	return 0;
 617}
 618
 619static long do_compat_fcntl64(unsigned int fd, unsigned int cmd,
 620			     compat_ulong_t arg)
 621{
 622	struct fd f = fdget_raw(fd);
 623	struct flock flock;
 624	long err = -EBADF;
 625
 626	if (!f.file)
 627		return err;
 628
 629	if (unlikely(f.file->f_mode & FMODE_PATH)) {
 630		if (!check_fcntl_cmd(cmd))
 631			goto out_put;
 632	}
 633
 634	err = security_file_fcntl(f.file, cmd, arg);
 635	if (err)
 636		goto out_put;
 637
 638	switch (cmd) {
 639	case F_GETLK:
 640		err = get_compat_flock(&flock, compat_ptr(arg));
 641		if (err)
 642			break;
 643		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 644		if (err)
 645			break;
 646		err = fixup_compat_flock(&flock);
 647		if (!err)
 648			err = put_compat_flock(&flock, compat_ptr(arg));
 649		break;
 650	case F_GETLK64:
 651	case F_OFD_GETLK:
 652		err = get_compat_flock64(&flock, compat_ptr(arg));
 653		if (err)
 654			break;
 655		err = fcntl_getlk(f.file, convert_fcntl_cmd(cmd), &flock);
 656		if (!err)
 657			err = put_compat_flock64(&flock, compat_ptr(arg));
 658		break;
 659	case F_SETLK:
 660	case F_SETLKW:
 661		err = get_compat_flock(&flock, compat_ptr(arg));
 662		if (err)
 663			break;
 664		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 665		break;
 666	case F_SETLK64:
 667	case F_SETLKW64:
 668	case F_OFD_SETLK:
 669	case F_OFD_SETLKW:
 670		err = get_compat_flock64(&flock, compat_ptr(arg));
 671		if (err)
 672			break;
 673		err = fcntl_setlk(fd, f.file, convert_fcntl_cmd(cmd), &flock);
 674		break;
 675	default:
 676		err = do_fcntl(fd, cmd, arg, f.file);
 677		break;
 678	}
 679out_put:
 680	fdput(f);
 681	return err;
 682}
 683
 684COMPAT_SYSCALL_DEFINE3(fcntl64, unsigned int, fd, unsigned int, cmd,
 685		       compat_ulong_t, arg)
 686{
 687	return do_compat_fcntl64(fd, cmd, arg);
 688}
 689
 690COMPAT_SYSCALL_DEFINE3(fcntl, unsigned int, fd, unsigned int, cmd,
 691		       compat_ulong_t, arg)
 692{
 693	switch (cmd) {
 694	case F_GETLK64:
 695	case F_SETLK64:
 696	case F_SETLKW64:
 697	case F_OFD_GETLK:
 698	case F_OFD_SETLK:
 699	case F_OFD_SETLKW:
 700		return -EINVAL;
 701	}
 702	return do_compat_fcntl64(fd, cmd, arg);
 703}
 704#endif
 705
 706/* Table to convert sigio signal codes into poll band bitmaps */
 707
 708static const __poll_t band_table[NSIGPOLL] = {
 709	EPOLLIN | EPOLLRDNORM,			/* POLL_IN */
 710	EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND,	/* POLL_OUT */
 711	EPOLLIN | EPOLLRDNORM | EPOLLMSG,		/* POLL_MSG */
 712	EPOLLERR,				/* POLL_ERR */
 713	EPOLLPRI | EPOLLRDBAND,			/* POLL_PRI */
 714	EPOLLHUP | EPOLLERR			/* POLL_HUP */
 715};
 716
 717static inline int sigio_perm(struct task_struct *p,
 718                             struct fown_struct *fown, int sig)
 719{
 720	const struct cred *cred;
 721	int ret;
 722
 723	rcu_read_lock();
 724	cred = __task_cred(p);
 725	ret = ((uid_eq(fown->euid, GLOBAL_ROOT_UID) ||
 726		uid_eq(fown->euid, cred->suid) || uid_eq(fown->euid, cred->uid) ||
 727		uid_eq(fown->uid,  cred->suid) || uid_eq(fown->uid,  cred->uid)) &&
 728	       !security_file_send_sigiotask(p, fown, sig));
 729	rcu_read_unlock();
 730	return ret;
 731}
 732
 733static void send_sigio_to_task(struct task_struct *p,
 734			       struct fown_struct *fown,
 735			       int fd, int reason, enum pid_type type)
 736{
 737	/*
 738	 * F_SETSIG can change ->signum lockless in parallel, make
 739	 * sure we read it once and use the same value throughout.
 740	 */
 741	int signum = READ_ONCE(fown->signum);
 742
 743	if (!sigio_perm(p, fown, signum))
 744		return;
 745
 746	switch (signum) {
 747		default: {
 748			kernel_siginfo_t si;
 749
 750			/* Queue a rt signal with the appropriate fd as its
 751			   value.  We use SI_SIGIO as the source, not 
 752			   SI_KERNEL, since kernel signals always get 
 753			   delivered even if we can't queue.  Failure to
 754			   queue in this case _should_ be reported; we fall
 755			   back to SIGIO in that case. --sct */
 756			clear_siginfo(&si);
 757			si.si_signo = signum;
 758			si.si_errno = 0;
 759		        si.si_code  = reason;
 760			/*
 761			 * Posix definies POLL_IN and friends to be signal
 762			 * specific si_codes for SIG_POLL.  Linux extended
 763			 * these si_codes to other signals in a way that is
 764			 * ambiguous if other signals also have signal
 765			 * specific si_codes.  In that case use SI_SIGIO instead
 766			 * to remove the ambiguity.
 767			 */
 768			if ((signum != SIGPOLL) && sig_specific_sicodes(signum))
 769				si.si_code = SI_SIGIO;
 770
 771			/* Make sure we are called with one of the POLL_*
 772			   reasons, otherwise we could leak kernel stack into
 773			   userspace.  */
 774			BUG_ON((reason < POLL_IN) || ((reason - POLL_IN) >= NSIGPOLL));
 775			if (reason - POLL_IN >= NSIGPOLL)
 776				si.si_band  = ~0L;
 777			else
 778				si.si_band = mangle_poll(band_table[reason - POLL_IN]);
 779			si.si_fd    = fd;
 780			if (!do_send_sig_info(signum, &si, p, type))
 781				break;
 782		}
 783			fallthrough;	/* fall back on the old plain SIGIO signal */
 784		case 0:
 785			do_send_sig_info(SIGIO, SEND_SIG_PRIV, p, type);
 786	}
 787}
 788
 789void send_sigio(struct fown_struct *fown, int fd, int band)
 790{
 791	struct task_struct *p;
 792	enum pid_type type;
 793	unsigned long flags;
 794	struct pid *pid;
 795	
 796	read_lock_irqsave(&fown->lock, flags);
 797
 798	type = fown->pid_type;
 799	pid = fown->pid;
 800	if (!pid)
 801		goto out_unlock_fown;
 802
 803	if (type <= PIDTYPE_TGID) {
 804		rcu_read_lock();
 805		p = pid_task(pid, PIDTYPE_PID);
 806		if (p)
 807			send_sigio_to_task(p, fown, fd, band, type);
 808		rcu_read_unlock();
 809	} else {
 810		read_lock(&tasklist_lock);
 811		do_each_pid_task(pid, type, p) {
 812			send_sigio_to_task(p, fown, fd, band, type);
 813		} while_each_pid_task(pid, type, p);
 814		read_unlock(&tasklist_lock);
 815	}
 816 out_unlock_fown:
 817	read_unlock_irqrestore(&fown->lock, flags);
 818}
 819
 820static void send_sigurg_to_task(struct task_struct *p,
 821				struct fown_struct *fown, enum pid_type type)
 822{
 823	if (sigio_perm(p, fown, SIGURG))
 824		do_send_sig_info(SIGURG, SEND_SIG_PRIV, p, type);
 825}
 826
 827int send_sigurg(struct fown_struct *fown)
 828{
 829	struct task_struct *p;
 830	enum pid_type type;
 831	struct pid *pid;
 832	unsigned long flags;
 833	int ret = 0;
 834	
 835	read_lock_irqsave(&fown->lock, flags);
 836
 837	type = fown->pid_type;
 838	pid = fown->pid;
 839	if (!pid)
 840		goto out_unlock_fown;
 841
 842	ret = 1;
 843
 844	if (type <= PIDTYPE_TGID) {
 845		rcu_read_lock();
 846		p = pid_task(pid, PIDTYPE_PID);
 847		if (p)
 848			send_sigurg_to_task(p, fown, type);
 849		rcu_read_unlock();
 850	} else {
 851		read_lock(&tasklist_lock);
 852		do_each_pid_task(pid, type, p) {
 853			send_sigurg_to_task(p, fown, type);
 854		} while_each_pid_task(pid, type, p);
 855		read_unlock(&tasklist_lock);
 856	}
 857 out_unlock_fown:
 858	read_unlock_irqrestore(&fown->lock, flags);
 859	return ret;
 860}
 861
 862static DEFINE_SPINLOCK(fasync_lock);
 863static struct kmem_cache *fasync_cache __read_mostly;
 864
 865static void fasync_free_rcu(struct rcu_head *head)
 866{
 867	kmem_cache_free(fasync_cache,
 868			container_of(head, struct fasync_struct, fa_rcu));
 869}
 870
 871/*
 872 * Remove a fasync entry. If successfully removed, return
 873 * positive and clear the FASYNC flag. If no entry exists,
 874 * do nothing and return 0.
 875 *
 876 * NOTE! It is very important that the FASYNC flag always
 877 * match the state "is the filp on a fasync list".
 878 *
 879 */
 880int fasync_remove_entry(struct file *filp, struct fasync_struct **fapp)
 881{
 882	struct fasync_struct *fa, **fp;
 883	int result = 0;
 884
 885	spin_lock(&filp->f_lock);
 886	spin_lock(&fasync_lock);
 887	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 888		if (fa->fa_file != filp)
 889			continue;
 890
 891		write_lock_irq(&fa->fa_lock);
 892		fa->fa_file = NULL;
 893		write_unlock_irq(&fa->fa_lock);
 894
 895		*fp = fa->fa_next;
 896		call_rcu(&fa->fa_rcu, fasync_free_rcu);
 897		filp->f_flags &= ~FASYNC;
 898		result = 1;
 899		break;
 900	}
 901	spin_unlock(&fasync_lock);
 902	spin_unlock(&filp->f_lock);
 903	return result;
 904}
 905
 906struct fasync_struct *fasync_alloc(void)
 907{
 908	return kmem_cache_alloc(fasync_cache, GFP_KERNEL);
 909}
 910
 911/*
 912 * NOTE! This can be used only for unused fasync entries:
 913 * entries that actually got inserted on the fasync list
 914 * need to be released by rcu - see fasync_remove_entry.
 915 */
 916void fasync_free(struct fasync_struct *new)
 917{
 918	kmem_cache_free(fasync_cache, new);
 919}
 920
 921/*
 922 * Insert a new entry into the fasync list.  Return the pointer to the
 923 * old one if we didn't use the new one.
 924 *
 925 * NOTE! It is very important that the FASYNC flag always
 926 * match the state "is the filp on a fasync list".
 927 */
 928struct fasync_struct *fasync_insert_entry(int fd, struct file *filp, struct fasync_struct **fapp, struct fasync_struct *new)
 929{
 930        struct fasync_struct *fa, **fp;
 931
 932	spin_lock(&filp->f_lock);
 933	spin_lock(&fasync_lock);
 934	for (fp = fapp; (fa = *fp) != NULL; fp = &fa->fa_next) {
 935		if (fa->fa_file != filp)
 936			continue;
 937
 938		write_lock_irq(&fa->fa_lock);
 939		fa->fa_fd = fd;
 940		write_unlock_irq(&fa->fa_lock);
 941		goto out;
 942	}
 943
 944	rwlock_init(&new->fa_lock);
 945	new->magic = FASYNC_MAGIC;
 946	new->fa_file = filp;
 947	new->fa_fd = fd;
 948	new->fa_next = *fapp;
 949	rcu_assign_pointer(*fapp, new);
 950	filp->f_flags |= FASYNC;
 951
 952out:
 953	spin_unlock(&fasync_lock);
 954	spin_unlock(&filp->f_lock);
 955	return fa;
 956}
 957
 958/*
 959 * Add a fasync entry. Return negative on error, positive if
 960 * added, and zero if did nothing but change an existing one.
 961 */
 962static int fasync_add_entry(int fd, struct file *filp, struct fasync_struct **fapp)
 963{
 964	struct fasync_struct *new;
 965
 966	new = fasync_alloc();
 967	if (!new)
 968		return -ENOMEM;
 969
 970	/*
 971	 * fasync_insert_entry() returns the old (update) entry if
 972	 * it existed.
 973	 *
 974	 * So free the (unused) new entry and return 0 to let the
 975	 * caller know that we didn't add any new fasync entries.
 976	 */
 977	if (fasync_insert_entry(fd, filp, fapp, new)) {
 978		fasync_free(new);
 979		return 0;
 980	}
 981
 982	return 1;
 983}
 984
 985/*
 986 * fasync_helper() is used by almost all character device drivers
 987 * to set up the fasync queue, and for regular files by the file
 988 * lease code. It returns negative on error, 0 if it did no changes
 989 * and positive if it added/deleted the entry.
 990 */
 991int fasync_helper(int fd, struct file * filp, int on, struct fasync_struct **fapp)
 992{
 993	if (!on)
 994		return fasync_remove_entry(filp, fapp);
 995	return fasync_add_entry(fd, filp, fapp);
 996}
 997
 998EXPORT_SYMBOL(fasync_helper);
 999
1000/*
1001 * rcu_read_lock() is held
1002 */
1003static void kill_fasync_rcu(struct fasync_struct *fa, int sig, int band)
1004{
1005	while (fa) {
1006		struct fown_struct *fown;
1007		unsigned long flags;
1008
1009		if (fa->magic != FASYNC_MAGIC) {
1010			printk(KERN_ERR "kill_fasync: bad magic number in "
1011			       "fasync_struct!\n");
1012			return;
1013		}
1014		read_lock_irqsave(&fa->fa_lock, flags);
1015		if (fa->fa_file) {
1016			fown = &fa->fa_file->f_owner;
1017			/* Don't send SIGURG to processes which have not set a
1018			   queued signum: SIGURG has its own default signalling
1019			   mechanism. */
1020			if (!(sig == SIGURG && fown->signum == 0))
1021				send_sigio(fown, fa->fa_fd, band);
1022		}
1023		read_unlock_irqrestore(&fa->fa_lock, flags);
1024		fa = rcu_dereference(fa->fa_next);
1025	}
1026}
1027
1028void kill_fasync(struct fasync_struct **fp, int sig, int band)
1029{
1030	/* First a quick test without locking: usually
1031	 * the list is empty.
1032	 */
1033	if (*fp) {
1034		rcu_read_lock();
1035		kill_fasync_rcu(rcu_dereference(*fp), sig, band);
1036		rcu_read_unlock();
1037	}
1038}
1039EXPORT_SYMBOL(kill_fasync);
1040
1041static int __init fcntl_init(void)
1042{
1043	/*
1044	 * Please add new bits here to ensure allocation uniqueness.
1045	 * Exceptions: O_NONBLOCK is a two bit define on parisc; O_NDELAY
1046	 * is defined as O_NONBLOCK on some platforms and not on others.
1047	 */
1048	BUILD_BUG_ON(21 - 1 /* for O_RDONLY being 0 */ !=
1049		HWEIGHT32(
1050			(VALID_OPEN_FLAGS & ~(O_NONBLOCK | O_NDELAY)) |
1051			__FMODE_EXEC | __FMODE_NONOTIFY));
1052
1053	fasync_cache = kmem_cache_create("fasync_cache",
1054		sizeof(struct fasync_struct), 0, SLAB_PANIC, NULL);
1055	return 0;
1056}
1057
1058module_init(fcntl_init)